
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

J. ALGEBRAIC GEOMETRY
24 (2015) 569–604
S 1056-3911(2015)00675-0
Article electronically published on March 23, 2015

BEILINSON-FLACH ELEMENTS
AND EULER SYSTEMS II:

THE BIRCH-SWINNERTON-DYER CONJECTURE
FOR HASSE-WEIL-ARTIN L-SERIES

MASSIMO BERTOLINI, HENRI DARMON, AND VICTOR ROTGER

Abstract

Let E be an elliptic curve over Q and let � be an odd, irreducible two-
dimensional Artin representation. This article proves the Birch and

Swinnerton-Dyer conjecture in analytic rank zero for the Hasse-Weil-
Artin L-series L(E, �, s), namely, the implication

L(E, �, 1) �= 0 ⇒ (E(H)⊗ �)Gal(H/Q) = 0,

where H is the finite extension of Q cut out by �. The proof relies on p-
adic families of global Galois cohomology classes arising from Beilinson-
Flach elements in a tower of products of modular curves.
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Introduction

This paper completes the project undertaken in [BDR] of proving the Birch

and Swinnerton-Dyer conjecture in analytic rank 0 for the �-isotypic compo-

nents of Mordell-Weil groups of elliptic curves when � is an odd, irreducible

two-dimensional Artin representation.

In the early 1990’s, Kato unveiled a new approach to the Birch–Swinnerton-

Dyer conjecture and to the cyclotomic Iwasawa main conjecture for (modular)

elliptic curves, resting on Beilinson elements in the second K-groups of mod-

ular curves and on their p-adic deformations. This approach led to a proof of

the implication

L(E,χ, 1) �= 0 ⇒ HomGQ
(χ,E(Q̄)⊗ C) = 0

for all elliptic curves E over Q and all Dirichlet characters χ (viewed as Galois

characters via class field theory). The article [BCDDPR] places Kato’s strat-

egy in the broader framework of “Euler systems of Garrett-Rankin-Selberg

type”. Roughly speaking, the global objects exploited by Kato are distin-

guished elements in the higher Chow group CH2(X1(Nps), 2) attached to

a pair of modular units whose logarithmic derivatives are Eisenstein series

of weight two. Replacing either one, or both, of these Eisenstein series

by cuspidal eigenforms leads to the study of Beilinson-Flach elements in

CH2(X1(Nps)2, 1) and of Gross-Kudla-Schoen diagonal cycles in the Chow

group CH2(X1(Nps)3) of codimension two cycles on the triple product of

X1(Nps). Chapters 2.2 and 2.3 of [BCDDPR] explain how the images of these

elements under p-adic étale regulators and Abel-Jacobi maps, when made to

vary in p-adic families and specialised at suitable classical weight one points,

might be parlayed into a proof of the implications

L(E, �, 1) �= 0 ⇒ HomGQ
(�,E(Q̄)⊗ C) = 0,(0.1)

L(E, �1 ⊗ �2, 1) �= 0 ⇒ HomGQ
(�1 ⊗ �2, E(Q̄)⊗ C) = 0,(0.2)

where �, �1 and �2 are odd, irreducible two-dimensional (complex) Artin

representations for which �1 ⊗ �2 is self-dual. The details of this program are

carried out in [DR2] to obtain the proof of (0.2). The goal of the present

work is to deliver on the other promise made in [BCDDPR] by proving the

following result:

Theorem A. Let E be an elliptic curve over Q and let � be an odd, irreducible,

two-dimensional Artin representation. Assume that the conductors of E and

� are prime to each other. Then (0.1) holds.
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Prior to Theorem A, the only irreducible two-dimensional Artin represen-

tations for which (0.1) had been proved were those induced from ring class

characters of

(i) imaginary quadratic fields by a series of works building on the methods

of Kolyvagin [Ko];

(ii) real quadratic fields, under a mild analytic non-vanishing hypothesis,

by Corollary A1 of [DR2].

In addition to Artin representations with projective image isomorphic to A4,

S4 and A5, Theorem A also applies to a large class of two-dimensional repre-

sentations induced from general ray class characters of quadratic fields:

Theorem B. Let E be an elliptic curve over Q of conductor N , let K be a

quadratic field of discriminant D, and let ψ : Gal (H/K) −→ C× be a ray

class character of conductor f � OK . Assume that gcd(N,D · norm(f)) = 1

and that ψ is of mixed signature if K is real quadratic. Then

L(E/K,ψ, 1) �= 0 ⇒ E(H)ψ = 0,

where

E(H)ψ := {P ∈ E(H)⊗ C s.t. σP = ψ(σ)P, ∀σ ∈ Gal (H/K)} .

Even for imaginary quadratic fields, Theorem B goes well beyond what can be

obtained by the methods of Kolyvagin, which apply only to ring class charac-

ters. For real quadratic K, there is simply no overlap between Theorem B and

[DR2, Cor. A1], since ring class characters are either totally even or totally

odd.

It is worth pointing out that the representation � arising in Theorem A

is typically not self-dual. Because of this, the root number arising in the

functional equation of L(E, �, s) does not control the parity of its order of

vanishing at s = 1, and it is expected that L(E, �, 1) vanishes only in rare,

sporadic instances, so that the non-vanishing hypothesis in Theorem A is

almost always satisfied. Any quantitative non-vanishing statement along these

lines would find immediate, unconditional applications to the arithmetic of

elliptic curves via Theorems A and B. It should also be noted that L(E, �, 1) �=
0 if and only if L(E, �∨, 1) �= 0, where �∨ is the contragredient representation

of �. Likewise, the triviality of the complex vector space

HomGQ
(�,E(Q̄)⊗ C) = (E(Q̄)⊗ �∨)GQ

is equivalent to that of HomGQ
(�∨, E(Q̄)⊗ C).

The proof of Theorem A is based on the eponymous Beilinson-Flach ele-

ments of this article, whose definition is recalled in §2 below, and on their
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variation in p-adic families. For the purpose of the introduction, suffice it

to say that Beilinson-Flach elements are distinguished elements in the higher

Chow group CH2(X1(N)2, 1), which can also be interpreted as the motivic

cohomology group H3
M(X1(N)2,Q(2)). They were first introduced in the

1980’s by Beilinson [Bei, Ch. 2, §6], who related their image under his complex

regulator to the value at s = 2 of the Rankin L-series L(f ⊗ g, s) attached to

the convolution of weight two newforms f and g on Γ1(N).

In the early 1990’s, Flach [Fl] exploited (a slight variant of) these elements

to prove the finiteness of the Selmer group of the symmetric square of an

elliptic curve. Shortly thereafter, these finiteness results found a spectacular

application in Wiles’ epoch-making proof of the Shimura-Taniyama conjecture

and Fermat’s Last Theorem. Flach’s approach to bounding the Selmer group

of the symmetric square featured prominently in Wiles’ original strategy, but

was later obviated by the simpler and more flexible approach based on “Taylor-

Wiles systems” introduced in [TW].

The power and versatility of Taylor-Wiles systems for questions surround-

ing the deformation theory of Galois representations may explain why, with

a few exceptions ([MWe], [We], . . .), Beilinson-Flach elements garnered rela-

tively less attention in the intervening decades. Yet their arithmetic relevance

is not confined to the symmetric square motive of a modular form: guided by

an analogy between Beilinson-Flach elements and the study of Gross-Kudla-

Schoen diagonal cycles undertaken in [DR1] and [DR2], the article [BDR]

established a p-adic analogue of Beilinson’s formula for Beilinson-Flach el-

ements, pointing out a number of arithmetic applications of this formula

based on the “Euler system philosophy” propounded by Kato and Perrin-Riou

and lying ostensibly outside the scope of the Taylor-Wiles method. (Cf. the

introduction of [BDR] and [BCDDPR, Sec. 2.2].)

The recent work of Kings, Lei, Loeffler and Zerbes makes significant strides

in furthering the program initiated in [BDR], applying the ideas of the present

work to more general settings and introducing key technical improvements

along the way. Thus, [LLZ1] constructs a full cyclotomic Euler system of

Beilinson-Flach elements and applies it to the study of the Selmer group of

the tensor product of two motives attached to cusp forms, while [LLZ2] applies

similar techniques to study the Iwasawa theory of elliptic curves over the full

two-variable Zp-extension of an imaginary quadratic field. The recent preprint

[KLZ] exploits an interpolation of the Beilinson-Flach elements in all weights

at once based on the notion of “Rankin-Iwasawa classes” arising in [Ki] to

establish a general explicit reciprocity law relating these families to Hida’s

three variable p-adic Rankin L-function, with important applications to the

associated three variable Main conjecture. It is worth pointing out that the
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approach to Theorem A in the present work rests solely on p-adic families

of Beilinson-Flach elements of minimal level and on their local behaviour at

p; it can therefore be compared to the strategy followed by Coates-Wiles

[CoWi] to prove the finiteness of Mordell-Weil groups of CM elliptic curves.

By exploiting the full collection of Beilinson-Flach elements and their Euler

system properties, notably their “tame deformations” at auxiliary primes � �=
p, [KLZ] also establishes (just as in Thaine and Rubin’s strengthening of the

Coates-Wiles method) the finiteness of certain p-parts of the relevant Selmer

and Shafarevich-Tate groups in the setting of Theorem A.

Shortly after [BDR], Dasgupta [Da] had the idea of exploiting Beilinson-

Flach elements to factor Hida’s p-adic Rankin L-function of the tensor square

f ⊗ f into the Kubota-Leopoldt p-adic zeta-function and the Coates-Schmidt

p-adic L-function attached to the symmetric square of f . The main result of

[Da] is a deep manifestation of the Artin formalism for Hida’s p-adic L-series

and rests on a comparison between circular units and a new construction

of units in number fields arising from Beilinson-Flach elements. Dasgupta’s

approach, which is inspired by a theorem of Gross [Gr] for the Katz p-adic L-

function of an imaginary quadratic field and builds on the ideas of the present

work, also makes essential use of the improvements described in [KLZ].

1. Strategy of proof

Not surprisingly, modularity plays a key part in the proof of Theorem A.

The elliptic curve E is associated to a weight 2 newform f = fE ∈ S2(Nf )

thanks to [BCDT], while the Artin representation � is associated to a weight

1 newform g = g� ∈ S1(Ng, χ) thanks to [KW]. The Hasse-Weil-Artin L-series

L(E, �, s) can therefore be identified with the convolution L-series L(f⊗g, s),

whose analytic continuation follows from Rankin’s method.

Let L ⊂ Qab denote a field of coefficients over which � can be described,

and let H be the finite extension of Q cut out by � (i.e., the fixed field of the

kernel of �). Write

E(H)�L := homGQ
(V�, E(H)⊗ L)

for the �-isotypic part of the Mordell-Weil group of E. Theorem A asserts the

triviality of this vector space when L(E, �, 1) �= 0.

The standard approach to bounding E(H)�L consists of embedding it in an

appropriate Selmer group attached to the choice of a rational prime p, which

throughout the paper is assumed to be prime to NfNg, and ordinary for f ;
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i.e., p does not divide ap(f). To define this Selmer group, let

Vf := Vp(E) := H1(EQ̄,Qp)(1) = (lim
←,n

E[pn])⊗Qp

denote Deligne’s p-adic representation attached to f , which occurs as a direct

factor of the étale cohomology H1
et(X1(N)Q̄,Qp)(1), and let Vg = Vg,σ denote

the Artin representation attached to g, viewed as a p-adic representation by

fixing some embedding σ of its coefficient field L into Lp ⊂ Q̄p. The four-

dimensional Lp-vector space

Vp(E)⊗ Vg = Vf ⊗ Vg,

where the tensor product is taken over Qp, is a p-adic representation of GQ.

The connecting homomorphism

E(H)�Lp
:= E(H)�L ⊗L Lp −→ H1(H,Vp(E)⊗ V ∨

g )Gal (H/Q)

of Kummer theory arising from the p-power descent exact sequence on E(H),

composed with the inverse

res−1
H : H1(H,Vp(E)⊗ V ∨

g )Gal (H/Q) −→ H1(Q, Vf ⊗ V ∨
g )

of the restriction map from Q to H in Galois cohomology, gives a linear

injection

δ : E(H)�Lp
−→ H1(Q, Vf ⊗ V ∨

g )

of Lp-vector spaces, where V ∨
g := Vg ⊗ det(Vg)

−1 is the Lp-linear dual of the

representation Vg. For each place v of Q the corresponding map on local

points yields an injection

δv : E(Hv)
�
Lp

−→ H1(Qv, Vf ⊗ V ∨
g ),

where Gal (H/Q) acts in the natural way on the local points

E(Hv) := ⊕w|vE(Hw).

The image of δv in H1(Qv, Vf ⊗ V ∨
g ) is called the finite part of the local

cohomology at v and is denotedH1
fin(Qv, Vf⊗V ∨

g ). Likewise, H1
fin(Qv, Vf⊗Vg)

is defined to be the image of E(Hv)
�∨

by the appropriate local coboundary

map.

When v = p, the finite part of the local cohomology admits an alternate

description in terms of the general local conditions attached by Bloch and

Kato [BK, §3] to any p-adic representation V of GQp
:

(1.1)

H1
exp(Qp, V ) := ker

(
H1(Qp, V ) → H1(Qp, V ⊗Bφ=1

cris )
)
,

H1
fin(Qp, V ) := ker

(
H1(Qp, V ) → H1(Qp, V ⊗Bcris)

)
= Ext1cris(Qp, V ),

H1
geom(Qp, V ) := ker

(
H1(Qp, V ) → H1(Qp, V ⊗BdR)

)
= Ext1dR(Qp, V ),
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where Bcris ⊂ BdR are Fontaine’s rings of periods for cristalline and de Rham

representations, respectively, and φ denotes the cristalline Frobenius. The

subscripts exp, fin, and geom stand for “exponential”, “finite”, and “geomet-

ric” respectively, and one has the obvious inclusions

H1
exp(Qp, V ) ⊂ H1

fin(Qp, V ) ⊂ H1
geom(Qp, V ).

When V = Vf ⊗ Vg or Vf ⊗ V ∨
g , the condition p � NfNg shows, as in the

proof of equation (2.15), that the Dieudonné module of V has no φ-invariant

vectors (for reasons of weight), and thus

δp(E(Hp)
�
Lp

) = H1
exp(Qp, Vf⊗V ∨

g ) = H1
fin(Qp, Vf⊗V ∨

g ) = H1
geom(Qp, Vf⊗V ∨

g ).

The cup product in Galois cohomology combined with the Weil pairing

Vf × Vf → Qp(1) gives rise to the perfect local Tate pairing

〈 , 〉v : H1(Qv, Vf ⊗ Vg)×H1(Qv, Vf ⊗ V ∨
g ) −→ H2(Qv,Qp(1)) = Qp.

For all v, the finite subspaces H1
fin(Qv, Vf ⊗ Vg) and H1

fin(Qv, Vf ⊗ V ∨
g ) are

orthogonal complements of each other under the local Tate pairing. Let

H1
sing(Qv, Vf ⊗ Vg) :=

H1(Qv, Vf ⊗ Vg)

H1
fin(Qv, Vf ⊗ Vg)

denote the singular quotient of the local cohomology at v, and write

∂v : H1(Q, Vf ⊗ Vg) −→ H1
sing(Qv, Vf ⊗ Vg)

for the natural projection, which is referred to as the residue map at v.

Both the finite part and the singular quotient of H1(Qp, Vf ⊗ Vg) are two-

dimensional over Lp. By local Tate duality, similar statements hold for the

finite part and the singular quotient of H1(Qp, Vf ⊗ V ∨
g ).

The Selmer group attached to (E, V ∨
g ) is the subgroup of H1(Q, Vf ⊗V ∨

g ),

denoted H1
fin(Q, Vf ⊗ V ∨

g ), which fits into the cartesian square

H1
fin(Q, Vf ⊗ V ∨

g ) ��

��

H1(Q, Vf ⊗ V ∨
g )

��∏
v H

1
fin(Qv, Vf ⊗ V ∨

g ) ��
∏

v H
1(Qv, Vf ⊗ V ∨

g ).

The Selmer group attached to (E, Vg) is defined also by replacing V ∨
g by Vg.

The standard approach for bounding E(H)�L rests on the following state-

ment, whose proof is explained in Proposition 6.3 of [DR2].

Lemma 1.1. Assume that the residue map ∂p attached to the p-adic repre-

sentation Vf ⊗Vg,σ is a surjective map of Lp-vector spaces for all embeddings

σ : L −→ Lp. Then E(H)�L = 0.
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The proof of Theorem A has thus been reduced to the problem of con-

structing two independent classes in the global cohomology H1(Q, Vf ⊗ Vg),

whose images generate the singular quotient H1
sing(Qp, Vf ⊗ Vg). Let αg and

βg be the two (not necessarily distinct) roots of the Hecke polynomial

x2 − ap(g)x+ χ(p) = (x− αg)(x− βg)

attached to g at p, and let gα and gβ denote the associated p-stabilisations of

g satisfying

Upgα = αggα, Upgβ = βggβ .

When αg �= βg, these stabilisations are distinct, and the unramified represen-

tation Vg decomposes as a direct sum

Vg = V α
g ⊕ V β

g

of one-dimensional eigenspaces for the arithmetic Frobenius element at p at-

tached to these two eigenvalues. When αg = βg, set V α
g := Vg. Theorem A

will now follow from the following result.

Theorem 1.2. There exists a global cohomology class

κ(f, gα) ∈ H1(Q, Vf ⊗ Vg)

attached to the p-stabilised form gα satisfying:

(1) the residue ∂p(κ(f, gα)) belongs to H1
sing(Qp, Vf ⊗ V α

g );

(2) the global class κ(f, gα) is non-zero if and only if L(f ⊗ g, 1) �= 0.

To see why Theorem 1.2 implies Theorem A, choose the descent prime p

in such a way that the Frobenius element σp acts on Vg with distinct eigen-

values αg and βg. Such a choice is always possible in view of the Chebotarev

density theorem and the fact that the two-dimensional Vg is irreducible and

hence the image of � contains a non-scalar matrix. When L(E, �, 1) �= 0, The-

orem 1.2 implies that the residues of the global classes κ(f, gα) and κ(f, gβ)

generate the two-dimensional Lp-vector space H1
sing(Qp, Vf ⊗ Vg). Since this

reasoning applies to the representation Vg,σ for any embedding σ of L into

Lp, Theorem A follows from Lemma 1.1.

The “singular” class κ(f, gα) of Theorem 1.2 is not expected to arise from

the images of algebraic cycles or elements in K-theory under an appropriate

étale Abel-Jacobi or regulator map, since such images are typically cristalline,

at least in scenarios of good reduction of the ambient variety. It is constructed

instead as a p-adic limit of classes κ(f, gx) attached to (sufficiently many)

weight two specialisations gx of a Hida family specialising to gα in weight

one. These “weight two classes” are obtained via a geometric construction as

the images of Beilinson-Flach elements under the p-adic étale regulator map

to Galois cohomology.
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Section 2 describes the construction of a geometric class κ(f, g) attached

to a classical eigenform g of weight two and p-power nebentypus character,

and summarises its key properties, including the relation between its p-adic

logarithm and the values of Hida’s p-adic Rankin L-function attached to f

and g. This relation extends the main result of [BDR] to settings where the

modular curve has bad reduction at the prime p, and relies crucially on the

work of Besser, Loeffler and Zerbes [BLZ] on syntomic regulators partially

extending the earlier work of Besser to semistable varieties.

Section 3 explains how the weight two classes κ(f, g), as g ranges over all

the classical specialisations of weight two and p-power nebentypus character

of a Hida family g, can be interpolated into a Λ-adic cohomology class κ(f, g).

Since these ordinary weight two points are dense in the rigid analytic topology

on the relevant components of the Coleman-Mazur eigencurve, it follows that

κ(f, g) is uniquely determined by its weight two specialisations.

The class κ(f, gα) of Theorem 1.2 is obtained by letting g be a Hida family

specialising to gα in weight one, and specialising the resulting κ(f, g) to gα.

The p-adic Beilinson formula of Section 2 is then parlayed into the explicit

reciprocity law relating the Bloch-Kato dual exponential of κ(f, gα) to the

special value of the same p-adic L-function at the point attached to gα. Since

this latter point lies in the range of classical interpolation defining the p-adic

L-function, it is directly related to a classical L-value, and this is what leads

to the proof of Theorem 1.2.

2. A p-adic Beilinson formula

2.1. Siegel units and Eisenstein series. Fix a modulus M = Nps ≥ 3

with p � N and s ≥ 0. Let

Ys := Y1(Nps) ⊂ Xs := X1(Nps)

be canonical models over Q of the (affine and projective, respectively) modular

curves classifying triples (A, iN , ip) where A is a (generalised) elliptic curve

and iN : μN −→ A and ip : μps −→ A are embeddings of finite group schemes.

The standard notations Y0(Np) and X0(Np)/Q are adopted for the affine

and projective modular curves classifying pairs (A,CNp) where CNp ⊂ A is a

cyclic subgroup scheme of A of order Np. We will denote by wM : X1(M) −→
X1(M) the standard Atkin-Lehner involution and will simply denote it as w

when the level M is clear from the context.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

578 MASSIMO BERTOLINI, HENRI DARMON, AND VICTOR ROTGER

For a ∈ (Z/MZ)×, let ga;M be the Siegel unit, denoted g0,a/M in [Ka],

whose q-expansion is given by

(2.1) ga;M := (1− ζaM )q1/12
∞∏

n=1

(1− ζaMqn)(1− ζ−a
M qn),

where ζM is a fixed primitive M -th root of unity. The unit ga;M can naturally

be viewed as belonging to O×
Y1(M) ⊗ Q, and its q-expansion is defined over

Q(μM ), while the unit

gwa;M := wga;M

is defined over Q. If χ is a primitive even Dirichlet character of conductor M

taking values in a field denoted Q(χ), let

G(χ) =
M∑
a=1

χ(a)ζaM

denote the Gauss sum attached to χ and the choice of ζM , and set

(2.2) gχ =
1

ϕ(M)
·

M∑
a=1

χ−1(a)⊗ ga;M ∈ O×
Y1(M) ⊗Q(χ), gwχ := wgχ.

Given a pair (χ1, χ2) of Dirichlet characters and an integer k ≥ 2 such that

χ1χ2(−1) = (−1)k, define also the Eisenstein series

(2.3) Ek(χ1, χ2) = ck(χ1, χ2) +

∞∑
n=1

⎛
⎝∑

d|n
χ1(n/d)χ2(d)d

k−1

⎞
⎠ qn,

where

ck(χ1, χ2) :=

{
1
2 · L(χ2, 1− k) if χ1 = 1,

0 otherwise.

A direct calculation using (2.1), (2.2) and (2.3) shows that the logarithmic

derivative of gχ is

(2.4) d log gχ =
2G(χ−1)

ϕ(M)
· E2(χ, 1)

dq

q
∈ Ω1

Y1(M).

2.2. Beilinson-Flach elements. The Beilinson-Flach elements of this

section are elements in the higher Chow group over Q of the surface

Ss := X0(Np)×Xs.

For any field F , let C2(Ss, 1)F denote the group of finite formal linear com-

binations D =
∑

i ai(Zi, ui) of pairs (Zi, ui) with coefficients ai ∈ F , where

Zi are irreducible curves embedded in Ss and ui are rational functions on Zi.

Write Z2(Ss, 1)F ⊂ C2(Ss, 1)F for the subspace of elements D satisfying

div(D) :=
∑

aidiv(ui) = 0.
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Any pair {ϕ, ψ} of non-zero rational functions on Ss gives rise to the el-

ement
∑

i(Zi, ui) in Z2(Ss, 1)F , where {Zi} is the set of irreducible compo-

nents in Ss of the divisors of ϕ or ψ, and, after setting ai = ordZi
(ϕ) and

bi = ordZi
(ψ), the rational function ui on Zi is given by the tame symbol

ui =
∏
(−1)aibi( ϕ

bi

ψai
)|Zi

. Writing B2(Ss, 1)F for the subspace of Z2(Ss, 1)F
formed by such elements, Bloch’s higher Chow group of the surface Ss with

coefficients in F is defined as

CH2(Ss, 1)F = Z2(Ss, 1)F /B
2(Ss, 1)F .

Letting

(2.5) π̃s : Xs −→ X0(Np)

denote the natural forgetful projection of modular curves which is compatible

with the Up correspondence acting on both curves, define

(2.6) ιs = (π̃s, Id) : Xs ↪→ Ss

to be the closed embedding given by ιs(x) = (π̃s(x), x). Let

Δs := ιs(Xs) ⊂ Ss

denote the resulting embedded curve in Ss.

Lemma 2.1. For any u ∈ O×
Ys
, there exists a negligible element θs ∈

C2(Ss, 1)F satisfying

(2.7) div θs = div(Δs, u).

Proof. The proof is given in Lemma 3.1 of [BDR] and relies on the fact

that the group of degree zero divisors supported at the cusps is torsion in the

Jacobian of Xs by the Manin-Drinfeld theorem. �
Thanks to Lemma 2.1, the class (Δs, u) − θs lies in Z2(Ss, 1)Q, and its

image

BF(u) := [(Δs, u)− θs] in CH2
neg(Ss, 1)Q(Q)

is independent of the particular choice of θs satisfying (2.7). It is called the

Beilinson-Flach element attached to the modular unit u ∈ O×
Ys
.

Definition 2.2. The elements of CH2
neg(Ss, 1)Q(Q) given by

BF(a;Nps) := BF(gwa;Nps), BFs := BF(1;Nps)

are called the Beilinson-Flach elements of level Nps.
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2.3. Étale and syntomic regulators. Let ϕ =
∑

an(ϕ)q
n ∈ Sk(Nϕ, χ)

be a normalized newform of weight k, level Nϕ and character χ, and let

ωϕ := ϕ(q)dqq be the associated regular differential form on X1(Nϕ). Let

Kϕ be the finite extension of Qp generated by the Fourier coefficients of ϕ,

let Oϕ be its valuation ring, and let Vϕ denote the two-dimensional Galois

representation over Oϕ associated by Deligne to ϕ. This Galois representation

is pure of weight −1 and is characterized up to isomorphism by the property

that for any prime � � pNϕ, the characteristic polynomial of an arithmetic

Frobenius element Fr
 is equal to the Hecke polynomial x2−a
(ϕ)x+χ(�)�k−1.

Let αϕ and βϕ be the roots of this Hecke polynomial at � = p, ordered so that

ordp(αϕ) ≤ ordp(βϕ).

If N is a multiple of Nϕ and TN is the Hecke algebra generated by the good

Hecke operators T
 with � � N , the ϕ-isotypic component of a TN -module S

is defined to be

(2.8) S[ϕ] := {v ∈ S ⊗Oϕ : T
(v) = a
(ϕ)v for all � � N}.

Generalising the setting of §1 and modifying slightly the notation therein,

let f ∈ S2(Np)[f0] now denote a normalised eigenform with trivial nebentypus

character arising from a newform f0 on Γ0(Nf ) for some Nf | N . In the

context of §1, f0 is the eigenform associated to the elliptic curve E. More

specifically, we take

(2.9) f(q) =
∑
d|Np

Nf

λdf0(q
d) ∈ S2(Np)[f0]

to be an eigenvector for all Hecke operators U
, � | Np, and assume f is

ordinary, i.e., that αf = αf0 is a p-adic unit.

In addition, for the rest of this section let g ∈ S2(Nps, χ · χp) be an eigen-

form of weight 2, levelNps and nebentype character χχp that we have factored

in such a way that

cond(χ) | N, cond(χp) | ps.

Assume g arises from a newform g0 of level Ngp
s for some Ng | N and that the

conductor of χp is equal to ps. In the terminology introduced by Mazur-Wiles

[MWi], g is said to be primitive at p. Assume also that g is ordinary at p, i.e.,

that αg = ap(g) is a p-adic unit.

For any varietyX over Q, the notation X̄ := X×Q̄ will be used to designate

the base change of X to Q̄. Let

(2.10)

V0(Np) = H1
et(X̄0(Np),Zp)(1) and Vs = H1

et(X̄s,Zp)(1) for s ≥ 1
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denote the Galois representation afforded by the Tate module of X0(Np) and

Xs, respectively.

Let

pr1,1 : H2
et(S̄s,Zp)(2) −→ V0(Np)⊗ Vs

denote the natural projection of GQ-modules induced by the Künneth decom-

position, and let

reget : CH
2(Ss, 1)(Q) −→ H1(Q, H2

et(S̄s,Zp)(2))
pr1,1−→ H1(Q, V0(Np)⊗ Vs)

denote the composition of the p-adic étale regulator map (as defined for in-

stance in chapter 2 of [Fl]) with the map induced by pr1,1 in Galois cohomol-

ogy.

The image under reget of the subgroup generated by negligible element

vanishes, for the cohomology class of such elements take values in the Künneth

component

H2
et(X̄0(Np),Zp)⊗H0

et(X̄s,Zp)(2) ⊕ H0
et(X̄0(Np),Zp)⊗H2

et(X̄s,Zp)(2).

Hence the étale regulator descends to a map that we continue to denote with

the same symbol

(2.11) reget : CH
2
neg(Ss, 1)(Q) −→ H1(Q, V0(Np)⊗ Vs).

Definition 2.3. The Beilinson-Flach cohomology classes of level Nps are

defined to be

κ(a;Nps) := reget(BF(a;Nps)) ∈ H1(Q, V0(Np)⊗ Vs),

κs := κ(1;Nps).

We now turn to providing an analytic description of the restriction to GQp

of the classes κs, which will pave the way for establishing its relation to

the values of the Hida-Rankin p-adic L-function associated to Hida families

passing through f and g. A first step towards this task is the description of

H1
fin(Qp, Vfg) in terms of the de Rham cohomology of the relevant modular

curves.

Recall Fontaine’s ring Bcris of cristalline periods, and let

(2.12)
Df := (Bcris ⊗Qp

Vf )
GQp ,

Dg := (Bcris ⊗Qp
Vg)

GQp(μps ) ,
Dfg := (Bcris ⊗Qp

Vfg)
GQp(μps )

be the (potentially crystalline) Dieudonné modules associated to Vf , Vg and

Vfg, respectively. Note that Dfg � Df ⊗Dg in the category of filtered Frobe-

nius vector spaces over the field K. Let

(2.13) g∗ = ḡ =
∑

ān(g)q
n ∈ S2(Nps, χ−1χ−1

p ), gw := wg
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be the modular forms which both belong to the automorphic representation

attached to the contragredient of g; these modular forms are eigenvectors for

the good Hecke operators, and

Vg∗ = Vg ⊗ χ−1χ−1
p = V ∨

g (1).

The Dieudonné module of the Kummer dual V ∨
fg(1) = Vfg∗(−1) of Vfg, de-

noted Dfg∗(−1), is canonically identified with Dfg∗ but with a shift in the

Hodge filtration. The dimensions of the relevant pieces of the Hodge filtration

on Dfg and Dfg∗(−1) are summarised in the table below:

Fil−2 Fil−1 Fil0 Fil1 Fil2

Dfg 4 3 1 0 0

Dfg∗(−1) 4 4 3 1 0

The Bloch-Kato logarithm logp of [BK] associated to the Galois represen-

tation Vfg gives an isomorphism

logp : H1
exp(Qp(μps), Vfg) −→

Dfg

Fil0Dfg +Dφ=1
fg

,

where H1
exp(Qp(μps), Vfg) is as defined in (1.1), with Qp replaced by Qp(μps).

The cristalline Frobenius φ acts on Dfg with eigenvalues

(2.14) αfαg, αfβg, βfαg, βfβg.

These eigenvalues are algebraic numbers of absolute value p (relative to any

complex embedding of Q̄) and therefore Dφ=1
fg = 0. It follows from [BK,

Cor. 3.8.4] that

(2.15) H1
exp(Qp(μps), Vfg) = H1

fin(Qp(μps), Vfg).

The Bloch-Kato logarithm can therefore be recast in the current context as a

map

(2.16) logp : H1
fin(Qp(μps), Vfg) −→

Dfg

Fil0(Dfg)
= Fil0(Dfg∗(−1))∨,

where the last identification arises from the natural duality between Dfg and

Dfg∗(−1), relative to which Fil0(Dfg) and Fil0(Dfg∗(−1)) are orthogonal

complements of each other.

Assume furthermore that none of the eigenvalues in (2.14) are equal to p.

This assumption is satisfied with at most finitely many exceptions when f is

fixed and g runs over the weight two specialisations of a Hida family, hence will

suffice for the applications in this paper. It implies, by another application

of [BK, Cor. 3.8.4], that H1
exp(Qp(μps), Vfg∗(−1)) = H1

fin(Qp(μps), Vfg∗(−1))

and hence, by duality, that

(2.17) H1
fin(Qp(μps), Vfg) = H1

geom(Qp(μps), Vfg).
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The argument used in the proof of Lemma 2.8 of [Fl] shows that the image

of the étale regulator regfget consists of extensions of Galois representations

occurring in the étale cohomology of varieties with potentially semistable re-

duction at p, which hence are de Rham at p. This image is therefore contained

in H1
geom(Qp(μps), Vfg), and thus by (2.15) in the finite subspace of the local

cohomology.

Let

(2.18) D0(Np) := (BdR ⊗ V0(Np))GQp , Ds := (BdR ⊗ Vs)
GQp(μps ) ,

be the de Rham Dieudonné filtered modules attached to the Galois repre-

sentations V0(Np) and Vs. Note that these p-adic Galois representations are

BdR but not Bcris-admissible, but that their f0- and g0-isotypic parts, de-

noted V0(Np)[f ] � V i
f and Vs[g] � V j

g , are cristalline over Qp and Qp(μps)

respectively.

The étale regulator map (2.11) on CH2(Ss, 1)neg and the Bloch-Kato log-

arithm associated to the Galois representation V0(Np) ⊗ Vs give rise to a

diagram of maps:

(2.19) CH2(Ss, 1)neg(Qp(μps))
reget �� H1

geom(Qp(μps), V0(Np)⊗ Vs)

H1
exp(Qp(μps), V0(Np)⊗ Vs)

logp

��

� �

��

Fil0(D0(Np)⊗Ds(−1))∨.

Let

(2.20)

regfgp : CH2(Ss, 1)(Qp(μps))[fg] �� Fil0(D0(Np)[f ]⊗Ds(−1)[g∗])∨

be the map obtained by applying the (f, g)-isotypic projection to (2.19), in-

voking (2.15) and (2.17) to show that the vertical inclusion becomes an iso-

morphism after restricting to these (f, g)-isotypic subspaces.

The main goal of the next section is proving an analytic formula for the

value of regfgp (BFs) at a suitable vector in Fil0(D0(Np)[f ] ⊗ Ds(−1)[g∗]),

which we now proceed to describe.

By the comparison theorem between étale and de Rham cohomology, there

are isomorphisms of two-dimensional filtered Frobenius modules

(2.21) Df � H1
dR(X0(Nf )/Qp

)(1)[f0], Dg � H1
dR(X1(Ngp

s)/Qp(μps ))(1)[g0]
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such that

Fil0Df � Ω1(X0(Nf ))[f0] = 〈ωf0〉, Fil0Dg � Ω1(X1(Ngp
s))[g0] = 〈ωg0〉.

For any projective curve X/F , write

〈 , 〉X : H1
dR(X/F )×H1

dR(X/F ) −→ F

for the canonical Poincaré pairing on X. Let ηf0 be an element in the one-

dimensional unit-root subspace of Df , normalised so that

〈ωf0 , ηf0〉X0(Nf ) = 1.

Fix a finite extension K/Qp containing Kf and Kg, and let O denote its

valuation ring. For each positive divisor d of Np/Nf , write πd : X1(Np) −→
X1(Nf ) for the standard degeneracy map induced by multiplication by d on

the upper half plane. Let

πd∗ : V0(Np)[f0] −→ Vf , Vf := V0(Nf )[f0] = H1
et(X̄0(Nf ),O)(1)[f0]

be the map in étale cohomology induced by πd by covariant functoriality. Our

choice of f in S2(Np)[f0] stated in equation (2.9) determines the projection

(2.22) �f :=
∑

λdπd∗ : V0(Np)⊗O −→ Vf .

Committing a slight abuse of notation, denote by �f the map induced by

(2.22) by functoriality on Dieudonné modules and the first isomorphism in

(2.21), and write �∗
f for the dual map arising from Poincaré duality:

(2.23) �f : D0(Np) −→ Df , �∗
f : Df −→ D0(Np).

The maps �g : Ds −→ Dg and �∗
g : Dg −→ Ds are defined similarly, and

we let

�∗
f ⊗�∗

g : Dfg −→ D0(Np)⊗Ds

denote the map induced by �∗
f and �∗

g and the Künneth decomposition.

Define ηf := �∗
f (ηf0) ∈ D0(Np)[f ], and likewise set

ωg := �∗
g(ωg0) ∈ Ds[g], ωgw := wωg ∈ Ds[g

∗].

Note that ηf is ordinary by the compatibility of �∗
f with the Up-operator.

Since ηf belongs to Fil−1(Df ) = Df and ωgw belongs to Fil0(Dg∗) ⊂ Ω1(Xs),

the tensor product ηf ⊗ ωgw belongs to Fil−1(D0(Np)[f ]⊗Ds[g
∗]). Because

of the assumption on g leading to (2.17), the expression

regfgp (BFs)(ηf ⊗ ωgw)

is defined. The main result of §2.5 is a formula for its value. As preparation

for that, we first recall in §2.4 a few needed facts on the rigid geometry of the

modular curve X1(Nps).
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2.4. The rigid cohomology of modular curves. This section briefly

summarises the description of the de Rham cohomology of Xs viewed as a

curve over a p-adic field, following the treatment in [DR2, §3.1], with suitable

modifications aimed at giving a similar description of the cohomology of the

affine curve Ys. We adopt the same notation as in [DR2], which the reader is

encouraged to consult for a more detailed description of the objects that are

used here.

More specifically, let F be any extension of Qp(μps) over which Xs admits

a semistable model and over which the closed points of Σ := Xs − Ys are

defined.

The étale cohomology groups of Xs and Ys are related by the Gysin exact

sequence of semistable representations of GF = Gal (F̄ /F ):

(2.24) 0 −→ H1
et(X̄s,Qp) −→ H1

et(Ȳs,Qp) −→ Qp(−1)t −→ 0,

where t = |Σ| − 1.

Let Dst be Fontaine’s comparison functor attached to the ring of semistable

periods Bst. By applying Dst to the sequence (2.24) and invoking the com-

parison theorem between étale and de Rham cohomology, one obtains a cor-

responding sequence of filtered Frobenius monodromy (FFM) modules

(2.25) 0 −→ H1
dR(Xs/F ) −→ι H1

dR(Ys/F ) −→ F (−1)t −→ 0.

(See for example [CI], Proposition 7.6, for details.) Note that the above FFM

modules are isomorphic as filtered Frobenius modules to those obtained by

applying the construction of the potentially crystalline Dieudonné module of

Section 2.3, in which Bst is replaced by Bcris. The use of Bst equips these

modules with the additional structure of a monodromy operator.

In particular, it follows from (2.25) that the Frobenius operator Φ associ-

ated to Ys acts on the subspace of H1
dR(Ys/F ) generated by classes of Eisen-

stein series with eigenvalues of absolute value p.

In order to make (2.25) more explicit, we recall, following [CI], the Maier-

Vietoris exact sequences describing the de Rham cohomology groups of Xs

and Ys. Fix a proper semistable model Xs of Xs over the ring of integers

OF of F , whose special fiber C is a union of smooth geometrically connected

components C1, . . . , Cn intersecting at ordinary double points defined over

the residue field F of F . Since s ≥ 1, there are at least two components, i.e.,

n ≥ 2. Write G for the dual graph of C, and V , resp. E , for its set of vertices,
resp. oriented edges. Recall that

V = {C1, . . . , Cn}, E = {(x,Ci, Cj) : x ∈ Ci ∩ Cj}.
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Given e = (x,Ci, Cj) in E , we say that s(e) := Ci is the source of e and

t(e) := Cj is the target of e. Write

red : Xs(Cp) −→ C(F̄)

for the reduction map, and identify Xs(Cp) with the rigid-analytic space over

F attached to Xs. The wide open space associated to v ∈ V is defined as

Wv := red−1(v). Its underlying connected affinoid space Av is obtained as

the inverse image by reduction of the component v with the singular points

removed. The wide open annulus associated to e = (x, vi, vj) ∈ E is defined as

We := red−1(x) (so that We = Wvi ∩Wvj ). The collection {Wv}v∈V forms an

admissible covering of Xs(Cp) by wide open spaces. Likewise, an admissible

covering of Ys(Cp) is given by {W ′
v}v∈V , where W ′

v := Wv − Σ. Note that

W ′
vi ∩W ′

vj = Wvi ∩Wvj = We,

with e = (x, vi, vj) ∈ E . Since H1
dR(Xs/F ) and H1

dR(Ys/F ) are identified
with the Cech hypercohomology groups of their associated admissible cover-
ings, they arise as the middle terms in the following commutative diagram
originating from the Maier-Vietoris sequences attached to these coverings:
(2.26)

0 �� ⊕e∈EH0
dR(We)

δ(⊕v∈VH0
dR

(Wv))

i ��

=

��

H1
dR(Xs/F )

r ��

ι

��

(
⊕v∈VH

1
dR(Wv)

)
0

��

ῑ

��

0

0 �� ⊕e∈EH0
dR(We)

δ(⊕v∈VH0
dR

(Wv))

i′ �� H1
dR(Ys/F )

r′ ��
(
⊕v∈VH

1
dR(W ′

v)
)
0

�� 0,

where

(2.27)

(
⊕v∈VH

1
dR(Wv)

)
0
:= ker

(
⊕v∈VH

1
dR(Wv) −→δ ⊕e∈EH

1
dR(We)

)
,(

⊕v∈VH
1
dR(W ′

v)
)
0
:= ker

(
⊕v∈VH

1
dR(W ′

v) −→δ ⊕e∈EH
1
dR(We)

)
.

In (2.26) and (2.27), the various coboundary maps δ are defined by the rule

δ{αv}(e) := αt(e)|We
− αs(e)|We

,

and we have used the fact that H0
dR(Wv) = H0

dR(W ′
v), since Σ is finite. Fur-

thermore, the map i sends the class of a collection {λe} of scalars with λe ∈ Cp

to the class of the hypercocycle ({0v}, {λe}), while the map r sends the class

of the hypercocycle ({ωv}, {fe}) to the class of {ωv}. Likewise for i′ and r′.

2.5. Analytic description of the syntomic regulator. We now give

an analytic description of the image under the p-adic syntomic regulator of

the Beilinson-Flach element BFs attached to the Siegel unit g1,Nps . Recall

the modular forms f ∈ S2(Np) and the primitive form g ∈ S2(Nps, χχp)

considered in §2.3, arising from newforms f0 and g0 of level Nf and Ngp
s,

respectively.
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Lemma 2.4. We have the equality

regfgp (BFs)(ηf ⊗ ωgw) = regfgp (BF(gw
χ−1χ−1

p
))(ηf ⊗ ωgw).

Proof. This follows by noting that

BFs =
∑

BF(gwψ),

where the sum is being taken over the even characters ψ of modulus Nps. It

follows from the equivariance of regp under the group of diamond operators

acting functorially on both source and target that regfgp (BF(gwψ))(ηf ⊗ ωgw)

is zero for all ψ �= χ−1χ−1
p . �

In light of this lemma, let

(2.28) ωE := E(q)dq
q

=
ϕ(Nps)

2
· dloggχ−1χ−1

p
= G(χχp)E2(χ

−1χ−1
p , 1)

dq

q

be the differential of the third kind on X1(Nps) associated to the Eisenstein

series

E ∈ M2(Nps, χ−1χ−1
p )

introduced in equation (2.4) of §2.1.
Choose a polynomial P (x) ∈ F [x] such that the following conditions hold:

(1) P (Φ× Φ) annihilates the class of ωgw ⊗ ωEw in H2
dR(Y

2
s /F ),

(2) P (Φ) acts invertibly on H1
dR(Ys/F ).

The polynomial P exists because Φ × Φ acts with eigenvalues of complex

absolute value p3/2 on the subspace of H2
dR(Y

2
s /F ) generated by the Frobenius

translates of classes of the form ωgw ⊗ ωEw , while Φ acts on H1
dR(Ys/F ) with

eigenvalues of absolute value 1,
√
p and p (as is deduced for example by

analysing the Mayer-Vietoris sequence (2.26)).

Just as in [DR2, §3.2], condition (1) in the choice of the polynomial P

means that P (Φ×Φ) (ωgw ⊗ ωEw) is exact and hence there exists a system of

rigid one-forms

ρ
P
(gw, Ew) = {ρv1,v2

P
(gw, Ew) ∈ Ω1

rig(W ′
v1 ×W ′

v2)}
indexed by pairs (v1, v2) ∈ V × V , satisfying

(2.29) dρv1,v2
P

(gw, Ew) = P (Φ× Φ)
(
ωgw ⊗ ωEw |W′

v1
×W′

v2

)
.

Note that the choice of the system of one-forms ρv1,v2
P

(gw, Ew) is not unique,

as it is well-defined only up to systems of closed rigid one-forms on the prod-

uctsW ′
v1×W ′

v2 . Nevertheless, we shall use this system to construct a canonical

class in H1
dR(Xs/F ) associated to gw and Ew, independent of all the choices

made.

For any a ∈ (Z/NpsZ)×, let 〈a〉 ∈ Aut(Ys) denote the diamond operator

associated to a on Ys, and for any pair (a, b) of such elements let 〈a, b〉 denote
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the automorphism of Ys × Ys given by the product of 〈a〉 and 〈b〉 acting on

the first and second variable, respectively.

Fix an a ∈ (Z/NpsZ)× such that χχp(a) �= 1 for the rest of the section,

and define the linear homomorphism

(2.30) δ∗a : ⊕v1,v2Ω
1
rig(W ′

v1 ×W ′
v2) −→ ⊕vΩ

1
rig(W ′

v)

by

δ∗a = diag∗ ◦ (Id− 〈a, 1〉∗) ◦ (Id− 〈1, a〉∗),

where diag∗ denotes the map induced by pull-back under the diagonal em-

bedding W ′
v −→ W ′

v ×W ′
v.

Lemma 2.5. The map δ∗a sends collections of closed 1-forms to collections

of exact 1-forms.

Proof. By the Künneth formula, there is a decomposition

H1
dR(W ′

v ×W ′
v) � (H0 ⊗H1) ⊕ (H1 ⊗H0),

where we use the shorthand H0 = H0
dR(W ′

v) and H1 = H1
dR(W ′

v). Since the

endomorphism Id−〈a, 1〉∗ vanishes on the first factor, and Id−〈1, a〉∗ vanishes
on the second, the claim follows. �

Corollary 2.6. The image ΞP,a(g
w, Ew) of the system of closed rigid 1-

forms δ∗a(ρP (g
w, Ew)) in ⊕vH

1
dR(W ′

v) does not depend on the choice of solution

of the differential equation (2.29).

As the notation indicates, the class ΞP,a(g
w, Ew) does depend on both our

choices of P and a. In order to eliminate this ambiguity, define the class

(2.31) Ξ
P
(gw, Ew) := (1− χχp(a))

−1(1− χ−1χ−1
p (a))−1Ξ

P,a
(gw, Ew)

in ⊕v∈VH
1
dR(W ′

v). This class still depends on P but is independent of the

choice of a as above. Indeed, this follows from the very definition of ΞP (g
w, Ew)

and the fact that 〈a〉 acts on the gw-isotypic (resp. Ew-isotypic) component of

H1
dR(Ys/F ) as multiplication by χ−1χ−1

p (a) (resp.χχp(a)).

Following [DR2, Def. 3.1], define the subspace H1
dR(Xs/F )

(1) of pure classes

of weight one of H1
dR(Xs/F ) by the condition that Φ acts via eigenvalues of

complex absolute value
√
p on its elements. Likewise, define the subspace

⊕vH
1
dR(W ′

v)
(1) of ⊕vH

1
dR(W ′

v) by the same condition. Weight considerations

show that ⊕vH
1
dR(W ′

v)
(1) is contained in the kernel of the map δ appearing in

the commutative diagram (2.26) and that the map r′ ◦ ι defined in the same

diagram induces an isomorphism between the above spaces of pure weight one

classes. Denote by

splX : ⊕vH
1
dR(W ′

v)
(1) −→ H1

dR(Xs/F )
(1)
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the (Frobenius-equivariant) inverse isomorphism. In light of condition (2) in

our choice of P , define the class

(2.32) Ξ(gw, Ew) := P (Φ)−1splX (Ξ
P
(gw, Ew)) ∈ H1

dR(Xs/F )(1).

It is immediate to check that Ξ(gw, Ew) does not depend on our choice of P .

Let πs and �s be the natural degeneracy maps arising in the diagram

π̃s : Xs
πs �� X0(Nps)

�s �� X0(Np),

where π̃s is the morphism appearing in equation (2.5). The degeneracy map

�s that we choose is the unique one which is compatible with the Up operators

in level Nps and Np. Let

ηf,s := �∗
sηf , η̃f,s := π∗

sηf,s.

The class ηf,s is ordinary by the ordinariness of ηf combined with the com-

patibility of �s with Up.

Proposition 2.7. The equality

(2.33) regfgp (BFs)(ηf ⊗ ωgw) =
2

ϕ(Nps)
〈η̃f,s,Ξ(gw, Ew)〉Xs

holds.

Proof. This formula follows by applying the same argument as in the proof

of [BDR, Prop. 3.3], with the following difference. While in [BDR] we work

with the modular curve X1(N) which admits a smooth model over Zp, here

the modular curve Xs has a bad reduction at p, and we are bound to work

with a semistable model of this curve. Besser’s theory of finite polynomial

cohomology has been extended recently to the setting of semistable varieties

by Besser, Loeffler and Zerbes in [BLZ], building on previous work of Nekovář

and Niziol [NeNi]. The proof of [BDR, Prop. 3.3] applies verbatim after

replacing Besser’s [Bes, Prop. 6.3] with [BLZ, Prop. 3.12], taking into account

that

ωEw =
ϕ(Nps)

2
· d log(gw

χ−1χ−1
p
).

�
The fact that the nebentype characters of gw and Ew are inverse one to

the other implies that the class Ξ(gw, Ew) arises as the pull-back of a class,

denoted with the same symbol by abuse of notation, in the cohomology of

X0(Nps) under πs.

Proposition 2.8. For all s ≥ 1,

(2.34) regfgp (BFs)(ηf ⊗ ωgw) = 〈ηf,s,Ξ(gw, Ew)〉X0(Nps).
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Proof. Because the degree of πs is 1
2ϕ(Nps), and the pull-back and push-

forward maps are adjoint to each other relative to the Poincaré pairing,

(2.35) 〈η̃f,s,Ξ(gw, Ew)〉Xs
=

1

2
ϕ(Nps)〈ηf,s,Ξ(gw, Ew)〉X0(Nps).

The result follows. �
It will be convenient to consider the anti-ordinary counterparts of the

classes ηf and ηf,s:

ηwf := wηf , ηwf,s := wηf,s,

where we recall that w refers in the above equations to the Atkin-Lehner

involutions wNp and wNps of levels Np and Nps respectively.

Let {W∞,W0} denote the standard admissible covering of X0(Np) by wide

open neighbourhoods of the Hasse domain of X0(N), as described by Cole-

man in [Co]. By construction, arguing as in [DR2, Lemma 4.6], the ordinary

unit root class ηf ∈ H1
dR(X0(Np)) is supported on W0 and has vanishing

residues at the supersingular annuli, while the anti-ordinary unit root class

ηwf is supported on W∞.

Let Uw
p = wUpw be the adjoint operator of Up with respect to the Poincaré

pairing on X0(Nps), and let

eord = limUn!
p and eword = lim(Uw

p )n! = weordw

denote Hida’s ordinary and anti-ordinary projectors, respectively. Pull-back

under �s gives rise to an isomorphism between the ordinary subspaces of

H1
dR(X0(Nps)) and H1

dR(X0(Np)). Hence eordΞ(g, E) arises as the pull-back

under �s of some ordinary class in H1
dR(X0(Np)), which we again denote

with the same symbol. In the context of the next theorem, eordΞ(g, E) is to

be understood in the latter sense. Since eordΞ(g, E) belongs to the subspace

of the cohomology which is pure of weight one, its restriction to the wide open

W∞ has vanishing residues along the supersingular annuli. Therefore, it also

makes sense to pair it with the (restriction of) the anti-ordinary class ηwf .

Theorem 2.9. For all s ≥ 1,

regfgp (BFs)(ηf ⊗ ωgw) = αs−1
f · 〈ηwf , eordΞ(g, E)〉W∞ .

Proof. Since the class ηf,s is ordinary, it is fixed by eord and thus

〈ηf,s,Ξ(gw, Ew)〉X0(Nps) = 〈eordηf,s,Ξ(gw, Ew)〉X0(Nps)(2.36)

= 〈ηf,s, ewordΞ(gw, Ew)〉X0(Nps)

= 〈ηwf,s, eord Ξ(g, E)〉X0(Nps),

where the self-adjointness of the involution w has been exploited to derive the

last equation.
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But since eordΞ(g, E) arises as a pull-back under �s, we can write

〈ηwf,s, eord Ξ(g, E)〉X0(Nps) = 〈�s(η
w
f,s), eord Ξ(g, E)〉X0(Np)(2.37)

= 〈�sw�
∗
s(ηf ), eord Ξ(g, E)〉X0(Np)

= 〈w ◦ Us−1
p (ηf ), eord Ξ(g, E)〉X0(Np)

= αs−1
f 〈ηwf , eord Ξ(g, E)〉W∞ ,

where the last identity follows from the fact that the anti-ordinary unit root

class ηwf is supported on W∞. The theorem now follows from Proposition 2.8

combined with (2.36) and (2.37). �
We are now in a position to state the main result of this section, namely,

the evaluation of the p-adic syntomic regulator attached to BFs in terms of

the q-expansions of concrete (overconvergent) p-adic modular forms. For a

p-adic modular form ϕ =
∑

an(ϕ)q
n, let

ϕ[p] =
∑
p�n

an(ϕ)q
n

denote its “p-deprived” counterpart.

The Atkin-Serre operator d = q d
dq sends p-adic overconvergent modular

forms of weight 0 to overconvergent modular forms of weight two. The image

of the p-depleted classical weight two Eisenstein series E
[p]
2 (χ−1χ−1

p , 1) under

d−1 is the p-adic overconvergent Eisenstein series of weight 0:

d−1E
[p]
2 (χ−1χ−1

p , 1) = E
[p]
0 (1, χ−1χ−1

p ).

The product g[p]×E
[p]
0 (1, χ−1χ−1

p ) is therefore an overconvergent cusp form of

weight two with trivial nebentypus character, and hence its image under the

ordinary projection eord corresponds to a classical weight two cusp form on

Γ0(Np), which can be viewed as an element of the first de Rham cohomology

of X0(Np). The inner product 〈 , 〉X0(N) in the theorem below denotes the

usual Poincaré duality on this de Rham cohomology group.

Theorem 2.10. For all s ≥ 1,

regfgp (BFs)(ηf ⊗ ωgw) = G(χχp) ·
αs−1
f

1− χ−1(p)α−1
f αg

×〈ηwf , eord(g[p] · E
[p]
0 (1, χ−1χ−1

p ))〉X0(Np).

Proof. The restriction to W∞ of eordΞ(g, E) is the cohomology class of a

specific overconvergent weight two p-adic modular form representing a rigid

analytic differential form on W∞ with vanishing annular residues. The class

eordΞ(g, E) is defined by exactly the same analytic recipe as the class denoted
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eordξ(ωğ, ωh̆) in equation (85) of [DR2] after replacing ğ by g and setting

h̆ = wpsE (= G(χ)E2(χ
−1, χp)).

In [DR2], the form h̆ was assumed to be cuspidal while wpsE is an Eisenstein

series, but the calculations of [DR2] remain valid in the latter setting. In

particular, the expression

wps h̆ = G(χ−1
p )α−s

h ωh̆ι ,

which appears in the statement of Proposition 4.13 of [DR2], can be replaced

by ωE , yielding

eordΞP (g, E) = eordξP (ωg, ωwpsE) = −2eord(g × d−1E [p])(2.38)

= −2G(χχp)eord(g × E
[p]
0 (1, χ−1χ−1

p )),(2.39)

where P (x) is the linear polynomial 2(1 − p−1χ−1(p)αgx), and ΞP (g, E) is

defined as in (2.31). Combining equation (2.38) with Theorem 2.9, we obtain

(2.40)

regfgp (BFs)(ηf ⊗ ωgw) = −2G(χχp)α
s−1
f

×〈ηwf , P (Φ)−1eord(g · E[p]
0 (1, χ−1χ−1

p ))〉W∞ .

Note that g can be replaced by g[p] in equation (2.40), as a direct calculation

shows that

(g[p] − g) · E[p]
0 (1, χ−1χ−1

p )

belongs to the kernel of Up and a fortiori of eord. (See for instance Lemma 2.17

of [DR1].) Finally, for any class Ξ in H1
dR(W∞), we have

〈ηwf ,ΦΞ〉W∞ = α−1
f 〈Φηwf ,ΦΞ〉W∞ = pα−1

f 〈ηwf ,Ξ〉W∞ = βf 〈ηwf ,Ξ〉W∞ ,

which in turn implies

(2.41) 〈ηwf , P (Φ)−1Ξ〉W∞ = P (βf )
−1〈ηwf ,Ξ〉W∞ .

In light of the explicit description of P (x) given above, combined with equa-

tions (2.40) and (2.41),

regfgp (BFs)(ηf ⊗ ωgw) = G(χχp) ·
αs−1
f

1− χ−1(p)α−1
f αg

×〈ηwf , eord(g[p] · E
[p]
0 (1, χ−1χ−1

p ))〉W∞ .

Proceeding just as in the proof of Theorem 2.9, Theorem 2.10 follows from

the compatibility between the de Rham pairings on W∞ ⊂ X0(Np) and on

X0(Np), using the fact that ηwf is anti-ordinary and supported on W∞. �
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2.6. Hida’s p-adic L-function. A point of the rigid analytic space

Ω := Homcts(Z
×
p ,C

×
p )

is said to be arithmetic if it is of the form

νk,ε(x) := xk−1ε(x) (for all x ∈ Z×
p ),

where k ≥ 2 is an integer and ε is a finite order character factoring through

(Z/psZ)×. The space Ω is referred to as the weight space and plays a basic

role in the theory of p-adic families of modular forms.

A Hida family of tame character χ : (Z/NZ)× −→ C×
p is a pair (Ωϕ, ϕ)

where

(1) Ωϕ is a rigid analytic space equipped with a finite morphism

wt : Ωϕ −→ Ω,

(2) ϕ =
∑∞

n=1 an(ϕ)q
n is a formal q-series with coefficients in the ring

Λϕ := A(Ωϕ) of rigid analytic functions on Ωϕ,

such that, for all points x ∈ Ωϕ of arithmetic weight wt(x) = νk,ε, the spe-

cialisation

ϕx :=

∞∑
n=1

an(ϕ)(x)q
n

is the q-series of a normalised eigenform of weight k, level Nps and character

χϕx
= χεω1−k, where ω is the Teichmüller character of conductor p.

Let g be the weight one modular form considered in Section 1, and let gα be

one of its ordinary p-stabilisations. A theorem of Hida ensures the existence

of a Hida family, denoted g, of tame character χ which specialises to gα at

a suitable point y0 ∈ Ωg lying above ν1,1. For any arithmetic point y ∈ Ωg

above ν
,ε, for some � ≥ 1 and some character ε of p-power conductor, denote

by gy ∈ S
(Nps, χεω1−
) the specialisation of g at y.

Write E(1, χ−1) for the ordinary Hida family of Eisenstein series, whose

specialisation at the point ν
,ε in weight space is equal to the classical Eisen-

stein series

E(1, χ−1)ν�,ε
= E
(1, χ

−1εω1−
)

of weight � and character χ−1εω1−
. The Iwasawa algebra admits an in-

volution inducing the map ν
,ε �→ ν2−
,ε−1 on weight space. Applying the

change of scalars to E(1, χ−1) via this involution yields a Λ-adic modular

form, denoted E∗(1, χ−1), whose specialisation at the arithmetic point ν
,ε is

the overconvergent modular form

E∗(1, χ−1)ν�,ε
= E2−
(1, χ

−1ε−1ω
−1).
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The expression g
[p]
y ·E[p]

0 (1, χ−1χ−1
p ) appearing in Theorem 2.10 is the spe-

cialisation at the point y of weight ν2,χpω of the Λ-adic modular form

gE∗[p](1, χ−1),

whose specialisation at a point y of weight ν
,ε is given by

(2.42)
{
g[p] · E∗[p](1, χ−1)

}
x
= g[p]y · E[p]

2−
(1, χ
−1ε−1ω
−1).

Note that for all arithmetic y, this specialisation is an overconvergent modular

form of weight 2 and trivial character, whose ordinary projection is therefore

classical of level Np; hence,

eord(g
[p] · E∗[p](1, χ−1) belongs to S2(Γ0(Np),Qp)⊗ Λg.

The reader is referred to Section 4.5 of [DR2] for details on dual families of

modular forms, which motivate the definition of the Λ-adic modular form of

equation (2.42).

Let Lp(f, g)(x, y, j) be the 3-variable Rankin p-adic L-function on Ωf ×
Ωg×Ω introduced in [BDR, §2.2], where f is the Hida family passing through

f . It interpolates the algebraic part of the critical values L(fx ⊗ gy, j), where

fx and gy are classical specialisations of f and g whose weights k and � satisfy

(2.43) k > �,
k + �− 1

2
≤ j ≤ k − 1.

Consider the restriction of Lp(f, g)(x, y, j) to the set of points (x0, y, ν
,ε),

where x0 is such that f
x0

= f , and y ∈ Ωg is a point lying above ν
,ε. In

the notation of [BDR, §2.2.1], this amounts to considering only the values of

Lp(f, g)(k, �, j) when k = 2, j = �, t = 1− � and m = �. In light of equations

(27) and (24) in [BDR], combined with the equality

d1−
E
[p]

 (χ−1ε−1ω
−1, 1) = E

[p]
2−
(1, χ

−1ε−1ω
−1),

this restriction agrees, up to a non-zero fudge factor which depends only on

the fixed form f , with the (p-adic analytic) function described for all such y

by

(2.44) Lp(f, g)(y) := 〈ηwf , eord(g[p]y · E[p]
2−
(1, χ

−1ε−1ω
−1))〉X0(Np).

Note that the points of the form (x0, y, ν
,ε) lie outside the range of classical

interpolation for Lp(f, g), unless gy is classical and of weight one. The next

result relates the values of Lp(f, g) at arithmetic points y of weight ν2,ε to the

p-adic regulators of Beilinson-Flach elements:
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Theorem 2.11. Let ε be a character of conductor ps, let y ∈ Ωg be a point

over ν2,ε and let g = gy ∈ S2(Nps, χεω−1) denote the specialisation of g at y.

Then

regfgp (BFs)(ηf ⊗ ωgw) = G(χεω−1) ·
αs−1
f

1− χ(p)−1α−1
f αg

· Lp(f, g)(y).

Proof. This follows directly by combining equation (2.44) with Theorem

2.10. �
Another important property of Lp(f, g) pertains to its specialisations at

classical weight one points attached to the Hida family g.

Theorem 2.12. Let y ∈ Ωg be a point over ν1,1, corresponding to a clas-

sical p-stabilised weight one form g = gy ∈ S1(Np, χ). Then

Lp(f, g)(y) �= 0 ⇔ L(f ⊗ g, 1) �= 0.

Proof. By equation (2.44),

Lp(f, g)(y) = 〈ηwf , eord
(
g[p]y · E[p]

1 (1, χ−1)
)
〉X0(Np)

= 〈ηwf , g[p]y · E[p]
1 (1, χ−1)〉X0(Np2) (mod Q̄×),(2.45)

where the fact that g
[p]
y E

[p]
1 (1, χ−1) is a classical modular form of level Np2

has been used to deduce the second equality. The expression in (2.45) is an

explicit non-zero multiple of the value of the classical complex Rankin-Selberg

L-function L(f ⊗ g, s) of the convolution of f and g at s = 1. (See equation

(27) and the one immediately following it in [BDR, §2.2.2].) The theorem

follows. �

3. Λ-adic classes

3.1. Norm-compatible systems of elements. For all s ≥ 0, the natu-

ral Up-compatible projections

(3.1) πs+1,s : Xs+1 −→ Xs

of modular curves give rise to maps

(3.2) πs+1,s : Ss+1 −→ Ss

on the associated surfaces, which we continue to denote with the same symbol

by a slight abuse of notation. Write also πs+1,s : O×
Xs+1

−→ O×
Xs

for the norm

maps on units induced by πs+1,s.

Proposition 3.1. For all s ≥ 1,

πs+1,s(g
w
a;Nps+1) = gwa;Nps .
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Proof. Lemma 2.12 of [Ka] implies that the units ga;Nps+1 are compatible

relative to the push-forward via the maps π′
s+1,s : Xs+1 −→ Xs that are com-

patible with the operator U ′
p. This compatibility of the units ga;Nps relative

to the π′
s+1,s := wpsπs+1,swps+1 implies the πs+1,s-compatiblity of the units

gwa;Nps . See also §2.11 and §2.13 of [Ka] or Theorem 2.24 of [LLZ1] for a con-

venient summary of these and further calculations in the more general setting

treated in [Ka]. (Recall that the unit ga;Nps is denoted g0, a
Nps

in [Ka] and

[LLZ1].) �
Write

πs+1,s : CH
2(Ss+1, 1) −→ CH2(Ss, 1)

for the norm maps on higher Chow groups induced by push-forward under the

maps πs+1,s of (3.2). Note that πs+1,s preserves the subspaces of negligible

classes and hence descends to a well-defined map

(3.3) πs+1,s : CH
2
neg(Ss+1, 1) −→ CH2

neg(Ss, 1).

The norm compatibilities of the units ga;Nps are inherited by the associated

Beilinson-Flach elements:

Proposition 3.2. For all s ≥ 1,

(3.4) πs+1,s(BF(a;Nps+1)) = BF(a;Nps), πs+1,s(BFs+1) = BFs

in CH2
neg(Ss, 1)(Q).

Proof. This follows directly from Proposition 3.1 in light of the fact that

the map πs+1,s of (3.2) maps the diagonally embedded Xs+1 � Δs+1 ⊂ Ss+1

to Δs and is identified with the projection πs+1,s of (3.1). �
Corollary 3.3. The Beilinson-Flach cohomology classes κs of Definition

2.3 are compatible under the norm maps, i.e.,

πs+1,s(κs+1) = κs.

In particular, the classes κs can be packaged together into the inverse limit

class

κ∞ := (κs)s≥1 ∈ H1(Q, V0(Np)⊗ V∞),

where

V∞ := lim
←,s

Vs.

3.2. The Λ-adic Beilinson-Flach cohomology class. The module V∞
of the previous section becomes more manageable when replaced by its image

under the ordinary projection. Let

V ord
s := eordVs, Vord

∞ := eordV∞ = lim
←,s

eordVs.
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Note that the action of the group Ds of diamond operators on Xs endows the

GQ-module Vord
∞ with a natural structure of module over the Iwasawa algebra

Λ̃ = Zp[[D∞]] := lim←−Zp[Ds]. A theorem of Hida asserts that this module

is finitely generated and locally free over this algebra. Its Hecke eigenspaces

realise the Λ-adic representations attached to ordinary families of eigenforms.

The Λ-adic Beilinson-Flach cohomology class is defined by setting

κord
s := eordκs ∈ H1(Q, V0(Np)⊗ V ord

s ),

κord
∞ := eordκ∞ = (κord

s )s≥1 ∈ H1(Q, V0(Np)⊗ Vord
∞ ).

Recall the cusp form f = q +
∑

n≥2 an(f)q
n ∈ S2(Np) introduced in §2.3,

on which Up acts with eigenvalue αf . Define

ψf : GQp
−→ O×

to be the unramified character of GQp
such that ψf (Frp) = αf and let

εcyc : GQp
−→ Z×

p

denote the cyclotomic character. There is an O[GQp
]-module exact sequence

(3.5) 0 −→ V +
f −→ Vf −→ V −

f −→ 0,

with

V +
f � O(ψ−1

f εcyc), V −
f � O(ψf )

as O[GQp
]-modules.

Let

εcyc : GQp
−→ Λ×

denote the Λ-adic cyclotomic character satisfying the interpolation property

ν
,ε ◦ εcyc = εε
−1
cyc ω

1−


for any � ≥ 1 and for any Dirichlet character ε of p-power conductor.

Let g =
∑

n≥1 an(g)q
n be a Λ-adic cuspidal eigenform of tame level N and

tame character χ, arising from a Λ-adic newform of level Ng, and let Λg denote

the finite flat extension of the Iwasawa algebra Λ := Zp[[1 + pZp]] generated

by the coefficients an(g). Hida and Wiles associated to g a two-dimensional

Galois representation Vg over Λg, again characterised up to isomorphism by

the property that the characteristic polynomial of Fr
 is T
2−a
(g)T + εcyc(�)

for primes � � Np.

Wiles [Wi] proved a Λ-adic analogue of (3.5) (cf. also [Oh]),

(3.6) 0 −→ V+
g −→ Vg −→ V−

g −→ 0,

where

V+
g � Λg(ψ

−1
g χεcyc), V−

g � Λg(ψg)
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as Λg[GQp
]-modules. Here

ψg : GQp
−→ Λg

×

is the unramified character sending Frp to ap(g).

Fix once and for all a choice of the isomorphisms in (3.6). Similarly to the

previous sections, the Λ-adic form g gives rise to an epimorphism

�g : Vord
∞ −→ Vg

of Λ̃[GQ]-modules. Set

Vf,g := Vf ⊗ Vg, �f,g := �f ⊗�g : V0(Np)⊗ Vord
∞ −→ Vf,g.

Definition 3.4. The Λ-adic Beilinson-Flach cohomology class associated

to the pair (f, g) is

κ(f, g) = �f,g(κ
ord
∞ ) ∈ H1(Q,Vf,g).

Let � ≥ 1 be an integer and ε be a Dirichlet character of conductor ps for

some s ≥ 1. Let y be a point in Ωg = Spf(Λg) such that wt(y) = ν
,ε, and

assume that the specialisation gy of g at y is a classical eigenform (which is

always the case if � ≥ 2). Then gy belongs to M
(Nps, χεω1−
) and is actually

a cuspform if � ≥ 2. Define

(3.7) κ(f, gy) ∈ H1(Q, Vfgy)

to be the specialisation at y of the Λ-adic class κ(f, g). Let

κp(f, g) ∈ H1(Qp,Vfg), κp(f, gy) ∈ H1(Qp, Vfgy)

denote the restriction toGQp
of the Λ-adic class κ(f, g) and of its specialisation

κ(f, gy).

Since the p-adic syntomic regulator map is the composition of the étale

regulator with Bloch-Kato’s logarithm map, Theorem 2.11 translates into the

following statement:

Theorem 3.5. Let y ∈ Ωg be an arithmetic point of weight-character ν2,ε
for some character ε of conductor ps. Then

logp κp(f, gy)(ηf ⊗ ωgw
y
) = G(χεω−1) ·

αs−1
f

1− χ(p)−1α−1
f α−1

gy

· Lp(f, g)(y).

3.3. The explicit reciprocity law. The Λg-module Vfg admits a natu-

ral GQp
-stable filtration, given by

V++
fg := V +

f ⊗ V+
g ⊂ V+

fg := Vf ⊗ V+
g + V +

f ⊗ Vg ⊂ Vfg.

Note that V++
fg and V+

fg have rank 1 and 3 over Λg, respectively.
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Lemma 3.6.

(i) There is an isomorphism Vfg/V
+
fg � Λg(ψfψg) of Λg[GQp

]-modules.

(ii) The quotient V+
fg/V

++
fg decomposes as a Λg[GQp

]-module as

V+
fg/V

++
fg � Vf

fg ⊕ Vg
fg,

where

Vf
fg = Λg(ψfψ

−1
g χ · εcyc) Vg

fg = Λg(ψ
−1
f ψgεcyc).

Proof. The lemma follows directly from the definitions of V++
fg and V+

fg

and the formulae described in (3.5) and (3.6). �
The natural inclusion V+

fg ↪→ Vfg induces a homomorphism

H1(Qp,V
+
fg) ↪→ H1(Qp,Vfg),

which is injective because H0(Qp,Vfg/V
+
fg) = 0. Thus H1(Qp,V

+
fg) is iden-

tified with a subgroup of H1(Qp,Vfg).

Define ξfg := 1−αfap(g) ∈ Λg. For the remainder of the article, we replace

the ring Λg and all modules over it by their localisation at the multiplicative

set generated by the powers of ξfg. Since this element vanishes at no classical

point of weight � ≥ 1, this modification does not affect any of the subsequent

arguments concerning the specialisation at these points.

Lemma 3.7. The local class κp(f, g) belongs to H1(Qp,V
+
fg).

Proof. It follows from known properties of the étale regulator map, as ex-

plained in [Ne] and [Fl, §2], that for all points y of weight ν2,ε, the speciali-

sations κp(f, gy) belong to the image of H1(Qp, V
+
fgy

) in H1(Qp, Vfgy). Since

these points form a dense subset of Ωg for the rigid analytic topology, we

conclude that κp(f, g) belongs to the kernel of the map

H1(Qp,Vfg) −→ H1(Ip,Vfg/V
+
fg).

In order to prove the lemma, it thus suffices to show that the kernel of the

restriction map

H1(Qp,Vfg/V
+
fg)

res−→ H1(Ip,Vfg/V
+
fg)

is trivial. Note that such a kernel is a quotient of H1(Qur
p /Qp, (Vfg/V

+
fg)

Ip),

which by Lemma 3.6 (i) is isomorphic toH1(Qur
p /Qp,Λg(ψfψg)). This module

is ξgh-torsion. In view of the redefinition of Λg, this implies the sought-after

claim. �
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Set Ψ := ψfψ
−1
g χ. The two previous lemmas allow us to define

κf
p(f, g) ∈ H1(Qp,Λg(Ψ · εcyc))

as the projection of κp(f, g) to the first factor Vf
fg.

Let y ∈ Ωg be a classical point of weight wt(y) = ν
,ε with � ≥ 2 and

ε �= ω
−1, and letKy/Qp denote the residue field of y. Write Ψy : GQp
−→ K×

y

for the specialisation at y of the unramified Λ-adic character Ψ. The classical

eigenform gy ∈ S
(Nps, χεω1−
) is new at ps, and the specialisation of κf
p(f, g)

at y yields a local class

κf
p(f, gy) ∈ H1(Qp,Ky(Ψy · ε · ε
−1

cyc · ω1−
)).

Lemma 3.8. For all arithmetic points y of weight ν
,ε with � ≥ 2, the local

cohomology group H1(Qp,Ky(Ψy · ε · ε
−1
cyc ·ω1−
)) is one-dimensional over Ky

and equal to H1
exp(Qp,Ky(Ψy · ε · ε
−1

cyc · ω1−
)).

Proof. Write simply V = V f
fgy

for the specialisation at y of Vf
fg and D =

DdR(V
f
fgy

) for its de Rham Dieudonné module. By [BK, Def. 3.10], [Bel,

Ex. 2.19], the Bloch-Kato logarithm map is an isomorphism

(3.8) logp : H1
exp(Qp, V ) −→ D/(Fil0D +Dφ=1).

By [Bel, §2.1.3], dimKy
H1(Qp, V ) = e0+e1+1 where e0 = dimH0(Qp, V ) and

e1 is the multiplicity of Ky(1) as a quotient of V . Since � ≥ 2, e0 = 0. Since

ε �= ω
−1, e1 = 0 and thus H1(Qp, V ) is one-dimensional over Ky. Moreover,

since the Hodge-Tate weight of V is 1− � ≤ −1, the subspace of D on which

Frobenius acts as the identity is Dφ=1 = 0, and Fil1−
(D) � Fil2−
(D). Since

(3.8) is an isomorphism and dimH1
exp(Qp, V ) ≤ dimH1(Qp, V ) = 1, it follows

that in fact Fil1−
(D) = D ⊃ Fil0(D) = 0, and thus (3.8) gives rise to an

isomorphism

(3.9) logp : H1
exp(Qp, V ) = H1(Qp, V ) −→ D

of one-dimensional Ky-vector spaces. The result follows. �
For each arithmetic point y ∈ Ωg of weight ν
,ε with � ≥ 2, the choice of

a period �y ∈ DdR(V
g∗
y

fg∗
y
) attached to the dual V

g∗
y

fg∗
y
of V f

fgy
determines an

isomorphism

(3.10)

log�y
: H1(Qp,Ky(Ψy · ε · ε
−1

cyc · ω1−
)) −→ Ky, log�y
(κ) := logp(κ)(�y).

Fix a choice of �y by defining, for all arithmetic points y of weight ν2,ε with

ε �= 1 of conductor ps,

�y := α1−s
f G(χεω−1)−1 · (ηf ⊗ ωgw

y
).(3.11)
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Ohta’s Λ-adic Eichler-Shimura isomorphism can be used to show that these

periods agree with those arising in Perrin-Riou’s generalised Coleman maps

attached to families of cyclotomic twists of a fixed Galois representation and

their generalisations to twists by unramified Λ-adic characters, as described

in [LZ, Thm. 4.15]. (Cf. the discussions in [DR2, §5.2, §5.3] or in [KLZ, §7.4,
§7.6, Thm. 7.6.1].) It follows that, for all κ ∈ H1(Q,Vf

fg), the function

y �→ log�y
(κ) interpolates to an element of the fraction field of Λg, denoted

L(κ).
Recall the point y ∈ Ωg of weight-character ν1,1 satisfying g

y
= gα, and let

Λg
′ denote the localisation of Λg at the prime ideal ker(y).

Theorem 3.9. For the map L as above,

(3.12) L(κf
p(f, g)) = Lp(f, g) (mod (Λg

′)×).

Proof. Theorem 3.5 implies that the elements

L(κf
p(f, g)), (1− χ(p)−1α−1

f α−1
g )−1Lp(f, g)

agree on all points y ∈ Ωg of weight ν2,ε, as ε ranges over all the characters of

a p-power conductor. Since both elements belong to the fraction field of Λg,

it follows that they must be equal. Theorem 3.9 follows after noting that the

factor (1− χ(p)−1α−1
f α−1

g ) does not lie in the kernel of the weight one point

y attached to gα (for reasons of weight, since αf has complex absolute
√
p,

while αgy is a root of unity), and hence belongs to (Λg
′)×. �

At the weight one point y attached to g = gα, we have H1
fin(Qp, Vfg) = 0,

and hence the class κf
p(f, gα) can only be cristalline if it is 0. Let

exp∗p : H1(Qp, Vfg) −→ Fil0D(Vfg)

denote the dual exponental map of Bloch and Kato.

Theorem 3.10. Let y =∈ Ωg be the point over ν1,1 corresponding to the

classical p-stabilised weight one form gy = gα ∈ S1(Np, χ). Then

exp∗p(κ
f
p(f, gα)) �= 0 ⇔ L(f ⊗ g, 1) �= 0.

Proof. Perrin-Riou’s reciprocity law and its extension in [LZ, Thm. 4.15]

asserts that, at the weight one point y attached to gα,

L(κp(f, g))(y0) ∼ exp∗ κf
p(f, gα),

where the symbol ∼ denotes agreement up to an (explicit) non-zero element

of Fil0DdR(Vfgα). (The Euler factor that arises in the p-adic interpolation

process is non-vanishing at y, since the associated Galois representation Vfg

is pure of weight −1.) The result now follows by combining Theorems 3.9 and

2.12. �
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Theorem 3.10 implies that the class κ(f, gy) = κ(f, gα) of equation (3.7)

satisfies the two properties listed in Theorem 1.2. This concludes the proof of

Theorems A and B of the Introduction.

Acknowledgements

The authors are grateful to Samit Dasgupta, Guido Kings, Antonio Lei,

David Loeffler and Sarah Zerbes for many stimulating exchanges related to

the circle of ideas explored in this paper. The work of the second author

was partially supported by the Simons Foundation and by the Mathematis-

ches Forschungsinstitut Oberwolfach. The third author was supported by

MTM20121-34611 during the elaboration of this work.

References
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