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Introduction

The theory of Heegner points supplies one of the most fruitful approaches to the Birch and Swinnerton-
Dyer conjecture, leading to the best results for elliptic curves of analytic rank one. In spite of attempts
to broaden the scope of the Heegner point construction ([BDG], [Da2], [Tr],...), all provable, systematic
constructions of algebraic points on elliptic curves still rely on parametrisations of elliptic curves by
modular or Shimura curves. The primary goal of this article is to explore new constructions of rational
points on elliptic curves and abelian varieties in which, loosely speaking, Heegner divisors are replaced
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by higher-dimensional algebraic cycles on certain modular varieties. In general, the algebraicity of the
resulting points depends on the validity of ostensibly difficult cases of the Hodge or Tate conjectures.
One of the main results of this article (Theorem 8 of the introduction) illustrates how these algebraicity
statements can sometimes be obtained unconditionally by exploiting the connection between the relevant
“generalised Heegner cycles” and values of certain p-adic L-series.

In the course of our study, we are also led to a new proof of the main theorem of [Ru] and to a
generalisation thereof (see Theorem 2 below), relating values of the Katz two-variable p-adic L-function
to formal group logarithms of rational points on CM elliptic curves.

Rubin’s Theorem. The main theorem in [Ru] (Cf. Corollary 10.3 of loc. cit.) concerns an elliptic curve
A over Q with complex multiplication by the ring of integers of a quadratic imaginary field K. A classical
result of Deuring identifies the Hasse-Weil L-series L(A, s) of A with the L-series L(νA, s) attached to
a Hecke character νA of K of infinity type (1, 0). When p is a prime which splits in K and does not
divide the conductor of A, the Hecke L-function L(νA, s) has a p-adic analogue known as the Katz two-
variable L-function attached to K. It is a p-adic analytic function, denoted ν 7→ Lp(ν), on the space of
Hecke characters equipped with its natural p-adic analytic structure. Section 2.1 recalls the definition of
this L-function: the values Lp(ν) at Hecke characters of infinity type (1 + j1,−j2) with j1, j2 ≥ 0 are
defined by interpolation of the classical L-values L(ν−1, 0). Letting ν∗ := ν ◦ c, where c denotes complex
conjugation on the ideals of K, it is readily seen by comparing Euler factors that L(ν, s) = L(ν∗, s). A
similar equality need not hold in the p-adic setting, because the involution ν 7→ ν∗ corresponds to the map
(j1, j2) 7→ (j2, j1) on weight space and therefore does not preserve the lower right quadrant of weights of
Hecke characters that lie in the range of classical interpolation. Since νA lies in the domain of classical
interpolation, the p-adic L-value Lp(νA) is a simple multiple of L(ν−1

A , 0) = L(A, 1). Suppose that it
vanishes. (This implies, by the Birch and Swinnerton-Dyer conjecture, that A(Q) is infinite.) The value
Lp(ν

∗
A) is a second, a priori more mysterious p-adic avatar of the leading term of L(A, s) at s = 1. Rubin’s

theorem gives a formula for this quantity:

Theorem 1 (Rubin). Let νA be a Hecke character of type (1, 0) attached to an elliptic curve A/Q with
complex multiplication. Then there exists a global point P ∈ A(Q) such that

(1) Lp(ν
∗
A) = Ωp(A)−1 logωA(P )2 (mod Q×),

where

• Ωp(A) is the p-adic period attached to A as in Section 1.3;
• ωA ∈ Ω1(A/Q) is a regular differential on A over Q, and logωA : A(Qp)−→Qp denotes the p-adic

formal group logarithm with respect to ωA.

The point P is of infinite order if and only if L(A, s) has a simple zero at s = 1.

(For a more precise statement without the Q× ambiguity, see [Ru].) Formula (1) is peculiar to the p-
adic world and suggests that p-adic L-functions encode arithmetic information that is not readily apparent
in their complex counterparts. Inspired by Rubin’s work, Perrin-Riou has formulated a p-adic Beilinson
conjecture in [PR2] of which Theorem 1 should be a special case.

The proof of Theorem 1 given in [Ru] breaks up naturally into two parts:

(1) Rubin exploits the Euler system of elliptic units to construct a global cohomology class κA be-
longing to a pro-p Selmer group Selp(A/Q) attached to A. The close connection between elliptic
units and the Katz L-function is then parlayed into the explicit evaluation of two natural p-adic
invariants attached to κA: the p-adic formal group logarithm logA,p(κA) and the cyclotomic p-adic
height 〈κA, κA〉:

logA,p(κA) = (1 − β−1
p )−1

Lp(ν
∗
A)Ωp(A),(2)

〈κA, κA〉 = (1 − α−1
p )−2

L
′
p(νA)Lp(ν

∗
A),(3)

where
• αp and βp denote the roots of the Hasse polynomial x2 − ap(A)x + p, ordered in such a way

that ordp(αp) = 0 and ordp(βp) = 1;
• the quantity L ′p(νA) denotes the derivative of Lp at νA in the direction of the cyclotomic

character.
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If L ′p(νA) is non-zero, then an argument based on Perrin-Riou’s p-adic analogue of the Gross-Zagier
formula and the work of Kolyvagin implies that Selp(A/Q) ⊗ Q is a one-dimensional Qp-vector
space with κA as a generator. (Cf. Thm. 8.1 and Cor. 8.3 of [Ru].) Equations (2) and (3) then
make it possible to evaluate the ratio

(4)
log2

A,p(κ)

〈κ, κ〉 =
(1 − β−1

p )−2Lp(ν
∗
A)Ωp(A)2

(1 − α−1
p )−2L ′p(νA)

,

a quantity which does not depend on the choice of generator κ of the Qp-vector space Selp(A/Q)⊗Q.
(2) Independently of the construction of κA, the theory of Heegner points can be used to construct a

canonical point P ∈ A(Q), which is of infinite order when L ′
p(νA) 6= 0. Its image κP ∈ Selp(A/Q)

under the connecting homomorphism of Kummer theory supplies us with a second generator for
Selp(A/Q) ⊗ Q. Furthermore, the p-adic analogue of the Gross-Zagier formula proved by Perrin-
Riou in [PR1] shows that

(5) 〈κP , κP 〉 = L
′
p(νA)Ωp(A)−1 (mod Q×).

Rubin obtains Theorem 1 by setting κ = κP in (4) and using (5) to eliminate the quantities involving
〈κP , κP 〉 and L ′p(νA).

The reader will note the key role that is played in Rubin’s proof by both the Euler systems of elliptic
units and of Heegner points. The new approach to Theorem 1 described in Chapter 2 relies solely on
Heegner points, and requires neither elliptic units nor Perrin-Riou’s p-adic height calculations. Instead,
the key ingredient in this approach is the p-adic variant of the Gross-Zagier formula arising from the results
of [BDP] which is stated in Theorem 2.9. This formula expresses p-adic logarithms of Heegner points in
terms of the special values of a p-adic Rankin L-function attached to a cusp form f and an imaginary
quadratic field K, and may be of some independent interest insofar as it exhibits a strong analogy with
Rubin’s formula but applies to arbitrary—not necessarily CM—elliptic curves over Q. When f is the theta
series attached to a Hecke character of K, Theorem 1 follows from the factorisation of the associated p-adic
Rankin L-function into a product of two Katz L-functions, a factorisation which is a simple manifestation
of the Artin formalism for these p-adic L-series.

It is expected that the statement of Theorem 1 should generalise to the setting where νA is replaced by
an algebraic Hecke character ν of infinity type (1, 0) of a quadratic imaginary field K (of arbitrary class
number) satisfying

(6) ν|AQ
= εK · N,

where εK denotes the quadratic Dirichlet character associated to K/Q and N : A×Q−→R× is the adèlic
norm character. Chapter 2 treats this more general setting, which is not yet covered in the literature,
although the original methods of [Ru] would probably extend as well with only technical complications.
Assumption (6) implies that the classical functional equation relates L(ν, s) to L(ν, 2−s). Assume further
that the sign wν in this functional equation satisfies

(7) wν = −1,

so that L(ν, s) vanishes to odd order at s = 1. For less serious reasons, it will also be convenient to make
two further technical assumptions. Firstly, we assume that

(8) The discriminant −D of K is odd.

Secondly, we note that assumption (6) implies that
√
−D necessarily divides the conductor of ν, and we

further restrict the setting by imposing the assumption that

(9) The conductor of ν is exactly divisible by
√
−D.

The statement of Theorem 2 below requires some further notions which we now introduce. Let Eν be
the subfield of C generated by the values of the Hecke character ν, and let Tν be its ring of integers. A
general construction which is recalled in Sections 1.2 and 2.6 attaches to ν an abelian variety Bν over K
of dimension [Eν : K], equipped with inclusions

Tν ⊂ EndK(Bν), Eν ⊂ EndK(Bν) ⊗ Q.



4 MASSIMO BERTOLINI HENRI DARMON KARTIK PRASANNA

Given λ ∈ Tν , denote by [λ] the corresponding endomorphism of Bν , and set

Ω1(Bν/Eν)
Tν :=

{

ω ∈ Ω1(Bν/Eν) such that [λ]∗ω = λω, ∀λ ∈ Tν
}

,(10)

(Bν(K) ⊗Eν)
Tν := {P ∈ Bν(K) ⊗Z Eν such that [λ]P = λP, ∀λ ∈ Tν} .(11)

The vector space Ω1(Bν/Eν)
Tν is one-dimensional over Eν . The results of Gross-Zagier and Kolyvagin,

which continue to hold in the setting of abelian variety quotients of modular curves, also imply that
(Bν(K) ⊗Eν)

Tν is one-dimensional over Eν when L(ν, s) has a simple zero at s = 1.
After fixing a p-adic embedding K ⊂ Qp, the formal group logarithm on Bν gives rise to a bilinear

pairing

〈 , 〉 : Ω1(Bν/K)×Bν(K) −→ Qp

(ω, P ) 7→ logω P,

satisfying 〈[λ]∗ω, P 〉 = 〈ω, [λ]P 〉 for all λ ∈ Tν . This pairing can be extended by Eν-linearity to an
Eν ⊗ Qp-valued pairing between Ω1(Bν/Eν) and Bν(K) ⊗Eν . When ω and P belong to these Eν-vector
spaces, we will continue to write logω(P ) for 〈ω, P 〉.
Theorem 2. Let ν be an algebraic Hecke character of infinity type (1, 0) satisfying (6), (7), (8) and (9)
above. Then there exists Pν ∈ Bν(K) such that

Lp(ν
∗) = Ωp(ν

∗)−1 logων (Pν)
2 (mod E×ν ),

where Ωp(ν
∗) ∈ Cp is the p-adic period attached to ν in Definition 1.14, and ων is a non-zero element of

Ω1(Bν/Eν)
Tν . The point Pν is non-zero if and only if L′(ν, 1) 6= 0.

Remark 3. Assumptions (8) and (9) do not reflect a serious limitation of our method of proof, but rather
the fact that the main theorem of [BDP] on which it relies is only proved for imaginary quadratic fields of
odd discriminant and with some restrictions on the conductor of ν. These assumptions could certainly be
relaxed with some more work.

Remark 4. Equivalently, Theorem 2 could be stated by requiring that Pν and ων belong to (Bν(K)⊗Eν)Tν
and Ω1(Bν/K) respectively.

Remark 5. The methods used in the proof of Theorem 2 also give information about the special values
Lp(ν

∗) for Hecke characters ν of type (1 + j,−j) satisfying (6) with j ≥ 0. A discussion of this point will
be taken up in future work.

Remark 6. The fact that our proof of Theorem 2 avoids the use of elliptic units raises the prospect of
extending it to Hecke characters of more general CM fields.

Chow-Heegner points.
We now turn to the main goal of of this article: the study of generalisations of the Heegner point

construction in which the role of Heegner divisors is played by null-homologous algebraic cycles of higher
dimension.

We begin with a brief sketch of the classical picture which we aim to generalize. It is known thanks to
[Wi], [TW], and [BCDT] that all elliptic curves over the rationals are modular. For an elliptic curve A of
conductor N , this means that

(12) L(A, s) = L(f, s),

where f(z) =
∑

ane
2πinz is a cusp form of weight 2 on the Hecke congruence group Γ0(N). The modularity

of A is established by showing that the p-adic Galois representation

Vp(A) :=
(

lim
←
A[pn]

)

⊗ Qp = H1
et(Ā,Qp)(1)

is a constituent of the first p-adic étale cohomology of the modular curve X0(N). On the other hand, the
Eichler-Shimura construction attaches to f an elliptic curve quotient Af of the Jacobian J0(N) of X0(N)
satisfying L(Af , s) = L(f, s). In particular, the semisimple Galois representations Vp(Af ) and Vp(A) are
isomorphic. It follows from Faltings’ proof of the Tate conjecture for abelian varieties over number fields
that A is isogenous to Af , and therefore there is a non-constant morphism

(13) Φ : J0(N)−→A
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of algebraic varieties over Q, inducing, for each F ⊃ Q a map ΦF : J0(N)(F )−→A(F ) on F -rational
points.

A key application of Φ arises from the fact that X0(N) is equipped with a distinguished supply of
algebraic points corresponding to the moduli of elliptic curves with complex multiplication by an order
in a quadratic imaginary field K. The images under ΦQ̄ of the degree 0 divisors supported on these

points produce elements of A(Q̄) defined over abelian extensions of K, which include the so-called Heegner
points. The Gross-Zagier formula [GZ] relates the canonical heights of these points to the central critical
derivatives of L(A/K, s) and of its twists by abelian characters of K. This connection between algebraic
points and Hasse-Weil L-series has led to the strongest known results on the Birch and Swinnerton-Dyer
conjecture, most notably the theorem that

rank(A(Q)) = ords=1 L(A, s) and #X(A/Q) <∞, when ords=1(L(A, s)) ≤ 1,

which follows by combining the Gross-Zagier formula with a method of Kolyvagin (cf. [Gr2]). The theory
of Heegner points is also the key ingredient in the proof of Theorems 1 and 2.

Given a variety X (defined over Q, say), let CHj(X)(F ) denote the Chow group of codimension j

algebraic cycles on X defined over a field F modulo rational equivalence, and let CHj(X)0(F ) denote
the subgroup of null-homologous cycles. Write CHj(X) and CHj(X)0 for the corresponding functors on
Q-algebras. Via the natural equivalence CH1(X0(N))0 = J0(N), the map Φ of (13) can be recast as a
natural transformation

(14) Φ : CH1(X0(N))0−→A.

It is tempting to generalise (14) by replacing X0(N) by a variety X over Q of dimension d > 1, and

CH1(X0(N))0 by CHj(X)0 for some 0 ≤ j ≤ d. Any element Π of the Chow group CHd+1−j(X × A)(Q)
induces a natural transformation

(15) Φ : CHj(X)0−→A

sending ∆ ∈ CHj(X)0(F ) to

(16) ΦF (∆) := πA,∗(π
∗
X (∆̃) · Π̃),

where πX and πA denote the natural projections from X × A to X and A respectively. We are mainly
interested in the case where X is a Shimura variety or is closely related to a Shimura variety. (For instance,
when X is the universal object or a self-fold fiber product of the universal object over a Shimura variety
of PEL type.) The variety X is then referred to as a modular variety and the natural transformation Φ is
called the modular parametrisation of A attached to the pair (X,Π).

Modular parametrisations acquire special interest when CHj(X)0(Q̄) is equipped with a systematic
supply of special elements, such as those arising from Shimura subvarieties of X . The images in A(Q̄) of
such special elements under ΦQ̄ can be viewed as “higher-dimensional” analogues of Heegner points: they
will be referred to as Chow-Heegner points. Given an elliptic curve A, it would be of interest to construct
modular parametrisations to A in the greatest possible generality, study their basic properties, and explore
the relations (if any) between the resulting systems of Chow-Heegner points and leading terms of L-series
attached to A.

We develop this loosely formulated program in the simple but non-trivial setting where A is an elliptic
curve with complex multiplication by an imaginary quadratic field K of odd discriminant −D, and X is
a suitable family of 2r-dimensional abelian varieties fibered over a modular curve.

For the Introduction, suppose for simplicity that K has class number one and that A is the canonical
elliptic curve over Q of conductor D2 attached to the Hecke character defined by

νA((a)) = εK(a mod
√
−D)a.

(These assumptions will be significantly relaxed in the body of the paper.) Given a regular differential
ωA ∈ Ω1(A/Q), let [ωA] denote the corresponding class in the de Rham cohomology of A.

Fix an integer r ≥ 0, and consider the Hecke character ψ = νr+1
A . The binary theta series

θψ :=
∑

a⊂OK
νr+1
A (a)qaā
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attached to ψ is a modular form of weight (r+2) on a certain modular curve C (which is a quotient of
X1(D) or X0(D

2) depending on whether r is odd or even), and has rational Fourier coefficients. Such a
modular form gives rise to a regular differential (r+1)-form ωθψ on the rth Kuga-Sato variety over C,

denoted Wr. Let [ωθψ ] denote the class of ωθψ in the de Rham cohomology Hr+1
dR (Wr/Q). The classes

of ωθψ and of the antiholomorphic (r+1)-form ω̄θψ generate the θψ-isotypic component of Hr+1
dR (Wr/C)

under the action of the Hecke correspondences.
For all 1 ≤ j ≤ r + 1, let pj : Ar+1−→A denote the projection onto the j-th factor, and let

[ωr+1
A ] := p∗1[ωA] ∧ · · · ∧ p∗r+1[ωA] ∈ Hr+1

dR (Ar+1).

Our construction of Chow-Heegner points is based on the following conjecture which is formulated (for
more general K, without the class number one hypothesis) in Section 3.

Conjecture 7. There is an algebraic cycle class Π? ∈ CHr+1(Wr ×Ar+1)(K) ⊗ Q satisfying

Π?∗
dR([ωr+1

A ]) = [ωθψ ],

where

Π?∗
dR : Hr+1

dR (Ar+1/K)−→Hr+1
dR (Wr/K)

is the map on de Rham cohomology induced by Π?.

The rationale for Conjecture 7 is explained in Section 3.4, where it is shown to follow from the Tate or
Hodge conjectures on algebraic cycles.

We next make the simple (but key) remark that the putative cycle Π? is also an element of CHr+1(Xr×
A), where Xr is the (2r+1)-dimensional variety

Xr := Wr ×Ar.

Viewed in this way, the cycle Π? gives rise to a modular parametrisation

Φ? : CHr+1(Xr)0−→A

as in (15). It is defined over K, and

(17) Φ?∗
dR(ωA) = ωθψ ∧ ηrA,

where ηA is the unique element of H1
dR(A/K) satisfying

(18) [λ]∗ηA = λ̄η, for all λ ∈ OK , 〈ωA, ηA〉 = 1.

The article [BDP] introduced and studied a collection of null-homologous, r-dimensional algebraic cycles
onXr, referred to as generalised Heegner cycles. These cycles, whose precise definition is recalled in Section
3.5, extend the notion of Heegner cycles on Kuga-Sato varieties considered in [Scho], [Ne] and [Zh]. They
are indexed by isogenies ϕ : A−→A′, and are defined over abelian extensions of K. It can be shown that
they generate a subgroup of CHr+1(Xr)0(K

ab) of infinite rank. The map Φ?
Kab should transform these

generalised Heegner cycles into points of A(Kab). It is natural to expect that the resulting collection
{Φ?

Kab(∆ϕ)}ϕ:A−→A′ of Chow-Heegner points generates an infinite rank subgroup of A(Kab), and that it
gives rise to an “Euler system” in the sense of Kolyvagin. In the classical situation where r = 0, the variety
Xr is just a modular curve and the existence of Π? follows from Faltings’ proof of the Tate conjecture for
curves. When r ≥ 1, the very existence of the collection of Chow-Heegner points relies, ultimately, on
producing the algebraic cycle Π? unconditionally.

Section 4 offers some theoretical evidence for the existence of Φ? arising from p-adic methods. It rests
on the fact that the following p-adic analogues of Φ?

F can be constructed without invoking the Hodge or
Tate conjectures.

(a) The map Φet
F : Let F be any field containing K. The Chow group CHr+1(Xr)0(F ) of null-homologous

cycles is equipped with the p-adic étale Abel-Jacobi map over F :

(19) AJet
F : CHr+1(Xr)(F )0−→H1(F,H2r+1

et (Xr,Qp)(r+1)),
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where H1(F,M) denotes the continuous Galois cohomology of a GF := Gal(F̄ /F )-module M . As is
explained in Section 3.4, the Tate cycle over Q whose existence is used to justify Conjecture 7 gives rise
to a GF -equivariant projection

(20) π : H2r+1(Xr,Qp)(r+1)−→H1
et(A,Qp)(1) = Vp(A),

where Vp(A) is the p-adic Galois representation arising from the p-adic Tate module of A. As it stands,
the maps π and Φet

F are only well-defined up to multiplication by Q×p . We normalise π by embedding

F into a p-adic completion Fp, and requiring that the map πdR : H2r+1
dR (Xr/Fp)−→H1

dR(A/Fp) obtained
by applying to π the comparison functor between p-adic étale cohomology and deRham cohomology over
p-adic fields satisfies

(21) πdR(ωθψ ∧ ηrA) = ωA,

where ωθψ and ωA are as in Conjecture 7, and ηA is defined in (18).
The maps (19) and (20) can be combined to give a map

(22) Φet
F : CHr+1(Xr)(F )0−→H1(F, Vp(A)),

which is the counterpart of the conjectural map Φ?
F in p-adic étale cohomology. More precisely, with

π chosen to satisfy (21), the map Φet
F is related to Φ?

F (when the latter can be shown to exist) by the
commutative diagram

(23) A(F ) ⊗ Q

δ

��

CHr+1(Xr)0(F )

Φ
(?)
F

11

|
v

q
m

h e

Φet
F

// H1(F, Vp(A)),

where

(24) δ : A(F ) ⊗ Q−→H1(F, Vp(A))

is the projective limit of the connecting homomorphisms arising in the pn-descent exact sequences of
Kummer theory.

(b) The map Φ
(p)
F : When F is a number field, (23) suggests that the image of Φet

F is contained in the
Selmer group of A over F , and this can indeed be shown to be the case. This means that the image of
Φet
Fv

is contained in the images of the local connecting homomorphisms δv : A(Fv)−→H1(Fv , Vp(A)) for
all the completions of F . In particular, replacing F by its p-adic completion Fp, we can define the map

Φ
(p)
F by the commutativity of the following local counterpart of the diagram (23):

(25) A(Fp) ⊗ Q

δ

��

CHr+1(Xr)0(Fp)

Φ
(p)
F

11

Φet
Fp

// H1(Fp, Vp(A)).

As will be explained in more detail in Section 4, the map Φ
(p)
F can also be defined by p-adic integration, via

the comparison theorems between the p-adic étale cohomology and the de Rham cohomology of varieties
over p-adic fields.

The main result of Chapter 4 relates the Selmer classes of the form Φet
F (∆) when F is a global field

and ∆ is a generalised Heegner cycle, to global points in A(F ). We will only state a special case of the
main result, postponing the more general statement to Section 4.2. Assume for Theorem 8 below that
the field K has odd discriminant, that the sign in the functional equation for L(νA, s) is −1, so that the
Hasse-Weil L-series L(A/Q, s) = L(νA, s) vanishes to odd order at s = 1, and that the integer r is odd.
In that case, the theta series θψ belongs to the space Sr+2(Γ0(D), εK) of cusp forms on Γ0(D) of weight
r+ 2 and character εK :=

( ·
D

)

. In particular, the variety Wr is essentially the rth Kuga-Sato variety over

the modular curve X0(D). Furthermore, the L-series L(ν2r+1
A , s) has sign 1 in its functional equation, and

L(ν2r+1
A , s) therefore vanishes to even order at the central point s = r + 1.
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Theorem 8. Let ∆ be the generalised Heegner cycle in CHr+1(Xr)0(K) attached to the identity isogeny
1 : A−→A. The cohomology class Φet

K(∆) belongs to δ(A(K) ⊗ Q). More precisely, there is a point
PD ∈ A(K) ⊗ Q (depending on D but not on r) such that

Φet
K(∆) =

√
−D ·mD,r · δ(PD),

where mD,r ∈ Z is given by

m2
D,r =

2r!(2π
√
D)r

Ω(A)2r+1
L(ν2r+1

A , r + 1),

and Ω(A) is a complex period attached to A. The point PD is of infinite order if and only if

L′(νA, 1) 6= 0.

Remark 9. When L(A, s) has a simple zero at s = 1, it is known a priori that the Selmer group Selp(A/K)
is of rank one over K ⊗ Qp, and agrees with δ(A(K) ⊗ Qp). It follows directly that

Φet
K(∆) belongs to δ(A(K) ⊗ Qp).

The first part of Theorem 8 is stronger in that it involves the rational vector space A(K)⊗Q rather than its
p-adification. This stronger statement is not a formal consequence of the one-dimensionality of the Selmer

group. Indeed, its proof relies on invoking Theorem 2 after relating the local point Φ
(p)
Kp

(∆) ∈ A(Kp) to

the special value Lp(ν
∗
A) that arises in that theorem.

Section 5.1 describes a complex homomorphism

ΦC : CHr+1(Xr)0(C)−→A(C)

which is defined analytically by integration of differential forms on Xr(C), without invoking Conjecture
7, but agrees with Φ?

C when the latter exists. This map is defined from the complex Abel-Jacobi map on

cycles introduced and studied by Griffiths and Weil, and is the complex analogue of homomorphism Φ
(p)
F

defined in (25). The existence of the global map Φ?
K predicted by the Hodge or Tate conjecture would

imply the following algebraicity statement:

Conjecture 10. Let H be a subfield of Kab and let ∆ϕ ∈ CHr+1(Xr)0(H) be a generalised Heegner cycle
defined over H. Then (after fixing an an embedding of H into C),

ΦC(∆ϕ) belongs to A(H),

and

ΦC(∆σ
ϕ) = ΦC(∆ϕ)σ for all σ ∈ Gal(H/K).

While ostensibly weaker than Conjecture 7, Conjecture 10 has the virtue of being more readily amenable
to experimental verification. Section 5 explains how the images of generalised Heegner cycles under ΦC can
be computed numerically to high accuracy, and illustrates, for a few such ∆ϕ, how the points ΦC(∆ϕ) can
be recognized as algebraic points defined over the predicted class fields. In particular, extensive numerical
verifications of Conjecture 10 are carried out, for fairly large values of r. This conjecture appears to lie
deeper than its p-adic counterpart, and we were unable to provide any theoretical evidence for it beyond
the fact that it follows from the Hodge or Tate conjectures. It might be argued that calculations of the
sort that are performed in Section 5 provide independent numerical confirmation of the these conjectures
for certain specific Hodge and Tate cycles on the (2r + 2)-dimensional varieties Wr ×Ar+1, for which the
corresponding algebraic cycles seem hard to produce unconditionally.

Conventions regarding number fields and embeddings: Throughout this article, all number fields that arise
are viewed as embedded in a fixed algebraic closure Q̄ of Q. A complex embedding Q̄−→C and p-adic
embeddings Q̄−→Cp for each rational prime p are also fixed from the outset, so that any finite extension
of Q is simultaneously realised as a subfield of C and of Cp.
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1. Hecke characters and periods

1.1. Algebraic Hecke characters. Let K and E be number fields. Given a Z-linear combination

φ =
∑

σ

nσσ ∈ Z[Hom(K, Q̄]

of embeddings of K into Q̄, we define

αφ :=
∏

σ

(σα)nσ ,

for all α ∈ K×. Let If denote the group of fractional ideals of K which are prime to a given integral ideal
f of K, and let

Jf := {(α) such that α >> 0 and α− 1 ∈ f} ⊂ If.

Definition 1.1. An E-valued algebraic Hecke character (or simply Hecke character) of K of infinity type
φ on If is a homomorphism

χ : If → E×

such that

(26) χ((α)) = αφ, for all (α) ∈ Jf.

The largest integral ideal f satisfying (26) is called the conductor of χ, and is denoted fχ.

The most basic examples of algebraic Hecke characters are the norm characters on Q and onK respectively,
which are given by

N(a) = |a|, NK := N ◦ NK
Q .

Note that the infinity type φ of a Hecke character χ must be trivial on all totally positive units congruent
to 1 mod f. Hence the existence of such a χ implies there is an integer w(χ) (called the weight of χ or of
φ) such that for any choice of embedding of Q into C,

nσ + nσ̄ = w(χ), for all σ ∈ hom(K, Q̄).

Let U ′f ⊂ A×K be the subgroup defined by

U ′f :=

{

(xv) ∈ A×K such that
xv ≡ 1 (mod f), for all v|f,
xv > 0, for all real v

}

,

and let Uf denote its maximal compact subgroup:

Uf := {(xv) ∈ U ′f such that xv ∈ O×Kv , for all non-archimedean v}.
A Hecke character χ may also be viewed as a character on A×K/Uf (denoted by the same symbol by a
common abuse of notation),

(27) χ : A×K/Uf → E×, satisfying χ|K× = φ.

To wit, given x ∈ A×K , we define χ(x) by choosing α ∈ K× such that αx belongs to U ′f , and setting

(28) χ(x) = χ(i(αx))φ(α)−1 ,

where the symbol i(x) denotes the fractional ideal of K associated to x. This definition is independent of
the choice of α by (26). In the opposite direction, given an idèle character χ of conductor f as in (27), we
can set

χ(a) = χ(x), for any x ∈ U ′f such that i(x) = a.

The subfield of E generated by the values of χ on If is easily seen to be independent of the choice of f and
will be denoted Eχ.

The central character of a Hecke character of K is defined as follows:

Definition 1.2. The central character of a Hecke character η of K is the finite order character of Q given
by

η|A×

Q

= εη ·Nw(η).
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The infinity type φ defines a homomorphism ResK,Q(Gm) → ResE/Q Gm of algebraic groups and
therefore induces a homomorphism

φA : A×K → A×E

on adelic points. Given a Hecke character χ with values in E and a place λ of E (either finite or infinite),
we may use φA to define an idèle class character

χλ : A×K/K
× → E×λ ,

by setting

χλ(x) = χ(x)/φA(x)λ.

If λ is an infinite place, the character χλ is a Grossencharacter of K of type A0. If λ is a finite place, then
χλ factors through Gab

K and gives a Galois character valued in E×λ , satisfying

χλ(Frobp) = χ(p)

for any prime ideal p of K not dividing fλ.

Definition 1.3. Let E =
∏

iEi be a product of number fields. An E-valued algebraic Hecke character is
a character

χ : If → E×

whose projection to each component Ei is an algebraic Hecke character in the sense defined above.

The L-functions attached to any algebraic Hecke character χ are defined by

L(χ, s) =
∏

p

(

1 − χ(p)

Nps

)−1

, Lf(χ, s) =
∏

p-f

(

1− χ(p)

Nps

)−1

.

Note that L(χ, s) = Lfχ(χ, s) when χ is a primitive Hecke character.

Remark 1.4. The definition of L(χ, s) as a C-valued function relies on the fact that Eχ is given as a
subfield of C.

1.2. Abelian varieties associated to characters of type (1, 0). In this section, we limit the discussion
to the case where K is an imaginary quadratic field. Let τ : K 7→ C be the given complex embedding of
K. A Hecke character of infinity type φ = nττ + nτ̄ τ̄ will also be said to be of infinity type (nτ , nτ̄ ).

Let ν be a Hecke character of K of infinity type (1, 0) and conductor fν , let Eν ⊃ K denote the subfield
of Q̄ generated by its values, and let Tν be the ring of integers of Eν . The Hecke character ν gives rise to
a compatible system of one-dimensional `-adic representations of GK with values in (E ⊗ Q`)

×, denoted
ρν,`, satisfying

ρν,`(σa) = ν(a), for all a ∈ Ifν`,

where σa ∈ Gal(K̄/K) denotes frobenius conjugacy class attached to a. The theory of complex multipli-
cation realises the representations ρν,` on the division points of so-called CM abelian varieties, which are
defined as follows.

Definition 1.5. A CM abelian variety over K is a pair (B,E) where

(1) B is an abelian variety over K;
(2) E is a product of CM fields equipped the structure of a K-algebra and an inclusion

i : E−→EndK(B) ⊗ Q,

satisfying dimK(E) = dimB;
(3) for all λ ∈ K ⊂ E, the endomorphism i(λ) acts on the cotangent space Ω1(B/K) as multiplication

by λ.
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The abelian varieties (B,E) over K with complex multiplication by a fixed E form a category denoted
CMK,E in which a morphism from B1 to B2 is a morphism j : B1−→B2 of abelian varieties over K for
which the diagrams

B1
j

//

e

��

B2

e

��

B1
j

// B2

commute, for all e ∈ E which belong to both EndK(B1) and EndK(B2). An isogeny in CMK,E is simply
a morphism in this category arising from an isogeny on the underlying abelian varieties.

If (B,E) is a CM abelian variety, its endomorphism ring over K contains a finite index subring T 0 of
the integral closure T of Z in E. After replacing B by the K-isogenous abelian variety homT0(T,B), we
can assume that EndK(B) contains T . This assumption, which is occasionally convenient, will consistently
be made from now on.

Let (B,E) be a CM-abelian variety with E a field, and let E ′ ⊃ E be a finite extension of E with ring
of integers T ′. The abelian variety B ⊗T T

′ is defined to be the variety whose L-rational points, for any
L ⊃ K, are given by

(B ⊗T T ′)(L) = (B(Q̄) ⊗T T ′)Gal(Q̄/L).

This abelian variety is equipped with an action of T ′ by K-rational endomorphisms, described by multi-
plication on the right, and therefore (B⊗T T

′, E′) is an object of CMK,E′ . Note that B⊗T T
′ is isogenous

to t := dimE(E′) copies of B, and that the action of T on B ⊗T T
′ agrees with the “diagonal” action of

T on Bt.
Let ` be a rational prime. For each CM abelian variety (B,E), let

T`(B) := lim
←,n

B[`n](K̄), V`(B) := T`(B) ⊗Z` Q`

be the `-adic Tate module and `-adic representation of GK attached to B. The Q`-vector space V`(B)
is a free E ⊗ Q`-module of rank one via the action of E by endomorphisms. The natural action of
GK := Gal(K̄/K) on V`(B) commutes with this E ⊗Q`-action, and the collection {V`(B)} thus gives rise
to a compatible system of one-dimensional `-adic representations of GK with values in (E⊗Q`)

×, denoted
ρB,`. We note in passing that for any extension E ′ ⊃ E where T ′ the integral closure of T in E ′,

T`(B ⊗T T ′) = T`(B) ⊗T T ′, V`(B ⊗T T ′) = V`(B) ⊗E E′.
The following result is due to Casselman (cf. Theorem 6 of [Shi]).

Theorem 1.6. Let ν be a Hecke character of K of type (1, 0) as above, and let ρν,` be the associated
one-dimensional `-adic representation with values in (Eν ⊗ Q`). Then

(1) There exists a CM abelian variety (Bν , Eν) satisfying

ρBν ,` ' ρν,`.

(2) The CM abelian variety Bν is unique up to isogeny over K. More generally, if (B,E) is any CM
abelian variety with E ⊃ Eν satisfying ρB,` ' ρν,` ⊗Eν E as (E ⊗ Q`)[GK ]-modules, then there is
an isogeny in CMK,E from B to Bν ⊗Tν T .

Let ψ be a Hecke character of infinity type (1, 0), and let χ be a finite order Hecke character. In
comparing the abelian varieties Bψ and Bψχ−1 attached to these two characters, it is useful to introduce
a CM abelian variety Bψ,χ over K, which we now proceed to describe.

Let Eψ,χ be the subfield of Q̄ generated by Eψ and Eχ, and let Tψ,χ ⊂ Eψ,χ be its ring of integers. We
also write Hχ for the abelian extension of K which is cut out by χ viewed as a Galois character of GK .
Consider first the abelian variety over K with endomorphism by Tψ,χ:

B0
ψ,χ := Bψ ⊗Tψ Tψ,χ.

The natural inclusion iψ : Tψ−→Tψ,χ induces a morphism i : Bψ−→B0
ψ,χ with finite kernel, which is

compatible with the Tψ-actions on both sides and is given by

i(P ) = P ⊗ 1.
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Lemma 1.7. Let F be any number field containing Eψ,χ. The restriction map i∗ induces an isomorphism

(29) i∗ : Ω1(B0
ψ,χ/F )Tψ,χ−→Ω1(Bψ/F )Tψ

of one-dimensional F -vector spaces.

Proof. The fact that B0
ψ,χ and Bψ are CM abelian varieties over F implies that source and target in (29) are

both one-dimensional over F . To see that i∗ is injective, let ω be an element of ker(i∗)∩Ω1(B0
ψ,χ/F )Tψ,χ .

Then since ω is stable under the action of Tψ,χ by endomorphisms, it follows that

ω belongs to ∩λ∈Tψ,χ [λ] ker(i∗) = 0.

Hence ω = 0 and the lemma follows. �

We can now denote by ω0
ψ,χ ∈ Ω1(B0

ψ,χ/Q̄)Tψ,χ the unique regular differential satisfying

(30) i∗(ωψ,χ) = ωψ, where ωψ ∈ Ω1(Bψ/Eψ)Tψ .

It follows from Lemma 1.7 that ω0
ψ,χ exists and is unique (once ωψ has been chosen), and that ω0

ψ,χ belongs

to Ω1(B0
ψ,χ/Eψ,χ).

The character χ−1 : Gal(Hχ/K)−→T×χ can be viewed as a one-cocycle in

H1(Gal(Hχ/K), T×ψ,χ) ⊂ H1(Gal(Hχ/K),Aut(B0
ψ,χ)).

Let

(31) Bψ,χ := (B0
ψ,χ)χ

−1

denote the twist of B0
ψ,χ by this cocycle. There is a natural identification B0

ψ,χ(K̄) = Bψ,χ(K̄) of sets,
arising from an isomorphism of varieties over Hχ, where Hχ is the extension of K cut out by χ. The
actions of GK on B0

ψ,χ(K̄) and Bψ,χ(K̄), denoted ∗0 and ∗ respectively, are related by

(32) σ ∗ P = (σ ∗0 P ) ⊗ χ−1(σ), for all σ ∈ GK .

In particular, for any L ⊃ K, we have:

Bψ,χ(L) =
{

P ∈ Bψ(Q̄) ⊗Tψ Tψ,χ such that σP = P ⊗ χ(σ), ∀σ ∈ Gal(Q̄/L)
}

.(33)

Likewise, the natural actions of GK on Ω1(B0
ψ,χ/K̄) and on Ω1(Bψ,χ/K̄) are related by

(34) σ ∗ ω = [χ−1(σ)]∗(σ ∗0 ω) for all σ ∈ GK .

The isomorphism of B0
ψ,χ and Bψ,χ as CM abelian varieties over Hχ gives natural identifications

Ω1(B0
ψ,χ/Hχ) = Ω1(Bψ,χ/Hχ), Ω1(B0

ψ,χ/E
′
ψ,χ)

Tψ,χ = Ω1(Bψ,χ/E
′
ψ,χ)

Tψ,χ ,

where E′ψ,χ denotes the subfield of Q̄ generated by Hχ and Eψ,χ. Let ω0
ψ,χ and ωψ,χ be Eψ,χ vector

space generators of Ω1(B0
ψ,χ/Eψ,χ)

Tψ,χ and Ω1(Bψ,χ/Eψ,χ)
Tψ,χ respectively. Since they both generate

Ω1(Bψ,χ/E
′
ψ,χ)

Tψ,χ as an E′ψ,χ-vector space, they necessarily differ by a non-zero scalar in E ′ψ,χ.

To spell out the relation between ω0
ψ,χ and ωψ,χ more precisely, it will be useful to introduce the notion

of a generalised Gauss sum attached to any finite order character χ of GK . Given such a character, let
E ⊂ Q̄ denote the field generated by the values of χ, and let

E{χ} := {λ ∈ EHχ such that λσ = χ(σ)λ, ∀σ ∈ Gal(EHχ/E)}.
This set is a one-dimensional E-vector space in a natural way. It is not closed under multiplication, but
E{χ1} · E{χ2} = E{χ1χ2}.
Definition 1.8. An E-vector space generator of E{χ} is called a Gauss sum attached to the character χ,
and is denoted g(χ).

By definition, the Gauss sum g(χ) belongs to E{χ} ∩ (EHχ)×, but is only well-defined up to multipli-
cation by E×.

The following lemma pins down the relationship between the differentials ω0
ψ,χ and ωψ,χ.

Lemma 1.9. For all Hecke characters ψ and χ as above,

ωψ,χ = g(χ)ω0
ψ,χ (mod E×ψ,χ).
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Proof. Let λ ∈ (HχEψ,χ)× be the scalar satisfying

(35) ωψ,χ = λω0
ψ,χ.

Since ωψ,χ is an Eψ,χ-rational differential on Bψ,χ, for all σ ∈ Gal(K̄/Eψ,χ) we have

(36) ωψ,χ = σ ∗ ωψ,χ = [χ−1(σ)]∗σ ∗0 ωψ,χ = χ−1(σ)λσω0
ψ,χ,

where the second equality follows from equation (34) and the last from the fact that the differential
ω0
ψ,χ belongs to Ω1(B0

ψ,χ/Eψ,χ)
Tψ,χ . Comparing (35) and (36) gives λσ = χ(σ)λ, and hence λ = g(χ)

(mod E×ψ,χ). The lemma follows. �

The following lemma relates the abelian varieties Bψ,χ and Bν , where ν = ψχ−1.

Lemma 1.10. There is an isogeny defined over K:

iν : Bψ,χ−→Bν ⊗Tν Tψ,χ
which is compatible with the action of Tψ,χ by endomorphisms on both sides.

Proof. The pair (B0
ψ,χ, Eψ,χ) is a CM abelian variety having ψ (viewed as taking values in Eψ,χ) as its

associated Hecke character. The Hecke character attached to the Galois twist Bψ,χ is therefore ψχ−1 = ν.
The second part of Theorem 1.6 implies that Bψ,χ and Bν ⊗Tν Tψ,χ are isogenous over K as CM abelian
varieties, and the lemma follows. �

1.3. Complex periods and special values of L-functions. This section attaches certain periods to
the quadratic imaginary field K and to Hecke characters of this field.

We begin by defining a complex period attached to K. This period depends on the following choices:

(1) An elliptic curve A with complex multiplication by OK , defined over a finite extension F of K.
(Note that F necessarily contains the Hilbert class field of K.)

(2) A regular differential ωA ∈ Ω1(A/F ).
(3) A non-zero element γ of H1(A(C),Q).

The complex period attached to this data is defined by

(37) Ω(A) :=
1

2πi

∫

γ

ωA (mod Q̄×) (mod F×).

Note that Ω(A) depends on the pair (ω, γ). A different choice of ω or γ has the effect of multiplying Ω(A)
by a scalar in F×, and therefore Ω(A) can be viewed as a well-defined element of C×/F×.

For any Hecke character ψ of K, recall that ψ∗ is the Hecke character defined as in the Introduction by
ψ∗(x) = ψ(x̄). Suppose that ψ is of infinity type (1, 0), and let Eψ ⊂ Q̄ ⊂ C denote the field generated by
the values of ψ (or, equivalently, ψ∗). Choose (arbitrary) non-zero elements

ωψ ∈ Ω1(Bψ/Eψ)Tψ , γ ∈ H1(Bψ(C),Q),

where Bψ is the CM abelian variety attached to ψ by Theorem 1.6, and Ω1(Bψ/Eψ)Tψ is defined in
equation (10) of the Introduction. The period Ω(ψ∗) attached to ψ∗ is defined by setting

Ω(ψ∗) =
1

2πi

∫

γ

ωψ (mod E×ψ ).

Note that the complex number Ω(ψ∗) does not depend, up to multiplication by E×ψ , on the choices of ωψ
and γ that were made to define it.

Lemma 1.11. If ψ is a Hecke character of infinity type (1, 0), and χ is a finite order character, then

(38) Ω(ψ∗χ) = Ω(ψ∗)g(χ∗)−1 (mod E×ψ,χ).

Proof. Choose a non-zero generator γ of H1(B
0
ψ,χ(C),Q) = H1(Bψ,χ(C),Q) (viewed as a one-dimensional

Eψ,χ vector space via the endomorphism action). By definition,

Ω((ψχ−1)∗) =

∫

γ

ωψ,χ = g(χ)

∫

γ

ω0
ψ,χ = g(χ)Ω(ψ∗) (mod E×ψ,χ),

where the second equality follows from Lemma 1.9. The result now follows after substituting χ∗−1 for
χ. �
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One can also attach a period Ω(ψ∗) to an arbitrary Hecke character of K following the article [GS]. (See
also Sections 3.1 and 3.2.) These more general periods are known to satisfy the following multiplicativity
relations: see Section 1 of [Har] for instance.

Proposition 1.12. Let ψ be a Hecke character of infinity type (k, j). Then

(1) The ratio
Ω(ψ∗)

(2πi)jΩ(A)k−j

is algebraic.
(2) For all ψ and ψ′,

Ω(ψψ′) = Ω(ψ)Ω(ψ′) (mod E×ψ,ψ′),

where Eψ,ψ′ is the subfield of Q̄ generated by Eψ and Eψ′ .

The following theorem is due to Goldstein and Schappacher [GS] (and Blasius for general CM fields).

Theorem 1.13. Suppose that ψ has infinity type (k, j) with k > j, and that m is a critical integer for
L(ψ−1, s). Then

L(ψ−1,m)

(2πi)mΩ(ψ∗)
belongs to Eψ ,

and for all τ ∈ Gal(Eψ/K),
(

L(ψ−1,m)

(2πi)mΩ(ψ∗)

)τ

=
L((ψ−1)τ ,m)

(2πi)mΩ((ψ∗)τ )
.

1.4. p-adic periods. Fix a prime p that splits in K. We will need p-adic analogs of the periods Ω(A)
and Ω(ν∗). One way to define these p-adic periods is to use the comparison isomorphism between p-adic
étale cohomology over p-adic fields and de Rham cohomology, as hinted in Blasius’s article [Bl]. It is also
possible to supply a more direct definition, as will be done in this section.

The p-adic analogue Ωp(A) of Ω(A) is obtained by considering the base change ACp of A to Cp (via our
fixed embedding of F into Cp). Assume that A has good reduction at the maximal ideal of OCp , i.e., that

ACp extends to a smooth proper model AOCp
over OCp . The p-adic completion ÂOCp

of A along its special

fiber is isomorphic to Ĝm. Following [deS] II, §4.4, choose an isomorphism ιp : Â−→Ĝm over OCp , and
define Ωp(A) ∈ C×p by the rule

(39) ωA = Ωp(A) · ι∗p(du/u),
where u is the standard coordinate on Ĝm. The invariant Ωp(A) ∈ C×p thus defined depends on the choices

of ωA and ιp, but only up to multiplication by a scalar in F×. Observe also that Ω(A) and Ωp(A) each
depend linearly in the same way on the choice of the global differential ωA.

The p-adic period Ωp(A) can be used to define p-adic analogues of the complex periods Ω(ν) that appear
in the statement of Theorem 1.13.

Definition 1.14. The p-adic period attached to a Hecke character ν of type (1, 0), denoted Ωp(ν
∗), is

defined to be

Ωp(ν
∗) := Ωp(A) · Ω(ν∗)

Ω(A)
.

More generally, for any character ν of infinity type (k, j), we define

Ωp(ν
∗) := Ωp(A)k−j · Ω(ν∗)

(2πi)jΩ(A)k−j
.

It can be seen from this definition that the period Ωp(ν), like its complex counterpart Ω(ν), is well-
defined up to multiplication by a scalar in E×ν . The following p-adic analogue of Lemma 1.11 is a direct
consequence of this lemma combined with the definition of Ωp(ψ):

Lemma 1.15. If ψ is a Hecke character of infinity type (1, 0), and χ is a finite order character, then

(40) Ωp(ψ
∗χ) = Ωp(ψ

∗)g(χ∗)−1 (mod E×ψ,χ).

Likewise, Proposition 1.12 implies:
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Proposition 1.16. Let ψ be a Hecke character of infinity type (k, j). Then

(1) The ratio
Ωp(ψ

∗)

(2πi)jΩp(A)k−j

is algebraic.
(2) For all ψ and ψ′,

(41) Ωp(ψψ
′) = Ωp(ψ)Ωp(ψ

′) (mod E×ψ,ψ′).

2. p-adic L-functions and Rubin’s formula

2.1. The Katz p-adic L-function. Throughout this chapter, we will fix a prime p that is split in K. Let
c be an integral ideal of K which is prime to p, and let Σ(c) denote the set of all Hecke characters of K of
conductor dividing c. Denote by p the prime above p corresponding to the chosen embedding K ↪→ Q̄p.

A character ν ∈ Σ(c) is called a critical character if L(ν−1, 0) is a critical value in the sense of Deligne,
i.e., if the Γ-factors that arise in the functional equation for L(ν−1, s) are non-vanishing and have no poles
at s = 0. The set Σcrit(c) of critical characters can be expressed as the disjoint union

Σcrit(c) = Σ
(1)
crit(c) ∪ Σ

(2)
crit(c),

where

Σ
(1)
crit(c) = {ν ∈ Σ(c) of type (`1, `2) with `1 ≤ 0, `2 ≥ 1} ,

Σ
(2)
crit(c) = {ν ∈ Σ(c) of type (`1, `2) with `1 ≥ 1, `2 ≤ 0} .

The possible infinity types of Hecke characters in these two critical regions are sketched in Figure 1. Note

in particular that when c = c̄, the regions Σ
(1)
crit(c) and Σ

(2)
crit(c) are interchanged by the involution ν 7→ ν∗,

where ν∗ is defined as in the Introduction by ν∗(a) = ν(ā), with a 7→ ā denoting the conjugation on AK .
The set Σcrit(c) is endowed with a natural p-adic topology arising from the compact open topology on

the space of functions on a certain subset of A×K , as described in Section 5.4 of [BDP]. The subsets Σ
(1)
crit(c)

and Σ
(2)
crit(c) are dense in the completion Σ̂crit(c) relative to this topology.

Recall that p is the prime above p induced by our chosen embedding of K into Cp. The following
proposition on the existence of the p-adic L-function is due to Katz. The statement below is a restatement
of [deS] (II, Thm. 4.14) with a minor correction.

Proposition 2.1. There exists a p-adic analytic function ν 7→ Lp(ν) (valued in Cp) on Σ̂crit(c) which is
determined by the interpolation property:

(42)
Lp(ν)

Ωp(A)`1−`2
=

(√
D

2π

)`2

(`1 − 1)!(1 − ν(p)/p)(1 − ν−1(p̄))
Lc(ν

−1, 0)

Ω(A)`1−`2
,

for all critical characters ν ∈ Σ
(2)
crit(c) of infinity type (`1, `2).

The right hand side of (42) belongs to Q̄, by Part 1 of Proposition 1.12 and Theorem 1.13 with m = 0.
Equation (42) should be interpreted to mean that the left hand side also belongs to Q̄, viewed as a subfield
of Cp under the chosen embeddings, and agrees with the right hand side. Note that although both sides of
(42) depend on the choice of the differential ωA that was made in the definition of the periods Ω(A) and
Ωp(A), the quantity Lp(ν), just like its complex counterpart Lc(ν

−1, 0), does not depend on this choice.
We are mainly interested in the behavior of Lp(ν) at the so-called self-dual Hecke characters, which are

defined as follows:

Definition 2.2. A Hecke character ν ∈ Σcrit(c) is said to be self-dual or anticyclotomic if

νν∗ = NK .

Note that a self-dual character is necessarily of infinity type (1 + j,−j) for some j ∈ Z. There is also a
restriction on the central character of such a ν. More precisely, it is clear that εν̄ = εν , while εν∗ = εν . If
ν is a self-dual character, it follows that for any x ∈ A×K ,

ν(NK
Q (x)) = ν(xx̄) = (νν∗)(x) = NK(x) = N(NK

Q (x)).
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Figure 1. Critical infinity types for the Katz p-adic L-function

Hence

ν|NK
Q

A×

K
= N and εν |NK

Q
A×

K
= 1.

This implies that the central character of a self-dual character is either 1 or εK , where εK denotes the
quadratic Dirichlet character corresponding to the extension K/Q.

The reason for the terminology in Definition 2.2 is that the functional equation for the L-series L(ν−1, s)
relates L(ν−1, s) to L(ν−1,−s), and therefore s = 0 is the central critical point for this complex L-series.
Also since the conductor of a self-dual character is clearly invariant under complex conjugation, we will
assume henceforth that c = c̄. Denote by Σsd(c) the set of self-dual Hecke characters, and write

Σ
(1)
sd (c) = Σ

(1)
crit(c) ∩ Σsd(c), Σ

(2)
sd (c) = Σ

(2)
crit(c) ∩ Σsd(c).

In particular, the possible infinity types of characters in Σ
(2)
sd (c) correspond to the black dots in Figure 1.

The following is merely a restatement of Proposition 2.1 for self-dual characters.

Proposition 2.3. For all characters ν ∈ Σ
(2)
sd (c) of infinity type (1 + j,−j) with j ≥ 0,

(43)
Lp(ν)

Ωp(A)1+2j
= (1 − ν−1(p̄))2 × j!(2π)jLc(ν

−1, 0)
√
D
j
Ω(A)1+2j

.

The following theorem is the p-adic counterpart of Theorem 1.13.

Theorem 2.4. Suppose that ν ∈ Σ
(2)
sd (c) is of infinity type (1 + j,−j), with j ≥ 0. Then

Lp(ν)

Ωp(ν∗)
belongs to Eν .
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Proof. By definition of Ωp(ν
∗),

Lp(ν)

Ωp(ν∗)
=

Lp(ν)

Ωp(A)1+2j
× (2πi)−jΩ(A)1+2j

Ω(ν∗)

=
L(ν−1, 0)

(2πi)−jΩ(A)1+2j
× (2πi)−jΩ(A)1+2j

Ω(ν∗)
=
L(ν−1, 0)

Ω(ν∗)
(mod E×ν ),

where the penultimate equality follows from the interpolation property of the Katz p-adic L-function in
Proposition 2.3. The result is now a direct consequence of Theorem 1.13 with m = 0. �

Theorem 2.4 expresses Lp(ν) as an Eν-multiple of a p-adic period Ωp(ν
∗), when ν lies in the range

Σ
(2)
sd (c) of classical interpolation for the Katz p-adic L-function. Our main interest is in obtaining analogous

results for certain critical characters in Σ
(1)
sd (c). These characters are outside the range of interpolation,

and so (43) does not directly say anything about these values. Our approach to studying them relies on a
different kind of p-adic L-function, namely one attached to Rankin-Selberg L-series, which we define and
study in the following section.

2.2. p-adic Rankin L-series. In this section, we consider p-adic L-functions obtained by interpolating
special values of Rankin-Selberg L-series associated to modular forms and Hecke characters of a quadratic
imaginary field K of odd discriminant. We briefly recall the definition of this p-adic L-function that is
given in Sec. 5 of [BDP], referring the reader to loc.cit. for a more detailed description.

Let Sk(Γ0(N), ε) denote the space of cusp forms of weight k = r + 2 and character ε on Γ0(N). Let
f ∈ Sk(Γ0(N), ε) be a normalized newform and let Ef denote the subfield of C generated by its Fourier
coefficients.

Definition 2.5. The pair (f,K) is said to satisfy the Heegner hypothesis if OK contains a cyclic ideal of
norm N , i.e., an integral ideal N of OK with OK/N = Z/NZ.

Assume from now on that (f,K) satisfies the Heegner hypothesis, and let N be a fixed cyclic OK-ideal
of norm N .

Definition 2.6. A Hecke character χ of K of infinity type (`1, `2) is said to be central critical for f if

`1 + `2 = k and εχ = ε.

The reason for the terminology of Definition 2.6 is that when χ satisfies these hypotheses, the complex
Rankin L-series L(f, χ−1, s) is self-dual and s = 0 is its central (critical) point.

We now pick a rational integer c prime to pN and denote by Σcc(c,N, ε) the set of central critical
characters χ such that

fχ = f1f2 with f1 | c, f2 | N.

The set Σcc(c,N, ε) can be expressed as a disjoint union

Σcc(c,N, ε) = Σ(1)
cc (c,N, ε) ∪ Σ(2)

cc (c,N, ε),

where Σ
(1)
cc (c,N, ε) and Σ

(2)
cc (c,N, ε) denote the subsets consisting of characters of infinity type (k+ j,−j)

with 1 − k ≤ j ≤ −1 and j ≥ 0 respectively. We shall also denote by Σ̂cc(c,N, ε) the completion of
Σcc(c,N, ε) relative to the p-adic compact open topology on Σcc(c,N, ε) which is defined in Section 5.4 of

[BDP]. The infinity types of Hecke characters in Σ
(1)
cc (c,N, ε) and Σ

(2)
cc (c,N, ε) correspond respectively to

the white and black dots in the shaded regions in Figure 2. We note that the set Σ
(2)
cc (c,N, ε) of classical

central critical characters “of type 2” is dense in Σ̂cc(c,N, ε).

For all χ ∈ Σ
(2)
cc (c,N, ε) of infinity type (k+j,−j) with j ≥ 0, let Ef,χ denote the subfield of C generated

by Ef and the values of χ, and let Ef,χ,ε be the field generated by Ef,χ and by the abelian extension of
Q cut out by ε. The algebraic part of L(f, χ−1, 0) is defined by the rule

(44) Lalg(f, χ
−1, 0) := w(f, χ)−1C(f, χ, c) · L(f, χ−1, 0)

Ω(A)2(k+2j)
,
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Figure 2. Critical infinity types for the p-adic Rankin L-function

where w(f, χ)−1 ∈ Ef,χ,ε is the scalar (of complex norm 1) defined in equation (181) of [BDP] and C(f, χ, c)
is the explicit real constant defined in Theorem 5.6 of [BDP]. For primitive χ, i.e. those such that c | fχ,

(45) C(f, χ, c) =
πr+2j+1j!(r + 1 + j)!wK√

D
r+1+2j

cr+3+2j

∏

q|c
(q − εK(q))2,

where wK = #O×K is the number of roots of unity in K. (Indeed, because χ is assumed to be primitive
and D necessarily divides the conductor of εf , the set S(f) in the statement of Theorem 5.6. of [BDP] is
empty in our setting.)

Theorem 6.5 of [BDP] shows that Lalg(f, χ
−1, 0) belongs to Q. By analogy with the definition of the

Katz p-adic L-function, it is natural to attempt to p-adically interpolate the special values Lalg(f, χ
−1, 0)

as χ ranges over Σ
(2)
cc (c,N, ε).

Proposition 2.7. Let χ 7→ Lp(f, χ) be the function on Σ
(2)
cc (c,N, ε) defined by

(46) Lp(f, χ) := Ωp(A)2(k+2j)(1 − χ−1(p̄)ap(f) + χ−2(p̄)ε(p)pk−1)2Lalg(f, χ
−1, 0),

for all χ of infinity type (k+ j,−j) with j ≥ 0. This function extends (uniquely) to a p-adically continuous

function on Σ̂cc(c,N, ε).

This statement is proved in Proposition 6.10 of [BDP].

The function χ 7→ Lp(f, χ) on Σ̂cc(c,N, ε) will be referred to as the p-adic Rankin L-function attached
to the cusp form f .
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2.3. A p-adic Gross-Zagier formula. In this section, we specialise to the case where the newform f is
of weight k = 2, and assume that χ is a finite order Hecke character of K satisfying

χNK belongs to Σ(1)
cc (c,N, ε).

In particular, this character lies outside the domain Σ
(2)
cc (c,N, ε) of classical interpolation defining Lp(f,−).

The p-adic Gross-Zagier formula alluded to in the title of this section relates the special value Lp(f, χNK)
to the formal group logarithm of a Heegner point on the modular abelian variety attached to f .

Recall that Ef and Eχ are the subfields of Q̄ generated, respectively, by the Fourier coefficients of f and
the values of χ. Let Ef,χ denote the field generated by both Ef and Eχ, and let Tf ⊂ Ef and Tf,χ ⊂ EF,χ
denote their respective integer rings.

Let Γ := Γε(N) ⊂ Γ0(N) be the subgroup attached to f , defined by

(47) Γ =

{(

a b
c d

)

∈ Γ0(N) such that ε(a) = 1.

}

,

The associated modular curve C has a model over Q obtained by realising C as the solution to a moduli
problem, which we now describe. Given an abelian group G of exponent N , denote by G∗ the set of
elements of G of order N . This set of “primitive elements” is equipped with a natural free action by
(Z/NZ)×, which is transitive when G is cyclic.

Definition 2.8. A Γε(N)-level structure on an elliptic curve E is a pair (CN , t), where

(1) CN is a cyclic subgroup scheme of E of order N ,
(2) t is an orbit in C∗N for the action of ker ε.

If E is an elliptic curve defined over a field L, then the Γ-level structure on E is defined over the field L
if CN is a group scheme over L and t is fixed by the natural action of Gal(L̄/L).

The curve C coarsely classifies the set of isomorphism classes of triples (E,CN , t) where E is an elliptic
curve and (CN , t) is a Γ-level structure on E. When Γ is torsion-free (which occurs, for example, when ε
is odd and N is divisible by a prime of the form 4n + 3 and a prime of the form 3n + 2) the curve C is
even a fine moduli space; for any field L, one then has

C(L) = {Triples (E,CN , t) defined over L}/L-isomorphism.

Since the datum of t determines the associated cyclic group CN , we sometimes drop the latter from the
notation, and write (E, t) instead of (E,CN , t) when convenient. The group scheme A[N] of N-torsion
points in A is a cyclic subgroup scheme of A of order N defined over F . A Γ-level structure on A of the
form (A[N], t) is said to be of Heegner type (associated to the ideal N).

The Eichler-Shimura construction associates to f an abelian variety Bf with endomorphism by an order
in Tf , and a surjective morphism

Φf : J1(N)−→Bf

of abelian varieties over Q, called the modular parametrisation, which is well-defined up to a rational
isogeny and factors through the natural projection J1(N)−→Jε(N). Let

ωf = 2πif(τ)dτ ∈ Ω1(J1(N)/Ef )

be the regular differential on J1(N) attached to f , and let ωBf ∈ Ω1(Bf/Ef )
Tf be the unique regular

differential satisfying

(48) Φ∗f (ωBf ) = ωf .

Let A be an elliptic curve with endomorphisms by the order Oc = Z+ cOK of conductor c, defined over
the ring class field Hc of conductor c. The finite order Hecke character χ can be viewed as a character

χ : Gal(Hc,N/K)−→Eχ,

where Hc,N is the finite abelian extension of the ring class field Hc generated by the N-torsion points of A.
The pair (A,A[N]) corresponds to a point on X0(N)(Hc), and the triple (A,A[N], t) (for any (Γε(N)-level
structure attached to A[N]) corresponds to a point in X1(N)(Hc,N). Denote these points by [A,A[N]] and
[A,A[N], t] respectively. Fix a cusp ∞ of X1(N) which is defined over Q, and let

(49) ∆ = [A,A[N], t] − (∞) ∈ J1(N)(Hc,N).
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To the pair (f, χ) we associate the Heegner point by letting G = Gal(Hc,N/K) and setting

(50) Pf (χ) :=
∑

σ∈G
χ−1(σ)Φf (∆

σ) ∈ Bf (Hc,N) ⊗Tf Ef,χ.

The embedding of Q̄ into Cp that was fixed from the outset allows us to consider the formal group logarithm

logωBf
: Bf (Hc,N)−→Cp.

We extend this function to Bf (Hc,N) ⊗Tf Ef,χ by Ef,χ-linearity.

Theorem 2.9. With notations and assumptions as above,

Lp(f, χNK) = (1 − χ−1(p̄)p−1ap(f) + χ−2(p̄)εf (p)p
−1)2 log2

ωBf
(Pf (χ)).

Proof. Let

E (f, χ) := (1 − χ−1(p̄)p−1ap(f) + χ−2(p̄)εf (p)p
−1)2 ∈ E×f,χ

be the Euler factor appearing in the statement of Theorem 2.9. Let F denote the p-adic completion of
Hc,N. Theorem 6.13 of [BDP] in the case k = 2 and r = j = 0, with χ replaced by χNK , gives

(51) Lp(f, χNK) = E (f, χ) ×
(

∑

σ∈G
χ−1(a) · AJF (∆σ)(ωf )

)2

.

Note that in this context, the p-adic Abel-Jacobi map AJF that appears in (51) is related to the formal
group logarithm by

AJF (∆)(ωf ) = logωf (∆).

Therefore,

(52) Lp(f, χNK) = E (f, χ)

(

∑

σ∈G
χ−1(σ) logωf (∆

σ)

)2

.

Theorem 2.9 follows from this formula and the fact that, by (48),

logωf (∆) = logΦ∗

f
(ωBf )(∆) = logωBf

(Φf (∆)).

�

In the special case where f has rational Fourier coefficients and χ = 1 is the trivial character, the
abelian variety Bf is an elliptic curve quotient of J0(N) and the Heegner point Pf := Pf (1) belongs to
Bf (K). Theorem 2.9 implies in this case that

(53) Lp(f,NK) =

(

p+ 1 − ap(f)

p

)2

log2(Pf ),

where log : Bf (Kp)−→Kp is the formal group logarithm attached to a rational differential on Bf/Q.
Equation (53) exhibits a strong analogy with Theorem 1 of the Introduction, although it applies to arbitrary
(modular) elliptic curves and not just elliptic curves with complex multiplication.

The remainder of Chapter 2 explains how Theorem 2.9 can in fact be used to prove Theorems 1 and
2 of the Introduction. The key to this proof is a relation between the Katz p-adic L-function of Section
2.1 and the p-adic Rankin L-function Lp(f, χ) of Section 2.2 in the special case where f is a theta series
attached to a Hecke character of the imaginary quadratic field K. This explicit relation is described in
the following section.



CHOW-HEEGNER POINTS ON CM ELLIPTIC CURVES AND VALUES OF p-ADIC L-FUNCTIONS 21

2.4. A factorisation of the p-adic Rankin L-series. This section focuses on the Rankin L-function
Lp(f, χ) of f and K in the special case where f is a theta series associated to a Hecke character of the
same imaginary quadratic field K.

More precisely, let ψ be a fixed Hecke character of K of infinity type (k − 1, 0) with k = r + 2 ≥ 2.
Consider the associated theta series:

θψ :=
∑

a

ψ(a)qNa =

∞
∑

n=1

an(θψ)qn,

where the first sum is taken over integral ideals of K. The Fourier coefficients of θψ generate a number
field Eθψ which is clearly contained in Eψ.

The following classical proposition is due to Hecke and Schoenberg. (Cf. [Ogg] or Sec. 3.2 of [Za]).

Proposition 2.10. The theta series θψ belongs to Sk(Γ0(N), ε), where

(1) The level N is equal to DM , with M = NK
Q fψ,

(2) The Nebentypus character ε is equal to εKεψ.

Recall that an ideal of OK is said to be cyclic if the quotient of OK by this ideal is cyclic (as a group
under addition).

Lemma 2.11. If the conductor fψ of ψ is a cyclic ideal of norm M prime to D, then θψ satisfies the
Heegner hypothesis relative to K.

Proof. In this case, the modular form θψ is of level N = DM , by Proposition 2.10. But then the ideal

(54) N := (
√
−D)fψ.

is a cyclic ideal of K of norm N . �

We will assume from now on that the condition in Lemma 2.11 is satisfied. Furthermore, we will always
take N to be the ideal in (54).

The goal of this section is to factor the p-adic Rankin L-function Lp(θψ , χ) as a product of two Katz
p-adic L-functions. As a preparation to stating the main result we record the following lemma:

Lemma 2.12. Let χ be any character in Σcc(c,N, ε).

(1) If χ belongs to Σ
(2)
cc (c,N, ε), then ψ−1χ belongs to Σ

(2)
sd (c) and ψ∗−1χ belong to Σ

(2)
sd (cN).

(2) If χ belongs to Σ
(1)
cc (c,N, ε), then ψ−1χ belongs to Σ

(1)
sd (c) and ψ∗−1χ belong to Σ

(2)
sd (cN).

Proof. This lemma follows from a direct verification which is left to the reader. It should be noted that
when χ is of type (k + j,−j) then ψ−1χ is of infinity type (1 + j,−j) and ψ∗−1χ is of infinity type

(1 + (1 + r + j),−(1 + r + j)). In particular, if χ lies on the edge of Σ
(1)
cc (c,N, ε), then ψ−1χ lies on the

edge of Σ
(1)
sd (c), i.e., is of infinity type (0, 1). �

Theorem 2.13. For all χ ∈ Σcc(c,N, ε),

(55) Lp(θψ , χ) =
w(θψ , χ)−1wK
2r+1+2jcr+3+2j

∏

q|c
(q − εK(q))2 × Lp(ψ

−1χ) × Lp(ψ
∗−1χ).

Proof. Since Σ
(2)
cc (c,N, ε) is dense in Σ̂

(2)
cc (c,N, ε), it suffices to prove the formula for the characters χ

in this range, where it follows directly from the interpolation properties defining the respective p-adic
L-functions. More precisely, by (46),

Lp(θψ, χ)

Ωp(A)2(k+2j)
=

(

(1 − ψχ−1(p̄))(1 − ψ∗χ−1(p̄)
)2
Lalg(θψ , χ

−1, 0).(56)



22 MASSIMO BERTOLINI HENRI DARMON KARTIK PRASANNA

Let δc :=
∏

q|c(q − εK(q))2. By the definition of Lalg(θψ , χ
−1, 0) given in (44) and (45),

Lalg(θψ , χ
−1, 0) = w(θψ , χ)−1C(θψ, χ, c)

L(θψ, χ
−1, 0)

Ω(A)2(k+2j)

= w(θψ , χ)−1wKδc
πr+2j+1j!(1 + r + j)!
√
D

1+r+2j
c3+r+2j

× L(ψχ−1, 0)L(ψ∗χ−1, 0)

Ω(A)2(k+2j)
(57)

=
w(θψ , χ)−1wKδc

cr+3+2j

(

j!πjL(ψχ−1, 0)
√
D
j
Ω(A)1+2j

)

×
(

(1 + r + j)!π1+r+jL(ψ∗χ−1, 0)
√
D

1+r+j
Ω(A)1+2(1+r+j)

)

.

Combining (56) and (57) with the interpolation property of the Katz p-adic L-function given in Proposition
2.3, we obtain

Lp(θψ , χ)

Ωp(A)2(k+2j)
=

w(θψ , χ)−1wKδc
2r+1+2jcr+3+2j

× Lp(ψ
−1χ)

Ωp(A)1+2j
× Lp(ψ

∗−1χ)

Ωp(A)1+2(1+r+j)
.(58)

Clearing the powers of Ωp(A) on both sides gives the desired result. �

The Nebentypus character ε can be viewed as a finite order Galois character of GQ. Recall that Eψ,χ,ε
denotes the smallest extension of Eψ,χ containing the field through which this character factors.

Corollary 2.14. For all χ ∈ Σcc(c,N, ε), with c = cN ,

Lp(θψ, χ) = Lp(ψ
−1χ) × Lp(ψ

∗−1χ) (mod E×ψ,χ,ε).

Proof. This follows from Theorem 2.13 in light of the fact that the constant that appears on the right
hand side of (55) belongs to E×ψ,χ,ε. �

2.5. Proof of Rubin’s Theorem. The goal of this section is to prove Theorem 2 of the Introduction. Let
ν ∈ Σsd(c) be a Hecke character of infinity type (1, 0) satisfying conditions (6) and (7) of the Introduction.

Definition 2.15. A pair (ψ, χ) of Hecke characters is said to be good for ν if it satisfies the following
conditions.

(1) The character ψ is of type (1, 0) and satisfies the Heegner hypothesis, so that the associated theta
series θψ belongs to S2(Γ0(N), ε) where (N) = NN̄ is the norm of a cyclic ideal N of OK and ε is
an appropriate even Dirichlet character of modulus N .

(2) The character χ is of finite order, and χNK belongs to Σ
(1)
cc (c,N, ε).

(3) The character ψχ−1 is equal to ν, i.e., ψ−1χNK = ν∗.
(4) The classical L-value L(ψ∗χ−1N−1

K , 0) is non-zero, i.e., Lp(ψ
∗−1χNK) 6= 0.

The modular abelian variety Bθψ attached to ψ is a CM abelian variety in the sense of Definition
1.5. Hence it is K-isogenous to the CM abelian variety Bψ constructed in Section 1.2. In particular, the
modular parametrisation Φψ := Φθψ can be viewed as a surjective morphism of abelian varieties over K

(59) Φψ : J1(N)−→Bψ.

Given a good pair (ψ, χ), recall the Heegner divisor ∆ ∈ J1(N)(Hc,N) that was constructed in Section 2.3,
and the Heegner point

(60) Pψ(χ) := Pθψ(χ) =
∑

σ∈G
χ−1(σ)Φψ(∆σ) ∈ Bψ(Hχ) ⊗Tψ Eψ,χ

that was defined in equation (50) of that section with f = θψ. Recall also that ωψ is an Eψ-vector space
generator of Ω1(Bψ/Eψ)Tψ . Viewing the point Pψ(χ) as a formal linear combination of elements of Bψ(Hχ)
with coefficients in Eψ,χ, we define the expression logωψ (Pψ(χ)) by Eχ-linearity.

In the rest of this section, we will denote by E ′ψ,χ the subfield of Q̄ generated by Eψ, Eχ, and the

abelian extension H ′χ of K cut out by the finite order characters χ and χ∗. The motivation for singling
out good pairs for a special definition lies in the following proposition.

Proposition 2.16. For any pair (ψ, χ) which is good for ν,

(61) Lp(ν
∗) = Ωp(ψ

∗χ−1) log2
ωψ(Pψ(χ)) (mod (E′ψ,χ)×),

where Ωp(ξ) is the p-adic period attached to a critical Hecke character ξ in Definition 1.14.
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Proof. By Theorem 2.9 applied to f = θψ,

(62) Lp(θψ, χNK) = log2
ωψ (Pψ(χ)) (mod E×ψ,χ).

On the other hand, since E ′ψ,χ contains Eψ,χ,ε, Corollary 2.14 implies that

Lp(θψ, χNK) = Lp(ψ
−1χNK)Lp(ψ

∗−1χNK) (mod (E′ψ,χ)×)

= Lp(ν
∗)Lp(ψχ

∗−1) (mod (E′ψ,χ)×),(63)

where the second equality follows from condition 3 in the definition of a good pair. The character ψχ∗−1

lies in the range Σ
(2)
sd (c) of classical interpolation for the Katz L-function, and Lp(ψ

∗−1χNK) = Lp(νχ/χ
∗)

is non-zero by condition 4 in the definition of a good pair. Therefore, by Theorem 2.4,

(64) Lp(ψχ
∗−1) = Ωp(ψ

∗χ−1) (mod E×ψ,χ).

Proposition 2.16 follows by combining the equalities in (62) and (63) and using (64). �

To go further, we will analyse the expressions occurring in the right hand side of (61) and relate them
to quantities depending solely on ν and not on the good pair (ψ, χ).

Lemma 2.17. For all good pairs (ψ, χ) attached to ν,

Ωp(ψ
∗χ−1) = Ωp(ν

∗) (mod (E′ψ,χ)×).

Proof. Condition 3 in the definition of a good pair implies that ψ∗χ−1 = ν∗χ∗/χ. The lemma therefore
follows from Lemma 1.15, with ψ replaced by ν∗ and χ by the finite order character χ∗/χ, which factors
through Gal(H ′χ/K). �

It will be useful to view the point Pψ(χ) appearing in (61) as an element of B0
ψ,χ(Hc,N) or as aK-rational

point on the abelian variety Bψ,χ that was introduced in Section 1.2. More precisely, after setting

(65) Pψ(χ) :=
∑

σ∈G
Φψ(∆σ) ⊗ χ−1(σ) ∈ Bψ(K̄) ⊗Tψ Tψ,χ = B0

ψ,χ(K̄),

we observe that, for all τ ∈ Gal(K̄/K),

τ ∗0 Pψ(χ) =
∑

σ∈G
Φψ(∆τσ) ⊗ χ−1(σ)

=
∑

σ∈G
Φψ(∆σ) ⊗ χ−1(στ−1) = Pψ(χ)χ(τ).

The point Pψ(χ) therefore belongs to Bψ,χ(K) by (33).
Recall the differentials ωψ and ωψ,χ ∈ Ω1(Bψ,χ/Eψ,χ)

Tψ,χ .

Lemma 2.18. For all good pairs (ψ, χ) attached to ν = ψχ−1,

logωψ(Pψ(χ)) = logωψ,χ(Pψ(χ)).

Proof. Let G = Gal(Hc,N/K) and let P = Φψ(∆). By definition,

logωψ(Pψ(χ)) =
∑

σ∈G
χ(σ)−1 logωψ(P σ) =

∑

σ∈G
χ(σ)−1 logi∗(ωψ,χ)(P

σ)

=
∑

σ∈G
χ(σ)−1 logωψ,χ(P

σ ⊗ 1) =
∑

σ∈G
logχ(σ)−1ωψ,χ

(P σ ⊗ 1)

=
∑

σ∈G
logωψ,χ(P

σ ⊗ χ(σ)−1) = logωψ,χ

(

∑

σ∈G
P σ ⊗ χ(σ)−1

)

.

This completes the proof. �

Lemma 2.19. There exists Pν ∈ Bν(K) and ων ∈ Ω1(Bν/Eν)
Tν such that

logωψ,χ(Pψ(χ)) = logων (Pν) (mod (E′ψ,χ)×).
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Proof. Recall from Lemma 1.10 that there is a K-rational isogeny

Bν ⊗Tν Tψ,χ−→Bψ,χ.

Composing it with the natural morphism Bν−→Bν ⊗Tν Tψ,χ, we obtain a Tν-equivariant morphism j :
Bν−→Bψ,χ defined over K with finite kernel. The fact that L(ν, s) has a simple zero at s = 1 implies that
Bν(K)⊗Q is one-dimensional over Eν , and therefore that Bψ,χ(K)⊗Q is one-dimensional over Eψ,χ. In
particular, if Pν is any generator of Bν(K) ⊗ Q, we may write

Pψ(χ) = λj(Pν)

for some non-zero scalar λ ∈ E×ψ,χ. But letting

ων = j∗(ωψ,χ) ∈ Ω1(Bν/E
′
ψ,χ)

Tν ,

we have

logωψ,χ(Pψ(χ)) = logωψ,χ(λj(Pν )) = logλ∗ωψ,χ(j(Pν)) = λ logωψ,χ(j(Pν))

= λ logj∗ωψ,χ(Pν) = λ logων (Pν).

The lemma now follows after multiplying ων by an appropriate scalar in (E ′ψ,χ)
× so that it belongs to

Ω1(Bν/Eν)
Tν . �

Proposition 2.20. There exists ων ∈ Ω1(Bν/Eν)
Tν and Pν ∈ Bν(K) such that

(66) Lp(ν
∗) = Ωp(ν

∗)−1 log2
ων (Pν) (mod (E′ψ,χ)×),

for all good pairs (ψ, χ) attached to ν.

Proof. This follows after invoking Lemmas 2.17, 2.18 and 2.19 to rewrite the expression appearing in the
right hand side of Proposition 2.16. �

While Proposition 2.20 brings us close to Theorem 2 of the Introduction, it is somewhat more vague in
that both sides of the purported equality may differ a priori by a non-zero element of the typically larger
field E′ψ,χ. The alert reader will also notice that this proposition is potentially vacuous for now, because
the existence of a good pair for ν has not yet been established! The next proposition repairs this omission,
and directly implies Theorem 2 of the Introduction.

Proposition 2.21. The set Sν of pairs (ψ, χ) that are good for ν is non-empty. Furthermore,

(67)
⋂

(ψ,χ)∈Sν

E′ψ,χ = Eν .

The proof of Proposition 2.21 rests crucially on a non-vanishing result of Rohrlich and Greenberg ([Ro],
[Gre]) for the central critical values of Hecke L-series. In order to state it, we fix a rational prime ` which
is split in K and let

K−∞ = ∪n≥0K
−
n

be the so-called anti-cyclotomic Z` extension of K; it is the unique Z`-extensions of K which is Galois
over Q and for which Gal(K−∞/Q) = Z` o (Z/2Z) is a generalised dihedral group.

Lemma 2.22 (Greenberg, Rohrlich). Let ψ0 be a self-dual Hecke character of K of infinity type (1, 0).
Assume that the sign wψ0 in the functional equation of L(ψ0, s) is equal to 1. Then there are infinitely
many finite-order characters χ of Gal(K−∞/K) for which L(ψ0χ, 1) 6= 0.

Proof. In light of the hypothesis that wψ0 = 1, Theorem 1 of [Gre] implies that the Katz p-adic L-
function (with p = `) does not vanish identically on any open `-adic neighbourhood of ψ0 in Σsd(c), with
c = cond(ψ0), say. (Cf. the discussion in the first paragraph of the proof of Proposition 1 on p. 93 of
[Gre].) If U is any sufficiently small such neighbourhood, then

(1) The restriction to U of the Katz p-adic L-function is described by a power series with p-adically
bounded cofficients, and therefore admits only finitely many zeros by the Weierstrass preparation
theorem.

(2) The region U contains contains a dense subset of points of the form ψ0χ, where χ is a finite order
character of Gal(K−∞/K).
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Lemma 2.22 follows directly from these two facts. �

Proof of Proposition 2.21. Let S̄ν ⊃ Sν be the set of pairs satisfying conditions 1-3 in the definition of a
good pair, but without necessarily requiring the more subtle fourth condition. The proof of Proposition
2.21 will be broken down into four steps.

Step 1. The set S̄ν is non-empty.
To see this, let ψ be any Hecke character (of conductor m prime to the conductor of ν and ν∗, say)

satisfying condition 1 in Definition 2.15. Setting χ = ψν∗N−1
K , the pair (ψ, χ) satisfies conditions 1 and 3

by construction. Furthermore, the character χNK = ψν∗ is of type (1, 1) and its central character is equal
to

εχ = εψεν∗ = N2εMεK = N2ε,

where ε is the nebentype character attached to θψ. It follows that the character χNK belongs to

Σcc(cN,N, ε) with N = m ·
√
−D. (The integer c is related to the conductor of ν.) Therefore, the

pair (ψ, χ) belongs to S̄ν .

Step 2. Given (ψ, χ) ∈ S̄ν , there exist (ψ1, χ1) and (ψ2, χ2) ∈ Sν with E′ψ1,χ1
∩ E′ψ2,χ2

⊂ E′ψ,χ.

To see this, let ` = λλ̄ be a rational prime which splits in K and is relatively prime to the class number
of K and the conductors of ψ and χ. For such a prime, let

K∞ = ∪n≥0Kn, K ′∞ = ∪n≥0K
′
n

be the unique Z`-extensions of K which are unramified outside of λ and λ̄ respectively, with [Kn : K] = `n

and likewise for K ′n. The condition that ` does not divide the class number of K implies that the fields
Kn and K ′n are totally ramified at λ and λ̄ respectively. If α is any character of Gal(K∞/K), the pair
(ψ1, χ1) := (ψα, χα) still belongs to S̄ν . (For instance, ψα satisfies the first condition in Definition 2.15,
with N replaced by Nλn and N by N`n, for a suitable n ≥ 0.) Furthermore,

(68) L(ψ∗1χ
−1
1 N−1

K , 0) = L(ψ∗χ−1N−1
K · (α∗/α), 0).

The character α∗/α is an anticyclotomic character of K of `-power order and conductor, and all such
characters can be obtained by choosing α appropriately. The fact that (ψ, χ) is a good pair implies that
the sign wψ∗χ−1 is equal to 1. Hence, by Lemma 2.22, there exists a choice of α for which the L-value
appearing on the right of (68) is non-vanishing. The corresponding pair (ψ1, χ1) belongs to Sν and satisfies

E′ψ1,χ1
⊂ E′ψ,χQ(ζ`n)KnK

′
n

for some n. Repeating the same construction with a different rational prime in the place of ` yields a
second pair (ψ2, χ2) ∈ Sν . Since the extension E′ψ1,χ1

/Eψ,χ is totally ramified at the primes above `, while

E′ψ2,χ2
is unramified at these primes, it follows that E ′ψ1,χ1

∩ E′ψ2,χ2
is contained in E′ψ,χ, as was to be

shown.

Thanks to Step 2, we are reduced to showing that

(69)
⋂

(ψ,χ)∈S̄ν

E′ψ,χ = Eν .

The next step shows that the fields E ′ψ,χ can be replaced by Eψ,χ in this equality.

Step 3. For all (ψ, χ) ∈ S̄ν , there exists a finite order character α of GK such that the pair (ψα, χα)
belongs to S̄ν and

E′ψ,χ ∩ E′ψα,χα ⊂ Eψ,χ.

To see this, note that the finite order character χ has cyclic image, isomorphic to Z/nZ say. Step 3 is
completed by choosing a character α of order n in such a way that (ψα, χα) belongs to S̄ν and

(HχHχ∗) ∩ (HχαHχα∗) = K.

For instance, one could choose α to be totally ramified at a prime λ of norm a rational prime ` which is
relatively prime the conductors of ψ and χ.

Step 4. We are now reduced to showing

(70)
⋂

(ψ,χ)∈S̄ν

Eψ,χ = Eν .
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We will do this by showing

(71) There exists a pair (ψ, χ) ∈ S̄ν such that Eψ,χ = Eν .

We begin by choosing an ideal m0 of OK with the property that OK/m0 = Z/MZ is cyclic, and an odd
quadratic Dirichlet character εM of conductor dividing M . Let ψ0 be any Hecke character satisfying

ψ0((a)) = εM (a mod m0)a

on principal ideals (a) of K. Such a ψ0 satisfies condition 1 in Definition 2.15, and therefore, after letting
χ0 be the finite order character satisfying

ν∗ = ψ−1
0 χ0NK ,

it follows that (ψ0, χ0) belongs to S̄ν . Furthermore, the restriction of ψ0 to the group of principal ideals
of K takes values in K, and therefore

(72) χ0(σ) ∈ Eν , for all σ ∈ GH := Gal(K̄/H).

The character ψ0 itself takes values in a CM field of degree [H : K], denoted E0, which need not be
contained in Eν in general. To remedy this problem, let H0 be the abelian extension of the Hilbert class
field H cut out by the character χ0. Next, let H ′0 be any abelian extension of K containing H such that

(1) There is an isomorphism u : Gal(H ′0/K)−→Gal(H0/K) of abstract groups such that the diagram

(73) 0 // Gal(H ′0/H) //

��

Gal(H ′0/K) //

��

Gal(H/K) // 0

0 // Gal(H0/H) // Gal(H0/K) // Gal(H/K) // 0

,

commutes, where the dotted arrows indicate the isomorphisms induced by u and the other arrows
are the canonical maps of Galois theory.

(2) The relative discriminant of H ′0 over K is relatively prime to its conjugate (and therefore to the
discriminant of K, in particular).

If the bottom exact sequence of groups in (73) is split, then the extension H ′0 is readily produced, using
class field theory. To handle the general case, we follow an approach that is suggested by the proof of
Prop. 2.1.7 in [Se]. Let Φ̃ := Gal(H0/K) and let ψ : GK−→Φ̃ be the homomorphism attached to the
extension H0. Since H is everywhere unramified over K, the restriction ψv of ψ to a decomposition group
at the prime v of K maps the inertia subgroup Iv to C := Gal(H0/H). Let S be any finite set of primes
of K which generates the class group of K and satisfies v ∈ S ⇒ v̄ /∈ S. We claim that there is a
homomorphism ε : GK−→C satisfying

εv = ψv on Iv , for all v /∈ S.

When the ground field K is replaced by Q and S = ∅, this is shown in Lemma 2.1.6 of [Se], and the proof
given there adapts readily to our situation. The field H ′0 can now be obtained as the fixed field of the
kernel of the homomorphism ψε−1. With the extension H ′0 in hand, let α : Gal(H ′0/K)−→E×χ be the finite
order Hecke character given by

α(σ) = χ0(u(σ))−1,

and set (ψ, χ) = (ψ0α, χ0α). By construction, (ψ, χ) belongs to S̄ν . We claim that χ and ψ take values
in Eν . Since ν∗ = ψ−1χNK , it is enough to prove this statement for χ. But observe that, for all a ∈ If

(where f is divisible by the conductor of χ0, χ, and ψ), we have

χ(a) = χ0(σa)/χ0(u(σa)) = χ0(σau(σa)
−1).

But the element σau(σa)
−1 belongs to Gal(H0/H) by construction, and hence χ0(σ

−1
a u(σa)) belongs to

Eν by (72). It follows that ψ and χ are Eν–valued, and therefore Eψ,χ = Eν , as claimed in (71). �
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2.6. Elliptic curves with complex multiplication. Theorem 2 of the Introduction admits an alternate
formulation involving algebraic points on elliptic curves with complex multiplication rather thanK-rational
points on the CM abelian varieties Bν of Theorem 1.6. The goal of this section is to describe this variant.

We begin by reviewing the explicit construction of Bν in terms of CM elliptic curves. The reader is
referred to §4 of [GS], whose treatment we largely follow, for a more detailed exposition.

Let F be any abelian extension of K for which

(74) νF := ν ◦ NF/K

becomes K-valued, and let f be its conductor. The ideal f is divisible by fν , and there exists an elliptic
curve A/F with complex multiplication by OK whose associated Grossencharacter is νF . (Cf. Thm. 6
of [Shi] and its corollary on p. 512.) Let

(75) B := ResF/K(A).

It is an abelian variety over K of dimension d := [F : K]. Let G := Gal(F/K) = homK(F, Q̄), where the
natural identification between these two sets arises from the distinguished embedding of F into Q̄ that was
fixed from the outset. By definition of the restriction of scalars functor, there are natural isomorphisms

B/F =
∏

σ∈G
Aσ , B(K̄) = A(K̄ ⊗K F ) =

∏

σ∈G
Aσ(K̄)

of algebraic groups over F and abelian groups respectively. In particular, a point of B(K̄) is described by
a d-tuple (Pτ )τ∈G, with Pτ ∈ Aτ (K̄). Relative to this identification, the Galois group GK acts on B(K̄)
on the left by the rule

(76) ξ(Pτ )τ = (ξPτ )ξτ , for all ξ ∈ GK .

Consider the “twisted group ring”

(77) T := ⊕σ∈G HomF (A,Aσ) =

{

∑

σ∈G
aσσ, with aσ ∈ HomF (A,Aσ)

}

,

with multiplication given by

(78) (aσσ)(aτ τ) = aσa
σ
τστ,

where the isogeny aστ belongs to homF (Aσ , Aστ ) and the composition of isogenies in (78) is to be taken
from left to right. The right action of T on B(K̄) defined by

(79) (Pτ )τ ∗ (aσσ) := (aτσ(Pτ ))τσ

commutes with the Galois action described in (76), and corresponds to a natural inclusion T ↪→ EndK(B).
The K-algebra E := T ⊗Z Q is isomorphic to a finite product

E =
∏

i

Ei

of CM fields, and dimK(E) = dim(B). Therefore, the pair (B,E) is a CM abelian variety in the sense of
Definition 1.5. The compatible system of `-adic Galois representations attached to (B,E) corresponds to
an E-valued algebraic Hecke character ν̃ in the sense of Definition 1.3, satisfying the relation

(80) σa(P ) = P ∗ ν̃(a), for all a ∈ If` and P ∈ B(K̄)`∞ ,

where σa ∈ Gab
K denotes as before the Artin symbol attached to a ∈ If`.

The element ν̃(a) ∈ T is of the form ϕaσa, where

(81) ϕa : A→ Aσa ,

is an isogeny of degree Na satisfying

(82) ϕa(P ) = P σa ,

for any P ∈ A[g] with (g, a) = 1. Note that the isogenies ϕa satisfy the following cocycle condition:

(83) ϕab = ϕσa

b ◦ ϕa.

The following proposition relates the Hecke characters ν̃ and ν.
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Proposition 2.23. Given any homomorphism j ∈ HomK(E,C), let νj := j ◦ ν̃ be the corresponding
C-valued Hecke character of K of infinity type (1, 0). The assignment j 7→ νj gives a bijection from
HomK(E,C) to the set Σν,F of Hecke characters ν ′ of K (of infinity type (1, 0)) satisfying

ν′ ◦ NF/K = ν ◦ NF/K .

Proposition 2.23 implies that there is a unique homomorphism jν ∈ HomK(E,C) satisfying jν ◦ ν̃ = ν. In
particular, jν maps E to Eν and T to a finite index subring of Tν . The abelian variety Bν attached to ν
in Theorem 1.6 can now be defined as the quotient B ⊗T,jν Tν . In subsequent constructions, it turns out
to be more useful to realise Bν as a subvariety of B, which can be done by setting

(84) Bν := B[ker jν ].

The natural action of T on Bν factors through the quotient T/ ker(jν), an integral domain having Eν as
field of fractions.

Consider the inclusion

(85) iν : Bν(K) ↪→ B(K) = A(F ),

where the last identification arises from the functorial property of the restriction of scalars. The following
Proposition gives an explicit description of the image of (Bν(K) ⊗ Eν)

Tν in A(F ) ⊗OK Eν under the
inclusion iν obtained from (85).

Proposition 2.24. Let Ẽ be any field containing Eν . The inclusion iν of (85) identifies (Bν(K) ⊗ Ẽ)Tν

with

(A(F ) ⊗OK Ẽ)ν :=
{

P ∈ A(F ) ⊗OK Ẽ such that ϕa(P ) = ν(a) × P σa , for all a ∈ If

}

.

Proof. It follows from the definitions that iν(Bν(K)) is identified with the set of (Pτ ) with Pτ ∈ Aτ (K̄)
satisfying

(86) ξPτ = Pξτ , for all ξ ∈ GK .

Furthermore, if such a (Pτ ) belongs to (Bν(K)⊗Eν)
Tν , then after setting ν̃(a) = ϕaσa as in (81), we also

have

(87) (ϕτa(Pτ ))τσa
= (Pτ )τ ∗ ν̃(a) = (ν(a)Pτ )τ .

Equating the σa-components of these two vectors gives

ϕa(P1) = ν(a)Pσa
= ν(a)σaP1,

where 1 is the identity embedding of F and the last equality follows from (86). The Proposition follows
directly from this, after noting that the identification of B(K) with A(F ) is simply the one sending (Pτ )τ
to P1. �

Given a global field F as in (74), let Fν denote the subfield of Q̄ generated by F and Eν . Recall that
ωA ∈ Ω1(A/F ) is a non-zero regular differential and that Ωp(A) is the associated p-adic period.

Theorem 2.25. There exists a point PA,ν ∈ (A(F ) ⊗OK Eν)ν such that

Lp(ν
∗) = Ωp(A)−1 log2

ωA(PA,ν) (mod F×ν ).

The point PA,ν is non-zero if and only if L′(ν, 1) 6= 0.

Proof. Theorem 2 of the Introduction asserts that

(88) Lp(ν
∗) = Ωp(ν

∗)−1 log2
ων (Pν),

for some point Pν ∈ Bν(K) ⊗ Q which is non-trivial if and only if L′(ν, 1) 6= 0. Invoking Lemma 1.15, we
find

(89) Ωp(ν
∗)−1 = Ωp(A)−1 (mod F×ν ).

Furthermore, by 2.24, we can view Pν as a point PA,ν ∈ (A(F ) ⊗OK Eν)ν , and we have

(90) logων (Pν) = logωA(PA,ν) (mod F×ν ).

Theorem 2.28 now follows by rewriting (88) using (89) and (90). �
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2.7. A special case. This section is devoted to a more detailed and precise treatment of Theorem 2.25
under the following special assumptions:

(1) The quadratic imaginary field K has class number one, odd discriminant, and unit group of order
two. This implies that K = Q(

√
−D) where D := −Disc(K) belongs to the finite set

S := {7, 11, 19, 43, 67, 163}.
(2) Let ψ0 be the Hecke character of K of infinity type (1, 0) given by the formula

(91) ψ0((a)) = εK(a mod
√
−D)a.

The character ψ0 determines (uniquely, up to an isogeny) an elliptic curve A/Q satisfying

EndK(A) = OK , L(A/Q, s) = L(ψ0, s).

After fixing A, we will also write ψA instead of ψ0. It can be checked that the conductor of ψA is
equal to

√
−D, and that

ψ∗A = ψ̄A, ψAψ
∗
A = NK , εψA = εK .

Remark 2.26. The rather stringent assumptions on K that we have imposed exclude the arithmetically
interesting, but somewhat idiosyncratic, cases whereK = Q(

√
−3), Q(i), and Q(

√
−2). The detailed study

of Chow-Heegner points in these special cases is the subject of Dong Quan Nguyen Ngoc’s forthcoming
PhD thesis.

With the above assumptions, the character ψA can be used to give an explicit description of the set
Σsd(c

√
−D):

Lemma 2.27. Let c be an integer prime to D, and let ν be a Hecke character in Σsd(c
√
−D). Then ν is

of the form

ν = ψAχ
−1,

where χ is a finite order ring class character of K of conductor dividing c.

Proof. The fact that ν and ψA both have central character εK implies that χ is a ring class character. Its
conductor divides c

√
−D, since the same is true for ν and ψA. But it is also clear that χ is unramified at√

−D, since the local components of ν and ψA at this prime of K are equal. The result follows. �

Given a ring class character χ of conductor c as above with values in a field Eχ, let

(92) (A(Hc) ⊗OK Eχ)χ := {P ∈ A(Hc) ⊗OK Eχ such that σP = χ(σ)P, ∀σ ∈ Gal(Hc/K)}.
Finally, choose a regular differential ωA ∈ Ω1(A/K), and write Ωp(A) for the p-adic period attached to this
choice as in Section 2.1. Since A = Bψ is the abelian variety attached to ψ, it follows that Ωp(ψ

∗
A) = Ωp(A).

The following theorem is a more precise variant of Theorem 2.25.

Theorem 2.28. Let χ be a ring class character of K of conductor prime to
√
−D. Then there exists a

point PA(χ) ∈ (A(Hχ) ⊗OK Eχ)χ such that

Lp(ψ
∗
Aχ) = Ωp(A)−1g(χ) log2

ωA(PA(χ)) (mod E×χ ).

The point PA(χ) is non-zero if and only if L′(ψAχ−1, 1) 6= 0.

Proof. By Theorem 2 of the Introduction,

(93) Lp(ψ
∗
Aχ) = Lp(ν

∗) = Ωp(ν
∗)−1 log2

ων (Pν),

for some point Pν ∈ Bν(K) ⊗ Q which is non-trivial if and only if L′(ψAχ−1, 1) 6= 0. Using the fact that
χ∗−1 = χ and invoking Lemma 1.15, we find

(94) Ωp(ν
∗)−1 = Ωp(ψ

∗
Aχ
∗−1)−1 = Ωp(A)−1g(χ)−1 (mod E×χ ).

After noting that (as in equation (31)) Bν = Bψ,χ = (A ⊗OK Tχ)
χ−1

as abelian varieties over K, we
observe that ων = ωψ,χ and that the point Pν ∈ Bν(K) can be written as

Pν =
∑

σ∈G
P σ ⊗ χ−1(σ),



30 MASSIMO BERTOLINI HENRI DARMON KARTIK PRASANNA

for some P ∈ A(Hc) ⊗ Q. Letting PA,χ be the corresponding element in A(Hc) ⊗OK Eχ given by

PA,χ =
∑

σ∈G
χ−1(σ)P σ ,

we have

(95) log2
ων (Pν) = log2

ωψ,χ
(Pν) = g(χ)2 log2

ω0
ψ,χ

(Pν) = g(χ)2 log2
ωA(PA,χ) (mod E×χ ),

where the second equality follows from Lemma 1.9 and the last from Lemma 2.18. Theorem 2.28 now
follows by rewriting (93) using (94) and (95). �

In the special case where χ is a quadratic ring class character of K, cutting out an extension L = K(
√
a)

of K, we obtain

(96) Lp(ψ
∗
Aχ) = Ωp(A)−1√a log2

ωA(P−A,L) (mod K×),

where P−A,L is a K-vector space generator of the trace 0 elements in A(L) ⊗ Q. Since in this case ψAχ is

the Hecke character attached to a CM elliptic curve over Q, one recovers from (96) Rubin’s Theorem 1 of
the Introduction.

3. Chow-Heegner points

The goal of the first three sections of this chapter is to recall the construction of the motives attached
to Hecke characters and to modular forms. The remaining three sections are devoted to the definition
of Chow-Heegner points on CM elliptic curves, as the image of generalised Heegner cycles by modular
parametrisations attached to CM forms.

3.1. Motives for rational and homological equivalence. We begin by laying down our conventions
regarding motives, following [Del]. We will work with either Chow motives or Grothendieck motives.
For X a nonsingular variety over a number field F , let Cm(X) denote the group of algebraic cycles of
codimension m on X defined over F . Let ∼ denote rational equivalence in Cm(X), and set

Cm(X) := Cm(X)/ ∼ .

Given two nonsingular varieties X and Y over F , and E any number field, we define the groups of
correspondences

Corrm(X,Y ) := CdimX+m(X × Y ) Corrm(X,Y )E := Corrm(X,Y ) ⊗Z E.

Definition 3.1. A motive over F with coefficients in E is a triple (X, e,m) where X/F is a nonsingular
projective variety, e ∈ Corr0(X,X)E is an idempotent, and m is an integer.

Definition 3.2. The category MF,E of Chow motives is the category whose objects are motives over F
with coefficients in E, with morphisms defined by

HomMF,E
((X, e,m), (Y, f, n)) = f ◦ Corrn−m(X,Y )Q ◦ e.

The category Mhom
F,E of Grothendieck motives is defined in exactly the same way, but with homological

equivalence replacing rational equivalence. We will denote the corresponding groups of cycle classes by
Cr0(X), Corrm0 (X,Y ), Corrm0 (X,Y )E etc.

Since rational equivalence is finer than homological equivalence, there is a natural functor

MF,E → Mhom
F,E ,

so that every Chow motive gives rise to a Grothendieck motive. Further, the category of Grothendieck
motives is equipped with natural realisation functors arising from any cohomology theory satisfying the
Weil axioms. We now recall the description of the image of a motive M = (X, e,m) over F with coefficients
in E under the most important realizations:

The Betti realisation: Recall that our conventions about number fields supply us with an embedding
F−→C. The Betti realisation is defined in terms of this embedding by

MB := e · (H∗(X(C),Q)(m) ⊗E).

It is a finite-dimensional E-vector space with a natural E-Hodge structure arising from the comparison
isomorphism between the singular cohomology and the de Rham cohomology over C.
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The `-adic realisation: Let X̄ denote the extension of X to Q̄. The `-adic cohomology of X̄ gives rise
to the `-adic étale realisation of M :

M` := e ·
(

H∗et(X̄,Q`(m)) ⊗E
)

.

It is a free E ⊗ Q`-module of finite rank equipped with a continuous linear GF -action.

The de Rham realisation: The de Rham realisation of M is defined by

MdR := e · (H∗dR(X/F )(m) ⊗Q E),

where H∗dR(X/F ) denotes the hypercohomology of the deRham complex of sheaves over X . The module
MdR is a free E ⊗ F -module of finite rank equipped with a decreasing, separated and exhaustive Hodge
filtration.

Moreover, there are natural comparison isomorphisms

MB ⊗Q C ' MdR ⊗F C,(97)

MB ⊗Q Q` ' M`,(98)

which are E ⊗ C-linear and E ⊗ Q`-linear respectively. Thus

rankEMB = rankE⊗F MdR = rankE⊗Q`(M`),

and this common integer is called the E-rank of the motive M .

We define the period Ω(M) to be the determinant of the comparison isomorphism (97) relative to any
choice of E-basis for MB and EF basis of MdR ⊗F EF . Thus the period Ω(M) is a well-defined element
of

C×/(EF )×.

Remark 3.3. If F is a p-adic field, one also has a comparison isomorphism

(99) Mp ⊗Qp BdR,p 'MdR ⊗F BdR,p,

where BdR,p is Fontaine’s ring of p-adic periods, which is endowed with a decreasing, exhaustive filtration
and a continuous GF -action. This comparison isomorphism is compatible with natural filtrations and
GF -actions on both sides.

Remark 3.4. Our definition of motives with coefficients coincides with Language B of Deligne [Del].
There is an equivalent way of defining motives with coefficients (the Language A) where the objects are
motives M in MF,Q equipped with the structure of an E-module: E → End(M), and morphisms are those
that commute with the E-action. We refer the reader to Sec. 2.1. of loc. cit. for the translation between
these points of view.

3.2. The motive of a Hecke character. For more general algebraic Hecke characters which are not of
type (1, 0), one no longer has an associated abelian variety. Nevertheless, such a character still gives rise
to a motive over K with coefficients in the field generated by its values. In the following two sections, we
will quickly recall some facts about the motive of a Hecke character ψ of K.

By taking Tate twists and duals, it suffices to construct this motive when ψ has infinity type (r, 0), with
r a positive integer. So let us suppose that ψ : A×K → C× is such a Hecke character of conductor fψ, and
let Eψ be the field generated over K by the values of ψ on the finite idèles. Pick an abelian extension F
of K containing the ray class field K(fψ) such that ψF := ψ ◦ NF/K satisfies the equation

ψF = ψrA.

Here ψA is the Hecke character of F with values in K associated to an elliptic curve A/F with complex
multiplication by OK .

We construct the motive M(ψF ) ∈ MF,K associated to ψF by considering an appropriate piece of
the middle cohomology of the variety Ar over F . As in the Introduction, write [α] for the element of
EndF (A) ⊗Z Q corresponding to an element α ∈ K. Define an idempotent er ∈ Corr0(Ar, Ar)Q by

er :=

(
√
−D + [

√
−D]

2
√
−D

)⊗r

+

(
√
−D − [

√
−D]

2
√
−D

)⊗r

.
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Then M(ψF ) is the motive in MF,K defined (in language A) by

M(ψF ) := (Ar, er, 0),

where K acts diagonally on Ar. The `-adic étale realisation M(ψF )` of this motive is free of rank one over
K ⊗ Q`, and GF acts on it via ψF , viewed as a (K ⊗ Q`)

×-valued Galois character:

M(ψF )` = erH
r
et(A

r ,Q`) = (K ⊗ Q`)(ψF ).

The de Rham realisationM(ψF )dR is a free one-dimensional F⊗QK-vector space, generated as an F -vector
space by the classes of

ωrA := er(ωA ∧ · · · ∧ ωA) and ηrA := er(ηA ∧ · · · ∧ ηA),

where ηA is the unique class in H1
dR(A/F ) satisfying

[α]∗ηA = ᾱηA for all α ∈ K, and 〈ωA, ηA〉 = 1.

The Hodge filtration on M(ψF )dR is given by

Fil0M(ψF )dR = M(ψF )dR = F · ωrA + F · ηrA,
Fil1M(ψF )dR = · · · = FilrM(ψF )dR = F · ωrA,

Filr+1M(ψF )dR = 0.

It can be shown that M(ψF ) descends to a motive M(ψ) ∈ MK,Eψ , whose `-adic realisation is a free
rank one module over Eψ ⊗ Q` on which GK acts via the character ψ.

3.3. Deligne-Scholl motives. In this section, we will let ψ be a Hecke character of K of infinity type
(r + 1, 0). This Hecke character gives rise to a theta-series

θψ =

∞
∑

n=1

an(θψ)qn ∈ Sr+2(Γ0(N), ε),

as in Proposition 2.10. Observe that the subfield of Q̄ generated by the Fourier coefficients an(θψ) is
always contained (albeit sometimes properly) in Eψ . Henceforth, we will view θψ as a modular form with
Fourier coefficients in Eψ .

Deligne has attached to θψ a compatible system {V`(θψ)} of two-dimensional `-adic representations of
GQ with coefficients in Eψ ⊗ Q`, such that for any prime p - N`, the characteristic polynomial of the
Frobenius element at p is given by

X2 − ap(θψ)X + ε(p)pr+1.

This representation is realised in the middle `-adic cohomology of a variety which is fibered over a modular
curve. More precisely, recall the group Γ = Γε(N) defined in equation (47) and the modular curve C whose
complex points are identified with Γ\H∗. Let Wr be the r-th Kuga-Sato variety over C. It is a canonical
compactification and desingularisation of the r-fold self-product of the universal elliptic curve over C. (See
for example [BDP], Chapter 2 for more details on this definition.)

Theorem 3.5. (Scholl) There is a projector eθψ ∈ Corr0(Wr,Wr) ⊗ Eψ whose associated Grothendieck
motive M(θψ) := (Wr, eθψ , 0) satisfies

M(θψ)` ' V`(θψ)

as Eψ[GQ]-modules.

We remark that M(θψ) is a motive over Q with coefficients in Eψ, and that its `-adic realisationM(θψ)`
is identified with eθψ(Hr+1

et (W̄r,Q`) ⊗Q Eψ).

The de Rham realisation
M(θψ)dR = eθψH

r+1
dR (Wr/Eψ)

is a two-dimensional Eψ-vector space equipped with a canonical decreasing, exhaustive and separated
Hodge filtration. This vector space and its associated filtration can be described concretely in terms of
the cusp form θψ as follows.

Let C0 denote the complement in C of the subscheme formed by the cusps. Setting W 0
r := Wr ×C C0,

there is a natural analytic uniformization

W 0
r (C) = (Z2r o Γ)\(Cr ×H),
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where the action of Z2r on Cr ×H is given by

(100) (m1, n1, . . . ,mr, nr)(w1, . . . , wr, τ) := (w1 +m1 + n1τ, . . . , wr +mr + nrτ, τ),

and Γ acts by the rule

(101)

(

a b
c d

)

(w1, . . . , wr, τ) =

(

w1

cτ + d
, . . . ,

wr
cτ + d

,
aτ + b

cτ + d

)

.

The holomorphic (r+1) form

(102) ωθψ := (2πi)r+1θψ(τ)dw1 · · · dwrdτ
on W 0

r (C) extends to regular differentials on Wr . This differential is defined over the field Eψ , by the

q-expansion principle, hence lies in Hr+1
dR (Wr) ⊗Q Eψ . Its class generates the (r + 1)-st step in the Hodge

filtration:

(103) Filr+1(M(θψ)dR) = eθψ Filr+1Hr+1
dR (Wr) = Eψ · ωθψ .

3.4. Modular parametrisations attached to CM forms. In this section, we will explain how the
Tate conjectures imply the existence of algebraic cycle classes generalising those in Conjecture 7 of the
Introduction. We first recall the statement of the Tate conjecture.

Conjecture 3.6 (Tate). Let V be a smooth projective variety over a number field F . Then the `-adic
étale cycle class map

(104) cl` : CHj(V )(F ) ⊗ Q`−→H2j
et (V̄ ,Q`)(j)

GF

is surjective.

A class in the target of (104) is called an `-adic Tate cycle. The Tate conjecture will be used in our

constructions through the following simple consequence. Recall the Chow groups CHd(V )(F ) defined in
the Introduction.

Lemma 3.7. Let V1 and V2 be smooth projective varieties of dimension d over a number field F , and let
ej ∈ Corr0(Vj , Vj) ⊗E (for j = 1, 2) be idempotents satisfying

ejH
∗
et(V̄j ,Q`) ⊗E = ejH

d
et(V̄j ,Q`) ⊗E, j = 1, 2.

Let Mj := (Vj , ej , 0), be the associated motives over F with coefficients in E, and suppose that the `-adic
realisations of M1 and M2 are isomorphic as (E⊗Q`)[GF ]-modules. If Conjecture 3.6 is true for V1 ×V2,

then there exists a correspondence Π ∈ CHd(V1 × V2)(F ) ⊗E for which

(1) the induced morphism

(105) Π` : (M1)`−→(M2)`

of `-adic realisations is an isomorphism of E ⊗ Q`[GF ]-modules;
(2) the induced morphism

(106) ΠdR : (M1)dR−→(M2)dR

is an isomorphism of E ⊗ F -vector spaces.

Proof. Let

h : e1H
d
et(V̄1, E ⊗ Q`) ' e2H

d
et(V̄2, E ⊗ Q`)

be any isomorphism of (E ⊗ Q`)[GF ]-modules. It corresponds to a Tate cycle

Zf ∈
(

Hd
et(V̄1, E ⊗ Q`)

∨ ⊗Hd
et(V̄2, E ⊗ Q`)

)GF

=
(

Hd
et(V̄1, E ⊗ Q`(d)) ⊗Hd

et(V̄2, E ⊗ Q`)
)GF

⊂
(

H2d
et (V1 × V2, E ⊗ Q`(d))

)GF
,
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where the superscript ∨ in the first line denotes the E-linear dual, the second line follows from the Poincaré
duality, and the third from the Künneth formula. By Conjecture 3.6, there are elements α1, . . . , αt ∈ E⊗Q`

and cycles Π1, . . . ,Πt ∈ CHd(V1 × V2)(F ) satisfying

Zf =

t
∑

j=1

αj cl`(Πj).

After multiplying Zf by a suitable power of `, we may assume without loss of generality that the coefficients
αj belong to OE ⊗ Z`. If (β1, . . . , βt) ∈ Ot

E is any vector which is sufficiently close to (α1, . . . , αt) in the
`-adic topology, then the corresponding algebraic cycle

Π :=

t
∑

j=1

βj · Πj ∈ CHd(V1 × V2)(F ) ⊗E

satisfies condition 1 in the statement of Lemma 3.7. Condition 2 is verified by embedding F into one
of its `-adic completions Fλ and applying Fontaine’s comparison functor to (105) in which source and
targets are deRham representations of GFλ . This shows that ΠdR induces an isomorphism on the deRham
cohomology over Fλ ⊗E, and part 2 follows. �

The following proposition (in which, to ease notations, we identify differential forms with their image
in de Rham cohomology) justifies Conjecture 7 of the Introduction. Notations are as in Section 3.2 and
3.3, with ψ a Hecke character of infinity type (r + 1, 0).

Proposition 3.8. If the Tate conjecture is true for Wr × Ar+1, then there is an algebraic cycle class
Π? ∈ CHr+1(Wr ×Ar+1)(F ) ⊗Eψ satisfying

(107) Π?∗
dR(ωr+1

A ) = ωθψ .

Proof. Let M1,F := (Ar+1, er+1, 0) be the motive over F with coefficients in K attached to the Hecke

character ψF = ψr+1
A in Section 3.2, and let M2,F := (Wr, eθψ , 0) be the Scholl motive over F attached to

the theta-series θψ in Section 3.3. Since the `-adic realisations (M1,F )` ⊗Eψ and (M2,F )` are isomorphic,

Lemma 3.7 implies the existence of a correspondence Π? in CHr+1(Wr ×Ar+1)(F )⊗Eψ which induces an
isomorphism on the de Rham realisations. This isomorphism respects the Hodge filtrations and therefore
sends the class [ωr+1

A ] to a non-zero Eψ-rational multiple of [ωθψ ]. After suitably rescaling Π?, one can
therefore assume that it satisfies (107). �

Note that the ambient F -variety Z := Wr × Ar+1 = Wr × Ar × A in which the correspondence Π? is
contained is equipped with three obvious projection maps

Z
π0

}}{{
{{

{{
{{

π1

��

π2

  B
BB

BB
BB

B

Wr Ar A.

Let Xr be the F -variety

Xr = Wr ×Ar.

After setting

π01 = π0 × π1 : Z−→Xr, π12 = π1 × π2 : Z−→Ar ×A,

we recall the simple (but key!) observation already made in the Introduction that Π? can be viewed as a
correspondence in two different ways, via the diagrams:

Z
π0

~~}}
}}

}}
}} π12

##G
GG

GG
GG

GG

Wr Ar ×A

and Z
π01

~~}}
}}

}}
}} π2

  @
@@

@@
@@

@

Xr A.
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In order to maintain a notational distinction between these two ways of viewing Π?, the correspondence
from Xr to A attached to the cycle Π? is denoted by Φ? instead of Π?. It induces a natural transformation
of functors on F -algebras:

(108) Φ? : CHr+1(Xr)0 ⊗Eψ−→CH1(A)0 ⊗Eψ = A⊗Eψ,

where A ⊗ Eψ is the functor from the category of F -algebras to the category of Eψ-vector spaces which
to L associates A(L) ⊗ Eψ. The natural transformation Φ? is referred to as the modular parametrisation
attached to the correspondence Φ?. For any F -algebra L, we will also write

(109) Φ?
L : CHr+1(Xr)0(L) ⊗Eψ−→A(L) ⊗Eψ

for the associated homomorphism on L-rational points (modulo torsion).
Like the class Π?, the correspondence Φ? also induces a functorial FEψ-linear map on de Rham coho-

mology, denoted

Φ?∗
dR : H1

dR(A/FEψ)−→H2r+1
dR (Xr/FEψ).

Recall that ηA ∈ H1
dR(A/FEψ) denotes the unique class in H0,1

dR (A/FEψ) satisfying

〈ωA, ηA〉 = 1.

Proposition 3.9. The image of the class ωA ∈ Ω1(A/F ) ⊂ H1
dR(A/F ) under Φ?

dR is given by

Φ?∗
dR(ωA) = (ωθψ ∧ ηrA).

Proof. After writing the cycle

Π? =
∑

j

mjZj

as a Eψ-linear combination of codimension (r+1) subvarieties of Z, we can define the cycle class map

clΠ? : H2r+2
dR (Z/FEψ)−→FEψ

by setting

clΠ?(ω) =
∑

j

mj clZj (ω).

By Proposition 3.8 and the construction of Π?
dR, we have

(110) Π?
dR(ωr+1

A ) = ωθ,

and

(111) Π?
dR(ηjAω

r+1−j
A ) = 0, for 1 ≤ j ≤ r.

By definition of Π?
dR, equation (110) can be rewritten as

(112) clΠ?(π∗0(α) ∧ π∗12(λωr+1
A )) = 〈α, λωθ〉Wr

, for all α ∈ Hr+1
dR (Wr/K),

while (111) shows that

(113) clΠ?(π∗0(α) ∧ π∗12(ληjAωr+1−j
A )) = 0, when 1 ≤ j ≤ r.

Equation (112) can also be rewritten as

(114) clΦ?(π∗01(λα ∧ ωrA) ∧ π∗2(ωA)) = 〈λα ∧ ωrA, ωθ ∧ ηrA〉Xr ,
while equation (113) implies that, for all α ∈ Hr+1

dR (Wr/K) and all 1 ≤ j ≤ r,

(115) clΦ?(π∗01(λα ∧ ηjAωr−jA ) ∧ π∗2(ωA)) = 0 = 〈λα ∧ ηjAωr−jA , ωθ ∧ ηrA〉Xr .
In light of the definition of the map Φ?

dR, equations (114) and (115) imply that

Φ?
dR(ωA) = ωθ ∧ ηrA.

The proposition follows. �
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Remark 3.10. In the special case that was treated in more detail in Section 2.7, the conjectural modular
parametrisation Φ? admits a somewhat simpler description. This is because, in that case, we may choose

F = Eψ = K.

We may then further assume (without real loss of generality, as it turns out) that the Hecke character ψ
is given by

(116) ψ = ψr+1
A ,

where ψA = ψ0 is the K-valued Hecke character of infinity type (1, 0) that was defined in equation (91),
corresponding to an elliptic curve A/K with complex multiplication by OK . Under these conditions,
the modular parametrisation Φ? arises from a class in CHr+1(Xr × A)(K) ⊗ K and induces a natural
transformation of functors on K-algebras:

(117) Φ? : CHr+1(Xr)0−→A.

3.5. Generalised Heegner cycles and Chow-Heegner points. Recall the notation Γ := Γε(N) ⊂
Γ0(N) in (47), and the associated modular curve C classifying (generalised) elliptic curves with Γ-level
structure in the sense of Definition 2.8.

Fixing a choice t of Γ-level structure on A attached to N, the datum of (A, t) determines a point

PA on C(F̃ ) for some abelian extension F̃ of K, and a canonical embedding ιA of Ar into the fiber in
Wr above PA. More generally, if ϕ : A−→A′ is an isogeny defined over F whose kernel intersects A[N]
trivially (i.e., an isogeny of elliptic curves with Γ-level structure), then the pair (A′, ϕ(t)) determines a

point PA′ ∈ C(F̃ ) and an embedding ιϕ : (A′)r−→Wr which is defined over F̃ . We associate to such an
isogeny ϕ a codimension r+1 cycle Υϕ on the variety Xr by letting Graph(ϕ) ⊂ A×A′ denote the graph
of ϕ, and setting

Υϕ := Graph(ϕ)r ⊂ (A×A′)r
'−→ (A′)r ×Ar ⊂Wr ×Ar,

where the last inclusion is induced from the pair (ιA′ , idrA). We then set

(118) ∆ϕ := εXΥϕ ∈ CHr+1(Xr)0(F̃ ),

where εX is the idempotent given in equation (51) of [BDP], viewed as an element of the ring Corr0(Xr, Xr)
of algebraic correspondences from Xr to itself.

We will now assume that the field F has been chosen large enough so that it contains F̃ as well as the
field of definition of A.

Definition 3.11. The Chow-Heegner point attached to the data (ψ, ϕ) is the point

P ?
ψ(ϕ) := Φ?

F (∆ϕ) ∈ A(F ) ⊗Eψ .

Note that this definition is only a conjectural one, since the existence of the homomorphism Φ?
F depends

on the existence of the algebraic cycle Π?.
We now discuss some specific examples of ϕ that will be relevant to us. Let c be a positive integer as

in Section 2.2. An isogeny ϕ0 : A−→A0 is said to be a primitive isogeny of conductor c if it is of degree c
and if the endomorphism ring End(A0) is isomorphic to the order Oc in K of conductor c. The kernel of
a primitive isogeny necessarily intersects A[N] trivially, i.e., such a ϕ0 is an isogeny of elliptic curves with
Γ-level structure. The corresponding Chow-Heegner point P ?

ψ(ϕ0) is said to be of conductor c.
Once ϕ0 is fixed, one can also consider an infinite collection of Chow-Heegner points indexed by certain

projective Oc-submodules of Oc. More precisely, let a be such a projective module for which

A0[a] ∩ ϕ0(A[N]) = 0,

and let

ϕa : A0−→Aa := A0/A0[a]

denote the canonical isogeny of elliptic curves with Γ-level structure given by the theory of complex
multiplication. Since the isogeny ϕa is defined over F , the Chow-Heegner point

P ?
ψ(a) := P ?

ψ(ϕaϕ0) = Φ?
F (∆a), where ∆a = ∆ϕaϕ0 ,

belongs to A(F ) ⊗Eψ as well.
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Lemma 3.12. For all elements λ ∈ Oc which are prime to N, we have

P ?
ψ(λa) = ε(λ mod N)λrP ?

ψ(a) in A(F ) ⊗Eψ.

More generally, for any b,

ϕa(P ?
ψ(ab)) = ψ(a)P ?

ψ(b)σa .

Proof. Let Pa be the point of C(F ) attached to the elliptic curve Aa with Γ-level structure, and recall
that π−1(Pa) is the fiber above Pa for the natural projection π : Xr−→C. The algebraic cycle

∆λa − ε(λ)λr∆a

is entirely supported in the fiber π−1(Pa), and its image in the homology of this fiber under the cycle class
map is 0. The result follows from this using the fact that the image of a cycle ∆ supported on a fiber
π−1(P ) depends only on the point P and on the image of ∆ in the homology of the fiber. The proof of
the general case is similar. �

Let χ be a Hecke character of K of infinity type (r, 0) such that χNK belongs to Σ
(1)
cc (c,N, ε). As before,

let Eψ,χ denote the field generated by the values of ψ and χ. By Lemma 3.12, the expression

χ(a)−1P ?
ψ(a) ∈ A(F ) ⊗Eψ,χ

depends only on the image of a in the class group Gc := Pic(Oc). Hence we can define the Chow-Heegner
point attached to the theta-series θψ and the character χ by summing over this class group:

(119) P ?
ψ(χ) :=

∑

a∈Pic(Oc)
χ−1(a)P ?

ψ(a) ∈ A(F ) ⊗Eψ,χ.

The Chow-Heegner point P ?
ψ(χ) thus defined belongs (conjecturally) to A(F ) ⊗Eψ,χ.

3.6. A special case. We now specialise the Chow-Heegner point construction to a simple but illustrative
case, in which the hypotheses introduced in Section 2.7 are imposed. We further assume

(1) The character ψ is of the form ψr+1
A , as in (116), so that the modular parametrisation Φ? gives a

homomorphism from CHr+1(Xr)(K) to A(K) ⊗ Q, as in (117).
(2) The integer r is odd. This implies that ψ is an unramified Hecke character of infinity type (r+1, 0)

with values in K, and that its associated theta series θψ belongs to Sr+2(Γ0(D), εK).
(3) The character χ is a Hecke character of infinity type (r, 0), and

χNK belongs to Σ(1)
cc (c,

√
−D, εK),

with c prime to D. A direct modification of the proof of Lemma 2.27 shows that any such χ can
be written as

χ = ψrAχ
−1
0 ,

where χ0 is a ring class character of K of conductor dividing c.

Under these conditions, we have

Γ = ΓεK (D) =

{(

a b
c d

)

∈ Γ0(D) such that εK(a) = 1

}

.

Furthermore, the action of GK on the cyclic group A[
√
−D](K̄) is via the D-th cyclotomic character,

and therefore a Γ-level structure of Heegner type on the curve A is necessarily defined over K. The
corresponding Γ-level structures on A0 and on Aa are therefore defined over the ring class field Hc. It
follows that the generalised Heegner cycles ∆ϕ belong to CHr+1(Xr)0(Hc), for any isogeny ϕ of conductor
c, and therefore–assuming the existence of Φ?–that

P ?
ψ(a) belongs to A(Hc) ⊗ Q, P ?

ψ(χ) belongs to (A(Hc) ⊗OK Eχ)χ0 .
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4. Chow-Heegner points over Cp

4.1. The p-adic Abel-Jacobi map. The construction of the point P ?
ψ(χ) is only conjectural since it

depends on the existence of the cycle Π? and the corresponding map Φ?. In order to obtain unconditional
results, we will replace the conjectural map Φ?

F by its analogue Φet
F in p-adic étale cohomology mentioned

in equation (22) of the Introduction, and studied in detail in Chapter 4 of [BDP].
Fix a rational prime p which does not divide the level N of θψ . The global cohomology class

κψ(ϕ) := Φet
F (∆ϕ) ∈ H1(F, Vp(A) ⊗Eψ)

belongs to the pro-p Selmer group of A over F (tensored with Eψ), and is defined independently of any
conjectures. Furthermore, if the correspondence Φ?

F exists, then (23) implies that

κψ(ϕ) = δ(P ?
ψ(ϕ)),

where

δ : A(F ) ⊗Eψ−→H1(F, Vp(A) ⊗Eψ)

is the connecting homomorphism of Kummer theory mentioned in (24).
The topological closure of F in Cp (relative to the fixed embedding F−→Cp) is a finite extension of Qp,

and shall be denoted Fp. Since κψ(ϕ) belongs to the Selmer group of A over F , there is a local point in

A(Fp) ⊗Eψ, denoted P
(p)
ψ (ϕ), such that

κψ(ϕ)|GFp = δ(P
(p)
ψ (ϕ)).

More generally, the image of Φet
F is contained in the Selmer group of A over F , and hence there exists a

map

Φ
(p)
F : CHr+1(Xr)0(Fp)−→A(Fp) ⊗Eψ

such that

Φ
(p)
F (∆ϕ) = P

(p)
ψ (ϕ).

The map Φ
(p)
F is the p-adic counterpart of the conjectural map Φ?

F .
In light of Proposition 3.8 and of the construction of Chow-Heegner points given in Definition 3.11, the

following conjecture is a concrete consequence of the Tate (or Hodge) conjecture for the variety Xr ×A.

Conjecture 4.1. The local elements P
(p)
ψ (ϕ) ∈ A(Fp) ⊗Eψ belong to A(F ) ⊗OK Eψ.

The goal of this chapter is to exploit the connection between the local points P
(p)
ψ (ϕ) and special values

of p-adic L-functions to supply some evidence for Conjecture 4.1.

We begin by relating P
(p)
ψ (ϕ) to p-adic Abel-Jacobi maps. The p-adic Abel-Jacobi map attached to the

elliptic curve A/Fp is a homomorphism

(120) AJA : CH1(A)0(Fp)−→Ω1(A/Fp)
∨,

where the superscript ∨ denotes the Fp-linear dual. Under the identification of the Chow group CH1(A)0(Fp)
with A(Fp), it is determined by the relation

(121) AJA(P )(ω) = logω(P ),

where ω is any regular differential on A over Fp and

logω : A(Fp) ⊗ Q−→Fp

denotes the formal group logarithm on A attached to this choice of regular differential. It can be extended
by Eψ-linearity to a map from A(Fp) ⊗Eψ to FpEψ .

There is also a p-adic Abel-Jacobi map on null-homologous algebraic cycles

AJXr : CHr+1(Xr)0(Fp)−→Filr+1H2r+1
dR (Xr/Fp)

∨

attached to the variety Xr, where Filj refers to the j-th step in the Hodge filtration on algebraic de Rham
cohomology. Details on the definition of AJXr are recalled in Section 4.4 of [BDP], where it is explained
how AJXr can be calculated via p-adic integration.
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The functoriality of the Abel-Jacobi maps under correspondences is expressed in the following commu-
tative diagram relating AJA and AJXr :

(122) CHr+1(Xr)0(Fp)

Φ
(p)
F

��

AJXr
// Filr+1H2r+1

dR (Xr/Fp)
∨

(Φ?∗
dR)∨

��

A(Fp) ⊗Eψ
AJA

// Ω1(A/Fp)
∨ ⊗Eψ.

Proposition 4.2. For all isogenies ϕ : (A, tA, ωA)−→(A′, t′, ω′) of elliptic curves with Γ-level structure,

logωA(P
(p)
ψ (ϕ)) = AJXr (∆ϕ)(ωθ ∧ ηrA).

Proof. By equation (121) and the definition of P
(p)
ψ (ϕ),

(123) logωA(P
(p)
ψ (ϕ)) = AJA(P

(p)
ψ (ϕ))(ωA) = AJA(Φ

(p)
F (∆ϕ))(ωA).

The commutative diagram (122) combined with Proposition 3.9 shows that

(124) AJA(Φ
(p)
F ∆ϕ)(ωA) = AJXr (∆ϕ)(Φ?∗

dRωA) = AJXr (∆ϕ)(ωθψ ∧ ηrA).

Proposition 4.2 now follows from (123) and (124). �

We will study the local points P
(p)
ψ (ϕ) via the formula of Proposition 4.2, whose terms do not depend

on the conjectural existence of Π?.

4.2. Rationality of Chow-Heegner points over Cp. Recall that Fψ,χ is the subfield of Q̄ generated
over K by F and Eψ,χ, and that ν = ψχ−1 is the self-dual Hecke character of K of infinity type (1, 0)
attached to (ψ, χ). The main result of this section is

Theorem 4.3. There exists a global element Pψ(χ) ∈ A(F ) ⊗Eψ,χ such that

log2
ωA(P

(p)
ψ (χ)) = log2

ωA(Pψ(χ)) (mod F×ψ,χ),

for all regular differentials ωA ∈ Ω1(A/F ). This element is non-zero if and only if

L′(ν, 1) 6= 0 and L(ψχ∗−1, 1) 6= 0.

Proof. The proof proceeds along the same lines as (but is simpler than) the proof of Theorem 4.4 below.
This proof applies to a more special setting but derives a more precise result, in which it becomes necessary
to keep a more careful track of the fields of scalars involved. To prove Theorem 4.3, it is therefore enough
to rewrite the proof of Theorem 4.4 with E∗χ replaced by F×ψ,χ and (ψr+1

A , ψrAχ0) replaced by (ψ, χ). Note

that equations (128) and (129) hold modulo the larger group F×ψ,χ without the Gauss sum factors which
can therefore be ignored. �

4.3. A special case. We now place ourselves in the setting of Section 3.6, in which

ψ = ψr+1
A , χ = ψrAχ0

where χ0 is a ring class character of K of conductor c, and we set

P
(p)
A,r(χ0) := P

(p)

ψr+1
A

(ψrAχ0) = P
(p)
ψ (χ).

Recall the definition of the χ0-component (A(Hc) ⊗ Eχ)χ0 of the Mordell-Weil group over the ring class
field Hc that was given in (92).

Theorem 4.4. There exists a global point PA,r(χ0) ∈ (A(Hc) ⊗Eχ)χ0 satisfying

log2
ωA(P

(p)
A,r(χ0)) = log2

ωA(PA,r(χ0)) (mod E×χ ).

Furthermore, the point PA,r(χ0) is of infinite order if and only if

L′(ψAχ
−1
0 , 1) 6= 0, L(ψ2r+1

A χ0, r+1) 6= 0.
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Proof. By Proposition 4.2,

(125) logωA(P
(p)
A,r(χ)) = AJXr (∆ψ(χ))(ωθψ ∧ ηrA).

Theorem 6.13 of [BDP] with f = θψ and j = 0 gives

(126) AJXr (∆ψ(χ))(ωθψ ∧ ηrA)2 =
Lp(θψ, χNK)

Ωp(A)2r
(mod E×χ ).

The fact that θψ has Fourier coefficients in K and that its Nebentype character εK is trivial when restricted
to K implies that the field Eψ,χ,εK occurring in Corollary 2.14 is equal to Eχ. Therefore, this corollary
implies that

Lp(θψ, χNK)

Ωp(A)2r
= Lp(ψ

−1χNK) × Lp(ψ
∗−1χNK)

Ωp(A)2r
(mod E×χ )

=
Lp(ν

∗)

Ωp(A)−1
× Lp(ψ

2r+1
A χ0N

−r
K )

Ωp(A)2r+1
(mod E×χ ).(127)

The character ν∗ = ψ∗Aχ0 lies in Σ
(1)
sd (c) and is of type (0, 1). Hence, Theorem 2.28 can be invoked.

This theorem gives a global element PA(χ0) ∈ (A(Hc) ⊗ Eχ)χ0 which is of infinite order if and only if

L′(ψAχ
−1
0 , 1) 6= 0, and satisfies

(128) Lp(ψ
∗
Aχ0) = Ωp(A)−1g(χ0) log2

ωA(PA(χ0)) (mod E×χ ).

Furthermore, the character ψ2r+1
A χ0N

−r
K belongs to the domain Σ

(2)
sd (c) of classical interpolation for the

Katz p-adic L-function. Proposition 1.16 and Lemma 1.15 show that the p-adic period attached to this
central critical character is given by

(129) Ωp((ψ
2r+1
A χ0N

−r
K )∗) = Ωp(A)2r+1g(χ0)

−1 (mod E∗χ).

Therefore, Theorem 2.4 implies that, up to multiplication by a non-zero element of Eχ,

(130) Lp(ψ
2r+1
A χ0N

−r
K ) =

{

0 if L(ψ2r+1
A χ0, r+1) = 0,

Ωp(A)2r+1g(χ0)
−1 otherwise.

After setting

(131) PA,r(χ0) =

{

0 if L(ψ2r+1
A χ0, r+1) = 0,

PA(χ0) otherwise,

equations (128) and (130) can be used to rewrite (127) as

(132)
Lp(θψ, χNK)

Ωp(A)2r
= log2

ωA(PA,r(χ0)) (mod E×χ ).

Theorem 4.4 now follows by combining (125), (126) and (132). �

We now specialise the setting even further by assuming that χ0 = 1 is the trivial character, so that
ψ = ψr+1

A and χ = ψrA, and set

P
(p)
A,r := P

(p)

ψr+1
A

(ψrA)).

In this case, the coefficient field Eχ is equal to K, and Theorem 4.4 asserts the existence of a point
PA,r ∈ A(K) such that

log2
ωA(P

(p)
A,r) = log2

ωA(PA,r) (mod K×).

It is instructive to refine the argument used in the proof of Theorem 4.4 to resolve the ambiguity by the

non-zero scalar in K×, in order to examine the dependence on r of the local point P
(p)
A,r. This is the content

of the next result.

Theorem 4.5. For all odd r ≥ 1, the Chow-Heegner point P
(p)
A,r belongs to A(K)⊗K and is given by the

formula

(133) log2
ωA(P

(p)
A,r) = `(r) · log2

ωA(PA),
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where `(r) ∈ Z satisfies

`(r) = ± r!(2π)r

(2
√
D)rΩ(A)2r+1

L(ψ2r+1
A , r + 1),

and PA is a generator of A(K) ⊗K depending only on A but not on r.

Proof. As in the proof of Theorem 4.4, we combine (125) and Theorem 6.13 of [BDP] with (f, j) = (θψr+1
A

, 0)

and χNK = ψrANK playing the role of χ, to obtain

(134) log2
ωA(Pψ(χ)) = (1 − (pχ(p̄))−1ap(θψ) + (pχ(p̄))−2pr+1)−2Lp(θψ , χNK)

Ωp(A)2r
.

Since χ(p̄) = ψA(p̄)r and ap(θψ) = ψr+1
A (p̄) + ψr+1

A (p), the Euler factor appearing in (134) is given by

(1 − ψ−1
A (p))−2(1 − ψ2r+1

A (p)p−r−1)−2.

Therefore,

(135) log2
ωA(Pψ(χ)) = (1 − ψ−1

A (p))−2(1 − ψ2r+1
A (p)p−r−1)−2Lp(θψ , χNK)

Ωp(A)2r
.

On the other hand, by Theorem 2.13 with c = 1 and j = 0

(136)
Lp(θψ, χNK)

Ωp(A)2r
=
w(θψ , χ)−1

2r
× Lp(ψ

∗
A) × Lp(ψ

2r+1
A N−rK )

Ωp(A)2r
.

By Lemma 6.3 of [BDP], the norm 1 scalar w(θψ , χ) belongs to K, and is only divisible by the primes

above
√
−D. Therefore it is a unit in OK , and hence is equal to ±1. Therefore

(137)
Lp(θψ, χNK)

Ωp(A)2r
=

±1

2r
× Lp(ψ

∗
A)

Ωp(A)−1
× Lp(ψ

2r+1
A N−rK )

Ωp(A)2r+1
.

Let PA = PA(1) ∈ A(K) ⊗K be as in (128), but chosen specifically so that

(138)
Lp(ψ

∗
A)

Ωp(A)−1
= (1 − ψ−1

A (p))2 log2
ωA(PA).

By the interpolation property for the Katz L-function given in Proposition 2.3 with j = r and ν =
ψ2r+1
A N−rK = ψr+1

A ψ∗−rA ,

(139)
Lp(ψ

2r+1
A N−rK )

Ωp(A)2r+1
= (1 − ψA(p)2r+1p−r−1)2 × r!(2π)rL((ψ∗A)2r+1N−r−1

K , 0)√
D
r
Ω(A)2r+1

.

After substituting equations (138) and (139) into (137), and using the fact that

L((ψ∗A)2r+1N−r−1
K , 0) = L(ψ2r+1

A , r+1),

we find

(1 − ψ−1
A (p))−2(1 − ψA(p)2r+1p−r−1)−2 × Lp(θψ , χNK)

Ωp(A)2r

=
±1

2r
log2

ωA(PA) × r!(2π)rL(ψ2r+1
A , r+1)√

D
r
Ω(A)2r+1

.

Hence, by (135), we obtain

log2
ωA(Pψ(χ)) = ± r!(2π)r

(2
√
D)rΩ(A)2r+1

× L(ψ2r+1
A , r + 1) × log2

ωA(PA)

The result follows. �
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5. Chow-Heegner points over C

5.1. The complex Abel-Jacobi map. For simplicity, we will confine ourselves in this section to working
under the hypotheses that were made in Section 2.7 where K is assumed in particular to have discriminant
−D, with

D ∈ S := {7, 11, 19, 43, 67, 163}.
The difficulty in computing the modular parametrisation Φ? and the resulting Chow-Heegner points

arises from the fact that it is hard in general to explicitly produce the correspondence Φ?, or even to ascer-
tain its existence. However, when F = C, the Chow-Heegner points P ?

ψ(ϕ) can be evaluated numerically

in practice via integration of smooth differential forms on Xr(C). More precisely, let

(140) AJ∞A : CH1(A)0(C)−→Fil1H1
dR(A/C)∨

ImH1(A(C),Z)

be the classical complex Abel-Jacobi map attached to A, where the superscript ∨ now denotes the complex
linear dual. The map AJ∞A is defined by the rule

(141) AJ∞A (∆)(ω) =

∫

∂−1∆

ω,

the integral on the right being taken over any one-chain on A(C) having the degree zero divisor ∆ as
boundary. This classical Abel-Jacobi map admits a higher dimensional generalisation for null-homologous
cycles on Xr introduced by Griffiths and Weil:

(142) AJ∞Xr : CHr+1(Xr)0(C)−→Filr+1H2r+1
dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
,

defined just as in (141), but where AJ∞Xr (∆)(ω) is now defined by integrating any smooth representative
of the de Rham cohomology class ω against a (2r + 1)-chain on Xr(C) having ∆ as boundary. (Cf. the
description in Chapter 3 of [BDP] for example.) The map AJ∞Xr is the complex analogue of the p-adic
Abel-Jacobi map AJXr that was introduced and studied in Section 4.

The functoriality of the Abel-Jacobi maps under correspondences is expressed in the following commu-
tative diagram which is the complex counterpart of (122):

(143) CHr+1(Xr)0(C)

Φ?
C

��

AJ∞

Xr
// Filr+1H2r+1

dR (Xr/C)∨

ImH2r+1(Xr(C),Z)

(Φ?∗
dR)∨

��

CH1(A)0(C)
AJ∞

A
// Ω1(A/C)∨

ImH1(A(C),Z) .

Since AJ∞A is an isomorphism, we can simply define the complex analogue ΦC of Φ
(p)
F as the unique map

from CHr+1(Xr)0(C) to A(C) for which the diagram above (with Φ?
C replaced by ΦC) commutes.

Recall the distinguished element ωA of Ω1(A/C) and let

ΛA :=

{
∫

γ

ωA, γ ∈ H1(A(C),Z)

}

⊂ C

be the associated period lattice. Recall that ϕ : (A, tA, ωA)−→(A′, t′, ω′) is an isogeny of elliptic curves
with Γ-level structure if

ϕ(tA) = t′ and ϕ∗(ω′) = ωA.

The following proposition, which is the complex counterpart of Proposition 4.2, expresses the Abel-Jacobi
image of P ?

ψ(ϕ) in terms of the Griffiths higher Abel-Jacobi map.

Proposition 5.1. For all isogenies ϕ : (A, tA, ωA)−→(A′, t′, ω′) of elliptic curves with Γ-level structure,

AJ∞A (P ?
ψ(ϕ))(ωA) = AJ∞Xr (∆ϕ)(ωθψ ∧ ηrA) (mod ΛωA).
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Proof. The proof is the same as for Proposition 4.2: By definition of Pψ(ϕ) combined with the commutative
diagram (143),

AJ∞A (Pψ(ϕ))(ωA) = AJ∞A (Φ?
C∆ϕ)(ωA) = AJ∞Xr (∆ϕ)(Φ?∗

dRωA).

On the other hand, by Proposition 3.9,

Φ?∗
dRωA = ωθψ ∧ ηrA.

Proposition 5.1 follows. �

We now turn to giving an explicit formula for the right hand side of the equation in Proposition 5.1.
To do this, let Λω′ ⊂ C be the period lattice associated to the regular differential ω′ on A′. Note that ΛωA
is contained in Λω′ with index deg(ϕ).

Definition 5.2. A basis (ω1, ω2) of Λω′ is said to be admissible relative to (A′, t′) if

(1) The ratio τ := ω1/ω2 has positive imaginary part;
(2) via the identification 1

NΛω′/Λω′ = A′(C)[N ], the N -torsion point ω2/N belongs to the orbit t′.

Given an arbitrary cusp form f ∈ Sr+2(Γ0(N), ε), consider the cohomology class

ωf ∧ ηrA = (2πi)r+1f(z)dzdwr ∧ ηrA ∈ Filr+1H2r+1
dR (Xr/C).

Proposition 5.3. Let ∆ϕ be the generalised Heegner cycle corresponding to the isogeny

ϕ : (A, tA, ωA)−→(A′, t′, ω′)

of elliptic curves with Γ-level structure, let (ω1, ω2) be an admissible basis for Λω′ , and let τ = ω1/ω2.
Then

(144) AJ∞Xr (∆ϕ)(ωf ∧ ηrA) = ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rf(z)dz.

Proof. We begin by observing that replacing ωA by a scalar multiple λωA multiplies both the left and
right hand sides of (144) by λ−r. Hence we may assume, after possibly rescaling Λω′ , that the admissible
basis (ω1, ω2) is of the form (2πiτ, 2πi) with τ ∈ H. The case j = 0 in Theorem 3.15 of [BDP] then implies
that

AJ∞Xr (∆ϕ)(ωf ∧ ηrA) =
2πi

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rf(z)dz

= ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rf(z)dz.

The Proposition follows. �

Theorem 5.4. Let Pψ(ϕ) be the Chow-Heegner point corresponding to the generalised Heegner cycle ∆ϕ.
With notations as in Proposition 5.3,

(145) AJ∞A (Pψ(ϕ))(ωA) = ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rθψ(z)dz (mod ΛωA).

Proof. This is an immediate corollary of Propositions 5.1 and 5.3. �

5.2. Numerical experiments. We now describe some numerical evaluations of Chow-Heegner points.
As it stands, the elliptic curve A of conductor D2 attached to the canonical Hecke character ψA = ψ0

is only determined up to isogeny, and we pin it down by specifying that A is described by the minimal
Weierstrass equation

A : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients a1, . . . , a6 are given in Table 1 below.

D a1 a2 a3 a4 a6 Ω(A) PA
7 1 −1 0 −107 552 1.93331170 . . . −

11 0 −1 1 −7 10 4.80242132 . . . (4, 5)
19 0 0 1 −38 90 4.19055001 . . . (0, 9)
43 0 0 1 −860 9707 2.89054107 . . . (17, 0)
67 0 0 1 −7370 243528 2.10882279 . . . ( 201

4 , −71
8 )

163 0 0 1 −2174420 1234136692 0.79364722 . . . (850,−69)
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Table 1: The canonical elliptic curve A

The penultimate column in Table 1 gives an approximate value for the positive real period Ω(A) attached
to the elliptic curve A and its Néron differential ωA. In all cases, the Néron lattice ΛA attached to (A,ωA)
is generated by the periods

(146) ω1 :=

(

D +
√
−D

2D

)

Ω(A), ω2 := Ω(A),

and (ω1, ω2) is an admissible basis for ΛA in the sense of Definition 5.2.
The elliptic curve A has Mordell-Weil rank 0 over Q when D = 7 and rank one otherwise. A specific

generator PA for A(Q) ⊗ Q is given in the last column of Table 1.
Recall that ψA is the Hecke character attached to A, satisfying

L(ψA, s) = L(A, s).

As in Theorem 4.5, we let ψ = ψr+1
A with r ≥ 1 an odd integer, so that the associated theta series θψ

belongs to Sr+2(Γ0(D), εK) and therefore satisfies the Heegner hypothesis.
After letting Γ = ΓεK (D), we observe as before that the elliptic curve A has two canonical Γ-level

structures defined over K, corresponding to the two orbits of ((Z/DZ)×)2 acting on A[
√
−D]∗. Fix such a

Γ-level structure tA once and for all. Let C := X̃0(D) be the coarse moduli space classifying elliptic curves
with Γ-level structure. The forgetful functor which to (E, tE) associates (E, 〈tE〉), where 〈tE〉 denotes

the cyclic subgroup of order D generated by tE , induces an isomorphism from X̃0(D) to X0(D). But

the moduli description for X̃0(D) is somewhat finer, since an elliptic curve E with Γ-level structure has

no non-trivial automorphisms, at least when End(E) 6= Z[i] or Z[ 1+
√
−3

2 ]. (In particular, X̃0(D) is a fine
moduli space when D ≡ 11 (mod 12).) Denote by Wr the r-th Kuga-Sato variety over the modular curve

X̃0(D) and let Xr = Wr ×Ar.
Assume that an algebraic correspondence Π? from Wr to Ar+1 as in Proposition 3.8 exists. Assume

further that it is defined over Q, and has integral coefficients, i.e., that it belongs to Corr0(Wr, A
r+1)

rather than just Corr0(Wr, A
r+1) ⊗ Q. In that case it gives rise to a parametrisation

Φ? : CHr+1(Xr)0−→A,

where Xr = Wr ×Ar.
Since the space of theta-series attached to the elliptic curve A has dimension h(−D) = 1, and since the

classes of ωθψ and ωA are both defined over Q, there is a non-zero rational scalar c satisfying

Π?∗
dR(ωr+1

A ) = c · ωθψ .
This scalar can be viewed as playing the role of the Manin-constant in the context of the modular parametri-
sation of A by CHr+1(Xr)0.

Question 5.5. When is it possible to choose the integral cycle Π? so that c = 1?

By allowing Π? to belong to Corr0(Wr, A
r+1)⊗Q, we can assume, after suitably rescaling Π?, that c = 1.

We will assume for the rest of this chapter that Π? has been rescaled in this way.

5.2.1. Chow-Heegner points of level 1. For D ∈ S := {11, 19, 43, 67, 163}, the elliptic curve A has rank 1
over Q. Let r ≥ 1 be an odd integer. By Theorem 5.4, the Chow-Heegner point PA,r attached to the class
of the diagonal ∆ ⊂ (A×A)r is given by

(147) AJ∞A (PA,r)(ωA) = Jr := ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄ )rθψ(z)dz,

where (ω1, ω2) is the admissible basis of ΛA given in (146), and τ = ω1

ω2
= D+

√
−D

2D . Hence the complex point
PA,r can be computed as the natural image of the complex number Jr under the Weierstrass uniformisation.

We have calculated the complex points PA,r for all D ∈ S and all r ≤ 15, to roughly 200 digits of
decimal accuracy. The calculations indicate that

(148) PA,r
?
=

√
−D ·mr · PA (mod A(C)[ιr ]),
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where PA is the generator of A(Q) ⊗ Q given in Table 1, and mr is the rational integer listed in Table 2
below, in which the columns correspond to D ∈ S and the rows to the odd r between 1 and 15.

11 19 43 67 163
1 1 1 1 1 1
3 2 6 36 114 2172
5 −8 −16 440 6920 3513800
7 14 −186 −19026 −156282 3347376774
9 304 4176 −8352 −34999056 −238857662304

11 −352 −33984 33708960 3991188960 −3941159174330400
13 76648 545064 −2074549656 46813903656 1904546981028802344
15 274736 40959504 47714214240 −90863536574160 8287437850155973464480

Table 2: The constants mr for 1 ≤ r ≤ 15.

The first 6 lines in this table, corresponding to 1 ≤ r ≤ 11, are in perfect agreement with the values that
appear in the third table of Section 3.1 of [RV]. This coincidence, combined with Theorem 3.1. of [RV],
suggests the following conjecture which is consistent with the p-adic formulae obtained in Theorem 4.5.

Conjecture 5.6. For all D ∈ S and all odd r ≥ 1, the Chow-Heegner point PA,r belongs to A(K) ⊗ Q
and is given by the formula

(149) PA,r =
√
−D ·mr · PA,

where mr ∈ Z satisfies the formula

m2
r =

2r!(2π
√
D)r

Ω(A)2r+1
L(ψ2r+1

A , r + 1),

and PA is the generator of A(Q) ⊗ Q given in Table 1.

The fact that the experimentally observed equality in (148) only holds modulo a subgroup of A(C)tors

may reflect the fact that the correspondence Π? from Wr to Ar+1 needs to be taken in Cor(Wr , A
r+1)⊗Q

in general. The optimal values of ιr that were observed experimentally are recorded in Table 3 below, for
1 ≤ r ≤ 31.

r 11 19 43 67 163 r 11 19 43 67 163
1 3 1 1 1 1 17 33 7 1 19 1
3 3 · 5 5 1 1 1 19 3 · 52 52 · 11 11 1 1
5 2 · 32 2 · 7 2 2 2 21 3 · 23 23 23 23 1
7 2 · 7 5 1 1 1 23 32 · 5 5 · 7 13 1 1
9 3 11 11 1 1 25 3 1 1 1 1

11 32 · 5 5 · 7 13 1 1 27 3 · 5 5 1 29 1
13 3 1 1 1 1 29 32 · 31 7 · 11 11 · 31 1 1
15 3 · 5 5 · 17 17 17 1 31 3 · 5 5 · 17 17 1 1

Table 3: The ambiguity factor ιr for 1 ≤ r ≤ 31.

Remark 5.7. The data in Table 3 suggests that the term ιr in (148) is only divisible by primes that
are less than or equal to r + 2. One might therefore venture to guess that the primes ` dividing ιD,r are

only those for which the mod ` Galois representation attached to ψr+1
A has very small image, or perhaps

non-trivial GK-invariants.

5.2.2. Chow-Heegner points of prime level. We may also consider (for a fixed D and a fixed odd integer
r) the Chow-Heegner points on A attached to non-trivial isogenies ϕ. For instance, let ` 6= D be a prime.
There are ` + 1 distinct isogenies ϕj : A−→A′j of degree ` (with j = 0, 1, . . . , ` − 1,∞) attached to the
lattices Λ′0, . . . ,Λ

′
`−1,Λ

′
∞ containing ΛA with index `. These lattices are generated by the admissible bases

Λ′j = Z

(

ω1 + jω2

`

)

⊕ Zω2, Λ′∞ = Zω1 ⊕ Z
ω2

`
.
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The elliptic curves A′j and the isogenies ϕ are defined over the ring class field H` of K of conductor `. Let

Jr(`, j) := `rω−r2

(2πi)r+1

(τ − τ̄ )r

∫
τ+j
`

i∞

(

z − τ̄ + j

`

)r

θD,r(z)dz, 0 ≤ j ≤ `− 1,

Jr(`,∞) := εK(`)ω−r2

(2πi)r+1

(τ − τ̄ )r

∫ `τ

i∞
(z − `τ̄)rθψ(z)dz

be the associated complex invariants and let PA,r(`, j) and PA,r(`,∞) denote the corresponding points in
C/ΛA = A(C).

We have attempted to verify the following conjecture numerically.

Conjecture 5.8. For all ` 6= D and all j ∈ P1(F`), the complex points PA,r(`, j) belong to the Mordell-
Weil group A(H`) ⊗ Q. More precisely,

(1) If ` is inert in K, then Gal(H`/K) acts transitively on the set

{PA,r(`, j), j ∈ P1(F`)}
of Chow-Heegner points of level `.

(2) If ` = λλ̄ is split in K, then there exist j1, j2 ∈ P1(F`) for which

PA,r(`, j1) = εK(λ)λrPA,r, PA,r(`, j2) = εK(λ̄)λ̄rPA,r,

and Gal(H`/K) acts transitively on the remaining set

{PA,r(`, j), j ∈ P1(F`) − {j1, j2}}
of Chow-Heegner points of level `.

We have tested this prediction numerically for r = 1 and all

D ∈ S, ` = 2, 3, 5, 7, 11,

as well as in a few cases where r = 3. In all cases the points PA,r(`, j) were identified with algebraic points
in A(H`) ⊗ Q, with a convincing amount of numerical accuracy. Such calculations sometimes required
several hundred digits of numerical precision, together with a bit of trial and error. The necessity for this
arose because Conjecture 5.8 only predicts that the points PA,r(`, j) belong to A(H`)⊗Q and not A(H`).
So in practice, these complex points need to be multiplied by a (typically small) integer in order to belong
to A(H`). Furthermore, the resulting global points appear (as suggested by (149) in the case ` = 1) to
be divisible by

√
−D, and this causes their heights to be rather large. It is therefore better in practice to

divide the PA,r(`, j) by
√
−D, which introduces a further ambiguity of A(C)[

√
−D] in the resulting global

point. The conjecture that was eventually tested numerically is the following non-trivial strengthening of
Conjecture 5.8:

Conjecture 5.9. Given integers n ∈ Z≥1 and 0 ≤ s ≤ D − 1, let

J ′r(`, j) = n · Jr(`, j) − sω1√
−D , 0 ≤ j ≤ `− 1,

J ′r(`,∞) = n · Jr(`,∞) − sεK(`)`rω1√
−D ,

and let P ′A,r(`, j) ∈ A(C) be the associated complex points. Then there exist n = nD,r and s = sD,r,

depending on D and r but not on ` and j, for which the points P ′r(`, j) belong to A(H`) and satisfy all the
conclusions of Conjecture 5.8 with PA,r(`, j) replaced by P ′A,r(`, j).

We now describe a few sample calculations that lend support to Conjecture 5.9.

1. The case D = 7. Consistent with the fact that the elliptic curve A has rank 0 over Q (and hence over
K as well), the point PA,r appears to be a torsion point in A(C), for all 1 ≤ r ≤ 31. For example, the
invariant J1 agrees with (ω1 + ω2)/8 to the 200 decimal digits of accuracy that were calculated. When
` = 2, it also appears that the quantities J1(2, j) belong to 1

8Λ7. There is no reason, however, to expect
the Chow-Heegner points PA,r(`, j) to be torsion for larger values of `. Experiments suggest that the
constants in Conjecture 5.9 are

n7,1 = 4, s7,1 = 0.
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For example, when ` = 3, the ring class field of conductor ` is a cyclic quartic extension of K containing
K(

√
21) as its quadratic subfield. In that case, the points P ′A,1(3, j) satisfy

P ′A,1(3, 0) = P ′A,1(3, 1) = −P ′A,1(3, 2) = −P ′A,1(3,∞),

and agree to 600 digits of accuracy with a global point in A(Q(
√

21)) of relatively small height, with
x-coordinate given by

x =
259475911175100926920835360582209388259

41395589491845015952295204909998656004
.

2. The case D = 19. To compute the Chow-Heegner points of conductor 3 in the case D = 19 and
r = 1, it appears that one can take

n19,1 = 1, s19,1 = 1.

Perhaps because of the small value of n19,1, the points P ′A,1(`, j) appear to be of relatively small height
and can easily be recognized as global points, even for moderately large values of `. For instance, the
points P ′A,1(3, j) seem to have x-coordinates of the form

x =
−19± 3

√
57

2
,

and their y-coordinates satisfying the degree 4 polynomial

x4 + 2x3 + 8124x2 + 8123x− 217886

whose splitting field is the ring class field H3 of K of conductor 3.
When ` = 7, which is split in K/Q, the ring class field H7 is a cyclic extension of K of degree 6. It

appears that the points P ′A,1(7, 3) and P ′A,1(7, 5) belong to A(K) and are given by

P ′A,1(7, 3) =
3 +

√
−19

2
PA, P ′A,1(7, 5) =

3 −
√
−19

2
PA.

The 6 remaining points are grouped into three pairs of equal points,

P ′A,1(7, 0) = P ′A,1(7, 2), P ′A,1(7, 1) = P ′A,1(7, 6), P ′A,1(7, 4) = P ′A,1(7,∞),

whose x and y coordinates appear to satisfy the cubic polynomials

9x3 + 95x2 + 19x− 1444, 27x3 − 235x2 + 557x+ 1198

respectively. The splitting field of both of these polynomials turns out to be the cubic subfield L of the
ring class field of K of conductor 7. One obtains as a by-product of this calculation 3 independent points
in A(L) which are linearly independent over OK . We expect that these three points give a K-basis for
A(L) ⊗ Q (and therefore that A(L) has rank 6) but have not checked this numerically.
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