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Preface

This monograph is based on an NSF-CBMS lecture series given by the author
at the University of Central Florida in Orlando from August 8 to 12, 2001.

The goal of this lecture series was to survey some recent developments in the
arithmetic of modular elliptic curves, with special emphasis on

(1) the Birch and Swinnerton-Dyer conjecture;
(2) the construction of rational points on modular elliptic curves;
(3) the crucial role played by modularity in shedding light on these two closely

related issues.

The text is divided into three parts of roughly equal length.

The first consists of Chapters 1–3 and Chapter 10. The first three chapters in-
troduce the background and prerequisites for what follows: elliptic curves, modular
forms and the Shimura-Taniyama-Weil conjecture, complex multiplication, and the
fundamental Heegner point construction whose study and generalisation is the main
theme of the monograph. The notion of “Heegner system”, which is spelled out in
Chapter 3, is used in Chapter 10 to prove Kolyvagin’s theorem relating Heegner
points to the arithmetic of elliptic curves, giving strong evidence for the Birch and
Swinnerton-Dyer conjecture for elliptic curves of analytic rank at most one. While
more advanced than Chapters 1–3, Chapter 10 is independent of the material in
Chapters 4–9 and could be read immediately after Chapter 3.

Chapters 4–6 introduce variants of modular parametrisations in which modular
curves are replaced by Shimura curves attached to certain indefinite quaternion
algebras. A study of these parametrisations reveals an important new structure:
the rigid analytic uniformisation of Shimura curves discovered by Čerednik and
Drinfeld, giving rise to p-adic uniformisations of modular elliptic curves by discrete
arithmetic subgroups of SL2(Qp) arising from definite quaternion algebras.

The main new contributions of this monograph are contained in Chapters 7–9.
These Chapters give an overview of the author’s attempts to extend the theory
of Heegner points and complex multiplication to certain situations where the base
field is not a CM field. The notions of rigid analysis developed in Chapters 5 and
6 play a key role in suggesting a p-adic variant of the theories of Chapters 7 and
8. This leads, in Chapter 9, to a conjectural construction of points on a modular
elliptic curve over Q defined over ring class fields of a real quadratic field, which
are expected to behave much like classical Heegner points attached to an imaginary
quadratic field.

The reader is cautioned that many proofs give only the main ideas; details
have often been left out or relegated to exercises, retaining (for better or for worse)
the flavour of the original lecture series. Of necessity, a number of important

xi
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topics had to be omitted or inadequately touched upon, for lack of time. The
material covered here would be suitable for a 10-hour to 15-hour mini-course, or,
with extra background material, for a one-semester or even a year-long seminar
aimed at graduate students.

A selection of exercises is given at the end of most chapters. Many of these
consist in working out the details of arguments sketched in the text. It is hoped that
readers encountering this material for the first time will find the exercises helpful,
while more sophisticated readers may elect to skip them without loss of continuity.

Some of the ideas discussed in this monograph have their roots in the author’s
collaboration with Massimo Bertolini over the years. Exchanges with Samit Das-
gupta, Peter Green, Adrian Iovita and Adam Logan have also helped in forming
and solidifying key insights. The author thanks Peter Hilton and Heath Martin
of the University of Central Florida for the marvelous job they did in running the
NSF-CBMS conference on which this monograph is based, as well as the partici-
pants for their many stimulating comments and suggestions. A rough version of this
text formed the basis for a graduate seminar at McGill University in the 2002–2003
academic year, and at Priceton University in the Fall of 2003. The participants of
the McGill seminar—Hugo Chapdelaine, Samit Dasgupta, Antoine Gournay, and
Matt Greenberg—pointed out a number of mistakes in earlier versions. I am spe-
cially grateful to Pete Clark and Claude Levesque for their detailed proofreading
of this manuscript which led to a large number of corrections and improvements.
Needless to say, the imperfections and inaccuracies which remain are to be blamed
on the author alone! Finally, it is a great pleasure to acknowledge my colleagues at
CICMA, and NSERC, whose material support, in particular through the granting
of a Steacie Fellowship, has greatly facilitated the writing of this monograph.

Henri Darmon
Montreal 2003



CHAPTER 1

Elliptic curves

1.1. Elliptic curves

Definition 1.1. An elliptic curve over a field F is a complete algebraic group
over F of dimension 1.

Equivalently, an elliptic curve is a smooth projective curve of genus one over
F equipped with a distinguished F -rational point, the identity element for the
algebraic group law. It is a consequence of the Riemann-Roch theorem ([Si86],
chap. III) that when F is of characteristic different from 2 and 3 such a curve can
be described by an affine equation of the form

(1.1) E : y2 = x3 + ax + b, with a, b ∈ F, ∆ := −24(4a3 + 27b2) 6= 0,

in which the distinguished F -rational point is taken to be the unique point at
infinity in the homogeneous equation for the corresponding projective curve. Over
a field of arbitrary characteristic, an elliptic curve can still be described as a plane
cubic curve, given by the somewhat more complicated equation sometimes referred
to as the generalised Weierstrass normal form

(1.2) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, with ∆ 6= 0.

In fact, elliptic curves are sometimes defined as plane cubic curves given by an
equation of the form (1.1) or (1.2), the addition law on E being described geo-
metrically via the well-known chord-and-tangent law. Such an approach has the
virtue of concreteness and underscores the possibility of doing explicit calculations
with elliptic curves (by computer, or even by hand) which is one of the charms of
the subject. On the other hand, Definition 1.1 is more conceptual and explains
why elliptic curves should be singled out for special attention: they are the only
projective curves that can be endowed with an algebraic group law—a structure
which both facilitates and enriches their diophantine study.

For two elliptic curves over F to be isomorphic over F̄ , it is necessary and
sufficient that their so-called j-invariants, defined in terms of the coefficients of
equation (1.1) by the formula

(1.3) j = −21233a3

∆

be equal.
The structure of the group E(F ) of solutions to (1.1) or (1.2) depends of course

on the nature of the field F , for example:

1. When F is a finite field, the group E(F ) is a finite abelian group. The study
of E(F ) is at the origin of many of the practical applications of elliptic curves to
cryptography and coding theory.

1



2 1. ELLIPTIC CURVES

2. If F is the field R of real numbers or the field C of complex numbers (or any
locally compact field), then E(F ) inherits from the topology of F the structure of
a compact abelian group. For example, the group E(R) is abstractly isomorphic
either to a circle group, or the product of a circle and Z/2Z, and E(C) is topolog-
ically isomorphic to a torus. As a complex analytic manifold it is isomorphic to
the quotient of C by a lattice Λ ⊂ C generated by the periods of a holomorphic
differential ω against the integral homology of E(C). To make the isomorphism
C/Λ −→ E(C) explicit, let ℘Λ(z) be the Weierstrass ℘-function attached to Λ,
defined by

℘Λ(z) =
1

z2
+

∑

λ∈Λ−{0}

(

1

(z − λ)2
− 1

λ2

)

.

The Λ-periodic functions x = ℘Λ(z) and y = ℘′
Λ(z) satisfy the algebraic relation

(1.4) y2 = 4x3 − g2x − g3,

where

(1.5) g2 = 60
∑

λ∈Λ−{0}

1

λ4
, g3 = 140

∑

λ∈Λ−{0}

1

λ6
,

and the map

(1.6) Φw(z) = (℘Λ(z), ℘′
Λ(z))

gives an isomorphism (of groups as well as complex analytic varieties) between C/Λ
and the elliptic curve with equation (1.4), which is isomorphic to E over C. For
more details, see [Si86], Chapter VI.

The isomorphism between E(C) and C/Λ makes it transparent that the group
En of points on E of order n, with coordinates in C or in any algebraically closed
field of characteristic zero, is isomorphic to Z/nZ × Z/nZ as an abstract group.

3. If F is a p-adic field (Qp, say, or a finite extension of Qp) then E(F ) is a compact
p-adic Lie group, hence an extension of a finite group by a pro-p group E1(F ) (cf.
[Si86], Chapters IV and VII).

One may assume, after a change of variables, that E is given by an equation
of the form (1.2) in which the coefficients ai belong to the ring of integers OF of
F , and for which the associated discriminant ∆min = ∆ has minimal valuation in
OF . If ∆ belongs to O×

F , then the equation obtained by reducing (1.2) modulo a
uniformiser π ∈ OF defines an elliptic curve over the finite field k = OF /(π). In
this case one says that E/F has “good reduction”.

An important role is played in this monograph by elliptic curves having a special
type of bad reduction, referred to as multiplicative reduction. This is the case where
∆min ∈ OF is not a unit and where the equation obtained by reducing (1.2) modulo
π has an ordinary double point as its only singularity. In that case ordπ(j) < 0,
and there is a q ∈ F× which can be obtained by formally inverting the power series
expressing j in terms of q

j =
1

q
+ 744 + 196884q + · · ·

to express q as a power series in 1/j with integral (and hence p-adically bounded)
coefficients. The curve E is isomorphic over F̄ (more precisely, over a quadratic
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unramified extension of F ) to the curve Eq given by the equation

(1.7) Eq : y2 + xy = x3 + a4(q)x + a6(q),

where

(1.8) a4(q) = −s3(q), a6(q) =
−5s3(q) + 7s5(q)

12
, with sk(q) =

∞
∑

n=1

nkqn

1 − qn
.

The p-adic analytic isomorphism ΦTate : F̄× −→ Eq(F̄ ) is obtained by setting

(1.9) ΦTate(u) =

(

∑

n∈Z

qnu

(1 − qnu)2
− 2s1(q),

∑

n∈Z

(qnu)2

(1 − qnu)3
+ s1(q)

)

.

(For more details, see [Si94], ch. V.) This p-adic uniformisation theory for E yields
a description of E(F̄ ) in the spirit of the Weierstrass theory of equation (1.6). It
plays an important role in the constructions of Chapters 6 and 9.

4. The study of elliptic curves over the finite, complex and p-adic fields, while of
interest in its own right, is subordinate in this monograph to the case where F is
a number field—the field of rational numbers or a finite extension of it. The key
result and the starting point for the theory of elliptic curves over number fields is
the Mordell-Weil theorem. This result was first established, in certain special cases,
by Fermat himself using his method of descent, and its proof is recalled in the next
section.

1.2. The Mordell-Weil theorem

Let E be an elliptic curve defined over a number field F .

Theorem 1.2 (Mordell-Weil). The Mordell-Weil group E(F ) is finitely gener-
ated, i.e.,

E(F ) ' Zr ⊕ E(F )tor,

where r ≥ 0 and E(F )tor is the finite torsion subgroup of E(F ).

Since (the modern formulation of) the proof of the Mordell-Weil theorem plays
an important role in the questions studied in this monograph, particularly in Chap-
ter 10, it is worthwhile to recall here the main ideas which are behind it.

Proof of Theorem 1.2. The proof is composed of two ingredients.

1. The existence of a height function h : E(F ) −→ R satisfying suitable properties.

Theorem 1.3. There exists a function

h : E(F ) −→ R

satisfying:

(1) For all points Q in E(F ), there is a constant CQ depending only on Q,
and an absolute constant C depending only on E, such that

h(P + Q) ≤ 2h(P ) + CQ, h(mP ) ≥ m2h(P ) + C,

for all P ∈ E(F ).
(2) For all B > 0,

{P such that h(P ) < B} is finite.
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2. The weak Mordell-Weil theorem.

Theorem 1.4. For any integer n ≥ 1, the group E(F )/nE(F ) is finite.

These two ingredients are combined in the following descent lemma of Fermat
of which the Mordell-Weil theorem is a direct consequence.

Lemma 1.5 (Fermat). Let G be an abelian group equipped with a height function
satisfying the properties of Theorem 1.3, and assume that the quotient G/nG is
finite for some n > 1. Then G is finitely generated.

It is not our intention to focus any further on heights (which are discussed at
length in [Si86] for example), or on the (elementary) descent lemma, whose proof is
relegated to the exercises. The weak Mordell-Weil theorem is the most interesting
ingredient from the point of view of a study of the Birch and Swinnerton-Dyer
conjecture, since it is the source of the non-effectivity in the proof of the Mordell-
Weil theorem.

The proof of Theorem 1.4 begins with the observation that this theorem is
trivially true over an algebraic closure F̄ of F , since the multiplication by n map
is surjective on E(F̄ ). Recall that En := En(F̄ ) denotes the kernel of this map.
Hence the sequence

(1.10) 0 −→ En −→ E(F̄ )
n−→ E(F̄ ) −→ 0

of modules equipped with their natural continuous action of GF := Gal(F̄ /F ) is
exact. Following the usual conventions of Galois cohomology, denote by

H i(F, M) := H i(GF , M)

the group of continuous i-cocycles modulo the group of continuous i-coboundaries
with values in the GF -module M . (For details on these definitions, see [CF67],
Chapter IV, or [Si86], appendix B). Taking the Galois cohomology of the exact
sequence (1.10) gives rise to the long exact cohomology sequence

0 −→ En(F ) −→ E(F )
n−→ E(F )

δ−→ H1(F, En) −→ H1(F, E)
n−→ H1(F, E)

from which can be extracted the so-called descent exact sequence

(1.11) 0 −→ E(F )/nE(F )
δ−→ H1(F, En) −→ H1(F, E)n −→ 0.

The connecting homomorphism δ embeds the group E(F )/nE(F ) into an object
of Galois-theoretic nature, since H1(GF , En) depends only on the structure of GF

and of the GF -module En, not on the elliptic curve E itself. For example, if all the
n-division points of E(F̄ ) are defined over F so that GF acts trivially on En, then
elements in

H1(F, En) = Hom(GF , En)

are indexed by pairs (L, ϕ) where L is a finite Galois extension of F and ϕ is an
identification of Gal(L/F ) with a subgroup of En. If H1(F, En) were a finite group,
the mere existence of the exact sequence (1.11) would be enough to conclude the
proof of Theorem 1.4. However, this is never the case when F is a number field
and n > 1. It is therefore necessary to exploit local information to pin down the
image of δ in H1(F, En) with greater accuracy. More precisely, for any place v of
F (archimedean or not) the embedding of F into the completion Fv at the place
v, extended to an embedding of F̄ into F̄v , induces an inclusion GFv

⊂ GF . The
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exact sequence (1.11) has a local counterpart with F replaced by Fv which fits into
the commutative diagram
(1.12)

0 −→ E(F )/nE(F )
δ−→ H1(F, En) −→ H1(F, E)n −→ 0

↓ resv ↓ ↘ ∂v ↓ resv

0 −→ E(Fv)/nE(Fv)
δ−→ H1(Fv , En) −→ H1(Fv , E)n −→ 0

in which the vertical arrows correspond to the natural restriction maps. Since
δ(E(F )/nE(F )) is contained in the kernel of ∂v for all v, it is contained in the
so-called n-Selmer group of E over F defined as follows.

Definition 1.6. Let E be an elliptic curve over a number field F .

(1) The n-Selmer group of E over F , denoted Seln(E/F ), is the set of classes
c ∈ H1(F, En) satisfying ∂v(c) = 0, for all places v of F .

(2) The Shafarevich-Tate group of E/F , denoted LLI(E/F ), is the set of
classes c ∈ H1(F, E) satisfying resv(c) = 0, for all places v of F .

The exact sequence (1.11) can now be replaced by the exact sequence involving
the n-Selmer group and the n-torsion in the Shafarevich-Tate group:

(1.13) 0 −→ E(F )/nE(F )
δ−→ Seln(E/F ) −→ LLI(E/F )n −→ 0.

The weak Mordell-Weil theorem is then a consequence of the following general
finiteness theorem for the Selmer group.

Proposition 1.7. The Selmer group Seln(E/F ) is finite.

Sketch of proof of Proposition 1.7. The proof can itself be divided into
two stages: a local study, in which it is shown that Seln(E/F ) is contained in the
group H1

n∆(F, En) consisting of cohomology classes c ∈ H1(F, En) whose restriction
to the inertia group Iv at v is trivial, for all places v not dividing n∆. It is only at
this stage of the argument that certain facts about the geometry and arithmetic of
elliptic curves (albeit, over local fields) are needed. (Cf. Exercise 7.)

A global study is then needed to show that H1
n∆(F, En) is finite. The key

ingredient in this finiteness result (cf. Exercise 8) is the Hermite-Minkowski theorem
asserting that there are only finitely many extensions of a given number field with
bounded degree and ramification. �

To recapitulate, the proof of the Mordell-Weil theorem sketched above (and, in
particular, the proof of the weak Mordell-Weil theorem) has led to the introduction
of two fundamental invariants, the n-Selmer group of E/F and the Shafarevich-
Tate group of E/F , fitting into the fundamental exact sequence (1.13). The weak
Mordell-Weil theorem follows from the finiteness of Seln(E/F ) whose proof in turn
relies on the Hermite-Minkowski theorem, which is itself one of the key general
finiteness results of algebraic number theory. �

Since Seln(E/F ) is effectively calculable, the following question emerges natu-
rally from the proof of theorem 1.2.

Question 1.8. How good an approximation to E(F )/nE(F ) is Seln(E/F ),
i.e., how large can LLI(E/F )n be?
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The following basic conjecture implies that the group E(F )/nE(F ) and the n-
Selmer group Seln(E/F ) only deviate by an amount which is bounded independently
of n and in fact that these two groups are equal for all but finitely many primes n.

Conjecture 1.9 (Shafarevich-Tate). The group LLI(E/F ) is finite.

One is now led to formulate the diophantine problem which this monograph is
motivated by and largely devoted to.

Question 1.10. Given an elliptic curve E over a number field F , is there an
algorithm to

(1) Test if E(F ) is infinite?
(2) Compute the rank r of the Mordell-Weil group E(F )?
(3) Produce a set P1, . . . , Pr of generators for E(F )/E(F )tor?

These questions are ostensibly arranged in order of increasing difficulty, but
some of the key mysteries are already present in (1).

1.3. The Birch and Swinnerton-Dyer conjecture

The main theoretical insights concerning question 1.10 are derived from the
fundamental Birch and Swinnerton-Dyer conjecture.

Much is gained in simplicity, and comparatively little is lost in generality, by
restricting to the case where F = Q, the field of rational numbers. In that case the
elliptic curve E can be described by a so-called minimal Weierstrass equation

(1.14) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

in which the coefficients ai are integers and in which ∆ is minimal over all equations
of this sort describing E. The invariant ∆ attached to this equation is called the
minimal discriminant of E. The invariant holomorphic differential form

(1.15) ωE =
dx

2y + a1x + a3

is called the Néron differential attached to E.
If p does not divide ∆, then the curve over Fp obtained by reducing equation

(1.14) is an elliptic curve whose isomorphism type does not depend on the choice
of a minimal Weierstrass equation. In that case one says that E has good reduction
at p and denotes by Np the cardinality of the group E(Fp) of points on E with
coordinates in Fp. The function p 7→ Np is a subtle arithmetic function; anticipating
somewhat on the discussion of the next chapter, the key modularity property yields
a device for gaining some control on the behaviour of this function. For now,
the main (relatively) elementary information of which one disposes concerning the
behaviour of Np is that it can be written in the form

Np = p + 1 − ap,

where the “error term” ap satisfies Hasse’s inequality (cf. [Si86], Chapter V):

|ap| ≤ 2
√

p.

The basic insight behind the Birch and Swinnerton-Dyer conjecture is that
the rank of E(Q) ought to be reflected in the finer properties of the asymptotic
behaviour of the quantities Np as p −→ ∞, and that a large rank, giving rise to
an abundant supply of rational points in E(Q), would tend to make the numbers
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Np rather larger than (p + 1) on average. On the basis of numerical experiments,
Birch and Swinnerton-Dyer were led to the following conjecture.

Conjecture 1.11. There exists a constant CE depending only on E such that

∏

p<X

Np

p
' CE(log X)r,

where r is the rank of E(Q). (Here the symbol ' means that the ratio of the
expressions appearing on the left and right tends to 1 as X −→ ∞.)

Conjecture 1.11 can be viewed as an example of a “local-global principle” since
it asserts that the local invariants Np “know about” the rank of E(Q), a global
invariant.

One of the difficulties of Conjecture 1.11 is that the product appearing on the
left hand side, involving the arithmetically defined quantities Np, is hard to come
to terms with analytically. A better conceptual understanding of the Birch and
Swinnerton-Dyer conjecture can be gained by recasting it in terms of the L-function
of E/Q.

1.4. L-functions

To begin with, it is useful to extend the definition of the coefficients ap, which
in the previous section were defined only for the primes p not dividing ∆, to a
quantity an indexed by arbitrary positive integers n.

The definition of ap is extended to the primes p of bad reduction for E according
to a recipe which depends on the type of reduction of E modulo p.

Additive reduction: This occurs if E has a nodal singularity (cusp) so
that its group of non-singular points is isomorphic to the additive group
Ga. In that case, set ap := 0.

Split multiplicative reduction: This occurs if E has an ordinary double
point as its only singularity, with tangent lines having rational slopes over
Fp. In that case, set ap := 1.

Non-split multiplicative reduction: This occurs if E has an ordinary
double point as its only singularity over Fp with tangent lines having
slopes defined over the quadratic extension of Fp but not Fp itself. In that
case, set ap := −1.

Closely related to the discriminant, but of even greater importance in describing
the behaviour of the L-series of E, is the so-called arithmetic conductor N of E,
which is (almost) characterised by the following three properties:

(1.16) ordp(N) = 0 if and only if E has good reduction at p;

in particular, N has the same set of prime divisors as the minimal discriminant ∆.

(1.17) ordp(N) = 1 if and only if E has multiplicative reduction at p.

(1.18) ordp(N) = 2 otherwise, when p > 3.

In the remaining cases not covered by (1.16), (1.17) and (1.18) where p = 2 or 3
and E has additive reduction at p, a more involved recipe for calculating ordp(N)
is described by an algorithm of Tate [Ta72].
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The L-function of E is defined as an infinite Euler product

(1.19) L(E, s) =
∏

p6 |N
(1 − app

−s + p1−2s)−1
∏

p|N
(1 − app

−s)−1 =:
∑

ann−s,

in which the expression of L(E, s) as a Dirichlet series supplies the definition of the
coefficient an when n is not prime.

Note that evaluating the Euler product formally at s = 1 gives

L(E, 1)“ = ”
∏

p

p

Np
,

where Np is the cardinality of the group of non-singular points in E(Fp). This
equality is just formal, since by Exercise 10 the Euler product defining L(E, s) only
converges in the right half-plane Re(s) > 3/2.

It is believed that the behaviour of L(E, s) at s = 1—assuming one can make
sense of it, via the process of analytic continuation—should capture the asymp-

totics of the product
∏

p<X
Np

p appearing in the crude version of the Birch and

Swinnerton-Dyer conjecture. This belief is made precise in the following more
widely used form of the conjecture.

Conjecture 1.12 (Birch and Swinnerton-Dyer). The L-function L(E, s) ex-
tends to an entire function on C and

BSD1: L(E, 1) 6= 0 if and only if #E(Q) < ∞.
BSD2: The rank r of E(Q) is equal to the order of vanishing of L(E, s) at

s = 1.
BSD3: Let RE be the regulator of E, defined by

RE = det(〈Pi, Pj〉)1≤i,j≤r#E(Q)−2
tors,

where P1, . . . , Pr is a set of independent generators for E(Q)/E(Q)tors,
and 〈 , 〉 is the canonical Néron-Tate height attached to E/Q, defined in
[Si86], Chapter VIII, §9. Let cp denote the local terms defined in [Si86],
Chapter VII §6, which depend only on the behaviour of E over Qp. Then

lim
s→1

L(E, s)

(s − 1)r
= #LLI(E/Q)RE





∏

p|N
cp



 c∞.

Conjecture 1.12 proposes three versions of the Birch and Swinnerton-Dyer con-
jecture in order of increasing strength. Statement BSD2 is the form which appears
as a Clay Institute Millenium Prize problem [Wi00], but a number of the essential
difficulties are already present in BSD1, particularly in the “if” statement.

1.5. Some known results

The analytic continuation of L(E, s) is often stated separately from the Birch
and Swinnerton-Dyer conjecture, as an important conjecture in its own right, which
has now been proved (for elliptic curves over Q) thanks to the work of Wiles and
its subsequent refinements.

Theorem 1.13. The L-function L(E, s) extends to an entire function on C

and has a functional equation relating its value at s and 2 − s, of the form

Λ(E, s) = ±Λ(E, 2− s),
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where

Λ(E, s) := (2π)−sΓ(s)Ns/2L(E, s),

and where

Γ(s) =

∫ ∞

0

e−tts−1dt

is the Γ-function.

This theorem was proved by Wiles [Wi95] and Taylor-Wiles [TW95] in the
case where E is a semistable elliptic curve; the full result was established after a
series of strengthenings of Wiles’ method [Di96], [CDT99], [BCDT01]. Some of
the key concepts underlying the proof of Wiles’ result—modular forms, and their
associated L-series—are introduced in the next chapter.

While little is known in general about the Birch and Swinnerton-Dyer conjec-
ture, one does have the following important partial result, which was originally
proved assuming the validity of Theorem 1.13, before that theorem was itself es-
tablished. Reversing the chronological development, Theorem 1.14 is stated here
as an unconditional result.

Theorem 1.14 (Gross-Zagier, Kolyvagin). Let E be an elliptic curve over Q.

(1) If L(E, 1) 6= 0, then #E(Q) < ∞, i.e., r = 0.
(2) If L(E, 1) = 0 and L′(E, 1) 6= 0, then r = 1, and there is an efficient

method for calculating E(Q).

In both cases LLI(E/Q) is finite.

Thus, both BSD2 of Conjecture 1.12 and the Shafarevich-Tate conjecture are
proved when ords=1L(E, s) ≤ 1.

One of the goals of this monograph is to discuss at least a few of the ideas that
go into the proofs of Theorems 1.13 and 1.14. Both rely crucially on the notion of
modularity which is the focus of the next chapter.

Further results and references

Tate’s article [Ta74] presents what has by now become the standard account
of the theory of elliptic curves. It forms the basis for both the classic graduate text
by Silverman [Si86] and Husemoller’s book [Hu87], and the less comprehensive
but more elementary undergraduate treatise [ST92]. All three references contain
a discussion of the proof of the Mordell-Weil theorem. Also recommended is the
short book by Cassels [Cas91] which focusses on local-global principles and on
the concepts surrounding the modern formulation of the proof of the Mordell-Weil
theorem.

Beyond the questions arising from the lack of effectivity in the Mordell-Weil
theorem, there are a number of other tantalising open problems suggested by this
result. Foremost among these is the question of whether the rank of elliptic curves
over the rationals can be arbitrarily large. Mestre [Mes91] has shown that there
are infinitely many elliptic curves over Q with rank ≥ 12, and a curve with rank at
least 24 has been found by computer search. There is no number field F for which
the rank of E(F ) is known to get arbitrarily large as E varies over the elliptic curves
defined over F , although such is expected to be the case for any number field.
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There is an abundance of textbooks, such as [Si94], covering more advanced
topics, or Koblitz’s book [Kob93], which explores the connections between the
Birch and Swinnerton-Dyer conjecture and the ancient congruent number problem
of determining which integers are the areas of right-angled triangles with rational
sides lengths. Also of relevance to the topics of Chapter 2 is the book of Knapp
[Kn92] emphasising the relation between the theory of elliptic curves and modular
forms.

The conjecture of Birch and Swinnerton-Dyer was formulated in the early 60’s
in a series of two articles [BSD63] and [BSD65]. The precise relation (in which a

surprising factor of
√

2 makes an appearance) between the asymptotics of the finite
product occuring in the crude form of the Birch and Swinnerton-Dyer conjecture
(Conjecture 1.11) and the behaviour of L(E, s) at s = 1 is discussed in [Go] and
[Con].

Exhibiting many formal analogies with the case where F is a number field is
the case where F is a function field—the field k(T ) of rational functions in an
indeterminate T over a finite field k, or a finite extension of k(T ). While largely
ignored in this monograph, the study of elliptic curves over function fields exhibits
many similarities with that of elliptic curves over number fields, while at the same
time appearing to be more tractable. For example, the Mordell-Weil theorem holds
in this context, and it is also known that the rank of elliptic curves over k(T ) can
become arbitrarily large, by work of Tate [TS67] and Ulmer [Ul]. (The latter work
produces elliptic curves over Fp(T ) of arbitrarily large rank whose j-invariants do
not lie in the field of constants. For a variant of this construction based on the
theory of Heegner points described in Chapter 3, see [Da03].) More germane to
this monograph, a lot more is known concerning the Birch and Swinnerton-Dyer
conjecture for elliptic curves over function fields. The L-function L(E/F, s) can
be defined in this context, is known to have a functional equation, and its zeroes
(of which there are finitely many) satisfy an analogue of the Riemann hypothesis.
Furthermore, Tate has shown that the rank of E(F ) is at most the order of vanishing
of L(E, s) at s = 1, and that the full Birch and Swinnerton-Dyer conjecture, in its
strongest form (BSD3) holds for E/F if LLI(E/F ) is finite. Together with Theorem
1.14, the evidence arising from the analogy between function fields and number
fields is probably the best evidence we dispose of at present for the validity of the
Birch and Swinnerton-Dyer conjecture.

Exercises

(1) Prove the descent lemma (Lemma 1.5) in the text.
(2) Let E be an elliptic curve over a field F . The goal of this exercise is to describe

the connecting homomorphism δ : E(F )/nE(F ) −→ H1(F, En). Given a point
P ∈ E(F ), choose P ′ ∈ E(F̄ ) such that nP ′ = P , and set

zP ′(σ) = σP ′ − P ′, for σ ∈ GF .

(a) Show that zP ′ belongs to the group Z1
cont(GF , En) of continuous 1-cocycles

on GF with values in En.
(b) Show that the image of zP ′ in H1(F, En) depends only on P , and not on

the choice of P ′ that was made to define it. (Call cP this image.)
(c) Show that the assignment P 7→ cP yields an injective group homomorphism

E(F )/nE(F ) −→ H1(F, En),
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and that δ(P ) = cP .
(3) Assuming that LLI(E/F ) is finite, describe an effective procedure for comput-

ing E(F ). (I.e., an algorithm which given (E, F ) as input is guaranteed to
terminate after a finite amount of time with a list of generators for E(F ).)

(4) Let E be an elliptic curve over R and let ΛE ⊂ C be a period lattice associated
to a differential on E over R. Show that E(R) has two connected components
if and only if the lattices

ΛE and (ΛE ∩ R) + (ΛE ∩ iR)

are equal, and that otherwise the former contains the latter with index 2.
(5) Let E be an elliptic curve defined over a number field F of odd degree. If n is

odd, show that En(F ) is cyclic.
(6) Let E be an elliptic curve over Q with minimal discriminant ∆, and let p be a

prime of multiplicative reduction for E, so that E/Qp is endowed with the Tate
uniformisation of equation (1.9). If ` is a prime which does not divide ordp(∆),
show that the image of GQ in Aut(E`) ' GL2(F`) contains a unipotent element
(conjugate to a non-scalar upper triangular matrix with ones on the diagonal).

(7) Let E be an elliptic curve over a finite extension K of Qp. Let π be a uniformiser
for K and let k = OK/(π) denote the residue field. Assume that E has good
reduction at π.
(a) Show that the kernel of the natural reduction map

E(K) −→ E(k)

is a pro-p group.
(b) Conclude that if p does not divide n, then the natural reduction map

En(K̄) −→ En(k̄) is injective.
(c) Still assuming that p6 |n, show that the action of the local Galois group GK

on En is unramified, i.e., that the inertia subgroup of GK acts trivially on
En.

(d) If E is an elliptic curve over a number field K, show that Seln(E/K) is
contained in H1

n∆(K, En).
(8) Let K be a number field, d a fixed integer, and S a finite set of places of K. The

Hermite-Minkowski theorem asserts that there are finitely many extensions of
K with degree ≤ d and unramified outside S. Assuming this basic result, show
that the group H1

n∆(K, En) occuring in the proof of Proposition 1.7 is finite.
(9) Let O be a local ring with maximal ideal m and residue characteristic different

from 2 and 3. Show that the elliptic curve with equation

y2 = x3 + ax2 + b, with a ∈ O× and b ∈ m,

has multiplicative reduction modulo m. Show that this reduction is split (resp.
non-split) if and only if a is a square (resp. a non-square) in O×.

(10) Using the Hasse bound |ap| < 2
√

p, show that the Euler product defining
L(E, s) in equation (1.19) converges for Re(s) > 3/2 and that this convergence
is uniform on compact subsets in this region.





CHAPTER 2

Modular forms

The only results of any depth that can be proved about the L-function L(E, s)
associated to an elliptic curve E (and hence, about the Birch and Swinnerton-
Dyer conjecture formulated in the previous chapter) rely on knowing that E is
modular. This chapter introduces this property and describes some of its important
applications, most notably to the proof of Theorem 1.13.

2.1. Modular forms

Let H be the Poincaré upper half-plane

(2.1) H = {z ∈ C such that Im(z) > 0}.

The group GL+
2 (R) consisting of 2 × 2 matrices with strictly positive determinant

acts on H by Möbius transformations according to the rule

(2.2)

(

a b
c d

)

τ =
aτ + b

cτ + d
.

In this way, GL+
2 (R) acts on H by hyperbolic isometries preserving the line element

ds2 = (dx2 +dy2)/y2, where τ = x+ iy. The group SL2(Z) of matrices with integer
coefficients and determinant 1 acts discretely on H. (Cf. Exercises 1 and 2.)

Let Γ be any finite index subgroup of SL2(Z) and let k be an integer.

Definition 2.1. A modular form of weight k on Γ is a holomorphic function
f : H −→ C such that

(1) f(γτ) = (cτ + d)kf(τ), for all γ =

(

a b
c d

)

∈ Γ;

(2) for any γ ∈ SL2(Z), there exists a positive integer h such that the function

f|γ(τ) := (cτ + d)−kf(γτ)

can be written in the form

(2.3)

∞
∑

n=0

aγ
nqn/h, where q = e2πiτ .

The integer h is called the width of the cusp γ−1∞ = −d
c . The expression

∑∞
n=0 aγ

nqn/h depends only on γ−1∞ = −d
c (up to multiplying q1/h by an h-th root

of unity) and is called the Fourier expansion of f at −d
c .

A modular form f on Γ is called a cusp form if aγ
0 = 0 for all γ. Denote by Sk(Γ)

the complex vector space of cusp forms of weight k for Γ. It is a fact (explained, for
example, in [Sh71], thm. 2.24) that Sk(Γ) is a finite-dimensional C-vector space.

13
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Of primary importance for elliptic curves—and the only case that will be treated
in any detail in this chapter—is the case where k = 2 and where

Γ = Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) such that N divides c

}

is the so-called Hecke congruence group of level N for some positive integer N .
Denote by S2(N) := S2(Γ0(N)) the space of cusp forms of weight 2 on Γ0(N).

The quotient H/Γ0(N) inherits from the complex structure on H the structure
of a (non-compact) Riemann surface. It is useful to compactify H/Γ0(N) by ad-
joining to it a finite set of cusps which corrrespond bijectively to the Γ0(N)-orbits
of points in P1(Q), with an appropriate definition of the topology and complex
structure in a neighbourhood of these cusps (discussed for example in [Kn92], p.
311 or [Sh71], ch. 1). In this way the quotient H∗/Γ0(N) of the extended upper
half-plane H∗ := H ∪ P1(Q) by the action of Γ0(N) becomes a compact Riemann
surface. Let X0(N) denote the projective algebraic curve (for the time being, over
C) whose complex points are identified with this Riemann surface. The assignment
which to f ∈ S2(N) associates the expression

(2.4) ωf := 2πif(τ)dτ

identifies S2(N) with the space of holomorphic differential forms on X0(N)(C).
Thus, by the Riemann-Roch theorem, the space S2(N) is a finite-dimensional com-
plex vector space of dimension equal to the genus of X0(N). This fact allows the
explicit determination of the dimension of S2(N) which is carried out in Exercise
3.

2.2. Hecke operators

The vector space S2(N) is equipped with a non-degenerate Hermitian inner
product

(2.5) 〈f1, f2〉 =

∫

H/Γ0(N)

f1(τ)f2(τ̄ )dxdy,

known as the Petersson scalar product. It is also equipped with an action of certain
Hecke operators Tp indexed by rational primes p and defined by the rules

(2.6) Tpf := Tp(f) :=































1

p

p−1
∑

i=0

f

(

τ + i

p

)

+ pf(pτ) if p 6 |N,

1

p

p−1
∑

i=0

f

(

τ + i

p

)

if p|N.

These operators act linearly on S2(N), and their effect on the q expansions at ∞
(cf. Exercise 4) is given by the following simple formulae:

(2.7) Tp(f) =























∑

p|n
anqn/p + p

∑

anqpn if p 6 |N,

∑

p|n
anqn/p if p|N.
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It is convenient to extend the definition of the Hecke operators to operators Tn

indexed by arbitrary positive integers n by equating the coefficient of n−s in the
identity of formal Dirichlet series

(2.8)
∞
∑

n=1

Tnn−s :=
∏

p6 |N
(1 − Tpp

−s + p1−2s)−1
∏

p|N
(1 − Tpp

−s)−1.

Let T be the commutative subalgebra of EndC(S2(N)) generated over Z by the
Hecke operators Tn, and let T0 denote the subalgebra generated only by those
operators Tn with (n, N) = 1. Although presented as a ring with infinitely many
generators, the algebras T and T0 are in fact finitely generated in a strong sense.

Proposition 2.2. The Hecke algebras T and T0 are finitely generated as Z-
modules.

Sketch of Proof. Let V = Hom(S2(N), C) denote the vector space dual of
S2(N). By the theory of the Abel-Jacobi map (cf. for example [Mu], cor. 3.8), the
integral homology H1(X0(N)(C), Z) embeds as a sublattice Λ of V by associating
to a closed cycle c on X0(N)(C) the functional ηc ∈ V defined by

ηc(f) =

∫

c

ωf .

The action of T on S2(N) induces an action of this algebra on V by duality, which
leaves stable the lattice Λ (cf. [Kn92], Propositions 11.23 and 11.24). Hence T is
a subalgebra of EndZ(Λ). Since this latter ring is finitely generated as a Z-module,
the same must be true for T (and, a fortiori, T0). �

It is worth trying to understand precisely what the rank of T as a Z-module is.
Let g = genus(X0(N)) = dimC(S2(N)).

Proposition 2.3. The rank of T is at most g.

Sketch of Proof. The action of complex conjugation τ on X0(N)(C) in-
duces an action of τ on Λ which commutes with that of T. Hence T preserves
the submodules Λ+ and Λ− of Λ on which τ acts as multiplication by 1 and −1
respectively. Both Λ+ and Λ− are of rank g and hence T is identified with a com-
mutative subalgebra of Mg(Z) (after choosing a basis for Λ+ or Λ−). By Exercise
5, there exists T ∈ T such that T contains Z[T ] with finite index, and hence these
two rings have the same rank as Z-modules. On the other hand, Z[T ] is generated
by 1, T, . . . , T g−1 since T satisfies its characteristic polynomial, and hence has rank
at most g. �

Proposition 2.4. The rank of T is equal to g.

Proof. Let TC = T ⊗ C. There is a natural C-bilinear pairing

〈 , 〉 : TC × S2(N) −→ C

given by 〈T, f〉 = a1(Tf), where a1(g) denotes the first Fourier coefficient of the
cusp form g. It follows from equation (2.7) (cf. Exercise 4) that

(2.9) 〈Tn, f〉 = an(f).

Hence the pairing 〈 , 〉 is non-degenerate on the right, so that the natural map

S2(N) −→ Hom(TC, C)
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induced by 〈 , 〉 is injective. Hence dimC(TC) ≥ g, and therefore rank(T) ≥ g. The
result now follows from Proposition 2.3. �

The structure of T as a Z-module leads to the following important fact about
modular forms in S2(N) which shows the existence of many modular forms in
this space having integer Fourier coefficients. The usefulness of modular forms in
number theory stems from the fact that quite often these Fourier coefficients encode
interesting arithmetic information.

Corollary 2.5. The space S2(N) has a basis consisting of modular forms with
integer Fourier coefficients.

Proof. By equation (2.9), the space of modular forms with integer Fourier
coefficients is equal to the lattice dual to T ⊂ TR = V +. It follows that this module
has rank g over Z. �

Denote by S2(N, Z) and S2(N, R) the spaces of modular forms with integer and
real Fourier coefficients respectively. Note that S2(N, Z) is a lattice in S2(N, R) and
that

rankZ(S2(N, Z)) = dimR(S2(N, R)) = dimC(S2(N)) = g.

2.3. Atkin-Lehner theory

It is important to analyse the eigenspace decomposition of S2(N) under the
action of the algebras of commuting operators T and T0. To begin, we have

Lemma 2.6. If T belongs to T0, then it is self-adjoint with respect to the Pe-
tersson scalar product.

Proof. See [Kn92], Theorems 9.18 ad 8.22, or [Og69]. Better yet, work out
Exercise 6. �

It follows from Lemma 2.6 combined with the spectral theorem for commuting
self-adjoint operators that S2(N) decomposes as an orthogonal direct sum

(2.10) S2(N) =
⊕

λ

S0
λ

taken over all C-algebra homomorphisms λ : T0 −→ C, where S0
λ denotes the cor-

responding eigenspace in S2(N). The eigenspaces S0
λ need not be one-dimensional

(cf. Exercise 7). On the other hand, if λ : T −→ C is a ring homomorphism defined
on the full Hecke algebra T, and Sλ is its associated eigenspace, then one does have
the following.

Lemma 2.7 (Multiplicity one). The eigenspace Sλ attached to λ : T −→ C is
one-dimensional.

Proof. This is because all the Fourier coefficients of a form f ∈ Sλ are com-
pletely determined by a1(f), by the rule, immediate from (2.7),

an(f) = a1(f)λ(Tn).

�
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As is shown in Exercise 7, the space S2(N) does not decompose in general into
a direct sum of the one-dimensional eigenspaces Sλ: the operators in T (unlike
those in T0) need not act semi-simply on S2(N). However, there is a distinguished
subspace of S2(N), the so-called space of newforms, which decomposes as a direct
sum of one-dimensional eigenspaces under both the actions of T and T0. More pre-
cisely, a modular form in S2(N) is said to be an oldform if it is a linear combination
of functions of the form f(d′z), with f ∈ S2(N/d) and d′|d > 1. The new subspace
of S2(N), denoted Snew

2 (N), is the orthogonal complement of the space Sold
2 (N) of

oldforms with respect to the Petersson scalar product.

Theorem 2.8 (Atkin-Lehner). Let f ∈ Snew
2 (N) be a simultaneous eigenform

for the action of T0. Let S be any finite set of prime numbers and g ∈ S2(N) an
eigenform for Tp for all p /∈ S. If ap(f) = ap(g) for all p /∈ S, then g = λf for
some λ ∈ C.

Proof. See [AL70], or [DI95], sec. 6 for a survey. �

Corollary 2.9. The full Hecke algebra T acts semi-simply on Snew
2 (N) with

one-dimensional eigenspaces. We therefore have an orthogonal decomposition:

S2(N) = Sold
2 (N)

⊕

λ

Cfλ,

where the sum is taken over all algebra homomorphisms λ : T −→ C corresponding
to eigenvectors in Snew

2 (N), and fλ(τ) =
∑∞

n=1 λ(Tn)e2πinτ .

The simultaneous eigenvector fλ is sometimes called a normalised eigenform or
simply a newform of level N . Note that it satisfies a1(f) = 1.

2.4. L-series

To a newform f of level N is attached the L-series

L(f, s) =

∞
∑

n=1

ann−s,

where an := an(f) = λ(Tn). This L-function enjoys the following three important
properties.

Euler product: It admits the Euler product factorisation given by

L(f, s) =
∏

p6|N
(1 − app

−s + p1−2s)−1
∏

p|N
(1 − app

−s)−1,

as can be seen by applying λ to the formal identity (2.8) relating the Hecke operators
Tn.

Integral representation: A direct calculation (cf. Exercise 8) shows that

(2.11) Λ(f, s) := (2π)−sΓ(s)Ns/2L(f, s) = N s/2

∫ ∞

0

f(it)ts−1dt,

where Γ(s) =
∫∞
0 e−tts−1dt is the Γ-function.

Functional equation: The involution wN defined on Snew
2 (N) by the rule

(2.12) wN (f) =
−1

Nτ2
f

( −1

Nτ2

)
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commutes with the Hecke operators in T0 and hence preserves the eigenspaces Sλ.
It follows that for any newform f of level N ,

(2.13) wN (f) = εf, where ε = ±1.

The sign ε is an important invariant of f . Hecke showed (cf. Exercise 9) that
L(f, s) satisfies the functional equation

(2.14) Λ(f, s) = −Λ(wN (f), 2 − s) = −εΛ(f, 2− s).

2.5. Eichler-Shimura theory

The fact that the L-series L(f, s) has properties identical to those that are
known (such as the Euler product factorisation of equation (1.19)) or expected
(such as the functional equation) for the L-series L(E, s) attached to an elliptic
curve in Chapter 1 suggests that there might be a relationship between these two
ostensibly different types of L-series. The following theorem of Eichler and Shimura
establishes such a relationship in one direction.

Theorem 2.10. Let f be a normalised eigenform whose Fourier coefficients
an(f) are integers. Then there exists an elliptic curve Ef over Q such that

L(Ef , s) = L(f, s).

Brief sketch of proof. The crucial construction which to such a newform
f associates the elliptic curve Ef was discovered by Shimura. A key fact underlying
Shimura’s construction is the fact that the algebraic curve X0(N) has a natural
model defined over Q. This curve, denoted X0(N) as before, is the solution to the
(coarse) moduli problem of classifying pairs (A, C) where A is an elliptic curve and
C is a cyclic subgroup of A of order N . The element τ ∈ H/Γ0(N) corresponds to
the point in X0(N)(C) associated to the pair

(2.15) (Aτ , Cτ ) :=

(

C/〈1, τ〉,
〈

1

N

〉)

,

and it can be checked that this correspondence is well-defined and sets up a bijection
between points τ ∈ H/Γ0(N) and isomorphism classes of pairs (A, C) as above. An
equation for X0(N) over Q can be written down using the modular function j
defined using the j-invariant of equation (1.3) of Chapter 1, by the rule

j(τ) = j(Aτ ).

The functions j(τ) and j(Nτ) are related by a single polynomial relation fN (x, y)
with coefficients in Q which yields a plane model for the algebraic curve X0(N),
albeit one which is highly singular and not easily computable in practice except
for small values of N . In this model, if F is any subfield of C, and τ ∈ H/Γ0(N)
corresponds to a point in X0(N)(F ), then (j(τ), j(Nτ)) belongs to F 2. The Hecke
operators acting on S2(N) arise geometrically from certain correspondences (de-
noted Tp ⊂ X0(N) × X0(N) by abuse of notation). More precisely, the correspon-
dence Tp is given as the locus of points in X0(N)×X0(N) attached to pairs which
are related by a cyclic p-isogeny (defined as a cyclic p-isogeny of the underlying
curves which induces an isomorphism between the level N structures.) Let J0(N)
denote the Jacobian variety of X0(N); it is an abelian variety over Q of dimen-
sion g = genus(X0(N)) = dim(S2(N)). The Hecke correspondences give rise to
endomorphisms of J0(N) defined over Q. Letting If denote the kernel of the ring
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homomorphism λ : T −→ Z attached to f , the quotient J0(N)/IfJ0(N) is the
desired elliptic curve Ef .

The key issue which arises in showing the equality of L-functions L(Ef , s) and
L(f, s) is to relate the coefficient ap(E)—obtained by counting points on Ef over Fp,
or, equivalently, as the trace of the Frobenius at p acting on the p-power division
points of Ef—to the eigenvalue of the Hecke operators Tp. This relationship is
established by using the Eichler-Shimura congruence relation satisfied by the Hecke
correspondence Tp in characteristic p. For example, if p does not divide N then
the modular curve X0(N) has an integral model with good reduction at p (cf. the
discussion in Section 1.5 of [DDT95]) and one has

Tp = F + F t on X0(N)/Fp
,

where F is the graph of the Frobenius morphism in characteristic p and F t is its
transpose. Deep results of Deligne and Carayol (cf. [Car91]) show that the level
N of the newform f is equal to the arithmetically defined conductor of the elliptic
curve Ef . A more complete discussion of the Eichler-Shimura construction and the
Eichler-Shimura congruence can be found in [Sh71], ch. 7, in [Kn92], Chapter XI,
or in Section 1.7 of [DDT95]. �

The modular curve X0(N) is embedded in its Jacobian by sending a point P
to the class of the degree 0 divisor (P ) − (i∞). Let

ΦN : X0(N) −→ Ef

be the modular parametrisation obtained by composing the embedding X0(N) −→
J0(N) with the natural projection J0(N) −→ Ef arising from the Eichler-Shimura
construction. The pullback Φ∗

N (ω) of the Néron differential ω of Ef defined in
Chapter 1, (1.15), is a non-zero multiple of ωf

(2.16) Φ∗
N (ω) = c · 2πif(τ)dτ, with c ∈ Q×.

The rational number c is called the Manin constant attached to f . It is expected
that c = 1 always, and this is known to be the case when N is square-free [Ed89].

For computational purposes, the following analytic description of the modular
parametrisation

ΦN : H/Γ0(N) −→ Ef (C)

is useful.

Proposition 2.11. Let ΛE be the Néron lattice of E and let c be the Manin
constant attached to Ef . Let Φw : C/ΛE −→ E(C) be the Weierstrass uniformisa-
tion of equation (1.6) of Chapter 1. Then one has

ΦN (τ) = Φw(zτ ), where zτ = c

∫ τ

i∞
2πif(z)dz = c

∞
∑

n=1

an

n
qn, with q = e2πiτ .

Proof. By definition of the Abel-Jacobi map and the projection J0(N) −→
Ef , one sees that the image of the divisor (τ) − (i∞) is

Φw

(

∫ ΦN (τ)

ΦN (i∞)

ω

)

= Φw

(∫ τ

i∞
Φ∗

Nω

)

by the change of variables formula. The result follows from (2.16). �
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The Eichler-Shimura construction yields elliptic curves E for which the analytic
continuation and functional equation of L(E, s) can be established. But it remains
unclear, at this stage of the discussion, how special is the class of elliptic curves
over Q that can be obtained from newforms with integer Fourier coefficients.

2.6. Wiles’ theorem

In the 1960’s, (through the work of a number of mathematicians, most promi-
nently Shimura, Taniyama, and Weil) there gradually emerged the remarkable in-
sight that in fact all elliptic curves (up to isogeny) should be obtainable from the
Eichler-Shimura construction. The resulting conjecture, eventually known as the
Shimura-Taniyama-Weil conjecture, is now a theorem thanks to a series of works
building on a fundamental breakthrough of Wiles.

Theorem 2.12. Let E be an elliptic curve over Q of conductor N . Then there
exists a newform f ∈ S2(N) such that

L(E, s) = L(f, s).

Furthermore, E is isogenous to the elliptic curve Ef obtained from f via the Eichler-
Shimura construction.

Remark 2.13. An elliptic curve over Q is said to be semistable if its conductor is
squarefree, so that it has either good or multiplicative reduction at all primes p. The
articles [Wi95] and [TW95] give a proof of the Shimura-Taniyama-Weil conjecture
for this class of elliptic curves. This work was later strengthened in a series of
articles ([Di96], [CDT99]) culminating in a proof of the complete conjecture in
[BCDT01].

Remark 2.14. The distinguished elliptic curve Ef in the Q-isogeny class of E
is commonly called the strong Weil curve attached to E (or to f).

We will say little about the ideas that go into the proof of Theorem 2.12, having
already devoted a survey article [DDT95] to this topic. Let us simply point out
the key role played in Wiles’ approach by the continuous two-dimensional `-adic
representations of GQ = Gal(Q̄/Q) attached to elliptic curves, and to modular
forms. This method produces a modular form f for which one has the equality of
L-series L(E, s) = L(Ef , s). The fact that E and Ef are isogenous over Q then
follows from the isogeny conjecture proved by Faltings.

Of most relevance to the questions considered in this monograph are the fol-
lowing corollaries of Wiles’ result.

Corollary 2.15. The L-function L(E, s) has an analytic continuation and an
integral representation of the form

(2π)−sΓ(s)L(E, s) =

∫ ∞

0

f(it)ts−1dt,

for some modular form f ∈ S2(Γ0(N)), and a functional equation as in Theorem
1.13 of Chapter 1.

Recall the sign −ε occuring in the functional equation of L(E, s) given by (2.13)
and (2.14). When E is associated to the modular form f ∈ S2(N), we will set

(2.17) sign(E, Q) := −ε,
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Note that L(E, s) vanishes to even (resp. odd) order at s = 1 when sign(E, Q) = 1
(resp. sign(E, Q) = −1).

The second corollary is the existence of an explicit complex uniformisation

ΦN : H∗/Γ0(N) −→ E(C),

described in Proposition 2.11. (Strictly speaking, one obtains it by composing the
map of that proposition with a rational isogeny Ef −→ E.) The uniformisation
ΦN will play a key role in the construction of certain algebraic points on E, known
as Heegner points, which in turn are crucial in the proof of the theorem of Gross-
Zagier-Kolyvagin. This key application of the modular parametrisation is discussed
in Chapter 3.

2.7. Modular symbols

Given a positive integer N , it is useful to be able to determine in practice an
explicit basis of Hecke eigenforms in S2(N). (One natural application, arising from
Theorem 2.12, would be to list the elliptic curves over Q of a given conductor N ,
taken up to isogeny.)

A useful device in carrying out the computation of S2(N) is the notion of
modular symbols first singled out and studied by Birch and Manin.

Definition 2.16. Let A be an abelian group. An A-valued modular symbol is
a function

m : P1(Q) × P1(Q) −→ A, denoted m(x, y) = m{x→y},
satisfying

(1) m{x→y} = −m{y→x}, for all x, y ∈ P1(Q).
(2) m{x→y} + m{y→z} = m{x→z}, for all x, y, z ∈ P1(Q).

Denote by M(A) the group of A-valued modular symbols, and simply by M
the group of C-valued modular symbols. The group GL2(Q) acts naturally on
M(A) by the rule

(γm){x→y} := m{γ−1x→γ−1y}.
Given f ∈ S2(N) with associated Γ0(N)-invariant differential ωf := 2πif(τ)dτ , let
λf be the modular symbol defined by

(2.18) λf{x→y} :=

∫ y

x

ωf .

Note that the cuspidality of f ensures that this integral converges. To compute it,
one may choose τ ∈ H, and write

∫ y

x

ωf =

∫ τ

x

ωf +

∫ y

τ

ωf .

If x = ∞, then the integral from x to τ can be evaluated by using the Fourier
expansion of ωf at ∞, by the rule

∫ τ

∞
ωf =

∞
∑

n=1

an

n
e2πinτ .
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Otherwise, choosing a matrix γ ∈ SL2(Z) with γx = ∞, one may reduce to the
previous case by noting that

∫ τ

x

ωf =

∫ γτ

∞
ωf|γ−1

,

and using the Fourier expansion of f|γ−1 at ∞ to evaluate the latter integral.

The Γ0(N)-invariance of ωf implies that λf belongs to the subspace MΓ0(N)

of Γ0(N)-invariant modular symbols. This latter space is endowed with a natural
action of the Hecke operators Tp defined, for p 6 |N , by

Tp(m){x→y} = m{px→py}+

p−1
∑

j=0

m

{

x + j

p
→y + j

p

}

.

In this way the map λ which to f associates λf becomes a C-linear Hecke-equivariant

map from S2(N) to MΓ0(N).

Lemma 2.17. The map λ : f 7→ λf is injective.

Proof. Suppose that λf = 0, and let F be the holomorphic function on H∗

defined by

F (τ) =

∫ τ

∞
ωf .

This function is Γ0(N)-invariant, since for all γ ∈ Γ0(N), one may choose any
x ∈ P1(Q) and note that

F (γτ) − F (τ) =

∫ γτ

τ

ωf =

∫ γx

x

ωf = λf{x→γx} = 0.

Hence F corresponds to a holomorphic function on the compact Riemann surface
X0(N)(C). It is therefore constant by Liouville’s theorem. (In fact, it vanishes
identically, since F (i∞) = 0.) It follows that dF = ωf = 0. �

Recall that g is the genus of the modular curve X0(N), i.e., the complex di-
mension of S2(N). Let s denote the number of cusps on this modular curve.

Lemma 2.18. The space MΓ0(N) has dimension 2g + s − 1.

Proof. Let F denote the space of C-valued functions on P1(Q), and let d :
F −→ M be the map defined by the rule

(df){x→y} = f(y) − f(x).

Clearly d is surjective and its kernel is the space of constant functions. Taking the
Γ = Γ0(N)-cohomology of the exact sequence

0 −→ C
i−→ F d−→ M −→ 0

yields the cohomology exact sequence

C
i0−→ FΓ d−→ MΓ −→ H1(Γ, C)

i1−→ H1(Γ,F).

The cokernel of i0 has dimension s − 1, while the kernel of i1 is identified with
H1(X0(N), C) ' C2g . (Cf. Exercise 10.) The result follows. �
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It follows from Lemma 2.18 that the map λ is not surjective. The failure of
surjectivity can be traced to two sources:

1. Complex conjugation acts naturally on MΓ0(N), but the image of λ is not closed
under this action. This is because

λ̄f = λf̄ ,

where λf̄ denote the M-symbol attached to the anti-holomorphic differential ω̄f =

−2πif̄(τ)dτ̄ . The homomorphism

(2.19) λ : S2(N) ⊕ S2(N) −→ MΓ0(N)

remains injective and its image has codimension s − 1.

2. A Γ0(N)-invariant modular symbol m is said to be Eisenstein if there exists a
Γ0(N)-invariant function M : P1(Q) −→ C such that

m{x→y} = M(y) − M(x), for all x, y ∈ P1(Q).

The space of Eisenstein modular symbols has dimension s− 1. The space of Eisen-
stein symbols is linearly disjoint from the image of the map λ of equation (2.19).

Lemma 2.19. The space MΓ0(N) is spanned by the Eisenstein modular symbols
together with the symbols of the form λf and λ̄f , where f ∈ S2(N).

The details for this are worked out in Exercise 11.
Thanks to Lemma 2.19, to compute a basis of eigenforms for S2(N), it suffices

to find a basis for the space MΓ0(N), discarding the Eisenstein modular symbols,
and diagonalising the action of the Hecke operators on this space. This computation
rests on the following three observations.

First observation: We say that two elements x = a
b and y = c

d of P1(Q) are
adjacent if ad − bc = ±1. (It is assumed here that the fractions representing x
and y are given in lowest terms, and the convention ∞ = 1

0 is adopted.) The first
observation is that an M-symbol is completely determined by its values on pairs
(x, y) of adjacent elements of P1(Q). This is because any two elements x, y can
be realised as the extreme terms of a finite sequence x, x1, x2, . . . , xn, y, in which
consecutive elements are adjacent. Clearly it is enough to show this when x = ∞,
and for that, one may take xj =

pj

qj
to be the j-th convergent in the continued

fraction expansion for y.

Second observation: The group Γ0(N) acts naturally on the set of ordered pairs
of adjacent elements of P1(Q), and there are finitely many orbits for this action. In

fact, two pairs (a
b , c

d) and (a′

b′ ,
c′

d′ ) with ad− bc = a′d′ − b′c′ = 1 belong to the same
orbit precisely when the ratios b/d and b′/d′ are equal in P1(Z/NZ). Therefore an
element m ∈ MΓ0(N) is completely determined by the function

[ ]m : P1(Z/NZ) −→ C

defined by

[b : d]m := m
{a

b
→ c

d

}

, with ad − bc = 1.

This immediately gives a crude upper bound on the dimension of MΓ0(N): it is at
most the cardinality of P1(Z/NZ).
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Third observation: The functions of the form [ ]m on P1(Z/NZ), where m is a
Γ0(N)-invariant modular symbol, are not unrestricted but satisfy a collection of
linear relations. For example, the axiom

m
{a

b
→ c

d

}

= −m

{−c

−d
→a

b

}

satisfied by modular symbols leads to the relation

(2.20) [x]m = −
[−1

x

]

m

, for all x ∈ P1(Z/NZ),

while the property

m
{a

b
→ c

d

}

= m

{

a

b
→a + c

b + d

}

+ m

{

a + c

b + d
→ c

d

}

leads to the relation

(2.21) [x]m =

[

x

x + 1

]

m

+ [x + 1]m, for all x ∈ P1(Z/NZ).

In fact, equations (2.20) and (2.21) represent a full set of linear relations satisfied
by the functions of the form x 7→ [x]m. (Cf. Exercise 12.)

These three observations can be combined into an explicit algorithm for finding
all the Hecke eigenforms in S2(N) for a given level N , the details of whose imple-
mentation are discussed for example in [Cr97]. The reader wishing to acquire some
familiarity with the modular symbol method may also find it helpful to work out
Exercises 15 and 16.

In other applications, such as those discussed in Chapter 8, one may be given
an elliptic curve E whose conductor N and associated L-series coefficients an(E)
can be computed (in any specified range) by examining the behaviour of E over the
various completions of Q. One may wish to parlay this knowledge into an explicit
and efficient calculation of the modular symbol λE = λf attached to fE. The
following theorem (a consequence of a more general result of Manin and Drinfeld,
cf. [Man72]) is useful for this task. Let ΛE denote the so-called Néron lattice of
E, generated by the periods of a Néron differential on E against the homology of
E. Let tE be the greatest common divisor of the integers p + 1 − ap(E), where p
ranges over all primes which are congruent to 1 modulo N .

Theorem 2.20. The modular symbol λE takes values in a lattice Λ, which is
contained in 1

tE
ΛE with finite index.

Proof. If x ∈ P1(Q) and y = γx are equivalent under the action of Γ0(N),
then

λE{x→y} =

∫ y

x

ωf =

∫ γx

x

ωf = c−1

∫

ΦN (x→γx)

ωE ,

where ΦN(x→γx) is the image under ΦN of the closed path on X0(N) joining x
to γx. Hence this expression belongs to ΛE . In the general case, one exploits the
action of the Hecke operators by noting that, for all p ≡ 1 (mod N), the expression

(Tp − (p + 1)) λE{x→y}
can be written as a sum of expressions of the form λE{xj→yj}, where xj and yj

belong to the same Γ0(N)-orbit. (Cf. Exercise 13.) By varying the p, it follows
that tEλE{x→y} belongs to ΛE , as was to be proved. �
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The space MΓ0(N) is equipped with a C-linear involution W∞ defined by

(2.22) (W∞m){x→y} = m{−x→− y}.
A modular symbol is called a plus (resp. minus) symbol if it is in the corresponding
eigenspace for W∞. If f belongs to S2(N, R), then the action of W∞ is related to
that of complex conjugation on M by the rule

(2.23) (W∞λf ){x→y} = λ̄f{x→y}.
In particular, if f is an eigenform with integer Fourier coefficients, attached to an
elliptic curve E, one may write

λE{x→y} = λ+
E{x→y}Ω+ + λ−

E{x→y}iΩ−,

where Ω+ (resp. Ω−) is the unique positive generator of the lattice in R generated
by the real (resp. imaginary) parts of elements of Λ. The functions λ±

E are integer-
valued Γ0(N)-invariant modular symbols which are in the plus and minus eigenspace
for W∞ respectively.

Further results and references

Among the many textbooks that cover the theory of modular forms, [Sh71]
and [Og69] are classics. Knapp’s book [Kn92] on elliptic curves contains a fairly
complete account of Eichler-Shimura Theory.

The Eichler-Shimura construction extends naturally to eigenforms f having
non-rational Fourier coefficients. Since these coefficients are the eigenvalues of self-
adjoint matrices with entries in Z, they generate an order O in a totally real field
K of degree n ≤ g. The Eichler-Shimura construction, a direct generalisation of
the construction in the proof of Theorem 2.10, associates to f an abelian variety
Af of dimension n. The action of the Hecke operators on Af yields a subring of
EndQ(Af ) isomorphic to O, so that EndQ(Af ) ⊗ Q contains a field K of degree
d = dim(Af ). Abelian varieties with this property are said to be of GL2-type. It
is conjectured that these are precisely (up to isogeny) the abelian varieties over Q

that can occur as irreducible factors of J0(N), but one is still far from being able
to prove this natural generalisation of the Shimura-Taniyama-Weil conjecture. See
[Ri94] for a discussion of this and related conjectures.

The reader wishing to understand the proof of Wiles’ theorem in the proto-
typical example of semi-stable elliptic curves can do no better than to consult the
articles [Wi95] and [TW95] which contain the initial breakthroughs. A more ped-
agogically oriented exposition of these ideas is given in [DDT95]. For a discussion
of the subtle technical issues needed to extend Wiles’ breakthrough to all elliptic
curves over Q, see [Di96], [CDT99] and [BCDT01].

Before it could be proved, the Shimura-Taniyama-Weil conjecture was sup-
ported by a certain amount of numerical evidence, and by Weil’s converse to Hecke’s
theorem, asserting that if L(E, s), as well as sufficiently many of its twists by Dirich-
let characters, has a functional equation of the type described in Theorem 1.13, then
E is isogenous to an elliptic curve Ef obtained from an eigenform f via the Eichler-
Shimura construction. A discussion of converse theorems can be found in [Gel75]
for example.

The modular symbol method is very flexible and has been implemented by
Cremona [Cr97] to draw up tables of elliptic curves of conductor ≤ 5000. A
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different method due to Mestre (cf. [Mes91] and [Gr87]) based on the so-called
Brandt matrices associated to orders in definite quaternion algebras over Q, is more
restricted in scope (working well typically for elliptic curves of prime conductor) but
appears to be more efficient than the modular symbol method in those situations
where it can be readily applied.

Exercises

(1) Show that the action of matrices in SL2(R) on H by Möbius transformations
preserves the hyperbolic metric on H.

(2) Let X and Y be Hausdorff topological spaces. A map π : X −→ Y is called
proper if π−1(K) is compact whenever K is compact, and open if it maps open
subsets of X to open subsets of Y .
(a) Show that if π : X −→ Y is open and proper, and Γ ⊂ X is discrete, then

π(Γ) is discrete in Y .
(b) Let G be a locally compact Hausdorff topological group and let H be

a compact subgroup. If Γ is a discrete subgroup of G, show that the
natural image of Γ in G/H (in the natural topology on G/H induced by
the topology on G) is discrete. Show that this ceases to be true in general
if H is not assumed to be compact.

(c) Show that PSL2(Z) acts discretely on H by Möbius transformations. (I.e.,
the orbits for this action are discrete in the usual Euclidean topology on
H.)

(3) Let Γ = SL2(Z) and let

π : H∗/Γ0(N) −→ H∗/Γ, Γ0(N)τ 7→ Γτ

be the natural (branched) covering map of Riemann surfaces. For τ ∈ H∗, let
Γτ denote the stabiliser of τ in Γ and eτ the index of Γτ ∩ Γ0(N) in Γτ . Let
P1(Z/NZ) denote the projective line over the ring Z/NZ. It is equipped with
a natural action of SL2(Z).
(a) Show that eτ is equal to the ramification index of π at Γ0(N)τ .
(b) Show that if τ is not equivalent under Γ to i, ρ := e2πi/3, or ∞, then π is

unramified at Γ0(N)τ , i.e., eτ = 1.

(c) Let ni denote the number of fixed points of the matrix

(

0 1
−1 0

)

acting

on P1(Z/NZ). Show that π is unramified at ni distinct points of X0(N)
lying above τ = i, and has ramification index 2 at the remaining points
above i.

(d) Let nρ denote the number of fixed points of the matrix

(

0 −1
1 1

)

acting

on P1(Z/NZ). Show that π is unramified at nρ distinct points of X0(N)
lying above τ = ρ, and has ramification index 3 at the remaining points
above ρ.

(e) Show that the points in π−1(∞) are in bijection with the orbits for the

group Γ∞ =

〈(

1 1
0 1

)〉

acting on P1(Z/NZ), and that if the point P

corresponds to the orbit O, then eP = #O.
(f) Using the Riemann-Hurwitz formula, give a formula for the genus of X0(N)

(and hence, the dimension of S2(N)) in terms of the orbit decompositions
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of P1(Z/NZ) under the actions of the three cyclic groups Γi, Γρ, and Γ∞.
Make this formula explicit if N is a prime or a prime power.

(g) Show that there are no cusp forms of level N for N ≤ 10, and that S2(11)
is one-dimensional.

(h) Use Wiles’ theorem to conclude that there are no elliptic curves over Q

of conductor < 11, and precisely one isogeny class of elliptic curves of
conductor 11. How might one go about proving such a result, without
using Wiles’ theorem?

(4) Show that the function Tpf described in formula (2.6) belongs to S2(N), so
that Tp is indeed a well-defined linear endomorphism of S2(N). Verify formula
(2.7) in the text decribing the effect of Tp on the Fourier expansion of f at ∞.
Using this formula and the definition of the general Hecke operator Tn, prove
equation (2.9) in the text.

(5) Let R be a commutative subring of Mg(Z). Show that there exists T ∈ R such
that Z[T ] is contained in R with finite index.

(6) Show that the Hecke operator Tp acting on S2(N) is self-adjoint with respect
to the Petersson scalar product when p 6 |N .

(7) Let f be an eigenform of level N . Show that the modular forms f(z), f(pz)
and f(p2z) belong to S2(Np2) and are simultaneous eigenvectors for all the
Hecke operators T` with ` not dividing Np2. Show that the Hecke operator Tp

preserves the space spanned by these three eigenforms, but that its action need
not be diagonalisable.

(8) Check formula (2.11) in the text.
(9) Prove the functional equation (2.14) in the text.

(10) Complete the proof of Lemma 2.18 by showing that the cokernel of i0 and the
kernel of i1 are of dimension s − 1 and 2g respectively.

(11) Supply the details in the proof of Lemma 2.19.
(12) Show that equations (2.20) and (2.21) represent a full set of linear relations

satisfied by the functions of the form x 7→ [x]m, where m is a Γ0(N)-invariant
modular symbol.

(13) Complete the proof of Theorem 2.20 by showing that, for all p ≡ 1 (mod N),
the expression

(Tp − (p + 1)) λE{x→y}
can be written as a sum of expressions of the form λE{xj→yj}, where xj and
yj belong to the same Γ0(N)-orbit.

(14) Prove equation (2.23) relating the action of the involution W∞ and complex
conjugation acting on modular symbols of the form λf with f ∈ S2(N, R).

(15) Let Γ = Γ0(11) be the Hecke congruence group of level 11. Show that the
space MΓ of Γ-invariant modular symbols is a three-dimensional complex vec-
tor space, and write an explicit basis for these modular symbols consisting of
eigenforms for the Hecke operators and for the involution W∞. Use this to
compute, for p ≤ 7, the number of points in E(Fp), for E any elliptic curve
over Q of conductor 11 (which is unique up to isogeny, by Exercise 3 (h).)

(16) Carry out Exercise 15 with N = 14 or 37 instead of 11.





CHAPTER 3

Heegner points on X0(N)

Chapter 2 explained how any elliptic curve E over Q of conductor N is attached
to a normalised eigenform f ∈ S2(N), leading to the proof of the functional equation
satisfied by L(E, s) and the existence of the modular parametrisation

ΦN : H∗/Γ0(N) −→ E(C).

The most important arithmetic application of this explicitly computable parametri-
sation arises through the theory of complex multiplication. This theory is of great
importance in its own right, allowing the analytic construction of class fields of
imaginary quadratic fields from values of modular functions evaluated at quadratic
arguments. It can also be used, in conjunction with the parametrisation ΦN , to
exhibit algebraic points on E defined over such class fields. These points, known as
Heegner points, are an essential ingredient in the proof of Theorem 1.14 of Gross-
Zagier and Kolyvagin.

3.1. Complex multiplication

Let K ⊂ C be a quadratic imaginary subfield of C. We may write K = Q(ωD),
where D < 0 is the discriminant of K and

ωD =

{

1+
√

D
2 if D ≡ 1 (mod 4),√

D
2 otherwise.

It will be convenient to fix once and for all an embedding of an algebraic closure K̄
of K into C.

An order in K is a subring O of K which generates K as a Q-vector space and
is finitely generated as a Z-module. Every order is contained in the maximal order
OK = Z[ωD ], and is uniquely determined by its conductor c, a positive non-zero
integer such that

O = Z ⊕ ZcωD.

Let A = C/Λ be an elliptic curve over C. Its endomorphism ring is identified
with

End(A) = {α ∈ C such that αΛ ⊂ Λ}.
Hence it is isomorphic to a discrete subring of C. Such a ring is isomorphic either
to Z, or to an order in a quadratic imaginary field K.

Definition 3.1. An elliptic curve A/C is said to have complex multiplication
if its endomorphism ring is isomorphic to an order in a quadratic imaginary field.
More precisely, given such an order O, one says that A has complex multiplication
by O if End(A) ' O.

29
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If A has complex multiplication by O, the corresponding period lattice of A is
a projective O-module of rank one, whose isomorphism class depends only on the
isomorphism type of A. Conversely, if Λ ⊂ C is a projective O-module of rank one,
the corresponding elliptic curve A = C/Λ has complex multiplication by O. Hence
there is a bijection
{

Elliptic curves with CM by O,
up to isomorphism.

}

'−→
{

Rank one projective O-modules,
up to isomorphism.

}

.

The set on the right is called the Picard group, or the Class group, of O and
is denoted Pic(O). The group structure on it arises from the tensor product of
modules. When O = OK is the maximal order, then Pic(O) is identified with the
usual ideal class group of K. In any case the group Pic(O) is finite. (For more on
the structure and size of the group Pic(O), see Exercise 1.)

It follows from the finiteness of Pic(O) that there are finitely many isomorphism
classes of elliptic curves with complex multiplication by O. Let Ell(O) be the set
of all such isomorphism classes, and let A1, . . . , Ah be representatives for each class
in Ell(O).

Theorem 3.2. The j-invariants j(Ai) (with 1 ≤ i ≤ h) are algebraic numbers.

Proof. Let j = j(A1). The elliptic curve A = A1 is isomorphic over C to the
curve with equation

(3.1) y2 + xy = x3 +
36

j − 1728
x − 1

j − 1728
.

Thus A can defined over Q(j), and in fact over the ring Q[j, 1/(j − 1728)]. If j is
transcendental, this ring is contained in a field of transcendence degree one, and
admits infinitely many distinct homomorphisms to C. The corresponding special-
isations of A would then yield infinitely many non-isomorphic elliptic curves with
complex multiplication by O, contradicting the finiteness of Ell(O). �

We wish to gain a more precise understanding of the field generated by j =
j(A1), i.e., the minimal field of definition of A1, as well as the action of Gal(K̄/K)
on the algebraic numbers j(Ai).

Note that previously O = End(A) was identified with a subring of C by the
rule

(3.2) α∗ωA = αωA, for α ∈ O,

where ωA is any regular differential on A over C. More generally, if A and its
endomorphisms are defined over a field L, the purely algebraic condition (3.2)
makes sense over L and singles out a ring homomorphism O −→ L. In particular,
any such L contains the fraction field K of O, and an element of O gives rise in a
natural way to an element of L via its effect on the cotangent space of A over L.

The collection Ell(O) is equipped with a natural simply transitive action of
Pic(O) by the rule

(3.3) [Λ] ∗ [A] := Hom(Λ, A),

(cf. [Se67], p. 294). More concretely, if p is any prime ideal of K whose norm is
prime to c, the inclusion p −→ O yields an isogeny

A = Hom(O, A) −→ Hom(p, A),



3.1. COMPLEX MULTIPLICATION 31

whose kernel is identified with Hom(O, A[p]) = A[p], where A[p] denotes the sub-
group scheme of elements in A which are annihilated by all elements of p. Thus

(3.4) [p] ∗ [A] = A/A[p].

It follows directly from this description (cf. Exercise 6) that the action of Pic(O)
on Ell(O) commutes with the natural action of GK := Gal(K̄/K) on this set, so
that the action of GK on Ell(O) is encoded in a homomorphism

(3.5) η : GK −→ Pic(O), satisfying Aσ = η(σ) ∗ A, for all σ ∈ GK .

Note that by the commutativity of Pic(O), the definition of η does not depend on
the choice of base curve A made to define it.

The mere existence of η is enough to show that the j-invariants j(Ai) are defined
over an abelian extension H := K̄kerη of K.

We now describe H more precisely in terms of class field theory.
Let

AK,f ⊂
∏

`6=∞
(K ⊗ Q`)

denote the ring of finite adèles of K, and let

Ô :=
∏

`6=∞
(O ⊗ Z`)

be the closure of O in AK,f . For each prime λ of K, let Kλ denote the completion

at the corresponding non-archimedean valuation. The group K×
λ can be viewed

naturally as a subgroup of the group A×
K,f of finite idèles attached to K. Let ιλ(x)

denote the idèle attached to x ∈ K×
λ . On the global level, K (resp. K×) can

be viewed as a subring (resp. a subgroup) of AK,f (resp. A×
K,f ) via the natural

diagonal embedding.
The group Pic(O) admits an adelic description, via the identification

Pic(O) = A×
K,f/K×Ô×,

in which the class of the idèle α corresponds to the homothety class of the lattice

(α−1Ô) ∩ K ⊂ C.
The following is a special case of the main theorem of class field theory (cf. for

example [CF67], Chapter VII, Theorem 5.1):

Theorem 3.3. There exists an abelian extension Hc of K which is unramified
outside of the primes dividing c, and whose Galois group is naturally identified, via
the Artin map, with Pic(O).

If p is a prime ideal of K which is prime to c, we denote by πp a uniformiser
of Kp, and by [p] the class in Pic(O) attached to the finite idèle ιp(πp). The Artin
reciprocity law map

rec : Pic(O) −→ Gal(Hc/K)

sends the element [p] to the inverse σ−1
p of the Frobenius element σp at p.

The extension Hc whose existence is guaranteed by Theorem 3.3 is called the
ring class field of K attached to O, or the ring class field of K of conductor c.

Proposition 3.4. The abelian extension H is equal to the ring class field Hc.
More precisely, for all primes p of K which do not divide c,

η(σp) = [p] ∈ Pic(O).
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Proof. Fix an elliptic curve A ∈ Ell(O). Let Σ be the set of primes p of OK

which satisfy the following conditions:

(1) p is unramified in H/K;
(2) The curve A has good reduction at all the primes of H above p;
(3) The prime p does not divide the norm (from H to K) of j(As)− j(At) for

all s 6= t;
(4) The norm of p is a rational prime p ∈ Z, i.e., p splits or ramifies in K/Q.

Note that the set of primes of K satisfying these conditions has Dirichlet density
one, and hence, by the Cebotarev density theorem, the corresponding Frobenius ele-
ments generate Gal(H/K). Let σp be as before the Frobenius element in Gal(H/K)
attached to the prime p ∈ Σ. Choose a prime p′ of H above p and let Ā denote
the reduction of A at p′. It is defined over a finite field F of characteristic p: the
residue field of H at p′. We make two key observations (whose proofs are worked
out in detail in Exercise 7):

(1) The elliptic curve Ā is ordinary, i.e., there is (up to composition with
an automorphism of A) a unique inseparable isogeny of degree p from Ā,
given by the Frobenius morphism:

Frob : Ā −→ Āp,

where Āp denotes the elliptic curve over F obtained from A by applying the
Frobenius map (raising to the pth power) to the coefficients of a defining
equation for Ā, and Frob is the algebraic morphism of degree p sending
(x, y) to (xp, yp).

(2) The elliptic curve A/A[p] is defined over H , and the natural projection

A −→ A/A[p]

is a purely inseparable morphism modulo p′.

It follows from these two observations that A/A[p] = [p]∗A is congruent, modulo p′,
to σp(A) ≡ Āp. Since all the Ai are distinct modulo p′, it follows that η(σp) = [p].
Since this formula holds on a set of primes of K of density one, it then holds for all
the primes of K which are unramified in H ; in particular H = Hc. �

Let M2(Z) be the algebra of 2×2 matrices with entries in Z. Given any τ ∈ H,
the order associated to τ is defined to be

Oτ := {γ ∈ M2(Z) such that det γ 6= 0 and γτ = τ} ∪
{(

0 0
0 0

)}

.

The elements of Oτ consist precisely of the matrices in M2(Z) which have both

the column vectors

(

τ
1

)

and

(

τ̄
1

)

as eigenvectors. It is transparent from this

description that Oτ is closed under both addition and multiplication and that it is
a commutative subring of M2(Z). The natural map which to γ ∈ Oτ associates the
complex number zγ satisying

(3.6) γ

(

τ
1

)

= zγ

(

τ
1

)

.

also allows Oτ to be viewed as a discrete subring of C. Note further that the order
Oτ is isomorphic to the endomorphism ring of the elliptic curve Aτ = C/〈1, τ〉. This
is because, for any γ ∈ Oτ , multiplication by the complex number zγ of equation
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(3.6) preserves the lattice 〈τ, 1〉 and hence induces a complex endomorphism mγ of
Aτ . In fact the map γ 7→ mγ identifies Oτ with EndC(Aτ ).

If O is any order in a quadratic imaginary field K ⊂ C, we can write

CM(O) = {τ ∈ H/SL2(Z) such that Oτ = O}.
The class group Pic(O) acts on CM(O) as follows: any class α ∈ Pic(O) can be
represented by an integral ideal I ⊂ O such that O/I is cyclic. Choose such an I .
The lattice (1, τ)I−1 is a projective O-module which contains 1 as an indivisible
element. Hence we can write

(3.7) 〈1, τ〉I−1 = 〈1, τ ′〉,
in which the generator τ ′ is well-defined modulo the action of SL2(Z), and define

(3.8) α ? τ := τ ′.

It is a routine matter (cf. Exercise 5) to check that this rule does indeed endow
CM(O) with an action of Pic(O) which is compatible with the action of this group
on Ell(O) introduced earlier.

We may thus reformulate the main theorem of complex multiplication in a
purely analytic way, as follows:

Theorem 3.5. Let K ⊂ C be a quadratic imaginary field and let τ ∈ H∩K be
an element of H which is quadratic over Q. Then j(τ) belongs to H, where H is the
ring class field attached to the order O = Oτ . More precisely, for all α ∈ Pic(O),
and τ ∈ CM(O),

j(α ? τ) = rec(α)−1j(τ).

3.2. Heegner points

Let N be a fixed positive integer and let M0(N) be the ring of 2 × 2 matrices
with entries in Z which are upper-triangular modulo N , so that Γ0(N) is the group
of units of determinant 1 in this ring. Adapting the terminology of the previous
section, we now define the associated order of τ (relative to the level N) to be

O(N)
τ := {γ ∈ M0(N) such that γτ = τ} ∪

{(

0 0
0 0

)}

.

It is easy to see that

O(N)
τ = Oτ ∩ ONτ .

The reader will note that the map from H to E(C) induced by the modular
parametrisation ΦN is transcendental, since it is of infinite degree. Hence ΦN is
not normally expected to take on algebraic values when evaluated on algebraic
arguments. The following theorem provides an important exception to this rule.

Theorem 3.6. Let τ be any element in H∩ K, let O = O(N)
τ be its associated

order in M0(N), and let H/K be the ring class field attached to O. Then ΦN (τ)
belongs to E(H).

Proof. By Theorem 3.5, both j(τ) and j(Nτ) belong to a ring class field H
of K associated to the order Oτ ∩ ONτ . Hence ΦN (τ) is the image of a point in
X0(N)(H) (its coordinates are given by (j(τ), j(Nτ)) in the singular plane model
of X0(N) given by the N -th modular polynomial) by the modular parametrisation
ΦN . Hence ΦN (τ) belongs to E(H), since the map X0(N) −→ E induced by ΦN is
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a map of algebraic curves defined over Q. (Cf. the remarks in the proof of Theorem
2.10 of Chapter 2.) �

Abusing notation, write Oτ instead of O(N)
τ (trusting that the context will make

it clear what level N is being used.) If O is any order in a quadratic imaginary
field K ⊂ C, we similarly rewrite

CM(O) = {τ ∈ H/Γ0(N) such that Oτ = O}.
We then lift the action of Pic(O) to CM(O) ⊂ H/Γ0(N) by setting α ?N τ := τ ′,
where τ ′ ∈ H is chosen so that

α ? τ = τ ′, α ? (Nτ) = Nτ ′ (mod SL2(Z)).

Note that this property determines τ ′ modulo the action of Γ0(N). It is a routine
matter (cf. Exercise 5) to check that this rule gives a concrete description of
the action of Pic(O) on CM(O) which can thus be related to the the action of
Gal(H/K) on E(H) via the reciprocity law of class field theory.

Theorem 3.7 (Shimura reciprocity law). If τ belongs to CM(O) and α belongs
to Pic(O), then

ΦN (α ? τ) = rec(α−1)ΦN (τ).

Proof. This follows directly from the reciprocity law of Theorem 3.5. �

3.3. Numerical examples

One of the charms of Theorems 3.6 and 3.7 is that they lend themselves to
concrete calculations and allow the construction, by analytic means, of a large
supply of algebraic points on E defined over ring class fields of quadratic imaginary
fields.

For example, one knows from the tables of [Cr97] (cf. also Exercise 3 of Chapter
2) that the elliptic curve of smallest conductor N = 11 is given by the equation

(3.9) y2 + y = x3 − x2 − 10x− 20,

while the imaginary quadratic order of smallest discriminant which embeds in

M0(11) is OK = Z( 1+
√
−7

2 ). The field K has class number one, and the order

O = Z + Z

(

−4 −2
11 5

)

is an order in M0(11) which is isomorphic to OK . (This order is unique, up to

conjugation by the normaliser Γ̃0(11) of Γ0(11) in PGL2(Q).) The fixed point τ
for this order is

τ =
−9 +

√
−7

22
.

The Fourier coefficients an(E) of the modular form f can be calculated by counting
points of E mod p, or by using the identity

f =

∞
∑

n=1

anqn = q

∞
∏

n=1

(1 − q11n)2(1 − qn)2 = q − 2q2 − q3 − 2q4 + q5 + · · · .

(The calculation of these coefficients an, given an equation for E, is a built-in
feature of many symbolic algebra packages such as PARI, and calculating the first
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1000 coefficients takes less than a second on a small computer.) Setting q = e2πiτ

and computing the image of

z =

1000
∑

n=1

an

n
qn

in E(C) under the Weierstrass uniformisation yields a point which agrees with the
point

(x, y) =

(

1 −
√
−7

2
,−2 − 2

√
−7

)

to 35 decimal digits of accuracy. Further calculations of this kind are suggested in
the exercises.

3.4. Properties of Heegner points

Proposition 3.8. Let O be an order of discriminant prime to N . Then the
set CM(O) is non-empty if and only if all the primes dividing N split in K/Q.

Proof. If CM(O) is non-empty, then O can be realised as a subring of M0(N).
Therefore, there is a ring homomorphism O −→ Z/NZ. Since the conductor of O
is assumed to be prime to N , it follows that all ` dividing N are split in K. �

Because of this proposition, it is natural to require that the following Heegner
hypothesis be satisfied.

Hypothesis 3.9. All primes ` dividing N are split in K/Q.

Let n be any integer prime to N and let On be the order of K of conductor n. A
point of the form ΦN (τ), with τ ∈ CM(On), is called a Heegner point of conductor
n. Let HP (n) ⊂ E(Hn) denote the set of all Heegner points of conductor n in
E(Hn), where Hn denotes the ring class field of K of conductor n. The points in
HP (n) are related by the following norm-compatibilities:

Proposition 3.10. Let n be an integer and let ` be a prime number which
are both prime to N . Let Pn` be any point in HP (n`). Then there exist points
Pn ∈ HP (n) and (when `|n) Pn/` ∈ HP (n/`) such that

TraceHn`/Hn
(Pn`) =















a`Pn if ` 6 |n is inert in K,
(a` − σλ − σ−1

λ )Pn if ` = λλ̄ 6 |n is split in K,
(a` − σλ)Pn if ` = λ2 is ramified in K,
a`Pn − Pn/` if `|n.

Proof. We content ourselves with the proof of the second norm-compatiblity
relation, as the others are similar, but somewhat simpler. Let (A −→ A′) be the pair
of N -isogenous elliptic curves corresponding to the point Pn. If ` = λλ̄ is a prime of
Q which is split in K (and prime to N), then the action of Gal(K̄/Hn) on A[`] leaves
invariant two cyclic subgroups of order `: the groups C0 = A[λ], and C∞ = A[λ̄],
and permutes the remaining ` − 1 subgroups C1, . . . , C`−1 transitively. In fact,
this permutation action factors through a simply transitive action of Gal(Hn`/Hn)

on {C1, . . . , C`−1}. Let P
(j)
n` be the point in E(Hn`) corresponding to the pair

(A/Cj
ϕ→ A′/ϕ(Cj)), and set Pn` = P

(1)
n` . On the one hand, the description of the

Hecke operator T` in terms of cyclic `-isogenies makes it apparent that

(3.10) a`Pn = P
(0)
n` + P

(∞)
n` + P

(1)
n` + · · · + P

(`−1)
n` .
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On the other hand,

(3.11) P
(0)
n` = σλPn, P

(∞)
n` = σ−1

λ Pn, P
(1)
n` + · · · + P

(`−1)
n` = TraceHn`/Hn

(Pn`).

The result follows immediately from (3.10) and (3.11). For more details and a
discussion of the remaining cases, see [Gr89] or [Gr84]. �

An element τ ∈ Gal(H/Q) is called a reflection if its restriction to K is not the
identity. Because of the dihedral nature of Gal(H/Q), any reflection is of order 2,
and any two reflections differ by multiplication by an element of Gal(H/K). We
will need the following behaviour of the points Pn under the action of a reflection.

Proposition 3.11. Let τ ∈ Gal(H/Q) be a reflection. Then there exists σ ∈
Gal(H/K) such that

τPn = −sign(E, Q)σPn (mod E(H)tors),

where sign(E, Q) is the sign attached to E/Q described in equation (2.17).

Proof. See [Gr84]. �

3.5. Heegner systems

For the following definition, we let K be an arbitary (not necessarily imaginary)
quadratic extension of Q, and continue to denote by Hn the ring class field of K
of conductor n. (This may be taken in the narrow sense if K is real quadratic.)
The following definition is motivated by the properties of Heegner points that were
established in the previous section.

Definition 3.12. A Heegner system attached to (E, K) is a collection of points
Pn ∈ E(Hn) indexed by integers n prime to N , and satisfying the norm compati-
bility properties of Proposition 3.10 together with the behaviour under the action
of reflections described in Proposition 3.11.

A Heegner system is said to be non-trivial if at least one of the points Pn is
non-torsion.

Theorem 3.13. If (E, K) satisfies the Heegner hypothesis, then there is a non-
trivial Heegner system attached to (E, K).

Proof. The union of the points CM(n), as n ranges over all integers prime
to N , is dense in H with respect to the complex topology, as soon as the Heegner
hypothesis, which ensures that the sets CM(n) are non-empty, is satisfied. Hence
the image of these points in E(C) is dense with respect to the complex topology,
and, in particular, infinite. Let H∞ denote the union of all the ring class fields of
conductor prime to N . To rule out the possibility that all the points Pn are torsion,
one uses the following lemma:

Lemma 3.14. The torsion subgroup of E(H∞) is finite.

Proof. Any rational prime which is inert in K splits completely or is ramified
in all ring class fields, so that the residue field of H∞ at such a prime q is the
field Fq2 with q2 elements. Since the prime-to-q torsion in E(H∞) injects into the
finite group E(Fq2), it follows that the full torsion subgroup of E(H∞) injects into
E(Fq2

1
) ⊕ E(Fq2

2
), where q1 and q2 are two distinct rational primes which are inert

in K. �
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It follows from Lemma 3.14 and the discussion preceding it that at least one
(in fact, infinitely many) of the points ΦN (τ) is of infinite order in E(H∞), proving
Theorem 3.13. �

One theme of subsequent chapters (particularly Chapter 9) is that Heegner
systems can arise in contexts in which they cannot ostensibly be constructed via
the theory of complex multiplication.

The existence of a systematic supply of points defined over the ring class fields of
an imaginary quadratic field satisfying the properties of a Heegner system represents
in itself a noteworthy occurence. The next section examines the compatibility
between this phenomenon and the conjecture of Birch and Swinnerton-Dyer.

3.6. Relation with the Birch and Swinnerton-Dyer conjecture

Let K be any number field, and let DK be its discriminant. If v is a fractional
ideal of K, denote by |v| ∈ Q the norm of v. If E is an elliptic curve over Q

as before, one can consider, as in the remarks closing Chapter 1, the L-function
L(E/K, s) of E over K. This L-series can be expressed as an Euler product, taken
over the finite primes of K,

L(E/K, s) =
∏

v

Lv(E/K, s),

where Lv(E/K, s)−1 is a polynomial in |v|−s of degree at most 2 given by the rule

Lv(E/K, s) =

{

(1 − a|v||v|−s + |v|1−2s)−1 if v 6 |N ;
(1 − a|v||v|−s)−1 if v|N.

Assume from now on that K is a quadratic field, so that one has (cf. Exercise 15)

(3.12) L(E/K, s) = L(E, s)L(E ′, s),

where E′ is the quadratic twist of E over K.
More generally, let

χ : Gal(H/K) −→ C×

be any character of the ring class field H of conductor c with (c, N) = 1, and set
D = DKc2. Define the twisted L-series by the rule

L(E/K, χ, s) =
∏

v

Lv(E/K, χ, s),

where Lv(E/K, χ, s) is given, for v 6 |ND, by the formula

(3.13) Lv(E/K, χ, s) = (1 − χ(σv)a|v||v|−s + χ(σv)2|v|1−2s)−1.

(For the general formula describing the Euler factor for v|ND, see [Gr84], Chap-
ter III, Section 19, or Exercise 16.) It is useful to complete the definition of the
local L-factor Lv(E/K, χ, s) to the infinite primes, by setting

L∞(E/K, χ, s) = (2π)−2sΓ(s)2.

Let A = N2D2/ gcd(N, D).

Theorem 3.15. Let

Λ(E/K, χ, s) = As/2L∞(E/K, χ, s)L(E/K, χ, s).
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The L-function L(E/K, χ, s) has an analytic continuation to the entire complex
plane, and satisfies a functional equation of the form

(3.14) Λ(E/K, χ, s) = sign(E, K)Λ(E/K, χ, 2− s),

where sign(E, K) = ±1 is a sign which depends only on E and K, not on the ring
class character χ of conductor prime to N .

Remark on the proof. The proof of the analytic continuation and func-
tional equation for L(E/K, s) and L(E/K, χ, s) relies on Rankin’s method and
its extensions by Jacquet [Ja72]. When K is an imaginary quadratic field, it is
explained in detail in Chapter IV of [GZ84]. See also the remarks in [Gr84],
Chapter III, Section 21. �

While the proof of Theorem 3.15 does not matter very much for our discussion,
the shape of the functional equation in this theorem—in particular, the indepen-
dence on χ of the sign in equation (3.14)—has a number of striking arithmetic
consequences when combined with the Birch and Swinnerton-Dyer conjecture.

For example, if H is any ring class field of K of conductor prime to N , then by
Exercise 17, the L-function of E/H factors as

(3.15) L(E/H, s) =
∏

χ

L(E/K, χ, s),

where the product is taken over all the characters of Gal(H/K). It follows from
Theorem 3.15 that, if sign(E, K) = −1,

(3.16) L(E/K, χ, s) = 0 for all characters χ : Gal(H/K) −→ C.

Hence, by (3.15)

(3.17) ords=1L(E/H, s) ≥ [H : K].

The Birch and Swinnerton-Dyer conjecture then leads to the expectation that

(3.18) rank(E(H))
?
≥ [H : K].

The following conjecture is motivated by this predicted inequality:

Conjecture 3.16. If sign(E, K) = −1, then there is a non-trivial Heegner
system attached to (E, K).

We turn to a description of sign(E, K) in the special case where E is semistable
over K. The analytic set attached to E over K is the set of places of K which are
archimedean or at which the curve E has split multiplicative reduction. (The reason
for this terminology is that SE,K consists precisely of the places of K for which
E(Kv) admits an analytic uniformisation, given by the Weierstrass and Tate theory
mentioned in Chapter 1 when v is archimedean and non-archimedean respectively.)
The following makes Theorem 3.15 more precise:

Theorem 3.17. Suppose that E is defined over Q and K is a quadratic field.
Then

sign(E, K) = (−1)#SE,K .

Idea of proof. The functional equation for L(E/K, χ, s) of [Ja72] expresses
the sign in the functional equation as a product of local signs signv(E, K) indexed
by the places v of K. It turns out that signv(E, K) = 1 if v does not belong to
SE,K , and is equal to −1 otherwise. A complete and explicit description of the
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“local root numbers” attached to the functional equations of L-series of elliptic
curves is given in [Ro96]. �

Remark 3.18. Much of the discussion above can be transposed to the setting
where Q is replaced by an arbitrary number field F (and where E is an elliptic
curve over F , while K is a quadratic extension of F ). In that setting, the L-
function L(E/K, χ, s) is still expected to satisfy a functional equation of a shape
similar to that given by Theorem 3.15, with sign(E, K) depending only on E and
K, not on the ring class character χ of conductor prime to the conductor of E. On
the basis of the Birch and Swinnerton-Dyer conjecture, it is natural to make the
following conjecture.

Conjecture 3.19. Suppose that E is a semistable elliptic curve over a number
field F and K is a quadratic extension of F . Let

sign(E, K) := (−1)#SE,K .

If sign(E, K) = −1, then there is a non-trivial Heegner system attached to (E, K).

Even though the statement of Conjecture 3.19 is elementary and does not
involve the notion of modularity, one knows at present of no method for tackling it
directly without exploiting a connection between elliptic curves and automorphic
forms. In fact, only in the rather limited number of cases where one can establish
the analytic continuation and functional equation of L(E/K, χ, s)—by relating it
to the L-series of an automorphic form on GL2(F ), as in the case F = Q covered
by Wiles’ theory—does one have any means at present of relating sign(E, K) to the
behaviour of this associated L-series.

To illustrate how Theorem 3.17 can be applied, suppose that E is a semistable
elliptic curve over Q and that K is a quadratic imaginary field satisfying the Heegner
hypothesis with respect to E. In that case,

SE,K = {λ such that λ|`|N and E/Q` has split multiplicative reduction} ∪ {∞}.
Since each rational prime ` dividing N splits in K, the primes of K for which
E has split multiplicative reduction come in pairs and hence #SE,K is odd, so
that sign(E, K) = −1. Hence the Heegner point construction supplies a proof of
Conjecture 3.16 in the special case where (E, K) satisfies the Heegner hypothesis
(cf. Theorem 3.13).

3.7. The Gross-Zagier formula

As in the previous sections, let E be an elliptic curve over Q and let K be an
imaginary quadratic field such that (E, K) satisfies the Heegner hypothesis. Denote
by {Pn}n = {ΦN (τn)} the Heegner system arising from the points in HP (n). Let

PK = TraceH1/K(P1) ∈ E(K)

be the trace of a Heegner point of conductor 1 defined over the Hilbert class field
of K. More generally, if χ : Gal(Hn/K) −→ C× is any primitive character of a ring
class field extension of K of conductor n, let

P χ
n =

∑

σ∈Gal(Hn/K)

χ̄(σ)P σ
n ∈ E(Hn) ⊗ C.

The following result provides the essential bridge between the Heegner system {Pn}
and the special values of the complex L-series L(E/K, s) and its twists.
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Theorem 3.20 (Gross-Zagier, Zhang). Let 〈 , 〉n denote the canonical Néron-
Tate height on E(Hn) extended by linearity to a Hermitian pairing on E(Hn)⊗C.
Then

(1) 〈PK , PK〉 .
= L′(E/K, 1);

(2) 〈P χ
n , P χ̄

n 〉 .
= L′(E/K, χ, 1).

Here the symbol
.
= denotes equality up to a non-zero fudge factor, which can

in principle be made explicit. Part 1 of Theorem 3.20 was proved in [GZ84] (cf.
thm. 2.1 of section V.2) and part 2 is proved in [Zh01b]. The main consequence of
Theorem 3.20 is that the Heegner vector P χ

n is non-zero if and only if L′(E/K, χ, 1)
does not vanish.

3.8. Kolyvagin’s theorem

A non-trivial Heegner system obviously yields certain lower bounds on the size
of the Mordell-Weil group of E over ring class fields of K. The following theorem
reveals that a Heegner system also leads (somewhat surprisingly, at first sight) to
upper bounds on the Mordell-Weil group and the Shafarevich-Tate group of E/K.

Theorem 3.21 (Kolyvagin). Let {Pn}n be a Heegner system attached to (E, K).
If PK is non-torsion, then the following are true:

(1) The Mordell-Weil group E(K) is of rank one, so that PK generates a
finite-index subgroup of E(K);

(2) The Shafarevich-Tate group of E/K is finite.

The proof of this theorem is explained in Chapter 10. (The interested reader
may immediately skip to this chapter which is independent of the material in Chap-
ters 4–9.)

3.9. Proof of the Gross-Zagier-Kolyvagin theorem

We now explain how the results of sections 3.7 and 3.8 can be combined to
prove Theorem 1.14 of Chapter 1. Let us recall what this theorem states.

Theorem 3.22. If E is an elliptic curve over Q and ords=1L(E, s) ≤ 1, then

rank(E(Q)) = ords=1L(E, s) and #LLI(E/Q) < ∞.

Sketch of proof. Recall that sign(E, Q) denotes the sign in the functional
equation for L(E, s) = L(E/Q, s). Suppose first that sign(E, Q) is equal to −1.
By a result of [Wa85] (see also [MM97]), there exist infinitely many quadratic
Dirichlet characters ε such that

(1) ε(`) = 1 for all `|N ;
(2) ε(−1) = −1;
(3) L(E, ε, 1) 6= 0.

Note that for all characters ε satisfying conditions 1 and 2 above, L(E, ε, s) van-
ishes to even order at s = 1. This is because the quadratic imaginary field
corresponding to ε satisfies the Heegner hypothesis with respect to E, so that
L(E/K, s) = L(E, s)L(E, ε, s) vanishes to odd order at s = 1. If sign(E, Q) is
equal to 1, then for parity reasons L(E, ε, 1) = 0 for all quadratic Dirichlet charac-
ters satisfying conditions 1 and 2 above. In this case one invokes analytic results
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of [BFH90] and [MM91] which guarantee the existence of such a character ε for
which

L′(E, ε, 1) 6= 0.

In either case, let K be the quadratic imaginary field associated to ε. By construc-
tion,

(1) K satisfies the Heegner hypothesis relative to E,
(2) ords=1L(E/K, s) = 1, so that L′(E/K, 1) 6= 0.

Let {Pn} be the Heegner system arising from the CM points on X0(N) attached to
K. The Gross-Zagier theorem implies that this Heegner system is non-trivial in the
strong sense that PK is non-torsion. Kolyvagin’s theorem then implies that E(K)
has rank one, so that the quotient of E(K) by 〈PK〉 is finite, as is the Shafarevich-
Tate group of E/K. By Proposition 3.11, PK belongs to E(Q) (up to torsion) if
and only if sign(E, Q) = −1. It follows that the rank of E(Q) is equal to the order
of vanishing of L(E, s) at s = 1, as predicted by the Birch and Swinnerton-Dyer
conjecture. Finally, the finiteness of LLI(E/K) directly implies the finiteness of
LLI(E/Q) since the natural map LLI(E/Q) −→ LLI(E/K) induced by restriction has
finite kernel. (Cf. Exercise 18.) �

One cannot emphasize enough the crucial role played in this proof by the Heeg-
ner system arising from CM points on X0(N).

Heegner systems are interesting objects in their own right, even beyond their
striking application to the arithmetic of elliptic curves arising from the theorems
of Gross-Zagier and Kolyvagin. It is therefore natural to examine the following
question:

Question 3.23. Let E be an elliptic curve over Q and let K be a quadratic
field with sign(E, K) = −1. Is it possible to construct a non-trivial Heegner system
attached to (E, K)?

The next chapter presents the necessary background to give an essentially com-
plete affirmative answer to this question (and thereby prove Conjecture 3.16) in the
case where K is an imaginary quadratic field. The case where K is real quadratic
is more mysterious: one knows of no method for analytically constructing the class
fields of real quadratic fields. In this case one must content oneself with a con-
jectural construction that works in certain special cases. The tools and concepts
needed for this construction are introduced gradually in Chapters 5, 6 and 7 and
the construction is described in Chapter 8.

Further results

An excellent introduction to the theory of complex multiplication is given in
Serre’s article on complex multiplication (Chapter XII of [CF67]). A more lengthy
and leisurely introduction, containing a wealth of historical and extra material, is
the book [Cox89] by Cox.

The seminal article [GZ84] and the follow-up article [GKZ87] provide a rich
source of information on Heegner points, and their connections with special values
of the associated Rankin L-series. Other useful background on this topic can be
found in [Gr84], [Za85], [Zh01a] and [Zh01b].
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A useful exposition of the proof of Kolyvagin’s theorem (which is also the focus
of Chapter 10) is given in [Gr89].

Exercises

(1) Let K be an imaginary quadratic field, and let O ⊂ OK be the order in K of
conductor c > 1. If h = #Pic(OK) is the class number of K, show that

#Pic(O) = h · #(OK/cOK)×

(Z/cZ)×O×
K

.

For K = Q(ωD) of class number one, attach to each element α ∈ (OK/cOK)×

a projective O-module Λα, in such a way that Λα and Λβ are isomorphic if and

only if α = βu for some u ∈ (Z/cZ)×O×
K . Compute Pic(O) for

(a) O = Z[i], Z[2i], Z[3i], or Z[4i],
(b) O = Z[ρ], Z[2ρ], or Z[3ρ], where ρ = ω−3.
(c) O = Z[ω−7] or Z[11ω−7].

(2) Let E be an elliptic curve with complex multiplication by K. Assume that
both E and the endomorphisms of E are defined over a number field H .
(a) Show that the natural image of Gal(H̄/H) in Aut(En), for any integer n,

is abelian.
(b) Conclude that E does not acquire multiplicative reduction over any finite

extension of H . (Hint: use Exercise 6 of Chapter 1.)
(c) It is know that the prime ideals dividing the denominator of the j-invariant

of E are precisely the ones at which E has potentially multiplicative re-
duction. Conclude that if τ belongs to H ∩ K, then j(τ) is an algebraic
integer.

(3) Show that j( 1+i
√

163
2 ) is an integer. Compute this integer using a symbolic

algebra package such as PARI. Explain the curious numerical identity

eπ
√

163 = 262537412640768743.9999999996 . . . .

(4) Complete the proof of Theorem 3.6 in the case where the conductor of O is not
assumed to be prime to N .

(5) Check that formula (3.8) does yield a well-defined action of Pic(O) on CM(O).
(6) Check that the action of Pic(O) on Ell(O) commutes with the natural action

of GK := Gal(K̄/K) on this set.
(7) Let E be an elliptic curve with complex multiplication by an order O in a

quadratic imaginary field K, defined over an abelian extension H of K. Let p

be a prime of K of norm a rational prime p, which is unramified in H/K and
modulo which E and all its Galois conjugates have good reduction. Choose
a prime p′ of H above p. Let Ē be the curve obtained from E by reducing
modulo p′.
(a) Show that there is a unique (up to composition with automorphisms of

the image) inseparable isogeny from Ē of degree p. (Hint: show that the
isogeny Ē −→ Ē/Ē[p̄] is separable, by choosing an ideal I of norm prime
to p such that p̄I = (λ) is principal. Then show that the composed map
Ē −→ Ē/Ē[p̄] −→ Ē/Ē[λ] = Ē is separable, by examining its effect on the
tangent space of E, using equation (3.2).)

(b) By a similar argument, show that the natural projection Ē −→ Ē/Ē[p] is
purely inseparable of degree p.
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(8) For the following elliptic curves E and fundamental discriminants D, compute
the class number h of D and a system (x1, y1), . . . , (xh, yh) of complex points
approximating the Heeger points on E attached to O with an accuracy of at
least 20 decimal digits. Decribe the polynomial of degree h with coordinates in
Q satisfied by the xj and the yj .
(a) E : y2 + y = x3 − x2 − 10x− 20, of conductor 11; with D = −8, −19, −24,

or −43.
(b) E : y2 + xy + y = x3 + 4x − 6, of conductor 14; with D = −31 or −68.
(c) E : y2 + y = x3 − x, of conductor 37; with D = −3, −4, −11, or −67.

(9) Let E be the elliptic curve y2 = 4x3 − 28x + 25 of conductor 5077.
(a) Show (using, say, PARI or any other symbolic algebra package) that the

sign in the functional equation of L(E, s) is −1 so that this L-series vanishes
to odd order.

(b) By a direct numerical calculation, verify that the Heegner point associated
to the order of discriminant −4 is a torsion point.

(c) Using the Gross-Zagier formula, conclude that L(E, s) has a zero of order
at least 3 at s = 1.

The existence of such L-series with zeroes of high order, implied by the con-
jecture of Birch and Swinnerton-Dyer, plays a key role in Goldfeld’s effective
solution of the Gauss class number problem. It was not known unconditionally
before the work of Gross and Zagier.

(10) Show that a CM point on H/Γ0(N) corresponds to an integral point on the open
modular curve Y0(N). (Hint: use the fact that an elliptic curve with complex
multiplication has potentially good reduction at all primes.) Conclude that if
the modular parametrisation ΦN maps only the cusps of X0(N) to the origin of
E, then the curve E has a Heegner system {Pn} consisting entirely of integral
points (relative to the minimal Weierstrass model for E).

(11) Prove a converse to the theorem of the previous exercise: the Heegner system
of points {Pn} = {Φn(τn)} consists entirely of integral points on E, if and only
if the inverse image of the origin of E under ΦN consists entirely of cusps on
X0(N).

(12) Show that the integrality property of Heegner points is satisfied by the elliptic
curves of conductor < 37 and the curve labelled 37A in Cremona’s tables, but
not by the curve labelled 37B in these tables.

(13) Produce an example of a Heegner point on the curve 37B which is not integral.
(I am grateful to Antoine Gournay for carrying out the computer calculations
necessary to formulate this exercise and the previous one.)

(14) * Give a complete list of the elliptic curves satisying the integrality property
of Heegner points. (A useful reference to get started on this as yet unsolved
problem is [MSw-D74].)

(15) Prove formula (3.12) in the text.
(16) The local Euler factor at p in the L-function of E/Q can be written as

(1 − αpp
−s)(1 − α′

pp
−s),

where, for p 6 |N , we have αp + α′
p = ap(E), and αpα

′
p = p.
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Given a ring class character χ : Gal(H/K) −→ C×, set

(βp, β
′
p) =















(χ(σp), χ(σp)−1) if p = pp̄ splits in K;
(1,−1) if p is inert in K;
(χ(σp), 0) if p = p2 is ramified in K but not in H;
(0, 0) if p is ramified in H/K.

(a) Let V be the two-dimensional Artin representation of GQ, given by inducing
χ from GK to GQ. Show that the Artin L-series L(V, s) is equal to

L(V, s) =
∏

p

(1 − βpp
−s)−1(1 − β′

pp
−s)−1.

(b) Show that when p divides neither N nor the discriminant of H , the degree
four Euler factor

(1 − αpβpp
−s)(1 − αpβ

′
pp

−s)(1 − α′
pβpp

−s)(1 − α′
pβ

′
pp

−s)

is equal to the product of the Euler factors in equation (3.13), taken over
the primes v which divide p.

(c) Define the local factor at the rational prime p for L(E/K, χ, s) to be

(1 − αpβpp
−s)(1 − αpβ

′
pp

−s)(1 − α′
pβpp

−s)(1 − α′
pβ

′
pp

−s).

Compute this Euler factor at the primes which divide N or the discriminant
of H .

(17) Prove equation (3.15) in the text.
(18) Let K be a finite extension of Q. Show that the natural map LLI(E/Q) −→

LLI(E/K) induced by restriction has finite kernel.
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Heegner points on Shimura curves

Any elliptic curve E over Q is modular, and hence is equipped with the modular
parametrisation

(4.1) ΦN : H/Γ0(N) −→ E(C), where N = conductor of E,

as introduced in Chapter 2. The theory of complex multiplication of Chapter 3
allows the construction of a plentiful supply of algebraic points on E—the so-
called Heegner points, of the form ΦN (τ), where τ ∈ H is a quadratic (imaginary)
irrationality.

In particular, if K is an imaginary quadratic field satisfying the Heegner hy-
pothesis, then for all orders O of K of conductor prime to N , the set CM(O) of
points in H/Γ0(N) with associated order equal to O is non-empty, and it is pos-
sible to choose points τn ∈ CM(On) in such a way that the collection of points
Pn = ΦN (τn) forms a Heegner system in the sense of Definition 3.12 of Chapter
3. This Heegner system is an essential ingredient in the proof of the theorem of
Gross-Zagier-Kolyvagin stated in Chapter 1.

It is natural to examine what happens if the Heegner hypothesis is relaxed. For
example, suppose that N = p is a prime which is inert in K. One can show (cf.
Exercise 1) that if τ belongs to H ∩ K, then Pτ := ΦN (τ) belongs to E(Hn) for
some n of the form ptn′ with t ≥ 1 and (p, n′) = 1. Furthermore,

TraceHn/Hn′ (Pτ ) = 0.

Thus the Heegner point construction does not yield any points on E defined over
ring class fields of conductor prime to p. This is to be expected, since SE,K = {p,∞}
so that sign(E, K) is equal to 1: in this case, one expects the rank of E(Hn′) to be
small in general.

A second example which is more interesting, and which the reader may find
helpful to keep in mind in a first reading of this chapter, is the one where N = pq
is a product of two distinct primes p and q which are both inert in K/Q. In that
case, SE,K = {p, q,∞}, so that sign(E, K) = −1. As in the previous example,
the points of the form ΦN (τ) belong to E(Hn) where n is of the form prqsn′ with
r, s ≥ 1, and the trace of these points to E(Hprn′) or to E(Hqsn′) are torsion. It
thus appears that the modular parametrisation ΦN is inadequate to produce the
non-trivial Heegner system whose existence is predicted by Conjecture 3.16.

To deal with this example and its obvious generalisations, it seems essential
to enlarge the répertoire of modular parametrisations to include Shimura curve
parametrisations as well as the more classical modular curve parametrisation of
(4.1).

45
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4.1. Quaternion algebras

A quaternion algebra over a field F is a 4-dimensional central simple algebra
over F . A trivial example is the ring M2(F ) of 2×2 matrices with entries in F . Any
quaternion algebra over a field F of characeristic 6= 2 is isomorphic to an algebra
of the form

(4.2)

(

a, b

F

)

:= F ⊕ Fi ⊕ Fj ⊕ Fk, where i2 = a, j2 = b, ij = −ji = k,

for some a, b ∈ F×. A quaternion algebra B over F is said to be split if it is
isomorphic to M2(F ). More generally, if K is an extension field of F , then B is
said to be split over K if B ⊗F K is a split quaternion algebra over K.

Every quaternion algebra splits over some extension of F (for example, any
maximal commutative subfield of B). There are, up to isomorphism, exactly two
quaternion algebras over the reals: the split algebra M2(R) and the algebra H of
Hamilton’s quaternions. A similar fact is true over Qp or any local field. All of this
is elementary. (Cf. Exercise 2.)

More deep is the classification of quaternion algebras over number fields, which,
together with the more general classification of central simple algebras, is a corner-
stone of global class field theory. (Cf. [CF67].) For any place v of F , let Fv denote
the completion of F at v and let Bv := B ⊗F Fv . One says that B is split at v if
Bv is a split quaternion algebra. Otherwise B is said to be ramified at v.

Proposition 4.1. Let S be a finite set of places of Q. Then there exists a
quaternion algebra ramified precisely at the places in S, if and only if S has even
cardinality. In this case the quaternion algebra is unique up to isomorphism.

Let Z be a finitely generated subring of F . (Of principal interest are the cases
where Z = OF is the ring of integers of F , or where Z is the ring of S-integers for
some finite set S of places of F .)

Definition 4.2. A Z-order in B is a subring of B which is free of rank 4 as
a Z-module. A maximal Z-order is a Z-order which is properly contained in no
larger Z-order. An Eichler Z-order is the intersection of two maximal Z-orders.

The level of an Eichler order R = R1 ∩R2 is the Z-module index of R in either
R1 or R2. One can show (cf. Exercise 5) that this notion is independent of the
description of R as an intersection of two maximal orders.

Unlike the rings of integers of number fields of which they are the non-commuta-
tive counterpart, maximal Z-orders in a quaternion algebra are never unique. This
is because any conjugate of a maximal order is also a maximal order. The most one
can ask for in general is that a maximal Z-order be unique up to conjugation by
elements of B×. Such uniqueness is not true in general, but it is under the following
general condition:

Definition 4.3. One says that that B and Z satisfy the Eichler condition if
there is at least one archimedean prime or one prime which is invertible in Z at
which B is split.

Proposition 4.4. Suppose that B and Z satisfy the Eichler condition. Then
any two maximal Z-orders in B are conjugate. Likewise, any two Eichler Z-orders
of the same level are conjugate.
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The proof of this proposition is explained in [Vi80]. More precisely, ch. III,
§5, of [Vi80] describes the set of Eichler Z-orders of a given level N in terms of an

adelic double coset space attached to B. To make this explicit, let Ẑ denote the
usual profinite completion of Z and write Q̂ := Ẑ ⊗ Q for the ring of finite rational
adèles. Fixing one Eichler Z-order R of level N in B, let

R̂ := R ⊗ Ẑ, B̂ := B ⊗ Q̂ = R̂ ⊗ Q

denote the “adelisations” of R and B respectively. Then the set of Eichler Z-orders
of level N in B is in natural correspondence with the coset space

B̂×/Q̂×R̂×,

by assigning to the coset represented by an idèle (b`) (indexed by rational primes
`) the order

(b`)R̂(b−1
` ) ∩ B.

It can be checked that this an Eichler Z-order in B of level N which depends only
on the coset of (b`) and not on the choice of a representative, and that all Eichler Z-
orders in B of level N are obtained in this way. It follows that the set of conjugacy
classes of Eichler Z-orders of level N in B is in natural bijection with the double
coset space

(4.3) B×\B̂×/R̂×.

Given any rational prime p, let Bp := B ⊗Qp and let Rp := R⊗Zp. The following
strong approximation theorem yields a p-adic description of the double coset space
appearing in (4.3):

Theorem 4.5. Let p be a prime at which the quaternion algebra B is split.
Then the natural map

R[1/p]×\B×
p /R×

p −→ B×\B̂×/R̂×,

which sends the class represented by bp to the class of the idèle (. . . , 1, bp, 1, . . .), is
a bijection.

For further discussion see ch. III, §4 of [Vi80] or Section 0.2 of [Cl03].

Any quaternion algebra B over F admits a natural four-dimensional linear
representation over F by letting B act on itself by left multiplication. Given b ∈ B,
the corresponding F -linear endomorphism of B has a characteristic polynomial of
the form

fb(x) = (x2 − tx + n)2.

The integers t and n are called the reduced trace and the reduced norm of x respec-
tively. (See Exercise 3 and [Vi80] for more details.)

4.2. Modular forms on quaternion algebras

Let B be a quaternion algebra over Q which is split at ∞. (Such an algebra is
called an indefinite quaternion algebra.) Fix an identification

ι : B ⊗Q R ' M2(R).

Let R be an order in B. Denote by R×
1 the group of elements of R× of reduced

norm 1, and let
Γ := ι(R×

1 ) ⊂ SL2(R).
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Lemma 4.6. The group Γ acts discretely on H with compact quotient.

Proof. Since R is discrete in B ⊗ R, the group R×
1 is discrete in (B ⊗ R)×,

so that Γ is a discrete subgroup of SL2(R). But H is identified with the coset
space SL2(R)/SO2(R) where SO2(R) is the stabiliser of i. Since this latter group
is compact, the discreteness of the action of Γ on H follows. The proof that the
action of Γ on H has a fundamental region with compact closure, which uses in an
essential way the assumption that Γ arises from a quaternion division algebra, can
be found for example in [Ka92], thm. 5.4.1. �

Definition 4.7. A modular form of weight k on Γ is a holomorphic function
f on H such that

f(γτ) = (cτ + d)kf(τ) for all γ =

(

a b
c d

)

∈ Γ.

Remark 4.8. It is not necessary to assume any growth conditions, since the
quotient H/Γ is already compact. In this sense the theory of modular forms at-
tached to non-split quaternion algebras is simpler than the classical theory of forms
on Γ0(N). We will see shortly that the absence of cusps is also a source of extra
difficulties in the theory, since the notion of Fourier expansions at the cusps is used
crucially in the proof of the multiplicity one theorem of Lemma 2.7, in the integral
representation of L(f, s), and in Proposition 2.11 giving an explicit formula for the
modular parametrisation ΦN .

As in the classical setting where B = M2(Q), the main case which is relevant
for elliptic curves and modular parametrisations is the one where k = 2. The
space S2(Γ) of forms of weight 2 on H/Γ can then be identified with the space of
holomorphic differential forms on the compact Riemann surface H/Γ.

We now introduce certain subgroups of SL2(R) arising from quaternion algebras
which will play much the same role in our discussion as the groups Γ0(N) of Chapter
2. Let N be a positive integer.

Definition 4.9. The factorisation N = N+N− is called an admissible factori-
sation if

(1) gcd(N+, N−) = 1,
(2) the integer N− is squarefree, and the product of an even number of primes.

A discrete subroup ΓN+,N− of SL2(R) can be associated to any admissible
factorisation of N as follows: let B denote the quaternion algebra ramified precisely
at the primes ` which divide N−. (Such an algebra is unique, up to isomorphism,
by Proposition 4.1.) Note that B is an indefinite quaternion algebra, i.e., it is split
at the place ∞.

Choose a maximal order R0 in B. Such orders are unique up to conjugation
by B×, by Proposition 4.4. Since the algebra B is split at all the primes dividing
N+, and R0 is a maximal order, one may fix an identification

η : R0 ⊗ (Z/N+Z) −→ M2(Z/N+Z).

Let R denote the subring of R0 consisting of all elements x such that η(x) is upper
triangular. The subring R is an Eichler order of level N+ in B. Like the maximal
order R0, the Eichler order R is unique up to conjugation by B×. After fixing as
before an identification ι of B ⊗ R with M2(R), define

ΓN+,N− = ι(R×
1 ),
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where R×
1 denotes as before the group of elements of reduced norm 1 in R.

We now collect some basic facts about the structure of the space

S2(ΓN+,N−) =: S2(N
+, N−)

which are analogous to the basic properties of S2(N) discussed in Chapter 2:

• The space S2(N
+, N−) is naturally a Hilbert space, in which the duality

is given by the wedge product of differential one-forms (cup-product).
• It is endowed with a natural action of Hecke operators Tp, indexed by

rational primes p, which are self-adjoint when p does not divide N . To
define Tp in this case, let α ∈ R be an element of reduced norm p. The
double coset ΓαΓ can be written as a disjoint union of left cosets

ΓαΓ =

p
⋃

i=0

αiΓ,

and Tp is defined by summing the translates of f by the left coset repre-
sentatives αi

(4.4) Tp(f(z)dz) :=

p
∑

i=0

f(α−1
i z)d(α−1

i z).

• Because the Hecke operators Tn for (n, N) = 1 commute and are self-
adjoint, the space S2(ΓN+,N−) is completely diagonalisable under the ac-
tion of these operators.

• If f is an eigenform for the Hecke operators, its associated L-function can
be defined as the product of the following local factors (at least for the
primes ` which do not divide N):

(1 − a`(f)`−s + `1−2s)−1, where T`f = a`f.

Remark 4.10. We have not said anything about the dimensions of the various
eigenspaces, and it should be remarked that here lies a complication of the theory:
it is not clear that a simultaneous eigenspace for all the Hecke operators should
be one-dimensional, since one lacks the notion of Fourier expansion which in the
case of forms on Γ0(N) allows one to recover the eigenform from a knowledge of its
associated system of Hecke eigenvalues.

Nonetheless, there is a generalisation of Atkin-Lehner theory in this setting.
More precisely, one can define a notion of oldforms in S2(ΓN+,N−), which are forms
arising from forms in S2(Γd+,N−) where d+ is a proper divisor of N+. The space of
newforms is the orthogonal complement of the space of oldforms defined in this way.
It is proved in [Zh01a], §3.2.1, that the simultaneous eigenspaces in Snew

2 (ΓN+,N−)
for all the Hecke operators (or even merely for the good Hecke operators) are one-
dimensional.

We call a modular form f in such an eigenspace an eigenform on ΓN+,N− .
Since f does not admit a Fourier expansion, it is also unclear by what condition
one might normalise f in order to arrive at a notion of normalised eigenform. We
postpone the discussion of this issue to the next chapter.

4.3. Shimura curves

The compact Riemann surface H∗/Γ0(N) can be interpreted as the complex
points of an algebraic curve X0(N) defined over Q. As was proved by Shimura,
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an analogous fact holds for the quotients H/ΓN+,N− . In fact this Riemann surface
admits a moduli interpretation as classifying abelian surfaces over Q endowed with
certain extra stuctures; since this moduli problem makes sense over Q, it gives rise
to an algebraic curve XN+,N− over Q whose complex points are identified with
H/ΓN+,N− .

Roughly speaking, the moduli interpretation associates to τ ∈ H/ΓN+,N− an
abelian surface with endomorphism ring containing the order R0, and certain auxil-
iary level N+ structure. (For more details on Shimura curves and a precise definition
of the moduli problem, see [BC92] Chapter 1 of [Zh01a], or Chapter 0 of [Cl03].)

For example, if N− = 1 so that B = M2(Q), the maximal order R0 can be
chosen to be M2(Z). An abelian surface A whose endomorphism ring contains
M2(Z) decomposes as a product of an elliptic curve E with itself:

A = E × E =

(

1 0
0 0

)

A ×
(

0 0
0 1

)

A.

The level N structure imposed on A corresponds to the usual level N structure on
E, so that in this case one recovers the usual moduli interpretation of X0(N).

4.4. The Eichler-Shimura construction, revisited

Let f be an eigenform in S2(ΓN+,N−) having integer Hecke eigenvalues an(f).
As in the case of modular forms on Γ0(N), one can associate to such an eigenform
an elliptic curve over Q:

Theorem 4.11. There exists an elliptic curve E over Q such that an(E) =
an(f), for all integers n such that (n, N) = 1.

Sketch of proof. The proof proceeds along lines similar to those of theorem
2.10 of Chapter 2. Let T be the algebra generated by the good Hecke operators.
These operators can be realised as algebraic correspondences on the Shimura curves
XN+,N− and hence give rise to endomorphisms of the Jacobian JN+,N− of XN+,N−

which are defined over Q. The eigenform f determines a homomorphism

ϕf : T −→ Z, sending Tn to an(f).

Let If denote the kernel of ϕf . The multiplicity one result alluded to in Remark
4.10 implies that the quotient

Ef := JN+,N−/If

is an elliptic curve. An analogue of the Eichler-Shimura congruence, this time for
the correspondence Tp on X2

N+,N− , yields the equality of L-functions

L(Ef , s) = L(f, s).

For more details on this construction see [Zh01a], sec. 3.4. �

4.5. The Jacquet-Langlands correspondence

The Eichler-Shimura construction of the previous section, combined with Wiles’
theorem that every elliptic curve is modular, leads to the conclusion that for every
admissible factorisation N+N− of N and for every newform g on ΓN+,N− with
integer Hecke eigenvalues, there is an associated newform f on Γ0(N) with the same
Hecke eigenvalues as those of g at the primes ` not dividing N . In fact, more is true,
a fact which could be established before Wiles’ proof of the Shimura-Taniyama-Weil
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conjecture: one does not need to assume the rationality of the Fourier coefficients
of f , and the correspondence between newforms goes both ways.

Theorem 4.12 (Jacquet-Langlands). Let f be a newform on Γ0(N), and let
N = N+N− be an admissible factorisation of N . Then there is a newform g ∈
S2(ΓN+,N−) with

L(f, s) = L(g, s) (up to finitely many Euler factors).

The proof of this theorem, which relies on techniques of non-abelian harmonic
analysis, is beyond the scope of these notes, and is explained in [Gel75] (specifically,
in the last chapter) and in [JL70].

4.6. The Shimura-Taniyama-Weil conjecture, revisited

The results of Section 4.5 make it possible to rewrite the Shimura-Taniyama-
Weil conjecture in terms of modular forms on ΓN+,N− .

Theorem 4.13. Let E/Q be an elliptic curve of conductor N , and let N =
N+N− be an admissible factorisation of N . Then there exists a unique eigenform
f ∈ S2(ΓN+,N−) such that

T`(f) = a`(E)f, for all ` 6 |N.

Sketch of proof. By Wiles’ theorem, there exists a newform f0 on Γ0(N)
attached to E. Theorem 4.12 produces the desired eigenform f ∈ S2(ΓN+,N−). �

Theorem 4.13 supplies an essential ingredient in defining the new type of mod-
ular parametrisation

ΦN+,N− : Div0(H/ΓN+,N−) −→ E(C).

To begin, let
Φ0

N+,N− : Div0(H) −→ C

be the map which to a divisor D associates the line integral
∫

D
f(z)dz. The sub-

group generated by the elements of the form ΦN+,N−(D), where D is a divisor
which becomes trivial in H/ΓN+,N− , is a lattice Λf in C, and C/Λf = Ef (C). One
thus obtains a map

Φ′
N+,N− : Div0(H/ΓN+,N−) −→ C/Λf = Ef (C).

Since E and Ef have the same L-function, they are isogenous over Q. Letting α
be an isogeny Ef −→ E defined over Q, one then sets

ΦN+,N− = αΦ′
N+,N− .

4.7. Complex multiplication for H/ΓN+,N−

The reader will note that the one-dimensional factors of jacobians of Shimura
curves do not yield any new elliptic curves over Q, since these are already all
accounted for in the jacobians of the modular curves X0(N), by Wiles’ theorem.
However, the larger supply of modular parametrisations

ΦN+,N− : Div0(H/ΓN+,N−) −→ E(C),

indexed by admissible factorisations of N provide new constructions of algebraic
points on E, and in fact examples of Heegner systems that could not be constructed
from modular curve parametrisations alone.
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Following the lead of Chapter 3 and defining CM points on H/ΓN+,N− as
arising from τ ∈ H∩K, where K is an imaginary quadratic subfield of C, is clearly
inappropriate since the group ΓN+,N− , which depends on an identification ι of B⊗R

with M2(R), is only well-defined up to conjugation in SL2(R), a group whose action
does not preserve H∩K. One resorts to the characterisation of CM points as those
whose associated orders are orders in imaginary quadratic fields. More precisely:

Definition 4.14. Given τ ∈ H/ΓN+,N− , the associated order of τ is the set

Oτ := {γ ∈ R such that norm(γ) = 0 and ι(γ)(τ) = τ} ∪ {0}.

As in the case treated in Chapter 3, the assignment γ 7→ zγ identifies Oτ with a
discrete subring of C, so that Oτ is either Z or an order in an imaginary quadratic
field K ⊂ C.

Definition 4.15. A point τ ∈ H/ΓN+,N− is called a CM point if its associated
order is isomorphic to an order in an imaginary quadratic field.

As in Chapter 3, given an order O in an imaginary quadratic field K we write

CM(O) = {τ ∈ H/ΓN+,N− such that Oτ = O}.
The importance of the CM points lies in the fact that the theory of complex multi-
plication formulated in Chapter 3 in the case of classical modular curves generalises
readily to this new setting:

Theorem 4.16 (Complex multiplication for Shimura curves). Let O be an order
in an imaginary quadratic field K of discriminant prime to N , and let H/K be the
ring class field of K attached to O. Then

ΦN+,N−(Div0(CM(O))) ⊂ E(H).

Sketch of proof. The proof uses the moduli interpretation of the points
on H/ΓN+,N− . If τ belongs to CM(O), the associated abelian suface Aτ has
endomorphisms by the maximal order R0, as well as by O, and these two actions
commute with each other. Hence Aτ has endomorphisms by R0 ⊗Z O, and order in
B ⊗ K ' M2(K). It follows that Aτ is isogenous to a product A′ × A′, where A′

is an elliptic curve with complex multiplication by O. Hence Aτ is defined over H
by the theory of complex multiplication covered in Chapter 3. Further work shows
that the level N+ structure attached to Aτ gives rise to a level N+ structure on A′

which is defined over H as well. �

4.8. Heegner systems

The following lemma reveals that the CM points arising from Shimura curve
parametrisations are fundamentally new sets of points that could not be obtained
by using modular curve parametrisations alone.

Lemma 4.17. Let K be an imaginary quadratic field of discriminant prime to
N and let O be an order in K of conductor prime to N . Then CM(O) 6= ∅ if and
only if the following two conditions are satisfied:

(1) All the primes ` dividing N− are inert in K;
(2) All the primes ` dividing N+ are split in K.
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Proof. Since K is a quadratic subfield of the quaternion algebra B which is
ramified at N−, it follows that all the primes dividing N− are inert in K. The
fact that all primes dividing N+ are split in K is proved exactly as in the proof of
Proposition 3.8 of Chapter 3. �

Lemma 4.17 leads to the proof of the following theorem.

Theorem 4.18. Let E be a semistable elliptic curve of conductor N , and let K
be an imaginary quadratic field of discriminant prime to N . If sign(E, K) = −1,
then there is a non-trivial Heegner system {Pn} attached to (E, K).

Sketch of proof. The field K determines a factorisation N = N+N− of N
by letting N+ be the product of the primes which are split in K, while N− is the
product of the primes which are inert in K. Since sign(E, K) = −1, the set SE,K

has odd cardinality. On the other hand,

SE,K = {λ|`|N+ such that E/Q` has split multiplicative reduction at `}
∪ {`|N−} ∪ {∞}.

The first set in the union has even cardinality, hence it follows that N− is divisible
by an even number of primes as well, so that N+N− is an admissible factorisation
of N . For each integer n which is prime to N , one then knows by Lemma 4.17 that
CM(On) is non-empty. One may choose divisors Dn ∈ Div0(CM(On)) in such a
way that Pn := ΦN+,N−(Dn) forms a Heegner system. An argument analogous to
the proof of Theorem 3.13 of Chapter 3, based on the density of the CM points in
H/ΓN+,N− ensures that this Heegner system is non-trivial. �

4.9. The Gross-Zagier formula

An analogue of the Gross-Zagier formula (Theorem 3.20) for Heegner points
which arise from Shimura curve parametrisations was anticipated by Gross and
Zagier in [Gr84] and has been recently proved by Zhang [Zh01a].

Theorem 4.19 (Zhang). If {Pn} is the Heegner system attached to (E, K) as
above, and if PK := TraceH1/K(P1), then

〈PK , PK〉 .
= L′(E/K, 1).

(The symbol
.
= is given the same meaning here as in the statement of Theorem

3.20.)
We close this chapter by raising two questions which arise naturally from our

discussion of Shimura curves:

(1) How does one compute numerically the parametrisation ΦN+,N− when
N− 6= 1? The Fourier expansion of the modular form f attached to E in
a neighbourhood of i∞ when N− = 1 does not generalise in any obvious
way to the setting of Shimura curves which are not equipped with cusps.

(2) The second question is the primary motivation for Chapters 6,7, and 8:
What construction plays the role of modular and Shimura curve parametri-
sations, and of the CM points on these curves, when the field K is real
quadratic? In that setting, is it possible to construct the Heegner systems
whose existence is predicted by Conjecture 3.16 when sign(E, K) = −1?
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A partial answer to question 1 can be given by exploiting a structure on Shimura
curves which has no counterpart for classical modular curves: the p-adic uniformi-
sation of these curves by certain discrete arithmetic subgroups of SL2(Qp), for p a
prime dividing N−. This new structure in some ways compensates for the absence
of cusps and Fourier expansions, in allowing an explicit numerical description of
modular forms in S2(ΓN+,N−).

Question 2 lies deeper. A partial conjectural answer to it is given in Chapter
9, relying on modular symbols and on the p-adic analytic techniques introduced in
the next chapter.
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Exercises

(1) Let E be an elliptic curve of conductor N and let K be an imaginary quadratic
field in which all the primes dividing N are inert. Let ΦN : H/Γ0(N) −→ E(C)
be the classical modular parametrisation attached to E.
(a) Suppose that N = p is prime. Show that that if τ belongs to H ∩ K, then

Pτ := ΦN (τ) belongs to E(Hn) for some n of the form ptn′ with t ≥ 1 and
(p, n′) = 1. Furthermore, show that

(4.5) TraceHn/Hn′ (Pτ ) = 0.

(b) Suppose that N = pq is the product of two distinct primes. Show that
the points of the form ΦN (τ) are defined over ring class fields of conductor
n = ptqsn′ with t, s ≥ 1, and that equation (4.5) continues to hold, even
though sign(E, K) = −1 in this case. This justifies working with the
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Shimura curve parametrisation Φ1,pq to produce the non-trivial Heegner
system whose existence is predicted in this case.

(2) Let B be a quaternion algebra over a field F .
(a) If α ∈ B \ F , show that the subalgebra K = F (α) generated by α over F

is a commutative semisimple algebra of rank 2, and that it is a field if B is
a division algebra. Let x 7→ x̄ denote the involution of K/F .

(b) Fix the quadratic subalgebra K ⊂ B. Show that there is an element
β ∈ B× satisfying βλ = λ̄β for all λ ∈ K. (Hint: Study the K-linear
action of K by right multiplication on B viewed as a K-vector space under
left multiplication.) Show that the element β is uniquely determined by K
up to multiplication by elements of K×.

(c) Show that γ = β2 belongs to F , and that it is uniquely determined up to
multiplication by norms of non-zero elements in K.

(d) Conclude that any quaternion algebra over F is isomorphic to an algebra
of the form BK,γ = {a + bβ|a, b ∈ K}, where K is a quadratic semisimple
algebra over F and γ ∈ F , with multiplication given by the rule

(a + bβ)(a′ + b′β) = (aa′ + bb̄′γ) + (ab′ + bā′)β.

(e) Show that the only quaternion algebras over R are the split algebra M2(R)
and the algebra of Hamilton quaternions.

(3) Let B be a quaternion algebra over F , and let b ∈ B. Let K be a subfield of
B quadratic over F and containing b. Prove that the norm and trace of b from
K to F are equal to their reduced norm and trace from B.

(4) Show that a quaternion algebra becomes split over any quadratic subfield.
(5) Let B be a quaternion algebra over a global field. Show that the level of an

Eichler Z-order R = R1 ∩R2, defined as the Z-module index of R in either R1

or R2, is independent of the expression of R as the intersection of two maximal
orders R1 and R2. (Hint: prove this first for orders in a matrix algebra over a
local field.)





CHAPTER 5

Rigid analytic modular forms

The modularity of E has allowed us to construct complex uniformisations

ΦN : H/Γ0(N) −→ E(C),

ΦN+,N− : Div0(H/ΓN+,N−) −→ E(C).

The CM points on these modular and Shimura curves map to a plentiful supply of
algebraic points (“Heegner systems”) defined over the ring class fields of imaginary
quadratic fields.

The purpose of the next two chapters is to enrich this picture further by using
the uniformisation ΦN+,N− to construct explicit p-adic uniformisations of E by
certain discrete arithmetic subgroups of SL2(Qp), at the primes p dividing N−.

5.1. p-adic uniformisation

Let p be a prime, let | |p denote the usual normalised p-adic absolute value
on Q, and let Qp denote the completion of Q with respect to this absolute value.
Choose an algebraic closure Q̄p of Qp. Because Q̄p has infinite degree over Qp, it is
no longer complete; the field obtained by completing Q̄p with respect to the p-adic
distance is a complete algebraically closed field which is commonly denoted Cp and
will play the role of the complex numbers in our analogy.

The p-adic upper half plane is defined (as a set) to be

(5.1) Hp := P1(Cp) − P1(Qp).

Note that this set is really analogous to P1(C)−P1(R)—two copies of the Poincaré
upper half-plane. In the p-adic case this set does not split naturally into two disjoint
components, hence it is more appropriate to treat (5.1) as the natural generalisation
of the Poincaré upper half plane.

The role of holomorphic functions on H is played by the so-called rigid analytic
functions on Hp. These are functions that admit “nice” expressions when restricted
to certain distinguished subsets of Hp, called affinoids.

We begin by giving prototypical examples of the regions in Hp (the basic affi-
noids, and annuli) which are the building blocks for the rigid analytic structure on
Hp.

Let

red : P1(Cp) −→ P1(F̄p)

be the natural map given by reduction modulo the maximal ideal of the ring of
integers of Cp. Since red(P1(Qp)) ⊂ P1(Fp), the set

A := red−1(P1(F̄p) − P1(Fp))

= {τ ∈ Hp such that |τ − t| ≥ 1, for t = 0, . . . , p − 1, and |τ | ≤ 1}
57
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Figure 1. The standard affinoid and annuli, when p = 2.

is contained in Hp. It is an example of a standard affinoid in Hp. It is useful to
“thicken” A by adjoining to it certain annuli (which are also subsets of Hp, since
the p-adic absolute value on Q×

p takes values in pZ):

Wt =

{

τ such that
1

p
< |τ − t| < 1

}

, t = 0, . . . , p − 1,

W∞ = {τ such that 1 < |τ | < p}.
These regions are illustrated in Figure 1, in the most easily drawn case where p = 2.

To describe more general affinoids, it is useful to introduce a basic combinatorial
structure on Hp: the reduction map.

The target of this map is the so-called Bruhat-Tits tree of PGL2(Qp) denoted
T . This is a graph whose vertices are in one-to-one correspondence with similarity
classes of Zp-lattices in Q2

p. Two vertices are joined by an edge if they can be
represented by lattices Λ1 and Λ2 satisfying

pΛ2 ⊂ Λ1 ⊂ Λ2,

in which both inclusions are proper. Since this relation is symmetrical, it equips T
with the structure of an unordered graph. One can show (cf. Exercise 2) that T is
in fact a tree all of whose vertices have valency p + 1. This tree is illustrated when
p = 2 in Figure 2.

The group PGL2(Qp) acts on T in the natural way, and this yields an action
on T by graph automorphisms (i.e., isometries with respect to the usual distance
function on T ).

In our discussion the tree T is treated as a purely combinatorial object: a
collection T0 of vertices indexed by homothety classes of Zp-lattices in Q2

p and a
collection T1 of edges consisting of pairs of adjacent vertices. An ordered edge is an
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Figure 2. The Bruhat-Tits tree of PGL2(Qp), when p = 2

ordered pair e = (v1, v2) of adjacent vertices. One then denotes by s(e) := v1 and
t(v) := v2 the source and target of e respectively. Write E(T ) for the set of ordered
edges of T .

Let vo ∈ T0 be the distinguished vertex of T attached to the homothety class
of the standard lattice Z2

p ⊂ Q2
p. The edges having vo as endpoint correspond to

index p sublattices of Z2
p and thus are in canonical bijection with P1(Fp). Label

these edges accordingly as e0, e1, . . . , ep−1, e∞ ∈ T1.

Proposition 5.1. There is a unique map

r : Hp −→ T = T0 ∪ T1

satisfying the following properties:

(1) r(τ) = vo if and only if τ ∈ A;
(2) r(τ) = et if and only if τ ∈ Wt;
(3) r is PGL2(Qp)-equivariant, i.e.,

r(γτ) = γr(τ), for all γ ∈ PGL2(Qp).

The proof of this proposition is outlined in Exercise 3.
If e = {v1, v2} is an edge of T , it is convenient to denote by ]e[⊂ T the singleton

{e} and call it the open edge attached to e. The subset [e] := {e, v1, v2} of T is called
the closed edge attached to e. Finally, the sets A[e] := r−1([e]) and W]e[ := r−1(]e[)
are called the standard affinoid and the standard annulus attached to e respectively.
Note that A[e] is a union of two translates by PGL2(Qp) of the standard affinoid A
glued along the annulus W]e[. The collection of affinoids A[e], as e ranges over T1,
gives a covering of Hp by standard affinoids whose pairwise intersections are either
empty or of the form Av := r−1(v) with v ∈ V(T ). The incidence relations in this
affinoid covering are thus reflected in the combinatorics of T .
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Fix an affinoid A0 ⊂ Hp. A rational function having poles outside A0 attains
its supremum on A0 (with respect to the p-adic metric). Hence the space of such
functions can be equipped with the sup norm.

Definition 5.2. A Cp-valued function f on Hp is said to be rigid-analytic if,
for each edge e of T , the restriction of f to the affinoid A[e] is a uniform limit, with
respect to the sup norm, of rational functions on P1(Cp) having poles outside A[e].

Let Γ be a discrete subgroup of SL2(Qp). Assume further that the quotient
Hp/Γ (with its natural p-adic topology) is compact.

Remark 5.3. The quotient Hp/Γ is equipped with the structure of a rigid
analytic curve over Qp, which, by a p-adic analogue of the GAGA theorem, can be
identified with an algebraic curve X over Qp [GvdP80]. Not every curve over Qp

can be expressed as such a quotient. In fact, it can be shown that if X = Hp/Γ
where Γ acts on T without fixed points, then it has a model over Zp whose special
fiber is a union of projective lines over Fp intersecting transversally at ordinary
double points. The converse to this statement, due to Mumford, is a p-adic analogue
of the classical complex uniformisation theorem.

Theorem 5.4 (Mumford). If X is a curve over Qp having a model over Zp

whose special fiber consists of a union of projective lines intersecting at ordinary
double points, then there is a discrete group Γ ⊂ PSL2(Qp) such that the rigid
analytic curve X/Cp

is isomorphic to Hp/Γ.

This theorem, which is discussed in [GvdP80], will not be used in the sequel,
and its statement is included here only for the edification of the reader.

5.2. Rigid analytic modular forms

Let Γ ⊂ SL2(Qp) be a discrete subgroup as in the previous section.

Definition 5.5. A form of weight k on Hp/Γ is a rigid analytic function f on
Hp such that

f(γτ) = (cτ + d)kf(τ) for all γ =

(

a b
c d

)

∈ Γ.

Denote by Sk(Γ) the Cp-vector space of rigid analytic modular forms of weight
k with respect to Γ. As in the discussions of Chapters 3 and 4, the space S2(Γ)
can be identified with the space of rigid analytic differential forms on the quotient
Hp/Γ, or, equivalently, with the space of regular differential forms on the curve
X/Cp

. In particular, the dimension of S2(Γ) over Cp is equal to the genus of this
curve.

The classical modular forms in S2(Γ0(N)) studied in Chapter 2 could be cal-
culated by exploiting the connection between eigenvalues of Hecke operators and
Fourier coefficients of modular forms, together with the action of Hecke operators
on the homology of the modular curve made explicit in the theory of modular
symbols. There is a method for constructing modular forms in S2(Γ) which, while
quite different (there being, for instance, no good notion of Fourier expansion for
rigid analytic modular forms), is just as concrete and amenable to calculations as
the modular symbol method reviewed in Chapter 2. This exploits the connection
between forms in S2(Γ) and their associated p-adic boundary measures.
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More precisely, view P1(Qp) as the “boundary” of the p-adic upper half plane
Hp. This set is endowed with its p-adic topology in which the open balls of the
form

B(a, r) = {t such that |t − a| < p−r}, a ∈ Qp,

B(∞, r) = {t such that |t| > pr}
form a basis. These open balls are also compact, and any compact open subset of
P1(Qp) is a finite disjoint union of open balls of the form above.

Definition 5.6. A p-adic distribution on P1(Qp) is a finitely additive function

µ : {compact open U ⊂ P1(Qp)} −→ Cp

satisfying µ(P1(Qp)) = 0.

If µ is any p-adic distribution on P1(Qp), and g is a locally constant function
on P1(Qp), then the integral

∫

P1(Qp) g(t)dµ(t) can be defined in the obvious way as

a finite Riemann sum. More precisely, letting

(5.2) P1(Qp) = U1 ∪ · · · ∪ Um

be a decomposition of P1(Qp) as a disjoint union of open balls such that g is constant
on each Uj , one defines

(5.3)

∫

P1(Qp)

gdµ :=

m
∑

j=1

g(tj)µ(Uj),

where tj is any sample point in Uj . The distribution relation satisfied by µ ensures
that this expression does not depend on the decomposition (5.2) used to define it.
It is desirable to impose more stringent regularity properties on a distribution µ so
that it can be integrated against a larger class of test functions.

Definition 5.7. A p-adic measure is a bounded distribution, i.e., a distribution
for which there is a constant C satisfying

|µ(U)|p < C, for all compact open U ⊂ P1(Qp).

If λ is any continuous function on P1(Qp), then the integral of λ against µ can
be defined by the rule

(5.4)

∫

P1(Qp)

λ(t)dµ(t) = lim
C={Uα}

∑

α

λ(tα)µ(Uα),

where the limit is taken over increasingly fine covers {Uα} of P1(Qp) by disjoint
compact open subsets Uα, and tα is a sample point in Uα.

The connection between boundary measures and rigid analytic functions on Hp

is given by the following lemma.

Lemma 5.8. Let µ be a measure on P1(Qp).

(1) The function f defined by

fµ(z) =

∫

P1(Qp)

(

1

z − t

)

dµ(t)

is a rigid analytic function on Hp.
(2) If µ is a Γ-invariant measure on P1(Qp), then fµ belongs to S2(Γ).
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Proof. Part 1 follows directly from the definition of a rigid analytic function
on Hp, since the integral defining fµ(z) is expressed through (5.4) as a limit of
rational functions having poles in P1(Qp), and since the distribution and bounded-
ness satisfied by µ ensures that this convergence is uniform on each affinoid in Hp.
To show part 2, note that both 1

γz−t and 1
z−γ−1t are rational functions of t having

a unique simple pole at t = γz, the first with residue (−1) and the second with
residue −(cz + d)−2. Hence

1

γz − t
− (cz + d)2

(

1

z − γ−1t

)

= C,

where C is a constant (possibly depending on z and γ but not on t). It follows that
for any γ ∈ Γ,

fµ(γz) =

∫

P1(Qp)

(

1

γz − t

)

dµ(t)

= (cz + d)2
∫

P1(Qp)

(

1

z − γ−1t

)

dµ(t) = (cz + d)2fµ(z).

The second equality uses the fact that the total measure of P1(Qp) is 0, and the
third exploits the invariance of µ under Γ. �

Denote by Meas(P1(Qp), Cp)
Γ the space of all Γ-invariant measures on P1(Qp).

Theorem 5.9 (Schneider, Teitelbaum). The assignment µ 7→ fµ is an isomor-
phism from Meas(P1(Qp), Cp)

Γ to S2(Γ).

Sketch of Proof. The construction of the inverse map can in fact be made
explicit. To do this, note that an ordered edge e of T determines a subtree Te of T ,
defined to be the largest connected subtree containing e and no other edge having
s(e) as an endpoint. Let

Σe := r−1(Te) ⊂ Hp,

and let Σ̄e denote the closure of Σe in P1(Cp). Finally let Ue := Σ̄e ∩ P1(Qp).
The assignment e 7→ Ue sets up a correspondence between ordered edges of T and
compact open balls in P1(Qp). Given a rigid analytic function f on Hp, define a
distribution µf on P1(Qp) by the rule

µf (Ue) = lim
j−→∞

∑

x∈Σ̄e

resx(fj(z)dz),

where fj is a sequence of rational functions with poles outside As(e) which converges
uniformly to f on As(e). The residue theorem implies that µf satisfies a distribution
relation, and the Γ-invariance of f(z)dz implies the corresponding Γ-invariance of
µf . In effect, the boundary measure µf attached to f encodes the p-adic residues of
f . The verification that fµf

= f is left to the reader as an exercise. (Cf. Exercise
5.) �

The construction above leads to a useful description of Meas(P1(Qp), Cp)
Γ

which has the virtue of laying bare the simple combinatorial nature of this object.

Definition 5.10. A harmonic cocycle on T is a function c : E(T ) −→ Cp

satisfying

(1) c(e) = −c(ē), for all e ∈ E(T );
(2)

∑

s(e)=v c(e) = 0 and
∑

t(e)=v c(e) = 0, for all v ∈ T0.
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(Note that the second part of condition (2) is redundant since it follows from
(1) and the first part of (2).)

A harmonic cocycle c gives rise to a distribution µc on P1(Qp) by the rule

(5.5) µc(Ue) = c(e).

Conversely, c can be recovered from the associated distribution by the rule above.
Under this bijection, the Γ-invariant distributions correspond to Γ-invariant har-
monic cocycles on T .

The finite-dimensionality of Meas(P1(Qp), Cp)
Γ (and hence, of S2(Γ)) can now

be seen to follow directly from the following lemma.

Lemma 5.11. The quotient T /Γ is a finite graph.

Proof. See Exercise 6. �

The space Meas(P1(Qp), Z)Γ of Γ-invariant Z-valued distributions on P1(Qp),
corresponding to Z-valued harmonic cocycles, yields a natural integral structure on
Meas(P1(Qp), Cp)

Γ. Its image in S2(Γ), denoted by S2(Γ)Z, plays a role somewhat
similar to that of modular forms with integral Fourier coefficients in the theory of
modular forms on Γ0(N).

5.3. p-adic line integrals

Let f be a rigid analytic function on Hp. The goal of this section is to define
a good notion of p-adic line integral attached to such an object. This line integral
should be an expression of the form

∫ τ2

τ1
f(z)dz ∈ Cp obeying the same formal

properties of the complex line integral, namely it should be linear in f and additive
in the endpoints of integration:

∫ τ2

τ1

f(z)dz +

∫ τ3

τ2

f(z)dz =

∫ τ3

τ1

f(z)dz, ∀τ1, τ2, τ3 ∈ Hp.

If f(z)dz = dF is an exact differential on H, one would clearly like to define

(5.6)

∫ τ2

τ1

f(z)dz = F (τ2) − F (τ1).

The equation dF = f(z)dz is sufficient to define F up to a locally constant, hence
constant, function in the complex setting. A difficulty arises from the circumstance
that in the p-adic topology, there are plenty of locally constant functions which are
not constant, because Hp is totally disconnected. This leads to an ambiguity in
the choice of F , which is remedied by working with the rigid analytic topology in
which all locally constant functions are constant.

However, in general there need not exist a rigid analytic F on Hp such that
dF = f(z)dz. One may try to remedy this situation by singling out a particularly
natural (but not necessarily rigid analytic) antiderivative of certain rational func-
tions. For example, among all possible choices of function F such that dF = dz

z ,
the p-adic logarithm defined on the open disc in Cp of radius 1 centered at 1 by the
power series

log(1 − z) =

∞
∑

n=1

zn

n
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is singled out by the property of being a homomorphism from this open disc (under
multiplication) to Cp. It is customary to choose an extension of the p-adic logarithm
to all of C×

p (a “branch”)

log : C×
p −→ Cp

by fixing some element π ∈ C×
p satisfying |π|p < 1 and decreeing that log(π) = 0

(and requiring, of course, that log be a homomorphism on C×
p ). The standard

choice is obtained by taking π = p, but this may not always be the most natural
choice in all situations.

Having fixed a choice of p-adic logarithm, one has, for each rational differential
f(z)dz on P1(Cp), a formal antiderivative of the form

F (z) = R(z) +

t
∑

j=1

λj log(z − zj),

where R is a rational function, the λj ’s belong to Cp, and the zj are the poles
of f(z)dz. This antiderivative is unique up to an additive constant, and hence
equation (5.6) can be used to write down a well-defined line integral attached to
f(z)dz. Extending this definition by continuity to all rigid analytic functions leads
to the following definition.

Definition 5.12. Let f be a rigid analytic function on Hp. Assume that its
associated boundary distribution µf is a measure. Then the p-adic line integral
attached to f(z)dz is defined to be

(5.7)

∫ τ2

τ1

f(z)dz :=

∫

P1(Qp)

log

(

t − τ2

t − τ1

)

dµf (t).

Rephrasing the dicussion which precedes Definition 5.12, one can seek to justify
this definition a posteriori through the following formal computation:

∫ τ2

τ1

f(z)dz =

∫ τ2

τ1

∫

P1(Qp)

(

dz

z − t

)

dµf (t) =

∫

P1(Qp)

log

(

t − τ2

t − τ1

)

dµf (t).

Note that this definition depends crucially on the choice of the branch of the p-adic
logarithm that was made in fixing a primitive for dz/z.

In the special case where f is attached to a Z-valued distribution, i.e., where
f belongs to S2(Γ)Z, it can be useful to “work multiplicatively” by formally expo-
nentiating (5.7) above and setting

(5.8) ×
∫ τ2

τ1

f(z)dz = ×
∫

P1(Qp)

(

t − τ2

t − τ1

)

dµf (t) := lim
C={Uα}

∏

α

(

tα − τ2

tα − τ1

)µf (Uα)

,

where the limit in the last expression is taken over increasingly fine covers C = {Uα}
of P1(Qp) by disjoint compact open subsets, and the tα are sample points in Uα.
The multiplicative integral is related to its additive counterpart by the rule

∫ τ2

τ1

f(z)dz = log

(

×
∫ τ2

τ1

f(z)dz

)

,

but it carries more information, as the p-adic logarithm is not injective. Also, it is
more canonical than its additive counterpart since it does not depend on a choice
of a branch of the p-adic logarithm. However, its definition relies crucially on the
integrality of the boundary distribution attached to f .
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The multiplicative integral can be used to define a p-adic analogue of the clas-
sical Abel-Jacobi map

ΦAJ : Div0(Hp) −→ Hom(S2(Γ)Z, C×
p ) ' (C×

p )g ,

following [GvdP80]. The map ΦAJ is defined by sending a divisor D of degree 0
to the functional

ω 7→ ×
∫

D

ω

which belongs to Hom(S2(Γ)Z, C×
p ). It can be shown that ΦAJ maps the group of

divisors on Hp which become 0 on Hp/Γ to a lattice Λ in this group, so that it gives
rise, by passing to the quotient, to an analytic map of abelian varieties over Cp:

ΦAJ : Jac(Hp/Γ) −→ Hom(S2(Γ)Z, C×
p )/Λ.

In the next chapter, we will identify certain special arithmetic Γ ⊂ SL2(Qp)
arising from p-units in orders in definite quaternion algebras, and use them to obtain
p-adic Weil uniformisations

Div0(Hp/Γ) −→ E(Cp)

attached to (modular) elliptic curves E over Q.

Further results

The book of Gerritzen and van der Put [GvdP80] provides a good introduction
to p-adic Schottky groups and to Mumford’s theory of p-adic uniformisation. An
account of the p-adic Poisson kernel, as well as an extension of the theory presented
here to modular forms of higher weight, can be found in the articles [Te90] and
[Sch84].

Exercises

(1) Show that Q̄p is not complete in the p-adic topology by exhibiting a Cauchy
sequence in this field which does not converge.

(2) Show that the graph T is a tree all of whose vertices have valency equal to
p + 1.

(3) Let G = PGL2(Qp) act by Möbius transformations on Hp, and by left trans-
lations on T . Let G0 = PGL2(Zp) be the maximal compact subgroup of G
and let G1 be the subgroup of G0 represented by matrices which are upper-
triangular modulo p.
(a) Show that G0 is precisely the group of elements in G which preserve the

standard afinoid A ⊂ Hp, and that G1 is the stabiliser of the annulus W∞
in G0.

(b) Show that G0 (resp. G1) is the stabiliser in G of the standard vertex vo

(resp. of the ordered edge e∞).
(c) Prove Proposition 5.1.

(4) Check that the expression in (5.4) converges in Cp.
(5) Complete the proof of Theorem 5.9 by showing that fµf

= f where µf is
the boundary distribution obtained in the proof of Theorem 5.9 by taking the
residues of f .
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(6) Endow Hp with the p-adic topology, and T with the topology in which a subset
U is said to be open if, for any vertex v ∈ U , the edges having v as endpoint
also belong to U . Show that the reduction map r : Hp −→ T is continuous
for these topologies. Conclude that the quotient graph T /Γ is a finite graph if
Hp/Γ is compact.



CHAPTER 6

Rigid analytic modular parametrisations

The parametrisations alluded to in the title of this chapter arise from the fact
that, for the primes p which divide N−, the Shimura curves XN+,N− introduced

in Chapter 4 are equipped with p-adic uniformisations discovered by Čerednik and
Drinfeld which resemble the complex analytic descriptions that were already given.
These uniformisations can be used to construct p-adic modular parametrisations
for elliptic curves over Q whose conductors satisfy suitable conditions.

6.1. Rigid analytic modular forms on quaternion algebras

Let N be a positive integer and p a prime number dividing N exactly.

Definition 6.1. A p-admissible factorisation of N is a factorisation of the form
N = pN+N−, where

(1) The integers p, N+, and N− are pairwise coprime;
(2) The integer N− is square-free and the product of an odd number of primes.

To each p-admissible factorisation N = pN+N− is attached a subgroup Γ
(p)
N+,N−

of SL2(Qp) as follows. Let B be the definite quaternion algebra ramified precisely
at the primes dividing N−, together with the archimedean place. Such a quaternion
algebra exists by Proposition 4.1. It follows from Proposition 4.4 that there is a
unique Eichler Z[1/p]-order R of level N+ in B, up to conjugation by B×. Since B
is split at the prime p, it is possible to choose an identification

ι : B ⊗ Qp −→ M2(Qp).

Letting R×
1 denote the group of elements in R of reduced norm 1, the group Γ

(p)
N+,N−

is then defined to be

Γ
(p)
N+,N− := ι(R×

1 ) ⊂ SL2(Qp).

It can be proved that Γ
(p)
N+,N− acts on Hp with compact quotient so that the theory

of rigid analytic modular forms developed in Chapter 5 applies to forms on this

group. In particular the space S2(Γ
(p)
N+,N−)Z is a finitely generated Z-module of

rank equal to the genus of the rigid analytic curve Hp/Γ
(p)
N+,N− .

The space S2(Γ
(p)
N+,N−) is in addition endowed with the action of Hecke opera-

tors T` which are defined as before in terms of double coset decompositions. More
precisely, for each prime ` which does not divide N , choose an element α` ∈ R of

reduced norm `, write the double coset Γ
(p)
N+,N−α`Γ

(p)
N+,N− as a disjoint union of left

cosets

Γ
(p)
N+,N−α`Γ

(p)
N+,N− =

`+1
⋃

i=1

γiΓ
(p)
N+,N− ,

67
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and set

T`f(z)dz :=

`+1
∑

i=1

f(γ−1
i z)d(γ−1

i z).

Definition 6.2. An eigenform f is said to be normalised if it belongs to

S2(Γ
(p)
N+,N−)Z and is not divisible by any integer > 1 in this group.

Note that, if f is normalised then so is −f and there seems to be no natural way
of resolving this ambiguity in signs. Note also that this normalisation applies only
to eigenforms with rational residues, whose asociated Hecke eigenvalues necessarily
belong to Z.

6.2. The Čerednik-Drinfeld theorem

The rigid analytic curve Hp/Γ
(p)
N+,N− shares some common features with the

quotient H/ΓN+,N− that arose in decribing the complex uniformisation of the
Shimura curve XN+,N−p, most notably the presence of a large ring of correspon-
dences given by Hecke operators indexed by the primes ` that do not divide N . The
following theorem of Čerednik and Drinfeld reveals that this analogy runs deeper:

Theorem 6.3. The rigid analytic quotient Hp/Γ
(p)
N+,N− is isomorphic (as an

algebraic curve over Cp) to XN+,N−p.

Remark 6.4. More precisely, the quotient Hp/Γ
(p)
N+,N− is identified with the

Cp-points of an algebraic curve X defined over Qp. The curve X becomes isomor-
phic to XN+,N−p over the unramified quadratic extension of Qp.

Theorem 6.3 asserts that the quotients Hp/Γ
(p)
N+,N− and H/ΓN+,N−p describe—

over Cp and C respectively—the same algebraic curve, even though the groups

Γ
(p)
N+,N− and ΓN+,N−p are defined in terms of different quaternion algebras. It was

first proved by Čerednik [Ce76] building on ideas of Ihara [Ih68], (the same which
partly inspired the point of view adopted in Chapter 9; cf also [Ih79]). A more
conceptual proof relying on an interpretation of Hp as classifying certain formal

groups was later given by Drinfeld [Dr76]. The standard reference for the Čerednik-
Drinfeld theorem, and particularly for Drinfeld’s approach, is the exposition given
in [BC92].

6.3. The p-adic Shimura-Taniyama-Weil conjecture

Let E be an elliptic curve over Q of conductor N and let pN+N− be a p-

admissible factorisation of N . Let Γ
(p)
N+,N− ⊂ SL2(Qp) be the discrete subgroup

arising from this factorisation.

Theorem 6.5 (“Rigid Shimura-Taniyama-Weil ”). There exists a unique (up

to sign) normalised eigenform f ∈ S2(Γ
(p)
N+,N−)Z such that

T`(f) = a`(E)f,

for all ` 6 |N .
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Sketch of proof. By the Shimura-Taniyama-Weil theorem in the case of
Shimura curves (Theorem 4.13 of Chapter 4), there is an eigenform g on H/ΓN+,N−p

attached to E, which is unique up to multiplication by C×; but Theorem 6.3 implies

that the Hecke modules S2(Γ
(p)
N+,N−) and S2(ΓN+,N−p) give rise to the same systems

of eigenvalues for the Hecke operators, and with the same multiplicities, since they
are both identified with the space of regular differentials on the curve XN+,N−p

(over Cp and C respectively). Therefore there is associated to g a Hecke eigenform

f ∈ S2(Γ
(p)
N+,N−) which is unique up to multiplication by an element of C×

p . Since

the Hecke eigenvalues are integers, f can be rescaled to be a normalised eigenform

in S2(Γ
(p)
N+,N−)Z, and it is then uniquely determined up to sign. �

Remark 6.6. It is not strictly necessary to invoke the Čerednik-Drinfeld the-
orem in this proof. In fact, the Jacquet-Langlands correspondence—which in the
case at hand follows from an earlier result of Eichler—makes it possible to estab-

lish directly the existence of a Γ
(p)
N+,N−-invariant measure µf (or, equivalently, of

the associated harmonic cocycle cf ) attached to f , given the knowledge that E
corresponds to a classical modular form on H/Γ0(N).

Theorem 6.5 implies the existence of a rigid analytic Weil uniformisation

Φ
(p)
N+,N− : Div0(Hp/Γ

(p)
N+,N−) −→ E(Cp),

which is defined as follows. Firstly, the function

Div0(Hp) −→ C×
p , D 7→ ×

∫

D

f(z)dz

maps the group of divisors which become trivial in Hp/Γ
(p)
N+,N− to a lattice in C×

p

generated by an element q ∈ Q×
p . The Tate curve Eq := C×

p /qZ is related to E by
an isogeny β which is defined over Cp, and letting

ΦTate : C×
p −→ Eq(Cp)

be the Tate uniformisation, one sets

(6.1) Φ
(p)
N+,N−(D) := β

(

ΦTate

(

×
∫

D

f(z)dz

))

.

To actually calculate this map only requires a knowledge of the residues attached
to f(z)dz (and of the isogeny β). Section 6.5 illustrates through an example how
this can sometimes be achieved in practice.

6.4. Complex multiplication, revisited

The notion of CM points on Hp/Γ
(p)
N+,N− , and a p-adic analytic Heegner point

construction, can be formulated for the rigid analytic modular parametrisation

Φ
(p)
N+,N− in a way which is pleasingly similar to the complex setting described in

Chapter 4.

Definition 6.7. The associated order of τ ∈ Hp is the set

Oτ := {γ ∈ R such that ι(γ)(τ) = τ} ∪ {0}.
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As before, one can show that Oτ is isomorphic either to Z[1/p] or to a Z[1/p]-
order in a quadratic subfield K of B. Also, Oτ is equipped with a canonical inclusion
into Cp which to γ associates the eigenvalue of ι(γ) acting on the column vector
(τ, 1).

Remark 6.8. Since B is a definite quaternion algebra, note that the field K is
necessarily an imaginary quadratic field.

Definition 6.9. A point τ ∈ Hp/Γ
(p)
N+,N− is called a CM point if its associated

order is a Z[1/p]-order in an imaginary quadratic field.

Fixing such an order O, we write

CM(O) := {τ ∈ Hp/Γ
(p)
N+,N− such that Oτ = O}.

Lemma 6.10. Let O be an order of discriminant prime to N , with fraction field
K. Then CM(O) is non empty if and only if

(1) K is an imaginary quadratic extension of Q;
(2) all the primes dividing N−p are inert in K;
(3) all the primes dividing N+ are split in K.

Proof. The proof is almost identical to that of Lemma 4.17 of Chapter 4,
except that the roles of the places p and ∞ are interchanged. The reader may find
it instructive to fill in the details of the proof. (See Exercise 5.) �

Since p is inert in K, the Picard group of rank one projective modules over O
is equal to the Picard group of the order O ∩ OK of K. Let H be the ring class
field of K attached to O. Note that its conductor is prime to p. Hence p (viewed
as a prime of K) splits completely in H/K.

The following can be viewed as a p-adic variant of the main theorem of complex
multiplication for Shimura curves as formulated in Theorem 4.16 of Chapter 4.

Theorem 6.11. Let O be a Z[1/p]-order in an imaginary quadratic field K, of
discriminant prime to N , and let H/K be the associated ring class field, viewed as
a subfield of Cp. Then

Φ
(p)
N+,N−(Div0(CM(O))) ⊂ E(H).

Idea of proof. Under the moduli interpretation of XN+,N−p given by Drin-
feld’s theory, points τ ∈ CM(O) correspond to points in XN+,N−p which are moduli
of abelian surfaces with endomorphisms by M2(O0). These surfaces are isomorphic
to a product A × A of an elliptic curve A with CM by O0, with itself. Given this
fact, the result follows from the usual theory of complex multiplication. Further
details are explained in [BD98]. �

6.5. An example

We now describe an example to illustrate how the rigid analytic modular
parametrisations can be computed and used to find algebraic points on elliptic
curves, in practice.

Let E be the elliptic curve of conductor N = 14 given by the minimal Weier-
strass equation

(6.2) y2 + xy + y = x3 + 4x − 6.
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The triple (p, N+, N−) = (7, 1, 2) is a 7-admissible factorisation of 14.
Let B denote the algebra of rational Hamilton quaternions

B = Q + Qi + Qj + Qk,

a quaternion algebra over Q which is ramified precisely at 2 and ∞. Let R0 be
Hurwitz’s ring of integral quaternions

R0 = Z + Zi + Zj + Zω,

where ω = 1+i+j+k
2 . The main facts about R0 that will be needed are the following.

Theorem 6.12 (Hurwitz). The ring R0 is the unique maximal order in B up
to conjugation in B×. Every left R0-ideal is principal.

Proof. See for example [Gr87], §1 and 2. �

In particular, the ring R := R0[1/7] is the unique maximal Z[1/7]-order in B
up to conjugation in B×. Fix an isomorphism ι of B7 := B ⊗ Q7 with M2(Q7)
which has the property that ι−1(M2(Z7)) = R0 ⊗ Z7. To fix ideas, we may take

ι(i) =

„

0 1
−1 0

«

, ι(j) =

„

ρ ρ + 1
ρ + 1 −ρ

«

, ι(k) =

„

ρ + 1 −ρ

−ρ −ρ − 1

«

,

where ρ = limn−→∞ 27n

is a primitive cube root of unity in Z7.
Let T7 = T = T0 ∪ T1 denote the Bruhat-Tits tree of PGL2(Q7) introduced in

Chapter 5, and let Γ = ι(R×
1 ) ⊂ PSL2(Q7). This group acts naturally on T ; the

following lemma yields a precise description of the quotient graph T /Γ.

Lemma 6.13. The group Γ has precisely two orbits acting on T0. Likewise the
set Γ\T1 also has cardinality two.

Proof. Recall the distinguished vertex vo attached to the standard lattice Z2
7.

The map γ 7→ γv0 identifies the coset space PGL2(Q7)/PGL2(Z7) with T0. Hence
Γ\T0 can be identified with

(6.3) ι(R×
1 )\PGL2(Q7)/PGL2(Z7) = R×

1 \B×
7 /R×

0,7Q
×
7 ,

where as before R0,7 := R0 ⊗ Z7 and R×
1 denotes the group of elements of reduced

norm 1 in R. Since R×
1 \R×/R×

0,7Q
×
7 has cardinality two—with cosets consisting

of elements of R× whose determinant is a unit of Z7 multiplied by an even (odd)
power of 7—the set on the right of (6.3) admits a natural two-to-one map to the
coset space

R×\B×
7 /R×

0,7Q×
7 .

Noting that R = R0[1/7] and that the prime 7 is split in the quaternion algebra B,
Theorem 4.5 implies that this coset space is equal to

(6.4) B×\B̂×/R̂×
0 .

By the discussion preceding the statement of Theorem 4.5 of Chapter 4, the double
coset space of (6.4) is in bijection with the set of conjugacy classes of maximal orders
in B. This set has cardinality one by Theorem 6.12 above. In fact, the quotient
Γ\T0 admits a simple description: one orbit consists of vertices which are at an even
distance from the vertex vo, and the second orbit consists of vertices which are at
an odd distance from vo. To study Γ\T1, note that any edge of T is equivalent
under Γ to an edge having vo as endpoint, i.e., to one of the edges e0, . . . , e6, e∞
naturally indexed by P1(F7) that were introduced in Chapter 5. Since the stabiliser
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of v0 in Γ is equal to ι(R×
0 ), it follows that Γ ⊂ T1 is naturally identified with the

orbit space

ι(R×
0 )\P1(F7).

The group R×
0 is a group of order 24, generated by i, j, and ω, and ι(R×

0 ) acts
on P1(F7) in the obvious way. This action breaks P1(F7) into two orbits of the
same cardinality, {∞, 0, 2, 3} and {1, 4, 5, 6}. Hence Γ\T1 has two orbits, E1 and
E2, defined by

e ∈
{

E1 if e is Γ-equivalent to e0, e2, e3, or e∞,
E2 if e is Γ-equivalent to e1, e4, e5, or e6.

�

Lemma 6.13 allows the determination of the full set of Γ-invariant harmonic
cocycles on T . Firstly, such a cocycle c is completely determined by its values on
the ordered edges e′0, . . . , e

′
∞ having the same endpoints as e0, . . . , e∞ respectively,

and ordered by setting s(e′j) = vo. Secondly, the harmonicity and Γ-invariance
conditions force the relations

c(e′0) = c(e′2) = c(e′3) = c(e′∞) = −c(e′1) = −c(e′4) = −c(e′5) = −c(e′6).

Conversely, there is a non-zero Γ-invariant cocycle satisfying the relations above.
Normalise it so that c(e′0) = 1. The Z-module S2(Γ)Z has rank one, and is generated
by the rigid analytic modular form f whose residues are given by the harmonic
cocycle c.

The first few Hecke operators acting on c can be evaluated explicitly yielding
the following list of Hecke eigenvalues.

` 3 5 11 13 17 19 23
a`(f) −2 0 0 −4 6 2 0

It can be checked (using PARI, or consulting the tables in [Cr97]) that a`(f) is
equal to the coefficient a`(E) attached to the (unique, up to isogeny) elliptic curve
E of conductor 14 in (6.2), giving a partial numerical verification of Theorem 6.5
in this case.

The explicit determination of the harmonic cocycle c encoding the residues of f
makes it possible to evaluate numerically the p-adic line integrals attached to f . To
illustrate how this can be combined with the theory of complex multiplication to
construct algebraic points on E, let K = Q(

√
−11) be the imaginary quadratic field

of smallest discriminant in which both 2 and 7 are inert, and let ω11 = (1+
√
−11)/2

denote a generator for its ring of integers. After fixing an embedding Ψ : OK −→ R
and letting τ and τ ′ denote the two fixed points in H7 of ιΨ(K×), a computer
calculation (carried out to 5 digits of 7-adic accuracy) shows that

J = ×
∫ τ

τ ′

f(z)dz = 13149 + 2287ω11 (mod 75).

The image of this integral under the Tate uniformisation attached to E over Q7 is

(6.5) ΦTate(J) = (10696, 6528 + 9861ω11) ≡
(

7

11
,
−(41 + 116ω11)

121

)

(mod 75).

The latter expression is a global point on E(K).
Although this calculation does not actually prove that equality holds in (6.5),

it does illustrate how the ideas presented in the last few chapters can be used in
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practice to find algebraic points on elliptic curves by p-adic analytic methods. (A
second example is detailed in Exercise 3.) Calculations of this sort form the basis
form the basis for the conjecture of Chapter 9 yielding Heegner systems attached
to real quadratic fields.

6.6. p-adic L-functions, d’après Schneider-Iovita-Spiess

Recall from Chapter 2 that if f ∈ S2(Γ0(N)) is a normalised eigenform, then
one has the corresponding integral representation for its L-series.

(6.6) Λ(f, s) := (2π)−sΓ(s)L(f, s) =

∫ ∞

0

f(iy)ys−1dy,

which yields the analytic continuation and functional equation for L(f, s). If f is a
modular form on a quaternion algebra it is natural to ask for a similar expression de-
scribing L(f, s) as a Mellin transform attached to f . On a superficial level, Hecke’s
construction does not generalise, since it relies on the notion of Fourier expan-
sions which are meaningful only for modular forms attached to the split quaternion
algebra M2(Q).

To arrive at the desired generalisation, it is helpful to view the Mellin transform
of f as an integral along the real points of a torus arising from the split quadratic
algebra Q × Q ⊂ M2(Q). More precisely, let K ' Q × Q be the quadratic algebra
of diagonal matrices in M2(Q). This algebra is optimally embedded with respect
to the subalgebra M0(N), in the sense that K ∩ M0(N) ' Z × Z is the maximal
order of K. The fixed points of K× acting by Möbius transformations on H∗ are
0 and ∞. Let z be a rational function with divisor (0) − (∞). Then Λ(f, s) is
simply the integral of this function, raised to the power s− 1, betwen the two fixed
points 0 and ∞, against a measure naturally associated to f . By analogy, since
a non-split quaternion algebra does not contain the algebra Q × Q as a quadratic
subalgebra, one might attempt to define L(f, s) as a Mellin transform of f along
the (real, or p-adic) points of a global torus in B× coming from the units of a
quadratic subalgebra K ⊂ B. Over the reals, this does not seem to lead to a useful
analytic object, since the group (K ⊗ R)×/O×

KR× is a compact group, isomorphic
to a circle, which has discrete Pontryagin dual. In the p-adic setting, however, it
is natural to consider the space of continuous Cp-valued characters of the compact

p-adic group (K ⊗ Qp)
×/O×

KQ×
p . This “p-adic dual” is not discrete and is in fact

endowed with a non-trivial topological and p-adic analytic structure.
To simplify our discussion, we will only treat the case where the prime p is inert

in K/Q. (The case where p is split in K is treated in Exercise 4.) In that case the
group ι(K×

p ) acting on Hp has two fixed points α and ᾱ which belong to Hp ∩ K

and are interchanged under the action of Gal(Kp/Qp). Let
(

z−α
z−ᾱ

)

be a rational

function with divisor (α) − (ᾱ). It is tempting to define, by analogy with (6.6)

(6.7) Lp(f, s)“
?
= ”

∫ α

ᾱ

f(z)

(

z − α

z − ᾱ

)s−1

dz.

If s belongs to Z, then ωg = f(z)
(

z−α
z−ᾱ

)s−1

dz is a rigid analytic differential form

on Hp − {α, ᾱ} with associated boundary distribution on P1(Qp) given by

µg(t) = µf (t)

(

t − α

t − ᾱ

)s−1

.
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Although the integral appearing in (6.7) does not converge, if we simply ignore the
terms arising from the end points α and ᾱ, we obtain the following candidate for a
generalisation of (6.6), in which the argument of K has been inserted to emphasize
the essential dependence of this definition on the chosen quadratic subalgebra:

(6.8) Lnaive
p (f, K, s) :=

∫

P1(Qp)

log

(

t − α

t − ᾱ

)(

t − α

t − ᾱ

)s−1

dµf (t).

This expression does converge, and even interpolates to s ∈ Zp. Moreover, it is the
derivative with respect to s of an even simpler expression.

Definition 6.14. The Schneider-Iovita-Spiess L-function attached to f and K
is the expression

Lp(f, K, s) :=

∫

P1(Qp)

(

t − α

t − ᾱ

)s−1

dµf (t).

Remark 6.15. This type of definition was proposed by Schneider in [Sch84],
with the role of K being played by the local split algebra Qp × Qp embedded in
Bp ' M2(Qp). Since this embedding has no global origin, it is unclear what relation
(if any) Schneider’s construction bears with classical special values and with other
types of p-adic L-functions. The idea of requiring that K arise from a global
quadratic subalgebra of B (thus giving more rigidity to Schneider’s construction)
was arrived at independently by Iovita and Spiess. (Cf. for example [BDIS02] for
a more thorough discussion.)

The p-adic Mellin transform Lp(f, K, s) is a more tractable object than its
classical counterpart of (6.6), as the following theorem illlustrates. Let EK be the
elliptic curve over Q obtained by twisting E by the quadratic character attached
to K.

Theorem 6.16. The order of vanishing of Lp(f, K, s) is greater than both the
rank of E(Q) and the rank of EK(Q).

This theorem lies beyond the scope of our discussion. A proof, as well as a
conjecture describing the precise order of vanishing of Lp(f, K, s) and the philosophy
underlying it, is given in [BD03].

Remark 6.17. In contrast, the mechanism whereby large rank of E(Q) forces
extra vanishing in the complex L-function L(f, s) is not understood at all. To take
stock of the ignorance surrounding this question, note that the following remains
open: Does there exist a curve E for which ords=1L(E, s) > 3? On the other
hand Theorem 6.16 yields examples of elliptic curves for which one can show that
ords=1Lp(E, K, s) > 24, thanks to the elliptic curves curves of large rank that have
been produced by Mestre and others.

6.7. A Gross-Zagier formula

Suppose for simplicity that K has class number one and that

Ψ(K) ∩ R = Ψ(O), where O = OK [1/p].

Let f be a modular eigenform on Hp/Γ
(p)
N+,N− with integer residues and let E be the

strong Weil curve associated to it. The following gives an arithmetic interpretation
of the special value L′

p(f, K, 1) in the spirit of the Gross-Zagier formula (Theorem
3.20 of Chapter 3).
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Theorem 6.18. There exists a global point PK ∈ E(K) such that

βΦTate(exp(L′
p(f, K, 1))) = PK (mod E(Kp)tors).

Proof. Let α and ᾱ be the fixed points of ιΨ(K×) acting on Hp, and let

PK = Φ
(p)
N+,N−((α) − (ᾱ)) ∈ E(Cp).

Since (α) − (ᾱ) belongs to Div0(CM(O)), and K is its own Hilbert class field, it
follows on the one hand from Theorem 6.11 that PK belongs to E(K). On the
other hand,

L′
p(f, K, 1) =

∫

P1(Qp)

log

(

t − α

t − ᾱ

)

dµf (t) =

∫ α

ᾱ

f(z)dz.

Hence

exp(L′
p(f, K, 1)) = ×

∫ α

ᾱ

f(z)dz (mod (K×
p )tors).

Applying the Tate uniformisation and the isogeny β to both sides yields the desired
result, in light of (6.1). �

Further results

The first proof of the Čerednik-Drinfeld theorem was obtained by Čerednik
[Ce76] building on work of Ihara [Ih68]. Drinfeld’s proof [Dr76] which also gives
a moduli interpretation to the p-adic upper half plane is explained in [BC92].

The numerical example studied in Section 6.5 is taken from [BD96]. More
details and the general context for the Schneider-Iovita-Spiess approach to p-adic
L-functions are explained in [BD01] and [BDIS02]. The proof of Theorem 6.16
(which follows from a more general Iwasawa-theoretic “main conjecture” for certain
p-adic L-functions which include the rigid analytic L-function discussed above as a
special case) is given in [BD03].

Exercises

(1) Let A be an abelian surface with quaternionic multiplication by R, so that
R acts on A by endomorphisms which are defined over Q. We say that A
has complex multiplication by an order O in a quadratic field K if there is an
inclusion O ⊂ EndR(A), where EndR(A) denotes the algebra of endomorphisms
of A which commute with R. Show that if A has complex multiplication by
O, it is isomorphic over Q̄ to a product E × E of elliptic curves with complex
multiplication by O.

(2) Let B be the algebra of Hamilton’s quaternions over Q, and let

R0 = Z

[

i, j, k,
1 + i + j + k

2

]

be Hurwitz’s maximal order. For any odd prime p, let R = R0[1/p], choose an
identification ι of B ⊗Qp with M2(Qp), and set Γ = ι(R×

1 ). Show that Γ\Tp is
a graph with two vertices. Give an example of a group Γ ⊂ B× for which the
quotient Γ\Tp has more than two vertices.
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(3) There are two isogeny classes of elliptic curves of conductor 26, which are la-
belled 26A and 26B in the Cremona tables; their minimal Weierstrass equations
are

26A : y2 + xy + y = x3 − 5x − 8, 26B : y2 + xy + y = x3 − x2 − 3x + 3.

Let B and R0 be as in Section 6.5, and let R = R0[1/13]. Choose an embedding
ι of B13 into M2(Q13) by setting

ι(i) =

„

0 1
−1 0

«

, ι(j) =

„

ρ ρ + 1
ρ + 1 −ρ

«

, ι(k) =

„

ρ + 1 −ρ

−ρ −ρ − 1

«

,

where

ρ = lim
n−→∞

313n

is a primitive cube root of unity in Z13. Let Γ = ι(R×
1 ) and let T13 = T0 ∪ T1

be the Bruhat-Tits tree of PGL2(Q13).
(a) Show that there are exactly two orbits for the action of Γ on T0, and that

there are three orbits for the action of Γ on T1. More precisely show that
these three orbits E1, E2 and E3 are characterised by the property

e ∈







E1 if e is Γ-equivalent to e∞, e0, e3, or e4,
E2 if e is Γ-equivalent to e1, e7, e11, or e12,
E3 if e is Γ-equivalent to e2, e5, e6, e8, e9, or e10.

Draw the quotient graph T13/Γ.
(b) Show that the space of Γ-invariant harmonic cocycles on the tree T13 is

two-dimensional, by showing that such a harmonic cocycle is completely
determined by its values on the ordered edges e′∞, e′1 and e′2 associated to
e∞, e1 and e2 and having vo as source.

(c) Compute the action of the Hecke operator T3 on a basis of the space of
Γ-invariant harmonic cocycles on T13. Show that a basis of eigenvectors for
this action is given by the harmonic cocycles c1 and c2, where

c1(e
′
∞) = 1, c1(e

′
1) = −1, c1(e

′
2) = 0;

c2(e
′
∞) = 3, c2(e

′
1) = 3, c2(e

′
2) = −4.

(d) Let fj be the rigid analytic modular form in S2(Γ) attached to the cocycle
cj . Show that f1 is associated to the elliptic curve 26A and that f2 is
associated to the elliptic curve 26B in the correspondence of Theorem 6.5.

(e) Use the theory of complex multiplication to find points on these elliptic
curves defined over Q(

√
−11) by evaluating the appropriate 13-adic inte-

gral.
(4) This exercise studies the Schneider-Iovita-Spiess p-adic L-function Lp(f, K, s)

in the case where p is split in the imaginary quadratic field K ⊂ B.
(a) Show that the two fixed points α and ᾱ of ι(K×) acting on P1(Cp) by

Möbius transformations belong to the boundary P1(Qp) of Hp.

(b) If O is a Z[1/p]-order of K, show that O×
1 is of rank one. Let ε be a

generator for this group.
(c) Show that the subgroup of Γ = ι(R×

1 ) which fixes α and ᾱ is of rank one.
Let γ ∈ SL2(Qp) be a generator of this group.
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(d) Fix an embedding of K into Qp and let εp be the image of ε in Qp. Let
log : Q×

p −→ Qp be a branch of the p-adic logarithm, chosen so that
log(εp) = 0. Define xs = exp(s log(x)). Show that the measure

µ(t) =

(

t − α

t − ᾱ

)s−1

dµf (t)

is well-defined on P1(Qp) − {α, ᾱ} and is invariant under the action of γ.
(e) Let D be a fundamental region for the action of γ on P1(Qp) − {α, ᾱ}.

Show that the expression

Lp(f, K, s) :=

∫

D

(

t − α

t − ᾱ

)s−1

dµf (t)

converges for s ∈ Zp and is independent of the choice of D.
(f) Show that

L′
p(f, K, 1) =

∫ γτ

τ

f(z)dz,

where τ is any element of Hp. Show that this expression is a rational
multiple of log(q), where q is the Tate period attached to E/Cp

.
(5) Prove Lemma 6.10.





CHAPTER 7

Totally real fields

To a modular elliptic curve E over Q of conductor N three different types of
modular parametrisation have been attached so far:

• The classical modular curve parametrisation

ΦN : H/Γ0(N) −→ E(C)

of Chapter 2;
• The Shimura curve parametrisation

ΦN+,N− : Div0(H/ΓN+,N−) −→ E(C)

of Chapter 5;
• The rigid analytic parametrisation

Φ
(p)
N+,N− : Div0(Hp/Γ

(p)
N+,N−) −→ E(Cp)

arising from the theory of Čerednik and Drinfeld.

In all cases it has been possible to develop a notion of CM points on the appropriate
(complex or p-adic) upper half-plane, whose image under the corresponding mod-
ular parametrisation yields points on E defined over abelian extensions of certain
quadratic imaginary fields.

In this chapter we turn to the question of what happens if the ground field Q is
replaced by a more general number field F . This question is not motivated merely
by the pursuit of generalisation. Rather, an examination of the number field case
suggests a broader perspective on modular parametrisations, a perspective that will
be germane to the conjectural theory of Heegner points attached to real quadratic
fields presented in Chapter 9.

7.1. Elliptic curves over number fields

Let E be an elliptic curve over over a number field F . The conductor of E
is now an integral ideal N of OF . Let |n| denote the norm of the (fractional or
integral) ideal n. For each prime p of F , define an integer a(p) by the rule

(7.1) a(p) = 1 + |p| − #E(OF /p) if p 6 |N,

and a(p) = 0 (resp. 1, −1) if E has additive (resp. split, non-split multiplicative)
reduction at p. To F and N is associated a space of “automorphic forms”

S2(N) ⊂ L2(GL2(F )\GL2(AF )),

equipped as in the case where F = Q with an action of Hecke operators indexed by
the primes of F .

We will not go here into the details of the precise definition and properties of
this space of automorphic forms, as this would take us too far afield.

79



80 7. TOTALLY REAL FIELDS

A generalisation of the Shimura-Taniyama-Weil conjecture predicts that there
exists an automorphic form f ∈ S2(N) such that

T`f = a`(E)f for all primes ` of F not dividing N.

Our hope (formulated vaguely here, and made more precise in the next three chap-
ters) is that the existence of such an f provides a handle on the arithmetic of E/F ,
useful not just in proving analyticity properties for the L-function L(E/F, s) and
algebraicity results for its special values, but also in constructing algebraic points
on E, as in the prototypical case where F = Q. Essential difficulties arise because
there is no systematic generalisation of the notion of modular curve in the number
field setting. For instance, here is what happens in the simplest (and prototypical)
case where F is a quadratic field:

1. In the case (discussed more thoroughly in the next sections) where F is real, the
form f is a Hilbert modular form defined on a Hilbert modular surface. An analogue
of the Eichler-Shimura construction can often be given by applying the Jacquet-
Langlands correspondence and passing to a form on an appropriate Shimura curve,
but this is not always possible: for instance it fails when f is attached to an
elliptic curve with everywhere good reduction over F . The theory presented in this
and the next chapter proposes a conjectural construction of Heegner systems on
E, attached to a quadratic extension of F which is neither totally real or totally
imaginary, directly in terms of the periods of f .

2. If F is imaginary quadratic, the form f corresponds to a differential form on
the upper-half space C × R>0 invariant under the action of a discrete arithmetic
subgroup Γ ⊂ SL2(C) (a so-called Bianchi group, cf. [EGM98]). The quotient
space on which f is defined—a three-dimensional real manifold—cannot correspond
to the complex points of an algebraic variety, and one is at a loss to propose, even
conjecturally, an appropriate generalisation of the Eichler-Shimura construction
in this setting (in spite of [HST93], [T94] which succeeds in attaching to f a
compatible system of `-adic Galois representations having the same properties as
those attached to E). The case where F is imaginary quadratic is not touched
upon at all in these notes, although a natural extension of the theory proposed in
Chapter 9 could be expected to yield conjectural p-adic analytic constructions of
non-trivial Heegner systems attached to elliptic curves defined over such fields in
some cases.

7.2. Hilbert modular forms

We specialise the discussion—and are correspondingly more precise—in the
case where F is a totally real field of degree n + 1 over Q. Let ι0, . . . , ιn be the
distinct real embeddings of F . The (n + 1)-tuple of embeddings ι = (ι0, . . . , ιn)
induces embeddings

F −→ Rn+1, M2(F ) −→ M2(R)n+1, PSL2(F ) −→ PSL2(R)n+1,

which will all be denoted by ι by a slight abuse of notation. Given an element x
belonging either to F or M2(F ), it will occasionally be convenient to write ιj(x),
or even just xj , for the image of x under the j-th real embedding of F . Note that
the group SL2(R)n+1 acts naturally on the product Hn+1 = H0 ×H1 × · · · × Hn

of (n + 1) copies of the complex upper half-plane indexed in the same way as the
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places of F . Given τ = (τ0, . . . , τn) ∈ Hn+1 and γ = (γ0, . . . , γn) ∈ SL2(R)n+1, we
will write γτ = (γ0τ0, . . . , γnτn).

Lemma 7.1. The group Γ = ι(PSL2(OF )) acts discretely on Hn+1.

Proof. Note that the image of OF under ι is discrete in Rn+1. Hence so is
the image of M2(OF ) in M2(R

n+1), and therefore the group Γ := ι(PSL2(OF )) is
a discrete subgroup of PSL2(R)n+1. Since Hn+1 is the quotient of PSL2(R)n+1

by the compact subgroup O2(R)n+1, the result follows by the same argument that
was used in the proof of Lemma 4.6 of Chapter 4. �

In order to work as much as possible using classical rather than adelic notations,
it is useful to make the following simplifying assumption.

Hypothesis 7.2. The field F has narrow class number one.

Thus it is assumed that every ideal of OF is principal and has a totally positive
generator, so that there exist units ε0, ε1, . . . , εn with the property that

ιk(εj) > 0, if k 6= j, ιj(εj) < 0.

Definition 7.3. A Hilbert modular form of weight (k0, . . . , kn) on Γ is a holo-
morphic function

f : H0 × · · · × Hn −→ C

such that

f(γτ) = (c0τ0 + d0)
k0 · · · (cnτn + dn)knf(τ ) for all γ ∈ Γ

with

γj =

(

aj bj

cj dj

)

∈ SL2(R).

Let M0(N) ⊂ M2(OF ) be the algebra of 2 × 2 matrices with entries in OF

which are upper-triangular modulo N . Of special relevance to elliptic curves is the
case when Γ = ι(Γ0(N)), where

Γ0(N) := M0(N)×1 =

{(

a b
c d

)

∈ SL2(OF ) such that N |c
}

,

and (k0, . . . , kn) = (2, . . . , 2). The Hilbert modular form f is then said to be of
parallel weight 2 with respect to Γ.

The theory of Hilbert modular forms exhibits many features analogous to the
classical situation where F = Q, such as Fourier expansions and Hecke operators.

Fourier expansions. Since every matrix of the form

(

1 λ
0 1

)

with λ ∈ OF belongs

to Γ0(N), we have
f(τ + λ) = f(τ), for all λ ∈ OF .

Therefore f is periodic under translation by elements of ι(OF ) and admits a Fourier
expansion

f(τ ) =
∑

ν∈OF

aν(f)e2πi(τ ·(ν/d)),

where d is a totally positive generator of the different of F , and

τ · (ν/d) := τ0ν0/d0 + τ1ν1/d1 + · · · + τnνn/dn.

The Fourier coefficients aν(f), indexed by elements ν of OF , satisfy the following
basic properties:
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• The Koecher principle implies that, if ιj(ν) < 0 for some j, then aν(f) = 0.
In other words, aν(f) is non-zero only on totally positive elements. (Cf.
for example [Gar90] §1.4.)

• The invariance of f under the matrices of the form

(

ε 0
0 ε−1

)

, where

ε is a unit in OF , implies that aν(f) = aε2ν(f) for all such units. Under
the condition that F has narrow class number one, every totally positive
unit of OF is a square of a unit and hence aν(f) (for ν totally positive)
depends only on the ideal generated by ν, not on ν itself: thus ν 7→ aν(f)
can be viewed as a function on the ideals of OF .

As in the definitions of Chapter 2, it is possible to define the Fourier expansion of
f at an arbitrary cusp γ−1∞ (with γ ∈ SL2(OF )) by expanding f |γ as a Fourier
series. Let aγ

0 denote the constant coefficient in this expansion.

Definition 7.4. If aγ
0 (f) = 0, for all γ ∈ SL2(OF ), then f is said to be a cusp

form.

Hecke operators. We shall denote by S2(N) the space of cusp forms of parallel
weight (2, . . . , 2) on (H0 × · · · × Hn)/Γ0(N). The space S2(N) is equipped with
many of the familiar structures present in the case where F = Q, such as the
existence of an inner product, and a collection of mutually commuting self-adjoint
Hecke operators T` indexed by the primes 6̀ |N of OF , leading to a definition of a
simultaneous eigenform for these Hecke operators. (It is in describing the action of
Hecke operators on S2(N) in classical language that Hypothesis 7.2 on the narrow
class number h+ is used. In general the description of S2(N) is more complicated;
its elements can be described as h+-tuples of classical modular forms on h+ different
subgroups of SL2(OF ). See for example §1.1 of [Wi88] for details.) If f is such
an eigenform, then a`(f) is equal to the eigenvalue of the Hecke operator T` acting
on f , as in the classical case. For more details the reader is invited to consult the
book of Bump [Bu97].

7.3. The Shimura-Taniyama-Weil conjecture

Recall the running assumption that F is a totally real field of narrow class
number one. If E is an elliptic curve over F , the definition of the coefficients a(p)
attached to E given in equation (7.1) can be extended to all integral ideals in the
usual way through the equality of Dirichlet series

∏

λ6 |N
(1 − a(λ)|λ|−s + |λ|1−2s)−1

∏

λ|N
(1 − a(λ)|λ|−s)−1 =

∑

ν

a(ν)|ν|−s,

where the products are taken over prime ideals and the sum is taken over integral
ideals of F . We may also view a(ν) as a function on the totally positive elements
of OF in the obvious way.

The natural extension of the Shimura-Taniyama conjecture for elliptic curves
over totally real fields can be formulated concretely as follows.

Conjecture 7.5. Let E be an elliptic curve of conductor N over F . Then the
series defined by

f(τ ) =
∑

ν>>0

a(ν)e2πi(τ ·(ν/d))
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is an eigenform in S2(N).

The ideas of Wiles, as generalised by a number of other mathematicians, lead
to the proof of many special cases of the Shimura-Taniyama-Weil conjecture over
totally real fields, as the following result indicates.

Theorem 7.6 (Skinner-Wiles). Let E be a semistable elliptic curve of conduc-
tor N over a totally real field F . Assume further that

• The prime 3 splits completely in F/Q.
• The extension of F generated by the coordinates of the 3-division points

of E has Galois group GL2(F3) over F .
• Either [F : Q] is odd, or N 6= 1.

Then Conjecture 7.5 holds for E.

This theorem gives a flavour of the results that can be obtained through the
techniques initiated by Wiles. The hypotheses in its statement (in particular, the
semi-stability assumption and the first two conditions) can be significantly relaxed.
The last condition corresponds to a more interesting difficulty that is not present
in the case of curves over Q, arising from the fact that the Eichler-Shimura con-
struction does not always admit a suitable generalisation to the context of totally
real fields. This issue is discussed further in the next section.

7.4. The Eichler-Shimura construction for totally real fields

Theorem 7.7. Let f be a Hilbert modular eigenform in S2(N) with rational
Hecke eigenvalues. Assume that [F : Q] is odd, or that there is a prime p of F
dividing N exactly. Then there is an elliptic curve E/F of conductor N such that

aλ(E) = aλ(f), for all λ 6 |N.

Sketch of the construction. Let B be the quaternion algebra over F
ramified precisely at the archimedean places v1, . . . , vn, if n+1 = [F : Q] is odd, or
at v1, . . . , vn, p, if n + 1 is even. Let R be an Eichler order of level N (resp. N/p)
in B if [F : Q] is odd (resp. even). Since B is split at the place v0, one may choose
an identification

ι0 : B ⊗v0
R −→ M2(R).

Let Γ := ι0(R
×
1 ). This group acts discretely on H with compact quotient and H/Γ

can be interpreted as the complex points of a Shimura curve X which is defined over
F . An appropriate generalisation of the theory of Jacquet-Langlands to the context
of modular forms on B produces a modular form g ∈ S2(H/Γ) attached to f . The
elliptic curve Ef is constructed analytically as a quotient of Jac(X) following a
generalisation to totally real fields of the theory alluded to in Section 4.4. For a
detailed description of the theory of Shimura curves attached to quaternion algebras
over totally real fields, and their use in defining a variant of the Eichler-Shimura
construction in this context, see Chapters 1 and 3 of [Zh01a] and the references
contained therein. �

The cases where the Eichler-Shimura construction can be carried out yield a
Shimura curve parametrisation

Div0(H/Γ) −→ E(C),
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where Γ is the group introduced in the discussion of Theorem 7.7. It should be
noted, however, that not all elliptic curves over a totally real field F can be uni-
formised by a Shimura curve in this way. For instance, the theory excludes elliptic
curves with everywhere good reduction defined over a totally real field of even
degree.

7.5. The Heegner construction

The Heegner point construction generalises precisely to the situations where E
is the quotient of the Jacobian of a Shimura curve, i.e., can be obtained from the
Eichler-Shimura construction.

For in that case, letting Γ be the subgroup of SL2(R) arising as in the previous
section from a quaternion algebra B split at precisely one archimedean place v0 of
F , define for each τ ∈ H/Γ the associated order of τ to be

Oτ := {γ ∈ R such that det(γ) 6= 0 and γτ = τ} ∪ {0}.

Lemma 7.8. The order Oτ is either equal to OF , or to an order in a quadratic
CM extension of F .

Proof. By the same reasoning as in Section 3.2, the order Oτ is a commutative
subring of B containing OF . Its fraction field K is therefore a commutative subfield
of B, hence is either equal to F or to a quadratic extension of F . Suppose the latter
occurs. For all the archimedean places vj of F , one has K ⊗vj

R = R × R or C.
The former cannot happen for j = 1, . . . , n since B ⊗vj

R = H has no zero divisors.

It is also the case that K ⊗v0
R = C because the action of K× on H0 has a fixed

point. �

Given any order O in a CM extension K of F , denote by CM(O) the set of
τ ∈ H/Γ whose associated order Oτ is equal to O, and denote by H the ring class
field of K attached to O.

Theorem 7.9. If τ belongs to CM(O), then ΦN+,N−(Div0(CM(O))) is con-
tained in E(H).

Remarks on the proof. The idea here is to give a moduli interpretation to
the Shimura curve H/Γ (or at least to a finite covering of it) and thereby interpret
the CM points on this quotient as coming from the moduli of certain abelian va-
rieties with CM by O which are then defined over the appropriate ring class field.
See Chapter 2 of [Zh01a] for more details. �

The occasional absence of a Shimura curve parametrisation raises the problem
of constructing algebraic points on E in such situations—for example, when E is
an elliptic curve over a totally real field F of even degree. Note that for such an E
we have the following.

Proposition 7.10. Assume Conjecture 3.19. If K is any CM extension of F ,
then sign(E, K) = 1.

Proof. Under these hypotheses the analytic set SE,K = {v0, . . . , vn} consists
only of the archimedean places of F (viewed as complex places of K). Since n + 1
is even, the result follows from Conjecture 3.19. �
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It follows that if E is an elliptic curve with everywhere good reduction over
a totally real field of even degree, then one should expect no Heegner systems
attached to any CM extension of F , so that the theory of complex multiplication
is presumably unable to produce any Heegner system attached to E—a difficulty
which runs parallel to the fact that E does not appear in the Jacobian of any
Shimura curve over F .

7.6. A preview of Chapter 8

Let us return to the setting where f is a Hilbert modular form of parallel weight
2 on (H0 × · · · × Hn)/Γ0(N) attached to the elliptic curve E over F . Given any
τ ∈ H0, write Γτ for the stabiliser of τ in Γ = Γ0(N).

Lemma 7.11. The group Γτ is an abelian group of rank at most n.

Proof. Let Oτ ⊂ M0(N) be the associated order of τ in M0(N), i.e., the
algebra of matrices which preserve the line spanned by the column vector (τ, 1).
Then Oτ is isomorphic either to OF or to an OF -order in a quadratic extension K
of F (i.e., a subring of K which contains OF , is finitely generated as an OF -module,
and generates K as a Q-algebra). In the former case Γτ is trivial, and in the latter
case it is identified with the group of elements of Oτ

× whose norm from K to F
is equal to one. Since the torus K× ⊂ GL2(F ) has a fixed point on H0, it follows
that K ⊗v0

R ' C, so that the place v0 lies below a complex place of K. Hence K
has at most 2n + 1 archimedean places; by the Dirichlet unit theorem,

rankZ(O×
τ ) ≤ 2n, rankZ(O×

F ) = n.

Since the norm map O×
τ −→ O×

F has finite cokernel, the result follows. �

Remark 7.12. Equality is attained in Lemma 7.11 precisely when K is an
extension of F which is complex at v0 and real at all the other archimedean places
of F . Such an extension will be called an almost totally real (ATR) extension of F .
This notion depends on the chosen ordering v0, . . . , vn of the real embeddings of F ,
or at least on singling out the distinguished place v0. If K is an ATR extension, we
will customarily fix as part of the data an extension of v0 to a complex embedding
of K, making it possible to view K as a subfield of the complex numbers.

Definition 7.13. An ATR point is a point τ ∈ H0 such that rank(Γτ ) = n.
Equivalently, τ is ATR if it belongs to H0 ∩ K for some ATR extension K of F .

Let H′
0 denote the set of ATR points on H0.

The basic insight to be developed in the next chapter is that there ought to be
a natural substitute

Φ′
N : H′

0/Γ −→ E(C)

for the Weil uniformisation of Chapter 2. This new type of uniformisation, as in
the case n = 0 which it generalises, is constructed from periods of the differential
(n + 1)-form

ωf := (2πi)n+1f(τ )dτ

attached to E. The precise definition of Φ′
N , based on cohomological properties of

the groups Γ and Γτ , is given in the next chapter. The main conjecture that will
emerge, a natural generalisation of the theory of Heegner points, states roughly
that if τ ∈ H0 ∩ K is an ATR point, then Φ′

N (τ) is a global point defined over an
appropriate ring class field of K.
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Further results

The book of Bump [Bu97], particularly the first chapter, provides an excellent
introduction to the theory of Hilbert modular forms. Other good references are the
books by Garrett [Gar90] and Freitag [Frei90].

A useful account of the theory of Shimura curves attached to totally real fields,
and of Heegner points arising from such Shimura curve parametrisations is the
article [Zh01a] of Zhang who also proves the generalisation of the formula of Gross
and Zagier in this context.



CHAPTER 8

ATR points

We retain the setting of the previous chapter. Thus F is a totally real field of
narrow class number one and of degree n+1 over Q, and E is an elliptic curve over
F of conductor N , attached to a Hilbert modular form f ∈ S2(N) of level N and
parallel weight two. Let

ωf = (2πi)n+1f(τ0, . . . , τn)dτ0 · · · dτn

be the holomorphic differential (n + 1)-form on (H0 × · · · × Hn)/Γ attached to f .
Recall that d is a fixed totally positive generator of the different ideal of F .

8.1. Period integrals

For j = 0, . . . , n, let xj and yj ∈ Hj be points on the j-th upper half-plane
indexed by the real embeddings ιj of F . Write

(8.1)

∫ y0

x0

∫ y1

x1

· · ·
∫ yn

xn

ωf ∈ C

for the usual multiple integral attached to the differential form ωf . It can be
calculated numerically by exploiting the Fourier expansion of f , and is given by the
expression

|d|
∑

ν>>0

a(ν)/|ν|
n
∏

j=0

(

e
2πi

νj
dj

yj − e
2πi

νj
dj

xj

)

.

In formulating our conjectures it is important to replace ωf by a non-homolorphic

differential ω+
f with the same associated Hecke eigenvalues. To do this, let Σ =

{±1}n and for each σ = (σ1, . . . , σn) ∈ Σ, let γσ ∈ M0(N)× be an element whose
determinant is a unit of O×

F which is positive at ι0 and the places ιj for which
σj = 1, and negative at the places ιj for which σj = −1. (Such units exist, thanks
to the narrow class number one assumption that was made for F .) For τj ∈ Hj

write

τσ
j =

{

γστj if σj = 1 or j = 0,
γσ τ̄j if σj = −1,

and set

ωσ
f = (2πi)n+1f(τσ

0 , τσ
1 , . . . , τσ

n )dτσ
0 dτσ

1 · · · dτσ
n .

Finally write

(8.2) ω+
f :=

√

|d|−1 ∑

σ∈Σ

ωσ
f .

87
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Properties of the multiple integral: The multiple integral of equation (8.1) enjoys
the obvious additivity and Γ-invariance properties, such as

(8.3)

(

∫ y0

x0

· · ·
∫ tj

xj

· · ·
∫ yn

xn

ωf

)

+

(

∫ y0

x0

· · ·
∫ yj

tj

· · ·
∫ yn

xn

ωf

)

=

∫ y0

x0

· · ·
∫ yj

xj

· · ·
∫ yn

xn

ωf ,

for all tj ∈ Hj and for all j = 0, . . . , n, and
∫ γy0

γx0

· · ·
∫ γyn

γxn

ωf =

∫ y0

x0

· · ·
∫ yn

xn

ωf , for all γ ∈ Γ.

The same identities continue to hold with ωf replaced by ω+
f . The integral attached

to ω+
f also enjoys an invariance property under the larger group M0(N)×, which

contains Γ with index 2n+1. (Cf. Exercise 1.) More precisely, extend the action of
Γ on Hj to an action of M0(N)× by setting, for all τ ∈ Hj ,

(8.4) γτ =

{

γjτ if det(γj) > 0;
γj τ̄ if det(γj) < 0.

Let c : C −→ C denote complex conjugation. For γ ∈ M0(N
×), set sγ = 0

(resp. sγ = 1) if det(γ0) > 0 (resp. if det(γ0) < 0).

Lemma 8.1. For all xj , yj ∈ Hj , with 0 ≤ j ≤ n, and all γ ∈ M0(N)×,
∫ γ0csγ (y0)

γ0csγ (x0)

∫ γ1y1

γ1x1

· · ·
∫ γnyn

γnxn

ω+
f = csγ

(∫ y0

x0

· · ·
∫ yn

xn

ω+
f

)

.

Proof. This is left to the reader as an exercise. (Cf. Exercise 1.) �

Remark 8.2. Let Γ̃ be the group of elements γ ∈ M0(N)× for which det(γ0)
is positive. It follows from Lemma 8.1 that the differential ω+

f is invariant under

the action of Γ̃.

8.2. Generalities on group cohomology

We begin by briefly recalling some standard notations and terminology from
group cohomology.

Let M be a Z-module with trivial Γ-action. The space of M -valued r-cochains
on Γ, denoted Cr(Γ, M), is the set of functions f : Γr −→ M . Let

d : Cr(Γ, M) −→ Cr+1(Γ, M)

be the differential of degree r, defined as in [CF67], Chapter 4, by

(df)(g1, . . . , gr+1) = g1f(g2, . . . , gr+1) +

r
∑

j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gr+1)

+ (−1)r+1f(g1, . . . , gr).

The space of M -valued r-cocycles on Γ, denoted Zr(Γ, M), is the submodule of
Cr(Γ, M) of functions f satisfying

df = 0.

The space of M -valued r-coboundaries, denoted Br(Γ, M), is the submodule of
Cr(Γ, M) consisting of functions of the form df, for some f ∈ Cr−1(Γ, M). Since
dd = 0, the module Br(Γ, M) is contained in Zr(Γ, M). The quotient module

Hr(Γ, M) = Zr(Γ, M)/Br(Γ, M)
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is called the r-th cohomology group of Γ with coefficients in M .
An alternate definition of Hr(Γ, M) in terms of homogeneous cochains will be

useful for the calculations in this chapter. A homogeneous r-cochain is a function
f : Γr+1 −→ M satisfying

f(sg0, . . . , sgr) = sf(g0, . . . , gr) for all s ∈ Γ.

The group of homogeneous r-cochains is denoted Cr
Hom(Γ, M). These groups form

a complex in which the differential map d : Cr
Hom(Γ, M) −→ Cr+1

Hom(Γ, M) is given
by the simpler formula

(df)(g0, . . . , gr+1) =

r+1
∑

j=0

(−1)jf(g0, . . . , gj−1, gj+1, . . . , gr+1).

One defines the group of homogeneous r-coboundaries Br
Hom(Γ, M) (resp. the group

of homogeneous r-cocycles Zr
Hom(Γ, M)) as the image of d (resp. the kernel of d).

Since a homogeneous r-cochain is determined by its values on r-tuples of
the form (1, g1, g1g2, g1g2g3, . . . , g1 · · · gr), one may associate to a homogeneous r-
cochain f a non-homogeneous r-cochain θf by the rule

(θf)(g1, . . . , gr) = f(1, g1, g1g2, . . . , g1 · · · gr).

The commutativity of the diagram

Cr
Hom(Γ, M)

d−→ Cr+1
Hom(Γ, M)

↓ θ ↓ θ

Cr(Γ, M)
d−→ Cr+1(Γ, M)

shows that the r-th cohomology of Γ with coefficients in M can also be computed
as

Hr(Γ, M) = Zr
Hom(Γ, M)/Br

Hom(Γ, M).

8.3. The cohomology of Hilbert modular groups

Let τ be any element of H0. To the Γ-invariant differential form ω+
f and the

point τ , we associate a non-homogeneous (n + 1)-cochain

κτ ∈ Cn+1(Γ, C)

by choosing a base point x = (x1, . . . , xn) in H1 × · · · × Hn, and setting

(8.5) κτ (α0, α1, . . . , αn) =

∫ α0τ

τ

∫ α0α1x1

α0x1

∫ α0α1α2x2

α0α1x2

· · ·
∫ α0···αnxn

α0···αn−1xn

ω+
f .

Lemma 8.3. The (n + 1)-cochain κτ is an (n + 1)-cocycle, i.e., it belongs to
Zn+1(Γ, C).

Proof. We show this by induction on n, the case n = 1 being checked by a
direct computation. For the general case, let κ′

τ (g0, . . . , gn+1) be the homogeneous
(n + 1)-cochain attached to κτ which is given by the formula

κ′
τ (g0, . . . , gn+1) =

∫ g1τ

g0τ

∫ g2x1

g1x1

· · ·
∫ gn+1xn

gnxn

ω+
f .
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Fixing arbitray arguments gn+1 and gn+2 ∈ Γ, let κ′′
τ : Γn+1 −→ C be the function

given by

κ′′
τ (h0, . . . , hn) =

∫ h1τ

h0τ

∫ h2x1

h1x1

∫ h3x2

h2x2

· · ·
∫ hnxn−1

hn−1xn−1

∫ gn+2xn

gn+1xn

ω+
f .

The additivity property of the multiple integral combined with the induction hy-
pothesis implies that

(8.6) dκ′′
τ (h0, . . . , hn+1) = 0, for all h0, . . . , hn+1 ∈ Γ.

On the other hand, a direct calculation shows that

dκ′
τ (g0, . . . , gn+2) =

n
∑

j=0

(−1)jκ′
τ (g0, . . . , gj−1, gj+1, . . . , gn+2)

+ (−1)n+1κ′
τ (g0, . . . , gn, gn+2) + (−1)n+2κ′

τ (g0, . . . , gn+1)

= dκ′′
τ (g0, . . . , gn+1) + (−1)n

{

∫ g1τ

g0τ

∫ g2x1

g1x1

. . .

∫ gnxn−1

gn−1xn−1

∫ gn+2xn

gn+1xn

ω+
f

−
∫ g1τ

g0τ

∫ g2x1

g1x1

. . .

∫ gnxn−1

gn−1xn−1

∫ gn+2xn

gnxn

ω+
f +

∫ g1τ

g0τ

∫ g2x1

g1x1

. . .

∫ gnxn−1

gn−1xn−1

∫ gn+1xn

gnxn

ω+
f

}

.

But this last expression is equal to zero, by (8.6) and (8.3). �

In analysing the dependence of κτ on the choice of the base point x, it is convenient
to temporarily denote by κτ,x the (n + 1)-cocycle defined in equation (8.5). Let Γτ

denote the stabiliser of τ in Γ.

Lemma 8.4. Let x and y be any two base points in H1 ×· · ·×Hn. There exists
an n-cochain ρx,y ∈ Cn(Γ, C) such that

(1) κτ,x − κτ,y = dρx,y,

(2) ρx,y(g1, . . . , gn) = 0, for all g1, . . . , gn ∈ Γτ .

Proof. As in the previous proof, it is easiest to see this by working with the
homogeneous n + 1-cocycles κ′

τ,x and κ′
τ,y attached to κτ,x and κτ,y respectively.

Assume without loss of generality that x and y differ in a single coordinate, xj say.
Then the expression for (κ′

τ,x − κ′
τ,y)(g0, . . . , gn+1) is given by

(κ′
τ,x − κ′

τ,y) =

∫ g1τ

g0τ

· · ·
∫ gjxj−1

gj−1xj−1

∫ gjyj

gjxj

∫ gj+2xj+1

gj+1xj+1

· · ·
∫ gn+1xn

gnxn

ω+
f

−
∫ g1τ

g0τ

· · ·
∫ gjxj−1

gj−1xj−1

∫ gj+1yj

gj+1xj

∫ gj+2xj+1

gj+1xj+1

· · ·
∫ gn+1xn

gnxn

ω+
f .

A direct calculation (cf. Exercise 2) reveals that this expression is equal to dρx,y,

where ρx,y : Γn+1 −→ C is defined by

(8.7) ρx,y(g0, . . . , gn) =

∫ g1τ

g0τ

∫ g2x1

g1x1

· · ·
∫ gjxj−1

gj−1xj−1

∫ gjyj

gjxj

∫ gj+1xj+1

gjxj+1

· · ·
∫ gnxn

gn−1xn

ω+
f .

The result follows immediately from this formula. �



8.3. THE COHOMOLOGY OF HILBERT MODULAR GROUPS 91

Remark 8.5. Lemma 8.4 and its proof imply, in particular, that the natural
image of κτ in Hn+1(Γ, C) is an invariant of ω+

f which does not depend on the
choice of base point x, or, for that matter, of τ , that was made to define it.

A lattice Λ ⊂ C is called a trivialising lattice for the cocycle κτ if the natural
image of κτ in Hn+1(Γ, C/Λ) is trivial. The key Conjecture 8.6 below postulates
the existence of a trivialising lattice for κτ which can be defined explicitly in terms
of the periods attached to E. More precisely, choose a Néron differential ωE on
E/F and let Ω+

j , (j = 1, . . . , n) denote the real period attached to the elliptic curve

Ej and the differential ιj(ωE). Let Λ0 denote the period lattice attached to the
differential ι0(ωE) on E0. Note that ωE is only well-defined up to multiplication by
a unit in F ; hence the periods Ω+

j are defined up to multiplication by a non-zero

element of ιj(O×
F ). Since the norms of these elements are ±1, the lattice

Λ := Ω+
1 · · ·Ω+

n Λ0

is independent of the choice of a Néron differential ωE .
Notice also that Λ is homothetic to Λ0. Let

(8.8) Φ0 : C/Λ −→ E0(C)

be the Weierstrass uniformisation which is inverse to the map given by integration
of the differential form Ω+

1 · · ·Ω+
n ι0(ωE).

Conjecture 8.6. There exists an integer tE (depending only on E, and not
on τ) such that the cocycle tEκτ has Λ as a trivialising lattice.

Note that by Remark 8.5, such an integer tE , if it exists, can be chosen inde-
pendently of τ .

Remark 8.7. In the case n = 0, Conjecture 8.6 merely asserts that an integer
multiple of the cocycle κτ given by

κτ (γ) =

∫ γτ

τ

ωf

becomes trivial modulo Λ, the Néron latice of E. But this is well-known: for
instance if E is the strong Weil curve attached to the classical modular curve
parametrisation, one may take tE to be the Manin constant attached to E, an
integer which is conjecturally always equal to one.

Remark 8.8. Conjecture 8.6 is related, in the case where n = 1, to work of
Oda [Od82] on periods for Hilbert modular surfaces.

Let κ̄τ denote the natural image of tEκτ in Zn+1(Γ, C/Λ). Assuming Conjec-
ture 8.6, the cocycle κ̄τ is an (n + 1)-coboundary, i.e., it belongs to Bn+1(Γ, C/Λ).
Thus it is possible to write

(8.9) κ̄τ = dξ̃τ , with ξ̃τ ∈ Cn(Γ, C/Λ).

Note that equation (8.9) makes ξ̃τ well-defined only up to elements of Zn(Γ, C/Λ).

The following theorem shows that the element ξ̃τ—or at least, some multiple of
it—is in fact well-defined up to n-coboundaries.

Theorem 8.9. Suppose that n is odd. Then Hn(Γ, R/Z) has finite exponent.
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Proof. This follows from an extension due to Harder [Ha75] of a result of
Matsushima and Shimura [MS78] valid in the case where Γ acts on Hn+1 with
compact quotient. More precisely, Theorem 6.3 of Chapter III, §6 of [Frei90]
states that

Hn(Γ, R) = 0.

Hence Hn(Γ, R/Z) injects (via the connecting homomorphism arising from the exact
sequence 0 −→ Z −→ R −→ R/Z −→ 0) into the kernel of the map Hn+1(Γ, Z) −→
Hn+1(Γ, R). This kernel consists of the torsion in Hn+1(Γ, Z) which is finite (since
it is finitely generated) and the result follows. �

Assume now that n is odd, and let eΓ denote the exponent of Hn(Γ, C/Λ)
which is finite by Theorem 8.9. (This boundedness of the exponent is the single—
but crucial—stage of the construction where it becomes necessary to assume n 6= 0.)
The n-cochain

ξτ := eΓξ̃τ

is then well-defined, modulo

eΓZn(Γ, C/Λ) ⊂ Bn(Γ, C/Λ).

Then let θτ ∈ Cn(Γτ , C/Λ) be the restriction of ξτ to Γτ
n.

Lemma 8.10. The n-cochain θτ is an n-cocycle.

Proof. This follows from the fact, immediate from (8.5), that the (n + 1)-
cochain κτ vanishes identically on Γτ

n+1. �

Lemma 8.11. The natural image of θτ in Hn(Γτ , C/Λ) does not depend on the

choice of ξ̃τ made to define it.

Proof. This is because ξτ is well-defined up to n-coboundaries on Γ. �

Lemma 8.12. The natural image of θτ in Hn(Γτ , C/Λ) does not depend on the
choice of base points x that were made to define κτ and κ̄τ .

Proof. This follows from Lemma 8.4. (Cf. Exercise 3.) �

Conclusion: To any point τ ∈ H0 has been associated (at least when n is odd) a
cohomology class

θτ ∈ Hn(Γτ , C/Λ).

This object depends only on the orbit of τ under the action of the group Γ̃ of
Remark 8.2. More precisely, suppose that τ ∈ H0 and τ ′ = ατ belong to the same
orbit for this group. Then Γτ ′ = αΓτα−1, and we have the following.

Lemma 8.13. The classes of θτ and θτ ′ admit representative cocycles θ̃τ and
θ̃τ ′ (in Zn(Γτ , C/Λ) and Zn(Γτ ′ , C/Λ), respectively) such that

θ̃τ ′(αg1α
−1, . . . , αgnα−1) = θ̃τ (g1, . . . , gn),

for all g1, . . . , gn ∈ Γτ .

Proof. See Exercise 5. �
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8.4. ATR points

Let K be a quadratic extension of F which is ATR (relative to the chosen
ordering v0, . . . , vn of the archimedean places of F ). Let τ ∈ H0 ∩ K be an ATR
point, so that the group Γτ is a free abelian group of rank n. In that case we have
the following.

Proposition 8.14. The cohomology group Hn(Γτ , C/Λ) is canonically isomor-
phic to C/Λ.

Proof. This follows directly from the fact that Γτ ' Zn can be made to act
freely on Rn with quotient T n = Rn/Zn, so that the cohomology of Zn is identified
with the cohomology of a compact connected oriented n-manifold. �

Let Jτ ∈ C/Λ be the invariant attached to θτ by Proposition 8.14. It follows
from Lemma 8.13 that

Jατ = Jτ , for all α ∈ Γ.

Conclusion: To any ATR point τ ∈ H0 has been associated a canonical invariant
Jτ ∈ C/Λ, which depends only on the Γ̃-orbit of τ ∈ H0. Recall the Weierstrass
uniformisation Φ0 of equation (8.8) and set

Pτ := Φ0(Jτ ) ∈ E0(C).

We can now define the map Φ′
N alluded to at the end of Chapter 7 by the rule

Φ′
N (τ) = Pτ .

We now formulate a conjecture, analogous to the classical Shimura reciprocity
law of Chapter 3, which implies that the point Φ′

N (τ) (with τ ∈ H0 ∩ K an ATR
point) is an algebraic point on E defined over an abelian extension of K which can
be described precisely in terms of class field theory.

The following assumption, while not essential, will be made to simplify the
discussion, and is analogous to the Heegner hypothesis of Chapter 3.

Hypothesis 8.15. All the primes dividing the conductor N of E are split in
K/F .

Fix an ideal N of OK whose norm to OF is equal to N . Recall that M0(N)
is the OF -algebra of 2 × 2 matrices with entries in OF which are upper-triangular
modulo N . Denote by

η : M0(N) −→ OF /NOF

the homomorphism sending a matrix to its upper left-hand entry taken modulo N .
Let

Ψ : K −→ M2(F )

be an embedding of F -algebras. Such an embedding is said to be optimal if

Ψ(K) ∩ M0(N) = Ψ(OK).

Let τ ∈ H0 denote the unique fixed point for Ψ(K×) acting on H0. The embedding
Ψ is said to be normalised if Ψ(α) acts on the column vector (τ, 1) as multiplication
by α, and if the kernel of ηΨ (restricted to OK) is equal to N .

The group Γ̃ acts naturally by conjugation on the set of normalised optimal
embeddings.
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Let H denote the Hilbert class field of K, and let G denote its Galois group
over K. This group G is identified with the Picard group of OK .

The group G acts naturally on the collection of Γ̃-conjugacy classes of nor-
malised optimal embeddings of K into M2(F ) (cf. Exercise 6). Given σ ∈ G, and

a normalised embedding Ψ, let σ ? Ψ denote a representative for the Γ̃-orbit of the
image of the embedding Ψ by the action of σ.

Lemma 8.16. The group G acts simply transitively on the set of Γ̃-conjugacy
classes of normalised optimal embeddings of K into M2(F ).

Proof. See Exercise 6. �

Given a normalised embedding Ψ with fixed point τ ∈ H0, one may set

PΨ = Φ′
N (τ).

Note that this point depends only on the Γ̃-conjugacy class of Ψ.
We view the Hilbert class field H of K as a subfield of C via a complex em-

bedding which extends the fixed embedding v0 of K into C.

Conjecture 8.17. The local point PΨ is the image of a global point in E(H).
Furthermore,

Pσ?Ψ = σ−1(PΨ), for all σ ∈ G.

Remark 8.18. The simplest case of the construction (and the one which runs
the most parallel to the p-adic construction of Chapter 9) is the case where n = 1.
The field F is then a real quadratic field and K is a quadratic extension of F having
one complex and two real places. The space (H0 ×H1)/Γ0(N) is a Hilbert modular
surface attached to the Hecke congruence subgroup of level N in SL2(OF ).

Remark 8.19. Specialising even further, suppose that F is a real quadratic
field of narrow class number one, and that E is an elliptic curve with everywhere
good reduction over F , so that N = 1. Let K be a quadratic extension of F
with one complex and two real places. In this situation Conjecture 8.17 yields an
analytic construction of points on E(H), where H is the Hilbert class field of K.
This setting is of interest for the following two reasons.

(1) If E is not isogenous to its Galois conjugate, then E does not appear as a
quotient of the Jacobian of any modular or Shimura curve, so that the the-
ory of complex multiplication does not suggest any modular construction
of Heegner systems on E;

(2) This situation is simple enough to be amenable to machine calculations.
For some numerical verifications that have been performed in this case,
see [DL03].

Remark 8.20. The only ATR extensions of F = Q are the imaginary quadratic
fields, where one is placed in the usual setting of the theory of complex multiplica-
tion. There are “not enough” archimedean places of Q for any new phenomena to
manifest themselves through Conjecture 8.17. In particular, since a real quadratic
field is not an ATR extension, the generalisation of the Heegner point construction
to the context of real quadratic fields falls outside the scope of the theory developed
in the last two chapters. To encompass this case it is necessary to combine this
theory with some of the notions arising from rigid analysis that were surveyed in
Chapters 5 and 6. This will be the goal of the next chapter.
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References

A reference for periods of Hilbert modular forms (at least in the case of Hilbert
modular surfaces) is the book of Oda [Od82].

For an introduction to the cohomology of groups, and in particular to the
cohomology of discrete subgroups of Lie groups, see [Br94]. General finiteness
results on the cohomology of discrete groups (particularly arithmetic groups) can
be found in the articles [Se70] and [Se71] by Serre. The cohomology of Hilbert
modular groups, building on the techniques of Matsushima-Shimura [MS78] and
Harder [Ha75], is studied in [Frei90].

For further discussion of Conjecture 8.17, see [BDG03] and [DL03]. The arti-
cle [DL03] presents numerical evidence for Conjecture 8.17 when E has everywhere
good reduction over a real quadratic field, and discusses the algorithms that were
used to calculate Φ′

N in this case.

Exercises

(1) Assuming that F has narrow class number one, show that Γ is a normal sub-
group of M0(N)× with quotient isomorphic to (Z/2Z)n+1. Write down rep-
resentatives for the cosets of Γ in M0(N)×. (Hint: they can be chosen to be
diagonal matrices.) Use these representatives to prove Lemma 8.1.

(2) Complete the proof of Lemma 8.4 by showing that the homogeneous n-cochain
ρx,y of equation 8.7 satisfies dρ = κτ,x − κτ,y.

(3) Provide the details of the proof of Lemma 8.12.
(4) Let G = Zn and let M be a G-module with trivial G-action. Show that

the isomorphism between Hn(G, M) and M can be written in terms of non-
homogeneous n-cochains by choosing a system of generators γ1, . . . , γn of G
and sending the class of the cocycle θ to the quantity

Jθ :=
∑

σ∈Sn

sgn(σ)θτ (γσ1, γσ2, . . . , γσn),

where sgn(σ) = ±1 is the signature of the permutation σ.
(5) Prove Lemma 8.13, and conclude that the invariant Jτ attached to an ATR

point τ ∈ H0 depends only on the Γ̃-orbit of τ , so that Φ′
N descends to a map

Φ′
N : H′

0/Γ̃ −→ E(C).

(6) Let K be a fixed ATR extension of F in which all the prime divisors of N
are split. Adapt the ideas of Sections 3.1 and 3.2 to define a natural action of
G = Pic(OK) on the collection of Γ̃- conjugacy classes of normalised optimal
embeddings of K into M2(F ) (relative to M0(N), and a choice of ideal N ⊂
OK). Show that this action is simply transitive.





CHAPTER 9

Integration on Hp ×H

A number of different modular parametrisations have been introduced so far,
and their attendant theories of special (CM, or ATR) points used to construct
Heegner systems attached to modular elliptic curves.

In Chapters 2 and 3, the classical modular parametrisation

ΦN : H/Γ0(N) −→ E(C)

attached to a modular elliptic curve over Q of conductor N , combined with the
theory of complex multiplication, was used to define global points on E over ring
class fields of quadratic imaginary fields satisfying a suitable Heegner hypothesis.

In Chapters 4 and 7, the Shimura curve parametrisations

ΦN+,N− : Div0(H/ΓN+,N−) −→ E(C)

were used to construct more general Heegner systems attached to elliptic curves
over Q and quadratic imaginary extensions of Q. When suitably generalised to
groups coming from quaternion algebras over a totally real field F , Shimura curve
parametrisations may be used to construct Heegner systems attached to elliptic
curves over F and certain CM extensions of F .

In Chapter 6, the rigid analytic uniformisation

Φ
(p)
N+,N− : Div0(Hp/Γ

(p)
N+,N−) −→ E(Cp)

based on the Čerednik-Drinfeld theory of p-adic uniformisation of Shimura curves
was then exploited to construct the Heegner systems of Chapter 4 by p-adic analytic
means.

Finally, when E is a modular elliptic curve of conductor n defined over a totally
real field F of degree n + 1 > 1, and f is the associated Hilbert modular form on
(H0 × · · · ×Hn)/Γ0(n), modular or Shimura curve parametrisations are not always
available. Chapters 7 and 8 introduced a natural substitute

Φ′
N : H′

0/Γ0(n) −→ E(C)

defined on the set H′
0 of ATR points in H0 in terms of certain integrals attached

to f . This substitute can be used—conjecturally—to construct points on elliptic
curves defined over abelian extensions of ATR extensions of F .

This chapter proposes a synthesis of the ideas of Chapters 6 and 8 to define
(conjecturally, as in Chapter 8) Heegner systems attached to pairs (E, K) where
E is a modular elliptic curve over Q and K is a real quadratic field for which
sign(E, K) = −1.

97
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Note that, if sign(E, K) = −1, then there is at least one prime divisor p of N
which is either inert or ramified in K/Q, by Theorem 3.17 of Chapter 3. The main
idea of the construction is to fix such a prime divisor and make it play the same
role as the distinguished archimedean place v0 in the theory of the two previous
chapters.

9.1. Discrete arithmetic subgroups of SL2(Qp) × SL2(R)

Suppose henceforth that the conductor N of E is of the form pM , with p a
prime not dividing M . In this case, E has multiplicative reduction at p by (1.17)
of Chapter 1. Let q be the Tate period attached to E/Qp and let

ΦTate : C×
p −→ E(Cp)

be the Tate uniformisation attached to E as in equation (1.9) of Chapter 1. Set
w = ap, so that

(9.1) w =

{

1 if E has split multiplicative reduction at p,
−1 if E has non-split multiplicative reduction at p.

Let Γ ⊂ SL2(Z[1/p]) be the group of matrices which are upper triangular
modulo M . This group acts naturally both on H and on the p-adic upper half
plane Hp of Chapter 5. It acts on each of these upper half planes with dense orbits,
but its action on the product Hp ×H is discrete. (Cf. Exercise 1.) Note that Γ is
the group of elements of determinant one in the ring R = M0(M)[1/p] of matrices

with entries in Z[1/p] which are upper-triangular modulo M . Let Γ̃ = R× and let

α∞ and αp be elements of Γ̃ satisfying

(9.2) det(α∞) = −1, det(αp) = p.

A point τ belonging to H or Hp is called a special point if its stabiliser in Γ is
infinite. Let H′ and H′

p denote the set of special points in H and Hp respectively.
It can be seen that H′ consists precisely of the points in H ∩ K, where K ranges
over all the imaginary quadratic extensions of Q in which p is split. In [Ih68],
Ihara describes a natural correspondence between H′ and certain points on X0(M)
in characteristic p, this correspondence being derived via the classical theory of
complex multiplication developed in Chapter 3. (Cf. Exercise 2.)

On the other hand, the set H′
p is an object that appears to have been less

studied. One can write

H′
p =

⋃

K

(Hp ∩ K),

where K ranges over all real quadratic subfields of Cp which are not contained in
Qp (so that p is inert or ramified in K).

The goal of this chapter is to explain in detail how the following program can
be carried out:

(1) Attach to the elliptic curve E a “mock Hilbert modular form of weight
(2, 2)” on (Hp ×H)/Γ, denoted ω.

(2) Define a Cp-valued integration theory attached to ω, behaving formally
like the integrals attached to a Hilbert modular form in Chapter 8. The
ideas of p-adic analysis and p-adic integration explained in Chapter 5,
together with the Manin-Drinfeld theorem described in Section 2.7, are
the main ingredients in this definition.
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(3) Use these periods to define a parametrisation

Φ
′(p)
N : H′

p/Γ −→ E(Cp)

by mimicking the formal aspects of the definition of the parametrisation
Φ′

N given in Chapter 8.

(4) Make a precise conjecture predicting that the points Φ
′(p)
N (τ) ∈ E(Cp) are

defined over certain ring class fields of real quadratic fields.

9.2. Forms on Hp ×H
Motivated by the analogy with Hilbert modular forms, we seek an appropriate

notion of “form of weight (2, 2) on (Hp × H)/Γ”. In an informal sense, such an
object would be a Γ-invariant expression of the form

“ω = f(zp, z)dzpdz”,

where zp is a p-adic and z is a complex variable. If one requires that the function
f be rigid analytic in the first variable and holomorphic in the second, one runs
into difficulties in making such a notion mathematically precise. While a sensible
definition of ω seems elusive, the p-adic boundary distribution that was attached
to a rigid analytic modular form in Chapter 5 is a notion that can be transposed
in a natural way to the current setting.

Recall the Bruhat-Tits tree T of PGL2(Qp), whose set T0 of vertices is in
bijection with the set of Q×

p -homothety classes of rank two Zp-modules in Q2
p. Recall

that T1 and E(T ) are the set of unordered and ordered edges of T respectively, and
that s(e) and t(e) denote the source and target vertex of e ∈ E(T ). Let ē denote
the oriented edge obtained from e by interchanging its source and target.

The following definition, motivated by the considerations of Chapters 5 and 6,
is tailored to capture the notion of the “p-adic boundary distribution attached to
ω”.

Definition 9.1. A cusp form of weight 2 on (T ×H)/Γ is a function

f : E(T ) ×H −→ C

satisfying

(1) f(γe, γz) = (cz + d)2f(e, z), for all γ =

(

a b
c d

)

∈ Γ.

(2) The function f is harmonic, i.e., for each vertex v of T ,
∑

s(e)=v

f(e, z) = 0,

and for each oriented edge e of T , f(ē, z) = −f(e, z).
(3) For each oriented edge e of T , the function fe(z) := f(e, z) is a cusp form

of weight 2 (in the usual sense) on the group Γe := StabΓ(e).

Property 1 is suggested by the desired Γ-invariance of ω, and property 2 by
the ideas in the proof of Theorem 5.9 of Chapter 5. Note that an element of the
space S2(T , Γ) of cusp forms of weight 2 on (T ×H)/Γ is completely described by a
collection {fe} of cusp forms on Γe, indexed by the ordered edges e of T , satisfying
the compatibility relation

(9.3) fγe(γz)d(γz) = fe(z)dz, for all γ ∈ Γ,
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together with the harmonicity condition 2.
Let eo be the distinguished oriented edge of T whose stabiliser in Γ is equal to

Γ0(N), and whose source is fixed by Γ0(M). The group Γ (resp. Γ̃) acts transitively
on the unoriented (resp. oriented) edges of T (cf. Exercise 1), and for each e the
stabiliser subgroups Γe are conjugate in Γ to either Γeo

= Γ0(N) or Γē0
.

The matrices α∞ and αp of equation (9.2) generate the quotient Γ̃/Γ, and can
be chosen in such a way that they preserve the unordered edge attached to eo, so
that

(9.4) α∞eo = eo, αpeo = ēo.

The involution Wp on the space S2(T , Γ) is defined by the rule

(Wpf)(e, z)dz = f(αpe, αpz)d(αpz).

This definition does not depend on the choice of αp that was made. If αp is in
addition normalised to satisfy (9.4) (a convention that will be adopted from now
on), then it can also be used to define the usual Atkin-Lehner involution on the
space S2(N) = S2(Γ0(N)) of classical cusp forms of level N (denoted Wp as well
by an abuse of notation) by the rule

(9.5) (Wpf0)(z)dz = f0(αpz)d(αpz) for f0 ∈ S2(N).

Lemma 9.2 below reveals that the space S2(T , Γ) is intimately connected with
S2(N). In order to state it precisely, let

ϕs : X0(N) −→ X0(M)

be the projection arising from the inclusion Γ0(N) ⊂ Γ0(M), and let ϕt = ϕsWp

Making an abuse of notation, denote by the same symbols ϕs and ϕt the two
degeneracy maps from S2(N) to S2(M) induced from ϕs and ϕt by pushforward
of differential forms. More precisely, choosing a system of coset representatives for
Γ0(N) in Γ0(M):

(9.6) Γ0(M) = γ1Γ0(N) ∪ · · · ∪ γp+1Γ0(N),

one has

(9.7) ϕs(f)(z)dz =

p+1
∑

j=1

f(γ−1
j z)d(γ−1

j z), ϕt(f)(z)dz =

p+1
∑

j=1

f(αγ−1
j z)d(αγ−1

j z).

The kernel of

(9.8) ϕs ⊕ ϕt : S2(N) −→ S2(M) ⊕ S2(M)

is called the subspace of p-new forms, denoted Sp−new
2 (N).

Lemma 9.2. The function which to f(e, z) associates fo(z) := feo
(z) induces

an isomorphism from S2(T , Γ) to Sp−new
2 (N).

Proof. See Exercise 3 or the proof of lemma 1.3 of [Da01]. �

The Hecke operators T` (` 6 |N) act on the space S2(T , Γ) via the identifications
of Lemma 9.2. One can also give a direct description in the spirit of equations
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(2.6) of Chapter 2 and (4.4) of Chapter 4. For each prime `, write the double coset

Γ

(

` 0
0 1

)

Γ as a disjoint union of left cosets:

(9.9) Γ

(

` 0
0 1

)

Γ =
⋃

j

γjΓ.

Then T`f is given by

(9.10) (T`f)(e, z)dz =
∑

j

f(γ−1
j e, γ−1

j z)d(γ−1
j z).

Let f0 be the normalised newform on Γ0(N) associated to E by Theorem 2.12
of Chapter 2. The form f0 is an eigenvector for the involution Wp acting on S2(N).
It is known that

(9.11) Wpf0 = −wf0,

where w is the sign that was attached to E in (9.1). Let f be the form in

S2(T , Γ) which is related to f0 by Lemma 9.2, so that feo
= f0. Given γ ∈ Γ̃,

let |γ|p = ordp(det(γ)) ∈ Z/2Z. Write R×
+ for the group of elements in R of

positive determinant.

Lemma 9.3. The form f satisfies the following transformation rule under the
group R×

+ ⊃ Γ:

f(γe, γz)d(γz) = w|γ|pf(e, z)dz, for all γ ∈ R×
+.

Proof. The lemma is clearly true for γ ∈ Γ. Since αp generates the quotient

R×
+/Γ, and f is determined by its behaviour on {eo} × H, it suffices to check the

lemma for γ = αp and e = eo. In that case one has

f(αpe0, αpz)d(αpz) = f(ē0, αpz)d(αpz) = −(Wpf0)(z)dz

= wf0(z)dz = wf(eo, z)dz,

where the penultimate equality follows from (9.11). �

9.3. Periods

It will be convenient (but not essential) to make the following simplifying as-
sumption.

Assumption 9.4. The elliptic curve E is unique in its Q-isogeny class.

By this assumption, E is isomorphic to the strong Weil curve in its isogeny
class. Let

ΦN : H∗/Γ0(N) −→ E(C)

be the strong Weil parametrisation attached to E. Letting ωE denote the Néron
differential of E, one has

(9.12) ϕ∗(ωE) = c · 2πif0(z)dz,

where c is the Manin constant, introduced in (2.16) of Section 2.5.
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Choose elements x, y in the extended upper half-plane H∗ := H ∪ P1(Q). The
function κ̃f{x→y} : E(T ) −→ C defined by

(9.13) κ̃f{x→y}(e) := c · 2πi

∫ y

x

fe(z)dz

is a complex-valued harmonic cocycle on T , as follows immediately from the har-
monicity properties of f itself. As in equation (5.5) of Section 5.2, the harmonic co-
cycle κ̃f{x→y} gives rise to a complex-valued distribution µ̃f{x→y} on the bound-
ary P1(Qp) of Hp by the rule

(9.14) µ̃f{x→y}(Ue) = κ̃f{x→y}(e).
(Here Ue ⊂ P1(Qp) is the compact open subset attached to e ∈ E(T ) as in Chapter
5.) Using equation (5.3), the distribution µ̃f{x→y} can be integrated against
locally constant complex-valued functions on P1(Qp). For the purposes of p-adic
integration, it is desirable that κ̃f{x→y} take on integral or at least p-adic integral
values and thereby correspond to a measure against which locally analytic functions
can be integrated.

Such an integrality can be achieved by invoking the theory of modular symbols
presented in Section 2.7, provided that x and y belong to P1(Q). For in this case,
the value of κ̃f{x→y}(e) can be expressed in terms of the modular symbols

(9.15) λ̃f0
{x→y} := c · 2πi

∫ y

x

f0(z)dz.

(Here λ̃f0
is a slight modification of the M -symbol denoted λf0

in equation (2.18)
of Section 2.7.) More precisely, choosing γ ∈ R×

+ such that γe = eo,

(9.16) κ̃f{x→y}(e) = w|γ|p λ̃f0
{γx→γy}.

Let ΛE denote the Néron lattice attached to the elliptic curve E. Theorem 2.20 of
Section 2.7 combined with Assumption 9.4 implies the following corollary.

Corollary 9.5. For all x, y ∈ P1(Q), the harmonic cocycle κ̃f{x→y} takes
its values in ΛE, and hence gives rise to a ΛE-valued measure µf{x→y} on P1(Qp).

If E(R) has two components, then ΛE is generated by a positive real period Ω+

and a purely imaginary period Ω−. If E(R) has one connected component, then
Ω is contained with index two in the lattice spanned by Ω+ and Ω−, where Ω+

(resp. Ω−) denotes the real (resp. imaginary) half-period attached to E. In either
case, thanks to Corollary 9.5, one can write

(9.17) κ̃f{x→y}(e) = κ+
f {x→y}(e) · Ω+ + κ−

f {x→y}(e) · Ω−,

with κ±
f {x→y}(e) ∈ Z. Choose a sign w∞ = ±1 and let κf{x→y} denote κ+

f {x→y}
(resp. κ−

f {x→y}) if w∞ = 1 (resp. w∞ = −1). Write λf0
for the corresponding

Z-valued modular symbol attached to f0. Let µf{x→y} denote the Z-valued dis-
tribution on P1(Qp)) attached to κf{x→y}, so that, with the notations of (9.16),

(9.18) µf{x→y}(Ue) := κf{x→y}(e) = w|γ|pλf0
{γx→γy}.

Given γ ∈ Γ̃, set

|γ|∞ =

{

0 if det(γ) > 0,
1 if det(γ) < 0.
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It is worth recording the following lemma which describes the behaviour of κf under

the full group Γ̃.

Lemma 9.6. For all γ ∈ Γ̃, x, y ∈ P1(Q), and e ∈ E(T ),

κf{γx→γy}(γe) = w|γ|∞
∞ w|γ|pκf{x→y}(e).

Proof. If γ belongs to R×
+, this follows directly from the transformation prop-

erties of f given in Lemma 9.3. It therefore suffices to prove the lemma for a single

γ which generates Γ̃/R×
+, say the matrix γ =

(

1 0
0 −1

)

, and for e = eo. Then

we have

(9.19) κ̃f{γx→γy}(γeo) =

∫ −y

−x

f0(z)dz = λ̃f0
{−x→− y} = λ̃f0

{x→y},

where the last equality follows from (2.22) and (2.23) of Section 2.7. The lemma

follows at once, given the definition of λf in terms of λ̃f and w∞. �

Because the values µf{x→y}(Ue) are integral and hence p-adically bounded as
e varies in E(T ), the distribution µf{x→y} defines a p-adic measure on P1(Qp). In
particular, if h is any continuous Cp-valued function on P1(Qp), the integral

(9.20)

∫

P1(Qp)

h(t)dµf{x→y}(t) ∈ Cp

can be defined as in equation (5.4) of Chapter 5.

Inspired by Definition 5.12 of Chapter 5, the following definition, depending
similarly on a choice of log, imposes itself naturally.

Definition 9.7. Let z1 and z2 be elements of Hp, and let x, y ∈ P1(Q).

(9.21)

∫ z2

z1

∫ y

x

ω :=

∫

P1(Qp)

log

(

t − z2

t − z1

)

dµf{x→y}(t) ∈ Cp.

The following lemma shows that this definition is well-behaved.

Lemma 9.8. The double integrals of Definition 9.7 satisfy the following prop-
erties:

∫ z3

z1

∫ y

x

ω =

∫ z2

z1

∫ y

x

ω +

∫ z3

z2

∫ y

x

ω, for all z1, z2, z3 ∈ Hp;(9.22)

∫ z2

z1

∫ x3

x1

ω =

∫ z2

z1

∫ x2

x1

ω +

∫ z2

z1

∫ x3

x2

ω, for all x1, x2, x3 ∈ P1(Q);(9.23)

∫ γz2

γz1

∫ γy

γx

ω = w|γ|pw|γ|∞
∞

∫ z2

z1

∫ y

x

ω, for all γ ∈ R×.(9.24)

Proof. The first and second identity are a direct consequence of Definition
9.7, while the third follows from Lemma 9.6. See Exercise 4 for details. �

We emphasize once again that the symbol ω is used as a placeholder and does
not refer to an independently defined mathematical object. Only the form f in
S2(T , Γ) is defined, but this is enough to make sense of Definition 9.7. The notation
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suggests that the left hand side of Definition 9.7 be viewed as a period for a form
of weight (2, 2) on (Hp ×H)/Γ, with the complex period Ω+ or Ω− “factored out”.

To obtain stronger formulae, it is preferable to avoid choosing a p-adic loga-
rithm, exploiting the fact that κf{x→y} is Z-valued to make the same multiplicative
refinement as in Chapter 5 to define

(9.25) ×
∫ z2

z1

∫ y

x

ω := ×
∫

P1(Qp)

(

t − z2

t − z1

)

dµf{x→y}(t) ∈ C×
p .

Here ×
∫

denotes the multiplicative integral, in which limits of products replace the
usual limits of Riemann sums, as in equation (5.8) of Chapter 5.

Properties analogous to those of Lemma 9.8, with addition replaced by multi-
plication, hold for the multiplicative integral.

Lemma 9.9. The double multiplicative integral of Definition 9.7 satisfies the
following properties:

×
∫ z3

z1

∫ y

x

ω = ×
∫ z2

z1

∫ y

x

ω ××
∫ z3

z2

∫ y

x

ω, for all z1, z2, z3 ∈ Hp;(9.26)

×
∫ z2

z1

∫ x3

x1

ω = ×
∫ z2

z1

∫ x2

x1

ω ××
∫ z2

z1

∫ x3

x2

ω, for all x1, x2, x3 ∈ P1(Q);(9.27)

×
∫ γz2

γz1

∫ γy

γx

ω =

(

×
∫ z2

z1

∫ y

x

ω

)w|γ|pw|γ|∞
∞

, for all γ ∈ R×.(9.28)

Proof. The proof is identical to that of Lemma 9.8; see Exercise 4. �

9.4. Some p-adic cocycles

Given any τ ∈ Hp, guided by equation (8.5) of the previous chapter in the case
n = 1, we define a 2-cochain κτ ∈ Z2(Γ, C×

p ) by choosing a base point x ∈ P1(Q)
and setting

κτ (γ1, γ2) = ×
∫ γ1τ

τ

∫ γ1γ2x

γ1x

ω.

One verifies (by the same calculations that were performed in the previous chapter)
that κτ is a two-cocycle and that its image in H2(Γ, C×

p ) depends only on the form
f , not on the base points x and τ that were used to define it. The following is a
p-adic analogue of Conjecture 8.6 of Chapter 8.

Conjecture 9.10. Let q ∈ Q×
p be Tate’s p-adic period attached to E. The

natural image of κτ in H2(Γ, C×
p /qZ) is 0.

For more on Conjecture 9.10, see Theorem 4 and Section 3.2 of [Da01], where
it is shown to be related to conjectures of Mazur, Tate and Teitelbaum [MTT] on
values of derivatives of p-adic L-functions, conjectures that were later established
by Greenberg and Stevens [GS93]. Assume from now on that Conjecture 9.10 holds
for E.

Corollary 9.11. There exists a one-cochain

ξ̃τ ∈ C1(Γ, C×
p /qZ)

such that κτ = dξ̃τ (mod qZ).
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We note that the one-cochain ξ̃τ is well-defined up to an element of

Z1(Γ, C×
p /qZ) = Hom(Γ, C×

p /qZ).

We now invoke the following counterpart of Theorem 8.9.

Theorem 9.12. The abelianisation of Γ is finite. In particular the cohomology
group H1(Γ, C×

p /qZ) is finite.

Proof. See [Ih68], Chapter 3, §1–7, or Exercise 9. �

Let eΓ denote the exponent of H1(Γ, C×
p /qZ). Then the cochain

ξτ := eΓξ̃τ

is a well-defined element of C1(Γ, C×
p /qZ).

The cochain ξτ depends, of course, on the choice of base points x and τ . To
analyse its dependence on x, observe that if y is another base point in P1(Q), and
κx

τ and κy
τ are the respective associated 2-cocyles, then as in the proof of Lemma

8.4,
κx

τ − κy
τ = dρx,y

τ ,

where ρx,y
τ ∈ C1(Γ, C×

p /qZ) is defined by

ρx,y
τ (γ) = ×

∫ γτ

τ

∫ γy

γx

ω.

In particular, this cochain vanishes on the stabiliser subgroup Γτ ⊂ Γ of τ .
It follows that the restriction θτ of ξτ to Γτ is independent of the choices of x

and ξ̃τ that were made in defining it.
The definition of θτ makes it clear that this one-cochain is in fact a well-defined

homomorphism from Γτ to C×
p /qZ. Hence we have associated (as in the case n = 1

of Chapter 8) a well-defined element

θτ ∈ Hom(Γτ , C×
p /qZ)

to any τ ∈ Hp.

9.5. Stark-Heegner points

Of course, the invariant θτ can only be interesting if the stabiliser Γτ is non-
trivial, i.e., if τ belongs to H′

p. This occurs precisely when τ belongs to K ∩ Hp,
where K ⊂ Cp is a real quadratic field in which p is inert or ramified.

More specifically, we will assume that K is a real quadratic subfield of Cp

satisfying the following “modified Heegner hypotheses” relative to N , analogous to
those imposed in Chapter 3, except that the roles of the places p and ∞ have been
interchanged:

(1) p is inert in K;
(2) all the primes dividing M are split in K.

Note that one then has

SE,K = {p,∞1,∞2} ∪ {λ|M},
which has odd cardinality, so that sign(E, K) = −1 in this case.

For any τ ∈ Hp ∩ K we define as in the previous section the associated order
Oτ to be the ring of matrices in M0(M)[1/p] which preserve the line spanned by
the column vector (τ, 1). This order is isomorphic to a Z[1/p]-order in K and hence
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the group O×
τ,1 of elements of Oτ of determinant one has rank one. In fact, the

stabiliser Γτ of τ in Γ is identified with O×
τ,1/〈±1〉 and is therefore a cyclic group

of infinite order. Fix a choice ε ∈ C×
p of fundamental unit of norm one in the order

Oτ , and let γτ denote the (unique) generator of Γτ satisfying

γτ

(

τ
1

)

= ε

(

τ
1

)

.

The element
Jτ = θτ (γτ ) = ξτ (γτ ) ∈ C×

p /qZ

is a canonical invariant in C×
p /qZ attached to τ ∈ H′

p, a p-adic analogue of the
invariant that was also denoted by Jτ in Chapter 8. (Of course, the most direct
analogy is with the case n = 1 of the construction of Chapter 8.)

Let
Pτ = ΦTate(Jτ ) ∈ E(Cp),

and define:
Φ

′(p)
N (τ) := Pτ .

Fixing τ ∈ H′
p, let H+ denote the narrow ring class field of K attached to the

order Oτ , and let H denote the usual ring class field attached to that order. The
field H+ is an extension of H of degree at most 2 which is trivial precisely when
O×

τ contains an element of norm −1. The Galois group of H+/H is generated by
complex conjugation c, defined using any complex embedding of H+. View H and
H+ as subfields of Cp by fixing an embedding H+ ⊂ Cp.

Conjecture 9.13. Let τ ∈ H′
p be a special point. Then

Pτ = Φ′(p)(τ) belongs to E(H+),

and

cPτ = w∞Pτ .

This conjecture, like the main conjecture of Chapter 8, can be made more
precise by formulating a Shimura reciprocity law for the points Pτ . The reader is
referred to Section 5.2 of [Da01] where this is spelled out in detail, or better yet,
invited to work through Exercise 6.

9.6. Computing Stark-Heegner points

As in the constructions that were described in Chapter 8, the main difficulty
in making the definition of Jτ explicit and computable is the need to produce a
1-cochain ξ̃τ satisfying the relation

dξ̃τ = κτ .

We now outline a method for computing ξ̃τ , at least in an important special case.
Recalling the notations of Section 2.7, for any abelian group A with trivial

Γ-action let M(A) denote the group of A-valued modular symbols as in Definition
2.16 of Chapter 2. The group Γ acts on M(A) by the rule

γ · m{x→y} = m{γ−1x→γ−1y}.
Note that in general Γ does not act transitively on P1(Q). To remedy this, one
chooses a base point x ∈ P1(Q) and writes M0(A) for the group of functions on
(Γx) × (Γx) arising from the restriction of a modular symbol on P1(Q) × P1(Q).
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A point τ ∈ Hp gives rise to a one-cochain cτ ∈ C1(Γ,M0(C
×
p )) by the rule

cτ (γ){x→y} = ×
∫ γτ

τ

∫ y

x

ω.

It can be checked by a direct computation that cτ is a one-cocycle.
Let [cτ ] be the natural image of cτ in H1(Γ,M0(C

×
p )). Let F(C×

p ) denote the

space of C×
p -valued functions on Γx, equipped with the natural Γ-action. Consider

the exact sequence of Γ-modules

(9.29) 0 −→ C×
p

i−→ F(C×
p )

∆−→ M0(C
×
p ) −→ 0,

where i is the obvious inclusion into the space of constant functions, and ∆ is
defined by

∆g{x→y} := g(y) − g(x).

Taking the Γ-cohomology of (9.29) yields a connecting homomorphism

δ : H1(Γ,M0(C
×
p )) −→ H2(Γ, C×

p ),

and it can be checked that

δ[cτ ] = [κ#
τ ],

where [κ#
τ ] is the cohomology class represented by the 2-cocycle

κ#
τ (g0, g1) := κτ (g−1

1 , g−1
0 ).

It follows that δ[cτ ] is trivial precisely when [κτ ] is, and the same holds after re-
placing C×

p by C×
p /qZ for any q ∈ C×

p . Therefore the following conjecture (made
under Assumption 9.4) is a natural strengthening of Conjecture 9.10.

Conjecture 9.14. The natural image of cτ in H1(Γ,M0(C
×
p /qZ)) is trivial.

This conjecture implies the existence of a modular symbol

η̃τ ∈ M0(C
×
p /qZ)

with the property that

(9.30) ×
∫ γτ

τ

∫ y

x

ω = η̃τ{γ−1x→γ−1y} ÷ η̃τ{x→y} (mod qZ).

Of course the modular symbol η̃τ is only well-defined modulo H0(Γ,M0(C
×
p /qZ)).

It can be shown (cf. Exercise 7) that this group injects into Hom(Γ, C×
p /qZ), hence

is annihilated by the integer eΓ introduced in the previous section. Setting

ητ = eΓ · η̃τ ,

we see that this modular symbol is independent of the choice of η̃τ satisfying (9.30).

We define the “semi-indefinite integral”

×
∫ τ∫ y

x

eΓω := ητ{x→y} ∈ C×
p /qZ,



108 9. INTEGRATION ON Hp × H

for any τ ∈ Hp and x, y ∈ Γx0. This expression satisfies all the properties suggested
by the notation (cf. Exercise 8):

×
∫ τ∫ y

x

eΓω ××
∫ τ∫ z

y

eΓω = ×
∫ τ∫ z

x

eΓω, for all x, y, z ∈ P1(Q);(9.31)

×
∫ τ2
∫ y

x

eΓω ÷×
∫ τ1
∫ y

x

eΓω =

(

×
∫ τ2

τ1

∫ y

x

ω

)eΓ

, for all τ1, τ2 ∈ Hp;(9.32)

×
∫ γτ∫ γy

γx

eΓω = ×
∫ τ∫ y

x

eΓω for all γ ∈ Γ.(9.33)

More importantly, the cochain ξτ of the previous section can be expressed in terms
of the semi-indefinite integral attached to ητ :

Proposition 9.15. For all γ ∈ Γ,

ξτ (γ) = ×
∫ τ∫ γx

x

eΓω.

Proof. Let ξo
τ denote the expression on the right hand side. In light of the

property characterising ξτ it suffices to show that

dξo
τ (g0, g1) = κτ (g0, g1)

eΓ .

However, modulo qZ we have

dξo
τ (g0, g1) =

(

×
∫ τ∫ g1x

x

eΓω ÷×
∫ τ∫ g0g1x

x

eΓω

)

××
∫ τ∫ g0x

x

eΓω

= ×
∫ τ∫ g1x

x

eΓω ××
∫ τ∫ g0x

g0g1x

eΓω

= ×
∫ τ∫ g1x

x

eΓω ÷×
∫ g−1

0
τ∫ g1x

x

eΓω

=

(

×
∫ τ

g−1

0
τ

∫ g1x

x

ω

)eΓ

=

(

×
∫ g0τ

τ

∫ g0g1x

g0x

ω

)eΓ

.

The proposition follows. �

The calculation of Jτ = ξτ (γτ ) is thus reduced to computing the indefinite
integral

(9.34) ×
∫ τ∫ y

x

eΓω.

We present a method for doing this, at least in the special case where M = 1 so that
Γ = PSL2(Z[1/p]). (This corresponds to the case where E has prime conductor p.)
Note that in this case one may choose eΓ = 1 (cf. Exercise 10).

First observation. By the remark in the paragraph titled “first observation” in
Section 2.7, it is enough to compute (9.34) when x and y are adjacent cusps in the
sense of that paragraph.

Second observation. Any pair of adjacent cusps is Γ-equivalent to (0,∞). By the
Γ-equivariance property of (9.33), it is enough to be able to compute the expression

×
∫ τ∫ ∞

0

eΓω (as a function of τ ∈ Hp).



EXERCISES 109

Third observation. An elementary computation (cf. [DG01], or Exercise 11)
shows that

(9.35) ×
∫ τ∫ ∞

0

eΓω =

(

×
∫ τ−1

1− 1
τ

∫ ∞

0

ω

)eΓ

.

In this way the calculation of ξτ is reduced to that of the double multiplicative
integrals defined in Section 9.3.

In more general situations (both in the S-arithmetic case of this chapter, and
in the Hilbert modular setting of the previous chapter), the calculation of the
cochain ξτ presents interesting difficulties, and it would be useful to develop feasible
algorithms for performing this computation.

Further results

The theory of integration on Hp × H and its application to defining “Stark-
Heegner points” attached to real quadratic fields is explained in [Da01]. Numerical

evidence for Conjecture 9.13, resting on the explicit definition of the map Φ
′(p)
N

described in Section 9.5, is given in [DG01]. Some of the ideas explained in this
chapter are also covered (with a different emphasis focussing more strongly on p-
adic L-functions) in [BD01] and [BDG03].

For various perspectives on the action of subgroups of PSL2(Z[1/p]) on Hp×H,
see [Ih68], [Ih79], [Se80], and [Sta87].

Exercises

(1) Let Γ be the finite index subgroup of SL2(Z[1/p]) consisting of the matrices
which are upper triangular modulo M .
(a) Show that this group acts on H and on the p-adic upper half plane Hp with

dense orbits, but that the action of Γ on Hp ×H is discrete.
(b) Let T = T0 ∪ T1 denote the Bruhat-Tits tree of Hp, equipped with its

natural Γ-action. Show that there are precisely two orbits (resp. one orbit)
for the action of Γ on T0 (resp. T1).

(c) Show that the stabiliser of a vertex of T in Γ is conjugate to the group
Γ0(M), while the stabiliser of an edge is conjugate to the group Γ0(N).

(2) Let Γ = SL2(Z[1/p]) be the group acting on H×Hp by Möbius transformations.
A point τ ∈ H is called a special point if its stabiliser in Γ is infinite.
(a) Show that if τ is a special point, then τ belongs to H ∩ K, where K is a

quadratic imaginary subfield of C in which p is split. Write p = pp̄.
(b) Let j be the usual modular j-function. Show that if τ is special, then

j(τ) belongs to the ring OQ̄ of algebraic integers. (Hint: use the theory
developed in Chapter 3, particularly Exercise (2) of that chapter.)

(c) Let p̄ be an ideal of OQ̄ above p and let

red : OQ̄ −→ F̄p

denote the corresponding reduction map. Given a special point τ in H,
define the weight of τ , denoted wt(τ), by letting α1 and α2 ∈ K denote
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the eigenvalues of a generator for the stabiliser subgroup Γτ , and setting

wt(τ) = max(|ordp(α1)|, |ordp(α2)|).
Letting n = wt(τ), show that

η(τ) := red(j(τ))

belongs to Fpn and to no smaller extension of Fp.
(d) * Let SS ⊂ P1(Fp2) denote the set of supersingular j-invariants in charac-

teristic p, and let H′ denote the set of special points of H. Show that the
map

η : H′/Γ −→ F̄p − SS

is a bijection. (See also [Ih68], Chapter 5.)
(3) Prove Lemma 9.2 in the text.
(4) Prove that the double multiplicative integral satisfies the properties given in

Lemma 9.9.
(5) Let Hunram

p denote the set of points in Hp which map to T0 under the reduction
map defined in Chapter 5. Define a C-valued double integral attached to a
form in S2(T , Γ) by the rule

×
∫ τ2

τ1

∫ τ4

τ3

ω :=
∑

e:r(τ3)→r(τ4)

∫ τ2

τ1

fe(z)dz, τ1, τ2 ∈ H, τ3, τ4 ∈ Hunram
p ,

the sum being taken over the ordered edges in the path joining r(τ3) to r(τ4).
(a) Show that this integral satisfies all the formal properties of the C×

p -valued
integral stated in Lemma 9.8.

(b) Mimic the constructions of Chapters 8 and 9 to define a map

Φ′
N : H′/Γ −→ E(C).

(Hint: After defining κτ in the obvious way, the analogue of Conjectures
8.6 and 9.10 can be proved using Theorem 2.20 of Section 2.7. This should
yield an explicit formula for a one-cochain ξτ ∈ C1(Γ, C/ΛE) satisfying
dξτ = eΓκτ (mod ΛE)).

(c) State the analogue of Conjecture 9.13 in this setting, and prove it using
the theory developed in Chapter 3.
(For more details on this exercise see Section 4 of [BDG03].)

(6) Formulate precisely a Shimura reciprocity law in the style of the conjectures of
Chapter 8 for the points Pτ defined in this chapter.

(7) Construct an injective homomorphism from H0(Γ,M0(A)) to Hom(Γ, A) (for
any abelian group A).

(8) Show that the indefinite multiplicative integral satisfies the properties listed in
equations (9.31), (9.32), and (9.33). (Conclude that the same is true for the
properties listed in Lemma 9.8.)

(9) Let Γ ⊂ PSL2(Z[1/p]) be the group of matrices which are upper triangular
modulo M . Let A be any Γ-module, and let F(T0, A) and F(T1, A) denote the
module of A-valued functions on the set of vertices and unordered edges of T
respectively.
(a) Construct an exact sequence of Γ-modules

0 −→ A −→ F(T0, A) −→ F(T1, A) −→ 0.
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(b) Let Γ′
0(M) = αpΓ0(M)α−1

p , where αp is the element of Γ of determinant p
satisfying αpeo = ēo. Construct an exact sequence

· · · −→ H i(Γ0(M), A) ⊕ H i(Γ′
0(M), A) −→ H i(Γ0(N), A)

δ−→
−→ H i+1(Γ, A) −→ H i+1(Γ′

0(M), A) ⊕ H i+1(Γ′
0(M), A) −→ · · · .

(Hint: Take the Γ-cohomology of the exact sequence displayed in (a) and
apply Shapiro’s lemma.)

(c) Use this exact sequence to analyse the abelianisation of Γ.
(10) Let Γ = PSL2(Z[1/p]). Show that the space M(A)Γ is trivial, for any abelian

group A. Compute the abelianisation of Γ in this case.
(11) Prove equation (9.35) in the text.
(12) Let O = Z[τ ] be the real quadratic order defined by

τ =

{ √
n2 + 1 if n ≥ 2 is even,

n+
√

n2+4
2 if n is odd.

This order has fundamental unit η of norm −1 given by

η =

{

n +
√

n2 + 1 if n ≥ 2 is even,
n+

√
n2+4
2 if n is odd.

Show that

Jτ = ×
∫ η′

−η

∫ ∞

0

ω,

where η′ is the Galois conjugate of η.





CHAPTER 10

Kolyvagin’s theorem

Let E be an elliptic curve over Q and let K be a quadratic extension of Q

satisfying sign(E, K) = −1. Recall the general notion of “Heegner system” attached
to the pair (E, K) introduced in Section 3.5. Recall that if {Pn}(n,N)=1 is such a
Heegner system, onen writes

PK := TraceH/K(P1).

A theme of the last few chapters has been the construction and study of such
Heegner systems in cases where K is imaginary and (conjecturally, in Chapter 9)
when K is real. The goal of this chapter is to explain the main ideas behind the
proof of Kolyvagin’s Theorem whose statement, given in Chapter 3, we now recall.

Theorem 10.1 (Kolyvagin). If PK is a point of infinite order, then the follow-
ing are true.

(1) The rank of E(K) is equal to 1;
(2) The Shafarevich-Tate group of E over K is finite.

Like the proof of the weak Mordell-Weil theorem sketched in Chapter 1, the
proof of Theorem 10.1 proceeds by studying E(K)/pE(K)—or rather, the p-Selmer
group Selp(E/K)—for a suitably chosen “descent prime” p. It will be convenient
to assume that p satisfies the following conditions:

(1) p does not divide 6N ;
(2) For all primes λ|N of K, the module E(Kλ)/pE(Kλ) is trivial.
(3) The natural homomorphism from GQ to Aut(Ep) ' GL2(Fp) is surjective.

We will then prove the following “mod p” version of Kolyvagin’s theorem.

Theorem 10.2. If the image of PK in E(K)/pE(K) is non-zero, then the p-
Selmer group Selp(E/K) is generated by δ(PK). In particular E(K) has rank one
and LLI(E/K)p is trivial.

Remark 10.3. Theorem 10.2 does not imply the full strength of Theorem 10.1,
because of the restrictions that are made on p. However, if E has no complex mul-
tiplications, these restrictions exclude only finitely many primes p, by the following
theorem of Serre [Se72].

Theorem 10.4 (Serre). Let E be an elliptic curve defined over a number field
F . Assume that E has no complex multiplication, i.e., that EndF̄ (E) = Z. Then
the natural homomorphism from GF to Aut(Ep) is surjective, for all but finitely
many primes p.

Remark 10.5. Note that Theorem 10.2, applied to a single prime p which
does not divide PK and satisfies conditions (1), (2) and (3) above, yields the most
interesting consequence of Kolyvagin’s theorem: for instance it is enough to prove

113
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part (1) of Theorem 10.1. It therefore makes sense to focus on its proof, which
conveys the main ideas while avoiding some technical complications that appear
in the full proof of Theorem 10.1. This is what will be done in the remainder of
Chapter 10.

10.1. Bounding Selmer groups

We begin by presenting a general approach for bounding the size of Selmer
groups which plays an important role in Kolyvagin’s argument. Our presentation
of this material is strongly influenced by the point of view developped by Wiles in
his proof of the Shimura-Taniyama-Weil conjecture and of Fermat’s Last Theorem.
(Cf. Chapter 1, §2 of [Wi95], or the exposition in Section 2.3 of [DDT95].)

Let K be any number field and let GK = Gal(K̄/K) denote its absolute Galois
group endowed with the Krull topology. Let M be any finite module equipped with
a continuous action of GK . Recall the Galois cohomology group

H1(K, M) = H1(GK , M),

defined as the group of continuous one-cocycles on GK with values in M , modulo
the group of one-coboundaries on GK .

A prime v of K is said to be good for M if

(1) M is unramified at v;
(2) v does not divide the cardinality of M .

Let Iv be the inertia subgroup of Gv = GKv
, viewed as a subgroup of GK by fixing

an embedding of K̄ into K̄v. Let Knr
v denote the maximal unramified extension

of Kv; its Galois group is identified with Gv/Iv and is isomorphic to Ẑ, with a
canonical topological generator given by the Frobenius element Frobv at v.

If v is good, one disposes of the short exact inflation-restriction sequence

0 −→ H1(Knr
v /Kv, M)

inf−→ H1(Kv , M)
∂v−→ H1(Iv , M)GKv −→ 0.

The image of the group H1(Knr
v /Kv, M) under inflation is called the finite or un-

ramified part of H1(Kv, M), and is denoted H1
f (Kv, M). The quotient

H1
s (Kv, M) := H1(Kv , M)/H1

f (Kv, M) = H1(Iv , M)GKv

is called the singular part or singular quotient of H1(Kv, M). Following a termi-
nology suggested by Mazur, the natural projection

∂v : H1(Kv , M) −→ H1
s (Kv , M)

will be referred to as the residue map at v. If c ∈ H1(K, M) is a global cohomology
class, we will also denote by cv its natural image in H1(Kv, M) under the restriction
map to Gv , and set, by abuse of notation, ∂v(c) := ∂v(cv). If ∂v(c) = 0, then the
class c is said to be unramified at v and the restriction cv belongs to the finite part
H1

f (Kv, M) of the local cohomology at v. The natural image of c in H1
f (Kv, M) is

then sometimes referred to as the value of c at v.

Definition 10.6. A set of Selmer conditions attached to M and K is a collec-
tion of subgroups Lv ⊂ H1(Kv , M) for each place v of K, such that

Lv = H1
f (Kv, M) for all but finitely many v.

Note that this definition makes sense, since for a given M all but finitely many
places v are good and therefore the groups H1

f (Kv , M) are defined for them.
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Definition 10.7. Let L = {Lv}v be a set of Selmer conditions attached to M
and K. The Selmer group attached to the triple (K, M, {Lv}), denoted H1

L(K, M),
is the set of c ∈ H1(K, M) such that cv belongs to Lv , for all v.

The principal example of interest to us is the one where M = Ep is the module
of p-division points of an elliptic curve and where

Lv = δv(E(Kv)/pE(Kv)).

The fact that Lv is a set of Selmer conditions follows from the proof of Proposition
1.7 (more precisely, the part of that proof that is developed in Exercise 7 of Chapter
1). By definition,

H1
L(K, Ep) = Selp(E/K),

where Selp(E/K) is the p-Selmer group of Chapter 1 attached to E/K.
We have the following general finiteness property for Selmer groups.

Proposition 10.8. If L is any set of Selmer conditions for M , then

#H1
L(K, M) < ∞.

Proof. This is a direct generalisation of Exercise 8 of Chapter 1 and is left to
the reader. �

We now present a technique for bounding the orders of Selmer groups, whereby
this question is turned into the problem of manfacturing classes in H1(K, M) with
prescribed residues.

For this, it is necessary to introduce some further notions arising from Tate
local duality in Galois cohomology. Let M ∗ := Hom(M, K̄×) denote the Kummer
dual of M , equipped with its natural GK-action

(σf)(m) := σf(σ−1m), for σ ∈ GK , f ∈ M∗, m ∈ M

arising from the action of GK on M and on the roots of unity. The cup product
combined with the calculation of the local Brauer group in local class field theory
yields a pairing

〈 , 〉v : H1(Kv, M) × H1(Kv , M∗) −→ H2(Kv , K̄×
v ) = Q/Z.

Theorem 10.9 (Tate). The pairing 〈 , 〉v is a non-degenerate bilinear pairing.
If v is a good prime for M , it is also good for M ∗ and the groups H1

f (Kv, M) and

H1
f (Kv, M

∗) are orthogonal complements of each other under this pairing.

Proof. For a discussion and proof of this theorem, see [Ta62], §2 and [Mi86],
Chapter I. (See also Exercise 3 for a discussion in the case where v is a good prime
for M .) �

Given Lv ⊂ H1(Kv, M), let L∗
v ⊂ H1(Kv , M∗) denote the exact annihilator of

Lv under the local Tate pairing. It follows immediately from Tate’s theorem that
if the groups Lv form a set of Selmer conditions for M , then the groups L∗

v are a
collection of Selmer conditions for H1(K, M∗).

Definition 10.10. The Selmer group attached to M ∗ and L∗ := {L∗
v}v is

called the dual Selmer group of H1
L(K, M).
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While the orders of H1
L(K, M) and its dual Selmer group H1

L∗(K, M∗) are
subtle global invariants which are typically difficult to compute, the ratio of these
orders is a product of simple local terms which can be calculated in practice without
difficulty. This is the content of the following key result.

Theorem 10.11 (Duality theorem for Selmer groups).

#H1
L(K, M)

#H1
L∗(K, M∗)

=
#H0(K, M)

#H0(K, M∗)

∏

v

#Lv

#H0(Kv, M)
.

See [DDT95], §2.3 for an outline of the proof, which relies on the full force
of global class field theory, and specifically on the Poitou-Tate nine-term exact
sequence given in thm. 4.10 of ch. I of [Mi86].

Note the analogy between Theorem 10.11 and the Riemann-Roch theorem.
For this reason the term appearing on the right-hand side of Theorem 10.11 will be
denoted χL(K, M) and called the Euler characteristic attached to H1

L(K, M).
Fix a collection {Lv} of Selmer conditions for M . Let S be any finite set of

good primes for M , chosen so that

Lv = H1
f (Kv, M) for all v ∈ S.

Definition 10.12. The relaxed Selmer group at S, denoted H1
(S)(K, M), is the

set of classes c ∈ H1(K, M) such that

cv belongs to Lv , for all v /∈ S.

Definition 10.13. The restricted Selmer group at S, denoted H1
[S](K, M), is

the set of classes in c ∈ H1
L(K, M) such that

cv = 0 for all v ∈ S.

There are obvious inclusions

H1
[S](K, M) ⊂ H1

L(K, M) ⊂ H1
(S)(K, M).

It is also clear that H1
(S)(K, M) and H1

[S](K, M∗) are dual Selmer groups in the

sense of Definition 10.10. Hence Theorem 10.11, applied to both H1
L(K, M) and

H1
(S)(K, M) yields the following useful identity:

(10.1)
#H1

(S)(K, M)

#H1
[S](K, M∗)

= χL(K, M) · #
(

⊕

v∈S

H1
s (Kv, M)

)

.

A finite set S of good primes for M∗ is said to control the Selmer group H1
L∗(K, M∗)

if H1
[S](K, M∗) = 0, i.e., if the natural map

H1
L∗(K, M∗) −→

⊕

v∈S

H1
f (Kv, M

∗)

is injective.
The following proposition is a key ingredient in the proof of Kolyvagin’s theo-

rem, as well as in many of the arguments which bound orders of Selmer groups:

Theorem 10.14. Suppose that χL(K, M) = 1, and let S be a set of good
primes which controls H1

L∗(K, M∗). Then the cardinality of H1
L(K, M) is equal to
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the cardinality of the cokernel of the residue map ∂S :=
⊕

v∈S ∂v:

∂S : H1
(S)(K, M) −→

⊕

v∈S

H1
s (Kv, M).

Proof. Consider the tautological exact sequence

(10.2) 0 −→ H1
L(K, M) −→ H1

(S)(K, M)
∂S−→
⊕

v∈S

H1
s (Kv, M).

The assumptions that χL(K, M) = 1 and that S controls H1
L∗(K, M∗) implies, in

light of (10.1), that the two groups appearing on the right of (10.2) have the same
cardinality; the result follows. �

Thanks to Theorem 10.14, the problem of bounding H1
L(K, M) is reduced to

that of producing, for a well-chosen set S of primes which controls H1
L∗(K, M∗), a

supply of cohomology classes in H1
(S)(K, M) whose residues at the primes of S can

be controlled so that the order of the cokernel of ∂S can be estimated. In Euler
system arguments, the goal is often to estimate the cokernel of ∂S in terms of a
quantity connected with the behaviour of a suitable L-function attached to M and
K. (See for instance [Da02] for a discussion of this point of view.)

10.2. Kolyvagin cohomology classes

Returning to the case which is germane to the proof of Kolyvagin’s theorem,
let E be an elliptic curve over any number field K, and let p be a prime of good
reduction for E. In terms of the formalism of the previous section, the p-Selmer
group attached to E in Chapter 1 is recovered by setting

M = Ep, Lv = δv(E(Kv)/pE(Kv)),

so that by definition

H1
L(K, M) = Selp(E/K).

Write Sel∗p(E/K) := H1
L∗(K, Ep) for the dual Selmer group attached to Selp(E/K).

In this case, the non-degenerate alternating Weil pairing Ep × Ep −→ µp yields
an identification of Ep with its Kummer dual E∗

p , so that both Selp(E/K) and

Sel∗p(E/K) can be viewed as contained in H1(K, Ep).

Proposition 10.15. The Euler characteristic χL(K, Ep) is equal to 1. (Hence
the groups Selp(E/K) and Sel∗p(E/K) have the same cardinality.)

Proof. The global term #H0(K, Ep)/#H0(K, E∗
p ) appearing in the formula

for χL(K, Ep) of Theorem 10.11 is equal to 1 since Ep and E∗
p are isomorphic as

GK-modules. (In fact, by the assumptions that were made on p, both the numerator
and the denominator in this expression are equal to 1.) Note that the local term
χv := #Lv/#H0(Kv , Ep) is of the form

(10.3) #(G ⊗ Fp)/#G[p], where G = E(Kv).

The function which to an abelian group G associates the expression in (10.3) is
additive in exact sequences and trivial on finite groups. If v does not divide p∞,
then E(Kv) is an extension of a finite group by a pro-`-group, with ` 6= p. Hence

(10.4) χv = 1, for all v 6 | p∞.
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Let d be the degree of K over Q. By a direct calculation,

(10.5)
∏

v|∞
χv = p−d.

Finally, if v divides p, then
∏

v|p E(Kv) is isomorphic (by the theory of the formal

group logarithm; cf. [Si86], ch. IV and VII) to an extension of a finite group by a
group which is abstractly isomorphic to Zd

p. Hence

(10.6)
∏

v|p
χv = pd.

Equations (10.4), (10.5) and (10.6) imply that χL(K, Ep) = 1, as was to be shown.
�

Remark 10.16. The Selmer group Selp(E/K) and its dual Sel∗p(E/K), viewed

as subgroups of H1(K, Ep), are in fact equal. The most natural way to prove this
is by local methods, by showing that Lv is its own orthogonal complement under
the local Tate pairing on H1(Kv, Ep). (When v divides neither p nor the conductor
of E, so that v is a good prime for Ep, this fact has already been explained in a
more general setting.) We will not insist on the equality of Selp(E/K) and its dual,
since we will not make use of it in the proof of Theorem 10.2. In fact, maintaining
the notational distinction between Selp(E/K) and Sel∗p(E/K) is more illustrative

of how a general Euler system argument for bounding H1
L(K, M) might proceed, in

cases where M is not identified with its Kummer dual. (Such as the study of the
adjoint or symmetric square representations attached to Ep that arises in Wiles’
work on the Shimura-Taniyama-Weil conjecture.)

For the remainder of this chapter, let us specialise further to the case where E
is an elliptic curve over Q and K is a quadratic field satisfying sign(E, K) = −1.
Let p be a prime satisfying the conditions preceding the statement of Theorem 10.2.

Definition 10.17. A rational prime ` is called a Kolyvagin prime relative to
(E, K, p) if

(1) ` does not divide 2NDisc(K)p, and is inert in K;
(2) p divides the Fourier coefficient a` exactly;
(3) p2 divides ` + 1;
(4) in the case where K is a real quadratic field, the fundamental unit uK of

O×
K is a p2-th power in (OK/`)×.

The following proposition asserts that there are plenty of Kolyvagin primes. In
fact, sufficiently many can be produced to control Sel∗p(E/K).

Proposition 10.18. There are infinitely many Kolyvagin primes. In fact,
there exists a finite set S of Kolyvagin primes which controls Sel∗p(E/K).

Sketch of proof. Let L = K(Ep2 , u
1/p2

k ) be the finite extension of Q ob-
tained by adjoining to K the coordinates of the points of order p2 in E and the
p2-th roots of uK if K is real quadratic. The condition that ` be a Kolyvagin
prime can be rephrased as a condition on the Frobenius element at ` in the Ga-
lois extension L/Q (cf. Exercise 4) and so it follows that there are infinitely many
Kolyvagin primes: in fact, these form a subset of the primes of Q having positive
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Dirichlet density. The construction of a finite set S of Kolyvagin primes which con-
trols Sel∗p(E/K) also follows from a careful application of the Chebotarev density
theorem, this time to the finite extension LS of L which is “cut out” by all the
elements in Sel∗p(E/K). The details of the proof are involved and the reader may
wish to consult [BD03], theorem 3.4, or better yet, work through Exercise 4 where
they are spelled out. �

We now describe the construction of certain cohomology classes κ(`) indexed
by the Kolyvagin primes. Let H` denote the ring class field of K of conductor `,
and set

G` = Gal(H`/H), G̃` = Gal(H`/K).

Note that G` is a cyclic group which is canonically identified, via class field theory,
with

G` = (OK/`)×/(Z/`Z)×〈uK〉.
It follows from the definition of a Kolyvagin prime that n` = #G` is divisible by
p2. Let Ñ1 be an arbitrary lift to Z[G̃`] of the norm element

∑

σ∈Gal(H/K) σ under

the natural projection Z[G̃`] −→ Z[Gal(H/K)]. Denote by σ` a generator of G`,

and define the following elements in Z[G`] and Z[G̃`]:

(10.7) N` =
∑

σ∈G`

σ, D` =

n`−1
∑

i=0

iσi
`, Ñ` = N`Ñ1, D̃` = D`Ñ1.

Note that these elements are related by the following basic identities

(σ` − 1)D` = n` − N`, (σ` − 1)D̃` = n`Ñ1 − Ñ`.

All four of the group ring elements defined in (10.7) act as Z-linear operators on
E(H`). Let P` ∈ E(H`) be the point of level ` in the Heegner system attached to
(E, K), and set

Q` = D̃`P`.

Proposition 10.19. The natural image of Q` in (E(H`)/pE(H`)) is invariant

under the Galois group G̃`.

Proof. The image of the point D`P` in E(H`)/pE(H`) is invariant under G`.
To see this, note that p divides both n` and a` by the definition of a Kolyvagin
prime, and that

(10.8) (σ` − 1)D`P` = (n` − N`)P` = n`P` − a`P1.

The image of Q` in E(H`)/pE(H`) is the sum of the Gal(H/K)-translates of the

image of D`P` in the group (E(H`)/pE(H`))
G` . Hence it is invariant under G̃`. �

Remark 10.20. Applying the operator Ñ1 to (10.8) gives

(10.9) (σ` − 1)Q` = n`Ñ1P` − a`PK .

Because Ep(H`) is trivial (cf. Exercise 1), multiplication by p is injective on

E(H`). Thus one can define a cohomology class κ̄(`) ∈ H1(G̃`, E(H`))p by the rule

(10.10) κ̄(`)(σ) =
(σ − 1)Q`

p
.

In other words, since multiplication by p is injective on E(H`), the sequence

0 −→ E(H`)
p−→ E(H`) −→ E(H`)/pE(H`) −→ 0
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is exact. Taking its G̃`-cohomology yields the exact sequence

0 −→ E(K)/pE(K) −→ (E(H`)/pE(H`))
G̃`

δ̃−→ H1(G̃`, E(H`))p −→ 0,

and

κ̄(`) = δ̃(Q`).

Let κ̄(`) also denote, by abuse of notation, the natural image of this class in
H1(K, E)p under inflation. Finally, denote by κ(`) any lift of κ̄(`) to H1(K, Ep) by
the map arising in the Kummer descent exact sequence. Note that the residues of
κ(`) depend only on κ̄(`)—more precisely, ∂v(κ(`)) 6= 0 if and only if κ̄(`)v 6= 0.

Proposition 10.21. The class κ(`) belongs to H1
(`)(K, Ep), the relaxed Selmer

group at `. Furthermore

(1) ∂`(κ(`)) 6= 0 if and only if the image of PK in E(K`)/pE(K`) is non-zero.
(2) The class κ̄(`) belongs to H1(K, E)ε

p, where ε = sign(E, Q).

Proof. At the primes v|N , there is nothing to prove since assumption (2)
imposed on p in the introduction of this chapter implies that H1(Kv, Ep) = 0. For
the other primes v 6 | `, the fact that ∂v(κ(`)) = κ̄(`)v = 0 follows from the fact
that H`/K is unramified outside `, so that the restriction of the cocycle κ̄(`) to any
inertia group outside ` is identically 0.

To prove (1), note that ` splits completely in H1/K. Choose a prime λ0 of H1

lying above `. The extension H`/H1 is totally ramified at λ0; let λ be the unique
prime of H` above λ0, and denote by (H`)λ the completion of H` at the prime λ. It
follows from the splitting behaviour of ` in H` that σ` generates the decomposition
group at ` in Gal(H`/K), and that the natural image of H1(G̃`, E(H`)) under the
localisation at λ is contained in H1(G`, E((H`)λ)). Denote by E((H`)λ)0 the group
of points on E whose trace to (H1)λ0

is 0, and consider the sequence of maps
(10.11)

H1(G`, E((H`)λ))p −→ (E((H`)λ)0/(σ` − 1))p

redλ−→ E(F`2)[p] −→ E(F`2)/pE(F`2),

in which the first map is given by evaluation on σ`, the second is given by reduction
modulo λ (which is well-defined because σ` acts trivially on the residue field F`2

of H` at λ), and the last is the obvious map from the p-torsion to the p-cotorsion.
The fact that ` is a Kolyvagin prime implies (cf. Exercise 5) that the p-Sylow
subgroup of E(F`2) is isomorphic to Z/pZ×Z/pZ, hence the last map in (10.11) is
an isomorphism. In fact the map

η` : H1(G`, E((H`)λ))p −→ E(F`2)/pE(F`2)

obtained by composing the maps in (10.11) is an isomorphism. On the other hand,
by equation (10.9),

η`(κ̄(`)) = redλ(κ̄(`)(σ`)) =
(σ` − 1)Q`

p
=

n`

p
Ñ1P` −

a`

p
PK in E(F`2)/pE(F`2).

Since p2 divides n` and p divides a` exactly, (1) follows. To prove part (2), one
uses the fact that if τ is any lift of the generator of Gal(K/Q) to Gal(H`/Q), then
since this latter group is a generalised dihedral group,

τσ = σ−1τ for all σ ∈ G̃`.

Hence, by Exercise 6,

τD` = −D`τ (mod n`).
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By definition of a Heegner system (cf. Definition 3.12 of Chapter 3, particularly
the property that is asserted in Proposition 3.11)

τD`P` = −D`τP` = εσD`P` (mod n`E(H`))

for some σ ∈ G̃`. Part (2) follows after applying Ñ1 to this identity. �

In addition to the classes κ(`) depending on a single Kolyvagin prime `, it is
important to have at one’s disposal certain classes κ(`1`2) depending (in a symmet-
rical way) on two distinct Kolyvagin primes `1 and `2. These are defined exactly
in the same way as the classes κ(`) above, but using the point

Q`1`2 = D`1D`2Ñ1P`1`2

arising from the point P`1`2 in the Heegner system. The properties of this class are
summarised in the following proposition.

Proposition 10.22. The class κ(`1`2) belongs to H1
(`1`2)

(K, Ep), the relaxed

Selmer group at {`1, `2}. Furthermore,

(1) ∂`2(κ(`1`2)) 6= 0 if and only if the value κ(`1)`2 of κ(`1) at `2 is non-zero;
(2) κ(`1`2) belongs to H1(K, Ep)

−ε.

The proof of Proposition 10.22 is identical to that of Proposition 10.21 and is
left as an exercise. (Cf. Exercise 7.)

10.3. Proof of Kolyvagin’s theorem

The following strengthening of Proposition 10.18 is needed in the proof of Koly-
vagin’s theorem.

Proposition 10.23. There exists a finite set S = {`1, . . . , `t) of Kolyvagin
primes with the property that

(1) S controls Sel∗p(E/K).
(2) The image of PK in E(K`j

)/pE(K`j
) is non-zero, for j = 1, . . . , t.

(3) The value κ(`1)`j
is non-zero, for j = 2, . . . , t.

Proof. This follows from the ideas detailed in Exercise 4. �

End of proof of Kolyvagin’s theorem. Let S be a set of primes satisfy-
ing the conclusion of Proposition 10.23. By property (1) stated in this proposition,
combined with Theorem 10.14, it is enough to bound from above the cokernel of
the map

(10.12) ∂S : H1
(S)(K, Ep) −→

⊕

`∈S

H1
s (K`, Ep).

Note that if ` is a Kolyvagin prime, the Frobenius element Frob` attached to ` in
Gal(K̄/K) acts trivially on Ep, so that Ep(K`) = Ep. A direct calculation (cf. part
(c) of Exercise 3) shows that

H1
f (K`, Ep) = Ep/(Frob` − 1)Ep = Ep, H1

s (K`, Ep) = HomGK`
(µp, Ep) = Ep.

Hence the group on the right of (10.12) is an Fp-vector space of dimension 2t, and
each eigenspace under the action of τ has dimension t over Fp. We bound the
cokernel of ∂S one eigenspace at a time.
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Step 1. Restricting the map ∂S to the ε-eigencomponents,

∂ε
S : H1

(S)(K, Ep)
ε −→

t
⊕

j=1

H1
s (K`j

, Ep)
ε,

one sees that the vectors ∂ε
S(κ`1), . . . , ∂

ε
S(κ`t

) are linearly independent, by Propo-
sition 10.21 and property (2) of Proposition 10.23. Hence ∂ε

S is surjective; it fol-
lows that Selp(E/K)ε is trivial. In particular E(Q) (resp. E(K)/E(Q)) is finite if
sign(E, Q) = 1 (resp. if sign(E, Q) = −1), which is consistent with the Birch and
Swinnerton-Dyer conjecture over Q.

Step 2. By Proposition 10.22 and property (3) of Proposition 10.23, it likewise
follows that the t − 1 vectors ∂S(κ(`1`2)), . . . , ∂S(κ(`1`t)) are linearly independent
and belong to the −ε-eigenspace for the action of Gal(K/Q) on

⊕

`∈S H1
s (K`, Ep).

Hence the map ∂−ε
S has a cokernel of dimension at most 1, so that Selp(E/K)−ε

must be generated by the non-zero vector δ(PK). It follows that

dimFp
(Selp(E/K)−ε) = 1.

The results obtained in steps 1 and 2 imply that Selp(E/K) is a one-dimensional
Fp-vector space generated by δ(PK). This completes the proof of Theorem 10.2. �

References

Kolyvagin’s theorem is proved in [Kol88] and [Kol89].
For an explanation of how the ideas of Section 10.1 are used to bound the size of

the Selmer group of the symmetric square of a modular mod p Galois representation,
and from this to derive the Shimura-Taniyama-Weil conjecture (and Fermat’s Last
Theorem!), see [Wi95], or the expository paper [DDT95]. A discussion of Euler
systems along the lines developped in this chapter also appears in [Da02]. Useful
accounts of the general machinery of Euler systems and Kolyvagin’s argument, with
a somewhat different emphasis, can be found in [Kol90] and [Ru00] for example.

The construction of the Kolyvagin cohomology classes explained in Section
10.2 follows closely the exposition given in [Gr89], which is more thorough than
our treatment and which the reader may wish to consult for some of the details
that we have omitted, avoided, or relegated to the exercises.

Exercises

(1) Suppose that p is a descent prime satisfying the hypotheses of Chapter 10.
Show that if L is any solvable extension of K then Ep(L) is trivial.

(2) Suppose that p is a descent prime satisfying the hypotheses of Chapter 10.
Show that if L0 = K(Ep), the restriction map

H1(K, Ep) −→ H1(L0, Ep) = Hom(GL0
, Ep)

is injective.
(3) Let K be a number field and let M be a finite GK-module. Let Kv denote

the completion of K at a place v and let Knr
n denote its maximal unramified

extension. Suppose that v is a good place for M .
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(a) Show that H2(Knr
v /Kv, (K

nr
v )×) is trivial. Conclude that if c1 and c2 belong

to H1
f (Kv, M) and H1

f (Kv, M
∗) respectively, then

〈c1, c2〉v = 0.

(b) Show that v is a good place for M∗.
(c) Let σv ∈ Gal(Knr

v /Kv) be the Frobenius element at v, and let m = #M .
Explicitly produce (without using the Tate local pairing) canonical identi-
fications

H1
f (Kv , M) = M/(σv − 1)M, H1

s (Kv, M
∗) = Hom(µm, M)[σv − 1].

Conclude that H1
f (Kv , M) and H1

s (Kv, M
∗) are in natural duality, so that

in particular they have the same cardinality.
(d) Assuming the non-degeneracy of the local Tate pairing between H1(Kv , M)

and H1(Kv , M), complete the proof of Theorem 10.9 when v is a good
prime for M .

(4) Let E be an elliptic curve over Q and let K be a quadratic extension of Q.
Let p be a descent prime satisfying the conditions that were imposed in the
introduction of Chapter 10.
(a) Show that the exension L0 = K(Ep2) is Galois over Q with Galois group

Gal(L0/Q) = Gal(K/Q) × Gal(Q(Ep2)/Q) = Gal(K/Q) × Aut(Ep2),

so that elements in Gal(L0/Q) are identified with pairs (τ j , T ) with j ∈
{0, 1} and T ∈ GL2(Z/p2Z).

(b) Show that there are infinitely many primes ` satisfying conditions (1) to
(3) in Definition 10.17 of a Kolyvagin prime.

(c) Suppose that K is a real quadratic field, and let uK be a fundamental unit

for K. Show that the extension L = L0(u
1/p2

k ) obtained by adjoining to
L a p2-th root of uK is Galois over Q. Show that its Galois group can be
described as the semi-direct product

Gal(L/Q) = µp2×|Gal(L0/Q),

where the action of Aut(Ep2) on µ2
p is the natural one, and the generator

τ of Gal(K/Q) is made to act on µp2 as −1. Thus elements of Gal(L/Q)
can be indexed by triples (ζ, τ j , T ) with ζ a p2-th root of unity, j ∈ {0, 1},
and T ∈ Aut(Ep2) ' GL2(Z/p2Z).

(d) Let T ∈ GL2(Z/p2Z) be a matrix with eigenvalues a and −1/a, where
a ≡ 1 (mod p) but not modulo p2. Show that any rational prime ` which
is unramified in L/Q and whose Frobenius element Frob`(L/Q) satisfies

Frob`(L/Q) = (1,−1, T )

is a Kolyvagin prime. Conclude that there are infinitely many Kolyvagin
primes.

(e) Let s be any non-zero element of H1(K, Ep). Assume that s belongs to a
specific eigenspace for the action of τ ∈ Gal(K/Q), so that

τs = δs, for some δ ∈ {1,−1}.
Let Ls be the extension of L cut out by the image s̄ of s under restriction
to H1(L, Ep) = Hom(Gal(L̄/L), Ep). Show that the extension Ls is Galois
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over Q, and that Gal(Ls/Q) is identified with the semi-direct product

Gal(Ls/Q) = Ep×|Gal(L/Q),

where the quotient Gal(L/Q) acts on the abelian normal subgroup Ep of
Gal(Ls/Q) by the rule

(ζ, τ j , T )(v) = δj T̄ v.

(Here T̄ denotes the natural image of T in Aut(Ep).)
(f) Show that the group Gal(Ls/Q) contains an element of the form (v, 1, τ, T ),

where the automorphism T is as in (d), and the vector v ∈ Ep is non-zero
and belongs to the δ-eigenspace for T̄ .

(g) Let ` 6 | N be a rational prime which is unramified in Ls/Q and satisfies

Frob`(Ls/Q) = (v, 1, τ, T ).

Show that ` is a Kolyvagin prime, and that, if λ is the (unique) prime
of K above `, we have sλ 6= 0. Conclude that there exist infinitely many
Kolyvagin primes ` such that ∂λ(s) = 0 and sλ 6= 0.

(h) Let H be any finite-dimensional subspace of H1(K, Ep). Using (g), show
that there is a finite set S of Kolyvagin primes with the property that the
natural map induced by restriction

H −→
⊕

v

H1(Kv , Ep)

is injective. Conclude Proposition 10.18.
(i) Prove Proposition 10.23.

(5) Show that, if ` is a Kolyvagin prime with respect to (E, K, p), then the p-Sylow
subgroup of E(F`2) is isomorphic to Z/pZ × Z/pZ. Conclude that the map η`

obtained by composing the maps in the sequence (10.11) is an isomorphism.
(6) Following the notations in the proof of Proposition 10.21, show that:

τD` = −D`τ (mod n`), τD`1D`2 = D`1D`2τ (mod gcd(n`1 , n`2)).

(In particular, these identities hold modulo p2.)
(7) Give the details of the construction of the cohomology classes κ(`1`2) depending

on two Kolyvagin primes, and prove the properties asserted in Proposition
10.22.
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