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Abstract

Heegner points play an outstanding role in the study of the Birch and Swinnerton-Dyer
conjecture, providing canonical Mordell–Weil generators whose heights encode first
derivatives of the associated Hasse–Weil L-series. Yet the fruitful connection between
Heegner points and L-series also accounts for their main limitation, namely that they
are torsion in (analytic) rank > 1. This partly expository article discusses the generalised
Kato classes introduced in Bertolini et al. (J Algebr Geom 24:569–604, 2015) and Darmon
and Rotger (J AMS 2016), stressing their analogy with Heegner points but explaining
why they are expected to give non-trivial, canonical elements of the idoneous Selmer
group in settings where the classical L-function (of Hasse–Weil–Artin type) that governs
their behaviour has a double zero at the centre. The generalised Kato class denoted
κ (f, g, h) is associated to a triple (f, g, h) consisting of an eigenform f of weight two and
classical p-stabilised eigenforms g and h of weight one, corresponding to odd
two-dimensional Artin representations Vg and Vh of Gal (H/Q) with p-adic coefficients
for a suitable number field H. This class is germane to the Birch and Swinnerton-Dyer
conjecture over H for the modular abelian variety E overQ attached to f . One of the
main results of Bertolini et al. (2015) and Darmon and Rotger (J AMS 2016) is that
κ (f, g, h) lies in the pro-p Selmer group of E over H precisely when L(E, Vgh, 1) = 0, where
L(E, Vgh, s) is the L-function of E twisted by Vgh := Vg ⊗ Vh. In the setting of interest,
parity considerations imply that L(E, Vgh, s) vanishes to even order at s = 1, and the
Selmer class κ (f, g, h) is expected to be trivial when ords=1L(E, Vgh, s) > 2. The main new
contribution of this article is a conjecture expressing κ (f, g, h) as a canonical point in
(E(H) ⊗ Vgh)GQ when ords=1L(E, Vgh, s) = 2. This conjecture strengthens and refines the
main conjecture of Darmon et al. (Forum Math Pi 3:e8, 2015) and supplies a framework
for understanding the results of Darmon et al. (2015), Bertolini et al. (2015) and Darmon
and Rotger (J AMS 2016).
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1 Background andmotivation
The theme of modularity of p-adic Galois representations has occupied centre stage in
number theory for the last several decades, and Robert Coleman has been a major figure
inmany of its key developments, notably through the theory ofColeman families of p-adic
modular forms and of the Coleman–Mazur eigencurve parameterising these families and
their associatedGalois representations. Byway of background andmotivation, this section
explainshowmuchof theprogress achievedon theBirch andSwinnerton-Dyer conjecture,
including the results of [11,15] and [19], can be viewed as part of the larger programme
of understanding the modularity of (non-semisimple) p-adic Galois representations.
One of the most celebrated modularity results is the statement that all elliptic curves

overQ arise as quotients of suitable modular curves: more precisely, that an elliptic curve
E overQ of conductor N is equipped with a surjective parameterisation

πE : X0(N ) −→ E, (1)

where X0(N ) is the modular curve attached to Hecke’s congruence subgroup �0(N ). This
was proved in [37,40], and [12] by showing that the p-adic representation

H1(E) := H1
et(EQ̄,Qp)(1) = (lim←,n

E[pn]) ⊗Zp Qp

of GQ := Gal (Q̄/Q) arises as a quotient of the étale cohomology group1

H1(X0(N )) := H1
et(X0(N )Q̄,Qp(1)).

The existence of a Galois-equivariant projection

πE : H1(X0(N )) −→ H1(E) (2)

is the real content of the breakthrough in [40] and [37], the ostensibly stronger geometric
version (1) being deduced from it by invoking the Tate conjecture for curves.2

Let E′ be an open subvariety of E, i.e. the complement of a zero-dimensional subvariety
� of E over Q. The p-adic Galois representation H1(E′) sits in the middle of the short
exact excision sequence

0 −→ H1(E) −→ H1(E′) −→ H0(�)0 −→ 0

of étale cohomology groups, where the subscript of 0 denotes the degree 0 elements of
H0(�). By analogy with (2), the curve E′ is (provisionally) said to be modular if H1(E′)

1The systematic shorthand Hi(X) := Hi
et(XQ̄,Qp(i)) for any variety X over Q is adopted henceforth to lighten the

notations.
2Subsequently, (2) has been generalised to a host of other p-adic Galois representations, while analogues of (1) remain
unavailable in all but the simplest geometric settings.
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arises as a subquotient of H1(Y ), where Y is an open sub-Shimura variety of X0(N )—the
latter being defined, in the style of La Palice, as the complement of a closed sub-Shimura
variety.
To completely describe the open sub-Shimura varieties of the modular curve X0(N )

over Q, note that the latter is the coarse moduli space of elliptic curves A with a marked
subgroup scheme of order N , and that its closed sub-Shimura varieties are obtained by
imposing additional endomorphism rings, which can only be equal to orders in quadratic
imaginary fields. Given such an order O ⊂ K , the associated closed sub-Shimura variety
�O ⊂ X0(N ) consists of CM points for O and is the coarse moduli space of elliptic
curves A with level N structure equipped with an optimal embedding ι : O −→ End(A)
(respecting the level structure) and acting in a prescribed way on the cotangent space of
A. By the theory of complex multiplication, the 0-dimensional variety �O is isomorphic
over K (at least, when the discriminant ofO is prime to N ) to φK (N ) copies of spec(HO),
where φK (N ) is the number of primitive ideals of K of norm N and HO is the ring class
field of K attached to O, whose Galois group over K is canonically identified with the
Picard group ofO via global class field theory.
The complements

YO(N ) := X0(N ) − �O

thus provide an exhaustive list of the open sub-Shimura varieties of X0(N ). Given the
modularity of E, the modularity of E′ amounts to the existence of a Galois-equivariant
inclusion

i : H0(�)0 −→ H0(�O)0

for suitableO, realisingH1(E′) as a subquotient ofH1(YO(N )) via the pushforward under
πE and the pullback under ι of the first row in the following diagram with exact rows:

0 H1(X0(N ))

πE

H1(YO(N ))

?

H0(�O)0 0

0 H1(E) H1(E′) H0(�)0

i

0.

(3)

Consider the simplest non-trivial setting where � = {P1, P2} ⊂ E(Q) consists of two
points defined over Q, so that H0(�)0 = Qp with trivial Galois action. The resulting
extension

0 H1(E) H1(E′) Qp 0 (4)

encodes the image of the point P2 − P1 ∈ E(Q) under the connecting homomorphism

δ : E(Q) −→ H1(Q, H1(E)) := Ext1GQ
(Qp, H1(E))

of Kummer theory, where the Ext group is taken in the category of continuous p-adic
representations of GQ. The following statement, which gives a “modularity criterion”
for E′ and encapsulates many of the deepest theorems on the Birch and Swinnerton-
Dyer conjecture obtained in the last decades, is of course expected to hold for all ellip-
tic curves E, but the reader is cautioned that the proof of the implication (d) ⇒ (a)
currently requires that E be a semistable elliptic curve having at least one odd prime
of non-split multiplicative reduction or at least two odd primes of split multiplicative
reduction.
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Theorem 1.1 Assume that the point P2−P1 is of infinite order in E(Q). Then the following
are equivalent:

(a) The curve E′ = E\{P1, P2} is modular;
(b) the Hasse-Weil L-series L(E, s) has a simple zero at s = 1;
(c) the point P2 − P1 generates E(Q) ⊗ Q and LLI(E/Q) is finite;
(d) for all primes p, the group Ext1fin(Qp, H1(E)) of extensions of p-adic representations of

the Galois group ofQ that are cristalline at p is one-dimensional overQp.

Sketch of proof The modularity of E′ amounts to the statement that there exists an order
O in an imaginary quadratic field K such that the extension (4) can be obtained as the
pullback of (3) via an inclusion i : Qp −→ H0(�O)GQ , whose image contains a degree 0
divisor

DK ∈ Div0(�O)GQ ⊂ Div0(X0(N ))(Q).

This means that the point P1 − P2 ∈ E(Q) is a nonzero multiple of the Heegner point
PE,K := πE(DK ).
The implication (a)⇒(b) therefore follows from theGross–Zagier formula [21] express-

ing the height of PE,K as a nonzero multiple of

L′(E/K, 1) = L′(E, 1) · L(EK , 1),

where EK is the quadratic twist of E by K . The existence of a suitable K for which
L(EK , 1) 	= 0 follows from a non-vanishing result ofWaldspurger or can be deduced from
analytic number theory techniques (cf. [28]).
The implication (b)⇒ (c) was subsequently proved by Kolyvagin [25], who parlayed the

non-triviality of PE,K into a bound on the Mordell–Weil rank and the Selmer group of E
over K .
The implication (c) ⇒ (d) is a direct consequence of the definitions: in fact (d) is osten-

sibly weaker than (c), Selmer groups being less subtle to control than Mordell–Weil and
Shafarevich–Tate groups.
The striking implication (d) ⇒ (a) follows from Skinner’s “converse of the Gross–

Zagier–Kolyvagin Theorem” [33]. This last step is the most recent and combines several
new ingredients: the powerful techniques developed by Skinner and Urban to prove the
Iwasawa–Greenberg main conjecture for elliptic curves overQ [35], an important variant
explored by Xin Wan in his Ph.D. thesis [39], and the p-adic analogue of [21] formulated
and proved in [8].
More precisely, choose a prime p ≥ 5 of good ordinary reduction for E such that E[p]

is an irreducible GQ-representation and the image of the restriction map Selp(E) −→
E(Qp)/pE(Qp) does not lie in the image of E(Qp)[p]. A result of Waldspurger ensures the
existence of an odd quadratic character χ such that L(E,χ , 1) 	= 0, which can be chosen
so that χ (2) = χ (p) = 1. Let K denote the imaginary quadratic field associated to χ .
The p-adic Selmer group Ext1K,fin(Qp, H1(E)) of E over K (defined as an Ext group in the
category of cristalline representations of GK ) decomposes as a direct sum of eigenspaces

Ext1K,fin(Qp, H1(E)) � Ext1fin(Qp, H1(E)) ⊕ Ext1K,fin(Qp, H1(E))−

with respect to the action of complex conjugation. Because L(E,χ , 1) 	= 0, the results
of Kolyvagin (or of Kato) imply the triviality of Ext1K,fin(Qp, H1(E))−. Assumption (d)
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therefore implies that Ext1K,fin(Qp, H1(E)) is one-dimensional overQp. One can then argue
as in [33]. Namely, the running hypotheses ensure that both Lemma 2.3.2 and Proposition
2.7.3 of loc.cit. apply, and hence, that a p-adic L-function of the type that occurs in [39]
and [8] (which interpolates critical values of the L-series of the Rankin convolution of the
modular form f associated toE with suitableHecke characters ofK of higher infinity-type)
does not vanish at the trivial point, which lies outside its region of classical interpolation.
This in turn implies, in the light of [33, Corollary 2.6.2] resting on the variant of the
Gross–Zagier formula of [8], that the Heegner point PE,K has non-trivial p-adic formal
group logarithm and is therefore non-torsion. As already explained, the non-triviality of
PE,K is equivalent to (a), and the implication (d) ⇒ (a) follows. �

The Birch and Swinnerton-Dyer conjecture admits an extension to elliptic curves
twisted by Artin representations which arises very naturally in the context of the modu-
larity questions framed above. Let


 : Gal (H/Q) ↪→ Aut(V
) � GLn(Q̄p)

be an n-dimensional representation of the Galois group of a finite extension H/Q, a so-
called Artin representation, viewed as having coefficients in Q̄p. The pair (E, 
) gives rise
to the Hasse–Weil–Artin L-series

L(E, 
, s) :=
∏

�

det(1 − �−s(Fr−1
� )(H1(E)⊗V
)I� )

−1,

where the product is taken over the rational primes �, the arithmetic frobenius element
at � is denoted by Fr�, and I� denotes the inertia group at �. The equivariant Birch and
Swinnerton-Dyer conjecture for E and 
, denoted BSD(E, 
), asserts that

ords=1L(E, 
, s) = dimQ̄p (E(H ) ⊗ V
)GQ . (5)

As a first step to understanding BSD(E, 
), it is natural to ask which κ ∈ Ext1fin(V
 , H1(E))
can be realised as a subquotient of a suitable H1(YO(N )). The Artin representation
H0(�O)0 which appears in the upper rightmost term of the diagram (3) is readily analysed
using the theory of complex multiplication. Namely, the slightly larger Artin representa-
tion H0(�O) decomposes as a direct sum

H0(�O) ⊗ Q̄p = ⊕φK (N )
j=1 Wj, whereWj = ⊕ψVj(ψ),

with Vj(ψ) ⊂ Vψ := IndQKψ .

In this equation, the seconddirect sum is taken over the non-trivial, Q̄p-valued, finite order
characters ψ of Gal (HO/K ) modulo the involution ψ �→ ψ−1, and Vj(ψ) is a non-trivial
irreducible constituent of the two-dimensional representation Vψ obtained by inducing
the Galois character ψ from GK to GQ. The representation Vψ is irreducible precisely
whenψ 	= ψ−1, and in this case a non-trivial class κ ∈ Ext1fin(Vψ , H1(E)⊗ Q̄p) is expected
to be modular if and only if (any of) the analogues of conditions (b)–(d) of Theorem 1.1
are satisfied, namely:

(b’) The Hasse–Weil–Artin L-series L(E, Vψ , s) has a simple zero at s = 1;
(c’) the representationVψ occurswithmultiplicity one inE(H )⊗Q̄p, and theVψ -isotypic

component of the LLI(E/H ) is finite;
(d’) the group Ext1fin(Vψ , H1(E) ⊗ Q̄p) is one-dimensional over Q̄p, and generated by κ .
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Although such a precise result does not seem to appear in the literature, all the ingredients
needed to prove it seem to be available in principle.
The rather narrow notion of modularity described above has a few visible drawbacks:

(1) Very few Artin representations arise in the cohomology of the 0-dimensional
Shimura varieties �O , which are not even rich enough to capture all of the irre-
ducible two-dimensional Artin representations of Q. The open Shimura varieties
YO(N ) thus appear to give no purchase on BSD(E, 
) when 
 is not induced from a
ring class character of an imaginary quadratic field.

(2) Theorem 1.1 suggests that the modularity of elements of Ext1fin(Vψ , H1(E)) is purely
a “rank one phenomenon”: if this Ext group has dimension > 1, none of its elements
are expected to be realised in subquotients of any H1(YO(N )).

Inorder to relate a larger class of non-semisimpleGalois representations tomodular forms,
it becomes desirable to relax the notion of modularity. One way in which one might try to
do this is by replacing the curvesYO(N )withmore general “openShimura varieties”. These
should include all the varieties whose cohomology (at least, after semisimplification) is
directly related to automorphic forms via a suitable generalisation of the Eichler–Shimura
congruence, and would eventually encompass the complements of sub-Shimura varieties
in larger Shimura varieties, as well as Kuga–Sato varieties and other natural varieties
fibred over Shimura varieties, the complements of Heegner cycles in such varieties, and so
on. With this expanded notion of modularity, the programme of characterising the non-
semisimple Galois representations that are modular becomes richer and more subtle. See
[9] for a fragment of experimental mathematics that might be viewed as fitting into this
programme. The following question seems like it might repay further investigation, given
the paucity of evidence, both theoretical and experimental, that has been gathered around
it so far:

Question 1.2 Let V1 and V2 be Galois representations for which hom(V1, V2) is irre-
ducible. Suppose that there is a non-trivial κ ∈ Ext1fin(V1, V2) arising as a subquotient of
the cohomology of an openShimura variety. Is Ext1fin(V1, V2) necessarily one-dimensional?

If the answer to this question were “yes”, it would imply that the open curve E−{P1, P2}
discussed in Theorem 1.1 is never modular when rank(E(Q)) > 1. (But see the inspiring
article [29], as well as the striking ongoing work of Zhiwei Yun and Wei Zhang in the
function field case, for some tantalising ideas in the opposite, more optimistic direction.)
A second idea for enlarging the class of p-adic Galois representations deemed to be

modular is to allow p-adic limits of Galois representations arising in the cohomology
of (open) Shimura varieties. This idea is very natural in the light of the classical work
of Deligne–Serre on Artin representations attached to weight one forms, whereby such
Artin representations are obtained by piecing together theGalois representations attached
to modular forms of higher weights which are realised in the cohomology of Kuga–
Sato varieties. It is via this broader notion of modularity that all odd, irreducible two-
dimensional Artin representations of Q can be related to modular forms. The idea of
realising automorphic Galois representations as p-adic limits has become pervasive in
the subject, and led to important advances: for example, it plays a key role in the recent
construction [22] byHarris, Lan, Taylor, andThorne of Galois representations attached to
non-self-dual automorphic forms onGLn. Evenmore germane to this article, p-adic limits
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of automorphic Galois representations appear to capture non-trivial extension classes
going beyond settings of “multiplicity one”, as is illustrated by the following theorem of
Skinner and Urban [34, Thm. B]:

Theorem 1.3 Let E be an elliptic curve overQ. If L(E, s) vanishes to even order≥ 2at s = 1,
then the Selmer group Ext1fin(Qp, H1(E)) of E contains at least two linearly independent
modular classes.

The modular classes in this theorem are constructed as p-adic limits of geometric Galois
representations in the cohomology of Shimura varieties associated to the unitary group
U (2, 2). Although these geometric Galois representations are believed to be semisimple,
Theorem 1.3 rests on the fact that this feature need not persist in the limit.
The primary goal of this article is to discuss a different approach for constructing canon-

ical extension classes of 
 by H1(E) for a large class of self-dual Artin representations 


of dimension 4 (and their lower-dimensional subrepresentations, in case 
 is reducible)
arising as the tensor product 
 = 
1 ⊗ 
2 of a pair of odd, two-dimensional Artin repre-
sentations. The construction of these classes is one of the main results of [19] (resp. [11])
when both 
1 and 
2 are irreducible (resp.when exactly one of 
1 and 
2 is irreducible),
and is based on p-adic limits of non-semisimple, but “geometrically modular” Galois rep-
resentations. These limit classes are referred to as generalised Kato classes because their
construction is inspired by the seminal work [23] of Kato (cf. also [6,32]) on BSD(E,χ )
for χ a Dirichlet character. Like Heegner points in the setting of BSD(E, Vψ ), generalised
Kato classes enjoy close relations to (p-adic) Hasse–Weil–Artin L-functions attached to E
and 
, but unlike Heegner points, they are expected to generate a non-trivial subgroup of
the Selmer group attached to E and 
 precisely when ords=1L(E, 
, s) = 2. The formulae
of [19] (cf. Corollary 3.6 below) relating the linear independence of two generalised Kato
classes to the non-vanishing of certain p-adic L-series can thus be regarded as a p-adic
Gross–Zagier formula “in analytic rank two”.
The main new contribution of this article is a conjecture expressing the same gen-

eralised Kato classes as canonical elements in (E(H ) ⊗ V
)GQ when this latter space is
two-dimensional. This conjecture strengthens and refines the “elliptic Stark conjecture”
of [15], and provides a framework for understanding the results of [11,15] and [19]. The
settings in which 
 is reducible often take on special arithmetic interest and are described
in detail in the last chapter.

2 Hida families and periods for weight one forms
This section provides background on certain canonical structures associated to a weight
one form g , arising from the Hida families specialising in weight one to (a p-stabilisation
of) g . These are important for the conjectures of Sect. 3.4, but Sect. 2 can be skipped on a
first reading by the reader wishing to get a quick feeling for the generalised Kato classes
described in Sects. 3.1 and 3.2. On the other hand, it is also worth noting that Sect. 2 is
entirely self-contained. Conjecture 2.1, which can be viewed as a p-adic analogue of the
Stark conjecture for the adjoint of the Galois representation attached to a weight one
form, appears to be new and may be of independent interest.
Let g ∈ S1(N,χ ) be a newform of weight one and level N with Fourier coefficients in a

field L, and let
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 : GQ −→ Aut(V ) � GL2(L)

be the Artin representation associated to it by the construction of Deligne and Serre. We
view 
 as acting on a two-dimensional L-vector space V , where L ⊂ C can be chosen to
be contained in a cyclotomic field.
Let H be the number field cut out by 
, so that 
 factors through Gal (H/Q). Fix a

rational prime p and choose a prime p of H above p. The latter determines a canonical
inclusion

H ⊂ Hp ⊂ Q̄p

ofH in its completionHp atp. Assume that the pair (
, p) satisfies the following conditions:

(I) The prime p splits completely in L/Q, so that L is equipped with an embedding
into Qp which will be fixed from now on. This assumption, which is made solely
to lighten the notations and could easily be dispensed with, allows 
 to be viewed
as a Qp-linear representation via the natural action of GQ on the Qp-vector space
V ⊗L Qp.

(II) The representation V is unramified at p. There is then a well-defined arithmetic
frobenius element

Frp ∈ Gal (H/Q)

acting canonically on V , and the characteristic polynomial of 
(Frp) is equal to the
Hecke polynomial

x2 − ap(g)x + χ (p) =: (x − αg )(x − βg )

attached to g .
(III) The modular form g is regular at p, i.e. αg 	= βg . After possibly enlarging L, it may

also be assumed that this coefficient field contains the roots of unity αg and βg .
(IV) The representation 
g is not induced from a character of a real quadratic field K

in which the prime p splits. The rationale for this condition, which seems to be
essential for a number of the constructions and conjectures proposed in this paper,
is explained in [15, §1.1].

The p-stabilisations of g at p are the normalised eigenforms of weight one with Fourier
coefficients in L defined by

gα := g(z) − βg g(pz), gβ := g(z) − αg g(pz).

They are eigenvectors for the Up-operator satisfying

Upgα = αg gα , Upgβ = βg gβ .

The Artin representation V decomposes naturally as a direct sum

V = V α ⊕ V β

into one-dimensional eigenspaces for Frp, with eigenvalues αg and βg , respectively.
By a theorem ofHida, there exists a finite flat extension�g of the Iwasawa algebra� and

a Hida family g ∈ �g [[q]] of tame level N and tame character χ passing through the p-
stabilised weight one eigenform gα . When g is cuspidal, the regularity hypothesis imposed
on g implies that such a Hida family is unique, thanks to a recent result of Bellaïche and
Dimitrov [1].
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The Hida family g comes equipped with the following canonical structures:

(a) There is a locally free �g -module Vg of rank two, affording Hida’s ordinary �-adic
Galois representation


g : GQ −→ Aut�g (Vg )

which is realised in the inverse limit of ordinary étale cohomology groups associated
to the tower X1(Npr) of modular curves. This representation interpolates the Galois
representations associated by Deligne to the classical specialisations of g .

(b) The restriction of Vg to GQp admits a stable filtration

0 −→ Ug −→ Vg −→ Wg −→ 0,

where both Ug and Wg are flat �g [GQp ]-modules that are locally free of rank one
over�g , and the quotientWg is unramified, with Frp acting onWg as multiplication
by the p-th Fourier coefficient ap(g).

(c) LetQnr
p denote themaximal unramified extension ofQp and let Q̂nr

p denote its p-adic
completion. In [30], Ohta constructs a canonical �g -adic period

ωg ∈ D(Wg ) := (Q̂nr
p ⊗̂Wg )GQp ,

corresponding to the normalised �-adic eigenform g under the isomorphism in
Theorem (A) of the introduction of [30].

(d) There is a natural perfect Galois-equivariant duality, given in Theorem (B) of the
introduction of [30],

Ug × Wg −→ �g (det(
g )),

where GQ acts on the module �g of the right-hand side via the determinant of 
g .

Let

yg : �g −→ Qp

be the specialisation map attached to the p-stabilised weight one form gα . By specialising
the structures above attached to g via the map yg , we obtain

(a’) A non-canonical isomorphism ofQp[GQ]-modules

�gα : Vg := Vg ⊗yg Qp
∼−→ V ⊗L Qp.

(b’) A non-trivial GQp-stable filtration

0 −→ Ug −→ Vg −→ Wg −→ 0

ofVg by one-dimensional subspaces, whereUg := Ug ⊗yg Qp andWg := Wg ⊗yg Qp.
The Frobenius element Frp acts on Wg and Ug as multiplication by αg and βg ,
respectively. Since these eigenvalues are assumed to be distinct, the exact sequence
above splits canonically, leading to the identifications

Ug = V β
g , Wg = V α

g , Vg = Ug ⊕ Wg = V β
g ⊕ V α

g .

(c’) Specialising Ohta’s period leads to a canonical element

ωgα := yg (ωg ) ∈ D(V α
g ) := (Qnr

p ⊗ V α
g )

GQp = (Hp ⊗ V α
g )

GQp . (6)
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(d’) The duality in (d) above specialises via yg to a canonical pairing ofQp-vector spaces

〈 , 〉 : V β
g × V α

g −→ Qp(χ ),

which induces a pairing by functoriality (denoted by the same symbol by a slight
abuse of notation):

〈 , 〉 : D(V β
g ) × D(V α

g ) −→ D(Qp(χ )). (7)

When this pairing is perfect, it can be used to define a period ηgα ∈ D(V β
g ), as the

unique element satisfying

〈ηgα ,ωgα 〉 = g(χ ) ⊗ 1,

where

g(χ ) :=
fχ )∑

j=1
χ (j)e2π ij/fχ

is the Gauss sum attached to the Dirichlet character χ , viewed as an element of Hp
by assigning an fχ -th root of unity in Hp to the complex number e2π i/fχ .

Making use of the above arsenal we now turn to introduce certain p-adic periods asso-
ciated to g and the choice of a L-structure on Vg . We assume for simplicity in the sequel
that g is a cusp form, and thus Vg is irreducible.
Fix a GQ-equivariant isomorphism jg : V ⊗L Qp −→ Vg and let VL

g := jg (V ) denote
the associated L-rational structure on Vg , which by Schur’s lemma is well defined up to
scaling byQ×

p . Since jg induces isomorphisms V α
g � V α ⊗L Qp and V β

g � V β ⊗L Qp, we
may choose L-bases vα

g and vβ
g for VL

g ∩ V α
g and VL

g ∩ V β
g , respectively, so that

VL
g ∩ V α

g = 〈vα
g 〉L and VL

g ∩ V β
g = 〈vβ

g 〉L.
Define p-adic periods

�gα = �gα (VL
g ) ∈ H

Frp=α−1
g

p , �gα = �gα (VL
g ) ∈ H

Frp=β−1
g

p (8)

by setting

�gα ⊗ vα
g = ωgα , �gα ⊗ vβ

g = ηgα .

These periods depend on the choice of the basis (vα
g , v

β
g ) for VL

g , but only up to multipli-
cation by L×.
Furthermore, for all μ ∈ Q×

p ,

�gα (μVL
g ) = μ−1 · �gα (VL

g ), �gα (μ · VL
g ) = μ−1 · �gα (VL

g ).

It follows that the ratio

Lgα := �gα
�gα

∈ (Hp)
Frp= βg

αg (9)

is a number in H×
p that is well defined up to multiplication by elements in L×.

This expression is a canonical p-adic period attached to the eigenform gα and can be
viewed as a p-adic avatar of the Petersson norm of g .
Definition 1.8 of [15, §1.2] associates in many cases a canonical p-adic Stark unit ugα

attached to gα as follows. LetVad := End0(V ) be the three-dimensional adjoint representa-
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tion attached to V consisting of trace zero endomorphisms of V . Since complex conjuga-
tion actswith eigenvalues−1,−1, and1onVad, it follows that homGQ

(Vad, (O×
H )L) = L·ϕad

for a suitable generator ϕad. If one further assumes that αg 	= ±βg , then the subspace of
Vad onwhich Frp acts asmultiplication by βg

αg
is one-dimensional; after choosing an L-basis

vgα for it, one lets

ugα := ϕad(vgα ). (10)

This element is well defined up to multiplication by L×, and hypothesis (IV) above guar-
antees that it is a nonzero vector of the Vad-isotypic subspace of (O×

H )L. See [15, §1.2] for
further details.

Conjecture 2.1 The period in (9) satisfies

Lgα = logp(ugα ) (mod L×).

Remark 2.2 It would be interesting to test this conjecture numerically. To the extent that
Lgα is a p-adic avatar of the Petersson norm of g , Conjecture 2.1 can be viewed as a p-adic
analogue of the Stark conjecture for the L-function attached to the adjoint of g , in the
form in which it is illustrated, for example, in the concluding paragraphs of [36].

3 Generalised Kato classes
3.1 Definition

Let E be an elliptic curve overQ and let


1, 
2 : Gal (H/Q) −→ GL2(L)

be odd, irreducible two-dimensional Artin representations of GQ satisfying

χ := det(
1) = det(
2)−1,

where L and H are finite extensions of Q (and L is chosen, as before, to be contained in
a cyclotomic field). Let V1 and V2 be L[Gal (H/Q]-modules which are two-dimensional
over L and realise 
1 and 
2, respectively. Observe that

V12 := V1 ⊗L V2

is a four-dimensional L-linear representation of Gal (H/Q) with real traces, i.e. it is iso-
morphic to its contragredient representation.
Fix a rational prime p and continue to assume that hypotheses (I–IV) of the previous

section hold for both the pairs (
1, p) and (
2, p).
The progress in modularity realised over the last two decades implies the existence of

cusp forms f , g , and h attached to E, 
1, and 
2, respectively, whose associated p-adic
representations, denoted Vf , Vg and Vh, satisfy

H1(E) = Vf , V1 ⊗L Qp � Vg , V2 ⊗L Qp � Vh. (11)

It is important to keep in mind that the last two isomorphisms, whose existence is proved
by comparing traces on both sides, are only well defined up to multiplication by a scalar
in Q×

p (by Schur’s lemma), and that the Qp-vector spaces Vg and Vh therefore admit no
natural L-rational structure. Let
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Vgh := Vg ⊗ Vh, Vfgh := Vf ⊗ Vgh

denote the tensor products ofQp-linear representations of GQ, and write

jgh : V12 ⊗L Qp −→ Vgh (12)

for the isomorphism induced from (11). Let

VL
gh := jgh(V12) (13)

denote the resulting GQ-stable L-rational structure on Vgh, which is well defined up to
multiplication by a scalar inQ×

p , evenwhenVgh is reducible, becauseVg andVh themselves
are irreducible.
Because of (11), the Hasse–Weil and Artin L-functions attached to E, 
1, and 
2 are

equal to the Hecke L-functions attached to f , g , and h, respectively:

L(E, s) = L(f, s), L(
1, s) = L(g, s), L(
2, s) = L(h, s),

and therefore admit functional equations and analytic continuations to the entire complex
plane. By the theory of Rankin–Selberg and Garrett, the same is true of the degree 8 L-
function L(Vfgh, s) attached to the convolution of f , g , and h.
Let N = lcm(Nf , Ng , Nh) denote the least common multiple of the conductors of E, 
1,

and 
2 and assume further that p does not divide N . As in the previous section, let

x2 − ap(g)x + χ (p) =: (x − αg )(x − βg ),

x2 − ap(h)x + χ−1(p) =: (x − αh)(x − βh)

be the Hecke polynomials at p attached to g and h, respectively, and assume that the
coefficient field L contains the roots of unity αg , βg , αh, and βh. Denote as before by

gα := g(z) − βg g(pz), gβ := g(z) − αg g(pz), hα := h(z) − βhh(pz),

hβ := h(z) − αhh(pz)

the relevant p-stabilisations of g and h.
One of the running assumptions of [19] that is also enforced in this article is that the

Artin conductor of Vgh is relatively prime to the conductor of E. Under this assumption,
Prasad [31, Theorem 1.4] implies that the local root numbers that govern the sign in the
functional equation for L(E, Vgh, s) are equal to 1 at all places of Q, and the Hasse–Weil–
Artin L-function attached to E and Vgh therefore vanishes to even order at the symmetry
point s = 1 for its functional equation.
The article [19] describes the construction of four canonical (a priori non-trivial, and

distinct) generalised Kato classes

κ(f, gα , hα), κ(f, gα , hβ ), κ(f, gβ , hα), κ(f, gβ , hβ ) ∈ H1(Q, Vfgh). (14)

These classes are essentially obtained as p-adic limits

κ(f, gα , hα) := lim
k−→1

κ(f, gk , hk ), (15)

as (gk , hk ) range over the classical specialisations of weight k ≥ 2 of Hida families g
and h specialising to gα and hα , respectively, in weight one, and κ(f, gk , hk ) arises from
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a geometric construction whereby it is realised in the p-adic étale cohomology of some
(open) variety overQ.
More precisely, letVf (N ) denote the f -isotypic component ofH1(X0(N )), which is (non-

canonically) isomorphic to a finite number of copies ofVf , indexed by the positive divisors
of N/Nf . Let Vg (N ) and Vh(N ) denote the similar spaces occurring as the weight one
specialisations of the g and h-isotypic parts of the inverse limits of the ordinary quotients
ofH1(X1(Nps)), which are abstractly isomorphic to a direct sum of finitely many copies of
Vg and Vh, respectively, endowed with all the structures described in (a’)–(d’) of Sect. 2.
The classes in (14) of [19] take values in the Galois representation

Vfgh(N ) = Vf (N ) ⊗ Vg (N ) ⊗ Vh(N )

and the classes of (14) are obtained by applying to them a suitable surjective GQ-
equivariant projection

π : Vfgh(N ) −→ Vfgh (16)

compatible with the L-structure, filtration, Ohta periods, and dualities described in (a’)–
(d’). The dependence of κ(f, gα , hα) on the choice of π is suppressed from the notations
but should be kept in mind.
The generalised Kato classes belong to the global cohomology group H1(Q, Vfgh) =

Ext1GQ
(Qp, Vfgh), where Qp stands for the one-dimensional p-adic representation of GQ

with trivial action and the Ext group is taken in the category of finite-dimensional Qp-
vector spaces equipped with a continuous GQ-action (whose restriction to GQp need not
be de Rham).
When g and h are cuspidal Hida families, the “weight two” classes κ(f, g2, h2) attached

to weight two specialisations g2 and h2 of g and h are obtained from the p-adic étale
Abel–Jacobi image of a Gross–Kudla–Schoen diagonal cycles in the Chow group of null-
homologous codimension two cycles in the triple product of the modular curve X1(Nps).
It is worth noting that when passing from k = 1 to k > 1, the local root number at
∞ attached to L(Vfgkhk , s) changes sign (while the other root numbers stay the same), so
that this L-function vanishes to odd order at its centre. The presence of Gross–Kudla–
Schoen diagonal cycles in this range is consistent with the Beilinson–Bloch conjecture
for L(Vfgkhk , s) and in fact provides evidence for it. (Cf. the preprint [38] of Yuan–Zhang–
Zhang, where the case k = 2 is studied.) The fact that the extension κ(f, gα , hα) does not
arise directly in p-adic étale cohomology, but only as a p-adic limit of geometric Galois
representations, explains why κ(f, gα , hα) need not be cristalline at p in general.
The analogy with the work of Kato [23,32] arises when the cuspidal Hida families g and

h are replaced by Hida families of Eisenstein series. A global class κBK (f, gα , hα), designated
as the Beilinson–Kato class attached to (f, gα , hα), is then defined as in (15), but replacing
the étale Abel–Jacobi images κ(f, g2, h2) by p-adic étale regulators of Beilinson elements
in the higher Chow group K2(X1(Nps)) = CH2(X1(Nps), 2) attached to a pair of modular
units whose logarithmic derivatives give rise to g2 and h2. We refer the reader to [6] for
more details in this setting.
In the intermediate setting where exactly one of g and h (say, g) is cuspidal (and thus

h is Eisenstein), global classes κ(f, g2, h2) can be constructed geometrically as p-adic étale
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regulators of suitable Beilinson–Flach elements in the higher Chow groupK1(X1(Nps)2) =
CH2(X1(Nps)2, 1) attached to a modular unit whose logarithmic derivative is h2. The limit
cohomology class arising in (15) is then denoted κBF (f, gα , hα) and called the Beilinson–
Flach class attached to the triple (f, gα , hα). The Beilinson–Flach classes in p-adic families
were introduced and studied in [2,10] and [11]. See also [27] and [24] formore recent work
leading to substantial extensions and refinements of the results of loc.cit. in the setting of
Beilinson–Flach elements.
The p-adic Selmer group

H1
fin(Q, Vfgh) := Ext1cris(Qp, Vfgh) (17)

attached to E andVgh are the group of extensions ofQp byVfgh in the category ofQp-linear
representations of GQ that are cristalline at p. Let

(E(H )L ⊗ V12)Gal (H/Q), where E(H )L := E(H ) ⊗Z L

denote the 
12-isotypic part of the Mordell–Weil group of E. It is a finite-dimensional
L-vector space by the Mordell–Weil theorem and is equipped with a natural inclusion

(E(H )L ⊗ V12)Gal (H/Q) ⊂ H1
fin(H,Vp(E) ⊗Qp Vgh)Gal (H/Q) = H1

fin(Q, Vfgh) (18)

induced from the connecting homomorphism δ of Kummer theory for E(H ) and the map
jgh of (13).
When L(E, 
gh, s) has a double zero at s = 1, Conjecture BSD(E, 
gh) described in the

previous section predicts that the associated Mordell–Weil and Selmer group in (18) is
two-dimensional over L andQp, respectively. The finiteness of the relevant Shafarevich–
Tate group furnishes the Selmer group with a natural L-rational structure

HomGQ
(V12, E(H )L) ⊂ H1

Sel(Q, Vfgh).

As mentioned above, the vanishing of the central critical value L(E, 
gh, 1) implies that
the generalised Kato classes in (14) are cristalline at p and thus belong to H1

fin(Q, Vfgh).
The main goal of this article is to give a precise conjectural description of the position of
the generalised Kato classes in H1

fin(Q, Vfgh) relative to the L-structure given by (18), in a
way that recovers older conjectures of Kato and Perrin-Riou in the setting of Beilinson–
Kato classes when g and h are Eisenstein series, and is consistent with the theorems and
conjectures of [19] and [15].

3.2 Basic properties

In this sectionwe recall some of themain properties of the generalisedKato classes already
established in [19] and [15].
Restricting (17) to GQp , let

H1
fin(Qp, Vfgh) := Ext1fin,Qp

(Qp, Vfgh)

denote the group of cristalline extensions of Qp by Vfgh in the category of Qp-linear
representations of GQp , and let H1

sing(Qp, Vfgh) := H1(Qp, Vfgh)/H1
fin(Qp, Vfgh) denote the

“singular quotient” of the local cohomology at p. Recall that L has been chosen to be large
enough to contain the frobenius eigenvalues αg , βg , αh, and βh, which therefore belong to
Qp. Let
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V α
g , V

β
g ⊂ Vg , V α

h , V
β

h ⊂ Vh (19)

be the eigenspaces in Vg and Vh, respectively, associated to these eigenvalues, and set

V αα
gh := V α

g ⊗ V α
h , V αβ

gh := V α
g ⊗ V β

h , V βα

gh := V β
g ⊗ V α

h ,

V ββ

gh := V β
g ⊗ V β

h (20)

of Vgh. Even though Vg and Vh are both assumed to be regular at p, the same need not be
true for Vgh, and in this case

Vgh = V αα
gh ⊕ V αβ

gh ⊕ V βα

gh ⊕ V ββ

gh . (21)

gives a strict refinement of the decomposition of Vgh into frobenius eigenspaces. In fact,
some of the most interesting arithmetic applications of the generalised Kato classes
(notably those spelled out in Sects. 4.3, 4.4, and 4.5) arise when Vgh is not regular
at p.
The first basic result extends Kato’s explicit reciprocity law (corresponding to the case

where g and h are both Eisenstein series) to the setting where both g and h are cuspidal
(Theorem C of [19]) as well as to the intermediate Beilinson–Flach setting (Theorem 3.10
of [11]).

Theorem 3.1 The natural image of κ(f, gα , hα) inH1
sing(Qp, Vfgh) belongs toH1

sing(Qp, Vf ⊗
V ββ

gh ), and analogously for the remaining classes of (14). Moreover, the following are equiv-
alent:

(1) For all choices of π in (16), the generalised Kato classes of (14) belong to the Bloch–
Kato Selmer group of Vfgh, i.e. their images in H1

sing(Qp, Vfgh) are trivial;
(2) the central critical value L(E, Vgh, 1) vanishes.

Assume from now on that L(E, Vgh, 1) = 0, so that

(1) the L-series L(E, Vgh, s) has a zero of even order ≥ 2 at s = 1;
(2) the generalised Kato classes of (14) belong to the Selmer group attached to E and

Vgh.

One is then naturally interested in a formulating non-vanishing criterion for these Selmer
classes:

Conjecture 3.2 The generalised Kato classes in (14) generate a non-trivial subgroup of the
Selmer group of Vfgh for a suitable choice of π in (16), if and only if the following equivalent
conditions are satisfied:

(a) The L-series L(E, Vgh, s) has a double zero at s = 1;
(b) the Mordell–Weil group (E(H )L ⊗ V12)GQ is two-dimensional over L;
(c) the Selmer group H1

fin(Q, Vfgh) is two-dimensional overQp.

Remark 3.3 Although the equivalence of conditions (a), (b), and (c) certainly lies very
deep, it is part of a well-established conjecture, namely BSD(E, Vgh). The main novelty of
Conjecture 3.2 is in providing a criterion for the non-triviality of the space generated by
the generalised Kato classes. Note that Conjecture 3.2 does not predict that all four of the
classes in (14) are non-trivial, nor even that these four classes generate the Selmer group,
when (a), (b), and/or (c) are satisfied. These stronger conclusions are expected to be false
in general, as illustrated by some of the examples in Sect. 4.
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Let

κp(f, gα , hα) = resp(κ(f, gα , hα))

denote the image of the global class κ(f, gα , hα) in the local cohomology group

H1
fin(Qp, Vfgh) = (H1

fin(Hp, Vf ) ⊗ Vgh)Gal (Hp/Qp) = (E(Hp) ⊗ Vgh)Gal (Hp/Qp).

As we describe more explicitly below, Theorem D of [19] asserts that this image is con-
trolled by suitable p-adic avatars of the second derivative of the classical L-series L(f, Vgh, s)
at the central critical point s = 1.
These p-adic values were defined and explored in [19] and [15] and are denoted

Lp
gα (f̆ , ğ∗, h̆), Lp

gβ (f̆ , ğ∗, h̆), Lp
hα (f̆ , ğ , h̆∗), Lp

hβ (f̆ , ğ , h̆∗). (22)

They depend on the choice of certain test vectors

(f̆ , ğ , h̆) ∈ S2(N ; L) × M1(N,χ ; L) × M1(N,χ−1; L)

with the same system of Hecke eigenvalues as f , g , and h, respectively, and with fourier
coefficients in L, and on the choice of dual test vectors

(ğ∗, h̆∗) ∈ Hom(M1(N,χ−1; L), L) × Hom(M1(N,χ ; L), L)

with the same system of Hecke eigenvalues as g and h. We refer to the introduction of
[19] for more details on their definition, contenting ourselves with remark that the p-adic
L-valueLp

gα (f̆ , ğ∗, h̆) is defined essentially as the p-adic limit of central critical values

Lp
gα (f̆ , ğ∗, h̆) := lim

�→1
E(f, g�, h) × C(f̆ , ğ∗, h̆) × L(Vf ⊗ Vg� ⊗ Vh, (� + 1)/2)

〈g�, g�〉 ,

as g� ranges over the specialisations of (odd) weight � ≥ 3 of the Hida family g specialising
to gα in weight one. Here E(f, g�, h) is a p-adic multiplier arising from a recipe of Panciskin,
whose presence allows the p-adic interpolation of the special values above, and C(f̆ , ğ∗, h̆)
is a product over the primes dividing N · ∞ of local terms which depend in a simple way
on the choice of test vectors.
Choose a basis of Vgh (over Qp, for now) which is compatible with the decomposition

(21), i.e. choose nonzero vectors

vαα
gh ∈ V αα

gh , vαβ

gh ∈ V αβ

gh , vβα

gh ∈ V βα

gh , vββ

gh ∈ V ββ

gh . (23)

Write

κp(f, gα , hα) = Rαα ⊗ vββ

gh + Rαβ ⊗ vβα

gh + Rβα ⊗ vαβ

gh + Rββ ⊗ vαα
gh . (24)

The coordinate Rξ belongs to E(Hp)
Frp=ξ

Qp
, where ξ ranges over the index set

{αα = αgαh, αβ = αgβh, βα = βgαh, ββ = βgβh}.
Note that Rξ is even the image of a global point in E(H )Qp , assuming the finiteness of the
Shafarevich–Tate group of E over H . Let

logp : E(Hp)Qp −→ Hp (25)

denote the formal group logarithm attached to an invariant differential on E/Q. The
following theorem is stated in Section 6.4 of [19]:
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Theorem 3.4 When L(E, Vgh, 1) = 0, there exists a choice of π in (16) and of test vectors
for f , g , and h such that the coordinates in (24) satisfy

logp(Rαβ ) ∼ Lp
gα (f̆ , ğ∗, h̆), logp(Rβα) ∼ Lp

hα (f̆ , ğ , h̆∗), logp(Rββ ) = 0, (26)

where ∼ denotes equality up to a nonzero p-adic period in H×
p .

Remark 3.5 This theorem says nothing about the quantity logp(Rαα), which does not bear
any direct relationship with p-adic L-values introduced above. We expect that logp(Rαα)
may rather be connected with the first derivative of a putative refinement ofLp

f (f, gα , hα)
in which all three modular forms would be made to vary in a Hida family.

As explained in the introduction and in Section 6.3. of [19], Theorem 3.4 has the following
corollary which can be viewed as a p-adic Gross–Zagier formula in “analytic rank two”:

Corollary 3.6 If L(E, Vgh, 1) = 0 and Lp
gα (f̆ , ğ∗, h̆) 	= 0 for a suitable choice (f̆ , ğ∗, h̆) of

test vectors, then the two global classes

κ(f, gα , hα), κ(f, gα , hβ )

are linearly independent in the Selmer group H1
fin(Q, Vfgh) attached to E and Vgh, for a

suitable choice of π in (16).

Theorem 3.4 and its corollary motivated the experimental study undertaken in [15] of the
special values of p-adic L-functions appearing in (26). This led to a precise conjecture for
these values up to a factor of L× rather thanQ×

p .
To formulate this conjecture, recall that the class κ(f, gα , hα) is expected to be trivial

when ords=1L(E, Vgh, s) > 2. Assume that this L-function has a double zero at the centre,
which implies, by Conjecture BSD(E, Vgh), that (E(H )L ⊗ V12)GQ is a two-dimensional
L-vector space.
Fix vectors vαα

gh , . . . , v
ββ

gh chosen as in (23), with the difference that they belong to L-
vector space V12 rather than the Qp-vector space Vgh. Choose a basis (P,Q) for this
L-vector space, and write

P = Pαα ⊗ vββ

gh + Pαβ ⊗ vβα

gh + Pβα ⊗ vαβ

gh + Pββ ⊗ vαα
gh ,

Q = Qαα ⊗ vββ

gh + Qαβ ⊗ vβα

gh + Qβα ⊗ vαβ

gh + Qββ ⊗ vαα
gh ,

where Pξ , Qξ are points in E(H )Frp=ξ

L for every ξ ∈ {αα = αgαh,αβ = αgβh,βα =
βgαh,ββ = βgβh}.
These points can be used to define a regulator attached to gα , whose entries are the

p-adic formal group logarithms of the coordinates attached to the vectors vαα
gh and vαβ

gh
(and similarly for hα):

Definition 3.7 The regulators attached to E and V12 are

Reggα (E, V12) = det
(
logp Pββ logp Pβα

logp Qββ logp Qβα

)

= logp Pββ · logp Qβα − logp Qββ · logp Pβα ,

Reghα
(E, V12) = det

(
logp Pββ logp Pαβ

logp Qββ logp Qαβ

)

= logp Pββ · logp Qαβ − logp Qββ · logp Pαβ .
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The main conjecture of [15] is the following,3 assuming αg
βg

	= ±1 (resp. αh
βh

	= ±1) so
that the Stark unit ugα (resp.uhα

) is well defined:

Conjecture 3.8 Assume that L(E, Vgh, s) vanishes to order 2 at s = 1. Then there exists a
choice of test vectors (f̆ , ğ∗, h̆) and (f̆ , ğ , h̆∗) such that

Lp
gα (f̆ , ğ∗, h̆) = Reggα (E, V12)

logp ugα
, Lp

hα (f̆ , ğ , h̆∗) = Reghα
(E, V12)

logp uhα

(mod L×).

Remark 3.9 Conjecture 3.8 lends itself to numerical verification and has been extensively
tested in [15]. This is because the p-adic L-values Lp

gα (f̆ , ğ∗, h̆) and Lp
hα (f̆ , ğ , h̆∗) can

be expressed in terms of the rather concrete p-adic iterated integrals of loc.cit., which
can be computed efficiently using Alan Lauder’s [26] fast ordinary projection algorithms
on the space of overconvergent modular forms. In contrast, the generalised Kato classes
themselves (likemany objects constructed in étale cohomology) seem difficult to compute
in practice, even though their theoretical usefulness is amply illustrated in [11] and [19].

3.3 Enhanced regulators

The goal of this article is to combine the insights arising fromTheorem3.4 andConjecture
3.8 to formulate a conjecture on the position of the generalised Kato classes themselves
in (E(H ) ⊗ Vgh)GQ , specifying this position up to an ambiguity of L× rather than the less
preciseQ×

p ambiguity of Theorem 3.4.
The most important ingredients in the formulation of this conjecture are the so-called

enhanced regulators

R̃eg(E, V12) ∈ (E(H )L ⊗ V12)GQ ⊗ (E(H )L ⊗ V12)GQ ,

R̃egαα(E, V12) ∈ (Hp)Frp=βgβh ⊗ (E(H )L ⊗ V12)GQ ,

R̃eg(E, Vgh) ∈ (E(H )L ⊗ Vgh)GQ ⊗ (E(H )L ⊗ Vgh)GQ ,

R̃egαα(E, Vgh) ∈ D(V αα
gh ) ⊗ (E(H )L ⊗ Vgh)GQ ,

whose definition is somewhat in the spirit of the regulator RS defined in equation (2) of
[13], and which we now proceed to describe. As in (6), hereD(V αα

gh ) := (Qnr
p ⊗V αα

gh )GQp =
(Hp ⊗ V αα

gh )GQp .

Definition 3.10 Choose an L-basis (P,Q) of the two-dimensional vector space (E(H ) ⊗
V12)GQ , and set

R̃eg(E, V12) := det
(
P P
Q Q

)
:= P ⊗ Q − Q ⊗ P. (27)

It does not depend on the choice of basis that was made to define it, up to multiplication
by L×.
The function logαα : (E(H )L ⊗ V12)GQ −→ (Hp)Frp=βgβh defined by

logαα(P) := logp(Pββ )

3Wewarn the reader that here in this note we have chosen to state themain conjecture of [15] in terms of the arithmetic
frobenius Frp at p, while in [15] we rather employ the geometric frobenius σp = Fr−1

p . It is for this reason that the roles
of α and β are swapped in both formulations.
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induces a linear map

logαα ⊗1 : (E(H )L ⊗ V12)GQ ⊗ (E(H )L ⊗ V12)GQ

−→ (Hp)Frp=βgβh ⊗ (E(H )L ⊗ V12)GQ ,

and we set

R̃egαα(E, V12) := (logαα ⊗1)(R̃eg(E, V12)) = logp(Pββ ) ⊗ Q − logp(Qββ ) ⊗ P. (28)

Recall the embedding jgh : V12 −→ VL
gh ⊂ Vgh of (12). Although this embedding is

completely non-canonical and only defined up to scaling by Q×
p , there is a canonical way

of embedding V⊗2
12 into V⊗2

gh . This is done by exploiting the canonical dualities on Vg and
Vh described in Sect. 2, which gives rise to perfect pairings

Vg × Vg −→ Qp(χ ), Vh × Vh −→ Qp(χ−1), Vgh × Vgh −→ Qp.

These pairings allow us to define L-rational structures VL∗
g , VL∗

h and VL∗
gh which are dual

to VL
g , VL

h and VL
gh, respectively, by letting V

L∗
g be the L-dual of VL

g in Vg , and likewise for
VL∗
h and VL∗

gh . We may then choose GQ-equivariant embeddings

j∗g : V1 −→ VL∗
g , j∗h : V2 −→ VL∗

h , j∗gh := j∗g ⊗ j∗h : V12 −→ VL∗
gh ,

which are well defined up to scaling by L×. Replacing jgh by μ · jgh, for any μ ∈ Q×
p , has

the effect of replacing j∗gh by μ−1 · j∗gh. Hence, the map

jgh ⊗ j∗gh : V12 ⊗ V12 −→ Vgh ⊗ Vgh

is well defined up to scaling by L×.

Definition 3.11 The enhanced regulator R̃eg(E, Vgh) associated to E and Vgh is

R̃eg(E, Vgh) := (jgh ⊗ j∗gh)(R̃eg(E, V12)) ∈ (E(H ) ⊗ Vgh)GQ ⊗ (E(H ) ⊗ Vgh)GQ . (29)

Finally, let

Logp : (E(H ) ⊗ Vgh)GQ −→ (Hp ⊗ Vgh)GQp = D(Vgh)

be the canonical p-adic logarithm map induced from the p-adic logarithm of (25) via the
fixed embedding H ⊂ Hp, and let

Logαα : (E(H ) ⊗ Vgh)GQ −→ D(V αα
gh )

be its composition with the functorial projection D(Vgh) −→ D(V αα
gh ). This logarithm

map is just the more canonical counterpart of the map logαα : the latter depends on the
choice of a basis vector vαα

gh for V αα and is related to Logαα by the rule

Logαα := logαα ⊗vαα
gh .

We set

R̃egαα(E, Vgh) := (Logαα ⊗1)(R̃eg(E, Vgh)) = Logαα(P) ⊗ Q − Logαα(Q) ⊗ P. (30)

It is worth noting that the enhanced regulator R̃egαα(E, Vgh) is a canonical invariant
associated to E and Vgh, i.e. it is well defined up to multiplication by L×, while the less
canonical R̃egαα(E, V12) depends on the choice of a basis vαα

gh for V αα
gh . The two regulators

are related by

R̃egαα(E, Vgh) = R̃egαα(E, V12) ⊗ vαα
gh . (31)
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3.4 The conjecture

Recall the periods

ωgα ∈ D(V α
g ), ωhα

∈ D(V α
h )

constructed in (6). The main conjecture of this note is:

Conjecture 3.12 Assume that r(E, Vgh) = 2. The generalisedKato class κ(f, gα , hα) belongs
to (E(H ) ⊗ Vgh)GQ and satisfies the relation

ωgαωhα
⊗ κ(f, gα , hα) ∼L R̃egαα(E, Vgh)

in D(V αα
gh ) ⊗ (E(H ) ⊗ Vgh)GQ , where ∼L denotes an equality up to scaling by a factor in L

which is nonzero for a suitable choice of π in (16).

The following proposition shows that, under Conjecture 2.1 (relating the canonical
period attached to g to the Stark unit ugα ) and Conjecture 3.2 (a mild strengthening of
BSD(E, 
gh)), Conjecture 3.12 implies the main conjecture of [15]. Before dismissing this
proposition as mere conjectural relations between conjectures, the reader is reminded
that Conjecture 3.8 lends itself to experiment and has been extensively tested numerically
in [15], while the strengthening described in Conjecture 3.12 lies for the moment beyond
the range of explicit calculations (cf. Remark 3.9).

Proposition 3.13 Assume Conjectures 2.1 and 3.2. Then Conjecture 3.12 implies Conjec-
ture 3.8.

Proof Consider the product of periods

ηgαωhα
= (�gα ⊗ vβ

g ) · (�hα
⊗ vα

h ) = �gα · �hα
⊗ vβα

gh ∈ D(V βα

gh )

defined in Sect. 2.
The pairing introduced in (7) gives rise to a pairing

〈 , 〉 : D(V αβ

gh ) × D(V βα

gh ) −→ D(Qp) = Qp.

As shown in the proof of [19, Theorem 6.10 (ii)],
〈
Logαβ κ(f, gα , hα), ηgαωhα

〉
= Lp

gα (f, g, h) (mod L×). (32)

On the other hand, by the definition of the enhanced regulator,

Logαβ R̃egαα(E, Vgh) = (logp Pββ logp Qβα − logp Qββ logp Pβα) ⊗ vαα
gh ⊗ v∗αβ

gh

= Reggα (E, V12) ⊗ vαα
gh ⊗ v∗αβ

gh (mod L×).

Hence, the following equality holds in D(V αα
gh ):

〈Logαβ R̃egαα(E, Vgh), ηgαωhα
〉 = �gα · �hα

· Reggα (E, Vgh) ⊗ vαα
gh (mod L×). (33)

By pairing the value of Logαβ at both sides of the displayed identity in Conjecture 3.12
with the class ηgαωhα

and invoking (32) and (33), we obtain

ωgαωhα
⊗ Lp

gα (f, g, h) = �gα · �hα
· Reggα (E, V12) ⊗ vαα

gh ∈ D(V αα
gh ) (mod L×).

Since

ωgαωhα
= �gα · �hα

· vαα
gh (mod L×),
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it follows that

�gαLp
gα (f, g, h) = �gα Reggα (E, V12) (mod L×),

and therefore that

Lp
gα (f, g, h) = Reggα (E, V12)

Lgα
(mod L×).

Conjecture 3.8 now follows directly from this equality after invoking Conjecture 2.1. �

Remark 3.14 As explained in a number of the examples covered in Sect. 4 below, it may
happen that all four of the p-adic iterated integrals in (22) are equal to zero even when
some of the generalised Kato classes are non-trivial. This suggests that Conjecture 3.12 is
a genuine strengthening of Conjecture 3.8.

4 Special cases
This section examines Conjecture 3.12, and the special forms taken by the enhanced
regulators

R̃egαα(E;V12), R̃egαβ (E;V12), R̃egβα(E;V12), R̃egββ (E;V12),

in the arithmetically interesting cases where Vgh is reducible. According to Darmon et al.
[16, §2], the following is a complete list of scenarios where this occurs:

(1) The original Beilinson–Kato setting where Vg and Vh are both reducible, i.e. where
g and h are both Eisenstein series of weight one;

(2) the Beilinson–Flach setting where exactly one of Vg or Vh is reducible, i.e. where
exactly one of g or h is cuspidal;

(3) the complex multiplication case where Vg and Vh are both induced from characters
of a common imaginary quadratic field;

(4) the real multiplication case where Vg and Vh are induced from characters of mixed
signature of a common real quadratic field;

(5) the adjoint case where h is (a twist of) the dual of g , so that Vgh is the direct sum of a
one-dimensional representation and a twist of the adjoint of Vg .

The reader will notice that some of the above settings arise when 
g and/or 
h are
reducible, while in Sects. 2 and 3 these representations were assumed to be irreducible.
This assumption was imposed to a large extent for the sake of simplicity of the exposi-
tion, and the statement (and presumed validity) of Conjecture 3.12 does not rely on it.
For completeness, we have therefore described the enhanced regulators that appear in
Conjecture 3.12 in all of the above cases.

4.1 Beilinson–Kato classes

Assume that g and h are both Eisenstein series. After possibly twisting g or h, there is no
real loss of generality in assuming that there exist Dirichlet characters χ1, χ2 such that g
and h are given by

g = E1(χ1,χ2), h = E1(1,χ−1
12 ), where χ12 = χ1χ2.

We refer to e.g. [10, §2.1.2] for the definition of these weight one Eisenstein series in
terms of their q-expansions. The Galois representations attached to g and h are reducible,
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namely

V1 = L(χ1) ⊕ L(χ2), V2 = L ⊕ L(χ−1
12 ),

V12 = L(χ1) ⊕ L(χ−1
1 ) ⊕ L(χ2) ⊕ L(χ−1

2 ), (34)

where the coefficient field L is the cyclotomic field generated by the images of χ1 and χ2.
These representations factor through the Galois group Gal (H/Q) of an abelian extension
H ofQ. We may set

αg = χ1(p), βg = χ2(p), αh = 1, βh = χ−1
12 (p).

The regularity assumption implies that V1 and V2 decompose uniquely as a direct sum of
two GQp-stable lines, which are also stable under GQ. More precisely,

V αα
12 = L · vχ1 , V ββ

12 = L · vχ̄1 , V αβ
12 = L · vχ̄2 , V βα

12 = L · vχ2 ,

where (vχ1 , vχ̄1 , vχ̄2 , vχ2 ) is a basis for V12 on which GQ acts via the characters χ1, χ̄1, χ̄2,
and χ2, respectively.
The class κ(f, gα , hα) = κBK(f, gα , hα) was constructed by Kato as a p-adic limit of Beilin-

son elements attached to pairs of modular units whose logarithmic derivatives are weight
two Eisenstein series. Theorem 3.1 in this case boils down to Kato’s reciprocity law, which
asserts that κ(f, gα , hα) belongs to the Selmer group ofE overH if and only if the L-function

L(E, Vgh, s) = L(E,χ1, s)L(E, χ̄1, s)L(E,χ2, s)L(E, χ̄2, s)

vanishes at s = 1. In this case, it clearly vanishes to even order and vanishes to order two
if and only if (after eventually interchanging the characters χ1 and χ2)

ords=1L(E,χ1, s) = ords=1L(E, χ̄1, s) = 1, L(E,χ2, 1), L(E, χ̄2, 1) 	= 0.

Assuming that this is the case, Conjectures BSD(E,χ1) and BSD(E,χ2) predict that
(E(H )L ⊗ V12)GQ is two-dimensional over L and that a basis for it can be chosen to
be

P := Pχ̄1 ⊗ vχ1 , Q := Qχ1 ⊗ vχ̄1 ,

where Pχ̄1 and Qχ1 are global points in E(H )L generating the χ̄1 and χ1 eigenspaces,
respectively, for the natural action of GQ. With these notations, we have

Pαα = Pαβ = Pβα = 0, Pββ = Pχ̄1 ,

Qαβ = Qβα = Qββ = 0, Qαα = Qχ1 .

This immediately implies that

R̃egαα(E, V12) = logp(Pχ̄1 ) · Q, R̃egαβ (E, V12) = 0,
R̃egβα(E, V12) = 0, R̃egββ (E;V12) = logp(Qχ1 ) · P.

It follows that

Reggα (E;V12) = Reggβ (E;V12) = Reghα
(E;V12) = Reghβ

(E;V12) = 0.

This accounts for the fact that the p-adic iterated integrals

Lp
gα (f, g, h), Lp

gβ (f, g, h), Lp
hα (f, g, h), Lp

hβ (f, g, h)
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systematically vanish4 when g and h are Eisenstein series that are regular at p. Conjecture
3.12 makes the stronger prediction that the generalised Kato classes themselves are non-
trivial, and is consistent with a Conjecture of Perrin-Riou, since it predicts that

logββ (κ(f, gα , hα)) = logαα(κ(f, gβ , hβ )) = logp(Pχ̄1 ) logp(Qχ1 ) (mod L×).

4.2 Beilinson–Flach classes

In theBeilinson–Flach setting, it canbeassumedwithout loss of generality that g is aweight
one cusp form with nebentypus character χ and Galois representation Vg = V1 ⊗L Qp,
and that h := E1(1,χ−1) is the weight one Eisenstein series attached to the pair (1,χ−1)
of Dirichlet characters. The relevant four-dimensional representations are then equal to

Vgh = Vg ⊕ Vḡ ; V12 = V1 ⊕ V̄1,

and the Hasse–Weil–Artin L-series

L(E, Vgh, s) = L(E, Vg , s)L(E, V̄g , s)

has a double zero at s = 1 precisely when each of the primitive L-series L(E, Vg , s) and
L(E, Vḡ , s) have a simple zero at s = 1. Conjecture BSD(E, Vg ) then implies that each of
the L-vector spaces on the right-hand side of

(E(H )L ⊗ V12)GQ ) = (E(H )L ⊗ V1)GQ ⊕ (E(H )L ⊗ V̄1)GQ ,

is one-dimensional. Let P be an L-basis for (E(H )L ⊗ V1)GQ and let P̄ be the associated
L-basis for (E(H )L ⊗ V̄1)GQ , obtained by applying complex conjugation to the coefficients
in L.
After fixing an ordering αg ,βg ∈ L for the eigenvalues of Frp on V1, and setting

αh = 1, βh = χ−1(p) = (αgβg )−1,

we have

V αα
12 = V αg

1 , V αβ
12 = V̄

β−1
g

1 , V βα
12 = V βg

1 , V ββ
12 = V̄

α−1
g

1 ,

and hence

Pαα = Pαg , Pβα = Pβg , Pαβ = 0 Pββ = 0,
P̄αα = 0 P̄βα = 0, P̄αβ = P̄

β−1
g
, P̄ββ = P̄

α−1
g
.

A direct calculation reveals that, up to multiplication by L×,

R̃egαα(E, V12) = logp(P̄α−1
g
) · P, R̃egαβ (E, V12) = logp(Pβg ) · P̄,

R̃egβα(E, V12) = logp(P̄β−1
g
) · P, R̃egββ (E;V12) = logp(Pαg ) · P̄.

It follows that

Reggα (E, V12) = logp(P̄α−1
g
) · logp(Pβg ), Reggβ (E, V12) = logp(P̄β−1

g
) · logp(Pαg ),

Reghα
(E, V12) = 0, Reghβ

(E, V12) = 0.

as described in [15, §6].

4But see the experiments described in [15, §7] in the case where g is irregular at p, which suggest that the irregular
setting of Conjecture 3.12 would merit further investigation.
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4.3 Complex multiplication classes and Heegner points

In this chapterwe consider the settingwhere g and h are theta series attached to characters
ψg andψh of the same imaginary quadratic fieldK , andwith inverse nebentypus character.
Given any character ψ of GK , let ψ ′ denote the character obtained by conjugating it with
the involution in Gal (K/Q). Then

Vg = IndQK ψg = IndQK ψ ′
g , Vh = IndQK ψh = IndQK ψ ′

h,

and therefore

Vgh = IndQK ψ• ⊕ IndQK ψ◦ , where ψ• = ψgψh, ψ◦ = ψgψ
′
h.

The self-duality assumption implies that ψ• and ψ◦ are are ring class characters, i.e. they
satisfy

ψ ′
• = ψ−1

• , ψ ′
◦ = ψ−1

◦ .

Assume that the induced representations

V• := IndQK ψ• , V◦ := IndQK ψ◦

appearing in the decomposition

V12 = V• ⊕ V◦ (35)

(viewed as representations with coefficients in the number field L) are irreducible, which is
always the case unlessψ• orψ◦ is a quadratic, i.e. a genus character. (Themore degenerate
case where this arises can be subsumed under the “adjoint setting” considered in Sect. 4.5.)
The Hasse–Weil–Artin L-series

L(E, Vgh, s) = L(E, V•, s)L(E, V◦, s) = L(E/K,ψ• , s)L(E/K,ψ◦ , s)

has a double zero at s = 1 in one of the following two cases:

(1) The primitive L-series L(E, V•, s) and L(E, V◦, s) each have a simple zero at s = 1. This
setting, which resembles more closely the phenomena described in the previous two
sections on Beilinson–Kato and Beilinson–Flach elements, will be referred to as the
rank (1,1) setting of Conjecture 3.12.

(2) Exactly one of the primitive L-series L(E, V•, s) or L(E, V◦, s) has a double zero at s = 1,
and the other is non-vanishing at the centre. This case shall be referred to as the rank
(2,0) setting of Conjecture 3.12. The possible non-triviality of the generalised Kato
classes in the presence of a “genuine” double zero of a primitiveHasse–Weil–ArtinL-
function represents a novel feature that did not arise in the setting of Beilinson–Kato
or Beilinson–Flach elements.

4.3.1 The rank (1, 1) setting

In this case, Conjectures BSD(E, V•) and BSD(E, V◦) predict that theMordell–Weil groups
(E(H )L ⊗ V•)GQ and (E(H )L ⊗ V◦)GQ are both one-dimensional L-vector spaces, with
generators P• and P◦, respectively. It is natural to write

P• = Pψ• ⊗ vψ ′• + Pψ ′• ⊗ vψ• , P◦ = Pψ◦ ⊗ vψ ′◦ + Pψ ′◦ ⊗ vψ◦ , (36)

where Pψ• , Pψ ′• , Pψ◦ , and Pψ ′◦ are generators for the one-dimensional subspaces of E(H )L
on which GK acts via the characters ψ• , ψ ′

• , ψ◦ , and ψ ′
◦ , respectively.
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The description of the enhanced regulators attached toV12 and to (P•, P◦) can be further
subdivided into two cases, with markedly different features: the case where the prime p is
split in K , and the case where it is inert in K .

a) The case where p is split in K . In this case, let p = p p′ be the factorisation of p into
distinct primes of K . We can then set

αg = ψg (p), βg = ψg (p′), αh = ψh(p), βh = ψh(p′),

so that

αgαh = ψ• (p), αgβh = ψ◦ (p), βgαh = ψ◦ (p′), βgβh = ψ• (p′).

The decomposition of the GKp = GQp representations attached to (35) into Frp-
eigenspaces is also stable under the action of the global Galois groupGK , and is described
by:

V αα
12 = Vψ•• , V αβ

12 = Vψ◦◦ , V βα
12 = Vψ ′

◦◦ , V ββ
12 = Vψ ′

•• .

It follows that, up to multiplication by L×,

R̃egαα(E, V12) = logp(Pψ ′• ) · P◦, R̃egαβ (E, V12) = logp(Pψ ′◦ ) · P•,
R̃egβα(E, V12) = logp(Pψ◦ ) · P•, R̃egββ (E, V12) = logp(Pψ• ) · P◦,

and therefore that
Reggα (E, V12) = logp(Pψ ′• ) · logp(Pψ ′◦ ), Reggβ (E, V12) = logp(Pψ• ) · logp(Pψ◦ ),
Reghα

(E, V12) = logp(Pψ ′• ) · logp(Pψ◦ ), Reghβ
(E, V12) = logp(Pψ• ) · logp(Pψ ′◦ ).

The corresponding formulae for the p-adic iterated integrals Lp
gα (f, g, h), Lp

gβ (f, g, h),
Lp

hα (f, g, h), and Lp
hβ (f, g, h) were proved in [15, §3], by using the p-adic Gross–Zagier

formula of [8] to express these L-values in terms of products of p-adic logarithms of
Heegner points. Theorem 3.3 of loc.cit. is one of the few pieces of theoretical evidence in
support of Conjecture 3.12.

b) The case where p is inert in K . In this case, the eigenvalues of the Frobenius automor-
phism Frp acting on Vg and Vh are of the form

αg , βg = −αg , αh = α−1
g , βh = −α−1

g .

Let (vψg , vψ ′
g ) be a eigenbasis of Vg for the action of GK relative to the distinct characters

ψg and ψ ′
g , and let (vψh , vψ ′

h
) be a similar basis for Vh. These vectors can be scaled so that

Frp acts on them as

Frp(vψg ) = αg · vψ ′
g , Frp(vψ ′

g ) = αg · vψg , Frp(vψh ) = α−1
g · vψ ′

h
,

Frp(vψ ′
h
) = α−1

g · vψh ,

and therefore we may set

V α
g = L · (vψg + vψ ′

g ), V β
g = L · (vψg − vψ ′

g ), V α
h = L · (vψh + vψ ′

h
),

V β

h = L · (vψh − vψ ′
h
).

After setting

vψ• := vψg ⊗ vψh , vψ ′• := vψ ′
g ⊗ vψ ′

h
, vψ◦ := vψg ⊗ vψ ′

h
, vψ ′◦ := vψ ′

g ⊗ vψh ,

and letting

v+• := vψ• + vψ ′• , v−• := vψ• − vψ ′• , v+◦ := vψ◦ + vψ ′◦ , v−• := vψ◦ − vψ ′◦ ,
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it is easy to see that

V αα
12 = L · (v+• + v+◦ ), V αβ

12 = L · (v−• + v−◦ ),
V βα
12 = L · (v−• − v−◦ ), V ββ

12 = L · (v+• − v+◦ ).
(37)

Note that Frp acts on both V αα
12 and V ββ

12 with the eigenvalue 1, and on V αβ
12 and V βα

12
with the eigenvalue −1. In particular, while Vg and Vh are always regular at p, the tensor
product Vgh � V12 never enjoys this property, even though the vector spaces described
in (37) are one-dimensional.
Keeping the same notations as in (36), let

P+• := Pψ• + Pψ ′• , P−• := Pψ• − Pψ ′• , P+◦ := Pψ◦ + Pψ ′◦ , P−◦ := Pψ◦ − Pψ ′◦ .

With these notations, the enhanced regulators describing the associated generalised Kato
classes are given by

R̃egαα(E, V12) = logp(P+• ) · P◦ − logp(P+◦ ) · P•, R̃egαβ (E, V12) = logp(P−• ) · P◦ − logp(P−◦ ) · P•,
R̃egβα(E, V12) = logp(P−• ) · P◦ + logp(P−◦ ) · P•, R̃egββ (E, V12) = logp(P+• ) · P◦ + logp(P+◦ ) · P•.

The four regulators Reggα (E, V12), Reggβ (E, V12), Reghα
(E, V12), and Reghβ

(E, V12) are all
seen to be simple L×-multiples of the expression

logp(P
+• ) · logp(P−◦ ) − logp(P

+◦ ) · logp(P−• ). (38)

The resulting formula for Lp
gα (f, g, h) predicted by Conjecture 3.8 has been extensively

tested numerically in [15, §3.3].

Remark 4.1 Even though the points P+• , P−• , P+◦ , and P−◦ that figure in the generalised
Kato classes are in principle expressed as linear combinations of Heegner points, the
methods used to prove Conjecture 3.8 when p is split in K , which are based on the p-adic
Gross–Zagier formula of [8] and on properties of the Katz p-adic L-function attached to
K , seem to break down completely when p is inert in K . A theoretical understanding of
the p-adic iterated integrals of [15] in this setting would seem to require a new idea.

Remark 4.2 It is worth contrasting the expressions arising in (38) with the simpler for-
mulae

logαα R̃egββ (E, V12) = logββ R̃egαα(E, V12) = logp(P
+• ) · logp(P+◦ ),

logαβ R̃egβα(E, V12) = logβα R̃egαβ (E, V12) = logp(P
−• ) · logp(P−◦ ).

In certain very special settings—notably, when the elliptic curve E has multiplicative
reduction at p—these expressions arise as the leading terms of the p-adic L-series

Lp
f (f, gα , hα), . . . , Lp

f (f, gβ , hβ ).

Methods based on the Cerednik–Drinfeld theory of p-adic uniformisation of Shimura
curves make it possible to relate these leading terms to the p-adic logarithms of Heegner
points, leading to some indirect theoretical evidence for Conjecture 3.12 in the setting
where p is inert in K . See [20] for a description of this approach.

4.3.2 The rank (2, 0) setting

Assume, after possibly interchanging V• and V◦, that L(E, V•, s) has a double zero at s = 1
and that L(E, V◦, 1) 	= 0. In this case, Conjectures BSD(E, V•) and BSD(E, V◦) predict that
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(E(H )L ⊗ V12)GQ = (E(H )L ⊗ V•)GQ

is two-dimensional over L. Choose a basis (P,Q) for this vector space. It is natural to write

P = Pψ• ⊗ vψ ′• + Pψ ′• ⊗ vψ• , Q = Qψ• ⊗ vψ ′• + Qψ ′• ⊗ vψ• ,

where (Pψ• , Qψ• ) and (Pψ ′• , Qψ ′• ) are bases for the two-dimensional subspaces of E(H )L on
which GK acts via the characters ψ• and ψ ′

• , respectively.
As in the rank (1, 1) setting, the shape of the enhanced regulators attached to V12 and

to the basis (P,Q) depend very much on whether the prime p is split or inert in K .

a) The case where p is split in K . In this case, letting p = p p′ be the factorisation of p into
distinct primes of K , we can set

αg = ψg (p), βg = ψg (p′), αh = ψh(p), βh = ψh(p′),

so that

αgαh = ψ• (p), αgβh = ψ◦ (p), βgαh = ψ◦ (p′), βgβh = ψ• (p′).

The decomposition of the GKp = GQp representations attached to (35) into Frp-
eigenspaces is also stable under the action of the global Galois group GK and is described
by:

V αα
12 = Vψ•• , V αβ

12 = Vψ◦◦ , V βα
12 = Vψ ′

◦◦ , V ββ
12 = Vψ ′

•• .

It follows that, up to multiplication by L×,

R̃egαα(E, V12) = logp (Pψ ′• ) · Q − logp (Qψ ′• ) · P, R̃egαβ (E, V12) = 0,
R̃egβα(E, V12) = 0, R̃egββ (E, V12) = logp (Pψ• ) · Q − logp (Qψ• ) · P.

(39)

This suggests that the generalised Kato classes κ(f, gα , hα) and κ(f, gβ , hβ ) give non-trivial
elements of the two-dimensional vector space (E(H )L ⊗V•)GQ , while the generalised Kato
classes κ(f, gα , hβ ) and κ(f, gβ , hα) should vanish. Furthermore, a direct calculation shows
that

Reggα (E, V12) = Reggβ (E, V12) = Reghα
(E, V12) = Reghβ

(E, V12) = 0,

which is consistent with the fact, proved in [15, §3.2], that all the p-adic iterated integrals
attached to (f, g, h) vanish in the rank (2, 0) setting when p is split in K . In this case
the generalised Kato classes carry more arithmetic information that the p-adic iterated
integrals which describe (certain of) their p-adic logarithms. This represents yet another
setting where Conjecture 3.12 is a genuine strengthening of Conjecture 3.8 of [15].

b) The case where p is inert in K . After scaling the points Pψ• , and Pψ ′• , Qψ• , and Qψ ′• in
such a way that

Frp(Pψ• ) = Pψ ′• , Frp(Pψ ′• ) = Pψ• , Frp(Qψ• ) = Qψ ′• , Frp(Qψ ′• ) = Qψ•

and letting

P± := Pψ• ± Pψ ′• , Q± := Qψ• ± Qψ ′• ,

the enhanced regulators are given by

R̃egαα(E, V12) = logp(P+) · Q − logp(Q+) · P, R̃egαβ (E, V12) = logp(P−) · Q − logp(Q−) · P,
R̃egβα(E, V12) = logp(P−) · Q − logp(Q−) · P, R̃egββ (E, V12) = logp(P+) · Q − logp(Q+) · P.

(40)
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In this case, the four regulators Reggα (E, V12), . . . ,Reghβ
(E, V12) attached to (f, g, h) are

explicit multiples of the expression

logp(P
+) · logp(Q−) − logp(Q

+) · logp(P−). (41)

See [15, Ex. 3.14] for some numerical verifications of the agreement between this value
and the p-adic iterated integrals attached to (f, g, h).
Equations (39) and (40) combined with Conjecture 3.12 suggest that the generalised

Kato classes always generate the Mordell–Weil group (E(H )L ⊗ V•)GQ (tensored over L
with Qp) in the rank (2, 0) setting. Since the irreducible representation V• occurs with
multiplicity two in E(H )L, none of the V•-isotypic part of the Mordell–Weil group is
expected to be accounted for by Heegner points, as discussed in the introduction.

4.4 Real multiplication classes and Stark–Heegner points

In this chapterwe consider the settingwhere g and h are theta series attached to characters
ψg and ψh of mixed signature of the same real quadratic field K . In that case, we have,
exactly as in Sect. 4.3,

Vg = IndQK ψg , Vh = IndQK ψh,

and

Vgh = V• ⊕ V◦ := IndQK ψ• ⊕ IndQK ψ◦ , where ψ• = ψgψh, ψ◦ = ψgψ
′
h.

The characters ψ• and ψ◦ are also ring class characters of K , with one totally even, and
the other totally odd. Once again, it is convenient to assume that V• and V◦ are both
irreducible, i.e. that neither ψ• nor ψ◦ is a genus character of K .
As in the case where K is imaginary, the study of the generalised Kato classes divides

naturally into the rank (1, 1) and rank (2, 0) settings, depending on the orders of vanishing
of L(E/K,ψ• , s) and L(E/K,ψ◦ , s) (or, alternately, on the dimensions of (E(H )L⊗V•)GQ and
(E(H )L ⊗ V◦)GQ ), and continue to depend in a crucial way on whether p is split or inert
in K . In all four cases, the formulae for the enhanced regulators are identical to those
obtained in Sect. 4.3, so it is unecessary to reproduce them here, contenting ourselves
with the following comments in connection with the rank (1, 1) setting.

a) The case where p is split in K . This setting, where the greatest amount of theoretical
evidence was available when K is imaginary quadratic, thanks to the theory of Heegner
points, is a lot more mysterious when K is real quadratic. With notations being the same
as in Sect. 4.3.1, we have

R̃egαα(E, V12) = logp(Pψ ′• ) · P◦, R̃egαβ (E, V12) = logp(Pψ ′◦ ) · P•,
R̃egβα(E, V12) = logp(Pψ◦ ) · P•, R̃egββ (E, V12) = logp(Pψ• ) · P◦,

(42)

and

Reggα (E, V12) = logp(Pψ ′• ) · logp(Pψ ′◦ ), Reggβ (E, V12) = logp(Pψ• ) · logp(Pψ◦ ),
Reghα

(E, V12) = logp(Pψ ′• ) · logp(Pψ◦ ), Reghβ
(E, V12) = logp(Pψ• ) · logp(Pψ ′◦ ).

(43)

This setting has special appeal in connectionwith an eventual (for now, highly conjectural,
and not even clearly formulated) theory of Stark–Heegner points over ring class fields of
real quadratic fields. It would be of great interest to relate (conjecturally, at least) the
regulators in (42) and in (43) to generalised Kato classes and p-adic iterated integrals,
respectively.
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The obstruction to doing this is that the modular forms g and h (more precisely, their
stabilisations) fail to obey Hypothesis IV in Sect. 2. When g is a modular form of RM type
which is regular at a prime p which splits in K , the Stark unit ugα is also unavailable, and
an analogue of Conjecture 3.8 has yet to be formulated precisely in this setting. Because of
the tantalising connection with Stark–Heegner points defined over ring class fields of K ,
it would be of great interest to extend the Conjectures of [15], as well as Conjecture 3.12,
to the real quadratic context. A first step has been made in [17] towards understanding
the periods of §2 in this setting.

b) The case where p is inert in K . The formulae for the enhanced regulators are identical
to those in Part b) of Sect. 4.3.1, namely:

R̃egαα(E, V12) = logp(P+• ) · P◦ − logp(P+◦ ) · P•, R̃egαβ (E, V12) = logp(P−• ) · P◦ − logp(P−◦ ) · P•,
R̃egβα(E, V12) = logp(P−• ) · P◦ + logp(P−◦ ) · P•, R̃egββ (E, V12) = logp(P+• ) · P◦ + logp(P+◦ ) · P•.

The p-adic logarithms of these enhanced regulators ought to involve linear combinations
of products of logarithms of so-called Stark–Heegner points. This prediction has been
extensively tested numerically in [15, §4.2].

Remark 4.3 The logarithms of the generalised Kato classes that are not amenable to
expressions in terms of p-adic iterated integrals are expected to admit particularly simple
expressions, as suggested by the formulae

logαα R̃egββ (E, V12) = logββ R̃egαα(E, V12) = logp(P
+• ) · logp(P+◦ ),

logαβ R̃egβα(E, V12) = logβα R̃egαβ (E, V12) = logp(P
−• ) · logp(P−◦ ).

In the special case where E has multiplicative reduction at p, the article [20] in progress
proves a formula of the shape

logαα κ(f, gα , hα) = logp(P
?±• ) · logp(P?±◦ ),

where P?±• and P?±◦ are the Stark–Heegner points of [14], and the sign that arises depends
on whether E has split or non-split multiplicative reduction at p.

4.5 Adjoint classes

The case where h is dual to g is of considerable arithmetic interest, since in that case the
representation

Vgh = Qp ⊕ Mg, (whereMg := Ad0(Vg )),

admits the trivial representation as a constituent. The generalised Kato classes attached
to g and hmay then, in appropriate circumstances, contribute to theMordell–Weil group
E(Q), and it is interesting to understand when this occurs.
The Hasse–Weil–Artin L-series

L(E, Vgh, s) = L(E, s)L(E,Mg , s)

has a double zero at s = 1 in one of the following three cases:

(1) the rank (0, 2) setting where L(E, 1) 	= 0 and L(E,Mg , s) has a double zero at s = 1;
(2) the rank (1, 1) case where L(E, s) and L(E,Mg , s) each vanish to order 1 at s = 1;
(3) the rank (2, 0) settingwhereL(E, s) has a double zero at the centre andL(E,Mg , 1) 	= 0.

This case is particularly intriguing for its direct connection with the arithmetic of
elliptic curves of rank two overQ.
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In all the examples that will be treated below, we always set

αh = α−1
g , βh = β−1

g ,

so that

αgαh = 1, αgβh = αg/βg , βgαh = βg

αg
, βgβh = 1.

4.5.1 The rank (0, 2) setting

Let (P,Q) be an L-basis for (E(H )L ⊗ V12)GQ = (E(H )L ⊗ Mg )GQ , and write

P = P α
β

⊗ vβ/α + P1 ⊗ v1 + P β
α

⊗ vα/β ,

Q = Q α
β

⊗ vβ/α + Q1 ⊗ v1 + Q β
α

⊗ vα/β ,

where vβ/α , v1, and vα/β are bases for the Frp-eigenspaces ofWg attached to the eigenvalues
βg
αg
, 1, and αg/βg , respectively. Then the four enhanced regulators are given, up to L×, as

follows:

R̃egαα(E, V12) = logp(P1) · Q − logp(Q1) · P, R̃egαβ (E, V12) = logp(P β
α
) · Q − logp(Q β

α
) · P,

R̃egβα(E, V12) = logp(P α
β
) · Q − logp(Q α

β
) · P, R̃egββ (E, V12) = logp(P1) · Q − logp(Q1) · P.

Conjecture 3.12 suggests in this case that the generalised Kato class κ(f, gα , hβ ) generates
the kernel of the map logαβ in the two-dimensionalQp-vector space (E(H )L ⊗Mg )GQ ⊗L
Qp.
We refer the reader to [15, Example 5.4] for the numerical verification of Conjecture

3.8 for two different instances in this setting.

4.5.2 The rank (1, 1) setting

Let P be a generator of E(Q)L and letQ be a generator of (E(H )L ⊗Mg )GQ . With the same
notational conventions as before, we find:

R̃egαα(E, V12) = logp(P) · Q − logp(Q1) · P, R̃egαβ (E, V12) = logp(Q β
α
) · P,

R̃egβα(E, V12) = logp(Q α
β
) · P, R̃egββ (E, V12) = logp(P) · Q − logp(Q1) · P.

(44)

In contrast, we have

Reggα (E, V12) = logp(P) · logp(Q β
α
) Reggβ (E, V12) = logp(P) · logp(Q α

β
),

Reghα
(E, V12) = logp(P) logp(Q α

β
), Reghβ

(E, V12) = logp(P) · logp(Q β
α
).

(45)

Manynumerical exampleswhere thep-adic iterated integrals attached to (f, g, h) are seen to
agree with these regulators are described in [15, §5]. It is worth noting that the expression
logp(Q1) that appears in the enhanced regulators of (44) disappears from the regulators
(45) that arose in [15].

4.5.3 The rank (2, 0) setting

Let (P,Q) be an L-basis of the two-dimensional L-vector space E(Q)L. With the same
notational conventions as before, we find:

R̃egαα(E, V12) = logp(P) · Q − logp(Q) · P, R̃egαβ (E, V12) = 0,
R̃egβα(E, V12) = 0, R̃egββ (E, V12) = logp(P) · Q − logp(Q) · P.
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In other words, the generalised Kato classes κ(f, gα , hα) and κ(f, gβ , hβ ) give (essentially, the
same, up toL×-multiples) canonical element ofE(Q)Qp , which is expected to be non-trivial
precisely when

L′′(E, 1) 	= 0, L(E,Mg , 1) 	= 0.

Note that on the other hand

Reggα (E, V12) = Reggβ (E, V12) = Reghα
(E, V12) = Reghβ

(E, V12) = 0.

This last example gives yet another instance where Conjecture 3.12 represents a genuine
strengthening of the elliptic Stark conjectures of [15]. It predicts that that generalisedKato
classes of the form κ(f, gα , ḡ1/α) ought to give non-trivial elements in the pro-p-Selmer
groups of elliptic curves of rank two over Q, when the auxiliary L-value L(E,Mg , 1) is
nonzero. Testing this prediction experimentally seems to present an interesting challenge.
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