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Abstract. The values of the so-called Dedekind–Rademacher cocycle at certain real quadratic arguments are

shown to be global p-units in the narrow Hilbert class �eld of the associated real quadratic �eld, as predicted by

the conjectures of [DD06] and [DV21]. The strategy for proving this result combines the approach of [DPV21]

with one crucial extra ingredient: the study of in�nitesimal deformations of irregular Hilbert Eistenstein series

of weight one in the anti-parallel direction, building on the techniques of [BDP].
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Introduction

LetHp denote Drinfeld’s p-adic upper half plane, and letM× denote the multiplicative group of non-zero

rigid meromorphic functions onHp, equipped with the translation action of the discrete group SL2(Z[1/p])
by Möbius transformations. A rigid meromorphic cocycle on a congruence subgroup Γ ⊂ SL2(Z[1/p]) is a

class in H1(Γ,M×). If τ ∈ Hp is a real multiplication, or RM, point, i.e., generates a real quadratic extension

of Q, the value of J at τ is de�ned to be

(1) J [τ ] := J(γτ )(τ) ∈ Cp ∪ {∞},
where γτ ∈ Γ is the automorph of τ , a suitably normalised generator of the stabiliser of τ in Γ. The relevance

of the RM values of rigid meromorphic cocycles to explicit class �eld theory for real quadratic �elds has been

explored in [Da01], [DD06] [DV21], and [DV], where it is conjectured, broadly speaking, that they behave

in many key respects just like the values of classical modular functions at CM points, and in particular that

they belong to, and often generate, narrow ring class �elds of real quadratic �elds.

Theorem B below gives some theoretical evidence for this general conjecture in the simplest case where

Γ = SL2(Z[1/p]) and J is analytic, i.e., takes values in the subgroupA× ⊂M× of rigid analytic functions.
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Strictly speaking, there are no interesting rigid analytic cocycles: the group H1(Γ,A×) is generated, up to

torsion, by the class Jtriv given by

Jtriv

(
a b
c d

)
(z) = cz + d,

whose RM values are units in the associated quadratic order – hence, algebraic, but not in an interesting

way for explicit class �eld theory.

There is a less trivial class in H1(Γ,A× /pZ) arising from the classical Dedekind–Rademacher homomor-
phism ϕDR : Γ0(p)−→Z describing the periods of the weight two Eisenstein series

(2) E
(p)
2 (q) = dlog

(
∆(qp)

∆(q)

)
=

(
p− 1 + 24

∞∑
n=1

σ(p)(n)qn

)
dq

q
, where σ(p)(n) :=

∑
p-d|n

d,

and given by

(3) ϕDR(γ) :=
1

2πi

∫ γz0

z0

2E
(p)
2 (z)dz.

More precisely, the description of Γ as an amalgamated product of two conjugate copies of SL2(Z) inter-

secting in Γ0(p) leads to an injection

H1(Γ0(p),Z) ↪→ H2(Γ,Z).

Letα
DR
∈ Z2(Γ,Z) be a two-cocycle whose cohomology class is the image ofϕDR under this map. Re�ning

a construction of [DD06], Theorem A below asserts that the cocycle pαDR
with values in pZ is trivialised in

the larger group A× ⊃ pZ:

Theorem A. There is a one-cochain JDR ∈ C1(Γ,A×) satisfying

γ1JDR(γ2)÷ JDR(γ1γ2)× JDR(γ1) = pαDR
(γ1,γ2), for all γ1, γ2 ∈ Γ.

The essential triviality of H1(Γ,A×) shows that JDR is uniquely determined up to coboundaries and

powers of the cocycle Jtriv above. The proof of Theorem A is given in § 1, and constructs an explicit

cochain JDR which is well de�ned up to coboundaries. The natural image of JDR in H1(Γ,A× /pZ) is

the Dedekind–Rademacher cocycle of the title. The rigid analytic cocycles of higher level studied in [DD06]

are all multiplicative combinations of GL2(Q)-translates of this basic cocycle. The proof of Theorem A

complements the approach of [DD06], producing a more canonical object in level 1 which can be envisaged

as an avatar of the Eisenstein series E2 in the setting of rigid meromorphic cocycles. The RM values of

JDR are well de�ned modulo pZ, and it therefore makes sense to enquire about their algebraicity, and their

factorisation away from p.

An RM point τ ∈ Hp is said to be of discriminant D if it satis�es an equation of the form Q(τ, 1) = 0,

whereQ(x, y) = Ax2 +Bxy+Cy2
is a primitive integral binary quadratic form of discriminantD. The set

HDp of τ of a �xed discriminant D is non-empty precisely when p is inert or rami�ed in the quadratic �eld

F = Q(
√
D), and is preserved by the action of SL2(Z). The orbit set SL2(Z)\HDp is in natural bijection

with the class group Cl(D), by sending the orbit of τ to the narrow equivalence class Cτ of the fractional

ideal generated by τ and 1 when τ − τ ′ is positive. The reciprocity map

rec : Cl(D)−→Gal(H/F )

of global class �eld theory identi�es Cl(D) with the Galois group of the narrow ring class �eld of H over

F attached to D. If HDp is non-empty and p - D, then the prime p is inert in F/Q and splits completely in
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H/F . The choice of an embedding Q̄ ⊂ Q̄p hence determines a prime p of H above p, which is �xed once

and for all. Fix also a complex embedding Q̄ ⊂ C and write x 7→ x̄ for the action of complex conjugation

on H (which is independent of the choice of embedding). Let

OH [1/p]×−

be the group of p-units of H which are in the minus-eigenspace for the action of complex conjugation. By

the Dirichlet S-unit theorem, it is a Z-module of rank [H : F ]/2 if F does not possess a unit of negative

norm, and is �nite otherwise. In particular, there is a unique element uτ ∈ (OH [1/p]×−)⊗Q satisfying

(4) ordpσ (uτ ) = −L(F, Cστ , 0), for all σ ∈ Gal(H/F ),

where L(F, Cστ , s) is the partial zeta function of the narrow ideal class Cστ (cf. [Gr82, Prop. 3.8]). The p-unit

uτ is called the Gross–Stark unit attached to H/F (and the prime p). The Brumer–Stark conjecture implies

that u12
τ belongs to OH [1/p]× rather than to the tensor product of this group with Q. The proof by Samit

Dasgupta and Mahesh Kakde of (the prime to 2 part of) the Brumer–Stark conjecture [DKa] in this setting

shows that u12
τ belongs to (OH [1/p]×)⊗ Z[1/2].

The principal conjecture of [DD06], and its re�nement covering the Dedekind–Rademacher cocycle itself,

asserts that JDR[τ ] is equal, up to a small torsion ambiguity and powers of p, to an integer power of the

Gross–Stark unit uτ . The weaker equality

(5) NormQp2/Qp(JDR[τ ]) = NormQp2/Qp(u12
τ ) (mod (Q×p )tors, p

Z)

involving the norms to Q×p of these invariants was shown in [DD06] to follow from Gross’s p-adic analogue

of the Stark conjecture on p-adic abelian L-series of totally real �elds at s = 0 – at least, after replacing

JDR[τ ] by the closely allied quantities denoted u(α, τ) in [DD06], which depend on the choice of a suitable

modular unit α ∈ O×Y1(N) with auxiliary level structure. The Gross–Stark conjecture was then proved in

[DDP11]. An important recent work of Samit Dasgupta and Mahesh Kakde [DKb] has signi�cantly re�ned

the approach of [DDP11] to prove Gross’s tame re�nement of the Gross–Stark conjecture, for arbitrary

totally real �elds. Specialising this result to the case of a real quadratic �eld leads to the re�nement

(6) JDR[τ ] = u12
τ (mod (Q×p2)tors, p

Z)

of (5) in which the norm is removed. The removal of this ambiguity is crucial for a truly satisfying approach

to explicit class �eld theory for real quadratic �elds.

The main contribution of this paper is an independent and more direct proof of (6) for fundamental

discriminants:

Theorem B. Let D > 0 be a fundamental discriminant that is prime to p. If τ is an RM point in Hp of
discriminantD, then JDR[τ ] is equal to the Gross–Stark unit u12

τ , up to torsion inQp2 and powers of p, and in
particular belongs to (OH [1/p]×)⊗ Z[1/2].

To situate the approach of this paper in the context of previous works, note that Dasgupta and Kakde

tackle Theorem B by studying Mazur–Tate style “tame re�nements" of the techniques of [DDP11], leading to

a proof of Gross’s tame re�nement of his p-adic Stark conjecture (known as the “tower of �elds conjecture"

[Gr88]). They then show that this tame re�nement implies Theorem B. Like [DKb], the present work rests

on the careful study of deformations of Galois representations that was also exploited in [DDP11], but

otherwise di�ers in its approach to Theorem B by avoiding the recourse to tame deformations. Its key idea

is to package the RM values of JDR as the coe�cients of certain modular generating series. The resulting

identities (cf. Theorem C below) are of interest in their own right and enrich the tapestry of analogies

between RM values of rigid meromorphic cocycles and CM values of modular functions.
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The Dedekind–Rademacher cocycle, taken modulo C×p rather than pZ, is a prototypical instance of a

rigid analytic theta-cocycle: a function J : Γ−→A× which satis�es the one-cocycle relation, but only up

to multiplicative scalars. The proof of Theorem B rests on the study of another theta-cocycle, the so-called

winding cocycle

(7) Jw ∈ H1(Γ,A× /C×p ),

whose key properties are recalled in § 2. The notion of RM value can be extended to theta cocycles by noting

that, if the RM point τ has discriminant prime to p, then its automorph γτ belongs to SL2(Z). The groups

H1(SL2(Z),C×p ) and H2(SL2(Z),C×p ) are �nite of order dividing 12, which implies that the restriction

of J12
to SL2(Z) admits an essentially unique lift J̃ ∈ H1(SL2(Z),A×), and the value J [τ ] can then be

de�ned as in (1), with J replaced by J̃1/12
on the right hand side. Although there is some torsion ambiguity

in the resulting RM values, the p-adic logarithms of these RM values are well-de�ned.

The explicit nature of Jw can be parlayed into a proof of the following result:

Theorem C. Let τ be as in Theorem B. There is a classical modular form Gτ of weight two on Γ0(p) with
p-adic Fourier coe�cients, whose q-expansion is given by

Gτ (q) = log(uτ ) +

∞∑
n=1

log((TnJw)[τ ])qn,

where log : O×Cp −→Cp is the p-adic logarithm. The modular form Gτ is non-trivial if and only if Q(
√
D)

does not admit a unit of norm −1.

The modular generating series of Theorem C is constructed from the diagonal restriction of a nearly

ordinary deformation of a weight one Hilbert Eisenstein series for SL2(OF ) in the anti-parallel direction.

The logarithm of the global p-unit uτ enters into the proof as the eigenvalue of the Frobenius at p on a

quotient of the associated p-adic Galois representation, via a calculation which exploits the reciprocity law

of global class �eld theory, thereby leveraging class �eld theory for H into explicit class �eld theory for F .

An essential ingredient in the proof of Theorem C is the study of p-adic deformations of irregular Hilbert

Eisenstein series of weight one, which is explained in § 3 and forms the technical core of this article. This

approach is inspired by the study of the local geometry of the modular eigenvariety in the neighbourhood

of irregular Eisenstein points of weight one carried out in [BDP], and its extension to the Hilbert setting in

[BDS].

Derivatives of p-adic families of (classical, or Hilbert) modular forms can be viewed as p-adic counterparts

of incoherent Eisenstein series in the sense of Kudla, and provide a protoypical instance of what might be

envisaged as p-adic mock modular forms. Deformations of weight one Hilbert modular Eisenstein series in

the parallel weight direction and their diagonal restrictions are studied in [DPV21], where they are related

to the norms to Qp of JDR[τ ]. Because of the loss of information inherent in taking the norm, Theorem C

represents a signi�cant strengthening of the main theorem of [DPV21], just as Theorem B strengthens the

equality (5) resulting from the proof of Gross–Stark conjecture in the setting of odd ring class characters of

real quadratic �elds.

In § 1 the Dedekind–Rademacher cocycle is constructed, thereby proving Theorem A. The de�nition

and main properties of the winding cocycle appear in § 2, where Theorem B is reduced to Theorem C. The

modular generating series Gτ of Theorem C is constructed in § 3–4. The pivotal § 3 studies in�nitesimal

p-adic deformations of weight one Hilbert Eisenstein series and their Fourier expansions. Finally, through a

calculation carried out in § 4, the formGτ is obtained from the ordinary projection of the diagonal restriction

of this in�nitesimal deformation.
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1. The Dedekind–Rademacher cocycle

This section constructs a one-cochain satisfying Theorem A, which is well-de�ned up to coboundaries

and whose image in H1(Γ,A× /pZ) is the Dedekind–Rademacher cocycle JDR of the introduction.

1.1. Siegel units. Let O×H denote the multiplicative group of nowhere vanishing holomorphic functions

on the Poincaré upper half-plane, endowed with the right action of SL2(R) given by

h|γ(z) = h(γz),

where γz denotes the usual action of γ by Möbius transformations.

The construction of JDR rests on the Siegel units cgα,β ∈ O×H indexed by pairs (α, β) ∈ (Q/Z)2 −
{(0, 0)} of order N > 1, depending on an auxiliary integer c which is relatively prime to 6N . They satisfy

the transformation properties

(8) cgvγ = cgv|γ for all v = (α, β) ∈ (Q/Z)2, γ ∈ SL2(Z).

(Cf. [Ka04, Lemma 1.7(1)].) In particular, cgα,β is a unit on the open modular curve attached to the congru-

ence subgroup of SL2(Z) that �xes (α, β), and hence belongs to O×(Y0(N)). The Siegel units also satisfy

the distribution relations:

(9)

∏
mα′=α

cgα′,β(z) = cgα,β(z/m),
∏

mβ′=β

cgα,β′(z) = cgα,β(mz),

which together imply that

(10)

∏
m(α′,β′)=(α,β)

cgα′,β′(z) = cgα,β(z).

(Cf. [Ka04, Lemma 1.7(2)] or [LLZ14, Prop. 2.2.1 and 2.2.2].)

The unit cgα,β is equal to gc
2

α,β · g
−1
cα,cβ , where the q-expansion of gα,β ∈ O×(Y (N))⊗Q is given by

(11) gα,β(q) = −qw
∏
n≥0

(1− qn+αe2πiβ)
∏
n>0

(1− qn−αe−2πiβ),

where w = 1/12− α/2 + (1/2)α/N , with 0 ≤ α < 1. (Cf. [Ka04, §1.9].)

Fix a rational prime p, and assume that (α, β) is of p-power order in (Q/Z)2
. To lighten notations, it will

be assumed below that p 6= 5, and the choice c = 5 will be �xed. (The constructions are readily adapted to

the case p = 5 by changing the value of c.)

1.2. The Siegel distribution. Let X0 := (Z2
p)
′

be the set of vectors (a, b) ∈ Z2
p that are primitive, i.e.,

satisfy gcd(a, b) = 1, and let

(12) X := (Q2
p − {0, 0}) =

∞⋃
j=−∞

pj X0 .

Let A be an SL2(Z)-module, and let LC(X0,Z) be the space of locally constant Z-valued functions on

X0. An A-valued distribution on X0 is a homomorphism from LC(X0,Z) to A. Because X0 is compact,

a distribution µ is determined by its values µ(U) on the characteristic functions of compact open subsets

U ⊂ X0. Let D(X0, A) denote the module ofA-valued distributions. It is endowed with the (right) SL2(Z)-

action de�ned by

(13) (µ|γ)(U) = µ(Uγ−1)|γ, for γ ∈ SL2(Z), U ⊂ X0 .
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A distribution on X is said to be p-invariant if it is invariant under multiplication by p, i.e.,

(14) µ(pjU) = µ(U) for all j ∈ Z and all compact open U ⊂ X .

Denote by D(X, A) the module of p-invariant distributions on X. Because X0 is a fundamental domain

for the action of p on X (cf. (12)), every distribution on X0 extends uniquely to a p-invariant distribution,

yielding an isomorphism

(15) D(X0, A)
'−→ D(X, A).

The target space is equipped with a natural action of the larger group Γ when A is a Γ-module, de�ned

by (13) with SL2(Z) replaced by Γ. For all µ ∈ D(X, A) and for all locally constant, compactly supported

Z-valued functions f on X, the Γ-action is determined by∫
X
f(x, y)d(µ|γ)(x, y) =

∫
X
f((x, y)γ)dµ(x, y).

As was implicitly observed in the work of Kubert and Lang, the collection of Siegel units of p-power

level are conveniently packaged into a distribution on X0, by setting

µSiegel

(
(a, b) + pn(Z2

p)
)

:=c g a
pn ,

b
pn
, for all (a, b) ∈ (Z2)′.

Since every compact open subset of X0 is a union of sets of the form (a, b) + pn(Z2
p), the above rule deter-

mines µSiegel on all compact open subsets of X0. The fact that it is well-de�ned follows from the distribution

relation (10) with m = p.

View µSiegel as an element of D(X,O×H) via (15). A key feature of µSiegel is its invariance under Γ =

SL2(Z[1/p]), and even under the full group GL+
2 (Z[1/p]) of invertible matrices with coe�cients in Z[1/p]

and positive determinant.

Theorem 1.1. The distribution µSiegel satis�es

(16) µSiegel(Uγ) = µSiegel(U)|γ,

for all compact open subsets U ⊂ X and all γ ∈ GL+
2 (Z[1/p]).

Proof. Let (α, β) = ( a
pn ,

b
pn ) be an element of order pn in (Q/Z)2

. Since the setsUα,β = (a, b)+pnZ2
p

and their translates under multiplication by p form a basis for the topology on X, it su�ces to prove

the theorem for the sets of this form. The equivariance (16) for γ ∈ SL2(Z) follows directly from (8).

Since GL+
2 (Z[1/p]) is generated by SL2(Z) and the matrix T :=

(
p 0
0 1

)
, one is reduced to showing the

relation

µSiegel(Uα,βT ) = µSiegel(Uα,β)|T.
To see this, note that

Uα,βT = (pa+ pn+1Zp)× (b+ pnZp)

=
⋃

b′≡b(pn)

(pa+ pn+1Zp)× (b′ + pn+1Zp) =
⋃

pβ′=β

Uα,β′ .

It then follows from (9) that

µSiegel(Uα,βT ) =
∏
pβ′=β

cgα,β′(z) = cgα,β(pz) = µSiegel(Uα,β)|T,

as was to be shown. �
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The invariance of µSiegel under translation by the full p-arithmetic group Γ, which is hinted at in [LLZ14,

Rem. 2.2.3], combines the SL2(Z)-invariance properties (8) and norm compatibility relations (9), (10) satis-

�ed by the Siegel units of p-power level into a single uni�ed statement.

The following Lemma evaluates the Siegel distribution at some distinguished open subsets of X.

Lemma 1.2. The distribution µSiegel satis�es

(17)

µSiegel(X0) = 1 (mod ± pZ),
µSiegel(pZp×Z×p ) = (∆(qp)/∆(q))2 (mod ± pZ).

Proof. The �rst assertion follows from the fact that X0 is stabilised by SL2(Z), and therefore that

its associated Siegel unit is a unit on the open modular curve Y0(1) of level 1, which contains no

non-constant elements. More precisely, µSiegel(X0) belongs to O×(Y0(1)Z[1/p]) = ±pZ. (Cf. [LLZ14,

Prop.2.3.2] for instance.) The second assertion follows from the calculation

µSiegel(pZp × Z×p ) =

p−1∏
i=1

µSiegel((0, i) + pZ2
p) =

p−1∏
i=1

cg0,i/p = ±pc
2−1(∆(qp)/∆(q))(c2−1)/12,

where the last equality can be read o� from the q-expansions of the Siegel units given in (11). The

result now follows, since c = 5. �

1.3. The Dedekind–Rademacher distributions. The following general Lemmas concerning p-invariant

distributions will be useful later.

Lemma 1.3. Let µ be any element of D(X, A). If Λ is any Zp-lattice in Q2
p, and Λ′ is its set of primitive

vectors, then µ(Λ′) = µ(X0).

Proof. By compactness, there is an integer N ≥ 0 for which p−NZ2
p ⊂ Λ ⊂ pNZ2

p, and hence each

v ∈ Λ′ belongs to a translate pj X0 for a unique j ∈ [−N,N ]. Hence one may write

Λ′ = pm1U1 t · · · t pmtUt,
for a suitable decomposition

X0 = U1 t · · · t Ut
of X0 as a disjoint union of compact open subsets. The additivity properties of µ combined with its

p-invariance implies that µ(Λ′) = µ(X0), as claimed. �

Lemma 1.4. The rule which to A associates D(X, A) is an exact (covariant) functor from the category of
Γ-modules to itself.

Proof. The issue is right exactness. If ϕ : A−→B is a surjective module homomorphism and µ ∈
D(X, B) is a B-valued, p-invariant distribution on X, one can construct a distribution µ̃ ∈ D(X, A)
that maps to it by choosing, for each successsive n ≥ 1 and for each primitive vector v = (Z/pnZ)′,
the value µ̃(v + pnZ2

p) ∈ A satisfying ϕ(µ̃(v + pnZ2
p)) = µ(v + pnZ2

p), taking care at each stage that

the additivity relations required of distributions be satis�ed. One obtains in this way an element of

D(X0, B), giving rise to the desired lift in D(X, B) via (15). �

Thanks to Lemma 1.4, the exponential sequence

0 // Z // OH
e2πiz // O×H // 1

induces a short exact sequence

1→ D(X,Z)−→D(X,OH)−→D(X,O×H)→ 1
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of Γ-modules. Let

δ : H0(Γ,D(X,O×H))−→H1(Γ,D(X,Z))

be the connecting homomorphism arising from the resulting long exact sequence in Γ-cohomology. The

image

µDR := δ(µSiegel) ∈ H1(Γ,D(X,Z))

is a one-cococyle on Γ, i.e., it satis�es the relation

µDR(γ1γ2) = µDR(γ1) + µDR(γ2)|γ−1
1 .

It is obtained by lifting µSiegel to an OH-valued distribution

µ̃Siegel :=
1

2πi
log(µSiegel) ∈ D(X,OH),

and setting

(18) µDR(γ) := µ̃Siegel|γ−1 − µ̃Siegel.

Recall the Dedekind–Rademacher homomorphism ϕDR : Γ0(p)−→Z evoked in the introduction, which

encodes the periods of the Eisenstein series E
(p)
2 = d log(∆(pz)/∆(z)) of weight two.

Lemma 1.5. The one-cocycle µDR satis�es

(19)

µDR(γ)(X0) = 0 for all γ ∈ Γ,
µDR(γ)(pZp×Z×p ) = ϕDR(γ) for all γ ∈ Γ0(p).

Proof. Observe that, for all γ ∈ Γ,

µDR(γ)(X0) = µ̃Siegel|γ−1(X0)− µ̃Siegel(X0) = µ̃Siegel(X0 γ)|γ−1 − µ̃Siegel(X0).

Lemma (1.3) implies that µ̃Siegel(X0 γ) = µ̃Siegel(X0), and Lemma 1.2 shows that this common value

is a constant function onH. The �rst assertion follows. As for the second, equation (18) implies that

µDR(γ)(pZp × Z×p ) = (µ̃Siegel|γ−1 − µ̃Siegel)(pZp × Z×p ).

By Lemma 1.2,

µ̃Siegel(pZp × Z×p ) =
2

2πi
log (∆(pz)/∆(z)) (mod C).

Since γ ∈ Γ0(p) preserves the region pZp × Z×p , it follows that

(µ̃Siegel|γ−1 − µ̃Siegel)(pZp × Z×p ) =
2

2πi

∫ γ−1z0

z0

d log(∆(pz)/∆(z)) = ϕDR(γ),

as was to be shown. �

1.4. The multiplicative Poisson transform. Because a distribution µ ∈ D(X,Z) is Z-valued, and hence

p-adically bounded, it also gives rise to a measure: one can extend µ to arbitrary continuous, compactly

supported functions on X. There is even a multiplicative re�nement of the integral against µ, de�ned by

×
∫
X
f(x, y)dµ(x, y) := lim

{Uα}

∏
α

f(xα, yα)µ(Uα),

where the limit is taken over �ner and �ner open covers {Uα} of the support of f , and (xα, yα) is a sample

point in Uα. Here f : X−→C×p is a continuous, compactly supported function on X (which means that it

takes the value 1 outside a compact subset of X).

Let D0(X0,Z) be the Z-module of distributions on X0 satisfying

µ(X0) = 0.
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The multiplicative Poisson transform of µ ∈ D0(X0,Z) is the rigid analytic function J(µ) on Hp de�ned

by setting

J(µ)(τ) = ×
∫
X0

(xτ + y)dµ(x, y).

This assignment gives rise to an SL2(Z)-equivariant map

J : D0(X0,Z)−→A×,

i.e.,

J(µ|γ)(τ) = J(µ)|γ(τ) = J(µ)(γτ), for all γ ∈ SL2(Z).

Identifying D0(X0,Z) with the module D0(X,Z) of distributions on X satisfying

µ(X0) = 0, µ(pU) = µ(U),

the same rule J (where one continues to integrate over the compact subset X0 ⊂ X) determines a Γ-

equivariant map

(20) J : D0(X,Z)−→A× /pZ.

The reason for this somewhat weaker invariance property is that while SL2(Z) preserves the region X0 of

integration de�ning J(µ), the full p-arithmetic group Γ does not. Nonetheless, if γ ∈ Γ, one still can write

(following the reasoning in the proof of 1.3)

X0 γ = pm1U1 t · · · t pmtUt, with X0 = U1 t · · · t Ut,

and the integrand (x − τy) arising in the de�nition of J obeys a simple transformation property under

multiplication by p. It follows that J(µ|γ) = J(µ)|γ (mod pZ), for all γ ∈ Γ.

Let

JDR := J(µDR) ∈ H1(Γ,A× /pZ)

be the image of the measure-valued cocycle µDR under the multiplicative Poisson transform of (20). It is

represented by the one-cochain JDR : Γ−→A× (denoted by the same symbol, by an abuse of notation)

de�ned by

JDR(γ)(τ) = J(µDR(γ))(τ),

which satis�es the cocycle relation modulo pZ,

JDR(γ1γ2) = JDR(γ1)× JDR(γ2)|γ−1
1 (mod pZ).

Its restriction to SL2(Z) also satis�es the full cocycle relation, with no pZ-ambiguity, because of the SL2(Z)-

equivariance of J .

In order to prove Theorem A of the introduction, it now su�ces to calculate the image of JDR under the

sequence of maps

η : H1(Γ,A× /pZ)−→H2(Γ, pZ) = H1(Γ0(p), pZ).

Theorem 1.6. The image of JDR under η is

η(JDR) = pϕDR .

Proof. The action of Γ on the Bruhat-Tits tree of PGL2(Qp) leads to an expression for Γ as an amal-

gamated product of the groups

SL2(Z), SL2(Z)′ =

(
p 0
0 1

)−1

SL2(Z)

(
p 0
0 1

)
,
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whose intersection is Γ0(p). The fact that H1(SL2(Z), pZ) = 0 and that H2(SL2(Z), pZ) is of order 12
ensures the existence of unique lifts to A× of the restrictions of J12

DR to SL2(Z) and SL2(Z)′:

JDR ∈ H1(SL2(Z),A×), J ′DR ∈ H1(SL2(Z)′,A×).

One then has, for all γ ∈ Γ0(p),

(21) η(J12
DR)(γ) = JDR(γ)÷ J ′DR(γ).

Concretely, JDR and J ′DR may be expressed as multiplicative Poisson transforms of µDR, by setting

JDR(γ)(τ) := ×
∫
X0

(xτ + y)12dµDR(γ)(x, y), J ′DR(γ)(τ) := ×
∫
X′0

(xτ + y)12dµDR(γ)(x, y),

where X′0 := (pZp×Zp)′ is the translate of X0 under the matrix

(
p 0
0 1

)
, a region whose stabiliser

in Γ is the group SL2(Z)′. Observe that

(22) X0 ∩X′0 = pZp × Z×p , X0−X′0 = Z×p × Zp, X′0−X0 = p(Z×p × Zp).

Hence, for all γ ∈ Γ0(p),

JDR(γ)÷ J ′DR(γ) = ×
∫
X0

(xτ + y)12dµDR(γ)(x, y)÷×
∫
X′0

(xτ + y)12dµDR(γ)(x, y)

= ×
∫
Z×p ×Zp

(xτ + y)12dµDR(γ)(x, y)÷×
∫
p(Z×p ×Zp)

(xτ + y)12dµDR(γ)(x, y)

= ×
∫
Z×p ×Zp

p−12dµDR(γ)(x, y),

where the penultimate equality follows from (22) and the last from the invariance of µDR(γ) under

multiplication by p. Because (Z×p ×Zp) is the complement of (pZp×Z×p ) in X0, and µDR(γ)(X0) = 0,

this implies that

JDR(γ)÷ J ′DR(γ) = ×
∫
pZp×Z×p

p12dµDR(γ)(x, y) = p12µDR(γ)(pZp×Z×p ) = p12ϕDR(γ),

where the last equality follows from Lemma 1.5. Combining this with (21) shows that η(JDR) and pϕDR

agree, since the group they belong to is torsion-free. This completes the proof of Theorem A. �

2. The winding cocycle

The goal of this section is to recall the de�nition and key properties of the winding cocycle introduced

in [DPV21, § 2.3] and to reduce Theorem B of the introduction to Theorem C.

2.1. The residuemap. The group H1(Γ,A× /C×p ) of rigid analytic theta cocycles is �nitely generated and

closely related to the space of modular forms of weight two on the Hecke congruence group Γ0(p). More

precisely, it is a module over the Hecke algebra T0(p) of Hecke operators acting faithfully on the weight

two modular forms on Γ0(p). To see this, let

U := {z ∈ P1(Cp) with 1 < |z| < p} ⊂ Hp
be the standard annulus whose stabiliser in Γ is Γ0(p). The logarithmic annular residue map

(23) ∂U : A× /C×p −→Zp, ∂U (f) := ResU (dlog f)
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is equivariant for the action of Γ0(p), and hence composing it with the restriction to Γ0(p) yields a map on

cohomology

(24) ∂U : H1(Γ,A×/C×p )−→H1(Γ0(p),Zp),

which is denoted by the same symbol by abuse of notation. This map is compatible with the action of the

Hecke operators, and with the involutionW∞ determined by the matrix

(
1 0
0 −1

)
, which lies in the normaliser

of both Γ and Γ0(p). Let H1(Γ,A×/C×p )± denote the plus and minus eigenspaces for this involution in the

space of rigid analytic theta cocycles, and denote by H1(Γ0(p),Zp)± the corresponding eigenspaces in the

cohomology of Γ0(p).

While the map in (23) has an in�nite rank kernel, it is notable that the induced map on rigid analytic

theta cocycles is essentially an isomorphism:

Lemma 2.1. Up to torsion kernels and cokernels, the map ∂U of (24) is surjective, and its kernel is generated
by the “trivial" theta-cocycle

Jtriv ∈ H1(Γ,A×), Jtriv

((
a b
c d

))
(z) = cz + d.

In particular, the induced map

(25) ∂−U : Q⊗H1(Γ,A× /C×p )− −→ H1(Γ0(p),Q)−

is an isomorphism.

Proof. The �rst assertion is a reformulation of [DPV21, Theorem 3.1]. The last follows from the fact

that Jtriv is �xed by W∞, as can be checked directly from the de�nition of Jtriv. �

2.2. The winding cocycle. In [DPV21, §2.3], the so-called winding cocycle

Jw ∈ H1(Γ,A× /C×p )−

is introduced. Unlike the Dedekind–Rademacher cocycle, it is not an eigenclass for the Hecke operators,

although it belongs to the −1 eigenspace for the involution W∞. The greater complexity of Jw on the

spectral side is o�set by a gain in simplicity on the geometric side, evidenced by the fact that the rigid

analytic functions Jw(γ) admit explicit in�nite product expansions.

Let Y0(p) = Γ0(p)\H be the open modular curve, and let X0(p) be its standard compacti�cation, ob-

tained by adding the two cusps 0 and∞. The intersection pairing on homology (Poincaré duality) de�nes

isomorphisms

(26) H1(X0(p); {0,∞},Q)± = H1(Y0(p),Q)∓ = H1(Γ0(p),Q)∓.

Mazur’s winding element
ϕw ∈ H1(Γ0(p),Z)−

is de�ned to be the class of the path from 0 to∞ in the homology of the modular curve X0(p) relative to

the cusps, viewed as an element of H1(Γ0(p),Z) via (26). By [DPV21, Prop. 3.3] and its proof, the winding

cocycle is characterised by the identity

(27) ∂−U (Jw) = 2ϕw.

2.3. Theorem C implies Theorem B. Theorem B of the introduction is reduced to Theorem C by writing

the modular form Gτ of this theorem as a linear combination of eigenforms.

To this end, observe that H1(Γ0(p), Q̄)− is generated as a Q̄-vector space by the Dedekind–Rademacher

morphism ϕDR of (3) encoding the periods of the weight two Eisenstein series E
(p)
2 de�ned in the intro-

duction, and the homomorphisms ϕ−f attached to the minus modular symbol for f , where f runs through
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a basis of cuspidal Hecke eigenforms in S2(Γ0(p)). A direct calculation of integration pairings in [DPV21,

Lemma 3.4] then yields the spectral decomposition of the winding element,

(28) ϕw =
1

p− 1
· ϕDR +

∑
f

λf · ϕ−f ,

where the coe�cient λf ∈ Q̄ is a suitable non-zero multiple of L(f, 1) whose exact nature is not germane

to the proof of Theorem B. (But see [DPV21, § 3] for more details.)

Now consider the rigid analytic theta-cocycle

J−f ∈ Q̄⊗H1(Γ,A× /C×p )−

characterised by ∂−U (J−f ) = ϕ−f . By Lemma 2.1 and (27),

(29) Jw =
2

p− 1
· JDR +

∑
f

2λf · J−f in Q̄⊗H1(Γ,A× /C×p )−,

where additive notation has been adopted to describe the operations in this group in spite of its multiplica-

tive nature. For each n ≥ 1, applying the Hecke operator Tn to this identity then gives

TnJw =
2

p− 1
· TnJDR +

∑
f

2λf · TnJ−f(30)

=
2

p− 1
· JDR · σ(p)

1 (n) +
∑
f

2λf · J−f · an(f)

in Q̄⊗H1(Γ,A× /C×p )−. After evaluating at the RM point τ and taking p-adic logarithms, it follows that

(31) logp(TnJw[τ ]) =
2 logp(JDR[τ ])

p− 1
· σ(p)

1 (n) +
∑
f

2λf logp(J
−
f [τ ]) · an(f).

Substituting this identity into Theorem C of the introduction yields the spectral expansion

(32) Gτ (q) =
log JDR[τ ]

12(p− 1)
· E(p)

2 (q) +
∑
f

βf · f(q),

where E
(p)
2 is the Eisenstein series of (2), and

(33) βf = 2λf logp(J
−
f [τ ]).

Comparing the zero-th Fourier coe�cient of Gτ in (32) with the one in Theorem C shows that

log JDR[τ ]

12
= log(uτ ),

thereby reducing Theorem B of the introduction to Theorem C.

The remainder of the paper is devoted to the construction of the modular generating series required for

the proof of Theorem C.

Remark. The coe�cients βf in (33) are immaterial to the proof of Theorem B but are of independent inter-

est, insofar as they involve the RM values of the elliptic rigid analytic theta-cocycles J−f : these values are the

formal group logarithms of certain Stark–Heegner points in the modular Jacobian J0(p). Although poorly

understood theoretically, these Stark–Heegner points are conjectured to be de�ned over the narrow ring

class �eld Hτ . The approach to the algebraicity of JDR[τ ] based on deformations of Galois representation

does not seem to shed any immediate light on the algebraicity of these more mysterious invariants.
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3. Deformations of Hilbert Eisenstein series

This section studies the derivatives of certain p-adic analytic families of Hilbert modular forms for F
parametrised by the weight and specialising to a certain Hilbert Eisenstein series of parallel weight one.

This Eisenstein series has several notable features. Firstly, it is cuspidal when viewed as a p-adic modular

form, and admits cuspidal p-adic deformations. Secondly, it vanishes upon diagonal restriction. This implies

that the derivatives of both cuspidal and Eisenstein families specialising to f , in spite of not displaying

any simple modularity properties themselves, yield p-adic modular forms after taking diagonal restriction.

A suitable linear combination of these derivatives is considered in § 4, and the Fourier coe�cients of its

ordinary projection are related to the RM values of the winding cocycle.

While p-adic Eisenstein families only occur in parallel weight, cuspidal families vary over a larger weight

space. The main result of this section is Theorem 3.13, which describes the Fourier coe�cients of the deriva-

tives of a cuspidal family in the “anti-parallel” direction of the weight space. Much like in the archimedean

settings, the Fourier expansions of p-adic Eisenstein families are entirely explicit; however, no general ex-

pression is available for cuspidal families. Our approach to studying cuspidal deformations of a Hilbert

Eisenstein series rests on the analysis of the associated Galois deformation problems. Roughly speaking,

�rst order deformations of the Artin representation attached to a Hilbert Eisenstein series of parallel weight

one are described in terms of the Galois cohomology of the adjoint representation, which cuts out a �nite

abelian extension H of F . A class in the Galois cohomology of the adjoint cuts out an abelian p-adic Lie

extension of H , and the Frobenius traces on the associated Galois deformation involve p-adic logarithms

of global p-units in H , via the reciprocity law of global class �eld theory for H . This translates into the

appearance of the logarithms of Gross–Stark units in the Fourier coe�cients of �rst order deformations of

Hilbert Eisenstein series, and accounts for the presence of the same quantities in the constant term of the

generating series Gτ of Theorem C.

The Galois deformation arguments are clari�ed and not substantially lengthened by working in the

setting where F is an arbitrary totally real �eld of degree d in which p is inert. This will be assumed until

§ 3.5, when the main results will be specialised to the case where F is real quadratic.

3.1. Hilbert modular forms and Hecke algebras. Fix an embedding Q̄ ↪→ Q̄p. Let F be a totally real

�eld in which p is inert, and denote by d the di�erent of its ring of integers OF . Write α1, . . . , αd for the

distinct embeddings of F into Q̄p, so that α1 is the embedding given by the restriction to F of the chosen

embedding Q̄ ↪→ Q̄p. Via the choice of an isomorphism C ' Cp, one obtains a corresponding indexing of

embeddings Q̄ ↪→ C. For x ∈ F , let (x1, . . . , xd) denote the image of x under the embeddings α1, . . . , αd,

viewed as a d-tuple of either complex or p-adic numbers, depending on the context.

It is assumed throughout that the Leopoldt Conjecture holds for F . (When F is quadratic, this assumption is

known to be satis�ed.)

Fix a totally odd character ψ of the narrow class group of F . LetE be a �nite extension of Qp containing

the images of F under all embeddings α1, . . . , αd and the values of the character ψ.

We now recall some de�nitions and conventions related to Hilbert modular forms and their associated

Hecke algebras, following the treatment that is given in [Shi78], [Hi88, § 2] and [Hi91, § 3].

Let k = (kj) ∈ Zd≥2 be a d-tuple of integers. Denote t = (tj) the vector with tj = 1 for every

1 ≤ j ≤ d. Choose a vector v ∈ Zd of non-negative integers such that k + 2v = mt for some m ∈ Z, and

de�ne w = k + v − t. The space of Hilbert modular forms of weight (k,w) and full level N, de�ned as in

[Hi88, § 2], is a �nite-dimensional complex vector space. Let Hk,w(N) be the algebra of Hecke operators

acting faithfully on the subspace of cuspforms. It is free of �nite rank as a Z-module.
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Fix (k,w) as above. The p-adic Hecke algebra is de�ned to be

(34) T := lim←−
α

Hk,w(pα)⊗OE ,

where the inverse limit is taken with respect to restriction of increasing full level structure at p. It contains

in particular diamond operators 〈l〉 for every integral ideal l coprime to p, as well as Hecke operators

(35) T(y) = lim←−
α

T (y)y−vp

for any idèle y ∈ ÔF ∩ A×F , whose component at p is denoted yp. When yp is a unit, the operator T (y)
depends only on the integral idealm de�ned by y, and we write Tm and Tm for T (y) and T(y). The compact

ring T has a unique decomposition T = T n.ord⊕T ss
such that T(p) is a unit in T n.ord

and is topologically

nilpotent in T ss
. The ring T n.ord

is called the nearly ordinary cuspidal Hecke algebra. It is independent of

the choice of (k,w).

Write U = (OF ⊗Zp)× and let Z be the Galois group of the maximal abelian extension of F unrami�ed

outside p and∞. The Iwasawa algebra

Λ := OE⟦U×Z⟧
is abstractly isomorphic to a ring of power series in several variables with coe�cients in a �nite group ring

over OE . Denote

κuniv : U×Z−→Λ×

its universal character. Since p is inert in F , the group U is identi�ed with the units of Fp. Denote U◦ and Z◦

the torsion free parts of U and Z respectively and let Λ◦ = OE⟦U◦×Z◦⟧. Let χp and ωp be the cyclotomic

and the Teichmüller characters ofGF respectively. They factor through the quotient Z. De�ne q = 4 when

p = 2, and q = p otherwise. Then the homomorphism

χp · ω−1
p : Z→ 1 + qZp

induces an isomorphism when restricted to Z◦ if the Leopoldt conjecture holds for F . For any weight (k,w)
as above, consider the character κk,w : G = U×Z−→ Q̄×p de�ned by

(36) (a, z) 7−→ av · χm−1
p (z).

With a slight abuse of notation, the corresponding ring homomorphism will also be denoted by κk,w and

referred to as the weight (k,w)-specialisation. If v = 0, so that k = m · t, the pair (k,w) will be called

parallel weight m. Parallel weight specialisations are parametrised by the Iwasawa algebra OE⟦Z⟧, which

shall be regarded as a quotient of Λ.

The nearly ordinary Hecke algebra T n.ord
is a Λ-algebra via the action of the diamond operators. The

main theorem of [Hi89a] asserts that T n.ord
is �nitely generated and torsion-free as a Λ◦-module. In addi-

tion, the quotient of T n.ord
by the ideal generated by the kernel of κk,w, for (k,w) as above, is isomorphic

to the ordinary part of the classical Hecke algebra of weight (k,w) and Iwahori level at p. This result is

often referred to as Hida’s Control Theorem.

p-adic families of Hilbert modular forms and weight one Eisenstein series.

The space of Hilbert modular forms of weight (k,w) and any level is automatically cuspidal unless (k,w)
is parallel [Shi78, (1.8a)]. However, for parallel weights, non-trivial Eisenstein forms exist and can be in-

terpolated in explicit p-adic families parametrised by OE⟦Z⟧. The study of congruences between cuspidal

and Eisenstein families of Hilbert modular forms is at the heart of Wiles’ proof of Iwasawa Main Conjec-

ture over totally real �elds [Wi90]. In a similar spirit, we consider certain cuspidal and Eisenstein families

sharing the same specialisation at parallel weight one, i.e. k = t and w = 0.
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For any pair (ϕ, η) of unrami�ed characters of F with ϕη totally odd, there exists a family E(ϕ, η) with

Fourier expansions as described in [DDP11, § 3]. The cases where (ϕ, η) = (1, ψ) or (ψ, 1) are of particular

relevance in the calculations leading to the proof of Theorem C.

Let E1(1, ψ) be the classical Eisenstein series of weight 1 and trivial level with Fourier expansion:

E1(1, ψ)(z1, . . . , zd) = L(F,ψ, 0) + ψ−1(d)L(F,ψ−1, 0) + 2d
∑
ν∈d−1

+

σ0,ψ(νd)e2πi(ν1z1+···+νdzd),

where z = (z1, . . . zd) ∈ Hd and

σk,ψ(α) =
∑

I�OF ,I|(α)

ψ(I)Nm(I)k and L(F,ψ, s) =
∑
I�OF

ψ(I)Nm(I)−s,

the latter converging for Re(s) large enough, analytically continued to all s ∈ C.

In the case where p is inert in F , one has ψ(p) = 1, and the p-adic L-functions Lp(ψ, s) and Lp(ψ
−1, s)

have exceptional zeros at s = 0. The Eisenstein series E1(1, ψ) then admits a unique p-stabilisation

(37) f(z) := E
(p)
1 (1, ψ)(z) := E1(1, ψ)(z)− E1(1, ψ)(pz)

which is the weight one specialisation of the Eisenstein families E(1, ψ) and E(ψ, 1). The derivatives of the

Fourier coe�cients of E(1, ψ) and E(ψ, 1) at weight 1 will be exploited in §4. Let

κ1+ε : OE⟦Z⟧→ E[ε]/(ε2)

be the algebra homomorphism whose restriction to Z is given by

κ1+ε(u, z) = χp(z)
−1(1 + logp(χp(z))ε),

and letE
(p)
1+ε(η, ϕ) be the image of E(η, ϕ) under κ1+ε. The Fourier expansion ofE

(p)
1+ε(η, ϕ) can be written

as

(38) E
(p)
1+ε(η, ϕ) = a0(η, ϕ) +

∑
ν

aν(η, ϕ)qν .

where the coe�cients can be read o� from [DDP11, Prop. 2.1, 3.2], as summarised in the following lemma:

Lemma 3.1. The Fourier coe�cients of E(p)
1+ε(η, ϕ) are given by

(39)

a0(η, ϕ) =
L′p(η

−1ϕ, 0)

4η(d)
· ε

aν(η, ϕ) =
∑

p-I|(ν)d

η

(
(ν)d

I

)
ϕ(I)

(
1 + ε logp Nm(I)

)
.

The article [DDP11] constructs an explicit cuspidal family parametrised by OE⟦Z⟧ specialising to f at

weight 1. The family is not an eigenform overOE⟦Z⟧. Nevertheless, since f itself is an eigenform, one can

deduce the existence of a morphism

(40) πf : T n.ord → OE

encoding the eigenvalues of Hecke operators acting on f . The composition with the morphism Λ→ T n.ord

will be denoted by

(41) π1 : Λ→ OE
and corresponds to the character κt,0 · ψ.
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The remainder of § 3 will be dedicated to studying lifts of the morphism πf to E[ε]/(ε2). Geometrically,

this corresponds to studying the geometry of Spec(T n.ord) in an in�nitesimal neighborhood of the prime

ideal de�ned by πf .

Remark 1. The cuspidal family appearing in [DDP11] was used to obtain the explicit formula for the deriv-

ative of the p-adic L-function Lp(ψ, s) at s = 0 conjectured by Gross, asserting that

(42) L′p(ψ, 0) = L (ψ)L(ψ, 0),

where L (ψ) is the L -invariant described in § 3.2. In recent work of Betina, Dimitrov and Shih [BDS]

Gross’ formula is linked to the study of the geometry of eigenvarieties from a Galois theoretic perspective.

The approach of [BDS] informs the present work, and is carried out in a broader setting.

3.2. Galois cohomology and L -invariants. This section develops some results on Galois cohomology,

which will be used later, notably in § 3.4, to describe the tangent space of certain Galois deformation func-

tors. These preliminary results are well known to experts.

Although it will not be used, it is worth noting that most of the arguments below are quite general

and also work for general number �elds F . Let H be a Galois extension of F with Galois group G. The

E[G]-module Hom(Gab
H , E) can be described explicitly via class �eld theory. This will be used to show that

certain global Galois cohomology classes for the totally odd character ψ are determined by their images in

local cohomology.

A �nite place v ofH determines a prime ideal ofH whose decomposition group is isomorphic to the absolute

Galois group of Hv , denoted by Gv . For each v, there is an isomorphism between the completion of H×v
and Gab

v induced by the local Artin reciprocity map

recv : H×v −→ Gab
v

for which the geometric normalisation is adopted. Note that the image of Gv in Gab
H is canonical. Thus,

there is a restriction map resv de�ned by

(43)

resv : Hom(Gab
H , E) −→ Hom(H×v , E)

f 7−→ recv ◦ f |Gab
v
.

The following lemma is well-known to experts, but its proof is sketched below for completeness.

Lemma 3.2. There is an exact sequence of E[G]-modules

(44) 0→ Hom(Gab
H , E)

(resv)v|p−−−−−→
∏
v|p

Hom(H×v , E) −→ Hom(OH [1/p]×, E).

In addition, the rightmost map is surjective if and only if Leopoldt’s Conjecture holds for H .

Proof. LetA×H/H× be the idèle class group ofH . The global Artin reciprocity map recH : A×H/H× →
Gab
H is compatible with its local versions via the restriction maps, and gives a sequence

(45) 0→ Hom(Gab
H , E)→ Hom(A×H , E)→ Hom(H×, E)

of continuous group homomorphisms and the topology on H× is discrete. This sequence must be

exact for topological reasons, and the two terms on the right are understood via their restrictions to

the places above p, by the commutative diagram

Hom(A×H , E) Hom(H×, E)

∏
v|p

Hom(H×v , E) Hom(OH [1/p]×, E)

∆∨

∆∨p
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where ∆∨, ∆∨p are induced by the diagonal embeddings. Note that any element in Hom(A×H , E) must

be trivial on the units O×v of Hv for any v - p∞, and standard continuity arguments then show that

the resulting map ker ∆∨ → ker ∆∨p is an isomorphism. Finally, by Dirichlet’s Unit Theorem,

rkZOH [1/p]× = rkZO×H + |{v | p}|,
so the rightmost map of (44) is surjective if and only if the Zp-rank of the closure of the image of O×H
in

∏
v|pO×v is equal to the Z-rank of O×H , that is, if Leopoldt’s Conjecture holds for H . �

Let ϕ : G → E× be any character, viewed as a character of GF , and consider the global Galois coho-

mology group H1(F,E(ϕ)). The in�ation-restriction sequence for continuous group cohomology of E(ϕ)
leads to the identi�cation

(46) H1(F,E(ϕ)) ' H1(H,E)ϕ
−1

= Hom(Gab
H , E)ϕ

−1

.

The cohomology group H1(G,E(ϕ)) is related to certain units in H . Let S be a �nite set of places of F ,

containing all in�nite places and let O×H,S be the S-units of H , and write

Uϕ := (O×H,S ⊗ E)ϕ
−1

.

Then, the Galois-equivariant version of Dirichlet’s Unit Theorem yields

(47) dimE Uϕ = |{w ∈ S | ϕ(w) = 1}| − dimE E(ϕ)G.

The above discussion will now be specialised to the case where H is the narrow Hilbert class �eld of

F . In what follows, the character ϕ will be taken to be either the trivial character or the unrami�ed totally

odd character ψ, viewed as a character of G = Gal(H/F ). Let S be the set of places containing the place

corresponding to the prime (p) of F and all in�nite places of F . It follows from (47) that dimE U1 = d,

since F is totally real and dimE Uψ = 1, because (p) splits completely in H/F and ψ is totally odd.

Recall that we wrote

α1, . . . , αd : F ↪→ Q̄p
for the distinct p-adic embeddings of F . The prime ideal pOF splits completely in H/F , and the choice of

a prime p of H above p determines an identi�cation Hp = Fp. Fix the choice of p corresponding to the

chosen embedding Q̄ ↪→ Q̄p once and for all, and write

α̃1, . . . , α̃d : H ↪→ Q̄p
for the p-adic embeddings of H extending α1, . . . , αd respectively, i.e.,

α̃j |F = αj and α̃−1
j (mZ̄p) = p.

Lemma 3.3. If the Leopoldt Conjecture holds for H , then:

(48) dimE H1(F,E) = 1 and dimE H1(F,E(ψ)) = d.

Proof. Combining (46) with Lemma 3.2, for any characterϕ ofG, the cohomology group H1(F,E(ϕ))
is equal to the ϕ−1

-eigenspace of the kernel of

(49)

∏
pi|p

Hom(H×pi , E)−→Hom(OH [1/p]×, E).

Let p1 = p be the chosen prime. Then Hom(H×p1
, E) is spanned by (logp ◦α̃j)j and ordp1 . Since p splits

completely inH/F , theE-vector space Hom(H×p1
, E) generates the source of (49) as anE[G]-module.

TheE[G]-span of each basis element of Hom(H×p1
, E) is isomorphic to the right regular representation

of G. In particular, the multiplicity of every one-dimensional representation of G in the source of (49)

is equal to dimE(Hom(H×p1
, E)) = (d+ 1).
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Thus, (47) leads to the inequality (which is an equality if Leopoldt’s Conjecture holds for H)

dimE H1(F,E(ϕ)) ≥ (d+ 1)− dimE Uϕ−1 =

{
1, if ϕ = 1,

d, if ϕ is totally odd.

�

When ϕ is either totally odd or trivial, we wish to describe the restriction to the decomposition group at

the prime p of a basis of H1(F,E(ϕ)). Denote

resp : H1(F,E(ϕ))→ H1(Fp, E(ϕ))

for the restriction to the decomposition group at p, which is characterised by the choice of embedding

Q̄ ↪→ Q̄p. Since ϕ|GFp = 1, by local class �eld theory, we can choose a basis of the target given by the

p-adic valuation in F×p , denoted by op, together with the homomorphisms

`p,j = logp ◦αj , 1 ≤ j ≤ d.

Choose an auxiliary prime pi, for some 1 ≤ i ≤ n. Then, under the running assumptions, Uψ is a

one-dimensional E-vector space. Choose a generator uψ of Uψ , and note that ordpi(uψ) 6= 0, since the

ψ−1
-eigenspace of O×H ⊗ E is trivial by (47).

De�nition 3.4. The quantity

(50) Lj(ψ) = −
(logp ◦ α̃j)(uψ)

(ordp ◦ α̃j)(uψ)
, (1 ≤ j ≤ d)

is called the partial L -invariant of ψ with respect to the j-th embedding of F into Q̄p.

Note that this de�nition is independent of the choice of the generator uψ of Uψ and of the auxiliary

choice of the prime p of H above p. However, it depends on the choice of the p-adic embedding αj of F ,

thus justifying the notation.

The following lemma related the partial L -invariants of De�nition 3.4 with the Gross–Stark unit uτ
of the introduction. In order to state it precisely, �x a choice of the unit uψ by �xing an RM point τ of

discriminant D and setting

(51) uψ =
∏

σ∈Gal(H/F )

(σuτ )ψ(σ−1).

Lemma 3.5. For all odd characters ψ of Gal(H/F ), and all 1 ≤ j ≤ d,
Lj(ψ)L(ψ, 0) = logp(α̃j(uψ)).

Proof. This follows after noting that, by de�nition of the Gross–Stark unit uψ ,

ordp(α̃j(uψ)) = −L(ψ, 0).

�

The fullL -invariant of ψ is the quantity

L (ψ) =

d∑
j=1

Lj(uψ).

It can alternatively be de�ned as

L (ψ) = −
(logp ◦Nm

Fp
Qp ◦ α̃j)(uψ)

(ordp ◦ α̃j)(uψ)
.
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Remark 2. Of primary interest is the case where F is quadratic and ψ is an odd narrow class character.

Under theses assumptions, the character ψ satis�es ψ−1(σ) = ψ(τστ−1) for any τ ∈ GQ r GF . This

implies that the partial L -invariants satisfy the relations

L1(ψ) = L2(ψ−1), L2(ψ) = L1(ψ−1).

Proposition 3.6. Let ϕ be any character of G. Denote χp : GF → Z×p the p-adic cyclotomic character. If
Leopoldt’s Conjecture holds for H , then:

(1) If ϕ is trivial, η1 := − logp ◦χp generates H1(F,E(ϕ)). Its restriction to the decomposition group at
p satis�es

resp(η1) =

d∑
j=1

`p,j ;

(2) If ϕ is totally odd, the cohomology group H1(F,E(ϕ)) has a basis {ηϕ,j}1≤j≤d such that

resp(ηϕ,j) = `p,j + Lj(ϕ
−1)op.

Proof. By Proposition 3.6, H1(F,E) is one dimensional; thus, it is generated by the (non-zero ele-

ment) class of η1 = − logp(χp). The restriction to the decomposition group at p can be calculated by

observing that, since χp is obtained by restriction to GF of a character of GQ, the same applies to the

local characters at p. This implies that resp(η1) factors through the norm map from Fp to Qp.

Since p1 is the prime of H determined by the �xed embedding Q̄ ↪→ Q̄p, the diagram

H1(F,E(ϕ)) H1(Fp, E(ϕ))

H1(H,E(ϕ)) H1(Hp1
, E(ϕ))

resp

resH resHp1

resp1

commutes, where all the maps are given by restriction. In addition, resHp1
is an isomorphism, because

(p) splits completely in H/F ; more precisely resHp1
satis�es

(52) resHp1
(op) = ordp ◦ α̃j and resHp1

(`j,p) = logp ◦α̃j
for every 1 ≤ j ≤ d. It is worth noting at this stage that ordp ◦ α̃j is independent of j, while logp ◦α̃j
depends very much on j. After identifying H1(F,E(ϕ)) with the ϕ−1

eigenspace of the kernel of (49),

the image of resp is isomorphic to the image of this subspace via the projection

n⊕
i=1

Hom(H×pi , E)−→Hom(H×p1
, E)

on the �rst component (which is, of course, not Galois equivariant). Let {1, 2, . . . , n} be the G-set

characterised by σpi = pσi for every σ ∈ G. Let (fi)i∈I an element of

⊕n
i=1 Hom(H×pi , E). The

action of σ ∈ G on (fi)i is given by

σ(fi)i = (fσ−1i ◦ σ−1)i.

In particular, let (fi)i belong to the ϕ−1
-eigenspace. The action of G on primes above p is simply

transitive. Let i = σ−11 for σ ∈ G. Then

fi = ϕ(σ)−1(f1 ◦ σ)

Let uϕ−1 be a generator of the ϕ-eigenspace of O×H ⊗ E. Then

(fi)i∈I(∆p(uϕ−1)) =

n∑
i=1

fi(uϕ) =

n∑
i=1

ϕ(σ)−1(f1(σuϕ)) = nf1(uϕ).



20 HENRI DARMON, ALICE POZZI AND JAN VONK

Thus, (fi)i belongs to the ϕ−1
-component of the kernel of (49) if and only if f1(uϕ−1) = 0. Let

f1 =

d∑
j=1

xj logp ◦α̃j + yordp ◦ α̃j .

The condition f1(uϕ−1) = 0 cuts out a d-dimensional subspace, since ordp ◦ α̃j(uϕ−1) 6= 0. Af-

ter re-writing this condition in terms of the L -invariants {Lj(ϕ
−1)} and comparing with (52), the

proposition follows. �

3.3. Λ-adic Galois representations. A general result of Hida establishes the connection between the

nearly ordinary Hecke algebra introduced in §3.1 and Galois representations. More precisely, in [Hi89b],

certain Galois representations are constructed which interpolate the representation corresponding to clas-

sical specialisations of Hida families for the Hecke algebra T n.ord
. Exploiting the properties of these Galois

representations, the study of the Hecke algebra T n.ord
in�nitesimally at the prime ideal corresponding to

the system of eigenvalues of f can be reduced to that of a deformation ring that will be introduced in §3.4.

The ultimate goal is to leverage the properties of the Galois representation to extract explicit formulae for

the derivatives of the cuspidal family specialising to f , in the spirit of [DLR15]. For this purpose, it su�ces

to consider the completed local ring Tf obtained as the nilreduction of the completion of the localisation of

T n.ord
at the prime ideal qf given by the kernel of the morphism πf de�ned in (40). (Although this is not

crucial for this application, it can be showed as in [C05, Prop. 6.4] that the completion of the localisation of

T n.ord
at the point corresponding to qf is automatically reduced.)

It is natural to view Tf as an algebra over Λ1, the completion of the localisation of Λ at the prime ideal

p1 = kerπ1; the latter is isomorphic to a ring of power series in d+ 1 variables over E.

In this section, Hida’s results are slightly re�ned in order to obtain a two-dimensional representation

with coe�cients in Tf (Prop. 3.8), satisfying certain additional properties. The proof follows Mazur and

Wiles’ approach to the (somewhat delicate) study of deformations of residually reducible representations.

The treatment of Bellaiche and Chenevier [BC06], which is well-suited to working over reduced henselian

local rings such as Tf , will be followed.

Write Kf for the total ring of fractions of Tf ; it is isomorphic to a product of �elds

∏
iKf,i, each corre-

sponding to a minimal local component at of Spec(T n.ord) at the point corresponding to qf .

Thus Tf can be viewed as a subring of Kf . In this context, the main result of [Hi89b] can be phrased as

follows.

Theorem 3.7 (Hida). There exists a totally odd, continuous Galois representation

ρKf : GF → GL2(Kf )

satisfying the following properties:

(1) the pushforward ρKfi of ρKf toKf,i is absolutely irreducible, for every i;
(2) ρKf is unrami�ed outside p;
(3) For every l prime ideal of F such that l - p, let Frobl be a Frobenius element. Then

det(1−Xρ(Frobl)) = 1−TlX + 〈l〉Nm(l)X2;

(4) The restriction of ρKf to GFp is nearly ordinary, i.e., it satis�es

ρKf |GFp '
[
ε ∗
0 δ

]
,
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where

δ ◦ recp(p) = T(p),(53)

δ ◦ recp(u) = (κuniv)((u, 1)) for all u ∈ U,(54)

where recp : F×p → GFp is the local Artin reciprocity map.

In order to relate the ring Tf to a deformation ring, it is important to re�ne the Galois representation ρKf
to an integral version with coe�cients in Tf . By the Čebotarev density theorem, the trace of ρKf , as well

as the characters δ and ε, take values in Tf ⊂ Kf . Following Bellaïche–Chenevier [BC06], the existence

of a free rank two Tf -module stable under the action of GF can be related to a certain global cohomology

group. In addition, the condition that the Galois representation ρKf is nearly ordinary imposes some local

conditions on the global cohomology classes, that allow to show that ρKf is conjugate to a representation

with coe�cients in Tf , following an argument which will now be described.

Let MKf ' K2
f be the two-dimensional Galois representation of GF provided by Theorem 3.7. Relative

to a basis (e+, e−) of MKf on which a choice of complex conjugation for F acts diagonally as

[
1 0
0 −1

]
, the

representation ρKf is given by

ρKf =

[
af bf
cf df

]
: GF → GL2(Kf ).

The fact that the traces of ρKf lie in Tf implies that af (σ)± df (σ) belong to Tf , and hence, that

af (σ), df (σ) ∈ Tf , for all σ ∈ GF .

It follows that

bf (σ) · cf (τ) = af (στ)− af (σ)af (τ) ∈ Tf , for all σ, τ ∈ GF .

LetBf andCf be the Tf -submodules ofKf generated by the values of the functions bf and cf respectively.

The reducibility ideal Ired
f is the (proper) integral ideal of Tf generated by the products bf (σ)cf (τ) for all

σ, τ ∈ GF .

Fix aGFp-stable free one-dimensional submodule LKf ofMKf = K2
f , and denote by εf and δf the local

characters of GFp acting on LKf and MKf /LKf respectively.

Proposition 3.8. There exists a free Tf [GF ]-submoduleMTf ⊂MKf of rank two over Tf , whose associated
Galois representation ρTf : GF → GL(MTf ) satis�es the following properties:

(1) The residual representationME := MTf ⊗ E is semisimple;
(2) There exists a free rank one summand LTf ofMTf such that

• LTf is GFp -stable and GFp acts onMTf /LTf via δf ;
• The subspace LE := LTf ⊗ E ofME is not GF -stable.

Proof. Let Bp,f ⊂ Bf be the Tf -module generated by b(GFp), and likewise for Cf,p ⊂ Cf . We

claim that the natural inclusion Bp,f ↪→ Bf is surjective. The Tf -module Bf is �nitely generated by

continuity of the representation ρKf , and hence, by Nakayama’s lemma, it su�ces to show that the

induced map

iB : Bf,p/mTfBf,p → Bf/mTfBf
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is surjective. Consider the commutative diagram

(55) Hom(Bf/mTfBf , E)

i∨B

��

Γ // H1(F,E(ψ))

resp

��
Hom(Bp,f/mTfBp.f , E)

Γp // H1(Fp, E)

,

where the top horizontal map Γ maps θ ∈ Hom(Bf/mTfBf , E) to the class of the cocycle

σ 7−→ θ(b(σ))

for every σ ∈ GF , and Γp is the corresponding map on local cohomology. By [BC06, Lemma 3], the

map Γ is injective, and Proposition 3.6 implies that resp is also injective. The commutativity of diagram

(55) implies that i∨B is injective, and therefore iB is surjective, as claimed, so thatBf = Bp,f . The same

argument shows that Cf = Cp,f .

From the fact that ρKfi is absolutely irreducible for every i, it follows that the the annihilator of the

moduleBf (respectivelyCf ) is 0. One can deduce that, without loss of generality, the vectors (e+, e−)
can be rescaled by a pair of elements of K×f so that

LKf = 〈e+ + e−〉.

Note that this basis is unique up to scaling, and hence, the resulting matrix representation of ρKf is

uniquely determined.

Changing the basis (e+, e−) to (e− + e+, e+), the representation ρKf is given in matrix form by[
1 0
−1 1

] [
af bf
cf df

] [
1 0
1 1

]
=

[
af + bf bf

−bf + (df − af ) + cf −bf + df

]
.

In particular, for every σ ∈ GFp ,

af (σ) + bf (σ) = εf (σ) and − bf (σ) + df (σ)− af (σ) + cf (σ) = 0.

Since af and df are valued in Tf and af (σ) = df (σ) = 1 (mod mTf ), the �rst equation implies that

bf takes values in mTf . Similarly, because df (σ)− 1 ∈ mTf , from the second equation it also follows

that cf (σ) ∈ mTf . Thus,Bf = Bp,f ⊂ mTf andCp = Cp,f ⊂ mTf . It follows that ρKf has coe�cients

in Tf relative to the basis (e+, e−), giving rise to a Galois stable Tf -latticeMTf := Tfe+ +Tfe− which

satis�es all the claims of Proposition 3.8. �

3.4. A deformation ring for residually reducible representations. This section describes an abstract

deformation ringRn.ord
ρ,L relevant to the Eisenstein series f de�ned in (37). This deformation ring is equipped

with a natural Λ1-algebra structure

(56) ΦR : Λ1 −→ Rn.ord
ρ,L .

The construction of Rn.ord
ρ,L is complicated by the residual reducibility, and we follow the approach of

Calegari–Emerton [CE05] to overcome this. The main result of this section is Proposition 3.10, which

computes the map induced by ΦR on tangent spaces and shows it is an isomorphism.

3.4.1. The deformation functor. Let CE be the category of local complete noetherian rings with residue �eld

E. Consider the functor

Ddet ×Dloc : CE −→ Sets

which takes any (A,mA) ∈ Ob(CE) to the pairs of continuous characters

(υA, ϑA) : U×Z→ A×, with (υA, ϑA) = (1, 1) (mod mA).
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This functor is represented by the completed local ring Λ1 of the Iwasawa algebra introduced in § 3.3.

The ring Λ1 is isomorphic to a ring of formal power series in (d+ 1) variables over E.

We �rst de�ne a deformation ring Rρ,L. Let ρ = ψ ⊕ 1 with the standard basis (v1, v2) of V = E2
.

This is a semisimple reducible representation, and as such it admits non-scalar endomorphisms. To obtain

a representable functor, the deformation problem needs to be suitably rigidi�ed. This is done, following

Calegari–Emerton [CE05], by setting L = 〈v1 + v2〉, which is a line that is not stable under the action of

GF . A strict deformation of (V,L, ρ) over an E-algebra A is a quadruple (VA, LA, ρA, gA) where

• VA is a free A-module of rank 2;

• LA is a free rank 1 summand of VA;

• ρA : GF → GL(VA) is a continuous representation;

• gA : VA ⊗A E ' V is an isomorphism of E[GQ]-modules sending LA ⊗ E to L.

Two strict deformations (VA, LA, ρA, gA) and (V ′A, L
′
A, ρ

′
A, g

′
A) are said to be equivalent if there is an

A[GQ]-module isomorphism h : VA−→V ′A sending LA to L′A and for which the diagram

VA ⊗A E
gA //

h⊗E
��

V

V ′A ⊗A E
g′A // V

commutes. A deformation of (V,L, ρ) over an E-algebra A is an equivalence class of strict deformations

over A.

Consider the functor

Dρ,L : CE −→ Sets

which associates to an object A in CE the set of deformations of (V,L, ρ) over A. The functor Dρ,L is

representable by a complete local Noetherian ring Rρ,L with residue �eld E. The representability can be

veri�ed as in [Ma89, Prop. 1]. It is ensured by the additional datum of a line lifting L, which can be viewed

a “partial framing" of the functor parametrising deformations, forcing automorphisms of a deformation to

consist only of scalars. Thus rigidi�ed, the deformation functor presents the advantage of being �ne enough

to be representable, while still being conceivably comparable with a Hecke algebra, as in [CE05].

Finally, consider the functor Dn.ord
ρ,L classifying quintuples (VA, LA, ρA, gA, ιA) such that:

• the equivalence class of the quadruple (VA, LA, ρA, gA) belongs to Dρ,L(A);

• the free rank one summand LA is GFp-stable;

• ιA : F×p → A× is the character satisfying

((ρA ◦ recp)y)v = ιA(y)v mod LA

for every y ∈ F×p and v ∈ VA, where recp denotes the local Artin reciprocity map.

Remark 3. Of course the datum of a character ιA : F×p → A× is redundant in the previous de�nition; it is

nonetheless useful to keep track of it, since it plays a key role in the calculations.

The deformation functor Dn.ord
ρ,L is representable by a quotient of Rρ,L, denoted Rn.ord

ρ,L . Indeed, choose

anRρ,L-basis (ṽ1, ṽ2) for the universal representation, lifting (v1, v2), in such a way that the universal free

rank one summand is given by

LRρ,L = 〈ṽ1 + ṽ2〉.
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Then the ringRn.ord
ρ,L is the quotient ofRρ,L by the ideal

Jn.ord = 〈α(σ) + β(σ)− γ(σ)− δ(σ) | ∀σ ∈ GFp〉,

where α, β, γ, δ are the entries of ρRρ,L =
[
α β
γ δ

]
with respect to the chosen basis.

We now describe the Λ1-algebra structure ofRn.ord
ρ,L . Given a quintuple (VA, LA, ρA, gA, ιA) ∈ Dn.ord

ρ,L (A),

the pair (det ρA ·ψ−1, ι|O×Fp ) belongs toDdet×Dloc(A). In particular, taking (a representative of) the uni-

versal object of Dn.ord
ρ,L yields a morphism ΦR. As a consequence of Proposition 3.8, the universal property

ofRn.ord
ρ,L yields a morphism Υ from the deformation ring to the Hecke algebra, which makes the following

diagram commute:

(57) Rn.ord
ρ,L

Υ // Tf

Λ1

ΦR

bb

ΦT

==

3.4.2. Tangent spaces. We now come to the main results of this subsection, and describe the map on tangent

spaces induced by ΦR. Let E[ε] be the ring of dual numbers over E. Let

tdet,loc = (Ddet ×Dloc)(E[ε]), tρ,L = Dρ,L(E[ε]) and tn.ord
ρ,L = Dn.ord

ρ,L (E[ε])

be the tangent spaces of the three functors introduced above. The following lemma describes them explicitly.

Lemma 3.9. (1) There is an isomorphism G : H1(F, ad(ρ)) → tρ,L sending the cohomology class of
[
α β
γ δ

]
in H1(F, ad(ρ)) to the equivalence class of

(58)

(
E[ε]2,

(
1 + ε

[
α β
γ δ

])
ρ, 〈[ 1

1 ]〉 , gε
)
,

where gε sends the standard basis of E[ε]2 to (v1, v2).

(2) Let H1(F, ad(ρ))n.ord be the subspace of H1(F, ad(ρ)) consisting of cocycles for which

α(σ) + β(σ)− γ(σ)− δ(σ) = 0, ∀σ ∈ GFp .

There is an isomorphism G′ : H1(F, ad(ρ))n.ord → tn.ord
ρ,L given by

G′
([

α β
γ δ

])
=
(
G
([

α β
γ δ

])
, 1 + ε(δ − β) ◦ recp)

)
.

Proof. (1) For any equivalence class in tρ,L = Dρ,L(E[ε]), we can choose a representative of the form

(58) for some cocycle in Z1(F, ad(ρ)). It su�ces to verify that G is well-de�ned; in other words, it

is enough to show that two lifts if ρε, ρ
′
ε of ρ are conjugate by a matrix

g ∈ ker(GL2(E[ε])→ GL2(E)),

then they are conjugate by a matrix stabilizing the line 〈[ 1
1 ]〉. This follows from the fact that the

space of coboundaries for the adjoint representation of the form

σ 7→
[
ψ(σ) 0

0 1

] [
r s
t u

] [
ψ(σ)−1 0

0 1

]
−
[
r s
t u

]
=

[
0 (ψ(σ)− 1)s

(ψ(σ−1)− 1)t 0

]
for σ ∈ GF and [ r st u ] ∈ M2(E) is spanned by coboundaries of matrices �xing the line 〈[ 1

1 ]〉.
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(2) Let X be the cohomology class of

[
α β
γ δ

]
∈ Z1(F, ad(ρ)). Denote ρε = (1 + ε

[
α β
γ δ

]
)ρ. The image

of X under G belongs to the tn.ord
ρ,L if the line 〈[ 1

1 ]〉 is stable for the action of GFp . In the basis

(〈[ 1
1 ]〉 , 〈[ 0

1 ]〉) the matrix of ρε is given by[
1 0
1 1

]−1

·
[
α β
γ δ

]
·
[
1 0
1 1

]
=

[
ψ + ε(ψα+ β) βε

(1− ψ) + ε(−αψ − β + γψ + δ) 1 + δε− βε

]
.

The claim follows by observing that the restriction of ψ to GFp is trivial.

�

With these identi�cations, explicit bases for the relevant tangent spaces can be obtained by using the

results in § 3.2. Identify tdet,loc
with Hom(Z, E)⊕Hom(U, E), and choose the basis

(59) e0 := (η1, 0), ej = (0, `p,j), 1 ≤ j ≤ d.

Given this choice of basis of the tangent space, an identi�cation between Λ1 = E⟦X0, X1, . . . , Xd⟧ can

be chosen so that the universal characters are given by the pair (υuniv, ϑuniv) satisfying

ϑuniv = 1 +X0e0 (mod m2
Λ1

) υuniv = 1 +

d∑
j=1

Xjej (mod m2
Λ1

).

For the tangent space tρ,L, note that since ρ = ψ ⊕ 1, it follows that

ad(ρ) = 1
2 ⊕ ψ ⊕ ψ−1.

i.e. the adjoint representation of ρ splits completely. Hence, by Lemma 3.3, the cohomology group H1(F, ad(ρ))
has dimension 2d+ 2, and we may choose the E-basis consisting of

(60) A =

[
η1 0
0 0

]
, D =

[
0 0
0 η1

]
, Bj =

[
0 ηψ,j
0 0

]
, Cj =

[
0 0

ηψ−1,j 0

]
, 1 ≤ j ≤ d.

where the entries are described by Proposition 3.6. With respect to these choices of bases, we now explicitly

describe the map on tangent spaces induced by ΦR, denoted

(61) Θ: tn.ord
ρ,L −→ tdet,loc.

Proposition 3.10. IfL (ψ) +L (ψ−1) 6= 0, the map Θ is an isomorphism and its inverse satis�es

Θ−1(e0) =
L (ψ−1)

L (ψ) +L (ψ−1)

(
A+

∑d
k=1 Ck

)
+

L (ψ)

L (ψ) +L (ψ−1)

(
D +

∑d
k=1Bk

)
(62)

Θ−1(ej) =
Lj(ψ)−Lj(ψ

−1)

L (ψ) +L (ψ−1)
(A−D +

∑d
k=1 Ck −

∑d
k=1Bk)−Bj − Cj(63)

for 1 ≤ j ≤ d.

Proof. By Lemma 3.9, up to composing with G′, the tangent space tn.ord
ρ,L is identi�ed with a subspace

of H1(F, ad(ρ)) given by the kernel of

P1 : H1(F, ad(ρ))→ H1(Fp, E),
[
α β
γ δ

]
7→ resp(α+ β − γ − δ).

where resp denotes the restriction to GFp (note that this is well de�ned, because ψ(GFp) = 1). Simi-

larly, the map Θ: tn.ord
ρ,L → tdet,loc

sends a quintuple (Vε, Lε, ρε, gε, ιε) to the pair (det ρε·ψ−1, ιε|O×Fp ).

Again, by Lemma 3.9, it can be interpreted in terms of Galois cohomology as the restriction to the ker-

nel of P1 of

P2 : H1(F, ad(ρ))→ Hom(Z◦, E)⊕Hom(U◦, E),
[
α β
γ δ

]
7→
(
α+ δ, (δ − β) ◦ recp|O×Fp

)
.
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Thus, in order to show that Θ is an isomorphism, it su�ces to show that P := (P1, P2) is an isomor-

phism. Choose the bases (A,D,B1, . . . , Bd, C1, . . . , Cd) for H1(F, ad(ρ)) and

(op, 0), (`p,1, 0), . . . , (`p,d, 0), (0, e0), . . . , (0, ed)

for the target ofP . Let (xA, xD, xB1 , . . . , xBd , xC1 , . . . , xCd) be the coordinates of a class in H1(F, ad(ρ))
with respect to the basis above. The map P yields a system of (2d + 2) linear equations in (2d + 2)-

variables: ∑d
j=1(Lj(ψ)xCj −Lj(ψ

−1)xBj ) = 0

xA − xD + xBj − xCj = 0

xA + xD = 0

xD − xBj = 0

where 1 ≤ j ≤ d. The corresponding matrix has determinantL (ψ) +L (ψ−1). The expressions for

the inverse of Θ can be obtained by the inverting the matrix of P with respect to the above bases. �

Remark 4. In the case of interest to this paper where [F : Q] = 2, the non-vanishing ofL (ψ) +L (ψ−1)
is clear sinceL (ψ) = L (ψ−1) 6= 0. In fact, this non-vanishing holds in general. For details, compare with

[BDS].

Recall the commutative diagram (57) arising from Proposition 3.8.

Theorem 3.11. The maps ΦR,ΦT and Υ are isomorphisms.

Proof. Since ΦR is a morphism of complete local noetherian rings with residue �eldE, the injectivity

of (61) implies that ΦR is surjective. The top row is surjective because all Hecke operators are in the

image; thus it follows that ΦT is surjective. But Tf is a torsion free Λ1-algebra; in particular ΦT is an

injective, hence an isomorphism. It follows that ΦR and Υ are isomorphisms as well. �

Proposition 3.12. The inverse of ΦT satis�es

(64)

Φ−1
T (Tl) = 1 + ψ(l) + logp(Nm(l)) · (λ+ µψ(l)) (mod m2

Λ1
)

Φ−1
T (〈l〉) Nm(l) = ψ(l)(1 + (λ+ µ) logp(Nm(l))) (mod m2

Λ1
)

Φ−1
T (T(p)) = 1 + ξ (mod m2

Λ1
),

where l is a prime ideal of F such that p - Nm(l) and λ, µ, ξ ∈ mΛ1 are given by

λ = (L (ψ) +L (ψ−1))−1
(
L (ψ−1)X0 +

∑d
j=1(Lj(ψ)−L (ψ−1))Xj

)
µ = (L (ψ) +L (ψ−1))−1

(
L (ψ)X0 −

∑d
j=1(Lj(ψ)−L (ψ−1))Xj

)
ξ = (L (ψ) +L (ψ−1))−1

(
−L (ψ)L (ψ−1)X0 +

∑d
j=1(Lj(ψ)L (ψ−1) + Lj(ψ

−1)L (ψ))Xj

)
.

Proof. Let

(
V univ, Luniv, ρuniv, guniv, ιuniv

)
be a representative of the universal object of the functor

Dn.ord
ρ,L over the deformation ringRn.ord

ρ,L . Then

Υ−1(Tl) = Tr(ρuniv)(Frobl) and Υ−1(T(p)) = ιuniv(Frobp).

Denoting (
a b
c d

)
= Φ−1

R ◦ ρ
univ : GF −→ GL2(Λ1),

it follows from Proposition 3.10 that modulo m2
Λ1

,

a = ψ + ψη1(L (ψ) +L (ψ−1))−1
(
L (ψ−1)X0 +

∑d
j=1(Lj(ψ)−L (ψ−1))Xj

)
d = 1 + η1(L (ψ) +L (ψ−1))−1

(
L (ψ)X0 −

∑d
j=1(Lj(ψ)−L (ψ−1))Xj

)
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from which the expression for Υ−1(Tl) is obtained. Similarly, Φ−1
R ◦Φuniv = d−b. Since η1(Frobp) =

0, it can be seen that (d− b)(Frobp) = 1− b(Frobp), which is equal to

1 +

L (ψ)(
∑d
k=1 ηψ,k(Frobp))

L (ψ) +L (ψ−1)
X0 +

d∑
j=1

(Lj(ψ
−1)−Lj(ψ))

∑d
k=1 ηψ,k(Frobp)

L (ψ) +L (ψ−1)
− ηψ,j(Frobp)

Xj

modulo m2
Λ1

by Proposition 3.10. The equality (64) then follows from Lemma 3.6. �

3.5. Fourier coe�cients. The above results will now be specialised to the case where F is a real quadratic

�eld and ψ is an unrami�ed totally odd character of F . In this case, we compute the Fourier coe�cients of

the anti-parallel family through the Eisenstein series f of parallel weight 1 discussed above.

The anti-parallel weight direction in the tangent space of the Iwasawa algebra is the direction corre-

sponding to the morphism Λ1−→E[ε]/(ε2) given in terms of generators as follows:

(65)

{
X0, X1 7−→ ε,
X2 7−→ 0.

Since, by Theorem 3.11, the structural map ΦT : Λ1 → Tf is an isomorphism, the map (65) gives rise to a

morphism from the nearly ordinary Hecke algebra to the ring of dual numbers

(66) π̃f : T n.ord−→E[ε]/(ε2).

lifting the morphism πf de�ned in (40). This corresponds to the system of Hecke eigenvalues of a �rst order

eigenfamily of Hilbert modular forms F , whose Fourier coe�cients, which can be recovered from π̃f , play

a central role in what follows.

In the anti-parallel weight direction, one immediately checks that the quantities λ, µ, and ξ appearing in

the description of the tangent space of T n.ord
in Proposition 3.12 specialise to

(67) λ =
L1(ψ)

L (ψ)
µ =

L2(ψ)

L (ψ)
ξ = 0.

Using the results in § 3.4, the image under the anti-parallel weight morphism π̃f of the operators 〈l〉 and

Tln for l 6= (p), as well as T(pn), can now be computed in terms of these quantities:

• Let l 6= (p) be a prime ideal. Proposition 3.12 immediately implies that

π̃f (Tl) = 1 + ψ(l) + ε logp (Nm(l)) · (λψ(l) + µ)
π̃f (〈l〉) Nm(l) = ψ(l) + ε logp (Nm(l)) · ψ(l).

The recursion relation proved in [Hi88, Corollary 4.2], which states

TlnTl = Tln+1 + 〈l〉Nm(l)Tln−1

can be used to determine the image of the Hecke operators attached to powers of l. A straightfor-

ward inductive argument now shows that

π̃f (Tln) =

n∑
j=0

ψ(l)j
(
1 + ε logp Nm(l) (j · λ+ (n− j) · µ)

)
=

∑
I|ln

ψ(I)

(
1 + ε

(
λ logp Nm(I) + µ logp Nm

(
ln

I

)))
• For the nearly ordinary Hecke operators at p, it follows from [Hi89b, Proposition 2.3] that

π̃f (T(pn)) = π̃f (T(p))n = 1.
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We are now ready to compute the Fourier coe�cients of the anti-parallel deformation F . Recall that the

algebraic notion of q-expansions (cf. Hida [Hi04, Chapter 4]) gives a tuple of power series Fi(q) indexed by

a set ti of integral ideals representing the classes in the narrow ideal class group of F :

(68) Fi(q) = a0(ti) +
∑

ν ∈ (ti)+

aν q
ν , aν ∈ E[ε]/(ε2),

where as usual (ti)+ denotes the subset of totally positive elements of ti. Abbreviate the q-expansion

corresponding to the inverse di�erent d−1
by F(q). The main result of this section is:

Theorem 3.13. The anti-parallel family

(69) F(q) =
∑

ν ∈ d−1
+

aν q
ν , aν ∈ E[ε]/(ε2),

has Fourier coe�cients given, to �rst order, by

(70) aν =
∑
I|(ν)d

ψ(I)

(
1 + ε

(
− logp(ν) +

L1(ψ)

L (ψ)
logp Nm(I) +

L2(ψ)

L (ψ)
logp Nm

(
(ν)d

I

)))
,

for all ν that are relatively prime to p. Furthermore apmν = aν for allm ≥ 1.

Proof. The family F is p-adically cuspidal, so the constant term vanishes. To compute the higher

Fourier coe�cients, we compute that, for any ν ∈ d−1
+ such that p - ν,

π̃f (T(ν)d) =
∏

ln||(ν)d

π̃f (Tln)

=
∑
I|(ν)d

ψ(I)

(
1 + ε

(
L1(ψ)

L (ψ)
logp Nm(I) +

L2(ψ)

L (ψ)
logp Nm

(
(ν)d

I

)))
to �rst order. To determine the Fourier coe�cients from this value, the p-adic interpolation properties

of the coe�cients aν , and the density of classical forms, are used to reduce to the relations between

Fourier coe�cients and the Hecke algebra proved for classical forms in [Hi91].

Consider the rigid analytic �ber of the formal scheme attached to T n.ord
. For a su�ciently small

a�noid neighbourhood V = Spm(AV ) of the point corresponding to the morphism πf , there is a

rigid analytic familyFV =
∑
ν aV,νq

ν
with normalised Fourier coe�cients in aV,ν ∈ AV , specialising

to F in the anti-parallel direction. By Hida’s Control Theorem, there is a Zariski-dense set of points

in V corresponding to systems of Hecke eigenvalues πg : AV → Q̄p of classical modular forms g of

weight (kg,wg) and with Fourier coe�cients ag,ν given by the image of aV,ν under πg . Combining

the relations for classical forms proved in [Hi91, Eqn. (2.3) et seq./Eqn. (1.5)], one obtains

πg(T(ν)d) = ag,ν · νvg
πg(Tpm) = ag,pm

where as before vg = wg − kg + t. The quantity νvg may be identi�ed with the weight (kg,wg)-

specialisation of the universal character κuniv
evaluated at (ν, 1). The image of κuniv(ν, 1) under the

morphism (65) de�ning the anti-parallel direction is given by

1 + ε logp(ν)

so that the density of classical points in V implies that

aν = (1− ε logp(ν))π̃f (T(ν)d).

The result follows. �
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4. Diagonal restrictions and RM values

This section explains how to parlay Theorem 3.13 of § 3 into a proof of Theorem C. In a nutshell, the

generating series of Theorem C is obtained from the ordinary projection of the diagonal restriction of a

modi�cation of the anti-parallel cuspidal deformation F described in Theorem 3.13.

Retain the setup of § 3.5. Namely, F denotes a real quadratic �eld, and ψ is a totally odd unrami�ed

character. Let D be the discriminant of F , with ring of integersOF , set of integral ideals IF , and di�erent

ideal d. The notation d−1
+ is used for the subset of totally positive elements of the inverse di�erent d−1

.

Write Nm and Tr for the norm and trace functions from F to Q. If τ ∈ HDp is an RM point of discriminant

D, denote by aτ ∈ Cl(D) the narrow ideal class attached to τ . If J is a rigid cocycle, then

J [ψ] :=
∏

τ∈SL2(Z)\H◦,Dp

J [τ ]ψ(aτ ) ∈ C×p ⊗Q(ψ).

Remark 5. The character ψ was assumed to be unrami�ed for simplicity, and it would be interesting to

generalise the arguments to the case of an arbitrary totally odd ring class character

(71) ψ : Cl(D) −→ C×p

of discriminant D = f2D0 with D0 fundamental, and (p, f) = 1. The deformations studied in § 3 are

not sensitive in an essential way to this additional rami�cation. Moreover, a version of Lemma 4.2 for non-

trivial conductors can be found in [LV], and the explicit formula (74) continues to hold. One may therefore

expect that Proposition 4.7 is amenable to this generalisation via the strategy of this paper, provided that

the left hand side of the equality is replaced by the series obtained by taking the trace to level Γ0(p):

(72) Tr
Γ0(fp)
Γ0(p)

(
eord(∂εf

+)
)
∈M2(Γ0(p)).

4.1. The RM values of the winding cocycle. In contrast the approach of [DD06], the calculations below

build on the viewpoint of rigid (theta) cocycles introduced in [DV, §3], by making essential use of the

winding cocycle Jw of the prequel [DPV21], some of whose properties were already recalled in § 2.2. This

section describes some further results from [DPV21] concerning its RM values. The �rst key result is an

explicit formula for TnJw[τ ], which was established in [DPV21, Theorem 2.9].

In order to state it, choose, for any integer n ≥ 1 and any RM point τ in Hp, a �nite set Mn(τ) of

representatives for the double coset space SL2(Z)\M2(Z)n/Γτ , where

M2(Z)n := {α ∈M2(Z) with det(α) = n}, Γτ = StabSL2(Z)(τ).

In other words

(73) M2(Z)n =
⊔

δ∈Mn(τ)

SL2(Z) · δ · Γτ .

Let Γ̃ := GL+
2 (Z[1/p]) be the group of invertible matrices over Z[1/p] with positive determinant.

Theorem 4.1. Let n ≥ 1 be an integer coprime to p. Then

(74) TnJw[τ ] =
∏

δ∈Mn(τ)

∏
w∈ Γ̃δτ
vp(w) = 0

w[0,∞]·(w′,w).

Proof. See [DPV21, Theorem 2.9]. �
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Lemma 4.2 below recalls the existence of a bijection between “level n” sets of RM points and ideals that

was constructed in [DPV21, § 1]. De�ne the (multi)set

(75) RM+
n (τ) :=

⊔
δ∈Mn(τ)

{
w ∈ Γ̃δτ :

w > 0 > w′

vp(w) = 0, vp(disc(w)) ≤ vp(n)

}
where disc(w) is de�ned to be the discriminant of a primitive integral quadratic form that has w as a root.

Similarly, de�ne RM−n (τ) as above, with the condition w > 0 > w′ replaced by w′ > 0 > w.

Remark 6. Note that an RM point w may appear several times in the set RM+
n (τ), and the multiplicity with

which it does is a subtle actor in the bijections discussed below. It is therefore important to use a disjoint

union in this de�nition. The nature of the matrices δ, which index the multiplicity with which an RM point

w arises, was made clearer in the proof of [DPV21, Lemma 1.9].

The sets RM±n (τ) play a crucial role in the explicit formulae for the Fourier coe�cients of the diagonal

restrictions of the Eisenstein family E investigated in [DPV21]. It will be observed below that they appear

again in the analysis of the diagonal restriction of the anti-parallel family F studied in § 3.

Lemma 4.2. There exist two bijections

ϕ1 : RM−n (−τ) −→ RM+
n (τ)

ϕ2 :

{
(I, ν) :

ν ∈ d−1
+ , p - I | (ν)d

Tr(ν) = n, I ∼ (1, τ)

}
−→ RM+

n (τ)

such that, after writing ν = pmν0, we have

ϕ1(w) = −w,
ϕ2(I, ν) = ν0

√
∆/Nm(I).

Proof. A bijection ϕ1 as required may be constructed by lettingW∞ be a diagonal matrix with eigen-

values 1 and −1. If w ∈ Γ̃δτ , then

−w = W∞w ∈ Γ̃δ′(−τ)

where δ′ ∈ Mn(τ) is the double coset representative of W∞δW∞. To obtain a bijection ϕ2 as above,

one �rst uses a bijection

Φ :

{
(I, ν) :

ν ∈ d−1
+ , I | (ν)d

Tr(ν) = n, I ∼ (1, τ)

}
−→

⊔
δ∈Mn(τ)

{w ∈ SL2(Z)δτ : w > 0 > w′}

which satis�es Φ(I, ν) = ν
√

∆/Nm(I). Such a bijection was constructed in [DPV21, Lemma 1.9].

Note that the source of Φ is almost equal to the source of the desired bijection, minus the condition

p - I . Under the bijection Φ, the condition p - I is equivalent to the condition that w = w0p
m

for some

m ≥ 0 and p - w0. The map w 7→ w0 then de�nes a bijection between{
w ∈ SL2(Z)δτ :

w > 0 > w′

w = w0p
m, p - w0, m ≥ 0

}
,

and the set {
w ∈ Γ̃δτ :

w > 0 > w′

vp(w) = 0, vp(disc(w)) ≤ vp(n)

}
,

so that the result follows by de�nition of RM+
n (τ). �
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4.2. Derivatives of diagonal restrictions. The modular generating series for the RM values of the wind-

ing cocycle that is the subject of Theorem C will be constructed from three di�erent analytic families that

specialise to the Eisenstein series of parallel weight one. More speci�cally, the anti-parallel cuspidal family

from § 3.5, and the two Eisenstein families of Lemma 3.1:

E
(p)
1+ε(1, ψ) and E

(p)
1+ε(ψ, 1)

The modularity of the generating series of Theorem C will follow from two simple results:

(1) The vanishing of the diagonal restriction ofE
(p)
1 (1, ψ), the p-stabilisation of the parallel weight one

Eisenstein series (for which the shorthand f was used in § 3),

(2) For any analytic family of p-adic modular forms whose specialisation vanishes, the specialisation

of its derivative is also a p-adic modular form.

These results were also used in [DPV21], where full proofs may be found. Since they play an important role

in the argument, they will be brie�y reviewed here.

Lemma 4.3. Suppose p is inert in F , and ψ is an odd unrami�ed character of F . Then

E
(p)
1 (1, ψ)(z, z) = 0.

Proof. Recall that the diagonal restriction of any Hilbert modular form with Fourier coe�cients aν
has the following q-expansion:

(76) a0 +
∑
n≥1

∑
ν∈d−1

+

Tr(ν) =n

aν q
n.

For the Eisenstein series E
(p)
1 (1, ψ), the Fourier coe�cient aν is equal to

4
∑

p-I|(ν)d

ψ(I)

For any ideal I in the index set of this summation, we may write IJ(pe) = (ν)d for some uniquely

determined ideal J coprime to p, since p is inert in F . The conjugate J ′ then de�nes an ideal coprime

to p, dividing (ν′)d. Observe that, since ψ is odd, we have

ψ(J ′) = ψ(J)−1 = ψ(I)ψ(d)−1 = −ψ(I),

and it follows that aν = −aν′ . Therefore the diagonal restriction must vanish. �

The three analytic families that specialise to E
(p)
1 (1, ψ) therefore give families of diagonal restrictions

that specialise to zero. It is easy to see that the specialisation of the derivative of each of these families of

diagonal restrictions is a p-adic modular form of weight two. The following result, appearing as Lemma 2.1

in [DPV21], ascertains that it is even overconvergent, though this is not used in what follows.

Lemma 4.4. Suppose F(t) is a family of overconvergent forms of weight κ(t), indexed by a parameter t on a
closed rigid analytic disk D in weight space. Suppose that

• the disk D is centred at an integer k = κ(0) ∈ Z,
• the specialisation vanishes F(0) = 0.

Then the derivative ∂tF(0) is an overconvergent modular form of weight k.
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4.3. Proof of Theorem C. Theorem 3.13 will now be used to construct the modular generating series Gτ
of Theorem C, and calculate its constant term. The argument involves three main steps:

(1) The de�nition of the power series ∂F+
ψ , a combination of the q-expansions of the �rst derivatives

of the anti-parallel cuspidal family Fψ of Theorem 3.13 and a parallel Eisenstein family Eψ ;

(2) The computation of its diagonal restriction ∂f+
ψ ;

(3) The computation of its ordinary projection eord(∂f+
ψ ).

The forms constructed in these three steps lie in increasingly structured spaces: ∂f+
ψ is a p-adic modular

form of weight two and tame level one, and eord(∂f+
ψ ) is a classical modular form on Γ0(p). The power

series ∂F+
ψ however lacks the modularity properties of a traditional (classical or p-adic) Hilbert modular

form, and is perhaps best envisaged as an instance of a “p-adic mock modular form", of the kind that make

an appearance in [DT08, DLR15] for instance.

The series F+
ψ is a combination of �rst order families of modular forms passing through the same Eisen-

stein series of parallel weight one in di�erent weight directions. Its de�nition was dictated by the algebraic

shape of the Fourier coe�cients of the anti-parallel family Fψ arising from Theorem 3.13, as it causes the

desired algebraic cancellation. Precisely, de�ne

F+
ψ := Fψ + Eψ = a0(F+

ψ ) +
∑

aν(F+
ψ ) qν , aν(F+

ψ ) ∈ E[ε]/(ε2),

where the �rst term Fψ is the anti-parallel weight cuspidal deformation of Theorem 3.13. The second term

Eψ is the following explicit combination of parallel weight Eisenstein families

(77) Eψ :=
L2(ψ)

L (ψ)

(
E

(p)
1+ε(1, ψ) − E

(p)
1+ε(ψ, 1)

)
.

Recall the Gross–Stark unit uψ attached to the odd character ψ, de�ned in (51). Henceforth, the unit uψ is

identi�ed with its image under the p-adic embedding α̃2 in order to lighten the notations and view it as an

element of F×p ⊗Q(ψ), to which the p-adic logarithm logp may be unambiguously applied.

Proposition 4.5. The Fourier coe�cients of F+
ψ are given by

a0(F+
ψ ) = ε

2 · logp(uψ).

aν(F+
ψ ) =

∑
I|(ν0)d

ψ(I)

(
1− ε logp

(
ν0

Nm(I)

))

Proof. Since ψ is odd, we have ψ(d) = −1. The constant term of Eψ , given by (39), is therefore

a0(Eψ) =
L2(ψ)

L (ψ)
(a0(1, ψ)− a0(ψ, 1)) =

ε

4
· L2(ψ)

L (ψ)
(L′p(ψ, 0) + L′p(ψ

−1, 0)).

By the Gross–Stark theorem (42)

(78) L′p(ψ, 0) = L (ψ)L(ψ, 0) = L (ψ−1)L(ψ−1, 0) = L′p(ψ
−1, 0),

and hence, using Lemma 3.5, we obtain

a0(Eψ) =
ε

2
· L2(ψ)

L (ψ)
L′p(ψ, 0) =

ε

2
·L2(ψ)L(ψ, 0) =

ε

2
· logp(uψ).

At ν 6= 0, the Fourier coe�cient of Eψ is given by

aν(Eψ) =
L2(ψ)

L (ψ)

∑
I|(ν0)d

ψ(I)ε

(
logp(Nm(I)− logp

(
ν0

Nm(I)

))
.
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Combining this with the formula for the Fourier coe�cients of the anti-parallel deformation Fψ given

in Theorem 3.13, gives the required identity

(79) aν(F+
ψ ) =

∑
I|(ν0)d

ψ(I)

(
1− ε logp

(
ν0

Nm(I)

))
�

Next, we consider the diagonal restriction f+
ψ of the seriesF+

ψ , de�ned as the sum of the diagonal restric-

tions of the families Fψ and Eψ . Its derivative with respect to ε is modular. More speci�cally:

Proposition 4.6. The power series

(80) ∂f+
ψ (q) =

1

2
logp(uψ) −

∑
n≥1

∑
ν∈d−1

+

Tr(ν) =n

∑
I|(ν0)d

ψ(I) logp

(
ν0

√
D

Nm(I)

)
qn.

is the q-expansion of a p-adic modular form of weight two and tame level one.

Proof. Lemma 4.3 implies that the diagonal restriction f+
ψ vanishes at ε = 0, so that the derivative

∂f+
ψ is a p-adic modular form (by Lemma 4.4 it is even overconvergent). The statement about its

q-expansion follows by (76) from the observation that ∂f+
ψ (q) di�ers from the desired result by∑

ν∈d−1
+

Tr(ν) =n

ψ(I) logp(
√
D),

which is proportional to the n-th Fourier coe�cient of the diagonal restriction of the Hilbert Eisenstein

series E
(p)
1 (1, ψ), and is therefore identically zero by Lemma 4.3. �

Finally, we explicitly compute the ordinary projection of the p-adic modular form ∂f+
ψ . This ordinary

projection is a classical modular form in M2(Γ0(p)), and its Fourier coe�cients can be related to the RM

values of the winding cocycle Jw , using the explicit formula for the latter stated in § 4.1.

Proposition 4.7. The ordinary projection of the p-adic modular form ∂f+
ψ is a classical modular form in the

spaceM2(Γ0(p)). Its q-expansion is given by:

(81) 2eord(∂f+
ψ ) = logp(uψ) −

∑
n≥1

logp (TnJw[ψ]) qn.

Proof. Note that the ordinary projection is classical of level Γ0(p), by Coleman’s classicality theorem.

The statement about the constant term follows from (79). For any n ≥ 1, the bijection ϕ2 of Lemma

4.2 allows us to rewrite the n-th Fourier coe�cient of 2∂f+
ψ appearing in (80) in terms of the level n

sets of RM points RM±n (τ). Since ψ(τ) = −ψ(−τ), this Fourier coe�cient is given by

2an =
∑

τ∈SL2(Z)\H◦,Dp

ψ(τ)

 ∑
w∈RM+

n (τ)

logp(w) −
∑

w∈RM+
n (−τ)

logp(w)


=

∑
τ∈SL2(Z)\H◦,Dp

ψ(τ)

 ∑
w∈RM+

n (τ)

logp(w) −
∑

w∈RM−n (τ)

logp(w)
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where the second equality follows from the existence of a bijection ϕ1 as in Lemma 4.2. Let n ≥ 1
coprime to p, then the n-th coe�cient of the ordinary projection of 2∂f+

ψ is given by

2aord
n = 2 lim

m→∞
anp2m =

∑
τ∈SL2(Z)\H◦,Dp

ψ(τ)
∑

δ∈Mn(τ)

∑
w∈ Γ̃δτ
vp(w) = 0

(
[0,∞] · (w′, w)

)
logp(w)

= logp(TnJw[ψ])

where the last equality uses the explicit formula (74).

To obtain the statement for all n ≥ 1, note that

Tn 7−→ logp(TnJw[ψ]),

is a linear function from the weight two Hecke algebra of level Γ0(p), since the Hecke action on

H1(Γ,A× /C×p ) factors through it, and hence there exists f ∈ M2(Γ0(p)) with higher Fourier co-

e�cients as in the statement. By what we showed, the n-th Fourier coe�cients of f and 2eord(∂f+
ψ )

agree when n is coprime to p. Their di�erence must therefore be an oldform, and hence zero. �

We are now ready to prove Theorem C of the introduction:

Theorem 4.8. LetD be a fundamental discriminant and let τ ∈ Hp be an RM point of discriminantD. There
is a classical modular form Gτ of weight two on Γ0(p) with p-adic Fourier coe�cients, whose q-expansion is
given by

Gτ (q) = log(uτ ) +

∞∑
n=1

log((TnJw)[τ ])qn,

where log : O×Cp −→Cp is the p-adic logarithm. The modular form Gτ is non-trivial if and only if Q(
√
D)

does not admit a unit of norm −1.

Proof. Let H be the narrow class �eld of Q(
√
D). Proposition 4.7 produces, for each odd character ψ

of Gal(H/F ), a classical modular form in M2(Γ0(p)) with q-expansion in Cp[[q]] given by

Gψ(q) = logp(uψ) −
∑
n≥1

logp (TnJw[ψ]) qn.

The assignment ψ 7→ Gψ(q) extends by linearity to a map on the linear span of the odd characters,

which is the space of odd functions on Gal(H/F ). Let ψ be the odd indicator function on the class of

τ , which is equal to 1 on [τ ], to−1 on [−τ ] = [σ∞τ ], where σ∞ ∈ Gal(H/F ) is complex conjugation,

and vanishes on all the other Pic+(OF )-translates of τ ∈ SL2(Z)\HDp . With this choice of ψ, we have

logp(uψ) = logp(uτ )− logp(σ∞uτ ) = 2 logp(uτ ),

and

logp(TnJw[ψ]) = logp(TnJw[τ ])− logp(TnJw[−τ ]) = 2 logp(TnJw[τ ]).

The modular form Gτ of Theorem C is obtained by setting

Gτ =
1

2
Gψ.

�
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