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Abstract

Let E be a modular elliptic curve over a totally real field. Chapter
8 of [Dar2] formulates a conjecture allowing the construction of canoni-
cal algebraic points on E by suitably integrating the associated Hilbert
modular form. The main goal of the present work is to obtain numerical
evidence for this conjecture in the first case where it asserts something
nontrivial, namely, when E has everywhere good reduction over a real
quadratic field.

Introduction

Let E be a modular elliptic curve over a totally real field. Chapter 8 of [Dar2]
formulates a conjecture allowing the construction of canonical algebraic points
on E by suitably integrating the associated Hilbert modular form. The main
goal of the present work is to obtain numerical evidence for this conjecture in the
first case where it asserts something nontrivial, namely, when E has everywhere
good reduction over a real quadratic field.

To put our calculations in context, it is useful to recall how, when E is a
(modular) elliptic curve over Q, the theory of complex multiplication allows the
construction of a distinguished collection of algebraic points on E—the so-called
Heegner points which were studied systematically by Birch [Bi] and provide the
setting for the formula of Gross and Zagier [GZ]. These points are obtained by
letting τ be a quadratic irrationality in the Poincaré upper half-plane H and
considering the images, under the Weierstrass uniformisation associated to an
appropriate choice of complex lattice, of expressions of the form

Jτ :=
∫ τ

i∞
ωf =

∞∑
n=1

an

n
e2πinτ , (1)

where

f(τ) =
∞∑

n=1

ane2πinτ , ωf = 2πif(τ)dτ, (2)
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are the normalised eigenform of weight 2 on Γ0(N) attached to E, and the
corresponding Γ0(N)-invariant differential form on H, respectively. The result-
ing points Pτ are defined over ring class fields of the imaginary quadratic field
K = Q(τ). The conductor of this extension, and the action of Gal(Q̄/Q) on the
collection of all Pτ ’s, are understood precisely thanks to the Shimura reciprocity
law ([Sh4], Theorem 5.4).

The Heegner point construction is based on the following facts:

1. The open modular curve Y0(N) whose complex points are described by
the quotient H/Γ0(N) admits a canonical model over Q arising from its
interpretation as a (coarse) moduli space for elliptic curves with extra level
structures. The modularity of E implies the existence of a parametrisation

Φ : X0(N)−→E, (3)

a morphism of algebraic curves over Q. To compute it numerically, let
c be the so-called Manin constant attached to Φ, the non-zero rational
number defined by

Φ∗ωE = c · ωf , (4)

where ωE is a generator of the free rank one Z-module of global relative
regular one-forms on the Néron model for E—a Néron differential on E.
Let ΛE denote the Néron lattice of E and let Λf denote the sublattice of
c−1ΛE defined by

Λf :=
〈∫ γτ

τ

ωf , for γ ∈ Γ0(N)
〉

(5)

=
〈

c−1

∫
α

ωE , for α ∈ Φ∗(H1(X0(N), Z)
〉

. (6)

If η : C/ΛE−→E(C) is the Weierstrass uniformisation attached to ωE ,
then

Φ(τ) = η(c · Jτ ). (7)

2. The quadratic irrationalities τ ∈ H ∩ K correspond, under the moduli
interpretation of Y0(N), to elliptic curves with complex multiplication by
an order in K. By the theory of complex multiplication these curves
are defined over ring class fields of K and hence correspond to points in
Y0(N)(Kab).

In seeking to extend the Heegner point construction to modular elliptic
curves defined over a totally real field F of degree d > 1, we are faced with the
difficulty that the most obvious generalisation of modular curves—the Hilbert
modular varieties—are d-dimensional and do not parametrise E in a natural
way. Thus, a direct analogue of (3) with Y0(N) replaced by a Hilbert mod-
ular variety does not appear to exist. The usual extension of the theory of
complex multiplication to Hilbert modular varieties shows that these varieties
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are equipped with an abundant collection of algebraic points defined over class
fields of certain CM extensions of F ; however, these points do not seem to yield
points on E, and in light of the remarks made in Chapters 7 and 8 of [Dar2]
they should not be expected to.

The known extensions of the Heegner point construction to totally real fields
rely on replacing modular curves by Shimura curves rather than by Hilbert
modular varieties. More precisely, if E is defined over a field F of odd degree,
or if E has multiplicative reduction at a prime ideal of F , then E is equipped
with a parametrisation analogous to (3):

Φ : Jac(X)−→E, (8)

where X is a Shimura curve with a canonical model over F obtained by re-
alising X as (a quotient of) a parameter space for certain abelian varieties
with quaternionic multiplication. Heegner points arising from Shimura curve
parametrisations have been studied intensively in recent years, leading, for ex-
ample, to an almost complete generalisation of the Gross-Zagier formula for
such points ([Zh1], [Zh2], [Zh3]). But there are still a number of reasons for
wishing to push the Heegner point construction beyond the realm of Shimura
curve parametrisations:

1. It appears difficult to compute the uniformisation of (8) in practice, in all
but the smallest examples; modular forms on quaternion algebras which
are not division algebras are hard to work with explicitly, the absence of
cusps on the associated curves precluding the existence of Fourier expan-
sions which are so useful in the numerical calculation of expressions such
as those in (1).

2. The generalised Heegner point construction—and indeed any method that
relies on the known extensions of the theory of complex multiplication—
can only yield points defined over ring class fields of a CM extension of
a totally real field. Yet the Birch and Swinnerton–Dyer conjecture leads
to the expectation that E ought to be equipped with an abundant collec-
tion of algebraic points defined over ring class fields of certain quadratic
extensions of F which are not CM. (See [Dar2], Chapters 7 and 8 for a
discussion of this point.)

3. For a given E/F , a Shimura curve parametrisation as in (8) is not al-
ways available. The simplest case where no modular or Shimura curve
parametrisation is known or indeed expected to exist in general is that
where F is a real quadratic field and E has everywhere good reduction
over F .

This article presents numerical evidence for the conjectural generalisation of the
Heegner point construction based on periods of Hilbert modular forms described
in [Dar2], Chapter 8 and Section 7 of [BDG]. We have confined our experiments
to elliptic curves with everywhere good reduction over a real quadratic field, this
case being the most computationally tractable, while still presenting a great
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deal of theoretical interest in light of remark 3 above. For the sake of being
self-contained, Sections 1 and 2 recall the construction of Chapter 8 of [Dar2].
Our presentation of this construction, based on the elegant treatment given in
[Das], differs from the original description of [Dar2]. Section 3 describes the
numerical evidence and Section 4 discusses in further details the algorithms and
some of the theoretical and practical issues that arose in their implementation.

1 Hilbert modular forms

The assignment τ 7→ Jτ of equation (1) gives rise to a well-defined map

J : H/Γ0(N)−→C/Λf , (9)

where Λf is the canonical period lattice attached to f in equation (5). This
section discusses a generalisation of (9) when f is replaced by a Hilbert modular
form, closely following the presentation given in [Das] and specialising to the
simplest case where F is a real quadratic field of narrow class number 1 and Γ
is the full Hilbert modular group attached to F .

Let S = {∞0,∞1} denote the set of archimedean places of F , and write
v0 and v1 for the corresponding embeddings of F into R. Given x ∈ F it will
occasionally be convenient to write xj for vj(x), and to denote by |x| := x0x1

the norm of x. Denote likewise by |n| the norm of an integral or fractional ideal
n of F . Let ε be a fundamental unit of OF , chosen such that ε0 < 0 and ε1 > 0.

The group Γ = PSL2(OF ) acts discretely on the product H0 × H1 of two
copies of the Poincaré upper half-plane, using the real embeddings v0 and v1

to make Γ act on H0 and H1 respectively by Möbius transformations. The
complex-analytic variety

X := (H0 ×H1) /Γ (10)

describes the complex points of (a singular model of) the Hilbert modular surface
parametrising abelian surfaces with real multiplications by OF —although this
moduli interpretation, and the attendant model over F to which it gives rise,
will be of no use to us in this article.

A Hilbert modular form of weight (2, 2) on Γ is a holomorphic function
f(τ1, τ2) on H0 × H1 with the property that the associated differential form
f(τ0, τ1)dτ0dτ1 descends to a holomorphic two-form on X (i.e., is invariant un-
der Γ) and is moreover holomorphic at the cusps. Such a form is in particular
invariant under translation by elements of OF , and therefore admits a Fourier
expansion at ∞:

f(τ0, τ1) =
∑
n>>0

ane2πi(
n0
d0

τ0+
n1
d1

τ1). (11)

Here the sum is taken over all totally positive elements of OF , and d is a totally
positive generator of the different ideal of OF . (For more details on Hilbert
modular forms the reader may consult Chapter 1 of [Bu].)
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For j = 0, 1, let xj , yj ∈ Hj be points on the j-th upper half-plane indexed
by the place vj of F . Write∫ y0

x0

∫ y1

x1

ωf =
√
|d|
∑
n>>0

an

|n|

(
e2πi

n0
d0

y0 − e2πi
n0
d0

x0
)(

e2πi
n1
d1

y1 − e2πi
n1
d1

x1
)

(12)

for the usual multiple integral attached to the differential form

ωf = −4π2
√
|d|

−1
f(τ0, τ1)dτ0dτ1. (13)

The form ωf can be written as an average of two forms ω+
f and ω−f which are

holomorphic only in the first variable:

ω±f := −4π2
√
|d|

−1
{

f(τ0, τ1)dτ0dτ1 ± f(ε0τ0, ε1τ̄1)d(ε0τ0)d(ε1τ̄1)
}

(14)

The differential forms ω+
f and ω−f enjoy the same properties of invariance under

Γ as the form ωf . In particular,∫ γy0

γx0

∫ γy1

γx1

ω±f =
∫ y0

x0

∫ y1

x1

ω±f (15)

for all γ ∈ Γ. Let Div0(H0) and Div0(H1) denote the Z[Γ]-module of degree
zero divisors supported on H0 and H1 respectively. Integration of ω+

f and ω−f
define two homomorphisms

Int+, Int− : (Div0(H0)⊗Div0(H1))Γ−→C, (16)

where the subscript of Γ denotes the module of Γ-coinvariants. If D0 and D1

denote degree 0 divisors on H0 and H1 respectively, then we write

Int±(D0 ⊗D1) =:
∫

D0

∫
D1

ω±f . (17)

Following [Das], we conjecturally attach to ω+
f and ω−f two canonical period

lattices Λ+
f and Λ−f ⊂ C. To do this, let Z[Γ] denote the group ring of Γ and let

IΓ denote its augmentation ideal. Tensoring the exact sequence

0−→IΓ−→Z[Γ]−→Z−→0 (18)

with IΓ and taking the Γ-coinvariants yields the exact sequence

0−→KΓ−→(IΓ ⊗ IΓ)Γ
r−→ (Z[Γ]⊗ IΓ)Γ−→Γab−→0, (19)

where KΓ is defined to be the kernel of r and the cokernel IΓ/I2
Γ of r is identified

with the abelianisation Γab of Γ in the usual way.
Choosing base points τ0 and τ1 in H0 and H1 respectively, one may define

homomorphisms
I±τ0,τ1

: (IΓ ⊗ IΓ)Γ−→C (20)
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by setting

I±τ0,τ1
(θ0 ⊗ θ1) =

∫
θ0τ0

∫
θ1τ1

ω±f . (21)

It is not hard to see that the restriction of I±τ0,τ1
to the subgroup KΓ is inde-

pendent of the choices of τ0 and τ1, so the subgroup

Λ±f := I±τ0,τ1
(KΓ) ⊂ C (22)

depends only on the form f and not on the choices of τ0 and τ1 that were made
in defining it.

Conjecture 1.1 Suppose that f is an eigenform with rational Hecke eigenval-
ues. Then the subgroups Λ+

f and Λ−f are lattices in C.

The next section will make a more precise conjecture about the commensura-
bility classes of Λ+

f and Λ−f by relating them to the Néron lattices of certain
associated elliptic curves.

From now on we grant conjecture 1.1.

Definition 1.2 The lattices Λ+
f and Λ−f are called the even and odd period

lattice attached to f .

Let I
±
τ0,τ1

denote the reduction of I±τ0,τ1
modulo Λ±f . It follows directly from the

definition of Λ±f that the maps I
±
τ0,τ1

vanish on KΓ and therefore give rise, by
passing to the quotient via the map r of (19), to natural homomorphisms

Ĩ±τ0,τ1
: Im(r)−→C/Λ±f . (23)

To extend this map to all of (Z[Γ]⊗IΓ)Γ, we use the following proposition which
implies that the cokernel of r is finite:

Proposition 1.3 The abelianisation Γab of Γ is finite.

Proof: By the hypothesis that F has narrow class number one, it follows that

Γ is generated by the involution R =
(

0 −1
1 0

)
, by the translation matrices

Tθ =
(

1 θ
0 1

)
, and by powers of the matrix U =

(
ε 0
0 ε−1

)
. Since

UTθU
−1 = Tε2θ, RUR−1 = U−1, (24)

it follows that
Tθ ≡ Tε2θ, U2 ≡ 1 (mod [Γ,Γ]), (25)

so that

#Γab divides 4NK/Q(ε2 − 1) = −16u2, where ε = u + v
√

D. (26)

The result follows. �
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Let eΓ denote the exponent of Γab (which can be crudely estimated by (26)).
The maps eΓĨ±τ0,τ1

admit obvious extensions to ( Z[Γ] ⊗ IΓ)Γ. More precisely,
let θ0 ∈ Z[Γ] and θ1 ∈ IΓ be two group ring elements, and let Dj = θjτj (for
j = 0, 1) be the corresponding divisors supported on the Γ-orbit of τj . We define∫

D0

∫
D1

eΓ · ω±f := Ĩ±τ0,τ1
(eΓ · θ0 ⊗ θ1) ∈ C/Λ±f . (27)

Letting Λ̃±f := e−1
Γ Λ±f , an extended double integral with values in C/Λ̃±f is

defined by the rule∫
D0

∫
D1

ω±f := e−1
Γ

∫
D0

∫
D1

eΓ · ω±f ∈ C/Λ̃±f . (28)

When τ1 and τ2 are in the same Γ-orbit it will be convenient to define∫ τ0
∫ τ2

τ1

ω±f :=
∫

(τ0)

∫
(τ2)−(τ1)

ω±f . (29)

Given any τ ∈ H0, let Γτ denote the stabiliser subgroup of τ in Γ.

Proposition 1.4 The group Γτ is an abelian group of rank at most 1.

Proof: Let K ⊂ M2(F ) be the F -algebra generated by the invertible matrices
satisfying

Mτ = τ. (30)

This K is a commutative subalgebra of M2(F ), hence has rank at most 2 over
F . If K = F , then Γτ is trivial. Otherwise, the fact that K× has a fixed point
in H0 implies that

K ⊗v0 R ' C, (31)

where the tensor product is taken over F relative to the real embedding v0.
Hence K is a quadratic extension of F which is complex at ∞0. The ring
O = K ∩M2(OF ) is an OF -order in K and

Γτ =
{

x ∈ O× such that NormK/F (x) = 1
}

/± 1.

By the Dirichlet unit theorem, it follows that Γτ has rank at most one, with
equality occuring precisely when K is real at the place ∞1. �

Motivated by the proof of proposition 1.4, and following the terminology of
[Dar2], ch. 8, we call a quadratic extension K of F an ATR (“almost totally
real”) extension if it is complex at v0 and real at v1. We say that τ ∈ H0 is
an ATR point if the stabiliser Γτ has rank one, i.e., if τ belongs to H0 ∩ v0(K)
for some ATR extension K of F (after extending v0 to a complex embedding
of K). The set of all ATR points in H0, equipped with the discrete topology –
the only natural topology that presents itself in this setting – is denoted by H′

0.
Note that H′

0 is preserved by the natural action of Γ.
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Given τ ∈ H′
0, let γτ be a generator for the stabiliser subgroup of τ . We can

now generalise the expression Jτ in (1) by choosing any x ∈ H1 and setting

J±τ =
∫ τ∫ γτ x

x

ω±f . (32)

The assignments τ 7→ J±τ give rise to two well-defined maps

J± : H′
0/Γ−→C/Λ̃±f , (33)

which are defined analytically solely in terms of f and yield the desired analogue
of (9).

2 Elliptic curves

Let E be an elliptic curve with everywhere good reduction over F . For each
prime ideal p of F , an integer ap is associated to E just as in the case where E
is defined over Q, by setting

ap = |p|+ 1−#E(OF /p). (34)

Let
L(E, s) =

∏
p

(1− ap|p|−s + |p|1−2s)−1 =:
∑

n

an|n|−s (35)

be the Hasse-Weil L-function attached to E/F , where the product (resp. the
sum) is taken over the prime (resp. all) ideals of OF .

The Shimura-Taniyama conjecture (or rather its generalisation to totally real
fields, which fits into the context of the general Langlands philosophy) predicts
that the holomorphic function on H0 ×H1 given by the absolutely convergent
Fourier series

f(τ0, τ1) =
∑
n>>0

a(n)e
2πi(

n0
d0

τ0+
n1
d1

τ1), (36)

is a Hilbert modular form of weight (2, 2) on Γ, and a simultaneous eigenform
for all the Hecke operators. We will suppose that this conjecture (which in many
cases can be proved by the methods of Wiles) is true for E from now on.

Let EOF
denote the Néron model of E over OF , and let Ω1(E/OF

) denote its
module of global regular relative differential 1-forms. It is a projective (hence
free, because of our standing assumption that hF = 1) module of rank one over
OF . Let ωE be a generator for this module. For j = 0, 1, let Ej be the elliptic
curve over R defined by applying the real embedding corresponding to vj to
E/F . Finally, write Λ0 and Λ1 for the period lattices obtained by integrating
the real invariant differential vj(ωE) on (Ej)/R against the homology of Ej(C).
Denote by λ+

j and λ−j (j = 0, 1) the generators of Λj ∩ R and of Λj ∩ iR
respectively, fixed so that λ+

j and λ−j /i are positive.
Note that ωE is only well-defined up to multiplication by a power of ε, so

that Λ0 and Λ1 are only well-defined up to multiplication by the corresponding
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power of ε0 and ε1 respectively. But the four products λ±0 λ±1 are well-defined
up to sign. In particular, the lattices

Λ+
E := λ+

1 Λ0 and Λ−E := λ−1 Λ0 (37)

do not depend on the choice of Néron differential that was made in defining
them.

Conjecture 2.1 The lattice Λ+
f (resp. Λ−f ) of Definition 1.2 is commensurable

with the lattice Λ+
E (resp. Λ−E).

Remarks: 1. This conjecture is a concrete reformulation of a conjecture of Oda
[Oda] on periods of Hilbert modular forms. For further discussion see Chapter
8 of [Dar2].
2. In specific examples the lattices Λ+

E and Λ−E can be computed without dif-
ficulty using the known algorithms for computing minimal Weierstrass models
and Néron differentials on elliptic curves. The calculation of the lattice Λ±f ,
requiring a concrete understanding of the second homology H2(Γ, Z) of Γ, poses
more difficulties. We do not know, for example, whether Λ+

f and Λ−f always
belong to the same similarity class of lattices, although one might suspect the
answer to be “no”.

We are now ready to define maps

Φ± : H′
0/Γ−→E0(C) (38)

playing the role of the classical modular parametrisation in our context. Invok-
ing conjecture 2.1, choose positive integers c+ and c− in such a way that

c±Λ̃±f ⊂ Λ±E . (39)

The integers c+ and c− might be viewed as playing a role analogous to that of
the Manin constant c in equation (4) of the introduction. Let

η± : C/Λ±E−→E0(C) (40)

denote the Weierstrass uniformisation attached to the lattice Λ±E . Let t denote
the cardinality of the torsion subgroup of E(K). By analogy with (7) we set

Φ±(τ) := t · η±(c± · J±τ ) (41)

for τ ∈ H′
0.

Our main conjecture asserts that the point Φ(τ) is defined over a specific class
field of the ATR extension F (τ). More precisely, fix an ATR extension K of F ,
let c be a non-zero ideal of OF , and let O = OF + cOK be the order in K of
conductor c. An embedding

Ψ : K−→M2(F ) (42)
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of F -algebras is said to be optimal (relative to O), or of conductor c, if

Ψ(K) ∩M2(F ) = Ψ(O). (43)

Let h+ denote the narrow class number of O and let h denote its usual class
number (i.e., the cardinality of the Picard group of isomorphism classes of pro-
jective O-modules of rank one).

Lemma 2.2 There are exactly h+ distinct Γ-conjugacy classes of embeddings
of K into M2(F ) of conductor c.

For further discussion of this lemma see Section 8.5 of [Dar2]. The image of
Ψ(K×) acting on H0 by Möbius transformations has a unique fixed point τ
which by definition is an ATR point.

Let H be the ring class field of K of conductor c, and let H+ ⊃ H denote
the narrow ring class field of K. The group Gal(H+/H) is of order at most
two; let σ denote its generator (which corresponds to the complex conjugation
attached to the real place v1). Fix a complex embedding of H+ extending the
embedding v0. The following is the main conjecture that we have endeavoured
to test numerically:

Conjecture 2.3 The local points Φ+(τ) (resp. Φ−(τ)) in E0(C) are the image
of global points in E(H) (resp. in E(H+)). The automorphism σ acts trivially
on the image of Φ+, and as multiplication by −1 on the image of Φ−.

Remarks: 1. It is expected that the heights of the points Φ+(τ) and Φ−(τ)
interpolate the first derivatives of L(E/K, s) at s = 1 twisted by even and odd
characters of Gal(H+/K) respectively. For example, if H has degree one over K,
the Néron-Tate height of Φ+(τ) ∈ E(K) is expected to agree with L′(E/K, 1)
up to multiplication by a simple non-zero fudge factor, by analogy with the
classical Gross-Zagier formula. Combining this expectation with the classical
Birch and Swinnerton-Dyer conjecture for E/K, it follows that if E(K) has rank
strictly greater than 1, resp. rank 1, the subgroup generated by Φ+(τ) should
be finite, resp. of index essentially equal to the square root of the order of the
Shafarevich-Tate group of E/K. Experience suggests that the latter quantity
ought to be a small integer in the (of necessity, atypical) ranges that were treated
in our numerical experiments.

2. Conjecture 2.3 was suggested by the strong analogy with the p-adic conjec-
tures formulated in [Dar1] and tested numerically in [DG].

3 Numerical experiments

Elliptic curves with everywhere good reduction over real quadratic fields have
been studied by Shimura (cf. [Sh1], [Sh2], and [Sh3]) who has shown that
the abelian variety quotient of J1(N) associated to a primitive eigenform in
S2(Γ0(N), ε), where ε : Z/NZ×−→± 1 is a primitive even Dirichlet character,
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has everywhere good reduction over the corresponding real quadratic field F .
According to tables given in [Cr], up to isogeny there are exactly three elliptic
curves of this sort defined over a real quadratic field with prime discriminant
≤ 100, corresponding to the fields F = Q(

√
29), Q(

√
37), and Q(

√
41).

Note that the curves obtained by Shimura’s construction are examples of Q-
curves, i.e., they are isogenous to their Galois conjugate over F . It appears that
for the real quadratic fields F of narrow class number 1 with Disc(F ) ≤ 100,
all elliptic curves with everywhere reduction over F have this property. The
prevalence of Q-curves seems to be an artifact of the small ranges in which data
has been tabulated, and is not expected to persist in larger ranges. To the
best of our knowledge, the first example of a curve of conductor 1 over a real
quadratic field with narrow class number 1 which is not a Q-curve occurs over
the field F of discriminant 509 generated by ω = 1+

√
509

2 and is given by the
equation [Pi]

y2 − xy − ωy = x3 + (2 + 2ω)x2 + (162 + 3ω)x + (71 + 34ω). (44)

Since Q-curves are always expected to appear in the Jacobians of the modular
curve J1(N), some variant of the Heegner point construction could perhaps be
used to construct algebraic points on such curves. For a curve such as (44) no
such method appears to be available.

The field F = Q(
√

29). Fix the real embeddings∞0 and∞1 of F in such a way
that v0 sends

√
29 to the negative square root, and v1 sends it to the positive

square root. Write ω for (1 +
√

29)/2 (so that v0(ω) < 0 and v1(ω) > 0). A
fundamental unit of F is

ε = 2 + ω. (45)

An elliptic curve with everywhere good reduction over F has been found by
Tate. Its minimal Weierstrass equation is given by

E : y2 + xy + ε2y = x3, (46)

and its discriminant is equal to −ε10. It has a rational subgroup of order 3
generated by the point (0, 0), and is of rank 0 over F . (See [Se], Section 5.10 for
a detailed discussion of the curve E.) The period lattices Λj (j = 0, 1) attached
to the choice of Néron differential ωE = dx

2y+x+ε2 are index two sublattices of
〈λ+

j , λ−j 〉, where

λ+
0 = 10.8794721724 . . . λ+

1 = (3
√

29− 16)λ+
0 ,

λ−0 = 34.2340042602 . . . i λ−1 =
(3
√

29− 16)
5

λ−0 .

(In these equations
√

29 denotes the positive square root.) The fact that Λ1 is
homothetic to an index 5 sublattice of Λ0 reflects the fact that E is 5–isogenous
to its Galois conjugate over Q.

The canonical lattice Λ+
E attached to E is given by

Λ+
E = 〈18.404772944...,−9.2023864724... + 28.9567851002...i〉, (47)
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while Λ−E is given by

Λ−E = 〈11.58271404011...i, 5.79135702005735...i− 18.2234337984...〉. (48)

Table 29.1 below lists a few quadratic ATR extensions K = F (β) of small
discriminant, together with the norms DK of their relative discriminants (over
F ), wide and narrow class numbers, and relative fundamental units. Note that
Table 29.1 lists two extensions with DK = −35, which are denoted −351 and
−352 in order to be distinguished.

DK β2 hK h+
K εK

−7 −1 + ω 1 1 (β2 + β − 1)/2
−16 2 + ω 1 1 2β3 + 5β2 + β
−23 17 + 8ω 1 1 (β2 − 1)/8
−351 19 + 9ω 2 2 (β2 + 9β − 1)/18
−352 4 + 3ω 2 4 (β2 + 3β − 1)/6
−59 61 + 28ω 1 1 (β2 + 14β + 9)/28
−63 3ω 1 2 (β2 + 6)/3
−64 4 + 2ω 1 1 β2/2
−80 1 + ω 2 2 β2 + 1
−91 7 + 5ω 1 2 (β2 − 5β + 3)/10
−175 −5 + 5ω 4 4 β2/10 + β/2 + 1/2

Table 29.1. ATR extensions of Q(
√

29) with small discriminant

Table 29.2 lists, next to each ATR extension K of F with D = DK , the x
and y coordinates of a point PD of small height on E(K) found by computer
using a simple point-searching algorithm. In all cases we believe this point to
be a generator of E(K) modulo torsion, although this has not been checked
rigorously. The fourth column of the table lists, in the case where the class
number of K is equal to 2, an extra point P ′ such that P ′ and PD generate
E(H+) up to finite index. This point is always to be found among the points
PD already tabulated.
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DK x y P ′

−7 β2 + 3 −5β3/2− 3β2 − 8β − 19/2
−16 β2/2 −5β3/4− 11β2/4− β/4− 1/2
−23 (11β2 + 5)/8 −13β3/8− β2 − 7β/8− 1/2
−351 (2β2 + 1)/5 −59β3/225− 43β2/90− 89β/450− 29/90 P−7

−352 (−4β2 − 11)/15 (−17β3 − 105β2 − 43β − 270)/150 P−7

−59 −1/9 −11β3/1512− 5β2/56− β/1512 + 1/504
−63 7β2/9 + 5 −59β3/225− 43β2/90− 89β/450− 29/90
−64 −1/4 −3β3/8− 5β2/4− β/4− 3/8
−80 (43β2 + 51)/10 −517/50β3 − 93/20β2 − 1233/100β P−16

− 111/20
−91 (98β2 + 387)/13 −18939β3/845− 111β2/26

− 150109β/1690− 439/26
−175 (−3β2 − 13)/5 −β3/10− 11β2/25− 37β/25− 67/10 See †

Table 29.2. Generators of E(K) modulo torsion

† Remark: When DK = −175, the class number of K is equal to 4 and
E(H)⊗Q appears to be generated by the points P−175, P−7, P−351 , and P−352 .

Finally, Table 29.3 below summarises the experimental evidence that has been
gathered for the uniformisation Φ+.

1. The leftmost column indicates the discriminant of the field K that is
involved in the calculation.

2. The second column lists the imaginary part of J+
τ /λ+

1 that was computed,
where τ is any element in H′

0/Γ with associated order isomorphic to OK .
In all cases, since the corresponding K has class number one, the value of
J+

τ is well-defined modulo the lattice Λ̃+
f , so that J+

τ /λ+
1 is well-defined

modulo (λ+
1 )−1Λ̃+

f .

3. For each global point P listed in Table 29.2, let P̃ be a lift to the group
C/Λ0 via the Weierstrass uniformisation attached to Λ0. (It is well-defined
modulo this lattice.) The third column gives the imaginary part of P̃ .

4. Conjecture 2.1 implies that the lattices (λ+
1 )−1Λ̃+

f and Λ0 are commensu-
rable so that columns 2 and 3 of Table 29.3 can be naturally compared.
Conjecture 2.3 (and the remark after it) suggests that there should be a
linear dependence relation with small integer coefficients between J+

τ /λ+
1 ,

P̃ , and the generators of Λ0. It was checked that the real parts of both
J+

τ /λ+
1 and P̃ are easily recognised rational multiples of λ+

0 , with small
denominators bounded by the size of the torsion subgroup of E(F ), as
expected since E(F ) has rank 0.
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The imaginary parts yield more interesting linear relations – as is to be ex-
pected since E(F ) has rank 0, so that Φ+(τ) should belong to the minus-
eigenspace in E(K) for the generator of Gal(K/F ), which is given by
complex conjugation attached to the place v0. The relations involving the
imaginary parts were found numerically to hold within the calculated nu-
merical accuracy of at least 12 decimal digits. Here a, b, c are the integers
that ostensibly satisfy, when h = 1, the relation

Imag
(
a · J+

τ /λ+
1 + b · P̃ + c · λ−0

)
?= 0, (49)

to within the calculated accuracy. For the relative discriminants −351,
−352, and −80 attached to fields of class number 2, for which H is a
quadratic extension of K, the linear relation was found to involve (as
expected) both the points P and P ′ of Table 29.2. In those cases the lifts
of P and P ′ are listed in column 3 on consecutive lines and the coefficients
involved in the linear relation are listed in the corresponding position in
the column labelled b.

DK imag(J+
τ /λ+

1 ) imag(P̃ ) a b c
−7 −4.1065886757855 −3.079941506839 −3 4 0
−16 2.2268825202458 5.176638961858 15 20 −4
−23 −8.7234515079459 10.574413499142 3 −4 2
−351 0.6541186390204 4.835246135965 15 10 1

−3.079941506839 30
−352 1.3559957321827 −1.748436897948 15 −5 15

−3.079941506839 15
−59 2.3399309289739 8.515253081333 −15 −20 6
−63 0.1407578729538 10.059064468632 −15 −10 3
−64 −5.8375918830394 −2.468606939763 15 20 4
−80 −3.4771883041218 0.205296785629 15 10 6

5.176638961858 −30
−91 2.1415937032841 6.635790980948 15 −10 1
−175 1.4909906157837 1.290594724488 15 −5 2

See rmk. 4 below

Table 29.3. Numerical evidence for conjecture 2.4.

Remarks: 1. In all the examples listed in Table 29.3, the period J+
τ could in

particular be used to recover a point P ∈ E(K) of infinite order and relatively
small height. While most of the calculations were only carried out to between
12 and 30 digits, one of them, involving the field whose relative discriminant
has norm −64, has been checked to 200 decimal places of accuracy.

2. The data in Table 29.3 suggests an expression for η0(J+
τ /λ+

1 ) as an element
of E(H+)⊗Q. Let PK denote the trace from H+ to K of this element. For the
11 examples in Table 29.3, the equality

PK
?= ±4/3 · P =: 2`F · P holds in E(K)⊗Q. (50)
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It is noteworthy that the coefficient `F in this relation is (unlike the point P )
independent of K. This suggests that, for these examples, the Shafarevich-Tate
group of E twisted by the quadratic character of Gal(F̄ /F ) attached to K is
probably trivial, so that the position of PK in E(K) ⊗ Q is entirely controlled
by the algebraic part of L(E/F, 1), a quantity which does not depend on K. In
fact the following equality was checked to 20 digits of decimal accuracy:∫ i∞

0

∫ iε

iε−1
ω+

f = −`2F · λ+
0 λ+

1 . (51)

Note that the expression on the left in (51) is a multiple of the special value
L(E/F, 1) by a simple non-zero fudge factor.

3. For the three cases in which h = 2, we can introduce the non-trivial character
of order two

χ : Gal(H+/K)−→Gal(H/K) = ±1 (52)

and set
Pχ :=

∑
σ∈Gal(H+/K)

χ(σ)η0(J+
τ /λ+

1 )σ. (53)

In the three cases with h = 2 listed in Table 29.2, it appears that

Pχ ?= ±4P, (54)

an identity which is analogous to (50) with χ replacing the trivial character.

4. The example with D = −175 and class number 4 appears to yield the relation

Imag
(
15J+

τ /λ+
1 − 5P̃175 + 15(P̃−7 + P̃−351 + P̃−352)− 2λ−0

)
?= 0. (55)

Notice that the values of PK and Pχ suggested by this relation continue to
satisfy (50) and (54) respectively.

5. The calculations involving J−τ instead of J+
τ are frequently less interesting

in the ranges that were tabulated, since conjecture 2.3 predicts that Φ−(τ) is
trivial when H+ = H, which occurs in all examples except D = −352, −63,
and −91. It was checked numerically for a few values of DK with h+ = h that
Φ−(τ) is in fact trivial in E(K)⊗Q, while a closer study of the case DK = −91
suggested the relation

3J−τ /λ−1 − 6P̃ ′ + 2λ+
0

?= 0, (56)

where P ′ is the point

(β2 − 2, β3/2 + 2β2 − β − 9/2)

(for β the negative real root of x4 + x2 − 7) and P̃ ′ is its lift to C/Λ0. Note
that P ′ is defined over the narrow Hilbert class field H+ of K and is sent to its
negative by the generator of Gal(H+/K).
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The field F = Q(
√

37). Fix again the real embeddings ∞0 and ∞1 in such
a way that v0 sends

√
37 to the negative square root, and v1 sends it to the

positive square root. We now write ω for (1 +
√

37)/2, and the fundamental
unit of F is

ε = 5 + 2ω. (57)

There is, up to isogeny, a unique elliptic curve with everywhere good reduction
over F , with minimal Weierstrass equation given by

y2 + y = x3 + 2x2 − (19 + 8ω)x + (28 + 11ω). (58)

Its discriminant is equal to ε6, and its Mordell-Weil group is finite (of order 5).
The period lattices Λj (j = 0, 1) attached to the choice of Néron differential
ωE = dx

2y+1 are equal to 〈λ+
j , λ−j 〉, where

λ+
0 = 14.326245329177 . . . λ+

1 = −λ+
0 (6−

√
37)

λ−0 = 11.114695464434 . . . i λ−1 = −λ−0 (6−
√

37)

(In these equations
√

37 denotes the positive square root.) The fact that Λ1 is
homothetic to Λ0 reflects the fact that E is isomorphic to its Galois conjugate
over Q.

The canonical lattice Λ+
E attached to E is given by

Λ+
E = 〈16.986289742692 . . . , 13.178431139675 . . . i〉, (59)

while Λ−E is given by

Λ−E = 〈13.178431139675 . . . i,−10.224189621979 . . .〉. (60)

Tables 37.1, 37.2 and 37.3 below list a few quadratic ATR extensions of the form
K = F (β) of F of small discriminant and the data in support of conjecture 2.3
that has been gathered for these extensions, following the same conventions as
in the case F = Q(

√
29).

DK β2 hK h+
K εK

−3 ω − 3 1 1 (β2 − β − 1)/2
−7 ω + 1 1 1 (β3 − 4β − 1)/2
−11 15ω + 38 1 1 (β2 − 15β + 7)/30
−16 2ω + 5 1 1 (β3 − 5β2 + 5β + 1)/2
−48 ω + 2 1 2 β3 + 2β2 + 2
−64 4ω + 10 1 1 (5β3 − 24β2 − 2β − 1)/4
−75 5ω − 15 2 2 β2/10− β/2 + 1/2

Table 37.1. ATR extensions of Q(
√

37) with small discriminant
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DK x y P ′

−3 −2β2/3− 13/3 −61β3/18− 169β/9− 1/2
−7 β2/7− 3/7 −57β3/98− 44/49β − 1/2
−11 −2β2/165− 104/165 −17β3/1210− 2β/605− 1/2
−16 β2/8− 5/8 −β3/8− 1/2
−48 115β2/588− 80/147 −11225β3/24696− 1529/6174β − 1/2
−64 −β2/8− 3/4 −β3/8− 1/2
−75 −196β2/675− 20/9 −1559β3/12150− 25732/6075β − 1/2 P−3

Table 37.2. Generators of E(K) modulo torsion
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DK imag(J+
τ /λ+

1 ) imag(P̃ ) a b c
−3 4.8353604732654 2.5352474364262 5 8 −4
−7 6.3896987259283 4.3424598946205 5 8 −6
−11 −0.4402203556346 0.2751377222716 5 8 0
−16 7.5409894304028 1.9344445278926 −5 8 2
−48 6.3896987259283 4.7919606979801 5 4 6
−64 23.0031166062165 6.7048953912383 5 16 −20
−75 −0.5228238836020 0.6535298545025 5 4 0

2.5352474364262 0

Table 37.3. Numerical evidence for conjecture 2.3.

Remarks: 1. With only one exception (the case DK = −64) it appears that

PK
?= ±2`F · P in E(K)⊗Q, with `F = 4/5. (61)

This is consistent with the numerical observation that (with an accuracy of at
least 20 decimal digits) ∫ i∞

0

∫ iε

iε−1
ω+

f = −`2F · λ+
0 λ+

1 , (62)

just as in equation (51) for the case of F = Q(
√

29).

2. Even though the field with DK = −75 has hK = 2, nevertheless the coefficient
in the relation of the auxiliary point P−3 is 0. This contrasts with the three
examples over Q(

√
29) in which this coefficient is nonzero. It is reasonable to

suppose that this is connected with the fact that the curve E has rank ≥ 2
(presumably equal to 2) over Q(

√
5,
√

37), the totally real extension of degree 4
contained in the Hilbert class field of K. (The points(

−7 +
√

37
2

,

√
185− 6

√
5− 1

2

)
and

(
29− 5

√
37

2
,
12
√

185− 73
√

5 + 1
2

)

are independent elements of the Mordell-Weil group and appear to generate it
modulo torsion.)

The field F = Q(
√

41) Fix the real embeddings ∞0 and ∞1 as before. The
symbol ω now represents (1 +

√
41)/2, and the fundamental unit of F is

ε = 27 + 10ω. (63)

Up to isogeny there is a unique elliptic curve over Q(
√

41) with everywhere good
reduction. It can be chosen to have minimal Weierstrass equation

y2 + xy = x3 − εx. (64)
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Its discriminant is ∆ = ε4 and its Mordell-Weil group E(F ) is isomorphic to
Z/2Z× Z/2Z.

The period lattices Λj (j = 0, 1) attached to the choice of Néron differential
ωE = dx

2y+x are equal to 〈λ+
j , λ−j 〉, where

λ+
0 = 8.886172490171 . . . λ+

1 =
(−19 + 3

√
41)

2
λ+

0

λ−0 = 17.645928598111 . . . i λ−1 =
(−19 + 3

√
41)

4
λ+

0

(In these equations
√

41 denotes the positive square root.) The fact that Λ1 is
homothetic to an index 2 sublattice Λ0 reflects the fact that E is 2-isogenous to
its Galois conjugate over Q.

The canonical lattice Λ+
E attached to E is given by

Λ+
E = 〈8.266459867807 . . . , 16.415319503174 . . . i〉, (65)

while Λ−E is given by

Λ−E = 〈8.207659751587 . . . i,−16.298555772387 . . .〉. (66)

The three tables below summarise the numerical evidence that has been gath-
ered in support of conjecture 2.3, for six ATR extensions of F of small relative
discriminant, following the notational conventions that were used in the previous
sections.

DK β2 hK h+
K εK

−4 27 + 10ω 1 1 (β3 − β2 − 57β + 7)/10
−8 −181− 67ω 1 1 (17β3 + β2 + 7298β + 516)/134
−20 697 + 258ω 1 2 (3β3 − β2 − 4929β + 439)/516
−20 −697− 258ω 1 2 (19β3 − β2 + 31389β − 1729)/86
−23 389 + 144ω 1 1 (β3 − β2 − 893/β + 29)/144
−32 1 + ω 2 2 β3/2− β2 − 5β/2 + 5

Table 41.1. ATR extensions of Q(
√

41) with small discriminant

DK x y P ′

−4 −1/4 −β/2 + 1/8
−8 (−3β2 − 1481)/268 (−254β3 + 3β2 − 108954β + 1481)/536
−20 (β2 − 9)/43 (−β3 − 3β2 + 181β + 27)/258
−20 (−β2 − 1729)/258 (−67β3 + β2 − 110683β + 1729)/516
−23 See remark below See remark below
−32 (29β2 + 49)/4 (−359β3 − 58β2 − 611β − 98)/16 P−4

Table 41.2. Generators of E(K) modulo torsion
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Remark: In the case DK = −23, the point P has coordinates given by

x = (−71027β2 − 1271153)/9884736
y = (−1095348β3 + 9304537β2 + 16459332β + 166521043)/2589800832

The height of P was somewhat too large for it to be found by the (fairly rudi-
mentary) point-searching algorithm that was used. Instead, P was discovered
by computing the period J+

τ to several hundred digits of decimal accuracy and
recognising the coordinates of the resulting complex point as algebraic num-
bers. This example vividly illustrates how conjecture 2.3 can (in favorable
circumstances) be used to produce global points on E by analytic means.

DK imag(J+
τ /λ+

1 ) imag(P̃ ) a b c
−4 9.78222836348 15.1529745774 −8 4 1
−8 1.25106319555 −1.25106319556 1 1 0
20 1.50677322258 14.7412196711 −4 4 3

−20 −2.23232801736 15.466774659 4 4 −3
−23 2.78771530996 7.19919745949 −4 4 −1
−32 10.2755917186 3.37115554850 4 −4 5

15.1529745774 4

Table 41.3. Numerical evidence for conjecture 2.4.

Remark: Note that all of the examples of Table 41.3 appear to yield

PK = ±P in E(K)⊗Q (67)

to within a factor of 2, consistent with the fact that∫ i∞

0

∫ iε

iε−1
ω+

f = −λ+
0 λ+

1 . (68)

It is possible that the greater variation in the factor of 2 in this case reflects
the fact that elliptic curves with full level-2 structure are more likely to have
elements of order 2 in their Tate-Shafarevich group.

4 Algorithmic issues

Concretely, to compute the map Φ+ it is necessary to evaluate semi-indefinite
integrals entering in the definition of J+

τ (see [Dar2], ch. 8), which are of the
form ∫ τ ∫ c2

c1

ω+
f , with c1, c2 ∈ P1(F ). (69)

Adopting the terminology of Section 9.6 of [Dar2], we say that two cusps a/b
and c/d are adjacent if ad − bc is a unit in OF . This definition is an obvious
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replacement of the one given for F = Q, where it is required that ad− bc = ±1.
Our method relies on connecting any two cusps by a sequence of adjacent ones.
It is of course sufficient to join an arbitrary cusp a/b to the cusp ∞, which
amounts to expressing a/b as a continued fraction.

The three fields F = Q(
√

29), Q(
√

37) and Q(
√

41) that were treated in
our numerical experiments enjoy the crucial property of being norm-Euclidean.
Continued fractions can therefore be obtained using the standard Euclidean
algorithm for calculating GCD’s described in [Op]. This paper shows that,
given nonzero a, b ∈ OF , an element c ∈ OF such that |N(a− bc)| < |N(b)| may
be found not far from a/b, and so it is a simple matter to find this element.

Since Γ acts transitively on pairs of adjacent cusps, one is then reduced to
calculating expressions of the form∫ τ ∫ ∞

0

ω+
f =

∫ τ ∫ 1

0

ω+
f +

∫ τ ∫ ∞

1

ω+
f

=
∫ −1/τ ∫ −1

∞
ω+

f +
∫ τ−1 ∫ ∞

0

ω+
f =

∫ τ−1

1−1/τ

∫ ∞

0

ω+
f .

This integral can be evaluated by breaking it into a sum of two integrals with
all but one limit in the (open) upper half-plane and translating the remaining
limit by a matrix in Γ to the cusp ∞ which is in the region of convergence
for the Fourier expansion (36). The resulting integrals can then be computed
using equation (12), reducing the problem to one of adding suitable products of
Fourier coefficients, exponentials, and other easily-computed quantities.

It would be interesting to understand the complexity of this algorithm for
calculating Jτ as a function of τ . This raises subtle questions about the contin-
ued fraction representations of elements of real quadratic fields of class number
1. For example, the Euclidean algorithm used to find the GCD of two rational
integers a, b requires O(log(max(a, b))) steps, but how many steps are needed
to find a sequence of adjacent cusps leading from ∞ to an arbitrary element of
Q(
√

29)? The Euclidean algorithm presented in [Op] shows that such a sequence
exists and gives an algorithm for producing it. According to [Co], any cusp can
be even be connected to ∞ by a sequence of adjacent cusps of length at most
eight (whether or not F is Euclidean for the norm). But if such a sequence
yields double integrals with limits very close to the real axis, the shortness of
the sequence will in all likelihood come at too high a cost.

Since so little is understood about the complexity of calculating Jτ as a
function of τ , we focus on the simpler question of analysing the complexity of
calculating the integral given in (12), where the size of the problem is measured
by the desired number M of digits of decimal accuracy.

It is convenient to group the totally positive elements according to the ideals
that they generate. Thus, let u be a generator of the group of totally positive
units. We may choose u such that u0 > 1. Also, given a totally positive element
µ, we may find ν generating the same ideal such that 1 < ν1 < u0. With this
done, the individual terms appearing in the right-hand sum in (12) are of the
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form
(e2πi

n0
d0

y0ua
0 − e2πi

n0
d0

x0ua
0 )(e2πi

n1
d1

y1ua
1 − e2πi

n1
d1

x1ua
1 ). (70)

As a approaches∞, the absolute value of the first factor tends to 0 exponentially
fast, while the second factor is bounded. The situation as a approaches −∞
is similar with the roles of the two factors interchanged. In fact only a small
number values of a are needed in each sum for a specified degree of accuracy.

The Riemann hypothesis for elliptic curves over finite fields implies that
a(n) = O(|n|1/2+ε), so that

a(n)/|n| = O(|n|−1/2+ε). (71)

In addition, it is well-known that the number of ideals of norm n is o(nε). Hence
the sum over generators of all ideals of norm n has order of magnitude

O(e−c|n|min(im xi im yi)).

Thus it is necessary to evaluate the sum in (12) up to the terms corresponding
to elements n of norm O(M/min(im xiyj) to obtain M digits of accuracy, which
involves computing

O(M2/ min(im xiyj)) (72)

partial sums attached to generators of an ideal. This complexity estimate ac-
cords well with experiment.

The Fourier coefficients a(p) for p a prime ideal were computed by counting
points on E over OF /p, using Shanks’ “baby-step-giant-step” method, and the
general coefficient a(n) was then obtained using the recursion relations implied
by (35). The time taken up by this part of the calculation is negligible both
practically and theoretically. In practice the Fourier coefficients a(p) for p a
prime which is inert in K were precomputed, while built-in GP functions were
used to compute the generators p1, p2 of split prime ideals and the corresponding
coefficients a(pi). Gathering this data for the range |p| ≤ 200002, which is more
than enough for the numerical examples treated in the previous section, required
less time than the computation of many of the individual examples. In fact, the
time needed to evaluate an individual period J±τ to 12 places varied widely from
about 2 minutes to about 12 hours, reflecting our lack of understanding of the
complexity of this calculation as a function of τ .

Example. Here are the details of the computation for the fields

F = Q(
√

29), K = F (β) = F
(√
−1 + ω

)
displayed on the first row of Table 29.1, where the relative discriminant of K/F
is of norm −7. As indicated in Table 29.1, the field K has narrow class number
1, and its group of units is generated by

−1,
5 +

√
29

2
, and εK :=

β2 − β − 1
2

. (73)
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Since the norm of εK to F is not a square, it is necessary to work with the unit

ε2
K := (−β3 − β2 + β + 4)/2. (74)

The ring of integers of K is generated as a Z-module by

1, β,
β2 + β + 1

2
, and

β3 + 1
2

. (75)

Therefore the embedding Ψ̃ of K into M2(F ) which sends β to the matrix(
0 −1 + ω
1 0

)
with fixed point τ̃ = β0 ∈ H0 is not optimal. An optimal

embedding is obtained by conjugating Ψ̃ by the matrix
(

1 ω
0 2

)
. The resulting

embedding Ψ has associated fixed point

τ := (τ̃ + ω0)/2 = (β0 + ω0)/2 ≈ −1.09629120178 + 0.89338994895i. (76)

Under the embedding Ψ the unit ε2
K gets sent to the matrix

γτ := Ψ(ε2
K) =

(
−1 −2ω − 2

1 + ω 5 + ω

)
. (77)

The conjugate of −1
1+ω has an obvious continued fraction expansion:

1
ω − 2

= 0 +
1

ω − 2
. (78)

The desired quantity J+
τ is therefore

J+
τ =

∫ τ ∫ 1
ω−2

∞
ω+

f =
∫ τ ∫ 0

∞
ω+

f +
∫ τ ∫ 1

ω−2

0

ω+
f

=
∫ τ ∫ 0

∞
ω+

f +
∫ −1/τ ∫ −(ω−2)

∞
ω+

f

=
∫ −1/τ ∫ 0

∞
ω+

f +
∫ −1/τ+ω0−2 ∫ 0

∞
ω+

f =
∫ −1/τ

−1/τ+ω0−2

∫ ∞

0

ω+
f .

For 12 places of accuracy, it is not necessary to evaluate any of the terms in the
infinite sum (12) beyond those corresponding to elements n of norm ≤ 6000. A
numerical evaluation yields

J+
τ = 2.41766048277 · · ·+ 4.10658867578 . . . i. (79)

The real part of this expression agrees with 2λ+
0 /9 within the computed accu-

racy, so that the image of 9J+
τ in C/Λ0 appears to lie in the −1-eigenspace for

complex conjugation.
A short search finds a point over Q(ω) with x-coordinate 2 + ω, and the

built-in GP command ellpointtoz shows that this point is the image of

z ≈ −3.079941506839i in C/Λ0 (80)
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under the Weierstrass uniformisation. Numerically, it appears that

3Jτ + 4z
?= 0. (81)

This linear relation was checked to over 200 digits of decimal accuracy. Of
course, we are unable to prove even the single identity (81), a situation not
unlike that occurring in the numerical verifications of Stark’s conjectures.
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