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The article [Darmon 02] proposes a conjectural p-adic analytic
construction of points on (modular) elliptic curves, points which
are defined over ring class fields of real quadratic fields. These
points are related to classical Heegner points in the same way
as Stark units to circular or elliptic units.> For this reason they
are called “Stark-Heegner points,” following a terminology in-
troduced in [Darmon 98].

If K is a real quadratic field, the Stark-Heegner points
attached to K are conjectured to satisfy an analogue of the
Shimura reciprocity law, so that they can in principle be used
to find explicit generators for the ring class fields of K. It is also
expected that their heights can be expressed in terms of deriv-
atives of the Rankin L-series attached to E and K, in analogy
with the Gross-Zagier formula.

The main goal of this paper is to describe algorithms for cal-
culating Stark-Heegner points and supply numerical evidence
for the Shimura reciprocity and Gross-Zagier conjectures, fo-
cussing primarily on elliptic curves of prime conductor.

1. HEEGNER POINT ALGORITHMS

1.1 Heegner Points Attached to Imaginary
Quadratic Fields

The theory of complex multiplication. It is instructive
to briefly recall the theory behind the classical Heegner
point construction. Fix a positive integer N, and let
Xo(N) be the modular curve classifying pairs (4, A") of
generalized elliptic curves together with a cyclic isogeny
A — A’ of degree N. Its set of complex points is a
Riemann surface admitting the complex uniformisation:

n: H*/To(N) = Xo(N)(C)

where H* = H UP;(Q) is the extended upper half plane
and ['g(IV) is the set of elements of SLy(Z) whose reduc-
tions (mod N) are upper triangular. The map 7 sends

1See for example the discussion in [Bertolini and Darmon 2001]
relating these points to derivatives of p-adic L-functions.
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T € H to the point of Xy(N)(C) associated to the pair
(C/(r,1),C/(r,1/N})) of elliptic curves over C related
by the obvious cyclic N-isogeny.

Let O be an order in a quadratic imaginary subfield
K of C. Such an order is completely determined by its
discriminant D. The Heegner points attached to O corre-
spond to the pairs (A, A’) of N-isogenous elliptic curves
satisfying

End(A) ~ End(A") ~ O.
Assume for simplicity that D is prime to N. Then such
a pair (A, A’) is of the form (C/A,C/A’) where (up to
homothety) A and A’ are projective O-submodules of K
satisfying A = nA’, for some factorization

(N)=nn

of N as a product of cyclic O-ideals. The set of Heegner
points associated to O forms a Pic(O)-affine space via

ax(A,A") = (Hom(a, A),Hom(a, A")),
a € Pic(0), (A, A") € Xo(N).

On the level of complex tori, this action is described by
the rule

a* (C/A,C/n"tA) = (C/a™tA,C/a"n"tA).

The natural action of Gi := Gal(K/K) preserves the
set of Heegner points attached to O, and commutes with
the action of Pic(O). Hence the action of Gx on the
collection of Heegner points attached to O is determined
by a homomorphism § : Gal(K /K) — Pic(O) satisfying

5(0) & (AvA/) = (Av A/)Jv

for all Heegner points (A4, A’) with End(A) = O. In par-
ticular, ¢ factors through the Galois group of an abelian
extension H of K, and the Heegner points attached to @
are defined over H.

Let p be a prime of K which is unramified in H and
for which A with End(A) ~ O has good reduction. Let
B be a prime of H above p. A direct calculation shows
that the elliptic curve obtained by reducing A (mod B)
and raising its coefficients to the (#Ok /p)-power is iso-
morphic to p *x A reduced (mod B). It follows that

0(Froby) = [p] € Pic(0O). (1-1)
Thus ¢ is the inverse of the Artin reciprocity map
rec : Pic(O) = Gal(H/K)

of class field theory. The extension H = H is the so-called
ring class field attached to @. The compatibility between
rec and J is known as the Shimura reciprocity law; it is
the central result of the theory of complex multiplication.

Finding the Heegner points. The following recipe for
calculating Heegner points on H/T'o(N) attached to the
order O of discriminant D prime to N is decribed in
[Zagier 85]. Choose an integer s € Z satisfying

s2=D (mod 4N),

giving rise to the cyclic O-ideal n := (N, S—l‘zfﬁ) of norm
N. The Heegner points (A, A’) attached to O for which

ker(A — A’) = An|

are in bijection with the SLy(Z)-equivalence classes of
primitive integral binary quadratic forms

Az? 4+ Bxy + Cy? satisfying
B? —4AC =D, N|A, B=s (mod2N).

Under this bijection, the point on H/I'¢(/N) identified
by n with the Heegner point corresponding to such a
quadratic form is the class of 7 where 7 € H is the unique
root of the dehomogenized form Az? 4+ Bz + C. Thus
a list of representatives 7y,...,7, € H (where h is the
class number of Q) of Heegner points can be computed
efficiently by using Gauss’ theory of reduced primitive
integral binary quadratic forms (see for example the ex-
planation at the end of section 5.2 of [Cohen 94]).

Heegner points on elliptic curves. Let E be an elliptic
curve defined over QQ of conductor N. By the modularity
theorem ([Wiles 95], [Taylor and Wiles 95], [Breuil et al.
2001]), FE is equipped with a nonconstant morphism of
curves over Q, commonly referred to as the Weil para-
metrisation attached to E:

¢: Xo(N) > E

mapping the cusp oo to the identity element of E. It has
proved eminently fruitful to consider the images under
the Weil parametrisation of Heegner points of X, (V) (cf.
Kolyvagin’s work on Euler systems).

While it is difficult to write down explicit algebraic
equations for Xo(N) (not to mention ¢), complex uni-
formisation of E(C) and of X((N)(C) provides a method
for calculating the Weil parametrisation in practice.
More precisely, the Riemann surface E(C) is isomorphic
to C/A, where A is the lattice generated by the periods
of a Néron differential w on E (which is well-defined up
to sign). Generators for A can be computed by Gauss’s
arithmetic-geometric mean formula for complete ellip-
tic integrals, a quadratically convergent algorithm which
works extremely well in practice. The curve E is then
given up to isomorphism (over C) by the equation

y? = 42° — g2(A)z — g3(A)
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and the complex analytic isomorphism
ne : C/A — E(C)
is decribed by the formula

ne(2) = (pa(2), Pa(2)),

where pp is the Weierstrass p-function attached to A.
Explicit formulae for A, g2(A), gs(A) and g can be found
in [Silverman 86] for example.

Let f be the normalised cusp form of weight two at-
tached to E, with Fourier expansion given by

oo

f(r) = Z an€®™7, a; =1.

n=1

To calculate the coefficients a,, it is enough to compute
ap for p prime, in light of the identity

H(l _ app—s)—-l H(l _ app—s +p1—23)—1 -~ Zann—s.
n

p|N N

This question in turn is reduced to counting the num-
ber of points of E over the finite fields with p elements,
since ap, = 0 (resp. 1, —1) if FE has additive (resp. split
multiplicative, non-split multiplicative) reduction at p,
and

ap =p+1—#E(F,)

if E has good reduction at p. The pull-back ¢*(w) of w
by ¢ is a non-zero rational multiple of the differential

wf =2mif(r)dr = Zanqn%, (g=e"),

n=1

Assume for simplicity that ¢*(w) = wys. (After replac-
ing E by a curve which is isogenous to it over Q — the
so-called strong Weil curve in its isogeny class — it is con-
jectured that ¢ can be chosen to satisfy this condition.
When E is a semistable strong Weil curve, it is in fact
known that ¢*(w) = +wy or £2wy. See the discussion in
[Edixhoven 91].) Given 7 € H, and setting

Jr :=/ wf,
100

a direct calculation shows that the following diagram
commutes:

H*/To(N) —2— Xo(N)(C)

-] |

c/A 5 EQC).

More precisely, for all 7 € H, the point P, = (z,y) €
E(C) corresponding to it under the Weil uniformisation
is given by the formula

P, = (pa(J7), Pr(J7))-

It is of some interest to consider the complexity of calcu-
lating (z,y) as a function of 7.

Proposition 1.1. For 7 € H, the calculation of the asso-
ctated point (z,y) € E(C) to d digits of decimal accuracy
can be performed in O(d?log d/Im(7)?) elementary oper-
ations as d — oo and Im(7) — 0.

Proof: The naive estimate

o0 a oo
Z Z"q" < Z exp(—2mnlm(7))
n=M+1 n=M+1

implies that the quantity J. can be evaluated with an
error of at most 10~¢ using not more than

log 10~¢ d
M= —2nIm(7) © (ImT)
Fourier coefficients attached to E. Using the algorithm
of Shanks (see Algorithm 7.4.12 in Cohen’s book [Co-

hen 94]), it is possible to compute M coefficients in time
O(M?). The evaluation of the sum

Gn o,
J. = 7;1 Iq

can then be performed (using Horner’s rule) with O(M)

multiplications. Each multiplication can be carried out in

O(dlogd) time using fast Fourier transform techniques.

Since the subsequent calculation of p(J;) and @'(J;) is

dominated by the time necessary to obtain J, (see Algo-

rithm 7.4.5 of [Cohen 94]), the result follows. O

1.2 Stark-Heegner Points Attached to
Real Quadratic Fields

Theory. The previous section motivates a conjectural
p-adic analytic construction of so-called Stark-Heegner
points, which are defined over ring class fields of real
quadratic fields. The description of the method is sim-
plified by the assumption that the conductor N =p is a
prime, an assumption that will be made from now on.

The elliptic curve E of conductor p has multiplicative
reduction at p. Of key importance for the construction
is Tate’s p-adic uniformization of E

@PTate : C;;( /qZ = E(CP)’

where g € pZ,, is the Tate period attached to E.
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Following the notations that were used in [Darmon 02],
set w = 1 if E has split multiplicative reduction at p, and
set w = —1 if E has non-split multiplicative reduction
at p. Some important features of the behaviour of the
Stark-Heegner points on E are governed by this sign. It
is known that w is equal to

1. the negative of the eigenvalue of the Atkin-Lehner
involution W, at p acting on f;

2. the sign in the functional equation for L(E/Q, s), so
that, conjecturally, E(Q) has even (resp. odd) rank
ifw=1 (resp. w=—1);

3. the eigenvalue of the Hecke operator U, acting on f.

Let K be a real quadratic field in which p is inert, and
let H be a ring class field of K of conductor prime to
p. Considerations combining the Birch and Swinnerton-
Dyer conjecture with a determination of the signs in
the functional equations of L(E/K,s) and its twists by
characters of Gal(H/K) lead to the prediction that the
Mordell-Weil group E(H) is equipped with a large col-
lection of points of infinite order. (Cf. the discussion in
the introduction to [Darmon 02].)

Let H, := P1(Cp) — P1(Qp) denote the p-adic upper
half-plane. Fix from now on an embedding of K into C,,.
Since p is inert in K, note that K N H, is non-empty.
The Stark-Heegner points are indexed by elements 7 €
K N#H,, and are defined by the rule

P = ¢Tate(']‘r)7

where J. € C;/ ¢% is a period attached to 7 and f whose
definition will now be recalled briefly.

The role played by the line integral of the differential
form wy in defining J- in the setting of Section 1.1 (when
T is quadratic imaginary) is now played by the double
integral on H, x H introduced in [Darmon 02]. More
precisely (with only a minor modification to the nota-
tion) equations (71) and (72) of [Darmon 02] attach to
a normalized newform for I'g(p) having rational Fourier
coefficents a period function

T2 y -
f /wEC; ®z A,
71 T

with 71,70 € Hp, z,y€P1(Q) CH". (1-2)

Here A is the Z-module of rank two

{/of(z)dz . 0 € Hy(Xo(p), cusps; Z)}_

Note that this lattice contains the period lattice A at-
tached to E. The period of (1-2) is expressed as a limit
of Riemann sums

ey b = T auy
%,I/IW_HLIIIIIIEO [;4 [(tu—T1> ® <6U/auz f(z)dz)]

(1-3)

where the limit is taken over uniformly finer disjoint cov-
ers of P;(Qp) by sets of the form U = aj'Z,, with
ay € GLF (Z[1/p]). In this limit, ty is an arbitrarily
chosen point of U, and ey := w°rde(dete),

The form of the definition, familiar from the theory of
p-adic L-functions, is based on the observation that the
assignment

ay oo

U~ eU/ f(2)dz (1-4)

ay0
satisfies a distribution relation. Since it takes values
in the finitely generated Z-module A, its values are p-
adically bounded and hence this distribution gives rise
to a p-adic measure against which locally analytic C,-
valued functions on P;(Q,) can be integrated.

As stated in Lemma 1.11 of [Darmon 02], the double
integral of (1-2) is additive in the first and second set of
variables of integration, i.e.,

T2 Py T3 Py T3 Py
][/w—kj[ /wz}[/w, (1-5)
T xr T2 T Tas x

for all ; € Hp, z,y € P1(Q),

T2 py T2 P2 To pz
f/w%-?[ /w:][/w, (1-6)
T1 x T1 Yy T1 T

for all ; € Hp, =z,y,z € P1(Q).

(Note that these relations are written multiplicatively in
Lemma 1.11 of [Darmon 02], because the double integral
defined there takes its values in C;'. The notational dis-
crepancy is in keeping with the common usage that the
composition law on the abelian group C; ® A should be
written additively in relations (1-5) and (1-6) above.)
By the third formula in Lemma 1.11 of [Darmon 02],
the double integral attached to E also satisfies the key
invariance property under I' := SLo(Z[1/p]):

T2 vy T2 Yy
7[ /wz}[/w for all vy € T.
vy Jyz nJe

Given any distinct elements a,b € P1(Q), the group
Fep={y€eT | va=a, ~b=0b}

is an abelian group of rank one. Assume for simplicity
that F is alone in its Q-isogeny class.
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Lemma 1.2. The double integral

¥z pb
i/
belongs to g% ® A, for all z € M, and for all y € Tqp.

Sketch of Proof. Since E has prime conductor, the as-
sumption that E is alone in its isogeny class implies that
ord,(q) = 1. Hence by Theorem 1 of [Darmon 02] (see
also Remark 1 following the statement of Corollary 3 of
[Darmon 02])

vz pb ~ -
j[ / w belongs to ¢“ ® A, (mod (Q,),s ® A). (1-7)

The proof of Theorem 1 of [Darmon 02] is based on a
deep conjecture of Mazur, Tate and Teitelbaum [Mazur
et al. 86] proved by Greenberg and Stevens [Greenberg
and Stevens 93]. A multiplicative refinement [Mazur and
Tate 87] of these conjectures due to Mazur and Tate,
which, for prime conductor, is proved by deShalit [de
Shalit 95], allows the (Qp)¢ors-ambiguity in formula (1-
7) to be removed. Lemma 1.2 follows.

Formal considerations explained in [Darmon 02], in-
volving the cohomology of M-symbols, imply the exis-
tence of “indefinite integrals”

]1/'2 € (CX /P oA

satisfying the properties

S oA o[ moasd
[ f [o=f [

forallTreM,, acl, zvyzecP(Q).

The first relation completely determines the indefinite
integral, in view of the fact that the space of I'-invariant
(Cr/d%) ®A-valued functions on P; (Q) xP; (Q) satisfying
the second relation is trivial. (In fact, this is already true
for the SLy(Z)-invariant functions.)

To define the period J. (Cz’; y/ qZ®1~X associated to 7 €
K NH,, we use the algebra embedding ¥ : K — M3(Q)
such that for A € K,

oo (1)-2(3)

VU is defined by
Trr7 —Nmr7 )

‘I’(T):< 1 0

Let O C K be the Z[1/p|-order of K defined by O =
U—1(M2(Z[1/p]). Let u be the generator of Of, the
group of units of O of norm one, which is greater than 1
with respect to the chosen real embedding of K. Then
v+ = ¥(u) is a generator for the stabilizer of 7 in T'.

Define
. T PY+T
o= ][ / w.

From the properties of the indefinite integral sketched
above, it can be checked that J, is independent of the
choice of z € P,(Q). Let 8 : A = Z be a Z-module
homomorphism. The following assumption is made on 3:

Assumption 1.3. The image B(A) is contained in 2¢pZ,
where ¢, is the Tamagawa factor attached to E at p.

The homomorphism 8 induces a homomorphism (de-
noted by the same letter by abuse of notation)

B:CX/¢*®A—C}/d"

Define
Jr = B(J:).

Definition 1.4. The point P; := ¢rate(Jr) € E(Cp) is
called the Stark-Heegner point attached to 7 € K NH,
(and to the choice of functional 3).

The conductor of T is the conductor of the Z[1/p]-order
O attached to 7.

A point 7 € K NH is said to be even if ord, (7 — 7) is
even, and odd otherwise. The action of I" on H,, preserves
both the order associated to 7, and its parity. There are
exactly h distinct I'-orbits of even 7 with associated order
O, where h is the cardinality of Pic*(Q), the group of
narrow ideal classes attached to 0. In fact, the group
Pict(0) acts simply transitively on the set of these I'-
orbits. (Cf. [Darmon 02], sec. 5.2). Denote by a * 7 the
image of a acting on T by this action. Let H™ denote the
so-called narrow ring class field attached to the order O,
and let

rec : Pict(0) = Gal(H'/K)

be the reciprocity map of global class field theory. The
following is a restatement of Conjecture 5.6 and 5.9 of
[Darmon 02] (in light of the fact that the integer denoted
t in conjecture 5.6 is equal to 1 when the conductor of E
is prime).

Conjecture 1.5. If 7 € K NHy, is a real quadratic point,
then the Stark-Heegner point P, € E(C,) is a global point
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defined over HY. Furthermore,

Paur = rec([a]) 1Py

A slightly weaker form of this conjecture is

Conjecture 1.6. If 71,...,7, is a complete set of repre-
sentatives for the I'-orbits of even T attached to the order
O of discriminant D, then the points P., are defined over
H™ and are permuted by Gal(H' /K), so that collectively
these points are defined over K.

Computations. We now describe an algorithm for com-
puting J.. Set

R={a+b/s:a€ZybeZS},

where s is a nonsquare element of Z, —pZ,. If K is a real
quadratic field in which p is inert, any point 7 € K NH,
is equivalent under T' to a point in R. Hence, it suffices
to describe an algorithm for computing

g (][T/;u) forteR, =z,yePi(Q). (1-8)

Let ‘;401, %:-, ey %f be a Farey sequence from x to y, i.e.,
a sequence of fractions in lowest terms satisfying

ap a o

— =, L =1, (I,i_lbi—bi_lai:il forz=1,...,n.
bO bn

Let 01,...,0, € SLy(Z) be elements satisfying

aj_1 a; .
0;0==2=, gjoo=-2 forj=1,...,n
bj—1 b;

By the additivity and SLg(Z)-invariance properties of the
indefinite integral, the period of (1-8) is equal to

n dj_lT oo
H J¢] ?[ / wl.
j=1 g
Since R is preserved by the action of SLy(Z) it thus suf-
fices to compute periods of the form

I6] <][T/Ooow) , with7eR.

To carry out this last calculation, note that
T poo T poO T 0 T poO
=g el
0 1 1 1
T oo = [oo°
A
21'7-1 1 ﬁ 0

r__ o0
’ / w(mod ¢?%).
0

27—1
-rT 00
w
1

Il

Il

T=
o
1-71

Hence, it suffices to compute

g1 pos _ 1 \P(ev [T f2dz)
B 7[ / w|] = lim 1+
- o ||U||—=0 e tv —7

where the notation is as before. Observe now that when
7 € R the function

il

i
+t—7'

is constant (mod p”) on the sets

-N =N —1
(po A ) Zy=j+p" Ly,

j=0,...,pN -1

. 1-N  -N \ !
( R ) Zy=(=jp+p"Zp)7",
j:07~-~7pN_1_17
which cover P;(Q,). It follows therefore from the ad-

ditivity of the distribution (1-4) and the formula (1-3)
that

4 ([H/oww) - (p;lv:[ol (1 3 - T)ﬁ(wN Fspor f(z)dz))

(1-9)
o 11 a(w™ [P f(2)dz
A1 (1+ 1 ) ( )
b pj—T
(1-10)
B(w™ f_’jp_ f(z)d=
= H (1+ i ) ( "’ >(mode).
je@/pNz)* =T
(1-11)

The computation of the values

8 ( [ #esaz)

can in turn be performed efficiently using Manin’s con-
tinued fraction method for calculating modular symbols.
(Cf. for example [Cremona 97].)

Note that the running time of the above algorithm for
computing J, is dominated by the (p” —p?¥—1)-fold prod-
uct of (1-11) needed to approximate the double p-adic
integral to a precision of p~V. Taking log(p") as a nat-
ural measure for the size of this problem, this algorithm
has exponential running time. Motivated by Proposition
1.1, it is natural to ask:

Question. Is there an algorithm for computing J, to a
p-adic acuracy of p~ % in subexponential time?
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Remark 1.7. A prospect for a polynomial-time algorithm
(albeit one that is neither as efficient nor as simple as
the method described in Proposition 1.1) is offered by
the conjectures of [Darmon 02]. Observe that J, can be
recovered from its p-adic logarithm and its value (mod p).
Thus it suffices to provide a polynomial-time algorithm
for computing

log J; = lim 3" [ﬂ <6U / f(z)dz>

Ueu v0

xlog(1+ - )]
tv—T1

when 7 € R. Taking local expansions of the logarithm,
this expression can be rewritten as

Z Z ¢j,k95,k(T)

k€Py(2/pZ) =0

where cjr € p’Zy[4/s] are constants independent of 7,
and g;, (1) € Zy[/s] are functions of 7 that can be calcu-
lated in linear time. Thus to calculate J for any 7 € R
to a precision of p~, it suffices to calculate the (p+1)N
constants ¢;x, kK € P1(Z/pZ) and j =0,...,N — 1. The
Shimura reciprocity and Gross-Zagier conjectures (to be
discussed below) might provide a method for accomplish-
ing this by predicting the values of J, for sufficiently
many 7 to the necessary precision, thus reducing the cal-
culation of the c¢;; to a problem of linear algebra pro-
vided the values of 7 can be chosen to produce a linearly
independent set of equations.

2. CLASS FIELDS OF REAL QUADRATIC FIELDS

The experiments summarised in this section test the pre-
diction of Conjecture 1.6 that Stark-Heegner points are
defined over ring class fields of real quadratic fields. All of
the calculations were carried out using Pari-GP running
on a Unix workstation.?

Choose a Z[1/p]-order O in a real quadratic field K.
Of particular interest is the case where Pic(O) is not of
exponent two, since in this case the associated ring class
field H is not abelian over QQ, and no method is known for
constructing points on E(H) without an a priori knowl-
edge of H. Thus, in all the cases to be examined in this
section, the order O has been chosen so that Pic™(0) is
a cyclic group of odd order h.

Let E be an elliptic curve of prime conductor p, where
p is inert in K and prime to the discriminant of O. Let

2The routines that were written for this purpose can be
downloaded from the web site http://www.math.mcgill.ca/
darmon/heegner /heegner.html

Ti,...,7h be a complete set of representatives for the
SLy(Z[1/p])-orbits of even 7 € H, having stabiliser in
M>(Z[1/p]) isomorphic to O, and let P,,,..., P, be the
associated Stark-Heegner points.

Example 2.1. Let O = Z [v/37] be the order of discrim-
inant D = 4 - 37, the smallest positive discriminant of
narrow class number 3. The smallest prime p which is
inert in Q(+/37) and for which the modular curve Xo(p)*
admits an elliptic curve quotient is p = 43. Let

E:y?4+y=2+22

be the eliptic curve of conductor p = 43 denoted by 43A1
in Cremona’s tables. The elements 71, 72,73 € Q(v/37) N
H,43 attached to the order O can be chosen to be

= —6+ V3T, 72=:3t1—‘/37, Ts:iﬂ;\_/_ﬁ

Let Q, and Q_ denote the real and imaginary half-
periods of E and define 8: A = Z by () = B(Q-) =
3. The points )
Pj = qJTate(ﬂJ‘r)

were computed to 5 significant 43-adic digits to obtain,
after setting (z;,y;) := P;:

@1 = 29+26-43+36-43%4-36-43% 415434 +34.43%+- - .
o= (31+29-43+24-43% +24-43% +13-43* +4.43%+...)
+ (16 +37-43 429432 +39.43% 4 26-43% 4+ 25-43% 4 ...)/37
z3=(31+29-43+24-43%24+24.43%+13.43* +4.43%+...)
+(27+5-43+13-43% +3.43% +16-43* 4+ 17-43% 4 ---)V3T.

yp =21+28-43+23-43%2 +43% +42.43% 4 4.43% 4 ...

Y2 =(18+7-43+31-432420-43% +19-43° +-.)
+(41+36-43+10-43% +14-43% +9.43* +30-43° +.-.)V37
y3 =(1847-43+31-43%24+20-43% +19-43% +...)
+(2+6-43+32-432 +28-43% 4+ 33.43% +12-43% +-..)V/37.

Since the sign of the Atkin-Lehner involution at 43 acting
on fg is equal to 1, Conjecture 5.9 of [Darmon 02] (to-
gether with Proposition 5.10) predicts that the 43-adic
points P; = (z;,y;) are algebraic and conjugate to each
other over Q, and that their coordinates generate the ring
class field of Q(+/37) of conductor 2. A direct calculation
reveals that

3

[I¢t—=;)=t-5"—5t—1 (mod 43°) (2-1)
j=1

3
[Tt -u)=1>—14 - 14t +2 (mod 43°). (2-2)
j=1
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Let f.(t) and fy(t) denote the polynomials appearing
on the right hand side of (2-1) and (2-2) respectively.
The small size of their coefficients suggest that the mod
435 congruences in these equations are in fact genuine
equalities. This guess is reinforced by the fact that f,(¢)
and f,(t) each have splitting field equal to H, and that, if
x € H is aroot of f,(t), and y is the unique root of f,(t)
defined over Q(z), then the pair (z,y) is an algebraic
point on E(H).

A similar calculation—with the same value D = 4-37,
and the same values of 71,72, and 73, but viewed this
time as elements of the 61-adic upper half plane Hg1—
was performed with the elliptic curve

E:y’+ay=2-2r+1

of conductor 61 denoted 61A1 in Cremona’s tables. The
x and y-coordinates of the Stark-Heegner points attached
to this order were computed to 5 significant 61-adic dig-
its, and found to satisfy (to this accuracy) the polynomi-
als with small integer coefficients

23 -3z —z+1, and 3 —5y°+3y+5.

As before, the splitting field of each of these polynomials
is the ring class field H, and their roots, paired appro-
priately, give global points on the elliptic curve F = 614
over H.

Example 2.2. Let K = Q(/401). It is the smallest real
quadratic field of (narrow) class number 5. The prime
p = 61 is inert in K/Q, and Xo(p)* admits an ellip-
tic curve quotient; the curve E of conductor 61 denoted
61A1 in Cremona’s tables, which already appeared in Ex-
ample 2.1. The following 7; € He1:

__ —1+401 _-L4+VAL 11440
T o 28
—7 + /401 —7 + /401
R="w% ' =" =

form a complete system of representatives for the
SLo(Z[1/61])-orbits of even T € Hg; whose stabiliser
in M>(Z[1/61]) is the maximal Z[1/61]-order O =
Z[1/61][1420] of K.

As in Example 2.1, let 2, and ©_ denote the real
and imaginary half-periods of E and define 8 : A — Z
by B(Q24+) = B(Q-) = 3. The five points P;, = (z;,y;)
were calculated to 4 significant 61-adic digits, yielding
the values:

1 =19+34-61+17-61% +46-61° +32-61% + .-
zo=(29+26-61+36-612+7-61°+12-61*+---)
+(52411-61+21-612 +32-613 +48-61% + - --)/401
x3 = (29426-61+36-6124+7-61%+12-61*+...)
+(9+49-61+39-61%+28-61° +12-61% +--.)v/401
zq4=(59+47-61+15-61%24+30-613 +32-614 4 --)
+(28+6-61+40-612 +36-61° +4-61% +-..)v/401
x5 = (59+47-61 +15-612 +30-61% +32-61% +-..)
+(33+54-61+20-61%+24-61% +56-61% + ---)V/401.

y1 =19+ 37-61+57-61%2+11-61% +34-61% + ...
yo = (48 +53-61 +8-612 +59-61% +12-61% +-..)
+ (5846061 +9-612 +28-61% +51-61% +-..)v/401
yz = (48 +53-61+8-612 +59-613 +12-614 +.-.)
+(3+51-612+32-61%+9-61% +---)v401
ys = (37+49-61+53-61%2+56-61° +30-61% +--.)
+(50+2-61+38-612+6-61%+11-61% +---)v/401
ys = (37+49-61+53-612+56-613 +30-61% +---)
+ (11 +58-61+22-61%2+54-61° +49-61% +-..)v/401

Conjecture 1.6 (combined with proposition 5.10 of [Dar-
mon 02]) predicts that the 6l-adic points P ,..., P,
are algebraic and conjugate to each other over Q, and
together generate the Hilbert class field H of Q(v/401).
One finds:

5
[1¢— =) = — 12t + 34¢° — 5¢° — 24t +9  (mod 61°)
J=1
5
(t —y;) =t° — 6t* — 181t — 428t> — 346t — 93 (mod 61°),
= §

J

and observes that the polynomials f.(¢f) and fy(t) ap-
pearing on the right both have H as splitting field. Fur-
thermore, if z is a root of f;(t) and y is the unique root of
fy defined over Q(z), then the pair (z,y) is an algebraic
point on E(H).

Example 2.3. Similar calculations were performed on the
real quadratic field K = Q(\/ﬁ) of class number 7.
When applied to the elliptic curve E = 61A whose con-
ductor is inert in K, the method produces seven 61-adic
points whose z and y coordinates ostensibly (i.e., to the
calculated accuracy of 4 significant 61-adic digits) satisfy
the polynomials with small integer coefficients:

fz(z) = =7 — 2328 + 10925 — 102z* — 13723
+ 27122 — 145z + 25,

fuly) =7 + T1y° — 589y° + 204y* + 1582y°
— 533y% — 22y + 5.
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D h hy yd Py
8 1 1 2-(3,-1+3v9) 0
131 1 2. (888, -1 - 3397./13) o
17 1 1 2. (&,-3+8V17) 0
2 1 2 (Sps0er, 4 — Lrsses /o7 5(~6,~3 £ $v=7)
24 1 2 =%+ e 5(-4,-3 £ §vD)
28 1 2 (-3 - $V7 5(~6,—4 + $v=7)
29 1 1 - (Sgazerse, 1 4 sosedmersasts /) o
21 2 3 (3-3-1v2) (-3 3V
02 2 (555~ 3+ SBTVI0) 5 (3, -1 £ §vD) 0
41 1 1 2. (88, -3+ T v4al 0
2 1 2- (‘GiGoatasoss » 3 T Tidirecssiosraras v 13 o
571 2 (8- - BVET 5(h -1+ 3v-T9)
6L 1 1 2+ (SsatrorroTaaco  —2 ~ dtostsicsresosrarzons ¥ OL o
6 2 2 (580 —2 — sseoo V85) +5- (58, -3 = Tg VI3) a
68 1 1 2 (35iGois7isoo0a0130248 » 2  To455007430671980709046 063455508 V 17 o
™12 (8-3-1v2 5(-%,-}+ Bv9)
73 1 1 2. (8L, -1+23V73 o
% L 2 (%84500 » —2 + *Sdassroo0- V19 5(3 -2 3V-19)
8L 2 - (Fom00 » —2 + ddarrono V21 10- (-6,~3+ 5V~7)
8 2 2 (MGG 3 — MiEeoterazrioo V80) +5- (B, -3+ §VIT) o
% 2 4 (F7s37077685085733690056490642. - 27837077685085735569056460643 ¥ 5 (- £5V3,

3 ~ GB68261879666540768573103675507281 133773524V 2 —3 + V2 F FV-6)

128971256132268625320388516238463109582746165
F 6568261879666840768573193675597281122773524 6

TABLE 1. Stark-Heegner points on Xo(11), with D < 100.

As in Examples 2.1 and 2.2, the roots of these poly-
nomials generate the Hilbert class field of Q(v/577), and
are the coordinates of global points on E defined over
this class field.

Remark 2.4. In all the examples presented in this sec-
tion, the Stark-Heegner points are integral points of small
height, a fortunate circumstance which facilitates their
identification. There is no reason to expect this pat-
tern to persist, and in fact it is known (cf. [Bertolini
and Darmon 2001]) that there is no elliptic curve E for
which all the Stark-Heegner points are integral—in con-
trast with the case of the classical Heegner point con-
struction, which does yield integral points on any elliptic

curve E whose associated Weil uniformisation maps only
cuspidal points of Xo(N) to the origin of E.

Remark 2.5. Certain elliptic curves—such as the curve
61 A—seemed more amenable to the types of calculations
described in this section, than others, such as 114, on
which the Stark-Heegner points appear generally to be of
larger height. The authors can provide no explanation,
even conjectural, for this phenomenon—nor would
they vouch for the fact that this observation is not a
mere accident, an artefact of the small ranges in which
numerical data has been gathered. With this caveat, the
following question still seems to merit some consider-
ation: Is there a quantity which would play the role of the
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D hy 2 P5
101 1 - 0
105 4 i _
109 1 1 2(3easmena 1. Mssu00sioosinss /T00) o
nz 12 3(3, -4+ 32V7) 15 (6,4 - ¥v=7)
16 1 1 (Saaaaee, 1 - SEERe VD) 0
nro2 3(%, -4+ BIVID) 5(~—4 + #v=30)
120 2 4 (5iss152670 » —2 ~ “szoseesstsseroo v 30) - -
+5 (%8, 4 -+ L)
128 2 4(2,-3+1v2) —__
129 2 ?gggggggg’ _% - 486278764365:18796307090 129 -
149 4 (Getbiotesorisans » —2 T Siessresasodvarsizaosozon V50) O (=50, —3 + 35V =39)
+5 (56 —3 + 556 V7 +5 (=6, -3 + FV=7)
145 4 4 S 0
149 1 1 e 5 g o
153 12 (%3 - VD) 5(~ 42, -1 + 25LV/=50)
156 2 4 (%5i56rraersn0 s —3 T “Ssvassssnicarsossson v 39) 5(—%, -1 +12y=T3)
+5 (%, -3 - VD) +5(=5,-3 - Bv99)
160 2 4 3(%, - LMETTUTG) 45 (3, -1+ 1v2) -—-
161 1 2 Toasse, L Iosessl /T6) 115 (238, - 4 — 25288./~T61)
164 1 1 8 (32, —2 — 20903,/47) o
L 2 (25’51)57537’ _% - 41617835222345021 43 5 (?_g’ “% + %\/—_43)
173 1 1 e o
B L 2 BRI 1 + V) JEREEEWS )
89 1 2 (S5, + SR VI 0
193 1 1 2(%87, -1 — 38L./193) o
197 1 1 - o
200 2 2 (3-3+1vD)+5 (-4 - BEVTO) 0

TABLE 2. Stark-Heegner points on X(11), with 100 < D < 200.

degree of the Weil parametrisation in the classical Heeg-
ner point construction by controlling the overall heights
of Stark-Heegner points?

3. ELLIPTIC CURVES OF SMALL CONDUCTOR

3.1 Elliptic Curves with w =1
The elliptic curve curve X((11). Let
E:y’4+y=2%—22—10z —20

be the elliptic curve of smallest conductor N = 11. Given
a discriminant D (not necessarily fundamental) write P;)
(resp. Pp) for the Stark-Heegner points of discriminant
D attached to the choice of functional sending Q. to 5
(resp 2_ to 5) and Q_ (resp. ©24) to 0.

Conjecture 5.9 and Proposition 5.13 of [Darmon 02]
predict that PJ belongs to E(H), and that Pj, belongs
to E(H")~, where H and H* are the ring class field
and narrow ring class field of discriminant D respectively,
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D h hy P Py

5 1 1 2(3,-2-5) o

21 = 2(% -5 -5%V3) 2(3-3- 29
20 1 1 2 (3,-2+V/5) o

24 1 2 (5%, —5¢ - 4°V6) 43 - +8V-2)
28 1 2 154 — 3368 — idzssa V7 2(3, -3+ %)
20 1 1 2 (3338, - 438 — 320159 0
3711 (Sgzpises, —umszuse  ssuouowrs /37 0

40 2 2 2(5,—3+3v10) +4(3,-2— V5) o

41 1 1 2(%,-3 - 2v41) o

41 2 (50, 3538 -+ J20eses /77 2(4,-3 - %9)
45 1 2 o 16(5,—¢ + Ev-15
48 1 2 B —n+vE o

56 1 2 (lpsse, 1307 4 40218 /73 4(3,-8-8vD)
57 1 2 (Seziat, —1ootemes _ smuiazss 57 4(-8,-5 - BVD)
61 1 1 2(%, -2+ /61 o

65 2 2 2 (15, -8 — 7V/65) + 4 (3, -2 + V5) o

73 1 1 2 (1343, 1519 _ 3845,/73) o

80 1 2 2(3,-2+V5) 4(3,-3 -159)
88 1 2 (g3issosasss» ~rssototessrs T+ sissssassearrrrioeV22) 43R+ HVD)
92 1 2 (HEEER YRR - SENMNSNSVE)  2(h-1- %)
9% 2 4 (- EE)+2(R-E- 15 2(3,-%+49)
7 1 1 2 (48008, —40LS8 — BV 0

TABLE 3. Stark-Heegner points on X(17), with D < 100.

and the — superscript denotes the minus-eigenspace for
complex conjugation. This prediction is borne out by
the calculations whose outcome is summarised in Tables
1 and 2.

Remark 3.1. In Table 1 all the Stark-Heegner points
for discriminants D < 100 (not necessarily fundamental)
were calculated to an accuracy of 8 significant 11-adic
digits. In all cases it was possible to find a global point
defined over the appropriate class field, of fairly mod-
est height, approximating the Stark-Heegner point to the
calculated accuracy. In many cases, however, this accu-
racy was not enough to recognize these 11-adic points
as global points over the appropriate class field H with-
out making an a priori calculation of the Mordell-Weil
groups E(H). This calculation in turn was facilitated by

the fact that the class fields that arise for discriminants
D < 100 in which 11 is inert are composita of quadratic
extensions of Q.

Remark 3.2. Note that the points P seem generally to
be of larger heights than the points P,,. The authors
know of no theoretical justification (even heuristic) for
this empirical observation.

Remark 3.3. Table 2 lists the Stark-Heegner points on
Xo(11) in the range 100 < D < 200.

Remark 3.4. The entries marked — — — in Table 2
(as in the tables following it) correspond to situations
where the Stark-Heegner points have not been calcu-
lated. In most cases, this is because the (rudimentary)
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D h P

8 1 2L g + ST

12 1 (8,-1+23)

13 1 2(4,—% - 3V13)

21 1 (322, -4 + 39433./31)

2 1 2 (lezee, 3 4 frsosst /35

32 1 (F.-1-%V2)

33 1 (55, —3 + %55 V/33)

37 1 2 (%, -3 — 1237

40 2 (5 -3 — - V10) +3 (5, -3 + Fv2)
4 1 2 (150600000 — 2 — 000037027006 V 41

48 1 (-1 -%v3)

52 1 (0]

5 1 2 (11802, 1 4 19z88a1 /53

5 1 (%%’ _é - 7241722494474256570077561535631305354(?07 14)
60 2 (oo 3 + Seatmrsono V10) +3 (%, -3 + FV3)
65 2 (“3570030 > —3 + Hitossoraon V65) +3 (4, —3 — §V13)
69 1 2 (438, -1 4 332./69)

72 1 2(%,-4 - $v)

84 1 (@]

88 1 (%7_%+ 14646508192 22)

89 1 - — =

97 1 2 (738173261’_% + 2127750601361 97)

TABLE 4. Stark-Heegner points on 194, with D < 100.

search algorithm that was used to compute the relevant
Mordell-Weil group did not produce a point in the rel-
evant Mordell-Weil group, even though the existence of
such a point is guaranteed by the Birch and Swinnerton-
Dyer conjecture. At any rate, the authors are satisfied
with the strong evidence for Conjecture 1.5 provided by
the data they have compiled, and believe that the miss-
ing entries in their tables are only a manifestation of their
lack of persistence in fully carrying out their calculations.

The elliptic curve of conductor 17.  Table 3 summarizes
the calculation of Stark-Heegner points on the elliptic
curve 17A1 of coonductor 17, with equation given by

y2+xy+y=933—x2—m—14.

The points were computed to an accuracy of 5 significant
17-adic digits. When their height was too large to allow

easy recognition of their coordinates as algebraic num-
bers, the Mordell-Weil group of E over the appropriate
ring class field was computed, allowing the recognition
of the points Pg and Pp, as global points in most cases.
Here, Pg (resp. Pp) is associated to the functional 3
sending Q4 to 8 (resp. Q2_ to 8) and Q_ (resp. 24) to 0.

The elliptic curve of conductor 19.  Table 4 summarizes
the data for the elliptic curve of conductor 19, denoted
19A1 in Cremona’s tables, and with equation given by

v +y=23+22 -9z —15.

In this case only the point Pj,—defined by letting 3 be
the functional sending Q4 to 6 and Q_ to 0—was calcu-
lated, to an accuracy of 4 significant 19-adic digits.
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D h hy P Py

5 1 1 2-(0,0) o

8 1 1 2-(0,0) o)

13 1 1 2. (0,0) 16)

17 1 1 2-(0,0) 0

20 1 1 —4-(0,0) 0

24 1 2 -(0,0) (3-3£3vV-2)

29 1 1 4-(0,0) o

32 1 2 -3-(0,0) (3:-3£3V-2)

5 1 2 ~3-(0,0) (3 -3t %v-15

52 1 1 —4-(0,0) (@)

56 1 2 (0,0) (3:.-3+4v-2)

57 1 2 (0,0) (33— 85V-19

60 2 4 (2+ 3,4 F2V3) +(-1£v3,-} - V-5+3v-15
61 1 1 16) 16)

68 1 1 —8-(0,0) o

69 1 2 0] (-2,-3+4v/-23

72 1 2 -3-(0,0) (3,-3+%V-6)

%6 1 2 (0,0) (382, -3+ %5%v-19

80 1 2 (0,0) (3 =3+ 3/-5)

88 1 2 —(0,0) )

89 1 1 —2-(0,0) o

92 1 2 —2.(0,0) (—2, —% +v/-—23

93 1 2 2-(0,0) (-3 £5V-31

9% 2 4 (1+v3,2+3) +(-3+3v3, -4+ 1V-2F}V-6)
97 1 1 6] o

105 2 4 (£+2v2L,-Zf42V2 (-3 +3V2L -3+ % V15 + 5 V-35)
109 1 1 2(0,0) o

113 1 1 0] o

116 1 1 —8(0,0) o

117 1 2 —5(0,0) (3:-3 £ 5v-39

124 1 2 0 (-R—E5H5V-3T

125 1 1 —6(0,0) o

128 1 2 4(0,0) 2(3 -3 31vV-2

129 1 2 -(0,0) (S50 —% + %‘/ —43)
133 1 2 —(0,0) #2-3 5832 Vv —19)

140 2 4 —(0,0)+ (2+V7,4+2V7) (-1-3v7,- - 3V-35
153 1 2 ~3(0,0) (f’z—%» 1+ 71280%% —51

156 2 4 (2+ ——4¢2\/_) -%-% 3_l_14689 — 30e5V—39)
161 1 2 2(0, o) (-2,-3+ 2,/—23)

165 2 4  (1+133,-1+ .13 §+5V33, -3 + 5v-15)
168 2 4 (%:t% T szT"’\/j (———1\/_ i—4 6*-\/_)
172 1 2 (0,0) (Staraass: — 3 * Tose0snss0no v —43)
177 1 2 o (—18:—3 * Hov—59)

180 1 2 6(0,0) 2(3 -3+ xv-15)

193 1 1 -2(0,0) o

200 2 2 —2(0,0)+2(-3,-1+1/10 o

TABLE 5. Stark-Heegner Points on X(37)", with D < 200.
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D h hy P} Py
5 1 1 2(0,0) [9)
8 1 1 —2(0,0) 0]
2 1 2 (0,0) (-5 -3+39)
20 1 1 —4(0,0) 0]
28 1 2 (0,0) (=% —3+§)
29 1 1 2(0,0) o
32 1 2 3(0,0) (-%,-1-%
33 1 2 (0,0) (-5 -z - S v-1)
37 1 1 2(0,0) o
45 1 2 (0,0) -—-
48 1 2 3(0,0) 25—~
61 1 1 2(0,0) o
65 2 2 —(0,0)+ (52’_%_% 13 Z
69 1 2 (0,0) (“gg* 3 t+ 12:558 v _23)
72 1 2 (0,0) -—-
7301 1 -2(0,0) 0
%6 1 2 o 2(-3%,-1+3%9)
712 —-3(0,0) (=553 - ‘9362‘ V)
80 1 2 (0,0) (-3 -z3v-0)
85 2 2 —(0,0)+ (-1, -1+ 2817 o
88 1 2 (0,0) (5 -3 £ 5 v-11)
89 1 1 2(0,0) o
93 1 2 3(0,0) (_g%zv_% + 114982925 \/-—31)
104 2 2 (0,004 (& ,—%ﬁ: £2-V13) @)
105 2 4 i1,-1+1/01 (-2,—3+3V-15) + (-3, -3 + 35V-35)
108 1 2 3(0,0) (-3,-3+3v-1)
112 1 2 -3(0,0) 3(-3,-3+3v-0)
113 1 1 4(0,0) o
116 1 1 —4(0,0) o
120 2 4 1,-1+16) (-2, -1 + £2v/=10) + (-2,—% + 1 V—15)
125 1 1 —10(0,0) o
128 1 2 —4(0,0) 2(-5,-3x3v-0)
132 1 2 —4(0,0) o
136 2 4 (2 +1V17,3+ V17) -—=
137 1 1 4(0,0) o
141 1 2 —2(0,0) 2 1+ 3/-47)
148 3 3 Cf. example 1, sec. 2. 0]
149 1 1 o o
156 2 4 (4= VI311+3V3) (-~ igzssges _ 200208 /73,

-1 - SR VT - R vT)
157 1 1 —4(0,0) o
161 1 2 (0,0) ( %7 _% + 1203558\/_—23)
168 2 4 —(0,0+(}-1-3vA)  (-3-}+ VIO + (-5 -4 +3V7H)
177 1 2 —2(0,0) 2(-12,-3+ 64\/?)
180 1 2 4(0,0) -——
184 1 2 —(0,0) (38, -3+ 2v-23)
192 2 4 -2(0,0)+(-3,-3 £ ;V6) (CL-1+3/78
200 2 2 4(0,0)+2 (3, -1+ 1V10) 0

TABLE 6. Stark-Heegner Points on 43A, with D < 200.
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3.2 Elliptic Curves with w = —1

The elliptic curve Xo(37)*. Calculations similar to
those of the previous section were performed for the el-
liptic curve

E:y’+y=23-=z

of conductor N = 37 denoted by 37A1 in Cremona’s ta-
bles. For all real quadratic discriminants D satisfying
(£) = —1, write Pf (resp. Pp) for the Stark-Heegner
points of discriminant D attached to the choice of func-
tional @ sending €24 (resp 2_) to 1 and Q_ (resp. 24)
to 0.

Conjecture 5.9 of [Darmon 02], which apply directly in
this situation because E is unique in its Q-isogeny class,

predicts that

1. The point P;} belongs to E(H), where H is the ring
class field attached to the discriminant D.

2. The point P, belongs to E(H*), where H™ is the
narrow ring class field of discriminant D, and is sent
to its negative by complex conjugation, so that in
particular it is a torsion point if A = AT,

In light of the fact that the eigenvalue of the Atkin-
Lehner involution W, at p acting on fg is equal to
1, Proposition 5.10 of [Darmon 02] (which is condi-
tional on Conjecture 5.9) also predicts that

3. If O has class number one, so that H = K, the point
P belongs to E(Q).

These predictions are borne out by the calculations,
performed to 5 significant 37-adic digits in the range
D < 200, whose outcome is summarised in Table 5.
In these calculations, the heights of the Stark-Heegner
points are quite small, and so they could usually be recog-
nised directly as algebraic points without an independent
calculation of the Mordell-Weil groups E(H).

The elliptic curve 43A.  Table 6 displays the correspond-
ing data for the elliptic curve

y2 +y=2z°+2?

of conductor 43 (denoted 43A in Cremona’s tables),
which has rank one over Q and Mordell-Weil group gen-
erated by the point P = (0,0). The point P (resp. Pp)
corresponds to the choice of functional 3 sending the pe-
riod 4 to 2 (resp. Q4 to 0) and Q_ to 0 (resp. Q_
to 1).

The elliptic curve 61A.  Table 7 displays the correspond-
ing data for the elliptic curve

v+aoy=2>-2z+1

of conductor 61 (denoted 614 in Cremona’s tables),
which has rank one over Q and Mordell-Weil group gen-
erated by the point P = (1,0). The point Pj; (resp. Pp)
corresponds to the choice of functional 3 sending the pe-
riod Q4 to 2 (resp. Q4 to 0) and Q_ to 0 (resp. Q_
to 1).

4. A GROSS-ZAGIER CONJECTURE

If K is a real quadratic field of narrow class number h,
and E is an elliptic curve of prime conductor p which is
inert in K, let

Px = P, +---+ Pr, € E(Cy),

where 71, ..., T, range over a complete set of representa-
tives for the SLy(Z[1/p])-orbits of even 7 € H, with sta-
biliser isomorphic to the maximal Z[1/p]-order O of K.
The Shimura reciprocity law predicts that Pr,,..., Py,
belong to E(H), where H is the Hilbert class field of K,
and that these points are permuted simply transitively
by Gal(H/K). This implies that Px belongs to E(K).
Guided by the classical Gross-Zagier formula, the follow-
ing conjecture is natural:

s Q2
Conjecture 4.1. L'(E/K,1) = 4ﬁh(PK).

Assume furthermore that F satisfies the following ad-
ditional assumption:

1. E is a quotient of Xo(p)*

2. F is alone in its Q-isogeny class, so that in particular
it has no rational torsion.

In this case, the Shimura reciprocity law of [Darmon
02] predicts that the Stark-Heegner point Px belongs to

E(Q).

Remark 4.2. The curves of conductor < 101 satisfying
these assumptions are the curves denoted 374, 434, 53A4,
614, 7T9A, 834, 89A, and 101 A in Cremona’s tables.

The assumptions on E imply that w = 1, and hence
that the sign in the functional equation for L(E/Q, s) is
—1, so that

L'(E/K,1) = L'(E/Q)L(E®/Q,1),  (4-1)
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D h hs = Pp
8 1 1 2(1,0) 0
17 1 1 —2(1,0) 0
21 1 2 (1,0) (—7 g B 1)
24 1 2 o) 2(-2,1-y-2
2% 1 2 —(1,0) (5 3 = =T
29 1 1 —2(1,0) o
32 1 2 —2(1,0) (-2,1++/-2
33 1 2 (1,0) (=51: & £ &py=11)
37 1 1 2(1,0) 0]
40 2 2  -1L0)+(4-2£2V5) o
4“4 1 2 (1,0) (—33 11 = 3 V-11)
53 1 1 —4(1,0) 0
68 1 1 6(1,0) 0
69 1 2 (1,0) (et = A/ =23
72 1 2 —2(1,0) -
84 1 2 —(1,0) (% 23 = iy =]
8 2 2 (L 0+ iy — =k L/ B) 0
89 1 1 10) 10)
92 1 2 (1,0) (=55 3155, £ Tg20 V= 23)
% 31 (i REEE

4 1141 I 1T41/6

2 4 4 47 8 8
101 1 1 2(1,0) 0
104 2 2 —(L,0)+(55,-3 - &5V13) 0
105 2 4 —3 +3V5,0) (—52 - 3V5, 50 + 3V5 + ZRV=T+ 335
112 1 2 2(1,0) 2l=thar )
116 1 1 2(1,0) 10)
120 2 4 —(1,0) (922,481 4 20927, /770) + (—2,1+ v/=2)
124 1 2 10) 2(~%1 £ 531
128 1 2 o 2 (=2, 1. Lx/—2
120 1 2 o 4(-8, 8+ 3:;—43)
132 1 2 -3(1,0) (-%‘i» },—i 28 —11)
133 1 2 (1,0) (=i i9—27\’—7)
140 2 4 (-3+£3V53F3V6) (-1, 415+ 20/ 7+ 3/735)
145 4 4 —— o
148 3 3 Cf. example 1, sec. 2. (0]
152 1 2 —-2(1,0) 2(-2,1+/-2)
153 1 2 2(1,0) e
157 1 1 2(1,0) 0]
160 2 4 (1,0) —82 A BRT/10) + (-2,1+ V-2
165 2 4 (—% 5 %\/gy % F %\/5) (_4786658312:;36_241?2)?31 \/E_), 4122%50146_9&3%\/54_
9940343<§3 =11 76 V 55)

172 1 2 2(1,0) d(—& =+ %\/—433
173 1 1 4(1,0) 0]
176 1 2 -2(1,0) %
i;z i f (160) (—TRaar Seairmt g {esem00asteas v —59)
18 2 2 —(1,00+ (4 -2+25) 0
189 1 2 —3(1,0) - =
193 1 1 o 10)
200 2 2 -3(1,0)+ (%,-2+ 2/5) o

TABLE 7. Stark-Heegner Points on 614, with D < 200.
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D a(D) AD)|[[ D aD) AD)]| D aD) AD)] D D) AD) | D aD) AD)
5 2 4 || 193 -2 4 || 393 2 4 || 584 —6 36 || 796 0 0
8 2 4 || 204 2 4 || 401 2 4 || 597 0 0 (| 797 -8 64
13 2 4 || 205 -2 4 (| 409 0 0 (| 609 0 0 || 808 2 4
17 2 4 || 209 -2 4 || 412 -2 4 || 616 2 4 || 809 4 16
24 -2 4 (| 217 0 0 (| 413 12 144 || 649 0 0 (| 812 -8 64
29 4 16 || 220 —2 4 || 421 -2 4 (| 652 2 4 (| 829 0 0
56 2 4 || 236 —4 16 || 424 -2 4 || 653 0 0 || 849 0 0
57 2 4 || 237 6 36 || 429 6 36 || 661 -2 4 || 853 4 16
60 -2 4| 241 0 0 (| 449 2 4 || 664 2 4 (| 856 0 0
61 0 0 || 253 0 0 || 457 -2 4 668 —14 196 || 857 6 36
69 0 0 || 257 —4 16 || 461 —10 100 || 680 4 16 || 865 2 4
76 2 4 || 264 2 4 (| 473 —6 36 || 681 0 0 || 869 —6 36
88 -2 4 || 265 2 4 || 476 2 4 || 685 —4 16 || 893 6 36
89 -2 4 | 273 2 4 || 489 2 4 || 689 -2 4 || 901 2 4
92 —4 16 || 277 4 16 || 501 2 4 || 697 -2 4 || 905 -6 36
93 4 16 || 281 4 16 || 505 -2 4 || 701 -8 64 | 908 —12 144
97 0 0 (| 301 -2 4 || 520 0 0 || 705 -2 4 || 917 —6 36
105 -2 4 (| 309 -2 4 || 524 2 4 || 709 2 4 (| 920 —4 16
109 2 4 || 313 2 4 || 533 -6 36 || 716 4 16 || 933 6 36
113 0 0 || 316 2 4 || 536 0 0 (| 717 4 16 || 940 -2 4
124 0 0 [ 328 -2 4 (| 537 0 0|l 721 -2 4 || 949 -2 4
129 -2 4 || 341 8 64 || 541 —4 16 || 732 4 16 || 956 8 64
133 -2 4 || 348 4 16 || 553 2 4 (| 745 2 4 || 957 0 0
140 —6 36 || 353 2 4 || 557 —16 256 || 748 -2 4 || 977 4 16
156 -2 4 (| 357 6 36 || 561 -2 4 || 753 -2 4 || 984 2 4
161 4 16 || 364 2 4 || 568 -2 4 || 757 —4 16 || 985 2 4
165 2 4 || 365 6 36 || 569 4 16 || 760 0 0 (| 993 0 0
168 -2 4 || 376 2 4 || 572 -6 36 || 764 0 0 || 997 —4 16
172 2 4 || 385 -2 4 (| 573 0 0 (| 769 0 0
177 0 0 || 389 —4 16 || 577 -2 4 || 785 —2 4
TABLE 8. Traces of Stark-Heegner points on X(37)*", with D < 1000.
D aD) AD)] D aD) AD) | D oD AD) ] D a®) AD) ][ D aD) AD)
5 2 4| 184 —2 4 || 409 -2 4 || 593 -2 4 (| 793 2 4
8 -2 4 || 201 2 4 || 413 -8 64 || 601 0 0 || 796 0 0
12 -2 4 || 204 2 4 || 417 -2 4 || 604 2 4 || 808 —6 36
28 2 4 || 205 -2 4 || 421 4 16 || 609 0 0 (| 813 6 36
29 2 4 (| 209 0 0 || 424 2 4 || 620 6 36 || 824 -6 36
33 2 4| 217 —2 4 (| 429 -2 4 || 629 —4 16 || 829 —4 16
37 4 16 (| 220 2 4 (| 433 2 4 || 632 12 144 || 844 0 0
61 -2 4 || 233 0 0| 437 -—12 144 || 636 -2 4 (| 849 2 4
65 -2 4 (| 237 0 0 (| 449 -2 4 || 641 2 4 || 856 —4 16
69 2 4 | 241 0 0 || 456 4 16 || 652 6 36 | 865 0 0
73 -2 4 || 248 —2 4 || 457 2 4 || 653 -8 64 || 872 6 36
76 0 0 (| 249 2 4 (| 460 2 4 || 664 2 4 || 888 4 16
7 —6 36 || 257 -2 4 || 469 2 4 || 665 4 16 || 889 2 4
85 -2 4 || 265 2 4 (| 472 0 0| 673 2 4 || 892 2 4
88 2 4 || 277 2 4 || 476 6 36 || 677 8 64 || 893 —4 16
89 2 4 || 280 4 16 | 481 0 0 || 696 4 16 || 897 -2 4
93 6 36 || 284 4 16 || 485 -2 4 || 716 -2 4 (| 905 0 0
104 2 4 || 285 —4 16 || 492 —2 4 || 717 —12 144 || 908 8 64
105 0 0 || 309 2 4 || 493 6 36 || 721 -2 4 | 921 -2 4
113 4 16 || 313 2 4 || 501 -2 4 || 733 8 64 || 929 0 0
120 0 0 | 321 0 0 || 505 2 4 (| 749 0 0 [ 933 2 4
136 -2 4 (| 328 -2 4 || 521 -2 4 (| 753 2 4 (| 937 2 4
137 4 16 || 329 0 0 || 524 0 0 || 757 4 16 || 940 4 16
141 —4 16 || 349 2 4 || 536 2 4 || 760 0 0 || 949 -2 4
149 0 0 || 364 2 4 || 545 2 4 || 761 0 0 [ 953 -2 4
156 2 4 || 373 —4 16 || 553 —4 16 || 764 4 16 || 965 2 4
157 —4 16 || 376 0 0 || 561 2 4 773 18 324 || 973 2 4
161 2 4 (| 377 6 36 || 577 2 4 || 776 -2 4 (| 985 0 0
168 —4 16 || 381 2 4 | 581 -2 4 || 777 —4 16 || 988 8 64
177 —4 16 || 389 0 0 [ 589 0 0 || 781 —4 16 || 997 -2 4

TABLE 9. Traces of Stark-Heegner points on 43A, with D < 1000.
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D aD) AD)|| D a®) AD) ] D a®) AMD) ] D ad) AD) ]| D aD) AD)
) 2 4181 0 038 —4 16 [ 593 -2 4821 1 16
17 -2 4185 -2 4| 397 -2 4604 -2 4 || 824 8 64
21 2 4 || 193 0 0 | 401 0 0| 616 -2 4 || 844 0 0
24 0 0 || 201 2 4 || 409 0 0| 617 -4 16 || 856 0 0
28 -2 4204 -2 16|47 -6 36| 620 8 64| 860 0 0
29 -2 4 || 209 2 4 || 421 2 4| 633 0 0l s61 -2 4
33 2 4213 -4 16 || 429 2 4| 636 4 16 || 865 4 16
37 2 4 || 220 2 4| 433 -4 16 || 641 -4 16 || 872 -6 36
0 -2 4 221 2 4437 -6 36| 645 -4 16 || 877 0 0
44 2 4 233 -2 4| 144 0 0 || 653 0 0 || 885 2 4
53 -4 16 || 236 -2 4| 445 0 0 || 661 2 4889 -2 4
69 2 4237 -6 36| 453 -2 4664 -4 16 || 892 2 4
85 2 4 || 265 0 0| 456 0 olle6s5 -6 36|87 —6 36
89 0 o 268 —2 4 || 457 2 4 || 669 2 4904 -2 4
92 2 4 || 273 2 4| 460 -2 4 | 673 2 4 || 905 4 16
93 0 0l 27 -2 4| 465 0 o677 12 144908 -6 36
101 2 4 || 281 4 16 || 481 2 4 || 681 2 4 913 0 0
104 -2 4 || 284 0 0505 -2 4 || 689 0 0l 917 -2 4
105 -2 4312 -4 16 || 509 2 4 || 697 2 4| 921 2 4
120 -4 16 || 313 0 0| 517 0 0| 701 0 0 933 -2 4
124 0 0 || 316 2 4| 520 -2 4 || 709 2 4941 -6 36
129 0 0| 328 -2 4 || 521 2 4 || 721 2 4| 952 0 0
133 2 4329 -4 16 || 541 0 0 || 749 0 0953 -10 100
140 2 4| 337 -4 16 || 556 -2 4| 753 -4 16 ([ 965 12 144
145 2 4 || 345 2 4| 557 -4 16 || 760 0 o || 969 0 0
152 -4 16 || 348 4 16 || 572 6 36| 761 2 4 || 984 0 0
157 2 4 || 349 2 4| 573 2 4 || 764 2 4993 -2 4
165 2 4 || 364 2 4| 577 2 4| 769 -2 4997 -2 4
172 4 16 || 373 6 36| 581 0 0| 776 4 16
173 4 16 || 376 0 0 584 -2 4785 -2 4
177 2 4 || 377 2 4|58 -4 16 || 817 0 0

TABLE 10. Traces of Stark-Heegner points on 61 A, with D < 1000.

where EP) is the twist of E by Q(v/D). Suppose that
E(Q) has rank 1 and is generated by P. The Birch and
Swinnerton-Dyer conjecture predicts that

L(E/Q1) = Quh(P#LL(E/Q).  (4-2)

Combining (4-1) and (4-2) with Conjecture 4.1 leads to
the following:

Conjecture 4.3. Let s®> be the cardinality of the
Shafarevich-Tate group of E/Q, where s > 0.

Let K be a real quadratic field of discriminant D. If
the rank of E(Q) is not equal to one, then Pk is torsion.
Otherwise,

PK :S-CL(D)-P,

where P is a generator for E(Q) and a(D) is an integer
satisfying

a(D)? = A(D) := VD - L(EP) 1) /1. (4-3)

The elliptic curve E : y?> — y = 23 — z of conductor

N = 37 is equal to X((37)" and hence satisfies all the
assumptions made in the above conjecture.

Furthermore E(Q) = (P) is infinite cyclic with P =
(0,0). For all real quadratic K of discriminant D < 1000,
the points Pk were calculated to 4 significant 37-adic
digits, as well as the integer a(D) defined as the smallest
integer (in absolute value) satisfying the relation

Pg = a(D)(0,0),

to this calculated accuracy. Table 8 summarises the val-
ues of a(D) that were obtained in this range.

The integer A(D) was computed by calculating the
special value of L(E(P) 1) numerically, and it can be ver-
ified that in all cases relation (4-3) holds. Tables 9 and
10 provide similar data, with the points Px calculated
to an accuracy of 437 and 6172 respectively, leading to
the same kind of experimental confirmation for Conjec-
ture 4.3 on the elliptic curves 43A and 61A treated in
Section 3.2.

Remark 4.4. It would be interesting to understand more
about the nature of the numbers a(D). Are they the
Fourier coefficients of a modular form of half-integral
weight?
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Remark 4.5. Note that the coefficients a(D) in Tables 8,
9 and 10 are all even. The authors are unable to prove
that the Stark-Heegner point Px is always an integer
multiple, not to mention an even integer multiple, of
the generator P. But it does follow from the Birch and
Swinnerton-Dyer conjecture that A(D) is even.
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