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Abstract. Rigid meromorphic cocycles were introduced in [DV] as a possible foundation

for extending the theory of complex multiplication to real quadratic fields. The present work

defines the cuspidal values of rigid meromorphic cocycles and shows that they are p-units in

a compositum of ring class fields of real quadratic fields, by exploiting the progress towards

the p-adic Gross–Stark conjectures achieved in [DDP] and [DK].
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Introduction

Let p be a rational prime and let Hp denote Drinfeld’s p-adic upper half plane, a rigid ana-
lytic space whose Cp-points are identified with Cp−Qp. The discrete group Γ := SL2(Z[1/p])
acts by Möbius transformations on Hp (with non-discrete orbits), and thus on the multiplica-
tive group M× of non-zero rigid meromorphic functions on Hp. This action preserves the
subset HRM

p ⊂ Hp of real multiplication, or RM points, namely, points of Hp that lie in a real
quadratic field.

A rigid meromorphic cocycle is an element of the group H1
f (Γ,M×) ⊂ H1(Γ,M×) consist-

ing of classes whose restriction to the subgroup Γ∞ ⊂ Γ of upper-triangular matrices lies in
H1(Γ∞,C×p ). Such a cohomology class admits a unique representative cocycle J (up to torsion)

whose restriction to Γ∞ is C×p -valued, and a rigid meromorphic cocycle is often conflated with
this distinguished representative. Theorem 1 of [DV] asserts that the meromorphic function
J(S), where S ∈ Γ is the standard matrix of order 4, has its zeroes and poles concentrated
in a finite union of Γ-orbits in HRM

p . This fact is used to associate to J a field of definition,
denoted HJ , which lies in the compositum of the finite collection of ring class fields of real
quadratic fields associated to the zeroes and poles of J(S). If these zeroes and poles are con-
centrated at the roots of primitive binary quadratic forms of discriminant D with coefficients
in Z[1/p], then J is said to be of discriminant D, and the field HJ is the narrow ring class

field for the discriminant D, an abelian extension of Q(
√
D) whose Galois group is identified

with the group of classes of primitive binary quadratic forms of discriminant D.
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Since the abelianisation of Γ∞ is a group of rank one, the value

J [∞] := J

(
p ∗
0 p−1

)
∈ C×p (mod torsion)

is well-defined up to a root of unity. This invariant is called the value of J at ∞, and can
be viewed as a somewhat degenerate instance of the RM values J [τ ] explored in [DV]. The
main result of this work is the counterpart of Conjecture 1 of [DV] in which RM points are
replaced by cusps:

Theorem A. If J is any rigid meromorphic cocycle, then the value J [∞] is algebraic. More
precisely, a power of it belongs to (OHJ [1/p])×.

The proof of Theorem A rests on the classification of rigid meromorphic cocycles de-
scribed in [DV, Theorem 1.23], which applies to the larger and more easily described group
H1

par(Γ,M×/C×p ) of rigid meromorphic cocycles modulo scalars. Indeed, no essential informa-
tion is lost when replacing a rigid meromorphic cocycle by its image in this group, because
the natural map

H1
f (Γ,M×) −→ H1

par(Γ,M×/C×p )

has finite kernel (of exponent dividing 12).
Chapter 1 explains how the numerical invariants J [∞] defined above, as well as the RM

values J [τ ] attached in [DV] to any τ ∈ HRM
p , can be extended to arbitrary rigid meromorphic

cocycles modulo scalars. Notably, a parabolic lifting obstruction J̄ [r, s] of an element J̄ ∈
H1

par(Γ,M×/C×p ) at a pair (r, s) of cusps is defined, in such a way that

J̄ [0,∞] = J [∞]2,

whenever J̄ is the reduction modulo scalars of a genuine rigid meromorphic cocycle J .
An RM divisor is a finite formal linear combination with integer coefficients of ele-

ments of the quotient set Γ\HRM
p . Chapter 2 associates to each such divisor a class J̄ ∈

H1
par(Γ,M×/C×p ), in such a way that, if J̄τ is the cocycle attached to the single RM point

τ , the rigid meromorphic functions J̄τ (γ) have divisor supported on Γτ , for all γ ∈ Γ. The
classes J̄τ are called theta-cocycles, and they are shown to generate H1

par(Γ,M×/C×p ) up to

elements of H1
par(Γ,A×/C×p ), where A× ⊂M× is the group of rigid analytic functions on Hp.

Chapter 3 completes the picture by describing H1
par(Γ,A×/C×p ), relating it to the cohomol-

ogy of the open modular curve Y0(p), or equivalently by Poincaré duality, to the homology
of X0(p) relative to the cusps. In particular, a distinguished rigid analytic cocycle J̄r,s is
attached to the image in this relative homology of the path from r to s on the complex upper
half plane, for any pair (r, s) of distinct elements of P1(Q).

Chapter 4 establishes a reciprocity law for rigid meromorphic cocycles modulo scalars, which
asserts that

J̄∆[0,∞] = J̄0,∞[∆] :=
∏
τ

J̄0,∞[τ ]mτ ,

where J̄∆ is the rigid meromorphic cocycle modulo scalars having ∆ :=
∑

τ mτ · (τ) as a

divisor. When J̄∆ lifts to a genuine rigid meromorphic cocycle J∆ ∈ H1
f (Γ,M×), the divisor

∆ is said to be principal; in that case, J̄0,∞[∆] is shown to be a non-trivial power of J̄DR[∆],
where J̄DR ∈ H1

par(Γ,A×/C×p ) is the class constructed in [DV, §5], which lifts to a rigid analytic

cocycle JDR ∈ H1
par(Γ,A×/pZ) and is a simple variant of the Dedekind–Rademacher cocycle

studied in [DD].
An immediate generalisation of the conjectures of [DD] described in [DV, §5.2] predicts

that the values JDR[τ ] are algebraic – more precisely, that a suitable power of JDR[τ ] belongs
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to (OHτ [1/p])×. The key ingredient in the proof of Theorem A is the important recent work
of Dasgupta and Kakde [DK] which proves this assertion by significantly strengthening the
earlier results of [DDP] on the p-adic Gross–Stark conjecture for odd characters of totally real
fields.

It is appropriate to insist on the indispensable role played by the theory of p-adic deforma-
tions of Galois representations in the proof of Theorem A — largely behind the scenes, since
this ingredient is only exploited in [DDP] and [DK]. The availability of this technique accounts
for why the p-adic Gross–Stark conjecture has seen so much progress while its archimedean
counterpart remains seemingly intractable. The fact that logarithms of algebraic numbers in
ring class fields of real quadratic fields are to be found in the Fourier coefficients of infinitesi-
mal p-adic deformations of modular forms of weight one (cf. [DLR1], [DLR2]) likewise raises
the hope that the conjectures of [DV] on real quadratic singular moduli may be open to attack
in the framework of a still nascent theory of “p-adic mock modular forms”.

To illustrate Theorem A, the smallest discriminant of a rigid meromorphic cocycle with
non-trivial cuspidal values is D = 12, which has class number one but narrow class number
two. For both p = 5 and 7, there is a unique p-adic cocycle J(p) of discriminant 12 with

J(p)(S) having zeroes and poles only at the Γ-translates of τ := (1 +
√

3)/2, defined by

J(p)(S)(z) =
∏
w∈Γτ
ww′<0

(
(z − 1− w)(z − 1 + zw)

(z − 1 + w)(z − 1− zw)

)sign(w)

.

The field of definition of J(p) is the narrow Hilbert class field of Q(
√

3), which is the biquadratic

field Q(
√

3, i). Numerical calculations, carried out to 100 digits of p-adic precision, indicate
that

(1) J(5)[∞]
?
= −1 + 2i ∈ Q5, J(7)[∞]3

?
= (−13 + 3

√
−3)/2 ∈ Q7.

When p = 7 and D = 321, the smallest positive discriminant of narrrow class number 6 in
which p is inert, there are three distinct rigid meromorphic cocycles Ji (for i = 1, 2, 3) of
discriminant 321, whose zeroes and poles are concentrated on the Γ-orbits of ±τi where

τ1 =
−17 +

√
321

2
, τ2 =

−17 +
√

321

4
, τ3 =

−17 +
√

321

8
.

Their cuspidal values, calculated to 20 digits of 7-adic accuracy, are

J1[∞] = 11055762063642167 (mod 720),

J2[∞] = 27863515261720344− 24701001956851703
√

321 (mod 720),(2)

J3[∞] = 35228448313023684− 11567417813120589
√

321 (mod 720).

The quantity J1[∞] belongs to Q7 while J2[∞] and J3[∞]−1 are conjugate to each other over
the unramified quadratic extension of Q7. By their construction, these three quantities are
7-adic units, but it appears that 7−4J1[∞], J2[∞], and J3[∞]−1 (calculated, this time, to 200
digits of 7-adic accuracy) satisfy the sextic polynomial with rational coefficients

(3) 74x6 − 20976x5 − 270624x4 + 526859689x3 − 649768224x2 − 120922465776x+ 716,

whose splitting field is the narrow Hilbert class field of Q(
√

321).
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1. Cuspidal values and parabolic lifting obstructions

Let J ∈ H1
f (Γ,M×) be a rigid meromorphic cocycle, as defined in the introduction, and

recall that Γ∞ ⊂ Γ is the group of upper triangular matrices in Γ.

Lemma 1.1. A rigid meromorphic cocycle admits a unique representative, up to torsion,
whose restriction to Γ∞ is scalar-valued.

Proof. Any two such representatives differ by a coboundary % = dη whose restriction to Γ∞
is scalar valued. Since the parabolic element(

1 p2 − 1
0 1

)
=

[(
p 0
0 p−1

)
,

(
1 1
0 1

)]
is a commutator, it belongs to the kernel of % and hence the function η satisfies η(z+p2−1) =
η(z). It follows that η must be a constant, and therefore that % = 1. �

The restriction of the distinguished representative J to Γ∞ is a homomorphism to C×p .

The abelianisation of Γ∞ is isomorphic to Z/(p2 − 1)Z × Z, and any matrix of the form

P∞ =
( p ∗

0 1/p

)
generates an index p − 1 subgroup of this abelianisation. In particular, the

element J(P∞) ∈ C×p does not depend on the choice of P∞, up to torsion.

Definition 1.2. The value of J at ∞ is the quantity

J [∞] := J(P∞) ∈ C×p (mod torsion).

This chapter will develop some preliminary results on cuspidal values, and in particular
establish its close connection with certain cohomological lifting obstructions attached to rigid
meromorphic cocycles modulo scalars.

1.1. Lifting obstructions. As already mentioned in the introduction, it is fruitful to view
the cuspidal values of Theorem A as instances of more general numerical invariants attached to
classes in the group H1

par(Γ,M×/C×p ) of rigid meromorphic cocycles modulo scalars. The fol-
lowing lemma shows that one loses very little information in passing from a rigid meromorphic
cocycle J to its image J̄ in H1

par(Γ,M×/C×p ).

Lemma 1.3. The natural homomorphism

(4) H1
f (Γ,M×) −→ H1

par(Γ,M×/C×p )

has finite kernel of exponent dividing 12.

Proof. The group Γ = SL2(Z) ∗Γ0(p) SL2(Z) has finite abelianisation, of exponent dividing 12,
since it is an amalgamated product of two copies of SL2(Z) (cf. [Se, II. §1.4]). The result
follows because the kernel of (4) is a quotient of H1(Γ,C×p ). �

Just as important is the cokernel of (4), which represents the obstruction to lifting a rigid
meromorphic cocycle modulo scalars to a genuine rigid meromorphic cocycle. Recall that if
Ω is a Γ-module, then MS(Ω) denotes the Γ-module of modular symbols with values in Ω, i.e.,
the set of functions m : P1(Q)× P1(Q) −→ Ω satisfying

m{r, t} = m{r, s}+m{s, t},
m{r, s} = −m{s, r},

for all r, s, t ∈ P1(Q). The importance of modular symbols stems from the well-known map

MSΓ(Ω) := H0(Γ,MS(Ω)) −→ H1
par(Γ,Ω)
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sending the Γ-invariant Ω-valued modular symbol m to the cocycle c(γ) := m{∞, γ∞} (cf.
[DV, Lemma 1.3]). The assignment Ω 7→ MS(Ω) is an exact functor on the category of
Γ-modules. Taking the Γ-cohomology of the short exact sequence

1 −→ C×p −→M× −→M×/C×p −→ 1

and of the sequence obtained from it by applying the functor MS leads to the commutative
diagram in which the first full row involves the parabolic cohomology of Γ:

(5) H1(Γ∞,C×p )

��
H1

par(Γ,C×p ) //

��

MSΓ(M×) //

��

MSΓ(M×/C×p )
δ //

��

H1(Γ,MS(C×p ))

��
H1(Γ,C×p ) // H1(Γ,M×) // H1(Γ,M×/C×p )

δ // H2(Γ,C×p ).

The vertical sequence is obtained as in [DV, Lemma 1.3]. The diagram is commutative, since
the map H1(Γ,MS(C×p )) −→ H2(Γ,C×p ) associates to [κ] the class of the 2-cocycle defined by

(γ1, γ2) 7→ κ(γ1){∞, γ2∞}.
Definition 1.4. If J̄ ∈ MSΓ(M×/C×p ), its image under δ is called the parabolic lifting ob-

struction, and its image in H2(Γ,C×p ) the lifting obstruction, attached to J̄ .

The terminology is justified by the fact that J̄ lifts to a (parabolic) rigid meromorphic
cocycle if and only if its (parabolic) lifting obstruction vanishes.

The next lemma analyses the rightmost column of diagram (5). The sequence

0 −→ H1(Γ∞,Cp) −→ H1(Γ,MS(Cp)) −→ H2(Γ,Cp) −→ 0

which is its additive counterpart is exact on the left and on the right because H1(Γ,Cp) =
H2(Γ∞,Cp) = 0. The vector spaces that arise in it are equipped with a natural action of
the Hecke operators Tn for p - n, defined in the usual way via double cosets. They are also
equipped with an action of involutions wp and w∞ obtained via conjugation by the matrices

Wp :=

(
1 0
0 p

)
, W∞ :=

(
1 0
0 −1

)
.

Lemma 1.5. (1) The group H1(Γ∞,Cp) is a one-dimensional Cp-vector space which is
Eisenstein as a Hecke module, i.e., the Hecke operator T` acts on it as multiplication
by `+ 1 for all primes ` 6= p.

(2) There are Hecke-equivariant isomorphisms

H2(Γ,Cp) = H1(Γ0(p),Cp) ' M2(Γ0(p),Cp)⊕ S2(Γ0(p),Cp).

In particular, the rank of H2(Γ,Cp) is 2g + 1, where g is the genus of X0(p).
(3) Under the above identifications, the involution wp acting on H2(Γ,Cp) corresponds

to the negative of the Atkin-Lehner involution at p on H1(Γ0(p),Cp), and it fixes the
Eisenstein subspace of H1(Γ,MS(Cp)).

(4) The involution w∞ decomposes H1(Γ,MS(Cp)) into a direct sum of two eigenspaces of
equal dimension g + 1:

H1(Γ,MS(Cp)) = H1(Γ,MS(Cp))+ ⊕H1(Γ,MS(Cp))−

' M2(Γ0(p))⊕M2(Γ0(p)).

It acts as −1 on H1(Γ∞,Cp) and as 1 on the Eisenstein subspace of H2(Γ,Cp).
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Proof. Assertion (1) follows from the fact, already noted before Definition 1.2, that the
abelianisation of Γ∞ modulo torsion is free of rank one over Z. The second follows from
the exact sequence

H1(Γ,Cp) −→ H1(SL2(Z),Cp)2 −→ H1(Γ0(p),Cp) −→ H2(Γ,Cp) −→ H2(SL2(Z),Cp)2

which is the second exact sequence of [Se, II. §2.8, Prop. 13] applied to the action of Γ on the
Bruhat–Tits tree of PGL2(Qp), whose edge and vertex stabilisers are isomorphic to Γ0(p) and
SL2(Z) respectively, and whose fundamental region consists of a single closed edge. Assertion
(3) is proved in [Dar, Lemma 1.4], while assertion (4) can be treated by the same arguments
as in [Dar, Lemma 1.8]. �

Elements J̄ ∈ MSΓ(M×/C×p ) can be “evaluated” at pairs of distinct elements of P1(Q).
Namely, if (r, s) is such an ordered pair, the stabiliser of (r, s) in Γ is the product of a finite
torsion group with an infinite cyclic group of rank one. Let γr,s be a generator (modulo
torsion) of this stabiliser, having r as an attractive and s as a repulsive fixed point.

Definition 1.6. The parabolic lifting obstruction of J̄ at (r, s) is the quantity

J̄ [r, s] := J̃{r, s}(γr,sz)÷ J̃{r, s}(z) ∈ C×p (mod torsion),

where J̃{r, s} is an arbitrary lift of J̄{r, s} ∈ M×/C×p to M×.

The terminology is justified by the fact that

(6) J̄ [r, s] = κ(γr,s){r, s},

where κ is the parabolic lifting obstruction of J̄ ∈ MSΓ(M×/C×p ). The following lemma spells
out the relation between cuspidal values and parabolic lifting obstructions:

Lemma 1.7. Let J be a rigid meromorphic cocycle and let J̄ be its natural image in MSΓ(M×/C×p ).
Then

J [∞]2 = J̄ [0,∞].

Proof. Let

S :=

(
0 1
−1 0

)
, γ0∞ :=

(
p 0
0 p−1

)
.

The relation Sγ0∞ = γ−1
0∞S shows, in light of the cocycle relation, that

J(S)× SJ(γ0∞) = J(γ−1
0∞)× γ−1

0∞J(S),

and hence, since SJ(γ0∞) = J(γ0∞) = J(γ−1
0∞)−1,

J(γ0∞)2 = J(S)(p2z)/J(S)(z) = J̃{0,∞}(γ0∞z)/J̃{0,∞}(z).

The result then follows from Definition 1.6. �

1.2. RM values of rigid cocycles modulo scalars. Recall that the value of a rigid
meromorphic cocycle J at an RM point τ is defined by setting

J [τ ] := J(γτ )(τ),

where γτ is a (suitably normalised) generator of the stabiliser of τ in Γ. These RM values are
the main subject of [DV]. We conclude this chapter by extending the notion of RM values to
cocycles modulo scalars.

Because the group H1(SL2(Z),C×p ) is of order ≤ 12 and H2(SL2(Z),C×p ) is trivial, the

restriction of J̄ to H1(SL2(Z),M×/C×p ) lifts to an element

J̃ ∈ H1(SL2(Z),M×)
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which is unique up to a 12-torsion element. Let HRM,◦
p denote the set of τ ∈ HRM

p which are
the root of a primitive integral binary quadratic form of discriminant prime to p. The matrix
γτ then belongs to SL2(Z), and this makes the following definition possible:

Definition 1.8. For all τ ∈ HRM,◦
p , the value of J̄ at τ is

J̄ [τ ] := J̃(γτ )(τ).

When J̄ lifts to a rigid meromorphic cocycle J , one has J̄ [τ ] = J [τ ], but even when such
a lift does not exist, the quantities J̄ [τ ] are of great arithmetic interest, insofar as they are
related to Gross–Stark units and Stark–Heegner points, as will be seen shortly.

2. Theta cocycles

We now recall the classification of elements of H1(Γ,M×/C×p ) that was largely carried out
in [DV]. More precisely, this chapter describes certain elements

J̄τ ∈ MSΓ(M×/C×p ),

called theta cocycles, which are indexed by elements τ ∈ Γ\HRM
p and generate, together with

MSΓ(A×/C×p ), the group MSΓ(M×/C×p ) up to torsion.

2.1. The Bruhat–Tits tree. Let v◦ be the standard vertex of the Bruhat–Tits tree T of
PGL2(Qp), whose stabiliser in Γ is SL2(Z). For each integer n ≥ 0, let T ≤n denote the
subgraph of T consisting of vertices and edges that are at distance ≤ n from v◦, and let
H≤np ⊂ Hp denote the inverse image of T ≤n under the reduction map. The collection of H≤np
gives an admissible covering of Hp by affinoid subsets which are stable under the action of
SL2(Z). If Π is any finite subgraph of T , the stabiliser of Π in Γ is denoted ΓΠ. The groups
ΓΠ are conjugate to finite index subgroups of SL2(Z) and act discretely on H.

If v is a vertex of T , let Wv denotes the wide open subset corresponding to the vertex v,
corresponding to the set of z ∈ Hp whose image under the reduction map is either v or one
of the edges having v as an endpoint. When v = v◦, we denote this wide open simply by W◦.
The set of all Wv gives an admissible covering of Hp by wide open subsets, and the subgroup
of Γ that preserves W◦ is equal to SL2(Z). More generally, the stabiliser of v (or Wv) in Γ,
denoted Γv, is conjugate to SL2(Z).

2.2. The functions tη∆(z). Fix an auxiliary base point η ∈ Hp. Given w ∈ Hp, let tηw(z) :=
z−w
η−w be the rational function satisfying

Div(tηw) = (w)− (∞), tηw(η) = 1.

More generally, if W :=
∑
mi · (wi) is a divisor on Hp, then the function

tηW (z) :=
∏

tηwi(z)
mi

is the unique rational function having W − deg(W ) · ∞ as divisor which satisfies tηW (η) = 1.
Note that when W = (w1)− (w2), the rational function tηW (z) can be expressed as the cross-
ratio:

tη(w1)−(w2)(z) = (z, η;w1, w2) :=
(z − w1)(η − w2)

(z − w2)(η − w1)
,

and hence satisfies the Γ-equivariance property

tγηγW (γz) = tηW (z), for all γ ∈ Γ,

which remains valid when W is replaced with any degree zero divisor.
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2.3. Theta cocycles. Let τ ∈ Hp be any RM point, let F be the real quadratic field that
it generates, and let D be the discriminant of F . The element τ is the root of a unique (up
to sign) primitive integral binary quadratic form, whose discriminant is of the form Dn2p2t

for some positive integer n which is prime to p. The integer Dn2 is called the discriminant of
τ , and is denoted disc(τ). In particular, the RM point τ is fundamental if its discriminant is
equal to D. The field F shall be viewed both as a subfield of R and as a subfield of Cp which
is not contained in Qp.

For w ∈ F , let (w,w′) denote the geodesic on H joining w to its Galois conjugate w′,
which maps to a countable union of copies of the same basic closed geodesic on ΓΠ\H for
any subgroup ΓΠ ⊂ Γ. Likewise, if r, s are elements of P1(Q), write [r, s] for the hyperbolic
geodesic on H joining these two elements, which maps to a compact (but not necessarily
closed) geodesic on any quotient ΓΠ\H. The geodesics (w,w′) and [r, s] always intersect
properly, and we set

(7) δr,s(w) := (w,w′) · [r, s] =


1 if the two geodesics intersect positively;
−1 if they intersect negatively;

0 otherwise.

The infinite formal sum

(8) ∆τ{r, s} :=
∑
w∈Γτ

δr,s(w) · (w)

defines a Γ-invariant modular symbol with values in the Γ-module Z〈Γτ〉 of formal (possibly
infinite) Z-linear combinations of points of Γτ . Set

∆v
τ{r, s} :=

∑
w∈Γτ∩Wv

δr,s(w) · (w)

which defines a Γv-invariant modular symbol. The divisor ∆v
τ{r, s} has finite support, since

for a fixed discriminant there are at most finitely many w such that δr,s(w) 6= 0. We may
therefore consider the function

(r, s) 7→ deg ∆v
τ{r, s}

which defines an element in MSΓv(Z). Since Γv has finite abelianisation, this space of modular
symbols is trivial, and therefore deg ∆v

τ{r, s} is identically zero for all v, τ and (r, s). This
implies that we may write (non-canonically)

(9) ∆τ{r, s} =

∞∑
j=1

(w+
j )− (w−j ),

where w+
j and w−j are contained in the same wide open Wv.

Lemma 2.1. For all r, s ∈ P1(Q) and τ ∈ HRM
p , the infinite product

Jητ {r, s}(z) =
∏
w∈Γτ

tηw(z)δr,s(w) :=

∞∏
j=1

tη
w+
j −w

−
j

(z)

converges uniformly to a rigid meromorphic function on any affinoid subset of Hp. The rigid
meromorphic functions Jητ {r, s}(z) satisfy the following properties:

(a) Jητ {r, s} is a modular symbol with values in M×, i.e.,

Jητ {r, s} × Jητ {s, t} = Jητ {r, t} for all r, s, t ∈ P1(Q).
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(b) The rigid meromorphic function Jητ {r, s}(z) is independent, up to multiplication by a
non-zero scalar, of the choice of base point η, i.e., for all η, η′ ∈ Hp,

Jητ {r, s}(z) = λ× Jη′τ {r, s}(z), where λ = Jητ {r, s}(η′).

In particular, the image of Jητ {r, s} in M×/C×p does not depend on η, and shall there-

fore be denoted J̄τ{r, s}.
(c) The modular symbol Jητ {r, s}(z) satisfies the Γ-invariance properties

Jγητ {γr, γs}(γz) = Jητ {r, s}(z) for all γ ∈ Γ,

and hence

J̄τ{γr, γs}(γz) = J̄τ{r, s}(z), for all γ ∈ Γ.

Proof. For all k > 1, we have that

(10) fk − fk−1 =

(
tη
w+
k −w

−
k

(z)− 1

)
· fk−1, where fk(z) :=

k∏
j=N

tη
w+
j −w

−
j

(z).

Now fix n ≥ 1, and suppose that z ∈ H≤np . Choose an arbitrary N > 0. Since tη
w+
k −w

−
k

(z)

is the cross-ratio of w+
k , w−k , η, and z, which is invariant under GL2(Qp), we may assume

without loss of generality, after acting by an appropriate element of this group, that for all k
large enough, we have

(i) η belongs to W◦,
(ii) w+

k and w−k are both congruent to 0 modulo pN ,
(iii) z ∈ Cp satisfies ordp(z) ≥ −n′, with n′ = n+Oη(1).

In this case, we readily obtain the estimate∣∣∣∣tηw+
k −w

−
k

(z)− 1

∣∣∣∣ ≤ Cηpn−N , for all z ∈ H≤np .

for some constant Cη that only depends on η. It follows from (10) that

lim
k→∞

‖fk − fk−1‖H≤np = 0,

so that the sequence of partial products fk converges uniformly onH≤np to a nowhere vanishing

rigid analytic function. It follows that the infinite product defining Jητ {r, s}(z) converges to
a meromorphic function on H≤np . Since this is true for all n ≥ 1 and since the collection

{H≤np }n≥1 is an admissible affinoid covering of Hp, the first statement follows.
The remaining properties are formal consequences of the definitions, following the argu-

ments in [GVdP, II. §2]. See also [DV, §3.3]. �

Lemma 2.1 implies that J̄τ is a Γ-invariant modular symbol with values in M×/C×p . As

before, we use the same notation J̄τ to designate the associated parabolic cohomology class,
satisfying

J̄τ (γ)(z) := J̄τ{∞, γ∞}(z), for all γ ∈ Γ.

Definition 2.2. The class J̄τ is called the theta cocycle associated to τ ∈ Γ\HRM
p .

One of the most important results of [DV] is that the cocycles J̄τ generate MSΓ(M×/C×p )
up to analytic cocycles, see [DV, Lemma 3.12, Theorem 3.13].

Proposition 2.3. Up to elements of MSΓ(A×/C×p ), every class in MSΓ(M×/C×p ) can be

expressed as a finite product of cocycles of the form J̄τ .
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3. Analytic cocycles

The description of H1
par(Γ,M×/C×p ) implicit in Proposition 2.3 will now be made more

precise by examining the group

H1
par(Γ,A×/C×p ) = MSΓ(A×/C×p )

of rigid analytic cocycles modulo scalars.

3.1. The Schneider–Teitelbaum lift. The logarithmic derivative map embeds the multi-
plicative group H1

par(Γ,A×/C×p ) into the Cp-vector space H1
par(Γ,A2), where A2 denotes the

rigid analytic differentials on Hp equipped with the “weight two action” of Γ. Let

(11) U := {z ∈ Cp with 1/p < |z| < 1} ⊂ Hp
denote the standard annulus, whose stabiliser in Γ is equal to Γ0(p). The p-adic annular
residue ω 7→ resU (ω), as described for instance in [Sch, §II] or [Te], determines a map

resU : A2 −→ Cp
Theorem 3.1. The maps

resU : H1(Γ,A2) −→ H1(Γ0(p),Cp), resU : MSΓ(A2) −→ MSΓ0(p)(Cp)

induced by the p-adic annular residue are isomorphisms of Cp-vector spaces.

The proof of the first isomorphism is described in [DV, §2], and the second follows from
exactly the same principles. Both rest on the construction of explicit inverses to the above
maps, referred to as Schneider–Teitelbaum lifts. Theorem 3.1 leads to the construction of
various explicit analytic cocycles, as described in [DV, §5]:

(i) Let

E
(p)
2 (z) =

p− 1

12
+ 2

∑
n≥1

σ
(p)
1 (n)e2πinz, where σ

(p)
1 (n) =

∑
p-d|n

d

be the weight two Eisenstein series on Γ0(p), and let ωEis := 2πiE
(p)
2 (z)dz be the

associated differential of the third kind on the modular curve X0(p). The periods of
ωEis are encoded in the Dedekind–Rademacher homomorphism ϕDR : Γ0(p) −→ Z
defined by

(12) ϕDR := (2πi)−1

∫ γz0

z0

ωEis.

The Dedekind–Rademacher cocycle J̄DR ∈ H1(Γ,A×/C×p ) of [DV, §5.3] is the multi-
plicative Schneider–Teitelbaum lift of ϕDR.

(ii) Let f ∈ S2(Γ0(p)) be a normalised cuspidal newform with fourier coefficients in a field
Kf ⊂ R, and let ωf := 2πif(z)dz be the associated regular differential on X0(p). The
real analytic differentials

ω+
f :=

1

2
(ωf + ω̄f ), ω−f :=

1

2
(ωf − ω̄f )

give rise to modular symbols ϕ+
f and ϕ−f ∈ MSΓ0(p)(Kf ), defined by

(13) ϕ+
f {r, s} := (Ω+

f )−1

∫ s

r
ω+
f , ϕ−f {r, s} = (Ω−f )−1

∫ s

r
ω−f ,

where Ω+
f and Ω−f are the so-called real and imaginary periods attached to f . The

requirement that ϕ±f be Kf -valued only determines these modular symbols up to

multiplication by K×f , but we can further insist that
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(a) ϕ−f takes values in OKf , and maps surjectively to Z when Kf = Q.

(b) Ω+
f Ω−f = Ωf := −〈ω+

f , ω
−
f 〉.

When f has integer Fourier coefficients, these conditions determine Ω−f and Ω+
f up to a

sign. The resulting Schneider–Teitelbaum lifts are denoted J̄+
f and J̄−f ∈ MSΓ(A×/C×p ).

They are called the elliptic modular cocycles attached to f , and are described in [DV,
§5.4]. Note that we can exploit the natural injection MSΓ(A×/C×p ) −→ H1

par(Γ,A×/C×p )

to view J̄±f as elements of the latter group when this is convenient.

3.2. The winding cocycle. The primary goal of this section is to further enrich the theory
of rigid analytic cocycles by describing the construction of certain explicit (not necessarily
parabolic) elements

J̄ρ ∈ H1(Γ,A×/C×p ),

which are indexed by ordered pairs ρ = (r, s) of distinct cusps in P1(Q).
The determinant of a pair (r, s) of distinct elements of P1(Q) is ad− bc, where r = a/b and

s = c/d are expressions for r and s as fractions in lowest terms, adopting the usual convention
that∞ = 1/0. It is an integer that is well-defined up to sign, hence shall always be normalised
to be positive. If (r, s) and (r′, s′) are Γ-equivalent, then their determinants differ by a power

of p. Let Σρ denote the Γ-orbit of the pair ρ, and let Σ
(m)
ρ ⊂ Σρ be the subset of pairs (r, s)

with ordp(det(r, s)) = m. It is not hard to see that Σ
(m)
ρ is non-empty for all m ≥ 0 and that

Σρ =
∞⋃
m=0

Σ(m)
ρ .

For each pair (r, s), and a base point η ∈ Hp, let tηr,s(z) be the unique rational function having
(r)−(s) as a divisor and satisfying tηr,s(η) = 1. One also defines functions tr,s(z) by expressing
r = a

b and s = c
d as fractions in lowest terms, in such a way that ad− bc > 0, and setting

tr,s(z) =
bz − a
dz − c

.

The function tr,s(z) depends only on the pair (r, s) and its divisor is equal to (r)− (s). Hence
it differs from tηr,s(z) by a constant. More precisely

tr,s(z) = tr,s(η) · tηr,s(z) =

(
bη − a
dη − c

)
· tηr,s(z).

It shall be useful to examine the restrictions of the functions tηr,s(z) and tr,s(z) on certain
affinoid subsets of Hp. We shall follow the notations from §2.1.

Lemma 3.2. Let m > n ≥ 0 be integers. For all (r, s) ∈ Σ
(m)
ρ ,

(1) the restriction of tr,s(z) to H≤np takes values in w + pm−nOCp for some w ∈ Z×p ;

(2) the restriction of tηr,s(z) to H≤np takes values in 1 + pm−nOCp.

Proof. If r = a
b and s = c

d , the fact that ad− bc = pm implies that the primitive vectors (a, b)

and (c, d) in Z2 are proportional to each other modulo pm. Hence there exists v ∈ Z×p for

which (a, b) = v · (c, d) + pm(e, f) for some (e, f) ∈ Z2. It follows that

tr,s(z) = v + pm
fz − e
dz − c

.

But as z ranges over H≤np , the rational function fz−e
dz−c takes values in p−nOCp , and the first

statement follows. For the second it suffices to note that tηr,s(z) is proportional to tr,s(z) by a
factor in O×Cp and therefore takes constant values on H≤np modulo pm−n, combined with the

fact that tηr,s(η) = 1. �
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If ξ1 and ξ2 are two points of the extended upper-half plane H∗ = H ∪ P1(Q), the symbol
[ξ1, ξ2] is used to denote the hyperbolic geodesic segment on H going from ξ1 to ξ2. The
intersection of two (open or closed) geodesic segments on H is defined in the natural way, as
in (7). A point ξ ∈ H∗ is said to be ρ-admissible if it does not lie on any geodesic in Γρ.
Clearly, all p-admissible ξ belong to H, and the set of p-admissible base points is preserved
by the action of Γ. Since the non-admissible points are contained in a countable union of sets
of measure zero, the existence of admissible base points is clear. For computational purposes
it can be desirable to dispose of concrete constructions, such as are provided by the following
lemma when ρ = (0,∞):

Lemma 3.3. Suppose that ξ ∈ H is the root of a primitive integral binary quadratic form
[A,B,C] of discriminant ∆ := B2 − 4AC < 0, and that

(1) the prime p is inert in the imaginary quadratic field Q(
√

∆);
(2) the class of [A,B,C] is of order > 2 in the class group attached to ∆.

Then ξ is ρ-admissible, where ρ = (0,∞).

Proof. If ξ lies on a Γ-translate of [0,∞], then there is a Γ-translate ξ′ of ξ which lies on
the geodesic [0,∞], and hence ξ′ is the root of a primitive binary quadratic form of the type
Ax2 +Cy2, which is of discriminant Dp2t for some t ≥ 0 and of order 2 in the associated class
group. It follows from the second assumption that ξ cannot lie on such a geodesic. �

Fix a ρ-admissible base point ξ ∈ H, and set

Jηρ (γ)(z) =
∏

(r,s)∈Σρ

(
tηr,s(z)

)[r,s]·[ξ,γξ]
.

Lemma 3.4. For each γ ∈ Γ, the infinite product defining Jηρ (γ) converges to a rigid analytic
function on Hp and its image J̄ρ(γ) in A×/C×p satisfies a cocycle condition modulo scalars,
namely

J̄ρ(γ1γ2) = J̄ρ(γ1)× γ1 · J̄ρ(γ2).

Proof. Observe first that Γ◦ := SL2(Z) acts on the set Σ
(m)
ρ by Möbius transformations, and

that there are finitely many orbits for this action:

Σ(m)
ρ = Γ◦ · (r1, s1) t Γ◦ · (r2, s2) t · · · t Γ◦ · (r`,m`).

But the cardinality of the set

{α ∈ Γ◦ such that [αr, αs] · [ξ, γξ] = ±1}

represents the number of intersection points between the images of the geodesics [r, s] and
[ξ, γξ] in the quotient SL2(Z)\H. Since this number is finite, it follows that the product

Jηρ,m(γ)(z) :=
∏

(r,s)∈Σ
(m)
ρ

(
tηr,s(z)

)[r,s]·[ξ,γξ]
has finitely many factors that are 6= 1, and hence is a rational function of z. To prove
convergence of

Jηρ (γ)(z) :=
∞∏
m=0

Jηρ,m(γ)(z)

as a rigid meromorphic function of z ∈ H≤np it suffices to show that the restriction of Jηρ,m(γ)

to H≤np converges uniformly to 1 as m −→∞. But this follows directly from Lemma 3.2. We

have thus showed that the infinite product defining Jηρ (z) converges absolutely and uniformly
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on affinoid subsets of Hp. The cocycle condition for J̄ρ then follows by exactly the same
reasoning as was used in the previous chapter to show that J̄τ belongs to H1(Γ,M×/C×p ). �

Lemma 3.5. The class of J̄ρ in H1(Γ,A×/C×p ) does not depend on the choice of base point
η ∈ Hp and of admissible base point ξ ∈ H that were made to define it.

Proof. Changing the base point η to η′ merely multiplies the functions Jηρ (γ) by a non-zero
scalar, and hence does not affect the cocycle J̄ρ ∈ Z1(Γ,A×/C×p ). As for replacing ξ by ξ′

in the definition of Jηρ , a direct calculation reveals that the associated cocycles differ by the
coboundary dF , where

F (z) =
∏

(r,s)∈Σ

(
tηr,s(z)

)[r,s]·[ξ,ξ′] ∈ A×.
�

We now turn to the question of lifting J̄ρ ∈ H1(Γ,A×/C×p ) to a genuine analytic cocycle

Jρ
?
∈ H1(Γ,A×).

In general, the cocycle J̄ρ need not admit such a lift, but its restriction to Γ◦ := SL2(Z) does,
by the triviality of H2(SL2(Z),C×p ). To describe this lift, we first restrict J̄ρ to H1(Γ◦,A×/C×p )
and construct an explicit lift of it to a class

J◦ρ ∈ H1(Γ◦,A×).

The first part of Lemma 3.2 suggests that replacing tηr,s by tr,s in the definition of Jηρ leads
to an infinite product which need not converge in general. However, we have

Proposition 3.6. For all γ ∈ Γ◦, the infinite product

J◦ρ (γ)(z) :=
∞∏
m=0

J◦ρ,m(γ)(z), where J◦ρ,m(γ)(z) :=
∏

(r,s)∈Σ
(m)
ρ

(tr,s(z))
[r,s]·[ξ,γξ]

converges to a rigid analytic function on Hp, up to 12-th roots of unity, and gives rise to an
element of H1(Γ◦,A×/µ12).

Proof. For integers m > n ≥ 0, consider the restriction of J◦ρ,m(γ)(z) to the affinoid H≤np .

By Lemma 3.2, this restriction is constant modulo pm−n and hence its mod pm−n reduction
defines a cocycle in H1(Γ◦, (Z/pm−nZ)×). Since the abelianisation of Γ◦ is of order 12, it
follows that

J◦ρ,m(γ)(z)|H≤np ∈ µ12 (mod pm−n).

The convergence of the infinite product (up to 12 th roots of unity) follows. �

3.3. Decomposition in cohomology. Recall the multiplicative Schneider–Teitelbaum lift

L×ST : H1(Γ0(p),Z) −→ H1(Γ,A×/C×p )

that is described in [DV, §5.3]. For any pair ρ = (r, s) of distinct elements r, s ∈ P1(Q), let
[r, s] be the image of the geodesic path from r to s in the relative homology of X0(p) relative
to the cusps, and let ϕρ : Γ0(p) −→ Z be the homomorphism defined by

ϕρ(γ) = [r, s] · γ,

where · denotes the intersection pairing

H1(X0(p); {0,∞},Z) × H1(Y0(p),Z) −→ Z.
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Proposition 3.7. The cocycle J̄ρ is the image of ϕρ under L×ST:

J̄ρ = L×ST(ϕρ).

Proof. Recall the standard annulus U of (11) having Γ0(p) as its stabiliser in Γ. The inverse
of the Schneider–Teitelbaum lift takes a cocycle J̄ ∈ H1(Γ,A×/C×p ) to the homomorphism

φJ : Γ0(p) −→ Z, φJ(γ) := resU (dlog J̄(γ)),

where resU is the p-adic annular residue attached to U . Consider the infinite product expres-
sion of Proposition 3.6 for J◦ρ and observe that the terms dlog J◦ρ,m(γ) for m ≥ 1 contribute
nothing to the annular residue at U : indeed, two cusps r, s for which det(r, s) = pm either
both belong to U or to its complement, and hence resU (dlog tr,s(z)) = 0 for such pairs. On
the other hand,

resU (dlog tr,s(z)) =

{
1 if r /∈ Zp, s ∈ Zp,
−1 if r ∈ Zp, s /∈ Zp.

Hence, any pair (r, s) for which the residue of dlog tr,s(z) is equal to 1 is of the form (αr0, αs0),
for some α ∈ Γ0(p), where (r0, s0) ∈ Σρ,0 is any pair for which r0 /∈ Zp and s0 ∈ Zp.

It follows that

resU (dlog Jr,s(γ)) =
∑

α∈Γ0(p)

(+1)[αr0, αs0] · [ξ, γξ] +
∑

α∈Γ0(p)

(−1)[αs0, αr0] · [ξ, γξ]

= 2
∑

α∈Γ0(p)

[αr0, αs0] · [ξ, γξ].

In this last expression one can recognise the intersection product of the relative homology
class [r, s] with the class of γ in H1(Y0(p),Z). The proposition follows. �

We now specialise to the case where (r, s) = (0,∞), and describes the decomposition of the

cohomology class ϕ[0,∞] relative to the Q̄- basis (ϕDR, ϕ
±
f ) for MSΓ0(p)(Q̄) described in (12)

and (13).

Lemma 3.8. The homomorphism ϕ[0,∞] is equal to

ϕ[0,∞] =

(
p− 1

12

)−1

ϕDR +
∑
f

Lalg(f, 1) · ϕ−f ,

where the sum runs over a basis of normalised eigenforms for S2(Γ0(p)).

Proof. Recall the canonical identifications

H1(Y0(p); {0,∞},C) −→ H1
c(Y0(p))∨ −→ H1

dR(Y0(p)),

where H1
c denotes the deRham cohomology with compact support and the superscript ∨

denotes the C-linear dual. The first identification arises from the integration pairing and the
second from Poincaré duality. Let G[0,∞] be the class in H1

dR(Y0(p)) corresponding to γ[0,∞]

under this identification, which is characterised by the equivalent conditions∫
γ
G[0,∞] = γ · [0,∞], for all γ ∈ H1(Y0(p),Z),(14)

〈G[0,∞], ω〉 =

∫ ∞
0

ω, for all ω ∈ H1
c(Y0(p)).(15)

Let λEis and λ±f ∈ C be the coordinates of G[0,∞] relative to the basis of H1
dR(Y0(p))consisting

of ωEis and of the classes ω+
f and ω−f as f ranges over the normalised weight two eigenforms
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on Γ0(p):

(16) G[0,∞] = λEisωEis +
∑
f

(λ+
f ω

+
f + λ−f ω

−
f ).

Let γ ∈ H1(Y0(p),Z) be the class attached to the standard (upper-triangular) parabolic ele-
ment of Γ0(p), which is orthogonal to the cuspidal classes ω+

f and ω−f . Applying (14) to this

class and substituting for the expansion (16) of G[0,∞], one obtains

(17)

(
2πi(p− 1)

12

)
· λEis = 1 and hence λEis =

(
2πi(p− 1)

12

)−1

.

The class G[0,∞] − λEisωEis belongs to H1
dR(X0(p)) and can therefore be paired against any

element of the de Rham cohomology of X0(p). Applying (15) with ω = ω−f and substituting

for (16) once again, yields

(18) − Ωfλ
+
f =

∫ ∞
0

ω−f = 0, and hence λ+
f = 0.

The same calculation with ω = ω+
f reveals that

(19) Ωfλ
−
f =

∫ ∞
0

ω+
f , and hence λ−f = (Ωf )−1

∫ ∞
0

ω+
f = Lalg(f, 1)(Ω−f )−1.

We have thus obtained

(20) G[0,∞] =

(
2πi(p− 1)

12

)−1

ωEis +
∑
f

Lalg(f, 1) · (Ω−f )−1ω−f ,

where the sum is taken over a basis of eigenforms for f . The lemma now follows from (14)
and the definitions in (12) and (13). �

Corollary 3.9. The rigid analytic cocycle J̄0,∞ is equal to

J̄0,∞ =

(
p− 1

12

)−1

· J̄DR +
∑
f

Lalg(f, 1) · J̄−f ,

where the sum runs over a basis of normalised eigenforms for S2(Γ0(p)), and additive notation
is used to denote the group operation in H1(Γ,A×/C×p )⊗Kf .

Proof. This follows by applying the Schneider–Teitelbaum lift to the identity in Lemma 3.8.
�

The restrictions of the cocycles J̄DR and J̄−f to Γ◦ := SL2(Z) lift uniquely to A×-valued

cocycles. In the special case where f has integer Fourier coefficients, and hence corresponds
to an elliptic curve Ef via the Eichler–Shimura construction, the value

P−f (τ) := J−f [τ ] ∈ O×Cp
is called the Stark–Heegner point associated to J−f and τ ∈ HRM

p . Its image in E(Cp) under

the Tate uniformisation is conjectured to be a global point in E(Hτ ) ⊗ Q, which belongs to
the minus eigenspace for the action of complex conjugation on the narrow ring class field Hτ .

Corollary 3.10. For all RM points τ ∈ H◦p,

log(TnJ̄0,∞[τ ]) = σ
(p)
1 (n)

(
p− 1

12

)−1

· log(JDR[τ ]) +
∑
f

an(f)Lalg(f, 1) · log(P−f (τ)).
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Proof. Since the cocycles JDR and J−f are Hecke eigenclasses with Tn-eigenvalues σ
(p)
1 (n) and

an(f) respectively, Corollary (3.9) shows that, modulo torsion,

Tn(J̄0,∞) = σ
(p)
1 (n)

(
p− 1

12

)−1

· J̄DR +
∑
f

an(f)Lalg(f, 1) · J̄−f .

The result now follows by evaluating these cocycles at τ and taking the p-adic logarithms of
these values on both sides. �

Corollary 3.11. Let ∆ be a principal divisor on Γ\HRM
p . Then

log(TnJ̄0,∞[∆]) = σ
(p)
1 (n)

(
p− 1

12

)−1

· log(JDR[∆]).

Proof. This follows from the fact that P−f [∆] = J−f [∆] is torsion for all principal divisors
∆. �

4. A Weil reciprocity law for rigid meromorphic cocycles

The main result of this chapter is

Theorem 4.1. Let J̄τ be the theta-cocycle associated to an unramified RM point τ ∈ H◦p, and

let J̄ρ be the analytic cocycle associated to the pair ρ = (r, s) of elements of P1(Q). Then

J̄τ [ρ] = J̄ρ[τ ] (mod torsion).

Proof. The proof follows directly by comparing Propositions 4.2 and 4.5 below, in which the
left and right hand sides in Theorem 4.1 are calculated independently. �

It will be assumed for simplicity that p is inert in F , so that the elements in Hp∩F map to
vertices under the reduction map to the Bruhat–Tits tree T . The case where p is ramified in
F is also interesting and is only omitted for the sake of brevity. For simplicity, propositions
4.2 and 4.5 are only proved in the case where ρ = (0,∞), the details of the proof for general
ρ, which proceed along very similar lines, being left to the reader.

Proposition 4.2. For all unramified τ ∈ Γ\HRM
p ,

J̄τ [0,∞] =
∏

w∈Πτ (0,∞)

wδ(w),

where Πτ (0,∞) = {w ∈ Στ (0,∞) with ordp(w) = 0 or 1.}.

Remark 4.3. Although this infinite product does not converge absolutely, it can be defined to
be ∏

w∈Πτ (0,∞)

wδ(w) :=
∏

w∈Π+
τ (0,∞)

w+/w−.

Where we define here, and in what follows, Π+
τ (0,∞) and Π−τ (0,∞) to be the set of positive

and negative elements of Πτ (0,∞), respectively. Here, the order of the infinite product on
the right hand side is taken as follows: Note that for each w in the index set, disc(w) = Dp2m

for some m ≥ 0. We can write Πτ (0,∞) as a disjoint union of finite sets

Πτ (0,∞) :=
∞⋃
m=0

Πm
τ (0,∞), where Πm

τ (0,∞) := {w ∈ Πτ (0,∞) : disc(w) = Dp2m}.

We then define ∏
w∈Πτ (0,∞)

wδ(w) :=

∞∏
m=0

∏
w∈Πmτ (0,∞)

wδ(w).
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Proof. By definition,

(21) J̄τ [0,∞] := Jητ {0,∞}(p2z)/Jητ {0,∞}(z) =
∏

w∈Στ (0,∞)

(tw(p2z)/tw(z))δ(w),

where

Στ (0,∞) :=
{
w ∈ Γτ with ww′ < 0

}
, and δ(w) := sign(w),

and we have abbreviated tηw to tw, suppressing the base point η ∈ Hp in order to lighten the
notations. We begin by observing that Στ (0,∞) is stable under multiplication by p2, which
corresponds to the action by the diagonal matrix P∞ ∈ Γ. Note that Πτ (0,∞) is a system of
representatives for the orbits under this action. From (9) there is a (non-canonical) involution
ι on the set Πτ (0,∞) which interchanges Π+

τ (0,∞) and Π−τ (0,∞) and preserves the fibers of
the reduction map from Πτ (0,∞) to the Bruhat–Tits tree of GL2(Qp). Fix such an involution
ι and, for all w+ ∈ Π+

τ (0,∞), let w− := ι(w+). Note that in particular w+/w− belongs to
O×Cp . With these notations in place, (21) can be rewritten as:

(22) J̄τ [0,∞] :=
∏

w+∈Π+
τ (0,∞)

∞∏
j=−∞

tp2jw+(p2z)tp2jw−(z)

tp2jw+(z)tp2jw−(p2z)
.

In order to simplify the inner product we invoke the following lemma:

Lemma 4.4. For all w+ and w− in Hp,
∞∏

j=−∞

tp2jw+(p2z)tp2jw−(z)

tp2jw+(z)tp2jw−(p2z)
= w+/w−.

Proof. The general factor in the product is just the cross-ratio of p2jw+, p2jw−, z and p2z,
and can be rewritten as

X :=
∞∏

j=−∞

(p2z − p2jw+)(z − p2jw−)

(z − p2jw+)(p2z − p2jw−)
=

∞∏
j=−∞

(z − p2(j−1)w+)(z − p2jw−)

(z − p2jw+)(z − p2(j−1)w−)
.

This expression is the limit as N →∞ of the telescoping products

XN :=
N∏

j=−N

(z − p2(j−1)w+)(z − p2jw−)

(z − p2jw+)(z − p2(j−1)w−)
=

(z − p2(−N−1)w+)(z − p2Nw−)

(z − p2Nw+)(z − p2(−N−1)w−)
.

This latter expression for XN makes it apparent that

X = lim
N−→∞

XN = w+/w−,

as was to be shown. �

Proposition 4.2 now follows from rewriting (22) using Lemma 4.4. �

Proposition 4.5. For all unramified τ ∈ Γ\HRM
p ,

J̄0,∞[τ ] =
∏

w∈Πτ (0,∞)

wδ(w).

Proof. Set ρ := (0,∞), and let Γ̃ denote the subgroup of GL2(Z[1/p]) consisting of matrices
with positive determinant. By Proposition 3.6,

J̄ρ[τ ] = J◦ρ (γτ )(τ) =
∞∏
m=0

J◦ρ,m(γτ )(τ),
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where

(23) J◦ρ,m(γτ )(τ) :=
∏

(r,s)∈Σ
(m)
ρ

(tr,s(z))
[r,s]·[ξ,γξ].

We begin by reinterpreting the index set of this product. For any m ≥ 0, define

Γ̃m :=

{
γ =

(
a c
b d

)
∈ Γ̃ with a, b, c, d ∈ Z, p - gcd(a, b), p - gcd(c, d), ad− bc = pm

}
.

The map α 7→ (α0, α∞) defines a bijection between the sets Γ̃m and Σ
(m)
ρ . We may now

rewrite (23) in a series of steps:

J◦ρ,m(γτ )(τ) :=
∏
α∈Γ̃m

tα0,α∞(τ)[α0,α∞]·[ξ,γτ ξ](24)

=
∏

α∈γZτ \Γ̃m

∞∏
j=−∞

t
γjτα0,γjτα∞(τ)[γjτα0,γjτα∞]·[ξ,γτ ξ].(25)

=
∏

α∈γZτ \Γ̃m

∞∏
j=−∞

tα0,α∞(τ)[α0,α∞]·[γ−jτ ξ,γ−j+1
τ ξ](26)

=
∏

α∈γZτ \Γ̃m

tα0,α∞(τ)[α0,α∞]·[τ ′,τ ](27)

=
∏

α∈γZτ \Γ̃m

t0,∞(α−1τ)[0,∞]·[α−1τ ′,α−1τ ](28)

Here, (25) is justified by the fact that the set Γ̃m is stable under left multiplication by Γ◦,
and (26) and (28) follow from the equivariance property tγτ r,γτ s(γτz) = tr,s(z). Finally, (27)
follows from the identity

∞∑
j=−∞

[α0, α∞] · [γ−jτ ξ, γ−j+1
τ ξ] = lim

M−→∞
[α0, α∞] · [γ−Mτ ξ, γM+1

τ ξ]

= [α0, α∞] · [τ ′, τ ],

since τ is the attractive fixed point in H for γτ and τ ′ is its repulsive fixed point.
Now we observe that the map α 7→ α−1τ =: w identifies the set γZτ \Γ̃m with the set{

w ∈ Γ̃τ, ordp(w) = 0, disc(τ) = Dp2m
}
.

The function δ(w) = [0,∞] · [w′, w] on this set is supported on those w for which ww′ < 0,
and therefore we may rewrite (28) as

J̄ρ[τ ] =
∏

w∈Π̃τ (0,∞)

t0,∞(w)[0,∞]·[w′,w],

where Π̃τ (0,∞) := {w ∈ Γ̃τ s.t. ww′ < 0, ordp(w) = 0}. Note however that there is a
bijection

ρ : Πτ (0,∞) −→ Π̃τ (0,∞), ρ(w) :=

{
w if ordp(w) = 0,
w/p if ordp(w) = 1

Since t0,∞(w) = w and [0,∞] · [w′, w] = δ(w), the proposition follows. �

The reciprocity law can be used to prove Theorem A of the introduction:
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Theorem 4.6. If J is any rigid meromorphic cocycle, then the value J [∞] is algebraic. More
precisely, a power of it belongs to (OHJ [1/p])×.

Proof. Let ∆ denote the divisor of J . Then we have the following chain of equalities in C×p
modulo torsion:

J [∞]2 = J̄∆[0,∞] = J̄0,∞[∆] = J̄DR[∆],

where

(1) the first equality follows from 1.7;
(2) the second is a consequence of the reciprocity law of Theorem 4.1 in the case where

ρ = (0,∞);
(3) the third follows from Corollary 3.11 in the case n = 1.

On the other hand, the main result of [DK], building on the Galois deformation techniques
that were used in [DDP] to prove the p-adic Gross–Stark conjecture, shows that the p-adic
logarithm of J̄DR[∆] agrees with the logarithm of a suitable p-unit in the ring class field H∆

attached to ∆. The theorem follows. �

Example. Let τ = 2
√

2, which has discriminant 32, and is contained in the 11-adic upper
half plane. Let J̄τ be the 11-adic theta cocycle attached to τ . Then

J̄τ [0,∞] =
6

5
JDR[τ ] +

1

5
J−E [τ ]

where E : y2 + y = x3 − x2 − 10x − 20 is the modular curve X0(11). Using the algorithms
described in [DV, §3.5], we may compute the cocycles J̄τ explicitly, and we verified to a high
11-adic precision that{

(T2 + 2)(J̄τ )[0,∞] = JDR[τ ]6 =
(√
−2−3
11

)6
∈ C×11

(T2 − 3)(J̄τ )[0,∞] = J−E [τ ]−1 = (2
√
−2, 4

√
−2− 5) ∈ C×11/q

Z
E

5. The p-adic uniformisation of X0(p)

We conclude by drawing a parallel between the classical theory of p-adic uniformisation of
Mumford curves by p-adic Schottky groups Γ ⊂ SL2(Qp) acting discretely on Hp, and the
theory of rigid meromorphic cocycles. Up to a few significant differences between the two
settings, one passes from one to the other by “shifting the degree of cohomology by one”.

5.1. Theta functions. Firstly, let Γ ⊂ SL2(Qp) be a p-adic Schottky group acting freely and
discretely on Hp and on the Bruhat–Tits tree, and let XΓ be the associated Mumford curve
over Qp, whose Cp-points are identified with the quotient Γ\Hp. As before, let A× and M×
denote the multiplicative groups of rigid analytic and rigid meromorphic functions on Hp,
respectively. The theory of p-adic theta-functions associates to any degree zero divisor ∆ of
Hp a rigid meromorphic function

θ∆(z) :=
∏
γ∈Γ

tηγ∆(z)

on Hp which is invariant modulo scalars, i.e., belongs to H0(Γ,M×/C×p ). This class lifts to

an element of H0(Γ,M×), i.e., to a rational function on XΓ, if any only if the image of ∆
in XΓ(Cp) is a principal divisor. The obstruction to ∆ being principal is measured by the
automorphy factor κ∆ : Γ −→ C×p of θ∆, satisfying

θ∆(γz) = κ∆(γ)θ∆(z), for γ ∈ Γ.
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The group H1(Γ,C×p ) is isomorphic to (C×p )g where g is the genus of XΓ, and the group ΠΓ of

automorphy factors arising from elements of H0(Γ,A×/C×p ) forms a sublattice in H1(Γ,C×p )
which is commensurable with the Tate period lattice of the Jacobian of XΓ. One thus obtains
a p-adic uniformisation of this Jacobian as the quotient of H1(Γ,C×p ) by ΠΓ, and the lifting

obstruction κ∆ attached to ∆ ∈ Div0(Hp) encodes the image of ∆ in Jac(XΓ). This discussion
is summarised in the commutative diagram

(29)

0

��

0

��

0

��

0

��
0 // C×p

��

// C×p

��

// H0(Γ,A×/C×p )

��

δ // ΠΓ
//

��

0

0 // C×p

��

// H0(Γ,M×)

Div

��

// H0(Γ,M×/C×p )

Div
��

δ // H1(Γ,C×p )

��
0 // P (XΓ) //

��

Div0(XΓ) //

��

Jac(XΓ) //

��

0,

0 0 0

where δ is the connecting homomorphism arising from in the long exact Γ-cohomology exact
sequence, and

ΠΓ := δ(H0(Γ,A×/C×p )) ⊂ H1(Γ,C×p ).

5.2. Theta cocycles. The analogue of (29) in the theory of rigid meromorphic cocycles is
obtained by setting Γ := SL2(Z[1/p]). This group is too large to act discretely on Hp or on
the Bruhat–Tits tree without fixed points. Indeed, the vertex and edge stablisers in Γ are
conjugate to SL2(Z) and to the Hecke congruence group Γ0(p), respectively. Because of this,
the groups H0(Γ,A×) and H0(Γ,M×) contain only the constant functions, and it becomes
natural to replace the group H0(Γ,M×) of rigid meromorphic functions on XΓ when Γ is a
p-adic Schottky group, with the group H1(Γ,M×) of rigid meromorphic cocycles.

The theory of theta cocycles described in Chapter 2 associates to any divisor ∆ of Hp
consisting of RM points a rigid meromorphic cocycle

J∆(z) ∈ H1(Γ,M×/C×p )

modulo multiplicative scalars, and shows that all such cocycles are obtained in this way. The
divisor ∆ is said to be principal if the class J∆ lifts to genuine rigid meromorphic cocycle in
H1(Γ,M×). The obstruction to ∆ being principal is thus measured by the lifting obstruction
κ∆ ∈ H2(Γ,C×p ) and its parabolic counterpart that were introduced and described in Chapter

1. Lemma 1.5 (2), shows that the group H2(Γ,C×p ) maps with finite kernel to H1(Γ0(p),C×p ),
suggesting that it could serve as the domain for a p-adic uniformisation of J0(p) (or even, of
the generalised Jacobian of the open curve Y0(p)). Indeed, it turns out that the group ΠΓ

generated by the lifting obstructions of analytic cocycles in H1(Γ,A×/C×p ) forms a sublattice

in H2(Γ,C×p ) which is commensurable with two copies of the Tate period lattice of J0(p),

augmented by the discrete group generated by pZ. As explained in [Dar, §2] and in [Das],
this is essentially a reformulation of the “exceptional zero conjecture” of Mazur, Tate and
Teitelbaum [MTT] which was proved by Greenberg and Stevens [GS]. One thus obtains a
kind of p-adic uniformisation of two copies of this Jacobian (along with a multiplicative factor
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of C×p /pZ) as a rigid analytic quotient of H2(Γ,C×p ) by the lattice ΠΓ. The lifting obstruction

κτ attached to any τ ∈ HRM
p encodes the images of the Gross–Stark units and the Stark–

Heegner points attached to τ , in the generalised Jacobian of Y0(p). This discussion can be
summarised in the following commutative diagram in the category of abelian groups up to
isogeny, where morphisms are decreed to be isomorphisms if they have finite kernels and
cokernels:

(30)

0

��

0

��

0

��
H1(Γ,A×)

��

// H1(Γ,A×/C×p )

��

δ // ΠΓ

��
H1(Γ,M×)

Div
��

// H1(Γ,M×/C×p )

Div
��

δ // H2(Γ,C×p )

��
P (Γ\HRM

p ) //

��

Div0(Γ\HRM
p ) //

��

Jac(X0(p))(Cp)2 ⊕ C×p /pZ

��
0 0 0

The method used in this paper to prove the algebraicity of J [∞] for J ∈ H1
f (Γ,M×) rests

crucially on the theory of deformations of p-adic Galois representations, and appears to shed
little light on the geometric structures that might underly the p-adic uniformisation of J0(p)
by H2(Γ,C×p ) suggested by (30).
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