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Abstract: We outline a new construction of rational points on CM elliptic curves using cycles on higher
dimensional varieties, contingent on certain cases of the Tate conjecture. This construction admits complex
and p-adic analogs that are defined independently of the Tate conjecture. In the p-adic case, we show
unconditionally that the points so constructed are in fact rational using p-adic Rankin L-functions and a
p-adic Gross-Zagier type formula proved in our previous articles [BDP-gz] and [BDP-cm]. In the complex
case, we are unable to prove rationality (or even algebraicity) but we can verify it numerically in several
cases.
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1. Introduction

The theory of Heegner points supplies one of the most fruitful approaches to the Birch and Swinnerton-
Dyer conjecture, leading to the best results for elliptic curves of analytic rank one. In spite of attempts to
broaden the scope of the Heegner point construction ([BDG], [DL], [Da], [Tr],...), all provable, systematic
constructions of algebraic points on elliptic curves still rely on parametrisations of elliptic curves by
modular or Shimura curves. The primary goal of this article is to explore new constructions of rational
points on elliptic curves and abelian varieties in which, loosely speaking, Heegner divisors are replaced
by higher-dimensional algebraic cycles on certain modular varieties. In general, the algebraicity of the
resulting points depends on the validity of ostensibly difficult cases of the Hodge or Tate conjectures. One
of the main theorems of this article (Theorem 4 of the Introduction) illustrates how these algebraicity
statements can sometimes be obtained unconditionally by exploiting the connection between the relevant
“generalised Heegner cycles” and values of certain p-adic Rankin L-series.

During the preparation of this article, KP was supported partially by NSF grants DMS-1015173 and DMS-0854900.
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We begin with a brief sketch of the classical picture which we aim to generalize. It is known thanks to
[Wi], [TW], and [BCDT] that all elliptic curves over the rationals are modular. For an elliptic curve A of
conductor N , this means that

(1.1) L(A, s) = L(f, s),

where f(z) =
∑

ane
2πinz is a cusp form of weight 2 on the Hecke congruence group Γ0(N). The modularity

of A is established by showing that the p-adic Galois representation

Vp(A) :=
(

lim
←
A[pn]

)

⊗ Qp = H1
et(Ā,Qp)(1)

is a constituent of the first p-adic étale cohomology of the modular curve X0(N). On the other hand, the
Eichler-Shimura construction attaches to f an elliptic curve quotient Af of the Jacobian J0(N) of X0(N)
satisfying L(Af , s) = L(f, s). In particular, the semisimple Galois representations Vp(Af ) and Vp(A) are
isomorphic. It follows from Faltings’ proof of the Tate conjecture for abelian varieties over number fields
that A is isogenous to Af , and therefore there is a non-constant morphism

(1.2) Φ : J0(N)−→A

of algebraic varieties over Q, inducing, for each F ⊃ Q, a map ΦF : J0(N)(F )−→A(F ) on F -rational
points.

A key application of Φ arises from the fact that X0(N) is equipped with a distinguished supply of
algebraic points corresponding to the moduli of elliptic curves with complex multiplication by an order in
a quadratic imaginary field K. The images under ΦQ̄ of the degree 0 divisors supported on these points

produce elements of A(Q̄) defined over abelian extensions of K, which include the so-called Heegner points.
The Gross-Zagier formula [GZ] relates the canonical heights of these points to the central critical derivatives
of L(A/K, s) and of its twists by (unramified) abelian characters of K. This connection between algebraic
points and Hasse-Weil L-series has led to the strongest known results on the Birch and Swinnerton-Dyer
conjecture, most notably the theorem that

rank(A(Q)) = ords=1 L(A, s) and #X(A/Q) <∞, when ords=1(L(A, s)) ≤ 1,

which follows by combining the Gross-Zagier formula with a method of Kolyvagin (cf. [Gr]). The theory
of Heegner points is also the key ingredient in the proof of the main results in [BDP-cm].

Given a variety X (defined over Q, say), let CHj(X)(F ) denote the Chow group of codimension j
algebraic cycles on X defined over a field F modulo rational equivalence, and let CHj(X)0(F ) denote

the subgroup of null-homologous cycles. Write CHj(X) and CHj(X)0 for the corresponding functors on
Q-algebras. Via the natural equivalence CH1(X0(N))0 = J0(N), the map Φ of (1.2) can be recast as a
natural transformation

(1.3) Φ : CH1(X0(N))0−→A.

It is tempting to generalise (1.3) by replacing X0(N) by a variety X over Q of dimension d > 1, and

CH1(X0(N))0 by CHj(X)0 for some 0 ≤ j ≤ d. Any element Π of the Chow group CHd+1−j(X × A)(Q)
induces a natural transformation

(1.4) Φ : CHj(X)0−→A

sending ∆ ∈ CHj(X)0(F ) to

(1.5) ΦF (∆) := πA,∗(π
∗
X (∆̃) · Π̃),

where πX and πA denote the natural projections from X × A to X and A respectively. We are mainly
interested in the case where X is a Shimura variety or is closely related to a Shimura variety. (For instance,
when X is the universal object or a self-fold fiber product of the universal object over a Shimura variety
of PEL type.) The variety X is then referred to as a modular variety and the natural transformation Φ is
called the modular parametrisation of A attached to the pair (X,Π).

Modular parametrisations acquire special interest when CHj(X)0(Q̄) is equipped with a systematic
supply of special elements, such as those arising from Shimura subvarieties of X . The images in A(Q̄) of
such special elements under ΦQ̄ can be viewed as “higher-dimensional” analogues of Heegner points: they
will be referred to as Chow-Heegner points. Given an elliptic curve A, it would be of interest to construct
modular parametrisations to A in the greatest possible generality, study their basic properties, and explore
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the relations (if any) between the resulting systems of Chow-Heegner points and leading terms of L-series
attached to A.

We develop this loosely formulated program in the simple but non-trivial setting where A is an elliptic
curve with complex multiplication by an imaginary quadratic field K of odd discriminant −D, and X is
a suitable family of 2r-dimensional abelian varieties fibered over a modular curve.

For the Introduction, suppose for simplicity that K has class number one and that A is the canonical
elliptic curve over Q of conductor D2 attached to the Hecke character defined by

ψA((a)) = εK(a mod
√
−D)a.

(These assumptions will be significantly relaxed in the body of the paper.) Given a nonzero differential
ωA ∈ Ω1(A/Q), let [ωA] denote the corresponding class in the de Rham cohomology of A.

Fix an integer r ≥ 0, and consider the Hecke character ψ = ψr+1
A . The binary theta series

θψ :=
∑

a⊂OK
ψr+1
A (a)qaā

attached to ψ is a modular form of weight r+2 on a certain modular curve C (which is a quotient of X1(D)
or X0(D

2) depending on whether r is odd or even), and has rational Fourier coefficients. Such a modular
form gives rise to a regular differential (r+1)-form ωθψ on the rth Kuga-Sato variety over C, denoted Wr.

Let [ωθψ ] denote the class of ωθψ in the de Rham cohomology Hr+1
dR (Wr/Q). The classes of ωθψ and of the

antiholomorphic (r+1)-form ω̄θψ generate the θψ-isotypic component of Hr+1
dR (Wr/C) under the action of

the Hecke correspondences.
For all 1 ≤ j ≤ r + 1, let pj : Ar+1−→A denote the projection onto the j-th factor, and let

[ωr+1
A ] := p∗1[ωA] ∧ · · · ∧ p∗r+1[ωA] ∈ Hr+1

dR (Ar+1).

Our construction of Chow-Heegner points is based on the following conjecture which is formulated (for
more general K, without the class number one hypothesis) in Section 2.

Conjecture 1. There is an algebraic cycle Π? ∈ CHr+1(Wr ×Ar+1)(K) ⊗ Q satisfying

Π?∗
dR([ωr+1

A ]) = cψ,K · [ωθψ ],

for some element cψ,K in K×, where

Π?∗
dR : Hr+1

dR (Ar+1/K)−→Hr+1
dR (Wr/K)

is the map on de Rham cohomology induced by Π?.

Remark 2. In fact, in the special case considered above, using that A is defined over Q and not just
K, one can arrange the cycle Π? to be defined over Q (if it exists at all !). Then cψ,K lies in Q× and
by appropriately scaling Π? we may further arrange that cψ,K = 1. This would simplify some of the
discussion below, see for example the commutative diagram (1.13). However we have chosen to retain
the constant cψ,K in the rest of the introduction in order to give the reader a better picture of the more
general situation considered in the main text where the class number of K is not 1 and the curve A can
only be defined over some extension of K.

Remark 3. The rationale for Conjecture 1 is explained in Section 2.4, where it is shown to follow from
the Tate conjecture on algebraic cycles. To the authors’ knowledge, the existence of Π? is known only in
the following cases:

(1) r = 0, where it follows from Faltings’ proof of the Tate conjecture for a product of curves over
number fields;

(2) (r,D) = (1,−4) (see Remark 2.4.1 of [Scha]) and (1,−7), where it can be proved using the theory
of Shioda-Inose structures and the fact that Wr is a singular K3 surface ([El]);

(3) r = 2 and D = −3, (Schoen - see [Scho2], Sec. 1).

For general values of r and D, Conjecture 1 appears to lie rather deep and might be touted as a good
“proving ground” for the validity of the Hodge and Tate conjectures. One of the main results of this
paper–Theorem 4 below–uses p-adic methods to establish unconditionally a consequence of Conjecture 1,
leading to the construction of rational points on A. The complex calculations of the last section likewise
lend numerical support for an (ostensibly deeper) complex analogue of Theorem 4. Sections 3 and 4 may
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therefore be viewed as providing indirect support (of a theoretical and experimental nature, respectively)
for the validity of Conjecture 1.

We next make the simple (but key) remark that the putative cycle Π? is also an element of the Chow
group CHr+1(Xr ×A) ⊗ Q, where Xr is the (2r+1)-dimensional variety

Xr := Wr ×Ar.

Viewed in this way, the cycle Π? gives rise to a modular parametrisation

(1.6) Φ? : CHr+1(Xr)0,Q := CHr+1(Xr)0 ⊗ Q−→A⊗ Q

as in (1.4), that is defined over K, i.e., there is a natural map

Φ?
F : CHr+1(Xr)0(F )−→A(F ) ⊗ Q

for any field F containing K. Furthermore, it satisfies the equation

(1.7) Φ?∗
dR(ωA) = cψ,K · ωθψ ∧ ηrA.

Here ηA is the unique element of H1
dR(A/K) satisfying

(1.8) [λ]∗ηA = λ̄ηA, for all λ ∈ OK , 〈ωA, ηA〉 = 1,

where [λ] denotes the element of EndK(A) corresponding to λ. (See Proposition 2.11 for details.)

The article [BDP-gz] introduced and studied a collection of null-homologous, r-dimensional algebraic
cycles on Xr, i.e., elements of the source CHr+1(Xr)0,Q of the map (1.6), referred to as generalised
Heegner cycles. These cycles, whose precise definition is recalled in Section 2.5, extend the notion of
Heegner cycles on Kuga-Sato varieties considered in [Scho1], [Ne1] and [Zh]. They are indexed by isogenies
ϕ : A−→A′, and are defined over abelian extensions of K. It can be shown that they generate a subspace of
CHr+1(Xr)0,Q(Kab) of infinite dimension. The map Φ?

Kab (if it exists) transforms these generalised Heegner

cycles into points of A(Kab)⊗Q. It is natural to expect that the resulting collection {Φ?
Kab(∆ϕ)}ϕ:A−→A′

of Chow-Heegner points generates an infinite dimensional subspace of A(Kab) ⊗ Q, and that it gives rise
to an “Euler system” in the sense of Kolyvagin.

In the classical situation where r = 0, the variety Xr is just a modular curve and (as mentioned above)
the existence of Φ? follows from Faltings’ proof of the Tate conjecture for products of curves. When r ≥ 1,
Section 3 uses p-adic methods to show that an alternate cohomological construction of Φ?

Kab(∆ϕ) gives
rise in many cases to algebraic points on A with the expected field of rationality and offers, therefore,
some theoretical evidence for the existence of Φ?. We now describe this construction briefly.

Let p be a rational prime split in K and fix a prime p of K above p. As explained in Remark 2.12
of Section 2.4, even in the absence of knowing the Tate conjecture, one can still define a natural GK :=
Gal(K̄/K)-equivariant projection

(1.9) Φ∗et,p : H2r+1
et (Xr,Qp)(r+1)−→H1

et(A,Qp)(1) = Vp(A),

where Vp(A) is the p-adic Galois representation arising from the p-adic Tate module of A. A priori, this
last map is only well-defined up to an element in Q×p . We normalise it by by embedding K in Qp via p

and requiring that the map

Φ∗dR,p : H2r+1
dR (Xr/Qp)−→H1

dR(A/Qp)

obtained by applying to Φ∗et,p the comparison functor between p-adic étale cohomology and deRham
cohomology over p-adic fields satisfies

(1.10) Φ∗dR,p(ωθψ ∧ ηrA) = ωA,

where ωθψ and ωA are as in Conjecture 1, and ηA is defined in (1.8). We can then define the following

p-adic avatars of Φ? without invoking the Tate conjecture:

(a) The map Φet
F :

Let F be a field containingK. The Chow group CHr+1(Xr)0,Q(F ) of null-homologous cycles is equipped
with the p-adic étale Abel-Jacobi map over F :

(1.11) AJet
F : CHr+1(Xr)(F )0,Q−→H1(F,H2r+1

et (Xr,Qp)(r+1)),
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where H1(F,M) denotes the continuous Galois cohomology of a GF := Gal(F̄ /F )-module M . The maps
(1.11) and (1.9) can be combined to give a map

(1.12) Φet
F : CHr+1(Xr)(F )0,Q−→H1(F, Vp(A)),

which is the counterpart in p-adic étale cohomology of the conjectural map Φ?
F . More precisely, the map

Φet
F is related to Φ?

F (when the latter can be shown to exist) by the commutative diagram

(1.13) A(F ) ⊗ Q

δ

��

CHr+1(Xr)0,Q(F )

Φ?
F

//

m
k

j
i h g f e d c b a `

Φet
F

// H1(F, Vp(A))
·cψ,K

//___ H1(F, Vp(A)),

where

(1.14) δ : A(F ) ⊗ Q−→H1(F, Vp(A))

is the projective limit of the connecting homomorphisms arising in the pn-descent exact sequences of
Kummer theory, and cψ,K is the element inK× from Conjecture 1 viewed as living in Q×p via the embedding
of K in Qp corresponding to p.

(b) The map Φ
(v)
F : When F is a number field, (1.13) suggests that the image of Φet

F is contained in the
Selmer group of A over F , and this can indeed be shown to be the case. In fact, one can show that for every
finite place v of F , the image of Φet

Fv
is contained in the images of the local connecting homomorphisms

δv : A(Fv) ⊗ Q−→H1(Fv , Vp(A)).

In particular, fixing a place v of F and replacing F by its v-adic completion Fv , we can define a map

Φ
(v)
F by the commutativity of the following local counterpart of the diagram (1.13):

(1.15) A(Fv) ⊗ Q

δv

��

CHr+1(Xr)0,Q(Fv)

Φ
(v)
F

11

Φet
Fv

// H1(Fv , Vp(A)).

As will be explained in greater detail in Section 3, when v is a place lying over p, the map Φ
(v)
F can also

be defined by p-adic integration, via the comparison theorems between the p-adic étale cohomology and
the de Rham cohomology of varieties over p-adic fields.

The main Theorem of this paper, which is proved in Section 3, relates the Selmer classes of the form
Φet
F (∆) when F is a number field and ∆ is a generalised Heegner cycle, to global points in A(F ). We will

only state a special case of the main result, postponing the more general statements to Section 3.2. Assume
for Theorem 4 below that the field K has odd discriminant, that the sign in the functional equation for
L(ψA, s) is −1, so that the Hasse-Weil L-series L(A/Q, s) = L(ψA, s) vanishes to odd order at s = 1, and
that the integer r is odd. In that case, the theta series θψ belongs to the space Sr+2(Γ0(D), εK) of cusp
forms on Γ0(D) of weight r + 2 and character εK :=

( ·
D

)

. In particular, the variety Wr is essentially the

rth Kuga-Sato variety over the modular curve X0(D). Furthermore, the L-series L(ψ2r+1
A , s) has sign +1

in its functional equation, and L(ψ2r+1
A , s) therefore vanishes to even order at the central point s = r+ 1.

Theorem 4. Let ∆r be the generalised Heegner cycle in CHr+1(Xr)0,Q(K) attached to the identity isogeny
1 : A−→A. The cohomology class Φet

K(∆r) belongs to δ(A(K) ⊗ Q). More precisely, there is a point
PD ∈ A(K) ⊗ Q (depending on D but not on r) such that

Φet
K(∆r) =

√
−D ·mD,r · δ(PD),

where mD,r ∈ Z satisfies

m2
D,r =

2r!(2π
√
D)r

Ω(A)2r+1
L(ψ2r+1

A , r + 1),

and Ω(A) is a complex period attached to A. The point PD is of infinite order if and only if

L′(ψA, 1) 6= 0.
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This result is proved, in a more general form, in Theorems 3.3 and 3.5 of Section 3.2. For an even
more general (but less precise) statement in which the simplifying assumptions imposed in Theorem 4 are
considerably relaxed, see Theorem 3.4.

Remark 5. When L(A, s) has a simple zero at s = 1, it is known a priori that the Selmer group Selp(A/K)
is of rank one over K ⊗ Qp, and agrees with δ(A(K) ⊗ Qp). It follows directly that

Φet
K(∆r) belongs to δ(A(K) ⊗ Qp).

The first part of Theorem 4 is significantly stronger in that it involves the rational vector space A(K)⊗Q
rather than its p-adification. This stronger statement is not a formal consequence of the one-dimensionality
of the Selmer group. Indeed, its proof relies on invoking Theorem 2 of [BDP-cm] after relating the local

point Φ
(p)
Kp

(∆) ∈ A(Kp) ⊗ Q = A(Qp) ⊗ Q to the special value Lp(ψ
∗
A) of the Katz two-variable p-adic

L-function that arises in that theorem.

Finally, we discuss the picture over the complex numbers. Section 4.1 describes a complex homomor-
phism

ΦC : CHr+1(Xr)0(C)−→A(C)

which is defined analytically by integration of differential forms on Xr(C), without invoking Conjecture
1, but agrees with Φ?

C (up to multiplication by some nonzero element in OK) when the latter exists. This
map is defined using the complex Abel-Jacobi map on cycles introduced and studied by Griffiths and Weil,

and is the complex analogue of the homomorphism Φ
(p)
Kp

. The existence of the global map Φ?
K predicted

by the Hodge or Tate conjecture would imply the following algebraicity statement:

Conjecture 6. Let H be a subfield of Kab and let ∆ϕ ∈ CHr+1(Xr)0,Q(H) be a generalised Heegner cycle
defined over H. Then (after fixing an an embedding of H into C),

ΦC(∆ϕ) belongs to A(H) ⊗ Q,

and

ΦC(∆σ
ϕ) = ΦC(∆ϕ)σ for all σ ∈ Gal(H/K).

While ostensibly weaker than Conjecture 1, Conjecture 6 has the virtue of being more readily amenable to
experimental verification. Section 4 explains how the images of generalised Heegner cycles under ΦC can
be computed numerically to high accuracy, and illustrates, for a few such ∆ϕ, how the points ΦC(∆ϕ) can
be recognized as algebraic points defined over the predicted class fields. In particular, extensive numerical
verifications of Conjecture 6 are carried out, for fairly large values of r.

On the theoretical side, this conjecture appears to lie deeper than its p-adic counterpart, and we were
unable to provide any theoretical evidence for it beyond the fact that it follows from the Hodge or Tate
conjectures. It might be argued that calculations of the sort that are performed in Section 4 provide
independent numerical confirmation of these conjectures for certain specific Hodge and Tate cycles on
the (2r + 2)-dimensional varieties Wr × Ar+1, for which the corresponding algebraic cycles seem hard to
produce unconditionally.

Conventions regarding number fields and embeddings: Throughout this article, all number fields that arise
are viewed as embedded in a fixed algebraic closure Q̄ of Q. A complex embedding Q̄−→C and p-adic
embeddings Q̄−→Cp for each rational prime p are also fixed from the outset, so that any finite extension
of Q is simultaneously realised as a subfield of C and of Cp.

Acknowledgements: We are grateful to the anonymous referee whose comments helped us to considerably
clarify and improve our exposition.

2. Motives and Chow-Heegner points

The goal of the first three sections of this chapter is to recall the construction of the motives attached
to Hecke characters and to modular forms. The remaining three sections are devoted to the definition
of Chow-Heegner points on CM elliptic curves, as the image of generalised Heegner cycles by modular
parametrisations attached to CM forms.
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2.1. Motives for rational and homological equivalence. We begin by laying down our conventions
regarding motives, following [Del]. We will work with either Chow motives or Grothendieck motives.
For X a nonsingular variety over a number field F , let Cm(X) denote the group of algebraic cycles of
codimension m on X defined over F . Let ∼ denote rational equivalence in Cm(X), and set

Cm(X) := CHm(X) = Cm(X)/ ∼ .

Given two nonsingular varieties X and Y over F , and E any number field, we define the groups of
correspondences

Corrm(X,Y ) := CHdimX+m(X × Y ) Corrm(X,Y )E := Corrm(X,Y ) ⊗Z E.

Definition 2.1. A motive over F with coefficients in E is a triple (X, e,m) where X/F is a nonsingular
projective variety, e ∈ Corr0(X,X)E is an idempotent, and m is an integer.

Definition 2.2. The category MF,E of Chow motives is the category whose objects are motives over F
with coefficients in E, with morphisms defined by

HomMF,E
((X, e,m), (Y, f, n)) = f ◦ Corrn−m(X,Y )Q ◦ e.

The category Mhom
F,E of Grothendieck motives is defined in exactly the same way, but with homological

equivalence replacing rational equivalence. We will denote the corresponding groups of cycle classes by
Cr(X)0, Corrm0 (X,Y ), Corrm0 (X,Y )E etc.

Since rational equivalence is finer than homological equivalence, there is a natural functor

MF,E → Mhom
F,E ,

so that every Chow motive gives rise to a Grothendieck motive. Further, the category of Grothendieck
motives is equipped with natural realisation functors arising from any cohomology theory satisfying the
Weil axioms. We now recall the description of the image of a motive M = (X, e,m) over F with coefficients
in E under the most important realizations:

The Betti realisation: Recall that our conventions about number fields supply us with an embedding
F−→C. The Betti realisation is defined in terms of this embedding by

MB := e · (H∗(X(C),Q)(m) ⊗E).

It is a finite-dimensional E-vector space with a natural E-Hodge structure arising from the comparison
isomorphism between the singular cohomology and the de Rham cohomology over C.

The `-adic realisation: Let X̄ denote the base change of X to Q̄. The `-adic cohomology of X̄ gives
rise to the `-adic étale realisation of M :

M` := e ·
(

H∗et(X̄,Q`(m)) ⊗E
)

.

It is a free E ⊗ Q`-module of finite rank equipped with a continuous linear GF -action.

The de Rham realisation: The de Rham realisation of M is defined by

MdR := e · (H∗dR(X/F )(m) ⊗Q E),

where H∗dR(X/F ) denotes the algebraic de Rham cohomology of X . The module MdR is a free E ⊗ F -
module of finite rank equipped with a decreasing, separated and exhaustive Hodge filtration.

Moreover, there are natural comparison isomorphisms

MB ⊗Q C ' MdR ⊗F C,(2.1)

MB ⊗Q Q` ' M`,(2.2)

which are E ⊗ C-linear and E ⊗ Q`-linear respectively. Thus

rankEMB = rankE⊗F MdR = rankE⊗Q`(M`),

and this common integer is called the E-rank of the motive M .
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Remark 2.3. If F is a p-adic field, one also has a comparison isomorphism

(2.3) Mp ⊗Qp BdR,p 'MdR ⊗F BdR,p,

where BdR,p is Fontaine’s ring of p-adic periods, which is endowed with a decreasing, exhaustive filtration
and a continuous GF -action. This comparison isomorphism is compatible with natural filtrations and
GF -actions on both sides.

Remark 2.4. Our definition of motives with coefficients coincides with Language B of Deligne [Del].
There is an equivalent way of defining motives with coefficients (the Language A) where the objects are
motives M in MF,Q equipped with the structure of an E-module: E → End(M), and morphisms are those
that commute with the E-action. We refer the reader to Sec. 2.1 of loc. cit. for the translation between
these points of view.

2.2. The motive of a Hecke character. In this section we recall how to attach a motive to an algebraic
Hecke character ψ of an quadratic imaginary field K of infinity type (r, 0). (The reader is referred to
Section 2.1 of [BDP-cm] for out notations and conventions regarding algebraic Hecke characters.) This
generalises the exposition of Section 2.2 of [BDP-cm], where we recall how an abelian variety with complex
multiplication is attached to a Hecke character of K of infinity type (1, 0). For more general algebraic
Hecke characters which are not of type (1, 0), one no longer has an associated abelian variety. Nevertheless,
such a character still gives rise to a motive over K with coefficients in the field generated by its values.

Suppose that ψ : A×K → C× is such a Hecke character and let Eψ be the field generated over K by the
values of ψ on the finite idèles. Pick a finite Galois extension F of K such that ψF := ψ ◦ NF/K satisfies
the equation

ψF = ψrA,

where ψA is the Hecke character of F with values in K associated to an elliptic curve A/F with complex
multiplication by OK .

We construct motives M(ψF ) ∈ MF,Q, M(ψF )K ∈ MF,K associated to ψF by considering an ap-
propriate piece of the middle cohomology of the variety Ar over F . Similarly to the Introduction,
write [α] for the element of EndF (A) ⊗Z Q corresponding to an element α ∈ K. Define an idempotent

er = e
(1)
r ◦ e(2)r ∈ Corr0(Ar, Ar)Q by setting

e(1)r :=

(
√
−D + [

√
−D]

2
√
−D

)⊗r

+

(
√
−D − [

√
−D]

2
√
−D

)⊗r

, e(2)r :=

(

1 − [−1]

2

)⊗r
.

Let M(ψF ) be the motive in MF,Q defined by

M(ψF ) := (Ar, er, 0),

and let M(ψF )K denote the motive in MF,K obtained (in Language A) by making K act on M(ψF ) via
its diagonal action on Ar. The `-adic étale realisation M(ψF )K,` is free of rank one over K ⊗Q`, and GF
acts on it via ψF , viewed as a (K ⊗ Q`)

×-valued Galois character:

M(ψF )` = erH
r
et(A

r ,Q`) = (K ⊗ Q`)(ψF ).

The de Rham realisation M(ψF )K,dR is a free one-dimensional F ⊗Q K-vector space, generated as an
F -vector space by the classes of

ωrA := er(ωA ∧ · · · ∧ ωA) and ηrA := er(ηA ∧ · · · ∧ ηA),

where ηA is the unique class in H1
dR(A/F ) satisfying

[α]∗ηA = ᾱηA for all α ∈ K, and 〈ωA, ηA〉 = 1.

The Hodge filtration on M(ψF )dR is given by

Fil0M(ψF )dR = M(ψF )dR = F · ωrA + F · ηrA,
Fil1M(ψF )dR = · · · = FilrM(ψF )dR = F · ωrA,

Filr+1M(ψF )dR = 0.

It can be shown that after extending coefficients to Eψ , the motive M(ψF )K descends to a motive
M(ψ) ∈ MK,Eψ , whose `-adic realisation is a free rank one module over Eψ ⊗ Q` on which GK acts via
the character ψ. In this article however we shall only make use of the motives M(ψF ) and M(ψF )K .
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2.3. Deligne-Scholl motives. Let Sr+2(Γ0(N), ε) be the space of cusp forms on Γ0(N) of weight r + 2
and nebentype character ε. In this section, we will let ψ be a Hecke character of K of infinity type (r+1, 0).
This Hecke character gives rise to a theta-series

θψ =

∞
∑

n=1

an(θψ)qn ∈ Sr+2(Γ0(N), ε)

as in Proposition 2.10 of [BDP-cm], with N := D · NK/Q(f) and ε := εψ · εK , where εψ is the central
character of ψ (see [BDP-cm], Defn. 2.2) and εK is the quadratic Dirichlet character associated to the
extension K/Q. Observe that the subfield Eθψ of Q̄ generated by the Fourier coefficients an(θψ) is always
contained in Eψ and if ψ is a self-dual character (see loc. cit. Defn. 3.4) then Eθψ is a totally real field,
and Eψ = EθψK.

Deligne has attached to θψ a compatible system {V`(θψ)} of two-dimensional `-adic representations of
GQ with coefficients in Eθψ ⊗ Q`, such that for any prime p - N`, the characteristic polynomial of the
Frobenius element at p is given by

X2 − ap(θψ)X + ε(p)pr+1.

This representation is realised in the middle `-adic cohomology of a variety which is fibered over a modular
curve. More precisely let Γ := Γε(N) ⊂ Γ0(N) be the congruence subgroup of SL2(Z) attached to f ,
defined by

(2.4) Γ =

{(

a b
c d

)

∈ Γ0(N) such that ε(a) = 1

}

.

Writing H for the Poincaré upper half place of complex numbers with strictly positive imaginary part,
and H∗ for H ∪ P1(Q), let C denote the modular curve whose complex points are identified with Γ\H∗.
Let Wr be the r-th Kuga-Sato variety over C. It is a canonical compactification and desingularisation of
the r-fold self-product of the universal elliptic curve over C. (See for example [BDP-gz], Chapter 2 and
the Appendix for more details on this definition.)

Remark 2.5. The article [BDP-gz] is written using Γ1(N) level structures. The careful reader may
therefore wish to replace Γ = Γε(N) by Γ1(N) throughout the rest of the paper, and make the obvious
modifications. For example, in the definition of P ?

ψ(χ) in 2.26 below, one would need to take a trace before

summing over Pic(Oc). This is explained in more detail in [BDP-co], §4.2.

Theorem 2.6. (Scholl) There is a projector eθψ ∈ Corr00(Wr,Wr) ⊗ Eθψ whose associated Grothendieck
motive M(θψ) := (Wr, eθψ , 0) satisfies (for all `)

M(θψ)` ' V`(θψ)

as Eθψ [GQ]-modules.

We remark that M(θψ) is a motive over Q with coefficients in Eθψ , and that its `-adic realisationM(θψ)`
is identified with eθψ(Hr+1

et (W̄r,Q`) ⊗Q Eθψ).

The de Rham realisation
M(θψ)dR = eθψH

r+1
dR (Wr/Eθψ)

is a two-dimensional Eθψ -vector space equipped with a canonical decreasing, exhaustive and separated
Hodge filtration. This vector space and its associated filtration can be described concretely in terms of
the cusp form θψ as follows.

Let C0 denote the complement in C of the subscheme formed by the cusps. Setting W 0
r := Wr ×C C0,

there is a natural analytic uniformization

W 0
r (C) = (Z2r o Γ)\(Cr ×H),

where the action of Z2r on Cr ×H is given by

(2.5) (m1, n1, . . . ,mr, nr)(w1, . . . , wr, τ) := (w1 +m1 + n1τ, . . . , wr +mr + nrτ, τ),

and Γ acts by the rule

(2.6)

(

a b
c d

)

(w1, . . . , wr, τ) =

(

w1

cτ + d
, . . . ,

wr
cτ + d

,
aτ + b

cτ + d

)

.
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The holomorphic (r+1)-form

(2.7) ωθψ := (2πi)r+1θψ(τ)dw1 · · · dwrdτ

on W 0
r (C) extends to a regular differential on Wr. This differential is defined over the field Eθψ , by the

q-expansion principle, hence lies in Hr+1
dR (Wr/Eθψ). Its class generates the (r + 1)-st step in the Hodge

filtration of M(θψ)dR, which is given by:

Fil0M(θψ)dR = M(θψ)dR,

Fil1M(θψ)dR = · · · = Filr+1M(θψ)dR = Eθψ · ωθψ ,
Filr+2M(θψ)dR = 0.

The following proposition compares the Deligne-Scholl motive associated to θψ with the CM motives
constructed in the previous section in the main case of interest to us. We will suppose that ψ is a self-dual
Hecke character of K of infinity type (r + 1, 0), and as in the previous section that F is a finite Galois
extension of K such that ψF = ψr+1

A for some elliptic curve A over F with CM by OK .

Proposition 2.7. For every finite prime `, the `-adic representations associated to the motives M(θψ)|F
and M(ψF ) ⊗Q Eθψ are isomorphic as (Eθψ ⊗ Q`)[GF ]-modules.

Proof. It suffices to check this after further tensoring with Eψ (over Eθψ). Note that the `-adic realization
of M(θψ)|F ⊗Eθψ Eψ is a rank-2 (Eψ ⊗Q`)[GF ]-module on which GF acts as ψF,` ⊕ψ∗F,`, where ψ∗ is the

Hecke character of K obtained from ψ by composing with complex conjugation on A×K . On the other hand,
since Eχ = KEθχ ' K ⊗Q Eθχ , the `-adic realization of M(ψF )⊗Q Eψ is a rank-2 (Eψ ⊗Q`)[GF ]-module

on which GF acts as ψ`⊕ ψ̄`. However the characters ψ∗ and ψ̄ are equal since ψ is self-dual, so the result
follows. �

2.4. Modular parametrisations attached to CM forms. In this section, we will explain how the
Tate conjectures imply the existence of algebraic cycle classes generalising those in Conjecture 1 of the
Introduction. Recall the Chow groups CHd(V )(F ) defined in the Introduction.

Conjecture 2.8 (Tate). Let V be a smooth projective variety over a number field F . Then the `-adic
étale cycle class map

(2.8) cl` : CHj(V )(F ) ⊗ Q`−→H2j
et (V̄ ,Q`)(j)

GF

is surjective.

A class in the target of (2.8) is called an `-adic Tate cycle. The Tate conjecture will be used in our
constructions through the following simple consequence.

Lemma 2.9. Let V1 and V2 be smooth projective varieties of dimension d over a number field F , and let
ej ∈ Corr0(Vj , Vj) ⊗E (for j = 1, 2) be idempotents satisfying

ejH
∗
et(V̄j ,Q`) ⊗E = ejH

d
et(V̄j ,Q`) ⊗E, j = 1, 2.

Let Mj := (Vj , ej , 0) be the associated motives over F with coefficients in E, and suppose that the `-adic
realisations of M1 and M2 are isomorphic as (E⊗Q`)[GF ]-modules. If Conjecture 2.8 is true for V1 ×V2,

then there exists a correspondence Π ∈ CHd(V1 × V2)(F ) ⊗E for which

(1) the induced morphism

(2.9) Π∗` : (M1)`−→(M2)`

of `-adic realisations is an isomorphism of E ⊗ Q`[GF ]-modules;
(2) the induced morphism

(2.10) Π∗dR : (M1)dR−→(M2)dR

is an isomorphism of E ⊗ F -vector spaces.
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Proof. Let

h : e1H
d
et(V̄1, E ⊗ Q`) ' e2H

d
et(V̄2, E ⊗ Q`)

be any isomorphism of (E ⊗ Q`)[GF ]-modules. It corresponds to a Tate cycle

Zh ∈
(

Hd
et(V̄1, E ⊗ Q`)

∨ ⊗Hd
et(V̄2, E ⊗ Q`)

)GF

=
(

Hd
et(V̄1, E ⊗ Q`(d)) ⊗Hd

et(V̄2, E ⊗ Q`)
)GF

⊂
(

H2d
et (V1 × V2, E ⊗ Q`(d))

)GF
,

where the superscript ∨ in the first line denotes the E ⊗ Q`-linear dual, the second line follows from
the Poincaré duality, and the third from the Künneth formula. By Conjecture 2.8, there are elements
α1, . . . , αt ∈ E ⊗ Q` and cycles Π1, . . . ,Πt ∈ CHd(V1 × V2)(F ) satisfying

Zh =

t
∑

j=1

αj cl`(Πj).

After multiplying Zh by a suitable power of `, we may assume without loss of generality that the coefficients
αj belong to OE ⊗ Z`. If (β1, . . . , βt) ∈ Ot

E is any vector which is sufficiently close to (α1, . . . , αt) in the
`-adic topology, then the corresponding algebraic cycle

Π :=

t
∑

j=1

βj · Πj ∈ CHd(V1 × V2)(F ) ⊗E

satisfies condition 1 in the statement of Lemma 2.9. Condition 2 is verified by embedding F into one of
its `-adic completions Fλ and applying Fontaine’s comparison functor to (2.9) in which source and targets
are de Rham representations of GFλ . This shows that Π∗dR induces an isomorphism on the de Rham
cohomology over Fλ ⊗E, and part 2 follows. �

The following proposition (in which, to ease notations, we identify differential forms with their image
in de Rham cohomology) justifies Conjecture 1 of the Introduction. Notations are as in Section 2.2 and
2.3, with ψ a self-dual Hecke character of infinity type (r + 1, 0).

Proposition 2.10. If the Tate conjecture is true for Wr × Ar+1, then there is an algebraic cycle Π? ∈
CHr+1(Wr ×Ar+1)(F ) ⊗Eθψ such that

(2.11) Π?∗
dR(ωr+1

A ) = cψ,F · ωθψ .
for some cψ,F ∈ (F ⊗Q Eθψ)×.

Proof. Let M1 and M2 be the motives M(ψF ) ⊗Q Eθψ and M(θψ)|F in MF,Eθψ
. By Prop. 2.7 the `-

adic realisations of M1 and M2 are isomorphic. Part (1) of Lemma 2.9 implies, assuming the validity
of Conjecture 2.8, the existence of a correspondence Π? in CHr+1(Wr × Ar+1)(F ) ⊗ Eθψ which induces
an isomorphism on the `-adic and de Rham realisations of M1 and M2. The isomorphism on de Rham
realizations respects the Hodge filtrations and therefore sends the class ωr+1

A to a unit F ⊗Q Eθψ -rational
multiple of ωθψ , hence the proposition follows. �

Note that the ambient F -variety Z := Wr × Ar+1 = Wr × Ar × A in which the correspondence Π? is
contained is equipped with three obvious projection maps

Z
π0

}}{{
{{

{{
{{

π1

��

π2

  B
BB

BB
BB

B

Wr Ar A.

Let Xr be the F -variety

Xr = Wr ×Ar.

After setting

π01 = π0 × π1 : Z−→Xr, π12 = π1 × π2 : Z−→Ar ×A,
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we recall the simple (but key!) observation already made in the Introduction that Π? can be viewed as a
correspondence in two different ways, via the diagrams:

Z
π0

~~}}
}}

}}
}} π12

##G
GG

GG
GG

GG

Wr Ar ×A

and Z
π01

~~}}
}}

}}
}} π2

  @
@@

@@
@@

@

Xr A.

In order to maintain a notational distinction between these two ways of viewing Π?, the correspondence
from Xr to A attached to the cycle Π? is denoted by Φ? instead of Π?. It induces a natural transformation
of functors on F -algebras:

(2.12) Φ? : CHr+1(Xr)0 ⊗Eθψ−→CH1(A)0 ⊗Eθψ = A⊗Eθψ ,

where A⊗Eθψ is the functor from the category of F -algebras to the category of Eθψ -vector spaces which

to L associates A(L) ⊗ Eψ. The natural transformation Φ? is referred to as the modular parametrisation
attached to the correspondence Φ?. For any F -algebra L, we will also write

(2.13) Φ?
L : CHr+1(Xr)0(L) ⊗Eθψ−→A(L) ⊗Eθψ

for the associated homomorphism on L-rational points (modulo torsion).
Like the class Π?, the correspondence Φ? also induces a functorial F ⊗Q Eθψ -linear map on de Rham

cohomology, denoted

(2.14) Φ?∗
dR : H1

dR(A/F ) ⊗Eθψ−→H2r+1
dR (Xr/F ) ⊗Eθψ .

Recall that ηA ∈ H1
dR(A/F ) is defined as in (1.8) of the Introduction.

Proposition 2.11. The image of the class ωA ∈ Ω1(A/F ) ⊂ H1
dR(A/F ) under Φ?

dR is given by

Φ?∗
dR(ωA) = cψ,F · ωθψ ∧ ηrA,

where cψ,F is as in Prop. 2.10.

Proof. Suppose that

Π? =
∑

j

mjZj

is an Eθψ -linear combination of codimension (r+1) subvarieties of Z. The cycle class map is given by

clΠ? : H2r+2
dR (Z/F ) ⊗Eθψ−→F ⊗Eθψ

where

clΠ?(ω) =
∑

j

clZj (ω) ⊗mj .

By Proposition 2.10 and the construction of Π?
dR, we have

(2.15) Π?∗
dR(ωr+1

A ) = cψ,F · ωθψ ,
and

(2.16) Π?∗
dR(ηjAω

r+1−j
A ) = 0, for 1 ≤ j ≤ r.

By definition of Π?
dR, equation (2.15) can be rewritten as

(2.17) clΠ?(π∗0(α) ∧ π∗12(ωr+1
A )) = 〈α, cψ,F · ωθψ〉Wr

, for all α ∈ Hr+1
dR (Wr/F ) ⊗Eθψ ,

while (2.16) shows that

(2.18) clΠ?(π∗0(α) ∧ π∗12(ηjAω
r+1−j
A )) = 0, when 1 ≤ j ≤ r.

Equation (2.17) can also be rewritten as

(2.19) clΦ?(π∗01(α ∧ ωrA) ∧ π∗2(ωA)) = 〈α ∧ ωrA, cψ,F · ωθψ ∧ ηrA〉Xr ,
while equation (2.18) implies that, for all α ∈ Hr+1

dR (Wr/F ) ⊗Eθψ and all 1 ≤ j ≤ r,

(2.20) clΦ?(π∗01(α ∧ ηjAω
r−j
A ) ∧ π∗2(ωA)) = 0 = 〈α ∧ ηjAω

r−j
A , ωθψ ∧ ηrA〉Xr .
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In light of the definition of the map Φ?∗
dR, equations (2.19) and (2.20) imply that

Φ?∗
dR(ωA) = cψ,F · ωθψ ∧ ηrA.

The proposition follows. �

Remark 2.12. We note that given a rational prime ` and a prime λ of F above ` such that Fλ = Q`,
the maps induced by the putative correspondences Π? and Φ? in `-adic and de Rham cohomology (the
latter over Fλ) can be defined regardless of the existence of these correspondences, at least up to a global
constant independent of λ. Indeed, let Π∗` be any isomorphism

Π∗` : (M1)` ' (M2)`

of (Eθψ⊗Q`)[GF ]-modules. By the comparison theorem this gives rise to an Eθψ⊗QFλ-linear isomorphism
of de Rham realizations:

Π∗dR,λ : M1,dR ⊗F Fλ−→M2,dR ⊗F Fλ,
mapping ωr+1

A to a (unit) Eψ ⊗Q Fλ-rational multiple of ωθψ . Since Fλ = Q`, we can rescale Π∗` uniquely
such that Π∗dR,λ satisfies:

Π∗dR,λ(ω
r+1
A ) = ωθψ .

Now as in the proof of Lemma 2.9, the Tate cycle corresponding to the normalised isomorphism Π∗` can
be viewed as a non-zero element of

(

H1
et(Ā, Eθψ ⊗ Q`)

∨ ⊗H2r+1(X̄r, Eθψ ⊗ Q`)(r)
)GF

,

and hence gives rise to a map

(2.21) Φ∗et,λ : H2r+1
et (X̄r,Q`)(r+1) ⊗Q Eθψ−→H1

et(Ā,Q`)(1) ⊗Q Eθψ = V`(A) ⊗Q Eθψ .

By the comparison isomorphism one gets a map

(2.22) Φ∗dR,λ : H1
dR(A/Fλ) ⊗Eθψ−→H2r+1

dR (Xr/Fλ) ⊗Eθψ .

The same proof as in Proposition 2.11 shows that

Φ∗dR,λ(ωA) = ωθψ ∧ ηrA.
Note that if Φ? exists, then the map Φ∗dR,λ differs from Φ?

dR exactly by the global constant cψ,F .

Remark 2.13. Consider the following special case (see also Section 2.7 of [BDP-cm]) in which the following
assumptions are made:

(1) The quadratic imaginary field K has class number one, odd discriminant, and unit group of order
two. This implies that K = Q(

√
−D) where D := −Disc(K) belongs to the finite set

S := {7, 11, 19, 43, 67, 163}.
(2) Let ψ0 be the so-called canonical Hecke character of K of infinity type (1, 0) given by the formula

(2.23) ψ0((a)) = εK(a mod dK)a,

where dK = (
√
−D). The character ψ0 determines (uniquely, up to an isogeny) an elliptic curve

A/Q satisfying

EndK(A) = OK , L(A/Q, s) = L(ψ0, s).

After fixing A, we will also write ψA instead of ψ0. It can be checked that the conductor of ψA is
equal to dK , and that

ψ∗A = ψ̄A, ψAψ
∗
A = NK , εψA = εK ,

so that ψA is self-dual.

Suppose that ψ = ψr+1
A . In this case, the setup above simplifies drastically since Eθψ = Q and we may

choose F = K. The modular parametrisation Φ? arises from a class in CHr+1(Xr×A)(K)⊗Q and induces
a natural transformation of functors on K-algebras:

(2.24) Φ? : CHr+1(Xr)0 ⊗ Q−→A⊗ Q.
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2.5. Generalised Heegner cycles and Chow-Heegner points. Recall the notation Γ := Γε(N) ⊂
Γ0(N) in (2.4) The associated modular curve C = Xε(N) has a model over Q obtained by realising C
as the solution to a moduli problem, which we now describe. Given an abelian group G of exponent N ,
denote by G∗ the set of elements of G of order N . This set of “primitive elements” is equipped with a
natural free action by (Z/NZ)×, which is transitive when G is cyclic.

Definition 2.14. A Γ-level structure on an elliptic curve E is a pair (CN , t), where

(1) CN is a cyclic subgroup scheme of E of order N ,
(2) t is an orbit in C∗N for the action of ker ε.

If E is an elliptic curve defined over a field L, then the Γ-level structure (CN , t) on E is defined over the
field L if CN is a group scheme over L and t is fixed by the natural action of Gal(L̄/L).

The curve C coarsely classifies the set of isomorphism classes of triples (E,CN , t) where E is an elliptic
curve and (CN , t) is a Γ-level structure on E. When Γ is torsion-free (which occurs, for example, when ε
is odd and N is divisible by a prime of the form 4n + 3 and a prime of the form 3n + 2) the curve C is
even a fine moduli space; for any field L, one then has

C(L) = {Triples (E,CN , t) defined over L}/L-isomorphism.

Since the datum of t determines the associated cyclic group CN , we sometimes drop the latter from the
notation, and write (E, t) instead of (E,CN , t) when convenient.

We assume now that OK contains a cyclic ideal N of norm N . Since N = D ·NK/Q(fψ), this condition
is equivalent to requiring that fψ is a (possibly empty) product

fψ =
∏

i

qnii

where qi is a prime ideal in OK lying over a rational prime qi split in K and the qi are pairwise coprime.
The group scheme A[N] of N-torsion points in A is a cyclic subgroup scheme of A of order N . A Γ-level
structure on A of the form (A[N], t) is said to be of Heegner type (associated to the ideal N).

Fixing a choice t of Γ-level structure on A attached to N, the datum of (A, t) determines a point PA
on C(F̃ ) for some abelian extension F̃ of K, and a canonical embedding ιA of Ar into the fiber in Wr

above PA. We will assume henceforth that the extension F of K has been chosen large enough so that
F ⊇ F̃ . More generally then, if ϕ : A−→A′ is an isogeny defined over F whose kernel intersects A[N]
trivially (i.e., an isogeny of elliptic curves with Γ-level structure), then the pair (A′, ϕ(t)) determines a
point PA′ ∈ C(F ) and an embedding ιϕ : (A′)r−→Wr which is defined over F . We associate to such an
isogeny ϕ a codimension r+1 cycle Υϕ on the variety Xr by letting Graph(ϕ) ⊂ A×A′ denote the graph
of ϕ, and setting

Υϕ := Graph(ϕ)r ⊂ (A×A′)r
'−→ (A′)r ×Ar ⊂Wr ×Ar,

where the last inclusion is induced from the pair (ιA′ , idrA). We then set

(2.25) ∆ϕ := εXΥϕ ∈ CHr+1(Xr)0(F ),

where εX is the idempotent given in equation (2.2.1) of [BDP-gz], viewed as an element of the ring
Corr0(Xr, Xr) of algebraic correspondences from Xr to itself.

Definition 2.15. The Chow-Heegner point attached to the data (ψ, ϕ) is the point

P ?
ψ(ϕ) := Φ?

F (∆ϕ) ∈ A(F ) ⊗Eθψ = A(F ) ⊗OK Eψ.

Note that this definition is only a conjectural one, since the existence of the homomorphism Φ?
F depends

on the existence of the algebraic cycle Π?.

We now discuss some specific examples of ϕ that will be relevant to us. Let c be a positive integer and
suppose that F contains the ring class field of K of conductor c. An isogeny ϕ0 : A−→A0 (defined over F )
is said to be a primitive isogeny of conductor c if it is of degree c and if the endomorphism ring End(A0)
is isomorphic to the order Oc in K of conductor c. The kernel of a primitive isogeny necessarily intersects
A[N] trivially, i.e., such a ϕ0 is an isogeny of elliptic curves with Γ-level structure. The corresponding
Chow-Heegner point P ?

ψ(ϕ0) is said to be of conductor c.
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Once ϕ0 is fixed, one can also consider an infinite collection of Chow-Heegner points indexed by certain
projective Oc-submodules of Oc. More precisely, let a be such a projective module for which

A0[a] ∩ ϕ0(A[N]) = 0,

and let

ϕa : A0−→Aa := A0/A0[a]

denote the canonical isogeny of elliptic curves with Γ-level structure given by the theory of complex
multiplication. Since the isogeny ϕa is defined over F , the Chow-Heegner point

P ?
ψ(a) := P ?

ψ(ϕaϕ0) = Φ?
F (∆a), where ∆a = ∆ϕaϕ0 ,

belongs to A(F ) ⊗Eθψ as well.

Lemma 2.16. For all elements λ ∈ Oc which are prime to N, we have

P ?
ψ(λa) = ε(λ mod N)λrP ?

ψ(a) in A(F ) ⊗OK Eψ .

More generally, for any b,

ϕa(P ?
ψ(ab)) = ψ(a)P ?

ψ(b)σa ,

where σa is the Frobenius element in Gal(F/K) attached to a.

Proof. Let Pa be the point of C(F ) attached to the elliptic curve Aa with Γ-level structure, and recall
that π−1(Pa) is the fiber above Pa for the natural projection π : Xr−→C. The algebraic cycle

∆λa − ε(λ)λr∆a

is entirely supported in the fiber π−1(Pa), and its image in the homology of this fiber under the cycle class
map is 0. The result follows from this using the fact that the image of a cycle ∆ supported on a fiber
π−1(P ) depends only on the point P and on the image of ∆ in the homology of the fiber. The proof of
the general case is similar. �

Now pick a rational integer c prime to N and recall that we have defined in Section 3.2 of [BDP-cm] a
set of Hecke characters of K, denoted Σcc(c,N, ε). (In loc. cit., we required c to be prime to pN , where p
is a fixed prime split in K; however this is not a key part of the definition, and in this paper we shall pick
such a p later.) The set Σcc(c,N, ε) can be expressed as a disjoint union

Σcc(c,N, ε) = Σ(1)
cc (c,N, ε) ∪ Σ(2)

cc (c,N, ε),

where Σ
(1)
cc (c,N, ε) and Σ

(2)
cc (c,N, ε) denote the subsets consisting of characters of infinity type (k+ j,−j)

with 1 − k ≤ j ≤ −1 and j ≥ 0 respectively. If p is a rational prime split in K and prime to cN , we
shall denote by Σ̂cc(c,N, ε) the completion of Σcc(c,N, ε) relative to the p-adic compact open topology

on Σcc(c,N, ε) which is defined in Section 5.2 of [BDP-gz]. We note that the set Σ
(2)
cc (c,N, ε) of classical

central critical characters “of type 2” is dense in Σ̂cc(c,N, ε).

Let χ be a Hecke character of K of infinity type (r, 0) such that χNK belongs to Σ
(1)
cc (c,N, ε) (so that

χ is self-dual as well) and let Eψ,χ denote the field generated over K by the values of ψ and χ. By Lemma
2.16, the expression

χ(a)−1P ?
ψ(a) ∈ A(F ) ⊗OK Eψ,χ

depends only on the image of a in the class group Gc := Pic(Oc). Hence we can define the Chow-Heegner
point attached to the theta-series θψ and the character χ by summing over this class group:

(2.26) P ?
ψ(χ) :=

∑

a∈Pic(Oc)
χ−1(a)P ?

ψ(a) ∈ A(F ) ⊗OK Eψ,χ.

The Chow-Heegner point P ?
ψ(χ) thus defined belongs (conjecturally) to A(F ) ⊗OK Eψ,χ.
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2.6. A special case. We now specialise the Chow-Heegner point construction to a simple but illustrative
case, in which the hypotheses of Remark 2.13 are imposed. Thus ψ = ψr+1

A and the modular parametri-

sation Φ? gives a homomorphism from CHr+1(Xr)(K) to A(K) ⊗ Q, We further assume

(1) The integer r is odd. This implies that ψ is an unramified Hecke character of infinity type (r+1, 0)
with values in K, and that its associated theta series θψ belongs to Sr+2(Γ0(D), εK).

(2) The character χ as above is a Hecke character of infinity type (r, 0), and

χNK belongs to Σ(1)
cc (c, dK , εK),

with c prime to D. The proof of Lemma 3.32 of [BDP-cm] shows that any such χ can be written
as

χ = ψrAχ
−1
0 ,

where χ0 is a ring class character of K of conductor dividing c.

Under these conditions, we have

Γ = ΓεK (D) =

{(

a b
c d

)

∈ Γ0(D) such that εK(a) = 1

}

.

Furthermore, the action of GK on the cyclic group A[dK ](K̄) is via the D-th cyclotomic character, and
therefore a Γ-level structure of Heegner type on the curve A is necessarily defined over K. The corre-
sponding Γ-level structures on A0 and on Aa are therefore defined over the ring class field Hc. It follows
that the generalised Heegner cycles ∆ϕ belong to CHr+1(Xr)0,Q(Hc), for any isogeny ϕ of conductor c,
and therefore–assuming the existence of Φ?–that

P ?
ψ(a) belongs to A(Hc) ⊗OK K, P ?

ψ(χ) belongs to (A(Hc) ⊗OK Eχ)χ0 ,

where the χ0-component (A(Hc) ⊗OK Eχ)χ0 of the Mordell-Weil group over the ring class field Hc is
defined by

(2.27) (A(Hc) ⊗OK Eχ)χ0 := {P ∈ A(Hc) ⊗OK Eχ such that σP = χ0(σ)P, ∀σ ∈ Gal(Hc/K)}.

3. Chow-Heegner points over Cp

3.1. The p-adic Abel-Jacobi map. The construction of the point P ?
ψ(χ) is only conjectural since it

depends on the existence of the cycle Π? and the corresponding map Φ?. In order to obtain unconditional
results, we will replace the conjectural map Φ? by its analogue in p-adic étale cohomology.

We will let F0 denote the finite Galois extension of K which was denoted by F in Section 2.2. Recall
that ψ ◦NF0/K = ψr+1

A , where ψA is the Hecke character associated to an elliptic curve A/F0 with CM by
OK . Fix a rational prime p which does not divide the level N of θψ, and such that there exists a prime v0
of F0 above p with F0,v0 = Qp. Recall that the choice of the place v0 above p in F0 allows us to define a
normalized map

Φ∗et,p : H2r+1
et (X̄r,Qp(r + 1)) ⊗Q Eθψ → H1

et(Ā,Qp(1)) ⊗Q Eθψ = Vp(A) ⊗Q Eθψ = Vp(A) ⊗K Eψ

of Eθψ ⊗ Qp[GF0 ]-modules as in equation (2.21).

Let F be any finite extension of K containing F0 such that the generalized Heegner cycle ∆ϕ is defined
over F . The global cohomology class

κψ(ϕ) := Φ∗et,p(AJ(∆ϕ)) ∈ H1(F, Vp(A)) ⊗Eθψ

belongs to the pro-p Selmer group of A over F , tensored with Eθψ (see [Ne2], Theorem 3.1.1.), and is

defined independently of any conjectures. Furthermore, if the correspondence Φ? exists, then Prop. 2.11
implies that

(3.1) κψ(ϕ) = cψ,F0 · δ(P ?
ψ(ϕ)),

where

δ : A(F ) ⊗Eθψ−→H1(F, Vp(A)) ⊗Eθψ

is the connecting homomorphism of Kummer theory, and cψ,F0 is an element in (F0⊗Eθψ)× ↪→ (Qp⊗Eθψ)×.



CHOW-HEEGNER POINTS ON CM ELLIPTIC CURVES 17

Let v be a place of F above v0. Since κψ(ϕ) belongs to the Selmer group of A over F , there is a local

point in A(Fv) ⊗Eθψ , denoted P
(v)
ψ (ϕ), such that

κψ(ϕ)|GFv = δv(P
(v)
ψ (ϕ)).

More generally, as in (1.15) of the Introduction, there exists a map

Φ
(v)
F : CHr+1(Xr)0(Fv)−→A(Fv) ⊗Eθψ

such that

Φ
(v)
F (∆ϕ) = P

(v)
ψ (ϕ).

The map Φ
(v)
F is the p-adic counterpart of the conjectural map Φ?

F .

In light of Proposition 2.10 and of the construction of Chow-Heegner points given in Definition 2.15, the
following conjecture is a concrete consequence of the Tate (or Hodge) conjecture for the variety Xr ×A.

Conjecture 3.1. The local points P
(v)
ψ (ϕ) ∈ A(Fv)⊗Eθψ lie in Λ·(A(F )⊗Eθψ ), where Λ := (F0⊗Eθψ )× ↪→

(Qp ⊗Eθψ )×.

The goal of this chapter is to prove Conjecture 3.1 in many cases. The proof exploits the connection

between the local points P
(v)
ψ (ϕ) and the special values of two different types of p-adic L-functions: the

Katz p-adic L-function attached to K and the p-adic Rankin L-function attached to θψ described in §3.1
and §3.2 of [BDP-cm] respectively. The reader should consult these sections for the notations and basic
interpolation properties defining these two types of p-adic L-functions.

We begin by relating P
(v)
ψ (ϕ) to p-adic Abel-Jacobi maps. The p-adic Abel-Jacobi map attached to the

elliptic curve A/Fv is a homomorphism

(3.2) AJA : CH1(A)0,Q(Fv)−→Ω1(A/Fv)
∨,

where the superscript of ∨ on the right denotes the Fv-linear dual. Under the identification of CH1(A)0,Q(Fv)
with A(Fv) ⊗ Q, it is determined by the relation

(3.3) AJA(P )(ω) = logω(P ),

where ω ∈ Ω1(A/Fv) and

logω : A(Fv) ⊗ Q−→Fv

denotes the formal group logarithm on A attached to this choice of regular differential. It can be extended
by Eθψ -linearity to a map from A(Fv) ⊗Eθψ to Fv ⊗Eψ.

There is also a p-adic Abel-Jacobi map on null-homologous algebraic cycles

AJXr : CHr+1(Xr)0(Fv)−→Filr+1H2r+1
dR (Xr/Fv)

∨

attached to the variety Xr, where Filj refers to the j-th step in the Hodge filtration on algebraic de Rham
cohomology. Details on the definition of AJXr can be found in Section 3 of [BDP-gz], where it is explained
how AJXr can be calculated via p-adic integration.

In light of Remark 2.12, the functoriality of the Abel-Jacobi maps is expressed in the following commu-
tative diagram relating AJA and AJXr :

(3.4) CHr+1(Xr)0(Fv)

Φ
(v)
F

��

AJXr
// Filr+1H2r+1

dR (Xr/Fv)
∨

Φ∗,∨

dR,v

��

A(Fv) ⊗Eθψ
AJA

// Ω1(A/Fv)
∨ ⊗Eθψ .

Proposition 3.2. For all isogenies ϕ : (A, tA, ωA)−→(A′, t′, ω′) of elliptic curves with Γ-level structure,

logωA(P
(v)
ψ (ϕ)) = AJXr (∆ϕ)(ωθψ ∧ ηrA).
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Proof. By equation (3.3) and the definition of P
(v)
ψ (ϕ),

(3.5) logωA(P
(v)
ψ (ϕ)) = AJA(P

(v)
ψ (ϕ))(ωA) = AJA(Φ

(v)
F (∆ϕ))(ωA).

The commutative diagram (3.4) shows that

(3.6) AJA(Φ
(v)
F (∆ϕ))(ωA) = AJXr (∆ϕ)(Φ∗dR,v(ωA)) = AJXr (∆ϕ)(ωθψ ∧ ηrA).

Proposition 3.2 now follows from (3.5) and (3.6). �

We will study the local points P
(v)
ψ (ϕ) via the formula of Proposition 3.2.

3.2. Rationality of Chow-Heegner points over Cp. We begin by placing ourselves in the setting of
Section 2.6, in which

ψ = ψr+1
A , χ = ψrAχ0

where χ0 is a ring class character of K of conductor c. In this case, we can take F0 = K. Let p be a prime
split in K and fix a prime p of K above p. We set

P
(p)
A,r(χ0) := P

(p)

ψr+1
A

(ψrAχ0) = P
(p)
ψ (χ),

the latter being defined analogously to (2.26). The next theorem is one of the main results of this paper.

Theorem 3.3. There exists a global point PA,r(χ0) ∈ (A(Hc) ⊗OK Eχ)χ0 satisfying

log2
ωA(P

(p)
A,r(χ0)) = log2

ωA(PA,r(χ0)) (mod E×χ ).

Furthermore, the point PA,r(χ0) is of infinite order if and only if

L′(ψAχ
−1
0 , 1) 6= 0, L(ψ2r+1

A χ0, r+1) 6= 0.

Proof. By Proposition 3.2,

(3.7) logωA(P
(p)
A,r(χ)) = AJXr (∆ψ(χ))(ωθψ ∧ ηrA).

for an explicit cycle ∆ψ(χ) ∈ CHr+1(Xr)0 ⊗Eχ. Theorem 5.13 of [BDP-gz] with f = θψ and j = 0 gives

(3.8) AJXr (∆ψ(χ))(ωθψ ∧ ηrA)2 =
Lp(θψ, χNK)

Ωp(A)2r
(mod E×χ ),

where Lp(θψ, χNK) and Ωp(A) are respectively the p-adic Rankin L-function attached to θψ and the p-
adic period attached to A as described in Sections 3.2 and 2.4 of [BDP-cm]. The fact that θψ has Fourier
coefficients in Q and that its Nebentype character εK is trivial when restricted to K implies that the field
Eψ,χ,εK occurring in Corollary 3.17 of Section 3.4 of [BDP-cm] is equal to Eχ. Therefore, this corollary
implies that

Lp(θψ, χNK)

Ωp(A)2r
= Lp,cdK (ψ−1χNK) × Lp,cdK (ψ∗−1χNK)

Ωp(A)2r
(mod E×χ )

=
Lp,cdK (ν∗)

Ωp(A)−1
× Lp,cdK (ψ2r+1

A χ0N
−r
K )

Ωp(A)2r+1
(mod E×χ ),(3.9)

where the factors Lp,cdK (ψ−1χNK) and Lp,cdK (ψ∗−1χNK) are values of the Katz two-variable p-adic
L-function with conductor cdK , following the notations that are adopted in Section 3.1 of [BDP-cm]. The

character ν∗ = ψ∗Aχ0 lies in the region Σ
(1)
sd (cdK) described in Section 3.1 of loc. cit. and is of type

(0, 1). Hence, Theorem 3.30 of Section 3.6 of loc. cit. can be invoked. This theorem gives a global point
PA(χ0) ∈ (A(Hc) ⊗OK Eχ)χ0 which is of infinite order if and only if L′(ψAχ

−1
0 , 1) 6= 0, and satisfies

(3.10) Lp,cdK (ψ∗Aχ0) = Ωp(A)−1g(χ0) log2
ωA(PA(χ0)) (mod E×χ ).

Furthermore, the character ψ2r+1
A χ0N

−r
K belongs to the domain Σ

(2)
sd (cdK) of classical interpolation for

the Katz p-adic L-function. Proposition 2.15 and Lemma 2.14 in Section 2.3 of [BDP-cm] show that the
p-adic period attached to this central critical character is given by

(3.11) Ωp((ψ
2r+1
A χ0N

−r
K )∗) = Ωp(A)2r+1g(χ0)

−1 (mod E×χ ).
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Corollary 3.3 of Section 3.1 of loc. cit. then implies that, up to multiplication by a non-zero element of
Eχ,

(3.12) Lp,cdK (ψ2r+1
A χ0N

−r
K ) =

{

0, if L(ψ2r+1
A χ0, r+1) = 0,

Ωp(A)2r+1g(χ0)
−1, otherwise.

After setting

(3.13) PA,r(χ0) =

{

0, if L(ψ2r+1
A χ0, r+1) = 0,

PA(χ0), otherwise,

equations (3.10) and (3.12) can be used to rewrite (3.9) as

(3.14)
Lp(θψ , χNK)

Ωp(A)2r
= log2

ωA(PA,r(χ0)) (mod E×χ ).

Theorem 3.3 now follows by combining (3.7), (3.8) and (3.14). �

We now state a more general, but less precise, version of Theorem 3.3. Let ψ and χ be two self-dual
characters of K of infinity types (r + 1, 0) and (r, 0) respectively, as in Sec. 2.5. Let Fψ,χ be the subfield
of Q̄ generated over K by F and Eψ,χ, and let ν := ψχ−1, so that ν is a self-dual Hecke character of K
of infinity type (1, 0) attached to the pair (ψ, χ).

Theorem 3.4. There exists a global point Pψ(χ) ∈ A(F ) ⊗OK Eψ,χ such that

log2
ωA(P

(v)
ψ (χ)) = log2

ωA(Pψ(χ)) (mod F×ψ,χ),

for all differentials ωA ∈ Ω1(A/F ). This point is non-zero if and only if

L′(ν, 1) 6= 0 and L(ψχ∗−1, 1) 6= 0.

Proof. The proof proceeds along the same lines as (but is simpler than) the proof of Theorem 3.3. This
earlier proof applies to a more special setting but derives a more precise result, in which it becomes
necessary to keep a more careful track of the fields of scalars involved. To prove Theorem 3.4, it suffices
to rewrite the proof of Theorem 3.3 with E×χ replaced by F×ψ,χ and (ψr+1

A , ψrAχ0) replaced by (ψ, χ). Note

that equations (3.10) and (3.11) hold modulo the larger group F×ψ,χ without the Gauss sum factors which
can therefore be ignored. �

We now specialise the setting of Theorem 3.3 even further by assuming that χ0 = 1 is the trivial
character, so that ψ = ψr+1

A and χ = ψrA, and set

P
(p)
A,r := P

(p)

ψr+1
A

(ψrA).

In this case, the coefficient field Eχ is equal to K, and Theorem 3.3 asserts the existence of a point
PA,r ∈ A(K) ⊗ Q such that

log2
ωA(P

(p)
A,r) = log2

ωA(PA,r) (mod K×).

It is instructive to refine the argument used in the proof of Theorem 3.3 to resolve the ambiguity by the

non-zero scalar in K×, in order to examine the dependence on r of the local point P
(p)
A,r. This is the content

of the next result.

Theorem 3.5. For all odd r ≥ 1, the Chow-Heegner point P
(p)
A,r belongs to A(K) ⊗ Q and is given by the

formula

(3.15) log2
ωA(P

(p)
A,r) = `(r) · log2

ωA(PA),

where `(r) ∈ Z satisfies

`(r) = ± r!(2π)r

(2
√
D)rΩ(A)2r+1

L(ψ2r+1
A , r + 1),

and PA is a generator of A(K) ⊗ Q depending only on A but not on r.
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Proof. As in the proof of Theorem 3.3, we combine (3.7) and Theorem 5.13 of [BDP-gz] with (f, j) =
(θψr+1

A
, 0) and χNK = ψrANK playing the role of χ, to obtain

(3.16) log2
ωA(P

(p)
ψ (χ)) = (1 − (pχ(p̄))−1ap(θψ) + (pχ(p̄))−2pr+1)−2Lp(θψ , χNK)

Ωp(A)2r
.

Since χ(p̄) = ψA(p̄)r and ap(θψ) = ψr+1
A (p̄) + ψr+1

A (p), the Euler factor appearing in (3.16) is given by

(1 − ψ−1
A (p))−2(1 − ψ2r+1

A (p)p−r−1)−2.

Therefore,

(3.17) log2
ωA(P

(p)
ψ (χ)) = (1 − ψ−1

A (p))−2(1 − ψ2r+1
A (p)p−r−1)−2Lp(θψ , χNK)

Ωp(A)2r
.

On the other hand, by Corollary 2.17 of [BDP-cm] with c = 1 and j = 0

(3.18)
Lp(θψ , χNK)

Ωp(A)2r
=
w(θψ , χ)−1

2r
× Lp(ψ

∗
A) × Lp(ψ

2r+1
A N−rK )

Ωp(A)2r
,

where we write Lp for Lp,dK . By Lemma 5.3 of [BDP-gz], the norm 1 scalar w(θψ , χ) belongs to K, and

is only divisible by the primes above
√
−D. Therefore it is a unit in OK , and hence is equal to ±1. We

obtain

(3.19)
Lp(θψ, χNK)

Ωp(A)2r
=

±1

2r
× Lp(ψ

∗
A)

Ωp(A)−1
× Lp(ψ

2r+1
A N−rK )

Ωp(A)2r+1
.

Let PA = PA(1) ∈ A(K) ⊗ Q be as in (3.10), but chosen specifically so that

(3.20)
Lp(ψ

∗
A)

Ωp(A)−1
= (1 − ψ−1

A (p))2 log2
ωA(PA).

By the interpolation property for the Katz L-function given, for instance, in Proposition 3.5 of Section 3.1
of [BDP-cm] with j = r and ν = ψ2r+1

A N−rK = ψr+1
A ψ∗−rA ,

(3.21)
Lp(ψ

2r+1
A N−rK )

Ωp(A)2r+1
= (1 − ψA(p)2r+1p−r−1)2 × r!(2π)rL((ψ∗A)2r+1N−r−1

K , 0)√
D
r
Ω(A)2r+1

.

After substituting equations (3.20) and (3.21) into (3.19), and using the fact that

L((ψ∗A)2r+1N−r−1
K , 0) = L(ψ2r+1

A , r+1),

we find

(1 − ψ−1
A (p))−2(1 − ψA(p)2r+1p−r−1)−2 × Lp(θψ , χNK)

Ωp(A)2r

=
±1

2r
log2

ωA(PA) × r!(2π)rL(ψ2r+1
A , r+1)√

D
r
Ω(A)2r+1

.

Hence, by (3.17), we obtain

log2
ωA(P

(p)
ψ (χ)) = ± r!(2π)r

(2
√
D)rΩ(A)2r+1

× L(ψ2r+1
A , r + 1) × log2

ωA(PA)

The result follows since `(r) is shown to be an integer in [RV]. �
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4. Chow-Heegner points over C

4.1. The complex Abel-Jacobi map. For simplicity, we will confine ourselves in this section to working
under the hypotheses that were made in Remark 2.13 whereK is assumed in particular to have discriminant
−D, with

D ∈ S := {7, 11, 19, 43, 67, 163}.
Let us suppose for the moment that an algebraic correspondence Π? ∈ CHr+1(Wr × Ar+1) ⊗ Q as in

Proposition 2.10 exists. By taking an integer multiple of this correspondence we may assume that it has
integer coefficients. As before then, viewing it as a correspondence

Φ? ∈ CHr+1(Xr ×A),

where Xr = Wr ×Ar, we get a modular parametrization also denoted Φ?:

Φ? : CHr+1(Xr)0−→CH1(A)0 = A.

By Propositions 2.10 and 2.11, we have (with ψ := ψr+1
A )

(4.1) Π?∗
dR(ωr+1

A ) = cψ,K · ωθψ , Φ?∗
dR(ωA) = cψ,K · ωθψ ∧ ηrA,

for some scalar cψ,K ∈ K×. This scalar can be viewed as playing the role of the Manin-constant in the

context of the modular parametrisation of A by CHr+1(Xr)0.

Question 4.1. When is it possible to choose an integral cycle Π? so that cψ,K = 1?

The difficulty in computing the modular parametrisation Φ? and the resulting Chow-Heegner points
arises from the fact that it is hard in general to explicitly produce the correspondence Φ?, or even to
prove its existence. In this section we shall see that it is possible to define a complex avatar ΦC of Φ?

unconditionally and compute it numerically to great precision in several examples. Note that if the cycle
Φ? exists, then equation (4.1) shows that cψ,K · ωθψ ∧ ηr+1

A is an integral Hodge class on Wr ×Ar+1. The
construction of ΦC is based on the observation that one can show the following independently using a
period computation, as in [Scha] Ch. 5, Thm 2.4.

Proposition 4.2. There exists a scalar cr ∈ K× such that Ξ := cr · ωθψ ∧ ηr+1
A is an integral Hodge class

on Wr ×Ar+1.

Let us fix such a scalar cr ∈ K×. Clearly we may assume that cr is in fact in OK . Let

(4.2) AJ∞A : CH1(A)0(C)−→Fil1H1
dR(A/C)∨

ImH1(A(C),Z)

be the classical complex Abel-Jacobi map attached to A, where the superscript ∨ now denotes the complex
linear dual. The map AJ∞A is defined by the rule

(4.3) AJ∞A (∆)(ω) =

∫

∂−1∆

ω,

the integral on the right being taken over any one-chain on A(C) having the degree zero divisor ∆ as
boundary. This classical Abel-Jacobi map admits a higher dimensional generalisation for null-homologous
cycles on Xr introduced by Griffiths and Weil:

(4.4) AJ∞Xr : CHr+1(Xr)0(C)−→Filr+1H2r+1
dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
,

defined just as in (4.3), but where AJ∞Xr (∆)(ω) is now defined by integrating any smooth representative
of the de Rham cohomology class ω against a (2r + 1)-chain on Xr(C) having ∆ as boundary. (Cf. the
description in Section 4 of [BDP-caj] for example.) The map AJ∞Xr is the complex analogue of the p-adic
Abel-Jacobi map AJXr that was introduced and studied in Section 3.

If the Hodge conjecture holds, there is an algebraic cycle Φ? = Π? ∈ CHr+1(Xr × A) ⊗ Q whose
cohomology class equals Ξ. If further Φ? has integral coefficients, then we have the following commutative
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diagram which is the complex counterpart of (3.4) and which expresses the functoriality of the Abel-Jacobi
maps under correspondences:

(4.5) CHr+1(Xr)0(C)

Φ?
C

��

AJ∞

Xr
// Filr+1H2r+1

dR (Xr/C)∨/ ImH2r+1(Xr(C),Z)

(Φ∗

dR,C)∨

��

CH1(A)0(C)
AJ∞

A
// Ω1(A/C)∨/ ImH1(A(C),Z),

where the map Φ∗dR,C is defined to be the one induced by the integral Hodge class Ξ. Note that by
construction

Φ∗dR,C(ωA) = cr · ωθψ ∧ ηrA.
Since AJ∞A is an isomorphism, in the absence of knowing the Hodge conjecture we can simply define the

complex analogue ΦC of Φ
(v)
F as the unique map from CHr+1(Xr)0(C) to A(C) for which the diagram

above (with Φ?
C replaced by ΦC) commutes.

We will now discuss how the map ΦC can be computed in practice. Recall the distinguished element
ωA of Ω1(A/C) and let

ΛA :=

{
∫

γ

ωA, γ ∈ H1(A(C),Z)

}

⊂ C

be the associated period lattice. Recall that ϕ : (A, tA, ωA)−→(A′, t′, ω′) is an isogeny of elliptic curves
with Γ-level structure if

ϕ(tA) = t′ and ϕ∗(ω′) = ωA.

The following proposition, which is the complex counterpart of Proposition 3.2, expresses the Abel-Jacobi
image of the complex point Pψ(ϕ) := ΦC(∆ϕ) in terms of the Abel-Jacobi map on Xr.

Proposition 4.3. For all isogenies ϕ : (A, tA, ωA)−→(A′, t′, ω′) of elliptic curves with Γ-level structure,

AJ∞A (Pψ(ϕ))(ωA) = cr · AJ∞Xr (∆ϕ)(ωθψ ∧ ηrA) (mod ΛωA).

Proof. The proof is the same as for Proposition 3.2. By definition of Pψ(ϕ) combined with the commutative
diagram (4.5),

AJ∞A (Pψ(ϕ))(ωA) = AJ∞A (ΦC(∆ϕ))(ωA) = AJ∞Xr (∆ϕ)(Φ∗dR,C(ωA)).

Since Φ∗dR,C(ωA) = cr · ωθψ ∧ ηrA, Proposition 4.3 follows. �

Remark 4.4. In the above proposition and elsewhere below, we assume that ∆ϕ has been multiplied by
a nonzero integer so as to have integral coefficients.

We now turn to giving an explicit formula for the right hand side of the equation in Proposition 4.3.
To do this, let Λω′ ⊂ C be the period lattice associated to the differential ω′ on A′. Note that ΛωA is
contained in Λω′ with index deg(ϕ).

Definition 4.5. A basis (ω1, ω2) of Λω′ is said to be admissible relative to (A′, t′) if

(1) The ratio τ := ω1/ω2 has positive imaginary part;
(2) via the identification 1

NΛω′/Λω′ = A′(C)[N ], the N -torsion point ω2/N belongs to the orbit t′.

Given an arbitrary cusp form f ∈ Sr+2(Γ0(N), ε), consider the cohomology class

ωf ∧ ηrA = (2πi)r+1f(z)dz dwr ∧ ηrA ∈ Filr+1H2r+1
dR (Xr/C).

Proposition 4.6. Let ∆ϕ be the generalised Heegner cycle corresponding to the isogeny

ϕ : (A, tA, ωA)−→(A′, t′, ω′)

of elliptic curves with Γ-level structure, let (ω1, ω2) be an admissible basis for Λω′ , and let τ = ω1/ω2.
Then

(4.6) AJ∞Xr (∆ϕ)(ωf ∧ ηrA) = ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rf(z)dz.
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Proof. We begin by observing that replacing ωA by a scalar multiple λωA multiplies both the left and
right hand sides of (4.6) by λ−r. Hence we may assume, after possibly rescaling Λω′ , that the admissible
basis (ω1, ω2) is of the form (2πiτ, 2πi) with τ ∈ H. The case j = 0 in Theorem 8.2 of [BDP-caj] then
implies that

AJ∞Xr (∆ϕ)(ωf ∧ ηrA) =
2πi

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rf(z)dz

= ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rf(z)dz.

The proposition follows. �

Theorem 4.7. Let Pψ(ϕ) be the Chow-Heegner point corresponding to the generalised Heegner cycle ∆ϕ.
With notations as in Proposition 4.6,

(4.7) AJ∞A (Pψ(ϕ))(ωA) = cr · ω−r2

(2πi)r+1

(τ − τ̄)r

∫ τ

i∞
(z − τ̄ )rθψ(z)dz (mod ΛωA).

Proof. This is an immediate corollary of Propositions 4.3 and 4.6. �

In the following, we shall describe some numerical evidence for the rationality of the points Pψ(ϕ).
Since the constant cr lies in OK \ {0} and since A has CM by OK , it will suffice in the following to show
rationality assuming cr = 1.

4.2. Numerical experiments. We now describe some numerical evaluations of Chow-Heegner points.
As it stands, the elliptic curve A of conductor D2 attached to the canonical Hecke character ψA = ψ0

is only determined up to isogeny, and we pin it down by specifying that A is described by the minimal
Weierstrass equation

A : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients a1, . . . , a6 are given in Table 1 below.

D a1 a2 a3 a4 a6 Ω(A) PA
7 1 −1 0 −107 552 1.93331170 . . . −

11 0 −1 1 −7 10 4.80242132 . . . (4, 5)
19 0 0 1 −38 90 4.19055001 . . . (0, 9)
43 0 0 1 −860 9707 2.89054107 . . . (17, 0)
67 0 0 1 −7370 243528 2.10882279 . . . ( 201

4 , −71
8 )

163 0 0 1 −2174420 1234136692 0.79364722 . . . (850,−69)

Table 1: The canonical elliptic curve A

The penultimate column in Table 1 gives an approximate value for the positive real period Ω(A) attached
to the elliptic curve A and its Néron differential ωA. In all cases, the Néron lattice ΛA attached to (A,ωA)
is generated by the periods

(4.8) ω1 :=

(

D +
√
−D

2D

)

Ω(A), ω2 := Ω(A),

and (ω1, ω2) is an admissible basis for ΛA in the sense of Definition 4.5. The elliptic curve A has Mordell-
Weil rank 0 over Q when D = 7 and rank one otherwise. A specific generator PA for A(Q) ⊗ Q is given
in the last column of Table 1.

4.2.1. Chow-Heegner points of level 1. For D ∈ S := {11, 19, 43, 67, 163}, the elliptic curve A has rank 1
over Q. Let r ≥ 1 be an odd integer. As remarked above, it suffices to check rationality assuming cr = 1.
By Theorem 4.7, the Chow-Heegner point PA,r attached to the class of the diagonal ∆ ⊂ (A×A)r is given
by

(4.9) AJ∞A (PA,r)(ωA) = Jr := ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄ )rθψ(z)dz,
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where (ω1, ω2) is the admissible basis of ΛA given in (4.8), and τ = ω1

ω2
= D+

√
−D

2D . Hence the complex point
PA,r can be computed as the natural image of the complex number Jr under the Weierstrass uniformisation.

We have calculated the complex points PA,r for all D ∈ S and all r ≤ 15, to roughly 200 digits of
decimal accuracy. The calculations indicate that

(4.10) PA,r
?
=

√
−D ·mr · PA (mod A(C)[ιr ]),

where PA is the generator of A(Q)⊗Q given in Table 1, ιr is a small integer, and mr is the rational integer
listed in Table 2 below, in which the columns correspond to D ∈ S and the rows to the odd r between 1
and 15.

11 19 43 67 163
1 1 1 1 1 1
3 2 6 36 114 2172
5 −8 −16 440 6920 3513800
7 14 −186 −19026 −156282 3347376774
9 304 4176 −8352 −34999056 −238857662304

11 −352 −33984 33708960 3991188960 −3941159174330400
13 76648 545064 −2074549656 46813903656 1904546981028802344
15 274736 40959504 47714214240 −90863536574160 8287437850155973464480

Table 2: The constants mr for 1 ≤ r ≤ 15.

The first 6 lines in this table, corresponding to 1 ≤ r ≤ 11, are in perfect agreement with the values that
appear in the third table of Section 3.1 of [RV]. This coincidence, combined with Theorem 3.1. of [RV],
suggests the following conjecture which is consistent with the p-adic formulae obtained in Theorem 3.5.

Conjecture 4.8. For all D ∈ S and all odd r ≥ 1, the Chow-Heegner point PA,r belongs to A(K) ⊗ Q
and is given by the formula

(4.11) PA,r =
√
−D ·mr · PA,

where mr ∈ Z satisfy the formula

m2
r =

2r!(2π
√
D)r

Ω(A)2r+1
L(ψ2r+1

A , r + 1),

and PA is the generator of A(Q) ⊗ Q given in Table 1.

The optimal values of ιr that were observed experimentally are recorded in Table 3 below, for 1 ≤ r ≤ 31.

r 11 19 43 67 163 r 11 19 43 67 163
1 3 1 1 1 1 17 33 7 1 19 1
3 3 · 5 5 1 1 1 19 3 · 52 52 · 11 11 1 1
5 2 · 32 2 · 7 2 2 2 21 3 · 23 23 23 23 1
7 2 · 7 5 1 1 1 23 32 · 5 5 · 7 13 1 1
9 3 11 11 1 1 25 3 1 1 1 1

11 32 · 5 5 · 7 13 1 1 27 3 · 5 5 1 29 1
13 3 1 1 1 1 29 32 · 31 7 · 11 11 · 31 1 1
15 3 · 5 5 · 17 17 17 1 31 3 · 5 5 · 17 17 1 1

Table 3: The ambiguity factor ιr for 1 ≤ r ≤ 31.

Remark 4.9. The data in Table 3 suggests that the term ιr in (4.10) is only divisible by primes that
are less than or equal to r + 2. One might therefore venture to guess that the primes ` dividing ιr are
only those for which the mod ` Galois representation attached to ψr+1

A has very small image, or perhaps
non-trivial GK-invariants.
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4.2.2. Chow-Heegner points of prime level. We may also consider (for a fixed D and a fixed odd integer
r) the Chow-Heegner points on A attached to non-trivial isogenies ϕ. For instance, let ` 6= D be a prime.
There are ` + 1 distinct isogenies ϕj : A−→A′j of degree ` (with j = 0, 1, . . . , ` − 1,∞) attached to the

lattices Λ′0, . . . ,Λ
′
`−1,Λ

′
∞ containing ΛA with index `. These lattices are generated by the admissible bases

Λ′j = Z

(

ω1 + jω2

`

)

⊕ Zω2, Λ′∞ = Zω1 ⊕ Z
ω2

`
.

The elliptic curves A′j and the isogenies ϕ are defined over the ring class field H` of K of conductor `. Let

Jr(`, j) := `rω−r2

(2πi)r+1

(τ − τ̄ )r

∫
τ+j
`

i∞

(

z − τ̄ + j

`

)r

θD,r(z)dz, 0 ≤ j ≤ `− 1,

Jr(`,∞) := εK(`)ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ `τ

i∞
(z − `τ̄)rθψ(z)dz

be the associated complex invariants and let PA,r(`, j) and PA,r(`,∞) denote the corresponding points in
C/ΛA = A(C).

We have attempted to verify the following conjecture numerically.

Conjecture 4.10. For all ` 6= D and all j ∈ P1(F`), some (nonzero) multiple of the complex points
PA,r(`, j) belong to the Mordell-Weil group A(H`).

We have tested this prediction numerically for r = 1 and all

D ∈ S, ` = 2, 3, 5, 7, 11,

as well as in a few cases where r = 3. Such calculations sometimes required several hundred digits of
numerical precision, together with a bit of trial and error. The necessity for this arose because Conjecture
4.10 only predicts that some multiple of the points PA,r(`, j) belong to A(H`), as one would expect from
Remark 4.4 as well as the possibility that the constant cr is not 1. One finds in practice that these complex
points do need to be multiplied by a (typically small) integer in order to belong to A(H`). Furthermore,
the resulting global points appear (as suggested by (4.11) in the case ` = 1) to be divisible by

√
−D, and

this causes their heights to be rather large. It is therefore better in practice to divide the PA,r(`, j) by√
−D, which introduces a further ambiguity of A(C)[

√
−D] in the resulting global point. The conjecture

that was eventually tested numerically is the following non-trivial strengthening of Conjecture 4.10:

Conjecture 4.11. Given integers n ∈ Z≥1 and 0 ≤ s ≤ D − 1, let

J ′r(`, j) = n · Jr(`, j) − sω1√
−D

, 0 ≤ j ≤ `− 1,

J ′r(`,∞) = n · Jr(`,∞) − sεK(`)`rω1√
−D

,

and let P ′A,r(`, j) ∈ A(C) be the associated complex points. Then there exist n = nD,r and s = sD,r,

depending on D and r but not on ` and j, for which the points P ′r(`, j) belong to A(H`) and satisfy the
following:

(1) If ` is inert in K, then Gal(H`/K) acts transitively on the set

{P ′A,r(`, j), j ∈ P1(F`)}
of Chow-Heegner points of level `.

(2) If ` = λλ̄ is split in K, then there exist j1, j2 ∈ P1(F`) for which

P ′A,r(`, j1) = εK(λ)λrP ′A,r, P ′A,r(`, j2) = εK(λ̄)λ̄rP ′A,r,

and Gal(H`/K) acts transitively on the remaining set

{P ′A,r(`, j), j ∈ P1(F`) − {j1, j2}}
of Chow-Heegner points of level `.
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We now describe a few sample calculations that lend support to Conjecture 4.11.

1. The case D = 7. Consistent with the fact that the elliptic curve A has rank 0 over Q (and hence over
K as well), the point PA,r appears to be a torsion point in A(C), for all 1 ≤ r ≤ 31. For example, the
invariant J1 agrees with (ω1 + ω2)/8 to the 200 decimal digits of accuracy that were calculated. When
` = 2, it also appears that the quantities J1(2, j) belong to 1

8Λ7. There is no reason, however, to expect
the Chow-Heegner points PA,r(`, j) to be torsion for larger values of `. Experiments suggest that the
constants in Conjecture 4.11 are

n7,1 = 4, s7,1 = 0.

For example, when ` = 3, the ring class field of conductor ` is a cyclic quartic extension of K containing
K(

√
21) as its quadratic subfield. In that case, the points P ′A,1(3, j) satisfy

P ′A,1(3, 0) = P ′A,1(3, 1) = −P ′A,1(3, 2) = −P ′A,1(3,∞),

and agree to 600 digits of accuracy with a global point in A(Q(
√

21)) of relatively small height, with
x-coordinate given by

x =
259475911175100926920835360582209388259

41395589491845015952295204909998656004
.

2. The case D = 19. To compute the Chow-Heegner points of conductor 3 in the case D = 19 and
r = 1, it appears that one can take

n19,1 = 1, s19,1 = 1.

Perhaps because of the small value of n19,1, the points P ′A,1(`, j) appear to be of relatively small height
and can easily be recognized as global points, even for moderately large values of `. For instance, the
points P ′A,1(3, j) seem to have x-coordinates of the form

x =
−19± 3

√
57

2
,

and their y-coordinates satisfying the degree 4 polynomial

x4 + 2x3 + 8124x2 + 8123x− 217886

whose splitting field is the ring class field H3 of K of conductor 3.
When ` = 7, which is split in K/Q, the ring class field H7 is a cyclic extension of K of degree 6. It

appears that the points P ′A,1(7, 3) and P ′A,1(7, 5) belong to A(K) and are given by

P ′A,1(7, 3) =
3 +

√
−19

2
PA, P ′A,1(7, 5) =

3 −
√
−19

2
PA.

The 6 remaining points are grouped into three pairs of equal points,

P ′A,1(7, 0) = P ′A,1(7, 2), P ′A,1(7, 1) = P ′A,1(7, 6), P ′A,1(7, 4) = P ′A,1(7,∞),

whose x and y coordinates appear to satisfy the cubic polynomials

9x3 + 95x2 + 19x− 1444, 27x3 − 235x2 + 557x+ 1198

respectively. The splitting field of both of these polynomials turns out to be the cubic subfield L of the
ring class field of K of conductor 7. One obtains as a by-product of this calculation 3 independent points
in A(L) which are linearly independent over OK . We expect that these three points give a K-basis for
A(L) ⊗ Q (and therefore that A(L) has rank 6) but have not checked this numerically.
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