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The article [Da2] proposes a conjectural p-adic analytic construction of points on
(modular) elliptic curves, points which are defined over ring class fields of real quadratic
fields. These points are related to classical Heegner points in the same way as Stark
units to circular or elliptic units'. For this reason they are called “Stark-Heegner points”,
following a terminology introduced in [Dal].

If K is a real quadratic field, the Stark-Heegner points attached to K are conjectured
to satisfy an analogue of the Shimura reciprocity law, so that they can in principle be
used to find explicit generators for the ring class fields of K. It is also expected that their
heights can be expressed in terms of derivatives of the Rankin L-series attached to £ and
K, in analogy with the Gross-Zagier formula.

The main goal of this paper is to describe algorithms for calculating Stark-Heegner
points and supply numerical evidence for the Shimura reciprocity and Gross-Zagier con-
jectures, focussing primarily on elliptic curves of prime conductor.

1 Heegner point algorithms
1.1 Heegner points attached to imaginary quadratic fields

The theory of complex multiplication. It is instructive to briefly recall the theory
behind the classical Heegner point construction. Fix a positive integer N, and let Xy(N)
be the modular curve classifying pairs (A, A’) of generalized elliptic curves together with
a cyclic isogeny A — A’ of degree N. Its set of complex points is a Riemann surface
admitting the complex uniformisation:

n:H*/To(N) = Xo(N)(C)

where H* = HUP;(Q) is the extended upper half plane and I'y(/N) is the set of elements
of SLy(Z) whose reductions (mod N) are upper triangular. The map 7 sends 7 € H to the
point of X,(N)(C) associated to the pair (C/ (r,1),C/ (1,1/N)) of elliptic curves over C
related by the obvious cyclic N-isogeny.

Let O be an order in a quadratic imaginary subfield K of C. Such an order is com-
pletely determined by its discriminant D. The Heegner points attached to O correspond
to the pairs (A, A") of N-isogenous elliptic curves satisfying

End(A) ~ End(4") ~ O.

Assume for simplicity that D is prime to N. Then such a pair (A, A’) is of the form
(C/A,C/A’) where (up to homothety) A and A’ are projective O-submodules of K satis-
fying A = nA’, for some factorization

(N) =nn

1See for example the discussion in [BD] relating these points to derivatives of p-adic L-functions.



of N as a product of cyclic O-ideals. The set of Heegner points associated to O forms a
Pic(O)-affine space via

ax (A, A") = (Hom(a, A), Hom(a, A)), a€ Pic(0), (A,A4") e X,(N).
On the level of complex tori, this action is described by the rule
a* (C/A,C/n'A) = (C/a*A,C/a"'n"tA).

The natural action of G := Gal(K/K) preserves the set of Heegner points attached to
O, and commutes with the action of Pic(O). Hence the action of Gk on the collection of
Heegner points attached to O is determined by a homomorphism d : Gal(K /K) — Pic(O)
satisfying

d(o) x (A, A") = (A, A)?, for all Heegner points (A, A") with End(A) = O.

In particular, § factors through the Galois group of an abelian extension H of K, and the
Heegner points attached to O are defined over H.

Let p be a prime of K which is unramified in H and for which A with End(A) ~ O
has good reduction. Let P be a prime of H above p. A direct calculation shows that
the elliptic curve obtained by reducing A (mod B) and raising its coefficients to the
(#0Ok /p)-power is isomorphic to p * A reduced (mod B). It follows that

d(Froby,) = [p] € Pic(O). (1)
Thus § is the inverse of the Artin reciprocity map
rec : Pic(0) = Gal(H/K)

of class field theory. The extension H = H is the so-called ring class field attached to O.
The compatibility between rec and ¢ is known as the Shimura reciprocity law; it is the
central result of the theory of complex multiplication.

Finding the Heegner points. The following recipe for calculating Heegner points on
H/To(N) attached to the order O of discriminant D prime to N is decribed in [Z]. Choose
an integer s € Z satisfying

s>=D (mod 4N),

giving rise to the cyclic O-ideal n := (N, %Dio) of norm N. The Heegner points (A, A’)
attached to O for which
ker(A — A') = A[n]

are in bijection with the SLy(Z)-equivalence classes of primitive integral binary quadratic
forms

Ax? + Bry + Cy? satisfying B? —4AC =D, N|A, B=s (mod2N).
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Under this bijection, the (point on H/Ig(N) identified by n with the) Heegner point
corresponding to such a quadratic form is the class of 7 where 7 € H is the unique root
of the dehomogenized form Az? + Bx + C. Thus a list of representatives 71,...,7, € H
(where h is the class number of O) of Heegner points can be computed efficiently by using
Gauss’ theory of reduced primitive integral binary quadratic forms (see for example the
explanation at the end of section 5.2 of [Co]).

Heegner points on elliptic curves. Let E be an elliptic curve defined over QQ of
conductor N. By the modularity theorem ([W], [TW], [BCDT]), E is equipped with a
nonconstant morphism of curves over () — commonly referred to as the Weil parametrisa-
tion attached to F/ —

¢: Xo(N)— E

mapping the cusp oo to the identity element of E. It has proved eminently fruitful
to consider the images under the Weil parametrisation of Heegner points of X(NV) (cf.
Kolyvagin’s work on Euler systems).

While it is difficult to write down explicit algebraic equations for Xo(/N) (not to men-
tion ¢), complex uniformisation of F(C) and of Xy(/V)(C) provides a method for calcu-
lating the Weil parametrisation in practice. More precisely, the Riemann surface E(C) is
isomorphic to C/A, where A is the lattice generated by the periods of a Néron differential
w on E (which is well-defined up to sign). Generators for A can be computed by Gauss’s
arithmetic-geometric mean formula for complete elliptic integrals, a quadratically conver-
gent algorithm which works extremely well in practice. The curve E is then given up to
isomorphism (over C) by the equation

y* =4z’ — ga(A)z — g5(A)
and the complex analytic isomorphism
ne : C/A — E(C)
is decribed by the formula

where g, is the Weierstrass p-function attached to A. Explicit formulae for A, go(A),
g3(A) and p, can be found in [S] for example.

Let f be the normalised cusp form of weight two attached to E, with Fourier expansion
given by

f(r) = Zane%im, a; = 1.

n=1

To calculate the coefficients a,, it is enough to compute a, for p prime, in light of the

identity
H(l . app—s)—l H(l . app—s +p1—28)—1 _ Zann—s‘

p|N plN n



This question in turn is reduced to counting the number of points of E over the finite fields
with p elements, since a, = 0 (resp. 1, —1) if £ has additive (resp. split multiplicative,
non-split multiplicative) reduction at p, and

a,=p+1—#E(F,)

if F has good reduction at p. The pull-back ¢*(w) of w by ¢ is a non-zero rational multiple
of the differential

wy = 2mif(r)dr = anq"?, (¢ = 62””).

n=1

Assume for simplicity that ¢*(w) = wy. (After replacing E by a curve which is isogenous
to it over Q — the so-called strong Weil curve in its isogeny class — it is conjectured that
¢ can be chosen to satisfy this condition. When FE is a semistable strong Weil curve, it is
in fact known that ¢*(w) = fwy or £2w;. See the discussion in [Ed].) Given 7 € H, and

setting
-
JT Z:/ wg,
100

a direct calculation shows that the following diagram commutes:
H*/To(N) —— Xo(N)(C)
T
c/A s (C).

More precisely, for all T € H, the point P, = (z,y) € E(C) corresponding to it under
the Weil uniformisation is given by the formula

PT = (pA(JT)a p,A(JT))

It is of some interest to consider the complexity of calculating (z,y) as a function of 7.

Proposition 1.1 For 7 € H, the calculation of the associated point (z,y) € E(C) to d
digits of decimal accuracy can be performed in O(d?logd/Im(7)?) elementary operations
as d — oo and Im(7) — 0.

Proof.: The naive estimate

o0 an o0
nonl < —
Z S Z exp(—2mnlm(r))
n=M+1 n=M+41

implies that the quantity J, can be evaluated with an error of at most 10~¢ using not
more than J
log 10~ d
M = — = O —
—27Im(7) (Im 7')
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Fourier coefficients attached to E. Using the algorithm of Shanks (see Algorithm 7.4.12
in Cohen’s book [Col), it is possible to compute M coefficients in time O(M?). The
evaluation of the sum

can then be performed (using Horner’s rule) with O(M) multiplications. Each multiplica-
tion can be carried out in O(dlogd) time using fast Fourier transform techniques. Since
the subsequent calculation of ©(J;) and g'(J;) is dominated by the time necessary to
obtain J, (see Algorithm 7.4.5 of [Co]), the result follows.

1.2 Stark-Heegner points attached to real quadratic fields

Theory. The previous section motivates a conjectural p-adic analytic construction of
so-called Stark-Heegner points, which are defined over ring class fields of real quadratic
fields. The description of the method is simplified by the assumption that the conductor
N = p is a prime, an assumption that will hence be made from now on.

The elliptic curve E of conductor p has multiplicative reduction at p. Of key impor-
tance for the construction is Tate’s p-adic uniformization of £

¢Tate : (C; /QZ = E(Cp)a

where ¢ € pZ, is the Tate period attached to E.

Following the notations that were used in [Da2], set w = 1 if £ has split multiplicative
reduction at p, and set w = —1 if F has non-split multiplicative reduction at p. Some
important features of the behaviour of the Stark-Heegner points on F are governed by
this sign. It is known that w is equal to

1. the negative of the eigenvalue of the Atkin-Lehner involution W, at p acting on f;

2. the sign in the functional equation for L(F/Q, s), so that, conjecturally, £(Q) has even
(resp. odd) rank if w =1 (resp. w = —1);

3. the eigenvalue of the Hecke operator U, acting on f.

Let K be a real quadratic field in which p is inert, and let H be a ring class field of
K of conductor prime to p. Considerations combining the Birch and Swinnerton-Dyer
conjecture with a determination of the signs in the functional equations of L(E /K, s) and
its twists by characters of Gal(H/K) lead to the prediction that the Mordell-Weil group
E(H) is equipped with a large collection of points of infinite order. (Cf. the discussion in
the introduction to [Da2].)

Let H, := P;(C,) — P1(Q,) denote the p-adic upper half-plane. Fix from now on an
embedding of K into C,. Since p is inert in K, note that K N H, is non-empty. The
Stark-Heegner points are indexed by elements 7 € K N'H,, and are defined by the rule

PT = ¢Tate<‘]’r)7
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where J. € C)/ q? is a period attached to 7 and f whose definition will now be recalled
briefly.

The role played by the line integral of the differential form w; in defining J; in the
setting of section 1.1 (when 7 is quadratic imaginary) is now played by the double integral
on ‘H, x H introduced in [Da2]. More precisely (with only a minor modification to the
notation) equations (71) and (72) of [Da2] attach to a normalized newform for I'y(p)
having rational Fourier coefficents a period function

T2 Y
7[ /wE(C @z A, with 7,7 €H,, zycP(Q)CH". (2)
Here A is the Z-module of rank two

{/Jf(z)dz : o€ Hi(Xo(p), cusps;z)}_

Note that this lattice contains the period lattice A attached to E. The period of (2) is
expressed as a limit of Riemann sums

e g, (=) o (o [ )] g

where the limit is taken over uniformly finer disjoint covers of P1(Q,) by sets of the form
U = a;'Z,, with ay € GL5 (Z[1/p]). In this limit, ¢ is an arbitrarily chosen point of
U, and ey := werde(deto),

The form of the definition, familiar from the theory of p-adic L-functions, is founded
on the observation that the assignment

v [ e (4)

v0

satisfies a distribution relation. Since it takes values in the finitely generated Z-module A,
its values are p-adically bounded and hence this distribution gives rise to a p-adic measure
against which locally analytic C,-valued functions on P;(Q,) can be integrated.

As stated in lemma 1.11 of [Da2], the double integral of (2) is additive in the first and
second set of variables of integration, i.e.,

2 (Y T3 (Y 3 (Y
7[ / ][ /w = ][ /w, for all ; € H,, z,y € P1(Q), (5)
T2 Py 27'2 z 17'2 z
7[ / 7[ /w = 7[ /w, for all 7; € H,, =,y,2 € P1(Q). (6)
1YY T1JX

(Note that these relations are written multiplicatively in lemma 1.11 of [Da2], because
the double integral defined there takes its values in C;. The notational discrepancy is in
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keeping with the common usage that the composition law on the abelian group C; ® A
should be written additively in relations (5) and (6) above.)
By the third formula in lemma 1.11 of [Da2], the double integral attached to E also
satisfies the key invariance property under I' := SLo(Z[1/p]):

T2 LYY ™ ry
7[ / f/w for all v € T".
yr1 e

Given any distinct elements a,b € P (Q), the group

Fap={v€l | ya=a, ~b=10b}

is an abelian group of rank one. Assume for simplicity that E is alone in its Q-isogeny

class.
vz rb
7[ / ¢
z a

belongs to ¢% @ A, for all z € H, and for all v € T'yp.

Lemma 1.2 The double integral

Sketch of Proof. Since E has prime conductor, the assumption that E is alone in its
isogeny class implies that ord,(¢) = 1. Hence by theorem 1 of [Da2] (see also Remark 1
following the statement of corollary 3 of [Da2|)

vz pb 5 5
7[ /w belongs to ¢ ® A, (mod (Q,)5,. ® A). (7)

The proof of theorem 1 of [Da2] is based on a deep conjecture of Mazur, Tate and Teit-
elbaum [MTT] proved by Greenberg and Stevens [GS]. A multiplicative refinement [MT]
of these conjectures due to Mazur and Tate, which, for prime conductor, is proved by
deShalit [deS], allows the (Q,);-ambiguity in formula (7) to be removed. Lemma 1.2
follows.

Formal considerations explained in [Da2], involving the cohomology of M-symbols,
imply the existence of “indefinite integrals”

7[ / w e (C; /d%)
satisfying the properties

T pa~ly T Py at ry
JLEAf L] oo
Oé’racy sz TT g
f/w+7[/w = 7[/0), forall 7€ H,, ael, =z,y2¢€P(Q).
T Y r
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The first relation completely determines the indefinite integral, in view of the fact that
the space of I-invariant (CX/¢”) ® A-valued functions on P;(Q) x P;(Q) satisfying the
second relation is trivial. (In fact, this is already true for the SLy(Z)-invariant functions.)

To define the period J, € C,/ ¢“ @ A associated to 7 € K N H,, we use the algebra
embedding ¥ : K — M5(Q) such that for A € K,

()7

\I[(T):(TET —NénT)

Let O C K be the Z[1/p]-order of K defined by O = ¥~ (My(Z[1/p]). Let u be the
generator of OF, the group of units of O of norm one, which is greater than 1 with
respect to the chosen real embedding of K. Then ~, = U(u) is a generator for the

stabilizer of 7 in I'. Define S
Lo [ e

From the properties of the indefinite integral sketched above, it can be checked that J, is
independent of the choice of x € P1(Q). Let 8 : A — Z be a Z-module homomorphism.
The following assumption is made on (:

VU is defined by

Assumption 1.3 The image 3(A) is contained in 2¢c,Z, where c, is the Tamagawa factor
attached to E at p.

The homomorphism [ induces a homomorphism (denoted by the same letter by abuse of
notation) )
B C;/qZ@)A — (C;/qZ.
Define )
Jr = B(J,).

Definition 1.4 The point P, := ¢rae(Jr) € E(C,) is called the Stark-Heegner point
attached to T € K N'H,, (and to the choice of functional 3).

The conductor of T is the conductor of the Z[1/p]-order O attached to 7.

A point 7 € K N'H is said to be even if ord, (7 — 7) is even, and odd otherwise. The
action of I" on H, preserves both the order associated to 7, and its parity. There are
exactly h distinct I'-orbits of even 7 with associated order O, where h is the cardinality
of Pic*(0), the group of narrow ideal classes attached to O. In fact, the group Pict(O)
acts simply transitively on the set of these I'-orbits. (Cf. [Da2], sec. 5.2). Denote by a7
the image of a acting on 7 by this action. Let H* denote the so-called narrow ring class
field attached to the order O, and let

rec : Pict(0) = Gal(H'/K)
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be the reciprocity map of global class field theory. The following is a restatement of
conjecture 5.6 and 5.9 of [Da2] (in light of the fact that the integer denoted ¢ in conjecture
5.6 is equal to 1 when the conductor of E is prime).

Conjecture 1.5 If T € K N'H, is a real quadratic point, then the Stark-Heegner point
P, € E(C,) is a global point defined over HT. Furthermore,

Py = rec([a]) P
A slightly weaker form of this conjecture is

Conjecture 1.6 If 11,...,7, is a complete set of representatives for the I'-orbits of even
7 attached to the order O of discriminant D, then the points Py, are defined over H* and
are permuted by Gal(H'/K), so that collectively these points are defined over K.

Computations. We now describe an algorithm for computing J,. Set
R = {a—i—b\/g : aGZp,bEZ;},

where s is a nonsquare element of Z, — pZ,. If K is a real quadratic field in which p is
inert, any point 7 € K NH, is equivalent under I' to a point in R. Hence, it suffices to
describe an algorithm for computing

g(f/ij) for 7 €R, w,y€P(Q). (8)

Let 22 &L . % be a Farey sequence from x to y, i.e., a sequence of fractions in lowest
Do’ by’ b ) 1€,

terms satisfying
a an, .
—0 =, — =Y, ai,lbi—bi,lai =41 for i = 1,...,n.
bo b,

Let 01, ...,0, € SLy(Z) be elements satisfying

a; .
00 = , Ujoo:b—j forj=1,...,n.
Jj—1 J

By the additivity and SLy(Z)-invariance properties of the indefinite integral, the period

J

Since R is preserved by the action of SLy(Z) it thus suffices to compute periods of the

form .
6(7[/w>, with 7 € R.
0
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To carry out this last calculation, note that
T 0O T 0O 7 r0 T 0O 27'7__1 00
Fhe =gl e =o ]
0 1 1 1 1
T 00 1= [ ﬁf 00
= 7[ / wzj[ /wzj[ /w(modqz).
=11 = Jo = 0

Hence, it suffices to compute

7—1 poo 1 Blev [3U57 f(2)dz)
16} (7[ / w) = lim (1 + ; )
- Jo =0 7, U—T

where the notation is as before. Observe now that when 7 € R the function

1

t—T1

1+

is constant (mod p) on the sets

-N ;. —N —1
(po o ) Zy=3j+p Ly j=0,.. p"~1

S 1-N —N \ !
( jp_l po ) Zp = (_jp_'—pNZp)il? j = 07 o 7pN71 - 17

which cover P1(Q,). It follows therefore from the additivity of the distribution (4) and
the formula (3) that

T7+1 poo pN-1 1 B(wN fix;p—N f(z)dz)
5(7[ /w) = (1+. ) 9)
T 0 §=0 J—-T7
pN-1_1 5<UJN f*]‘pl_N f(z)dz)
1 )
X 14+ — 10
(5 w

B(wN [25,-n F(2)dz)
H (1—1— : ! ) (mod p™). (11)

5 ( / yf(z)dz)

can in turn be performed efficiently using Manin’s continued fraction method for calcu-
lating modular symbols. (Cf. for example [Cr].)

The computation of the values
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Note that the running time of the above algorithm for computing J; is dominated by
the (p™ — pN~=1)-fold product of (11) needed to approximate the double p-adic integral to
a precision of p~V. Taking log(p") as a natural measure for the size of this problem, this
algorithm has exponential running time. Motivated by proposition 1.1, it is natural to
ask:

Question: Is there an algorithm for computing J; to a p-adic acuracy of p~" in subex-
ponential time?

Remark: A prospect for a polynomial-time algorithm (albeit one that is neither as efficient
nor as simple as the method described in proposition 1.1) is offered by the conjectures of
[Da2]. Observe that .J. can be recovered from its p-adic logarithm and its value (mod p).
Thus it suffices to provide a polynomial-time algorithm for computing

) Qoo 1
log J, = ||L111|]\[20 > [ﬁ <€U /an f(z)dz) x log (1 T 7)]

vcu

when 7 € R. Taking local expansions of the logarithm, this expression can be rewritten

as o
) cingin()

kePy(Z/pZ) j=0

where ¢, € p'Z,[\/s] are constants independent of 7, and g;, (1) € Z,[/s] are functions
of 7 that can be calculated in linear time. Thus to calculate J, for any 7 € R to a
precision of p~, it suffices to calculate the (p + 1)N constants ¢, k € P1(Z/pZ) and
j=0,...,N —1. The Shimura reciprocity and Gross-Zagier conjectures (to be discussed
below) might provide a method for accomplishing this by predicting the values of J. for
sufficiently many 7 to the necessary precision, thus reducing the calculation of the c¢;; to
a problem of linear algebra provided the values of 7 can be chosen to produce a linearly
independent set of equations.

2 Class fields of real quadratic fields

The experiments summarised in this section test the prediction of conjecture 1.6 that
Stark-Heegner points are defined over ring class fields of real quadratic fields. All of the
calculations were carried out using Pari-GP running on a Unix workstation?.

Choose a Z[1/p|-order O in a real quadratic field K. Of particular interest is the case
where Pic(Q) is not of exponent two, since in this case the associated ring class field H is
not abelian over @, and no method is known for constructing points on E(H) without an
a priori knowledge of H. Thus, in all the cases to be examined in this section, the order
O has been chosen so that Pic™(O) is a cyclic group of odd order h.

2The routines that were written for this purpose can be downloaded from the web site
http://www.math.mcgill.ca/darmon/heegner /heegner.html
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Let E be an elliptic curve of prime conductor p, where p is inert in K and prime to the
discriminant of O. Let 7,..., 7, be a complete set of representatives for the SLo(Z[1/p])-
orbits of even 7 € 'H,, having stabiliser in Ms(Z[1/p]) isomorphic to O, and let P, ..., P,
be the associated Stark-Heegner points.

Example 1: Let O = Z [\/m be the order of discriminant D = 4 - 37, the smallest
positive discriminant of narrow class number 3. The smallest prime p which is inert in
Q(+/37) and for which the modular curve Xy(p)* admits an elliptic curve quotient is
p =43. Let

E :y*+y=2%+2?
be the eliptic curve of conductor p = 43 denoted by 43A1 in Cremona’s tables. The
elements 7y, 7, 73 € Q(\/ﬁ ) N Has attached to the order O can be chosen to be

—3+ 37 —3+ /37
= —6+ /3T, 3+ VAT 3+ V3T

To = 1 T3 = 7

Let 0, and Q_ denote the real and imaginary half-periods of E and define 8 : A — Z by
B(Q4) = B(Q-) = 3. The points

F)j = (I)Tate(ﬁjT)

were computed to 5 significant 43-adic digits to obtain, after setting (z;,y;) = P;:

1 = 29+26-43+36-43%+36-43% +15-43% +34.43° + ...
z2 = (31+29-43+24-43%4+24-43%4+13-43*+4-435 +...)

+(16 + 37 - 43 +29 - 43% 439 - 433 + 26 - 43* + 25 -43% 4+ ... )V/37
3 = (31+29-43+24-43%4+24-43%4+13-43*+4-435 +...)

+(27+5-43 +13-43% +3-43% +16 - 43* + 17435 + ... )V/37.

y1 = 21+28-43423-432 4433442434 +4.43°5 + ...
ya = (1847-43431-43%2420-433419-435+...)

+(41 43643 4+10-43%2 +14-43% +9-.43* + 30435 +...)V/37
y3 = (1847-43431-432+20-43%+19-43%+...)

+(24+6-43+32-43%2 +28-43% +33-43% +12-43° +...)V/37.

Since the sign of the Atkin-Lehner involution at 43 acting on fg is equal to 1, conjecture
5.9 of [Da2] (together with proposition 5.10) predicts that the 43-adic points P; = (x;,y;)
are algebraic and conjugate to each other over Q, and that their coordinates generate the
ring class field of Q(y/37) of conductor 2. A direct calculation reveals that

3
[Jt—2) = #—52—5t—1 (mod 43°) (12)
7j=1

3

H (t—y;) = t2—14>—14t+2 (mod 43°). (13)

—_

.
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Let f.(t) and f,(t) denote the polynomials appearing on the right hand side of (12) and
(13) respectively. The small size of their coefficients suggest that the mod 43% congruences
in these equations are in fact genuine equalities. This guess is reinforced by the fact that
fx(t) and f,(t) each have splitting field equal to H, and that, if x € H is a root of f,(¢),
and y is the unique root of f,(¢) defined over Q(z), then the pair (z,y) is an algebraic
point on E(H).

A similar calculation — with the same value D = 4 - 37, and the same values of 71, 75, and
73, but viewed this time as elements of the 61-adic upper half plane Hg; — was performed
with the elliptic curve

E:y4aoy=a2—20r+1

of conductor 61 denoted 61A1 in Cremona’s tables. The z and y-coordinates of the Stark-
Heegner points attached to this order were computed to 5 significant 61-adic digits, and
found to satisfy (to this accuracy) the polynomials with small integer coefficients

22 =3z  —x+1, and y®—5y*+3y+5.

As before, the splitting field of each of these polynomials is the ring class field H, and
their roots, paired appropriately, give global points on the elliptic curve £ = 61A over H.

Example 2: Let K = Q(+/401). It is the smallest real quadratic field of (narrow) class
number 5. The prime p = 61 is inert in K/Q, and Xy(p)™ admits an elliptic curve
quotient; the curve E of conductor 61 denoted 61A1 in Cremona’s tables, which already
appeared in example 1. The following 7; € He;:

14401 —11+ /401

11+ /401
20 10 a ’

28

T1 T2 T3

=T+ V401 =T+ V401

A

form a complete system of representatives for the SLo(Z[1/61])-orbits of even 7 € Hg;

whose stabiliser in My(Z[1/61]) is the maximal Z[1/61]-order O = Z[l/Gl][%m] of K.
As in example 1, let €, and €2 denote the real and imaginary half-periods of £ and

define 6 : A — Z by 3(Q4) = B(Q-) = 3. The five points P, = (z;,y;) were calculated

T4
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to 4 significant 61-adic digits, yielding the values:

z1 = 19434-61417-6124+46-61%3+32.61% + ...
za = (29+426-614+36-6124+7-613+12.61%+...)
+(52 4+ 11-61 4 21-61%2 432613 + 48 - 61 + - )V401
x3 = (29426-614+36-6124+7-6134+12-61%+...)
+(94+49-614+39-612 428613 +12-61% +...)V401
zg = (59447-614+15-612430-613 432614 +...)
+(2846-614+40-612 4+36-613 +4-61% +-.-)V401
x5 = (59+47-61+15-612+30-613+32-61%+--.)

+(33 4+ 54-61 420612 4+ 24 - 613 + 56 - 61* + - - - )V/401.

y1 = 19+437-614+57-6124+11-613+34-61%+---
ya = (48453-61+8-612+59-61°+12-61%+---)
+(58 4606149612 428 -61% +51- 614 +---)v401
ys = (48453-61+8-612+59 613 +12-61%+-..)
+(3+51-61%2+32-61% +9-61* 4 --.)V401
ya = (374+49-61+53-6124+56-613+30-61*+--.)
+(504+2-614+38-6124+6-61% +11-61% +...)v/401
ys = (374+49-61+53-6124+56-613+30-61+---)

(11 4 58 - 61 422 - 612 4+ 54 - 615 + 49 - 61* + - )V/401

Conjecture 1.6 (combined with proposition 5.10 of [Da2]) predicts that the 61-adic points
P, ..., P, are algebraic and conjugate to each other over QQ, and together generate the
Hilbert class field H of Q(1/401). One finds:

ot

[[t-=) = #—12t"+34° — 52> — 24t + 9 (mod 61°)

j=1

5
H(t —y;) = t°—6t* — 181¢> — 428¢* — 346t — 93 (mod 61°),
j=1

and observes that the polynomials f,(t) and f,(¢) appearing on the right both have H as

splitting field. Furthermore, if = is a root of f,(t) and y is the unique root of f, defined
over Q(z), then the pair (z,y) is an algebraic point on E(H).

Example 3. Similar calculations were performed on the real quadratic field K = Q(v/577)
of class number 7. When applied to the elliptic curve E = 61A whose conductor is inert
in K, the method produces seven 61-adic points whose x and y coordinates ostensibly
(i.e., to the calculated accuracy of 4 significant 61-adic digits) satisfy the polynomials
with small integer coefficients:

fo(z) = 2" —232°% 4 1092° — 1022* — 1372° 4 2712 — 1452 + 25,
f,(y) = "+ 71y% — 589y° 4 204y* + 1582y — 533y — 22y + 5.

As in examples 1 and 2, the roots of these polynomials generate the Hilbert class field of
Q(v/577), and are the coordinates of global points on E defined over this class field.
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Remarks: 1. In all the examples presented in this section, the Stark-Heegner points are
integral points of small height, a fortunate circumstance which facilitates their identi-
fication. There is no reason to expect this pattern to persist, and in fact it is known
(cf. [BD]) that there is no elliptic curve E for which all the Stark-Heegner points are
integral - in contrast with the case of the classical Heegner point construction, which does
yield integral points on any elliptic curve E whose associated Weil uniformisation maps
only cuspidal points of Xy(/N) to the origin of E.

2. Certain elliptic curves — such as the curve 61 A — seemed more amenable to the types
of calculations described in this section, than others, such as 114, on which the Stark-
Heegner points appear generally to be of larger height. The authors can provide no
explanation, even conjectural, for this phenomenon — nor would they vouch for the fact
that this observation is not a mere accident, an artefact of the small ranges in which
numerical data has been gathered. With this caveat, the following question still seems
to merit some consideration: Is there a quantity which would play the role of the degree
of the Weil parametrisation in the classical Heegner point construction by controlling the
overall heights of Stark-Heegner points?

3 Elliptic curves of small conductor

3.1 Elliptic curves with w =1

The elliptic curve curve X;(11)

Let
E:y+y=2°—2—10z—20

be the elliptic curve of smallest conductor N = 11. Given a discriminant D (not neces-
sarily fundamental) write P} (resp. Pp) for the Stark-Heegner points of discriminant D
attached to the choice of functional sending 2, to 5 (resp Q2_ to 5) and Q_ (resp. 2,) to
0.

Conjecture 5.9 and proposition 5.13 of [Da2] predict that Pj; belongs to E(H), and
that Pp, belongs to E(H1)™, where H and H™ are the ring class field and narrow ring class
field of discriminant D respectively, and the — superscript denotes the minus-eigenspace
for complex conjugation. This prediction is borne out by the calculations whose outcome
is summarised in tables 1 and 2 below.

Remarks:

1. In table 1 all the Stark-Heegner points for discriminants D < 100 (not necessarily
fundamental) were calculated to an accuracy of 8 significant 11-adic digits. In all cases
it was possible to find a global point defined over the appropriate class field, of fairly
modest height, approximating the Stark-Heegner point to the calculated accuracy. In
many cases, however, this accuracy was not enough to recognize these 11-adic points as
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global points over the appropriate class field H without making an a priori calculation of
the Mordell-Weil groups E(H). This calculation in turn was facilitated by the fact that
the class fields that arise for discriminants D < 100 in which 11 is inert are composita of
quadratic extensions of Q.

2. Note that the points P} seem generally to be of larger heights than the points Pj,. The
authors know of no theoretical justification (even heuristic) for this empirical observation.

3. Table 2 lists the Stark-Heegner points on X,(11) in the range 100 < D < 200.

4. The entries marked — — — in table 2 (as in the tables following it) correspond to
situations where the Stark-Heegner points have not been calculated. In most cases, this
is because the (rudimentary) search algorithm that was used to compute the relevant
Mordell-Weil group did not produce a point in the relevant Mordell-Weil group, even
though the existence of such a point is guaranteed by the Birch and Swinnerton-Dyer
conjecture. At any rate, the authors are satisfied with the strong evidence for conjecture
1.5 provided by the data they have compiled, and believe that the missing entries in
their tables are only a manifestation of their lack of persistence in fully carrying out their
calculations.

The elliptic curve of conductor 17. Table 3 below summarizes the calculation of
Stark-Heegner points on the elliptic curve 17A1 of coonductor 17, with equation given by

vV +ayt+y=a>—2*—z—14.

The points were computed to an accuracy of 5 significant 17-adic digits. When their
height was too large to allow easy recognition of their coordinates as algebraic numbers,
the Mordell-Weil group of F over the appropriate ring class field was computed, allowing
the recognition of the points P} and Pj as global points in most cases. Here, P, (resp.
Pp) is associated to the functional § sending €24 to 8 (resp. 2_ to 8) and Q_ (resp. Q)
to 0.

The elliptic curve of conductor 19. Table 4 summarizes the data for the elliptic curve
of conductor 19, denoted 1941 in Cremona’s tables, and with equation given by

v 4y =2+ 2% — 9z — 15.

In this case only the point P} — defined by letting 3 be the functional sending Q. to 6
and €)_ to 0 — was calculated, to an accuracy of 4 significant 19-adic digits.

3.2 Elliptic curves with w = —1

The elliptic curve X,(37)"
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Calculations similar to those of the previous section were performed for the elliptic curve
E:y+y=2>—2z

of conductor N = 37 denoted by 37A1 in Cremona’s tables. For all real quadratic dis-
criminants D satisfying (%) = —1, write P} (resp. Pj) for the Stark-Heegner points of
discriminant D attached to the choice of functional 3 sending Q. (resp £2_) to 1 and Q_
(resp. ©24) to 0. Conjecture 5.9 of [Da2], which apply directly in this situation because F
is unique in its Q-isogeny class, predicts that

1. The point P belongs to E(H), where H is the ring class field attached to the dis-
criminant D.

2. The point Pp, belongs to E(H™), where H™ is the narrow ring class field of discriminant
D, and is sent to its negative by complex conjugation, so that in particular it is a torsion
point if h = h™.

In light of the fact that the eigenvalue of the Atkin-Lehner involution W, at p acting on
fE is equal to 1, proposition 5.10 of [Da2] (which is conditional on conjecture 5.9) also
predicts that

3. If O has class number one, so that H = K, the point P;} belongs to E(Q).

These predictions are borne out by the calculations, performed to 5 significant 37-adic
digits in the range D < 200, whose outcome is summarised in table 5 below. In these
calculations, the heights of the Stark-Heegner points are quite small, and so they could
usually be recognised directly as algebraic points without an independent calculation of
the Mordell-Weil groups E(H).

The elliptic curve 434
Table 6 displays the corresponding data for the elliptic curve
Pty =2 4 a?

of conductor 43 (denoted 43A in Cremona’s tables), which has rank one over Q and
Mordell-Weil group generated by the point P = (0,0). The point P} (resp. Pj;,) corre-
sponds to the choice of functional 3 sending the period €, to 2 (resp. Q4 to 0) and Q_
to 0 (resp. Q_ to 1).

The elliptic curve 61A
Table 7 displays the corresponding data for the elliptic curve
v 4oy =2 -2 +1

of conductor 61 (denoted 61A in Cremona’s tables), which has rank one over Q and
Mordell-Weil group generated by the point P = (1,0). The point P} (resp. Pj,) corre-
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sponds to the choice of functional 3 sending the period €, to 2 (resp. 2, to 0) and Q_
to 0 (resp. Q_ to 1).

4 A Gross-Zagier conjecture

If K is a real quadratic field of narrow class number A, and E is an elliptic curve of prime
conductor p which is inert in K, let

Px=P,+---+ P, € E(Cy),

where 71, ..., 7, range over a complete set of representatives for the SLy(Z[1/p])-orbits of
even 7 € H,, with stabiliser isomorphic to the maximal Z[1/p]-order O of K. The Shimura
reciprocity law predicts that P, ..., P, belong to E(H), where H is the Hilbert class
field of K, and that these points are permuted simply transitively by Gal(H/K). This
implies that Py belongs to E(K). Guided by the classical Gross-Zagier formula, the
following conjecture is natural:

Conjecture 4.1
2

L'(E/K,1) = %h(PK).

Assume furthermore that F satisfies the following additional assumption:
1. E is a quotient of Xy(p)™

2. FE is alone in its Q-isogeny class, so that in particular it has no rational torsion.

In this case, the Shimura reciprocity law of [Da2] predicts that the Stark-Heegner point
Py belongs to E(Q).

Remark: The curves of conductor < 101 satisfying these assumptions are the curves
denoted 37A, 43A, 53A, 61A, 79A, 83A, 89A, and 101A in Cremona’s tables.

The assumptions on E imply that w = 1, and hence that the sign in the functional
equation for L(E/Q, s) is —1, so that

L'(E/K,1) = L'(E/Q1)L(E™)/Q,1), (14)

where E(®) is the twist of E by Q(v/D). Suppose that E(Q) has rank 1 and is generated
by P. The Birch and Swinnerton-Dyer conjecture predicts that

L(B/Q1) = Quh(P)#LIL(E/Q). (15)

Combining (14) and (15) with conjecture 4.1 leads to the following:
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Conjecture 4.2 Let s? be the cardinality of the Shafarevich-Tate group of E/Q, where
s> 0. Let K be a real quadratic field of discriminant D. If the rank of E(Q) is not equal
to one, then Pk is torsion. Otherwise,

Px=s-a(D)- P,
where P is a generator for E(Q) and a(D) is an integer satisfying
a(D)? = A(D) := VD - L(E™) 1)/Q,. (16)

The elliptic curve E : y*> —y = 2® —x of conductor N = 37 is equal to X,(37)" and hence
satisfies all the assumptions made in the above conjecture. Furthermore E(Q) = (P)
is infinite cyclic with P = (0,0). For all real quadratic K of discriminant D < 1000,
the points Px were calculated to 4 significant 37-adic digits, as well as the integer a(D)
defined as the smallest integer (in absolute value) satisfying the relation

PK = CL(D)(0,0),

to this calculated accuracy. Table 8 summarises the values of a(D) that were obtained in
this range. The integer A(D) was computed by calculating the special value of L(E®), 1)
numerically, and it can be verified that in all cases relation (16) holds. Tables 9 and
10 provide similar data, with the points Px calculated to an accuracy of 43=% and 6173
respectively, leading to the same kind of experimental confirmation for conjecture 4.2 on
the elliptic curves 43A and 61A treated in section 3.2.

Remarks:

1. It would be interesting to understand more about the nature of the numbers a(D).
Are they the Fourier coefficients of a modular form of half-integral weight?

2. Note that the coefficients a(D) in tables 8, 9 and 10 are all even. The authors are
unable to prove that the Stark-Heegner point Py is always an integer multiple, not to
mention an even integer multiple, of the generator P. But it does follow from the Birch
and Swinnerton-Dyer conjecture that A(D) is even.
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Table 1: Stark-Heegner points on X(11), with D < 100

h hy P Py
8 1 1 $.-1+1v3) 0
1311 -1 - ¥Vn) o)
17 1 1 2-3 %\ﬁ) o
21 1 2 —1 - imasass 21) 5(~6,—% + LLy=7)
21 2,3 + ) 5(-4,-}+ v7D)
28 1 2 -3 -2V 5(—6,—1 + LLv=7)
. ) 0
2 1 2 (3.-3-%1v2) 5(-3 -3 4V
0 2 2 ( + LI042077 /T0) +5- ($, -1 + 1v3) o)
a1 1 1+ 20008./17) o)
52 1 1 Siooais0as 3 T Tia190e051o875736 13) 0
57 1 2 18 1 - 20857 5(§ -3+ 4V-19)
61 1 1 2 (BT ) - RN Vel 0
65 2 2 (42,1 65) +5- (32,1 + 2TV13) o)
68 1 1 2 < gé%ﬁ%?%ﬁ?ﬂﬁiiﬁiﬁ;ﬁﬁ;éﬁi;’ 2 + f;g2gggg?ﬁgZg;¥;§%¥g§gzg?gé§§§§§g§;\/17) o
w2 5-3-§v2) (%5 V)
3011 e R N4E) o)
w1 2 S 4 + 1500 19 ) 5(3-3 £ 5V-19)
84 1 2 —%+%\/ﬁ) 10+ (=6,—1 + 1Ly/=7)
o2 2 (Mo S (34 ST 0
96 2 4 + (356973682910042736082542174429 + 130569573374110842287342220555 3 +5 (_% + %ﬁ,

27837077685085733699956490642

1

2

%)

2

27837077685085733699956490642 ’
205420898019081988398262688233144460221888187
6568261879666840768573193675597281122773524
128971256132268625320388516238463109582746165
6568261879666840768573193675597281122773524
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Table 2: Stark-Heegner points on X(11), with 100 < D < 200

D h hy Pg P
101 1 1 E— o)
105 2 4 S ___
00 11 2 (RSN -+ e /) 0
212 3 (5 -5+ 55 V7) 15(<6,~4 - $v=7)
e o1 (S 4 - e ) 0
aron 3(55 3 + 5w VD) 353+ V)
1202 4 (91235198585455526697601 s =5 — i aaeatassaros. 30) -—-
+5 (8 -4 + 5L V6)
128 1 2 4(%_%+%\@) L
129 1 2 (?gggggggg’ _% - 4862787643656618706307090 129 - =
102 (e — & + STt 5(—18, -1+ 121 /735)
+5 (3 -5+ FVT) +5(=6,~§ + 5T
145 4 4 _ o
149 1 1 - o
153 12 F- - 9vT) 5(~ 4, —4 + 25TV
156 2 4 (EEmemen | ssamiielsEeeve0) s (-F.-b+ 2VET)
+5 (%2, -1 - 2IV13) +5(-1, -1 - 1L/=39)
160 2 4 3 (6251)39 ’ *% N 1770249200077 10) +5 (%’ *% + £ﬁ> -
o 12 (3, -1 - e o) 115 (3%, -4 - B v=To)
164 1 1 8 (%7 _% - 210000003 \/ﬁ) o
212 (22%37* _% - 41617835222345021 43) 5 (%, -1+ (171\/—743)
173 1 1 _ 0
84 1 2 (Bt — 1 + 1530s0mi0m o) 5(-3, -3+ 1v=2)
189 1 2 2 (ST, — 5 + JTat2eee V) o
193 1 1 2997, — 1 - 255 V193) o
197 1 1 _ 0
200 2 2 (g 14 5\/5) 15 (62%9 |1 17012077 10) 0
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Table 3: Stark-Heegner points on X,(17), with D < 100
+ -
h hy Py P
5 01 1 2(3,-2-V5) 0
29 35 _ 185 1 3 _ 15
121 2 Q(P*ﬁ*% 3) 2(3, -1~ 71
20 1 1 2 (3, 24 \/5) o)
131 _ 143 _ 1015 5 _13 , 85
24 1 2 (3. -2 - 105 v6) 4(3 16 T 3V2)
5231 _ 6365 _ 439205 1 3, 15;
28 1 2 (11347 T 2268~ 142884 7) 2 (57 -1t Il)
5091 _ 3158 _ 52207
29 1 1 2 (1225 > 1225 42875 29) o
88251563 _ 47374482 | 131903494275
37 1 1 2 < 6497401 * ~ 6407401 T 16561875149 37) o
40 2 2 2 (5, 34 3\/10) 4 (3, 2 \/5) o)
a1 1 2(%,-3 - 3va) o
27101 _ 36803 | 1206545 1 3 _ 15;
44 1 2 ( 9702 > 19404 T 1482324 11) 2 (57 T4 Il)
4 7, 17
45 1 2 o 16 (5,—¢ + 1gvV—15)
29 _ 35 , 185
48 1 2 (?, -3 g\/@ o)
10469 _ 13857 | 46275 5 13 _ 85 /o
5 1 2 ( 3388 ' 6776 1 65219 14) 4 (5’ T 16~ 32 _2)
8522141 _ 10076265 _ 6274142315 63 _ 13 _ 629 /—7g
57 1 2 (1554124’ T 73108248 ~ 4222554908 57) 4 (*%’ T 152 T 722 *19)
67 _ 38 , 65
61 1 1 29, -3 + £ V6T )
65 2 2 2 (15, 8- 7\/65> +4 (3, 24 \/3) o)
1543 _ 1579 _ 3515
301 1 2 (1382, - 1509 _ 3315 /73) )
80 1 2 2(3,-2+V5) (L, -3 - 13
1168375625699 _ 1561830708335 | 363441210673276055 5 _13 | 85 /—%
88 1 2 ( 393455082636 786910165272 | 818538445544777496 4 (§7 ~16 T ’2)
92 1 2 (1621831557551 _ 1624704598365 _ 2919003154601635125 2 (1 _3 _ Ei)
2873040814 ’ 5746081628 1044459511439932 2> 4 4
131 _ 143 , 1015 29 _ 35 _ 185 1 _3 4 15
9% 2 4 (ﬁﬂ—ﬂJrﬁ 6)+2<?’_ﬁ_¥ 3) 2(3, -1+ 71
49765 _ 67189 _ 330455
g 1 1 2 (17424’ 34848~ 2299968 97) o
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Table 4: Stark-Heegner points on 194, with D < 100

+
D h P
1 69
8 1 —1+%2Vv2)
1 97
12 1 14923
13 1 2(4,-2 -3V13
30479
21 1 + 12250 21)
17260511
29 1 + 22781250 V 29)
1 69
32 1 o169 2)
33 1 89, -1+ 14200./53)
37 1 9, -1 - 12057)
0 2 VI0) +3 (4, -1 + 2 v2)
173802949917
a1 ~ 2 7 1009027027000 41)
1 97
48 1 3,1 - 9v3)
52 1 0
1 19788441
53 1 —2 T “o13066 53)
56 1 81689740196849 747294455075136103407 14)
3182668608350 ’ 21244726707655335500
1380972233981 _/ 31 1 97
60 2 + 57318175000 15) +3 <T7 -3t ?ﬁ)
460138373 1 2745872872863 1 3
65 2 7‘*+mv65)+3(47—5—§“3)
1 339
69 1 L8 5+ 355 V69)
17 1 69
72 1 2 (7, -1- I\/5)
84 1 o)
44589
88 1 3529 _ 14 166012\/22)
89 1 o
1 2270031
97 1 3+ T7s616 97)




Table 5:

Stark-Heegner Points on X(37)", with D < 200
D h hy Py P,
5 1 1 2-(0,0) o]
8 1 1 2-(0,0) o
13 1 1 2-(0,0) o
7 1 1 2-(0,0) e}
20 1 1 —4-(0,0) o
24 1 2 —(0,0) (3,—3 £ 3V—2)
20 1 1 4-(0,0) o
32 1 2 —3-(0,0) (3. -2+1v-2)
45 1 2 -3-(0,0) (3,—% + &£v=15)
52 1 1 —4-(0,0) o
56 1 2 (0,0) 14&%, 71% iém\/fz)
57 1 2 (0,0) (389, -1+ &9 v/-19)
60 2 4 <2:|:\/§,—4:|:2\/§) :I:(—l:i:\/ﬁ,—%—\/—E):t% —15)
61 1 1 o o
68 1 1 —8-(0,0) e}
69 1 2 o (-2,-1 + %\/723)
72 1 2 —3-(0,0) 14(9%, _1% + ﬁg\/—G)
% 1 2 (0,0) (531 ~2 % 533 —19)
80 1 2 (0,0) (%, -3 + ?/—5)
88 1 2 —(0,0) (3, -5 £1V-2)
89 1 1 —2-(0,0) o
92 1 2 —2-(0,0) (—2,—31 +£/=23)
93 1 2 2-(0,0) (552, -1 + &4 v=3I)
96 2 4 (1i\/§,2i\/§) i<f%i%\/§,f%+i\/j2q:i\/j6>
97 1 1 o)
8 3 1 1 1 1 1
105 2 4 (ﬁ + 321, -2 7127 ) (75 +ival, -1y LyoT54 L 735)
109 1 1 2(0,0) o
13 1 1 o o
16 1 1 —8(0,0) o
117 1 2 —5(0,0) (%1, -3+ £v=39)
124 1 2 o (-2, -1 + & V=30)
125 1 1 —6(0,0) o
s 2 40.0) 14470973 (%i_% :5‘:416313424)1 /A3
129 1 2 —(0,0) (21902400?75 10245903232000 *43)
1
133 1 2 —(0,0) (327, -1 + =255
40 2 4 —(0,0)+ (2% VT 4£2V7) (-1- 7 -5 - 3v=5- 1v=3)
96 1 1819
153 1 2 —3(0,0) (1200775 + 72000 V 01 )
156 2 4 (242 -1472v3) (-3 -5v3,-1 -5 v-T3- 25V
61 1 2 (0, 0) (-2,-1+ éx/—2 )
1 15 1 1
65 2 4 (L+i L4 LvE) (-4 +4v3B, -1 + &v-T5)
8 3 3 1 1 1
168 2 4 (2—5 + 321,32 5 125\/ ) (—Z VI S /- Z\/—14)
14470973 1 5466310441 /A9
172 1 2 (0,0) (219024001 T2 1 102389232000 _43)
77 1 2 o X, —2 £ o0
180 1 2 6(0,0) 2(3 72i & V—15)
193 1 1 2(0,0)
200 2 2 —2(0,0)+2 ( 1,1+ 1vi0) o)
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Table 6: Stark-Heegner Points on 43A, with D < 200

D h hy Py Py
5 1 1 2(0,0) O
8 1 1 -2(0,0) 0
5 1 3
12 1 2 7(070) (737*§+ gl)
20 1 1 ~4(0,0) o
5 1 3
28 1 2 (070) (71775 + gl)
29 1 1 2(0,0) o
5 1 3
b 1 s Wl )
(0,0) (=% -2 — oes V-1D)
37 11 2(0,0) 0
45 1 2 2(0,0) -—=
5 1 3
48 1 2 3(0,0) (-3, —5 — 31)
61 1 1 2(0,0) o
65 2 2 —(0,0)+ (%, -1 Z5VD3) o)
36 1 235
69 1 2 (0,0) (-28, -1+ 25 v-23)
201 2 2(0,0) -—=
7301 1 —2(0,0) 0
5 1 3
o1 o 2(=3—3 + 5i)
771 2 ~3(0,0) (45 -3 - % —11)
80 1 2 (0 0) (-2, -3+ £V-0)
8 2 2 —(0,0)+ (-1, A5VT7) o
141 1 1381
88 12 (0’0) (=412 % g5 V=11)
89 1 1 2(0,0) 0
93 1 2 3(0,0) (—322, -1 + L1895 /231)
04 2 2 0,0+ (% -5+ 55 V13) o)
105 2 4 (£-3 + 3var) (-2.=5 +3V=19) + (-5, -3 + 555 V=39)
108 1 2 3(0,0) (-5,-3 £ 2V70)
5 1.8
12 1 2 —3(0,0) 3(-3,—5£5vV-1)
13 1 1 4(0,0) 0
116 1 1 ~4(0,0) 0
1 1 1 209 445 s 1 1
120 2 4 2 iZ\/é) (_Tw’_i 5916V 10 0) + (-2 —3t3 —15)
125 1 1 ~10(0,0) [
3
128 1 2 —4(0,0) 2(-%, -3 £3v-0)
132 1 2 —4(0,0)
136 2 4 (3 +4vT7 34 V) -
137 1 1 4(0,0) 0
141 1 2 —2(0,0) 2(-7,—% £ 3v/=17)
148 3 3 Cf. example 1, sec. 2 O
149 1 1 o 0
152233963 20226293
156 2 4 (44 V13,11 + 3V13) (—ipzzeagen _ 20220208 /13
_ 1 _ 285199304263 /7 _ 127648135123 _13)
2 75369323124 150738646248
157 1 1 —4(0,0) 0
161 1 2 (0,0) (-85, -3+ 55 V —23)
168 2 4 7(0,0)+<§,f%—§\/21 (—%,f§+1\/7)+( I,-1+2/-6)
177 1 2 —2(0,0) 2(—13,—3 + 31V—59)
180 1 2 4(0,0) -
184 1 2 —(0,0 (-38, -1+ 25/=23)
192 2 4 20,00+ (-5, -5 £ 1V6) (-1,- ;ii\/ 6)
200 2 2 4(0,0)+2(,—§ +1V10) o




Table 7: Stark-Heegner Points on 61 A, with D < 200

D h hy Pr Py
g8 1 1 2(1,0) 0O

17 1 1 —2(1,0) o)

21 1 2 (1,0) (-2, 8 + BT /=7)

24 1 2 ) 2(-2,1— = 2)

28 1 2 —(1,0) (-2, _ 1377 /=7)

20 1 1 —2(1,0) o

32 1 2 —2(1,0) 23 %01 +2\7/ 2)

33 1 2 (1,0) —ib 1 E e v-1)

37 1 1 2(1,0) o)

0 2 2 11,0+ (4-2+ £V5) 0

4 1 2 (1,0) (20,10 4 27 /777)

53 1 1 —4(1,0) o)

68 1 1 6(1,0) o

1039 1039 18899 s
gg i 3 (21(»10)0) (_ 575 7 1150 + 132250 _23)
84 1 2 —(1,0) (-2, 19 4 1377 /=7)
4 2 3
8 2 2 (1L,0)+(4,-2+2V5) 0
89 1 1 o o
1039 1039 18899

92 1 2 (1,0) (— %5 L5150, + 1§?250 V=23)

93 1 2 o 2 (-4, 13 + 51V-31)

9% 2 4 (3 -1+1v3) (- 1711\/ 5)

101 1 1 2(1,0) e}

4 2 31
04 2 2 1,0+ (35, & - £5V3) o
1 1 163 7 163 7 2909 7 31 7/

105 2 4 (_Eii\/g70> (_ﬁ_i v T3 V5 + o6 VT _35>
112 1 2 2(1,0) (—%%iﬂ =7)

116 1 1 2(1,0)

120 2 4 —(1,0) (%2, 8+ 2%227\/ 0) + ( 2,1++v-2)
124 1 2 ) -3, 1 & +/=30)

128 1 2 ) z 2,1+ Ve )

129 1 2 O 4 3 13 43 3)

132 1 2 —3(1,0) —20710% 27 V—11)

133 1 2 (1,0) (- ]’75, ]{i Bﬂ”F)

o2 a o (BEPALTIE) (1 D T )
145 4 4 - e}

148 3 3 Cf. example 1, sec. 2 o

152 1 2 —2(1,0) 2(-2,1++/-2)

153 1 2 2(1,0) -

157 1 1 2(1,0) e}

962 481 20927
S 0 P A A i A R
1 1 1 6813 1363 18 3
165 2 4 (75 +5V5, 5 F 5\/5> (* 76382 6962 5, 153164 T 13994 V0T
536241399 /11 20169123
994034:}% —11+ 9036676 55)

172 1 2 2(1,0) a(-2 8 +3/-43

173 1 1 4(1,0) o

176 1 2 —2(1,0) o)

79849300 39924650 434520424417 7

71 2 (1’ ) ( 36542771 36542771 + 1696790485843 -5 )
181 1 1 o o)

185 2 2 7(1,0)+<%,7§i%\/5> o

189 1 2 -3(1,0) -7 RV

193 1 1 o o)
200 2 2 -31,0)+ (-2 + 2V5) 0
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Table 8: Traces of Stark-Heegner points on X((37)", with D < 1000

D a(D) AD) ]| D aD) AD) || D aD) AD) | D aD) AD) ]| D aD) A(D)
5 2 418 —2 1| 393 2 | Y — 36 || 796 0 0
8 2 4 | 204 2 4 || 401 2 4| 597 0 o 97 -8 64
13 2 4205 -2 4 || 409 0 0 || 609 0 0 | sos8 2 4
17 2 4 || 209 —2 4 || 412 —2 4 || 616 2 4 || 809 4 16
24 —2 4 || 217 0 0 || 413 12 144 || 649 0 0 || 812 -8 64
29 4 16 || 220 —2 4 1] 421 —2 4 || 652 2 4 || 829 0 0
56 2 4| 236 -4 16 || 424 -2 4| 653 0 0| 849 0 0
57 2 4 || 237 6 36 || 429 6 36 || 661 —2 4| 853 4 16
60 -2 4 || 241 0 0 || 449 2 4| 664 2 4| 856 0 0
61 0 0| 253 0 0 457 -2 4 668 —14 196 || 857 6 36
69 0 0257 -4 16 || 461 —10 100 || 680 4 16 || 865 2 4
76 2 4 || 264 2 4| 473 -6 36 || 681 0 089 —6 36
88 —2 4 || 265 2 4 || 476 2 4 || 685 —4 16 || 893 6 36
89 —2 4 || 273 2 4 || 489 2 4 || 689 —2 4 || 901 2 4
92 -4 16 || 277 4 16 || 501 2 4| 697 -2 4905 -6 36
93 4 16 || 281 4 16 || 505 -2 4| 701 -8 64 || 908 —12 144
97 0 0301 -2 4 || 520 0 of 705 -2 4|97 -6 36
105 —2 4 || 309 —2 4 || 524 2 4 || 709 2 4 1| 920 —4 16
109 2 4| 313 2 45338 -6 36 || 716 4 16 || 933 6 36
113 0 0| 316 2 4 || 536 0 0| 77 4 16 || 940  —2 4
124 0 0 || 328 —2 4 || 537 0 0 721 —2 4 || 949 —2 4
129 —2 4 || 341 8 64 || 541 —4 16 || 732 4 16 || 956 8 64
133 —2 4 || 348 4 16 || 553 2 4| 745 2 4| 957 0 0
140  —6 36 || 353 2 4| 557 —16 256 || 748 -2 4 | 977 4 16
156 —2 4| 357 6 36 || 561 —2 4| 753 -2 4| 984 2 4
161 4 16 || 364 2 4| 568 -2 4| 57 —a 16 || 985 2 4
165 2 4| 365 6 36 || 569 4 16 || 760 0 0| 993 0 0
168 -2 4| 376 2 4| 572 -6 36 || 764 0 0997 -4 16
172 2 4 || 385 —2 4 || 573 0 0 || 769 0 0
177 0 038 -4 16 || 577 —2 4785 2 4

30




Table 9: Traces of Stark-Heegner points

on 43A, with D < 1000

D a(D) AMD)|| D aD) AMD) ]| D aD) AMD) ] D aD) AD) ] D aD) A(D)
5 2 4184 -2 4 [409 —2 4593 —2 4| 793 2 4

8 -2 4 || 201 2 4|l 413 -8 64 || 601 0 0 | 796 0 0
12 -2 4| 204 2 4 417 -2 4 | 604 2 4 808 -6 36
28 2 4205 -2 4 || 421 4 16 || 609 0 0| 813 6 36
29 2 4| 209 0 0 || 424 2 4 620 6 36 || 824 -6 36
33 2 4| 217 -2 4|l 429 -2 4| 629 -4 16 || 829  —4 16
37 4 16 || 220 2 4| 433 2 4 | 632 12 144 || 844 0 0
61 —2 4 233 0 0 437 —12 144 | 636 —2 4 | 849 2 4
65  —2 4 || 237 0 0l 449 —2 4| 641 2 4| 86 -4 16
69 2 4| 241 0 0 || 456 4 16 || 652 6 36 || 865 0 0
73 -2 4| 248 -2 4 || 457 2 4| 653 -8 64 | 872 6 36
76 0 0 || 249 2 4 || 460 2 4| 664 2 4 | 888 4 16
7 —6 36 || 257  —2 4 || 469 2 4 | 665 4 16 || 889 2 4
85  —2 4 265 2 4| 472 0 0| 673 2 4 || 892 2 4
88 2 4| 277 2 4 || 476 6 36 || 677 8 64 || 893  —4 16
89 2 4 || 280 4 16 || 481 0 0 || 696 4 16 || 897  —2 4
93 6 36 || 284 4 16 || 485  —2 4| 16 -2 4| 905 0 0
104 2 4| 285 -4 16 || 492 —2 4| 717 —12 144 | 908 8 64
105 0 0 | 309 2 4| 493 6 36 || 721 -2 4| 921 -2 4
113 4 16 || 313 2 4 || s501 -2 4| 733 8 64 || 929 0 0
120 0 0 || 321 0 0 || 505 2 4 || 749 0 0| 933 2 4
136 —2 4| 328 -2 4 || 521 -2 4| 753 2 4| 937 2 4
137 4 16 || 329 0 0 || 524 0 0| 757 4 16 || 940 4 16
141 -4 16 || 349 2 4| 536 2 4 || 760 0 0l 949 2 4
149 0 0 || 364 2 4 || 545 2 4 || 761 0 0l 953 -2 4
156 2 4 373 -4 16 || 553  —4 16 || 764 4 16 || 965 2 4
157 —4 16 || 376 0 0 || 561 2 4| 773 18 324 || 973 2 4
161 2 4| 377 6 36 || 577 2 4| 6 -2 4| 985 0 0
168  —4 16 || 381 2 4| 581 -2 4| 77 -4 16 || 988 8 64
177 —4 16 || 389 0 0 || 589 0 0l 781 —4 16 || 997  —2 4
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Table 10: Traces of Stark-Heegner points on 614, with D < 1000

D aD) AD) || D aD) AD) ] D aD) AD) | D aD) AD) ] D a(D)
8 2 4 181 0 0 || 389 —4 16 || 593 -2 4 || 821 4
17 —2 4 185 —2 4 || 397 —2 4 || 604 —2 4 || 824 8
21 2 4| 193 0 0| 401 0 0616 -2 4| 844 0
24 0 0 || 201 2 4 || 409 0 0617 -4 16 || 856 0
28 -2 4| 204 -4 16 || 417 —6 36 620 8 64 | 860 0
29 -2 4 || 209 2 4 || 421 2 4| 633 0 081 -2
33 2 4 || 213 —4 16 || 429 2 4 || 636 4 16 || 865 4
37 2 4 || 220 2 4 || 433 —4 16 || 641 —4 16 || 872 —6
0 -2 4| 221 2 4| 437 -6 36| 645 4 16 || 877 0
44 2 4233 -2 4 || 444 0 0| 653 0 0| 885 2
53 —4 16 || 236 —2 4| 445 0 0 | 661 2 4889 -2
69 2 4237 -6 36| 453 -2 4664 -4 16 || 892 2
85 2 4| 265 0 0| 456 0 0665 —6 36|87 —6
89 0 0268 -2 4 || 457 2 4 || 669 2 4| 904 -2
92 2 4 || 273 2 4 || 460 —2 4 || 673 2 4 || 905 4
93 0 0 2mm -2 4 165 0 0677 12 144|908  —6
101 2 4| 281 4 16 || 481 2 4| 681 2 4| 913 0
104 -2 4| 284 0 0 505 -2 4| 689 0 0917 -2
105 -2 4312 -4 16 || 509 2 4| 697 2 4| 921 2
120 -4 16 || 313 0 0 517 0 0| 701 0 0933 -2
124 0 0 || 316 2 4 || 520 —2 4 || 709 2 4 || 941 —6
129 0 0 || 328 —2 4 1| 521 2 4 1| 721 2 4 || 952 0
133 2 43290 -4 16 || 541 0 0| 749 0 0953 —10
140 2 4 || 337 —4 16 || 556 —2 4 || 753 —4 16 || 965 12
145 2 4| 345 2 4| 557 -4 16 || 760 0 0 || 969 0
152 -4 16 || 348 4 16 || 572 6 36| 761 2 4| 984 0
157 2 4 || 349 2 4| 573 2 4| 764 2 4993 -2
165 2 4| 364 2 4 || 577 2 4| 769 -2 4997 -2
172 4 16 || 373 6 36| 581 0 0| 776 4 16
173 4 16 || 376 0 0 584 -2 4|78 -2 4
177 2 4 || 377 2 4 || 589 —4 16 || 817 0 0
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