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AND p-ADIC RANKIN L-SERIES
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Abstract

This article is the first in a series devoted to the Euler system arising
from p-adic families of Beilinson-Flach elements in the first K-group
of the product of two modular curves. It relates the image of these
elements under the p-adic syntomic regulator (as described by Besser
(2012)) to the special values at the near-central point of Hida’s p-adic
Rankin L-function attached to two Hida families of cusp forms.
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1. Introduction

This article is the first in a series devoted to the Euler system of Beilinson-

Flach elements in the motivic cohomology of a product of two modular curves.

Its main result (see Theorem 4.2 and Corollary 4.4 of §4.2) is a p-adic analogue
of the formula of Beilinson [Bei, Ch. 2, §6] expressing special values of Rankin

L-series in terms of complex regulators. Beilinson’s theorem (cf. §4.1 for an

explicit version) relates:

(1) the Rankin L-series L(f ⊗ g, s) attached to the convolution of weight

2 newforms f and g on Γ1(N), evaluated at the near-central point

s = 2;

(2) the image under the complex regulator of certain explicit elements in

the motivic cohomology group H3
M(X1(N)2,Q(2)) or, equivalently, in

the higher Chow group CH2(X1(N)2, 1)⊗Q. These elements, whose

definition is recalled in Section 3.1, are constructed from modular

units and are referred to in the sequel as Beilinson-Flach elements.

In the p-adic setting, the complex L-series L(f ⊗ g, s) is replaced by Hida’s

p-adic Rankin L-series attached to two ordinary families of modular forms

interpolating f and g, whose definition is briefly recalled in Section 2.2. The

role of the complex regulator is played by the p-adic syntomic regulator on K1

of a surface. Besser’s description of it in terms of Coleman integration [Bes3],

which is summarised in §3.3, is a key ingredient in the proof of Theorem 4.2.

Our approach also relies crucially on techniques developed in [DR] for re-

lating p-adic Abel-Jacobi images of diagonal cycles to values of the Garrett-

Rankin triple product p-adic L-function attached to a triple (f ,g,h) of Hida

families of cusp forms. Corollary 4.4 deals with the setting where the cuspi-

dal family h in the triple (f ,g,h) is replaced by a Hida family of Eisenstein

series. The reader will also note the close parallel between Theorem 4.2 and

the main result of [BD], in which the p-adic regulators of certain elements in

K2(X1(N)) are related to the value at s = 2 of the Mazur-Swinnerton-Dyer

p-adic L-functions attached to weight two cusp forms. The results of the

present article are in fact intermediate between those of [DR] and [BD], the

latter treating the case where both g and h are replaced by Hida families of

Eisenstein series—a setting in which the resulting p-adic Rankin L-function

factors as a product of two Mazur-Kitagawa L-functions attached to f .

We also remark that a function field analogue of Beilinson’s Theorem in-

volving Drinfeld modular curves is described in [Sre2], based on a description

of non-Archimedean regulators given in [Sre1]. See also the related work of

Ambrus Pàl in the setting of the K2 of Mumford curves [Pa].
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Let us conclude this introduction by briefly discussing some eventual arith-

metical applications of the main result of this paper.

I. The Euler system of Beilinson-Flach elements. The image of

Beilinson-Flach elements under the p-adic étale regulator map gives rise to

classes in the global cohomology group H1(Q, Vf ⊗ Vg(2)), where Vf and Vg

are the p-adic Galois representations attached to f and g, respectively. The

work in preparation [BDR] explores the theme of the p-adic variation of the

Beilinson-Flach classes attached to Hida families of cusp forms f and g. In

particular, when g specialises in weight one to a classical cusp form attached

to an odd irreducible Artin representation ρ and f specialises in weight two

to the cusp form associated with an elliptic curve E over Q, we expect the

associated cohomology class to yield new cases of the Birch and Swinnerton-

Dyer conjecture for the complex L-series L(E, ρ, s), proving in particular that

ρ does not occur in the representation E(Q̄)⊗ C when L(E, ρ, 1) �= 0.

The idea of using Beilinson elements in Euler system arguments occurs

much earlier in the work of Flach [Fl], who used them to construct classes in

H1(Q, Sym2(E)(2)) which are cristalline at p but ramified at a single prime

� �= p. Applying Kolyvagin’s method to these classes leads to the finiteness of

the Shafarevich-Tate group of Sym2(E)(2) and an explicit annihilator of this

group related to the special value L(Sym2(E), 2), which is critical in the sense

of Deligne, unlike the special values L(f ⊗ g, 2) when f and g are distinct

normalised newforms.

II. Hida’s L-function for the symmetric square of a modular form.

Theorem 4.2, specialised to the case f = g, is exploited by S. Dasgupta [Das]

to study the Hida L-function L(f ⊗ f, s) and express it as the product of

the Coates-Schmidt p-adic L-function attached to Sym2(f) and a Kubota-

Leopoldt p-adic L-function. This factorisation, which can be viewed as an-

other manifestation of the Artin formalism for p-adic L-series, is analogous to

a formula of Gross [Gross] expressing the restriction to the cyclotomic line of

the Katz two-variable p-adic L-function attached to an imaginary quadratic

field as a product of two Kubota-Leopoldt L-functions. The Beilinson-Flach

elements play the same role in Dasgupta’s proof as elliptic units in the work

of Gross.

III. p-adic L-functions and Euler systems over Z2
p-extensions. The

paper in preparation [LLZ] of A. Lei, D. Loeffler and S.L. Zerbes builds on

the methods of this paper, in the setting where g varies over a collection of

theta series attached to Hecke characters of an imaginary quadratic field K,to

construct an Euler system for Vf over the various layers of the two variable

Zp-extension K∞ of K, thus supplying the global input for their extension
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[LZ] of Perrin-Riou’s machinery in which the cyclotomic Zp-extension of Q is

replaced by K∞.

2. Rankin L-series

Let f and g be normalised newforms of weights k, �, levels Nf , Ng, and

nebentypus characters χf , χg respectively. The p-adic representations Vf and

Vg are part of a compatible system of representations which we continue to

denote by the same symbol. Let

L(Vf ⊗ Vg, s) =
∏
p

det((1− σpp
−s)|(Vf ⊗ Vg)

Ip)−1

be the motivic L-function attached to the tensor product Vf ⊗ Vg, where

Ip denotes the inertia subgroup of a decomposition group at p, and σp a

corresponding geometric Frobenius element.

The goal of this first chapter is to briefly recall the basic analytic properties

of this L-series, describe Hida’s construction of a p-adic avatar, and—in the

special case where f and g are both of weight two—present parallel formulae

for their special values at the near-central point s = 2, which is not critical in

the sense of Deligne.

2.1. Complex L-series. Set N := lcm(Nf , Ng) and replace χf and χg

by their counterparts of modulus N sending any prime r|N to 0. It is also

convenient to replace f , as well as g, by a normalised eigenform of level N

which

(1) has the same eigenvalues for the Hecke operators Tr with r � N ;

(2) is also an eigenvector for the Hecke operators Ur attached to the

primes r dividing N .

This substitution having been made, let

(2.1) f(z) =
∞∑

n=1

an(f)e
2πinz, g(z) =

∞∑
n=1

an(g)e
2πinz

be the Fourier expansions of f and g, let Kf and Kg ⊂ Q̄ denote the subfields

generated by the coefficients an(f) and an(g) respectively, and let Kfg denote

the compositum of the two fields. The Hecke polynomials attached to f can

be factored as

x2 − ap(f)x+ χf (p)p
k−1 = (x− αp(f))(x− βp(f)),
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where (αp(f), βp(f)) = (ap(f), 0) when p|N . Similar notation is adopted for

g. The Rankin L-function attached to the pair (f, g) is defined by the formula

L(f ⊗ g, s) :=
∏
p

L(p)(f ⊗ g, s), where

L(p)(f ⊗ g, s) := (1− αp(f)αp(g)p
−s)−1(1− αp(f)βp(g)p

−s)−1

×(1− βp(f)αp(g)p
−s)−1(1− βp(f)βp(g)p

−s)−1.

The Euler factors at p defining L(Vf⊗Vg, s) and L(f⊗g, s) agree for all p � N ,

and hence the special values of L(Vf ⊗Vg, s) and L(f ⊗ g, s) at integer points

differ by elementary quantities in K×
fg. It will be more convenient, for the

sequel, to focus attention on L(f ⊗ g, s). Assume without loss of generality

that the forms f and g have been ordered in such a way that k ≥ �.

2.1.1. Rankin’s method. We begin by recalling the general formula for

L(f ⊗ g, s) coming out of Rankin’s method, involving the non-holomorphic

Eisenstein series

(2.2) Ẽk−�,χ(z, s) =
′∑

(m,n)∈NZ×Z

χ−1(n)

(mz + n)k−�
· ys

|mz + n|2s

of weight k − �, level N and character

χ := χ−1
f χ−1

g ,

where the superscript ′ in (2.2) indicates that the sum is taken over the non-

zero lattice vectors (m,n) ∈ NZ × Z. For fixed complex s with Re(s) >> 0,

the product Ẽk−�,χ(z, s) × g(z) is a real-analytic C-valued function on the

Poincaré upper half-plane H which transforms like a modular form of weight

k, level N and character χ−1
f and is of rapid decay at infinity. The space of

such functions, denoted Sra
k (N,χ−1

f ), is equipped with the Petersson scalar

product

〈 , 〉k,N : Sra
k (N,χ−1

f )× Sra
k (N,χ−1

f ) −→ C

given by the formula

(2.3) 〈f1, f2〉k,N :=

∫
Γ0(N)\H

ykf1(z)f2(z)
dxdy

y2
,

which is hermitian linear in the first argument and C-linear in the second.

Let f∗ ∈ Sk(N,χ−1
f ) denote the modular form obtained from f by applying

complex conjugation to its Fourier coefficients.

Proposition 2.1 (Shimura). For all s ∈ C with 
(s) >> 0,

(2.4) L(f ⊗ g, s) =
1

2

(4π)s

Γ(s)

〈
f∗(z), Ẽk−�,χ(z, s− k + 1) · g(z)

〉
k,N

.
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This well-known formula for the Rankin L-series is taken from equation

(14) of [BD].

2.1.2. Critical values. Assume here and in §2.1.3 that � < k. The func-

tional equation for L(f ⊗ g, s) arising from Proposition 2.1 reveals that the

integer j is critical for L(f ⊗ g, s) if and only if it lies in the closed interval

[�, k−1]. We now describe a further closed formula for the value at an integer

j belonging to the “right half critical segment” [ �+k−1
2 , k − 1], which will be

useful in deriving the algebraicity (up to periods) of L(f ⊗ g, j) predicted by

the Deligne conjectures and ultimately in constructing Hida’s p-adic Rankin

L-function by interpolating these quantities p-adically.

Having fixed an integer j ∈ [ �+k−1
2 , k− 1], let t ≥ 0 and m ≥ 1 be given by

t := k − 1− j, m := k − �− 2t.

If m ≤ 2, let us assume also that χ is non-trivial. Then the series

(2.5) Em,χ(z) = 2−1L(χ, 1−m) +
∞∑

n=1

σm−1,χ(n)q
n,

where σm−1,χ(n) =
∑

d|n χ(d)d
m−1 is the q-expansion of a holomorphic Eisen-

stein series of weight m and character χ.

The Shimura-Maass derivative operator

δm :=
1

2πi

(
d

dz
+

im

2y

)
transforms modular forms of weight m into (real analytic) modular forms of

weight m + 2 which are nearly holomorphic in the sense of [Sh2], and its t-

fold iterate δtm := δm+2t−2 · · · δm+2δm maps the space Mm(N,χ) to the space

Mnh
m+2t(N,χ) of nearly holomorphic modular forms of weight m+ 2t. Let

C(k, �, j) :=
(−1)t2k−1(2π)k+m−1ιχ(iN)−mτ (χ−1)

(m+ t− 1)!(j − 1)!

be the elementary constant (in which ιχ = 1 when χ is primitive) appearing

in equation (18) of [BD]. The following formula for L(f ⊗ g, j) is obtained by

setting c = j in equation (18) of [BD]. (See also Theorem 2 of [Sh1].)

Proposition 2.2. The special value L(f ⊗ g, j) is given by the formula

(2.6) L(f ⊗ g, j) = C(k, �, j)
〈
f∗(z), δtmEm,χ(z)× g(z)

〉
k,N

.

2.1.3. Algebraicity and Deligne’s conjecture. Let Snh
k (N,χ−1

f ;Kfg)

⊂ Snh
k (N,χ−1

f ) denote the space of nearly holomorphic cusp forms which are

defined over Kfg in the sense of Shimura (cf. Section 2.4 of [DR]). The cusp

form

(2.7) Ξ(f, g, j) := δtmEm,χ × g ∈ Snh
k (N,χ−1

f )
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appearing in Proposition 2.2 belongs to the Kfg-rational structure

Snh
k (N,χ−1

f ;Kfg). Hence, its image

(2.8) Ξ(f, g, j)hol := Πhol
N (Ξ(f, g, j))

under the holomorphic projection Πhol
N of [DR] belongs to Sk(N,χ−1

f ;Kfg),

the space of holomorphic cusp forms with Fourier coefficients in Kfg. In

particular, the ratio

Lalg(f ⊗ g, j) := C(f, g, j)−1L(f ⊗ g, j)

〈f∗, f∗〉k,N
(2.9)

=
〈f∗,Ξ(f, g, j)〉k,N

〈f∗, f∗〉k,N
=

〈
f∗,Ξ(f, g, j)hol

〉
k,N

〈f∗, f∗〉k,N
belongs to Kfg. This algebraicity result is consistent with Deligne’s conjec-

ture which predicts that the period C(f, g, j)〈f∗, f∗〉k,N is the “transcendental

part” of the special value L(f⊗g, j). The associated “algebraic part” appear-

ing in (2.9) will later be interpolated p-adically to obtain Hida’s p-adic Rankin

L-function attached to f and g.

In order to do this, it will be convenient to give a more geometric description

of the quantity Lalg(f ⊗ g, j) appearing in (2.9), in terms of the Poincaré

duality on the de Rham cohomology of the modular curve X1(N) with values

in appropriate sheaves with connection, as described in [DR, §2.3]. To lighten

the notation, denote by Y and by X the open modular curve Y1(N) and the

complete modular curve X1(N) respectively, classifying (generalised) elliptic

curves equipped with an embedding of the finite flat group scheme μN of N -th

roots of unity.

Let K be any field containing Kfg. Denote by E −→ Y the universal

elliptic curve over Y , and by ω the sheaf of relative differentials on E over Y ,

extended to X as in [BDP, §1.1]. Recall the Kodaira-Spencer isomorphism

ω2 � Ω1
X(log cusps), where Ω1

X(log cusps) is the sheaf of regular differentials

on Y with log poles at the cusps.

A modular form φ on Γ1(N) of weight k = r+2 with Fourier coefficients in

K corresponds to a global section of the sheaf ωr+2 = ωr⊗Ω1
X(log cusps) over

the base-change XK of X to K. The sheaf ωr can be viewed as a subsheaf of

Lr := Symr L, where
L := R1π∗(E −→ Y )

is the relative de Rham cohomology sheaf on Y , extended to X as in [BDP],

equipped with the filtration

(2.10) 0 −→ ω −→ L −→ ω−1 −→ 0
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arising from the Hodge filtration on the fibers. The sheaf Lr is a coherent

sheaf over X of rank r+1, endowed with the Gauss-Manin connection

∇ : Lr −→ Lr ⊗ Ω1
X(log cusps).

Let H1
dR(XK ,Lr,∇) be the de Rham cohomology of Lr. It is equipped with

the perfect Poincaré pairing

(2.11) 〈 , 〉k,X : H1
dR(XK ,Lr,∇)×H1

dR(XK ,Lr,∇) −→ K,

which is compatible with the exact sequence

(2.12)

0 −→ H0(XK , ωr ⊗ Ω1
X) −→ H1

dR(XK ,Lr,∇) −→ H1(XK , ω−r) −→ 0,

in the sense that H0(XK , ωr ⊗ Ω1
X) is an isotropic subspace (cf. Sections 2

and 3 of [Col] for a more detailed account). In particular, Poincaré duality

induces a perfect pairing

(2.13) 〈 , 〉k,X : H1(XK , ω−r)×H0(XK , ωr ⊗ Ω1
X) −→ K,

which is denoted by the same symbol by a slight abuse of notation.

The antiholomorphic differential ηahf defined by

(2.14) ηahf :=
f̄∗(z)dz̄

〈f∗, f∗〉k,N
gives rise to a class in H1

dR(XC,Lr,∇), whose image ηf in H1(XC, ω
−r) be-

longs to H1(XK , ω−r) (cf. Corollary 2.13 of [DR]). The following expression

for the algebraic part Lalg(f ⊗ g, j) in terms of the class ηf follows directly

from (2.9) in light of the discussion above:

Proposition 2.3. The algebraic part Lalg(f ⊗ g, j) is equal to

(2.15) Lalg(f ⊗ g, j) =
〈
ηf ,Ξ(f, g, j)

hol
〉
k,X

.

2.1.4. The value at the near central point. Consider now the case

where k = � = 2 and χf �= χ−1
g , so that the character χ = χ−1

f χ−1
g is not

the trivial one. The functional equation for L(f ⊗ g, s) relates L(f ⊗ g, s)

to L(f∗ ⊗ g∗, 3 − s), and this L-series has no critical points in the sense of

Deligne. Proposition 2.5 below describes its value at the near-central point

s = 2 in terms of logarithms of modular units.

Enlarge K so that it contains the field which is cut out by all the Dirich-

let characters of modulus N , and let F be the field generated over K by

the values of these characters. Let Eis�(Γ1(N);F ) denote the subspace of

M�(Γ1(N);F ) spanned by the weight � Eisenstein series with coefficients in

F . The logarithmic derivative gives a surjective homomorphism

(2.16) O(YK)× ⊗ F
dlog

�� Eis2(Γ1(N);F ),
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whose kernel is the subspace K× ⊗F spanned by the non-zero constant func-

tions.

Definition 2.4. Let uχ be the modular unit satisfying

(2.17) dlog(uχ) = E2,χ

whose value at ∞ is 1 in the sense of [Br, §5].
Proposition 2.5. Given weight two eigenforms f and g as above,

(2.18) L(f ⊗ g, 2) = 16π3N−2τ (χ−1) 〈f∗(z), log |uχ(z)| · g(z)〉2,N .

Proof. By Proposition 2.1,

(2.19) L(f ⊗ g, 2) =
1

2
(4π)2

〈
f∗(z), Ẽ0,χ(z, 1) · g(z)

〉
2,N

.

A direct calculation (cf. equation (26) of [BD]) shows that

(2.20)
1

2πi

d

dz
Ẽ0,χ(z, 1) = − 1

4π
Ẽ2,χ(z) = 2πN−2τ (χ−1)E2,χ(z).

Having normalized uχ as in Definition 2.4, one obtains the equality

(2.21) Ẽ0,χ(z, 1) = 2πN−2τ (χ−1) log |uχ(z)|,
which is compatible with (2.17). Combining (2.19) with (2.21) completes the

proof of the proposition. �
2.2. p-adic L-series. Let p ≥ 3 be a prime, and fix an embedding of K

into Cp. This section recalls the definition of the Rankin p-adic L-function

associated by Hida [Hi] to the convolution of two Hida families of cusp forms.

For the sake of brevity, we proceed here, just as in [BD], by specialising

the approach and notations of [DR], which constructs the p-adic L-function

associated to a triple product of three Hida families (f ,g,h) of cusp forms.

The setting considered here consists, essentially, of letting h be a Hida family

of Eisenstein series.

2.2.1. Ordinary projections. Let f , g be eigenforms of level N , weights

k > � and nebentypus χf , χg as in (2.1). Let also j ∈ [ �+k−1
2 , k − 1] be an

integer and set t = k − 1 − j ≥ 0 and m = k − � − 2t ≥ 1 as in §2.1.2. The

following ordinariness assumption is important for the constructions described

in this section.

Assumption 2.6. The cuspidal eigenforms f and g are ordinary at p, and

p � N .

Under this assumption, the f -isotypic part of the exact sequence (2.12)

with K = Cp admits a canonical unit root splitting, arising from the action of

Frobenius on de Rham cohomology. Let ηurf be the lift of ηf to the unit root

subspace H1
dR(XCp

,Lr,∇)f,ur. The right-hand side of (2.15) is then equal to

(2.22)
〈
ηf ,Ξ(f, g, j)

hol
〉
k,X

=
〈
ηurf ,Ξ(f, g, j)hol

〉
k,X

.
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Now let eord be Hida’s ordinary projector to H1
dR(YK ,Lr,∇)ord. By Propo-

sition 2.11 of [DR], the right-hand side of (2.22) can be rewritten after viewing

Ξ(f, g, j)hol as an overconvergent p-adic modular form and setting

Ξ(f, g, j)ord := eordΞ(f, g, j)
hol as

(2.23)
〈
ηurf ,Ξ(f, g, j)hol

〉
k,X

=
〈
ηurf ,Ξ(f, g, j)ord

〉
k,X

.

By Proposition 2.8 of [DR],

(2.24) Ξ(f, g, j)ord = eord(d
tEm,χ · g),

where d = q d
dq is Serre’s derivative operator on p-adic modular forms.

Given a p-adic modular form φ =
∑

cnq
n, let φ[p] :=

∑
p�n cnq

n denote its

“p-depletion” and set

(2.25) Ξ(f, g, j)ord,p := eord(d
tE[p]

m,χ · g).

Proposition 2.7. Let ef∗ be the projector to the f∗-isotypic subspace of

H1
dR(YK ,Lk−2,∇). Then

ef∗Ξ(f, g, j)ord,p =
E(f, g, j)
E(f) · ef∗Ξ(f, g, j)ord,

where

E(f, g, j) = (1− βp(f)αp(g)p
t−k+1)(1− βp(f)βp(g)p

t−k+1)

×(1− βp(f)αp(g)χ(p)p
t−k+m)(1− βp(f)βp(g)χ(p)p

t−k+m),

E(f) = 1− βp(f)
2χ−1

f (p)p−k.

Proof. This follows from Corollary 4.17 of [DR], in light of Proposition 2.8

of [DR]. �
2.2.2. Hida’s p-adic L-series. Let f and g be Hida families of ordinary

p-adic modular forms of tame level N , indexed by weight variables k and

� in suitable neighborhoods Uf and Ug of Z/(p − 1)Z × Zp, contained in a

single residue class modulo p − 1. (These families may be obtained, as shall

be the case considered in §4.2, by deforming two given ordinary classical

eigenforms f and g of possibly equal weights.) Assume likewise that the

parameter j = k− 1− t belongs to a single residue class modulo p− 1 so that

the same holds true for the weight m = k − � − 2t of the Eisenstein series

Em,χ.

For k ∈ Uf ∩ Z≥2 and � ∈ Ug ∩ Z≥2, let

fk ∈ Sk(N,χf ), g� ∈ S�(N,χg)

be the classical cusp forms whose p-stabilisations are the weight k and � spe-

cialisations of f and g respectively. (We denote by χf , resp. χg, the common

character of the modular forms fk, resp. gk.)
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The collection of p-adic modular forms Ξ(fk, g�, j)
ord,p (defined as in equa-

tion (2.25)) indexed by

(2.26) {(k, �, j), k ∈ Uf ∩Z≥2, � ∈ Ug ∩Z≥2,
�+ k − 1

2
≤ j ≤ k− 1}

has Fourier coefficients which extend analytically to Uf ×Ug×Zp as functions

in k, � and j. Hence, they can be viewed as a (three-variable) Λ-adic family

of modular forms of level N in the sense of [DR, §2.7].
Set

E∗(fk) := 1− βp(fk)
2χ−1

f (p)p1−k.

Proposition 4.10 of [DR] shows that the expression

(2.27) Lp(f ,g)(k, �, j) :=
1

E∗(fk)

〈
ηurfk ,Ξ(fk, g�, j)

ord,p
〉
k,X

,

defined on the triples (k, �, j) in the set in (2.26), extends to an analytic

function Lp(f ,g) on Uf ×Ug×Zp, which we refer to as the Hida p-adic Rankin

L-function attached to f and g. This appellation is justified by noting that

for all triples (k, �, j) in the range of “classical interpolation”, i.e. belonging

to (2.26), the function Lp(f ,g)(k, �, j) satisfies the interpolation property

Lp(f ,g)(k, �, j) =
E(fk, g�, j)
E∗(fk)E(fk)

Lalg(fk ⊗ g�, j).

This follows from a direct calculation combining (2.27), Proposition 2.7, (2.23),

(2.22) and (2.15).

Note that the point (2, 2, 2) lies outside the region of classical interpolation

for this function. (In fact, there are no critical values for the pair of weights

(2, 2).) Corollary 4.4 of Section 4.2 relates the value of Lp(f ,g) at (2, 2, 2)

to the p-adic regulator attached in Section 3.3 to the triple of modular forms

(f = f2, g = g2, E2,χ).

Generalising our setting somewhat, we do not assume now that the modular

form g ∈ S2(N,χg) is ordinary, so that g may not necessarily be viewed as the

weight 2 specialisation of a Hida family. In this case, the above construction

still allows us to define a two-variable p-adic L-function Lp(f , g)(k, j) on Uf ×
Zp by the equation

(2.28) Lp(f , g)(k, j) :=
1

E∗(fk)

〈
ηurfk ,Ξ(fk, g, j)

ord,p
〉
k,X

,

for k ∈ Uf ∩Z≥2 and (k+1)/2 ≤ j ≤ k−1. Theorem 4.2 relates Lp(f , g)(2, 2)

to the p-adic regulator attached to (f, g, E2,χ).
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3. Beilinson-Flach elements

3.1. Definition and basic properties. Let S be a quasi-projective va-

riety over a field K, and Kj(S) denote Quillen’s algebraic K-groups of S.

The motivic cohomology groups Hi
M(S,Q(n)) = K

(n)
2n−i(S) of S were defined

by Beilinson [Bei, §2] as the n-th graded piece of the Adams filtration on

K2n−i(S)⊗Q. In parallel with Beilinson’s motivic cohomology groups, Bloch

[Bl] introduced the higher Chow groups CHi(S, n) of S.

In this note we shall focus on the smooth projective surface S := X ×X,

where X is the modular curve over the field K of §2.1.4. For i = 3 and

n = 2, H3
M(S,Q(2)) = K

(2)
1 (S) is identified with CH2(S, 1)⊗ Q. The higher

Chow group CH2(S, 1) may be explicitly described (cf. also [Sc]) as the first

homology of the Gersten complex

(3.1) K2(K(S))
∂ ��

⊕
Z⊂S K(Z)×

div ��
⊕

P∈S Z,

where

(1) K2(K(S)) denotes the second Milnor K-group of the rational function

field K(S), and ∂ is the map whose “component at Z” is the tame

symbol attached to the valuation ordZ ;

(2) the group

Θ :=
⊕
Z⊂S

K(Z)×

is the set of finite formal linear combinations
∑

i(Zi, ui), where the

Zi are irreducible curves in S and ui is a rational function on Zi;

(3) the map div is the divisor map, and the direct sum defining its target

is taken over all closed points P ∈ SK .

Given a closed point P ∈ X and a rational function u on X, an element

of Θ of the form ({P} ×X, u) (resp. of the form (X × {P}, u)) is said to be

vertical (resp. horizontal ). A linear combination of vertical and horizontal

terms is said to be negligible. Similar definitions apply to the tensor product

Θ⊗ F over any field F .

Let Δ ⊂ S be a copy of the curve X diagonally embedded in S. Let F

denote the field introduced in §2.1.4, let u ∈ O(YK)× ⊗ F be a modular unit

with coefficients in F , and consider the element (Δ, u) ∈ Θ⊗ F .

Lemma 3.1. There exists a negligible element θu ∈ Θ⊗ F satisfying

div(θu) = div(Δ, u).

Proof. Let Du = div(Δ, u) ∈
∐

P∈S F be the image of the element (Δ, u) ∈
Θ under the divisor map. Since Du is an F -linear combination of elements
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of the form (c1, c1)− (c2, c2) where c1 and c2 are cusps of the modular curve

XK , it is enough to construct a negligible element θ ∈ Θ⊗Q satisfying

(3.2) div(θ) = (c1, c1)− (c2, c2).

By the Manin-Drinfeld theorem, there is an element α ∈ O(YK)× ⊗Q whose

divisor is c1 − c2, and the negligible element given by

θ = ({c1} ×X,α) + (X × {c2}, α)

satisfies (3.2). The lemma follows. �
Thanks to Lemma 3.1, we can associate to any element of the form (Δ, u) ∈

Θ⊗ F the element

(3.3) Δu := class of (Δ, u)− θu in H3
M(S, F (2)).

These elements were introduced by Beilinson in [Bei, Ch. 2, §6]. A vari-

ant ([Fl, Prop. 2.1]) of the above construction was later exploited by Flach

in [Fl] to prove the finiteness of the Tate-Shafarevic group of the symmet-

ric square of an elliptic curve, using the method of Kolyvagin. We call Δu

the Beilinson-Flach element attached to the modular unit u ∈ O(YK)× ⊗ F .

Strictly speaking, Δu is not a well-defined element in H3
M(S, F (2)), as it is

only well-defined modulo the F -vector space generated by the classes of neg-

ligible elements. However, this inherent ambiguity will not lead to problems

because the image of Δu under the relevant piece of the regulator maps will

turn out to depend only on u and not on the choice of θu made in defining

Δu. See Proposition 3.3 below for more details.

3.2. Complex regulators. Fix an embedding of K into the field of com-

plex numbers. Following the definitions in [Bei, §2], [DS, §2], the complex

regulator on H3
M(SC,Q(2)) may be regarded as a map

(3.4) regC : H3
M(SC,Q(2)) −→ (Fil1H2

dR(S/C))
∨,

where here the superscript ∨ denotes the complex linear dual. It sends the

class of θ =
∑

i(Zi, ui) to the element regC(θ) defined by

regC(θ)(ω) =
1

2πi

∑
i

∫
Zi−Zsing

i

ω log |ui|.

Recall the modular unit uχ associated to the Dirichlet character χ, and the

class ηahf ∈ H1
dR(X/C) attached to the cusp form f . Moreover, write as cus-

tomary ωg ∈ Fil1H1
dR(X/C) for the class associated to the regular differential

2πig(z)dz.

The tensor product ωg ⊗ ηahf of these classes gives rise, via the Künneth

decomposition of H2
dR(S/C), to an element of Fil1H2

dR(S/C).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

368 MASSIMO BERTOLINI, HENRI DARMON, AND VICTOR ROTGER

Proposition 3.2. With notation as above, we have

regC(Δuχ
)(ωg ⊗ ηahf ) = (−2i)[Γ0(N) : Γ1(N)(±1)]〈f∗, f∗〉−1

2,N

×〈f∗(z), log |uχ(z)| · g(z)〉2,N .

Proof. Since the differential ωg ⊗ ηahf vanishes identically on the horizontal

and vertical curves on S, the negligible element θuχ
arising in the definition

of Δuχ
does not contribute to the value of the regulator at that class. Hence

regC(Δuχ
)(ωg ⊗ ηahf ) =

∫
X(C)

f̄∗(z)

〈f∗, f∗〉2,N
g(z) log |uχ(z)|dzdz̄

= (−2i)[Γ0(N) : Γ1(N)(±1)]〈f∗, f∗〉−1
2,N 〈f∗(z), log |uχ(z)| · g(z)〉2,N ,

where the last equality follows from the explicit formula for the Petersson

scalar product on Sra
k (N,χ−1

f ). �
3.3. p-adic regulators. Let Kp be a finite extension of Qp containing K

and fix an embedding of Kp in Cp. Write Op, resp. kp, for the ring of integers,

resp. the residue field of Kp. Let X denote the (Deligne-Rapoport) smooth

model of X over Op, and X̃/kp its special fiber. Define S = X × X , which is

a smooth projective model of SKp
over Op.

In analogy with the complex regulator (3.4), there is a p-adic syntomic

regulator map

(3.5)

regp : H3
M(SKp

,Q(2)) −→ (Fil1H2
dR(S/Kp))

∨ := Hom(Fil1H2
dR(S/Kp),Kp)

arising from the syntomic Chern character inK-theory (cf. [Gros], [Ni], [Bes3]).

After possibly enlarging the field Kp, let {P1, ..., Pt} ⊂ X (Op) be a set of

points consisting of the cusps and of a choice of a lift of every supersingular

point in X̃ (F̄p). Set

X ′ = X \ {P1, . . . , Pt}, X ′ = X ′ ×specOp
specKp.

Let red : X (Op) −→ X̃ (kp) denote the reduction map and let A ⊂ X(Kp) be

the affinoid subspace of the rigid analytic variety underlying X defined by

A := X(Kp)− red−1({P̃1, . . . , P̃t}), P̃j := red(Pj).

Fix a system {Wε}ε>0 of wide open neighborhoods of A as in [DR, §2.1] and
denote by Φ the canonical lift of Frobenius onX as in [DR, §2.2]. As explained

there, restriction from X ′ to Wε gives rise to an isomorphism

(3.6) H1
dR(X

′)
compε �� H1

rig(Wε)

between the de Rham cohomology of the open curve X ′ and the rigid co-

homology H1
rig(Wε) of Wε. The inclusion X ′ ⊂ X yields by restriction a
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monomorphism

H1
dR(X) ↪→ H1

dR(X
′),

and the image of H1
dR(X) under compε consists of those classes in H1

rig(Wε)

whose annular residues about all the points {Pi} vanish. The lift Φ of Frobe-

nius induces a linear endomorphism of H1
rig(Wε) which preserves the subspace

H1
dR(X).

Label now two copies of X as X1 and X2, denote by Φ1 and Φ2 the cor-

responding canonical lifts of Frobenius on the system of wide open neighbor-

hoods Wε, and write Φ12 := (Φ1,Φ2) for the associated lift of Frobenius on

the product X1 ×X2.

Choose a polynomial P (x) ∈ Cp[x] such that

(i) P (Φ12) annihilates the class of ωg ⊗ duχ

uχ
in H2

rig(W2
ε );

(ii) P (Φ) is an invertible endomorphism on H1
dR(X

′).

Such a polynomial exists, since the eigenvalues of Φ12 acting on the space

spanned by the Frobenius translates of ωg ⊗ duχ

uχ
have complex absolute value

p3/2, while Φ acts on H1
dR(X

′) with eigenvalues of complex absolute value

p1/2 and p.

Thanks to (i), there exists a rigid analytic one-form

(3.7) �
P
∈ Ω1(W2

ε ) such that d(�
P
) = P (Φ12)

(
ωg ⊗

duχ

uχ

)
.

This form, which depends on the choice of P , is determined only up to closed

forms in Ω1(W2
ε ) by (3.7).

In order to adapt our calculations to Besser’s in [Bes2] and [Bes3], it will

be convenient to fix a particular choice of polynomial P and form �
P
. (In

the next section we shall exploit the fact that the computations performed

there hold independently of the choice of P and will work with a different

polynomial so that we can take advantadge of the results obtained in [DR].)

Let Pg(t) ∈ Cp[t] be a polynomial such that Pg(Φ) annihilates the class of

ωg in H1
rig(Wε). Specifically, we may set Pg(t) := t2 − ap(g)t + χg(p)p, and

let Fg ∈ Orig(Wε) be a Coleman integral of ωg, that is to say, a rigid analytic

function such that

(3.8) pdFg = pωg[p] = Pg(Φ)ωg

(cf. for example equation (127) of [DR]). Likewise, let PEχ
(t) ∈ Cp[t] be a

polynomial such that PEχ
(Φ) annihilates the class of the Eisenstein series

Eχ =
duχ

uχ
in H1

rig(Wε). Here we make the specific choice PEχ
(t) := th − ph,

where h is the order of the root of unity χ(p) (in other words, Φh/ph fixes

the class of Eχ). Although a more optimal choice for PEχ
(t) would have been

the linear polynomial t − χ(p)p, we made here a choice corresponding to the
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one made in the definition of the modified syntomic regulator reg(uχ) of the

function uχ (cf. [Bes2, Prop. 10.3]). The rigid analytic function

(3.9) FEχ
:= p−hPEχ

(Φ) log(uχ) ∈ Orig(Wε)

is a Coleman integral of Eχ, satisfying

phdFEχ
= PEχ

(Φ)Eχ.

Given two choices as above of polynomials Pg(t) =
∏

i(t−αi) and PEχ
(t) =∏

j(t− βj), it is clear that the polynomial

(3.10) P (t) := Pg(t) � PEχ
(t) :=

∏
i,j

(t− αiβj)

satisfies (i) above. Moreover, as explained in [Bes1, Lemma 4.2, (4)], there

exist polynomials a(t1, t2), b(t1, t2) such that P (t1 · t2) = p−1a(t1, t2)Pg(t1) +

p−hb(t1, t2)PEχ
(t2) ∈ Cp[t1, t2], and one checks that

(3.11) �P = a(Φ1,Φ2)

(
Fg ⊗

duχ

uχ

)
+ b(Φ1,Φ2)(ωg⊗FEχ

) ∈ Ω1(W2
ε )

then satisfies (3.7).

There is a certain degree of ambiguity in (3.11): neither the Coleman

primitives Fg, FEχ
nor the polynomials a(t1, t2), b(t1, t2) are unique. But all

solutions of the differential equation (3.7) are of the form (3.11); moreover,

given one such �P , all of them can be written as �P + �0 with �0 a closed

1-form on W2
ε .

We can single out a canonical choice of �
P

(up to exact 1-forms on W2
ε )

by setting Fg(∞) = FEχ
(∞) = 0 in (3.11); more precisely, in doing this,

two different choices of pairs (a(t1, t2), b(t1, t2)), (a
′(t1, t2), b

′(t1, t2)) allowed

by [Bes1, Lemma 4.2, (4)] give rise to forms �P,a,b, �P,a′,b′ such that �0 =

�P,a,b − �P,a′,b′ is exact on W2
ε and therefore the class of �0 in H1

rig(W2
ε )

vanishes.

Imposing Fg(∞) = 0 amounts to normalizing the q-expansion of Fg to be

(3.12) Fg(q) =
∑
p�n

an(g)

n
qn,

and the condition FEχ
(∞) = 0 is equivalent to normalizing the modular unit

uχ as was done in Definition 2.4. This way FEχ
also equals the modified

syntomic regulator reg(uχ) of uχ defined in [Bes2, Prop. 10.3].

Let Δ ⊂ W2
ε denote the diagonal and define

(3.13) ξ′P := [�
P |Δ] ∈ H1

rig(Wε) � H1
dR(X

′).
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The above discussion shows that the class ξ′P in H1
rig(Wε) =

Ω1(Wε)
dO(Wε)

is well-

defined. Moreover, in view of condition (ii), we can now set

(3.14) ξ′ := P (Φ)−1 · ξ′P ∈ H1
dR(X

′),

which is directly seen to be independent of the choice of P .

Finally, let splX : H1
dR(X

′) −→ H1
dR(X) denote the Frobenius equivariant

splitting of the short exact sequence

(3.15) 0 → H1
dR(X) −→ H1

dR(X
′) −→ Kp(−1)t−1 → 0

and set ξ := splX(ξ′) ∈ H1
dR(X).

Proposition 3.3. With notation as above, we have

regp(Δuχ
)(ωg ⊗ ηurf ) = 〈ηurf , ξ〉,

where 〈 , 〉 is the pairing on H1
dR(X) induced by Poincaré duality.

Proof. Thanks to the work of Besser [Bes3], the p-adic syntomic regulator

(3.5) admits the following description in terms of Coleman integration. Let

θ =
∑

i(Zi, ui) be an element in K
(2)
1 (S) and write ιi : Zi ↪→ S for the

embedding of Zi in S given by inclusion. Assume for simplicity that the

curves Zi are all non-singular and that θ is integral, by which we mean that

for each i:

• the curve Zi admits a smooth integral model Zi over Op and

• the divisor of ui, when regarded as a function on Zi, does not contain

the special fiber.

Note that these conditions are satisfied in our setting.

Under this assumption, θ lies in the image of the natural restriction map

K1(S) −→ K1(S).

Let ΩII(XKp
) denote the space of differential forms of the second kind on

XKp
, that is to say, the space of meromorphic 1-forms whose residue at any

point of the curve is zero. There is an exact sequence

0 → Kp(X)×
d−→ ΩII(XKp

) −→ H1
dR(X/Kp) → 0

and for any η ∈ ΩII(XKp
) we write [η] for its class in H1

dR(X/Kp).

Instead of invoking the description of the p-adic syntomic regulator in terms

of Besser-de Jeu’s global triple index as stated in the main theorem of [Bes3],

it will be more convenient for us to exploit [Bes3, Prop. 6.3], which provides

a formula for (3.5) in the language of Besser’s finite polynomial cohomology

[Bes1]. In order to state this formula, let H∗
ms and H∗

fp denote, respectively,

Besser’s modified version of syntomic cohomology and finite polynomial co-

homology; cf. e.g. [Bes3, §2] for a quick review of both and their interactions.
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Let ω ∈ Ω1(XKp
) be a regular form onX and η ∈ ΩII(XKp

) be a differential

of the second kind, regular on some affine curve X0 ⊂ X. Write

ω1 = π∗
1(ω) ∈ Ω1(S), η2 = π∗

2(η) ∈ ΩII(S)

for the pull-back of ω and η under the projection of S into the first and second

component, respectively.

Then the class ω1 ∧ [η2] is an element of Fil1H2
dR(S) and, according to

[Bes3, Theorem 1.1, Prop. 6.3]:

(3.16) regp(θ)(ω1 ⊗ [η2]) =
∑
i

〈ι∗i η̃2, ι∗i ω̃1 ∪ reg(ui)〉Z0
i ,fp

,

where

• Z0
i = Zi ∩ (X ×X0), Z0

i is the model for Z0
i deduced from Zi,

• reg(ui) ∈ H1
ms(Z0

i , 1) ⊆ H1
fp(Z0

i , 1, 2) is the regulator of the function

ui as defined in [Bes2, Prop. 10.3],

• ι∗i ω̃1 ∈ H1
fp(Zi, 1, 1) is a Coleman primitive of ι∗iω ∈ Ω1(Zi),

• ι∗i η̃2 ∈ H1
fp,c(Z0

i , 0, 1) is the single lift of ι∗i ([η2]) under the isomor-

phism

(3.17) p : H1
fp,c(Z0

i , 0, 1)
∼→ H1

dR(Zi)

of [Bes3, Lemma 6.2], and

(3.18)

〈 , 〉Z0
i ,fp

: H1
fp,c(Z0

i , 0, 1)×H2
fp(Z0

i , 2, 3) −→ H3
fp,c(Z0

i , 2, 4) � H2
dR,c(Z

0
i )

tr� Kp

is the pairing induced by Poincaré duality in finite polynomial cohomology.

Here H∗
fp,c stands for finite polynomial cohomology with compact support,

as introduced in [Bes3, §4]. The cup-product (3.18) is constructed in [Bes3],

where it is also shown that it satisfies the projection formula.

At the time [Bes3] was written, the results were subject to the compatibility

of pushforward maps in syntomic and motivic cohomology, as specified in

[Bes3, Conjecture 4.2]. At present this compatibility has been checked by

Déglise and Mazzari [DM], and thus (3.16) holds unconditionally.

Let us now apply (3.16) to the Beilinson-Flach element Δuχ
that was intro-

duced in (3.3). Recall that the curves in X×X on which Δuχ
is supported are

the images of X under the diagonal embedding ι12(x) = (x, x) and the various

horizontal and vertical embeddings ι1,c(x) = (x, c) and ι2,c(x) = (c, x), where

c is a cusp on the modular curve X.

We firstly claim that the terms on the right-hand side of (3.16) correspond-

ing to ι1,c and ι2,c vanish and the one corresponding to ι12 is independent of

the choices of lifts to finite polynomial cohomology.
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To see that, put ω = ωg and η = ηurf and recall X ′ = X ′ ×Kp is the curve

obtained from X by removing a finite set of points including all the cusps.

Note first that ι∗1,c([η2]) = 0 ∈ H1
dR(X), because the composition π2◦ι1,c is the

constant function c on X. Hence, since the map p in (3.17) is an isomorphism,

the class of the lift ι∗1,c(η̃2) is also trivial and

〈ι∗1,cη̃2, ι∗1,cω̃1 ∪ reg(u)〉X ′,fp = 0,

for any rational function u.

We similarly have ι∗2,c(ω1) = 0 ∈ Ω1(X) because π1 ◦ ι2,c = c. Notice

however that a lift of 0 toH1
fp(X , 1, 1) is not necessarily trivial, but represented

by a pair in Orig(Wε)⊕Ω1(X) of the form [(λ, 0)], where λ is a constant. Then,

if u is a modular unit on X, the cup-product

ι∗2,cω̃1 ∪ reg(u) ∈ H2
fp(X ′, 2, 3) � H1

dR(X
′) � H1

rig(Wε)

may be represented by the pair (λdu
u |Wε

, 0). But then

(3.19) 〈ι∗2,cη̃2, ι∗2,cω̃1 ∪ reg(u)〉X ′,fp = λ〈ηurf ,
du

u
〉dR = 0

because the cusp form f is orthogonal to the Eisenstein series du
u . This ac-

counts for the vanishing of the horizontal and vertical terms and explains why

we call them negligible.

As for the diagonal term, let us show that 〈ι∗12η̃2, ι∗12ω̃1 ∪ reg(uχ)〉X ′,fp is

independent of the choices of lifts to finite polynomial cohomology. Since

π1 ◦ ι12 and π2 ◦ ι12 are both the identity map on X, this is just 〈η̃urf , ω̃g ∪
reg(uχ)〉X ′,fp. Again there is a single choice for η̃urf , but the Coleman integral

Fg of ωg is only well-defined up to a constant. The difference between any

two choices is then equal to

〈η̃urf , [(λ, 0)] ∪ reg(uχ)〉X ′,fp = λ

〈
ηurf ,

duχ

uχ

〉
dR

for some λ ∈ Kp, and the same orthogonality argument between cusp and

Eisenstein forms again shows that this is 0. The claim follows.

Summing up, we obtain from (3.16) that

(3.20) regp(Δuχ
)(ωg ⊗ ηurf ) = 〈η̃urf , ω̃g ∪ reg(uχ)〉X ′,fp.

Recall that ω̃g may be represented by the pair (Fg, ωg) where Fg ∈ Orig(Wε)

is a Coleman integral of ωg, which in light of the above claim we are entitled

to normalize as was done in (3.12). Besides, by [Bes2, Prop. 10.3] the class

reg(uχ) is represented by the pair (FEχ
,
duχ

uχ
) ∈ Orig(Wε) ⊕ Ω1(X ′) where

FEχ
is the Coleman integral of

duχ

uχ
introduced in (3.9) and normalized as we

explained right after (3.12).
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By definition, ω̃g ∪ reg(uχ) is the restriction to the diagonal of π∗
1ω̃g ∧

π∗
2reg(uχ). Note that the polynomial P defined in equation (3.10) satisfies

the properties (i) and (ii) above. The class π∗
1 ω̃g ∧ π∗

2reg(uχ) in H2
fp(X ′2, 2, 3)

may then be represented by the pair

(3.21) (�
P
, π∗

1ωg ∧ π∗
2

duχ

uχ
) ∈ Ω1

rig(W2
ε )⊕ Ω2(X ′2),

where �P is the form introduced in (3.11), which satisfies

(3.22) d�
P
= P (Φ12)(π

∗
1ωg ∧ π∗

2

duχ

uχ
).

Let us again remark that this differential equation does not determine

�P uniquely, but that the above normalizations of Fg and FEχ
completely

determine it up to exact 1-forms on W2
ε . Obviously, when we restrict (3.21) to

the diagonal, this ambiguity does not affect the class we obtain inH2
fp(X ′, 2, 3),

because exact 1-forms on Wε vanish in H1
rig(Wε).

In conclusion, the class ω̃g ∪ reg(uχ) in H2
fp(X ′, 2, 3) may be represented by

the pair

(ι∗12(�P ), 0) ∈ Ω1
rig(Wε)⊕ Ω2(X ′),

where �P is as above and ι∗12(�P ) is the form denoted by ξ′P in (3.13).

As in [Bes1, (14)] there is a commutative diagram

(3.23) H1
fp,c(X ′, 0, 1)×H1

dR(X
′)

Id×i
��

p×Id

��

H1
fp,c(X ′, 0, 1)×H2

fp(X ′, 2, 3)

〈 , 〉fp
��

H1
dR,c(X

′)w=1 ×H1
dR(X

′)
〈 , 〉dR

�� H2
dR,c(X

′) � H3
fp,c(X ′, 2, 4),

where H1
dR,c(X

′)w=1 stands for the pure submodule of weight 1 of H1
dR,c(X

′).

In fact both maps

H1
dR(X

′)
i−→ H1

fp(X ′, 2, 3) and H1
fp,c(X ′, 0, 1)

p−→ H1
dR,c(X

′)w=1

are isomorphisms, as follows from [Bes3, (2.7) and the first assertion of Lem-

ma 2.8].

By definition of i, the preimage of ω̃g ∪ reg(uχ) = [(ξ′P , 0)] under i is the

class in H1
rig(Wε) of the 1-form P (Φ)−1(ξ′Q) = ξ′. To conclude, we now deduce

from the commutativity of (3.23) that

〈ηurf , ξ′〉dR = 〈η̃urf , i(ξ′)〉fp = 〈η̃urf , ω̃g ∪ reg(uχ)〉fp.

Since the class ηurf is orthogonal to the complement of H1
dR(X) in H1

dR(X
′)

under the Frobenius equivariant splitting of (3.15), we have 〈ηurf , ξ′〉dR =

〈ηurf , ξ〉dR, and the proposition follows. �
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4. The Beilinson formula

Let f ∈ S2(N,χf ), g ∈ S2(N,χg) be eigenforms of weight 2 as in Section

2.1.4. Recall that f and g are not assumed to be newforms. Moreover, we

insist on the condition χf �= χ−1
g , which implies that χ = χ−1

f χ−1
g is non-

trivial.

4.1. The complex setting. In [Bei, Ch. 2, §6], Beilinson relates the im-

age of Δuχ
under the complex regulator map to the value at s = 2 of the

Rankin L-series attached to f ⊗ g. The following explicit version of Beilin-

son’s theorem is a slight generalisation of the results of [BaSr].

Proposition 4.1. For cusp forms f and g of weight two as in Section

2.1.4, we have

L(f ⊗ g, 2)

〈f∗, f∗〉2,N
= (8i)π3[Γ0(N) : Γ1(N)(±1)]−1N−2τ (χ−1)regC(Δuχ

)(ωg ⊗ ηahf ).

Proof. This follows by combining the explicit formula for L(f ⊗ g, 2) ob-

tained in Proposition 2.5 with the explicit expression for regC(Δuχ
) given in

Proposition 3.2. �
4.2. The p-adic setting. Let p ≥ 3 be a prime which does not divide N .

Assume that f is ordinary at p (with respect to a fixed embedding of the field

Kf in Cp). Let f be the Hida family whose specialisation in weight 2 is the

p-stabilisations of f , and let Lp(f , g)(k, j) be the p-adic L-function defined in

Section 2.2.2.

Let E(f), E∗(f) and E(f, g, 2) be the p-adic multipliers defined in Sections

2.2.1 and 2.2.2. Recall that

E(f, g, 2) = (1− βp(f)αp(g)p
−2)(1− βp(f)βp(g)p

−2)

×(1− βp(f)αp(g)χ(p)p
−1)(1− βp(f)βp(g)χ(p)p

−1).

The following p-adic Beilinson formula is the main result of this paper.

Theorem 4.2. For cusp forms f and g of weight two as in Section 2.1.4,

we have

Lp(f , g)(2, 2) =
E(f, g, 2)

E(f) · E∗(f)
× regp(Δuχ

)(ωg ⊗ ηurf ).

Proof. By the description of the p-adic L-function given in equation (2.28),

Lp(f , g)(k, j) =
1

E∗(fk)

〈
ηurfk ,Ξ(fk, g, j)

ord,p
〉
k,X

for all triples (k, �, j) belonging to the set (2.26). Since the terms in the above

expression vary analytically, taking the limit to k = � = j = 2 yields, in light
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of equation (2.25),

(4.1) Lp(f , g)(2, 2) =
1

E∗(f)

〈
ηurf , eord(d

−1E
[p]
2,χ · g)

〉
2,X

.

On the other hand, by Proposition 3.3,

regp(Δuχ
)(ωg ⊗ ηurf ) = 〈ηurf , ξ〉.

Since

Φ(ηurf ) = αp(f)η
ur
f , 〈Φ(ηurf ),Φ(ξ)〉 = p〈ηurf , ξ〉, αp(f)βp(f) = χf (p)p,

we deduce by multi-linearity that

〈ηurf , ξ〉 = P
(
χ−1
f (p)βp(f)

)−1〈ηurf , ξ′P 〉.

Since f is an ordinary eigenform, the quantity 〈ηurf , ξ′P 〉 depends only on the

f∗-isotypical ordinary projection of ξ′P , that is, 〈ηurf , ξ′P 〉 = 〈ηurf , ef∗eordξ
′
P 〉.

Choose the polynomial P (x) satisfying conditions (i) and (ii) to be

P (x) := (x− αp(g)) · (x− αp(g)χ(p)p) · (x− βp(g)) · (x− βp(g)χ(p)p).

This choice of P has the advantage of allowing us to directly invoke the cal-

culations already performed in [DR, Prop. 5.4]. They give

ef∗eordξ
′
P = χf (p)

−2p4E(f) · ef∗eord(d
−1E

[p]
2,χ · g).

A direct calculation shows that

E(f, g, 2) = p−4χf (p)
−2P

(
χ−1
f (p)βp(f)

)
.

By combining the above remarks, we find the following expression for the

p-adic regulator:

(4.2) regp(Δuχ
)(ωg ⊗ ηurf ) =

E(f)
E(f, g, 2) ×

〈
ηurf , ef∗eord(d

−1E
[p]
2,χ · g)

〉
2,X

.

The theorem follows by comparing equations (4.1) and (4.2). �
Remark 4.3. Note that the modular form g that arises in Theorem 4.2 is

fixed throughout the argument and is thus not required to be ordinary at p.

Assume now that both f and g are ordinary at p (with respect to a fixed

embedding of the field Kfg in Cp). Let f and g be the Hida families whose

specialisations in weight 2 are the p-stabilisations of f and g, respectively,

and let Lp(f ,g)(k, �, j) be the p-adic L-function defined in Section 2.2.2. The

following corollary is an immediate consequence of Theorem 4.2.

Corollary 4.4. For cusp forms f and g of weight two as in Section 2.1.4,

we have

Lp(f ,g)(2, 2, 2) =
E(f, g, 2)

E(f) · E∗(f)
× regp(Δuχ

)(ωg ⊗ ηurf ).
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