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Abstract. — The theme of this article is the connection between the pro-unipotent funda-
mental group π1(X; o) of a pointed algebraic curve X, algebraic cycles, iterated integrals, and
special values of L-functions. The extension of mixed Hodge structures arising in the second
stage in the lower central series of π1(X; o) gives rise to a supply of complex points on the
Jacobian Jac(X) of X indexed by Hodge cycles on X ×X. The main results of this note relate
these points to the Abel-Jacobi image of Gross-Kudla-Schoen’s modified diagonal in X3, and
express this Abel-Jacobi image in terms of iterated integrals. The resulting formula is the basis
for the practical complex-analytic calculations of these points when X is a modular (or Shimura)
curve, a setting where the recent work [YZZ] of X. Yuan, S. Zhang and W. Zhang relates their
non-triviality to special values of certain L-series attached to modular forms.

Résumé. — Le thème de cet article est le groupe fondamental pro-unipotent π1(X; o) d’une
courbe algébrique X munie d’un point base et ses relations avec les cycles algébriques, les
intégrales itérées, et les valeurs spéciales des fonctions L. Les extensions de structures de Hodge
mixtes qui apparaissent dans le quotient de π1(X, o) par le deuxième terme de sa série centrale
descendante donnent lieu à des points complexes de la Jacobienne Jac(X) de X. Ces points sont
paramétrés par les cycles de Hodge de X ×X. On les relie aux images de la diagonale modifiée
de Gross-Kudla-Schoen dans X3 par l’application d’Abel-Jacobi, en exprimant ces images au
moyen d’intégrales itérées. La formule explicite qui s’en dégage a permis le calcul numérique de
ces points lorsque X est une courbe modulaire (ou une courbe de Shimura), contexte dans lequel
les travaux récents [YZZ] de X. Yuan, S. Zhang et W. Zhang les relient aux valeurs spéciales
de certaines fonctions L attachées à des formes modulaires.
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Introduction

Let (Y, o) be a pointed algebraic variety over the complex numbers. Its pro-unipotent funda-
mental group π1(Y ; o) is a rich source of links between the topology, geometry and arithmetic
of the variety: see for example the works of Bloch [Bl77], Chen [Chen], Deligne [De], Drinfeld
[Dr], Hain [Hain3] and Kim [Ki] and the references therein.
Among these developments, the contributions of Carlson, Clemens and Morgan [CCM], Har-
ris [Har] and Pulte [Pu] in the eighties exhibited examples where the values of Chen’s iterated
integrals –which provide an explicit description of the underlying mixed Hodge structure of
the de Rham realization of π1(Y ; o)– coincide with the Abel-Jacobi images of a suitable null-
homologous cycle on Y or on some other variety that one may naturally construct out of
Y . In geometric terms, these results can be phrased as the equality of two points in an in-
termediate jacobian of the variety: one, constructed as the class of the periods afforded by
certain iterated integrals, and the other obtained as the image of a suitable cycle under the
Abel-Jacobi map.
Let F ⊂ C be a field embedded in the field of complex numbers, X a smooth projective curve
over F and Y = X \ {∞} the complement of a single rational point ∞ ∈ X(F ). Choose
a base point o ∈ Y (F ). In this article we focus on the construction of a supply of complex
points

(1) κdR(ξ) ∈ Jac(X)(C)

on the jacobian of X, indexed by the set of Hodge classes

Hdg(H1(X)⊗H1(X)) := {ξ : Z(−1)→ H1(X)⊗H1(X)}
in the Hodge structure underlying H1(X) ⊗H1(X). This construction has also been exten-
sively studied by Pulte [Pu] and Kaenders [Ka] and we review it in §1. These points arise
from the pro-unipotent fundamental group π1(Y (C); o) and therefore depend on the choice of
o, and their construction exploits the canonical isomorphism

(2) Ext1
MHS(Z(−1), H1

B(X)) ' Ω1(X)∨

H1(X(C),Z)
' Jac(X)(C)

between the module of extensions of Z(−1) by H1
B(X) in the category of mixed Hodge struc-

tures, and the set of complex points of Jac(X), as described e.g. in [Ca].
Assume now that ξ = ξZ is the Hodge class associated by the cycle class map with an algebraic
cycle Z ∈ Pic(X×X), as detailed in (44). Section 2 associates to each divisor Z in X×X an
algebraic correspondence ΠZ : X3 // X between X3 and X and our first main theorem
is:

Theorem 1. — For every divisor class Z ∈ Pic(X2),

(3) κdR(ξZ) = ΠZ(∆GKS) ∈ Jac(X)(C),

where
– ΠZ : CH2(X3)0 −→ CH1(X)0 = Jac(X) is the transformation induced by ΠZ by functori-
ality, and

– ∆GKS ∈ CH2(X3)0 is the null-homologous cycle of codimension 2 in X3 with base-point o
studied by Gross, Kudla and Schoen [GrKu], [GrSc], cf. (47).
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This theorem spells out a relationship between diagonal cycles and the pro-unipotent funda-
mental group which is hinted at in the penultimate sentence of §5.1 of [Zh2]; the reader is
encouraged to consult §5 of loc.cit. for further discussion of Gross-Kudla-Schoen cycles and
their arithmetic applications. Since the right-hand side of (3) is purely algebraic, we derive
the following corollary:

Corollary 2. — If Z belongs to Pic(X × X)(F ) then κdR(ξZ) is an F -rational point of
Jac(X).

The proof of Theorem 1 is complex analytic: it proceeds by relating–in §1 and §2, respectively–
the left and right-hand side of equality (3) to Chen’s iterated integrals. The resulting explicit
formula (Theorem 2.5) was one of the main motivations for this note and underlies the nu-
merical calculations of Chow-Heegner points that are carried out in [DDLR] when X is a
modular curve. The authors also hope that Theorem 1 could form the basis for an eventual
approach to the “Stark-Heegner points” of [DP] via iterated integrals.
Beyond the general expectation alluded to above that the pro-unipotent fundamental group
π1(Y ; o) of a variety should encode the Abel-Jacobi images of non-trivial null-homologous
algebraic cycles, it is also natural to expect, on the grounds of the conjectures of Bloch-Kato
[BK] linking algebraic cycles to L-functions, that a good deal of the non-abelian arithmetic
of π1(Y ; o) should be accounted for by the leading terms of the L-function of the motives
appearing as Jordan-Hölder constituents of π1(Y ; o). There are however few examples in the
literature in which this principle is illustrated (1). A celebrated instance is afforded by the
curve Y = P1 − {0, 1,∞}, whose pro-unipotent fundamental group is an iterated extension
of Tate motives. It is shown in [De] that the extension classes that arise in it encode special
values of the Riemann zeta function at certain (non-critical) points. Theorem 3.7 in §3 de-
scribes analogous phenomena when Y is a punctured modular curve attached to a congruence
subgroup of SL2(Z), or a Shimura curve, exploiting [YZZ].
Let us close this introduction by relating Theorem 1 to existing results in the literature. In
our notations and the normalizations adopted in definition (43) of the points κdR(ξ) –which
are tailored so that there is no dependence on the choice of the point∞–, the main theorem of
Kaenders [Ka] says that when Z = X12 ∈ Pic(X ×X) is the class of the curve X diagonally
embedded in X ×X, we have

(4) κdR(ξX12) = (2g − 2)o−K ∈ Jac(X),

where g stands for the genus of X and K is any canonical divisor on the curve. Note that,
since K is an F -rational divisor, the conclusion of Corollary 2 follows directly from (4) for
this particular choice of Z.
Kaenders proves (4) by showing that a suitable translate of κdR(ξX12) is equal to twice Rie-
mann’s constant; his result then follows by an immediate application of the Riemann-Roch
theorem. It can also be recovered directly from Theorem 1: see Corollary 2.8.
It is also interesting to compare Theorem 1 with the work of B. Harris [Har], as recast by
Pulte in [Pu]. For any n ∈ Z, let [n] ∈ End(Jac(X)) denote the endomorphism given by

1. while the connection between algebraic cycles and special values of L-functions as predicted by [BK]
has already borne some fruit: cf. e.g. [GrZa], [Ne], [Zh], [YZZ].

Publications mathématiques de Besançon - 2012/2
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multiplication-by-n. Define

Xo := {[P − o] : P ∈ X}, X−o := [−1]∗Xo = {[o− P ] : P ∈ X} ⊂ Pic0(X)

and let Co := Xo − X−o ∈ CHg−1(Jac(X))0 be Ceresa’s cycle, a null-homologous cycle of
codimension g − 1 on the jacobian of X.
Every choice of Hodge class ξ ∈ Hdg(H1

B(X)⊗2) singles out a natural map (2)

(5) πξ : CHg−1(Jac(X))0(C) −→ Jac(X)(C),

and Theorem 4.9 of [Pu] asserts that

(6) κdR(ξ) = 2πξ(Co) ∈ Jac(X)(C).

Notice that Corollary 2 does not follow automatically from (6), as it is not a priori obvious
that the map πξ is Galois equivariant.
Our Theorem 1 is in the same spirit of Harris-Pulte’s, in that both relate the points κdR(ξ)
arising from π1(Y (C); o) to algebraic cycles on some algebraic variety intimately related to
X, namely X3 and Jac(X), respectively. These two varieties and their relevant Chow groups
are related through their intermediate jacobians by the commutative diagram

(7) CH2(X3)0(C)

µ∗
��

// J2(X3) = Fil2H3
dR(X3,C)/H3(X3,Z)

AJ(µ∗)
��

CHg−1(Jac(X))0(C) // J1(Jac(X)) = Fil2H3
dR(Jac(X),C)/H3(Jac(X),Z),

where the horizontal arrows are the Abel-Jacobi maps AJX3 on X3 and AJJac(X) on Jac(X),
respectively, the left-most vertical arrow is the transformation induced by functoriality by the
morphism µ : X3 → Jac(X) given by the rule (x1, x2, x3) 7→ x1 +x2 +x3−3o, and the vertical
arrow AJ(µ) is the natural surjection given by the Künneth decomposition of H3(X3) and
the classical isomorphism H3(Jac(X)) = Λ3H1(X).
It readily follows from the definitions that

µ∗(∆GKS) = [3]∗Xo − 3[2]∗Xo + 3Xo ∈ CHg−1(Jac(X))0

and Colombo and van Geemen proved in [CG, Proposition 2.9] that

(8) AJJac(X)(µ∗(∆GKS)) = 3AJJac(X)(Co).

This result lies far from proving Theorem 1 via (6), as the maps µ∗ and AJ(µ∗) have non-trivial
kernel. In fact, the combination of Theorem 1 with Pulte’s (6) yields the equality

(9) ΠZ(∆GKS) = 2πξZ (Co) ∈ Jac(X)(C) for all Z ∈ Pic(X ×X),

which is yet another set of non-trivial relationships between Gross-Kudla-Schoen’s cycle
∆GKS ∈ CH2(X3)0 and Ceresa’s Co ∈ CHg−1(Jac(X))0.

2. In the notation of §1.2, πξ is the composition of the Abel-Jacobi map CHg−1(Jac(X))0(C)
AJ→ J1(Jac(X)),

the monomorphism J1(Jac(X)) ↪→ Ext1MHS(H
1
B(X)⊗2, H1

B(X)) considered by Pulte in [Pu], the projection
Ext1MHS(H

1
B(X)⊗2, H1

B(X))→ Ext1MHS(Z(−1), H1
B(X)) given by ξ as in (36) and the isomorphism (2).
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1. Fundamental groups and mixed motives

Let F be a number field equipped with an embedding F ↪→ C into the field of complex
numbers, and write F̄ for the Galois closure of F in C; as before, recall that GF := Gal (F̄ /F ).
Let X be a smooth, complete algebraic curve of genus g ≥ 2 over F , and let Y = X \ S for
some finite, GF -stable set S of points on X(F̄ ). Fix a base point o ∈ Y (F ); the integral group
ring Z[Γ] of the fundamental group Γ := π1(Y (C); o) of the Riemann surface underlying

YC = Y ×Spec(F ) Spec(C)

is equipped with a decreasing filtration

Z[Γ] ⊃ I ⊃ I2 ⊃ · · · ⊃ Ij ⊃ · · ·
by powers of the augmentation ideal.
The first few successive quotients in this filtration are given by

Z[Γ]/I = Z;
∑

mσσ 7→
∑

mσ;(10)

I/I2 = Γab := Γ/[Γ,Γ];
∑

mσσ 7→
∏

σmσ ;(11)

I2/I3 = (Γab ⊗ Γab)/K,(12)

where in the last identification, K is the kernel of the natural surjective homomorphism

(13) j : Γab ⊗ Γab−→I2/I3, γ1 ⊗ γ2 7→ (γ1 − 1)(γ2 − 1).

Let M∨ := hom(M,Z) be the Z-linear dual of a Z-module M . Formula (11) implies that

(14) (I/I2)∨ = hom(Γ,Z) = H1
B(Y ),

where H1
B(Y ) = H1(Y (C),Z) refers to the singular Betti cohomology of the smooth real

manifold underlying Y (C). Furthermore, it can be shown that the map

j∨ : (I2/I3)∨ ↪→ H1
B(Y )⊗2

identifies (I2/I3)∨ with the kernel of the map

H1
B(Y )⊗2 −→ H2

B(Y )

given by the cup product. (Cf. [Hain3, Cor. 8.2] for more details.) Letting H1
B(Y )⊗2

∪=0 denote
this kernel, the map j∨ induces an identification

(15) (I2/I3)∨ = H1
B(Y )⊗2

∪=0.

By dualising the exact sequence

0 −→ I2/I3 −→ I/I3 −→ I/I2 −→ 0,

invoking (14) and (15), and setting

MB := (I/I3)∨,

we obtain the fundamental exact sequence of Z-modules

(16) 0 −→ H1
B(Y ) −→MB −→ H1

B(Y )⊗2
∪=0 −→ 0.

Note that H1
B(Y )⊗2

∪=0 = H1
B(Y )⊗2 as soon as S 6= ∅, because in this case H2

B(Y ) = {0}. The
abelian groups that appear on the left and right of (16) are not just ”unadorned” Z-modules,
but the Betti realisations of certain motives over F . In the terminology of [De], the exact
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24 Iterated integrals, cycles and rational points

sequence (16) suggests that MB ought to be interpreted as the Betti realization of a putative
mixed motiveM? (in the sense of [De], say) which would arise as an extension in that category
of the motive H1(Y )⊗2

∪=0 (which is pure of weight 2 when Y = X) by the motive H1(Y ) (which
is pure of weight 1 when Y = X). Implicit in the existence of M?, which we do not address
in this paper, are the following concrete consequences:

1. The existence of a decreasing, separated and exhaustive Hodge filtration on

MdR,C := MB ⊗ C,
for which the complexification

(17) 0 −→ H1
dR(Y/C)

i−→MdR,C
p−→ H1

dR(Y/C)⊗2
∪=0 −→ 0

of (16) becomes an exact sequence of filtered complex vector spaces.
2. The existence, for each rational prime p, of the p-adic étale realisation Met,p, fitting into

an exact sequence of continuous Qp[GF ]-modules

(18) 0 −→ H1
et(XF̄ ,Qp) −→Met,p −→ H1

et(XF̄ ,Qp)
⊗2
∪=0 −→ 0

which is the p-adic étale counterpart of (16).
There are other aspects as well (notably, the cristalline realisations attached to the fun-
damental groups of the reduction of Y modulo p, equipped with its semi-linear frobenius
endomorphism at p and a comparison isomorphism with the de Rham cohomology over p-adic
fields) which shall not be touched upon at all here. In this note we focus almost exclusively
on (17).
Let us briefly recall the well-known mixed Hodge structures underlying the Betti cohomology
group H1

B(Y ) and its tensor square. Its weight filtration arises from the exact sequence

(19) 0 −→ H1
B(X) −→ H1

B(Y ) −→ ⊕P∈SZ(−1) −→ Z(−1) −→ 0,

and is given by

(20) WjH
1
B(X) =





0 if j ≤ 0,
H1

B(X) if j = 1,
H1

B(Y ) if j ≥ 2.

The de Rham cohomology H1
dR(Y (C)) is the cohomology of the de Rham complex of smooth

C-valued differential forms on Y (C) with at worst logarithmic poles at the points in S. There
is a canonical identification H1

B(Y ) ⊗ C = H1
dR(Y (C)) arising from integration of smooth

differential forms against smooth chains, and its Hodge filtration is given by

(21) FiljH1
dR(Y (C)) =





H1
dR(Y (C)) if j ≤ 0,

Ω1
log(Y (C)) if j = 1,

0 if j ≥ 2,

where
Ω1

log(Y (C)) = {ω ∈ Ω1(Y (C)) with ordP (ω) ≥ −1, ∀P ∈ S}
and ordP(ω) denotes the valuation of the differential ω at the point P ∈ X(C).
Because the Riemann surface Y (C) arises from an algebraic curve over F , we can identify
H1

dR(Y (C)) with H1
dR(Y/F )⊗ C, where

(22) H1
dR(Y/F ) := H1(0→ OY → Ω1(Y )→ 0)
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is the algebraic de Rham cohomology of Y/F , defined as the hypercohomology of the de Rham
complex of sheaves of regular differential forms on Y . The Hodge filtration on H1

dR(Y/F )
may also be described concretely by

(23) FiljH1
dR(Y/F ) =





H1
dR(Y/F ) ' ΩII(Y )/dF (Y ) if j ≤ 0,

Ω1
log(Y/F ) if j = 1,

0 if j ≥ 2,

where

1. ΩII(Y ) is the space of rational differential forms on Y over F with vanishing residues at
all points of Y ; these are also called differentials of the second kind on Y ;

2. F (Y ) is the field of rational functions on Y over F ;

3. Ω1
log(Y/F ) is the subspace of Ω1(Y/F ) consisting of differentials ω satisfying ordP (ω) ≥
−1 for all P ∈ S.

The tensor product H1
B(Y )⊗2 is again a mixed Hodge structure, and the Hodge filtration on

H1
dR(Y/F )⊗2 is given by

FiljH1
dR(Y/F )⊗2 =





H1
dR(Y/F )⊗2 if j ≤ 0;

Ω1
log(Y/F )⊗H1

dR(Y/F ) +H1
dR(Y/F )⊗ Ω1

log(Y/F ) if j = 1;

Ω1
log(Y/F )⊗2 if j = 2;

0 if j ≥ 3.

1.1. Iterated integrals and the Hodge filtration on MdR,C. — The extension MB of
H1

B(Y )⊗2 by H1
B(Y ) arising in (16) is equipped with a natural mixed Hodge structure. The

definition of the Hodge filtration on MdR,C was given by R. Hain in [Hain2], and rests on the
explicit description of MdR,C in terms of K.-T. Chen’s iterated integrals of smooth differential
forms on path spaces. We now briefly recall this description, referring the reader to [Chen],
[Hain3] and the references therein for further details.
The path space on Y based at o, denoted P(Y ; o), is the set of piecewise smooth paths

γ : [0, 1] −→ Y (C), with γ(0) = o.

The universal covering space of Y (C), denoted Ỹ , is the space of homotopy classes in P(Y ; o).
It is conformally equivalent to the open unit disc in C. The group Γ = π1(Y (C); o) acts on it
transitively and without fixed points, and the map γ 7→ γ(1) identifies the quotient Ỹ /Γ with
Y (C). If η is a smooth closed one-form (resp. a meromorphic one-form of the second kind) on
Y (C), then it admits a smooth (resp. meromorphic) primitive Fη on Ỹ , defined by the rule

Fη(γ) :=

∫ 1

0
γ∗η.

The basic iterated integral attached to smooth differential forms ω1, . . . , ωn along a path
γ ∈ P(Y ; o) is defined to be

(24)
∫

γ
ω1 · ω2 · · ·ωn :=

∫

0≤tn≤tn−1≤···≤t1≤1
γ∗(ω1)(t1) · · · γ∗(ωn)(tn).
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26 Iterated integrals, cycles and rational points

The integer n is called the length of this basic iterated integral. In particular, when n = 2,
the basic iterated integral attached to η1 and η2 is given by the formula

∫

γ
η1 · η2 :=

∫

γ
η1Fη2 =

∫ 1

0
γ∗(η1Fη2).

It can also be expressed in terms of η1∧η2, viewed as a two-form on X×X, as the expression

(25)
∫

γ
η1 · η2 :=

∫

Tγ

η1 ∧ η2, where Tγ = {(γ(r), γ(s)), 0 ≤ s ≤ r ≤ 1} ⊂ X ×X.

An iterated integral is any linear combination of basic iterated integrals, of possibly differing
lengths, viewed as a function on P(Y ; o). The length of an iterated integral is then defined
to be the maximal length arising in its expression as a linear combination of basic iterated
integrals.
An iterated integral is said to be homotopy invariant if its value on a path γ depends only
on the homotopy class of γ. The space II(Y ) of homotopy invariant iterated integrals will be
viewed as a subspace of the space of C-valued functions on Γ, in the obvious way. By extending
J ∈ II(Y ) to the group ring C[Γ] by C-linearity, we will exploit the resulting natural inclusion

II(Y ) ⊂ C[Γ]∨

to realise II(Y ) as a space of complex functionals on C[Γ]. For each n, let II≤n(Y ) denote
the subspace of homotopy invariant iterated integrals of length ≤ n. This space plays an
important role in our description of MdR,C, because of the following facts:

1. Any element J ∈ II≤n(Y ) ⊂ C[Γ]∨ vanishes on In+1, and hence gives rise to a well-
defined element of (I/In+1)∨ ⊗Z C.

2. The natural map

(26) II≤n −→ (I/In+1)∨ ⊗Z C

is an isomorphism. In particular,

(27) MdR,C = II≤2(Y ).

The following lemma is helpful in describing II≤2(Y ) concretely.

Lemma 1.1. — Let η1 and η2 be smooth closed one-forms on Y (C) whose classes in de Rham
cohomology are orthogonal with respect to the Poincaré pairing, and let α be a smooth one-form
on Y (C) satisfying the differential equation

(28) dα = η1 ∧ η2.

1. The iterated integral

Jη1⊗η2,α(γ) :=

∫

γ
(η1 · η2 − α)

is homotopy invariant.

2. The image of Jη1⊗η2,α ∈MdR,C under the projection p of (17) is the element [η1]⊗ [η2].

3. The space II≤2(Y ) is spanned by iterated integrals of the form Jη1⊗η2,α.
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Proof. — The first claim follows directly from the fact that the differential one-form on Ỹ
appearing in the expression

Jη1⊗η2,α(γ) =

∫

γ
η1Fη2 − α

is closed. The second statement follows from a direct calculation showing that

Jη1⊗η2,α((γ1 − 1)(γ2 − 1)) =

∫

γ1

η1

∫

γ2

η2.

Finally, given any J ∈MdR,C, after writing p(J) =
∑
ωi ⊗ ηi, it can be checked that

J =
(∑

Jωi⊗ηi,αi
)
− J0,0,α

for suitable smooth differentials αi on Y (C) and α ∈ H1
dR(Y (C)).

In the special case where Y (C) = X(C)− {∞} with X projective, the smooth differential α
on Y (C) can be expressed in terms of the Green’s function gη1∧η2,∞ attached to the smooth
(1, 1)-form η1 ∧ η2 and the point ∞. Recall (cf. [La], §II.1 for example) that gη1∧η2,∞ is a
smooth C-valued function on Y (C) satisfying the following two conditions:

1. Letting ∂ and ∂̄ : Osmooth(Y ) −→ Ω1
smooth(Y ) be the usual differential operators defined

by

∂f =
∂f

∂z
dz =

1

2

(
∂f

∂x
− i∂f

∂y

)
(dx+ idy), ∂̄f =

∂f

∂z̄
dz̄ =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
(dx− idy),

the function gη1∧η2,∞ is a solution of the differential equation

−1

2πi
∂∂̄gη1∧η2,∞ = η1 ∧ η2.

2. The function gη1∧η2 has at worst logarithmic growth at ∞. More precisely, letting

mη1∧η2 :=

∫

X(C)
η1 ∧ η2,

the function gη1∧η2,∞ can be written as

gη1∧η2,∞(x) = −mη1∧η2 log |f∞(x)|2 + h(x),

where f∞ is a rational function on X with a simple zero at ∞ and h(x) is smooth in a
neighbourhood of ∞.

The differential
α∞ :=

1

2πi
∂gη1∧η2,∞

is a smooth one-form of type (1, 0) on Y (C) satisfying

dα∞ = (∂ + ∂̄)α∞ = ∂̄α∞ = η1 ∧ η2.

Its Laurent development around ∞ has a principal part of the form

α∞ =
−mη1∧η2

2πi

dz

z
.
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This implies that, for any smooth region R ⊂ X(C) whose boundary does not contain ∞,

(29)
∫

R
η1 ∧ η2 =

∫

∂R
α∞ + mη1∧η2

∫

R
δ∞,

where δ∞ is the Dirac delta current, satisfying
∫

R
δ∞ =

{
1 if ∞ ∈ R;
0 if ∞ /∈ R.

In other words, we have the equality of currents:

(30) η1 ∧ η2 = dα∞ +mη1∧η2δ∞.

The following lemma concerning the differential α∞ shall be used in the proofs of Section 1.2.

Lemma 1.2. — After setting X = X1 = X2, viewing η1 ∧ η2 as a (1, 1)-form on X1, and
letting ρ be a closed one-form on X2, consider the three-form (η1 ∧ η2) ∧ ρ on X1 ×X2. Let
W be any smooth three-chain on X1 ×X2 which intersects {∞}×X2 in a smooth one-chain,
so that

(∂W )′ := ∂W − ∂(W ∩ ({∞} ×X2))

is the complement of a finite set in ∂W . Then the integral
∫

∂W
α∞ ∧ ρ :=

∫

(∂W )′
α∞ ∧ ρ

converges, and satisfies
∫

W
(η1 ∧ η2) ∧ ρ =

∫

∂W
α∞ ∧ ρ + mη1∧η2

∫

W∩({∞}×X2)
ρ.

Proof. — Since ρ is closed, equation (30) implies that

(η1 ∧ η2) ∧ ρ = d(α∞ ∧ ρ) +mη1∧η2 · δ∞ ∧ ρ.
Integrating over W and applying Stokes’ theorem, we obtain

∫

W
(η1 ∧ η2) ∧ ρ =

∫

∂W
α∞ ∧ ρ + mη1∧η2

∫

W
δ∞ ∧ ρ,

and the lemma follows from the fact that
∫
W δ∞ ∧ ρ =

∫
W∩({∞}×X2) ρ.

Following Hain (cf. [Hain3, §13.1]), the Hodge filtration on (I/In+1)∨⊗ZC is given in terms
of (26) by defining Filj((I/In+1)∨ ⊗Z C) to be the set of J ∈ II≤n of the form

J =

(∫
ω

(1)
1 · ω

(1)
2 · · ·ω(1)

n1

)
+ · · ·+

(∫
ω

(t)
1 · ω

(t)
2 · · ·ω(t)

nt

)

in which each ni-tuple (ω
(i)
1 , . . . , ω

(i)
ni ) involves at least j smooth differential forms of type (1, 0)

on Y (C) with logarithmic growth along S. In particular, for n = 2 we have

(i) FiljMdR,C = MdR,C for all j ≤ 0;

(ii) The space Fil1MdR,C is spanned by iterated integrals of the form Jη1,η2,α in which α and
at least one of η1 and η2 lie in Ω1

log(Y (C)).
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(iii) The space Fil2MdR,C is spanned by iterated integrals of the form Jω1,ω2,0 in which ω1

and ω2 both belong to Ω1
log(Y (C)).

(iv) For all j ≥ 3, FiljMdR,C = 0.

With this description of the Hodge filtration on MdR,C, it is routine to verify that the exact
sequence (17) is an exact sequence of filtered vector spaces. The Z-module MB is in fact
a prototypical example of an integral mixed Hodge structure. (See [Hain3, Cor. 9.3] and
[Hain1] for a discussion in a more general setting.) Let

(31) κdR ∈ Ext1
MHS(H1

B(Y )⊗2
∪=0, H

1
B(Y ))

denote the class of the extension (16) in the category MHS of mixed Hodge structures. We
will primarily be concerned with understanding this extension class and finding criteria for it
to be non-trivial.

An alternate description of the Hodge filtration
The analytic description of the Hodge filtration on MdR,C which we have just given is well-
suited for the theoretical calculations of this note. However, the difficulties inherent in solving
equation (28) seem to make it ill-suited for the practical numerical calculations of Abel-Jacobi
maps that are carried out in [DDLR]. For the latter, it is convenient to exploit an algebraic
description ofMdR,C and its Hodge filtration involving meromorphic differentials of the second
kind rather than smooth differentials.
Note that the definitions of FiljMdR,C given above apply just as well to the algebraic setting,
with the exception of Fil1MdR,C which is described in terms of smooth forms. We now proceed
to give a description of this space involving meromorphic differentials on Y of the second kind.
Firstly, given ω ∈ Ω1

log(Y (C)) and a smooth closed one-form η on Y (C), the two-form ω∧ η+
η ∧ ω vanishes identically on Y . In particular, the class of ω ⊗ η + η ⊗ ω always belongs to
H1(Y )⊗2

∪=0, even when Y is projective, and the elements of MdR,C which map to this class are
those of the form

Jω⊗η+η⊗ω,α, with dα = 0;

Jω⊗η+η⊗ω,α(γ) :=
∫
γ(ω · η + η · ω)−

∫
γ α.

A direct calculation reveals that

Jω⊗η+η⊗ω,α(γ) =

(∫

γ
ω

)(∫

γ
η

)
−
∫

γ
α,

so that the values of Jω⊗η+η⊗ω,α are expressed in terms of products of periods of γ relative
to the de Rham cohomology classes of ω, η and α. The function Jω⊗η+η⊗ω,α can therefore be
readily calculated in practice using meromorphic representatives of the classes of ω, η, and α.
It is then clear from the description of the Hodge filtration on MdR,C given in (ii) above that

(32) Jω⊗η+η⊗ω,α belongs to Fil1MdR,C if and only if α ∈ Ω1
log(Y/C).

Secondly, let us represent a cohomology class ξ ∈ H1
dR(Y/C) by a meromorphic differential

form η of the second kind on Y (C) with at worst logarithmic poles along S, making use of
the algebraic description for H1

dR(Y/F ) given in (23). The principal part of the meromorphic
differential 1-form ωFη at a point x ∈ Ỹ , denoted pp

x
(ωFη), depends only on the image of x
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in Y (C). Indeed, let γx ∈ Ỹ , for γ ∈ Γ, be any other point in Ỹ lying above the same point
of Y (C). Comparing principal parts, we find:

pp
γx

(ωFη) = pp
x
(γ∗(ωFη)) = pp

x
(ωFη + cω)

for some constant c, and the claim follows because ω is regular. In particular, it makes sense
to talk about the principal part pp

P
(ωFη) at a point P ∈ Y (C), even though the one-form

ωFη is only defined on Ỹ . A direct application of the Riemann-Roch theorem shows that
there exists a meromorphic differential form α on Y (C) with at worst logarithmic poles along
S, satisfying

(33) pp
P

(α) = pp
P

(ω · Fη), for all P ∈ Y (C).

The one-form ω ·Fη−α is then holomorphic on Ỹ . The differentials α satisfying (33) all differ
by elements of Ω1

log(Y (C)) = Fil1H1
dR(Y/C), and we again have that

(34) Jω⊗η,α belongs to Fil1MdR,C.

It is then obvious from the definition of Fil1MdR,C given in (ii) above that this space can be
recovered in terms of meromorphic differentials as the vector space generated by the iterated
integrals appearing in (32) and (34).
Given a regular differential ω and a meromorphic differential η of the second kind on Y , the
task of calculating the meromorphic one-form α satisfying (33) can be carried out explicitly
in the case of modular curves, and seems easier in practice than solving the equation (28)
associated to a smooth representative of the class of η. See the forthcoming article [DDLR]
for a more detailed discussion of these computational aspects.

1.2. Points arising from Hodge classes and the fundamental group. — The goal
of this section is to recall a construction which goes back at least to [Ka] and [Pu] whereby
the extension class κdR of (31) arising from the pro-unipotent fundamental group are used to
construct rational points in the Jacobian of a (smooth, projective) curve (3). We retain the
same notations as in the previous section and assume that Y = X \ {∞} is the complement
of a point ∞ ∈ X(F ).
A Hodge class in a mixed Hodge structure N of weight two is a morphism

(35) ξ : Z(−1) −→ N

of mixed Hodge structures, where Z(−1) denotes the weight 2 Hodge structure attached to
the Tate motive H2(P1). The Z-module of all such Hodge classes is denoted Hdg(N).
The extension class

κdR(∞) ∈ Ext1
MHS(H1

B(X)⊗2, H1
B(X)),

of MB in the category of mixed Hodge structures arising from the exact sequence (16) is a
natural object of study. We do so by considering, for each class ξ ∈ Hdg(H1

B(X)⊗2), the
element

κdR(ξ;∞) ∈ Ext1
MHS(Z(−1), H1

B(X))

3. A tantalising ongoing program (cf. [Ki]) also exploits the pro-unipotent fundamental group of a (hyper-
bolic, affine) curve Y to bound its set of integral points, the rough idea being to associate to each point in
Y (Z) a system of non-abelian torsors, and then to control the Selmer varieties which parametrise them.
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associated to the class of the extension M(ξ) = M(ξ;∞) appearing in the top row of the
following commutative diagram with exact rows and cartesian squares:

(36) 0 // H1
B(X) // MB(ξ)

��

// Z(−1)

ξ

��

// 0

0 // H1
B(X) // MB

// H1
B(X)⊗2 // 0,

where the lower exact sequence is (16) applied to Y , once we identify H1
B(Y ) = H1

B(X) thanks
to (19).
There is a canonical isomorphism (cf. e.g. [Ca], [Hain3, §10.2])

(37) Ext1
MHS(Z(−1), H1

B(X)) =
H1

dR(X/C)

Ω1(X(C)) +H1
B(X)

.

Recalling the exact sequence (17), this identification is obtained by choosing elements

vHodge ∈ Fil1(MB(ξ)⊗ C)

and vZ ∈MB(ξ) satisfying

(38) p(vHodge) = p(vZ) = 1,

and assigning to the extension class MB(ξ) the element

(39) vξ := i−1(vHodge − vZ) ∈ H1
dR(X/C).

Since (38) determines vHodge and vZ up to elements of Fil1H1
dR(X/C) = Ω1(X/C) and

H1
B(X(C),Z) respectively, the image of vξ in the quotient on the right-hand side of (37)

depends only on the isomorphism class of the extension MB(ξ).
The Poincaré pairing

(40) H1
dR(X/F )×H1

dR(X/F ) −→ F

with F = C induces an isomorphism

(41)
H1

dR(X/C)

Ω1(X(C)) +H1
B(X)

−→ Ω1(X(C))∨

H1
B(X)

= Jac(X)(C).

For all ξ ∈ Hdg(H1
B(X)⊗2), we continue to use κdR(ξ;∞) ∈ Jac(X)(C) to describe the

canonical point in the jacobian of X arising from the identifications (37) and (41).
The assignment ξ 7→ κdR(ξ;∞) therefore sets up a map

(42) Hdg(H1
B(X)⊗2) −→ Jac(X)(C)

sending Hodge classes in H1
dR(X)⊗2 to complex points in the Jacobian of X.

Lemma 1.3. — Given ∞1,∞2 ∈ X(C)− {o}, we have

κdR(ξ;∞1) = κdR(ξ;∞2) +mξ((∞2)− (∞1)),

where we recall that mξ =
∫
X(C) ξ is the integral of any smooth two-form representing ξ over

the curve X(C) diagonally embedded in X(C)×X(C).
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Proof. — Let

vξ(∞1) ∈ H1
dR(X − {∞1}/C), vξ(∞2) ∈ H1

dR(X − {∞2}/C)

be the elements attached to the extension classes MB(ξ) with ∞ =∞1 and ∞2 respectively,
following equation (39). The difference vξ(∞1) − vξ(∞2) corresponds, modulo elements of
Ω1(X) and H1

B(X(C),Z), to the class in H1
dR(X − {∞1,∞2}) of a regular differential ω ∈

Ω1
log(X−{∞1,∞2}) whose residual divisor ismξ((∞2)−(∞1)). But such an element describes

the image of the degree zero divisor mξ((∞2) − (∞1)) in Ext1(Z(−1), H1
dR(X/C)), and the

result follows.

It is occasionally convenient to attach an invariant κdR(ξ) ∈ Ext1(Z(−1), H1
dR(X/C)) to

an arbitrary element of Hdg(H1
B(X)⊗2) depending only on the pointed curve (X; o) and its

fundamental group, and not on the choice of an auxiliary base point ∞ ∈ X − {o}. We can
do this by setting

(43) κdR(ξ) := κdR(ξ;∞) +mξ((∞)− (o)).

By Lemma 1.3, the right hand side does not depend on the point ∞. It depends only on
the Hodge class ξ and the exact sequence (16) arising from the fundamental group π1(X; o).
It can be interpreted as arising from the pro-nilpotent fundamental group of X − {o} with
“tangential base point” at o, in the sense of the article [De].
The next two propositions express the points κdR(ξ;∞) and κdR(ξ) in terms of iterated
integrals. Let us first introduce a few notations.
Given a Hodge class ξ ∈ Hdg(H1

B(X)⊗2), choose a representative

ξ̃ =
t∑

j=1

ωj ⊗ ηj ,

for its de Rham cohomology class, in such a way that ωj and ηj are smooth closed one-forms
on X for each j, at least one of which is of type (1, 0) (and hence, holomorphic on X). If
ρ ∈ Ω1(X) is any holomorphic differential, let γρ ∈ C[Γab] be a path whose homology class is
Poincaré dual to ρ, i.e., such that

∫

γρ

η̃ = 〈ρ, η〉, for all η ∈ H1
dR(X/C).

Proposition 1.4. — With notations as above, let α∞ be a smooth differential on Y (C) of
type (1, 0), with at worst logarithmic poles at ∞, satisfying

dα∞ =
t∑

j=1

ωj ∧ ηj on Y (C).
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Then, for all ρ ∈ Ω1(X/C),

κdR(ξ;∞)(ρ) =

∫

γρ




t∑

j=1

ωj · ηj − α∞


 and

κdR(ξ)(ρ) =

∫

γρ




t∑

j=1

ωj · ηj − α∞


+mξ

∫ ∞

o
ρ.

Proof. — The first equality is a direct consequence of the definitions, using the fact that
the class of the extension MB(ξ;∞) attached to the pair (ξ,∞) is described by the iterated
integral Jξ̃,α∞ . The second equality then follows from equation (43) defining κdR(ξ).

We conclude this section with a formula analogous to the one in Proposition 1.4, expressing
κdR(ξ;∞) and κdR(ξ) in terms of differentials of the second kind. This formula turns out to
be particularly useful in computing the points κdR(ξ) numerically, as it is done in [DDLR]
for Hodge classes arising from Hecke correspondences on a classical elliptic modular curve.
Choose a representative

ξ̃ =

s∑

j=1

ω+
j ⊗ η+

j +

t∑

j=1

η−j ⊗ ω−j ∈ Ω1(X/C)⊗ Ω1
mer(X/C) + Ω1

mer(X/C)⊗ Ω1(X/C)

of the class ξ, in such a way that the elements ω±j belong to Ω1(X) = Fil1H1
dR(X/C) and the

differentials η±j are of the second kind and regular at ∞.

Proposition 1.5. — With notations as above, let α∞ be a meromorphic differential on X,
with at worst logarithmic poles at ∞, satisfying

pp
x
(α∞) =

s∑

j=1

pp
x
(ω+
j Fη+j

)−
t∑

j=1

pp
x
(ω−j Fη−j

), for all x ∈ Y (C).

Then, for all ρ ∈ Ω1(X/C),

κdR(ξ;∞)(ρ) =

∫

γρ




s∑

j=1

ω+
j · η+

j +

t∑

j=1

η−j · ω−j − α∞


 .

Proof. — The proof is the same as for Proposition 1.4, using this time the algebraic description
of the Hodge filtration on MdR,C in terms of differentials of the second kind.

2. Points arising from algebraic cycles

Hodge classes in H1
B(X)⊗2 can be constructed naturally from geometry, by exploiting the

cycle class maps
cl : Pic(X ×X) −→ Hdg(H2

B(X ×X)).

More precisely, let ε be the projector on Pic(X ×X) given by the rule

ε(Z) = Z − i1,∗π1,∗(Z)− i2,∗π2,∗(Z),
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where
π1, π2 : X ×X −→ X, π1(P1, P2) = P1, π2(P1, P2) = P2

are the natural projections onto the first and second factors, and

i1, i2 : X ↪→ X ×X, i1(P ) = (P, o), i2(P ) = (o, P )

are the natural inclusions of X into the horizontal and vertical copies of X in X ×X over the
point o.
The idempotent ε annihilates the factorsH2(X)⊗H0(X) andH0(X)⊗H2(X) in the Künneth
decomposition of H2(X2) (for any of the cohomology theories, Betti, de Rham or étale). For
any Z ∈ Pic(X ×X)(F ) we can thus define

(44) ξZ := cl(εZ) ∈ Hdg(H1
B(X,Z)⊗2).

In this way, we can assign to the cycle Z ⊂ X ×X a point

κdR(ξZ) ∈ Jac(X)(C),

The goal of this section is to associate to any Z ∈ Pic(X ×X)(F ) a point

PZ ∈ Jac(X)(F ),

in such a way that for all complex embeddings ι : F −→ C,

κdR(ξZ) = PZ ×ι Spec(C).

Let us describe a geometric recipe for constructing the desired point PZ . Given a smooth
projective variety V/F and a positive integer c ≥ 1, let

CHc(V ) = Zc(V )/ ∼rat

denote the abelian group of rational equivalence classes of cycles of codimension c in V . We
regard it as a functor from the category of field extensions of F in C to the category of abelian
groups, given by the rule

K/F 7→ CHc(V )(K) := {[Z] : Z ∈ Zc(V ), such that σZ ∼rat Z for all σ ∈ AutK(C)}.
For any integer i ≥ 1, let Xi = X be a copy of the curve X and for any subset {i1, . . . , im} ⊆
{1, . . . , n} with m ≤ n of indices in a given finite set, let Xi1,...,im denote a copy of the curve
X embedded in X1 × · · · ×Xn via the map

x 7→ (xi)
n
i=1, where xi =

{
x if i ∈ {i1, ..., im},
o otherwise.

The one-dimensional cycle Z ⊂ X1 ×X2 gives rise to the following divisor classes on X:

D12 = Z ·X12, D1 = Z ·X1, D2 = Z ·X2.

Set

(45) PZ = D12 − deg(D12) · o ∈ Pic0(X) = Jac(X).

We now give an alternate geometric description of PZ which will be used to relate this point
to iterated integrals. Let

ΠZ := Z12 ×X34 ⊂ X1 ×X2 ×X3 ×X4,
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where Z12 denotes a copy of the cycle Z embedded in X1 × X2. The class of the cycle ΠZ

belongs to CH2(X1 ×X2 ×X3 ×X4), and induces a morphism

ΠZ : CH2(X1 ×X2 ×X3) −→ CH1(X4)

by the usual rule

(46) ΠZ(∆) = π4∗(ΠZ · π∗123∆),

where

π4 : X1 ×X2 ×X3 ×X4 −→ X4, π123 : X1 ×X2 ×X3 ×X4 −→ X1 ×X2 ×X3

denote the natural projections onto the fourth and first three factors respectively.
The Gross-Kudla-Schoen modified diagonal cycle in X3 = X1 ×X2 ×X3 is defined to be

(47) ∆GKS = X123 −X23 −X13 −X12 +X1 +X2 +X3 ∈ CH2(X1 ×X2 ×X3).

Lemma 2.1. — For all Z ∈ Pic(X ×X),

PZ = ΠZ(∆GKS).

Proof. — A direct calculation using only the definition (46) shows that

ΠZ(X123) = D12,

ΠZ(X23) = D2, ΠZ(X13) = D1, ΠZ(X12) = deg(D12) · o,
ΠZ(X1) = deg(D1) · o, ΠZ(X2) = deg(D2) · o, ΠZ(X3) = 0.

The lemma follows.

Remark 2.2. — Let ∞ be any point in X (possibly equal to o). Viewing X1 × {∞} and
{∞} ×X2 as divisors in X1 ×X2, a direct calculation shows that

PX1×{∞} = P{∞}×X2
= 0.

Hence PZ = PεZ and the point PZ depends only on the Hodge class ξZ ∈ Hdg(H1
B(X)⊗2).

We will use Lemma 2.1 to derive an analytic formula for the point PZ , or rather, for its image
under the Abel-Jacobi map

AJX : CH1(X)0 −→
Ω1(X/C)∨

H1(X(C),Z)
.

This Abel-Jacobi map is defined on degree 0 divisors D by the familiar rule:

(48) AJX(D)(ω) =

∫

∂−1(D)
ω,

where ∂−1(D) is any smooth one-chain on X(C) whose boundary is D. It admits a higher
dimensional generalisation

(49) AJX3 : CH2(X3)0(C) −→ J2(X3),

where CH2(X3)0 is the Chow group of null-homologous cycles on X3, and

J2(X3) =
Fil2H3

dR(X3/C)∨

H3(X3(C),Z)
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is the intermediate Jacobian associated to H3(X3). This Abel-Jacobi map is defined by the
rule generalising (48),

(50) AJX3(∆)(ω) =

∫

∂−1(∆)
ω, ω ∈ Fil2H3

dR(X3/C).

The following lemma verifies that the Gross-Kudla-Schoen cycle ∆GKS lies in the domain of
this Abel-Jacobi map.

Lemma 2.3. — The cycle ∆GKS is null-homologous.

Proof. — The obvious method to prove this lemma is to exploit the Künneth decomposition
of the cohomology of X1 × X2 × X3, as it is done in [GrSc] for example. We give a more
detailed, direct argument, which yields a differentiable 3-chain on X1×X2×X3 having ∆GKS

as boundary. While not strictly necessary to prove Lemma 2.3, such an explicit 3-chain will
be used in subsequent calculations.
Let g be the genus of the projective curve X, and let γ1, . . . , γ2g be a collection of paths in
P(X; o) whose associated homology classes, denoted [γ1], . . . , [γ2g], form an integral basis for
H1(X(C),Z). Let γ∗1 , . . . , γ∗2g be another collection of paths, whose homology classes give rise
to the dual basis in H1(X(C),Z) relative to the intersection product. In other words, we
require that

([γi] · [γ∗j ]) = δij , for all 1 ≤ i, j ≤ 2g,

where δij is the Kronecker delta. Let ∆ denote the diagonal in X×X. Its class in H2(X×X)
is given by

cl(∆) = cl(X × {o}) + cl({o} ×X) +

2g∑

i=1

[γi]⊗ [γ∗i ],

and therefore there is a smooth 3-chain W ⊂ X ×X such that

(51) ∆ = (X × {o}) + ({o} ×X) +

2g∑

i=1

γi × γ∗i + ∂(W ).

Applying this relation to X123, viewed as the diagonal in X12 ×X3, gives

(52) X123 = X12 +X3 +

2g∑

i=1

γi(12)× γ∗i (3) + ∂(W12,3),

where
1. For {r, s} ∈ {1, 2, 3}, the regions γi(rs) or γi(r) are the paths γi diagonally embedded

in Xrs ⊂ X1 ×X2 ×X3 and in Xr respectively, and similar conventions are adopted for
the paths γ∗j .

2. The three-chain W12,3 is a copy of the region W of (51), embedded in X12 ×X3 in the
natural way.

By an analogous reasoning, we find

(53) X13 = X1 +X3 +

2g∑

i=1

γi(1)× γ∗i (3) + ∂(W13),
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and

(54) X23 = X2 +X3 +

2g∑

i=1

γi(2)× γ∗i (3) + ∂(W23),

with the obvious meaning given to W13 ⊂ X1 × {o} × X3 and to W23 ⊂ {o} × X2 × X3.
Subtracting (53) and (54) from (52), we obtain

∆GKS =

2g∑

i=1

(γi(12)− γi(1)− γi(2))× γ∗i (3) + ∂(W12,3 −W13 −W23).

But
γi(12)− γi(1)− γi(2) = ∂(Tγi(12)),

where
Tγ(12) = {(γ(r), γ(s)), 0 ≤ s ≤ r ≤ 1} ⊂ X1 ×X2

is the two-dimensional region introduced in (25). Therefore,

(55) ∆GKS = ∂

(
2g∑

i=1

Tγi(12)× γ∗i (3) +W12,3 −W13 −W23

)
,

and the result follows.

Lemma 2.4. — For all Z ∈ CH1(X ×X), and all ρ ∈ Ω1(X),

AJX(PZ)(ρ) = AJX3(∆GKS)(ξZ(12) ∧ ρ(3)),

where the classes

ξZ(12) ∈ Fil1H2
dR(X1 ×X2/C), ρ(3) ∈ Ω1(X3) = Fil1H1

dR(X3/C)

are obtained in the natural way from the classes ξ and ρ respectively (so that, in particular,
ξZ(12) ∧ ρ(3) belongs to Fil2H3

dR(X3/C)).

Proof. — By Lemma 2.1 and the functoriality properties of the Abel-Jacobi map under cor-
respondences,

AJX(PZ)(ρ) = AJX(ΠZ∆GKS)(ρ) = AJX3(∆GKS)(Π∗Zρ),

where
Π∗Z : H1

dR(X4/C) −→ H3
dR(X1 ×X2 ×X3/C)

is the morphism induced on de Rham cohomology by the correspondence ΠZ = Z12×X34. A
direct calculation reveals that

Π∗Z(ρ) = cl(Z) ∧ ρ,
and therefore

AJX(PZ)(ρ) = AJX3(∆GKS)(cl(Z) ∧ ρ).

By a similar reasoning,

AJX(PεZ)(ρ) = AJX3(∆GKS)(ξZ ∧ ρ),

and the result follows from Remark 2.2.

For the next proposition, we adopt the same notations that were introduced in the statement
of Proposition 1.4 and the discussion immediately preceding it.
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Theorem 2.5. — For all ξ ∈ Hdg(H1
B(X)⊗2) and all ρ ∈ Ω1(X/C),

AJX3(∆GKS)(ξ(12) ∧ ρ(3)) =

∫

γρ




t∑

j=1

ωj · ηj − α∞


+mξ

∫ ∞

o
ρ.

Proof. — By (55), and the definition of the Abel-Jacobi map,

(56) AJ(∆GKS)(ξ ∧ ρ) =

2g∑

i=1

∫

Tγi (12)×γ∗i (3)
ξ̃ ∧ ρ +

∫

W12,3

ξ̃ ∧ ρ,

where we have used the fact that ξ̃ ∧ ρ vanishes identically on W13 ⊂ X1 × {o} ×X3 and on
W23 ⊂ {o} ×X2 ×X3 to dispense with the integrals over these two regions. The first term
appearing in the right hand side of (56) is equal to

2g∑

i=1

∫

Tγi (12)×γ∗i (3)
ξ̃ ∧ ρ =

2g∑

i=1

∫

Tγi (12)
ξ̃

∫

γ∗i (3)
ρ.

This last expression can also be viewed as the integral of the two-form ξ̃ over the 2-chain
2g∑

i=1

(∫

γ∗i

ρ

)
Tγi = Tγρ ,

where

Tγρ =

2g∑

i=1

λiTγi , with [γρ] =
∑

λi[γi].

By the formula for the iterated integral that is given in (25), it follows that

(57)
2g∑

i=1

∫

Tγi (12)×γ∗i (3)
ξ̃ ∧ ρ =

∫

γρ

t∑

j=1

ωj · ηj .

To deal with the second term in the right-hand side of (56), we choose an auxiliary point ∞
which is not in the image of any of the paths γi and γ∗i , and such that W12,3 ∩ ((∞,∞)×X3)
is a smooth one-chain. By Lemma 1.2,

(58)
∫

W12,3

ξ̃ ∧ ρ =

∫

∂W12,3

α∞ ∧ ρ+mξ

∫

W12,3∩((∞,∞)×X3)
ρ.

Recall that

∂W12,3 = X123 −X12 −X3 −
2g∑

i=1

γi(12)× γ∗i (3),

and note that the differential α∞ ∧ ρ vanishes identically on X123, X12 and X3 since it is of
type (2, 0). Therefore, by a similar argument as above,

(59)
∫

∂W12,3

α∞ ∧ ρ = −
2g∑

i=1

∫

γi

α∞

∫

γ∗i

ρ = −
∫

γρ

α∞.
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Furthermore, the region of integration that appears in the second term of (58) has boundary

∂(W12,3 ∩ ((∞,∞)×X3)) =

(
X123 −X12 −X3 −

2g∑

i=1

γi × γ∗i

)
∩ ((∞,∞)×X3)

= (∞,∞,∞)− (∞,∞, o).
It follows that

(60) mξ

∫

W12,3∩((∞,∞)×X3)
ρ = mξ

∫ ∞

o
ρ.

Substituting (59) and (60) into (58) yields

(61)
∫

W12,3

ξ̃ ∧ ρ = −
∫

γρ

α∞ +mξ

∫ ∞

o
ρ.

Finally, using (57) and (61) to rewrite the right hand side of (56), we obtain

(62) AJ(∆GKS)(ξ ∧ ρ) =

∫

γρ

t∑

j=1

ωj · ηj −
∫

γρ

α∞ +mξ

∫ ∞

o
ρ,

as was to be shown.

Corollary 2.6. — For all Z ∈ Pic(X ×X), and all ρ ∈ Ω1(X),

AJX(PZ)(ρ) =

∫

γρ




t∑

j=1

ωj · ηj − α∞


+mξZ

∫ ∞

o
ρ,

where ξ̃Z =
∑t

i=1 ωi ⊗ ηi is a representative of ξZ := cl(εZ) and α∞ and γρ are as in the
statement of Theorem 2.5.

Proof. — This follows directly from Lemma 2.4 and Theorem 2.5.

By combining Proposition 1.4 and Corollary 2.6 we obtain the sought-for relation between
the extension classes κdR(ξ) arising from π1(X; o) and the points PZ .

Theorem 2.7. — For all Z ∈ Pic(X ×X), κdR(ξZ) = PZ in Jac(X)(C).

In light of Lemma 2.1, this is Theorem 1. As anticipated in the introduction, we can recover
from it a result that is equivalent to the one obtained by Kaenders in [Ka]:

Corollary 2.8. — Let X12 ∈ Pic(X ×X) be the class of the diagonal divisor in X ×X up
to rational equivalence. Then κdR(ξX12) = (2g − 2)o −K in Jac(X)(C), where K ∈ Pic(X)
is the canonical divisor on X.

Proof. — By Theorem 2.7 and (45), κdR(ξX12) = PX12 = X12 · X12 − deg(X12 · X12)o. An
easy application of the Riemann-Roch theorem and the adjunction formula shows that the
self-intersection of the diagonal in the square of a curve is −K. The corollary follows.
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3. Modular and Shimura curves

In this last section we specialize to the setting where X is a Shimura curve over a totally real
field.
Let F be a totally real number field of degree d, and RF its ring of integers. Fix a classical
Hilbert modular newform g of parallel weight 2, level Ng and trivial nebentypus. We refer
the reader to [Zh] for the precise definitions of Shimura curves, Hecke correspondences and
L-functions that we use throughout this section.
Choose a square-free ideal D = ℘1 · ... · ℘r || Ng of RF dividing it exactly (by which we mean
that D and Ng/D are relatively prime). Assume that r + d is odd. (If d is odd, a possible
choice for D is thus D = RF ).
Choose an ideal N of RF such that Ng | N and D || N , and put M = N/D. Let XD

0 (M)
denote the Shimura curve associated with the Eichler order of levelM in a quaternion algebra
ramified precisely at D and at all archimedean places of F but one, and write JD0 (M) for its
jacobian.
Let T := 〈T℘, ℘ - N〉Q be the Hecke algebra generated by the set of Hecke operators at primes
℘ not dividing N , acting on JD0 (M). This Q-algebra is isomorphic to a free product of number
fields, namely

(63) T '
∏

D||n|N

∏

h

Kh

where for each ideal n such that D || n and n | N , h runs through a set of representatives
for the orbits of Gal (Q̄/Q) acting on the set of Hilbert newforms of level n, and Kh is the
number field generated by the eigenvalues of T acting on h. In particular T contains a copy
of Kg; write Tg ∈ T for the corresponding idempotent in the decomposition (63).
If M is prime then in fact T ' EndJD0 (M). But as soon as M is a composite ideal, the
endomorphism algebra of JD0 (M) is larger, namely a product of matrix algebras:

(64) End0(JD0 (M)) := End(JD0 (M))⊗Q '
∏

D||n|N

∏

h

Mσ(N/n)(Kh),

where σ(N/n) is the number of ideal dividing N/n. Its center is thus T.
Note that End0(JD0 (M))[g] := Tg · End0(JD0 (M)) ' Mσ(N/Ng)(Kg), the center of which is
T[g] := Tg · T.
Since

(65) End(JD0 (M)) ' Pic(XD
0 (M)×XD

0 (M))

π∗1(Pic(XD
0 (M)) + π∗2(Pic(XD

0 (M))

by [LaBi, Theorem 11.5.1], we can define

(66) Hg := {ξT , T ∈ T[g]} ⊆ Hdg(H1(XD
0 (M))⊗2 ⊗Q)

to be the module of Hodge classes associated with g.

Definition 3.1. — P g := κdR(Hg) ⊆ Q⊗ J0
D(M)(F ).

The Hodge classes in Hg can be written down explicitly. For instance, a representative for
ξg := ξTg ∈ Hg is given as follows: let {ωg,i} be a basis of the g-isotypical component of
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the module of regular differential forms on XD
0 (M) and complete it to a symplectic basis

{ωg,i, ηg,i} of H1
dR(XD

0 (M))[g]. Then

(67) ξ̃g =
∑

i

ωg,i ⊗ ηg,i − ηg,i ⊗ ωg,i

is a differential form on XD
0 (M) ×XD

0 (M), rational over F , which represents ξg. The point
Pg := κdR(ξg) ∈ P g can then be computed as the tuple of periods of the iterated integral
associated with (67); similar formulas can be obtained of course for a complete basis of P g:
see [DDLR] for explicit calculations.
Recall that κdR(ξ) depends on the choice of the base point o. If we are dealing with the
classical elliptic modular curve associated to the split algebra M2(Q), we can take o to be the
cusp at infinity, which is a rational point on X0(M).
If XD

0 (M) is the Shimura curve attached to an order in a division quaternion algebra over
an arbitrary totally real number field F , then XD

0 (M)(F ) may be empty: see e.g. [Sh75,
Theorem 5.1], which establishes criteria for the existence of real points on these curves and
shows in particular that XD

0 (M)(R) = ∅ when F = Q. Instead of fixing a single point o
rational over F , one proceeds as in [GrKu, §13], [YZZ] and [Zh] by rather considering a
canonical Gal (F̄ /F )-invariant divisor class o =

∑
aioi of degree 1 with rational coefficients

on XD
0 (M), which in [Zh] is called the Hodge class of XD

0 (M). In this case, by κdR(ξ) we
mean

∑
aiκdR(ξ; oi).

Choose now another normalised Hilbert newform f of weight 2, level Nf | N and trivial
nebentypus, different from g. The triple product L-function L(g ⊗ g ⊗ f, s), which was first
studied by Garrett in [Gar], is the L-function associated with the tensor product Vg⊗Vg⊗Vf ,
where Vg and Vf denote the two-dimensional `-adic representations of GF := Gal (F̄ /F )
attached to g and f respectively. It is explicitly given by an Euler product with Euler factors
of degree 8 at the primes ℘ - N , and factors as

(68) L(g ⊗ g ⊗ f, s) = L(f, s− 1)L(Sym2 g ⊗ f, s),
mirroring the decomposition

Vg ⊗ Vg = Q`(−1)⊕ Sym2 Vg

of `-adic representations of GF .
Thanks to the work of Garrett, Piatetski-Shapiro–Rallis, Harris–Kudla, Prasad and others
(cf. [Gar],[Pr] and the references therein), it is known that L(g ⊗ g ⊗ f, s) admits analytic
continuation to C and satisfies a functional equation relating its values at s and 4 − s. The
sign ε in this functional equation is expressed as a product

(69) ε = (−1)d
∏

℘|gcd(Ng ,Nf )

ε℘

of local signs ε℘ ∈ {±1}; for primes ℘ dividing exactly both Ng and Nf ,

ε℘ = −a℘(f)

is the negative of the eigenvalue of the Hecke operator T℘ acting on f (cf. [GrKu], [Pr]), and
in particular does not depend on the choice of g. When ℘2 | Ng or Nf , the value of ε℘ depends
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on the local behavior of the automorphic representations associated with g and f ; see [Pr]
for more details. Assume that

(70) ε(f) = −1, ε(Sym2(g)⊗ f) = +1.

Then ε = −1 and we can set D = Dg;f =
∏
ε℘=−1 ℘; note that D is the product of

r = ]{ε℘ = −1} distinct prime ideals, and that r+ d is odd by (69). Assume that D || N and
put as above M = Mg;f = N/D.
The quotient of JD0 (M) associated to f by the theory of Eichler-Shimura is an abelian vari-
ety which is well-defined only up to F -isogenies, and is isogenous to the power Aσ(N/Nf )

f of
an F -simple abelian variety Af . This means that there are σ(N/Nf ) F -linear independent
modular parametrizations

πdf : JD0 (M) −→ Af

of Af , one for each divisor d of N/Nf .

Definition 3.2. — Let

(71) P g,f :=
∑

d| N
Nf

πdf (P g) ⊆ Af (F )⊗Q

be the subspace of the Mordell-Weil group (tensored with Q) of Af associated to the pair of
modular forms (g, f).

In particular, if we let πf : J0
D(M)→ JD0 (Nf/D)→ Af denote the map which factors through

the natural projection of JD0 (M) onto JD0 (N/Nf ), the point

(72) Pg,f = πf (Pg)

belongs to this space, and can be explicitly computed by means of (67).
Formula (72), combined with Theorem 2.5, provides a suggestive construction of a point on
a modular abelian variety by means of iterated integrals. Theorem 1 can be used to show
that, in the particular case that g has rational fourier coefficients, Pg,f is essentially equal to a
point that was first introduced by S. Zhang by a different method, whose definition we recall
here for the convenience of the reader:

Definition 3.3. — [S. Zhang] Assume g has fourier coefficients in Z. Let Eg/F be the elliptic
curve corresponding to g by the Eichler-Shimura construction and πg : XD

0 (M) −→ Eg be a
modular parametrization of curves. Letting O ∈ Eg(F ) denote the identity element, define

PZhg,f := πf,∗π
∗
g(O).

We refer the reader to the forthcoming Ph.D thesis [Daub] of M. Daub for more details
concerning the connection between (72) and Definition 3.3. See also W. Stein’s appendix to
[DDLR] for the effective numerical computation of the points PZhg,f in the classical setting of
elliptic modular curves over F = Q. Note that Definition 3.3 does not readily generalize to
the case in which the fourier coefficients of g are not integral, as the resulting modular abelian
variety has dimension greater than 1. On the other hand, formula (72) is available in that
broader setting: see again [DDLR] for explicit examples.
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The algebra T of Hecke operators acts by correspondences on CH1(XD
0 (M)) ⊗ Q and gives

rise via (65) to a linear action of T ⊗ T ⊗ T on CH2(XD
0 (M)3) ⊗ Q and on its subspace

CH2(XD
0 (M)3)0 ⊗Q of null-homologous cycles.

Definition 3.4. — Set

MW(g, f) := Hom
(
T[g]⊗ T[g]⊗ T[f ],CH2(XD

0 (M)3)0 ⊗Q
)

and let yg,f ∈ MW(g, f) be the homomorphism defined by

yg,f (T1 ⊗ T2 ⊗ T3) := (T1 ⊗ T2 ⊗ T3)(∆GKS).

By working with a suitable integral model of XD
0 (M)3, B. Gross and C. Schoen have shown

in [GrSc] that Beilinson-Bloch’s [Bl84] height pairing 〈 , 〉BB on CH2(XD
0 (M)3)0 gives rise

to a well-defined pairing

〈 , 〉BB : MW(g, f)×MW(g, f) −→ Hom((T[g]⊗ T[g]⊗ T[f ])⊗2,C),

independently of any choices; see also [YZZ, §1.3].
X. Yuan, S. Zhang and W. Zhang have recently proved in [YZZ] the following formula, which
was conjectured by B. Gross and S. Kudla in [GrKu, Conjecture 13.2]:

Theorem 3.5. — [YZZ, Theorem 1.3.1, Corollary 1.4.1 (1)] Assume as in (70) that
ε(f) = −1 and ε(Sym2(g)⊗ f) = +1. Then

〈yg,f , yg,f 〉BB = L′(f, 1) ·
∏

σ:Kg→C
L(gσ ⊗ gσ ⊗ f, 2) · λ

for some non-zero homomorphism λ ∈ Hom((T[g]⊗ T[g]⊗ T[f ])⊗2,C).

Remark 3.6. — Note the different language in which the results are presented in [YZZ]
in contrast to [GrSc, §8] and here: while the former exploits the language of automorphic
representations, the latter adopt the more classical parlance of modular forms and Hecke
operators, working with Shimura curves of fixed finite level.

The combination of Theorem 1 together with Theorem 3.5 yields the following result.

Theorem 3.7. — Assume as in (70) that ε(f) = −1 and ε(Sym2(g) ⊗ f) = +1. Then the
space P g,f ⊆ Af (F )⊗Q has positive rank if and only if

(73) L′(f, 1) 6= 0, and L(Sym2(gσ)⊗ f, 2) 6= 0 for all σ : Kg → C.

Proof. — The automorphism τ : XD
0 (M)3 → XD

0 (M)3, (x1, x2, x3) 7→ (x2, x1, x3) gives rise
to an involution τ∗ on CH2(XD

0 (M)3)0⊗Q and on J2(XD
0 (M)3) which preserves the (g, g, f)-

isotypical components. By [YZZ, Corollary 1.4.1 (1)], the homomorphism yg,f is invariant
under the action of τ .
Hence, combined with Theorem 3.5, condition (73) holds if and only if there exist correspon-
dences Tg,i ∈ T[g], Tf,i ∈ T[f ] such that,

〈∆[ğ, ğ, f̆ ],∆[ğ, ğ, f̆ ]〉BB 6= 0,

where we set
∆[ğ, ğ, f̆ ] :=

∑

i

Tg,i ⊗ Tg,i ⊗ Tf,i(∆GKS).
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Lemma 2.1 combined with Lemma 3.8 below show that∑

i

ΠX12 · (Tg,i ⊗ Tg,i ⊗ 1)(∆GKS) =
∑

i

ΠTg,i(∆GKS).

Since T ◦ΠX12 = ΠX12(1⊗ 1⊗ T ) for any T ∈ CH1(XD
0 (M)2), we obtain that

(74)
∑

Tf,iΠTg,i(∆GKS) = ΠX12(∆[ğ, ğ, f̆ ]).

For each i, Tf,i is a self-correspondence on XD
0 (M) that gives rise to an endomorphism πf,i

of Jac(XD
0 (M)) which is a linear combination of the projections πdf , d | N/Nf . Set

P [ğ, ğ, f̆ ] :=
∑

i

πf,iΠTg,i(∆GKS)] ∈ Af

and write 〈 , 〉NT for the Néron-Tate canonical height pairing on an abelian variety. By [Bl84,
p. 120-121, A.2], the pairing 〈 , 〉BB is functorial with respect to correspondences, and from
(74) it follows that

〈∆[ğ, ğ, f̆ ],∆[ğ, ğ, f̆ ]〉BB ·
= 〈P [ğ, ğ, f̆ ], P [ğ, ğ, f̆ ]〉NT ,

up to a positive constant.
Note that, by (71), P [ğ, ğ, f̆ ] is a point in P g,f . By Theorem 1 we have P [ğ, ğ, f̆ ] =∑

i πf,iκdR(ξTg,i). The corollary follows.

Lemma 3.8. — Given a self-correspondence Z ∈ CH1(XD
0 (M)2) of XD

0 (M), it holds that

ΠX12 · (Z ⊗ Z ⊗ 1)(∆GKS) = Z ·X12 − deg(Z ·X12)o.

Proof. — By applying (46), it directly follows that ΠX12 · (Z ⊗ Z ⊗ 1)(X123) = Z · X12 ∈
Jac(XD

0 (M)). Similarly, when one applies (46) to the six other components Xj , Xjk of
∆GKS one obtains that, for all j, k = 1, 2, 3, j 6= k, the divisors ΠX12 · (Z ⊗ Z ⊗ 1)(Xj) and
ΠX12 · (Z ⊗Z ⊗ 1)(Xjk) are all linearly equivalent to some multiple of the degree 1 divisor o.
Since ∆GKS is null-homologous, ΠX12 · (Z ⊗ Z ⊗ 1)(∆GKS) is a divisor class on XD

0 (M) of
degree 0. The lemma follows.

In light of Theorem 1, Theorem 3.7 can be viewed to some extent as an analogue for mod-
ular and Shimura curves of the Deligne-Wojtkowiak calculations [De] in which values of the
Riemann zeta-function ζ(s) at odd positive integers emerge from the study of the mixed Tate
motives arising in the pro-unipotent fundamental group of P1−{0, 1,∞}. It was motivated by
the authors’ study of the Chow-Heegner points attached to diagonal cycles in triple products
of Kuga-Sato-varieties, which is detailed more systematically in [DR1]. Note however that
while [De] obtains formulae for the values of ζ(s) at certain non-critical points, Theorem 3.7
applies only to the critical value of the L-function L(g ⊗ g ⊗ f, s) at s = 2.
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