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Introduction

Let E be an elliptic curve over Q of conductor N , and let f be the normalised
cusp form of weight 2 on Γ0(N) attached to E. Suppose that there is an odd
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prime p||N of multiplicative reduction for E, and let K be a real quadratic
field satisfying the following modified Heegner hypothesis:

1. the prime p is inert in K;

2. all the primes dividing M := N/p are split in K.

Fix an embedding of K and its p-adic completion Kp into Cp := Q̂p, and let
Hp = Cp−Qp denote the p-adic upper half plane. Since p is inert in K, note
that Hp ∩K is non-empty.

The first section of this paper briefly recalls the main construction of
[Da01], which associates to the cusp form f and to any τ ∈ Hp ∩ K a so-
called Stark-Heegner point Pτ ∈ E(Kp). Conjecture 5.9 of [Da01] predicts
that some integer multiple of this point is defined over a ring class field
of K depending on τ , and gives an explicit description, analogous to the
Shimura reciprocity law, for the action of Gal(Kab/K) on the collection of
Stark-Heegner points attached to K.

The main result of the present article (Theorem 1) gives some evidence for
Conjecture 5.9 of [Da01] by showing that certain integral linear combinations
of Stark-Heegner points are global points on E defined over the expected
abelian extension of K. The non-vanishing of these points is also related to
the first derivative at s = 1 of the Hasse-Weil L-series of E/K in the spirit
of the Gross-Zagier formula, lending support for Conjecture 5.15 of [Da01].

Before stating Theorem 1 precisely, some further notations are required.
LetM2(Z[1/p]) denote the ring of 2×2 matrices with entries in Z[1/p], and let
R ⊂ M2(Z[1/p]) denote the subring of matrices which are upper-triangular
modulo M . The order associated to τ ∈ Hp ∩K is defined to be

Oτ =

{(
a b
c d

)
∈ R such that aτ + b = cτ 2 + dτ

}
⊂ K,

the inclusion on the right being the one that sends the matrix

(
a b
c d

)
to

the element cτ + d. Via this inclusion, Oτ is identified with a Z[1/p]-order
of K. Let D be the discriminant of a (not necessarily maximal) order of K,
and let OD denote the Z[1/p]-order of K of that discriminant. Set

HD
p = {τ ∈ Hp ∩K such that Oτ = OD} .

The group
Γ :=

{
γ ∈ R× such that det(γ) = 1

}
(1)
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acts on Hp by Möbius transformations, and preserves HD
p for any D.

Let GD := Pic+(OD) denote the Picard group of oriented OD-modules,
or equivalently, the group of SL2(Z)-equivalence classes of primitive integral
binary quadratic forms of discriminant D equipped with the group law given
by Gaussian composition. Class field theory defines an isomorphism

rec : GD−→Gal(HD/K),

where HD is the so-called narrow ring class field attached to OD. The fact
that p is inert in K implies that the prime ideal pOK splits completely in
HD/K. Choose a prime of HD above p. This choice determines an extension
to HD of the chosen embedding K−→Cp.

The quotient HD
p /Γ is equipped with a natural action of GD whose defi-

nition is recalled in Section 1.4, and which is written (g, τ) 7→ τ g, for g ∈ GD

and τ ∈ HD
p /Γ.

Conjecture 5.9 of [Da01] predicts that some fixed multiple of Pτ is a global
point in E(HD), so that Pτ belongs to E(HD)⊗Q, and that

Pτg = rec(g)−1(Pτ ) for all g ∈ GD. (2)

(Note that this compatibility does not depend on the choice of embedding of
HD into Cp that was made.)

Suppose now that D is the discriminant of K. A genus character of K
is a quadratic unramified character of Gal(K̄/K). Such a genus character χ
cuts out a biquadratic (or quadratic, in the special case where χ is the trivial
character) extension of Q, denoted Hχ:

Hχ = Q(
√
D1,

√
D2), where D = D1D2.

Let χ1, χ2, and εK be the Dirichlet characters associated to the quadratic
fields Q(

√
D1), Q(

√
D2), and K respectively. Note that χ1χ2 = εK . The

genus characters are in bijection with the factorisations of D into a product
of two relatively prime fundamental discriminants, or, equivalently, with the
unordered pairs of primitive quadratic Dirichlet characters (χ1, χ2) of coprime
conductors satisfying χ1χ2 = εK . (The trivial character χ corresponds to the
factorisation D = 1 ·D.) Let E(Hχ)χ denote the submodule of the Mordell-
Weil group E(Hχ) on which Gal(HD/K) acts via the character χ.

Define the point

Pχ =
∑

g∈GD

χ(g)Pτg ∈ E(Kp).
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Then Conjectures 5.9 and 5.15 of [Da01] imply that Pχ is a global point in
E(Hχ)χ.

Let q ∈ pZp be the Tate period attached to E, and write

ΦTate : K×
p /q

Z−→E(Kp)

for the Tate uniformisation (which is defined since p is inert in K so that
E acquires split multiplicative reduction over Kp). Let logq : K×

p −→Kp

denote the branch of the p-adic logarithm satisfying logq(q) = 0, and define
a homomorphism

logE : E(Kp)−→Kp

by the rule
logE(P ) := logq(Φ

−1
Tate(P )).

For each m|N with gcd(m,N/m) = 1, let wm denote the sign of the Fricke
involution at m acting on f . Note that the modified Heegner hypothesis
implies that εK(−M) = 1, so that χ1(−M) = χ2(−M). The main result of
this article is

Theorem 1. Let χ be the genus character attached to the pair of Dirichlet
characters χ1 and χ2. Suppose that E has at least two primes of multiplicative
reduction, and that χ1(−M) = −wM .

1. There is a global point Pχ ∈ E(Hχ)χ and t ∈ Q× such that

logE(Pχ) = t logE(Pχ). (3)

2. The point Pχ is of infinite order if and only if L′(E/K, χ, 1) 6= 0.

By way of providing a context for the proof of Theorem 1, we note the
analogy between the approach that it follows and Kronecker’s “solution to
Pell’s equation” in terms of special values of the Dedekind eta-function. (See
Chapter IX of [We] for a historical account, and Chapter II.1 of [Sie] for a
more detailed treatment.) In the classical setting considered by Kronecker,
the fundamental discriminant D is taken to be negative so that it corresponds
to an imaginary quadratic subfield K of C. The p-adic upper half plane is
replaced by its archimedean counterpart H, and HD is given the obvious
meaning (with M = 1). This set is preserved under the action of SL2(Z)
by Möbius transformations, and the quotient HD/SL2(Z) is equipped with a
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natural action of the class group GD of K. A quadratic character χ of GD—
assumed to be non-trivial, although the trivial character requires no special
consideration in the setting of Stark-Heegner points—corresponds to a pair
of Dirichlet characters χ1 and χ2 which are even and odd respectively, cutting
out quadratic extensions K1 and K2 of Q. Let ε1 > 1 be the fundamental unit
of the real quadratic field K1, denote by hj (for j = 1, 2) the class number of
Kj, and write w2 for the number of roots of unity in K2. After setting

η∗(τ) := |D|−1/4
√

2y|η(τ)|2,

Kronecker shows (cf. Theorem 6 of Chapter 11.1 of [Sie]) that for any τ ∈ HD,∑
σ∈GD

χ(σ) log η∗(τσ) = −2h1h2

w2

log(ε1). (4)

This expresses a solution to the Pell equation x2 − D1y
2 = 1 in terms of

the function η∗ evaluated at suitable quadratic imaginary arguments. Kro-
necker’s proof is obtained by combining the following three ingredients:

1. The Kronecker limit formula, which expresses the left hand side of (4)
in terms of the L-series ζ(K,χ, s) =

∑
a χ(a)N(a)−s, where the sum is

taken over all the ideals a of K:∑
σ∈GD

χ(σ) log η∗(τσ) =
d

ds
ζ(K,χ, s)|s=0. (5)

2. A factorisation of ζ(K,χ, s) as a product of the Dirichlet L-series at-
tached to χ1 and χ2:

ζ(K,χ, s) = L(χ1, s)L(χ2, s). (6)

3. Dirichlet’s class number formula which asserts that

L′(χ1, 0) = h1 log(ε1), L(χ2, 0) =
2h2

w2

. (7)

Kronecker’s identity (4) is a direct consequence of (5), (6) and (7). It can
also be understood in the framework of the theory of complex multiplication,
which relates the individual quantities η∗(τσ) to elliptic units defined over
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HD. Kronecker’s approach is noteworthy in that it makes no use of the theory
of complex multiplication. This represents an advantage in the setting of
Stark-Heegner points attached to real quadratic fields, where no analogue of
the theory of complex multiplication is known, and where the algebraicity of
the individual quantities Pτ remains conjectural.

The proof of Theorem 1 is explained in Section 4. At this stage we limit
ourselves to some general remarks on the counterparts to steps 1, 2, and 3
above in our approach.

1. The role of Kronecker’s limit formula is played by Theorem 4.1, which
relates the Stark-Heegner point Pχ to the leading term of a Hida p-
adic L-function Lp(f∞/K, χ, k) attached to the datum of a Hida family
{f∞} interpolating f in weight two. The relation that emerges between
periods of Hida families and Stark-Heegner points represents a new
insight that was suggested by combining the calculations in [Das] and
[DD] with the main result of [BD98]. It is hoped that Theorem 4.1
may be of some independent interest beyond its role in the proof of
Theorem 1.

2. The Hida L-function Lp(f∞/K, χ, k) interpolates the central critical
values L(fk/K, χ, k/2) of the weight k specialisations of f∞. This in-
terpolation property is a direct consequence of a formula of Popa [Po]
expressing these values in terms of certain “geodesic cycle integrals”
attached to f and K, à la Shintani. This interpolation property is the
key to expressing Lp(f/K, χ, k) as a product of two Mazur-Kitagawa
p-adic L-functions Lp(f∞, χj, k, s) attached to {f∞} and the Dirichlet
characters χ1 and χ2, restricted to the central critical line s = k/2.

3. One is finally reduced to expressing the leading term in a neighbour-
hood of k = 2 of Lp(f∞, χj, k, k/2) in terms of rational quantities and
logarithms of global points. This last ingredient is supplied by Theo-
rem 5.4 of [BD05], whose precise formulation is recalled in Section 4,
and whose proof relies on a p-adic analytic construction of (classical)
Heegner points coming from Shimura curve parametrisations, via the
Cerednik-Drinfeld theory of p-adic uniformisation of these curves. It
is this reliance on parametrisations by Shimura curves over Q which
forces the assumption in Theorem 1 that E has at least two primes of
multiplicative reduction.
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1 A review of Stark-Heegner points

This section reviews the definition of Stark-Heegner points that is given in
[Da01], presenting it in a way that is adapted to the subsequent proof of
Theorem 1.

1.1 Modular symbols

Let g ∈ Sk(Γ0(N)) be a normalised cusp form of even weight k ≥ 2 on
Γ0(N), and let Kg denote the finite extension of Q generated by its Fourier
coefficients an(g) (n ≥ 1). We view Kg as a subfield both of C and Cp, by
fixing complex and p-adic embeddings of Kg.

The space Pk(Q) of homogenous polynomials in two variables of degree
k − 2 with rational coefficients is equipped with a right action of GL2(Q)
given by the rule

(P |γ)(x, y) := P (ax+ by, cx+ dy), for γ =

(
a b
c d

)
. (8)

Let Vk(Q) denote the Q-linear dual of Pk(Q). The field Q can be replaced
by any field F in these definitions. Denote by Pk(F ) the F -vector space of
homogenous polynomials of degree k−2 with coefficients in F , and by Vk(F )
its F -linear dual.

A modular symbol with values in an abelian group G is a function

I : P1(Q)× P1(Q)−→G, denoted (r, s) 7→ I{r → s},

satisfying

I{r → s}+ I{s→ t} = I{r → t}, for all r, s, t ∈ P1(Q).

The periods of the form g are encoded in the basic Vk(C)-valued modular
symbol Ĩg defined by

Ĩg{r → s}(P ) := 2πi

∫ s

r

g(z)P (z, 1)dz.

This symbol is invariant under Γ0(N), in the sense that

Ĩg{γr → γs}(P |γ−1) = Ĩg{r → s}(P ), for all γ ∈ Γ0(N).
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The matrix c =

(
1 0
0 −1

)
normalises Γ0(N) and hence induces an invo-

lution on the space MS(Vk(C))Γ0(N) of Γ0(N)-invariant Vk(C)-valued modu-
lar symbols. Let Ĩ+

g and Ĩ−g denote the plus and minus eigencomponents of

Ĩg for this involution.

Proposition 1.1. There exist complex periods Ω+
g and Ω−

g with the property
that the modular symbols

I+
g := (Ω+

g )−1Ĩ+
g , I−g := (Ω−

g )−1Ĩ−g

belong to MS(Vk(Kg))). These periods can be chosen to satisfy

Ω+
g Ω−

g = 〈g, g〉,

where 〈g, g〉 is the Petersson scalar product of g with itself.

Proof. The proof is explained, for example, in Section 1.1 of [KZ]. (See in
particular the first corollary and the third theorem in that section).

Choose a “sign at infinity” w∞ ∈ {+1,−1}, and set

Ωg :=

{
Ω+

g if w∞ = +1;
Ω−

g if w∞ = −1;
Ig :=

{
I+
g if w∞ = +1;
I−g if w∞ = −1.

Note that the modular symbol Ig can be viewed as an element of MS(Vk(Cp))
thanks to the chosen embedding of Kg into Cp.

1.2 Double integrals

In the case where f is a modular form of weight 2 on Γ0(N) with rational
Fourier coefficients, the modular symbol If is Q-valued, and can even be
rescaled so that it takes values in Z. Assume that this has been done from
now on.

A measure on P1(Qp) is an element of the continuous Qp-linear dual of
the space of continuous Qp-valued functions on P1(Qp), equipped with the
topology of uniform convergence. Given a measure µ, and a compact open
subset U of P1(Qp), set µ(U) := µ(χU), where χU denotes the characteristic
function of U . The function U 7→ µ(U) is a bounded, finitely additive Qp-
valued function on the set of compact open subsets of P1(Qp). Conversely,
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any such function gives rise to a Qp-valued measure on P1(Qp). The measure
µ is said to be integral, or Z-valued, if µ(U) belongs to Z for all compact
open U ⊂ P1(Qp).

Recall the group Γ of equation (1) in the introduction. Fix a subset P of
P1(Q) on which Γ acts transitively by Möbius transformations.

The following elementary proposition is key to the definition of Stark-
Heegner points attached to real quadratic fields.

Proposition 1.2. There exists a unique system of Z-valued measures on
P1(Qp), indexed by r, s ∈ P and denoted µf{r → s}, satisfying the following
properties.

1. For all r, s ∈ P,

µf{r → s}(P1(Qp)) = 0, µf{r → s}(Zp) = If{r → s}.

2. For all γ ∈ Γ, and all compact open U ⊂ P1(Qp),

µf{γr → γs}(γU) = µf{r → s}(U).

Proof. The proof of this proposition is identical to that of Proposition 2.6
of [DD], which considered the case where the newform f is replaced by the
logarithmic derivative of a modular unit, a weight two Eisenstein series. The
main property of this Eisenstein series that is used is the fact that it is
fixed by the Hecke operator U2

p . Since this is also true of f , the proof of
Proposition 2.6 can be adapted to the setting at hand with essentially no
modifications.

Remark 1.3. We have chosen to consider modular symbols defined on P×P,
largely for convenience: for example this will guarantee the uniqueness of the
“indefinite integral” of Proposition 1.4.

The measures µf can be used to define a “double multiplicative integral”
attached to τ1, τ2 ∈ Hp and r, s ∈ P as in equation (71) of [Da01], by setting

×
∫ τ2

τ1

∫ s

r

ωf := ×
∫

P1(Qp)

(
t− τ2
t− τ1

)
dµf{r → s}(t). (9)

The “multiplicative integral” notation appearing on the right indicates that
a limit of Riemann products is being taken, rather than a limit of Riemann
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sums, i.e., that the integration is relative to the multiplicative structure on
C×

p . Such a definition is made possible by the fact that for each r, s ∈ P,
the measure µf{r → s} is Z-valued, and that the integrand is a continu-
ous K×

p -valued function on P1(Qp) relative to the natural topology on K×
p .

(For a more detailed discussion of this multiplicative integral, and its basic
properties, see the discussion following Lemma 1.10 in [Da01].)

Recall the Tate period q ∈ pZp attached to E/Qp, and the branch logq of
the p-adic logarithm sending q to 0. Define∫ τ2

τ1

∫ s

r

ωf := logq

(
×
∫ τ2

τ1

∫ s

r

ωf

)
. (10)

Note that the definition of this “additive integral” differs somewhat from the
definition that is given in [Da01], where the Iwasawa branch of the p-adic
logarithm satisfying log(p) = 0 is used. (Cf. equation (73) of [Da01].)

1.3 Indefinite integrals

The following result justifies the choice of branch of p-adic logarithm that
was made in (10).

Proposition 1.4. There is a unique function from Hp×P×P to Cp, denoted

(τ, r, s) 7→
∫ τ∫ s

r

ωf ,

satisfying

1. For all γ ∈ Γ, ∫ γτ∫ γs

γr

ωf =

∫ τ∫ s

r

ωf .

2. For all τ1, τ2 ∈ H,∫ τ2
∫ s

r

ωf −
∫ τ1
∫ s

r

ωf =

∫ τ2

τ1

∫ s

r

ωf .

3. For all r, s, t ∈ P, ∫ τ∫ t

r

ωf +

∫ τ∫ s

t

ωf =

∫ τ∫ s

r

ωf .
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Proof. The proof of this proposition is explained in Section 3.1 of [Da01],
where it is reduced to the exceptional zero conjecture of Mazur, Tate and
Teitelbaum proved by Greenberg and Stevens. (In the notations of Section
3.1 of [Da01], and in particular of equation (162), we have∫ τ∫ s

r

ωf = logq(ηf,τ{r → s}).)

A more direct proof, albeit one whose main idea can still be traced to the
calculations of Greenberg and Stevens, can be obtained by specialising the
approach described in [BDI] to weight 2 modular forms.

The function which is characterised indirectly in Proposition 1.4 is called
the indefinite integral attached to f . The articles [DG] and [DP] explain how
Proposition 1.4 can be used to produce efficient algorithms for the numerical
evaluation of the indefinite integral. Section 2.3 gives a direct formula for it
in terms of the periods of the Hida family interpolating f , which is better
adapted to the general calculations of this paper.

Remark 1.5. It is the existence of the indefinite integral that relies crucially
on the branch of p-adic logarithm chosen in (10). Its uniqueness then follows
by noting that the difference

δ{r → s} :=

∫ τ∫ s

r

ω
(1)
f −

∫ τ∫ s

r

ω
(2)
f

of any two functions satisfying properties 1, 2 and 3 of Proposition 1.4 is
independent of the choice of τ , and hence defines a Γ-invariant Cp-valued
modular symbol on P × P. Since Γ acts transitively on P, such a symbol is
determined by the homomorphism ϕδ : Γ−→Cp defined by choosing a base
point r ∈ P and setting ϕδ(γ) = δ{r → γr}. But this homomorphism is
necessarily trivial, since Γ has finite abelianisation and Cp is torsion-free.

Remark 1.6. Proposition 1.4 implies the existence of a lattice Q ⊂ C×
p

which is commensurable with qZ, and an “indefinite multiplicative integral”

×
∫ τ∫ s

r

ωf ∈ C×
p /Q

satisfying the obvious multiplicative analogues of the properties listed in
Proposition 1.4. The lattice Q appears as the obstruction to splitting a
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two-cocycle in H2(Γ,C×
p ) constructed in terms of the double multiplicative

integral. Note that logq(Q) = 0, and that we can write∫ τ∫ s

r

ωf = logq

(
×
∫ τ∫ s

r

ωf

)
.

1.4 Stark-Heegner points

Given τ ∈ Hp ∩K, let γτ =

(
a b
c d

)
denote the unique generator for the

stabiliser of τ in Γ satisfying

cτ + d > 1. (11)

(Where in this inequality, we have made use of the fixed real embedding of
K.) Associate to τ a multiplicative and additive period by choosing any base
point r ∈ P and setting

J×τ := ×
∫ τ∫ γτ r

r

ωf ∈ K×
p /Q, Jτ := logq(J

×
τ ) =

∫ τ∫ γτ r

r

ωf . (12)

Since ΦTate(Q) is contained in E(Kp)tors, the image of J×τ under ΦTate is well-
defined in E(Kp) ⊗ Q, and is called the Stark-Heegner point attached to τ
and f :

Pτ := ΦTate(J
×
τ ), so that logE(Pτ ) = Jτ . (13)

Let D be the discriminant of K. The Heegner hypothesis imposed on K in
the introduction implies the existence of an element δ ∈ Z/MZ satisfying

δ2 ≡ D (mod M).

Fix such a δ once and for all. Let FD denote the set of primitive binary
quadratic forms Ax2 +Bxy + Cy2 of discriminant D satisfying

M |A, B ≡ δ (mod M).

The set FD is preserved under the natural action of Γ0(M). Recall the class
group GD of SL2(Z)-equivalence classes of primitive binary quadratic forms
of discriminant D. The natural map

FD/Γ0(M)−→GD
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obtained by sending the class of the quadratic form Q to its corresponding
SL2(Z)-equivalence class is readily seen to be a bijection, so that FD/Γ0(M)
is endowed with the stucture of a principal homogenous space under GD. If
Q(x, y) belongs to FD/Γ0(M), and σ to GD, write Qσ for the image of Q by
σ. Let HD denote the narrow Hilbert class field of K, whose Galois group is
identified with GD, and let

rec : GD−→Gal(HD/K)

denote the isomorphism arising from the reciprocity law of global class field
theory.

Given Q = Ax2 +Bxy + Cy2 ∈ FD/Γ0(M), let

τQ :=
−B +

√
D

2A
(14)

be a fixed root of the quadratic polynomial Q(x, 1). Note that τQ belongs
(via the fixed p-adic embedding of K) to HD

p , and that its image in HD
p /Γ is

well-defined. Given σ ∈ GD, write τσ ∈ HD
p /Γ for the root of any quadratic

form in the Γ0(M)-equivalence class of Qσ. This definition gives a precise
meaning to the conjectural equation (2) of the Introduction.

Since the definition of Stark-Heegner points is purely p-adic analytic,
little can be said about the action of Gal(HD/K) on these points indepen-
dently of assertion (2) in the introduction. However, something unconditional
can be asserted about the action of the Frobenius element at p, denoted
τp ∈ Gal(HD/Q). Since the prime p is inert in K, the element τp, which is
only defined up to conjugation, corresponds to a reflection in the generalised
dihedral group Gal(HD/Q). Proposition 5.10 of [Da01] asserts the existence
of an element στ in GD satisfying

τp(Jτ ) = −wMJτστ , τp(Pτ ) = wNPτστ . (15)

Note the sign difference in the two equations, which arises from the fact that
τp does not commute with ΦTate in general, but rather satisfies

τpΦTateτp = apΦTate = −wpΦTate.

The element στ is denoted by σ in Proposition 5.10 of [Da01], but we have
denoted it here by στ to emphasize its dependence on τ . Indeed, replacing τ
by τα, for some α ∈ GD, one can see that

στα = στα
−2. (16)
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This identity is a consequence of the fact that τp does not commute with the
elements of GD, but rather satisfies

τpσ = σ−1τp, for all σ ∈ GD.

Equation (16) shows that the image of στ in GD/G
2
D is independent of τ ∈

HD
p /Γ. Denote this element by σ, in keeping with the notations of Proposition

5.10 of [Da01].
It will be necessary to have a precise description of σ. To do this, we

give a formula for χ(σ), as χ runs over the characters of GD/G
2
D. These

characters are precisely the genus characters attached to the discriminant
D, and correspond to pairs (χ1, χ2) of primitive quadratic Dirichlet charac-
ters of coprime conductor satisfying χ1χ2 = εK . (Cf. the discussion in the
Introduction preceeding the statement of Theorem 1.) The pair (χ1, χ2) is
characterised by the property

χ(frobλ) = χ(frobλ̄) = χ1(`) = χ2(`), (17)

for any rational prime ` which splits completely as a product ` = λλ̄ of prime
ideals of K of norm `.

Proposition 1.7. For any genus character χ attached to the discriminant
D, corresponding to the pair (χ1, χ2) of quadratic Dirichlet characters,

χ(σ) = χ1(−M).

Proof. In the notations of the proof of Proposition 5.10 of [Da01], the element
σ corresponds to the class in Pic+(O) of the element c = ∞λe1

1 · · ·λet
t , where

M = `e1
1 · · · `et

t is the factorisation of M into a product of distinct prime
powers, and λj is some ideal ofK above `j. (More precisely, λj = (`j,

√
D−δ),

but note that the value of c modulo squares in GD is independent of the exact
value of the λj’s.) By equation (17),

χ(σ) = χ(c) = χ1(−M),

as was to be shown.

2 Hida theory

2.1 Hida families

Let
Λ̃ := Zp[[Z×

p ]], Λ = Zp[[(1 + pZp)
×]]

14



denote the usual Iwasawa algebras, and let

X = hom(Z×
p ,Z×

p ) = hom(Λ̃,Zp) ' Z/(p− 1)Z× Zp

be the space of continuous p-adic characters of Z×
p , equipped with its natural

topology. The space X contains Z as a dense subset by sending k ∈ Z to
the character θk(x) := xk−2. Note the shift by two in our convention, which
means that k = 2 corresponds to the augmentation map on Λ̃.

Following the discussion that is made in Section 1.2 of [BD05], we asso-
ciate to f a so-called Hida family

f∞ :=
∞∑

n=1

an(k)qn.

This is a formal q-expansion with coefficients in the ring A(U) of p-adic
analytic functions on U , where U is an appropriate neighbourhood of 2 ∈ X .
Assume for simplicity that U is contained in the residue disc of 2 modulo
p − 1, and let Z≥2 denote the set of integers which are ≥ 2. The formal
q-expansion f∞ is characterised by the following properties:

1. If k belongs to U ∩ Z≥2, the q-expansion

fk :=
∞∑

n=1

an(k)qn

is a normalised eigenform of weight k on Γ0(N). For this reason it is
referred to as the weight k specialisation of f∞.

2. f2 = f .

Note in particular that the field Kfk
generated by the Fourier coefficients of

the normalised eigenform fk is a finite extension of Q. For each k ∈ U ∩Z≥2,
we fix the Shimura periods Ω+

k := Ω+
fk

and Ω−
k := Ω−

fk
as in Proposition 1.1.

This choice of periods allows us to talk about the Vk(Cp)-valued modular
symbols I+

fk
and I−fk

associated to each fk. The modular symbol Ifk
will be

taken to be I+
fk

or I−fk
depending on the choice of w∞ that was made.

15



2.2 Periods attached to Hida families

Let L∗ := Z2
p denote the standard Zp-lattice in Q2

p, and let L′∗ denote its set
of primitive vectors, i.e., the vectors in L∗ which are not divisible by p. Let D
denote the space of compactly supported p-adic measures on W := Q2

p−{0},
and let D∗ denote the subspace of measures that are supported on L′∗. The
action of the group Z×

p on W and L′∗ given by λ(x, y) = (λx, λy) gives rise

to Λ̃ and Λ module structures on D and D∗. The module D is also equipped
with a right Λ̃-linear action of GL2(Qp) defined by the rule extending (8)∫

W
Fd(µ|γ) =

∫
W

(F |γ−1)dµ, (18)

where GL2(Qp) operates on the continuous functions on W by the rule

(F |γ)(x, y) := F (ax+ by, cx+ dy), for γ =

(
a b
c d

)
. (19)

Denote by Γ0(pZp) the group of matrices in GL2(Zp) which are upper
triangular modulo p. Our interest in the space D∗ lies in the fact that it is
equipped, for all k ∈ Z≥2, with a Γ0(pZp)-equivariant homomorphism

ρk : D∗−→Vk

defined by

ρk(µ)(P ) :=

∫
Zp×Z×p

P (x, y)dµ(x, y).

(Note that ρk does not respect the full action of GL2(Zp), because the domain
of integration that appears in its definition is only preserved by Γ0(pZp).) The
homomorphism ρk gives rise to a homomorphism, denoted by the same letter
by abuse of notation:

ρk : MSΓ0(M)(D∗)−→MSΓ0(N)(Vk(Cp)).

The space MSΓ0(M)(D∗) is equipped with a natural action of the Hecke
operators, and of the operator Up in particular. Let MSord

Γ0(M)(D∗) denote the

ordinary subspace of MSΓ0(M)(D∗).
Proposition (6.1) of [GS] asserts that this module is free and of finite rank

over Λ.

16



Let Λ† denote the ring of functions which can be represented by a con-
vergent power series expansion in some neighbourhood of 2 ∈ X , and set

D†
∗ := D∗ ⊗Λ Λ†, MSord

Γ0(M)(D∗)
† := MSord

Γ0(M)(D∗)⊗Λ Λ†.

Similar notations are adopted, with the obvious meanings, when D∗ is re-
placed by D. If µ = λ1µ1 + · · ·+ λtµt is any element of D†, then there exists
a neigbourhood Uµ of 2 ∈ X on which all the λj are defined. Call such a
region a neighbourhood of regularity for µ. Given k ∈ Z, a function F on W
is said to be homogeneous of degree k if F (λx, λy) = λkF (x, y). Observe that
for any k ∈ Uµ ∩Z≥2, and any homogenous function F (x, y) of degree k− 2,
one can integrate F against µ on any compact open region X ⊂ W by the
rule ∫

X

Fdµ := λ1(k)

∫
X

Fdµ1 + · · ·+ λt(k)

∫
X

Fdµt.

The following result of Greenberg and Stevens plays a key role in the con-
structions of this section.

Theorem 2.1. There exists a D†
∗-valued modular symbol µ∗ ∈MSord

Γ0(M)(D∗)
†

such that

1. ρ2(µ∗) = If ;

2. For all k ∈ Uµ∗ ∩ Z≥2, there exists a scalar λ(k) ∈ Cp such that

ρk(µ∗) = λ(k)Ifk
.

Proof. This is Theorem 1.5 of [BD05], which follows from Theorem (5.13) of
[GS] and whose proof is explained in Section 6 of that paper. See also [BDI]
where extensions of this result to modular forms that are not necessarily
ordinary are discussed.

Since R× acts transitively on the set of Zp-lattices in Q2
p, and the stabiliser

of L∗ for this action is precisely Γ0(M), we may define a collection of D†-
valued modular symbols µL indexed by the Zp-lattices in Q2

p as in Proposition
1.8 of [BD05], by imposing the rules:

µL∗ = µ∗,

∫
γX

(F |γ−1)dµγL{γr → γs} =

∫
X

FdµL{r → s},

for all γ ∈ Γ, for all lattices L ⊂ Q2
p, and all compact open regions X ⊂ W.
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Let
U := Uµ∗ = UµL

denote a region of regularity for the measures µL. The measures µL{r → s}
are supported on the compact subsets L′ of W , and they satisfy the following
property:

Lemma 2.2. Suppose that L2 ⊂ L1 is a sublattice of index p in L1. For all
k ∈ U ∩Z≥2, for all homogenous polynomials P̃ (x, y) of degree k−2, and for
all r, s ∈ P, we have∫

L′1∩L′2

P̃ dµL2{r → s} = ap(k)

∫
L′1∩L′2

P̃ dµL1{r → s}.

Proof. See Lemma 1.10 of [BD05].

The basic property of the measures µ∗{r → s} given in Theorem 2.1 can
be re-written as∫

Zp×Z×p
P (x, y)dµ∗{r → s}(x, y) = λ(k)Ifk

{r → s}(P ), (20)

for all P ∈ Pk(Q), and for all r, s ∈ P. It will be useful to understand the
value of the the integral appearing on the left in (20), when the region of
integration is taken to be the full L′∗ = (Z2

p)
′ instead of the subset Zp × Z×

p .
To write down such a formula, we first remark that for each integer k > 2,

the form fk is old at p, and there is a unique normalised eigenform f ]
k of weight

k on Γ0(M) satisfying

fk(z) = f ]
k(z)− pk−1ap(k)

−1f ]
k(pz).

(By convention, we set f ]
2 := 0.) Let If]

k
be the modular symbol attached to

f ]
k via the choice of complex period Ωk. This modular symbol satisfies the

relation

Ifk
{r → s}(P ) = If]

k
{r → s}(P )− pk−2ap(k)

−1If]
k
{r/p→ s/p}(P (x, y/p)).

Proposition 2.3. For all k ∈ U ∩ Z≥2, for all P ∈ Pk(Cp) and for all
r, s ∈ P,∫

(Z2
p)′
P (x, y)dµ∗{r → s}(x, y) = λ(k)(1− ap(k)

−2pk−2)If]
k
{r → s}(P ).
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Proof. Let L∗ and L∞ denote the lattices

L∗ = Z2
p, L∞ = Zp ⊕ pZp,

so that

(L′∗ ∩ L′∞) = Z×
p × pZp,

(
L′∗ ∩

1

p
L′∞

)
= Zp × Z×

p . (21)

Let θ ∈ R× be any matrix of determinant p satisfying

θ(L∗) = L∞, θ(L∞) = pL∗, so that θ(Z×
p × pZp) = p(Zp × Z×

p ). (22)

Observe that L′∗ can be written as a disjoint union of the two regions appear-
ing in (21). Hence we may write∫

(Z2
p)′
P (x, y)dµ∗{r → s}(x, y) = J1 + J2,

where

J1 =

∫
Zp×Z×p

Pdµf{r → s} = λ(k)Ifk
{r → s}(P ),

J2 =

∫
Z×p ×pZp

P̃ dµf{r → s}

=

∫
p(Zp×Z×p )

(P̃ |θ−1)dµL∞{θr → θs}

= pk−2

∫
Zp×Z×p

(P̃ |θ−1)dµ 1
p
L∞{θr → θs}

= ap(k)
−1pk−2

∫
Zp×Z×p

(P̃ |θ−1)dµL∗{θr → θs}

= ap(k)
−1pk−2λ(k)Ifk

{θr → θs}(P |θ−1),

and the penultimate equality follows from Lemma 2.2. To evaluate the con-
tributions J1 and J2 in terms of the form f ]

k, note that, for any choice of θ
satisfying (22),

fk(z) = f ]
k(z)− pk−1ap(k)

−1(f ]
k|θ)(z).

A direct calculation, using change of variables, then shows that

I(f]
k|θ)
{r → s}(P ) = p−1If]

k
{θr → θs}(P |θ−1).
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Hence

J1 = λ(k)
(
If]

k
{r → s}(P )− pk−1ap(k)

−1I(f]
k|θ)
{r → s}(P )

)
= λ(k)

(
If]

k
{r → s}(P )− pk−2ap(k)

−1If]
k
{θr → θs}(P |θ−1)

)
,

while

J2 = λ(k)ap(k)
−1pk−2

(
If]

k
{θr → θs}(P |θ−1)

−pk−2ap(k)
−1If]

k
{r → s}(P |θ−2)

)
.

Note that θ−2 = p−1, so that P |θ−2 = p−k+2P . Therefore

J1 + J2 = λ(k)(1− ap(k)
−2pk−2)If]

k
{r → s}(P ).

The proposition follows.

2.3 Indefinite integrals revisited

Recall the indefinite integral that was defined in Section 1.3. The relevance
of Hida families to Stark-Heegner points can be explained by the fact that
the system of distribution-valued modular symbols µL{r → s} that was in-
troduced in Section 2.2 can be used to give a direct formula for this indefinite
integral.

We content ourselves with doing this when τ belongs to Hp ∩Kp, so that
it is defined over a quadratic unramified extension of Qp. In that case, the
function

(x, y) 7→ x− τy

identifies Q2
p with Kp. Let Lτ be the Zp-lattice in Q2

p defined by

Lτ = {(x, y) such that x− τy belongs to OK ⊗ Zp}.

Theorem 2.4. For all τ ∈ Hp ∩Kp, and for all r, s ∈ P,∫ τ∫ s

r

ωf =

∫
L′τ

log(x− τy)dµLτ{r → s}(x, y),

where log : K×
p −→Kp is any branch of the p-adic logarithm.
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Proof. Note that the expression (x − τy) belongs to (OK ⊗ Zp)
× for any

(x, y) ∈ L′τ , so that the integrand on the right is independent of the branch
of the p-adic logarithm that was chosen to define it. To prove Theorem 2.4,
it suffices to check that the three defining properties of the indefinite integral
listed in Proposition 1.4 are satisfied by the expression appearing on the right
in Theorem 2.4. The invariance under Γ stated as property 1 is a consequence
of Proposition 4.6 of [BDI]. As for property 2, it follows from Proposition
4.7 of [BDI], which holds for any branch of the p-adic logarithm, including
logq for which the extra term appearing in Proposition 4.7 of [BDI] vanishes.
Finally, property 3 is a direct consequence of the definitions.

Corollary 2.5. The Stark-Heegner point Pτ associated to Q ∈ FD/Γ0(M)
satisfies

logE Pτ = Jτ =

∫
(Z2

p)′
log(x− τy)dµ∗{r → γτr}(x, y).

Proof. This follows from (13) and Theorem 2.4, after noting that Lτ = Z2
p

when τ = τQ and Q is an element of FD.

3 p-adic L-functions

3.1 The Mazur-Kitagawa p-adic L-function

Let χ : (Z/mZ)×−→{±1} be a primitive quadratic Dirichlet character of
conductor m with χ(−1) = w∞, and let

τ(χ) :=
m∑

a=1

χ(a)e2πia/m

denote the Gauss sum attached to χ. For each k ∈ U∩Z≥2, and 1 ≤ j ≤ k−1
with j odd, the expression

L∗(fk, χ, j) :=
(j − 1)!τ(χ)

(−2πi)j−1Ωk

L(fk, χ, j) (23)

belongs to Kfk
; it is called the algebraic part of the special value L(fk, χ, j).

Recall that the period Ωk that appears in the definition of L∗(fk, χ, j) was
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chosen at the end of Section 2.1 and depends on the sign w∞ that was fixed
in that section, and therefore on the parity of χ.

One defines L∗(f ]
k, χ, j) similarly, by replacing fk by f ]

k in the definition
above, so that

L∗(fk, χ, j) = (1− χ(p)ap(k)
−1pk−1−j)L∗(f ]

k, χ, j).

The measures µ∗{r → s} can be used to define the Mazur-Kitagawa two-
variable p-adic L-function of (k, s) ∈ U ×X by the rule:

Lp(f∞, χ, k, s) =
m∑

a=1

χ(pa)

∫
Z×p ×Z×p

(
x− pa

m
y
)s−1

yk−s−1dµ∗

{
∞→ pa

m

}
.

This function satisfies the following interpolation property with respect to
special values of the classical L-functions L∗(fk, χ, j).

Theorem 3.1. Suppose that k ∈ U ∩ Z≥2, and that 1 ≤ j ≤ k − 1 satisfies
χ(−1) = (−1)j−1w∞. Then

Lp(f∞, χ, k, j) = λ(k)(1− χ(p)ap(k)
−1pj−1)L∗(fk, χ, j).

Proof. See Theorem 1.12 of [BD05].

It will be useful to have a formula expressing Lp(f∞, χ, k, j) in terms of

the special value L∗(f ]
k, χ, j). Theorem 3.1 implies that

Lp(f∞, χ, k, j) =

λ(k)(1− χ(p)ap(k)
−1pj−1)(1− χ(p)ap(k)

−1pk−1−j)L∗(f ]
k, χ, j).

In particular, specialising at j = k/2 one obtains

Corollary 3.2. Suppose that χ satisfies

χ(−1) = (−1)k/2−1w∞.

Then for all k ∈ U ∩ Z≥2,

Lp(f∞, χ, k, k/2) = λ(k)(1− χ(p)ap(k)
−1p

k
2
−1)2L∗(f ]

k, χ, j).

Note that the Euler factor appearing in this last expression is a perfect
square.
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3.2 p-adic L-functions attached to real quadratic fields

Given Q = Ax2 + Bxy + Cy2 in FD, let τ = τQ and τ̄ be the roots of the
quadratic polynomial Q(x, 1), ordered as in (14). These belong to K, and
can be viewed as elements of Cp via the chosen embedding of K into Cp.

The quadratic form Q has a stabiliser in Γ0(M) of rank one, generated
by the element γτ ∈ Γ0(M) normalised as in (11). Let ε = cτ + d denote the
corresponding fundamental unit of K. By analogy with the definition of the
Mazur-Kitagawa p-adic L-function, it is tempting to associate to f∞ and Q
a “two-variable p-adic L-function” by the rule:

Lp(f∞, Q, k, s) := A
k
2
−1

∫
(Z2

p)′
(x− τy)s−1(x− τ̄ y)k−s−1dµ∗{r → γτr}(x, y).

Note that this expression depends on the choice of base point r in a cru-
cial way: more precisely, replacing r by r′ ∈ P has the effect of modifying
Lp(f∞, Q, k, s) by the term

A
k
2
−1(1− ε2s−k)

∫
(Z2

p)′
(x− τy)s−1(x− τ̄ y)k−s−1dµ∗{r → r′}(x, y).

It follows that the restriction of Lp(f∞, Q, k, s) to the central critical line
s = k/2 is independent of the choice of r. This motivates the following
definitions.

Definition 3.3. Let r ∈ P be any base point. The partial square root p-adic
L-function attached to f∞ and Q is the function of k ∈ U defined by

Lp(f∞, Q, k) :=

∫
(Z2

p)′
Q(x, y)

k−2
2 dµ∗{r → γτr}(x, y).

Let χ be a fixed genus character of GD. This character is said to be even
(resp. odd) if it cuts out a totally real, resp. imaginary, quadratic extension of
K. If χ is even (resp. odd), then the associated Dirichlet characters χ1 and
χ2 are both even (resp. odd). Recall the sign at infinity w∞ that was chosen
in defining the modular symbols Ifk

and in choosing the Shimura period Ωk.

Definition 3.4. Let χ be a genus character. Assume that w∞ = 1 if χ is
even, and that w∞ = −1 if χ is odd.
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1. The square root p-adic L- function attached to f∞ and χ is the function
of k ∈ U defined by

Lp(f∞/K, χ, k) :=
∑

σ∈GD

χ(σ)Lp(f∞, Q
σ, k).

2. The p-adic L-function attached to f∞ and χ is the function of k ∈ U
defined by

Lp(f∞/K, χ, k) := Lp(f∞/K, χ, k)
2.

We now prove the interpolation property for Lp(f∞/K, χ, k) which justi-
fies its designation as a p-adic L-function.

Theorem 3.5. For all k ∈ U ∩ Z≥2,

Lp(f∞/K, χ, k) = λ(k)2(1− ap(k)
−2pk−2)2D

k−2
2 L∗(f ]

k/K, χ, k/2),

where

L∗(f ]
k/K, χ, k/2) =

(k
2
− 1)!2

√
D

(2πi)k−2Ω2
k

L(f ]
k/K, χ, k/2). (24)

Proof. By definition, we have:

Lp(f∞/K,Q, k) =

∫
(Z2

p)′
Q(x, y)

k−2
2 dµ∗{r → γQr}(x, y)

= λ(k)(1− ap(k)
−2pk−2)If]

k
{r → γQr}(Q

k−2
2 ),

where the last equality follows from Proposition 2.3. Hence

Lp(f∞/K, χ, k)

= λ(k)2(1− ap(k)
−2pk−2)2

(∑
σ∈GD

χ(σ)If]
k
{r → γQσr}((Qσ)

k−2
2 )

)2

.

= λ(k)2(1− ap(k)
−2pk−2)2(2πi)2Ω−2

k Lχ, (25)

where

Lχ =

(∑
σ∈GD

χ(σ)

∫ γQz0

z0

f ]
k(z)Q

σ(z, 1)
k−2
2 dz

)2

.
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The crucial ingredient in the proof of Theorem 3.5 is Theorem 6.3.1 of [Po],
which asserts that

Lχ = D
k−1
2 (2π)−k

(
k − 2

2

)
!2L(f ]

k/K, χ, k/2). (26)

It follows readily from (25) and (26) that

Lp(f∞/K, χ, k) = λ(k)2(1− ap(k)
−2pk−2)2D

k−2
2 L∗(f ]

k/K, χ, k/2),

as was to be shown.

3.3 A factorisation formula

We come to the following factorisation relating the Mazur-Kitagawa p-adic
L-functions (more precisely, their restriction to the central critical line) with
the p-adic L-functions attached to the real quadratic field K in the previous
section.

Theorem 3.6. For all k ∈ U ,

Lp(f∞/K, χ, k) = D
k−2
2 Lp(f∞, χ1, k, k/2)Lp(f∞, χ2, k, k/2).

Proof. By comparing definitions (23) and (24), we see that

L∗(f ]
k/K, χ, k/2) = L∗(f ]

k, χ1, k/2)L∗(f ]
k, χ2, k/2).

Also, because p is inert in K, the Dirichlet characters χ1 and χ2 satisfy
χ1(p) = −χ2(p), and hence the product of the Euler factors appearing in
Corollary 3.2 with χ replaced by χ1 and χ2 is equal to the Euler factor
appearing in Theorem 3.5. Hence Theorem 3.5 and Corollary 3.2 imply that
for all k ∈ U ∩ Z≥2,

Lp(f∞/K, χ, k) = D
k−2
2 Lp(f∞, χ1, k, k/2)Lp(f∞, χ2, k, k/2). (27)

Since U ∩ Z≥2 is dense in U , and the two sides of (27) are continuous on U ,
they necessarily agree on this region.
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4 Proof of the main result

We begin by noting the following connection between the Stark-Heegner point
Pχ and the leading term of the p-adic L-function that was introduced in
Section 3.2. This relation can be viewed as a being in the spirit of a Gross-
Zagier formula since it relates Stark-Heegner points to derivatives of L-series.
It is even more closely in the spirit of the main Theorem of [BD98] and its
extension to Hida families stated in Theorem 4.9 of [BD05].

Theorem 4.1. For all genus characters χ of GD,

d

dk
Lp(f∞/K, χ, k)k=2 =

1

2
(1− χ1(−M)wM) logE(Pχ).

Proof. By definition for each Q ∈ FD/Γ0(M) with associated roots τ and τ̄ ,
we have

d

dk
Lp(f∞, Q, k)k=2 =

1

2

∫
(Z2

p)′
(log(x− τy) + log(x− τ̄ y)) dµ∗{r → γτr}

=
1

2
(Jτ + τpJτ )

=
1

2
(Jτ − wMJτστ ),

where the last equality is a consequence of equation (15). It follows from
Proposition 1.7 that

d

dk
Lp(f∞/K, χ, k)k=2 =

1

2
(1− χ1(−M)wM)

(∑
σ∈GD

χ(σ)Jτσ

)
,

as was to be proved.

Corollary 4.2. For all genus characters χ of GD,

d2

dk2
Lp(f∞/K, χ, k)k=2 =

{
2 log2

E(Pχ) if χ1(−M) = −wM

0 if χ1(−M) = wM .

We are now ready to prove Theorem 1 of the introduction.

Theorem 4.3. Let χ be the genus character attached to the pair of Dirichlet
characters χ1 and χ2. Suppose that E has at least two primes of multiplicative
reduction, and that χ1(−M) = −wM .
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1. There is a point Pχ ∈ E(Hχ)χ and t ∈ Q× such that

logE(Pχ) = t logE(Pχ).

2. The point Pχ is of infinite order if and only if L′(E/K, χ, 1) 6= 0.

Proof. The proof proceeds in three stages, which are parallel to Kronecker’s
“solution to Pell’s equation” described in the last paragraph of the introduc-
tion.

1. Corollary 4.2 expresses the logarithm of the Stark-Heegner point Pχ in
terms of special values of L-series:

log2
E(Pχ) =

1

2

d2

dk2
Lp(f∞/K, χ, k)k=2. (28)

2. Theorem 3.6 asserts that

Lp(f∞/K, χ, k) = D
k−2
2 Lp(f∞, χ1, k, k/2)Lp(f∞, χ2, k, k/2), (29)

so that we are now reduced to understanding the leading terms of
the Mazur-Kitagawa p-adic L-functions attached to χ1 and χ2 in a
neighbourhood of k = 2.

3. Let
sign(E, χj) := −wNχj(−N)

denote the sign in the functional equation for the complex L-series
L(E, χj, s). Since χ1(−N)χ2(−N) = εK(−N) = −1, it follows that
sign(E, χ1) and sign(E, χ2) are opposite. Order χ1 and χ2 in such a
way that

sign(E, χ1) = −1, sign(E, χ2) = 1. (30)

Then χ1(−N) = wN , and the running hypothesis that χ1(−M) = −wM

implies that
χ1(p) = −wp = ap. (31)

Therefore the Mazur-Kitagawa p-adic L-function Lp(f, χ1, k, s) has an
exceptional zero at (k, s) = (2, 1). Conditions (30) and (31) imply that
we are in the situation where Theorem 5.4 of [BD05] can be applied to
Lp(f, χ1, k, k/2). Hence, this p-adic analytic function vanishes to order
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≥ 2 at k = 2, and there is a global point Pχ1 ∈ E(Q(
√
D1)) and a

rational number `1 ∈ Q× satisfying the following three properties:

A.
d2

dk2
Lp(f∞, χ1, k, k/2)k=2 = `1 log2(Pχ1). (32)

B. The point Pχ1 is of infinite order if and only if L′(E, χ1, 1) 6= 0.

C. The rational number `1 satisfies

`1 ≡ L∗(f, ψ, 1) (mod (Q×)2), (33)

for any primitive quadratic Dirichlet character ψ for which L(f, ψ, 1) 6=
0 and such that

ψ(`) = χ1(`) for `|M, ψ(p) = −χ1(p).

On the other hand, the quantity

Lp(f∞, χ2, 2, 1) = 2L∗(E, χ2, 1) =: 2`2 (34)

is a rational number, which is non-zero if and only of L(E, χ2, 1) does not
vanish. Note that `1`

−1
2 is a rational square by (33). Choose t ∈ Q× in such

a way that

t2 =

{
`1`

−1
2 if `2 6= 0;

1 otherwise,

and let

Pχ :=

{
Pχ1 if L′(E/K, χ, 1) = L′(E, χ1, 1)L(E, χ2, 1) 6= 0,
0 otherwise,

Equations (28), (29), (32) and (34) imply Theorem 4.3, after possibly ad-
justing the sign of t.

Remark 4.4. The condition χ1(−M) = −wM that is imposed in Theo-
rem 4.3 is needed both in the first and third steps of the argument. When
χ1(−M) = wM , the signs in the functional equations for both Lp(fk, χ1, s)
and Lp(fk, χ2, s) are −1.
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1. In the case of Lp(fk, χ1, s), this arises from the fact that the sign in the
classical functional equation for L(fk, χ1, s) is −1, while Lp(fk, χ1, s)
does not have an exceptional zero, because χ1(p) = wp = −ap.

2. For Lp(f∞, χ2, k, s), the classical L-function L(fk, χ2, s) vanishes to
even order, but its p-adic counterpart has an exceptional zero and
therefore vanishes to odd order at the central critical point. (This
latter situation is precisely the one that was studied by Greenberg and
Stevens in [GS], where the vanishing of Lp(f∞, χ2, k, s) on the cen-
tral critical line was used to prove the “exceptional zero conjecture” of
Mazur, Tate and Teitelbaum.)

Thus, in the setting where χ1(−M) = wM , equation (29) implies that the
p-adic L-function Lp(f∞/K, χ, k) vanishes identically. Hence no arithmetic
information is to be extracted from this function, and a proof of Theorem
1 would seem to require a different approach. (An eventual extension of
equation (32) to the setting of Hilbert modular forms attached to the real
quadratic field K seems a promising avenue.)

Remark 4.5. In the case where χ is not quadratic, the crucial factorisation
(29) ceases to be available. This is a more serious obstacle, and the ideas
explored in his paper appear to shed no light on the algebraicity of the
individual Stark-Heegner points Pτ when GD is not of exponent 2.
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