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Abstract. A rigid meromorphic cocycle is a class in the first cohomology of the discrete

group Γ := SL2(Z[1/p]) with values in the multiplicative group of non-zero rigid meromorphic

functions on the p-adic upper half planeHp := P1(Cp)−P1(Qp). Such a class can be evaluated

at the real quadratic irrationalities in Hp, which are referred to as “RM points”. Rigid

meromorphic cocycles can be envisaged as the real quadratic counterparts of Borcherds’

singular theta lifts: their zeroes and poles are contained in a finite union of Γ-orbits of

RM points, and their RM values are conjectured to lie in ring class fields of real quadratic

fields. These RM values enjoy striking parallels with the CM values of modular functions

on SL2(Z)\H: in particular they seem to factor just like the differences of classical singular

moduli, as described by Gross and Zagier. A fast algorithm for computing rigid meromorphic

cocycles to high p-adic accuracy leads to convincing numerical evidence for the algebraicity

and factorisation of the resulting singular moduli for real quadratic fields.
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Introduction

Drinfeld’s p-adic upper half-plane, a rigid analytic space whose Cp-points are identified
with Hp := P1(Cp) − P1(Qp), offers an enticing framework for explicit class field theory for
real quadratic fields, since it contains a large supply HRM

p of real multiplication (RM) points

belonging to real quadratic fields in which the prime p is either inert or ramified. Let M×
denote the multiplicative group of rigid meromorphic functions on Hp, consisting of ratios of
non-zero rigid analytic functions. The discrete group Γ = SL2(Z[1/p]) acts on Hp by Möbius
transformations, inducing an action onM× (written either on the right or on the left) by the
rule

(1) (f |γ)(τ) := (γ−1f)(τ) := f

(
aτ + b

cτ + d

)
, where γ :=

(
a b
c d

)
.

A naive attempt at explicit class field theory for real quadratic fields could proceed by exam-
ining the RM values of Γ-invariant functions in M×. However, because the Γ-orbits in Hp
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are dense for the rigid analytic topology, any such function is constant, i.e.,

(2) H0(Γ,M×) = C×p .

It is then natural to consider the first cohomology group H1(Γ,M×) instead. A class in this
group is said to be parabolic if its restriction to the subgroup Γ∞ ⊂ Γ of upper triangular
matrices is trivial, and is said to be quasi-parabolic if this restriction lies in H1(Γ∞,C×p ). The

groups of such classes are denoted by H1
par(Γ,M×) and H1

f (Γ,M×) respectively.

Definition 1. A class in H1
f (Γ,M×) is called a rigid meromorphic cocycle for Γ.

A rigid meromorphic cocycle is thus a function J : Γ −→M× satisfying

J(γ1γ2) = J(γ1)× γ1J(γ2),

taken modulo 1-coboundaries, of the form ξ(γ) = γf ÷ f , with f ∈ M×, and admitting
a quasi-parabolic representative, whose values on Γ∞ consist of constant functions. This
representative is even unique (up to torsion), because M contains no translation-invariant
elements.

This article initiates the study of rigid meromorphic cocycles, with special emphasis on
their application to the analytic construction of class fields of real quadratic fields.

The relevance of Definition 1 for explicit class field theory rests on the fact that rigid
meromorphic cocycles can be meaningfully evaluated at RM points. More precisely, the RM
points in Hp are characterised by the fact that their associated order

Oτ :=

{(
a b
c d

)
∈M2(Z[1/p]) such that aτ + b = cτ2 + dτ

}
is isomorphic to a Z[1/p]-order in the real quadratic field K = Q(τ), via the inclusion

ι : Oτ −→ K, ι

(
a b
c d

)
= cτ + d.

The stabiliser of τ in Γ is generated up to torsion by a fundamental unit of norm one in Oτ .
It is called the automorph of τ , and denoted γτ . The value of a rigid meromorphic cocycle J
at an RM point τ is then defined to be

(3) J [τ ] := J(γτ )(τ) ∈ Cp ∪ {∞},

a numerical invariant which depends only on the class of J in cohomology (and not on the
choice of cocycle representing it) and on the Γ-orbit of τ . The cocycle J thus gives rise to a
function

(4) J : Γ\HRM
p −→ Cp ∪ {∞}.

Conjecture 1 below asserts that it takes algebraic values that lie in (composita of) abelian
extensions of real quadratic fields, thus behaving in many key respects like the function
SL2(Z)\HCM −→ C ∪ {∞} induced by the classical j-function, or by any other meromor-
phic modular function defined over Q̄.

Let S be the standard matrix of order 2 in Γ/〈±1〉 that fixes i =
√
−1.

Definition 2: A rigid meromorphic period function is the value at S of the quasi-parabolic
representative of a rigid meromorphic cocycle.
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The assignment J 7→ j := J(S) identifies H1
f (Γ,M×) with the multiplicative group R× of

rigid meromorphic period functions, and any function in R× satisfies the functional relations

(5) j(−1/z) = j(z)−1, j(p2z) = j(z),
j(z + 1)

j(z)
= j

(
−z + 1

z

)
.

The main result of the first three chapters is

Theorem 1. The group R× is of infinite rank. The zeroes and poles of any j ∈ R× are
contained in a finite union of Γ-orbits of RM points in Hp.

Theorem 1 suggests that rigid meromorphic period functions might be viewed as the real
quadratic counterpart of Borcherds’ singular theta lifts of modular forms of weight 1/2, insofar
as the latter are meromorphic modular functions with divisor concentrated at CM points.

Let Hτ denote the ring class field (in the narrow sense) associated to the order Oτ . It is
an abelian extension of K = Q(τ) whose Galois group over K is identified via global class
field theory with the narrow class group Pic+(Oτ ) of projective oriented Oτ -modules. If j
is any rigid meromorphic period function and J is its associated rigid meromorphic cocycle,
Theorem 1 implies that the field

Hj = HJ := Compositumj(τ)=∞(Hτ )

is a finite extension of Q; it is called the field of definition of j, or of J . The main conjecture
of this paper, which is discussed in greater detail in Chapter 4, is

Conjecture 1. If J is a rigid meromorphic cocycle, and τ ∈ Hp is an RM point, then the
value J [τ ] is an algebraic number belonging to the compositum of HJ and Hτ .

Conjecture 1 gives ample motivation for the systematic study of rigid meromorphic cocy-
cles. This study is carried out in Chapters 1, 2 and 3, where Theorem 1 is proved by giving
a complete classification of rigid meromorphic period functions. These functions, and their
additive counterparts known as rigid meromorphic period functions of weight two, are rem-
iniscent of the “rational period functions” that are studied in [Kn], [Ash], [CZ], and can be
classified along similar lines. The classification obtained in Chapter 3 is constructive and leads
to explicit product expansions for rigid meromorphic period functions. To describe these, for
any τ ∈ Γ\HRM

p , let

(6) Στ := {w ∈ Γτ such that ww′ < 0},

where w′ is the algebraic conjugate of w ∈ K := Q(τ). The subset Στ of Γτ contains only
finitely many integer translates of any given w ∈ Γτ , and it can in fact be shown that it is a
discrete subset of the full Γ-orbit, relative to the rigid p-adic topology on Hp . After fixing a
real embedding of K, let δ∞(w) ∈ {−1, 1} denote the sign of w ∈ Στ .

A prime p is said to be monstrous if it divides the cardinality of the Monster sporadic
simple group, or equivalently (by a famous observation of Andrew Ogg) if the quotient of the
modular curve X0(p) by its Atkin Lehner involution has genus zero, which occurs precisely
when

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

One of the illustrative results of Chapter 3 is
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Theorem 2. Let p be a monstrous prime, and let τ be any RM point in Hp. The infinite
product

j+
τ (z) :=

∏
w∈Στ

(
tw(z)

tpw(z)

)δ∞(w)

, where tw(z) =

{
z − w if |w| ≤ 1,
z/w − 1 if |w| > 1,

converges to a rigid meromorphic period function on Hp.

The constructions described in the first three chapters also lead to a complete classifica-
tion of rigid meromorphic period functions for arbitrary p: the multiplicative group of such
functions is spanned by suitable Hecke translates of simple generalisations of the example in
Theorem 2.

Chapter 3 concludes by describing an efficient algorithm for computing rigid meromorphic
period functions to high p-adic accuracy, in terms of their images in the Tate algebra of a
suitable affinoid subset of Hp. This algorithm makes it feasible to compute the RM values
of rigid meromorphic cocycles to hundreds of significant digits, and has been used to test
Conjecture 1 numerically in a variety of situations.

For example, if p is a monstrous prime that is inert in Q(
√

5), i.e., if

(7) p ∈ {2, 3, 7, 13, 17, 23, 47},

and ϕ := (1 +
√

5)/2 is the golden ratio, the rigid meromorphic period function j+
ϕ and

associated rigid meromorphic cocycle J+
ϕ defined by setting τ = ϕ in Theorem 2 can be

viewed as a convincing analogue of the j-function, whose divisor is concentrated on the CM
point (1 +

√
−3)/2 of smallest negative discriminant. Calculations performed to 100 digits of

3-adic and 13-adic accuracy (the primes p = 3, 13 being precisely those in (7) which are also
inert in Q(

√
2)) suggest that

J+
ϕ [2
√

2]
?
=

{
(33 + 56

√
−1)/(5 · 13) in C3;

(1 + 2
√
−2)/3 in C13,

consistent with the fact that the order Z[2
√

2] has narrow class number two, and that its
associated narrow ring class field is equal to Q(

√
2,
√
−1). Likewise, the real quadratic field

K := Q(
√

223) has narrow class number 6, and the element
√

223 can be viewed as belonging
to H7, H13, and H47. The value of J+

ϕ at τ =
√

223, computed to 100 digits of p-adic accuracy
for p ∈ {7, 13, 47}, appears to satisfy the following sextic polynomials:

p = 7. 282525425x6 + 27867770x5 + 414793887x4 − 128906260x3 + 414793887x2

+27867770x+ 282525425,
p = 13. 464800x6 + 1275520x5 + 1614802x4 + 1596283x3 + 1614802x2

+1275520x+ 464800,
p = 47. 4x6 + 4x5 + x4 − 2x3 + x2 + 4x+ 4.

All three of these polynomials have the Hilbert class field of K as their splitting field, con-
firming Conjecture 1 in a setting where Hτ is non-abelian over Q.

A number of patterns emerge from the above experiments, notably:

• The RM value J+
ϕ [τ ] appears to belong to H

σpσ∞=1
τ , where σp and σ∞ denote frobenius

elements at the prime p and ∞ respectively. In that sense the situation is even a bit better
than predicted by Conjecture 1, which only asserts that J+

ϕ [τ ] should be defined over the

compositum of Hτ with the field of definition Hϕ = Q(
√

5) of J+
ϕ . The experiments, which

have been carried out for numerous other examples as well, suggest that j+
ϕ should really be

viewed as being “defined over Q” rather than over Q(
√

5).



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 5

• The primes that occur in the factorisation of J+
ϕ [τ ] lie above rational primes that are

inert or ramified in both the real quadratic fields Q(
√

5) and Q(τ), and divide an integer of

the form 5Disc(τ)−m2

4 ≥ 0.

• The value of J+
ϕ [τ ]–and even the precise field over which it is defined–depends very much

on the monstrous prime p relative to which it is computed. However, if p and q are two
monstrous primes for which ϕ and τ belong to both Hp and Hq, the primes above q very often
(but not always!) occur in the factorisation of the p-adic J+

ϕ [τ ] with the same multiplicity as
the primes above p in the factorisation of the selfsame q-adic invariant.

In an attempt to better understand this last feature, Chapter 4 focusses on a prime p ∈
{2, 3, 5, 7, 13}, i.e., a prime for which the modular curve X0(p) has genus zero. For each pair
(τ1, τ2) of RM points in Hp with associated ring class fields H1 = Hτ1 and H2 = Hτ2 a p-adic
arithmetic intersection number

Jp(τ1, τ2)
?
∈ H12 := H1H2

is defined. Roughly speaking, it is the value Ĵτ1 [τ2], where Ĵτ1 is a simple modification of the
cocycle J+

τ1 of Theorem 2, with zeroes and poles concentrated in Γτ1. The quantity Jp(τ1, τ2)
seems to enjoy many of the same properties as the difference

J∞(τ1, τ2) := j(τ1)− j(τ2), j(q) =
1

q
+ 744 + 196884q + · · ·

of “classical” singular moduli studied in [GZ1], and is conjectured to admit analogous factori-
sations.

The prediction made in Conjecture 4.26 of Chapter 4 can be loosely paraphrased as follows:

Conjecture 2. The p-adic intersection number Jp(τ1, τ2)
?
∈ H12 is divisible only by primes

of H12 lying above rational primes that are non-split in both of the real quadratic fields K1 :=

Q(τ1) and K2 := Q(τ2), and divide a positive integer of the form D1D2−x2
4 . If q is such a

prime, then the valuations of Jp(τ1, τ2) at the primes above q are determined by certain q-
weighted topological intersection numbers of modular geodesics attached to τ1 and τ2 on the
Shimura curve arising from the indefinite quaternion algebra ramified at q and p.

This prediction resonates closely with the factorisations described in [GZ1], where the
valuation at q of J∞(τ1, τ2) is determined by a similar intersection of 0-cycles attached to the
CM points τ1 and τ2 on the 0-dimensional Shimura variety arising from the definite quaternion
algebra ramified at q and ∞.

Chapter 5 recalls the construction of the Gross–Stark units given in [DD] and the Stark–
Heegner points of [Da], which are conjecturally defined over ring class fields of real quadratic
fields, and explains how these constructions can be recast in the framework of RM values of
rigid analytic cocycles “modulo suitable periods”.

In closing, it is worth noting that the infinite rank group H1
f (Γ,M×) admits no non-trivial

finite rank Hecke stable subspaces. Rigid meromorphic cocycles and their RM values thus
bear no direct relationship to Hecke eigenforms and to special values of L-functions with
Euler products, unlike the Gross-Stark units and the Stark-Heegner points of Chapter 5,
which are expected to satisfy analogues of the Kronecker limit formula and the Gross-Zagier
formula. In that sense, the main thesis of this paper — that rigid meromorphic cocycles play
the role of meromorphic modular functions in extending the theory of complex multiplication
to real quadratic fields — breaks more decisively from the tradition of the Stark conjectures
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than either [DD] or [Da], where the leading terms of motivic L-functions continue to play a
central role.

Acknowledgements. This article builds on the ideas of a great many people: the seminal
work of Marvin Knopp, Avner Ash, Youngju Choie and Don Zagier on rational modular cocy-
cles, and of Glenn Stevens, Peter Schneider and Jeremy Teitelbaum on overconvergent modular
symbols and p-adic integral transforms, are the basis for Chapters 1 and 2 respectively. One
of the main conjectures of Chapter 4 concerning the factorisations of “real quadratic singular
moduli” is modelled on the analogous factorisations in the CM setting explored by Benedict
Gross and Don Zagier. The last chapter incorporates insights gleaned over the course of pre-
vious collaborations and exchanges, notably with Massimo Bertolini, Pierre Charollois, Samit
Dasgupta, Matthew Greenberg, and Victor Rotger. The spark for the present work was ig-
nited when the authors became aware of the beautiful article of Bill Duke, Ozlem Imamoglu,
and Arpad Toth [DIT] expressing the topological linking numbers of real quadratic modular
geodesics on SL2(Z)\SL2(R) in terms of RM values of multiplicative rational modular cocy-
cles. It is a pleasure to thank all these mathematicians for the inspiration they have given
us. Finally, the algorithms devised and implemented by James Rickards for computing the
q-weighted topological intersection numbers of real quadratic geodesics on Shimura curves,
which are a part of his ongoing PhD thesis, were invaluable in testing the Gross-Zagier style
factorisations of Section 4.4.

1. Meromorphic cocycles of weight two

This chapter introduces additive counterparts of the rigid meromorphic cocycles and their
associated rigid meromorphic period functions that were described in the introduction. These
are referred to as rigid meromorphic cocycles and period functions of weight k ≥ 0. The main
results of this chapter are Theorems 1.22 and 1.23, which together give the full classification
of rigid meromorphic period functions of weight two up to rigid analytic period functions of
the same weight. The techniques are greatly inspired by the classification of rational period
functions carried out by Knopp [Kn], Ash [Ash] and Choie-Zagier [CZ].

1.1. The p-adic upper half-plane. We begin by recalling some facts about the p-adic upper
half plane as a rigid analytic space.

Let T denote the Bruhat–Tits tree of PGL2(Qp), whose vertices are in bijection with the
homothety classes of Zp-lattices in Q2

p, two vertices being joined by an (unordered) edge if
they admit representative lattices contained in each other with index p. Write T0, T1, and T ∗1
for the set of vertices, unordered edges, and ordered edges respectively of T . If e ∈ T ∗1 is an
ordered edge, we denote by s(e) and t(e) ∈ T0 its source and target vertices respectively. The
group Γ acts on T through its natural left action on Q2

p, viewing the latter as column vectors.

The “standard vertex” v0 ∈ T0 associated to the lattice Z2
p has SL2(Z) as its stabiliser for

this action. A vertex is said to be even if its distance to v0 is even, and is said to be odd
otherwise. The set of even and odd vertices are denoted T +

0 and T −0 respectively. Likewise,
an ordered edge in T ∗1 is said to be even if its source is even and odd if its source is odd. The
subsets of even and odd oriented edges are denoted T +

1 and T −1 respectively, so that we have
the decompositions

T0 = T +
0 t T

−
0 , T ∗1 = T +

1 t T
−

1 .

The p-adic upper half plane Hp may be thought of as a tubular neighbourhood of the
Bruhat–Tits tree T via the natural “reduction map”

red : Hp −→ T ,
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which maps Hp(Q̂nr
p ) to T0, where Q̂nr

p is the completion of the maximal unramified extension
of Qp. The inverse image of a vertex v ∈ T0, denoted Av, is called a vertex affinoid in Hp,
and the inverse image of an edge e ∈ T1 is an annulus denoted by We. The vertex affinoid
corresponding to the standard vertex v0 is called the standard affinoid : it is the complement
in P1(Cp) of the p+ 1 mod p residue discs around the points in P1(Fp). The edge e0 ∈ T1 with
stabiliser Γ0(p) is the image under the reduction map of the standard annulus

We0 = {z ∈ Cp with 1 < |z| < p}.

If v is a vertex and e1, . . . ep+1 are the distinct edges in T1 having v as an endpoint, then the
union

Wv := Av ∪
⋃
j

Wej := red−1

v ∪⋃
j

ej


is called the standard wide open subset attached to v.

Let T ≤n denote the subgraph of T spanned by the vertices of distance ≤ n from the
standard vertex, and write H≤np for the affinoid subdomain of Hp consisting of those points

reducing to T ≤n. Likewise let T <n denote the subgraph of T containing all the vertices of
distance ≤ n − 1 as well as all the edges containing at least one of these vertices, and write
H<np for the wide open subspace of Hp consisting of those points reducing to T <n. The subsets

H≤np define an admissible cover

Hp =
⋃
n≥0

H≤np

of the p-adic upper half-plane by affinoid subsets.
Of course, the actions of Γ on T and on Hp by Möbius transformations are compatible

under the reduction map. In particular, for all γ ∈ Γ,

Aγv = γAv, Wγe = γWe.

A Cp-valued function on Hp is said to be rigid analytic if its restriction to any affinoid
subset A of Hp is a uniform limit, relative to the supremum norm, of rational functions on
P1(Cp) having poles outisde of A. The space O of rigid analytic functions on Hp is endowed
with a natural topology arising from its expression as the inverse limit of the affinoid algebras
O(H≤np ), which are Banach spaces for their supremum norms. Let M denote the fraction
field of O. Its elements are called rigid meromorphic functions on Hp.

If τ ∈ Hp is an RM point, then there is a primitive integral binary quadratic form Fτ (x, y)
satisfying F (τ, 1) = 0, which is unique up to sign. The discriminant of τ is the discriminant
of this binary quadratic form. The discriminant is an invariant for the action of SL2(Z), but
not of Γ, which only preserves the prime-to-p part of disc(τ).

Proposition 1.1. If τ is an RM point of discriminant D0p
n, where D0 is prime to p, then τ

reduces to a point of T at distance n/2 from v0. In particular:

(1) If n = 2m is even, then τ reduces to a vertex of T , and belongs to one of the affinoids
in H≤mp −H<mp .

(2) If n = 2m+ 1 is odd, then τ reduces to the midpoint of an edge of T , and belongs to
one of the annuli in H<m+1

p −H≤mp .

Proof. Let Ax2 +Bxy +Cy2 be the primitive integral binary quadratic form of discriminant
D = D0p

n having τ as a root. Let $ be an element of OCp of normalised p-adic valuation n/2.

The natural image of τ = −B+
√
D

2A in P1(OCp/$) agrees with the image of [−B : 2A] ∈ P1(Qp)
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under the natural composition

P1(Qp) ↪→ P1(Cp) = P1(OCp) −→ P1(OCp/$),

while its image in P1(OCp/$p
ε) for any ε > 0 does not lie in the image of P1(Qp). The

proposition follows. �

1.2. Modular symbols. The parabolic cohomology of Γ with values in a GL2(Qp)-module
Ω admits a concrete description in terms of Γ-invariant modular symbols, which will also
provide a natural bridge between rigid meromorphic cocycles and the rigid meromorphic
period functions evoked in the introduction.

The action of Γ on Ω shall be written (both on the right and on the left according to
convenience) as

(m, γ) 7→ m|γ, (γ,m) 7→ γm := m|γ−1, m ∈ Ω, γ ∈ Γ.

Definition 1.2. An Ω-valued modular symbol is a function

m : P1(Q)× P1(Q) −→ Ω,

satisfying

m{r, s} = −m{s, r}, m{r, s}+m{s, t} = m{r, t} for all r, s, t ∈ P1(Q).

The space of Ω-valued modular symbols is denoted MS(Ω). It is endowed with a natural
action of PGL2(Q) by the rule

(m|γ){r, s} := (m{γr, γs}) |γ.

The space of Γ-invariant modular symbols, denoted

MSΓ(Ω) := H0(Γ,MS(Ω)),

is the set of modular symbols satisfying the Γ-invariance property

m{γr, γs} = m{r, s}|γ−1 = γm{r, s}, for all γ ∈ Γ.

It is equipped with the usual action of the Hecke operators Tn (for (n, p) = 1) defined in terms
of the double coset

Γ

(
n 0
0 1

)
Γ = tjΓγj

by setting

(m|Tn) =
∑
j

(m|γj).

The normaliser of Γ in PGL2(Q) is the group PGL2(Z[1/p]), and the determinant induces an
isomorphism

det : PGL2(Z[1/p])/Γ −→ Z[1/p]×/(Z[1/p]×)2 = {1,−1, p,−p} ' Z/2Z× Z/2Z.

The elements w∞ and wp associated to classes of matrices of determinant−1 and p respectively

generate this quotient, and give rise to involutions on MSΓ(Ω) by the rules

(8) (m|w∞){r, s} := (m{w∞r, w∞s}) |w∞, (m|wp){r, s} := (m{wpr, wps}) |wp.

A Γ-invariant modular symbol which is in the +1 (resp. −1) eigenspace for the involution w∞
is said to be even (resp. odd). Likewise, it is said to be p-even (resp. p-odd) if it is in the +1
(resp. −1) eigenspace for the involution wp.

The following lemma relates Γ-invariant modular symbols to the corresponding parabolic
cohomology groups.
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Lemma 1.3. There is a natural exact sequence

(9) 0 −→ ΩΓ −→ ΩΓ∞ −→ MSΓ(Ω) −→ H1(Γ,Ω) −→ H1(Γ∞,Ω).

In particular, there is a canonical Hecke-equivariant surjection δ : MSΓ(Ω) −→ H1
par(Γ,Ω)

which is an isomorphism when ΩΓ = ΩΓ∞.

Proof. Let F(P1(Q),Ω) be the Γ-module of Ω-valued functions on P1(Q), equipped with the
natural Γ-action arising from the action of Γ on P1(Q) by Möbius transformations. It fits into
the exact sequence of Z[Γ]-modules

(10) 0 −→ Ω −→ F(P1(Q),Ω)
d−→ MS(Ω) −→ 0,

where df{r, s} := f(s) − f(r). The lemma follows from taking the long exact Γ-cohomology
sequence associated to this short exact sequence and invoking Shapiro’s Lemma to identify
Hi(Γ,F(P1(Q),Ω)) with Hi(Γ∞,Ω). �

The cohomology class Φ := δ(Φ0) associated to Φ0 ∈ MSΓ(Ω) is defined by choosing a base
point r ∈ P1(Q) and setting

Φ(γ) = Φ0{r, γr}.
The parabolic representative of Φ which vanishes on Γ∞ is obtained by choosing r = ∞ in
this assignment.

Let

(11) S =

(
0 1
−1 0

)
, U =

(
0 1
−1 1

)
, D =

(
p 0
0 1/p

)
denote the standard matrices in Γ satisfying S2 = U3 = −1. Given m ∈ MSΓ(Ω), the element
ω := m{0,∞} ∈ Ω satisfies the so-called two and three-term relations

(12) ω + Sω = 0, ω + Uω + U2ω = 0,

which follow from the modular symbol relations

m{0,∞}+m{∞, 0} = 0, m{0,∞}+m{∞, 1}+m{1, 0} = 0

after noting that S interchanges 0 and ∞ while U induces the cyclic permutation (0 1 ∞) on
these three elements of P1(Q). Let Ω† ⊂ Ω be the set of elements satisfying (12).

The proposition below is a well known assertion about the cohomology of SL2(Z).

Proposition 1.4. The assigment m 7→ m{0,∞} identifies MSSL2(Z)(Ω) with Ω†.

Proof. A pair of elements (a/b, c/d) of P1(Q) (expressed in lowest terms, with the convention
that ∞ = 1/0) is said to be unimodular if ad − bc = ±1. The fact that any two elements
of P1(Q) can be inserted into a unimodular sequence, in which all consecutive terms form
unimodular pairs, implies that a modular symbol is completely determined by its values on
such pairs. The injectivity of the assignment m 7→ m{0,∞} then follows from the fact that
SL2(Z) acts transitively on the set of unimodular pairs. To prove surjectivity, observe that
any ω ∈ Ω† determines a well-defined function m on the set of unimodular pairs by setting

m
{a
b
,
c

d

}
:=

(
c a
d b

)
ω,

where (a/b, c/d) have been adjusted so that the matrix appearing on the right belongs to
SL2(Z). If r and s are arbitrary elements of P1(Q), the unimodular sequences joining r and
s are far from unique, but the theory of Farey sequences implies that any two unimodular
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sequences admit a common refinement, where a refinement is obtained by making a finite
number of replacements of the form

a

b
,
c

d
,
−a
−b

 
a

b
,

a

b
,
c

d
 

a

b
,
a+ c

b+ d
,
c

d
.

The two and three-term relations satisfied by ω imply that

m
{a
b
,
c

d

}
+m

{ c
d
,
a

b

}
= 0, m

{a
b
,
c

d

}
= m

{
a

b
,
a+ c

b+ d

}
+m

{
a+ c

b+ d
,
c

d

}
,

for all unimodular pairs (a/b, c/d). It follows that m extends uniquely to an SL2(Z)-invariant

Ω-valued modular symbol, and hence that the map MSSL2(Z)(Ω)→ Ω† is surjective. Proposi-
tion 1.4 follows. �

Let Ω‡ ⊂ Ω† denote the image of the group MSΓ(Ω) under the assignment m 7→ m{0,∞}.

Lemma 1.5. If ω belongs to Ω†, then ω satisfies the two and three term relations in (12)
along with the further relation

(13) Dω = ω.

Proof. This follows directly from the fact that both 0 and∞ are fixed by the diagonal matrices.
�

Remark 1.6. The equation (13) does not characterise Ω‡: in general, its elements may need to
satisfy further relations, which are less simple to write down explicitly and whose complexity
presumably grows as a function of p.

1.3. Basic definitions. For all k ≥ 0, the continuous weight k action (cf. [ST, Section 1]) of
the group Γ := SL2(Z[1/p]) on O and on M is given by

(14) (f |kγ)(τ) := (γ−1 ·
k
f)(τ) := (cτ + d)−k f

(
aτ + b

cτ + d

)
, where γ :=

(
a b
c d

)
.

The underlying addditive groups of O andM endowed with this weight k action are denoted
Ok and Mk respectively, with the convention that O and M will be used to denote O0 and
M0 respectively.

The following is the additive counterpart of Definition 1 of the Introduction:

Definition 1.7. A rigid meromorphic (resp. analytic) cocycle of weight k ≥ 0 is a class in
H1

par(Γ,Mk) (resp. in H1
par(Γ,Ok)).

Remark 1.8. The multiplicative group H1(Γ,M×) should not be confused with the vector
space H1(Γ,M). Although elements of the latter can be evaluated at RM points just as well
as their multiplicative counterparts, it will be shown later (cf. Prop. 2.14) that

H1
par(Γ,M) = 0,

and hence no interesting class invariants for real quadratic fields are to be extracted from the
additive theory.

Of greatest importance for our study are the rigid meromorphic cocycles of weight two,
which are related to rigid meromorphic cocycles via the map

dlog : H1
f (Γ,M×) −→ H1

par(Γ,M2)

arising from the logarithmic derivative

dlog :M× −→M2, dlog(g) = g′/g,
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which is compatible with the Γ-actions on source and target and therefore induces a map on
the associated parabolic cohomology groups. The first step in classifying rigid meromorphic
cocycles will be to do the same for their additive, weight two counterparts, with the advantage
that the latter are endowed with a natural Cp-linear structure.

Let us first specialise the discussion of the previous section on modular symbols to the
setting where Ω =M× or Mk for k ≥ 0.

Lemma 1.9. The Γ∞-invariants of M× and Mk are given by

H0(Γ∞,M×) = C×p , H0(Γ∞,Mk) =

{
Cp if k = 0;
0 if k > 0.

Proof. This follows from the Weierstrass preparation theorem: any translation invariant rigid
analytic function must be constant on the standard affinoid and hence everywhere by analytic
continuation. �

Corollary 1.10. For all k ≥ 0, the map δ of Lemma 1.3 induces isomorphisms

(15) MSΓ(M×)
∼−→ H1

par(Γ,M×), MSΓ(Mk)
∼−→ H1

par(Γ,Mk).

Proof. Lemma 1.9 implies that

H0(Γ,M×) = H0(Γ∞,M×), H0(Γ,Mk) = H0(Γ∞,Mk),

and the corollary follows from Lemma 1.3. �

Corollary 1.10 allows us to work with elements of MSΓ(Mk) in studying rigid meromor-
phic cocycles of weight k, with the advantage that many arguments tend to become more
transparent when couched in the language of modular symbols.

Recall the multiplicative group R× ⊂ M× of rigid meromorphic period functions given
after Definition 2 of the introduction, which is identified with MSΓ(M×) via the assignment
J 7→ J{0,∞}. The following is the additive counterpart of Definition 2:

Definition 1.11. A rigid meromorphic period function of weight k is the value at S of the
parabolic representative of a rigid meromorphic cocycle of weight k.

Let Rk denote the Cp-vector space of rigid meromorphic period functions of weight k. The

assignment Φ 7→ ϕ := Φ{0,∞} identifies MSΓ(Mk) with Rk. Just as in the multiplicative
setting, one has:

Lemma 1.12. A function ϕ ∈ Rk satisfies the two and three term relations

ϕ

(
−1

z

)
= −zkϕ(z), ϕ(z) + z−kϕ

(
z − 1

z

)
+ (z − 1)−kϕ

(
−1

z − 1

)
= 0,

as well as the further linear relation

ϕ(p2z) = p−kϕ(z).

In conclusion, we have obtained canonical maps

H1
par(Γ,M×) = MSΓ(M×) ⊂ R×, H1

par(Γ,Mk) = MSΓ(Mk) = Rk.
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1.4. Prelude: rational cocycles and period functions. The classification of rigid mero-
morphic cocycles and rigid meromorphic period functions of weight two which will be described
in the next section parallels closely – and its proof is strongly inspired by – the classification
of so called rational modular cocycles and their associated rational period functions that were
introduced by Marvin Knopp and arise, notably, in the work of Knopp [Kn], Ash [Ash] ,
Choie–Zagier [CZ], and Duke–Imamoglu–Toth [DIT].

Let C be an algebraically closed field of characteristic 0, and letMrat
k denote the C-vector

space of rational functions on P1(C), endowed with the weight k action of SL2(Z) as defined
in (14) above.

Definition 1.13. A rational modular cocycle of weight k is a class in H1
par(SL2(Z),Mrat

k ). A

rational period function of weight k is an element of (Mrat
k )†, i.e., a rational function φ ∈Mrat

k

satisfying the two and three term relations

φ

(
−1

z

)
= −zkφ(z), φ(z) + z−kφ

(
z − 1

z

)
+ (z − 1)−kφ

(
−1

z − 1

)
= 0, for all z ∈ C.

Proposition 1.4 shows that the assignment Φ 7→ φ := Φ{0,∞} identifies MSSL2(Z)(Mrat
k )

with the space of rational period functions of weight k.
We now focus on the case k = 2, where the assignment r(z) 7→ r(z)dz identifies Mrat

2

with the space Ω1
rat of rational differentials on P1/C . We will henceforth view rational period

functions of weight two interchangeably as elements of Ω1
rat or as functions on Hp endowed

with the weight two Γ-action.
We begin by giving some examples of rational period functions of weight two.

Lemma 1.14. The function φ◦∞(z) := 1
z is a rational period function of weight two.

Proof. Consider the function

Φ◦∞ : P1(Q)× P1(Q) −→ Ω1
rat

given by
Φ◦∞{r, s} := ω{r, s},

where ω{r, s} is the unique rational differential with poles concentrated at r and s and residues
1 and −1 respectively at these points. The fact that Φ◦∞ is an SL2(Z)-invariant modular
symbol follows directly from this description. For instance, its SL2(Z) invariance can be seen
from the calculation

Φ◦∞{γr, γs} = ω{γr, γs} = γω{r, s},
the last equality following from the fact that both differentials have the same poles and
residues. The lemma follows after noting that

Φ◦∞{0,∞} =
dz

z
= φ◦∞(z)dz.

�

To construct more interesting examples, let τ be any real quadratic irrationality in R,
and let Fτ (x, y) be the primitive integral binary quadratic form for which F (τ, 1) = 0. The
SL2(Z)-orbit of τ is dense in R, but the subset

(16) Σ◦τ := {w ∈ SL2(Z) · τ such that ww′ < 0}
is finite and non-empty. This is because its elements are the roots of F (z, 1) were F (x, y) =
Ax2+Bxy+Cy2 is a primitive integral quadratic form in the same class as Fτ (x, y), and hence
of a fixed positive discriminant, satisfying AC < 0, and the coefficients of such a quadratic
form are bounded in absolute value.
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The set Σ◦τ is endowed with a natural sign function δ∞ : Σ◦τ −→ ±1, which partitions
Σ◦τ into its subsets of positive and negative elements respectively. These sets are of equal
cardinality since they are interchanged by the involution z 7→ −1/z.

More generally, if r and s are elements of P1(Q), let γ(r, s) denote the geodesic on H̄ :=
H∪R∪{∞} joining r to s and oriented in the direction from r to s. The complement of this
geodesic in H̄ is partitioned into two disjoint connected subsets

H̄ − γ(r, s) := H+(r, s) ∪H−(r, s),

labelled with the convention that, as one is travelling along γ(r, s) in the direction from r to
s, the region H+(r, s) is to one’s right and the region H−(r, s) is to one’s left. If w ∈ SL2(Z) ·τ
is any real quadratic irrationality in the SL2(Z)-orbit of τ , we say that it is linked to γ(r, s)
if it and its algebraic conjugate w′ belong to distinct connected components of H̄ − γ(r, s),
and write Σ◦τ (r, s) ⊂ SL2(Z) · τ for the set of w which are linked to γ(r, s) in this way. The
set Σ◦τ (r, s) is endowed with the sign function δr,s defined by

(17) δr,s(w) =

{
1 if w ∈ H+(r, s),
−1 if w ∈ H−(r, s),

which partitions Σ◦τ (r, s) into its subsets of positive and negative elements respectively, and

Σ◦τ (0,∞) = Σ◦τ , δ0,∞ = δ∞.

Let Div(P1(C)) denote the free abelian group consisting of finite formal Z-linear combi-
nations of points of P1(C), let Div0(P1(C)) denote its subgroup of degree zero divisors, and
define

(18) ∆◦τ{r, s} :=
∑

w∈Σ◦τ (r,s)

δr,s(w)[w] ∈ Div(P1(C)).

Lemma 1.15. The function

∆◦τ : P1(Q)× P1(Q) −→ Div(P1(C)),

is an element of MSSL2(Z)(Div0(P1(C))).

Proof. To check the modular symbol property of ∆◦τ , observe that for all r, s, t ∈ P1(Q), the
element w ∈ SL2(Z)τ is linked to (r, t) if and only if it is linked to either (r, s) or to (s, t), but
not to both, and that, in the latter case,

δr,s(w) + δs,t(w) = 0.

The SL2(Z) equivariance

∆◦τ{γr, γs} = γ∆◦τ{r, s}

follows directly from the definitions. Finally, since an SL2(Z)-invariant modular symbol is
completely determined by its value on the unimodular pair (0,∞), all the divisors ∆◦τ{r, s}
inherit from ∆◦τ{0,∞} the property of being of degree zero. �

Lemma 1.16. The function

φ◦τ (z) :=
∑
w∈Σ◦τ

δ∞(w)
1

z − w

is a rational period function of weight two.
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Proof. Consider the function

Φ◦τ : P1(Q)× P1(Q) −→ Ω1
rat

given by

(19) Φ◦τ{r, s} :=
∑

w∈Σ◦τ (r,s)

δr,s(w)
dz

z − w
=: ω◦τ{r, s}.

The differential ω◦τ{r, s} is the unique rational differential on P1(C) whose residual divisor is

equal to ∆◦τ{r, s}. It follows from Lemma 1.15 that Φ◦τ defines an element of MSSL2(Z)(Ω1
rat).

Lemma 1.16 now follows from the fact that

φ◦τ (z)dz = Φ◦τ{0,∞}.
�

Lemmas 1.14 and 1.16 have exhibited an explicit collection of distinct rational period func-
tions φ◦τ of weight two, as τ ranges over the infinite index set

I = {∞} ∪ (SL2(Z)\CRM),

where CRM denotes the collection of real quadratic irrationalities in C. The following classifi-
cation of rational period functions of weight two, whose statement can be read off by setting
k = 1 in Theorem 1 of [CZ], asserts that the φ◦τ form a basis for the C-vector space of rational
period functions of weight two.

Theorem 1.17 (Knopp, Ash, Choie-Zagier). Any rational period function of weight two is a
finite linear combination of the functions φ◦∞ of Lemma 1.14 and φ◦τ of Lemma 1.16.

Since some of the steps of the proof will be used in our later classification of rigid mero-
morphic period functions, it is worth briefly recalling them here.

Let φ be any rational period function and let Σφ ⊂ C denote its set of poles. The two and
three term relations satisfied by φ imply that

(20) w ∈ Σφ ⇒ S(w) ∈ Σφ and U(w) ∈ Σφ or U2(w) ∈ Σφ.

Recall the sets Σ◦τ described in (16) for τ ∈ CRM, and set Σ◦∞ = {0,∞}.

Lemma 1.18. If Σφ is any finite subset of C satisfying (20), then the set Σφ is a finite union
of the sets of the form Σ◦τ with τ ranging over a finite subset Iφ ⊂ I.

Proof. This is just a restatement of Lemma 2 of [CZ], whose proof relies solely on the fact
that Σ satisfies (20). Although it is formulated as a statement about rational period functions
over C, the argument carries over to the more abstract setting where C is replaced by any
algebraically closed field C of characteristic zero, by fixing an embedding C −→ C. �

Concerning the behaviour of φ at its poles, one has the following:

Lemma 1.19. The differential φ(z)dz has only simple poles. Given any τ ∈ I for which
Σ◦τ ⊂ Σφ, there is a λτ ∈ C satisfying

reswφ(z)dz =

{
−λτ if w < 0,
λτ if w > 0,

for all w ∈ Σ◦τ .

Proof. The proof, which is described in Lemmas 4 and 5 of [CZ], exploits the invariance of the
principal part of φ at w under any non-trivial matrix of SL2(Z) which fixes w. More precisely,
consider the Laurent expansion φw(z) around z = w, and write

φw(z) = PPw(z) +O(1) = (z − w)−m +O
(
(z − w)−m+1

)
,
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where Pw(z) denotes the principal part of φ at w, a polynomial of some degree m ≥ 1 in
(z − w)−1 with no constant term. Let γ be a generator of the stabiliser of w in SL2(Z). It is
shown in Lemmas 4 and 5 of [CZ] that PPw|2γ = PPw, while

(φ|2γ)(z) = (rw + s)2−2m(z − w)−m +O
(
(z − w)−m+1

)
, where γ =

(
p q
r s

)
.

The quantity (rw + s) is a fundamental unit in an appropriate quadratic order of Q(w), and
is hence non-torsion in C×. It follows that 2 − 2m = 0, i.e., that m = 1 and therefore that
φ has at most simple poles. The two and three term relations satisfied by φ immediately
imply (in light of Lemma 1.20 below) that all of its residues are equal up to sign on any given
Σ◦τ , and the two term relation shows that the sign of the residue depends only on the sign of
w ∈ Σ◦τ . �

Proof of Theorem 1.17. Let φ be a rational period function. Write Σφ = ∪τ∈IφΣ◦τ , where Iφ
is the finite subset of I given in Lemma 1.18. Let (λτ )τ∈Iφ be the vector of scalars indexed
by τ ∈ Iφ determined by Lemma 1.19. The difference φ −

∑
τ∈Iφ λτφ

◦
τ is a rational function

without singularities, and hence is constant. It follows that

φ =
∑
τ∈Iφ

λτφ
◦
τ ,

since there are no constant rational period functions of weight two. The theorem follows.
We record the following closure property of the sets Σ◦τ refining (20):

Lemma 1.20. For all positive w ∈ Σ◦τ ,

(1) the negative element S(w) = −1/w also belongs to Σ◦τ ;

(2) the set {U(w), U2(w)} contains exactly one element w[ ∈ Σ◦τ , which is negative, and
given by

w[ =

{
U2(w) = w−1

w if 0 < w < 1;
U(w) = 1

1−w if w > 1.

Proof. The first statement is clear. For the second, observe that U cyclically permutes the
elements 0, 1, and∞ ∈ P1(R), and hence does the same to the open intervals (0, 1), (1,∞), and
(−∞, 0). It follows that, if (w′, w) belongs to (−∞, 0)× (0, 1), the translate U(w) has positive
norm while U2(w) is a negative element of Σ◦τ . Likewise, if (w′, w) belongs to (−∞, 0)×(1,∞),
the translate U2(w) has positive norm while U(w) is a negative element of Σ◦τ . �

1.5. Classification of rigid meromorphic cocycles of weight two. We will now adapt
the ideas of the previous section to classify elements of MSΓ(M2). Recall that the rigid
meromorphic period function ϕ := Φ{0,∞} attached to a rigid meromorphic cocycle Φ satisfies
the properties

(21) ϕ|(1 + S) = 0, ϕ|(1 + U + U2) = 0, ϕ|D = ϕ,

where the matrices S, U and D ∈ Γ are defined in (11). The matrix P ∈ GL2(Z[1/p]) defined
by

P :=

(
p 0
0 1

)
satisfies P 2 = D in PGL2(Z[1/p]) and induces an involution on the space of rigid meromorphic
period functions of weight two, defined by

$p(ϕ)(z) = −ϕ|P (z) = −pϕ(pz).
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(Note the presence of the minus sign in this definition.) A rigid meromorphic period function
is said to be p-even (resp. p-odd) if is satisfies

(22) $p(ϕ) = ϕ, (resp. $p(ϕ) = −ϕ).

As in the previous section, a rigid meromorphic period function of weight two shall be viewed
as an element of the space Ω1 of rigid meromorphic differentials on Hp, and a rigid meromor-

phic cocycle, as an element of MSΓ(Ω1).
We begin by constructing some basic examples of rigid meromorphic period functions of

weight two, modelled on the construction of the rational period functions φ◦τ of Lemma 1.16.
Let τ be any RM point in Hp, and fix an embedding of the real quadratic field Q(τ) into
R. Recall that the image of τ in T under the reduction map belongs either to T0 or is the
midpoint of an edge in T1. The Γ-orbit of τ is dense in Hp for the rigid analytic topology. As
in (16), consider the subset

(23) Στ := {w ∈ Γ · τ such that ww′ < 0}.

It is endowed with the sign function δ∞ defined as in Section 1.4. Other notations and
terminologies similar to those in Section 1.4 are also adopted. Notably, for each r, s ∈ P1(Q),
let Στ (r, s) ⊂ Γ · τ denote the set of w ∈ Γτ which are linked to γ(r, s) in the sense of that
section, and let δr,s denote the same sign function as in (17). Finally, imitating (18), we let

(24) ∆τ{r, s} :=
∑

w∈Στ (r,s)

δr,s(w)[w] ∈ Div(Hp).

The sum in this equation is to be viewed as an infinite formal sum of points in Hp, and
Div(Hp) simply denotes the Γ-module of such formal sums. For the same reason as in Lemma
1.15, the function ∆τ defines a Γ-invariant, Div(Hp)-valued modular symbol.

A subset of Hp is said to be discrete if its intersection with each affinoid subset of Hp is

finite. The module of divisors on Hp with discrete support is denoted Div†(Hp).

Lemma 1.21. For all r, s ∈ P1(Q), the sets Στ (r, s) are discrete. Furthermore, the finite in-
tersection Στ (r, s)∩Av contains equal numbers of positive and negative elements, and likewise
for Στ (r, s) ∩Wv.

Proof. Proposition 1.1 implies that the intersection Στ∩H
≤n
p is finite for all n ≥ 0, since it con-

sists of RM points that are roots of reduced binary quadratic forms of bounded discriminant.
Letting

∆v
τ{r, s} :=

∑
w∈Στ{r,s}∩Av

δr,s(w)[w], for v ∈ T0, r, s ∈ P1(Q),

it follows that ∆v
τ{0,∞} has finite support, for all v ∈ T0. The Γ-equivariance property

γ∆v
τ{0,∞} = ∆γv

τ {γ0, γ∞}

then implies that ∆v
τ{r, s} has finite support for all v ∈ T0 and all unimodular pairs (r, s)

of elements of P1(Q), since the group Γ acts transitively on the latter. But then the same
conclusion must hold for all pairs (r, s), by the additivity properties of modular symbols. The
discreteness of Στ (r, s) follows. To verify the second assertion in the lemma, consider the
functions

degAv , degWv
: Div†(Hp) −→ Z, degAv(∆) := deg(∆|Av), degWv

(∆) := deg(∆|Wv).

These functions are Γv := StabΓ(v)-equivariant and hence induce maps

degAv , degWv
: MSΓ(Div†(Hp)) −→ MSΓv(Z).
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Since Γv ' SL2(Z), there are no non-trivial Γv-invariant modular symbols, and hence, for all
v ∈ T0,

degAv(∆τ{r, s}) = deg(∆v
τ{r, s}) = 0.

The lemma follows since the degree of ∆v
τ{r, s} is precisely the difference between the number

of positive and negative elements in Στ (r, s)∩Av, and likewise when Av is replaced byWv. �

The following lemma is the natural extension of Lemma 1.16 to the setting of rigid mero-
morphic period functions:

Theorem 1.22. For any τ ∈ Γ\HRM
p , the infinite sum

ϕτ (z) :=
∑
w∈Στ

δ∞(w)
1

z − w

converges to a rigid meromorphic period function of weight two.

Proof. The infinite sum in the statement of the theorem is the limit as h −→∞ of the rational
functions

(25)
∑

w∈Σ
≤h
τ

δ∞(w)
1

z − w
, where Σ

≤h
τ := Στ ∩H

≤h
p .

Assume first for simplicity that τ , and hence all w ∈ Γτ , reduce to vertices of T . By Lemma
1.21, the functions in (25) are sums of terms of the form

1

z − w1
− 1

z − w2
,

where w1 and w2 belong to the same vertex affinoid Av, and v ∈ T0 is of distance N ≤ h from
v0. This term is regular on H≤np if N > n, and for z ∈ H≤np it satisfies the inequalities∣∣∣∣ 1

z − w1

∣∣∣∣ ≤ pn, ∣∣∣∣ 1

z − w2

∣∣∣∣ ≤ pn, ∣∣∣∣ 1

z − w1
− 1

z − w2

∣∣∣∣ ≤ p2n−N .

For all n ≥ 0, the restrictions of the rational functions in (25) to H≤np therefore form a Cauchy
sequence relative to the sup norm on this affinoid, and hence converge to a rigid meromorphic
function on Hp. By the same reasoning, the infinite sums

(26) Φτ{r, s} :=
∑

w∈Στ (r,s)

δr,s(w)
dz

z − w

converge to rigid meromorphic differentials on Hp, with residual divisor equal to ∆τ{r, s}. In
particular, the function

Φτ : P1(Q)× P1(Q) −→ Ω1

is an Ω1-valued modular symbols, just as in the proof of Lemma 1.16. Theorem 1.22 now
follows from the fact that

ϕτ (z) = Φτ{0,∞}.

To handle the case when τ (and hence all w in its Γ-orbit) reduce to midpoints of edges of T
rather than to vertices, which happens precisely when τ is defined over a real quadratic field
in which p is ramified, it suffices to replace the system of affinoids {Av}v∈T0 by the system of
wide open subsets {Wv}v∈T +

0
in the above argument. �
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Theorem 1.22 provides an explicit collection of rigid meromorphic period functions ϕτ of
weight two, as τ ranges over the infinite index set

I(p) = Γ\HRM
p .

These functions are linearly independent, since their residual divisors have disjoint support.
The following result extends Theorem 1.17 to the rigid meromorphic setting:

Theorem 1.23. Any rigid meromorphic period function of weight two is a finite linear com-
bination of the functions ϕτ of Theorem 1.22 and of a rigid analytic period function of weight
two.

Proof. Let ϕ be a rigid meromorphic period function of weight two. Any such ϕ can be
written as the average of ϕ+ := ϕ+$p(ϕ) and ϕ− := ϕ−$p(ϕ), which are p-even and p-odd
respectively. Hence we may assume without loss of generality that ϕ satisfies (22), and even,
for the sake of definiteness, that it is p-even, since the case where it is p-odd will be disposed
of by the same argument. Let Σϕ ⊂ Hp be the set of poles of ϕ. While the invariance of ϕ
under the matrix D shows that Σϕ is either empty or infinite, the intersection

Σ
<1

ϕ := Σϕ ∩H
<1

p

is finite, since a rigid differential on Hp has finitely many poles when restricted to any affinoid.
Since H<1

p is preserved by the action of SL2(Z), the two and three term relations satisfied by

ϕ imply that the set Σ<1

ϕ satisfies the closure properties of (20). It follows from Lemma 1.18
that

Σ
<1

ϕ = ∪τ∈IϕΣ◦τ ,

where

Iϕ ⊂ SL2(Z)\(HRM
p ∩H<1

p )

is a finite set, and Σ◦τ is defined as in (16), but is now being viewed as a subset of Hp. Lemma
1.19, whose proof applies just as well, mutatis mutandis, to the setting where ϕ is a rigid
meromorphic period function, shows that ϕ has only simple poles on H<1

p , and that for each
τ ∈ Iϕ, there is a λτ ∈ Cp satisfying

reswϕ(z)dz =

{
λτ if w > 0
−λτ if w < 0,

for all w ∈ Στ .

The difference

ϕ−
∑
τ∈Iϕ

λτϕ
+
τ

is a p-even rigid meromorphic period function having no singularities in H<1

p . Theorem 1.23
now follows from Proposition 1.24 below. �

Proposition 1.24. Let ϕ be any rigid meromorphic period function of weight two. Assume
that it satisfies (22), i.e., that it is either p-odd or p-even. If ϕ is regular on H<1

p , then it is
regular everywhere.

Proof. Suppose that ϕ has a pole at τ ∈ Hp, and hence at all w ∈ Σ◦τ . Since τ does not belong
to H<1

p , Proposition 1.1 implies that it is an RM point of discriminant D0p
n with n ≥ 2 and

p - D0. Let

D =

{
D0 if n is even,
D0p if n is odd .

m = [n/2] ≥ 1.

The set Σ◦τ then contains an element of the form pmw0, where w0 is an RM point in Hp of
discriminant D. The invariance property (22) of ϕ shows that ϕ is singular at w0 as well.
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But w0 belongs to H<1

p by Proposition 1.1, contradicting the regularity assumption that was
made on ϕ. �

Theorem 1.23 classifies the rigid meromorphic period functions only up to rigid analytic
period functions of weight two. The latter will be classified in turn in Chapter 2.

The following describes the action of the Hecke operators on the cocycles Φτ :

Lemma 1.25. If ` is a prime not dividing p or the discriminant D of τ ∈ HRM
p , then T`(Φτ )

is a linear combination of cocycles of the form Φτ ′ where τ ′ is of discriminant D or D`2, and
involves at least one Φτ ′ in which τ ′ is of discriminant D`2.

The proof of this lemma is by a direct calculation, and proceeds along the same lines as
in [Ge], where the argument is explained in the setting of rational period functions. As in
loc. cit., Lemma 1.25 has the following important corollary when combined with Theorem
1.23:

Corollary 1.26. Any finite-dimensional subspace of MSΓ(M2) which is stable under the
Hecke operators is contained in MSΓ(O2). In particular, if θ is a non-zero Hecke operator and
Φ ∈MSΓ(M2) belongs to the kernel of θ, then Φ belongs to MSΓ(O2).

For future reference, it is also worth recording the following corollary of the fact that rigid
meromorphic period functions of weight two have at worst simple poles:

Corollary 1.27. Any rigid meromorphic modular cocycle of weight zero is analytic, i.e., the
natural inclusion MSΓ(O) −→ MSΓ(M) is an isomorphism.

Proof. The image of the derivative d : M −→ M2 consists of rigid meromorphic functions
with vanishing residues, and the image of the induced map

d : MSΓ(M) −→ MSΓ(M2)

on Γ-invariant modular symbols is therefore contained in MSΓ(O2). It follows that any M-
valued Γ-invariant modular symbol is necessarily O-valued, as claimed. �

2. Analytic cocycles of weight two

This chapter completes Theorem 1.23 of Chapter 1 by describing the space of rigid analytic
cocycles of weight two. The main result is Theorem 2.12 of Section 2.5, which shows that
H1

par(Γ,O2) is finite dimensional and closely related to the space of classical modular forms
of weight two for the Hecke congruence group Γ0(p). The techniques used to prove this
theorem differ markedly from those of the previous chapter, relying heavily on ideas of Stevens
and Schneider-Teitelbaum. The reader with a single minded interest in the applications of
rigid meromorphic cocycles to explicit class field theory may elect to skip this chapter on a
first reading, since none of the material it contains is required to understand the subsequent
chapters.

2.1. Rigid analytic functions and boundary distributions. The classification of ele-
ments of MSΓ(Ok) = H1

par(Γ,Ok) rests on the fact that Ok is isomorphic to a space of locally
analytic distributions on the boundary P1(Qp) of Hp. Assume henceforth that k = 2 for
simplicity, although the results described below can certainly be extended to more general
positive even weights.
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The dual of the space of locally analytic functions on P1(Qp), equipped with the strong
topology of uniform convergence on compact open subsets, is called the space of locally analytic
distributions on P1(Qp), and is denoted D(P1(Qp)). Given µ ∈ D(P1(Qp)), the notation

µ(h) =:

∫
P1(Qp)

h(t)dµ(t)

shall be adopted. More generally, if U is a compact open subset of P1(Qp) and 1U is its
characteristic function, we define∫

U
h(t)dµ(t) :=

∫
P1(Qp)

1U (t)h(t)dµ(t).

A distribution µ ∈ D(P1(Qp)) satisfying µ(1) = 0, where 1 denotes the constant function 1 on
P1(Qp), is said to be of total volume zero, and the space of such locally analytic distributions
is denoted D0(P1(Qp)).

The group PGL2(Qp) acts naturally on D(P1(Qp)) and on D0(P1(Qp)) via the weight zero
action on locally analytic functions on P1(Qp), defined as in (14). More precisely,∫

P1(Qp)
h(t)d(µ|γ)(t) =

∫
P1(Qp)

h(γt)dµ(t), where γt :=
at+ b

ct+ d
.

To any rigid analytic function f ∈ O2, we attach a locally analytic distribution µf on
P1(Qp) by setting, for all analytic functions h(t) on a compact open Ue ⊂ P1(Qp),∫

Ue

h(t)dµf (t) := rese(f(z)h(z)dz).

Here, rese denotes the p-adic annular residue along the oriented annulusWe. The distribution
µf is called the boundary distribution attached to f . It is a direct consequence of the residue
theorem that µf belongs to D0(P1(Qp)).

Proposition 2.1. The map f 7→ µf induces a topological isomorphism

BD : O2
∼−→ D0(P1(Qp)),

which is compatible with the PGL2(Qp)-actions on both sides.

Proof. Setting k = 2 in the statement of Theorem 2.2.1 of [DT], the dual of the map denoted
I2 in loc.cit. induces an isomorphism

D0(P1(Qp)) −→ O2,

in light of the fact that O2 is a reflexive Frechet space and hence is identified with its double
dual. The “boundary distribution map” BD is just the inverse of this isomorphism. �

The map BD induces an isomorphism on the parabolic cohomology groups, denoted by the
same symbol by a slight abuse of notation:

(27) BD : MSΓ(O2)
∼−→ MSΓ(D0(P1(Qp))).

This reduces the problem of understanding MSΓ(O2) to that of classifying the Γ-invariant
modular symbols with values in D0(P1(Qp)). An element µ of the latter is simply a collection
of distributions µ{r, s} on P1(Qp), indexed by elements r, s ∈ P1(Q), which satisfy the usual
modular symbol relations

µ{r, s} = −µ{s, r}, µ{r, s}+ µ{s, t} = µ{r, t},
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together with the equivariance property

(28)

∫
γB
h(t)dµ{r, s}(t) =

∫
B
h(γt)dµ{γ−1r, γ−1s}(t), for all γ ∈ Γ.

If µ is an eigensymbol for the involutions w∞ and wp defined in (8), then the invariance
property of (28) even holds for all γ ∈ PGL2(Z[1/p]), up to a sign which depends on the
determinant of γ and on the parity and the p-parity of µ:

(29)

∫
γB
h(t)dµ{r, s}(t) = ±

∫
B
h(γt)dµ{γ−1r, γ−1s}(t), for all γ ∈ PGL2(Z[1/p]).

2.2. Restriction to Zp. The compact open subset Zp ⊂ P1(Qp) is a ball whose stabiliser in
Γ is the usual congruence group Γ0(p). The restriction map D0(P1(Qp)) −→ D(Zp) to the
space of distributions on Zp therefore induces a map on modular symbols:

resZp : MSΓ(D0(P1(Qp))) −→ MSΓ0(p)(D(Zp)).

The target of this map is called the space of overconvergent modular symbols of weight two
and level p.

Lemma 2.2. The map resZp is injective.

Proof. The matrix ιp :=

(
0 −1
p 0

)
interchanges Zp and its complement Z′p := P1(Qp) − Zp,

and normalises Γ0(p). It therefore induces mutually inverse isomorphisms

MSΓ0(p)(D(Zp))
ιp←→ MSΓ0(p)(D(Z′p))

for which the diagram

MSΓ(D0(P1(Qp)))
wp //

resZp
��

MSΓ(D0(P1(Qp)))

resZ′p
��

MSΓ0(p)(D(Zp))
ιp // MSΓ0(p)(D(Z′p))

commutes. In particular, the involution wp interchanges the kernels of resZp and of resZ′p , and
it suffices to show that resZ′p is injective. If µ is in the kernel of resZ′p , then

(30) µ{r, s}|Z′p = 0, for all r, s ∈ P1(Q).

The domain P1(Qp) admits a decomposition as a disjoint union of p+ 1 open balls,

(31) P1(Qp) = B0 tB1 t · · · tBp−1 t Z′p,

where Bj ⊂ Zp is the mod p residue disc of −j. The group SL2(Z) acts transitively on the
collection {B0, B1, . . . ,Z′p}. Let γj ∈ SL2(Z) be a matrix satisfying Z′p = γjBj . Then for all
j = 0, . . . , p− 1, and for all r, s ∈ P1(Q),

µ{r, s}|Bj = µ{r, s}|γ−1
j Z′p

= (µ{γjr, γjs}|Z′p)|γj = 0,

where the last equality follows from (30). It now follows from (31) that µ{r, s} = 0 as a
distribution on P1(Qp), for all r, s ∈ P1(Q). The lemma follows. �

The space of overconvergent modular symbols is equipped with a Hecke operator Up, defined
explicitly by

(32)

∫
Zp
h(t)d(Upµ){r, s}(t) :=

p−1∑
j=0

∫
Zp
h(α−1

j t)dµ{αjr, αjs}(t), where αj =

(
1 j
0 p

)
.
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The space MSΓ(D0(P1(Qp)) decomposes as a direct sum

MSΓ(D0(P1(Qp)) = MSΓ(D0(P1(Qp))
+ ⊕MSΓ(D0(P1(Qp))

−,

where MSΓ(D0(P1(Qp))
ε denotes, for ε ∈ {+,−}, the ε-eigenspace for the action of the invo-

lution wp. Let MSΓ0(p)(D(Zp))Up=ε denote the space of overconvergent modular symbols on
which Up acts as multiplication by ε.

Proposition 2.3. The map resZp induces Hecke-equivariant inclusions

resZp : MSΓ(D0(P1(Qp))
ε ↪→ MSΓ0(p)(D(Zp))Up=ε.

Proof. For j = 0, 1, . . . , p − 1, let Bj ⊂ Zp denote, as in the proof of Lemma 2.2, the residue
class of −j modulo p, so that

Zp = B0 tB1 t · · · tBp−1, αjBj = Zp,

with αj as in (32). By the additivity of the distribution µ{r, s} ∈ D(Zp), we have, for any
locally analytic function h on Zp:∫

Zp
h(t)dµ{r, s}(t) =

p−1∑
j=0

∫
Bj

h(t)dµ{r, s}(t) =

p−1∑
j=0

∫
α−1
j Zp

h(t)dµ{r, s}(t)

= ε

p−1∑
j=0

∫
Zp
h(α−1

j t)dµ{αjr, αjs}(t),

where the last equality follow from (29) in light of the fact that the matrices αj ∈ PGL2(Z[1/p])
have determinant p. The proposition now follows from the definition of the Up operator given
in (32). �

Proposition 2.3 shows that Up preserves the image of resZp and that the minimal polynomial

of its restriction to this space divides x2 − 1. Composing the map BD of (27) with the
restriction map resZp thus gives an injection

(33) MSΓ(O2) ↪→ MSΓ0(p)(D(Zp))U
2
p=1.

2.3. Stevens’ control theorem. The “total measure” map D(Zp) −→ Cp which sends µ to
µ(1) induces a “weight two specialisation map”

(34) ρ : MSΓ0(p)(D(Zp)) −→ MSΓ0(p)(Cp),

which is compatible with the actions of the Hecke operators on both sides.

Theorem 2.4 (Stevens). The weight two specialisation map ρ induces an isomorphism

(35) ρ : MSΓ0(p)(D(Zp))U
2
p=1 −→ MSΓ0(p)(Cp).

Proof. The ordinary subspace of a Hecke module M is the direct summand of it on which the
Up operator acts with slope zero, and is denoted Mord. The control theorem for overconver-
gent modular symbols (cf. the case k = 0 of Theorem 1.1 of [PS]) asserts that ρ induces an
isomorphism

ρord : MSΓ0(p)(D(Zp))ord −→ MSΓ0(p)(Cp)ord.

But MSΓ0(p)(Cp) is isomorphic as a Hecke module to the direct sum of an “Eisenstein line”
with two copies of the space of modular forms of weight two on Γ0(p). Since all such modular
forms are new at p, it follows that U2

p acts as the identity on this space, and that

MSΓ0(p)(Cp)ord = MSΓ0(p)(Cp)U
2
p=1 = MSΓ0(p)(Cp).

The theorem follows. �
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Corollary 2.5. The map

η := ρ ◦ resZp ◦ BD : MSΓ(O2) ↪→ MSΓ0(p)(Cp)

is injective.

Proof. This follows from Propositions 2.1 and 2.3 combined with Theorem 2.4. �

Our goal in the remainder of this chapter is to show that the map η is surjective as well.

2.4. The residue map. Let Ω be a Γ-module.

Definition 2.6. A function c : T ∗1 −→ Ω is said to be harmonic if it satisfies

c(ē) = −c(e), for all e ∈ T ∗1 , and
∑
s(e)=v

c(e) = 0, for all v ∈ T0.

The space of harmonic functions on T ∗1 with values in Ω is denoted Char(Ω). The action
of Γ on T induces a natural right action of Γ on the space Char(Ω). In what follows we will
be primarily interested in the case where Ω = Z or a bounded subgroup of Cp, equipped with
the trivial action of Γ.

Remark 2.7. Elsewhere in the literature (e.g., in [Te]) it is cusomary to refer to harmonic
functions as harmonic cocycles. Since the noun “cocycle” already being used in its more
standard form in this article, a more transparent terminology was chosen for Definition 2.6.

One can associate to any f ∈ O2 a harmonic function cf ∈ Char(Cp) by the rule

cf (e) = ∂ef(z)dz, for e ∈ T ∗1 ,
where

∂e : O(We) −→ Cp
is the p-adic annular residue on the space of rigid differentials on the oriented annulus We.
The PGL2(Qp)-equivariant map

∂ : O2 −→ Char(Cp)

sending f to cf is called the residue map. The same notation and terminology is used to
describe the induced map

(36) ∂ : MSΓ(O2) −→ MSΓ(Char(Cp))

on modular symbols. Let e0 denote the standard edge of T ∗, whose stabiliser is Γ0(p) and
whose associated open ball in P1(Qp) is Zp. The evaluation at e0

eve0 : Char(Cp) −→ Cp
is Γ0(p)-equivariant, and hence induces a map

(37) eve0 : MSΓ(Char(Cp)) −→ MSΓ0(p)(Cp).

Our strategy to show the surjectivity of η will be to prove the surjectivity of the maps eve0
and ∂ that fit into the following commutative diagram:

(38) MSΓ(O2)
∂ //

BD
��

q�

η

""

MSΓ(Char(Cp))

eve0

��

MSΓ(D0(P1(Qp)))

resZp
��

MSΓ0(p)(D(Zp))
ρ // MSΓ0(p)(Cp).
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The surjectivity of eve0 is elementary:

Lemma 2.8. The map eve0 : MSΓ(Char(Cp)) −→ MSΓ0(p)(Cp) is an isomorphism.

Proof. The injectivity of eve0 follows from much the same argument as in the proof of the
injectivity of the map resZp given in Lemma 2.2. Namely, an element c of its kernel satisfies

c{r, s}(e0) = 0 for all r, s ∈ P1(Q).

Since Γ acts transitively on T +
1 , it then follows from the Γ-equivariance of c that c{r, s}(e) = 0

for all e ∈ T +
1 , and hence, for all e ∈ T ∗1 by the harmonicity of c{r, s}. To check surjectivity,

given c0 ∈ MSΓ0(p)(Cp), define c ∈ MSΓ(Cp) by setting, for all e = γ−1e0 ∈ T +
1 ,

c{r, s}(e) := c0{γr, γs} for all r, s ∈ P1(Q).

Although γ is only well-defined up to left multiplication by elements of Γ0(p), the Γ0(p)-
invariance of c0 ensures that the value of c{r, s}(e) does not depend on the choice of γ, and
one checks directly that eve0(c) = c0. �

2.5. The Schneider–Teitelbaum transform. We now show that the residue map ∂ in (36)
is surjective. The main ingredient for achieving this is the integral “p-adic Poisson transform”
of Schneider and Teitelbaum which allows one to recover certain elements of O2 from their
associated boundary distributions.

Let Cbhar(Cp) ⊂ Char(Cp) denote the subspace of bounded harmonic functions, i.e., those

whose values lie in a bounded subset of Cp. A element c ∈ Cbhar(Cp) can be parlayed into a
bounded linear functional µc on the space of locally constant functions on P1(Qp), by setting∫

Ue

1dµc := c(e).

The boundedness of µc implies that it extends uniquely to a measure on P1(Qp), i.e., a
continuous functional on the space of continuous functions on P1(Qp) endowed with the sup
norm. This extension exploits the fact that every continuous function h(t) on P1(Qp) is a
uniform limit of locally constant functions to express

∫
P1(Qp) h(t)dµc(t) as a limit of (finite)

Riemann sums.

Proposition 2.9 (Schneider, Teitelbaum). There is a unique Γ-equivariant splitting of the
residue map ∂ on Cbhar(Cp), i.e., a map ST : Cbhar(Cp) −→ O2 for which the diagram

(39)
O2 Char(Cp)

Cbhar(Cp)

0

⊂

∂

ST

commutes.

Proof. The map ST is constructed by integrating a “Poisson kernel” against this measure, as
in [Te], namely, one sets

(40) ST(c)(z) =

∫
P1(Qp)

1

z − t
dµc(t), for all z ∈ Hp.

See [Te] for more details. �

Lemma 2.10. The natural inclusion MSΓ(Cbhar(Cp)) ↪→ MSΓ(Char(Cp)) is an isomorphism.
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Proof. Given c ∈ MSΓ(Char(Cp)), consider its image in H1(Γ0(p),Cp) under the map eve0 .
Since Γ0(p) is finitely generated, there is a bounded subset Ω ⊂ Cp for which eve0(c) ∈
H1(Γ0(p),Ω). But then the commutativity of the diagram

MSΓ(Char(Ω))
eve0 //

� _

��

MSΓ0(p)(Ω)� _

��

MSΓ(Char(Cp))
eve0 // MSΓ0(p)(Cp),

in which the horizontal arrows are isomorphisms by Lemma 2.8, implies that c belongs to
MSΓ(Char(Ω)) ⊂ MSΓ(Char(Cp)). �

Corollary 2.11. The residue map

∂ : MSΓ(O2) −→ MSΓ(Char(Cp))

of (36) is an isomorphism.

Proof. The injectivity of ∂ is apparent from the fact that the injective map η in the com-
mutative diagram (38) factors through it. Given c ∈ MSΓ(Char(Cp)), the harmonic functions

c{r, s} belong to Cbhar(Cp) for all r, s ∈ P1(Q), by Lemma 2.10. We may therefore set

f{r, s} := ST(c{r, s}) ∈ O2.

The assignment (r, s) 7→ f{r, s} is an element of MSΓ(O2) satisfying ∂(f) = c, and the result
follows. �

Theorem 2.12. The map η of (38) gives a Hecke-equivariant isomorphism

η : MSΓ(O2)
∼−→ MSΓ0(p)(Cp).

Proof. This follows immediately from Lemma 2.8 and Corollary 2.11. �

Definition 2.13. The inverse of the isomorphism η, denoted

LST : MSΓ0(p)(Cp)
∼−→ MSΓ(O2)

is called the Schneider–Teitelbaum lift.

We close this section by recording the following consequence of the injectivity of the residue
map on MSΓ(O2):

Proposition 2.14. The spaces MSΓ(O) and MSΓ(M) of rigid analytic and meromorphic
cocycles of weight zero are trivial.

Proof. The image of the map d : MSΓ(O) −→ MSΓ(O2) consists of modular symbols with
values in the exact rigid differentials, which have trivial residues, and hence this image is
contained in the kernel of the residue map ∂. Since Corollary 2.11 asserts that ∂ is injective,
it follows that, for all f ∈ MSΓ(O) and for all r, s ∈ P1(Q), the function f{r, s} is a constant,
and hence that f belongs to MSΓ(Cp), which is trivial. The triviality of MSΓ(O) follows, and

that of MSΓ(M) is then a consequence of Corollary 1.27. �
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2.6. The universal cocycle. There are precisely two conjugacy classes of parabolic sub-
groups of Γ0(p), the group P∞ consisting of the upper triangular matrices, which stabilise the
cusp ∞, and the group P0 consisting of lower triangular matrices, which stabilise the cusp
0. The Γ0(p)-module F(P1(Q),Cp) therefore decomposes as a direct sum of the two induced
modules

F(P1(Q),Cp) = Ind
Γ0(p)
P∞

Cp ⊕ Ind
Γ0(p)
P0

Cp,
and the Γ0(p)-cohomology of the exact sequence (10) with Ω = Cp leads to a short exact
sequence

(41) 0 −→ Cp −→ MSΓ0(p) −→ H1
par(Γ0(p),Cp) −→ 0.

The one-dimensional kernel of the penultimate arrow in this sequence is spanned by the
modular symbol muniv defined by

(42) muniv{r, s} =


1 if r ∼ 0 and s ∼ ∞,
−1 if r ∼ ∞ and s ∼ 0,

0 otherwise,

where r ∼ s means that r, s ∈ P1(Q) are Γ0(p)-equivalent. We now proceed to describe the
the Schneider-Teitelbaum lift of muniv.

Given r, s ∈ Q, consider the function

(43) funiv{r, s}(z) := dlog

(
z − s
z − r

)
=

dz

z − s
− dz

z − r
∈ O2,

extending its definition to r, s ∈ P1(Q) by adopting the conventions z−∞ := 1 and dz
z−∞ := 0.

Lemma 2.15. The rule funiv sending (r, s) to funiv{r, s} is an element of MSΓ(O2).

Proof. The function

(44) (r, s) 7→ f×univ{r, s} :=

(
z − s
z − r

)
,

where the right hand side is viewed as an element of O×/C×p , clearly satisfies the modular

symbol properties, since f×univ{r, s} is characterised as the unique rational function (up to
scaling) whose divisor is (s) − (r). Furthermore, for all γ ∈ GL2(Qp), the rational functions
f×univ{γr, γs}(γz) and f×univ{r, s}(z) have the same divisor, and hence are equal (up to a mul-

tiplicative constant). It follows that f×univ can be viewed as an element of MSΓ(O×/C×p ), and

therefore that its logarithmic derivative funiv is an element of MSΓ(O2). �

The rigid analytic modular symbol funiv is called the universal modular cocycle because it
arises from the restriction to Γ of a GL2(Qp)-invariant modular symbol.

Lemma 2.16. The class funiv is the Schneider-Teitelbaum lift of muniv, i.e,

η(funiv) = muniv.

Proof. The standard annulus

We0 = {z ∈ Cp such that 1 < |z| < p}
attached to the edge e0 divides P1(Cp) into two components, whose intersections with P1(Qp)
are Zp and Z′p respectively. Observe that r belongs to Z′p if and only if r ∼ ∞, and that r
belongs to Zp if and only if r ∼ 0. It follows that

∂We0
(funiv{r, s}) =

∑
t∈Z′p∩{r,s}

∂t(funiv{r, s}) =


1 if r ∼ 0 and s ∼ ∞,
−1 if r ∼ ∞ and s ∼ 0,

0 otherwise,
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The lemma follows from (42). �

Corollary 2.17. The Schneider-Teitelbaum lift induces an isomorphism

LST
par : H1

par(Γ0(p),Cp) −→ H1
par(Γ,O2)/Cpfuniv.

3. Multiplicative cocycles

This chapter focusses on the multiplicative theory, parlaying the understanding of the space
H1

par(Γ,M2) gained in the previous chapters into a description of H1
f (Γ,M×), which maps to

the former by the logarithmic derivative map

dlog : H1
f (Γ,M×) −→ H1

par(Γ,M2).

3.1. Prelude: rational multiplicative cocycles. The rational cocycle Φ◦τ of weight two
and its associated rational period function φ◦τ described in equation (19) of Section 1.4 have
natural multiplicative counterparts defined by

(45) J̄◦τ {r, s} :=
∏

w∈Σ◦τ (r,s)

(z − w)δr,s(w), ̄◦τ := J̄◦τ {0,∞} =
∏
w∈Σ◦τ

(z − w)δ∞(w).

These functions satisfy

dlog J̄◦τ {r, s} = Φ◦τ{r, s}, dlog ̄◦τ = φ◦τ ,

which characterise them up to multiplicative scalars. It follows that J̄◦τ can be viewed as an
SL2(Z)-invariant modular symbol with values in the quotient M×rat/C

×, where M×rat is the
multiplicative group of non-zero rational functions on P1(C). The obstruction to lifting J̄◦τ ∈
H1

par(SL2(Z),M×rat/C
×) to an element of H1

f (SL2(Z),M×rat)— i.e, a genuine multiplicative, but

not necessarily parabolic, cocycle—is trivial, since H2(SL2(Z), C×) = 1, while the ambiguity in
making this lift lies in H1(SL2(Z), C×) = hom(SL2(Z), µ12). Therefore one obtains a rational
multiplicative cocycle J◦τ ∈ H1

f (SL2(Z),M×rat) attached to any SL2(Z)-orbit of real quadratic
irrationalities, which is well-defined up to 12-torsion and satisfies

(46) J◦τ (γ) = J̄◦τ (γ) (mod C×).

Note that J◦τ is not just a cohomology class but a specific cocycle, characterised by the fact
that its values on the parabolic subgroup P∞ of upper triangular matrices in SL2(Z) are
constant functions.

It will be useful to have explicit formulae for J◦τ in terms of the rational period function
̄◦τ . The following lemma examines the extent to which the latter fails to satisfy the two and
three term relations:

Lemma 3.1. The function ̄◦τ satisfies

̄◦τ |(1 + S) = ±ξ2
τ ,

̄◦τ |(1 + U + U2) = ±ξ3
τ × ε3

τ ,
with ξτ :=

∏
w∈Σ◦τ , w>0

w,

where ετ is the unique fundamental unit of Oτ of norm 1 in the interval (0, 1).

Proof. We invoke Lemma 1.20 to write

̄◦τ (z) =
∏
w∈Σ◦τ

(z − w)δ∞(w) =
∏

w∈Σ◦τ , w>0

t(2)
w (z) =

∏
w∈Σ◦τ , w>0

t(3)
w (z),
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where the rational functions t
(2)
w and t

(3)
w are obtained by grouping together the factors that

are in the same orbits for the groups {1, S} and {1, U, U2} respectively, i.e.,

t(2)
w (z) =

z − w
z + 1/w

, t(3)
w (z) =

{
z−w

z−(w−1)/w if 0 < w < 1,
z−w

z−1/(1−w) if w > 1.

The functions t
(2)
w and t

(3)
w satisfy the two and three term relations, respectively, up to scalars.

More precisely, a direct if slightly tedious computation reveals that

t(2)
w |(1 + S) = −w2, t(3)

w |(1 + U + U2) =

{
−w3 if 0 < w < 1,
(w − 1)3 if w > 1.

It follows that

̄◦τ |(1 + S) = ± ξ2
τ , ̄◦τ |(1 + U + U2) = ± ξ3

τ ×
∏

0<w<1

w3 ×
∏

−1<w′<0

w−3,

where the two products above, and those in the next equation, are taken over the relevant
subsets of w ∈ Σ◦τ . The theory of cycles of reduced quadratic irrationalities implies, as
explained in [Za1, Section 6], that∏

0<w<1

w ×
∏

−1<w′<0

w−1 = ετ ,

where ετ is the unique norm 1 fundamental unit of Oτ in the interval (0, 1). �

Remark: The undetermined sign in the above statement could have been made explicit, but
since it only reflects a 2-torsion ambiguity in the multiplicative group, it plays an accessory
role in what follows, and there is little to be gained from being more precise.

Lemma 3.2. The cocycle J◦τ ∈ H1
f (SL2(Z),M×rat/± 1) is determined by the relations

J◦τ (S) = ξ−1
τ · ̄◦τ , J◦τ (U) = ξ−1

τ ε−1
τ · ̄◦τ .

Proof. The function J◦τ (S) is the unique scalar multiple (up to ±1) of ̄◦τ satisfying the two-
term relation, while J◦τ (U) is the unique scalar multiple (up to cube roots of unity) of that
same function satisfying the three term relation. The result follows directly from Lemma
3.1. �

The lift J◦τ need not be (and, in fact, never is, as we shall see) parabolic, but one does have:

Lemma 3.3. The parabolic class J̄◦τ ∈ H1
par(SL2(Z),M×rat/C

×) lifts to a class

Ĵ◦τ ∈ H1
par(SL2(Z),M×rat/ε

Z
τ ),

where ετ is a fundamental unit of norm one in the order Oτ .

Proof. Let Λτ ⊂ K := Q(τ) be a rank two projective Oτ -module attached to the class of τ
(for instance, the Z-module [τ, 1] spanned by τ and 1) and let Bτ denote the set of positive
Z-bases of Λτ , where a basis [ω1, ω2] is said to be positive if ω1ω

′
2−ω′1ω2 > 0. The assignment

[ω1, ω2] 7→ ω1/ω2 defines a surjective map

π : Bτ −→ SL2(Z)τ

which is compatible with the natural Γ-action on both sets, and whose fibers are principal
homogeneous spaces for the group εZτ . Given w ∈ Γτ , set

tw(z) = w2z − w1,



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 29

where [w1, w2] is any element of Bτ satisfying π([w1, w2]) = w. The function tw has divisor
(w) − (∞), and is well defined up to multiplication by elements of εZτ . It also satisfies the
pleasant transformation formula

(47) tγw(γz) = (cz + d)−1tw(z) (mod εZτ ), for all γ =

(
a b
c d

)
∈ SL2(Z).

One can use these distinguished functions with prescribed divisor to refine the function J̄◦τ {r, s}
of (45) by setting

(48) Ĵ◦τ {r, s} =
∏

w∈Σ◦τ (r,s)

tw(z)δr,s(w) (mod εZτ ).

It is immediate from (47) and the fact that that the divisors ∆◦{r, s} are of degree zero that

Ĵ◦τ satisfies the rule

Ĵ◦τ {γr, γs}(γz) = Ĵ◦τ {r, s}(z) (mod εZτ ), for all γ ∈ SL2(Z),

and thus defines an element of MSSL2(Z)(M×rat/ε
Z
τ ) = H1

par(SL2(Z),M×rat/ε
Z
τ ) lifting the class

J̄◦τ . The lemma follows. �

Lemma 3.3 implies that the cocycle J◦τ is parabolic modulo εZτ . The following lemma makes
this conclusion more precise.

Lemma 3.4. The class J◦τ ∈ H1
f (SL2(Z),M×rat) satisfies

J◦τ (T ) = ετ (mod µ12),

where T =

(
1 1
0 1

)
is the standard generator of P∞.

Proof. Since T−1 = SU , Lemmas 3.2 and 3.1 imply that

J◦τ (T )−1 = J◦τ (S)× SJ◦τ (U) = ξ−2
τ ε−1

τ (1 + S)̄◦τ = ε−1
τ .

The lemma follows. �

It is natural to study the quantity

J◦(τ1, τ2) := Ĵ◦τ1 [τ2] (mod εZ1 , ε
Z
2 )

associated to real quadratic elements τ1 and τ2. The following proposition, which shows that
it is antisymmetric, can be viewed as a “Weil reciprocity formula” for the rational parabolic
cocycles Ĵ◦τ .

Proposition 3.5. For all real irrationalities τ1 and τ2 with associated orders O1 and O2

respectively, we have

Ĵ◦τ1 [τ2] = Ĵ◦τ2 [τ1]−1 (mod O×1 O
×
2 ),

i.e., J(τ1, τ2) = J(τ2, τ1)−1 modulo the group of units in O×1 and O×2 .

Proof. Following the notations that were used in the proof of Lemma 3.3, let [w
(1)
1 , w

(1)
2 ] and

[w
(2)
1 , w

(2)
2 ] be elements of Bτ1 and Bτ2 respectively, satisfying

π([w
(1)
1 , w

(1)
2 ]) = τ1, π([w

(2)
1 , w

(2)
2 ]) = τ2,

and define

det(τ1, τ2) := det

(
w

(1)
1 w

(2)
1

w
(1)
2 w

(2)
2

)
,



30 HENRI DARMON AND JAN VONK

which is well-defined modulo the group generated by the units ±ε1 and ±ε2. Since

tτ1(τ2) = −(w
(2)
2 )−1 · det(τ1, τ2),

we can invoke (48) to write:

J◦(τ1, τ2) = Ĵ◦τ1 [τ2] = Ĵ◦τ1{r, γ2r}(τ2) =
∏

γ∈SL2(Z)/γZ1

det(γτ1, τ2)δr,γ2r(γτ1),

where the replacement of tγτ1(τ2) by det(γτ1, τ2) is justified by that fact that the intersection
number δr,γ2r(w) ∈ {−1, 0, 1} satisfies∑

γ∈SL2(Z)/γZ1

δr,γ2r(γτ1) = 0.

Let δ(w1, w2) ∈ {−1, 0, 1} be the signed intersection between the geodesic on H going from
w1 to w′1, and the geodesic from w2 to w′2. Then

∞∑
j=−∞

δ
γj2r,γ

j+1
2 r

(γτ1) = δ(γτ1, τ2).

Therefore we obtain

J◦(τ1, τ2) =
∏

γ ∈ γZ2 \SL2(Z)/γZ1

det(γτ1, τ2)δ(γτ1,τ2).(49)

Proposition 3.5 can be deduced from (49) in light of the fact that, for all γ ∈ SL2(Z),

det(γτ1, τ2) = det(τ1, γ
−1τ2) = −det(γ−1τ2, τ1),

and that

δ(γτ1, τ2) = δ(τ1, γ
−1τ2) = −δ(γ−1τ2, τ1).

�

It will be useful later to have a formula for the valuation of J◦(τ1, τ2) at certain rational
primes p. Recall that two RM points τ1 and τ2 of discriminants D1 and D2 respectively
correspond to embeddings ϕ1 and ϕ2 of the associated orders O1 and O2 into the matrix ring
M2(Z). The intersection multiplicity at p of ϕ1 and ϕ2 is defined by setting

(50) [ϕ1 · ϕ2]p := max t ≥ 0 s.t. ϕ1(O1), ϕ2(O2) have the same image in M2(Z/ptZ).

To motivate the following definition, we remark that the finite sum∑
γ∈γZ2 \SL2(Z)/γZ1

δ(γτ1, τ2)

can be interpreted as the topological intersection of the closed geodesics on SL2(Z)\H attached
to τ1 and τ2, and hence is equal to 0 since SL2(Z)\H is a Zariski open subset of a curve of
genus zero.

Definition 3.6. The p-weighted intersection number of τ1 and τ2 is the sum (involving only
finitely many non-zero terms)

(51) (ϕ1 · ϕ2)p∞ :=
∑

γ∈γZ2 \SL2(Z)/γZ1

[γϕ1γ
−1 · ϕ2]p · δ(γτ1, τ2).

Proposition 3.7. Let p - D1D2 be a rational prime which is inert in K1 and in K2. Then

ordp J
◦(τ1, τ2) = (ϕ1, ϕ2)p∞.
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Proof. This follows directly from the formula (49) for J◦(τ1, τ2) in light of the fact that
ordp det(γτ1, τ2) = [γϕ1γ

−1 · ϕ2]p. �

Remark 3.8. In their suggestive work [DIT] on linking numbers and modular cocycles, Duke,
Imamoglu and Toth remark that the quantities J◦(τ1, τ2) are closely related to the linking
number between the modular geodesics attached to τ1 and τ2 on the threefold SL2(Z)\SL2(R).
As noted in the acknowledgements, the use of multiplicative rational cocycles in [DIT] was an
important source of inspiration for this paper.

3.2. A review of p-adic theta-functions. This section briefly recalls the theory of rigid
analytic theta functions following the treatment in [GVdP].

Given w ∈ P1(Cp), let tw(z) denote the linear polynomial on P1(Cp) defined by

(52) tw(z) :=


z − w if |w| ≤ 1,
z/w − 1 if |w| > 1,
1 if w =∞.

Meromorphic functions on Hp with prescribed divisors can be constructed in a systematic
way using the following adaptation of a result of Gerritzen–van der Put [GVdP, Lemma 2.2].

Lemma 3.9. Let (w+
i ) and (w−i ) be sequences of points in Hp satisfying the following:

(i) For any ε > 0, and for all i large enough relative to ε,

|w+
i − w

−
i | < ε if |wi| ≤ 1,

|1/w+
i − 1/w−i | < ε if |w| > 1.

(ii) The sets of w±i are discrete, i.e., for all n ≥ 0, the affinoid H≤np contains finitely many

of the w+
i and w−i .

Then the infinite product

(53) J(z) =

∞∏
i=1

(
tw+

i
(z)

tw−i
(z)

)
converges to a rigid meromorphic function on Hp with zeroes only at the w+

i and poles only

at the w−i , whose logarithmic derivative is

dlog J(z) =

∞∑
i=1

(
dz

z − w+
i

− dz

z − w−i

)
.

Proof. The infinite product in (53) converges to a rigid meromorphic function on Hp because

its general factor converges uniformly to 1 on any affinoid H≤np . More precisely, we have

(54)

∣∣∣∣∣ tw+
i

(z)

tw−i
(z)
− 1

∣∣∣∣∣ ≤ pn−N , for all w+
i , w

−
i ∈ H

≥N
p , z ∈ H≤np .

All of the other properties of J(z) are a direct consequence of the definitions. �

For this section (and this section only!), let Γ be a subgroup of PSL2(Qp) acting discretely
and without fixed points on Hp by Möbius transformations. This excludes finite index sub-
groups of SL2(Z[1/p]), whose non-trivial fixed points consist of the RM points inHp. Examples
of such discrete groups arise for instance from suitable finite index subgroups of p-arithmetic
groups R×1 consisting of the elements of norm 1 in a maximal Z[1/p]-order R in a definite
quaternion algebra B over Q which is split at p so that B⊗Qp can be identified with M2(Qp).
After fixing such an identification, the group

Γ := R×1 /〈±1〉 ⊂ PSL2(Qp)
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acts on Hp with discrete orbits. The quotient Γ\Hp can be identified with the Cp-points of
a complete rigid analytic curve X over Qp: a Shimura curve, which has a model over Q and
enjoys many of the same rich arithmetic properties as classical modular curves.

Let ∆ be a divisor of degree 0 on Hp (say, ∆ = w+−w−). After enumerating the elements
of Γ = {γ1, γ2, . . . , γi, . . .}, one can show that the sequences

w+
i := γi(w

+), w−i = γi(w
−)

satisfy the conditions in Lemma 3.9, and hence that the function

(55) J̄w+−w−(z) :=
∏
γ∈Γ

(
tγw+(z)

tγw−(z)

)
converges to a meromorphic function on Hp which is rigid analytic on Hp−Γw+− Γw−, and
has zeroes and poles on Γw+ and Γw− respectively.

The definition of J̄w+−w− can be extended by multiplicativity to allow the replacement
of w+ − w− by any degree zero divisor ∆ on Γ\Hp. The function J̄∆ is Γ-invariant up to
multiplicative scalars:

J̄∆ ∈ H0(Γ,M×/C×p ),

but need not be Γ-invariant itself. An arbitrary lift J∆ of J̄∆ toM× satisfies the transforma-
tion formula

J∆(γz) = κ∆(γ)J∆(z),

where κ∆ ∈ H1(Γ,C×p ) is the period function attached to J∆. This class represents the

obstruction to lifting the image of J̄∆ to an element of H0(Γ,M×), and encodes the image
of ∆ in the Jacobian of X over Cp. More precisely, taking the Γ-cohomology of the exact
sequence

0 −→ C×p −→M× −→M×/C×p −→ 0

yields

(56) (M×)Γ −→ (M×/C×p )Γ κ−→ H1(Γ,C×p )/Q −→ 0,

where Q is the period lattice of X := Γ\Hp spanned by the elements of the form κ∆ as ∆
ranges over the (lifts to Hp of) principal divisors on X(Cp). In particular, J∆ is a Γ-invariant
function if and only if κ∆ ∈ Q, i.e., the image of ∆ in Div0(X) is a principal divisor.

3.3. Rigid meromorphic cocycles. We return to the original setting of rigid meromorphic
cocycles, where Γ := SL2(Z[1/p]) acts on Hp by Möbius transformations and onM× with the
weight zero action.

Recall the definition given in (26) of the rigid meromorphic cocycle Φτ of weight two
attached to τ ∈ Γ\HRM

p . For each r, s ∈ P1(Q), let w+
i and w−i be a complete list of the

positive and negative elements of Στ (r, s), paired together so that w−i and w+
i belong to the

same wide open subset of the form Wv, with v ∈ T0, for all i ≥ 0. This collection of elements
satisfies the conditions in Lemma 3.9, and hence, letting tw(z) be the rational functions given
in (52), the infinite products

(57) ̄τ :=
∏
w∈Στ

tw(z)δ∞(w), J̄τ{r, s} :=
∏

w∈Στ (r,s)

tw(z)δr,s(w),

converge to rigid meromorphic functions satisfying

(58) dlog ̄τ = ϕτ , dlog J̄τ{r, s} = Φτ{r, s}.
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The function J̄τ{r, s} is completely determined by (58) up to multiplication by a non-zero
scalar in K×p , where Kp is the completion of K = Q(τ) at the unique prime of K above p.

Hence the system of J̄τ{r, s} determines an element

J̄τ ∈ MSΓ(M×/K×p ) = H1
par(Γ,M×/K×p ).

The cocycle J̄τ is called the projective rigid meromorphic cocycle attached to τ .
Because ϕτ |2(D − 1) = 0, it follows that

(59) ̄τ |(D − 1) = ̄τ (p2z)/̄τ (z) ∈ K×p
is a scalar that does not depend on z, and is in fact an intrinsic invariant of ϕτ which does
not depend on the choice of an anti-logarithmic derivative of ϕτ . As before, recall that
vp(w) = ordp(w) denotes the p-adic valuation of w ∈ K×p . The following lemma computes the
multiplicative period (59) attached to ϕτ .

Lemma 3.10. For all z ∈ Hp,

̄τ (p2z)/̄τ (z) =
∏

vp(w)∈[0,2)

wδ∞(w),

where the product on the right is taken over the w ∈ Στ for which 0 ≤ vp(w) < 2.

Proof. We may write

̄τ (z) =
∏

Στ ,w+>0

tw+(z)

tw−(z)
,

where w+, w− have the same valuation. An elementary calculation shows that

tw+(p2z)

tw−(p2z)
×
tw−/p2(z)

tw+/p2(z)
=

{
w+/w− if vp(w

+) ∈ [0, 2)
1 if vp(w

+) 6∈ [0, 2)

from which the lemma follows. �

Recall, following Definition 1 of the introduction, that H1
f (Γ,M×) consists of classes rep-

resented by rigid meromorphic multiplicative cocycles whose restriction to Γ∞ take values in
the group of constant functions. It fits into the long exact cohomology sequence

(60) 0 −→ H1(Γ,K×p ) −→ H1
f (Γ,M×) −→ H1

par(Γ,M×/K×p )
δ−→ H2(Γ,K×p ).

Let T = Z[T2, T3, T5, . . .] be the algebra of Hecke operators whose elements are polynomials
in the Hecke operators T` with ` 6= p a prime, and let

Ip := AnnT(M2(Γ0(p),Z)),

where M2(Γ0(p),Z) is the space of weight two modular forms on Γ0(p) with integral fourier
coefficients.

Lemmas 3.11 and 3.12 below analyze the structure of the T-modules arising in (60).

Lemma 3.11. (1) The group H1(Γ,K×p ) is finite of exponent 12.
(2) There is a natural map

η : H1(Γ0(p),K×p ) −→ H2(Γ,K×p )

whose kernel and cokernel are of exponent 12.
(3) The module H2(Γ,K×p ) is a torsion T-module which is annihilated by 12 · Ip.
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Proof. Let F(T0,K
×
p ) and F(T1,K

×
p ) denote the Γ-modules of K×p -valued functions on the

sets of vertices and edges of the Bruhat-Tits tree T . Recall that every edge e ∈ T1 contains a
unique positive vertex v+ ∈ T +

0 and a unique negative vertex v− ∈ T −0 . For all f ∈ F(T0,K
×
p ),

one can define a function df ∈ F(T1,K
×
p ) by setting df(e) = f(v−) − f(v+). The map d fits

into the short exact sequence

(61) 1 −→ K×p −→ F(T0,K
×
p )

d−→ F(T1,K
×
p ) −→ 1,

which provides a resolution of K×p by the induced Γ-modules

F(T0,K
×
p ) = F(T +

0 ,K×p )⊕F(T −0 ,K×p ) = IndΓ
SL2(Z)K

×
p ⊕ IndΓ

SL′2(Z)K
×
p ,

F(T1,K
×
p ) = IndΓ

Γ0(p)(K
×
p ),

where

SL′2(Z) = P−1SL2(Z)P =

{(
a b/p
pc d

)
with a, b, c, d ∈ Z

}
, Γ0(p) = SL2(Z) ∩ SL′2(Z).

Taking the Γ-cohomology of (61) and invoking Shapiro’s lemma yields the long exact sequence

1 −→ H1(Γ,K×p ) −→ H1(SL2(Z),K×p )⊕H1(SL′2(Z),K×p )

−→ H1(Γ0(p),K×p )
η−→ H2(Γ,K×p ) −→ H2(SL2(Z),K×p )⊕H2(SL′2(Z),K×p ) −→ · · ·

The first two statements in the lemma follow after noting that the first and second cohomology
of SL2(Z) with values in K×p has exponent 12. Eichler-Shimura theory, which asserts that

Ip := AnnT(H1(Γ0(p),K×p )) = AnnT(M2(Γ0(p),Z)),

implies the third statement. �

A point τ ∈ Γ\HRM
p is said to be fundamental if its associated order is the maximal Z[1/p]-

order of the real quadratic field Q(τ), i.e., if it is the root of a binary quadratic form whose
discriminant, up to powers of p, is equal to a fundamental discriminant.

Lemma 3.12. The quotient

H1
par(Γ,M×/K×p )/H1

par(Γ,O×/K×p )

is torsion-free over T. The classes J̄τ , as τ ranges over the fundamental elements of Γ\HRM
p ,

are multiplicatively independent over T.

Proof. The logarithmic derivative identifiesM×/K×p with the groupMZ
2 of rigid meromorphic

differentials onHp having at worst simple poles and integer residues. (In the classical terminol-
ogy, these are referred to as differentials of the third kind.) Given any J̄ ∈ H1

par(Γ,M×/K×p ),

let Φ := dlog J̄ ∈ H1
par(Γ,M2) be its logarithmic derivative. If θ is a non-zero element of

T, then J̄ |θ can only be regular if the same is true of Φ|2θ. But then Φ must be regular,
by Corollary 1.26, which implies that J̄ has to be regular as well. The first assertion in the
proposition follows. The second is an immediate consequence of Lemma 1.25, which implies
that the rigid meromorphic differentials of the form ϕτ |2θ, as τ ranges over the primitive
elements of Γ\HRM

p , have non-trivial, mutually disjoint residual divisors. �

We are now ready to prove the main theorem of this section, from which one recovers
Theorem 1 of the introduction.

Theorem 3.13. For all primes p, the group H1
f (Γ,M×) is of infinite rank over Z. The zeroes

and poles of a rigid meromorphic period function are contained in a finite collection of Γ-orbits
of RM points of Hp.
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Proof. The first assertion follows immediately from Lemma 3.11, which asserts that the left
and rightmost modules in (60) are torsion T-modules (with a specific annihilator Ip), combined
with Lemma 3.12, which asserts that the term H1

par(Γ,M×/K×p ) has a non-finitely generated,
T-torsion free quotient. As to the second assertion, it follows immediately from Theorem 1.23
applied to the logarithmic derivative of an element of H1

f (Γ,M×). �

As in section 3.1, the class δ(J̄τ ) ∈ H2(Γ,K×p ) represents the obstruction to lifting J̄τ ∈
H1

par(Γ,M×/K×p ) to a genuine multiplicative cocycle in H1
f (Γ,M×). By the second statement

in Lemma 3.11, we may write

δ(J̄12
τ ) = η(κτ ),

where κτ ∈ H1(Γ0(p),K×p ) is well defined up to the 12-torsion group ker η. The class κτ
measures the obstruction to lifting the class J̄τ ∈ H1

par(Γ,M×/K×p ) (or rather, its 12-th
power) to a genuine rigid meromorphic cocycle.

Definition 3.14. The class κτ is called the lifting obstruction attached to the class J̄τ .

It will be useful to have an explicit description of the lifting obstruction κτ . Recall the
standard vertex v0 ∈ T0 whose stabiliser in Γ is SL2(Z), and the standard edge e = (v0, v

′
0)

whose stabiliser in Γ is Γ0(p). The restriction of J̄12
τ ∈ H1

par(Γ,M×/K×p ) to the groups

SL2(Z) = StabΓ(v0), SL′2(Z) = StabΓ(v′0)

lift (uniquely, up to 12 torsion) to classes

Jv0τ ∈ H1
f (SL2(Z),M×), J

v′0
τ ∈ H1

f (SL′2(Z),M×),

which are related by the rule

J
v′0
τ (γ) = Jv0τ (PγP−1).

The restriction to Γ0(p) = SL2(Z)∩SL′2(Z) of the ratio Jv0τ /J
v′0
τ lies in the kernel of the natural

map

H1(Γ0(p),M×) −→ H1(Γ0(p),M×/K×p ),

which is equal to H1(Γ0(p),K×p ), and, for all γ ∈ Γ0(p),

(62) κτ (γ) = Jv0τ (γ)/J
v′0
τ (γ) = Jv0τ (γ)/Jv0τ (PγP−1).

Assume below that p does not divide the discriminant of the field K = Q(τ), i.e., that the
elements of Γτ ⊂ Hp reduce to vertices of T . Recall that the element τ is then said to be
even if these images are even vertices, and is said to be odd otherwise.

Proposition 3.15. For all τ ∈ HRM
p , the class Jv0τ ∈ H1

f (SL2(Z),M×) satisfies

Jv0τ (T ) = ε(p)
τ ,

where ε
(p)
τ is the unique element of K×p of norm 1 satisfying

ε(p)
τ ≡

{
ετ (mod p) if τ is even,
1 (mod p) if τ is odd,

(ε(p)
τ )1−p2 = ε1+p

τ .

Proof. Any w ∈ Γτ is the root of a unique (up to sign) primitive integral binary quadratic
form, whose discriminant is of the form Dp2m with p - D. The exponent m is called the level
of w. It is an even integer if τ is even, and an odd integer if τ is odd, which is constant on
SL2(Z)-orbits but not, of course, on the full Γ-orbit of τ . Upon setting

Σ(m)
τ (r, s) = {w ∈ Στ (r, s) with level(w) = m} ,
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the sets Στ (r, s) decompose as a disjoint union of the form

Στ (r, s) =

{
Σ

(0)
τ (r, s) t Σ

(2)
τ (r, s) t Σ

(4)
τ (r, s) t · · · if τ is even;

Σ
(1)
τ (r, s) t Σ

(3)
τ (r, s) t Σ

(5)
τ (r, s) t · · · if τ is odd.

It follows that
(63)

J̄τ{r, s}(z) =

∞∏
m=0

J̄ (m)
τ {r, s}(z), where J̄ (m)

τ {r, s}(z) :=
∏

w∈Σ
(m)
τ (r,s)

tw(z)δr,s(w),

adopting the convention that J̄
(m)
τ {r, s} = 1 if τ and m are of different parity.

For any fixed m ≥ 0, the finite set Σ
(m)
τ (r, s) decomposes as a finite union of SL2(Z)-orbits,

of the form

Σ(m)
τ (r, s) = Σ◦τ1(r, s) t · · · t Σ◦τd(r, s),

where τ1, . . . , τd are the distinct representatives of the SL2(Z) orbits of RM points of discrim-
inant Dp2m which are Γ-equivalent to τ . Recall the classes J◦τ ∈ H1(SL2(Z),M×rat) associated
to τ ∈ SL2(Z)\CRM in equation (46) of Section 3.1, and set

(64) J (m)
τ := J◦τ1 × · · · × J

◦
τd
.

By Lemma 3.4, we have

(65) J◦τj (T ) = εm = εemτ ,

where εm is the fundamental unit of the real quadratic order of discriminant Dp2m. One has
e0 = 1 and, for m ≥ 1, the exponent em is given by the class number formula

h+(Dp2m)em = pm−1 (p+ 1)h+(D),

which implies that

(66) em =

{
1 if m = 0;
(p+ 1)pm−1d−1 if m ≥ 1.

By combining (64), (65), and (66), one obtains

J (m)
τ (T ) := J◦τ1(T )× · · · × J◦τd(T ) = εdm =

{
ετ if m = 0;

ε
(p+1)pm−1

τ if m ≥ 1.

The uniqueness of Jv0τ implies that

(67) Jv0τ = J (0)
τ × J (1)

τ × J (2)
τ × · · ·

It follows that

Jv0τ (T ) =

{
ε

1+(p+1)p+(p+1)p3+(p+1)p5+···
τ if τ is even;

ε
(p+1)+(p+1)p2+(p+1)p4+(p+1)p6+···
τ if τ is odd.

The infinite series expressing the exponents in the equation above converge in the group
Z/(p+ 1)Z×Zp to the elements (1, 1/(1− p)) when τ is even, and to (0, 1/(1− p)) when τ is
odd. The proposition follows. �

Theorem 3.16. For all τ ∈ HRM
p , the class κτ satisfies

κτ (T ) = ετ .
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Proof. This follows directly from (62) and from Proposition 3.15, in light of the identity

PTP−1 = T p.

�

3.4. Explicit examples. Although Theorem 3.13 guarantees a large supply of rigid mero-
morphic cocycles for any prime p, it is useful for numerical experiments to single out some
notably simple instances of these objects, in which complicated Hecke translates of the basic
projective cocycles J̄τ need not be invoked. Such constructions are available for the small
primes given in Definitions 3.17 and 3.19 below.

Definition 3.17. A prime p is said to be genus zero prime if the modular curve X0(p) has
genus zero, i.e., if p = 2, 3, 5, 7, or 13.

Theorem 3.16 implies that the cocycles J̄τ themselves never lift to an element of H1
f (Γ,M×).

However, one has:

Theorem 3.18. If p is a genus zero prime, then the cocycle J̄τ lifts to a cocycle Ĵτ ∈
H1
f (Γ,M×/εZτ ), where ετ is the fundamental unit of the real quadratic order attached to τ .

This lift is well-defined up to a 12 torsion class, and

Ĵτ (T ) = ε(p)
τ (mod µ12),(68)

Ĵτ (S) = ±(ξ(p)
τ )−1 × ̄τ (mod µ12), where ξ(p)

τ :=
∏

vp(w)∈[0,2),w>0

w.(69)

Proof. When p is a genus zero prime, the abelianisation of Γ0(p) is generated by the image of

the parabolic matrix T , and hence the existence of the lift Ĵτ follows from Theorem 3.16. It

follows from Theorem 3.15 that Ĵτ (T ) = ε
(p)
τ . To calculate Ĵτ (S), note that we may write

̄τ (z) =
∏

w∈Στ ,w>0

tw(z)

tSw(z)
.

A direct calculation shows that

tw(z)

tSw(z)
× tw(Sz)

tSw(Sz)
=

{
−w2 if w ∈ O×Cp
−1 if w 6∈ O×Cp

from which it follows that (ξ
(p)
τ )−1× ̄τ is a lift of ̄τ toM× which satisfies the 2-term relation.

Since Ĵτ (S) is the unique such lift, up to sign, the lemma follows. �

Definition 3.19. A prime p is said to be monstrous if it satisfies one of the following equivalent
conditions:

(1) p divides the cardinality of the Monster sporadic simple group;
(2) the modular curve X0(p)/wp has genus zero;
(3) p is equal to 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

(The equivalence of the first and second conditions, first observed by Andrew Ogg, is part of
the empirical panoply of “monstrous moonshine”.)

Theorem 3.20. If p is a monstrous prime and τ is any RM point in Hp of discriminant
prime to p, then the p-even projective cocycle

(70) (1 +$p)J̄τ = J̄τ/J̄pτ

lifts to a uniquely determined rigid meromorphic cocycle J+
τ ∈ H1

f (Γ,M×/µ12) whose associ-

ated rigid meromorphic period function j+
τ is given in Theorem 2 of the Introduction.
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Proof. The proof of Lemma 1.4 of [Da] explains that the “lifting obstruction” map

η−1 ◦ 12 ◦ δ : H1
par(Γ,M×/K×p ) −→ H1(Γ0(p),K×p )

where δ is the map of (60) and η is given in the second part of Lemma 3.11, intertwines the
involution $p on the domain with the Atkin Lehner involution at p on the target. When p is
a monstrous prime, the subspace H1(Γ0(p),K×p )$p=1 is trivial. It follows that the projective

cocycle in (70) lifts to a genuine rigid meromorphic cocycle in H1
f (Γ,M×). �

3.5. The efficient calculation of rigid meromorphic cocycles. To simplify the presen-
tation, we assume henceforth that p is inert in K = Q(τ). Our ultimate aim is to be able to
compute the values of a rigid meromorphic cocycle J at any z in HRM

p . We go about this via

a series of simplifications. The first crucial remark is that every element of Hp is Γ̃-equivalent

to an element of H≤1

p . Hence, by the Γ-equivariance property mentionned right after (3) in
the Introduction, and proved in Lemma 4.3 below, it is enough to be able to evaluate the RM
values of J at such elements of Hp. We may assume without loss of generality that z > 1 and
−1 < z′ < 0, in which case the continued fraction

z = a1 +
1

a2 +
1

a3 + . . .

(ai ≥ 1)

is purely periodic, of some length n ≥ 1. If γz is the unique generator of Γz for which z is a
stable fixed point, then we have

γz = γn · γn−1 · · · γ1, where γi = ST (−1)iai ,

Using the cocycle relations, we compute that

(71) J(γz) = J(T )−a1+a2−a3+...(−1)nan ×
n∏
i=0

J(S)(γn···γi)−1
.

In the special case where J = Ĵτ , it was shown above that Ĵτ (T ) = ε
(p)
τ , so that it is enough

to efficiently compute the rigid meromorphic function Ĵτ (S).

To compute ̂τ := Ĵτ (S), it is enough by (69) to compute ̄τ . The infinite product expansion
(57) defining ̄τ gives a theoretically effective way to evaluate it at arbitrary τ ∈ Hp, but this
method is hardly efficient. Indeed, the estimate (54) shows that the evaluation of ̄τ (z) for
z ∈ H0

p to M significant digits of p-adic accuracy requires the infinite product defining it to
be taken over all

w ∈ Στ (r, s)≤M = Στ (r, s) ∩H≤Mp .

The latter set has size roughly pM , and it is impractical to take a product over such an index
set for even moderate values of M , whereas many of the experiments that will be reported on
later required p-adic precision on the order of hundreds of digits. This section describes how
rigid meromorphic period functions can be calculated and stored efficiently on a computer, in
a way that enables the calculation of their RM values to large p-adic accuracy.

We first describe a polynomial time recursive algorithm for computing ̄τ , which is somewhat
in the spirit of the algorithm based on overconvergent modular symbols for computing the
rigid analytic cocycles described in [DP] and in Chapter 2. Recall from (63) the decomposition

J̄τ{r, s} = J̄ (0)
τ {r, s} × J̄ (1)

τ {r, s} × J̄ (2)
τ {r, s} × · · ·

By the estimate (54) we have that

J̄ (m)
τ {0,∞}(A) ⊆ 1 + p2mOCp .



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 39

This implies that in order to evaluate ̄τ at a point in A to a p-adic accuracy of pm, it suffices

to evaluate the finite collection of rational functions J̄
(t)
τ {0,∞} for t ≤ m − 1. To compute

J̄
(m)
τ {0,∞}, the key idea is to represent it as a multiplicative Mittag–Leffler expansion on the

standard wide open rather than as a rational function. More precisely, for all m ≥ 1:

J̄ (m)
τ {r, s} =

p−1∏
a=0

F (m)
a {r, s} × F (m)

∞ {r, s}, where F (m)
a {r, s}(z) =

∏
w∈Σ

(m)
τ ∩(a+pOCp )

tw(z)δr,s

The explicit knowledge of the multiplicative Mittag–Leffler expansion suffices for the explicit

evaluation of J̄
(m)
τ {0,∞}, and therefore ̄τ , at points of the standard affinoid A. This is

particularly convenient, since the functions F
(m)
a {r, s} satisfy the following recursion formulae,

for a = 0, 1, . . . , p− 1 given by

(72) F (m+1)
a {0,∞}(z) =

p−1∏
`=0

F
(m)
`

{
−a
p
,∞
}(

z − a
p

)
(mod K×p )

whereas for a =∞ we have

(73) F (m+1)
∞ {0,∞}(z) =

p−1∏
`=1

F
(m)
` {0,∞}(pz)× F (m)

∞ {0,∞}(pz) (mod K×p )

These recursion formulae follow from the observation that both sides define rational functions
with the same divisor, and must therefore be equal up to a constant. Observe that

(1) For each fixed m and a, the function F
(m)
a {r, s} is a modular symbol in MS(M×).

(2) For all γ ∈ SL2(Z), we have

F (m)
γa {γr, γs}(γz) = F (m)

a {r, s}(z) (mod K×p ).

Note that the function F
(m)
a {−a/p,∞} is easily expressed, up to a multiplicative constant, as

a combination of the functions F
(m)
a {0,∞} by finding a unimodular path from −a/p to ∞,

and using the two observations above. Using the recursions (72) and (73), this allows us to

compute the functions F
(m+1)
a {0,∞} from the functions F

(m)
a {0,∞}, up to a multiplicative

constant. To determine this constant, set

ta =
1

z − a
for a = 0, . . . , p− 1 and t∞ = z.

It is straightforward to check that

F (m)
a {0,∞} ∈ 1 + pOCp〈ta〉, a ∈ {0, . . . , p− 1,∞}

so that the implicit constant is easily found in practice, by normalising the right hand side to
have constant term 1.

We summarise this discussion in the following steps, which describe how to compute the
values Ĵτ [z] at an RM point z in the standard affinoid A, up to precision pM :

• Step 1. Compute the rational function Ĵ◦τ {0,∞}, as well as the p+ 1 power series

F (1)
a {0,∞}(ta) ∈ 1 + pOCp〈ta〉, a = 0, 1, . . . , p− 1,∞

• Step 2. Use (72) and (73), as well as the modular symbol relations for the functions
Fa(r, s) to compute for any 2 ≤ m ≤ n− 1 the power series

F (m)
a {0,∞}(ta) ∈ 1 + pOCp〈ta〉 a = 0, 1, . . . , p− 1,∞

up to precision pM . Store the data of ̄τ := J̄τ{0,∞} to that accuracy, expressing it
as a product of p+ 1 power series in the variables ta, up to precision tna .
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• Step 3. Compute the quantity Ĵτ (S) = (ξ
(p)
τ )−1 × ̂τ via the identity(

ξ(p)
τ

)2
=

p−1∏
a=1

Fa{0,∞}(0).

• Step 4. Compute Ĵτ [z] = Ĵτ (γz)(z) via (71) and the identity Ĵτ (T ) = ε
(p)
τ .

This algorithm has been implemented in magma, and the resulting code is available on the
authors’ webpages. It will be exploited in the next chapter to give numerical examples in
support of the proposed conjectures on RM values of rigid meromorphic cocycles.

4. Real quadratic singular moduli

This chapter is devoted to the most important notion explored in this paper: the values
of rigid meromorphic cocycles at RM points, which are conjecturally defined over composita
of ring class fields of real quadratic fields, and otherwise exhibit many striking parallels with
singular moduli arising in the classical theory of complex multiplication.

4.1. RM values of rigid meromorphic cocycles. Let J ∈ H1
f (Γ,M×) be a rigid mero-

morphic cocycle. By Theorem 1.23, its logarithmic derivative is of the form

dlog J = Φ0 +
∑
τ∈ΣJ

λτΦ
±
τ ,

where Φ0 ∈ H1
f (Γ,O2) is a rigid analytic cocycle of weight two and ΣJ is a finite subset of the

orbit space Γ̃\HRM
p .

Given any τ ∈ HRM
p , the discriminant of τ , denoted Dτ , is the prime-to-p part of the

discriminant of any primitive integral binary quadratic form having τ as a root. This discrim-
inant is well-defined on Γ̃-orbits, i.e.,

Dγτ = Dτ , for all γ ∈ Γ̃, τ ∈ HRM
p .

Let Hτ denote the narrow ring class field attached to the order of discriminant Dτ . It is an
abelian extension of K := Q(τ) whose Galois group over K is canonically identified with the
class group in the narrow sense of the order of discriminant Dτ .

Definition 4.1. The field of definition of J , denoted HJ , is the compositum of the narrow
ring class fields Hτ , as τ ranges over the set ΣJ .

As explained in the introduction, one of the principal interests of rigid meromorphic cocycles
is that they can be meaningfully evaluated at RM points. Recall the automorph γτ ∈ O×τ of
τ ∈ HRM

p that was defined in the introduction.

Definition 4.2. The value of J at an RM point τ is the element

J [τ ] := J(γτ )(τ).

The following lemma shows how the values of J vary over Γ̃-orbits.

Lemma 4.3. For all γ ∈ Γ and all τ ∈ HRM
p ,

J [γτ ] = J [τ ].

If γ belongs to Γ̃− Γ, then

J [γτ ] =

{
J [τ ] if J is p-even;
J [τ ]−1 if J is p-odd.
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Proof. If γ belongs to Γ, then the first part follows from the fact that the automorph of γτ is
γγτγ

−1, and hence that

J [γτ ] = J(γγτγ
−1)(γτ) = J(γ)(γτ)× J(γτ )(τ)× J(γ−1)(τ) = J [τ ].

Since the group Γ̃/Γ is generated by wp and w∞, the second part follows by an direct calcu-
lation from the classification in Theorem 1.23.

�

The main conjecture of this section concerns the algebraicity of the RM values of rigid
meromorphic cocycles, and was already stated as Conjecture 1 in the Introduction:

Conjecture 4.4. Let J ∈ H1
f (Γ,M×) be a rigid meromorphic cocycle, and τ ∈ HRM

p . Then

J [τ ] is contained in the compositum of HJ and Hτ .

The following examples describe the calculations of RM values for various small discrimi-
nants, using the computational techniques from Section 3.5.

Example 4.5. The golden ratio ϕ = 1+
√

5
2 , which is a root of the binary quadratic form

x2 + xy − y2 of discriminant 5, is the simplest real quadratic irrationality and it is therefore
natural to examine the RM values of the rigid meromorphic cocycle J+

ϕ attached to it, which,
(for p a monstrous prime) is the only interesting rigid meromorphic cocycle whose zeroes and

poles are concentrated in the Γ̃-orbit of the golden ratio.
Some of the values of J+

ϕ , at the RM points of discriminants 8 and 892, were already
described in the introduction. The algorithms of Section 3.5 were also used to compute the
value of the 2-adic cocycle J+

ϕ at the RM points of discriminant 21 to 1000 significant digits,
yielding

J+
ϕ

[
−3 +

√
21

2

]
=

37± 48
√
−3

7 · 13
(mod 21000).

This experimental finding is consistent with Conjecture 4.4, since the ring class field of dis-
criminant 21 is Q(

√
−3,
√
−7).

We also computed J+
ϕ at p = 7 and p = 17 to 400 and 100 significant digits respectively, as

well as the RM values of these cocycles at the four classes of RM points of discriminant 96,
whose associated ring class field is Q(

√
2,
√
−3,
√
−1). In this way we found

J+
ϕ [2
√

6] = 3±8
√

2±12
√
−1±2

√
−2

17 (mod 7400),

J+
ϕ [2
√

6] = 2±1
√
−3±3

√
2±2
√
−6

7 (mod 17100).

Notice that the 7-adic valuation of the 17-adic invariant is equal to the 17-adic valuation of
the corresponding 7-adic invariant. This phenomenon will be addressed in Section 4.4. Just
as in the introduction, the values J+

ϕ [τ ] seem to be defined over Hτ rather than Hτ (
√

5), an
observation that will be explained by the Shimura reciprocity law formulated in Section 4.2
below.

Finally, Table 4.6 below lists the values of the cocycle J+
ϕ at a few arguments in Q(ϕ), for

the primes p = 2, 3, 7, 13, 17, and 23. This is the full list of the monstrous primes that are
inert in Q(ϕ), with the exception of the largest prime p = 47, which was omitted for lack of
space and because the column attached to this prime is the least varied: all its entries are
equal to 1 with the exception of

J+
ϕ [11ϕ]

?
=

3 +
√
−55

23
in C47.
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τ p = 2 p = 3 p = 7 p = 13 p = 17 p = 23

3ϕ −313+713
√
−3

2·72·13 − 1+
√
−15
4

−1+
√
−15

4
1 1

4ϕ − 174+832
√
−1

2·52·17
−10+24

√
−1

2·13
−4+6

√
−5

2·7
−2−

√
−5

3
1

6ϕ − − −34+8
√
−15

2·23
67+3

√
−15

22·17
−1+15

√
−3

2·13
2+8
√
−3

2·7

7ϕ 8693+1675
√
−35

2·3·133
1129+357

√
−7

26·23 − −3+
√
−7

22
−1−3

√
−7

23
−1+

√
−35

2·3

9ϕ 18012458+56391392
√
−3

2·74·13·37·43 − −14+8
√
−15

2·17
−61+5

√
−15

26
1+4
√
−3

7
1

11ϕ 1394644289+132949133
√
−11

2·3·5·23·37·47·53
−3826843+133719

√
−55

25·132·17·43
−106+32

√
−11

2·3·52 1 5−
√
−11

2·3
−3+

√
−55

23

Table 4.6. The values of the p-adic cocycle J+
ϕ [nϕ].

Example 4.7. The next positive discriminant after 5 is 8, corresponding to the field K :=
Q(
√

2). Its narrow class number is 1, so that once again the essentially unique rigid mero-

morphic cocycle with zeroes and poles in the Γ̃-orbit of
√

2 is J+√
2
.

There are four distinct classes of RM points τ105 of discriminant 105, and the monstrous
primes that are inert for both 8 and 105 are precisely p = 11, 19, 29. We compute that

J+√
2
[τ105]

?
= 2±10

√
−3±15

√
5±
√
−15

2·19 (mod 11100),

J+√
2
[τ105]

?
= 6±3

√
−7±7

√
5±2
√
−35

2·11 (mod 19100),

J+√
2
[τ105]

?
= 1 (mod 29100).

When p = 11, these are the four roots of 19x4−4x3−21x2−4x+19, whereas for p = 19 these
are the roots of 11x4 − 12x3 + 3x2 − 12x + 11. Both sets generate distinct fields of degree 4
over Q, and the compositum of either field with Q(

√
105) is the ring class field of discriminant

105. As in the previous example, notice the linear independence with the field of definition K,
and the reciprocity occurring in the denominators, both of which will be discussed in Section
4.2 and 4.4. To conclude the discussion of discriminant 8 cocycles, Table 4.8 below lists the
values of J+√

2
at small integer multiples of

√
2, for all the monstrous primes which are inert

in Q(
√

2).

τ p = 3 p = 5 p = 11 p = 13 p = 19 p = 29 p = 59

2
√

2 204+253
√
−1

52·13
7−6
√
−2

11
3−4
√
−1

5
1−2
√
−2

3
1 1 1

3
√

2 − 11++21
√
−3

2·19
−1+15

√
−3

2·13
5+4
√
−6

11
−1+2

√
−6

5
1 1

4
√

2 6063−7216
√
−1

52·13·29
−31+8

√
−2

3·11
3+4
√
−1

5
41−28

√
−2

3·19
5+12

√
−1

13
1+2
√
−2

3
1

5
√

2 1 − 1 1 1 1 1

Table 4.8. Some values of the p-adic cocycle J+√
2
[n
√

2].

Example 4.9. The real irrationality
√

3 has discriminant 12, its associated narrow ring class
field is the biquadratic field H√

3
= Q(

√
3,
√
−1), and it defines an RM point in the standard

affinoid of Hp, for any prime p ≡ 5, 7 mod 12. For each such p, one may consider the rigid
meromorphic cocycle J+

√
3
. This cocycle was computed to a 5-adic accuracy of 5200. Table 4.10

below lists the minimal polynomials of its values at a few τ of small discriminant, as well as
the number field defined by these polynomials.
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τ Minimal polynomial of J+
√

3
[τ ] Field

√
2 9x4 − 36x3 + 40x2 + 12x+ 9 Q(ζ8)

1+
√
13

2
2401x8 + 19404x7 + 72589x6 + 166716x5 + 121944x4 Q(

√
−1,
√

3,
√

13)

−166716x3 + 72589x2 − 19404x+ 2401

1+
√
17

2
194481x8 − 1100736x7 + 20364174x6 − 71994624x5 + 840839779x4 Q(

√
−1,
√

3,
√

17)

+71994624x3 + 20364174x2 + 1100736x+ 194481

Table 4.10. Some RM values J+
√
3
[τ ], for p = 5.

Example 4.11. Now let ω13 := 1+
√

13
2 be the RM point of discriminant 13 in HRM

p for p = 5,

11, 19, and 59, which are monstrous primes which are inert in both Q(
√

13) and Q(
√

2).
Table 4.12 collects a few values of the cocycles J+

ω12
for those primes, at RM points of the

form τ = n
√

2 for those small values of n for which the order Oτ has wide class number 1.

τ p = 5 p = 11 p = 19 p = 59
√

2 1 1 1 1

2
√

2 47+144
√
−2

11·19
3−4
√
−1

5
3−4
√
−1

5
1

3
√

2 121−551
√
−3

2·13·37
11+21

√
−3

2·19
5−4
√
−6

11
1

4
√

2 2806273−1604736
√
−2

11·59·67·83
57−176

√
−1

5·37
5−12

√
−1

13
3+4
√
−1

5

7
√

2 13349623871+1962731160
√
−7

112·37·109·149·197
118393−8328

√
−14

52·59·83
93+95

√
−7

22·67
37+9

√
−7

22·11

8
√

2 1920792095831+651036999168
√
−2

113·192·59·227·331
1312−1425

√
−1

13·149
43+924

√
−1

52·37
3+4
√
−1

5

9
√

2 1012867083636287+3520320389376383
√
−3

2·132·372·229·349·397·421
11387+12320

√
−3

192·67
43+4100

√
−6

112·83 1

11
√

2 1898087439462554809969+25021359226682861760
√
−22

13·192·109·149·293·461·541·557·613 − 209711−130467
√
−11

2·52·59·163
3+4
√
−22

19

Table 4.12. The values of the p-adic cocycle J+
ω13

[n
√

2] for 1 ≤ n ≤ 11.

4.2. The Shimura reciprocity law. We begin by briefly recalling the classical Shimura
reciprocity law in the setting of the theory of complex multiplication. Let D < 0 be a
negative discriminant and let H/Q be the associated ring class field of K = Q(

√
D), whose

Galois group canonically splits as the semi-direct product:

(74) Gal(H/Q) ' Gal (H/K) o 〈Fr∞〉 = Cl(D) o 〈Fr∞〉,

where Cl(D) is the class group of SL2(Z)-equivalence classes of positive definite binary qua-
dratic forms of discriminant D, equipped with the usual Gaussian composition, and the iden-
tifications

rec : Cl(D) −→ Gal (H/K), rec : Cl(D) o 〈Fr∞〉 −→ Gal (H/K) o 〈Fr∞〉

arises from global class field theory. There is a canonical bijection between Cl(D) o 〈Fr∞〉
and the set of SL2(Z)-orbits of CM points of discriminant D on the union of the upper and
lower half planes H±, defined by

(75) g := [a, b, c] · Frδ∞ 7−→ τg := (−1)δ

(
−b+

√
D

2a

)
,

where [a, b, c] denotes the class of the binary quadratic form ax2 + bxy + cy2.
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Let J be a meromorphic modular function on SL2(Z)\H with fourier expansion coefficients
in a field HJ , extended to a meromorphic function on the union H± of upper and lower
complex upper half-planes by requiring J(−z) = J(z). If τ is any CM point for which Hτ is
linearly disjoint from HJ , then restriction of automorphisms induces isomorphisms

(76) GD := Gal (HJHτ/HJ) = Gal (Hτ/Q)
rec←− Cl(D) o 〈Fr∞〉.

The Shimura reciprocity law can then be stated as

(77) J(τgh) = J(τh)rec(g)−1
, for all g, h ∈ Cl(D) o 〈Fr∞〉.

Turning to the RM setting, let D > 0 be a discriminant for which p is inert, and let H/Q
be the ring class field associated to D, whose Galois group can be described as a semi-direct
product via the formula, which is almost identical to (74):

(78) Gal (H/Q) ' Gal (H/K) o 〈Frp〉 = Cl(D) o 〈Frp〉.

the latter identification arising, as before, from the isomorphism rec of global class field theory.
As in (75), there is a canonical bijection between cl(D) o 〈Frp〉 and the set of Γ-orbits of RM
points of discriminant D on Hp, defined by

(79) g := [a, b, c] · Frδp 7−→ τg := pδ

(
−b+

√
D

2a

)
.

Recall that by Conjecture 4.4 the RM values J [τ ] of a rigid meromorphic cocycle J should
be algebraic, contained in the compositum of the field of definition HJ of J and the ring class
field Hτ of τ . If these two fields are linearly disjoint, then one has the same identifications as
in (76):

Gal (HJHτ/HJ) = Gal (Hτ/Q) = Cl(D) o 〈Frp〉.
The conjectural Shimura reciprocity law is the statement:

Conjecture 4.13. For all g ∈ Cl(D) o 〈Frp〉 as as above,

J [τgh] = J [τh]rec(g)−1
.

We now present a number of examples that lend credence to this conjecture.

Example 4.14. Let ϕ be the golden ratio and let τ1, . . . , τ6 be the roots of the narrow
equivalence classes of binary quadratic forms of discriminant 321, which has narrow class
number 6. The monstrous prime 23 is inert in both the real quadratic fields Q(

√
5) and

Q(
√

321). Let J+
ϕ ∈ H1

f (Γ,M×) be the rigid meromorphic cocycle attached to ϕ as in Theorem

3.20. Since J+
ϕ is p-even, its values on the RM points τ and pτ coincide. The Shimura

reciprocity conjecture therefore predicts that the 6 values J [τj ] lie in the Hilbert class field

of Q(
√

321) and are permuted by Gal (Q̄/Q). Using the algorithms described in Section 3.5,
we have verified that the values J+

ϕ [τj ] for j = 1, . . . , 6 agree with the distinct roots of the
polynomial

63x6 − 6x5 + x4 + 76x3 + x2 − 6x+ 63 = 0,

to within fifty 23-adic digits. The roots of this polynomial generate the Hilbert class field of
Q(
√

321).

Example 4.15. The discriminants D1 = 13 and D2 = 621 = 32 ·69 have narrow class numbers
1 and 6 respectively. The prime p = 71 is inert in both real quadratic fields, and it is the
largest prime factor of the order of the Monster group. The values of the cocycle J+

ω13
, where
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ω13 is an RM point of discriminant 13, were computed on the six RM points of discriminant

621, and ostensibly (namely, modulo 7130) give the distinct roots of the polynomial

7x6 + 6x5 + 6x4 + 10x3 + 6x2 + 6x+ 7 = 0,

whose splitting field is the ring class field of conductor 3 of Q(
√

69).

4.3. p-adic intersection numbers. Let p ∈ {2, 3, 5, 7, 13} be a genus zero prime and let τ1

and τ2 be two RM points of Hp with discriminants D1 and D2 respectively.

Definition 4.16. The p-adic intersection number of τ1 and τ2 is the quantity

Jp(τ1, τ2) := Ĵτ1 [τ2] ∈ C×p /〈εZτ1〉,

where Ĵτ1 ∈ H1
f (Γ,M×/εZ1 ) is the rigid meromorphic cocycle of Theorem 3.18.

The following proposition summarises a few of the basic properties of the p-adic intersection
number.

Proposition 4.17. The invariants Jp(τ1, τ2) satisfy:

(1) Jp(−τ1,−τ2) = Jp(τ1, τ2)−1 (mod εZ1 );
(2) Jp(pτ1, pτ2) = Jp(τ1, τ2) (mod εZ1 ).

Proof. To show the first part, let D be the diagonal matrix with entries 1 and −1. This matrix
normalises Γ and hence the cocycle Ĵ ′τ1 determined by

Ĵ ′τ1(γ)(z) := Ĵ−τ1(DγD−1)(−z)

belongs to H1
f (Γ,M×/εZ1 ). A direct calculation shows that

dlog Ĵ ′τ1 = −dlog Ĵτ1 .

It follows from the uniqueness of the rigid meromorphic cocycle Ĵτ1 that

Ĵ ′τ1 = Ĵ−1
τ1 (mod εZ1 ),

and hence, evaluating at τ2, that

Ĵ−τ1 [−τ2] = Ĵτ1 [τ2]−1 (mod εZ1 ).

The first part of the proposition follows. The second assertion is proved by a similar reasoning
and is left to the reader. �

Remark 4.18. Proposition 3.5 suggests that the invariant Jp satisfies the antisymmetry

Jp(τ1, τ2) = Jp(τ2, τ1)−1 (mod 〈εZ1 , εZ2 〉),
which indeed is verified on numerous examples.

Since Ĵτ1 is not quite a rigid meromorphic cocycle but only a cocycle “modulo O×K1
”, it

falls slightly outside the purview of the conjectures formulated in the previous two sections.
Nonetheless, we conjecture that it satisfies a natural extension of the Shimura reciprocity
law, which we only state, for simplicity, in the case where the discriminants D1 and D2 are
relatively prime, so that the associated ring class fields H1 and H2 are linearly disjoint over
Q. As before, let rec denote the reciprocity map of global class field theory:

GD1,D2 := (Cl(D1)o〈Fr∞〉) × (Cl(D2)o〈Fr∞〉)
rec−→ Gal (H1/Q)×Gal (H2/Q) = Gal (H12/Q).

Conjecture 4.19 (Shimura reciprocity). Let h = (h1, h2) be any element of GD1,D2. Then
Jp(τh1 , τh2) belongs to H12 and, for all g = (g1, g2) ∈ GD1,D2,

Jp(τg1h1 , τg2h2) = Jp(τh1 , τh2)rec(g)−1
(mod εZ1 ).
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Example 4.20. Let (D1, D2) = (5, 32) which have class numbers 1 and 2 respectively.
As previously, let ϕ denote the golden ratio. We computed the quantities J3(ϕ, 2

√
2) and

J3(ϕ,−2
√

2) to 800 3-adic digits, obtaining

J3(ϕ, 2
√

2)
?
= (−70 + 35

√
5− 40

√
2 + 40

√
−1 + 16

√
10− 20

√
−5− 70

√
−2 + 28

√
−10)/65

J3(ϕ,−2
√

2)
?
= (−70 + 35

√
5− 40

√
2− 40

√
−1 + 16

√
10 + 20

√
−5 + 70

√
−2− 28

√
−10)/65

modulo εZ1 . Both these values lie in H12, and the Shimura reciprocity law even predicts that
they are complex conjugates of each other in this case, which is clearly seen to be satisfied.

Remark 4.21. The Shimura reciprocity law combined with the properties of Jp(τ1, τ2) stated
in Proposition 4.17 imply certain restrictions on the Galois-theoretic behaviour of these in-
tersection numbers. For instance, the Shimura reciprocity law implies that Jp(τ1, τ2) and
Jp(−τ1,−τ2) are complex conjugates of each other relative to any complex embedding of
H12. (Indeed, the complex conjugation is independent of the choice of complex embedding
since Fr∞ is a well defined central involution in Gal (H12/Q)). It then follows from Part 1 of
Proposition 4.17 that the Jp(τ1, τ2) are complex numbers of norm 1 relative to any complex
embedding of H12, i.e., that

Jp(τ1, τ2)Fr∞ = Jp(τ1, τ2)−1.

In particular, the p-adic intersection number is forced to be trivial whenever H1 and H2 are
both totally real, which occurs when the class numbers in the wide and narrow sense agree
for both D1 and D2.

4.4. Gross-Zagier style factorisations. The goal of this section is to propose a conjectural
recipe for the prime factorisations of the p-adic intersection numbers Jp(τ1, τ2), modelled on
the analogous recipe in [GZ1] for the factorisation of J∞(τ1, τ2) when τ1 and τ2 are CM points
on the complex upper half plane.

We begin by recalling the latter, in a form that best lends itself to an extension to the real
quadratic setting. If τ1 and τ2 are CM points of H with associated ring class fields H1 and
H2, the quantity J∞(τ1, τ2) belongs to the compositum H12 = H1H2. It will be assumed that
complex and q-adic embeddings of H12 for all primes q have been fixed at the outset, so that
one can speak of the normalised valuation at q of J∞(τ1, τ2) for any rational prime q.

Let q be such a prime and let B be the definite quaternion algebra ramified at q and ∞.
A q-oriented maximal order in B is a maximal order R ⊂ B equipped with a surjective
homomorphism ι : R −→ Fq2 called the “orientation at q”. Likewise, a q-oriented quadratic
order is a quadratic order O equipped with a similar structure. An orientation at q in this
sense exists if and only if q does not divide the conductor of O and is inert in its fraction
field. The q-oriented orders form a category in which the morphisms from (R1, ι1) to (R2, ι2)
are ring homomorphisms ϕ : R1 −→ R2 satisfying ι2ϕ = ι1.

Definition 4.22. A q-oriented optimal embedding of a q-oriented quadratic order O ⊂ K
into B is a pair (ϕ,R), where ϕ : K −→ B is an algebra homomorphism and R is a maximal
q-oriented order in B, satisfying ϕ(K) ∩ R = ϕ(O), and for which ϕ is compatible with the
q-orientations on O and on R.

Write Emb(O, B) for the set of oriented optimal embeddings ofO into B. The multiplicative
group B× acts on this set by the rule

b ? (ϕ,R) := (bϕb−1, bRb−1),

and the set of B×-orbits for this action is denoted Σ(O, B). Letting D be the discriminant of
O, the class group Cl(D) of that discriminant acts naturally on Σ(O, B) by setting, for any
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projective O-module a ⊂ K:

(80) a ? (ϕ,R) = (ϕ,R′), where R′ := {b ∈ B s.t. ϕ(a−1)bϕ(a) ∈ R for all a ∈ a}.
Recall the set HD of CM points on the complex upper half plane of discriminant D, and let

H be the associated ring class field. The quotient SL2(Z)\HD is also equipped with a simply
transitive action of Cl(D), which is compatible with the action of Gal (H/K) on the singular
moduli j(τ) via the reciprocity map of global class field theory.

Lemma 4.23. The choice of complex and q-adic embeddings of H determines a canonical
bijection

SL2(Z)\HD −→ Σ(O, B)

which is compatible with the simply transitive actions of Cl(D) on both sides.

Proof. Of crucial importance in constructing this canonical bijection is the fact that for all
τ ∈ HD, the complex number j(τ) (which can be viewed as an element of H via the chosen
embedding of H into C) is the j-invariant of an elliptic curve E/H with complex multi-
plication, admitting a smooth integral model over OH [1/D] and equipped with a canonical
identification O = EndH(E), in which λ ∈ O is sent to the unique endomorphism of E acting
as multiplication by λ on its cotangent space. Since q is inert in K, the unique prime of K
that lies above q splits completely in H/K. Hence j(τ) can be viewed (via our chosen q-adic
embedding of H) as an element of the unramified quadratic extension Cq of Qq, with residue
field Fq2 . Let Ē denote the special fiber of E over the residue field Fq2 . It is a supersingular
elliptic curve, whose endomorphism ring is isomorphic to a maximal order R in the quater-
nion algebra B ramified at q and ∞, equipped with a q-orientation describing the action of
endomorphisms on the cotangent space of Ē. The quadratic order O ⊂ End(Ē) is equipped
with a q-orientation for the same reason. To any τ ∈ HD one can thus associate an optimal
embedding ϕτ : O −→ R of q-oriented orders by taking the composition

ϕτ : O = End(E) ↪→ End(Ē) ' R.
The order R is well defined up to conjugation in B×, and hence the image of the pair (ϕτ , R)
in Σ(O, B) is well-defined. The lemma follows. �

The intersection multiplicity at q of two elements (ϕ1, R1) ∈ Emb(O1, B) and (ϕ2, R2) ∈
Emb(O2, B) is defined by setting [ϕ1 · ϕ2]q := 0 if R1 6= R2 (as q-oriented orders) and, if
R1 = R2 =: R, setting

(81) [ϕ1 · ϕ2]q := max t ≥ 1 s.t. ϕ1(O), ϕ2(O2) have the same image in R/qt−1R.

This definition can be extended to the classes in Σ(O1, B) and Σ(O2, B) represented by
(ϕ1, R1) and (ϕ2, R2) respectively, by setting

(82) (ϕ1 · ϕ2)q :=
∑
b∈B×1

[ϕ1 · bϕ2b
−1]q.

Observe that all but finitely many of the terms in the above sum are 0, because the normaliser
of a given maximal oriented order R in B×1 is equal to R×, which (since B is a definite
quaternion algebra) is a discrete subgroup of a compact Lie group and hence is finite.

Theorem 4.24 (Gross-Zagier). Let τ1 ∈ HD1 and τ2 ∈ HD2 be CM points, and let q - D1D2

be a rational prime. If q is split in either K1 or K2, then ordq J∞(τ1, τ2) = 0. Otherwise, let
ϕ1 ∈ Σ(O1, B) and ϕ2 ∈ Σ(O2, B) be the classes of q-oriented optimal embeddings associated
to τ1 and τ2 respectively via Lemma 4.23. Then

ordq J∞(τ1, τ2) = (ϕ1 · ϕ2)q.
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Let us now turn to the factorisation of Jp(τ1, τ2) where τ1 and τ2 are RM points of Hp.
Assume for simplicity that p is inert in the real quadratic fields K1 = Q(τ1) and K2 = Q(τ2).

In contrast with the study of ordq Jp(τ1, τ2) for q 6= p, which is at least as deep as the
assertion that Jp(τ1, τ2) is algebraic, the calculation of ordp Jp(τ1, τ2) is entirely elementary
and turns out to be instructive. We will therefore start with a formula for this valuation,
which can be phrased in terms of embeddings of the real quadratic orders attached to τ1 and
τ2 in the maximal order R = M2(Z) of the global split quaternion algebra B = M2(Q). The
RM points τ1 and τ2 of discriminants D1 and D2 (which are prime to p by definition) have
associated Z[1/p]-orders of the form O1[1/p] and O2[1/p], where O1 and O2 are the orders of
discriminant D1 and D2 respectively. These points thus give rise to optimal embeddings of
Z[1/p]-orders

ϕ1 : O1[1/p] −→ R[1/p], ϕ2 : O2[1/p] −→ R[1/p],

where R := M2(Z) is the standard maximal order of M2(Q), which is conjugate to any other
maximal order. If τ1 and τ2 reduce to distinct vertices of T , then we set

[ϕ1, ϕ2]p = 0.

Otherwise, we will assume without loss of generality that τ1 and τ2 both reduce to the standard
vertex of Hp, so that they induce a pair of optimal embeddings

ϕ1 : O1 −→ R, ϕ2 : O2 −→ R.

Consider now the classes in Σ(O1, R) and Σ(O2, R) represented by these oriented optimal
embeddings, and recall the p-weighted intersection multiplicity (ϕ1 ·ϕ2)p∞ of (51) in Definition
(3.6). The valuation at p of Jp(τ1, τ2) is intimately connected to this quantity:

Theorem 4.25. Let τ1 and τ2 be RM points on Hp with associated quadratic orders O1 and
O2, attached to classes of optimal embeddings ϕ1 ∈ Σ(O1, R) and ϕ2 ∈ Σ(O2, R). Then

ordp Jp(τ1, τ2) = (ϕ1 · ϕ2)p∞.

Proof. By definition,

Jp(τ1, τ2) = Ĵτ1 [τ2] = Ĵτ1{r, γ2r}(τ2).

Furthermore,

Ĵτ1{r, γ2r}(τ2) =
∏

w1∈Στ1 (r,γ2r)

tw1(τ2) (mod O×Cp).

However, one can observe that

ordp tw1(τ2) = 0 if level(w1) 6= 0.

It follows that

ordp Ĵτ1{r, γ2r}(τ2) = ordp
∏

w1∈Σ◦τ1 (r,γ2r)

tw1(τ2) = ordp J
◦
τ1 [τ2] = ordp J

◦(τ1, τ2).

The theorem now follows from Proposition 3.7. �

We now turn to the (conjectural!) arithmetic intersection number of Jp(τ1, τ2) at a rational
prime q 6= p. For simplicity, it will be assumed also that q - D1D2. The recipe for the q-
adic valuation of this p-adic invariant involves the quaternion algebra B ramified at q and p.
Because B is an indefinite quaternion algebra, all the maximal orders in B are conjugate to
each other. Let R be a fixed choice of maximal order, and fix an identification of B ⊗R with
M2(R). Via this identification, the multiplicative group R×1 acts discretely and co-compactly
on H, and the compact Riemann surface R×1 \H is identified with the set of complex points of
the Shimura curve of level pq.
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Just as before, the sets Σ(O1, R) and Σ(O2, R) of R×1 -conjugacy classes of oriented optimal
embeddings are equipped with natural fixed-point-free actions of the class groups Cl(D1) and
Cl(D2) respectively, and have the same cardinality as HD1

p and HD2
p respectively. Hence, one

can fix bijections

(83) Γ\HD1
p

∼−→ Σ(O1, R), Γ\HD2
p

∼−→ Σ(O2, R)

which are compatible with the actions of Cl(D1) and Cl(D2) on both sides. Given τ1 ∈ HD1
p

and τ2 ∈ HD2
p , let ϕ1 and ϕ2 be the optimal embeddings associated to τ1 and τ2 under these

bijections, and let γ1 and γ2 ∈ R×1 be the images of the fundamental units of O×1 and O×2
under ϕ1 and ϕ2. The q-weighted intersection number of ϕ1 and ϕ2 is defined to be

(ϕ1 · ϕ2)q∞ :=
∑

γ∈γZ2 \R
×
1 /γ

Z
1

[γϕ1γ
−1 · ϕ2]q · δ(γτ1, τ2),

where the symbol [ϕ1 · ϕ2]q is defined exactly as in (81), and the remaining terms in the
expression are otherwise exactly as in Definition 3.6, with M2(Z) replaced by R.

The following conjecture proposes a formula for ordq Jp(τ1, τ2) involving a synthesis of
Theorems 4.24 and 4.25:

Conjecture 4.26. If q is split in either K1 or K2, then ordq Jp(τ1, τ2) = 0. Otherwise, there
is an embedding of H12 into Q̄q for which

ordq Jp(τ1, τ2) = (ϕ1 · ϕ2)q∞,

for all τ1 ∈ HD1
p and all τ2 ∈ HD2

p .

Remark 4.27. In the proof of Lemma 4.23 before the statement of Theorem 4.24, we were able
to give a precise recipe for the assignment τ1 7→ ϕ1 and τ2 7→ ϕ2, which depended on a choice
of complex and q-adic embeddings of H12, by relying on the theory of CM elliptic curves and
their supersingular reductions at the primes above q. These arithmetic ingredients are (at
least for the time being) conspicuously absent in the RM setting, and one must therefore be
content with a slightly vaguer formulation, in which the bijections (83) of transitive Cl(D1)
and Cl(D2)-sets, and their dependence on choices of p-adic and q-adic embeddings of H12, are
not spelled out.

We now give a sampling of the experimental evidence that has been gathered in support
of Conjecture 4.26. James Rickards has devised efficient algorithms for calculating the q-
weighted topological intersection numbers (ϕ1 · ϕ2)q∞ on the Shimura curve of discriminant
pq, and has implemented them on the computer. Rickards’ programs have generated a wealth
of data on q-weighted intersection numbers, running to over 600 pages of tables, which have
been invaluable in verifying Conjecture 4.26. The examples below are but a small sample of
the experiments that were carried out in support of Conjecture 4.26.

Given pairwise coprime positive discriminants D1 and D2 which are non-squares modulo p,
let G12 := Cl(D1)× Cl(D2). For each prime q that is non-split in both K1 and K2, Rickards
defines elements of the integral group ring Z[G12] by choosing base points ϕ1 ∈ Emb(O1, R)
and ϕ2 ∈ Emb(O2, R), letting ϕ′1 be the embedding obtained from ϕ1 by conjugating it by
an element of norm p, and considering the following sums over g = (g1, g2) ∈ G12, viewed as
elements of the integral group ring of G12:

Ip,q(D1, D2) =
∑
g∈G12

(ϕg11 · ϕ
g2
2 )q∞ · g,

I ′p,q(D1, D2) =
∑
g∈G12

(ϕ
′g1
1 · ϕ

g2
2 )q∞ · g.
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Instead of directly identifying the quantity Jp(τ1, τ2) as algebraic numbers, it has turned out
to be easier to work with the related quantities

J+
p (τ1, τ2) = Jp(τ1, τ2)÷ Jp(pτ1, τ2) = J+

τ1 [τ2],

J−p (τ1, τ2) = Jp(τ1, τ2)× Jp(pτ1, τ2),

which are predicted to lie in slightly smaller field extension of Q. A refinement of Conjecture
4.26 (combined with the Shimura reciprocity conjecture) predicts that, after fixing a prime q
of H12 above q, and setting

I+
p,q(D1, D2) = Ip,q(D1, D2) + I ′p,q(D1, D2), I−p,q(D1, D2) = Ip,q(D1, D2)− I ′p,q(D1, D2),

one must have

(84)
∑
g∈G12

ordqg(J
±
p (τ1, τ2)) · g = I±p,q(D1, D2) (mod G12),

where the equality in (84) is to be interpreted in the group ring Z[G12] modulo the multiplica-
tion by group-like elements in G12. The coefficients appearing in the group ring element on the
left of (84) can be computed from the slopes of the Newton polygon at q of the polynomials
in Z[x] satisfied by J+

p (τ1, τ2) and J−p (τ1, τ2) respectively. Our experiments have largely con-
sisted in comparing these Newton slopes with the coefficients that appear in Rickard’s group
ring elements I+

p,q(D1, D2) and I−p,q(D1, D2). The fact that we have consistently obtained a
perfect match in hundreds of experiments can be viewed as convincing empirical evidence for
Conjecture 4.26.

Example 4.28. Let (D1, D2) = (5, 473) and p = 13. The RM values with discriminant 473
of J+

ϕ coincide up to 100 digits of 13-adic precision with the roots of the polynomial

4995x6 − 4141x5 − 1570x4 + 1443x3 − 1570x2 − 4141x+ 4995,

whereas those of Jϕ × J13ϕ satisfy, up to the same precision, the polynomial

999x6 − 2933x5 + 3361x4 − 2829x3 + 3361x2 − 2933x+ 999.

We have that Gal (H473/Q) ' 〈g〉 o 〈Fr2〉, where g is of order 6. The following table lists
the non-trivial intersection numbers computed by James Rickards, as encoded in the group
ring elements Iq,13(5, 473) and I ′q,13(5, 473), alongside the non-trivial Newton slopes of the

ostensibly algebraic numbers J±13(τ1, τ2(j)) for 1 ≤ j ≤ 6.

q Iq,13(5, 473) I ′q,13(5, 473) ordq J
+
13(τ1, τ

(j)
2 ) ordq J

−
13(τ1, τ

(j)
2 )

3 3(1− g3) 0 31,04,−31 31,04,−31

5 (1− g3) (1− g3) 21,04,−21 06

37 (1− g3) 0 11,04,−11 11,04,−11

As predicted by Conjecture 4.26, the last two columns are the multisets of coefficients
appearing in the sum and difference of the group ring elements in the first two columns.

Example 4.29. Let (D1, D2) = (13, 621) and p = 7. We have that Gal (H621/Q) ' 〈g〉o〈Fr7〉,
where g is of order 6. The element g3 corresponde to complex conjugation in Gal (H621/Q).

There is a unique τ1 ∈ Γ\H13
7 , and there are six RM points τ

(1)
2 , . . . τ

(6)
2 ∈ H621

7 . The resulting

invariants J+
7 (τ1, τ

(j)
2 ) coincide up to 200 digits of 7-adic precision with the roots of the

polynomial

4378144x6 − 5762700x5 + 9490680x4 − 11616641x3 + 9490680x2 − 5762700x+ 4378144.
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We compute furthermore that the invariants J−7 (τ1, τ
(j)
2 ) satisfy, up to the same precision, the

polynomial

17932877824x6 + 69949203456x5 + 143523182304x4 + 177833888503x3

+143523182304x2 + 69949203456x+ 17932877824.

The following table shows all the the non-trivial intersection numbers computed by James
Rickards, followed by the non-trivial Newton slopes for these two polynomials.

q Iq,7(13, 621) I ′q,7(13, 621) ordq J
+
7 (τ1, τ

(j)
2 ) ordq J

−
7 (τ1, τ

(j)
2 )

2 (1− g3)(2 + 5g + 2g2) (1− g3)(−3− 2g − 3g2) 31,12,−12,−31 71,52,−52,−71

41 (1− g3) 0 11,04,−11 11,04,−11

47 (1− g3) 0 11,04,−11 11,04,−11

71 (1− g3) 0 11,04,−11 11,04,−11

Example 4.30. Consider (D1, D2) = (13, 285), and set p = 2. The narrow class group of
discriminant 285 = 3 · 5 · 19 is isomorphic to the Klein 4-group V4, generated by involutions
s1, s2. There is, up to translation by Γ̃, a unique τ1 ∈ Γ\H13

2 , and there are four RM points

τ
(1)
2 , . . . τ

(4)
2 in any Cl(285)-orbit in H285

2 .

We have checked that the 2-adic intersection numbers J+
2 (τ1, τ

(j)
2 ) for j = 1, . . . , 4 are

distinct, and coincide with 800 digits of 2-adic precision with the roots of the polynomial

(85)
77360972841758936947502973998239x4 + 140181070438890831721314135099803x3

+209895619549791255199413489899292x2 + 140181070438890831721314135099803x

+77360972841758936947502973998239,

which generate the extension Q(
√
−3,
√
−19) over Q. Likewise, the 2-adic intersection num-

bers J−2 (τ1, τ
(j)
2 ) are also distinct, and coincide with 800 digits of 2-adic precision with the

roots of the polynomial
(86)

1821488696558254611662551x4 + 203729098486198913585801x3 − 3016614164551653876723804x2

+203729098486198913585801x+ 1821488696558254611662551,

which generate the extension Q(
√

57,
√
−195). The constant terms of these polynomials factor

as

77360972841758936947502973998239 = 77 · 192 · 312 · 73 · 1092 · 1512 · 163 · 397 · 457 · 463,

1821488696558254611662551 = 7 · 312 · 73 · 1092 · 1512 · 163 · 397 · 457 · 463.

The first two columns of the table below list the arithmetic intersection numbers computed
by James Rickards, and the last two give the Newton slopes for the polynomials (85) and (86)
at the primes that arose in these factorisations:

q Iq,2(13, 285) I ′q,2(13, 285) ordq J
+
2 (τ1, τ

(j)
2 ) ordq J

−
2 (τ1, τ

(j)
2 )

7 (1− s1)(1 + 2s2) (1− s1)(1 + 3s2) 51,21,−21,−51 11,02,−11

19 (1− s1)(1− s2) (1− s1)(1− s2) 22,−22 04

31 (1− s1)(1− s2) 0 12,−12 12,−12

73 (1− s1) 0 11,02,−11 11,02,−11

109 (1− s1)(1− s2) 0 12,−12 12,−12

151 (1− s1)(1− s2) 0 12,−12 12,−12

163 (1− s1) 0 11,02,−11 11,02,−11

397 (1− s1) 0 11,02,−11 11,02,−11

457 (1− s1) 0 11,02,−11 11,02,−11

463 (1− s1) 0 11,02,−11 11,02,−11
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Once again, the two last columns are precisely the coefficients of the sum and difference,
respectively, of the group ring elements Iq,2(13, 285) and I ′q,2(13, 285) given in the first two
columns of the table.

Now, let p = 7. We computed that the invariants J+
7 (τ1, τ

(j)
2 ) for j = 1, . . . , 4 coincide to

at least 200 digits of 7-adic precision with the solutions of

1936x4 + 308x3 − 1887x2 + 308x+ 1936 = 0.

Likewise, the invariants J−7 (τ1, τ
(j)
2 ) satisfied, to the same precision, the polynomial

12390400x4 − 41050240x3 + 57394209x2 − 41050240x+ 12390400 = 0.

The corresponding table in this situation is:

q Iq,7(13, 285) I ′q,7(13, 285) ordq J
+
7 (τ1, τ

(j)
2 ) ordq J

−
7 (τ1, τ

(j)
2 )

2 2(1− s1)(2 + s2) 2(1− s1)(−1− 2s2) 22,−22 62,−62

5 (1− s1)(1− s2) (1− s1)(−1 + s2) 04 22,−22

11 (1− s1)(1− s2) 0 12,−12 12,−12

We similarly verified Conjecture 4.26 for all other prime pairs (p, q) in this example.

5. Gross-Stark units and Stark-Heegner points

The goal of this brief concluding chapter is to make the bridge between the constructions
of this paper and those of [DD] and [Da], which are based on the RM values of partial lifts of
certain rigid analytic cocycles of weight two under the logarithmic derivative map

dlog : H1
f (Γ,O×) −→ H1

par(Γ,O2).

These lifts give rise to arithmetically significant rigid analytic cocycles of weight zero modulo
certain p-adic periods, whose values at RM points lead to analogues of elliptic units and
Heegner points in the setting of ring class fields of real quadratic fields.

5.1. Multiplicative cocycles and the multiplicative Schneider-Teitelbaum lift. The
logarithmic derivative gives a natural injection

dlog : O×/C×p −→ O2

sending the local section f to f ′/f , where f ′ denotes the derivative with respect to τ . It
induces a similar map

(87) dlog : MSΓ(O×/C×p ) −→ MSΓ(O2)

on the space of Γ-invariant modular symbols. The space dlog(O×) ⊂ O2 is called the space
of rigid differentials of the third kind on Hp, and consists of differentials whose image under
∂ are Z-valued harmonic functions on T ∗1 . The image of (87) is likewise called the space of
rigid analytic modular symbols of the third kind.

Proposition 5.1. There is a Hecke equivariant map

L×ST : MSΓ0(p)(Z) −→ MSΓ(O×/C×p )
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for which the diagram

MSΓ0(p)(Z)
L×ST //

� _

��

MSΓ(O×/C×p )

dlog
��

MSΓ0(p)(Cp)
LST // MSΓ(O2)

commutes.

The map L×ST is called the multiplicative Schneider-Teitelbaum lift. It is constructed as a

multiplicative refinement of (40), by setting, for each m ∈ MSΓ0(p)(Z),

(88) L×ST(m){r, s}(z) := ×
∫
P1(Qp)

(z − t)dµm{r, s}(t) := lim
{Uα}

∏
α

(z − tα)m{r,s}(Uα),

where the limit of “Riemann products” on the right-hand side is taken over finer and finer
coverings {Uα} of P1(Qp) by open balls, the point tα is any sample point in Uα, and

m{r, s}(Uα) := m{γr, γs}, with γ ∈ Γ, γUα = Zp.

Given

J̄ ∈ MSΓ(O×/C×p ) = H1
par(Γ,O×/C×p ) ⊂ H1(Γ,O×/C×p ),

it is natural to consider its lifts to “genuine” multiplicative classes in H1(Γ,O×). The obstruc-
tion to lifting J̄ to such a class lies in H2(Γ,C×p ) and is the image of J̄ under the connecting
homomorphism δ in the following long exact cohomology sequence:

· · · // H1(Γ,C×p ) // H1(Γ,O×) // H1(Γ,O×/C×p )
δ // H2(Γ,C×p ) // · · ·

Definition 5.2. The class κ := δ(J̄) ∈ H2(Γ,C×p ) is called the lifting obstruction attached to

J̄ . A subgroup Q ⊂ C×p is said to trivialise this lifting obstruction if the natural image of κ

in H2(Γ,C×p /Q) is trivial.

IfQ trivialises the lifting obstruction for J̄ , then this class lifts to an element of H1(Γ,O×/Q).
This lift is unique up to elements of order 12, since the abelianisation of Γ is a quotient of
(Z/12Z) and therefore

H1(Γ,C×p /Q) ⊂ (C×p /Q)[12].

In conclusion, after replacing Q by a slightly larger group (containing Q with finite index)

one can thus associate to any modular symbol m ∈ MSΓ0(p)(Z) a canonical rigid analytic
cocycle

(89) J ∈ H1
par(Γ,O×/Q)

of weight zero “modulo Q”. The trivialising subgroup Q is a subtle invariant of m and a
careful analysis is required to identify it in each case.

The guiding theme of this chapter is that the RM values of rigid analytic modular cocycles
obtained in (89) lead to algebraic invariants in ring class fields of the associated real quadratic
field.
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5.2. The universal cocycle. We illustrate this principle with the simple “toy example” of
the multiplicative universal modular cocycle

J̄univ = L×ST(muniv),

which was already introduced in (44) and is given by

J̄univ{r, s}(z) =

(
z − s
z − r

)
(mod C×p ).

Proposition 5.3. The lattice Quniv of C×p generated by −1 and p trivialises the lifting ob-

struction for J̄univ. More precisely, the class J̄univ admits a canonical lift to a class in
MSΓ(O×/Quniv).

Proof. Given r and s in P1(Q), let r = a/b and s = c/d be their expressions as fractions in
lowest terms, adopting the usual convention that ∞ = 1/0. Then the expression

(90) Juniv{r, s}(z) = ±dz − c
bz − a

defines an SL2(Z)-invariant modular symbol modulo ±1, since SL2(Z) preserves the set of
column vectors (a, b) with gcd(a, b) = 1. The image of the column vector (a, b) under a
matrix γ ∈ Γ is a vector (a′, b′) for which gcd(a, b) ∈ Quniv, and hence (90) defines a Γ-
invariant modular symbol with values in O×/Quniv. �

We now consider the RM values of the lifted cocycle Juniv. If F (x, s) = Ax2 +Bxy+Cy2 is

a binary quadratic form of discriminant D = B2−4AC, then its root is τF = (−B+
√
D)/2A,

while its stabiliser is generated by

γF =

(
u−Bv −2Cv

2Av u+Bv

)
, u2 −Dv2 = 1,

where u + v
√
D is a fundamental solution to Pell’s equation. A straightforward calculation

shows that

Juniv[τF ] = Juniv{r, γτr}(τF ) = u± v
√
D (mod Z)[1/p]×,

for any r ∈ P1(Q).
It follows that the cocycle Juniv takes algebraic values at RM points, albeit somewhat

uninteresting ones, since they always belong to the field of “real multiplication” and are just
a power of the fundamental unit in this field. More precisely, Juniv[τ ] is a fundamental unit
in the order associated to τ .

To obtain more interesting class invariants it is necessary to consider the RM values of
analytic cocycles arising from the multiplicative Schneider-Teitelbaum lifts of more general
elements of MSΓ0(p)(Z).

5.3. The Dedekind-Rademacher cocycle and Gross-Stark units. Let

ϕDR ∈ H1(Γ0(p),Z)

be the Dedekind-Rademacher homomorphism defined by the rule

(91) ϕDR

(
a b
pc d

)
=

{
(p− 1)b/d if c = 0;
(p−1)(a+d)

cp + 12 · sign(c) ·Dp
(

a
p|c|

)
if c 6= 0,

where Dp(x) := D(x)−D(px) is the p-stabilisation of the usual Dedekind sum

D(a/m) :=
m−1∑
x=1

B1(x/m)B1(ax/m), B1(x) := x− [x]− 1/2.
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The vector space H1(Γ0(p),Q) is endowed with the usual action of the Hecke operators Tn
(with n ≥ 1), with Tp denoting the Atkin operator which is customarily denoted Up in the
literature. The Dedekind-Rademacher homomorphism belongs to the one-dimensional Hecke
eigenspace of vectors ϕ ∈ H1(Γ0(p),Q) satisfying

(92) Tn(ϕ) = σ′1(n)ϕ, with σ′1(n) =
∑
d|n,p-d

d.

(Cf. for instance [Ma][§II.2].) The class ϕDR does not lie in the parabolic cohomology but the
multiplicative Schneider Teitelbaum lift admits a simple extension

L×ST : H1(Γ0(p),Z) −→ H1(Γ,O×/Q×p ).

Let

J̄DR := L×ST(ϕDR) ∈ H1(Γ,O×/Q×p )

be the multiplicative Schneider-Teitelbaum transform of ϕDR , and let

κDR ∈ H2(Γ,Q×p )

denote the associated lifting obstruction.

Conjecture 5.4. There is a lattice QDR containing pZ with finite index which trivialises κDR,
and for which J̄DR lifts uniquely to a class JDR ∈ H1(Γ,O×/QDR).

If τ ∈ Hp ∩K is an RM point belonging to the real quadratic field K, the set of matrices

Rτ :=

{(
a b
c d

)
∈M2(Z[1/p]) such that cτ2 + (d− a)τ − b = 0

}
is a commutative subring of M2(Z[1/p]) which is isomorphic to a Z[1/p]-order in K (and hence
in particular is free of rank two as a Z[1/p]-module). Class field theory identifies the Picard
group (in the narrow sense) of R = Rτ with the Galois group of an abelian extension of K:
the narrow ring class field of K attached to R, denoted H = Hτ , whose degree over K is equal
to the narrow class number of R. The field H contains the ring class field attached to R, a
totally real abelian extension H+ of K whose degree is equal to the class number of R. In
particular,

[H : H+] =

{
1 if R contains a unit of negative norm;
2 otherwise.

The following is a natural refinement of Conjecture 2.14 of [DD]:

Conjecture 5.5. For any RM point τ ∈ Hp∩K, the value JDR[τ ] belongs to OH [1/p]×, where
H is the narrow ring class field of K attached to the order Rτ .

Remark 5.6. Conjectures 5.4 and 5.5 are suggested by the findings of [DD], which considers
a “modified Dedekind-Rademacher symbol”

ϕ′
DR
∈ H1

par(Γ0(pN),Z),

where N is an auxiliary integer that is prime to p. This class has the same Hecke eigenvalues
as the class ϕDR at all the good Hecke operators Tn indexed by n that are relatively prime
to N , as described in (92). More concretely, it is a linear combination of conjugates of ϕDR

by integral matrices of determinant dividing N which are upper-triangular modulo p. The
multiplicative Schneider-Teitelbaum transform

ST×(ϕ′
DR

) ∈ H1
par(Γ

′,O×/Q×p )
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is invariant under the p-arithmetic congruence subgroup

Γ′ :=

{(
a b
c d

)
∈ Γ with N |c.

}
.

Prop. 2.8 of [DD] shows that this class lifts uniquely to a class J ′DR ∈ MSΓ′(O×) up to torsion.
Conjecture 2.14 of loc.cit. predicts that the values of J ′DR at RM points are powers of Gross-
Stark p-units in the idoneous ring class field. This conjecture, which has been extensively
tested numerically in [DD], provides a basic instance in which rigid analytic multiplicative
cocycles can be used to construct non-trivial invariants in ring class fields of real quadratic
fields.

Remark 5.7. Conjecture 5.4 above has the virtue of not relying on any auxiliary level structure,
and in that sense is somewhat more natural than the conjectures of [DD]. It would be
interesting to refine the techniques of loc.cit. to prove it, make a careful study of the minimal
lattice Q ⊂ Q×p that trivialises the lifting obstruction for J̄DR, and provide numerical evidence
for Conjecture 5.5. We have not attempted to carry this out, since Conjectures 5.4 and 5.5
are stated solely for motivation and are tangential to our primary goal of building a theory of
singular moduli for real quadratic fields.

5.4. Elliptic modular cocycles and Stark-Heegner points. Let E be an elliptic curve
of prime conductor p, and let

L(E, s) =

∞∑
n=1

ann
−s

denote its associated Hasse-Weil L-series. The Shimura Taniyama conjecture proved by Wiles
asserts that the generating series

fE(z) =
∞∑
n=1

ane
2πinz

is the fourier expansion of a modular form of weight two on the Hecke congruence group Γ0(p).
There are two distinguished elements

ϕ+
E , ϕ

−
E ∈ MSΓ0(p)(Z),

satisfying

Tnϕ
+
E = an · ϕ+

E , Tnϕ
−
E = an · ϕ−E , for all n ≥ 1,

and ∫ s

r
(2πi)fE(z)dz = ϕ+

E{r, s} · Ω
+
E + ϕ−E{r, s} · Ω

−
E ,

where Ω+
E and Ω−E are real and imaginary periods attached to E.

Let

J̄+
E , J̄

−
E ∈ MSΓ(O×/Q×p )

denote the multiplicative Schneider-Teitelbaum lifts of ϕ+
E and ϕ−E respectively, and let κ+

E

and κ−E ∈ H2(Γ,Q×p ) denote the associated lifting obstructions. Recall the Tate p-adic period

qE ∈ Q×p attached to E, and let

ΨE,p : C×p /qZE −→ E(Cp)

denote the Tate uniformisation of E.
Theorem 1 of [Da] can be stated as follows:

Theorem 5.8. There are lattices Q+
E and Q−E ⊂ Q×p which are commensurable with the Tate

lattice qZE and trivialise κ+
E and κ−E respectively.
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After slightly enlarging the lattices Q±E , the classes J̄±E lift uniquely to classes J±E ∈
H1(Γ,O×/Q±E). Let t be an integer for which (Q±E)t ⊂ qZE . After replacing the multiplicative

cocycles J±E by their t-th powers power and reducing modulo qZE , we may view J+
E and J−E as

elements of H1(Γ,O×/qZE), whose values at RM points τ ∈ Hp can then be viewed as elements
of E(Cp) by applying the Tate uniformisation ΨE,p. One thus obtains two p-adic variants

J+
E , J−E : Γ\HRM

p −→ E(Cp)

of the classical modular parametrisation attached to E.

Conjecture 5.9. Let E be an elliptic curve of conductor p. For all RM points τ ∈ Hp,
(1) the point J+

E [τ ] ∈ E(Cp) is defined over the ring class field attached to τ ;

(2) the point J−E [τ ] ∈ E(Cp) is defined over the narrow ring class field attached to τ , and
is in the (−1)-eigenspace for the action of complex conjugation.

This conjecture suggests that the multiplicative modular cocycles J±E attached to E carry
arithmetic information about E that is just as rich and useful as the classical modular
parametrisation, allowing the construction of global points on E that cannot be obtained
(as far as we know) from the more classical parametrisations of elliptic curves by modular or
Shimura curves. Extensive numerical evidence for this conjecture has been gathered in [Da],
[DG], [DP], and (in much more general settings) in [GM1] and [GM2].

Conjecture 5.9 gives further motivation for wanting a better understanding of the RM
values of rigid meromorphic cocycles. A genuine understanding of the phenomenon underlying
their algebraicity would lead to new perspective on the construction of rational points on
elliptic curves, a question which is a major stumbling block in understanding the Birch and
Swinnerton-Dyer conjecture, and where so far Heegner points arising from the theory of
complex multiplication have provided the only unconditional approach.
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