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Abstract: Motivated by the conjectures of “Mazur-Tate-Teitelbaum type”
formulated in [BD1] and by the main result of [BD3], we describe a conjec-
tural construction of a global point PK ∈ E(K), where E is a (modular)
elliptic curve over Q of prime conductor p, and K is a real quadratic field
satisfying suitable conditions. The point PK is constructed by applying the
Tate p-adic uniformization of E to an explicit expression involving geodesic
cycles on the modular curve X0(p). These geodesic cycles are a natural gen-
eralization of the modular symbols of Birch and Manin, and interpolate the
special values of the Hasse-Weil L-function of E/K twisted by certain abelian
characters of K. In the analogy between Heegner points and circular units,
the point PK is analogous to a Stark unit, since it has a purely conjectural
definition in terms of special values of L-functions, but no natural “indepen-
dent” construction of it seems to be known. We call the conjectural point
PK a “Stark-Heegner point” to emphasize this analogy.

The conjectures of section 4 are inspired by the main result of [BD3], in
which the real quadratic field is replaced by an imaginary quadratic field.
The methods of [BD3], which rely crucially on the theory of complex mul-
tiplication and on the Cerednik-Drinfeld theory of p-adic uniformization of
Shimura curves, do not seem to extend to the real quadratic situation. One
must therefore content oneself with numerical evidence for the conjectures.
This evidence is summarized in the last section.
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1 Some motivation: Pell’s equation

Mention of the so-called Pell’s equation

x2 −Dy2 = 1 (D ∈ Z, D > 0)

can already be found in a 7th century manuscript of the Indian mathemati-
cian and astronomer Brahmagupta. (Cf. [We], I.IX.) In spite of its venerable
age, Pell’s equation has lost none of its fascination, and continues to be a
wellspring for the most profound questions in number theory.

Here are three methods for tackling Pell’s equation, arranged in increasing
order of sophistication and generality:

1. The continued fraction method ([We], [HW])
Appearing in manuscripts of Jayadeva and Bhāskara dating back to the 11th
and 12th centuries (and rediscovered independently much later by Fermat),
it is one of the great contributions of Indian mathematics and civilization
([We], I.IX).

2. The circular unit method ([Ma], [Was])
Suppose for simplicity that D ≡ 1 (mod 4) is square-free, and let χD(n) =(

n
D

)
be the quadratic Dirichlet character. The following theorem of Gauss,

intimately connected with quadratic reciprocity, is the basis for the circular
unit method.

Theorem 1.1 Every quadratic field is contained in a cyclotomic field gener-
ated by roots of unity. More precisely, the quadratic field Q(

√
D) is contained

in Q(ζD), where ζD is a primitive D-th root of unity, and the homomorphism
of Galois theory

Gal(Q(ζD)/Q) = (Z/DZ)× −→ Gal(Q(
√

D)/Q) = ±1

is identified with the Dirichlet character χD.

The importance of theorem 1.1 (for our discussion) lies in the fact that the
cyclotomic field Q(ζD) is equipped with certain natural units, the so-called
circular units. These are algebraic integers of the form (1 − ζa

D) if D is not

prime, and of the form
1−ζa

D

1−ζD
if D is prime, with a ∈ (Z/DZ)×. In particular,

theorem 1.1 implies that the expression

uD =
D∏

a=1

(1− ζa
D)χD(a)
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is an element of norm 1 in the quadratic field Q(
√

D), and in fact, in its
ring of integers. This unit uD can be used to write down an explicit solution
to Pell’s equation in terms of values of trigonometric functions evaluated at
rational arguments.

The circular unit method appears less efficient than the continued fraction
approach. Its main interest is theoretical and aesthetic (cf. the introduction
of [Ma]), and also lies in its greater generality. For theorem 1.1 has a natural
generalization, the Kronecker-Weber Theorem:

Theorem 1.2 If K is any abelian extension of the rationals, then it is con-
tained in a cyclotomic field Q(ζ) generated by a root of unity ζ.

Thanks to this theorem, one can construct a subgroup of the unit group of
K, when K is any abelian extension of Q, by taking the norms of circular
units to K. It turns out that this subgroup is always of finite index. So the
circular unit method for solving Pell’s equation generalizes to a procedure
for finding the unit group of an arbitrary abelian extension of the rationals.

3. The L-function method ([Ta], [St])
Let

ζK(s) =
∑
A

N(A)−s, (Re(s) > 1)

where the sum is taken over all the integral ideals of K, be the Dedekind zeta-
function of the real quadratic field K. It can be shown that this function has
a meromorphic continuation to the entire complex plane, and a functional
equation relating its values at s and 1 − s. The third method is based on
the analytic class number formula of Dirichlet, which we state here for the
special case of ζK(s).

Theorem 1.3 The zeta-function ζK(s) has a simple zero at s = 0, and

ζ ′K(0) = 2h log |u|,

where h is the class number of K and u is a fundamental unit in the real
quadratic field K.

In particular, the expression
eζ′K(0)

yields a unit of K, and hence a (non-trivial) solution to Pell’s equation.

3



From a practical and computational point of view, this third method
turns out to be not very different from the second. Indeed, theorem 1.1
implies that ζK(s) = ζ(s)L(s, χD), and one has (cf. [Ta])

ζ ′K(0) = ζ(0)L′(0, χD) = log(
D∏

a=1

(1− ζa
D)χD(a)), (1)

so that eζ′K(0) = u2
D, where uD is the unit constructed from circular units

following the second method.
What is important here is the change in point of view: the analytic class

number formula of theorem 1.3 generalizes to an arbitrary number field K.
In particular, when ζK(0) = 0, the identity

ζ ′K(0) = log |u|,

for some unit u of K (not necessarily non-trivial!) continues to hold. When
ζK(s) has a simple zero at s = 0, this identity gives an analytic construction
of a non-trivial unit in K from special values of the Dedekind zeta-function.

Unfortunately, the only number fields for which ζK has a simple zero at
s = 0 are the fields with exactly two infinite places, i.e., the real quadratic
fields, the cubic fields with one real and one complex place, and the quartic
fields with two complex places. This class does not even include the abelian
extensions covered by the second method.

To make the method more flexible, one can enlarge the class of L-functions
to include the Artin L-functions associated to irreducible representations of
Gal(Q̄/Q). More precisely, let K̃ be the Galois closure of K, let G denote its
Galois group, and let H = Gal(K̃/K) ⊂ G. Finally, let ρ =IndG

H(1) be the
induced representation. Then the Dedekind zeta-function ζK(s) is equal to
the Artin L-function L(s, ρ), which factorizes as a product of Artin L-series:

ζK(s) = L(s, ρ) =
∏
i

L(s, ρi)
mi .

where
∑

i miρi is the decomposition of ρ as a direct sum of irreducible repre-
sentations. Stark has conjectured ([St], see also [Ta]) that the leading terms
of each of the factors on the right can be written down explicitely in terms
of arithmetic invariants attached to K. In particular, when L(0, ρi) = 0, the
first derivative L′(0, ρi) should be expressed as an explicit combination of
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logarithms of units of K. In this way, one can hope to recover a unit of K
from the values of L′(0, ρi) when they are non-zero.

When K is abelian over Q, the Artin L-series that appear in the factoriza-
tion of ζK(s) are attached to one-dimensional characters of K, and are equal
to Dirichlet L-series L(s, χ) by theorem 1.2 (Kronecker Weber). An explicit
evaluation (cf. [Ta]) shows that when L(0, χ) = 0, the derivative L′(0, χ) is
expressed in terms of the circular units of the second method, by a formula
which directly generalizes equation (1).

In general, if an irreducible representation ρ is not one-dimensional, it
cuts out a non-abelian extension K(ρ) of Q, and Stark’s conjecture provides
a more general framework (albeit one which is conjectural in general) for
finding units in K(ρ) when L(s, ρ) has a simple zero at s = 0. For a recent
example where Stark’s conjecture is used to compute the units in specific ray
class fields of certain totally real cubic fields, see [DST].

2 Elliptic curves over Q

Let E/Q be an elliptic curve over the rationals of conductor N , given by the
projective equation

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3. (2)

By the Mordell-Weil theorem, the Mordell-Weil group E(Q) is a finitely
generated abelian group,

E(Q) ' Zr ⊕ T,

where T is the finite torsion subgroup of E(Q). As has been known for a long
time (see for example [Ma]), there is a resonance between Pell’s equation and
the study of rational points on elliptic curves. In particular, each of the three
methods outlined in section 1 for tackling Pell’s equation has an analogue in
the realm of elliptic curves.

1. The method of descent ([Si1], [Ca])
When Fermat, unaware of the Indian contributions, rediscovered the contin-
ued fraction method for solving Pell’s equation, he viewed it as a “positive”
application of his general method of descent, which he had used until then
only to prove that certain Diophantine equations had no solutions. Unlike
the continued fraction method, the descent method for computing E(Q) is
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not known to give an algorithm in general for finding E(Q), i.e., to always
terminate. Such a statement would follow if one knew that the Shafarevich-
Tate group X(E/Q) (or, even just X(E/Q) ⊗ Z`, for some prime ` which
can be effectively determined) is finite.

2. The Heegner point method ([El], [Gr1], [Za])
If N is a positive integer, let X0(N) denote the modular curve which is the
(coarse) moduli space of elliptic curves equipped with a rational subgroup of
order N . This curve admits a model over the rationals.

The Heegner point method relies crucially on Wiles’ theorem, formerly
known as the Shimura-Taniyama conjecture. We state it here in a strong
form which follows from combining the works of [Wi], [TW], and [Di].

Theorem 2.1 Suppose that E is an elliptic curve over the rationals, having
semistable reduction at 3 and 5. Then E is modular, i.e., there is a non-
constant morphism

φE : X0(N) −→ E

defined over Q.

Remarks:
1. The reader should note the direct analogy between theorem 2.1 and the
more classical theorem 1.1. The latter is intimately connect with abelian
reciprocity laws, while the former is a manifestation of a (non-abelian) reci-
procity law for GL2.
2. Theorem 2.1 is in fact somewhat weaker than the original conjecture,
which is formulated without the technical assumption of semi-stability at
3 and 5. For the rest of this paper, we will assume that E satisfies the
conclusion of theorem 2.1.
3. It is customary to normalize φE so that it sends the cusp i∞ on X0(N)
to the identity on E, and so that the map φE∗ : J0(N) −→ E induced on
jacobians by covariant functoriality has connected kernel. This can always be
achieved, possibly after replacing E by a curve in the same rational isogeny
class.

In the same way that the cyclotomic fields Q(ζD) are equipped with cir-
cular units, the modular curves are endowed with an explicit set of algebraic
points, the so-called Heegner points. More precisely, let K be an imaginary
quadratic field satisfying

All primes `|N are split in K/Q. (3)
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Let OK be the ring of integers of K, and let A be an elliptic curve satisfying
End(A) ' OK . (One says that A has complex multiplication by OK .) By
the theory of complex multiplication, the curve A can be defined over the
Hilbert class field H of K. The technical assumption (3) implies that A has
a cyclic subgroup C of order N which is also defined over H. The pair (A, C)
gives rise to a point αH ∈ X0(N)(H). Let PH = φE(αH) ∈ E(H), where φE

is the modular parametrization of theorem 2.1. Let PK := traceH/K(PH) be
the trace of PH to E(K).

Unlike the solution to Pell’s equation constructed from circular units,
the point PK may be trivial, so that the Heegner point method for find-
ing a rational point in E(K) does not always succeed. But (just like with
circular units, cf. equation (1)), the non-triviality of the point PK can be
related to the non-vanishing of certain L-function values. More precisely, let
L(E/K, s) be the Hasse-Weil L-function of E over K. Thanks to theorem
2.1, it is known to have an analytic continuation and a functional equation
relating its values at s and 2− s. (For L(E/Q, s), this follows from Hecke’s
theory. For L(E/K, s), it can be proved either by exploiting the factorization
L(E/K, s) = L(E/Q, s)L(E(K)/Q, s), where E(K) is the twist of E over K,
or by using Rankin’s method, as in [GZ].)

The sign in this functional equation can be written down explicitly as
a product of local signs. Assumption (3) forces the sign in the functional
equation of L(E/K, s) to be −1, so that L(E/K, 1) = 0 (cf. [GZ], p. 71). Let
ΩE/K :=

∫
E(C) ω ∧ iω̄/

√
dK , where ω is a Néron differential on E/Q and dK

is the discriminant of K. The following result of Gross and Zagier [GZ] can
be viewed as an elliptic curve analogue of equation (1).

Theorem 2.2 There is an explicit non-zero rational number α ∈ Q× such
that

L′(E/K, 1) = αΩE/K〈PK , PK〉,
where 〈 , 〉 is the Néron-Tate canonical height on E(K). In particular, the
point PK is of infinite order if and only if L′(E/K, 1) 6= 0.

A result of Kolyvagin shows that if PK is of infinite order, then E(K) has
rank one. Conversely, it is expected (and it follows from the Birch and
Swinnerton-Dyer conjecture) that the Heegner point method works precisely
in this “rank one” situation.

3. The L-function method?
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By analogy with the zeta-function method for solving Pell’s equation, one
might ask for a method of computing a rational point in E(Q) from the
special values of the Hasse-Weil L-function L(E/Q, s). The analogue of
Dirichlet’s analytic class number formula in this context is the Birch and
Swinnerton-Dyer conjecture, which relates the arithmetic behaviour of E/Q
to the analytic properties of L(E/Q, s) in the neighbourhood of s = 1. Recall
that r is the rank of the Mordell-Weil group E(Q), and that T is its finite
torsion subgroup.

Conjecture 2.3 The Hasse-Weil L-function L(E/Q, s) vanishes to order r
at s = 1, and

L(r)(E/Q, s) = #X(E/Q)
(
det (〈Pi, Pj〉)1≤i,j≤r

)
#T−2

(∫
E(R)

ω

)∏
p

mp,

where X(E/Q) is the (conjecturally finite) Shafarevich-Tate group of E/Q,
the points P1, . . . , Pr are a basis for E(Q) modulo torsion, 〈 , 〉 is the Néron-
Tate canonical height, ω is the Néron differential on E, and mp is the number
of connected components in the Néron model of E/Qp.

In particular, if L(E/Q, s) has a simple zero at s = 1, then conjecture 2.3
predicts that E(Q) has rank 1 and that

L′(E/Q, 1) = #T−2

(∫
E(R)

ω

)∏
p

mp〈P, P 〉,

where P =
√

#X(E/Q)P0, and P0 is a generator for E(Q) modulo torsion.

This formula allows one to compute the Néron-Tate canonical height h(P ) =
〈P, P 〉 of a point P ∈ E(Q) from the special value L′(E/Q, 1).

In [Si2], Silverman explains how the a priori knowledge of h(P ) can be
used to assist in the calculation of P itself. Silverman’s method seems quite
efficient computationally – in all likelihood, alot more so than the p-adic
methods we are about to describe. Still, there is no simple analytic function,
analogous to the exponential in the case of Pell’s equation, which would
reconstruct the point P directly from h(P ). From this point of view the
analogy with method 3 of section 1 seems to break down somewhat.

It turns out that the analogy can be pushed in another direction if one
replaces the classical L-function by a p-adic avatar. Such a phenomenon
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was first discovered by Karl Rubin [Ru] for elliptic curves with complex
multiplication. More precisely, if E is such a curve, Rubin showed (building
on the formula of Gross-Zagier and on Perrin-Riou’s p-adic analogue [PR])
that a global point in E(Q) can be obtained by applying the exponential map
in the formal group of E/Qp to the first derivative of a certain two-variable
p-adic L-function of E (which in this case interpolates the special values of
a Hecke L-series with Grossencharacter).

More recently, the article [BD3] described a construction of a global point
PK ∈ E(K) from the first derivative of a p-adic L-function, in the case when
E is a (modular) elliptic curve over Q having a prime p of multiplicative
reduction, and K is a quadratic imaginary field in which p is inert. In this
formula, the role of the exponential map is played by the Tate uniformization:

ΦTate : K×p −→ E(Kp),

(where Kp = K ⊗Qp is the completion of K at p). The next section recalls
the formula of [BD3].

3 p-adic L-functions and rational points

Assume as before that E is a (modular) elliptic curve of conductor N . Let
K be a quadratic imaginary field of discriminant D relatively prime to N .
Furthermore, suppose that

1. The curve E has good or multiplicative reduction at all primes which
are inert in K/Q.

2. There is at least one prime, p, which is inert in K and for which E has
multiplicative reduction.

3. The sign in the functional equation for L(E/K, s) is −1.

Write N = N+N−p, where N+, resp. N− is divisible only by primes
which are split, resp. inert in K. Note that by assumptions 1 and 2, N− is
square-free and not divisible by p.

Let H be the Hilbert class field of K, and let Hn the ring class field of
conductor pn. We write H∞ =

⋃
Hn, and set

Gn := Gal(Hn/H), G̃n := Gal(Hn/K),

9



G∞ := Gal(H∞/H), G̃∞ := Gal(H∞/K), ∆ := Gal(H/K).

There is an exact sequence of Galois groups

0 −→ G∞ −→ G̃∞ −→ ∆ −→ 0,

and, by class field theory, G∞ is canonically isomorphic to K×p /Q×p , which
can be identified with the group (Kp)

×
1 of elements of norm 1 in K×p (by

sending z to z
z̄
). The completed integral group rings Z[[G∞]] and Z[[G̃∞]] are

defined as the inverse limits of the integral group rings Z[Gn] and Z[G̃n]
under the natural projection maps.

Let
ΩE :=

∫ ∫
E(C)

ω ∧ iω̄

be the complex period (or Parshin-Faltings height) of E, where ω is a Néron
differential on E. Write d for the discriminant of the order O of conductor c
and u for one half the order of the group of units of O.

Theorem 3.1 There exists an element Lp(E/K) ∈ Z[[G̃∞]] such that

|χ(Lp(E/K))|2 =
L(E/K, χ, 1)

ΩE

√
d · u2,

for all finite order characters χ of G̃∞.

Remark. The interpolation property of theorem 3.1 determines Lp(E/K)
uniquely, up to right multiplication by elements in G̃∞, if it exists. The
existence amounts to a statement of rationality and integrality for the special
values L(E/K,χ, 1). The construction of Lp(E/K), which is based on work
of Gross [Gr2] and Daghigh [Dag], is explained in chapter 2 of [BD3].

If χ is the trivial character (or, more generally, any character of G̃∞ which
is unramified at p, i.e., factors through ∆) then the interpolation property
of theorem 3.1 implies that

χ(Lp(E/K)) = 0. (4)

In particular, Lp(E/K) belongs to the augmentation ideal Ĩ of Z[[G̃∞]]. Let
L′p(E/K) denote the image of Lp(E/K) in Ĩ/Ĩ2 = G̃∞. The reader should

view L′p(E/K) ∈ G̃∞ as the first derivative of Lp(E/K) evaluated at the
central point.
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Lemma 3.2 The element L′p(E/K) belongs to G∞ ⊂ G̃∞.

Proof: Formula (4) implies that Lp(E/K) belongs to the kernel of the natural
projection Z[[G̃∞]] −→ Z[∆]. This implies that L′p(E/K) belongs to the

kernel of the map G̃∞ −→ ∆.
Thanks to lemma 3.2, the element L′p(E/K) can (and will) be viewed as

an element of K×p of norm 1.
The main formula of [BD3] is:

Theorem 3.3 The local point ΦTate(L′p(E/K)) ∈ E(Kp) is a global point in
E(K).

Crucial to the proof of theorem 3.3 is the fact that the global point PK

constructed from special values of L-functions has an alternate construction.
This construction relies on two basic ingredients: the theory of complex
multiplication, and the Cerednik-Drinfeld theory of p-adic uniformization of
Shimura curves associated to indefinite quaternion algebras.

Before making this more precise, we record the following lemma:

Lemma 3.4 The integer N− is the product of an odd number of primes.

Proof: By page 71 of [GZ], the sign in the functional equation of the complex
L-function L(E/K, s) is (−1)#{`|N−p}+1. The result follows.

Let B be the indefinite quaternion algebra which is ramified exactly at the
primes dividing pN−. Such a B exists, by Hilbert’s reciprocity law and lemma
3.4. Choose a maximal order R in B, and an Eichler order R(N+) ⊂ R of
level N+, defined as in [BD3]. Let Γ be the subgroup of R(N+)× of elements
of reduced norm 1. By fixing an embedding of B⊗R into M2(R), the group
Γ acts on the standard complex upper half plane by Mobius transformations.
The complex-analytic quotient X = H/Γ is a complex model for a curve X.
Shimura showed that X has a model over Q by identifying it with a (coarse)
moduli space for polarized abelian surfaces with endomorphisms by R and an
appropriate level N+ structure. For details, see [Ro] or [BD1] for example.

The curve X is endowed with a set of Heegner points corresponding to
quaternionic surfaces A with complex multiplication by the maximal order
OK of K. (By complex multiplication by OK , one means that the ring of
endomorphisms of A which commute with the quaternionic multiplications
and respect the level N+-structure is isomorphic to OK .) These points are
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defined over the Hilbert class field H of K, and are permuted transitively by
the group Gal(H/K) × W , where W is the group of exponent 2 generated
by all the Atkin-Lehner involutions on X (cf. [BD1]). Let α1, . . . , αh (h =
[H : K]) be a Gal(H/K)-orbit of Heegner points, and let α′j = wN/pαj, where
wN/p is the product of the Atkin-Lehner involutions w` over all primes `|N/p.
Note that α′1, . . . , α

′
h is another Gal(H/K)-orbit of Heegner points, so that

the effective divisor (α′1) + · · ·+ (α′h) is K-rational.
The Jacobian J of X is an abelian variety over Q. By a theorem of

Jacquet-Langlands [JL], it is isogenous to the quotient of J0(N
+N−p) corre-

sponding to cusp forms which are new at N−p. Hence, the modularity of E
(theorem 2.1) implies the existence of a generically surjective map

φE : J −→ E.

The degree 0 divisor on X:

D = (α1) + · · ·+ (αh)− (α′1)− · · · − (α′h) (5)

is defined over K, and hence gives rise to a canonical “Heegner element” in
J(K), which depends on the choice of the αi only up to the action of the
Atkin-Lehner involutions. Let

PK = φE(D) ∈ E(K)

be its image in E(K). Note that PK depends only up to sign on the choice
of the K-rational effective divisor (α1) + · · ·+ (αh).

The more precise form of theorem 3.3 proved in [BD3] states that the
local point ΦTate(L′p(E/K)) is equal to the global point PK , up to a sign and
a simple fudge factor. The proof exploits a p-adic analytic construction of
PK supplied by the Cerednik-Drinfeld theory of p-adic uniformization of X.
For more details, see [BD3].

Again, the formula relating PK to L′p(E/K) is analogous to formula (1)
expressing circular units in terms of derivatives of abelian L-series. Circu-
lar units (and, in our situation, Heegner points on Shimura curves) lead to
examples of what Kolyvagin has called an “Euler system”. When they can
be constructed, such Euler systems provide powerful insights into the asso-
ciated L-function values. However, there are many instances where no Euler
system is known to exist. The units defined conjecturally from derivatives
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of non-abelian Artin L-functions – whose construction would supply a key
to the Stark conjectures – are a case in point. Motivated by the discussion
in section 1, one might ask whether the (p-adic) L-function methods of the
present section suggest (conjectural) constructions of global points on elliptic
curves, in situations where there is no (known) Euler system construction.
Or, put more succintly: “Are there Stark-Heegner points”?

The remainder of this article describes a fragment of experimental math-
ematics suggesting that the answer to this question is “yes”.

4 A real quadratic analogue

We will restrict ourselves for simplicity to the case where the elliptic curve
E has prime conductor N = p. This simplifying assumption allows us, in
particular, to avoid Shimura curves and formulate our construction entirely
within the setting of classical modular curves – a luxury which was not
available to us in section 3.

Let K be a real quadratic field in which p is inert. (This corresponds
to assumptions 1 and 2 of section 3.) Let L(E/K, s) be the Hasse-Weil
L-function for E/K.

Lemma 4.1 If N = p is inert in K, then the sign in the functional equation
for L(E/K, s) is −1.

In particular, L(E/K, 1) = 0, and the conjecture of Birch and Swinnerton-
Dyer leads us to expect that E(K) is infinite. We will now describe a conjec-
tural method for constructing a global point PK ∈ E(K) (or rather, a p-adic
approximation of it) using modular symbols and Tate’s p-adic analytic theory.
We caution the reader that, just as with all the methods covered previously,
we expect that this method yields a non-trivial global point precisely when
E(K) has rank 1.

4.1 Modular symbols

Let OK = Z[ω] be the ring of integers of K. An order in K is a subring of
K which is finitely generated as a Z-module. Every order in K is contained
in OK , and is of the form Z[cω], for a (unique) positive integer c, called the
conductor of the order.
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A lattice in K is a Z-submodule of K which is free of rank 2. If I is any
lattice, the set of elements

End(I) := {x ∈ K|xI ⊂ I}

is an order in OK , which we also call the order associated to I. By abuse of
notation, we will sometimes say that a lattice has conductor c if its associated
order is of conductor c.

Let c be an integer which is prime to p, and let I be a lattice of conductor
cpn with n ≥ 1.

Lemma 4.2 There is a unique sublattice I0 ⊂ I contained in I with index p
having conductor cpn−1.

Proof: Let P1(I) be the set of all index p sublattices of I. It is in bijection
with P1(Fp) and hence has cardinality p + 1. If O = End(I) is the order
associated to I, then we have (non-canonical) isomorphisms of groups:

(O/pO)×/F×p ' (Fp[ε]/(ε
2))×/F×p ' Z/pZ.

The first isomorphism sends a + bcpnω (a, b ∈ Z) to a + bε, and the second
isomorphism sends a + bε ∈ Fp[ε]

× to b/a. The group (O/pO)×/F×p acts on
P1(I) in the natural way, and has exactly one fixed point. This fixed point
corresponds to the sublattice I0. The p remaining sublattices have conductor
cpn+1.

Choose a real embedding of K, and say that an element of K is positive
(resp. negative) if its image by this embedding is positive (resp. negative).

Definition 4.3 A basis ω1, ω2 for K/Q is called positive if

det

(
ω1 ω2

ω̄1 ω̄2

)
> 0.

Now, choose a Z-basis (ω1, ω2) for I satisfying

1. ω1 belongs to I0.

2. The basis (ω1, ω2) is positive.

Note that I0 is the set of elements in I of the form aω1+bω2 with p|b. Let now
u be any unit in O× of norm 1. Multiplication by u gives an endomorphism
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of I. Since the sublattice I0 is stable under this endomorphism (indeed, it is
stable under multiplication by the order of conductor cpn−1) it follows that
the matrix describing the multiplication by u in the basis (ω1, ω2) belongs to
Γ0(p). Let mu(I) denote this matrix.

Lemma 4.4 The matrix mu(I) is well-defined up to conjugation in Γ0(p).

Proof: Any two choices of bases for I satisfying the conditions 1 and 2 above
differ by an element of Γ0(p).

Two lattices I and J are said to be equivalent if there exists an element
α ∈ K× of positive norm such that

J = αI.

Of course, equivalent lattices have the same associated order. Furthermore:

Lemma 4.5 If I and J are equivalent, then the matrices mu(I) and mu(J)
are conjugate in Γ0(p).

Proof: If (ω1, ω2) is a basis for I satisfying conditions 1 and 2 above, and
J = αI, then (αω1, αω2) is a basis for J satisfying the same conditions.
Relative to these bases, the matrices expressing the multiplication by u are
in fact equal. The lemma follows.

An element of Γ = Γ0(p) (well-defined up to conjugation) gives rise in
the usual way to a class in the integral homology H1(X0(p),Z) which is a
quotient (by the torsion and parabolic elements) of the commutator factor
group Γ/[Γ, Γ]. Let Pic(O) be the set of equivalence classes of lattices of
conductor cpn. The map mu sets up an assignment, which we denote by γu

to emphasize the dependence on u:

γu : Pic(O) −→ H1(X0(p),Z).

Definition 4.6 We call γu(I) the modular symbol attached to the lattice I
of conductor cpn (n ≥ 1) and to the unit u ∈ O×.

Remarks:
1. To an equivalence class of lattices I of conductor cpn one can associate
the primitive binary quadratic form of discriminant Disc(K)c2p2n

F (x, y) = norm(xω1 + yω2)g
−1 = Ax2 + Bxy + Cy2,
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where ω1, ω2 is a basis for I chosen as above and g is the unique rational
number such that A, B, C ∈ Z and gcd(A, B, C) = 1. Note that p2|A and
p|B. The roots of the polynomial F (X, 1) are two elements of K ⊂ R
which are Galois conjugate. Consider the geodesic in the Poincaré upper
half plane which joins these two roots on the real line. This geodesic maps
to an infinitely repeating periodic path on X0(p). If u is a fundamental unit
of norm 1 in O×, then the element γu(I) is the basic period in this cycle,
viewed as a homology class of X0(p). For this reason, it is sometimes called
the geodesic cycle on X0(p) associated to the binary quadratic form F (x, y).

2. Like the modular symbols of Birch and Manin, the geodesic cycles on
X0(p) encode special values of L-functions. More precisely, they interpolate
the special values of L(E/K, s) at s = 1, twisted by ring class characters of
K of conductor dividing cpn. They can be used, just as in [MT], to construct
“theta-elements” which are adèlic analogues “at finite level” of the more
familiar p-adic L-functions. This point of view, which forms the basis for the
present article, is developped in [Dar].

3. In the same way that the modular symbols of Birch and Manin are cal-
culated efficiently by computing the continued fraction expansion of certain
rational numbers, the geodesic cycles attached to a binary quadratic form
can be calculated from the (periodic) continued fraction expansion of certain
real quadratic irrationalities.

4.2 The tree associated to a lattice

In this subsection, let I be a sublattice of conductor c prime to p, and let
O = End(I) be its associated order. Let T (I) be the graph whose vertices
correspond to homothety classes of sublattices of I which are contained in I
with index pn for some n. The edges of T (I) join vertices which correspond
to lattices which are contained one inside the other with index p.

The graph T (I) is a homogenous tree of weight p + 1, equipped with a
distinguished vertex v0 which corresponds to the homothety class of I. One
defines a distance function on T (I) in the natural way. If v is a vertex of
T (I) corresponding to a lattice Iv, then the order End(Iv) has conductor
cpm, where m is the distance from v0 to v. The vertex v is then said to be of
level m.
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Let

Gm = (OK ⊗ Z/pmZ)×/(Z/pmZ)× = (OK ⊗ Z/pmZ)×1 ,

where the isomorphism between these two descriptions sends z to z
z̄
. The

group
G∞ = K×p /Q×p = (OK ⊗ Zp)

×/Z×p ' K×p,1 = lim
←

Gn

acts naturally on T (I), leaving v0 fixed and permuting transitively the ver-
tices of a given level m. The isotropy group of a vertex of level m is the group
of elements which are congruent to a scalar modulo pm, and hence, Gm acts
simply transitively on the set of vertices of level m.

Let
u = a + bω ∈ O×

be a unit of norm 1 in O×, and let n be the largest integer such that pn|b. The
modular symbol γu defined in the previous section gives rise to a function
(which we denote also by γu by abuse of notation) on the set of all vertices
of T (I) satisfying

0 < level(v) ≤ n.

Extending the domain of definition of γu slightly, we define γu(v0) := 0.
Let v be any vertex of level m < n, and let v1, . . . , vp be the p vertices of

level m + 1 which are adjacent to it. Recall the Atkin-Lehner involution wp

which acts on X0(p) and hence on the homology H1(X0(p),Z).

Lemma 4.7 The function γu satisfies the relation

γu(v1) + · · ·+ γu(vp) = −wpγu(v).

Proof: The homology class

γu(v1) + · · ·+ γu(vp) + wpγu(v)

is in the image of the map H1(X0(1),Z) −→ H1(X0(p),Z) induced by the
natural degeneracy maps X0(p) −→ X0(1). Since H1(X0(1),Z) = 0, the
lemma follows.
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4.3 The element L′p(I)

In this section, let I be again a (fixed) lattice of conductor prime to p, and
O its associated order. Let

u = a + bω ∈ O×

be the fundamental unit of norm 1 in O×, and let n be the largest integer
such that pn|b.

Let v0, v1, . . . , vn be a sequence of vertices of level 0, 1, . . . , n such that vm

is adjacent to vm+1, and let

Lp,m(I) :=
∑

σ∈Gm

(−wp)
mγu(σvm) · σ−1 ∈ H1(X0(p),Z)⊗ Z[Gm].

This element is analogous to the theta-elements introduced in [MT]. It is
closely related to the special values of the partial L-function

L(f, I, s) =
∑
n

an(f)rI(n)n−s,

at s = 1 twisted by ring class characters of conductor pn. Here, f is a cusp
form of weight 2 on Γ0(p), an(f) is its n-th Fourier coefficient, and rI(n) is
the number of lattices of norm n which are equivalent to I. For more details,
see for example [GKZ] or [Ko].

It follows from lemma 4.7 that the elements Lp,m(I) are compatible under
the natural projection maps Z[Gm] −→ Z[Gm−1], and that Lp,m(I) belongs to
H1(X0(p),Z)⊗Im, where Im is the augmentation ideal of Z[Gm]. Let L′p,m(I)
be the image of Lp,m(I) by the natural projection to H1(X0(p),Z)⊗(Im/I2

m).
After identifying Im/I2

m with Gm in the usual way, we have:

L′p,m(I) :=
∑

σ∈Gm

(−wp)
mγu(σvm) · σ−1 ∈ H1(X0(p),Z)⊗Gm.

Since Lp,m(I) depends on the choice of the vertex vm of level m only up to
right multiplication by an element of Gm, and since the induced action of
Gm on Im/I2

m is trivial, the elements L′p,m(I) (m ≤ n) do not depend on the
choice of the vertex vm, and they are compatible under the natural projection
maps from Gm to Gm−1.

To lighten notations, set

L′p(I) := L′p,n(I).
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It is a canonical element in H1(X0(p),Z) ⊗ Gn associated to I, well-defined
up to a sign and the action of the Atkin-Lehner involution wp.

Let H1(X0(p),Z)+ ⊂ H1(X0(p),Z) be the subgroup of the homology
which is fixed under the action of complex conjugation.

Lemma 4.8 The element L′p(I) belongs to H1(X0(p),Z)+ ⊗Gn.

The proof of this lemma, which we leave to the reader, follows by comparing
the action of the Atkin-Lehner involution wp on the modular symbols with
the action of complex conjugation on H1(X0(N),Z).

4.4 Local points

Let
L′p(c) :=

∑
I

L′p(I),

where the sum is taken over Pic(O), the set of equivalence classes of lattices
of conductor c.

The basic intuition is that the element L′p(c) should encode the position
of a special point in J0(p)(K), analogous to the Heegner divisor of equation
(5) except that the role of the imaginary quadratic field is now played by a
real quadratic field.

To make this precise, fix now an elliptic curve E of conductor p. Let f be
the modular form on X0(p) which is associated to E by Wiles’ theorem, and
let w be the sign of the Atkin-Lehner involution wp acting on f . Let Ew(K)
(resp. Ew(Kp)) be the subgroup of E(K) (resp. E(Kp)) on which complex
conjugation acts like wp. We note the following two properties of Ew(K) and
Ew(Kp) (the first global, and the second local):

1. The sign in the functional equation for L(E/Q, s) is −w. Hence, it
follows from the Birch and Swinnerton-Dyer conjecture that Ew(K)
has odd rank and that E−w(K) has even rank.

2. The curve E has split (resp. non-split) multiplicative reduction at p if
and only if w = −1 (resp. w = 1). In particular, the group Ew(Kp) is
contained in the group Ens(Kp) of points having non-singular reduction,
and the Tate uniformization ΦTate induces an isomorphism

ΦTate : (K×p )1 −→ Ew(Kp).
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The compact group (K×p )1 is equipped with a canonical filtration

(K×p )1 ⊃ (K×p )
(1)
1 ⊃ (K×p )

(2)
1 ⊃ · · ·

with the property that Gn = (K×p )1/(K
×
p )

(n)
1 . Likewise, the group Ew(Kp) is

equipped with the canonical p-adic filtration defined in [Si2]

Ew(Kp) ⊃ Ew(Kp)
(1) ⊃ Ew(Kp)

(2) ⊃ · · ·

and the isomorphism between (K×p )1 and Ew(Kp) given by the Tate uni-
formization respects these filtrations. In particular, by passing to the quo-
tient one has isomorphisms

ΦTate,n : Gn −→ Ew(Kp)/E
w(Kp)

(n).

Now, let
φE : X0(p) −→ E

be the modular parametrization of theorem 2.1. It induces a surjection on
the real homology:

φE∗ : H1(X0(p),Z)+ −→ H1(E,Z)+ ' Z,

and a corresponding map H1(X0(p),Z)+ ⊗Gn −→ Gn, also denoted φE∗ by
abuse of notation.

By lemma 4.8, the element L′p(c) belongs to H1(X0(p),Z)+ ⊗Gn. Let

L′p(c, E) := φE∗(L′p(c)) ∈ Gn.

Now, define the local point

PK(c) := ΦTate,n(L′p(c, E)) ∈ Ew(Kp)/E
w(Kp)

(n).

This point is well-defined as a function of E, K, and c, up to an ambiguity
of sign, and can be viewed as an approximation to a point in E(Kp), with
a p-adic accuracy of p−n. Let t denote the order of the torsion subgroup of
E(K). Suppose that c is square-free and relatively prime to pDisc(K); let
c+ (resp. c−) denote the product of the primes which are split (resp. inert)
in K/Q.
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Conjecture 4.9 The point PK(c) is trivial if the rank of E(K) is greater
than 1. Otherwise, there is a global point P ∈ E(K) (not deepending on c)
such that:

t·PK(c) ≡ ±
∏
`|c+

(a`−2)
∏
`|c−

a` ·
√

#X(E/K)·(P +wP̄ ) (mod Ew(Kp)
(n)),

where P̄ is the complex conjugate point.
Furthermore, if the modular parametrization used to define PK(c) is a

strong parametrization, then P is a generator for E(K) modulo torsion.

Frequently, t is relatively prime to (p + 1)p. In this case conjecture 4.9 can
be written

PK(c) ≡ ±
∏
`|c+

(a`−2)
∏
`|c−

a`·
√

#X(E/K)t−1·(P+wP̄ ) (mod Ew(Kp)
(n)),

where the inverse of t is taken modulo (p + 1)pn−1.

Remarks:

1. Conjecture 4.9 predicts that there is a global point PK ∈ E(K) such that

t · PK(c) = ±
∏
`|c+

(a` − 2)
∏
`|c−

a` · PK (mod Ew(Kp)
(n)), (6)

for all positive integers c which are relatively prime to p. Given any n ≥ 0,
it is possible to find c so that the fundamental unit of norm 1 in the order
of conductor c also belongs to the order of conductor pn. Hence equation
(6) defines the point PK uniquely up to sign, and gives a p-adic recipe for
computing it. We call PK the Stark-Heegner point associated to E over the
real quadratic field K.

2. The appearance of the factor∏
`|c+

(a` − 2)
∏
`|c−

a`

may seem unnatural. This factor plays the role of a product of Euler factors
at the primes ` dividing c. By replacing the element Lp(c) with the “reg-
ularized element”

∑
d|c ε(d)µ(c/d)Lp(c/d), where ε is the Dirichlet character
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associated to K,and µ is the Mobius function, one would obtain a slightly
different construction of a point PK(c), involving the more natural factor∏

`|c+
(` + 1− a`)

∏
`|c−

(` + 1 + a`)

in the conjecture.

3. A caveat: The precise form of conjecture 4.9 was suggested by the analogy
with the formula in [BD3], as well as by the numerical experiments of section
5. Note that some of the fudge factors one might expect to find in a Birch
and Swinnerton-Dyer type formula, such as the order mp of the group of
connected components of the Néron model of E/Qp, do not appear in our
formula. It would be of interest to formulate a precise conjecture along the
lines of conjecture 4.9 for curves of arbitrary conductor, where we expect
some of the integers m`, with ` 6= p, to appear. We felt that our numerical
evidence was too scant, and our conceptual understanding too incomplete,
to make confident predictions about the precise fudge factors which would
appear in general.

5 Experimental evidence

5.1 Experiments with X0(11)

Let E be the elliptic curve X0(11) with minimal Weierstrass equation

y2 + y = x3 − x2 − 10x− 20.

Its Mordell-Weil group over Q is finite, of order t = 5. The Atkin-Lehner
involution w11 acts on E by −1, and hence w = −1.

Let K = Q(
√

2). The prime 11 is inert in this real quadratic field, and
the maximal order OK = Z[

√
2] has class number 1 and fundamental unit

equal to 1 +
√

2.
The Mordell-Weil group of E over K is of rank 1, and is generated (mod-

ulo torsion) by the point in Ew(K)

P = (9/2,
−2 + 7

√
2

4
).
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Let
ΦTate : K×11 −→ E(K11)

be the Tate 11-adic uniformization, and let P̃ be a lift of P to the group of
units in O×11. Since

ΦTate(40612 + 94673
√

2) ≡ (9/2,
−2 + 7

√
2

4
) (mod 114),

it follows that P̃ is equal to 40612 + 94673
√

2 for this degree of 11-adic
accuracy.

In order to try out the conjectures of the previous section, we need to
exploit some non-maximal orders whose fundamental unit a + b

√
2 satisfies

11n|b, for some n > 0.
For simplicity, we will work only with orders of prime conductor `. One

sees directly that, if the fundamental unit u = a + bω of O satisfies 11n|b,
then necessarily we have either:

1. ` is split in Q(
√

11) and 12 · 11n−1 divides `− 1, or

2. ` is inert in Q(
√

11) and 12 · 11n−1 divides ` + 1.

Here is a small table of the first few primes ` satisfying these conditions,
together with their narrow class numbers and fundamental units: (Here u =
1 +

√
2 is a fundamental unit of K.)

` h Unit ` h Unit ` h Unit

73 4 u36 347 2 u348 673 4 u336

83 2 u84 433 4 u216 683 6 u228

97 4 u48 467 2 u468 769 4 u384

107 2 u108 491 2 u492 827 6 u276

∗131 2 u132 563 2 u564 937 4 u468

179 10 u36 587 2 u588 947 2 u948

193 4 u96 601 20 u60 971 2 u972

251 6 u84 ∗659 2 u660 1009 28 u72

Note that in all cases, the fundamental unit of O listed in the table is a power
of u12, and hence belongs to the order of conductor 11 in Z[

√
2]. Note also

that in the two cases marked with a ∗, the fundamental unit is actually a
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power of u12·11, and hence belongs to the order of conductor 112 of K. In
these two cases, the constructions of the previous section will allow us to
construct an approximation to a global point in Ew(OK ⊗ (Z/121Z)), and
not just in Ew(OK ⊗ (Z/11Z)).

Suppose first that the 11 divides b exactly. Then conjecture 4.9, assuming
that #X(E/K) = 1, predicts that

L′11(`, E) ≡ P̃±2
`+1−a`

5 (mod 11) =

{
−1 if 2 6 |` + 1− a`,
+1 if 2|` + 1− a`.

We indeed checked that this was true on the 24 discriminants listed in the
table.

For further verifications, we carried out the calculations modulo 112 with
the orders of conductor 131 and 659. Here, we obtained a canonical element
in (O/112O)×. For example, in the case of ` = 131, there are two narrow
ideal classes I1 and I2. A calculation shows that

L′11(I1) = L′11(I2) = (120 + 77
√

2)⊗ ω,

where ω is a real period of E. Hence,

L′11(131, E) ≡ (120 + 77
√

2)2 ≡ 1 + 88
√

2 (mod 112).

On the other hand, the 131st Fourier coefficient for X0(11) is a131 = −18, so
that the predicted right hand side on the conjecture is

P̃ 2(131+1−a131)/5 ≡ P̃ 60 ≡ 1 + 88
√

2 (mod 112),

confirming the conjecture.
Likewise, in the case of ` = 659, we found that

L′11(659, E) ≡ 1 + 99
√

2 (mod 112),

and that the right hand side (noting that (` + 1− a`)/5 = 130) is

P̃ 260 ≡ 1 + 99
√

2 (mod 112).

We have performed similar verifications with the orders of conductor 23,
43, and 89, which have the property that if u denotes their fundamental unit,
then u6 belongs to the order of conductor 112. Hence, by working with the
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modular symbols γu6 instead of γu, one could obtain an approximation to
P̃ 12(`+1−a`)/5. The results are listed in the following table:

` h+ a` L′11(`, E)6 P̃ 12(`+1−a`)/5

23 2 −1 1 + 88
√

2 1 + 88
√

2

43 2 −6 1 + 55
√

2 1 + 55
√

2

89 4 15 1 + 22
√

2 1 + 22
√

2

We could have pushed the calculation further, using primes ` for which the
fundamental unit of the order of conductor ` also belongs to the unit of
conductor 113. This would give an approximation to the generator of E(K)
with an 11-adic accuracy of 11−3, provided that 11 does not divide `+1−a`.
The first prime with this property is ` = 727. Unfortunately, the calculation
of L′11(727, E) with our implementation of the algorithm seemed to require
more computer time than we were willing to devote (about 3 hours). It is
likely that the algorithm could be improved, and it would be interesting to
explore issues of computational efficiency more carefully.

Needless to say, one could in principle construct a global point to an
arbitrary level of 11-adic accuracy, by using these conjectures and exploiting
primes ` for which

1. The fundamental unit in the order of conductor ` also belongs to the
order of conductor 11n;

2. 11 does not divide ` + 1− a`.

It can be shown, using the Chebotarev density theorem, that there are in-
finitely many primes ` with these properties, for any given n. (For instance,
with n = 4 the smallest prime satisfying the above conditions is ` = 2663.)

5.2 Experiments with X0(37)

In this section, let E be the elliptic curve X0(37)+ with minimal Weierstrass
equation

y2 + y = x3 − x.

Here the sign of w37 is 1, and hence w = 1. The Mordell-Weil group Ew(K) =
E(Q) is isomorphic to Z and is generated by the point P = (0, 0).
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This time, we varied the real quadratic field, seeking fields whose funda-
mental unit also belongs to the order of conductor 37. It is likely that there
are infinitely many such fields, although proving such a statement appears
to be difficult. In the range D ≤ 9, 000, we found 12 such fields with narrow
class number 1. (Restricting to fields of narrow class number 1 allowed for
some simplication in the calculations, but was not really necessary.)

For each of these fields, we computed the element L′37(1, E) associated to
the maximal order of K. We could verify that

ΦTate(L′37(1, E)) = ±2
√

#X(E/K)? · (0, 0), in E(F37).

Here
#X(E/K)? = L(EK , 1)/ΩEK ,

where EK is the twist of E over K, and ΩEK is its associated period. Thus,
s2 = #X(E/K)? is the order of X(E/K) that is predicted by the Birch and
Swinnerton-Dyer conjecture, at least when it is non-zero. The results are
summarized in the table below.

D L′37(1, E) ΦTate(L′37(1, E)) s 2 · s · (0, 0)

1277 17 + 13
√

1277 (30, 13) 12 (30, 23)

1609 28 + 5
√

1609 (2, 2) 2 (2, 34)

1613 22 + 8
√

1613 (17, 33) 14 (17, 33)

2333 28 + 15
√

2333 (2, 2) 2 (2, 34)

2437 4 + 16
√

2437 (15, 31) 8 (15, 31)

4993 28 + 16
√

4993 (2, 2) 2 (2, 34)

5009 28 + 23
√

5009 (2, 34) 2 (2, 34)
5869 1 ∞ 0 ∞
7349 13 + 5

√
7349 (26, 3) 4 (26, 3)

7369 13 + 18
√

7369 (26, 3) 4 (26, 3)

7793 4 + 18
√

7793 (15, 5) 8 (15, 31)

8677 17 + 13
√

8677 (30, 13) 12 (30, 23)

Note that when D = 5869, one has s = 0, suggesting that the curve EK

has infinite Mordell-Weil group and that rank(E(K)) > 1. In this case,
conjecture 4.9 predicts that the points PK(c) ∈ Ew(Kp)/E

w(Kp)
(n) are trivial

for all c, so that the Stark-Heegner point PK ∈ E(K) is trivial.
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