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INTRODUCTION

In a previous work [BDP1], the authors introduced a distinguished collection of null-homologous,
co-dimension (r+1) cycles on the (2r+1)-dimensional variety

X, =W, x A",

where W, is the Kuga-Sato variety obtained from the r-fold fiber power of the universal elliptic curve
over a modular curve C', and A is a fixed elliptic curve with complex multiplication. Referred to as
generalised Heegner cycles in [BDP1] because of their close affinity with the Heegner cycles on Kuga-
Sato varieties studied in [Sch], [Nek| and [Zha], they are indexed by isogenies ¢ : A—A’. The cycle
A, labeled by ¢ is supported on the fiber (A")" x A" above a point of C' attached to A’ , and is equal,
roughly speaking, to the r-fold self-product of the graph of .

One may consider the images of the A, under the p-adic Abel-Jacobi map

(1) AJ, : CH(X,)o(Cp)—J (X, /C,) :== FiI'Tt H3H (X, /C,)Y

whose domain is the Chow group of null-homologous codimension (r+1) cycles on X, over C, := Qp

and whose target is the C,-linear dual of the middle step in the de Rham cohomology H it (X,./C,)
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relative to the Hodge filtration. The main result of [BDP1] is a formula relating AJ,(A,) to special
values of certain p-adic Rankin L-series. A key ingredient in this formula, made explicit in Section 3
of loc.cit., is a description of the relevant p-adic Abel-Jacobi images in terms of p-adic integration of
higher weight modular forms, a la Coleman.

The goal of the present article is to give an analogous description of the image of the cycles A,
under the complex Abel-Jacobi map

Fil'™' H3LH (X, /C)Y
Im H2r+1(Xr(C)7 Z) ’

where J"™(X,/C) is the (r+1) Griffiths intermediate Jacobian. This map is defined in terms of
complex integration of differential forms attached to classes in Hig' (X, /C). One of the main results
of this work is Theorem 8.2 of Section 8, which gives a formula for AJc(A,) in terms of explicit line
integrals of modular forms on the complex upper half-plane. An application of this formula is given
in Section 9, where it is shown that the Griffiths group of X, over Q has infinite rank. A second
motivation for publishing a detailed proof of Theorem 8.2 is that this result forms the basis for the
numerical calculations of Chow-Heegner points carried out in [BDP2, §3]. It may also be useful in
further numerical explorations of generalised Heegner cycles—for instance, in extending the calculations
of [Hop] beyond the more “traditional” setting of Heegner cycles on Kuga-Sato varieties.

(2) Alc: CHrJrl(XT)O(C)_)JT-H(XT/C) —

1. GENERALISED HEEGNER CYCLES

We begin by briefly recalling the definition of generalised Heegner cycles, following the notations of
[BDP1, §2].
Fix a level N > 5 and let I' = I";(N) be the standard congruence subgroup of level N:

I['(N) = {(CCL 2) € SLy(Z) suchthata—1,d—1, c=0 (mod N)}

Let C° := Yj(N) and C := X;(N) denote the usual (affine and projective, respectively) modular
curves of level N, and write W, for the r-th Kuga-Sato variety over X;(NN) as described for instance
in Section 2.1 and the appendix of [BDP1].

Let K be a quadratic imaginary field of dicriminant —dg, let Ok be its ring of integers, and let
H denote the Hilbert class field of K. Choose once and for all a complex embedding K —C, and
let A be a fixed elliptic curve defined over H satisfying Endy(A) = Ok. The generalised Heegner
cycles of [BDP1] are an infinite collection of codimension (r+ 1) cycles on the smooth projective
(2r+1)-dimensional variety

X, =W, x A"
To define them precisely, assume further that N is the norm of an ideal 0N for which O /N ~ Z/NZ
and let t4 € A[M] be a choice of M-torsion point on A. Following the moduli description of X;(V),
the pair (A,t4) corresponds to a complex point on C' (defined, in fact, over an abelian extension of
K, relative to any of the standard models of C'= X; (V) as a curve over Q). For obvious reasons, the
datum of the point t4 on A of order N is sometimes referred to as a I'; (N )-structure on A.

Consider the set of pairs (¢, A’), where ¢ : A— A’ is an isogeny of A defined over K. Two pairs
(o1, A}) and (g, AS) are said to be isomorphic if there is a K-isomorphism ¢ : A} — A} satisfying
Lp1 = po. Let

Isog(A) := {Isomorphism classes of pairs (¢, A")}.

There is a natural bijection between this set and the set of finite subgroups of A(H). The absolute
Galois group Gy = Gal(H/H) acts naturally on Isog(A) by acting on the corresponding subgroups
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and a pair (¢, A’) admits a representative defined over a field I C H if it is fixed by the subgroup
Gr C Gpg.

The generalised Heegner cycles are naturally indexed by the subset Isog™(A) of Isog(A) consisting
of pairs (¢, A"), where ¢ is an isogeny whose kernel intersects A[D1] trivially. An element (¢, A") €
Isog™(A) determines a point Py on C attached to the pair (A’,t4 := p(t4)), and an embedding

Lar . (A/)T—>Wr
of (A")" as the fiber of W, above the point Pas relative to the natural projection W,—C. Given
(p, A') € Isog™(A), let T, be the codimension (r+1) cycle on X, defined by letting Graph(p) C A x A’
be the graph of ¢, and setting
(3) T, := Graph(p)" C (A x A)" = (A)" x A" C W, x A",
where the last inclusion is induced from the pair (z4/,1d").

When r = 0, the cycle 7, is just the CM point on the modular curve C attached to the pair (A’, t4/).
The generalised Heegner cycle A, attached to ¢ is then obtained by setting
(4) A, =T, — 00,

where oo is the standard cusp on X;(N) (although any fixed choice will do). This modification has
the effect of making the cycle A, homologically trivial.

For general r, we obtain a homologically trivial cycle from 7, by setting
(5) A, = exTy,,

where e€x is an idempotent in the ring of algebraic correspondences from X, to itself, which is defined
as a product

(6) €x = €wen

of two idempotents in the ring of correspondences on W, and A" respectively. We now briefly recall
the definition of the projectors ey and €4.

The projector € 4. Let S, denote the symmetric group on r letters. Multiplication by —1 on A, combined
with the natural permutation action of S, on A", gives rise to an action of the wreath product

(7) Er = ()" xS,

on A". Let j : Z,—pus be the homomorphism which is the identity on py and the sign character on
S, and let

(8) €4 = !

2ryl

> j(o)o € Q[Aut(A")]

oEE,

denote the associated idempotent in the rational group ring of Aut(A").

The projector ey,. Translation by the sections of order N gives rise to an action of (Z/NZ)" on W¥ (see
[BDP1, §2.1]) which extends to W, by the canonical nature of the desingularisation. Let o, denote
the automorphism of W, associated to a € (Z/NZ)", and let

m_ 1
(9) W=3 2. O

a€(Z/NZ)"

denote the corresponding idempotent in the rational group ring of (Z/NZ)". Similarly, the group =,
of (7) can be viewed as a subgroup of Aut(W,./C) acting on the fibers of the natural projection from

W, to C. Let 6%2/) be the idempotent in the group ring Z[1/2r!][Aut(W,/C)] which is defined by the
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same formula as in (8) with A" replaced by W,./C. The idempotents e%,) and e%) commute, and we

define €y as the product

(10) e = eDell)

in the ring of rational correspondences on W,.

Since the correspondence ey is compatible with the projection 7, : X, —C', the generalised Heegner
cycle A, is supported on the fiber 7, '(Py/) of 7. above Pa. As in the case where r = 0, it is also
homologically trivial. This follows from the fact that the image of A, under the cycle class map
belongs to ex Hip (X, /C), which is zero by [BDP1, Prop. 2.4]. Section 3 below gives a more explicit
description of a chain of real dimension 2r + 1 in X, (C) having A, as boundary, which will be used
in subsequent calculations.

2. MODULAR FORMS AND DE RHAM COHOMOLOGY

Let 7 : E—C" be the universal elliptic curve with level N structure over C?, and let w := 7,Q} Jc0

be the coherent sheaf of relative differentials on £/C°, extended to a coherent sheaf on C' in the
standard way (cf. [BDP1, §1.1]). Let w” be the r-th tensor power of this line bundle. The sheaf w? is
related to the sheaf Q} (log cusps) of regular differentials on C' with logarithmic poles at the cusps by
the Kodaira-Spencer isomorphism

(11) o w? = Q(log cusps),

as described for instance in [BDP1, §1.1].

A (holomorphic) modular form of weight k = r+2 is a global section of the sheaf w*, or-equivalently,
by (11)-of w" ® Q% (log cusps) over C. The global sections of w” ® QY are called cusp forms. Let My(T)
and Si(I") denote the complex vector spaces of modular forms and cusp forms on I', respectively.

The sheaf w is a subsheaf of the relative de Rham cohomology sheaf on C' defined by taking the
relative hypercohomology of the complex of sheaves

L1 :=R'7,(0 = O — Qé/co —0),

and extending to C following the prescription given in [BDP1, §1.1]. The Hodge filtration gives rise
to an exact sequence of coherent sheaves over C'

(12) 0—sw—sL—w ' —0.

The vector bundle £, is also equipped with the canonical integrable Gauss-Manin connection
(13) V: Li— Ly @ Qg (log cusps),

and Poincaré duality on the fibres of £; gives rise to a canonical pairing

(14) (,): L1 xL;—0Oc¢.

Let £, := Sym" £; denote the r-th symmetric power of £;. The natural inclusion w"— L, gives rise
to inclusions

(15) SrpalI1) = HO(C,w" @ QL) < HO(C, £, 0 QL).
The self-duality
(16) (,): L, x L,—O¢
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induced by (14) is given by the rule
1
(7) (or0ew o3 = 35 3 )+ s )

We will also have use for further coherent sheaves of Oc-modules arising in the cohomology of the
fibers for the natural projection X,—C|

(18) ﬁr,r = ﬁr & Symr HéR(/D
Note that £, , is also equipped with the self-duality
(19) < , > : ,CT’T X ,CT’T—>OC

arising from (17), which is discussed in more details in [BDP1, §2.2].

As explained in [BDP1, §1.1], all the notions introduced so far in this section are purely algebraic
and make sense over an arbitrary field over which the modular curve C' can be defined. In the present
note we are interested solely in their complex incarnations. The set C'(C) of complex points of C is a
compact Riemann surface, and the analytic map

1
pr: H—C°(C), pr(7) == (C/<1,7>, N)
identifies C°(C) with the quotient I'\H, where we recall that I' = T';(N). The coherent sheaf L, gives
rise to an analytic sheaf £2" on the Riemann surface C'(C); let £2" := pr* £2" denote its pullback to

H.
Recall the elliptic fibration 7 : £—C°, and let

L? .= R'n,Z,  LP:=Sym"L?,
be the locally constant sheaves of Z-modules whose fibers at z € C°(C) are identified with the Betti
cohomology H5(E,,Z) and Sym” HL(E,,Z) respectively. The local system
(20) L, :=LF ®zC

is identified with the sheaf of horizontal sections of (£ V) over C°(C). (Cf. [Del], thm. 2.17.)
Likewise, let

(21) L,, =L, ®Sym" Hiz(A/C)

denote the sheaf of locally constant sections (again, for the complex topology on C°(C)) of the sheaf
L.

A modular form w; € M (I') gives rise to a holomorphic function on the upper half plane H by the
rule
(22) wi (1) = f(7)(2midw) ? = f(7)(2midw)” @ (2midr),

where w is the standard complex coordinate on the elliptic curve C/(1,7). This function obeys the
familiar transformation rule

(23) ¥ (“T+b) = (cr +d)*f(r),  forall ( . Z > e T1(N),

ct +d

and the modular form wy is completely determined by the associated function f(7).
The Hodge filtration on Hji (C/(1, 7)) admits a canonical, functorial (but not holomorphic) splitting

(24) Hiz(C/(1,7)) := Cdw & Cdw,
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called the Hodge decomposition. In terms of the coordinates 7, dw, and dw, one has

T—T

dw — dw
(25) Vdw = (M) dr, o((2midw)?) = 2midr.
(See [BDP1, §1.2] for the details of these calculations.)

3. HOMOLOGICAL TRIVIALITY

All Chow groups will henceforth be taken with rational coefficients, so that they consist of Q-linear
combinations of cycles modulo rational equivalence.

The goal of this section is to express the generalised Heegner cycles A, as the boundaries of explicit
(2r 4 1)-dimensional topological chains in X?(C). Such a calculation will be useful in calculating the
images of these cycles under the complex Abel-Jacobi map.

Let W2 := W, xc CY and X? = X, X C? denote the complements in W, and X, respectively of
the fibers above the cusps of C. Let W, be the r-fold product of the universal elliptic curve over the
upper half-plane H. It is isomorphic as an analytic variety to the quotient Z?"\(C" x H), where Z*"
acts on C" x ‘H by the rule

(26) (my,n1,. .. ,mp,ne)(wy, .. we, 7) = (w1 +my + 7, ..., W + My + 0T, T).

Finally, let

X, =W, x A"(C).
It follows from these definitions that

WY(C)=T\W,,  X)(C)=T\X,,
where I acts on W, by the rule

a b w1 w, a7 +b
2 W, T) = ———, , ,
(27) (c d)(wl’ Wy, T) (m’—i—d cr +d c7'+d)
and acts trivially on A"(C). Write pr for the natural T'-covering maps X,—X?(C) and H—C°(C),
and let 7, be the natural fibering 7, : X,—H. These maps fit into the cartesian diagram

H—>C9(C).

Given (¢, A') € Isog™(A), set ' := ¢(t4), so that o : (A,t,)—(A',t') is an isogeny of elliptic
curves with I'-level structure, in the obvious sense. Let P be the point of C°(C) associated to the
pair (A’,t'). The main result of this section, which directly implies the homological triviality of A, is
the following;:

Proposition 3.1. Assume r > 0. Then there exists a topological cycle Av on X, satisfying

(1) The pushforward pr,(A,) satisfies
pr*(As&) = Acp + aga

where & is a topological 2r + 1-chain supported on 71 (Py).
(2) The cycle A, is homologically trivial on X,.
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Proof. Choose a point 74 € H such that pr(r4) = Pa. Since pr induces an isomorphism between
7, (rar) and 7' (Py), the choice of 74 determines cycles 73 and A% on X, supported on 7, (74/)
and satisfying

(28) pr, (TLE,) =7, pr*(AED) =A,.

These cycles need not be homologically trivial on X,. In fact, since H is contractible, the inclusion

iry o 7 (Tar)— X,
induces an isomorphism
(29) iyt Ho (77 (740), Q) = Har( X, Q),
and the classes [173] and [A%] of T and A in H,,.(X,, Q) are identified with those of 7, and A, in
Hyr (A" % A)"(C), Q).

The fundamental group I' of C° acts naturally on HQT‘(XT, Q), and the kernel of the pushforward
map

pr, : Hzr(Xr, Q)—H(X7(C),Q)
contains the module IFHQT(XT, Q), where I is the augmentation ideal in the rational group ring QI
Note that the projector ex of (6) acts naturally on Ha,(X,,Q) and that [AL] = ex[T7] belongs to
EXH27°<XT7 Q)'
Lemma 3.2. For allr > 1,
exHa(X,,Q) = Sym” Hi(€,Q) ® Sym” H1(A(C), Q) C IrHa, (X, Q).

Proof. Since multiplication by (—1) acts as —1 on Hiz(A/F) and as 1 on Hz(A/F) and H3z(A/F),
it follows that €4 annihilates all the terms except HJg(A/F)®" in the Kiinneth decomposition

(30) Hip(AT/F) = @ HR(A/F)@--- @ H(A/F),
(i1,

(where the direct sum is taken over all r-tuples (i, ...,7,) with 0 < 4; < 2). The natural action of
S, on Hig(A/F)®" corresponds to the geometric permutation action of S, on A", twisted by the sign
character. It follows that the restriction of €4 to Hiz(A/F)®" induces the natural projection onto the
space Sym” Hjp (A/F) of symmetric tensors. A similar argument applies to the projector ey and its
action on the homology of the fibers of the natural projection X,—H. The first equality follows.
The second containment is a consequence of the fact that

(Symr Hl(ga Q) X SymT HI(A(C)7 Q)) ®Q C= Lr,ra

where L, is the local system of (21), and that the representation of I" associated to this local system is
isomorphic to a direct sum of r+1 copies of the r-th symmetric power of the standard two-dimensional
representation of I'. Each of these copies is irreducible and, since r» > 0, is non-trivial and hence has
a trivial space of I'-coinvariants. O

It now follows from Lemma 3.2 that
[Aga] = pr*([AEa]) € pr*<[FH2r(Xra Q)) =0,

and therefore A, is homologically trivial. O
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To produce the cycle ASO of Proposition 3.1 explicitly, let
t g m e

1 Au _ -_1—1Z' IR £ 4 ) B
(3 ) [ SD] ;(7‘] ) . Zla"'7Zt EHQT(XNQ)
be an expression of [AL] as an element of IrHy (X, Q). Letting Z( Z) denote any topological
2r-cycle supported on 7' (7) and determined by the class of Z € Hy,.(X,, Q) via (29), define:

t

(32) Atp = Z (Z(’}/jTA/, ZJ) — Z(TA/, Z]))

=1

It is then straightforward to check that Aw has the required properties. For example, the homological
triviality of A, follows from the fact that

t
(33) Atp = GASO, with AS@ = ZZ(TA/ — YiTAr, Zj),
j=1
where
(34) Z(TA/ — YiTA ZJ) = path(TA/ — ’ijA/) X Zj

and path(74 — 7;74/) is any continuous path on H joining 74/ to v,;74,. Note that in (34) we have
identified X, (C) with H x (C?'/Z").

Remark 3.3. Yet another approach to proving the homological triviality of A, by deforming these
cycles to the fibers supported above the cusps of the modular curve, is described in [Sch]. The approach
we have given adapts more readily to the setting of Shimura curves attached to arithmetic subgroups
of SLy(R) with compact quotient.

Remark 3.4. A decomposition as in (31) with Z,...,7Z; € Hzr(f(r, Z) is said to be integral. Such a
decomposition may not always be possible, owing to the possible presence of torsion in Hy,(X%(C), Z).
But it may be obtained after replacing [AED] by a suitable integer multiple. In the rest of this note,
when the image of A, under the complex Abel-Jacobi map is computed, it will be tacitly assumed that
the Z; do belong to this integral lattice.

4. THE COMPLEX ABEL-JACOBI MAP

The complex Abel-Jacobi map is a function from the Chow group CH"t!(X,)o(C) into a complex
torus:
Fil't! 3PN (X, /C)Y
Im H2T+1(XT‘(C)7 Z) 7

where the superscript ¥ denotes the dual of complex vector spaces, and Im Ho, 11 (X,.(C),Z) is viewed
as a sublattice of Fil"*" H2 (X, C)Y, via integration of closed differential (2r + 1)-forms against
singular integral homology classes of dimension 2r + 1. The linear functional AJc(A) is defined by
choosing a continuous integral (2r+1)-chain A* on X, (C) whose boundary 9(A¥) is equal to A, and
setting

Alc : CH™(X,)o(C)—J" (X, /C) =

(35) Alc(A)(a) = /A o for all o € Fil"™" H2H (X, /C).
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We will be solely interested in the piece of the Abel-Jacobi map that survives after applying the
projector ex defined in (6). By [BDP1, Prop. 2.4],

(36) ex Fil't' HIHY(X, /C) = Fil"t HY, (O, L,.,, V) = H(C,w" @ Q) @ Sym” Hiz (A/C).

par
This allows us to view AJg as a map
(Sr12(T) ® Sym" Hjg(A/C))"

Alc : ex CH™(X,)(C)— o :

where the lattice II,., is defined by
(37) II,, = ex(Im Ho 1 (X, (C), Z)).

5. GLOBAL PRIMITIVES

We will follow the notations that were introduced in Section 2 and in the proof of Proposition 3.1.

Let
L, := pr* (L,), ]Lr,r = pr(L,,), L, :=pr* (L), ENM = prr(L}))

denote the pullbacks via the analytic projection pr. The local systems L, and Iﬁm are trivial, i.e., they
admit a basis of global sections over H. In other words, if 6 is an element of the fiber L, ,.(7) of L,
at 7 € H, then there is a unique global horizontal section ¥ € HY(H, L,,)V=" satisfying 0V (1) = 6.

More generally, if £ is any vector bundle over C° equipped with an integrable connection and L
denotes the corresponding local system, we will write L := pr*(LL) and £ := pr*(£*"), and define global
primitives in the following way:

Definition 5.1. Let w be a global section of £ ® Qf over C°. A primitive of w is an element
F € H°(H, L) satisfying
VF = pr(w).

Such a primitive always exists, and is well-defined up to elements of the space of global horizontal
sections of £ over H.

Definition 5.2. An L-valued divisor on C'is a finite formal linear combination of the form 22:1 0;-P;
with P; € C(C) and ¢; € L(P;). The module of all such divisors is denoted Div(C,L).

One defines the notion of a L-valued divisor on H in a similar way. The analytic projection pr :
H—C?(C) induces the natural push-forward map pr, : Div(H,L)— Div(C,L).
Given G € H°(H,L,,) and D = Z;Zl 6;-1; € Div(H,L,,), the “value” of G at D is defined by the

rule:
t

[Ga D] = Z<G(Tj>7 0j>7
j=1
where the pairing ( , ) on the right is the duality on the fibers at 7; of the local system ]I:T,r induced
by the pairing of equation (19). )
For D = Z;Zl 0;-7; as above, the coefficient 6; belongs to L, ,(7;) by definition, i.e., to Sym” Hi (&;,)®

Sym" Hgg (A), where & denotes the fibre at 7; of the pull-back of £ to H by pr. Calculations similar

to those in the proof of Lemma 3.2 identify L, (7;) with ex H2 (77 '(7;)). Moreover, since H is con-

tractible, the inclusion of 7 !(7;) in X, induces a canonical isomorphism of H2g (X,.) onto H35 (77 1(7;)),

and hence a canonical identification

(38) EXHdQITK(XT) = Lr,r(Tj)'
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In view of these remarks, the degree of an ir,r—valued divisor on H can be defined by the equation

¢ ¢
deg (Z g, - 73) = Zﬁj € exHE(X,).
j=1 j=1

A similar definition could be made for L, ,-valued divisors on C°, with the degree map taking values
in exH3in(X,). Note that when r > 0, this target group is trivial by [BDP1, Prop. 2.4] and hence
every L, ,-valued divisor on C° (or on C) is of degree 0.
Given 7 € H or P € C°, let
cl, : CH"(EF x A")—L,., (1), clp: CH(Ep x A")— L, (P)

denote the (ex-components of the) cycle class maps on the associated fibers. The first map is defined
by composing the usual cycle class map with isomorphism (38). The second map is defined in terms
of the first by identifying £p with &, and L, ,.(P) with L, () if P = pr(r).

The cycle A?p that was introduced in equation (28) in the proof of Proposition 3.1 gives rise to the
LL,.,-valued divisor (which shall be denoted by the same symbol, by abuse of notation):

AEO =cl (Ai) cTA

Note that pr*(Ai,) = clp, (Ay) - Py, but that Ai) is not of degree 0. By abuse of notation, we will
identify the cycle A@ defined in equation (32) with the corresponding degree zero divisor on ‘H with

T Al

values in L, , given by
t
(39) Agﬂ = Z (Cl’YjTA/(Zj) . (/ijA’) — CITA/(Zj) : TA/).
j=1

Let wy € S,42(T") be a cusp form, viewed as an element of H°(C, £, Q). We remark that given o €
Sym” Hjr (A/C), a primitive of wy Aa € HY(C, L,., ® QL) is given by Fy Ac, where F} is a primitive of
wy. This is because « is a horizontal section of the trivial bundle Sym” Hiz (A) = Sym” Hjz (A x C/C)
over C' that arises in the identification £,, = £, ® Sym” Hiz(A/C).

The following proposition gives an explicit formula for AJc(A,) in terms of this divisor and a
primitive of wy.

Proposition 5.3. For all f € S,,2(T") and all « € Sym” Hiz(A/C),

(40) Alc(Ay)(wp ANa) = [Fr AN, Ay]  (mod 11,.,.),
where Fy is any primitive of wy.

Remark 5.4. Both sides in (40) are to be viewed as belonging to the complex vector space (S,42(I") ®
Sym" H} (A/C))Y, the equality being up to an element of the lattice II, . in this vector space. Note also
that the right hand side of (40) depends on the choice of a degree 0 divisor Aw satisfying pr*(A¢) =A,,
but only up to an element of II,.,..

Proof of Proposition 5.3. Recall the (2r+1)-cycle A?p arising in equation (33). The definition of AJg

and Proposition 3.1, combined with Fubini’s theorem, imply the equalities

Alc(Ay)(wrANa) = / y waa:[ﬁpr*wf/\& (mod I, )
pr.(Ag)

Ay

t YiT Al
= Z/ (pr*ws A 04,92,) (mod II,,.),
]:1 TAI
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where QZ_ is the horizontal section of /jm. whose value at 74 is equal to cl, A,(Zj), and the integral is

taken over any continuous path in #H joining 74 to v,;74. (Note the independence on the choice of
paths, which follows from the fact that the expressions (pr*wy A «, 62} are holomorphic one-forms on

H.) Since QZJ_ is horizontal, it follows from the definition of the Gauss-Manin connection that
(pr*ws A a, 92} = (VF; A a, QZj) = d(Fr N a, 92}.

Hence Stokes’ theorem yields the equalities modulo II,.,
t

Ado(d)wrAa) = S ((Fylyma) Aas05) = (Fyl(ra) Aa63))

J=1
t

— > (1Fr Aavelyr (Z5) - (man)] = [Fy Aaselr, (Z) - 7]

as was to be shown. O

Remark 5.5. The expression on the right of Proposition 5.3 is independent of the choice of primitive
Fy for wy. This is because the primitive Iy A a is well-defined up to addition of global horizontal
sections of the sheaf £, , over H. If 0 is such a horizontal section, we have

0,A,] = (8, deg A,) = 0.

Note that this independence ceases to hold if Aw is replaced by AED, because the latter divisor is not
of degree 0.

6. CALCULATION OF THE PRIMITIVE

We now turn to the explicit calculation of the primitive F; that appears in Proposition 5.3. Let
p1 and p, denote the elements of H;(E.,Q) corresponding to a closed path from 0 to 1 and from 0
to T respectively along the fiber & = C/(1,7). Write n; and 7, for the associated basis of Hlz(E,),
satisfying

(41) (w,n1>:/ o, <w,777):/ v, forallwe Hi(E,).
p1 Pr

After writing w for the natural holomorphic coordinate on &, the values of (dw,§) and (dw,&) for
various classes ¢ are summarised in the following table:

| dw d mo N

(42) dw 0 —(r—7) 1 7

dw | 5=(1 —7) 0 1 7
It follows directly from this table that
(43) 2widw = Ty — )y, 2widw = Ty — Ny,
and that
(44) (dw" iy ) = 7.
It will be convenient to work with the basis for Hlz(€,) given by setting
(45) w = 2midw, n= dw

T—T7
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The class n is completely determined (relative to w) by the conditions
0,1
n S HdR(gT)7 <w77]> =1
A basis for H(H, L,) is given by the expressions win", as 0 < j < r.

Proposition 6.1. Choose a base point 79 € H, and let w,n be given by (45). The section Fy of L,

over H satisfying
o (—1)7(2ms)
Jogr =3\ — A
(). ) = B

/ oY) (0< <)

70

is a primitive of wy.

J

Proof. By definition of the Gauss-Manin connection, since the sections 77n; ’ are horizontal,

(46) d(Fy,mny ) = (VEp i) = (o wp, i 7).
By formula (22) for pr*wy, this last expression is equal to
(47) (pr*wyp, iy ) = (2mi)™H (f(r)dw” i )dr = (2mi)™ f(7)7 dr.

Combining (46) and (47) and integrating the resulting identity with respect to 7, we find (after fixing
some 7y € H) that the global section of L, over H defined by the rule

(48) (Fpoofi ) = (emiy [ f()ddz, (0<j<n)

is a global primitive of w;. The defining relation (48) implies that, for all homogenous polynomials
P(z,y) of degree r,

(Fp, Py my)) = (2mi)+ / F(2)P (2 1)d=.
After noting from (42) that

(=1 — 71y (z — Ty)"?
(QM.(T_%))T,]-(w y) (@ —T1y)",

w7 =Q(n.,m), with Q(z,y) =

we obtain o
(Fp,win™™) = Ly (@miy / (z = 7)Y (2= 7)" 7 f(2)dz,

@rilr — 1) Jr

as was to be shown. O

Remark 6.2 (Relation with the Shimura-Maass operator). Recall the Shimura-Maass differential
operator 9, defined by

(49) 080 i= 5 (4 + 2 ) 70,

21 T—T

which maps real analytic modular forms of weight r to real analytic modular forms of weight r 4 2.
The real analytic functions G; on ‘H defined by the rule
(—1)7 (2mi)™*!

Gylr) = (Fy(r). ) = S m

JACEE IR FOTE

70

satisfy
(50) 67”G0(7—) = f(T)7 5r—2jGj(7_) = jGj_l(T), for all 1 < j <r.
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For example, the integrand in the expression defining G is antiholomorphic in 7, and therefore

56 = g (04— ) o [ =T s

2mi T—=T)(T=7)" Jn

— —(T — /TO (z—=7)" f(2)dz +
= f(7).
A similar direct calculation proves (50) for all 1 < j <.
An analogous formula in the p-adic context, with ¢, replaced by the operator § = chiq on p-adic

L F L — / (o= 7 f()dz

=) =

modular forms, is proved in [BDP1, Prop. 3.24]. The reader may find it instructive to compare (50)
with its p-adic analogue given in equation (3.8.6) of [BDP1].

7. INTEGRAL PRIMITIVES

Propositions 5.3 and 6.1 yield a formula for AJc(A,), but this formula is not as explicit as one could
desire, because it requires evaluating the primitives Iy A a on the divisor Aw instead of the simpler
divisors Afo which are supported on a single point 74 (but are not of degree 0). We will now study
the relation between [Fy Aa, A,] and [Fy Ao, AL]. Given Z € L,(1) = H(H, L,)¥=°, let P; € C[x,y]
be the homogenous polynomial of degree r satisfying

Z = Pz(n:,m).
Lemma 7.1. Let Fy be the primitive of f given in Proposition 6.1. Then for all v € T,
51) (Fi07).2) ~ (Fy (), 2) = @iy ™ [ Pale 1S (i
70
Proof. By (48),
(52) (Fy07).2) = @riy ™ [ P )i

70
The fact that f is a modular form of weight » 4+ 2 on I', coupled with the fact that P, is homogenous
of degree r, shows that

Pz(yw, 1) f(yw)d(yw) = Py-1z(w, 1) f(w)dw.

Therefore
T YT
(53) (vFy(7), Z) = (Fy(r),7'Z) = (27”')”1/ Piaz(2,1)f(2)dz = (27”')”1/ Pz(z,1)f(2)dz.
70 Y70
The lemma follows from (52) and (53). O

Note in particular that the global section 7 — Fy(y7) — vF§(7) does not depend on 7, and can be
viewed as a horizontal section of £, over H. The function rr, defined on I' by
ki, (7) = Fr(yr) — vF3(7)
is a one-cocycle on I' with values in
H'(H,L,)V=" =L, (r) ~ L.(C),

where L,(C) is the space of homogenous polynomials of degree r in two variables with complex
coefficients, equipped with its natural action of I'. The class of kg, in H'(I", L,(C)) depends only on
the differential w; and not on the choice of primitive Fy. This class will therefore be denoted by .
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We briefly recall the definition of the period lattice in the space S, o(I')Y. Let L,.(Q) and L,(Z)
be the rational structure and lattice in L,.(C) obtained by considering the polynomials with rational
and integer coefficients respectively, and let L,.(Z)Y C L,(Q) be the dual lattice relative to the inner
product on L,(C) = L,(7) arising from equation (17). After choosing a basis fi,..., f, for S, o(T),
and a Z-module basis i, .., Ky for H, (T, L.(Z)"), let (\;;) be the g x 2¢g matrix with complex
entries satisfying

Kfp = )\1}1%1 + -+ )\LQQFLQQ,
(54) Rf, = )\271/431 + -+ )\27291{29,
Kf, = )\971:‘431 + -+ )\gggligg.
For each 1 < j < 2g, let ¢; € S, 5(I")¥ be the element defined by the rule
oi(fi) = Aij-

Definition 7.2. The period lattice attached to S, o(T"), denoted A,, is the Z-submodule of S, 5(T")"
generated by the vectors ¢, ..., ¢ag.

Eichler-Shimura theory (cf. [Shi, §8.4]) asserts that A, is indeed a lattice (of rank 2¢) in the complex
vector space S,;2(I")Y, justifying this terminology. Note that the module A, does not depend on the
choices of complex basis for S, (") and of integral basis for A, (T, L,(Z)") that were made to define

par

1t.
Let Fy,...,Fy be arbitrarily chosen primitives of wy,,...,wy,, and let Ry,..., Ay be a choice of
one-cocycles on I' representing 1, . .., ko The linear equations (54) defining the period lattice imply

that there exist vectors &, ...,¢, € L,(C) such that, for all v € I and all 7 € H:

ke (Y) = AiRi(y) + -+ AggRag () + (&6 — &),
(55) ke (Y) = AoiRi(7) + -+ AggRag(7) + (7€ — &2),

kE,(Y) = AgaRi(Y) + - A AgagRag(7) + (7€ — &)-
After replacing F; by Fj +¢&; (viewing the &; as elements of HO(H, £,)V=°), we obtain a new collection
of primitives satisfying the following relation, for all v € I' and 7 € H:
Fi(y1) =9 Fi(1) = AaRi(y) + - 4 A aghag(7),
(56) Fy(y7) = Fa(1) = Agaka(y) + - 4 Aagghang(7),

Fo(m) =7 Ey(m) = Agaka(y) 4 -+ 4 Agaghag (7).
Definition 7.3. A collection of integral primitives is a choice of a primitive F}j of f; foreachj =1,...,¢
satisfying (56).
A collection of integral primitives determines, by linearity, a primitive F; of f for each f € S,;o(I).
The primitive Fy arising from such a choice will be called an integral primitive of wy.

Lemma 7.4. Let f — Fy be a choice of integral primitives of f. For each v € I' and v € L,.(Z), the
assignment

f (Fy(yr) = F§(7), )
belongs to A, C S,42(T)Y.
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Proof. This follows directly from (56) in light of the fact that the scalars

<R1(’7>7U>7 SR <R29(’7)a U>
are integers. O
By definition, the Z-module
A=A, ®Sym" H,(A(C), Z)
is a lattice in S,,9(I')Y ® Sym” Hiz(A4/C)V = Fil'"' ex H3(X,)". It is commensurable with the
lattice II,, appearing in (37). After eventually replacing A,, by a larger lattice, we may therefore
assume that A,, contains II,,. This assumption allows us to replace II,, by A,, in the arguments to

follow.
Lemma 7.4 implies:

(57) (Fr(hm) N, Z) = (Fy(1) N,y Z)  (mod A,,),

for all Z € L,(Z) ® Sym”" H'(A,Z). (Where now both f and « are treated as variables, and the
equality is viewed as taking place in Fil'™ ex H2rH (X, /C)Y.)

The Abel-Jacobi image of generalised Heegner cycles can be expressed more simply in terms of
integral primitives, as follows:

Proposition 7.5. Let f — Ff be a choice of integral primitives, and let A, be a generalised Heegner
cycle attached to ¢ : A—A’. Then

AJc(Ay)(wy A a) = (Fr(tar) N, CITA,(AEO» (mod A,,),
where the pairing is the natural one on Ly, (Tar).

Proof. By Proposition 5.3 combined with the formula (32) for ASD,
Alc(Ay)(wrANa) = [FrAa, A@] (mod A,.,)

t

= > (Frlyma) A, Zp) = (Fy(ra) A, Z;) - (mod A,,)

j=1
t

= Y (Fplra) Ay ' Z) — (Fy(ra) Aa, Z) - (mod A,,)

j=1
t
= (Fp(ta) Ny, Z ('Yj_l —1)Z;)  (mod A,;),
j=1

where we have used (57) in deriving the penultimate equality. Proposition 7.5 now follows from
equation (31) for the class of A% O

Proposition 7.6. With the same notations as in Proposition 7.5,
AJolA)(wr A ) = (@ Fy(ra),ada (mod Ary),
where the pairing { , Ya on the right is the Poincaré duality on Sym” H (A/C).
Proof. Let
0:=(¢",id") : A"—T, C (A)" x A".
Note that
O (Fr(rar) Na) = @ (Fy(ar)) N e, o([AT]) = el (T3),
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where [A"] € H3z(A"/C) is the fundamental class associated to the variety A”. Let
(\ ag: Hop '(A7/C) x Hip(A"/C)—H* (A"/C) = C

denote the Poincaré pairing, so that the restriction of (, )4, to Sym” Hiz(A/C) C Hjz(A/C) agrees
with (, )a. Observe that

(58) (Fy(rar) Aacly, (AL)) = (Fy(ar) A el (T5)) = (Fy(ar) A e, 0([A])).
The functoriality properties of the Poincaré pairing imply that

(Fr(rar) N o([A])) = (" (Ff(Ta) A ), [AT]) a0
(59) = (P (Fr(ra)) Ao, [AT]) a0 = (@7 (Fy(Tar)), @) a-
Proposition 7.6 follows by combining Proposition 7.5 with (58) and (59). O

8. MODULAR SYMBOLS

Propositions 7.5 and 7.6 gain in explicitness because they involve the divisor AEO supported on a
single point, rather that the more complicated divisor (31) which is given in terms of a (non-canonical)
expression for the class of AED as an element of IFHQT(XT, Q). The price one pays is that it becomes
necessary to work with integral primitives rather than arbitrary primitives.

In the case of a group like I'; (V) containing parabolic elements, an integral primitive can be defined
explicitly by invoking the theory of modular symbols. More precisely, let us define primitives Fy of wy
by allowing the base point 7y appearing in Proposition 6.1 to tend to a cusp. The integrals appearing
in Proposition 6.1 still converge, by the cuspidality of f. Furthermore, the right-hand term appearing
in (51) is of the form

Jorp(f) == (27Ti)T+1/ P(z)f(2)dz, with s,t € P1(Q), P(x) € Z[z]*".

Let Al denote the Z-module generated by A, and the functionals Js; p in the complex vector space
Sy12(I)Y. The following theorem is the basis for the theory of “modular symbols” attached to modular
forms of higher weight.

\

Proposition 8.1. The group Al is a sublattice of S, 2(I")" which contains A, with finite index.

Proof. The proof of this theorem can be found, for instance, in Proposition 3.5 of [Sch]. (The statement
and proof are given there for r = 2, i.e., forms of weight 4, but no serious modification is required to
handle the case of general r.) u

After replacing the period lattice A, by the possibly slightly larger lattice A/, and redefining A, ,
accordingly, we obtain Theorem 8.2 below on the complex Abel-Jacobi images of generalised Heegner
cycles, which is one of the two main results of this paper. Because the formula is given modulo a larger
lattice, it is slightly less precise, but has the virtue of being more explicit and amenable to numerical
calculation.

Theorem 8.2. Let
v: A—C/(1,7)
be an isogeny of degree d, = deg(y), satisfying
1

N ©*(2midw) = wa,

p(ta) =
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and let A, be the associated generalised Heegner cycle on X,. Then

(60) Ale(Ay)(wy A ?) = (dp)' (2mi) /T (z—=7)(z—=7)"7 f(2)dz (mod A,,).

(T - %)Tij 100

Proof. Let Fy be the integral primitive of wy obtained by setting 7y = ico. By Proposition 7.6,
(61) AJo(Ap)(wy Awhny ) = (" Fy(r), ey )a (mod A,).
But letting o', ' € Hiz(C/(1,7)) be defined by

W' = 2midw, n € Hyp(C/(1,7)), (Wn')y =1,

we have
(62) e (W) =wa, @ () =dpna
Hence
(" Fr(r), iy Da = &7 (@ Fy(m), 0" (WY () 7))
= dL(Fy(7), (W)Y () )a
The result now follows from Proposition 6.1 with 75 = ioc. U

9. THE CHOW GROUP OF X,

Assume in this section that A is isomorphic over C to the complex torus C/Of and let X, be the
(2r + 1)-dimensional variety over H defined previously. For simplicity, we assume that dx # 3,4, so
that Of = {£1}. For any field F, let

Gr" (X, (F) == CH™ (X)) (F)o/ CH™ (X)) (F ),

where CH""!(X,)(F ),y is the subgroup of null-homologous codimension r + 1 cycles on X, that are
defined over F' and are algebraically equivalent to zero.
The goal of this section is to prove the following:

Theorem 9.1. For all r > 0 the Chow group CH™ (X, )(H)o of null-homologous cycles modulo
rational equivalence has infinite rank. Furthermore, for all v > 2, the Griffiths group Gr" ™ (X,)(H)
also has infinite rank.

The proof follows closely that of Theorem 4.7 of [Sch] which treats the case of “usual” Heegner cycles
on a Kuga-Sato threefold, and rests on an ingenious method of Bloch. The most significant difference
lies in the setting that is treated: whereas Schoen’s cycles are indexed by arbitrary quadratic orders of
varying discriminant, ours are forced by necessity to be indexed by (not necessarily maximal) orders
of the fixed quadratic imaginary field K.

Remark 9.2. When r = 0 the variety Xy is the modular curve X;(/N) which is defined over Q.
Codimension 1 cycles are divisors and rational equivalence corresponds to linear equivalence on divisors,
whence CH'(X(N)) = Pic(X1(N)). Moreover, a divisor is null-homologuous if and only if it has
degree zero and any degree zero divisor on a smooth connected curve is algebraically equivalent to
zero. It follows that the Griffiths group Gr'(X;(NV)) is trivial. The content of Theorem 9.1 is that
CH'(X1(N))(Q)o has infinite rank, a well-known result. The generalised Heegner cycles in this case
are images of Heegner points on the Jacobian variety of X;(/N) and our method consists in showing
that the subgroup generated by these Heegner points has infinite rank. In [Im, Proposition 2.8, it

is shown that F(Q) has infinite rank where E is an elliptic curve defined over Q by proving that
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the subgroup generated by Heegner points on X,(/N) via a modular parametrisation Xo(N)—F has
infinite rank. In particular, this implies Theorem 9.1 for r = 0.

Throughout this section we will adopt the following notational conventions. If X is a variety defined
over H and F' is any field containing H, then we let Xz := X X Spec F' denote its base change to F.
We fix an algebraic closure H of H and we will use the shorthand notation X := Xj. Recall that K
has discriminant —dy and O denotes its ring of integers. Let 7 := (—dx ++/—dk)/2 be the standard
generator of O = (1, 7). Fix an analytic isomorphism £ : C/Ox = A(C) and let wy € QIIL‘/H be the
regular differential satisfying £*(w,) = 2midw.

9.1. An infinite collection of cycles. We now introduce a distinguished collection of generalised
Heegner cycles. The fields of definition of these cycles will play a crucial role in §9.3 and the under-
standing of the Galois action on these cycles is key in §9.4.

Let p and ¢ be distinct odd primes which are congruent to 1 modulo N, and consider the following
lattices associated to 5 € Py(F,),

1 1 T+
Apgoo =2— DL, Npyp=2-7Z )
D,q5 Pq P,q,8 D

which each contain O with index pg, and let A, , 3 be the elliptic curve whose complex points are

isomorphic to C/A, , 5. The natural isogeny

fOl"OSBSQ_la

Ppap A Apgs
of degree pq gives rise to the generalised Heegner cycle
(63) Ap7q75 = A

Let F},, denote the field compositum of Ky and H,,, where Ky denotes the ray class field of K of
modulus 91 and H,, is the ring class field of K conductor pg.

Pp,a,8°

Proposition 9.3. For all € P1(F,), the cycle A, , 5 is defined over F,.

Proof. The variety W, is defined over Q, and the elliptic curve A along with its complex multiplication
can be defined over the Hilbert class field H of K. Following the moduli description of X;(V), the pair
(A, t4) corresponds to a complex point on X;(N) defined over the abelian extension of K corresponding
to the subgroup K*W C A, where

W = {xEA[X( : xOK:OK,a:tA:tA}.

This field is the ray class field Ky of K of conductor 9. The elliptic curves A,,3 have complex
multiplication by the order O,, of conductor pg and can thus be defined over the ring class field H,,.
The isogenies ¢, , 3 are also defined over H,,. Note that since (pg, N) = 1, we have (¢,44, Apqs) €
Isog™(A). The point (A, qs,ta,,,) on X1(NN) can thus be defined over the field compositum F,,. Since
the correspondence ex that was used to define the generalised Heegner cycle is defined over Q, we can
conclude that the cycle A, , 5 is defined over F},, as well. 4

Remark 9.4. More generally, let (¢, A’) be an element of Isog(A). Since A has complex multiplication
by Ok, the endomorphism ring of A" is an order in Og. Such an order is completely determined by
its conductor, and therefore there is a unique integer ¢ > 1 such that Endz(A") = O, := Z + cOk.
The pair (@, A") is then said to be of conductor ¢ and we set

Isog,.(A) := {Isomorphism classes of pairs (¢, A") of conductor ¢}
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and Isog”(A) := Isog,(A) NIsog™(A). Note that if (¢, A’) € Isog ' (A), then by a similar reasoning
as above the associated cycle A, is defined over the field compositum F, := Ky - H., where H, :=
K(j(O.)) denotes the ring class field of K of conductor c.

9.2. Cycles of large order in the Chow group. Using the explicit formula for the image of
generalised Heegner cycles under the complex Abel-Jabobi map given in Theorem 8.2, we will now
prove, following the approach of [Sch, §3], that many of the cycles A, , s are of large (possibly infinite)
order in the Chow group and even in the Griffiths group (if » > 1). This part of the argument uses
only complex analytic and Hodge theoretic methods, and rests on the following theorem:

Theorem 9.5. For all v > 0 (resp. for all v > 1) the order of A, 45 in CH™™(X,)(H)o (resp. in
Gr'(X,)(H)) tends to oo as p/q tends to oo.

If f € 5.42(") and 0 < j <, then we will identify, by a slight abuse of notation, AJc (A, 4)(ws A
w)n'’y?) with the complex number appearing in the right hand side of the displayed equation (60)
in Theorem 8.2. This amounts to choosing a fixed representative of AJc(A,,5) in (S,12(I') ®

Sym” H}s(A))Y, and then evaluating it at w;Aw’;n’, . The proof of Theorem 9.5 rests on the following
lemma:

Lemma 9.6. With the above notations and conventions, for any non-zero cusp form f we have

lim AJc(A,q8)(wr A wf;nifj) =0

p/q—o0
and AJc(Dpq5)(wr An’s?) # 0 for all large enough p/q.
Proof. Fix p, ¢, and g € P1(F,). The lattice A, , 3 is homothetic to the lattice (1, 7,,3), where

p
(64) Tpq.00 "= DqT, Tpg B = 5(7‘ + ).

Set 7,45 = Xp + Y3, and note that Y = pg - /dg /2 if § = o0, and Y3 = p/q - Vdk /2 otherwise. By
Theorem 8.2,

_ 1) (2mi) +L - Tp.a,8 , I
) Ao Ao?) = CIECIE ™ o (e = 5

(66) = 75/ y —Ya) (y + V)" ™ f(Xp +iy)dy,
Ys
where
. (pq)*~%" if B = o0, _ G+t j+1, kB
g == { p¥=2"q"  otherwise, 5 1= (=1) it (2mi) (r—7)=3’

and (66) is obtained from (65) by performing the change of variables z = Xz + iy.

Assume without loss of generality that f is a normalised cuspidal eigenform. By examining the
Fourier expansion of f, one can see that there is an absolute real constant Cy > 0 (depending only on
f) for which

|f(Z) . 627Tiz| < Cf X 6747r1m(z)

on the domain {Im(z) > 1}. Combining this with (66) gives

(67)  [AJc(Dpgp)(wr Awhny ) —5p - €757 - Ag| <5 Cy - /Y (y = Ya) (y + Yp) e "™y,
B
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where
m . .
(68) Ag = / (y —Yg) (y + YB)T’_Je_%ydy
Y3

is clearly non-zero and positive since the function appearing in the integral is strictly positive on the
domain of integration. The error term in (67) is majorised by

(69) < Cy-yp- e Ap.

Y- Cy - / (y—Ya) (y + Ya) e *™dy
Yp

If we let By := 5 - €>™%5 . Ay then (69) implies that AJc(A,.q5)(w; A Wyny?) is asymptotically
equivalent, as a function of p and ¢, to B as p/q tends to infinity, in the sense that the ratio of
these two functions tends to 1 as p/q tends to infinity. The result now follows after observing that the
quantity Bg is non-zero but tends to 0 as p/q tends to infinity. O

Proof of Theorem 9.5. As p/q tends to oo, Lemma 9.6 shows that AJc(A,,s) tends to the origin
in J"T(X,/C) without being equal to it. Consequently, the order of AJc(A,,s) tends to oo in
J" (X, /C). It follows that the order of A,, 5 in CH™™(X,)(H), tends to o as p/q tends to oco.

To treat the image of A, , g in the Griffiths group, let J"" (X, /C),, denote the complex subtorus of
J™ (X, /C) which is the intermediate Jacobian of the largest sub-Hodge structure V' of H™ " (X,) &
H"™™1(X,). More precisely,

(70) T X,/ Clag = JTHV) = Ve /(FiII'T V @ Vy).

The image of CH"™(X,)(C).y under AJc is a complex subtorus of J"+!(X, /C) which is contained in
J X, /C)ayg (see [Voi, §12.2.2]) and has the structure of an abelian variety. One can thus define the
transcendental part of the Abel-Jacobi map

(71) Alcy : G (X)) (C)—J X, /C) = J X, /C) )T X, /C)ag

as the factorisation of AJg. Note that for r = 0, J"*1(X,/C) = J7(X,/C)ag and Gr" " (X,)(C) = 0
by Remark 9.2, so the transcendental part of the Abel-Jacobi map is trivial in this case. For r > 1,
by (36), we observe that

(72) (H™(X,) @ HM (X)) Nex Hyg ™ (X /C) = (Sr42(T) ® Cn)y) @ (Sp42(T) @ Cwy).
The same reasoning as before shows that the order of A, , 5 in Gr" ™ (X,.)(H) tends to oo with p/q. O

9.3. Cycles of infinite order in the Chow group. Theorem 9.5 implies that for sufficiently large
p/q, the cycles A, , 3 have large (possibly infinite) order in the Chow group. Following [Sch, §4], we
show that for large p/q, the cycles A, , 3 are non-torsion in the Chow group. This section constitutes
the algebraic part of the argument, where the fields of definition of our cycles play a crucial role.

Proposition 9.7. For all r > 0, there exists a non-negative integer M, with the property that if
A€ ({A,5)) € CHY(X,)(H)o is such that the order of AJc(A) in J™(X,/C) does not divide
M,, then A has infinite order in CH™ " (X,.)(H)o.

Before proving this proposition, we deduce the following two corollaries.
Corollary 9.8. For p/q sufficiently large, A, , 5 has infinite order in the Chow group.

Proof. 1t suffices to combine Lemma 9.6 and Proposition 9.7. O
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Corollary 9.9. Fix a rational prime q congruent to 1 modulo N. There exist infinitely many rational
primes p congruent to 1 modulo N such that the cycle Ap 45 — A, 4~ has infinite order in the Chow

group when 8 # 7.
Proof. Let f be a normalised cuspidal eigenform and consider the quantity Bs = 75-€?™%5 - A5 defined

in the proof of Lemma 9.6 for all g € Py(F,). If § = oo, then vy # oo and a comparison of integrals
reveals that

By

B,

from which we deduce that B, /B, tends to zero as p/q tends to oo. In particular, B,, and B, are
not asymptotically equivalent as p/q — oo and it follows that for infinitely many p/q,

< M@ VAR 205+ 1) -r

(73) AJc(Apgo0) (wr A Wfémz_j) # AJc(Bpgq) (wy A wimflfj)
since asymptotic equivalence is an equivalence relation. Moreover, we have
(74) p/lqir_}nm Adc(Bpgo = Dpgy) = 0.

Suppose now that 3,7 # oo and observe that Bs = e2mig (6 _V)BW, so the complex argument of
the ratio Bs/B., is greater in absolute value than 27/q for all p. In particular, Bg and B, are not
asymptotically equivalent as p tends to co and thus for infinitely many rational primes p congruent to
1 modulo N,

(75) AJo(Bpgp)(ws Ak ) # Ado(Bpgq) (wr Ay ).

Moreover, we have lim,/q—o0 AJc(Apgs — Dpgry) = 0.
Consequently, by taking p sufficiently large, one can ensure that AJc (A, , 3—A, 4~) has order greater
than M, in J"+'(X,/C) and thus by Proposition 9.7, A, , 5 — A, .~ is non-torsion in CH" ™ (X,.)(H )o.
O

We now turn to the proof of Proposition 9.7. For any rational prime ¢, Bloch has defined in [Bl1] a
map of Galois modules

(76) e CHYY X)) (H)(O)—HY (X, Qu/Zo(r + 1))

where CH"*'(X,)(H)(¢) denotes the {-power torsion subgroup. This map is constructed by studying
the coniveau spectral sequence of X, and can be viewed as an arithmetic avatar of the complex Abel-
Jacobi map restricted to torsion. In order to justify this claim, recall that

(77) J X, /C) = H*(X,(C),C)/(FiII't" HM (X, /C) ® Im H* (X, (C), Z))
and observe that we have an isomorphism of R-vector spaces

(78) H*(X,(C),R) = H*(X,(C),C)/FiI"*! H¥ (X, /C).

so that we may identify

(79) T (X, /Chors = HY1(X,(C), Q)/ Im HY(X,(C), Z).

From the long exact sequence in singular cohomology associated to the short exact sequence
(80) 0—Z—Q—Q/Z—0

we deduce a short exact sequence

(81) 0—J (X, /C)iors— H*" T X,.(C), Q/Z)— H* (X, (C), Z)1ors—0.
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Note that H**%(X,(C),Z) is a group of finite type and thus its torsion subgroup is finite. We have
identified J"™!(X,./C)iors up to a finite group with H*+(X,(C), Q/Z).
Composing the complex Abel-Jacobi map restricted to torsion with u yields a map

(82) woAJc : CHHX,)(C)o(0)—H* ™ (X,.(C), Qu/Zy).
For each natural number v, we have a sequence of isomorphisms
(83) HE (X ™) 2 HEYH (X0, 1) 22 HH (X, (C), ™).

For the first isomorphism, apply [Mil, VI Corollary 4.3] with respect to our fixed complex embedding
K — C. The second isomorphism is an application of [Mil, III Theorem 3.12|. Taking direct limits,
we obtain a sequence of isomorphisms

(84)  HZT(X, Qu/Zilr + 1) = HI Y (X0, Qo/Zulr + 1)) = H 7 (X,(C), Qu/Zi(r +1)).

If we identify Q;/Z; = Qu/Z(r + 1) by taking e? as the generator of the /“-th roots of 1, then the
diagram

(85) CH™™ (X,) (H)o((6) —= HE (X, Qu/Zu(r + 1))

CH™™(X,)(C)o(t) —= H*1(X,(C), Q¢/Zy).

commutes by [Bl1, Proposition 3.7], where the right hand side isomorphism is (84).
Summing over all primes ¢ yields a map of Galois modules

(86) A CH™H(XG) (H ) ors— Hyl (X, Q/Z(r + 1))

which fits into a commutative diagram

(87) CHT-H (XT)(H)O,tors —)\> He?tr-i_l( _7’7 Q/Z(’f‘ + 1))

| :

CH™ (X,)(C)oos 228 H2+1(X,(C), Q/Z).

Lemma 9.10. For all r > 0, there exists a non-negative integer M, that annihilates the group
HEM (X, Q/Z(r + 1)%F
for any square-free positive integer n coprime to N, where F,, = Ky - H,.

Proof. Let n be a positive square-free integer. Let ¢ denote a rational prime which remains inert in
K. If g|n, write n = gm with (¢,m) = 1. Since ¢ is inert in K and coprime to m, class field theory
implies that ¢ splits completely in H,,/K. Again by class field theory, each factor of ¢ in H,, is totally
ramified in H,, = H, - H,,. As a consequence, the residual degree of ¢ in H, /K is 1 and its residual
degree in H,/Q is 2.

Let us fix once and for all two distinct rational primes ¢; and ¢ which are inert in K and satisfy
(2N, g1q2) = 1 with the property that there exist two primes ¢; and ¢y in H which lie above ¢; and ¢o
respectively such that X, has good reduction at q; and gs.

Let s; and sy denote the residual degrees of q; and g2 in Ky/H respectively. We claim that
Ky N H, = H. Indeed, if a prime ideal in K ramifies in the abelian extension Ky N H, over K,
then it divides both 91 and nOf. But these two ideals are coprime since the norm of 91 is N and
(N,n) =1. Thus Ky N H, is everywhere unramified above K and is thus contained in H, hence equal
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to H. Because the residual degrees of ¢; and ¢ in H, /K equal 1, the residual degrees of q; and g2 in
F,/H are equal to s; and sy respectively. In particular, these residual degrees are independent of n.

Let H,, denote the compositum of all ring class fields of K of square-free conductor coprime to N
and define Fl, = Ky - Hy. It follows from the above dicussion that the residual degrees of q; and g2
in F,/H are equal to s; and s, respectively.

Let ¢ be a rational prime. For ¢ = 1,2 fix q7° a prime of F, above q; and let D; denote the
decomposition group in G, of a prime above ¢{°. Because of our assumption of good reduction, the
inertia group I; C D; acts trivially on the group HZ (X, Q/Z(r + 1)) and we have, by [Mil, VI
Corollary 4.2],

v T C AU r T GF Sq
(88) HE N (X ™) 2 B (X, )
for all v, as long as ¢ # ¢;. Taking direct limits, we obtain an isomorphism

241 v Di ~ 772r+1 OF s,
(89) HE (X, Qo/Zy(r + 1)) = HY (X g, Qo/Ze(r + 1)) 7.
From the long exact sequence in f-adic cohomology associated to the short exact sequence

we obtain a short exact sequence
(91)

HZ ™ (X5, . Qulr + 1))
m(HZ (X, 5, Ze(r + 1))

0— —>H<92{+1(X7‘,Fqi ) Qg/Zg(?“ + 1))_>He2tr+2(Xr,Fqi7 ZZ(T + 1))tors_>0-

Gr .,
Consequently, the order of HX "' (X, &, , Qu/Ze(r + 1)) "4 is bounded by the product of

Gr ..
( Hi ™ (Xop,,, Qu(r +1)) )F

HY (X5 Zo(r +1))ors and
el (X Zelr 1)) (2 (X, e, Ze(r 1 1)

We claim that both these quantities are finite, and equal to 1 for all but finitely many primes /.
On one hand, we have a sequence of isomorphisms

Hy (X5, Zo(r+1)) = HY (X, g, Ze(r+1)) = Hy (X, Zo(r+1)) = H(X,(C), Z) (r+1)®Z,

where H,, denotes the completion of H at g,. The first isomorphism is obtained by using [Mil, VI

Corollary 4.2] and taking inverse limits. For the second one, we fix an embedding H — qu apply

[Mil, VI Corollary 4.3] and take inverse limits. The last one is a consequence of [Mil, ITI Theorem 3.12]

and taking inverse limits. Since H*™2?(X,(C),Z) is finitely generated, its torsion subgroup is finite

and thus the torsion subgroup of H* *?(X,(C),Z)(r + 1) ® Z, is trivial for all but finitely many /.
On the other hand, we have

r GF .
(92) H ™M (X, Qe(r +1)) ) ol
Im(Hf[“(erqi, Z,(r+1)))

m(He (X, g, Ze(r +1)))

HX (X, 5, Qu(r+1
ker (1 — Frobgee ‘ I : o Ql )

which is equal to the /-part of
(93) [det(1 — Froby | Tn(HZ* (X, g, . Zulr + 1))

By the Weil conjectures as proved by Deligne [De2], (93) does not depend on ¢. In particular, (92) is
equal to 1 for all but finitely many ¢.
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We conclude that the order of H* 'YX, Qu/Zy(r + 1)) is finite and equal to 1 for almost all .
Hence HZ (X, Q/Z(r + 1))%F= is finite and we may define

(94) M, = [HZ(X,, Q/Z(r +1))7].
Then M, annihilates HZ ™ (X,, Q/Z¢(r + 1)) for all square-free n coprime to N. O

Proof of Proposition 9.7. Let M, be the non-negative integer of Lemma 9.10 defined in (94). We will
prove the contrapositive of the statement of the proposition.

The cycle A is defined over the field F,, = Ky - H, for some square-free integer n coprime to N by
Proposition 9.3. Suppose that A is a torsion element of CH"**(X,)(H)o. By Lemma 9.10, the order,
say m, of A(A) must divide M,. By (87), we have \(A) = uw o AJc(A). Thus u(mAJc(A)) = 0 and
by injectivity of u, we deduce that m AJc(A) = 0. Hence the order of AJc(A) divides m and in
particular divides M,. O

9.4. The Chow group is infinitely generated. We conclude the proof of the statement of Theorem
9.1 concerning the Chow group by exploiting the action of the Galois group Gy on generalised Heegner
cycles.

Proof of Theorem 9.1. Let ¢ be an arbitrary rational prime and fix a rational odd prime ¢ congruent
to 1 modulo N, which remains inert in K and such that ¢ divides the degree of H,/H, ie. ¢+1=0
mod ¢.

There are g + 1 distinct isogenies ¢, 3 : A—>A, 3 of degree ¢ with § € Py(F,) attached to the
following lattices A, s containing Ok with index g¢:

T+

AqymZ:Z%@ZT, Npp =ZDZ for0 < g <q—-1

The theory of complex multiplication shows that the elliptic curves A, 3 as well as the isogenies ¢, 3
can be taken to be rational over Hy, the ring class field of K of conductor ¢q. As ¢ is assumed to be
inert in K, the extension H,/H is cyclic of degree ¢ + 1, and we let o, denote a fixed generator of its
Galois group G, = Gal(H,/H). Recall the analytic isomorphism £ : C/Ox = A(C) and define, for all
B € Py(F,), the point

_[e B0, £
B . -
£(1/9), if f = o0
of A(C) and note that ker(y, ) = (t,5)-

For any o € Aut(C/H), observe that A = A and o|ga» = (s|K) is the Artin symbol for an idele s
of K which is a unit at all finite places (by the idelic description of the ideal class group and the idelic
formulation of class field theory). In particular, for any o € G, and any idele s of K with o = (s|K)|g,
and s, € O, for all v { oo, there is a unique analytic isomorphism &, : C/Of = A(C) such that the
diagram

(95) K/Og S A

K/Og &~ A

commutes, according to Shimura’s formulation of the main theorem of complex multiplication [Shi,
Theorem 5.4]. Observe that &, = £ o a,, for some «, € Oj = {£1}. Note that ker(y, ) is a subgroup
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of the g-torsion group of A, and we may thus restrict our focus to the g-torsion subgroup of K/Ok,
namely ¢ 'Ok ./ Ok 4.

Since (s|K)|n, € G, the fractional ideal (s™!) associated to s~ belongs to (Ix(¢) N Px)/Pkz(q),
where Py denotes the principal ideals of K, Pk z(q) the principal ideals admitting a representative
which is congruent to a non-zero integer modulo ¢ and Ik (q) the fractional ideals of K coprime to q.
This group is isomorphic to (O /qOx)* /(Z/qZ)* and acts on F-lines in ¢ 'O,/ Ok 4 = Ok 4/q0k 4
by multiplication. In particular, we see that s~! permutes the F, -lines in ¢ 'Ok ,/Ok, without
preserving any of them. We conclude from (95) that o permutes the kernels (¢, g) without preserving
any of them. Thus the action of G, on the set of ¢ + 1 isogenies ¢, 5 is simply transitive.

Let p be a rational prime congruent to 1 modulo N. The isogeny ¢, , g corresponds to the subgroup
(€(1/p),t,5) of A(H) which is defined over H,,. Because p and ¢ are distinct, we have H,, = H, - H,
and H, N H, = H so that

(96) Gal(H,,/H,) = Gal(H,/H).

Recall from Proposition 9.3 that A, , s is defined over F,, = Ky - H),, and since Kn N Hy, = H we
have an isomorphism

(97) Gal(F,,/Kn) = Gal(H,,/H).

Consider the cyclic subgroup of Gal(H,/H) of order ¢ which exists because of the assumption
¢+1 =0 mod /. Let G, denote the image of this group in Gal(F,,/Kx) under the above isomorphisms
(96) and (97), and let oy be a generator of GGy. Consider the homomorphism of Q-vector spaces

(98) Y Q[G]— CH™(X,)(H)o ® Q,

which to ¢ € G, associates o(A,,s). Note that the kernel of ¢ is stable under multiplication by
Q[G/], hence ker(7)) is an ideal of Q[G,]. But Q[G,] has a very simple structure; it is isomorphic to
the product of two fields, namely Q and Q((;), where (;, is a primitive /-th root of unity. Indeed, the
map

-1 -1
Q[G]—Q x Q(¢), th%+0m2yﬁ>
=0 =0

is an isomorphism of rings. There are exactly two proper ideals of Q x Q((,), namely {0} x Q({) and
Q x {0}, which correspond respectively to the augmentation ideal and the ideal Q- N of Q[G/], where
N =0

By Corollary 9.8, we may assume, by taking p large enough, that A, , s is non-torsion in the Chow
group. In other words (1) # 0 and therefore ker(1) is not equal to all of Q[G].

Because the action of Gal(H,/H) on the set of g-isogenies of A is simply transitive, we see that
(0q.8: Aq.8)7 = (g, Ag) in Isog(A) for some v # § in Py(F,). Since oy fixes H, it must fix the
subgroup (£(1/p)) of A(H), and we must have

(99) (Wp,qﬁa Ap,qﬁ)w = (Spp,qm Ap,(m)

in Isog(A) and it follows that oy(A,,5) = Ap g, in CH X, (H)o, ie. (og) = Apgn

By Corollary 9.9, we may choose p such that A, ;s — A, is non-torsion in the Chow group. In
other words, ¢(o, — 1) # 0 and thus ker(?) is not equal to the augmentation ideal.

We conclude that the kernel of v is either trivial or equal to Q - N. In any case, we have

(100) dimq Q[Gi]/ ker(¢) > £ — 1

and we have thus constructed a subgroup of the Chow group of rank greater or equal to £ — 1. Since
¢ was chosen arbitrarily, this proves that CH™**(X,)(H ), has infinite rank. O
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9.5. The Griffiths group is infinitely generated. By Theorem 9.5, we know that many of our
generalised Heegner cycles have large (possibly infinite) order in the Griffiths group, at least when
r > 1. In the proof of this theorem, we were able to extract information concerning the Griffiths
group by studying the transcendental Abel-Jacobi map (71), a modified version of the complex Abel-
Jacobi map which enjoyed the property that it factored through Gr"t*(X,)(H). If we wish to apply
the algebraic arguments of §9.3 in order to show that many of our cycles have infinite order in the
Griffiths group, we need a modified version of Bloch’s map A of Galois modules (86) which factors
through Gr"™(X,)(H). To this end, we introduce an algebraic projector which we compose with .

We use the same conventions and notations for motives as in [De3, §0]. Given two nonsingular
varieties X and Y, we define the ring of correspondences Cort®(X,Y) := CH™®)(X x Y) and if E
is a number field, then Cort®(X,Y )y := Cort’(X,Y) ® E.

Proposition 9.11. For all v > 2, there exists an idempotent Px in Corr’(X,, X, )q with the following
properties:
i) The map
CH'(X,)o(C) 8.7+ (X, /C) =4 T (V)
factors through Gr"™'(X,)(C), where J(N) denotes the intermediate Jacobian associated to the

Betti realisation of the Chow motive N := (X, Px,7 + 1) over H with coefficients in Q.
ii) The map of Galois modules

CH L (X,) (Hosors— - HE (K, Q/Z(r + 1)) X HE (X, Q/Z(r +1)).
factors through Gr™ ™ (X,)(H )ors, s0 we obtain a map of Galois modules
(Px)eo X : Gr" ™ (X)) (H )sors— HE (X, Q/Z(r +1)).
We begin with the construction of the projector Py and assume from now on that r > 2. Write

[z] for x € K viewed as an element of Endy(A) ® Q. The identification of K with Endy(A) ® Q
is normalised such that [x]*ws = 2w, for all x € K. We shall consider the following idempotents of

Endy(A) ® K:
o — V—dg + [V —dk] and 5 — V—dg — [V —dx]
o 2V/dy o 2/dk

and view them as elements of Corr’(A, A)x by taking their graphs. For all 0 < j < r, we define the
idempotent

el = Z er®... Qe € Corr?(A”, A",

where e; ; := e or e depending on whether ¢ € [ or i ¢ I.
Consider the Chow motive M := (A", e,,0) over H with coefficients in Q where

e, 1= ( > e(j)> o (“T[_”)@) e Corr’(47, A")q.

o<g<r
The Betti realisation Mp of this motive is a Hodge structure of weight 7. We have Mp(C) = e, Hj (A")
and its Hodge decomposition is given by
HI™(A") forO0<j<r
0 forj=0o0rj=r.

(101) H?" (Mp(C)) = {
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We will use the same notation for e, and its pull-back to Cort’(X,, X,)q and define
(102) Py :=¢, 0ex € Cort’(X,, X,)q,

which is an idempotent in the ring of correspondences of X, with coefficients in Q since e, and ex
commute.

Remark 9.12. Asin Remark 3.4, we will assume throughout that the projector Py has been multiplied
by a suitable integer so that it lies in Corr®(X,, X,.).

The correspondence Px induces morphisms (Px ). = (pry)« o (+Px) o (pr;)* between Chow groups,
cohomology groups and intermediate Jacobians and acts as a projector on these various objects. For
the sake of clarity, we record the following maps, some of which appeared already in the statement of
Proposition 9.11:

a) A map of Chow groups

(103) (Px). : CH (X)) P CHM(X, % X,)25 CHZ2(X, x X,) P2 cH L (X,),

where - Px denotes multiplication in the Chow ring CH(X, x X,.). We will denote this map, by a slight
abuse of notation, simply by Px.

b) A map of Galois modules on étale cohomology
(104) (Py). : HZY(X,, Qu/Zo(r + 1) S HZU(X, x X,, Qu/Ze(r + 1))

BT X X, QufZa(3r +2)) T HE (X, Qu/Zu(r + 1),

where cl, : CH* (X, x X,)—HY (X, x X, Z;(2r + 1)) is the (-adic étale cycle class map and
-cly(Px) is the cup product

HE X x X0, Qo/Zo(r + 1)) x HY (X, x X, Zo(2r + 1) —HY (X, x X, Qo/Zo(3r + 2)).
¢) A map on singular cohomology

(105) (Pyx). : H*H(X,(C), Z)2 g2+1( X, x X,(C),Z)

e o3 (x w x,(C), 2) M B (X, (C), Z),
where clg : CH* (X, x X,)—H*"+?(X, x X,(C),Z) is the complex cycle class map, -clc(Px) is
the cup product

H* (X, x X,(C),Z) x H" (X, x X,(C),Z)—H" (X, x X,(C),Z).

and (pry). is the Poincaré dual of the pushforward map on singular homology. One checks that the
map (Px). is equal to the induced map of the (2r + 1,2r + 1) Kiinneth component

[PX](2r+1,2r+1) c HQT—H(XT(C), Z) ® H2T+I<XT(C)7 Z)
of clg(Px) under the isomorphism (of cohomology groups modulo torsion)
H**(X,(C),Z) @ H"*(X,(C), Z) = Homz(H**!(X,(C), Z), H*"*(X,(C), Z))

given by Poincaré duality. Because [Px]| is a Hodge class, this shows that (Px), is a morphism of
Hodge structures of bidegree (0,0) (see [Voi, Lemma 11.41]).

d) A morphism of complex tori
(106) (Px). : J7THX,/C)—J T (X,/C)
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where we recall
(107) J7(X,/C) = H*(X,(C), C)/(FiI'*! H(X,/C) @ Im H (X, (C), Z))

12\1.? r+1 2r+1 \Y
~ Fil'*! 24X, /C)Y / Im Hayy1 (X, (C), Z).

The map (Px). of intermediate Jacobians is induced from (105) which makes sense since the latter is
a morphism of Hodge structures of bidegree (0,0) and thus maps Fil'™" H3r" (X, /C) into itself.

We will henceforth work with the Chow motive N := (X, Px,r + 1) over H with coefficients in Q.
Its Betti realisation Ng = (Px).(H* (X, (C),Z))(r + 1) is a Hodge structure of weight —1 and the
0-th step of its Hodge filtration is given by

r—1 r—1
(108) Fil’ Np(C) = (Px), Fil'™* H2+1(X,/C) = S,45(I) ® <@ cwf;n;‘j> c@PrE X,
j=1 j=1

We note that H%~1(Np(C)) = H»~ D (Ny(C)) = 0 and in particular we have the crucial property
(109) (Px)(H™"(X,) & H" (X)) = 0.

Associated to the Hodge structure Np is a complex torus J(N) := Np(C)/(Fil°(Np(C)) & Np)
which is the image of the projection (106). By (108) and Poincaré duality, we have an isomorphism
of complex tori

() & (@5} Ceti))
I, /

(110) J(N) =

where the lattice II;., is defined by
(111) [, = (Px).(Im Hyy 1 (X,(C), Z).

Proof of Proposition 9.11. Recall from (70) that J(X,/C)ag = J (V) where V is the largest
sub-Hodge structure of H™4"(X,) @ H™*1(X,) and that the image of CH" ™ (X,)(C)ay under AJc
is a complex subtorus of J"*1(X,/C) which is contained in J"*(X,/C).e. The morphism of tori
(Px)s : J*H(X,/C)—J(N) is induced from the morphism of Hodge structures (105). The latter
map restricts to a morphism of Hodge structures (Px). : Vz—>Np which is the zero map when
tensored up to C by (109) since Vo € H™"(X,) & H™(X,). Hence the induced map of tori
(Px)s : J7TH(V)—J(N) is the zero map and statement 4) of the proposition follows.

The group CH"™'(X,.)(H )ay is divisible since it is generated by images under correspondences of
H-valued points on Jacobians of curves. Therefore we have an exact sequence

(112) 0— CH™ (X)) (H ) aig tors— CH™ (X ) (H ) tors— Gt (X)) (H ) tors—0

and in order to prove i) it suffices to show that the subgroup CH" ! (X,)(H ). tors lies in the kernel
of (Px)« o A. Observe from (87) that

(113) (Px)xo A= (Px)souoAlc

where we use the compatibility of the comparison isomorphism (84) with correspondences which follows
from the compatibility of the cycle class maps with respect to the comparison isomorphism (see [Jan,
§5.3]). Note that the maps (105) and (106) commute with u since the latter is induced from the former
and we therefore have

(114) (Px)*o)\:uO(PX)*OAJc.
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It follows from i) that (Px). o )\(CHTH(XT)(ﬁ)a]g,tors) = 0, and the proof is complete. O
When r > 2, applying the map (103) yields the cycles
(115) Epas = PxDpgs;

whose classes in the Griffiths group will be denoted [Z,,4]. Since the projector Px is defined over Q,
these cycles and their classes are defined over F},, by Proposition 9.3.

Proposition 9.13. For all v > 2, the order of [Z,,45] in Gr" ™ (X,)(H) tends to oo as p/q tends to
infinity.

Proof. By functoriality of the complex Abel-Jacobi map [EZZ|, we may view AJc(Z,,,5) as an element
of J(N). If f € S,4o(T") is non-zero and 0 < j < r, then

(116) AJc(Epq6)(wr A wi&?ﬂfj) = AJc(Apqp)(wp A Wixnj;j)-
As p/q tends to oo, by Lemma 9.6, AJc(Z,,5) becomes arbitrarily close but not equal to the origin
in J(N). It follows, by Proposition 9.11 ), that the order of [Z,, 3] tends to oo with p/q. O

Proposition 9.14. For allr > 2, if 2 € ({E,45}) C CH"(X,)(H)q is such that the order of AJc(E)
in J7YY(X,/C) does not divide M,, then Z has infinite order in Gr"™(X,)(H).

Proof. Suppose that [Z] is a torsion element. The cycle = and its class in the Griffiths group are both
defined over the field F,, = Ky - H, for some square-free integer n coprime to N by Proposition 9.3

—_ —_
]

and we have the identity PxZ = =. By Proposition 9.11 i),
(Px). o M([E]) € HY (X, Q/Z(r + 1))
and thus by Lemma 9.10, the order, say m, of (Px). o A\([Z]) must divide M,. By (114), we have
(Px)« o M[E]) =uo (Px)s0AJc([Z]) =uo (Px). 0 Alc(2).
By functoriality of the complex Abel-Jacobi map with respect to correspondences [EZZ], we obtain
(Px)« 0 A([E]) = u(AJc(PxE)) = u(AJc(E)).

By injectivity of u, the order of AJc(Z) must divide m and thus divides M,.. O

Proof of Theorem 9.1. Proceeding as in §9.3, one uses Propositions 9.13 and 9.14 to deduce the
analogue statements of Corollaries 9.8 and 9.9 for the Griffiths group and the classes [=,,5]. Using
these two statements, the same arguments as in §9.4 apply, proving that Gr"*!(X,)(H) has infinite
rank. |

Remark 9.15. Applying the construction of the projector Py in the case r = 1 yields nothing
interesting. In fact, there is no algebraic splitting of the motive X7 into its algebraic and transcendental
components and for this reason we cannot apply our arguments to show that the Griffiths group is
infinitely generated in this case. More precisely, we cannot obtain Proposition 9.11 i) and therefore
we fail to obtain Proposition 9.14. As a consequence, even though we can show that many of our
cycles have large order in the Griffiths group, we are unable to prove that infinitely many of them
have infinite order.
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