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Introduction

In a previous work [BDP1], the authors introduced a distinguished collection of null-homologous,
co-dimension (r+1) cycles on the (2r+1)-dimensional variety

Xr := Wr × Ar,
where Wr is the Kuga-Sato variety obtained from the r-fold fiber power of the universal elliptic curve
over a modular curve C, and A is a fixed elliptic curve with complex multiplication. Referred to as
generalised Heegner cycles in [BDP1] because of their close affinity with the Heegner cycles on Kuga-
Sato varieties studied in [Sch], [Nek] and [Zha], they are indexed by isogenies ϕ : A−→A′. The cycle
∆ϕ labeled by ϕ is supported on the fiber (A′)r ×Ar above a point of C attached to A′ , and is equal,
roughly speaking, to the r-fold self-product of the graph of ϕ.

One may consider the images of the ∆ϕ under the p-adic Abel-Jacobi map

(1) AJp : CHr+1(Xr)0(Cp)−→Jr+1(Xr/Cp) := Filr+1H2r+1
dR (Xr/Cp)

∨

whose domain is the Chow group of null-homologous codimension (r+1) cycles on Xr over Cp := Q̂p

and whose target is the Cp-linear dual of the middle step in the de Rham cohomology H2r+1
dR (Xr/Cp)

During the preparation of this article, KP was supported partially by NSF grants DMS-1015173 and DMS-0854900
and DL was supported partially by the ISM.
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relative to the Hodge filtration. The main result of [BDP1] is a formula relating AJp(∆ϕ) to special
values of certain p-adic Rankin L-series. A key ingredient in this formula, made explicit in Section 3
of loc.cit., is a description of the relevant p-adic Abel-Jacobi images in terms of p-adic integration of
higher weight modular forms, à la Coleman.

The goal of the present article is to give an analogous description of the image of the cycles ∆ϕ

under the complex Abel-Jacobi map

(2) AJC : CHr+1(Xr)0(C)−→Jr+1(Xr/C) :=
Filr+1H2r+1

dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
,

where Jr+1(Xr/C) is the (r+1) Griffiths intermediate Jacobian. This map is defined in terms of
complex integration of differential forms attached to classes in H2r+1

dR (Xr/C). One of the main results
of this work is Theorem 8.2 of Section 8, which gives a formula for AJC(∆ϕ) in terms of explicit line
integrals of modular forms on the complex upper half-plane. An application of this formula is given
in Section 9, where it is shown that the Griffiths group of Xr over Q̄ has infinite rank. A second
motivation for publishing a detailed proof of Theorem 8.2 is that this result forms the basis for the
numerical calculations of Chow-Heegner points carried out in [BDP2, §3]. It may also be useful in
further numerical explorations of generalised Heegner cycles–for instance, in extending the calculations
of [Hop] beyond the more “traditional” setting of Heegner cycles on Kuga-Sato varieties.

1. Generalised Heegner cycles

We begin by briefly recalling the definition of generalised Heegner cycles, following the notations of
[BDP1, §2].

Fix a level N ≥ 5 and let Γ = Γ1(N) be the standard congruence subgroup of level N :

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) such that a− 1, d− 1, c ≡ 0 (mod N)

}
.

Let C0 := Y1(N) and C := X1(N) denote the usual (affine and projective, respectively) modular
curves of level N , and write Wr for the r-th Kuga-Sato variety over X1(N) as described for instance
in Section 2.1 and the appendix of [BDP1].

Let K be a quadratic imaginary field of dicriminant −dK , let OK be its ring of integers, and let
H denote the Hilbert class field of K. Choose once and for all a complex embedding K̄−→C, and
let A be a fixed elliptic curve defined over H satisfying EndH(A) ∼= OK . The generalised Heegner
cycles of [BDP1] are an infinite collection of codimension (r+ 1) cycles on the smooth projective
(2r+1)-dimensional variety

Xr := Wr × Ar.
To define them precisely, assume further that N is the norm of an ideal N for which OK/N ' Z/NZ
and let tA ∈ A[N] be a choice of N-torsion point on A. Following the moduli description of X1(N),
the pair (A, tA) corresponds to a complex point on C (defined, in fact, over an abelian extension of
K, relative to any of the standard models of C = X1(N) as a curve over Q). For obvious reasons, the
datum of the point tA on A of order N is sometimes referred to as a Γ1(N)-structure on A.

Consider the set of pairs (ϕ,A′), where ϕ : A−→A′ is an isogeny of A defined over K̄. Two pairs
(ϕ1, A

′
1) and (ϕ2, A

′
2) are said to be isomorphic if there is a K̄-isomorphism ι : A′1−→A′2 satisfying

ιϕ1 = ϕ2. Let
Isog(A) := {Isomorphism classes of pairs (ϕ,A′)}.

There is a natural bijection between this set and the set of finite subgroups of A(H̄). The absolute
Galois group GH = Gal(H̄/H) acts naturally on Isog(A) by acting on the corresponding subgroups
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and a pair (ϕ,A′) admits a representative defined over a field F ⊂ H̄ if it is fixed by the subgroup
GF ⊂ GH .

The generalised Heegner cycles are naturally indexed by the subset IsogN(A) of Isog(A) consisting
of pairs (ϕ,A′), where ϕ is an isogeny whose kernel intersects A[N] trivially. An element (ϕ,A′) ∈
IsogN(A) determines a point PA′ on C attached to the pair (A′, tA′ := ϕ(tA)), and an embedding

ιA′ : (A′)r−→Wr

of (A′)r as the fiber of Wr above the point PA′ relative to the natural projection Wr−→C. Given
(ϕ,A′) ∈ IsogN(A), let Υϕ be the codimension (r+1) cycle on Xr defined by letting Graph(ϕ) ⊂ A×A′
be the graph of ϕ, and setting

(3) Υϕ := Graph(ϕ)r ⊂ (A× A′)r '−→ (A′)r × Ar ⊂ Wr × Ar,
where the last inclusion is induced from the pair (ιA′ , id

r
A).

When r = 0, the cycle Υϕ is just the CM point on the modular curve C attached to the pair (A′, tA′).
The generalised Heegner cycle ∆ϕ attached to ϕ is then obtained by setting

(4) ∆ϕ := Υϕ −∞,
where ∞ is the standard cusp on X1(N) (although any fixed choice will do). This modification has
the effect of making the cycle ∆ϕ homologically trivial.

For general r, we obtain a homologically trivial cycle from Υϕ by setting

(5) ∆ϕ := εXΥϕ,

where εX is an idempotent in the ring of algebraic correspondences from Xr to itself, which is defined
as a product

(6) εX := εW εA

of two idempotents in the ring of correspondences on Wr and Ar respectively. We now briefly recall
the definition of the projectors εW and εA.

The projector εA. Let Sr denote the symmetric group on r letters. Multiplication by−1 on A, combined
with the natural permutation action of Sr on Ar, gives rise to an action of the wreath product

(7) Ξr := (µ2)r o Sr

on Ar. Let j : Ξr−→µ2 be the homomorphism which is the identity on µ2 and the sign character on
Sr, and let

(8) εA :=
1

2rr!

∑
σ∈Ξr

j(σ)σ ∈ Q[Aut(Ar)]

denote the associated idempotent in the rational group ring of Aut(Ar).
The projector εW . Translation by the sections of order N gives rise to an action of (Z/NZ)r on W ]

r (see
[BDP1, §2.1]) which extends to Wr by the canonical nature of the desingularisation. Let σa denote
the automorphism of Wr associated to a ∈ (Z/NZ)r, and let

(9) ε
(1)
W =

1

N r

∑
a∈(Z/NZ)r

σa

denote the corresponding idempotent in the rational group ring of (Z/NZ)r. Similarly, the group Ξr

of (7) can be viewed as a subgroup of Aut(Wr/C) acting on the fibers of the natural projection from

Wr to C. Let ε
(2)
W be the idempotent in the group ring Z[1/2r!][Aut(Wr/C)] which is defined by the
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same formula as in (8) with Ar replaced by Wr/C. The idempotents ε
(1)
W and ε

(2)
W commute, and we

define εW as the product

(10) εW = ε
(2)
W ε

(1)
W

in the ring of rational correspondences on Wr.
Since the correspondence εX is compatible with the projection πr : Xr−→C, the generalised Heegner

cycle ∆ϕ is supported on the fiber π−1
r (PA′) of πr above PA′ . As in the case where r = 0, it is also

homologically trivial. This follows from the fact that the image of ∆ϕ under the cycle class map
belongs to εXH

2r+2
dR (Xr/C), which is zero by [BDP1, Prop. 2.4]. Section 3 below gives a more explicit

description of a chain of real dimension 2r + 1 in Xr(C) having ∆ϕ as boundary, which will be used
in subsequent calculations.

2. Modular forms and de Rham cohomology

Let π : E−→C0 be the universal elliptic curve with level N structure over C0, and let ω := π∗Ω
1
E/C0

be the coherent sheaf of relative differentials on E/C0, extended to a coherent sheaf on C in the
standard way (cf. [BDP1, §1.1]). Let ωr be the r-th tensor power of this line bundle. The sheaf ω2 is
related to the sheaf Ω1

C(log cusps) of regular differentials on C with logarithmic poles at the cusps by
the Kodaira-Spencer isomorphism

(11) σ : ω2 ∼−→ Ω1
C(log cusps),

as described for instance in [BDP1, §1.1].
A (holomorphic) modular form of weight k = r+2 is a global section of the sheaf ωk, or–equivalently,

by (11)–of ωr⊗Ω1
C(log cusps) over C. The global sections of ωr⊗Ω1

C are called cusp forms. Let Mk(Γ)
and Sk(Γ) denote the complex vector spaces of modular forms and cusp forms on Γ, respectively.

The sheaf ω is a subsheaf of the relative de Rham cohomology sheaf on C defined by taking the
relative hypercohomology of the complex of sheaves

L1 := R1π∗(0→ OE → Ω1
E/C0 → 0),

and extending to C following the prescription given in [BDP1, §1.1]. The Hodge filtration gives rise
to an exact sequence of coherent sheaves over C:

(12) 0−→ω−→L1−→ω−1−→0.

The vector bundle L1 is also equipped with the canonical integrable Gauss-Manin connection

(13) ∇ : L1−→L1 ⊗ Ω1
C(log cusps),

and Poincaré duality on the fibres of L1 gives rise to a canonical pairing

(14) 〈 , 〉 : L1 × L1−→OC .

Let Lr := Symr L1 denote the r-th symmetric power of L1. The natural inclusion ωr−→Lr gives rise
to inclusions

(15) Sr+2(Γ) := H0(C, ωr ⊗ Ω1
C) ↪→ H0(C,Lr ⊗ Ω1

C).

The self-duality

(16) 〈 , 〉 : Lr × Lr−→OC
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induced by (14) is given by the rule

(17) 〈α1 · · ·αr, β1 · · · βr〉 =
1

r!

∑
σ∈Sr

〈α1, βσ(1)〉 · · · 〈αr, βσ(r)〉.

We will also have use for further coherent sheaves of OC-modules arising in the cohomology of the
fibers for the natural projection Xr−→C,

(18) Lr,r = Lr ⊗ SymrH1
dR(A).

Note that Lr,r is also equipped with the self-duality

(19) 〈 , 〉 : Lr,r × Lr,r−→OC
arising from (17), which is discussed in more details in [BDP1, §2.2].

As explained in [BDP1, §1.1], all the notions introduced so far in this section are purely algebraic
and make sense over an arbitrary field over which the modular curve C can be defined. In the present
note we are interested solely in their complex incarnations. The set C(C) of complex points of C is a
compact Riemann surface, and the analytic map

pr : H−→C0(C), pr(τ) :=

(
C/〈1, τ〉, 1

N

)
identifies C0(C) with the quotient Γ\H, where we recall that Γ = Γ1(N). The coherent sheaf Lr gives
rise to an analytic sheaf Lan

r on the Riemann surface C(C); let L̃an
r := pr∗ Lan

r denote its pullback to
H.

Recall the elliptic fibration π : E−→C0, and let

LB1 := R1π∗Z, LBr := Symr LB1 ,

be the locally constant sheaves of Z-modules whose fibers at x ∈ C0(C) are identified with the Betti
cohomology H1

B(Ex,Z) and SymrH1
B(Ex,Z) respectively. The local system

(20) Lr := LBr ⊗ZC

is identified with the sheaf of horizontal sections of (Lan
r ,∇) over C0(C). (Cf. [De1], thm. 2.17.)

Likewise, let

(21) Lr,r := Lr⊗ SymrH1
dR(A/C)

denote the sheaf of locally constant sections (again, for the complex topology on C0(C)) of the sheaf
Lr,r.

A modular form ωf ∈Mk(Γ) gives rise to a holomorphic function on the upper half plane H by the
rule

(22) ωf (τ) = f(τ)(2πidw)r+2 = f(τ)(2πidw)r ⊗ (2πidτ),

where w is the standard complex coordinate on the elliptic curve C/〈1, τ〉. This function obeys the
familiar transformation rule

(23) f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), for all

(
a b
c d

)
∈ Γ1(N),

and the modular form ωf is completely determined by the associated function f(τ).
The Hodge filtration on H1

dR(C/〈1, τ〉) admits a canonical, functorial (but not holomorphic) splitting

(24) H1
dR(C/〈1, τ〉) := Cdw ⊕Cdw̄,
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called the Hodge decomposition. In terms of the coordinates τ , dw, and dw̄, one has

(25) ∇dw =

(
dw − dw̄
τ − τ̄

)
dτ, σ((2πidw)2) = 2πidτ.

(See [BDP1, §1.2] for the details of these calculations.)

3. Homological triviality

All Chow groups will henceforth be taken with rational coefficients, so that they consist of Q-linear
combinations of cycles modulo rational equivalence.

The goal of this section is to express the generalised Heegner cycles ∆ϕ as the boundaries of explicit
(2r + 1)-dimensional topological chains in X0

r (C). Such a calculation will be useful in calculating the
images of these cycles under the complex Abel-Jacobi map.

Let W 0
r := Wr ×C C0 and X0

r = Xr ×C C0 denote the complements in Wr and Xr respectively of
the fibers above the cusps of C. Let W̃r be the r-fold product of the universal elliptic curve over the
upper half-plane H. It is isomorphic as an analytic variety to the quotient Z2r\(Cr ×H), where Z2r

acts on Cr ×H by the rule

(26) (m1, n1, . . . ,mr, nr)(w1, . . . , wr, τ) := (w1 +m1 + n1τ, . . . , wr +mr + nrτ, τ).

Finally, let

X̃r = W̃r × Ar(C).

It follows from these definitions that

W 0
r (C) = Γ\W̃r, X0

r (C) = Γ\X̃r,

where Γ acts on W̃r by the rule

(27)

(
a b
c d

)
(w1, . . . , wr, τ) =

(
w1

cτ + d
, . . . ,

wr
cτ + d

,
aτ + b

cτ + d

)
,

and acts trivially on Ar(C). Write pr for the natural Γ-covering maps X̃r−→X0
r (C) and H−→C0(C),

and let π̃r be the natural fibering π̃r : X̃r−→H. These maps fit into the cartesian diagram

X̃r
pr //

π̃r

��

X0
r (C)

πr
��

H pr // C0(C).

Given (ϕ,A′) ∈ IsogN(A), set t′ := ϕ(tA), so that ϕ : (A, tA)−→(A′, t′) is an isogeny of elliptic
curves with Γ-level structure, in the obvious sense. Let PA′ be the point of C0(C) associated to the
pair (A′, t′). The main result of this section, which directly implies the homological triviality of ∆ϕ, is
the following:

Proposition 3.1. Assume r > 0. Then there exists a topological cycle ∆̃ϕ on X̃r satisfying

(1) The pushforward pr∗(∆̃ϕ) satisfies

pr∗(∆̃ϕ) = ∆ϕ + ∂ξ,

where ξ is a topological 2r + 1-chain supported on π−1
r (PA′).

(2) The cycle ∆̃ϕ is homologically trivial on X̃r.



GENERALISED HEEGNER CYCLES AND THE COMPLEX ABEL-JACOBI MAP 7

Proof. Choose a point τA′ ∈ H such that pr(τA′) = PA′ . Since pr induces an isomorphism between
π̃−1
r (τA′) and π−1

r (PA′), the choice of τA′ determines cycles Υ \ϕ and ∆\
ϕ on X̃r supported on π̃−1

r (τA′)
and satisfying

(28) pr∗(Υ
\
ϕ) = Υϕ, pr∗(∆

\
ϕ) = ∆ϕ.

These cycles need not be homologically trivial on X̃r. In fact, since H is contractible, the inclusion

iτA′ : π̃−1
r (τA′)−→X̃r

induces an isomorphism

(29) iτA′∗ : H2r(π̃
−1
r (τA′),Q)

∼−→ H2r(X̃r,Q),

and the classes [Υ \ϕ] and [∆\
ϕ] of Υ \ϕ and ∆\

ϕ in H2r(X̃r,Q) are identified with those of Υϕ and ∆ϕ in
H2r((A

′ × A)r(C),Q).
The fundamental group Γ of C0 acts naturally on H2r(X̃r,Q), and the kernel of the pushforward

map

pr∗ : H2r(X̃r,Q)−→H2r(X
0
r (C),Q)

contains the module IΓH2r(X̃r,Q), where IΓ is the augmentation ideal in the rational group ring Q[Γ].
Note that the projector εX of (6) acts naturally on H2r(X̃r,Q) and that [∆\

ϕ] = εX [Υ \ϕ] belongs to

εXH2r(X̃r,Q).

Lemma 3.2. For all r ≥ 1,

εXH2r(X̃r,Q) = SymrH1(E ,Q)⊗ SymrH1(A(C),Q) ⊂ IΓH2r(X̃r,Q).

Proof. Since multiplication by (−1) acts as −1 on H1
dR(A/F ) and as 1 on H0

dR(A/F ) and H2
dR(A/F ),

it follows that εA annihilates all the terms except H1
dR(A/F )⊗r in the Künneth decomposition

(30) H∗dR(Ar/F ) =
⊕

(i1,...,ir)

H i1
dR(A/F )⊗ · · · ⊗H ir

dR(A/F ),

(where the direct sum is taken over all r-tuples (i1, . . . , ir) with 0 ≤ ij ≤ 2). The natural action of
Sr on H1

dR(A/F )⊗r corresponds to the geometric permutation action of Sr on Ar, twisted by the sign
character. It follows that the restriction of εA to H1

dR(A/F )⊗r induces the natural projection onto the
space SymrH1

dR(A/F ) of symmetric tensors. A similar argument applies to the projector εW and its

action on the homology of the fibers of the natural projection X̃r−→H. The first equality follows.
The second containment is a consequence of the fact that

(SymrH1(E ,Q)⊗ SymrH1(A(C),Q))⊗Q C = Lr,r,

where Lr,r is the local system of (21), and that the representation of Γ associated to this local system is
isomorphic to a direct sum of r+1 copies of the r-th symmetric power of the standard two-dimensional
representation of Γ. Each of these copies is irreducible and, since r > 0, is non-trivial and hence has
a trivial space of Γ-coinvariants. �

It now follows from Lemma 3.2 that

[∆ϕ] = pr∗([∆
\
ϕ]) ∈ pr∗(IΓH2r(X̃r,Q)) = 0,

and therefore ∆ϕ is homologically trivial. �



8 MASSIMO BERTOLINI, HENRI DARMON, DAVID LILIENFELDT & KARTIK PRASANNA

To produce the cycle ∆̃ϕ of Proposition 3.1 explicitly, let

(31) [∆\
ϕ] =

t∑
j=1

(γ−1
j − 1)Zj,

γ1, . . . , γt ∈ Γ,

Z1, . . . , Zt ∈ H2r(X̃r,Q)

be an expression of [∆\
ϕ] as an element of IΓH2r(X̃r,Q). Letting Z(τ, Z) denote any topological

2r-cycle supported on π̃−1
r (τ) and determined by the class of Z ∈ H2r(X̃r,Q) via (29), define:

(32) ∆̃ϕ :=
t∑

j=1

(
Z(γjτA′ , Zj)−Z(τA′ , Zj)

)
.

It is then straightforward to check that ∆̃ϕ has the required properties. For example, the homological

triviality of ∆̃ϕ follows from the fact that

(33) ∆̃ϕ = ∂∆̃]
ϕ, with ∆̃]

ϕ :=
t∑

j=1

Z(τA′ → γjτA′ , Zj),

where

(34) Z(τA′ → γjτA′ , Zj) := path(τA′ → γjτA′)× Zj
and path(τA′ → γjτA′) is any continuous path on H joining τA′ to γjτA′ . Note that in (34) we have

identified X̃r(C) with H× (C2r/Z4r).

Remark 3.3. Yet another approach to proving the homological triviality of ∆ϕ, by deforming these
cycles to the fibers supported above the cusps of the modular curve, is described in [Sch]. The approach
we have given adapts more readily to the setting of Shimura curves attached to arithmetic subgroups
of SL2(R) with compact quotient.

Remark 3.4. A decomposition as in (31) with Z1, . . . , Zt ∈ H2r(X̃r,Z) is said to be integral. Such a
decomposition may not always be possible, owing to the possible presence of torsion in H2r(X

0
r (C),Z).

But it may be obtained after replacing [∆\
ϕ] by a suitable integer multiple. In the rest of this note,

when the image of ∆ϕ under the complex Abel-Jacobi map is computed, it will be tacitly assumed that
the Zi do belong to this integral lattice.

4. The complex Abel-Jacobi map

The complex Abel-Jacobi map is a function from the Chow group CHr+1(Xr)0(C) into a complex
torus:

AJC : CHr+1(Xr)0(C)−→Jr+1(Xr/C) =
Filr+1H2r+1

dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
,

where the superscript ∨ denotes the dual of complex vector spaces, and ImH2r+1(Xr(C),Z) is viewed
as a sublattice of Filr+1H2r+1

dR (XrC)∨, via integration of closed differential (2r + 1)-forms against
singular integral homology classes of dimension 2r + 1. The linear functional AJC(∆) is defined by
choosing a continuous integral (2r+1)-chain ∆] on Xr(C) whose boundary ∂(∆]) is equal to ∆, and
setting

(35) AJC(∆)(α) =

∫
∆]

α, for all α ∈ Filr+1H2r+1
dR (Xr/C).
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We will be solely interested in the piece of the Abel-Jacobi map that survives after applying the
projector εX defined in (6). By [BDP1, Prop. 2.4],

(36) εX Filr+1 H2r+1
dR (Xr/C) = Filr+1 H1

par(C,Lr,r,∇) = H0(C, ωr ⊗ Ω1
C)⊗ SymrH1

dR(A/C).

This allows us to view AJC as a map

AJC : εX CHr+1(Xr)0(C)−→(Sr+2(Γ)⊗ SymrH1
dR(A/C))∨

Πr,r

,

where the lattice Πr,r is defined by

(37) Πr,r := εX(ImH2r+1(Xr(C),Z)).

5. Global primitives

We will follow the notations that were introduced in Section 2 and in the proof of Proposition 3.1.
Let

L̃r := pr∗(Lr), L̃r,r := pr∗(Lr,r), L̃r := pr∗(Lan
r ), L̃r,r := pr∗(Lan

r,r)

denote the pullbacks via the analytic projection pr. The local systems L̃r and L̃r,r are trivial, i.e., they

admit a basis of global sections over H. In other words, if θ is an element of the fiber L̃r,r(τ) of L̃r,r
at τ ∈ H, then there is a unique global horizontal section θ∇ ∈ H0(H, L̃r,r)∇=0 satisfying θ∇(τ) = θ.

More generally, if L is any vector bundle over C0 equipped with an integrable connection and L
denotes the corresponding local system, we will write L̃ := pr∗(L) and L̃ := pr∗(Lan), and define global
primitives in the following way:

Definition 5.1. Let ω be a global section of L ⊗ Ω1
C over C0. A primitive of ω is an element

F ∈ H0(H, L̃) satisfying
∇F = pr∗(ω).

Such a primitive always exists, and is well-defined up to elements of the space of global horizontal
sections of L̃ over H.

Definition 5.2. An L-valued divisor on C is a finite formal linear combination of the form
∑t

j=1 θj ·Pj
with Pj ∈ C(C) and θj ∈ L(Pj). The module of all such divisors is denoted Div(C,L).

One defines the notion of a L̃-valued divisor on H in a similar way. The analytic projection pr :
H−→C0(C) induces the natural push-forward map pr∗ : Div(H, L̃)−→Div(C,L).

Given G ∈ H0(H, L̃r,r) and D =
∑t

j=1 θj · τj ∈ Div(H, L̃r,r), the “value” of G at D is defined by the
rule:

[G,D] :=
t∑

j=1

〈G(τj), θj〉,

where the pairing 〈 , 〉 on the right is the duality on the fibers at τj of the local system L̃r,r induced
by the pairing of equation (19).

ForD =
∑t

j=1 θj·τj as above, the coefficient θj belongs to L̃r,r(τj) by definition, i.e., to SymrH1
dR(Eτj)⊗

SymrH1
dR(A), where Eτj denotes the fibre at τj of the pull-back of E to H by pr. Calculations similar

to those in the proof of Lemma 3.2 identify L̃r,r(τj) with εXH
2r
dR(π̃−1

r (τj)). Moreover, since H is con-

tractible, the inclusion of π̃−1
r (τj) in X̃r induces a canonical isomorphism ofH2r

dR(X̃r) ontoH2r
dR(π̃−1

r (τj)),
and hence a canonical identification

(38) εXH
2r
dR(X̃r) = L̃r,r(τj).
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In view of these remarks, the degree of an L̃r,r-valued divisor on H can be defined by the equation

deg

(
t∑

j=1

θj · τj

)
:=

t∑
j=1

θj ∈ εXH2r
dR(X̃r).

A similar definition could be made for Lr,r-valued divisors on C0, with the degree map taking values
in εXH

2r
dR(Xr). Note that when r > 0, this target group is trivial by [BDP1, Prop. 2.4] and hence

every Lr,r-valued divisor on C0 (or on C) is of degree 0.
Given τ ∈ H or P ∈ C0, let

clτ : CHr(Erτ × Ar)−→L̃r,r(τ), clP : CHr(ErP × Ar)−→Lr,r(P )

denote the (εX-components of the) cycle class maps on the associated fibers. The first map is defined
by composing the usual cycle class map with isomorphism (38). The second map is defined in terms

of the first by identifying EP with Eτ and Lr,r(P ) with L̃r,r(τ) if P = pr(τ).
The cycle ∆\

ϕ that was introduced in equation (28) in the proof of Proposition 3.1 gives rise to the

L̃r,r-valued divisor (which shall be denoted by the same symbol, by abuse of notation):

∆\
ϕ = clτA′ (∆

\
ϕ) · τA′ .

Note that pr∗(∆
\
ϕ) = clPA′ (∆ϕ) · PA′ , but that ∆\

ϕ is not of degree 0. By abuse of notation, we will

identify the cycle ∆̃ϕ defined in equation (32) with the corresponding degree zero divisor on H with

values in L̃r,r given by

(39) ∆̃ϕ :=
t∑

j=1

(
clγjτA′ (Zj) · (γjτA′)− clτA′ (Zj) · τA′

)
.

Let ωf ∈ Sr+2(Γ) be a cusp form, viewed as an element of H0(C,Lr⊗Ω1
C). We remark that given α ∈

SymrH1
dR(A/C), a primitive of ωf ∧α ∈ H0(C,Lr,r⊗Ω1

C) is given by Ff ∧α, where Ff is a primitive of
ωf . This is because α is a horizontal section of the trivial bundle SymrH1

dR(A) = SymrH1
dR(A×C/C)

over C that arises in the identification Lr,r = Lr ⊗ SymrH1
dR(A/C).

The following proposition gives an explicit formula for AJC(∆ϕ) in terms of this divisor and a
primitive of ωf .

Proposition 5.3. For all f ∈ Sr+2(Γ) and all α ∈ SymrH1
dR(A/C),

(40) AJC(∆ϕ)(ωf ∧ α) = [Ff ∧ α, ∆̃ϕ] (mod Πr,r),

where Ff is any primitive of ωf .

Remark 5.4. Both sides in (40) are to be viewed as belonging to the complex vector space (Sr+2(Γ)⊗
SymrH1

dR(A/C))∨, the equality being up to an element of the lattice Πr,r in this vector space. Note also

that the right hand side of (40) depends on the choice of a degree 0 divisor ∆̃ϕ satisfying pr∗(∆̃ϕ) = ∆ϕ,
but only up to an element of Πr,r.

Proof of Proposition 5.3. Recall the (2r+1)-cycle ∆̃]
ϕ arising in equation (33). The definition of AJC

and Proposition 3.1, combined with Fubini’s theorem, imply the equalities

AJC(∆ϕ)(ωf ∧ α) =

∫
pr∗(∆̃

]
ϕ)

ωf ∧ α =

∫
∆̃]
ϕ

pr∗ ωf ∧ α (mod Πr,r)

=
t∑

j=1

∫ γjτA′

τA′

〈pr∗ ωf ∧ α, θ∇Zj〉 (mod Πr,r),
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where θ∇Zj is the horizontal section of L̃r,r whose value at τA′ is equal to clτA′ (Zj), and the integral is

taken over any continuous path in H joining τA′ to γjτA′ . (Note the independence on the choice of
paths, which follows from the fact that the expressions 〈pr∗ ωf ∧α, θ∇Zj〉 are holomorphic one-forms on

H.) Since θ∇Zj is horizontal, it follows from the definition of the Gauss-Manin connection that

〈pr∗ ωf ∧ α, θ∇Zj〉 = 〈∇Ff ∧ α, θ∇Zj〉 = d〈Ff ∧ α, θ∇Zj〉.
Hence Stokes’ theorem yields the equalities modulo Πr,r

AJC(∆ϕ)(ωf ∧ α) =
t∑

j=1

(
〈Ff (γjτA′) ∧ α, θ∇Zj〉 − 〈Ff (τA′) ∧ α, θ

∇
Zj
〉
)

=
t∑

j=1

(
[Ff ∧ α, clγjτA′ (Zj) · (γjτA′)]− [Ff ∧ α, clτA′ (Zj) · τA′ ]

)
= [Ff ∧ α, ∆̃ϕ],

as was to be shown. �

Remark 5.5. The expression on the right of Proposition 5.3 is independent of the choice of primitive
Ff for ωf . This is because the primitive Ff ∧ α is well-defined up to addition of global horizontal

sections of the sheaf L̃r,r over H. If θ is such a horizontal section, we have

[θ, ∆̃ϕ] = 〈θ, deg ∆̃ϕ〉 = 0.

Note that this independence ceases to hold if ∆̃ϕ is replaced by ∆\
ϕ, because the latter divisor is not

of degree 0.

6. Calculation of the primitive

We now turn to the explicit calculation of the primitive Ff that appears in Proposition 5.3. Let
p1 and pτ denote the elements of H1(Eτ ,Q) corresponding to a closed path from 0 to 1 and from 0
to τ respectively along the fiber Eτ = C/〈1, τ〉. Write η1 and ητ for the associated basis of H1

dR(Eτ ),
satisfying

(41) 〈ω, η1〉 =

∫
p1

ω, 〈ω, ητ 〉 =

∫
pτ

ω, for all ω ∈ H1
dR(Eτ ).

After writing w for the natural holomorphic coordinate on Eτ , the values of 〈dw, ξ〉 and 〈dw̄, ξ〉 for
various classes ξ are summarised in the following table:

(42)
dw dw̄ η1 ητ

dw 0 −1
2πi

(τ − τ̄) 1 τ
dw̄ 1

2πi
(τ − τ̄) 0 1 τ̄

It follows directly from this table that

(43) 2πidw = τη1 − ητ , 2πidw̄ = τ̄ η1 − ητ ,
and that

(44) 〈dwr, ηjτη
r−j
1 〉 = τ j.

It will be convenient to work with the basis for H1
dR(Eτ ) given by setting

(45) ω = 2πidw, η =
dw̄

τ̄ − τ
.
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The class η is completely determined (relative to ω) by the conditions

η ∈ H0,1
dR(Eτ ), 〈ω, η〉 = 1.

A basis for H0(H, L̃r) is given by the expressions ωjηr−j, as 0 ≤ j ≤ r.

Proposition 6.1. Choose a base point τ0 ∈ H, and let ω, η be given by (45). The section Ff of L̃r
over H satisfying

〈Ff (τ), ωjηr−j〉 =
(−1)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

τ0

(z − τ)j(z − τ̄)r−jf(z)dz, (0 ≤ j ≤ r)

is a primitive of ωf .

Proof. By definition of the Gauss-Manin connection, since the sections ηjτη
r−j
1 are horizontal,

(46) d〈Ff , ηjτη
r−j
1 〉 = 〈∇Ff , ηjτη

r−j
1 〉 = 〈pr∗ ωf , η

j
τη

r−j
1 〉.

By formula (22) for pr∗ ωf , this last expression is equal to

(47) 〈pr∗ ωf , η
j
τη

r−j
1 〉 = (2πi)r+1〈f(τ)dwr, ηjτη

r−j
1 〉dτ = (2πi)r+1f(τ)τ jdτ.

Combining (46) and (47) and integrating the resulting identity with respect to τ , we find (after fixing
some τ0 ∈ H) that the global section of L̃r over H defined by the rule

(48) 〈Ff , ηjτη
r−j
1 〉 = (2πi)r+1

∫ τ

τ0

f(z)zjdz, (0 ≤ j ≤ r)

is a global primitive of ωf . The defining relation (48) implies that, for all homogenous polynomials
P (x, y) of degree r,

〈Ff , P (ητ , η1)〉 = (2πi)r+1

∫ τ

τ0

f(z)P (z, 1)dz.

After noting from (42) that

ωjηr−j = Q(ητ , η1), with Q(x, y) =
(−1)j

(2πi(τ − τ̄))r−j
(x− τy)j(x− τ̄ y)r−j,

we obtain

〈Ff , ωjηr−j〉 =
(−1)j(2πi)r+1

(2πi(τ − τ̄))r−j

∫ τ

τ0

(z − τ)j(z − τ̄)r−jf(z)dz,

as was to be shown. �

Remark 6.2 (Relation with the Shimura-Maass operator). Recall the Shimura-Maass differential
operator δr defined by

(49) δrf(τ) :=
1

2πi

(
d

dτ
+

r

τ − τ̄

)
f(τ),

which maps real analytic modular forms of weight r to real analytic modular forms of weight r + 2.
The real analytic functions Gj on H defined by the rule

Gj(τ) := 〈Ff (τ), ωjηr−j〉 =
(−1)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

τ0

(z − τ)j(z − τ̄)r−jf(z)dz

satisfy

(50) δrG0(τ) = f(τ), δr−2jGj(τ) = jGj−1(τ), for all 1 ≤ j ≤ r.
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For example, the integrand in the expression defining G0 is antiholomorphic in τ , and therefore

δrG0(τ) =
1

2πi

(
d

dτ
+

r

τ − τ̄

)
2πi

(τ − τ̄)r

∫ τ

τ0

(z − τ̄)rf(z)dz

=
−r

(τ − τ̄)r+1

∫ τ

τ0

(z − τ̄)rf(z)dz +
1

(τ − τ̄)r
(τ − τ̄)rf(τ) +

r

(τ − τ̄)r+1

∫ τ

τ0

(z − τ̄)rf(z)dz

= f(τ).

A similar direct calculation proves (50) for all 1 ≤ j ≤ r.
An analogous formula in the p-adic context, with δr replaced by the operator θ = q d

dq
on p-adic

modular forms, is proved in [BDP1, Prop. 3.24]. The reader may find it instructive to compare (50)
with its p-adic analogue given in equation (3.8.6) of [BDP1].

7. Integral primitives

Propositions 5.3 and 6.1 yield a formula for AJC(∆ϕ), but this formula is not as explicit as one could

desire, because it requires evaluating the primitives Ff ∧ α on the divisor ∆̃ϕ instead of the simpler
divisors ∆\

ϕ which are supported on a single point τA′ (but are not of degree 0). We will now study

the relation between [Ff ∧α, ∆̃ϕ] and [Ff ∧α,∆\
ϕ]. Given Z ∈ L̃r(τ) = H0(H, L̃r)∇=0, let PZ ∈ C[x, y]

be the homogenous polynomial of degree r satisfying

Z = PZ(ητ , η1).

Lemma 7.1. Let Ff be the primitive of f given in Proposition 6.1. Then for all γ ∈ Γ,

(51) 〈Ff (γτ), Z〉 − 〈γFf (τ), Z〉 = (2πi)r+1

∫ γτ0

τ0

PZ(z, 1)f(z)dz.

Proof. By (48),

(52) 〈Ff (γτ), Z〉 = (2πi)r+1

∫ γτ

τ0

PZ(z, 1)f(z)dz.

The fact that f is a modular form of weight r + 2 on Γ, coupled with the fact that PZ is homogenous
of degree r, shows that

PZ(γw, 1)f(γw)d(γw) = Pγ−1Z(w, 1)f(w)dw.

Therefore

(53) 〈γFf (τ), Z〉 = 〈Ff (τ), γ−1Z〉 = (2πi)r+1

∫ τ

τ0

Pγ−1Z(z, 1)f(z)dz = (2πi)r+1

∫ γτ

γτ0

PZ(z, 1)f(z)dz.

The lemma follows from (52) and (53). �

Note in particular that the global section τ 7→ Ff (γτ)− γFf (τ) does not depend on τ , and can be

viewed as a horizontal section of L̃r over H. The function κFf defined on Γ by

κFf (γ) := Ff (γτ)− γFf (τ)

is a one-cocycle on Γ with values in

H0(H, L̃r)∇=0 = L̃r(τ) ' Lr(C),

where Lr(C) is the space of homogenous polynomials of degree r in two variables with complex
coefficients, equipped with its natural action of Γ. The class of κFf in H1(Γ, Lr(C)) depends only on
the differential ωf and not on the choice of primitive Ff . This class will therefore be denoted by κf .
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We briefly recall the definition of the period lattice in the space Sr+2(Γ)∨. Let Lr(Q) and Lr(Z)
be the rational structure and lattice in Lr(C) obtained by considering the polynomials with rational
and integer coefficients respectively, and let Lr(Z)∨ ⊂ Lr(Q) be the dual lattice relative to the inner
product on Lr(C) = Lr(τ) arising from equation (17). After choosing a basis f1, . . . , fg for Sr+2(Γ),
and a Z-module basis κ1, . . . , κ2g for H1

par(Γ, Lr(Z)∨), let (λij) be the g × 2g matrix with complex
entries satisfying

κf1 = λ1,1κ1 + · · ·+ λ1,2gκ2g,

κf2 = λ2,1κ1 + · · ·+ λ2,2gκ2g,(54)

...
...

...

κfg = λg,1κ1 + · · ·+ λg,2gκ2g.

For each 1 ≤ j ≤ 2g, let φj ∈ Sr+2(Γ)∨ be the element defined by the rule

φj(fi) = λi,j.

Definition 7.2. The period lattice attached to Sr+2(Γ), denoted Λr, is the Z-submodule of Sr+2(Γ)∨

generated by the vectors φ1, . . . , φ2g.

Eichler-Shimura theory (cf. [Shi, §8.4]) asserts that Λr is indeed a lattice (of rank 2g) in the complex
vector space Sr+2(Γ)∨, justifying this terminology. Note that the module Λr does not depend on the
choices of complex basis for Sr+2(Γ) and of integral basis for H1

par(Γ, Lr(Z)∨) that were made to define
it.

Let F1, . . . , Fg be arbitrarily chosen primitives of ωf1 , . . . , ωfg , and let κ̃1, . . . , κ̃2g be a choice of
one-cocycles on Γ representing κ1, . . . , κ2g. The linear equations (54) defining the period lattice imply
that there exist vectors ξ1, . . . , ξg ∈ Lr(C) such that, for all γ ∈ Γ and all τ ∈ H:

κF1(γ) = λ1,1κ̃1(γ) + · · ·+ λ1,2gκ̃2g(γ) + (γξ1 − ξ1),

κF2(γ) = λ2,1κ̃1(γ) + · · ·+ λ2,2gκ̃2g(γ) + (γξ2 − ξ2),(55)

...
...

...

κFg(γ) = λg,1κ̃1(γ) + · · ·+ λg,2gκ̃2g(γ) + (γξg − ξg).

After replacing Fj by Fj + ξj (viewing the ξj as elements of H0(H, L̃r)∇=0), we obtain a new collection
of primitives satisfying the following relation, for all γ ∈ Γ and τ ∈ H:

F1(γτ)− γF1(τ) = λ1,1κ̃1(γ) + · · ·+ λ1,2gκ̃2g(γ),

F2(γτ)− γF2(τ) = λ2,1κ̃1(γ) + · · ·+ λ2,2gκ̃2g(γ),(56)

...
...

...

Fg(γτ)− γFg(τ) = λg,1κ̃1(γ) + · · ·+ λg,2gκ̃2g(γ).

Definition 7.3. A collection of integral primitives is a choice of a primitive Fj of fj for each j = 1, . . . , g
satisfying (56).

A collection of integral primitives determines, by linearity, a primitive Ff of f for each f ∈ Sr+2(Γ).
The primitive Ff arising from such a choice will be called an integral primitive of ωf .

Lemma 7.4. Let f 7→ Ff be a choice of integral primitives of f . For each γ ∈ Γ and v ∈ Lr(Z), the
assignment

f 7→ 〈Ff (γτ)− γFf (τ), v〉
belongs to Λr ⊂ Sr+2(Γ)∨.
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Proof. This follows directly from (56) in light of the fact that the scalars

〈κ̃1(γ), v〉, . . . , 〈κ̃2g(γ), v〉
are integers. �

By definition, the Z-module
Λr,r := Λr ⊗ SymrH1(A(C),Z)

is a lattice in Sr+2(Γ)∨ ⊗ SymrH1
dR(A/C)∨ = Filr+1 εXH

2r+1
dR (Xr)

∨. It is commensurable with the
lattice Πr,r appearing in (37). After eventually replacing Λr,r by a larger lattice, we may therefore
assume that Λr,r contains Πr,r. This assumption allows us to replace Πr,r by Λr,r in the arguments to
follow.

Lemma 7.4 implies:

(57) 〈Ff (γτ) ∧ α,Z〉 = 〈Ff (τ) ∧ α, γ−1Z〉 (mod Λr,r),

for all Z ∈ Lr(Z) ⊗ SymrH1(A,Z). (Where now both f and α are treated as variables, and the
equality is viewed as taking place in Filr+1 εXH

2r+1
dR (Xr/C)∨.)

The Abel-Jacobi image of generalised Heegner cycles can be expressed more simply in terms of
integral primitives, as follows:

Proposition 7.5. Let f 7→ Ff be a choice of integral primitives, and let ∆ϕ be a generalised Heegner
cycle attached to ϕ : A−→A′. Then

AJC(∆ϕ)(ωf ∧ α) = 〈Ff (τA′) ∧ α, clτA′ (∆
\
ϕ)〉 (mod Λr,r),

where the pairing is the natural one on L̃r,r(τA′).

Proof. By Proposition 5.3 combined with the formula (32) for ∆̃ϕ,

AJC(∆ϕ)(ωf ∧ α) = [Ff ∧ α, ∆̃ϕ] (mod Λr,r)

=
t∑

j=1

〈Ff (γjτA′) ∧ α,Zj〉 − 〈Ff (τA′) ∧ α,Zj〉 (mod Λr,r)

=
t∑

j=1

〈Ff (τA′) ∧ α, γ−1
j Zj〉 − 〈Ff (τA′) ∧ α,Zj〉 (mod Λr,r)

= 〈Ff (τA′) ∧ α,
t∑

j=1

(γ−1
j − 1)Zj〉 (mod Λr,r),

where we have used (57) in deriving the penultimate equality. Proposition 7.5 now follows from
equation (31) for the class of ∆\

ϕ. �

Proposition 7.6. With the same notations as in Proposition 7.5,

AJC(∆ϕ)(ωf ∧ α) = 〈ϕ∗Ff (τA′), α〉A (mod Λr,r),

where the pairing 〈 , 〉A on the right is the Poincaré duality on SymrH1
dR(A/C).

Proof. Let
% := (ϕr, idr) : Ar−→Υϕ ⊂ (A′)r × Ar.

Note that
%∗(Ff (τA′) ∧ α) = ϕ∗(Ff (τA′)) ∧ α, %([Ar]) = clτA′ (Υ

\
ϕ),
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where [Ar] ∈ H0
dR(Ar/C) is the fundamental class associated to the variety Ar. Let

〈 , 〉A,j : H2r−j
dR (Ar/C)×Hj

dR(Ar/C)−→H2r(Ar/C) = C

denote the Poincaré pairing, so that the restriction of 〈 , 〉A,r to SymrH1
dR(A/C) ⊂ Hr

dR(A/C) agrees
with 〈 , 〉A. Observe that

(58) 〈Ff (τA′) ∧ α, clτA′ (∆
\
ϕ)〉 = 〈Ff (τA′) ∧ α, clτA′ (Υ

\
ϕ)〉 = 〈Ff (τA′) ∧ α, %([Ar])〉.

The functoriality properties of the Poincaré pairing imply that

〈Ff (τA′) ∧ α, %([Ar])〉 = 〈%∗(Ff (τA′) ∧ α), [Ar]〉A,0
= 〈ϕ∗(Ff (τA′)) ∧ α, [Ar]〉A,0 = 〈ϕ∗(Ff (τA′)), α〉A.(59)

Proposition 7.6 follows by combining Proposition 7.5 with (58) and (59). �

8. Modular symbols

Propositions 7.5 and 7.6 gain in explicitness because they involve the divisor ∆\
ϕ supported on a

single point, rather that the more complicated divisor (31) which is given in terms of a (non-canonical)
expression for the class of ∆\

ϕ as an element of IΓH2r(X̃r,Q). The price one pays is that it becomes
necessary to work with integral primitives rather than arbitrary primitives.

In the case of a group like Γ1(N) containing parabolic elements, an integral primitive can be defined
explicitly by invoking the theory of modular symbols. More precisely, let us define primitives Ff of ωf
by allowing the base point τ0 appearing in Proposition 6.1 to tend to a cusp. The integrals appearing
in Proposition 6.1 still converge, by the cuspidality of f . Furthermore, the right-hand term appearing
in (51) is of the form

Js,t,P (f) := (2πi)r+1

∫ t

s

P (z)f(z)dz, with s, t ∈ P1(Q), P (x) ∈ Z[x]deg=r.

Let Λ′r denote the Z-module generated by Λr and the functionals Js,t,P in the complex vector space
Sr+2(Γ)∨. The following theorem is the basis for the theory of “modular symbols” attached to modular
forms of higher weight.

Proposition 8.1. The group Λ′r is a sublattice of Sr+2(Γ)∨ which contains Λr with finite index.

Proof. The proof of this theorem can be found, for instance, in Proposition 3.5 of [Sch]. (The statement
and proof are given there for r = 2, i.e., forms of weight 4, but no serious modification is required to
handle the case of general r.) �

After replacing the period lattice Λr by the possibly slightly larger lattice Λ′r, and redefining Λr,r

accordingly, we obtain Theorem 8.2 below on the complex Abel-Jacobi images of generalised Heegner
cycles, which is one of the two main results of this paper. Because the formula is given modulo a larger
lattice, it is slightly less precise, but has the virtue of being more explicit and amenable to numerical
calculation.

Theorem 8.2. Let

ϕ : A−→C/〈1, τ〉
be an isogeny of degree dϕ = deg(ϕ), satisfying

ϕ(tA) =
1

N
, ϕ∗(2πidw) = ωA,
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and let ∆ϕ be the associated generalised Heegner cycle on Xr. Then

(60) AJC(∆ϕ)(ωf ∧ ωjAη
r−j
A ) =

(−dϕ)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

i∞
(z − τ)j(z − τ̄)r−jf(z)dz (mod Λr,r).

Proof. Let Ff be the integral primitive of ωf obtained by setting τ0 = i∞. By Proposition 7.6,

(61) AJC(∆ϕ)(ωf ∧ ωjAη
r−j
A ) = 〈ϕ∗Ff (τ), ωjAη

r−j
A 〉A (mod Λr,r).

But letting ω′, η′ ∈ H1
dR(C/〈1, τ〉) be defined by

ω′ = 2πidw, η′ ∈ H0,1
dR (C/〈1, τ〉), 〈ω′, η′〉 = 1,

we have

(62) ϕ∗(ω′) = ωA, ϕ∗(η′) = dϕηA.

Hence

〈ϕ∗Ff (τ), ωjAη
r−j
A 〉A = dj−rϕ 〈ϕ∗Ff (τ), ϕ∗((ω′)j(η′)r−j)〉A

= djϕ〈Ff (τ), (ω′)j(η′)r−j〉A′ .
The result now follows from Proposition 6.1 with τ0 = i∞. �

9. The Chow group of Xr

Assume in this section that A is isomorphic over C to the complex torus C/OK and let Xr be the
(2r + 1)-dimensional variety over H defined previously. For simplicity, we assume that dK 6= 3, 4, so
that O×K = {±1}. For any field F , let

Grr+1(Xr)(F ) := CHr+1(Xr)(F )0/CHr+1(Xr)(F )alg,

where CHr+1(Xr)(F )alg is the subgroup of null-homologous codimension r + 1 cycles on Xr that are
defined over F and are algebraically equivalent to zero.

The goal of this section is to prove the following:

Theorem 9.1. For all r ≥ 0 the Chow group CHr+1(Xr)(H̄)0 of null-homologous cycles modulo
rational equivalence has infinite rank. Furthermore, for all r ≥ 2, the Griffiths group Grr+1(Xr)(H̄)
also has infinite rank.

The proof follows closely that of Theorem 4.7 of [Sch] which treats the case of “usual” Heegner cycles
on a Kuga-Sato threefold, and rests on an ingenious method of Bloch. The most significant difference
lies in the setting that is treated: whereas Schoen’s cycles are indexed by arbitrary quadratic orders of
varying discriminant, ours are forced by necessity to be indexed by (not necessarily maximal) orders
of the fixed quadratic imaginary field K.

Remark 9.2. When r = 0 the variety X0 is the modular curve X1(N) which is defined over Q.
Codimension 1 cycles are divisors and rational equivalence corresponds to linear equivalence on divisors,
whence CH1(X1(N)) = Pic(X1(N)). Moreover, a divisor is null-homologuous if and only if it has
degree zero and any degree zero divisor on a smooth connected curve is algebraically equivalent to
zero. It follows that the Griffiths group Gr1(X1(N)) is trivial. The content of Theorem 9.1 is that
CH1(X1(N))(Q̄)0 has infinite rank, a well-known result. The generalised Heegner cycles in this case
are images of Heegner points on the Jacobian variety of X1(N) and our method consists in showing
that the subgroup generated by these Heegner points has infinite rank. In [Im, Proposition 2.8], it
is shown that E(Q̄) has infinite rank where E is an elliptic curve defined over Q by proving that
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the subgroup generated by Heegner points on X0(N) via a modular parametrisation X0(N)−→E has
infinite rank. In particular, this implies Theorem 9.1 for r = 0.

Throughout this section we will adopt the following notational conventions. If X is a variety defined
over H and F is any field containing H, then we let XF := X × SpecF denote its base change to F .
We fix an algebraic closure H̄ of H and we will use the shorthand notation X̄ := XH̄ . Recall that K
has discriminant −dK and OK denotes its ring of integers. Let τ := (−dK +

√
−dK)/2 be the standard

generator of OK = 〈1, τ〉. Fix an analytic isomorphism ξ : C/OK ∼= A(C) and let ωA ∈ Ω1
A/H be the

regular differential satisfying ξ∗(ωA) = 2πidw.

9.1. An infinite collection of cycles. We now introduce a distinguished collection of generalised
Heegner cycles. The fields of definition of these cycles will play a crucial role in §9.3 and the under-
standing of the Galois action on these cycles is key in §9.4.

Let p and q be distinct odd primes which are congruent to 1 modulo N , and consider the following
lattices associated to β ∈ P1(Fq),

Λp,q,∞ := Z
1

pq
⊕ Zτ, Λp,q,β := Z

1

p
⊕ Z

τ + β

q
, for 0 ≤ β ≤ q − 1,

which each contain OK with index pq, and let Ap,q,β be the elliptic curve whose complex points are
isomorphic to C/Λp,q,β. The natural isogeny

ϕp,q,β : A−→Ap,q,β
of degree pq gives rise to the generalised Heegner cycle

(63) ∆p,q,β := ∆ϕp,q,β .

Let Fpq denote the field compositum of KN and Hpq, where KN denotes the ray class field of K of
modulus N and Hpq is the ring class field of K conductor pq.

Proposition 9.3. For all β ∈ P1(Fq), the cycle ∆p,q,β is defined over Fpq.

Proof. The variety Wr is defined over Q, and the elliptic curve A along with its complex multiplication
can be defined over the Hilbert class field H of K. Following the moduli description of X1(N), the pair
(A, tA) corresponds to a complex point on X1(N) defined over the abelian extension of K corresponding
to the subgroup K×W ⊂ A×K , where

W :=
{
x ∈ A×K : xOK = OK , xtA = tA

}
.

This field is the ray class field KN of K of conductor N. The elliptic curves Ap,q,β have complex
multiplication by the order Opq of conductor pq and can thus be defined over the ring class field Hpq.
The isogenies ϕp,q,β are also defined over Hpq. Note that since (pq,N) = 1, we have (ϕp,q,β, Ap,q,β) ∈
IsogN(A). The point (Ap,q,β, tAp,q,β) on X1(N) can thus be defined over the field compositum Fpq. Since
the correspondence εX that was used to define the generalised Heegner cycle is defined over Q, we can
conclude that the cycle ∆p,q,β is defined over Fpq as well. �

Remark 9.4. More generally, let (ϕ,A′) be an element of Isog(A). Since A has complex multiplication
by OK , the endomorphism ring of A′ is an order in OK . Such an order is completely determined by
its conductor, and therefore there is a unique integer c ≥ 1 such that EndK̄(A′) = Oc := Z + cOK .
The pair (ϕ,A′) is then said to be of conductor c and we set

Isogc(A) := {Isomorphism classes of pairs (ϕ,A′) of conductor c}
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and IsogN
c (A) := Isogc(A) ∩ IsogN(A). Note that if (ϕ,A′) ∈ IsogN

c (A), then by a similar reasoning
as above the associated cycle ∆ϕ is defined over the field compositum Fϕ := KN · Hc, where Hc :=
K(j(Oc)) denotes the ring class field of K of conductor c.

9.2. Cycles of large order in the Chow group. Using the explicit formula for the image of
generalised Heegner cycles under the complex Abel-Jabobi map given in Theorem 8.2, we will now
prove, following the approach of [Sch, §3], that many of the cycles ∆p,q,β are of large (possibly infinite)
order in the Chow group and even in the Griffiths group (if r ≥ 1). This part of the argument uses
only complex analytic and Hodge theoretic methods, and rests on the following theorem:

Theorem 9.5. For all r ≥ 0 (resp. for all r ≥ 1) the order of ∆p,q,β in CHr+1(Xr)(H̄)0 (resp. in
Grr+1(Xr)(H̄)) tends to ∞ as p/q tends to ∞.

If f ∈ Sr+2(Γ) and 0 ≤ j ≤ r, then we will identify, by a slight abuse of notation, AJC(∆p,q,β)(ωf ∧
ωjAη

r−j
A ) with the complex number appearing in the right hand side of the displayed equation (60)

in Theorem 8.2. This amounts to choosing a fixed representative of AJC(∆p,q,β) in (Sr+2(Γ) ⊗
SymrH1

dR(A))∨, and then evaluating it at ωf∧ωjAη
r−j
A . The proof of Theorem 9.5 rests on the following

lemma:

Lemma 9.6. With the above notations and conventions, for any non-zero cusp form f we have

lim
p/q→∞

AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) = 0

and AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) 6= 0 for all large enough p/q.

Proof. Fix p, q, and β ∈ P1(Fq). The lattice Λp,q,β is homothetic to the lattice 〈1, τp,q,β〉, where

(64) τp,q,∞ := pqτ, τp,q,β :=
p

q
(τ + β).

Set τp,q,β := Xβ + iYβ, and note that Yβ = pq ·
√
dK/2 if β =∞, and Yβ = p/q ·

√
dK/2 otherwise. By

Theorem 8.2,

AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) =

(−1)j(2πi)j+1 · κβ
(τ − τ̄)r−j

∫ τp,q,β

i∞
(z − τp,q,β)j(z − τ̄p,q,β)r−jf(z)dz(65)

= γβ

∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−jf(Xβ + iy)dy,(66)

where

κβ :=

{
(pq)2j−2r if β =∞,
p2j−2rqr otherwise,

γβ := (−1)j+1 · ir+1 · (2πi)j+1 · κβ
(τ − τ̄)r−j

,

and (66) is obtained from (65) by performing the change of variables z = Xβ + iy.
Assume without loss of generality that f is a normalised cuspidal eigenform. By examining the

Fourier expansion of f , one can see that there is an absolute real constant Cf > 0 (depending only on
f) for which

|f(z)− e2πiz| ≤ Cf · e−4πIm(z)

on the domain {Im(z) > 1}. Combining this with (66) gives

(67)
∣∣AJC(∆p,q,β)(ωf ∧ ωjAη

r−j
A )− γβ · e2πiXβ · Aβ

∣∣ ≤ γβ · Cf ·
∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−je−4πydy,
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where

(68) Aβ :=

∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−je−2πydy

is clearly non-zero and positive since the function appearing in the integral is strictly positive on the
domain of integration. The error term in (67) is majorised by

(69)

∣∣∣∣∣γβ · Cf ·
∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−je−4πydy

∣∣∣∣∣ ≤ Cf · γβ · e−2πYβAβ.

If we let Bβ := γβ · e2πiXβ · Aβ, then (69) implies that AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) is asymptotically

equivalent, as a function of p and q, to Bβ as p/q tends to infinity, in the sense that the ratio of
these two functions tends to 1 as p/q tends to infinity. The result now follows after observing that the
quantity Bβ is non-zero but tends to 0 as p/q tends to infinity. �

Proof of Theorem 9.5. As p/q tends to ∞, Lemma 9.6 shows that AJC(∆p,q,β) tends to the origin
in Jr+1(Xr/C) without being equal to it. Consequently, the order of AJC(∆p,q,β) tends to ∞ in
Jr+1(Xr/C). It follows that the order of ∆p,q,β in CHr+1(Xr)(H̄)0 tends to ∞ as p/q tends to ∞.

To treat the image of ∆p,q,β in the Griffiths group, let Jr+1(Xr/C)alg denote the complex subtorus of
Jr+1(Xr/C) which is the intermediate Jacobian of the largest sub-Hodge structure V of Hr+1,r(Xr)⊕
Hr,r+1(Xr). More precisely,

(70) Jr+1(Xr/C)alg = Jr+1(V ) := VC/(Filr+1 V ⊕ VZ).

The image of CHr+1(Xr)(C)alg under AJC is a complex subtorus of Jr+1(Xr/C) which is contained in
Jr+1(Xr/C)alg (see [Voi, §12.2.2]) and has the structure of an abelian variety. One can thus define the
transcendental part of the Abel-Jacobi map

(71) AJC,tr : Grr+1(Xr)(C)−→Jr+1(Xr/C)tr := Jr+1(Xr/C)/Jr+1(Xr/C)alg

as the factorisation of AJC. Note that for r = 0, Jr+1(Xr/C) = Jr+1(Xr/C)alg and Grr+1(Xr)(C) = 0
by Remark 9.2, so the transcendental part of the Abel-Jacobi map is trivial in this case. For r ≥ 1,
by (36), we observe that

(72) (Hr+1,r(Xr)⊕Hr,r+1(Xr)) ∩ εXH2r+1
dR (Xr/C) = (Sr+2(Γ)⊗CηrA)⊕ (Sr+2(Γ)⊗CωrA).

The same reasoning as before shows that the order of ∆p,q,β in Grr+1(Xr)(H̄) tends to∞ with p/q. �

9.3. Cycles of infinite order in the Chow group. Theorem 9.5 implies that for sufficiently large
p/q, the cycles ∆p,q,β have large (possibly infinite) order in the Chow group. Following [Sch, §4], we
show that for large p/q, the cycles ∆p,q,β are non-torsion in the Chow group. This section constitutes
the algebraic part of the argument, where the fields of definition of our cycles play a crucial role.

Proposition 9.7. For all r ≥ 0, there exists a non-negative integer Mr with the property that if
∆ ∈ 〈{∆p,q,β}〉 ⊂ CHr+1(Xr)(H̄)0 is such that the order of AJC(∆) in Jr+1(Xr/C) does not divide
Mr, then ∆ has infinite order in CHr+1(Xr)(H̄)0.

Before proving this proposition, we deduce the following two corollaries.

Corollary 9.8. For p/q sufficiently large, ∆p,q,β has infinite order in the Chow group.

Proof. It suffices to combine Lemma 9.6 and Proposition 9.7. �
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Corollary 9.9. Fix a rational prime q congruent to 1 modulo N . There exist infinitely many rational
primes p congruent to 1 modulo N such that the cycle ∆p,q,β − ∆p,q,γ has infinite order in the Chow
group when β 6= γ.

Proof. Let f be a normalised cuspidal eigenform and consider the quantity Bβ = γβ ·e2πiXβ ·Aβ defined
in the proof of Lemma 9.6 for all β ∈ P1(Fq). If β = ∞, then γ 6= ∞ and a comparison of integrals
reveals that ∣∣∣∣B∞Bγ

∣∣∣∣ ≤ e−π
p
q

(q2−1)
√
dKq2(j+1)−r

from which we deduce that B∞/Bγ tends to zero as p/q tends to ∞. In particular, B∞ and Bγ are
not asymptotically equivalent as p/q →∞ and it follows that for infinitely many p/q,

(73) AJC(∆p,q,∞)(ωf ∧ ωjAη
r−j
A ) 6= AJC(∆p,q,γ)(ωf ∧ ωjAη

r−j
A )

since asymptotic equivalence is an equivalence relation. Moreover, we have

(74) lim
p/q→∞

AJC(∆p,q,∞ −∆p,q,γ) = 0.

Suppose now that β, γ 6= ∞ and observe that Bβ = e2πi p
q

(β−γ)Bγ, so the complex argument of
the ratio Bβ/Bγ is greater in absolute value than 2π/q for all p. In particular, Bβ and Bγ are not
asymptotically equivalent as p tends to∞ and thus for infinitely many rational primes p congruent to
1 modulo N ,

(75) AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) 6= AJC(∆p,q,γ)(ωf ∧ ωjAη

r−j
A ).

Moreover, we have limp/q→∞AJC(∆p,q,β −∆p,q,γ) = 0.
Consequently, by taking p sufficiently large, one can ensure that AJC(∆p,q,β−∆p,q,γ) has order greater

than Mr in Jr+1(Xr/C) and thus by Proposition 9.7, ∆p,q,β −∆p,q,γ is non-torsion in CHr+1(Xr)(H̄)0.
�

We now turn to the proof of Proposition 9.7. For any rational prime `, Bloch has defined in [Bl1] a
map of Galois modules

(76) λ` : CHr+1(Xr)(H̄)(`)−→H2r+1
et (X̄r,Q`/Z`(r + 1))

where CHr+1(Xr)(H̄)(`) denotes the `-power torsion subgroup. This map is constructed by studying
the coniveau spectral sequence of X̄r and can be viewed as an arithmetic avatar of the complex Abel-
Jacobi map restricted to torsion. In order to justify this claim, recall that

(77) Jr+1(Xr/C) = H2r+1(Xr(C),C)/(Filr+1H2r+1
dR (Xr/C)⊕ ImH2r+1(Xr(C),Z))

and observe that we have an isomorphism of R-vector spaces

(78) H2r+1(Xr(C),R) ∼= H2r+1(Xr(C),C)/Filr+1H2r+1
dR (Xr/C).

so that we may identify

(79) Jr+1(Xr/C)tors
∼= H2r+1(Xr(C),Q)/ ImH2r+1(Xr(C),Z).

From the long exact sequence in singular cohomology associated to the short exact sequence

(80) 0−→Z−→Q−→Q/Z−→0

we deduce a short exact sequence

(81) 0−→Jr+1(Xr/C)tors
u−→H2r+1(Xr(C),Q/Z)−→H2r+2(Xr(C),Z)tors−→0.
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Note that H2r+2(Xr(C),Z) is a group of finite type and thus its torsion subgroup is finite. We have
identified Jr+1(Xr/C)tors up to a finite group with H2r+1(Xr(C),Q/Z).

Composing the complex Abel-Jacobi map restricted to torsion with u yields a map

(82) u ◦ AJC : CHr+1(Xr)(C)0(`)−→H2r+1(Xr(C),Q`/Z`).

For each natural number ν, we have a sequence of isomorphisms

(83) H2r+1
et (X̄r, µ

⊗(r+1)
`ν ) ∼= H2r+1

et (Xr,C, µ
⊗(r+1)
`ν ) ∼= H2r+1(Xr(C), µ

⊗(r+1)
`ν ).

For the first isomorphism, apply [Mil, VI Corollary 4.3] with respect to our fixed complex embedding
K̄ ↪→ C. The second isomorphism is an application of [Mil, III Theorem 3.12]. Taking direct limits,
we obtain a sequence of isomorphisms

(84) H2r+1
et (X̄r,Q`/Z`(r + 1)) ∼= H2r+1

et (Xr,C,Q`/Z`(r + 1)) ∼= H2r+1(Xr(C),Q`/Z`(r + 1)).

If we identify Q`/Z`
∼= Q`/Z`(r+ 1) by taking e

2πi
`ν as the generator of the `ν-th roots of 1, then the

diagram

(85) CHr+1(Xr)(H̄)0(`)
λ` //

��

H2r+1
et (X̄r,Q`/Z`(r + 1))

∼=
��

CHr+1(Xr)(C)0(`)
u◦AJC// H2r+1(Xr(C),Q`/Z`).

commutes by [Bl1, Proposition 3.7], where the right hand side isomorphism is (84).
Summing over all primes ` yields a map of Galois modules

(86) λ : CHr+1(Xr)(H̄)tors−→H2r+1
et (X̄r,Q/Z(r + 1))

which fits into a commutative diagram

(87) CHr+1(Xr)(H̄)0,tors
λ //

��

H2r+1
et (X̄r,Q/Z(r + 1))

∼=
��

CHr+1(Xr)(C)0,tors
u◦AJC // H2r+1(Xr(C),Q/Z).

Lemma 9.10. For all r ≥ 0, there exists a non-negative integer Mr that annihilates the group

H2r+1
et (X̄r,Q/Z(r + 1))GFn

for any square-free positive integer n coprime to N , where Fn = KN ·Hn.

Proof. Let n be a positive square-free integer. Let q denote a rational prime which remains inert in
K. If q|n, write n = qm with (q,m) = 1. Since q is inert in K and coprime to m, class field theory
implies that q splits completely in Hm/K. Again by class field theory, each factor of q in Hm is totally
ramified in Hn = Hq · Hm. As a consequence, the residual degree of q in Hn/K is 1 and its residual
degree in Hn/Q is 2.

Let us fix once and for all two distinct rational primes q1 and q2 which are inert in K and satisfy
(2N, q1q2) = 1 with the property that there exist two primes q1 and q2 in H which lie above q1 and q2

respectively such that Xr has good reduction at q1 and q2.
Let s1 and s2 denote the residual degrees of q1 and q2 in KN/H respectively. We claim that

KN ∩ Hn = H. Indeed, if a prime ideal in K ramifies in the abelian extension KN ∩ Hn over K,
then it divides both N and nOK . But these two ideals are coprime since the norm of N is N and
(N, n) = 1. Thus KN ∩Hn is everywhere unramified above K and is thus contained in H, hence equal
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to H. Because the residual degrees of q1 and q2 in Hn/K equal 1, the residual degrees of q1 and q2 in
Fn/H are equal to s1 and s2 respectively. In particular, these residual degrees are independent of n.

Let H∞ denote the compositum of all ring class fields of K of square-free conductor coprime to N
and define F∞ = KN ·H∞. It follows from the above dicussion that the residual degrees of q1 and q2

in F∞/H are equal to s1 and s2 respectively.
Let ` be a rational prime. For i = 1, 2 fix q∞i a prime of F∞ above qi and let Di denote the

decomposition group in GF∞ of a prime above q∞i . Because of our assumption of good reduction, the
inertia group Ii ⊂ Di acts trivially on the group H2r+1

et (X̄r,Q`/Z`(r + 1)) and we have, by [Mil, VI
Corollary 4.2],

(88) H2r+1
et (X̄r, µ

⊗(r+1)
`ν )Di ∼= H2r+1

et (Xr,F̄qi
, µ
⊗(r+1)
`ν )

GF
q
si
i

for all ν, as long as ` 6= qi. Taking direct limits, we obtain an isomorphism

(89) H2r+1
et (X̄r,Q`/Z`(r + 1))Di ∼= H2r+1

et (Xr,F̄qi
,Q`/Z`(r + 1))

GF
q
si
i .

From the long exact sequence in `-adic cohomology associated to the short exact sequence

(90) 0−→Z`(r + 1)−→Q`(r + 1)−→Q`/Z`(r + 1)−→0

we obtain a short exact sequence
(91)

0−→
H2r+1

et (Xr,F̄qi
,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))
−→H2r+1

et (Xr,F̄qi
,Q`/Z`(r + 1))−→H2r+2

et (Xr,F̄qi
,Z`(r + 1))tors−→0.

Consequently, the order of H2r+1
et (Xr,F̄qi

,Q`/Z`(r + 1))
GF

q
si
i is bounded by the product of

|H2r+2
et (Xr,F̄qi

,Z`(r + 1))tors| and

∣∣∣∣∣∣
(

H2r+1
et (Xr,F̄qi

,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))

)GF
q
si
i

∣∣∣∣∣∣ .
We claim that both these quantities are finite, and equal to 1 for all but finitely many primes `.

On one hand, we have a sequence of isomorphisms

H2r+2
et (Xr,Fqi

,Z`(r+1)) ∼= H2r+2
et (Xr,Hqi

,Z`(r+1)) ∼= H2r+2
et (X̄r,Z`(r+1)) ∼= H2r+2(Xr(C),Z)(r+1)⊗Z`

where Hqi denotes the completion of H at qi. The first isomorphism is obtained by using [Mil, VI
Corollary 4.2] and taking inverse limits. For the second one, we fix an embedding H̄ ↪→ Hqi , apply
[Mil, VI Corollary 4.3] and take inverse limits. The last one is a consequence of [Mil, III Theorem 3.12]
and taking inverse limits. Since H2r+2(Xr(C),Z) is finitely generated, its torsion subgroup is finite
and thus the torsion subgroup of H2r+2(Xr(C),Z)(r + 1)⊗ Z` is trivial for all but finitely many `.

On the other hand, we have

(92)

∣∣∣∣∣∣
(

H2r+1
et (Xr,F̄qi

,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))

)GF
q
si
i

∣∣∣∣∣∣ =

∣∣∣∣∣ker

(
1− Frobq∞i

∣∣ H2r+1
et (Xr,F̄qi

,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))

)∣∣∣∣∣
which is equal to the `-part of

(93)
∣∣∣det(1− Frobq∞i

| Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1))))
∣∣∣ .

By the Weil conjectures as proved by Deligne [De2], (93) does not depend on `. In particular, (92) is
equal to 1 for all but finitely many `.
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We conclude that the order of H2r+1
et (X̄r,Q`/Z`(r + 1))GF∞ is finite and equal to 1 for almost all `.

Hence H2r+1
et (X̄r,Q/Z(r + 1))GF∞ is finite and we may define

(94) Mr := |H2r+1
et (X̄r,Q/Z(r + 1))GF∞ |.

Then Mr annihilates H2r+1
et (X̄r,Q`/Z`(r + 1))GFn for all square-free n coprime to N . �

Proof of Proposition 9.7. Let Mr be the non-negative integer of Lemma 9.10 defined in (94). We will
prove the contrapositive of the statement of the proposition.

The cycle ∆ is defined over the field Fn = KN ·Hn for some square-free integer n coprime to N by
Proposition 9.3. Suppose that ∆ is a torsion element of CHr+1(Xr)(H̄)0. By Lemma 9.10, the order,
say m, of λ(∆) must divide Mr. By (87), we have λ(∆) = u ◦ AJC(∆). Thus u(mAJC(∆)) = 0 and
by injectivity of u, we deduce that mAJC(∆) = 0. Hence the order of AJC(∆) divides m and in
particular divides Mr. �

9.4. The Chow group is infinitely generated. We conclude the proof of the statement of Theorem
9.1 concerning the Chow group by exploiting the action of the Galois group GH on generalised Heegner
cycles.

Proof of Theorem 9.1. Let ` be an arbitrary rational prime and fix a rational odd prime q congruent
to 1 modulo N , which remains inert in K and such that ` divides the degree of Hq/H, i.e. q + 1 ≡ 0
mod `.

There are q + 1 distinct isogenies ϕq,β : A−→Aq,β of degree q with β ∈ P1(Fq) attached to the
following lattices Λq,β containing OK with index q:

Λq,∞ := Z
1

q
⊕ Zτ, Λq,β := Z⊕ Z

τ + β

q
, for 0 ≤ β ≤ q − 1.

The theory of complex multiplication shows that the elliptic curves Aq,β as well as the isogenies ϕq,β
can be taken to be rational over Hq, the ring class field of K of conductor q. As q is assumed to be
inert in K, the extension Hq/H is cyclic of degree q + 1, and we let σq denote a fixed generator of its
Galois group Gq = Gal(Hq/H). Recall the analytic isomorphism ξ : C/OK ∼= A(C) and define, for all
β ∈ P1(Fq), the point

tq,β :=

{
ξ((τ + β)/q), if β 6=∞
ξ(1/q), if β =∞

of A(C) and note that ker(ϕq,β) = 〈tq,β〉.
For any σ ∈ Aut(C/H), observe that Aσ = A and σ|Kab = (s|K) is the Artin symbol for an idele s

of K which is a unit at all finite places (by the idelic description of the ideal class group and the idelic
formulation of class field theory). In particular, for any σ ∈ Gq and any idele s of K with σ = (s|K)|Hq
and sv ∈ O×K,v for all v -∞, there is a unique analytic isomorphism ξσ : C/OK ∼= A(C) such that the
diagram

(95) K/OK
ξ //

s−1

��

A

σ

��
K/OK

ξσ // A

commutes, according to Shimura’s formulation of the main theorem of complex multiplication [Shi,
Theorem 5.4]. Observe that ξσ = ξ ◦ ασ for some ασ ∈ O×K = {±1}. Note that ker(ϕq,β) is a subgroup
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of the q-torsion group of A, and we may thus restrict our focus to the q-torsion subgroup of K/OK ,
namely q−1OK,q/OK,q.

Since (s|K)|Hq ∈ Gq, the fractional ideal (s−1) associated to s−1 belongs to (IK(q) ∩ PK)/PK,Z(q),
where PK denotes the principal ideals of K, PK,Z(q) the principal ideals admitting a representative
which is congruent to a non-zero integer modulo q and IK(q) the fractional ideals of K coprime to q.
This group is isomorphic to (OK/qOK)×/(Z/qZ)× and acts on Fq-lines in q−1OK,q/OK,q ∼= OK,q/qOK,q
by multiplication. In particular, we see that s−1 permutes the Fq-lines in q−1OK,q/OK,q without
preserving any of them. We conclude from (95) that σ permutes the kernels 〈tq,β〉 without preserving
any of them. Thus the action of Gq on the set of q + 1 isogenies ϕq,β is simply transitive.

Let p be a rational prime congruent to 1 modulo N . The isogeny ϕp,q,β corresponds to the subgroup
〈ξ(1/p), tq,β〉 of A(H̄) which is defined over Hpq. Because p and q are distinct, we have Hpq = Hp ·Hq

and Hp ∩Hq = H so that

(96) Gal(Hpq/Hp) ∼= Gal(Hq/H).

Recall from Proposition 9.3 that ∆p,q,β is defined over Fpq = KN · Hpq and since KN ∩ Hpq = H we
have an isomorphism

(97) Gal(Fpq/KN) ∼= Gal(Hpq/H).

Consider the cyclic subgroup of Gal(Hq/H) of order ` which exists because of the assumption
q+1 ≡ 0 mod `. Let G` denote the image of this group in Gal(Fpq/KN) under the above isomorphisms
(96) and (97), and let σ` be a generator of G`. Consider the homomorphism of Q-vector spaces

(98) ψ : Q[G`]−→CHr+1(Xr)(H̄)0 ⊗Q,

which to σ ∈ G` associates σ(∆p,q,β). Note that the kernel of ψ is stable under multiplication by
Q[G`], hence ker(ψ) is an ideal of Q[G`]. But Q[G`] has a very simple structure; it is isomorphic to
the product of two fields, namely Q and Q(ζ`), where ζ` is a primitive `-th root of unity. Indeed, the
map

Q[G`]−→Q×Q(ζ`),
`−1∑
i=0

λiσ
i
` 7→

(
λ0,

`−1∑
i=0

λiζ
i
`

)
is an isomorphism of rings. There are exactly two proper ideals of Q×Q(ζ`), namely {0}×Q(ζ`) and
Q×{0}, which correspond respectively to the augmentation ideal and the ideal Q ·N of Q[G`], where

N =
∑`−1

i=0 σ
i
`.

By Corollary 9.8, we may assume, by taking p large enough, that ∆p,q,β is non-torsion in the Chow
group. In other words ψ(1) 6= 0 and therefore ker(ψ) is not equal to all of Q[G`].

Because the action of Gal(Hq/H) on the set of q-isogenies of A is simply transitive, we see that
(ϕq,β, Aq,β)σ` = (ϕq,γ, Aq,γ) in Isog(A) for some γ 6= β in P1(Fq). Since σ` fixes Hp it must fix the
subgroup 〈ξ(1/p)〉 of A(H̄), and we must have

(99) (ϕp,q,β, Ap,q,β)σ` = (ϕp,q,γ, Ap,q,γ)

in Isog(A) and it follows that σ`(∆p,q,β) = ∆p,q,γ in CHr+1(Xr)(H̄)0, i.e. ψ(σ`) = ∆p,q,γ.
By Corollary 9.9, we may choose p such that ∆p,q,β − ∆p,q,γ is non-torsion in the Chow group. In

other words, ψ(σ` − 1) 6= 0 and thus ker(ψ) is not equal to the augmentation ideal.
We conclude that the kernel of ψ is either trivial or equal to Q ·N . In any case, we have

(100) dimQ Q[G`]/ ker(ψ) ≥ `− 1

and we have thus constructed a subgroup of the Chow group of rank greater or equal to `− 1. Since
` was chosen arbitrarily, this proves that CHr+1(Xr)(H̄)0 has infinite rank. �
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9.5. The Griffiths group is infinitely generated. By Theorem 9.5, we know that many of our
generalised Heegner cycles have large (possibly infinite) order in the Griffiths group, at least when
r ≥ 1. In the proof of this theorem, we were able to extract information concerning the Griffiths
group by studying the transcendental Abel-Jacobi map (71), a modified version of the complex Abel-
Jacobi map which enjoyed the property that it factored through Grr+1(Xr)(H̄). If we wish to apply
the algebraic arguments of §9.3 in order to show that many of our cycles have infinite order in the
Griffiths group, we need a modified version of Bloch’s map λ of Galois modules (86) which factors
through Grr+1(Xr)(H̄). To this end, we introduce an algebraic projector which we compose with λ.

We use the same conventions and notations for motives as in [De3, §0]. Given two nonsingular

varieties X and Y , we define the ring of correspondences Corr0(X, Y ) := CHdim(X)(X × Y ) and if E
is a number field, then Corr0(X, Y )E := Corr0(X, Y )⊗ E.

Proposition 9.11. For all r ≥ 2, there exists an idempotent PX in Corr0(Xr, Xr)Q with the following
properties:

i) The map

CHr+1(Xr)0(C)
AJC−→Jr+1(Xr/C)

(PX)∗−→ J(N)

factors through Grr+1(Xr)(C), where J(N) denotes the intermediate Jacobian associated to the
Betti realisation of the Chow motive N := (Xr, PX , r + 1) over H with coefficients in Q.

ii) The map of Galois modules

CHr+1(Xr)(H̄)0,tors
λ−→H2r+1

et (X̄r,Q/Z(r + 1))
(PX)∗−→H2r+1

et (X̄r,Q/Z(r + 1)).

factors through Grr+1(Xr)(H̄)tors, so we obtain a map of Galois modules

(PX)∗ ◦ λ : Grr+1(Xr)(H̄)tors−→H2r+1
et (X̄r,Q/Z(r + 1)).

We begin with the construction of the projector PX and assume from now on that r ≥ 2. Write
[x] for x ∈ K viewed as an element of EndH(A) ⊗ Q. The identification of K with EndH(A) ⊗ Q
is normalised such that [x]∗ωA = xωA for all x ∈ K. We shall consider the following idempotents of
EndH(A)⊗K:

e =

√
−dK + [

√
−dK ]

2
√
−dK

and ē =

√
−dK − [

√
−dK ]

2
√
−dK

and view them as elements of Corr0(A,A)K by taking their graphs. For all 0 ≤ j ≤ r, we define the
idempotent

e(j) :=
∑

I⊂{1,...,r}
|I|=j

e1,I ⊗ . . .⊗ er,I ∈ Corr0(Ar, Ar)K ,

where ei,I := e or ē depending on whether i ∈ I or i 6∈ I.
Consider the Chow motive M := (Ar, er, 0) over H with coefficients in Q where

er :=

( ∑
0<j<r

e(j)

)
◦
(

1− [−1]

2

)⊗r
∈ Corr0(Ar, Ar)Q.

The Betti realisation MB of this motive is a Hodge structure of weight r. We have MB(C) = erH
r
dR(Ar)

and its Hodge decomposition is given by

(101) Hj,r−j(MB(C)) =

{
Hj,r−j(Ar) for 0 < j < r

0 for j = 0 or j = r.
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We will use the same notation for er and its pull-back to Corr0(Xr, Xr)Q and define

(102) PX := er ◦ εX ∈ Corr0(Xr, Xr)Q,

which is an idempotent in the ring of correspondences of Xr with coefficients in Q since er and εX
commute.

Remark 9.12. As in Remark 3.4, we will assume throughout that the projector PX has been multiplied
by a suitable integer so that it lies in Corr0(Xr, Xr).

The correspondence PX induces morphisms (PX)∗ = (pr2)∗ ◦ (·PX) ◦ (pr1)∗ between Chow groups,
cohomology groups and intermediate Jacobians and acts as a projector on these various objects. For
the sake of clarity, we record the following maps, some of which appeared already in the statement of
Proposition 9.11:

a) A map of Chow groups

(103) (PX)∗ : CHr+1(Xr)
(pr1)∗−→ CHr+1(Xr ×Xr)

·PX−→CH2r+2(Xr ×Xr)
(pr2)∗−→ CHr+1(Xr),

where ·PX denotes multiplication in the Chow ring CH(Xr×Xr). We will denote this map, by a slight
abuse of notation, simply by PX .

b) A map of Galois modules on étale cohomology

(104) (PX)∗ : H2r+1
et (X̄r,Q`/Z`(r + 1))

(pr1)∗−→H2r+1
et (X̄r × X̄r,Q`/Z`(r + 1))

· cl`(PX)−→ H6r+3
et (X̄r × X̄r,Q`/Z`(3r + 2))

(pr2)∗−→H2r+1
et (X̄r,Q`/Z`(r + 1)),

where cl` : CH2r+1(Xr × Xr)−→H4r+2
et (X̄r × X̄r,Z`(2r + 1)) is the `-adic étale cycle class map and

· cl`(PX) is the cup product

H2r+1
et (X̄r × X̄r,Q`/Z`(r + 1))×H4r+2

et (X̄r × X̄r,Z`(2r + 1))−→H6r+3
et (X̄r × X̄r,Q`/Z`(3r + 2)).

c) A map on singular cohomology

(105) (PX)∗ : H2r+1(Xr(C),Z)
(pr1)∗−→H2r+1(Xr ×Xr(C),Z)

· clC(PX)−→ H6r+3(Xr ×Xr(C),Z)
(pr2)∗−→H2r+1(Xr(C),Z),

where clC : CH2r+1(Xr × Xr)−→H4r+2(Xr × Xr(C),Z) is the complex cycle class map, · clC(PX) is
the cup product

H2r+1(Xr ×Xr(C),Z)×H4r+2(Xr ×Xr(C),Z)−→H6r+3(Xr ×Xr(C),Z).

and (pr2)∗ is the Poincaré dual of the pushforward map on singular homology. One checks that the
map (PX)∗ is equal to the induced map of the (2r + 1, 2r + 1) Künneth component

[PX ](2r+1,2r+1) ∈ H2r+1(Xr(C),Z)⊗H2r+1(Xr(C),Z)

of clC(PX) under the isomorphism (of cohomology groups modulo torsion)

H2r+1(Xr(C),Z)⊗H2r+1(Xr(C),Z) ∼= HomZ(H2r+1(Xr(C),Z), H2r+1(Xr(C),Z))

given by Poincaré duality. Because [PX ] is a Hodge class, this shows that (PX)∗ is a morphism of
Hodge structures of bidegree (0, 0) (see [Voi, Lemma 11.41]).

d) A morphism of complex tori

(106) (PX)∗ : Jr+1(Xr/C)−→Jr+1(Xr/C)
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where we recall

(107) Jr+1(Xr/C) = H2r+1(Xr(C),C)/(Filr+1H2r+1
dR (Xr/C)⊕ ImH2r+1(Xr(C),Z))

PD∼= Filr+1 H2r+1
dR (Xr/C)∨/ ImH2r+1(Xr(C),Z).

The map (PX)∗ of intermediate Jacobians is induced from (105) which makes sense since the latter is
a morphism of Hodge structures of bidegree (0, 0) and thus maps Filr+1 H2r+1

dR (Xr/C) into itself.

We will henceforth work with the Chow motive N := (Xr, PX , r + 1) over H with coefficients in Q.
Its Betti realisation NB = (PX)∗(H

2r+1(Xr(C),Z))(r + 1) is a Hodge structure of weight −1 and the
0-th step of its Hodge filtration is given by

(108) Fil0NB(C) = (PX)∗ Filr+1H2r+1
dR (Xr/C) = Sr+2(Γ)⊗

(
r−1⊕
j=1

CωjAη
r−j
A

)
⊂

r−1⊕
j=1

Hr+1+j,r−j(Xr).

We note that H0,−1(NB(C)) = Hr,−(r+1)(NB(C)) = 0 and in particular we have the crucial property

(109) (PX)∗(H
r+1,r(Xr)⊕Hr,r+1(Xr)) = 0.

Associated to the Hodge structure NB is a complex torus J(N) := NB(C)/(Fil0(NB(C)) ⊕ NB)
which is the image of the projection (106). By (108) and Poincaré duality, we have an isomorphism
of complex tori

(110) J(N) ∼=

(
Sr+2(Γ)⊗

(⊕r−1
j=1 CωjAη

r−j
A

))∨
Π′r,r

,

where the lattice Π′r,r is defined by

(111) Π′r,r := (PX)∗(ImH2r+1(Xr(C),Z)).

Proof of Proposition 9.11. Recall from (70) that Jr+1(Xr/C)alg = Jr+1(V ) where V is the largest
sub-Hodge structure of Hr+1,r(Xr) ⊕ Hr,r+1(Xr) and that the image of CHr+1(Xr)(C)alg under AJC

is a complex subtorus of Jr+1(Xr/C) which is contained in Jr+1(Xr/C)alg. The morphism of tori
(PX)∗ : Jr+1(Xr/C)−→J(N) is induced from the morphism of Hodge structures (105). The latter
map restricts to a morphism of Hodge structures (PX)∗ : VZ−→NB which is the zero map when
tensored up to C by (109) since VC ⊂ Hr+1,r(Xr) ⊕ Hr,r+1(Xr). Hence the induced map of tori
(PX)∗ : Jr+1(V )−→J(N) is the zero map and statement i) of the proposition follows.

The group CHr+1(Xr)(H̄)alg is divisible since it is generated by images under correspondences of
H̄-valued points on Jacobians of curves. Therefore we have an exact sequence

(112) 0−→CHr+1(Xr)(H̄)alg,tors−→CHr+1(Xr)(H̄)0,tors−→Grr+1(Xr)(H̄)tors−→0

and in order to prove ii) it suffices to show that the subgroup CHr+1(Xr)(H̄)alg,tors lies in the kernel
of (PX)∗ ◦ λ. Observe from (87) that

(113) (PX)∗ ◦ λ = (PX)∗ ◦ u ◦ AJC

where we use the compatibility of the comparison isomorphism (84) with correspondences which follows
from the compatibility of the cycle class maps with respect to the comparison isomorphism (see [Jan,
§5.3]). Note that the maps (105) and (106) commute with u since the latter is induced from the former
and we therefore have

(114) (PX)∗ ◦ λ = u ◦ (PX)∗ ◦ AJC .
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It follows from i) that (PX)∗ ◦ λ(CHr+1(Xr)(H̄)alg,tors) = 0, and the proof is complete. �

When r ≥ 2, applying the map (103) yields the cycles

(115) Ξp,q,β := PX∆p,q,β,

whose classes in the Griffiths group will be denoted [Ξp,q,β]. Since the projector PX is defined over Q,
these cycles and their classes are defined over Fpq by Proposition 9.3.

Proposition 9.13. For all r ≥ 2, the order of [Ξp,q,β] in Grr+1(Xr)(H̄) tends to ∞ as p/q tends to
infinity.

Proof. By functoriality of the complex Abel-Jacobi map [EZZ], we may view AJC(Ξp,q,β) as an element
of J(N). If f ∈ Sr+2(Γ) is non-zero and 0 < j < r, then

(116) AJC(Ξp,q,β)(ωf ∧ ωjAη
r−j
A ) = AJC(∆p,q,β)(ωf ∧ ωjAη

r−j
A ).

As p/q tends to ∞, by Lemma 9.6, AJC(Ξp,q,β) becomes arbitrarily close but not equal to the origin
in J(N). It follows, by Proposition 9.11 i), that the order of [Ξp,q,β] tends to ∞ with p/q. �

Proposition 9.14. For all r ≥ 2, if Ξ ∈ 〈{Ξp,q,β}〉 ⊂ CHr+1(Xr)(H̄)0 is such that the order of AJC(Ξ)
in Jr+1(Xr/C) does not divide Mr, then Ξ has infinite order in Grr+1(Xr)(H̄).

Proof. Suppose that [Ξ] is a torsion element. The cycle Ξ and its class in the Griffiths group are both
defined over the field Fn = KN · Hn for some square-free integer n coprime to N by Proposition 9.3
and we have the identity PXΞ = Ξ. By Proposition 9.11 ii),

(PX)∗ ◦ λ([Ξ]) ∈ H2r+1
et (X̄r,Q/Z(r + 1))GFn

and thus by Lemma 9.10, the order, say m, of (PX)∗ ◦ λ([Ξ]) must divide Mr. By (114), we have

(PX)∗ ◦ λ([Ξ]) = u ◦ (PX)∗ ◦ AJC([Ξ]) = u ◦ (PX)∗ ◦ AJC(Ξ).

By functoriality of the complex Abel-Jacobi map with respect to correspondences [EZZ], we obtain

(PX)∗ ◦ λ([Ξ]) = u(AJC(PXΞ)) = u(AJC(Ξ)).

By injectivity of u, the order of AJC(Ξ) must divide m and thus divides Mr. �

Proof of Theorem 9.1. Proceeding as in §9.3, one uses Propositions 9.13 and 9.14 to deduce the
analogue statements of Corollaries 9.8 and 9.9 for the Griffiths group and the classes [Ξp,q,β]. Using
these two statements, the same arguments as in §9.4 apply, proving that Grr+1(Xr)(H̄) has infinite
rank. �

Remark 9.15. Applying the construction of the projector PX in the case r = 1 yields nothing
interesting. In fact, there is no algebraic splitting of the motive X1 into its algebraic and transcendental
components and for this reason we cannot apply our arguments to show that the Griffiths group is
infinitely generated in this case. More precisely, we cannot obtain Proposition 9.11 ii) and therefore
we fail to obtain Proposition 9.14. As a consequence, even though we can show that many of our
cycles have large order in the Griffiths group, we are unable to prove that infinitely many of them
have infinite order.
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