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TEITELBAUM’S EXCEPTIONAL ZERO CONJECTURE
IN THE ANTICYCLOTOMIC SETTING

By MASSIMO BERTOLINI, HENRI DARMON, ADRIAN IOVITA, and MICHAEL SPIESS

Abstract. Teitelbaum formulated a conjecture relating first derivatives of the Mazur-Swinnerton-
Dyer p-adic L-functions attached to modular forms of even weight k ≥ 2 to certain L-invariants
arising from Shimura curve parametrizations. This article formulates an analogue of Teitelbaum’s
conjecture in which the cyclotomic Zp extension of Q is replaced by the anticyclotomic Zp-extension
of an imaginary quadratic field. This analogue is then proved by using the Cerednik-Drinfeld theory
of p-adic uniformisation of Shimura curves.

Introduction. Let φ =
∑

anqn be an eigenform of even weight k ≥ 2 on
Γ0(N). The classical L-function L(φ, s) admits an analytic continuation to the
entire complex plane, and a functional equation which relates its values at s and
k − s. Of special arithmetic interest for the present work is the central value
L(φ, k/2).

For example, when k = 2, the Birch and Swinnerton-Dyer conjecture relates
the behavior of L(φ, s) at s = 1 to the arithmetic of the abelian variety Aφ
associated to φ by the Eichler-Shimura construction. In [MTT], a p-adic variant
of the Birch and Swinnerton-Dyer conjecture is formulated with L(φ, s) replaced
by a p-adic analogue Lp(φ, s) attached to the cyclotomic Zp-extension of Q.

When p divides N exactly and ap = 1 (which implies that Aφ has split
multiplicative reduction at p), the function Lp(φ, s) vanishes at s = 1. In this
case the conjectures of [MTT] imply the following relationship between the first
derivative L′

p(φ, 1) and the special value L(φ, 1):

L′
p(φ, 1) = L(φ) · L(φ, 1)/Ω,(1)

where Ω is an appropriate real period and L(φ), the so-called L-invariant, is an
isogeny invariant of Aφ/Qp . It is defined by using the Tate-Morikawa theory of
p-adic uniformization of abelian varieties with multiplicative reduction at p. For
example, when φ has rational Fourier coefficients, so that Aφ is an elliptic curve,
then

L(φ) =
logp (q)

ordp(q)
,
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where q ∈ Q×
p is the Tate period associated to Aφ over Qp, and logp is the

branch of the p-adic logarithm such that log p = 0. The conjectured relation (1)
was proved by Greenberg and Stevens [GS] using Hida’s theory of p-adic families
of ordinary eigenforms and the two-variable p-adic L-functions attached to them.

Subsequently, much work has gone into formulating and proving similar con-
jectures for modular forms of higher (even) weight. The following generalization
of (1) was conjectured in this setting,

L′
p(φ, k/2) = L(φ) · L(φ, k/2)/Ω,(2)

with several possible definitions for the L-invariant.
1. The first candidate for L(φ), denoted LT (φ), was proposed by Teitelbaum

[Tei], relying on the Jacquet-Langlands correspondence between forms on Γ0(N)
and on certain indefinite quaternion algebras, and on the Cerednik-Drinfeld theory
of p-adic uniformization of Shimura curves. In particular, LT (φ) is only defined
when φ can be associated via the Jacquet-Langlands correspondence to a modular
form on such a Shimura curve.

2. A second invariant LC(φ) was proposed by Coleman [Co], based on his
theory of p-adic integration on the modular curve X0(N).

3. Finally, a third L-invariant LFM(φ) was introduced by Fontaine and Mazur
[Mz1] in terms of the semistable Dieudonné module of the local p-adic Galois
representation attached to φ.

Proofs of equation (2) have been announced by Stevens and by Kato, Kurihara
and Tsuji, with L(φ) replaced by LC(φ) and LFM(φ) respectively.

Parallel to these developments, a p-adic conjecture of Birch and Swinnerton-
Dyer type (for weight two modular forms) is formulated in [BD1], with the
cyclotomic Zp-extension of Q replaced by the anticyclotomic Zp-extension of a
quadratic imaginary field K. In the anticyclotomic setting, the p-adic L-function
admits a construction which appeals to the p-adic analytic uniformization of
Shimura curves, unlike the cyclotomic setting, where the complex uniformization
is required in the definition of modular symbols. Thus the anticyclotomic setting
is more amenable to the purely p-adic approach initially proposed by [Sch] for the
cyclotomic setting. Furthermore, new exceptional zero phenomena emerge which
have no counterpart in the situation explored by Mazur, Tate and Teitelbaum,
and which can be approached through other methods, most notably the theory of
complex multiplication. (See for example the formulae of [BD2] and [BD3].)

When the prime p splits in K, the article [BD4] gives a proof of formula (1) in
the anticyclotomic context. This proof differs from the one given by Greenberg
and Stevens in the cyclotomic case, making no use of Hida families or two-
variable p-adic L-functions, but relying on p-adic integration on Shimura curves
in an essential way. Since this ingredient is precisely the one that enters into both
the definition of Teitelbaum’s L-invariant and of the anticyclotomic p-adic L-
function, it is natural to build on the methods of [BD4] to prove the anticyclotomic
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analogue of Teitelbaum’s conjecture. This is one task carried out in this paper.
(Cf. Theorem 3.4 of Section 3.2.)

The case where p is inert in K (which for weight 2 is treated in [BD3]) is
different: both the p-adic and classical L-functions vanish at the central point, and
the discrepancy between them cannot be accounted for by a simple L-invariant.
This case is discussed in Section 3.3; Theorem 3.5 expresses L′

p(φ, k/2) in terms
of a p-adic Coleman integral between two CM points on the p-adic upper half
plane, and can be viewed as a generalization of one of the main results of [BD3]
to weight k > 2. The arithmetic interpretation of this integral will be explored in
a future work.

Note that by combining the above mentioned results of Stevens with those
of Kato-Kurihara-Tsuji implies the equality of the (cyclotomic) Coleman and
Fontaine-Mazur L-invariants. In general, a direct, local comparison of these L-
invariants is investigated in [CI] where it is shown that they are equal when they
are defined. This applies to the present work, so that the anticyclotomic analogue
of LT (φ) could be replaced by LC(φ) or LFM(φ) in the statement of Theorem 3.4.

The present work has its roots in a graduate course taught by one of the
authors (Iovita) at McGill University in the Spring of 1998, in which the con-
nection between the p-adic L-function of [BD1] and Schneider’s rigid analytic
L-transforms was emphasized. The first three authors were then led to recast the
proofs of the main results of [BD3] and [BD4] in this framework, while a similar
approach was being developed independently by the fourth author. What emerged
were proofs of the main results of [BD3] and [BD4] which, while not fundamen-
tally different from the originals, are more elegant and conceptual, and clarify the
role of the underlying machinery of p-adic integration. In particular, the use of
Schneider’s p-adic boundary distributions and Teitelbaum’s p-adic Poisson trans-
form, implicit in [BD3] and [BD4], is made explicit. This point of view has been
influential in later work, notably [Da].

Because of the more conceptual point of view taken in the present work,
even the reader interested only in the weight two results of [BD3] and [BD4]
may find it helpful to study this paper after setting k = 2. The authors also felt
it would be worthwhile to generalize the results of [BD3] and [BD4] to higher
weight, a context in which the original approach had seemed unduly burdensome
to carry through.
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Iovita) were partially supported by CICMA (Centre Interuniversitaire en Cal-
cul Mathématique Algébrique). Finally the authors thank the referee for helpful
suggestions which led to significant improvements in the article.
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1. Preliminaries.

1.1. Review. In this section we review the main ingredients which enter our
constructions and fix the notations.

The p-adic upper half plane. Let Cp be the completion of the algebraic
closure Q̄p of Qp, and let

Hp := P1(Cp)− P1(Qp)

be Drinfeld’s p-adic upper half plane. It has a natural structure of a rigid analytic
space (see [SS] where a more general situation is treated or [BD5] §3.1 for
details on what is needed here and where the notations are consistent with the
ones in the current paper). The group PGL2(Qp) acts on Hp by fractional linear
transformations. Fix once and for all an embedding of Q̄ into Q̄p, and hence Cp.

Write T = Tp for the Bruhat-Tits tree of PGL2(Qp) and denote by
→
E (T ) the set

of its oriented edges. If e ∈
→
E (T ) we denote by V(e) the inverse image under

reduction of e. It is a wide open annulus in Hp.

Quaternion algebras. Let B be an indefinite quaternion algebra over Q,
i.e., a central simple algebra of rank 4 satisfying

B ⊗Q R � M2(R).

An order in B is a subring of B which is of rank 4 as a Z-module. A maximal
order is an order which is contained in no larger order, and an Eichler order
is the intersection of two maximal orders. (For the definition of the level of an
Eichler order, see [Vi], ch. I, §4.)

Let B be a definite quaternion algebra, i.e., a quaternion algebra over Q
satisfying

B⊗Q R � H,

where H = R + Ri + Rj + Rk is Hamilton’s skew field of real quaternions. The
algebra B does not satisfy the Eichler condition, and in general contains several
distinct conjugacy classes of maximal orders. (The number of such classes is
called the type number of B, cf. [Vi], ch. V.)

Fix a prime p for which B splits. A Z[1/p]-order in B is a subring of B which
is stable under multiplication by Z[1/p] and is of rank 4 as a Z[1/p]-module.
A maximal Z[1/p]-order of B is a Z[1/p]-order which is contained in no larger
Z[1/p]-order, and an Eichler Z[1/p]-order is the intersection of two maximal
Z[1/p]-orders. For more details on quaternion algebras see [BD5] §3.2.
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Shimura curves. Let S be a finite set of places of Q of odd cardinality
containing the place ∞, and let N+ be an integer which is not divisible by any
prime in S. Then a Shimura curve X over Q can be associated to the data (S, N+)
and described as follows. The presentation of the material is inspired by [Gr1],
ch.IV.

Let B be the indefinite quaternion algebra ramified exactly at the places in
S−{∞}, let R be an Eichler order in B of level N+, and let Rmax be a maximal
order containing R. Let R×

1 be the group of elements of R of reduced norm
1, and let Γ∞ := ι∞(R×

1 ) ⊂ SL2(R). Then the Riemann surface X(C) can be
described as the quotient H/Γ∞. See [BD 5] for more details.

Assume that S − {∞} is nonempty and let p ∈ S be a rational prime. Let B
be the (definite) quaternion algebra ramified precisely at the places in S − {p},
and let R be an Eichler Z[1/p]-order in B of level N+. Let us fix an isomorphism
ι: B ⊗ Qp −→ M2(Qp). It induces a group homomorphism, also denoted ι by
abuse of notation, ι: B× −→ PGL2(Qp). Let Γ = ι(R×

1 ) ⊂ PSL2(Qp) be the
image under ι of the elements of norm 1 in R. Then the rigid analytic curve
X(Cp) can be described as the quotient Hp/Γ.

This description of the Shimura curve X follows from a theorem of Cerednik-
Drinfeld, see [Ce] and [Dr]. Detailed proofs of these results can be found in [JL1]
and [BC].

p-adic modular forms. For the following definition recall the quotient
X(Cp) = Hp/Γ from the paragraph on Shimura curves above. For all

M =

(
a b
c d

)
∈ GL2(Cp), write

( f |kM)(z) :=
det (M)k/2

(cz + d)k f (Mz).

Definition 1.1. A p-adic modular form of weight k on Γ (or on X) is a global
rigid analytic function f on Hp satisfying

f (γz) = (cz + d)kf (z), (i.e., f |kγ = f ), for all γ =

(
a b
c d

)
∈ Γ.

We denote by Srig
k (Γ) the space of p-adic modular forms of weight k for the group

Γ.

Hecke operators. Let N be a positive integer, and fix a prime p which
divides N exactly. The space Sk(Γ0(N)) of cusp forms of weight k on Γ0(N), and
the space Snew

k (Γ0(N)) of newforms on this group, are endowed with an action
of the commuting Hecke operators Tn for each n ≥ 1, defined in the standard
way. (See for example [MTT], ch. I, §4.) Note that, following the conventions of
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[MTT], when � is a prime dividing N the symbol T� is used to denote the Hecke
operator sometimes written U� in other articles.

The space Sk(Γ0(N)) is also acted on by the Atkin-Lehner involutions W� for
each prime �|N. (In [MTT], ch. I, § 5, the involution W� is called w�a , where �a

is the maximal power of � dividing N.) The normalized newforms in Sk(Γ0(N))
are also eigenvectors for these involutions. Let w = ±1 denote the negative of
the eigenvalue of Wp acting on φ,

Wp(φ) = −wφ, so that Tp(φ) = wp
k−2

2 φ.

The form φ is said to be of split multiplicative type if w = 1, and of non-split
multiplicative type if w = −1.

Let S be a set of places of Q of odd cardinality containing {∞}, and suppose
that

N = N+
∏

�∈S−∞
�,

with N+ not divisible by any prime in S. Let X be the Shimura curve attached to
the data (S, N+). By abuse of notation, let Tn denote the nth Hecke correspondence
on X, defined for example as in [JL2]. When � /∈ S is a prime which does not
divide N+, (resp. divides N+), the correspondence T� is of bidegree �+1 (resp. �),
just like its X0(N)-counterpart. When � belongs to S, the operator T� arises from
an an involution on X. (Cf. for example [BD1], sec. 1.5, where Tp is denoted
W−

p .)

The Jacquet-Langlands correspondence. Crucial to the constructions of
this paper is the Jacquet-Langlands correspondence which allows the normalized
newform φ =

∑
anqn on Γ0(N) to be replaced by a modular form on a Shimura

curve associated to the appropriate quaternion algebra. Let X be the Shimura
curve defined in the previous section.

THEOREM 1.2. (Jacquet-Langlands) There exists a p-adic modular form f
of weight k for the group Γ satisfying

T�( f ) = a�f , ∀� /∈ S.

This function is unique, up to scaling by a nonzero scalar in Cp.

The group Γ arising in the p-adic uniformization of X is contained with index
two in Γ̃ := ι(R×) ⊂ PGL2(Qp). Choose any element γ̃ ∈ Γ̃− Γ. Then

f |kγ̃ = wf ,
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where the reader is reminded that w is the negative of the sign of the Atkin-
Lehner involution Wp acting on φ. Thus f is Γ̃-invariant if and only if φ is of
split multiplicative type at p.

1.2. Harmonic cocycles. Harmonic cocycles are treated in both [Sch] and
[Tei] but as our point of view is slightly different we prefer to restate the def-
initions and main properties of these objects here. Let Γ be the subgroup of
PSL2(Qp) defined above and let M be a Cp[Γ]-module, where the action of Γ is
written on the left.

Definition 1.3. An M-valued harmonic cocycle on T is an M-valued function

on
→
E (T ) satisfying

c(e) = −c(ē),
∑

source(e)=v

c(e) = 0, ∀v ∈ T .

Write Char(M) for the Cp-vector space of M-valued harmonic cocycles, and
Char(M)Γ for the space of Γ-equivariant harmonic cocycles, i.e., harmonic co-
cycles c satisfying

c(γe) = γ · c(e), for all γ ∈ Γ.

Let Pk−2 be the (k−1)-dimensional Cp-vector space of polynomials of degree
at most k−2 with coefficients in Cp. It is endowed with a right action of GL2(Qp)
(and actually of PGL2(Qp)) by the rule

P(x) · β :=
(cx + d)k−2

(det(β))
k−2

2

P
(

ax + b
cx + d

)
, β =

(
a b
c d

)
, P ∈ Pk−2.

In this way P∨
k−2 := hom (Pk−2, Cp) inherits a left PGL2(Qp)-action by

β · R(P) := R(P · β), ∀ P ∈ Pk−2.

Let U := ad0(B) be the representation of B× consisting of the elements of B of
reduced trace zero on which B× acts on the right by the rule

u · b := (b−1ub).

The function which to every u ∈ U associates the polynomial Pu(x) ∈ P2 (with
coefficients in Qp) given by

Pu(x) = trace

(
ι(u)

(
x −x2

1 −x

))
= trace

(
ι(u)

(
x
1

)
(1 −x)

)
(3)
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satisfies Pu·b(x) = Pu(x) · ι(b), and hence induces a linear map from U ⊗ Cp to
P2 which intertwines the B× and PGL2(Qp) actions.

The symmetric bilinear Q-valued pairing on U arising from the Cartan-Killing
form on ad0(B),

〈u1, u2〉1 :=
1
2

trace(u1ū2)

satisfies 〈u1 · b, u2〉1 = 〈u1, u2 · b̄〉1, so that 〈u1 · b, u2 · b〉1 = 〈u1, u2〉1. This pairing
gives rise to a perfect symmetric pairing 〈 , 〉j on Symj(U) by the rule

〈u1 · · · uj, v1 · · · vj〉j =
1
j!

∑
σ∈Sj

〈u1, vσ1〉1 · · · 〈uj, vσj〉1.(4)

Thus the space Sym
k−2

2 (U) is identified with its own dual via the pairing 〈 , 〉 k−2
2

.
Dualizing the natural surjection

Sym
k−2

2 (U)⊗ Cp −→ Pk−2(5)

induced from the map U −→ P2 of equation (3) yields an inclusion

P∨
k−2 −→ Sym

k−2
2 (U)⊗ Cp.(6)

In this way P∨
k−2 inherits a perfect bilinear pairing arising from 〈 , 〉 k−2

2
, denoted

simply by 〈 , 〉.
If L is any subfield of Cp, write Pk−2(L) for the natural image of the

map Sym
k−2

2 (U) ⊗ L −→ Pk−2 arising from equation (5), and let P∨
k−2(L) :=

hom (Pk−2(L), L). This definition yields a rational structure on Pk−2 and P∨
k−2.

Note that in general Pk−2(Q) is not the space of polynomials with rational coef-
ficients.

Definition 1.4. A harmonic cocycle of weight k on T is a P∨
k−2-valued har-

monic cocycle.

Set Char(k) := Char(P∨
k−2), and Char(k)Γ := Char(P∨

k−2)Γ.
Following Schneider [Sch], [Tei], associate to a rigid analytic modular form

f of weight k on Γ a harmonic cocycle cf ∈ Char(k) by the rule

cf (e)(r) = rese( f (z)r(z)dz), r(z) ∈ Pk−2,(7)

where rese is the p-adic annular residue along the oriented wide open annulus
V(e) in P1(Cp), defined by

rese(ω) := resV(e)(ω|V(e)).

The fact that cf is harmonic follows from the p-adic residue formula. (Cf. [Sch].)
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Definition 1.5. For γ ∈ PGL2(Qp) denote by |γ| :=ordp(det (γ))(mod 2),
where γ is any lift of γ in GL2(Qp).

LEMMA 1.6. The cocycle cf satisfies the following transformation with respect
to Γ̃

cf (γe) = w|γ|γ · cf (e), ∀γ ∈ Γ̃.

Proof. For all r ∈ Pk−2, and γ =

(
a b
c d

)
,

cf (γe)(r) = resγe( f (z)r(z)dz) = rese(f (γz)r(γz)d(γz))

= rese(w|γ| (cz + d)k

(detγ)
k
2

f (z)
(cz + d)2−k

(detγ)
2−k

2

(
r(z) · γ)

detγ
(cz + d)2 dz

)

= w|γ|rese( f (z)(r(z) · γ)dz) = w|γ|cf (e)(r(z) · γ)

= w|γ|γ · cf (e)(r).

Define a pairing on Char(k)Γ by the rule

〈c1, c2〉 =
∑

e∈
→
E (T )/Γ

we〈c1(e), c2(e)〉,

where the sum is taken over a set of representatives for the Γ-orbits in
→
E (T ),

the integer we is the cardinality of the stabilizer of e in Γ, and the pairing on
P∨

k−2 is the one defined by equation (6) and the sentence after it. The pairing on
Char(k)Γ is nondegenerate, because of the nondegeneracy of the pairing on P∨

k−2
used to define it. It can be checked directly that the Hecke operators T� for � � |N
are self-adjoint with respect to 〈 , 〉.

Now let φ be a normalized newform of weight k ≥ 2 on Γ0(N) and f ∈
Srig

k (Γ) be the rigid analytic modular form on Γ attached to it by Section 1.1.
The associated cocycle cf ∈ Char(k)Γ belongs to a one-dimensional simultaneous
eigenspace for the Hecke algebra, by Theorem 1.2. Hence the nondegeneracy of
the pairing 〈 , 〉 on Char(k)Γ implies that

〈cf , cf 〉 �= 0.

Note that the form f is only well defined up to multiplication by a nonzero scalar;
the following definition is introduced to remove this ambiguity.

Definition 1.7. An eigenform f ∈ Srig
k (Γ) is said to be normalized if its asso-

ciated cocycle cf ∈ Char(k) satisfies

〈cf , cf 〉 = 1.
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Note that the normalized eigenform f ∈ Srig
k (Γ) attached to φ is well defined, up

to a sign. Suppose from now on that f is normalized in this way.
Recall that Kφ ⊂ Cp is the finite extension of Q generated by the Fourier

coefficients of φ. The normalized eigenform f satisfies the following rationality
property.

LEMMA 1.8. The P∨
k−2-valued cocycle cf takes values in P∨

k−2(Kf ), where Kf is
an extension of Kφ of degree ≤ 2.

Proof. The space of Γ-equivariant P∨
k−2(Q)-valued cocycles gives a rational

structure Char(k)Γ
Q on Char(k)Γ which is preserved by the Hecke operators, and on

which the pairing 〈 , 〉 takes values in Q. Hence the one-dimensional eigenspace
of Char(k)Γ attached to φ contains a Kφ-rational vector c̃f ∈ Char(k)Γ

Q⊗Kφ. Since

〈c̃f , c̃f 〉 belongs to Kφ, the lemma follows, with Kf = Kφ(
√
〈c̃f , c̃f 〉).

1.3. Schneider’s distribution. This section reviews a construction of Schnei-
der which associates to a rigid analytic modular form f of weight k on Γ a
“boundary distribution” µf .

An end of T is an equivalence class of sequences (en)∞n=1 of edges en ∈
→
E (T ) satisfying target(en) = source(en+1), and target(en+1) �= source(en), two such
sequences (en) and (e′n) being identified if there exist N and N′ with eN+j = e′N′+j
for all j ≥ 0. Let E∞(T ) be the space of ends on T . It is identified with P1(Qp)
by the rule

(en) �→ lim
n

ben(∞),

where ben is the coset in PGL2(Qp) associated to en. (See [BD 5] §3.1.) The
space E∞(T ) thus inherits a natural topology coming from the p-adic topology

on P1(Qp). Each edge e ∈
→
E (T ) corresponds to a compact open subset U(e) of

E∞(T ) consisting of all ends having a representative which contains e.

Locally analytic distributions. We would now like to recall a few facts on
p-adic distributions. We will adopt the point of view and notations from [St].

Suppose that X ⊂ P1(Cp) is a compact subset. Let us recall the following
well-known definition. Let α,β ∈ P1(Cp) be represented by α = (a1, a2) and
β = (b1, b2) with a1, a2, b1, b2 ∈ OCp such that g.c.d.(a1, a2) =g.c.d.(b1, b2) = 1
and set d(α,β) := p−ordp(a1b2−a2b1). Then d is a well-defined nonarchimedean
metric on P1(Cp). For every integer n ≥ 1 denote by

X[n] := {x ∈ P1(Cp) | there is y ∈ X with d(x, y) ≤ p−n}.

Then X[n] is an affinoid subdomain of P1(Cp); in fact it is a finite disjoint union
of affinoid balls. Let A(X[n]) be the Qp-algebra of rigid analytic functions on
X[n], and denote by ρ(n): A(X[n]) −→ A(X[n + 1]) the restriction map. Then for
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each n ≥ 1, A(X[n]) is a Banach algebra over Qp for the spectral norm || • ||n and
ρ(n) is a continuous homomorphism of Banach algebras. Let us denote

A(X) := lim
→

A(X[n])

and call it the Qp-algebra of locally analytic functions on X. We endow this
algebra with the Morita topology.

Let us now fix X = P1(Qp) and write simply A for A(X). Let us go back to
the notations at the beginning of this section. The cocycle cf associated to f by
equation (7) gives rise to a continuous linear functional µf on the space of locally
analytic functions on Qp with compact support, defined by the basic relation

µf (r · χU(e)) :=
∫

U(e)
r(x) dµf (x) = cf (e)(r),(8)

for all r ∈ Pk−2 and e edge of T such that U(e) ⊂ Qp. (See [Sch].) Here χU(e)

denotes the characteristic function of U(e) in Qp. Then µf extends uniquely to the
space, denoted Ak, of locally analytic Cp-valued functions on P1(Qp) having a
pole of order at most k−2 at ∞. (See [Tei], Proposition 9.) This linear functional
will be also denoted by µf .

LEMMA 1.9. If r is any polynomial of degree ≤ k − 2, then

∫
P1(Qp)

r(x) dµf (x) = 0.

Proof. Let v be any vertex of T . By the finite additivity of µf ,

∫
P1(Qp)

r(x) dµf (x) =
∑

e,source(e)=v

∫
U(e)

r(x) dµf (x).

The lemma follows from (8) combined with the harmonicity of cf .

Now define a weight k − 2 action of PGL2(Qp) on Ak by the rule

(ϕ ∗ γ)(x) :=
(cx + d)k−2

(detγ)
k−2

2

ϕ(γ ∗ x) for ϕ ∈ Ak, γ ∈ PGL2(Qp).

We have:

LEMMA 1.10. The boundary distribution µf satisfies the following transforma-
tion property with respect to Γ̃

µf (ϕ ∗ γ) = w|γ|µf (ϕ) for all γ ∈ Γ̃ and ϕ ∈ A.



422 M. BERTOLINI, H. DARMON, A. IOVITA, AND M. SPIESS

Proof. It is enough to check the formula for functions of the form r · χU(e),
where r is any polynomial of degree ≤ k− 2, e any edge of T and now χU(e) is
the characteristic function of U(e) in P1(Qp). For this apply Lemma 1.6 and the
definition of µf .

Remark. Let P ∈ Pk−2 having coefficients in Qp. Let us consider the free
A-module of rank one MP := P ·A ⊂ Ak and endow it with the topology induced
from the Morita topology of A. Then the restriction of µf to MP is a continuous
linear functional, i.e., a distribution. (See [Tei] Proposition 9.)

The p-adic Poisson transform. The following result can be viewed as a p-
adic analogue of the Poisson inversion formula: it allows a rigid analytic modular
form to be recovered from its associated boundary distribution.

PROPOSITION 1.11. (Teitelbaum) Let f be a rigid analytic modular form of
weight k on Γ and let µf be the associated distribution on P1(Qp). Then

f (z) =
∫
P1(Qp)

1
z− t

dµf (t).

Proof. See [Tei], Theorem 3. Note that the integrand 1
z−t is a bounded analytic

function of t so that the integral in the theorem converges.

2. The p-adic L-function. Let K be an imaginary quadratic field. The goal
of this chapter is to define the anticyclotomic p-adic L-function attached to φ
and K. As explained in Section 2.2, its construction is inspired by Schneider’s
“rigid analytic” definition [Sch] of p-adic L-functions in the cyclotomic case. For
simplicity, the following assumption is made throughout.

ASSUMPTION 2.1. The discriminant of K is relatively prime to the level N of φ.

Thus one may write

N = pN+N−,

where N+ (resp. N−) is divisible only by primes which are split (resp. inert) in
K. The following assumption is also made for simplicity:

ASSUMPTION 2.2. The integer N− is square-free.

2.1. Complex L-functions. The classical L-function attached to φ is defined
by

L(φ, s) =
∏
�|N

(1− a��
−s)−1

∏
��| N

(1− a��
−s + �k−1−2s)−1 =

∞∑
n=1

ann−s,
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where the Euler product is taken over the rational primes. It has an analytic
continuation and a functional equation relating its values at s and k − s. More
precisely, the function

Λ(φ, s) := Ns/2(2π)−sΓ(s)L(φ, s)

extends holomorphically to the entire complex plane and satisfies

Λ(φ, s) = (− 1)k/2wNΛ(φ, k − s),

where wN = ±1 is the eigenvalue of the Atkin-Lehner involution WN acting on
φ.

More germane to the present article is the L-function of φ over K, defined
by

L(φ/K, s) = L(φ, s)L(φ, ε, s),

where ε is the quadratic Dirichlet character attached to K and
L(φ, ε, s) =

∑
anε(n)n−s is the twisted L-function. For each prime � � N write

(x−α�)(x−β�) := x2−a�x + �k−1, and set a(�t) = αt
� +βt

�. The function L(φ/K, s)
factors into an Euler product,

L(φ/K, s) =
∏
v|N

(1− aNvNv−s)−1
∏
v �| N

(1− a(Nv)Nv−s + Nvk−1−2s)−1,(9)

the product being taken this time over all the finite places v of K. The function
L(φ/K, s) can also be expressed as a sum of partial L-functions,

L(φ/K, s) =
∑
a

L(φ/K, a, s).

Here the a’s range over the ideal classes of K, and

L(φ/K, a, s) =




∞∑
n=1

(n,N)=1

ε(n)
n2s−k+1



( ∞∑

n=1

anra(n)
ns

)
,(10)

where ra(n) is the number of integral ideals of norm n in the class of a.
More generally, let Oc be the order of K of conductor c, and let Gc = Pic(Oc)

be the Picard group of rank one projective Oc-modules. If a is a class in Gc, define
L(φ/K, a, s) as in equation (10). The group Gc is identified with the Galois group
of an abelian extension Kc of K, the so-called ring class field of conductor c.
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If χ: Gc −→ C× is any character, set

L(φ/K,χ, s) :=
∑

χ(a)L(φ/K, a, s),

the sum being taken over all elements of Gc. Like L(φ/K, s), and unlike the
partial L-functions L(φ/K, a, s), the functions L(φ/K,χ, s) admit an Euler product
decomposition analogous to (9), and a simple functional equation.

PROPOSITION 2.3. Suppose that χ is a ring class character of conductor pn

where n > 0. The L-function L(φ/K,χ, s) satisfies the functional equation

Λ(φ/K,χ, s) := (2π)−2sΓ(s)2(ND)sL(φ/K,χ, s) = −ε(N−)Λ(φ/K,χ, k − s)

relating its values at s and k − s.

For a discussion in weight 2, see [PR], § 5.2.
The anticyclotomic p-adic L-function studied in this work interpolates the spe-

cial values of L(φ/K,χ, s) at the central point s = k/2, where χ ranges over ring
class characters of p-power conductor. Proposition 2.3 shows that L(φ/K,χ, k/2)
vanishes identically for all such χ, if the number of primes dividing N− is even.
This justifies the following basic assumption which is made throughout the paper:

ASSUMPTION 2.4. The sign εK := −ε(N−) in the functional equation of Propo-
sition 2.3 is equal to 1, i.e., in light of Assumptions 2.1 and 2.2, N− is a product of
an odd number of primes.

2.2. The basic strategy. The construction of the p-adic L-function attached
to φ and K proceeds as follows.

1. Write N− = �1 · · · �r for the prime factorization of N−, and let S denote
the set {p,∞, �1, . . . , �r}. Note that S is a set of places of odd cardinality, by
Assumption 2.4. Let X be the Shimura curve associated to the data (S, N+) as in
Section 1.1, and let ω be the modular form of weight k on X attached to φ by
the Jacquet-Langlands theorem (Theorem 1.2).

2. Applying the Cerednik-Drinfeld theorem (see 1.1) let f ∈ Srig
k (Γ) be the

rigid analytic modular form on Hp associated to ω. It satisfies invariance proper-
ties under a p-adic discrete group Γ arising from the definite quaternion algebra
B ramified at the primes in S − {p}. More precisely, Γ = ι(R×

1 ), where R is an
Eichler Z[1/p]-order of level N+ in B and R×

1 is the group of elements of reduced
norm 1 in R×. Assume that f is normalized as in Definition 1.7.

3. The p-adic L-function Lp( f , K, s) is defined as a p-adic Mellin transform
of Schneider’s distribution µf attached to f as in Section 1.3, along the p-adic
points of a (suitably chosen) maximal torus in B×/Q×, isomorphic to K×/Q×.

The last step of this construction remains to be explained. In Sections 2.3 and
2.4, a distribution on (K ⊗ Qp)×/Q×

p is defined using Schneider’s distribution.
Section 2.5 explains how this distribution interpolates special values of classical
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L-functions of φ over K. The construction of the p-adic L-function is then carried
out in Section 2.6

2.3. Embeddings of K into B. Let OK be the ring of integers of K, and
O = OK[1/p] its ring of p-integers. An orientation of the Eichler order R is a
surjective ring homomorphism

o : R −→ (Z/N+Z)×
∏
�|N−

F�2 .

The pair (R, o) is called an oriented Eichler order. Likewise, an orientation on
O is a surjective homomorphism O −→ (Z/N+Z)×∏�|N− F�2 . This amounts to
choosing, for each prime � dividing N+, a prime ideal of K above �, and, for each
prime � dividing N−, an identification of the residue field of K at � with F�2 . Fix
orientations on R and O once and for all.

An embedding Ψ: K −→ B is called an oriented optimal embedding of O
into R if:

1. Ψ(K) ∩ R = Ψ(O), so that Ψ induces an embedding of O into R.
2. Ψ is compatible with the chosen orientations on O and R in the sense that

the following diagram commutes

O Ψ−→ R
↘ o↙

(Z/N+Z)×∏�|N− F�2 .

The group R× acts naturally by conjugation on the set of oriented optimal em-
beddings. Write emb(O, R) for the set of all oriented optimal embeddings of O
into R, taken modulo conjugation by R×

1 .
Denote by ∆ = Pic(O) the Picard group of projective modules of rank one

over O. (In classical language, it is the quotient of the class group of K, by the
subgroup generated by the classes of the prime ideals above p.) The group ∆ acts
naturally on emb(O, R) as follows (see also [Gr2], Sec. 1 and 3). Let a ⊂ O be
a projective O-module representing a class α ∈ ∆, chosen in such a way that
a ⊗ Z� = O ⊗ Z� for all �|N+N−, and let Ψ: K −→ B be an oriented optimal
embedding of O into R. The right order of the left R-ideal RΨ(a), denoted Ra,
is an Eichler order of level N+ in B, which inherits an orientation from the one
on R, since Ra ⊗ Z� = R� for all �|N+N−. The right action of Ψ(O) on RΨ(a)
yields an embedding Ψ̃a: O −→ Ra, which is compatible with the orientations
on O and Ra. Since all Eichler Z[1/p]-orders of level N+ in B are conjugate,
there exists a ∈ B× such that

ordp(aā) ≡ 0 (mod 2), a ∈ R×
� for all �|N+N−, R = aRaa

−1.(11)
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Set

α ·Ψ := aΨ̃aa−1.(12)

It can be checked that α ·Ψ is an oriented optimal embedding of K into B, and
that its image in emb(O, R) depends only on the image of a in Pic(O) and of Ψ
in emb(O, R), so that (12) gives a well-defined action of ∆ on emb(O, R). The
following result is proved as in [Gr2], Sec. 3.

PROPOSITION 2.5. The group ∆ = Pic(O) acts freely on emb(O, R). The set
emb(O, R) is the disjoint union of two ∆-orbits under this action.

In particular, emb(O, R) is finite and has cardinality 2h, where h = #∆.

2.4. The p-adic distribution attached to an embedding. Let Ψ: K −→ B
be an oriented optimal embedding of O into R. It induces an embedding

Ψ: Kp −→ Bp, where Kp: = K ⊗Qp.

Let us recall that we have fixed an isomorphism ι: Bp −→ M2(Qp). The map
ιΨ: Kp −→ M2(Qp) induces an embedding of K×

p /Q
×
p into PGL2(Qp), which

will also be denoted by ιΨ by abuse of notation. Thus Ψ gives rise to an action
of K×

p /Q
×
p on the boundary P1(Qp) of Hp by the rule

α∗x := ιΨ(α)(x), α ∈ K×
p /Q

×
p , x ∈ P1(Qp).(13)

Choose a base point � ∈ P1(Qp). The element bΨ := Ψ(
√
−D) is an element of B

of reduced trace 0. Let PΨ be the polynomial PbΨ in P2 defined as in equation (3)
of Section 1.2. Note that

PΨ · (ιΨ(α)) = PΨ,(14)

for all α ∈ K×
p .

Case 1. p is inert in K. The (compact) torus ιΨ(K×
p /Q

×
p ) ⊂ PGL2(Qp)

acts simply transitively on the boundary P1(Qp). The choice of � determines
an isomorphism ηΨ,�: K×

p /Q
×
p −→ P1(Qp). The torus ιΨ(K×

p ) has two fixed
points in Hp, denoted a and ā, which belong to Kp and are interchanged by
Gal(Kp/Qp). Let us now fix the base point � = ∞. We have a natural homeo-
morphism K×

p /Q
×
p
∼= K×

p,1 sending x (mod Q×
p ) to x/x ∈ K×

p,1. Here K×
p,1 denotes

the compact subgroup of K×
p of elements of norm 1. Let us denote by ηΨ the

composition

ηΨ: G := K×
p,1 −→ K×

p /Q
×
p −→ P1(Qp).
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We then have the following formulas

ηΨ(α) =
(aα− ā)
α− 1

, η−1
Ψ (x) =

x− ā
x− a

.(15)

Pullback by ηΨ and η−1
Ψ on functions preserve local analyticity and so we get a

natural, continuous isomorphism

ηΨ∗ = (η−1
Ψ )∗: A(G) −→ A,

where the notations of Section 1.3 are used. Recall that we have defined a natural,

continuous linear functional µf on the free A-module of rank one P
k−2

2
Ψ · A ⊂ Ak

in Section 1.3. We will use it to define the locally analytic distribution µf ,Ψ,� on
G = K×

p,1, which will be simply denoted by µΨ whenever f and the basepoint �
are fixed, by

µf ,Ψ,�(ϕ) = µΨ(ϕ) := µf (P
k−2

2
Ψ × (η−1

Ψ )∗(ϕ)), for ϕ ∈ A(G).

Case 2. p is split. The torus ιΨ(K×
p /Q

×
p ) ⊂ PGL2(Qp) has precisely two

fixed points a, b ∈ P1(Qp), and it acts simply transitively on the complement
P1(Qp)− {a, b}. The choice of a base point � in this complement determines an
identification

ηΨ,�: K×
p /Q

×
p −→ P1(Qp)− {a, b}

by the rule

ηΨ,�(α) := α∗ � .(16)

Choose � so that the Möbius transformation sending (a, b, �) to (0, 1,∞) has the
property that its determinant has even p-adic valuation. Base points satisfying this
property will be called Ψ-normalized. Let w(α) be the locally constant function
of α ∈ Q×

p defined by

w(α) := wordp(α),(17)

where w = ±1 is the sign defined in Section 1.1.

Now choose a prime p of K above p. This choice defines identifications
K×

p /Q
×
p = (K ⊗Qp)×/Q×

p = (K×
p × K×

p̄ )/Q×
p and a group isomorphism

ε: K×
p /Q

×
p −→ K×

p = Q×
p ,
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which has the basic property that if x ∈ K×, then

ε([x]) =
x
x̄
∈ K×

p = Q×
p .

Here [x] denotes the image of x in K×
p /Q

×
p . Let u0 be a generator of the rank

one group O×/Z[1/p]× and let u ∈ Q×
p be the image of u0/ū0 in Kp = Qp,

normalized so that ordp(u) > 0. In other words u = ε([u0]). Let us consider the
group denerated by u, i.e., let σ := 〈u〉 ⊂ Q×

p . Our next goal is to define a locally
analytic distribution on G := Q×

p /σ.
Let us now fix a Ψ-normalized base point � ∈ P1(Qp) − {a, b}, and denote

by ηΨ the following composition

ηΨ: Q×
p

ε−1

−→ K×
p /Q

×
p

ηΨ,�−→ P1(Qp)− {a, b}.

The map ηΨ satisfies the basic property that if x, y ∈ Q×
p then

ηΨ(xy) = Ψ(ε−1(x)) ∗ ηΨ(y).

ηΨ extends to a fractional linear transformation ηΨ: P1(Qp) −→ P1(Qp) sending
0 to a, ∞ to b and 1 to �. Obviously, ηΨ extends uniquely to a fractional linear
transformation denoted by the same symbol P1(Cp) −→ P1(Cp).

In order to define the distribution µf ,Π,� when p is split, we need to introduce
locally analytic functions and distributions on Q×

p with compact support. Let X
be a compact open subset of Q×

p and n an integer. Let us recall the Qp-topological
algebras A(X[n]) and A(X) from Section 1.3. If m, n are integers such that m ≥ n
and X, Y are compact open subsets of Q×

p , with X ⊂ Y then the restriction map
A(Y[n]) −→ A(X[m]) is continuous and we denote

Ac := lim
→

A(X[n]),

where the inductive limit is over pairs (n, X) with n integer and X compact open
subset of Q×

p . Then Ac is the Qp-algebra of locally analytic functions on Q×
p

with compact support. We will endow it with the Morita topology. Let us now
fix a parameter z on P1(Qp). This determines an embedding Q×

p ⊂ P1(Qp) and a
continuous Qp-algebra homomorphism

ψ!: Ac −→ A,

which is extension by zero. Let us recall from Section 1.3 that we have defined

a natural, continuous linear functional µf on the A-module P
k−2

2
Ψ · A ⊂ Ak. We’ll

use µf to define a continuous linear functional µf ,Ψ,� on Ac, which will be simply



TEITELBAUM’S EXCEPTIONAL ZERO CONJECTURE 429

denoted by µΨ whenever f and � are fixed. Let ϕ ∈ Ac then

µf ,Ψ,�(ϕ) = µΨ(ϕ) := µf (P
k−2

2
Ψ (η−1

Ψ )∗(ψ!(ϕw))),

where w is the function defined in equation (17). We will sometimes denote

µf ,Ψ,�(ϕ) =
∫
Q

×
p

ϕ dµf ,Ψ,�.

We’ll now use µf ,Ψ,� in order to define a locally analytic distribution on G. Let
us denote by F a fundamental domain in Q×

p for the action of σ, for example:

F := {x ∈ Q×
p | p|u| ≤ |x| ≤ 1}.

Then F is a compact open subset of Q×
p and Q×

p = ∪i∈ZuiF . To give a function
ϕ: G −→ Cp is equivalent to giving a function ϕ: Q×

p −→ Cp such that ϕ(ux) =
ϕ(x) for all x ∈ Q×

p . Such a function is determined by its restriction to F . We
say that a function ϕ on G is locally analytic if ϕχF is the restriction to Q×

p of
an element of Ac, where χF is the characteristic function of the set F ⊂ Q×

p .

Definition 2.6. Let A(G) denote the Qp-algebra of locally analytic functions
on G.

Let us remark that the map “restriction to F” defines an isomorphism between
A(F) and A(G). We will identify these two algebras whenever convenient and
endow A(G) with the natural topology on A(F).

We define an action of the discrete subgroup σ ⊂ Q×
p on Ac by (ϕ×u)(x) :=

ϕ(ux) for all x ∈ Q×
p and ϕ ∈ Ac. Obviously this action is continuous and it

defines an action of σ on linear functionals on Ac.

PROPOSITION 2.7. u× µf ,Ψ,� = µf ,Ψ,�, i.e. µf ,Ψ,� is σ-invariant.

Proof. First of all, we know that Ψ(ε−1(u)) = Ψ(u0) ∈ Γ̃ and w×u = wordp(u)w.
Let ϕ ∈ Ac and let us write η instead of ηΨ and µΨ instead of µf ,Ψ,� for this

proof. Then (u× µΨ)(ϕ) = µΨ(ϕ× u) = µf (P
k−2

2
Ψ (η−1)∗(ψ!((ϕ× u)w))).

Let us denote g := ψ!(ϕw). Then

P
k−2

2
Ψ (η−1)∗(ψ!((ϕ× u)w))(x) = wordp(u)(P

k−2
2

Ψ (η−1)∗(g× u))(x)

= wordp(u)P
k−2

2
Ψ (x)g(uη−1(x))

= wordp(u)P
k−2

2
Ψ (x)g(η−1(Ψ(u0) ∗ x))

= wordp(u)P
k−2

2
Ψ (x)((η−1)∗(g))(Ψ(u0) ∗ x)

= wordp(u)[(P
k−2

2
Ψ (η−1)∗(g)) ∗Ψ(u0)](x).
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Therefore P
k−2

2
Ψ (η−1)∗(g× u) = wordp(u)(P

k−2
2

Ψ (η−1)∗(g)) ∗Ψ(u0). But

ordp(u) + |Ψ(u0)| = 0 (mod2)

and the result follows upon applying Lemma 1.10.

LEMMA 2.8. Let V be a compact open subset of Q×
p and ϕ ∈ Ac. Then

∫
uiV

ϕ dµΨ =
∫

V
(ϕ× ui) dµΨ,

for all i ∈ Z.

Proof. We have∫
uiV

ϕ dµΨ = µΨ(ϕχuiV ) = µΨ(ϕ(χV × u−i)) =

= µΨ(((ϕ× ui)χV )× u−i) = µΨ((ϕ× ui)χV ) =
∫

V
(ϕ× ui) dµΨ.

COROLLARY 2.9. If ϕ ∈ A(G) then∫
uiF

ϕ dµΨ =
∫
F
ϕ dµΨ,

for all i ∈ Z.

Definition 2.10. The distribution µf ,Ψ,� on Ac induces a distribution, denoted
also by µf ,Ψ,� (and by µΨ whenever f and � are fixed) on G i.e., a continuous
linear functional on A(G) by

µf ,Ψ,�(ϕ) =
∫

G
ϕ dµf ,Ψ,� :=

∫
F
ϕ dµf ,Ψ,�, for all ϕ ∈ A(G).

For the rest of this section, the assumption that w = 1 will be made. First of all:

Remark. If ϕ ∈ A then P
k−2

2
Ψ (η−1

Ψ )∗(ϕ) is an element of the free A-module

of rank one P
k−2

2
Ψ · A. Therefore µf ,Ψ,� extends to a continuous linear functional

on A denoted by the same symbol and given by the formula:

µf ,Ψ,�(ϕ) = µΨ(ϕ) := µf (P
k−2

2
Ψ (η−1

Ψ )∗(ϕ)).

We end this section with a few properties of the above defined distribution on G,
which will be used in Section 3.

LEMMA 2.11. Let ϕ ∈ A[n0] for some n0 ∈ N and suppose that i0 ∈ N is such
that ordp(ui0 ) ≥ n0. Moreover suppose that ϕ(0) = ϕ(∞) = 0. Then there is a
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constant Cϕ such that for all i ≥ i0, if V denotes the closed ball around 0 or around
∞ of radius |ui| then

|
∫

V
ϕ dµΨ| ≤ Cϕ|ui|.

Proof. It is enough to treat the case V = B[0, |ui|]. Let D := B[0, |ui0 |], then
V = ui−i0D. Using the results above,

∫
ui−i0 D

ϕ dµΨ =
∫

D
(ϕ× ui−i0 ) dµΨ.

Because ϕ(0) = 0, it follows that ϕ(z) =
∑

j≥1 ajzj for z ∈ D, and

(ϕ× ui−i0 )(z) = ui−i0 (
∑
j≥1

aju
( j−1)(i−i0)zj).

Therefore

|
∫

V
ϕ dµΨ| ≤ |ui|(|u−i0 | sup

j≥1
(|aju

( j−1)(i−i0)
∫

D
zj dµΨ(z)|) ≤ |ui|Cϕ,

where

Cϕ := |u−i0 | sup
j≥1
|aj

∫
D

zj dµΨ(z)|.

Note that the supremum is finite by the continuity of µΨ.

Finally we have the following:

PROPOSITION 2.12. Let ϕ ∈ A be such that ϕ(0) = ϕ(∞) = 0. Then
(a)
∑

i∈Z (ϕ|
Q

×
p
× ui) ∈ A(G).

(b) We have

∫
P1(Qp)

ϕ dµΨ := µΨ(ϕ) =
∫

G
(
∑
i∈Z

ϕ|
Q

×
p
× ui) dµΨ.

Proof. (a) Let us denote by ψ(x) :=
∑

i∈Z ϕ(uix), for all x ∈ Q×
p . Then the

convergence of the series and the invariance of ψ with respect to the action of σ
is clear. Moreover if we denote by ψN :=

∑N
i=−N (ϕ|

Q
×
p
× ui) for every N ∈ N,

then one sees that ψ = limN→∞ ψN where the limit is uniform on compact open
subsets of Q×

p . We leave it to the reader to show that ψ|F ,ψN |F ∈ A(G) for all N
and that the limit above is a limit in A(G). In the application of this proposition
to the proof of Theorem 3.3 these facts will be obvious.
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(b) We have

∫
P1(Qp)

ϕ dµΨ −
∫
F
ψN dµΨ =

∫
P(Qp)

ϕ dµΨ −
∫
∪N

i=−NuiF
ϕ dµΨ

=
∫

B[0,|uN+1|]
ϕ dµΨ +

∫
B[∞,|uN |]

ϕ dµΨ.

For N big enough, ϕ ∈ A[ordp(uN)] and from Lemma 1.6 we have

∣∣∣∣∣
∫
P(Qp)

ϕ dµΨ −
∫
F
ψN dµΨ

∣∣∣∣∣ ≤ |uN |C′
ϕ

N→∞−→ 0.

The fact that µΨ is a continuous linear functional on Ac implies that

lim
N→∞

∫
F
ψN dµΨ =

∫
F
ψ dµΨ =

∫
G
ψ dµΨ.

2.5. Interpolation of classical special values. This section describes how
the distributions µf ,Ψ interpolate special values of the classical L-function
L(φ/K, s) at s = k/2, justifying for the definition of the p-adic L-function that
is given in Section 2.6, Definitions 2.19 and 2.20. The interpolation properties
of µf ,Ψ are summarized in formula (18) and Proposition 2.18. Strictly speaking,
these are not required for the construction of the p-adic L-function given in Sec-
tion 2.6, but merely provide motivation and justification for it. Therefore, in a
first reading, the reader may wish to skip directly to Section 2.6 after looking at
(18) and the statement of Proposition 2.18, postponing the proofs for later.

Galois-theoretic preliminaries. An abelian extension L/K is called anticy-
clotomic if it is Galois over Q and if the involution in Gal(K/Q) acts as −1 on
Gal(L/K) by conjugation. Let K∞ denote the maximal anticyclotomic extension
of K which is unramified outside p. Let H denote the Hilbert class field of K,
and let Hp be the field fixed by a Frobenius element at p in Gal(H/K) (i.e., the
maximal unramified abelian extension of K in which p splits completely). Let Kn

denote the ring class field of K of conductor pn, so that K0 = H. The fields Kn

form a tower of extensions containing the anticyclotomic Zp-extension:

Q ⊂ K ⊂ Hp ⊂ H ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · .

Class field theory provides a Galois theoretic interpretation of the p-adic group
G defined in Section 2.4. More precisely,

G = Gal(K∞/Hp)
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if O×
K = {±1}. For simplicity assume from now on that O×

K = {±1}, a condition
which is satisfied as soon as Disc(OK) < −4. We denote

G0 = Gal(K∞/H), Gn = Gal(K∞/Kn), ∆ = Gal(Hp/K),

(where ∆ is the group defined in Section 2.3). Write

G̃ := Gal(K∞/K).

This group fits into the exact sequence

1 −→ G −→ G̃ −→ ∆ −→ 1,

and it can be identified with the Picard group of rank one projective O-modules
a equipped with a trivialisation at p, i.e., a fixed isomorphism Kp −→ a ⊗ Qp.
More precisely, let K̂ denotes the finite adèles of K, and write

Ô =
∏
�

O�, Ô# =
∏
��=p

O�.

Class field theory identifies G̃ with K̂×/K×Q̂×Ô×
# . An element in this coset

space with representative (g�) corresponds to the projective module a = K ∩∏
� �=pO�g�, with trivialization at p sending 1 to gp. Let Λ be the set of pairs (Ψ, �)

taken modulo conjugation by R×
1 , where Ψ is an oriented optimal embedding of

O into R, and c is a Ψ-normalized base point (if p is inert in K, every base point
is defined to be Ψ-normalized.)

LEMMA 2.13. The action of ∆ on emb(O, R) lifts to a free action of G̃ on Λ,
which is the union of two orbits under this action.

The description of this action proceeds along the same lines as in Section 2.3.
Let a ⊂ O be a representative for a class α ∈ G̃, i.e., a projective rank one O-
module together with a Kp-generator t for a⊗Qp. Let Ra denote the right order
of the left R-ideal RΨ(a) of Section 2.3, and let g = Ψ(t) ∈ Ra ⊗ Qp. Choosing
an element a ∈ B× satisfying the conditions of equation (11) of Section 2.3, and
letting Ψ̃a be the embedding defined there, set

α · (Ψ, �) = (Ψ′, �′), where Ψ′ = aΨ̃aa−1, c′ = ι(aga−1)(c).

By fixing a representative Ψ for an element of emb(O, R), and a Ψ-normalised
base point c, a locally analytic distribution µf ,K on G̃ will be defined as follows.
First, for all δ ∈ ∆ choose and fix a lift αδ ∈ G̃. This allows us to view G̃ as the
disjoint union of the orbits αδG for δ ∈ ∆. Let ϕ: G̃ −→ Cp be a function. We
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say that ϕ is locally analytic if

(ϕ|αδG)× αδ ∈ A(G) for all δ ∈ ∆,

where, let us recall, (ϕ × αδ)(x) := ϕ(αδx) for all x ∈ G. The set of locally
analytic functions on G̃ will be denoted A(G̃). To define µf ,K , let ϕ ∈ A(G̃). Then
set

µf ,K(ϕ) =
∫

G̃
ϕdµf ,K :=

∑
δ∈∆

µf ,Ψδ ,�δ (ϕ|αδG × αδ),

where, if δ ∈ ∆ then (Ψδ, �δ) = αδ(Ψ, �).
For further applications, we want to calculate the values of µf ,K on locally

constant functions on G̃.

LEMMA 2.14. For all α ∈ G̃,

µf ,K(αGn) = µf ,Ψ′,�′(G
n), where (Ψ′, �′) = α · (Ψ, �).

Proof. Let δ be the projection of α on ∆. Then, by the definition above,

µf ,K(αGn) := µf ,K(χαGn) = µf ,Ψδ ,�δ (aGn) := µf ,Ψδ ,�δ (χaGn),

where a = α−1
δ α ∈ G. We have

(Ψ′, �′) = α(Ψ, �) = a(αδ(Ψ, �)) = a(Ψδ, �δ) = (Ψδ, Ψδ(a) ∗ cδ).

A calculation, using the fact that both c′ and cδ are Ψ′ = Ψδ normalized based
points, shows that

µf ,Ψδ ,�δ (aGn) = µf ,Ψδ ,Ψδ(a)∗�δ (Gn) = µf ,Ψ′,�′(G
n).

The lemma shows that the restriction of µf ,K to locally constant functions is
independent of the choices of the αδ’s. Moreover:

LEMMA 2.15. The distribution µf ,K depends on the choice of (Ψ, �), only up to
translation by an element of G̃, and up to multiplication by w. Its restriction to G
is equal to µf ,Ψ,�.

Proof. If (Ψ, �) is replaced by (γΨγ−1, γ�) with γ ∈ R×
1 , the associated

distribution is unchanged, by Lemma 1.10. If (Ψ, �) and (Ψ′, �′) = α · (Ψ, � are in
the same G̃-orbit, the associated distributions differ by translation by α. Finally, if
(Ψ, �) and (Ψ′, �′) belong to different G̃-orbits, the associated distributions differ
by translation by an element of G̃, and multiplication by w.

Choose a complex embedding of the field Kf introduced in Lemma 1.8. Since
the cocycle cf takes values in P∨

k−2(Kf ) (Lemma 1.8), the p-adic distribution
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µf ,K can also be viewed as a complex-valued distribution, against which locally
constant C-valued functions on G̃ can be integrated.

In particular, let χ: G̃ −→ C× be a continuous character of finite order. By
Lemma 2.15, the integral

∫
G̃ χ(α)dµf ,K(α) depends on the choice of (Ψ, �) only

up to multiplication by a root of unity, so that its complex norm is well defined.
Define the multiplier M(χ) by

M(χ) =

{
1 if χ is ramified;
(1− wχ(frobp))(1− wχ̄(frobp)) otherwise.

Write uK = #O×
K /2, let DK be the discriminant of K, and denote by (φ,φ) the

Petersson scalar product of φ with itself.
The distribution µf ,K is expected to satisfy the following interpolation prop-

erty with respect to special values of the L-function of φ over K.

∣∣∣∣
∫

G̃
χ(x)dµf ,K(x)

∣∣∣∣2 = M(χ)u2
KD

k−1
2

K
L(φ/K,χ, k/2)

(φ,φ)
.(18)

The remainder of this section elucidates the relation between (18) and the
calculations explained in [Gr2] for weight k = 2 and in [Ha] for general even
weight. These articles treat the case—too restrictive for the application to (18)—
of a modular form φ of prime level N, and an unramified character χ. Specializing
temporarily to the setting considered by [Gr2] and [Ha], take N− = N to be prime
and set N+ = 1. Let B denote the definite quaternion algebra ramified at N− and
choose a maximal Z-order R of B. Let B0 be the space of elements of B of trace
0, and set

R̂ :=
∏
�

(R⊗ Z�), B̂ := R̂⊗Q.

The article [Ha] introduces a vector bundle V by the rule

V = (R̂
×\B̂× × Sym

k−2
2 (B0))/B×,

where the action of B× on Sym
k−2

2 (B0) is as described in page 543 of [Ha].
Thanks to equation (3) of Section 1.2, the Picard group of V maps to the space
of Pk−2-valued functions on R̂

×\B̂× which are invariant under the action of B×.
Let P(V) denote this image, i.e.,

P(V) := {c: R̂
×\B̂× −→ Pk−2 | c(xb) = c(x) · ι(b), for all b ∈ B×}.

It is a finite-dimensional Cp-vector space since an element c is entirely determined
by its values on a system of representatives for the finite double coset space
R̂
×\B̂×/B× (cf. [Vi], ch. V). The space P(V) is also endowed with a linear
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action of the Hecke operators Tn defined as in [Ha], Sec. 4, and is isomorphic,
as a Hecke module, to the space of modular forms of weight k on Γ0(N−) with
Cp-coefficients.

In the paragraph before ch. 4 of [Ha], the author defines Heegner elements
in V . These elements are described by pairs (Ψ, RΨ) modulo conjugation by B×,
where:

1. RΨ is a maximal Z-order of B. (By strong approximation there are only
finitely many such orders, up to conjugation in B×.)

2. Ψ: K −→ B is an oriented embedding which is optimal relative to OK

and RΨ, in the sense that Ψ(K) ∩ RΨ = Ψ(OK).

Such a pair yields an element in V represented by ((b�)�; Ψ(
√
−D)

k−2
2 ), where

(b�) represents the coset describing RΨ as in [Ha]. The group Pic(OK) acts tran-
sitively on the set of Heegner elements in a manner similar to Proposition 2.5.
(Cf. also [Ha].)

Fix a Heegner element (Ψ, RΨ), and, for a ∈ Pic(OK) let

va = a · (Ψ, RΨ),

viewed as an element of P(V). If χ is any character of Pic(OK), write vχ =∑
a χ(a)va, and let vf ,χ ∈ P(V) ⊗ C be the projection of this vector to the f -

isotypic component for the action of the Hecke algebra. Recall the natural pairing
〈 , 〉 of equation (6) of Section 1.2. It naturally induces a symmetric pairing on
the spaces Char(k) and Char(Pk−2)Γ of Γ-equivariant harmonic cocycles, as well
as on the space P(V). Use the same symbol 〈 , 〉 to denote these pairings, by
abuse of notation. The following formula is proved by Gross in weight 2 [Gr2],
and by Hatcher for even weight k ≥ 2 (cf. Proposition 8.2. of [Ha]):

PROPOSITION 2.16. (Gross, Hatcher)

〈vf ,χ, vf ,χ̄〉 = u2
KD

k−1
2

K
L(φ/K,χ, k/2)

(φ,φ)
.

Remark. Note that the factor ( k−2
2 )!2 which is present in Prop. 8.2 of [Ha]

does not appear in Proposition 2.16, because of the different normalization that
is used for the inner product on P∨

k−2. (Compare equation (4) of Section 1.2 with
equation (3.1) of [Ha].)

To establish equation (18), it is first necessary to capture the modular forms
on Γ0(N+N−p). In order to do this, introduce an auxiliary Γ0(N+p)-structure and
replace the maximal order R by an Eichler order of level N+p in the definite
quaternion algebra of discriminant N−, to be denoted by the same letter, R, from
now on. By strong approximation, the double coset space R̂

×\B̂×/B× is identified
with R×

p \B×
p /R×, where R := R[1/p]. Note that R is an Eichler Z[1/p]-order of

level N+ in B, as in the previous sections. Under ι the space R×
p \B×

p is identified

with the space
→
E (T ) of edges of T . Thus P(V) is identified with the space of
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functions c̃:
→
E (T ) −→ Pk−2 satisfying

c̃(γ−1e) = c̃(e) · γ, for all γ ∈ Γ̃ = ι(R×).

Suppose that c̃ is an eigenfunction for the Hecke correspondences satisfying
Tnc̃ = anc̃ for all n. The fact that φ is new at p implies that

∑
source(e)=v

c̃(e) = 0,
∑

target(e)=v

c̃(e) = 0, for all v ∈ V(T ).

(Cf. [BD3], Prop. 1.4.) However, c̃ does not satisfy the rule c̃(ē) = −c̃(e) in
general, but merely the formula

c̃(ē) = −wc̃(e),

where −w is the eigenvalue of the Atkin-Lehner involution at p acting on φ,
which is equal to −1 when φ is of split multiplicative type, and 1 otherwise.

To turn c̃ into a harmonic cocycle when φ is of nonsplit multiplicative type,
recall the base vertex v◦ on T and call a vertex even (resp. odd) if its distance
from v◦ is even (resp. odd). An edge is then said to be positively oriented if its
source is even and its target is odd, and negatively oriented otherwise. Note that
this orientation is reversed by elements in Γ̃ − Γ, but is preserved by the index
two subgroup Γ. Now given c̃, define similarly as in the proof of Prop. 1.4 of
[BD3],

c(e) =

{
c̃(e) if e is positively oriented,
−c̃(ē) if e is negatively oriented.

The assignment c̃ �→ c defines a Hecke equivariant isomorphism between the
space of p-new vectors in P(V) and the space Char(Pk−2)Γ of Γ-equivariant har-
monic cocycles on T with values in Pk−2.

For the purposes of equation (18), it is also necessary to generalize the notion
of Heegner elements. A Heegner element of level pn is now described by a pair
(Ψ, RΨ), taken modulo conjugation by B×, satisfying:

1. RΨ is an Eichler order of level N+p in B; by strong approximation it can
be assumed without loss of generality that RΨ[1/p] = R, and this is done from
now on.

2. Ψ is an optimal embedding of On, the order in OK of conductor pn, i.e.,
Ψ(K) ∩ RΨ = Ψ(On). Note that when n ≥ 1, such optimal embeddings always
exist, whereas an optimal embedding of OK into an Eichler order of level N+p
only exists if p is split in K/Q.

To give a pair (Ψ, RΨ) as above is equivalent to giving a pair (Ψ, e) satisfying:
1. Ψ(K) ∩ R = Ψ(O),
2. e is an edge of T which is at distance n from the vertices fixed by ιΨ(G0).
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For example, the Eichler order RΨ is equal to R∩ι−1(Me), where Me ⊂ M2(Zp) is
the local Eichler order of level p attached to the edge e. The group G̃n = Pic(On)
acts naturally on the set of Heegner elements of level pn, and the action of
G = K×

p /Q
×
p is given by

α · (Ψ, e) = (Ψ, ιΨ(α)e).

Fix a Heegner element (Ψ, RΨ) of level pn and write as before va := a · (Ψ, RΨ),
with a ∈ G̃n. Since it is only the images of the elements va in P(V) which
matter in the calculations, the va are viewed as elements of P(V) from now on.
The projection of va onto the f -isotypic component of Char(Pk−2)Γ, denoted va,f ,
can be viewed as elements of Char(Pk−2)Γ by the identification of the previous
paragraph, and can be written as

va,f = 〈va, cf 〉c∨f ,

where c∨f is the vector attached to f in the basis for Char(Pk−2)Γ dual to the
basis of normalized eigenforms in Char(k)Γ. It follows from the definition of µf ,K

that, after a suitable choice of base point (Ψ, �) of Λ, compatible with the choice
(Ψ, RΨ) made to define va, that

〈va,f , cf 〉 = µf ,K(ã · Gn),

where ã is any lift of a ∈ G̃n to G̃. Hence if χ factors through G̃n,

〈vf ,χ, cf 〉 = ±
∫

G̃
χ(x) dµf ,K(x), where vf ,χ =

∑
χ(a)va,f .(19)

The following generalization of the Proposition 2.16 is expected to hold.

CONJECTURE 2.17. In the notations above,

〈vf ,χ, vf ,χ̄〉 = M(χ)u2
KD

k−1
2

K
L(φ/K,χ, k/2)

(φ,φ)
, if n = 0;(20)

〈vf ,χ, vf ,χ̄〉 = u2
KD

k−1
2

K
L(φ/K,χ, k/2)

(φ,φ)
if n > 0.(21)

Remark. The identities of Conjecture 2.17 should follow from a direct gener-
alization of the calculations carried on in [Gr2] and [Ha], but these calculations
are not present in the literature. See also [Dag] and [Va] for a discussion of related
topics.

Granting Conjecture 2.17 and combining it with formula (19) yields

∣∣∣∣
∫

G̃
χ(x) dµf ,K(x)

∣∣∣∣2 = M(χ)u2
KD

k−1
2

K
L(φ/K,χ, k/2)

(φ,φ)
,

and (18) follows.
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Suppose now that p is split and that Ψj (1 ≤ j ≤ h) is one of the oriented
optimal embeddings of O into R. Choose an even vertex vj of T whose stabilizer
under the action of K×

p induced by Ψj is (OK ⊗ Zp)×. Let us now recall the
notations of Section 1.3, i.e., u0 be a generator of the rank one groupO×/Z[1/p]×

such that the image u of u0
ū0

in Q×
p has ordp(u) > 0. Denote by δj = ιΨj(u0). Given

an ordered edge e, let sgn(e) be equal to 0 if e is positively oriented, and 1 if it
is negatively oriented.

PROPOSITION 2.18. Assume Conjecture 2.17. Then


 h∑

j=1

∑
vj→δjvj

wsgn(e)cf (e)(P
k−2

2
Ψj

)




2

= u2
KD

k−1
2

K
L(φ/K, k/2)

(φ,φ)
,

where the inner sum on the left is taken over all edges in the path joining vj to δjvj.

Proof. We will apply formula (18) to the trivial character χtriv . Let us fix a j
as above and calculate∫

G
χtriv dµf ,Ψj,�j =

∫
F

w(α) dµf ,Ψj,�j(α),

where cj is the corresponding Ψj-normalized base point, and let us recall from
Section 1.3 that F is a fundamental domain for the action of u on Q×

p . Let now
Ej denote the set of oriented edges of T with same source as the edges on the
path from vj to δjvj, but not containing these edges. The geometry of the action
of δj on T , as explained in [BD4] §5, implies that the set

F ′ := ∪e∈EjU(e)

is a fundamental domain for the action of δj on P1(Qp) − {aj, bj}. Therefore,
η−1

Ψj
(F ′) is a fundamental domain for the action of u on Q×

p . Using the fact that
the base point cj is Ψj-normalized we have

∫
F

w(α) dµf ,Ψj,�j(α) =
∫
F ′

w(α)P
k−2

2
Ψj

dµf (α) =

=
∑
e∈Ej

∫
U(e)

w(α)P
k−2

2
Ψj

dµf (α) =
∑
e∈Ej

wsgn(e)cf (e)(P
k−2

2
Ψj

).

Proposition 2.18 now follows using the harmonicity of cf and the definition of Ej.

Remark. The path on T joining vj to δjvj is a p-adic analogue of the geodesic
paths on the classical upper half plane associated by Shintani to narrow ideal
classes in real quadratic fields. The integrals of classical modular forms against
such paths yield special values of their L-series over the associated real quadratic
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field. For this reason, the path in Hp from z0 to δj ∗ z0, or the path in T from
vj to δjvj, are sometimes called p-adic Shintani cycles attached to the optimal
embeddings Ψj (1 ≤ j ≤ h). See for example [BD4].

2.6. The p-adic L-function. If p is split in K, let log: C×
p −→ Cp be a

branch of the p-adic logarithm, normalized so that log (u) = 0. If p is inert, let
log be the usual branch satisfying log (p) = 0 (although any other choice would
do equally well). The logarithm gives a homomorphism log: K×

p −→ Kp which
is 0 on O×

1 , and hence, by passing to the quotient, a homomorphism from G to
Kp which extends uniquely to a homomorphism

log: G̃ −→ Kp ⊂ Cp.

For α ∈ G̃ and s ∈ Zp, define

αs := exp (s log (α)),

where exp is the usual p-adic exponential. Note that s �→ αs is an analytic function
of s ∈ Zp.

Definition 2.19. The p-adic L-function attached to the distribution µf ,K is the
function of the p-adic variable s ∈ Zp defined by

Lp( f , K, s) =
∫

G̃
αs−k/2 dµf ,K(α).

Definition 2.20. Let Ψ be a representative for a class in emb(O, R) and let c
be a base point. The partial p-adic L-function attached to the datum (Ψ, �) is the
function of the p-adic variable s ∈ Zp defined by

Lp( f , Ψ, �, s) =
∫

G
αs−k/2 dµf ,Ψ,�(α).

Remark. If c′ = ιΨ(α0)c, then

Lp( f , Ψ, �′, s) = (α0)s− k
2 Lp( f , Ψ, �, s).

In particular,

LEMMA 2.21. The order of vanishing of Lp( f , Ψ, �, s) at s = k/2, and the value
of the first nonvanishing derivative of Lp( f , Ψ, �, s), do not depend on the choice of
c.

Because of this lemma, it is customary to drop the c from the notations and write
Lp( f , Ψ, s) instead of Lp( f , Ψ, �, s).
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If Ψ1 . . . , Ψh are representatives for the distinct classes of oriented optimal
embeddings in emb(O, R), note that

Lp( f , K, k/2) = Lp( f , Ψ1, k/2) + · · · + Lp( f , Ψh, k/2).(22)

The following proposition describes the value of Lp( f , K, s) and Lp( f , Ψ, s) at the
central critical point s = k/2.

PROPOSITION 2.22. Suppose p is split in K.
(1) If w = −1, then

Lp( f , K, k/2)2 = 4u2
KD

k−1
2

L(φ/K, k/2)
(φ,φ)

.

(2) If w = 1, then Lp( f , K, k/2) = 0, and in fact Lp( f , Ψ, k/2) = 0 for all Ψ
belonging to emb(O, R).

Proof. Choose a vertex v of T which is even and fixed under the action of
ιΨ(OK ⊗ Zp)×, and let δ = ιΨ(u). A direct evaluation shows that

Lp( f , Ψ, k/2) = ±(1− w)
∑

v→δv

wsgn(e)cf (e)(P
k−2

2
Ψ ).

The result follows directly, using (22) and Proposition 2.18.

PROPOSITION 2.23. Suppose p is inert in K. Then Lp( f , K, k/2) = 0, and in fact
Lp( f , Ψ, k/2) = 0 for all Ψ ∈ emb(O, R).

Proof. This is apparent from the harmonicity of cf and the geometry of the
action of K×

p /Q
×
p on T induced by Ψ.

Let Ψ1, . . . , Ψh be representatives for the distinct classes in emb(O, R). In the
cases where p is inert in K or where p is split and w = 1, so that Lp( f , Ψi, k/2) = 0
for all i, the first derivative of the p-adic L-function Lp( f , K, s) at s = k/2 is given
by:

L′
p( f , K, k/2) =

∫
G̃

log (α) dµf ,K(α) =
h∑

i=1

L′
p( f , Ψi, k/2),(23)

and

L′
p( f , Ψi, k/2) =

∫
G

log (α) dµf ,Ψi(α).(24)

These formulas are consequences of the continuity of µf ,Ψi for all i. The goal of
the next section is to derive a formula for these first derivatives.
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3. Proof of the main identities. Sections 3.1 and 3.2 contain the proofs of
the main identities in the case where p is split in K. In this situation an exceptional
zero arises only if w = 1, which will be assumed from now on for those sections.
Section 3.3 discusses the case when p is inert in K.

3.1. Teitelbaum’s L-invariant. The definition of Teitelbaum’s L-invariant
attached to f is recalled in this section. It depends on the choice of p-adic loga-
rithm that was made in Section 2.6.

First let us point out that the modular form f is actually a modular form for
the group Γ̃, as a consequence of the assumption w = 1. Choose a point z0 ∈ Hp,
and a vertex v ∈ T .

PROPOSITION 3.1. (Teitelbaum) There exists LT ( f ) ∈ Cp and R ∈ P∨
k−2 (the

latter, depending on the choice of z0 and v) such that, for all α ∈ Γ̃ and r ∈ Pk−2,

∫ α∗z0

z0

f (z)r(z) dz = LT ( f ) ·
∑

v→αv

cf (e)(r) + (α · R(r)− R(r)) .

Here the integral on the left is Coleman’s integral associated to the choice of log,
and the sum on the right is taken over the edges in the path joining v to αv.

The proof is given in [Tei], Sec. 1.

Definition 3.2. The scalar LT ( f ) (which depends only on the homothety class
of f ) is called the Teitelbaum L-invariant associated to f .

The coboundary term (αR(r) − R(r)), which vanishes when k = 2, presents an
extra difficulty in computing LT ( f ) in the higher weight case. To avoid this extra

term, let δ be any element of Γ̃, let ψ = δ − 1
2 trace(δ)

(
1 0
0 1

)
∈ M2(Qp),

and write Pψ for the polynomial Pι−1(ψ) ∈ P2 defined by formula (3). Note that

Pψ · δ = Pψ, and the same invariance property holds for P
k−2

2
ψ ∈ Pk−2. Replacing

α by δ and r by P
k−2

2
ψ yields a formula which does not involve any coboundary

term and determines LT ( f ) when the sum on the right is nonzero:

∫ δ∗z0

z0

f (z)P
k−2

2
ψ (z) dz = LT ( f )

∑
v→δv

cf (e)(P
k−2

2
ψ ).(25)

Note that both the integral and the sum in the above equation are independent of
the choice of base points z0 and v respectively.

3.2. The split case. In this section suppose that p is split in K, and let p

be a prime of K above p. Let us recall the notations of Section 1.3, i.e., let u0

denote a generator of the rank one group O×/Z[1/p]× such that the image u of
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u0
ū0

in Q×
p has the property ordp(u) > 0. If Ψ is a representative for an element of

emb(O, R), write δ := ιΨ(u0) ∈ Γ̃. (This gives rise to the p-adic Shintani cycle
attached to Ψ, as in the discussion following Proposition 2.18.) Let v be an even
vertex of T which is fixed by ιΨ(OK ⊗ Zp)×.

THEOREM 3.3.

L′
p( f , Ψ, k/2) = LT ( f )

∑
v→δv

cf (e)(P
k−2

2
Ψ ),

where the sum on the right is taken over all edges e in the path joining v to δv.

Proof. Consider the left-hand side of (25) with this choice of δ, and note that
the polynomial denoted there by Pψ is a constant multiple of PΨ.

By Teitelbaum’s p-adic Poisson inversion formula (Proposition 1.11),

I :=
∫ δ∗z0

z0

f (z)P
k−2

2
Ψ (z) dz =

∫ δ∗z0

z0

(∫
P1(Qp)

1
z− x

dµf (x)

)
P

k−2
2

Ψ (z) dz.(26)

Observe that

P
k−2

2
Ψ (z)− P

k−2
2

Ψ (x)
z− x

= polynomial in x of degree ≤ k − 2.

Hence, by Lemma 1.9,

∫
P1(Qp)

P
k−2

2
Ψ (z)
z− x

dµf (x) =
∫
P1(Qp)

P
k−2

2
Ψ (x)
z− x

dµf (x).

Therefore the polynomial P
k−2

2
Ψ (z) can be replaced by P

k−2
2

Ψ (x) in equation (26).
Applying the reasoning in the proof of Theorem 4 of [Tei], reverse the order of
integration to obtain

I =
∫
P1(Qp)

(∫ δ∗z0

z0

dz
z− x

)
P

k−2
2

Ψ (x) dµf (x)(27)

=
∫
P1(Qp)

log
(
δ ∗ z0 − x

z0 − x

)
P

k−2
2

Ψ (x) dµf (x),(28)

where the last equality follows from the definition of the Coleman integral as-
sociated to this choice of log. Recall the Möbius transformation ηΨ on P1(Cp)
of Section 2.4. Define β0 ∈ P1(Cp) by ηΨ(β0) = z0. Performing the change of
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variables x = ηΨ(α) and applying the definition of µΨ = µf ,Ψ,�

I =
∫
P1(Qp)

log
(

uβ0 − α
β0 − α

)
dµΨ(α).(29)

Note that if α = 0 or∞, the integrand vanishes, because of the choice of logarithm
that was made in the definition of the Coleman integral. Since log (u) = 0, observe
that

∞∑
n=−∞

log
(

uβ0 − unα

β0 − unα

)
= lim

N→∞

N∑
n=−N

log

(
β0 − un−1α

β0 − unα

)

= lim
N→∞

log

(
β0 − u−N−1α

β0 − uNα

)
= lim

N→∞
log

(
uN+1β0 − α
β0 − uNα

)
= logα− logβ0.

Applying Proposition 2.12 it follows that

I =
∫

G

( ∞∑
n=−∞

log
uβ0 − unα

β0 − unα

)
dµΨ(α) =

∫
G

( logα− logβ0)dµΨ(α).(30)

Note that ∫
G

log (β0) dµΨ(α) = log (β0)Lp( f , Ψ, k/2) = 0,

by Proposition 2.22, (2). It follows that

I =
∫

G
log (α) dµΨ(α) = L′

p( f , Ψ, k/2),(31)

by (24). On the other hand, formula (25) for Teitelbaum’s L-invariant shows that

I = LT ( f )
∑

v→δv

cf (e)(P
k−2

2
Ψ ).(32)

Theorem 3.3 follows from (31) and (32).

The following theorem can be viewed as the analogue of Teitelbaum’s con-
jecture in the anticyclotomic setting.

THEOREM 3.4. Assume Conjecture 2.17. Then

L′
p( f , K, k/2)2 = LT ( f )2u2

KD
k−1

2
K

L(φ/K, k/2)
(φ,φ)

.
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Proof. Let Ψ1, . . . , Ψh be distinct representatives for the oriented optimal
embeddings in emb(O, R). For 1 ≤ j ≤ h, choose even vertices vj of T which
are fixed by ιΨj((OK ⊗Zp)×) and write δj = ιΨj(u0). By formula (23) combined
with Theorem 3.3,

L′
p( f , K, k/2) = LT ( f )

h∑
j=1

∑
vj→δjvj

cf (e)(P
k−2

2
Ψj

).

Theorem 3.4 now follows from Proposition 2.18.

Remark. In [Kl] Klingenberg claims to prove an “exceptional zero conjec-
ture,” analogous to Theorem 3.3, for Schneider’s rigid analytic p-adic L-function.
Klingenberg normalizes the Schneider L-function by choosing a special isomor-
phism Bp → M2(Qp); this depends on the choice of a normalization datum ([Kl],
Definition 6.3.1) which need not exist in general. Indeed, assume such a datum to
be given. Then there is a maximal Z-order O′ in B and an element δ0 ∈ O′[1/p]×

such that for the zeros α,β ∈ Qp of the minimal polynomial of δ0/Q we have
ord(α/β) = 1. After multiplying δ0 by a suitable power of p one can assume that
δ0 belongs to O′ and that its reduced norm is p. Set K = Q(δ0). It is an imaginary
quadratic field and the minimal polynomial of δ0 over Q is of the form

f (X) = X2 + aX + p with a2 < 4p.

There are only finitely many such fields and hence there exist quaternion algebras
B which do not contain any of them and thus do not admit a normalization datum.
(For example, choose B such that its discriminant has a prime factor q which splits
in all the fields K as above.)

In addition, Theorem 4.6.1 and 4.6.2 of [Kl] are not correct as stated. In fact
the proofs of these theorems actually yield the following (adopting the notation
from [Kl]):

Let γ, δ ∈ Γ be such that [γ] and [δ] ∈ Γab are nonzero and assume that
Lp(cγ , 1) = 0. Assume moreover that δ is hyperbolic. Then for every homomorphism
χ ∈ Hom(Q×

p , Qp) the following holds

∫
Zp[δ]

χ(x) dµγ(x) = χ(〈γ, δ〉Γmult(δ)m).(33)

Here m is the unique integer such that 〈γ, δ〉Γmult(δ)m ∈ Zp[δ].

Consequently, Theorems 6.4.2 and Corollary 6.4.1 of [Kl] do not hold as stated.
(A summand logp(mult(δ)m) is missing on the right-hand side of the equations
there and it is usually nonzero.)
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While it seems unlikely that there is any simple relation between Schneider’s
p-adic L-function (with respect to a suitable normalization) and the cyclotomic
p-adic L-function of Mazur, Tate and Teitelbaum as is speculated in ([Kl], p. 313),
the arguments of [Kl] can be adapted to give a proof of Theorem 3.3 in the case
of weight 2. Together with the result on the interpolation of classical special
values of Section 2.5, this yields a proof of the exceptional zero conjecture for
the anticyclotomic p-adic L-function when k = 2.

We sketch briefly now how one can deduce Theorem 3.3 in the weight
two case from (33). For simplicity assume that K has class number one. Then
ordp(u) = 1 and (33) gives

L′
p( f , K, 1) =

∫
Z
×
p

log(x) dµf (x) = log(〈δ, cf 〉),

since mult(δ) = u2 and thus log(mult(δ)) = 0. Now ([Kl], 5.3 and Proposi-
tion 3.3.1) imply that

L′
p( f , K, 1) = log(〈δ, cf 〉)

∑
v→δv

cf (e).

3.3. The inert case. Assume now that p is inert in K.

THEOREM 3.5. Let z0 and z̄0 ∈ Hp be the two fixed points for ιΨ(K×
p ) acting

onHp. Then

L′
p( f , Ψ, k/2) = ±

∫ z0

z̄0

f (z)P
k−2

2
Ψ (z) dz.

Proof. Beginning with the right-hand side of Theorem 3.5,

I :=
∫ z0

z̄0

f (z)P
k−2

2
Ψ (z) dz =

∫ z0

z̄0

(∫
P1(Qp)

1
z− x

dµf (x)

)
P

k−2
2

Ψ (z) dz,(34)

by Teitelbaum’s p-adic Poisson inversion formula (Proposition 1.11). Now ob-
serve that

P
k−2

2
Ψ (z)− P

k−2
2

Ψ (x)
z− x

= polynomial in x of degree ≤ k − 2.

Hence, by Lemma 1.9,

∫
P1(Qp)

P
k−2

2
Ψ (z)
z− x

dµf (x) =
∫
P1(Qp)

P
k−2

2
Ψ (x)
z− x

dµf (x).
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Therefore the polynomial P
k−2

2
Ψ (z) can be replaced by P

k−2
2

Ψ (x) in equation (34).
Reversing the order of integration as in (27),

I =
∫
P1(Qp)

(∫ z0

z̄0

dz
z− x

)
P

k−2
2

Ψ (x) dµf (x)(35)

=
∫
P1(Qp)

log
(

x− z0

x− z̄0

)
P

k−2
2

Ψ (x) dµf (x)(36)

=
∫

G
log (α) dµΨ(α),(37)

where the last identity follows by making the change of variables x = ηΨ(α)
(cf. equation (15)). Hence

I = L′
p( f , Ψ, k/2),

by (24). The result follows.

Remark. By the Cerednik-Drinfeld theorem, the rigid analytic curve Hp/Γ
has a model over Q given by a Shimura curve X classifying abelian surfaces with
quaternionic multiplication and auxiliary level structure. (Cf. [BD3], §4.) Using
Drinfeld’s moduli interpretation of Hp, it is shown in Section 5 of [BD3] that
the points z0 and z̄0 correspond to CM points on X defined over the Hilbert class
field H of K. Assuming k = 2, the modular form f corresponds to a quotient Af

defined over Q of the Jacobian J of X; in this situation, the integral appearing on
the right-hand side of the identity of Theorem 3.5 is related to the natural image
of the divisor (z0)− (z̄0) in Af (H) via the p-adic Abel-Jacobi map. One recovers
the main result of [BD3], which gives a construction, in terms the first derivative
of the anticyclotomic p-adic L-function, of a Heegner point on Af (K) and implies
that this point is of infinite order when L′

p( f , K, 1) �= 0.
For general k, the integral appearing in Theorem 3.5 can be interpreted as

the image by a higher p-adic Abel-Jacobi map of certain CM cycles in the Chow
groups of the Kuga-Sato variety attached to forms of weight k. This interpretation
will be explained in a future work.
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(1976), 29–40.
[GvdP] L. Gerritzen and M. van der Put, Schottky Groups and Mumford Curves, Lecture Notes in Math., vol.

817, Springer-Verlag, New York, 1980.
[GS] R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods of modular forms, Invent. Math.

111 (1993), 407–447.
[Gr1] B. H. Gross, Heegner points on X0(N), Modular Forms (Durham, 1983), Ellis Horwood Ser. Math.

Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 87–105.
[Gr2] , Heights and the special values of L-series, Number Theory (Montreal, Que., 1985), CMS

Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187.
[Ha] R. L. Hatcher, Heights and L-series, Canad. J. Math. 42 (1990), 533–560.
[JL1] B. W. Jordan and R. Livne, Local diophantine properties of Shimura curves, Math. Ann. 270 (1985),

235–248.
[JL2] , Integral Hodge theory and congruences between modular forms, Duke Math. J. 80

(1995), 419–484.
[Kl] C. Klingenberg, On p-adic L-functions of Mumford curves, p-adic Monodromy and the Birch and

Swinnerton-Dyer Conjecture, Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI,
1994, pp. 277–315.

[Mz1] B. Mazur, On monodromy invariants occurring in global arithmetic, and Fontaine’s theory, p-adic
Monodromy and the Birch and Swinnerton-Dyer Conjecture, Contemp. Math., vol. 165,
Amer. Math. Soc., Providence, RI, 1994, pp. 1–20.

[MTT] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and
Swinnerton-Dyer, Invent. Math. 84 (1986), 1–48.

[PR] B. Perrin-Riou, Fonctions L p-adiques associées à une forme modulaire et à un corps quadratique
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