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Introduction

Let E=Q be a modular elliptic curve of conductor N , and let K be an
imaginary quadratic ®eld. Rankin's method gives the analytic continuation
and functional equation for the Hasse-Weil L-function L�E=K; s�. When the
sign of this functional equation is ÿ1, a Heegner point aK is de®ned on E�K�
using a modular curve or a Shimura curve parametrization of E.

In the case where all the primes dividingN are split inK, the Heegner point
comes from a modular curve parametrization, and the formula of Gross-
Zagier [GZ] relates its NeÂ ron-Tate canonical height to the ®rst derivative of
L�E=K; s� at s � 1. Perrin-Riou [PR] later established a p-adic analogue of the
Gross-Zagier formula, expressing the p-adic height of aK in terms of a de-
rivative of the 2-variable p-adic L-function attached to E=K. At around the
same time,Mazur, Tate andTeitelbaum [MTT] formulated a p-adic Birch and
Swinnerton-Dyer conjecture for the p-adic L-function of E associated to the
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cyclotomicZp-extension ofQ, and discovered that this L-function acquires an
extra zero when p is a prime of split multiplicative reduction for E. The article
[BD1] proposed analogues of theMazur-Tate-Teitelbaum conjectures for the
p-adic L-function ofE associated to the anticyclotomicZp-extension ofK. In a
signi®cant special case, the conjectures of [BD1] predict a p-adic analytic
construction of the Heegner point aK from the ®rst derivative of the anti-
cyclotomic p-adic L-function. (Cf. conjecture 5.8 of [BD1].) The present work
supplies a proof of this conjecture.

We state a simple case of our main result; a more general version is given
in Sect. 7. Assume from now on that N is relatively prime to disc�K�, that E
is semistable at all the primes which divide N and are inert in K=Q, and that
there is such a prime, say p. Let OK be the ring of integers of K, and let
uK :� 1

2 #O�K : (Thus, uK � 1 unless K � Q�i� or Q� �������ÿ3p �:)
Note that the curve E=Kp has split multiplicative reduction, and thus is

equipped with the Tate p-adic analytic uniformization

UTate : K�p ÿ!E�Kp�;

whose kernel is the cyclic subgroup of K�p generated by the Tate period
q 2 pZp.

Let H be the Hilbert class ®eld of K, and let H1 be the compositum of all
the ring class ®elds of K of conductor a power of p. Write

G1 :� Gal�H1=H�; ~G1 :� Gal�H1=K�; D :� Gal�H=K�:

By class ®eld theory, the group G1 is canonically isomorphic to K�p =Q
�
p O
�
K ,

which can also be identi®ed with a subgroup of the group K�p;1 of elements of
K�p of norm 1, by sending z to �z�z�uK , where �z denotes the complex conjugate
of z in K�p .

A construction of [BD1], Sect. 2.7 and 5.3, based on ideas of Gross
[Gr], and recalled in Sect. 2, gives an element Lp�E=K� in the completed
integral group ring Z�� ~G1�� which interpolates the special values of the
classical L-function of E=K twisted by complex characters of ~G1. We will
show (Sect. 2) that Lp�E=K� belongs to the augmentation ideal ~I of
Z�� ~G1��. Let L0p�E=K� denote the image of Lp�E=K� in ~I=~I2 � ~G1. The
reader should view L0p�E=K� 2 ~G1 as the ®rst derivative of Lp�E=K�
evaluated at the central point. One shows that the element L0p�E=K�
actually belongs to G1 � ~G1, so that it can (and will) be viewed as an
element of K�p of norm 1.

Using the theory of Jacquet-Langlands, and the assumption that E is
modular, we will de®ne a surjective map gf : J ÿ! ~E, where ~E is an elliptic
curve isogenous to E over Q, and J is the Jacobian of a certain Shimura
curve X . The precise de®nitions of X , J , gf and ~E are given at the end of
Sect. 4. At the cost of possibly replacing E with an isogenous curve, we
assume from now on in the introduction that E � ~E. (This will imply that E
is the ``strong Weil curve'' for the Shimura curve parametrization).
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A special case of our main result is:

Theorem A. The local point UTate�L0p�E=K�� in E�Kp� is a global point in E�K�.
When L0p�E=K� is non-trivial, theorem A gives a construction of a rational
point on E�K� from the ®rst derivative of the anticyclotomic p-adic L-func-
tion of E=K, in much the same way that the derivative at s � 0 of the
Dedekind zeta-function of a real quadratic ®eld leads to a solution of Pell's
equation. A similar kind of phenomenon was discovered by Rubin [Ru] for
elliptic curves with complex multiplication, with the exponential map on the
formal group of E playing the role of the Tate parametrization. See also a
recent result of Ulmer [U] for the universal elliptic curve over the function
®eld of modular curves over ®nite ®elds.

We now state theorem A more precisely. In Sect. 5, a Heegner point
aK 2 E�K� is de®ned as the image by gf of certain divisors supported on CM
points of X . Let �aK be the complex conjugate of aK .

Theorem B. Let w � 1 (resp. w � ÿ1) if E=Qp has split (resp. non-split)
multiplicative reduction. Then

UTate�L0p�E=K�� � aK ÿ w�aK :

Theorem B, which relates the Heegner point aK to the ®rst derivative of a p-
adic L-function, can be viewed as an analogue in the p-adic setting of the
theorem of Gross-Zagier, and also of the p-adic formula of Perrin-Riou
[PR]. Unlike these results, it does not involve heights of Heegner points, and
gives instead a p-adic analytic construction of a Heegner point.

Observe that G1 is isomorphic to Zp � Z=�p � 1�Z, so that its torsion
subgroup is of order p � 1. Choosing an anticyclotomic logarithm k map-
ping G1 onto Zp determines a map from Z��G1�� to the formal power series
ring Zp��T ��. Let Lp�E=K� be the image of Lp�E=K� in Zp��T ��, and L0p�E=K�
the derivative of Lp�E=K� with respect to T evaluated at T � 0. Since UTate is
injective on K�p;1, theorem B implies:

Corollary C. The derivative L0p�E=K� is non-zero if and only if the point
aK ÿ w�aK is of in®nite order.

Corollary C gives a criterion in terms of the ®rst derivative of a p-adic
L-function for a Heegner point coming from a Shimura curve parametri-
zation to be of in®nite order. Work in progress of Keating and Kudla
suggests that a similar criterion (involving the Heegner point aK itself) can
be formulated in terms of the ®rst derivative of the classical L-function, in
the spirit of the Gross-Zagier formula.

The work of Kolyvagin [Ko] shows that if aK is of in®nite order, then
E�K� has rank 1 and III�E=K� is ®nite. By combining this with corollary C,
one obtains
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Corollary D. If L0p�E=K� is non-zero, then E�K� has rank 1 and III�E=K� is
®nite.

The formula of theorem B is a consequence of the more general result given
in Sect. 7, which relates certain Heegner divisors on jacobians of Shimura
curves to derivatives of p-adic L-functions. The main ingredients in the proof
of this theorem are (1) a construction, based on ideas of Gross, of the
anticyclotomic p-adic L-function of E=K, (2) the explicit construction of
[GVdP] of the p-adic Abel-Jacobi map for Mumford curves, and (3) the
Cerednik-Drinfeld theory of p-adic uniformization of Shimura curves.

1 Quaternion algebras, upper half planes, and trees

De®nite quaternion algebras

Let Nÿ be a product of an odd number of distinct primes, and let B be the
(unique, up to isomorphism) de®nite quaternion algebra of discriminant Nÿ.
Fix a maximal order R � B. (There are only ®nitely many such maximal
orders, up to conjugation by B�).

For each prime `, we choose certain local orders in B` :� B
Q`, as
follows.

1. If ` is any prime which does not divide Nÿ, then B` is isomorphic to the
algebra of 2� 2 matrices M2�Q`� over Q`. Any maximal order of B` is
isomorphic to M2�Z`�, and all maximal orders are conjugate by B�` . We ®x
the maximal order

R` :� R
 Z`:

2. If ` is a prime dividing Nÿ, then B` is the (unique, up to isomorphism)
quaternion division ring over Q`. We let

R` :� R
 Z`;

as before. The valuation on Z` extends uniquely to R`, and the residue ®eld
of R` is isomorphic to F`2 , the ®nite ®eld with `2 elements. We ®x an
orientation of R`, i.e., an algebra homomorphism

oÿ` : R`ÿ!F`2 :

Note that there are two possible choices of orientation for R`.

3. For each prime ` which does not divide Nÿ, and each integer n � 1, we
also choose certain oriented Eichler orders of level `n. These are Eichler
orders R�n�` of level `n contained in R`, together with an orientation of level `n,
i.e., an algebra homomorphism
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o�` : R�n�` ÿ!Z=`nZ:

We will sometimes write R` for the oriented Eichler order R�1�` of level `.
For each integer M �Qi `

ni
i which is prime to Nÿ, let R�M� be the

(oriented) Eichler order of level M in R associated to our choice of local
Eichler orders:

R�M� :� B \
Y
`6jM

R`
Y
`i

R�ni�
`i

0@ 1A:
We view R�M� as endowed with the various local orientations o�` and oÿ` for
the primes ` which divide MNÿ, and call such a structure an orientation on
R�M�.We will usually view R�M� as an oriented Eichler order, in what follows.

Let Ẑ � Q` Z` be the pro®nite completion of Z, and let

B̂ :� B
 Ẑ �
Y
`

B`

be the adelization of B. Likewise, if R0 is any order in B (not necessarily
maximal), let R̂0 :� R0 
 Ẑ.

The multiplicative group B̂
�
acts (on the left) on the set of all oriented

Eichler orders of a given level M by the rule

b � R0 :� B \ bR̂0bÿ1
ÿ �

; b 2 B̂
�
; R0 � B:

(Note that b � R0 inherits a natural orientation from the one on R0.) This
action of B̂

�
is transitive, and the stabilizer of the oriented order R�M� is

precisely R̂�M��. Hence the choice of R�M� determines a description of the
set of all oriented Eichler orders of level M , as the coset space R̂�M��nB̂�.
Likewise, the conjugacy classes of oriented Eichler orders of level M are in
bijection with the double coset space R̂�M��nB̂�=B�:

Let N� be an integer which is prime to Nÿ, and let p be a prime which
does not divide N�Nÿ. We set

N � N�Nÿp:

Let C be the group of elements in R�N���1p�� of reduced norm 1. Of
course, the de®nition of C depends on our choice of local orders, but:

Lemma 1.1. The group C depends on the choice of the R` and R�n�` , only up to
conjugation in B�.

Proof. This follows directly from strong approximation ([Vi], p. 61).
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The p-adic upper half plane attached to B

Fix an unrami®ed quadratic extension Kp of Qp. De®ne the p-adic upper half
plane (attached to the quaternion algebra B) as follows:

Hp :� Hom�Kp;Bp�:

Remark. The group GL2�Qp� acts naturally on P1�Kp� by MoÈ bius trans-
formations, and the choice of an isomorphism g : Bp ÿ!M2�Qp� determines
an identi®cation of Hp with P1�Kp� ÿ P1�Qp�. This identi®cation sends
w 2Hp to one of the two ®xed points for the action of gw�K�p � on P1�Kp�.
More precisely, it sends w to the unique ®xed point P 2 P1�Kp� such that the
induced action of K�p on the tangent line TP �P1�Kp�� � Kp is via the
character z 7! z

�z. More generally, a choice of an embedding Bp ÿ!M2�Kp�
determines an isomorphism of Hp with a domain X in P1�Kp�. In
the literature, the p-adic upper half plane is usually de®ned to be
P1�Cp� ÿ P1�Qp� � Cp ÿQp, where Cp is the completion of (an) algebraic
closure of Qp. From this point of view, it might be more appropriate to
think ofHp as the Kp-rational points of the p-adic upper half plane. But in
this work, the role of the complex numbers in the p-adic context is always
played, not by Cp, but simply (and more naively) by the quadratic extension
Kp.

We will try as much as possible to work with the more ``canonical''
de®nition of the upper half plane, which does not depend on a choice of
embedding of Bp into M2�Kp�. The upper half planeHp is endowed with the
following natural structures.

1. The group B�p acts naturally on the left on Hp, by conjugation. This
induces a natural action of the discrete group C on Hp.
2. An involution w 7! �w, de®ned by the formula:

�w�z� :� w��z�;

where z 7!�z is the complex conjugation on Kp.

The Bruhat-Tits tree attached to B

Let T be the Bruhat-Tits tree of B�p =Q
�
p . The vertices of T correspond to

maximal orders in Bp, and two vertices are joined by an edge if the inter-
section of the corresponding orders is an Eichler order of level p. An edge of
T is a set of two adjacent vertices on T, and an oriented edge of T is an
ordered pair of adjacent vertices of T. We denote the set of edges (resp.

oriented edges) of T by E�T� (resp. E
!
�T�).
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The edges ofT correspond to Eichler orders of level p, and the oriented
edges are in bijection with the oriented Eichler orders of level p.

SinceT is a tree, there is a distance function de®ned on the vertices ofT
in a natural way. We de®ne the distance between a vertex v and an edge e to
be the distance between v and the furthest vertex of e.

The group B�p acts on T via the rule

b � R0 :� bR0bÿ1; b 2 B�p ; R0 2T:

This action preserves the distance on T. In particular, the group C acts on
T by isometries.

Fix a base vertex v0 of T. A vertex is said to be even (resp. odd) if its
distance from v0 is even (resp. odd). This notion determines an orientation
on the edges ofT, by requiring that an edge always go from the even vertex
to the odd vertex. The action of the group B�p does not preserve the ori-
entation, but the subgroup of elements of norm 1 (or, more generally, of
elements whose norm has even p-adic valuation) sends odd vertices to odd
vertices, and even ones to even ones. In particular, the group C preserves the
orientation we have de®ned on T.

The reduction map

Let Op be the ring of integers of Kp. Given w 2Hp, the image w�Op� is
contained in a unique maximal order Rw of Bp. In this way, any w 2Hp

determines a vertex Rw of T. We call the map w 7!Rw the reduction map
from Hp to T, and denote it

r : Hpÿ!T:

For an alternate description of the reduction map r, note that the map w
from Kp to Bp determines an action of K�p on the treeT. The vertex r�w� is
the unique vertex which is ®xed under this action.

The lattice M

Let G :�T=C be the quotient graph. Since the action of C is orientation
preserving, the graph G inherits an orientation fromT. Let E�G� be the set
of (unordered) edges of G, and letV�G� be its set of vertices. Write Z�E�G��
and Z�V�G�� for the modules of formal Z-linear combinations edges and
vertices of G, respectively.

There is a natural boundary map @� (compatible with our orientation)

@� : Z�E�G�� ÿ!Z�V�G��
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which sends an edge fa; bg to aÿ b, with the convention that a is the odd
vertex and b is the even vertex in fa; bg. There is also a coboundary map

@� : Z�V�G��ÿ!Z�E�G��

de®ned by

@��v� � �
X
~v2e

e;

where the sum is taken over the images in E�G� of the p � 1 edges of T
containing an arbitrary lift ~v of v toT. The sign in the formula for @� is �1
if v is odd, and ÿ1 if v is even.

Recall the canonical pairings de®ned by Gross [Gr] on Z�E�G�� and on
Z�V�G��. If e is an edge (resp. v is a vertex) de®ne we (resp. wv) to be the
order of the stabilizer for the action of C of (some) lift of e (resp. v) to T.
Then

hei; eji � weidij;

hhvi; vjii � wvidij:

Extend these pairings by linearity to the modules Z��E�G�� and Z�V�G��.

Lemma 1.2. The maps @� and @� are adjoint with respect to the pairings h ; i
and hh ; ii, i.e.,

he; @�vi � hh@�e; vii:

Proof. By direct computation.

De®ne the module M as the quotient

M :� Z E�G�� �=image @�� �:

Given two vertices a and b of T, they are joined by a unique path, which
may be viewed as an element of Z�E�G�� in the natural way. Note that
because of our convention for orientingT, if a and b are even vertices (say)
joined by 4 consecutive edges e1, e2, e3 and e4, then the path from a to b is
the formal sum

path�a; b� � e1 ÿ e2 � e3 ÿ e4 2 Z E G� �� �:

Note that we have the following properties of the path function:

path�a; b� � ÿpath�b; a�; path�a; b� � path�b; c� � path�a; c�:
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Also, if a and b are C-equivalent, then path�a; b� belongs to H1�G;Z� �
Z�E�G��.

Proposition 1.3. The map from M to Hom�C;Z� which sends m 2M to the
function

c 7! path�v0; cv0�;mh i

is injective and has ®nite cokernel.

Proof. The pairing h ; i gives an injective map with ®nite cokernel

Mÿ!Hom ker�@��;Z� �:

But

ker�@�� � H1 G;Z� �:

Let Cab denote the abelianization of C. Then the map of Cab to H1�G;Z�
which sends c to path�v0; cv0� is an isomorphism modulo torsion (cf. [Se]).
The proposition follows.

Relation of M with double cosets

We now give a description ofM in terms of double cosets which was used in
[BD1], Sect. 1.4.

More precisely, let

JN�p;Nÿ � Z R̂�N�p��nB̂�=B�
h i

be the lattice de®ned in [BD1], Sect. 1.4. (By previous remarks, the module
JN�p;Nÿ is identi®ed with the free Z-module

ZR1 � � � � � ZRt

generated by the conjugacy classes of oriented Eichler orders of level N�p in
the quaternion algebra B.) Likewise, let

JN�;Nÿ � Z�R̂�N���nB̂�=B��:

In [BD1], Sect. 1.7, we de®ned two natural degeneracy maps

JN�;Nÿ ÿ! JN�p;Nÿ ;
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and a module Jpÿnew
N�p;Nÿ to be the quotient of JN�p;Nÿ by the image of JN�;

Nÿ � JN�;Nÿ under these degeneracy maps.

Proposition 1.4. The choice of the oriented Eichler order R�N�p� determines
an isomorphism between M and Jpÿnew

N�p;Nÿ .

The proof of proposition 1.4 uses the following lemma:

Lemma 1.5. There exists an element c 2 R�N���1p�� whose reduced norm is an
odd power of p.

Proof. Let F be an auxiliary imaginary quadratic ®eld of prime discriminant
such that all primes dividing N� are split in F and all primes dividing Nÿ are
inert in F . Such an F exists, by Dirichlet's theorem on primes in arithmetic
progressions. By genus theory, F has odd class number, and hence its ring of
integers OF contains an element a of norm pk, with k odd. Fix an embedding
of OF in the Eichler order R�N��, and let c be the image of a in R�N���1p��.

Proof of proposition 1.4. Recall that Rp � Bp denotes our ®xed local Eichler
order of level p. By strong approximation, we have

R̂�N�p��nB̂�=B� � R�p Q�p nB�p =R�N�� 1

p

� ��
:

The group R�p Q�p is the stabilizer of an ordered edge ofT. Hence R�p Q�p nB�p
is identi®ed with the set E

!
�T� of ordered edges onT, and the double coset

space R�p Q�p nB�p =R�N���1p�� is identi®ed with the set of ordered edges E
!
�G��

on the quotient graph G� :�T=R�N��� 1p ��.
But the map which sends fx; yg 2 E�G� to �x; y� 2 E

!
�G�� if x is even, and

to �y; x� if x is odd, is a bijection between E�G� and E
!
�G��. For, if fx; yg and

fx0; y0g have the same image in E
!
�G��, then there is an element of R�N���1p��

which sends the odd vertex in fx; yg to the odd vertex in fx0; y0g and the even
vertex in fx; yg to the even vertex in fx0; y0g. This element is necessarily in C,
since it sends an odd vertex to an odd vertex. Hence the edges fx; yg and
fx0; y0g are C-equivalent, and our map is one-one. To check surjectivity, let c
be the element of R�N���1p�� given by lemma 1.5. Then the element �x; y� of
E
!
�G�� is the image of fx; yg if x is even and y is odd, and is the image of
fcx; cyg if x is odd and y is even. To sum up, we have shown that the choice
of the Eichler order R�N�p� determines a canonical bijection between
JN�p;Nÿ and Z�E�G��. Likewise, one shows that the Eichler order R�N��
determines a canonical bijection between JN�;Nÿ and the set of vertices
V�G��, and between JN�;Nÿ � JN�;Nÿ and Z�V�G��. (The resulting map from
Z�V�G��� � Z�V�G��� to Z�V�G�� sends a pair �v;w� to v� ÿ wÿ, where
where v� and wÿ are lifts of v and w to vertices of G, which are even and odd
respectively.) Finally, from the de®nition of the degeneracy maps given in
[BD1] one checks that the following diagram commutes up to sign:
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JN�;Nÿ � JN�;Nÿ ÿ! Z�V�G��
# # @�

JN�p;Nÿ ÿ! Z�E�G��
;

where the horizontal maps are the identi®cations we have just established,
and the left vertical arrow is the di�erence of the two degeneracy maps.
(Which is only well-de®ned up to sign). From this, it follows that
M � Z�E�G��=image�@�� is identi®ed with the module

Jpÿnew
N�p;Nÿ � JN�p;Nÿ=image�JN�;Nÿ � JN�;Nÿ�

of [BD1].

Hecke operators

The lattice M is equipped with a natural Hecke action, coming from its
description in terms of double cosets. (Cf. [BD1], Sect. 1.5.) Let T be the
Hecke algebra acting on M. Recall that N � N�Nÿp: The following is a
consequence of the Eichler trace formula, and is a manifestation of the
Jacquet-Langlands correspondence between automorphic forms on GL2

and quaternion algebras.

Proposition 1.6. If / : Tÿ!C is any algebra homomorphism, and an � /�Tn�
�for all n with gcd�n;Nÿp� � 1�; then the an are the Fourier coe�cients of a
normalized eigenform of weight 2 for C0�N�. Conversely, every normalized
eigenform of weight 2 on C0�N� which is new at p and at the primes dividing
Nÿ corresponds in this way to a character /.

Given a normalized eigenform f on X0�N�, denote by Of the order generated
by the Fourier coe�cients of f and by Kf the fraction ®eld of Of . Assuming
that f is new at p and at Nÿ, let pf 2 T
 Kf be the idempotent associated to
f by proposition 1.6. Let nf 2 Of be such that gf :� nf pf belongs to T
 Of .

Let Mf �M
 Of be the sublattice on which T acts via the character
associated to f . The endomorphism gf induces a map, still denoted gf by an
abuse of notation,

gf : M!Mf :

In particular, if f has integer Fourier coe�cients, thenMf is isomorphic to
Z. Fixing such an isomorphism (i.e., choosing a generator ofMf ), we obtain
a map

gf : M! Z;

which is well-de®ned up to sign.
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2 The p-adic L-function

We recall the notations and assumptions of the introduction: E is a modular
elliptic curve of conductor N , associated to an eigenform f on C0�N�; K is a
quadratic imaginary ®eld of discriminant D relatively prime to N . Fur-
thermore:

1. the curve E has good or multiplicative reduction at all primes which are
inert in K=Q;
2. there is at least one prime, p, which is inert in K and for which E has
multiplicative reduction;
3. the sign in the functional equation for L�E=K; s� is ÿ1.
Write

N � N�Nÿp;

where N�, resp. Nÿ is divisible only by primes which are split, resp. inert in
K. Note that by our assumptions, Nÿ is square-free and not divisible by p.

Lemma 2.1.Under our assumptions,Nÿ is a product of an odd number of primes.

Proof. By page 71 of [GZ], the sign in the functional equation of the complex

L-function L�E=K; s� is �ÿ1�#f`jNÿpg�1. The result follows.

Let c be an integer prime to N . We modify slightly the notations of the
introduction, letting H denote now the ring class ®eld of K of conductor c,
and Hn the ring class ®eld of conductor cpn. We write H1 �

S
Hn, and set

Gn :� Gal�Hn=H�; ~Gn :� Gal�Hn=K�;

G1 :� Gal�H1=H�; ~G1 :� Gal�H1=K�; D :� Gal�H=K�:

(Thus, the situation considered in the introduction corresponds to the spe-
cial case where c � 1.) There is an exact sequence of Galois groups

0ÿ!G1ÿ! ~G1ÿ!Dÿ! 0;

and, by class ®eld theory, G1 is canonically isomorphic to K�p =Q
�
p O�k .

The completed integral group rings Z��G1�� and Z�� ~G1�� are de®ned as the
inverse limits of the integral group rings Z�Gn� and Z� ~Gn� under the natural
projection maps. We set

M�Gn� :�M
 Z�Gn�;

M��G1�� :� lim
n
 
M�Gn� �M
 Z��G1��;
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and likewise for Gn and G1 replaced by ~Gn and ~G1. The groups G1 and ~G1
act naturally on M��G1�� and M�� ~G1�� by multiplication on the right.

In this section, we review the construction of a p-adic L-function
Lp�M=K�, in a form adapted to the calculations we will perform later. A
slightly modi®ed version of this construction is given in Sect 2.7 of [BD1]. It
is based on results of Gross [Gr] on special values of the complex L-func-
tions attached to E=K, and on their generalization by Daghigh [Dag].

Let

Xf :� 4p2
ZZ

H1=C

jf �s�j2ds ^ id�s

be the complex period associated to the cusp form f . Write d for the dis-
criminant of the order O of conductor c, u for one half the order of the
group of units of O and nf for the integer de®ned at the end of section 1 by
the relation gf � nf pf .

Theorem 2.2. There is an element Lp�M=K� 2M�� ~G1��, well-de®ned up to
right multiplication by ~G1, with the property that

jv�gf �Lp�M=K���j2 � L�f =K; v; 1�
Xf

���
d
p
� �nf uk�2;

for all ®nite order complex characters v of ~G1 and all modular forms f
associated to T as in proposition 1.6.

Proof. See [Gr], [Dag] and [BD1], Sect 2.7.

Corollary 2.3. Setting

Lp�E=K� :� gf �Lp�M=K�� 2 Z�� ~G1��;

where f is the modular form associated to E, one has

jv�Lp�E=K��j2 � L�E=K; v; 1�
Xf

���
d
p
� �nf uk�2;

for all ®nite order characters v of ~G1.

Remark. One sees that the interpolation property of corollary 2.3 determines
Lp�E=K� uniquely, up to right multiplication by elements in ~G1, if it exists.
The existence amounts to a statement of rationality and integrality for the
special values L�E=K; v; 1�. The construction of Lp�M=K� (and hence, of
Lp�E=K�) is based on the notion of Gross points of conductor c and cpn.

Gross points of conductor c

Recall that O is the order of conductor c in the maximal order OK , where we
assume that c is prime to N . We equip O with an orientation of level N�Nÿ,
i.e., for each `njjN�, an algebra homomorphism
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o�` : Oÿ!Z=`nZ;

and for each `jNÿ, an algebra homomorphism

oÿ` : Oÿ!F`2 :

An embedding n : Oÿ!Rn of O into an oriented Eichler order Rn of level
dividing N� is called an oriented embedding if it respects the orientations on
O and on Rn, i.e., if the diagrams

O ÿ!n Rn O ÿ!n Rn

# o�` # o�` # oÿ` # oÿ`
Z=`nZ � Z=`nZ F`2 � F`2

commute, for all ` which divide N�Nÿ.
The embedding n is called optimal if it does not extend to an embedding

of any larger order into Rn. The group B� acts naturally on the set of
oriented optimal embeddings of conductor c, by conjugation:

b�Rn; n� :� bRnbÿ1; bnbÿ1
ÿ �

:

De®nition 2.4 A Gross point of conductor c and level N�Nÿ is a pair �Rn; n�
where Rn is an oriented Eichler order of level N� in B, and n is an oriented
optimal embedding of O into Rn, taken modulo conjugation by B�.

We denote by Gr�c� the set of all Gross points of conductor c and level
N�Nÿ.

Given n 2 Hom�K;B�, we denote by n̂ 2 Hom�K̂; B̂� the natural exten-
sion of scalars.

The group

D � Pic�O� � Ô�nK̂�nK�

acts on the Gross points, by the rule

r�Rn; n� :� n̂�r� � Rn; n
� �

:

Lemma 2.5. The group D acts simply transitively on the Gross points of
conductor c.

Proof. See [Gr], Sect. 3.
One says that �Rn; n� is in normal form if

466 M. Bertolini, H. Darmon



Rn 
 Z` � R` for all 6̀ jNp;

Rn 
 Z` � R�n�` as oriented Eichler orders, for all `njjN�;
Rn 
 Z` � R` as oriented orders, for all `jNÿ:

(Note in particular that we have imposed no condition on Rn 
 Zp in this
de®nition.) Choose representatives �R1;w1�, �R2;w2�, . . . , �Rh;wh� for the
Gross points of conductor c, written in normal form. (This can always be
done, by strong approximation.) Note that

Ri
1

p

� �
� R

1

p

� �
as oriented Eichler orders,

and that the orders Ri are completely determined by the local order Ri 
 Zp.
Let v1; . . . ; vh be the vertices onT associated to the maximal orders R1 
 Zp,
. . . , Rh 
 Zp. The vertex vi is equal to r�wi�, i.e., it is the image of wi (viewed
as a point on Hp in the natural way) by the reduction map to T.

Gross points of conductor cpn

Let n � 1, and let On denote the order of K of conductor cpn.

De®nition 2.6. A Gross point of conductor cpn and level N is a pair �Rn; n�
where Rn is an oriented Eichler order of level N�p in B, and n is an oriented
optimal embedding of On into Rn, taken modulo conjugation by B�.

To make De®nition 2.6 complete, we need to clarify what we mean by an
orientation at p of the optimal embedding n. (For the primes which divide
N�Nÿ, the meaning is exactly the same as before.) The oriented Eichler
order Rn 
 Zp corresponds to an ordered edge on T, whose source and
target correspond to maximal orders R1 and R2 respectively. We require that
n still be an optimal embedding of On into R2. (It then necessarily extends to
an optimal embedding of Onÿ1 into R1.)

We let Gr�cpn� be the set of Gross points of level cpn, and we set

Gr cp1� � :�
[1
n�1

Gr cpn� �:

The group ~Gn � Ô�n nK̂
�
=K� acts on Gr�cpn� by the rule

r Rn; n� � :� n̂�r� � Rn; n
� �

:
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Lemma 2.7. The group ~Gn acts simply transitively on Gr�cpn�.

Proof. See [Gr], Sect. 3.

In particular, the group ~G1 acts transitively on Gr�cp1�. As before, we say
that a Gross point �Rn; n� of conductor cpn is in normal form if

Rn 
 Z` � R` for all 6̀ jNp;

Rn 
 Z` � R�n�` as oriented Eichler orders, for all `njjN�;
Rn 
 Z` � R` as oriented orders, for all `jNÿ:

Recall the representatives �R1;w1�; . . . ;�Rh;wh� for the Gross points of
conductor c that were chosen in the previous paragraph.

Lemma 2.8. Every point in Gr�cp1� is equivalent to an element in normal
form, and can be written as �R0;wi�, where wi 2 fw1; . . . ;whg, and R0 
 Zp is
an oriented Eichler order of level p. A point in Gr�cp1� described by a pair
�R0;wi� is of level cpn, where n is the distance between the edge associated to
R0 on T, and the vertex associated to Ri.

Proof. The ®rst statement follows from strong approximation, and the
second from a direct calculation.

By Lemma 2.8, the set Gr�cp1� can be described by the system of repre-
sentatives

E�T� � fw1; . . . ;whg:

The action of G1 � K�p =Q
�
p on Gr�cp1� in this description is simply

r R0;wi� � :� ŵi r� � � R0;wi

� �
:

Construction of Lp�M=K�
Choose one of the representatives of Gr�c�, say, �v1;w1�. Choose an end of
T originating from v1, i.e., a sequence e1; e2; . . . ; en; . . . of consecutive edges
originating from v1. By Lemma 2.8, the Gross points �en;w1� are a sequence
of Gross points of conductor cpn. Consider the formal expression

�ÿ1�n
X
r2 ~Gn

r en;w1� � � rÿ1

and let Lp;n�M=K� denote its natural image in M� ~Gn�.

Lemma 2.9. The elements Lp;n�M=K� (n � 1� are compatible under the
natural projection maps M� ~Gn�1� ÿ!M� ~Gn�.
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Proof. This follows directly from the de®niton of the action of ~Gn on Gr�cpn�
given above, and from the de®nition of the coboundary map @�. They yield
that the formal expression NormKn�1=Kn�en�1;w1� � �en;w1� is in the image of
the coboundary map @�, and hence is zero in M. The lemma follows.

Lemma 2.9 implies that we can de®ne an element

Lp M=K� � 2M�� ~G1��

by taking inverse limit of the Lp;n�M=K� via the projections
M�Gn�1� !M�Gn�.

The element Lp�M=K� satis®es the conclusions of Theorem 2.2. It
should be thought of as a p-adic L-function (or rather, the square root of a
p-adic L-function) over K, associated to modular forms for T. If f is any
such modular form, then the element gfLp�M=K� is equal to the element
hN�� ;Nÿ� de®ned in [BD1], Sect. 5.3 (in the special case when f has rational
coe�cients).

Note that Lp�M=K� depends on the choice of the initial point �v1;w1�,
and on the end e1; . . . ; en; . . . of T originating from v1, but only up to
multiplication (on the right) by an element of ~G1.

Recall the augmentation ideal I of Z�� ~G1�� described in the introduction.
More generally, let ID be the kernel of the augmentation map
Z�� ~G1��ÿ!Z�D�.

Lemma 2.10. Lp�M=K� belongs to M
 I . In fact, Lp�M=K� belongs to
M
 ID.

Proof. Since D acts simply transitively on �v1;w1�; . . . ; �vh;wh�, let ri be the
element such that

riv1 � vi:

Let ID denote, by abuse of notation, the image of ID in Z� ~Gn�. Note that we
have the canonical isomorphisms

Z�� ~G1��=ID � Z ~Gn
� �

=ID � Z D� �:

By the compatibility lemma 2.9, the image of Lp�M=K� in M�� ~G1��=ID is
equal to the image of Lp;1�M=K� in M�G1�=ID �M�D�, which is equal to:

Xh

i�1

X
vi2e

e

 !
� rÿ1i :

But each of the terms in the inner sum belongs to the image of @�, and hence
is 0 in M. Thus, Lp�M=K� belongs to M
 ID, and also to M
 I , since
ID � I .
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Remark. If v is any character of D and f is any modular form attached to T,
then the functional equation of L�f =K; v; s� has sign ÿ1, and hence
L�f =K; v; 1� � 0 for all such characters. The interpolation formula of The-
orem 2.2 implies then that Lp�M=K� belongs to ID. The point of the proof
of Lemma 2.10 is that the construction of Lp�M=K� also implies this
directly, without using the relation with L-function values.

Let

L0p M=K� � 2M
 I=I2
ÿ � �M
 ~G1

and

L0p M=H� � 2M
 ID=I2D
ÿ � �M D� � 
 G1 �M�D� 
 K�p;1

� �
be the natural images of the element Lp�M=K�. Since Lp�M=K� is well-
de®ned up to right multiplication by ~G1, the element L0p�M=K� is canon-
ical, and does not depend on the choice of �v1;w1� or on the choice of the
end ofT originating from v1. The elementL0p�M=H� is well de®ned, up to
right multiplication by an element of D.

We now give an explicit description of L0p�M=K� and L0p�M=H� in
Hom�C;K�p;1� which will be used in the calculations of Sects. 6 and 7. Let w
be any point inHp, corresponding to a local embedding of Kp into Bp. The
embedding w gives rise to an action of K�p =Q

�
p on the tree T by multipli-

cation on the right, ®xing the vertex v0 :� r�w�. Choose a sequence of ends
e1; . . . ; en; . . . originating from v0, and let

L0p;n�w� � �ÿ1�n
X
r2Gn

w�r��en� 
 rÿ1

be the element ofM
 Gn (here we denote by en the element inM associated
to the edge en). The elements L0p;n�w� are compatible under the obvious
projection mapsM
 Gn�1ÿ!M
 Gn, and hence the element L

0
p�w� 2M


 G1 can be de®ned as the inverse limit of the L0p;n�w� under the natural
projections. By proposition 1.3, we may view L0p�w� as an element of
Hom�C;K�p;1�, given by

L0p�w��d� � lim
n
 

path�v0; dv0�;L0p;n�w�
D E

2 G1 � K�p;1; 8d 2 C:

In this notation, we have

L0p M=K� � �
Xh

i�1
L0p wi� �;
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L0p M=H� � �
X
r2D

L0p wr
1

ÿ �
rÿ1:

3 Generalities on Mumford curves

Following [Jo-Li], we call a smooth complete curve X over Kp an admissible
curve over Kp if it admits a model X over the ring of integers Op of Kp, such
that:

(i) the scheme X is proper and ¯at over Op;
(ii) the irreducible components of the special ®ber X�p� are rational and
de®ned over Op=�p� ' Fp2 , and the singularities of X�p� are ordinary double
points de®ned over Op=�p�;
(iii) if x 2 X�p� is a singular point, then the completion ÔX;x of the local ring
OX;x is O-isomorphic to the completion of the local ring O��X ; Y ��=�XY ÿ pm�
for a positive integer m.

Let C be a ®nitely generated subgroup of PGL2�Kp�, acting on P1�Cp� by
MoÈ bius transformations. A point z 2 P1�Cp� is said to be a limit point for
the action of C if it is of the form z � lim gn�z0� for a sequence of distinct
elements gn of C. Let I � P1�Cp� denote its set of limit points and let
Xp � P1�Kp� ÿI. The group C is said to act discontinuously, or to be a
discontinuous group, if Xp 6� ;. A fundamental result of Mumford, extended
by Kurihara, establishes a 1-1 correspondence between conjugacy classes of
discontinuous groups and admissible curves.

Theorem 3.1. Given an admissible curve X over Kp, there exists a discontinuous
group C � PGL2�Kp�, unique up to conjugation, such that X �Kp� is isomorphic
to Xp=C. Conversely, any such quotient is an admissible curve over Kp.

Proof. See [Mu] and [Ku].

If D � P1 � � � � � Pr ÿ Q1 ÿ � � � ÿ Qr 2 Div��Xp� is a divisor of degree zero
on Xp, de®ne the theta function

h�z; D� �
Y
c2C

zÿ cP1� � � � � zÿ cPr� �
zÿ cQ1� � � � � zÿ cQr� � ;

with the convention that zÿ1 � 1.
Let Cab :� C=�C;C� be the abelianization of C, and let �C :� Cab=�Cab�tor

be its maximal torsion-free quotient.

Lemma 3.2. There exists /D 2 Hom�C;K�p � such that h�dz; D� � /D�d�h
�z; D�, for all d in C. Furthermore, the map /D factors through �C, so that /D
can be viewed as an element of Hom��C;K�p �.
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Proof. See [GVdP], p. 47, (2.3.1), and ch. VIII, prop. (2.3).

Let

UAJ : Div��Xp�ÿ!Hom �C;K�p
� �

be the map which associates to the degree zero divisor D the automorphy
factor /D. The reader should think of this map as a p-adic Abel-Jacobi map.

Given d 2 C, the number /�z�ÿ�dz��b� does not depend on the choice of
z 2 Xp, and depends only on the image of a and b in �C. Hence it gives rise to
a well-de®ned pairing

� ; � : �C� �C! K�p :

Lemma 3.3. The pairing � ; � is bilinear, symmetric, and positive de®nite (i.e.,
ordp � � ; � is positive de®nite). Hence, the induced map

j : �C! Hom �C;K�p
� �

is injective and has discrete image.

Proof. See [GVdP], VI.2. and VIII.3.

Given a divisor D of degree zero on X �Kp� � Xp=C, let ~D denote an arbitrary
lift to a degree zero divisor on Xp. Let K :� j��C�. The automorphy factor / ~D
depends on the choice of ~D, but its image in Hom��C;K�p �=K depends only on
D. Thus UAJ induces a map Div

��X �Kp��ÿ!Hom��C;K�p �=K, which we also
call UAJ by abuse of notation.

Proposition 3.4. The map Div��X �Kp��ÿ!Hom��C;K�p �=K de®ned above is
trivial on the group of principal divisors, and induces an identi®cation of the
Kp-rational points of the jacobian J of X over Kp with Hom��C;K�p �=K.

Proof. See [GVdP], VI.2. and VIII.4.

To sum up, we have:

Corollary 3.5. The diagram

Div0 Xp
ÿ �

UAJÿ!
Hom �C;K�p

� �
# #

Div0�X �Kp�� UAJÿ!
J Kp
ÿ �

commutes.
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4 Shimura curves

Let B be the inde®nite quaternion algebra of discriminant Nÿp, and let R be
an (oriented) maximal order in B (which is unique up to conjugation).
Likewise, for each M prime to Nÿp, choose an oriented Eichler order R�M�
of level M contained in R.

Let X be the Shimura curve associated to the Eichler order R�N��, as in
[BD1], sec. 1.3.

I Moduli description of X

The curve X=Q is a moduli space for abelian surfaces with quaternionic
multiplication and N�-level structure. More precisely, the curve X=Q
coarsely represents the functorFQ which associates to every scheme S over
Q the set of isomorphism classes of triples �A; i;C�, where

1. A is an abelian scheme over S of relative dimension 2;
2. i : R! EndS�A� is an inclusion de®ning an action of R on A;
3. C is an N�-level structure, i.e., a subgroup scheme of A which is locally

isomorphic to Z=N�Z and is stable and locally cyclic under the action of
R�N��.
See [BC], ch. III and [Rob] for more details.

Remarks. 1. The datum of the level N� structure is equivalent to the data,
for each `njjN�, of a subgroup C` which is locally isomorphic to Z=`nZ and
is locally cyclic for the action of R�N��.
2. For each ` dividing Nÿp, let I � R` be the maximal ideal of R`. The
subgroup scheme AI of points in A killed by I is a free R`=I ' F`2 -module of
rank one, and the orientation oÿ` : R`ÿ!F`2 allows us to view AI canoni-
cally as a one-dimensional F`2 -vector space.

II Complex analytic description of X

Let

B1 :� B
R ' M2�R�:

De®ne the complex upper half plane associated to B to be

H1 :� Hom�C;B1�:
Note that a choice of isomorphism g : B1ÿ!M2�R� determines an iso-
morphism ofH1 with the union CÿR of the ``usual'' complex upper half
plane

fz 2 C : Imz > 0g
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with the complex lower half plane, by sending w 2 Hom�C;B1� to the
unique ®xed point P of gw�C�� such that the induced action of C� on the
complex tangent line TP �CÿR� � C is by the character z 7! z

�z.
Let C1 � R�N��� be the group of invertible elements in R�N�� (i.e.,

having reduced norm equal to �1). This group acts naturally onH1 via the
action of B�1 by conjugation.

Proposition 4.1. The Shimura curve X over C is isomorphic to the quotient of
the complex upper half plane H1 attached to B1 by the action of C1, i.e.,

X �C� �H1=C1:

Proof. See [BC], ch. III, and [Rob].
In particular, an abelian surface A over C with quaternionic multiplications
by R and level N� structure determines a point w 2H1 � Hom�C;B1�
which is well-de®ned modulo the natural action of C1. We will now give a
description of the assignment A 7!w. Although not used in the sequel, this
somewhat non-standard description of the complex uniformization is in-
cluded to motivate the description of the p-adic uniformization of X which
follows from the work of Cerednik and Drinfeld.

The complex upper half plane as a moduli space. We ®rst give a
``moduli'' description of the complex upper half planeH1 :� Hom�C;B1�
as classifying complex vector spaces with quaternionic action and a certain
``rigidi®cation''.

De®nition 4.2. A quaternionic space (attached to B1� is a two-dimensional
complex vector space V equipped with a (left) action of B1, i.e., an injective
homomorphism i : B1ÿ!EndC�V �.
Let VR be the 4-dimensional real vector space underlying V .

Lemma 4.3. The algebra EndB1�VR� is isomorphic (non-canonically) to B1.

Proof. The natural map

B1 
 EndB1�VR�ÿ!EndR�VR� ' M4�R�

is an isomorphism, and hence EndB1�VR� is abstractly isomorphic to the
algebra B1.

De®nition 4.4. A rigidi®cation of the quaternionic space V is an isomorphism

q : B1 ÿ!EndB1�VR�:

A pair �V ; q� consisting of a quaternionic space V and a rigidi®cation q is
called a rigidi®ed quaternionic space.
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There is a natural notion of isomorphism between rigidi®ed quaternionic
spaces.

Proposition 4.5. There is a canonical bijection between H1 and the set of
isomorphism classes of rigidi®ed quaternionic spaces.

Proof. Given w 2H1 � Hom�C;B1�, we de®ne a rigidi®ed quaternionic
space as follows. Let V � B1, viewed as a two-dimensional complex vector
space by the rule

kv :� vw�k�; v 2 V ; k 2 C:

The left multiplication by B1 on V endows V with the structure of qua-
ternionic space. The right multiplication of B1 on V is then used to de®ne
the rigidi®cation B1ÿ!EndB1�VR�.

Conversely, given a rigidi®ed quaternionic space �V ; q�, one recovers the
point w inH1 by letting w�k� be qÿ1�mk�, where mk is the endomorphism in
EndB1�VR� induced by multiplication by the complex number k.

One checks that these two assignments are bijections between H1 and
the set of isomorphism classes of rigidi®ed quaternionic spaces, and that
they are inverses of each other.
We now describe the isomorphism X �C� �H1=C1 given in proposition
4.1. Let A be an abelian surface over C with quaternionic multiplication by
R and level N� structure. Then the Lie algebra V � Lie�A� is a quaternionic
space in a natural way. (The quaternionic action of B1 is induced by the
action of R on the tangent space, by extension of scalars from Z to R.)
Moreover, V is equipped with anR-stable sublattice K which is the kernel of
the exponential map V ÿ!A.

Lemma 4.6. 1. The endomorphism ring EndR�K� is isomorphic (non-canoni-
cally) to R.
2. The set of endomorphisms in EndR�K� which preserve the level N�-

structure on K is isomorphic (non-canonically) to the Eichler order R�N��.
Proof. The natural map

B
 �EndR�K� 
Q�ÿ!EndQ�K
Q� ' M4�Q�

is an isomorphism, and hence EndR�K� 
Q is abstractly isomorphic to the
quaternion algebra B. Furthermore, the natural map

EndR�K�ÿ!EndZ�K�
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has torsion-free cokernel, and hence EndR�K� is a maximal order in B.
Likewise, one sees that the subalgebra of EndR�K� preserving the level N�

structure (viewed as a submodule of 1
N� K=K) is an Eichler order of level N�.

Fix an isomorphism

q0 : Rÿ!EndR�K�;

having the following properties.

1. For each `njjN�, q0�R�N��� 
 Z` preserves the subgroup C` (viewed as a
subgroup of 1

`n K=K). By the remark 1 above, R�N�� operates on C` via a
homomorphism R�N��ÿ!Z=`nZ. In addition, we require that this ho-
momorphism be equal to the orientation o�` .
2. For all `jNÿp, the algebra R` acts on

1
` K=K, and stabilizes the subspace

V corresponding to AI (where I is the maximal ideal of R`). By the remark 2
above, V is equipped with a canonical F`2 -vector space structure, and
q0�R`� acts F`2 -linearly on it. We require that the resulting homomorphism
R`ÿ!F`2 be equal to the orientation oÿ` .
With these conventions, the homomorphism q0 is well-de®ned, up to
conjugation by elements in C1. Let q : B1ÿ!EndB1�VR� be the map in-
duced from q0 by extension of scalars from Z to R. The pair �V ; q� is a
rigidi®ed quaternionic space, which depends only on the isomorphism class
of A, up to the action of C1 on q by conjugation. The pair �V ; q� thus gives a
well-de®ned point on H1=C1 associated to A.
It is a worthwhile exercise for the reader to check that this complex
analytic description of the moduli of abelian varieties with quaternionic
multiplications corresponds to the usual description of the moduli space of
elliptic curves asH1=SL2�Z�, in the case where the quaternion algebra B is
M2�Q�.

III p-adic analytic description of X

The fundamental theorem of Cerednik and Drinfeld states that X is an
admissible curve over Qp and gives an explicit description of the discrete
subgroup attached to X by theorem 3.1. More precisely, let B, R, and
C � R�N���1p�� be as in section 1. (So that B is the de®nite quaternion al-
gebra obtained from B by the Cerednik ``interchange of invariants'' at p.)
Then we have:

Theorem 4.7 (Cerednik-Drinfeld). The set of Kp-rational points of the Shim-
ura curve X is isomorphic to the quotient of the p-adic upper half plane Hp

attached to B by the natural action of C, i.e.,

X �Kp� �Hp=C:
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Under this identi®cation, the involution w 7! �w of Hp corresponds to the
involution swp of X �Kp�, where s is the complex conjugation in Gal�Kp=Qp�,
and wp is the Atkin-Lehner involution of X at p.

Proof. See [C], [Dr] and [BC].

In particular, an abelian surface A over Kp with quaternionic multiplications
by R and level N� structure determines a point w 2Hp � Hom�Kp;Bp�
which is well-de®ned modulo the natural action of C. We will now give a
precise description of the assignment A 7!w. Crucial to this description is
Drinfeld's theorem that the p-adic upper half plane Hp parametrizes
isomorphism classes of certain formal groups with a quaternionic action,
and a suitable ``rigidi®cation''.

The p-adic upper half plane as a moduli space. We review Drinfeld's moduli
interpretation of the (Kp-rational points of the) p-adic upper half planeHp.
Roughly speaking,Hp classi®es formal groups of dimension 2 and height 4
over Op, equipped with an action of our ®xed local order Rp and with a
``rigidi®cation'' of their reduction modulo p.

In order to make this precise, we begin with a few de®nitions. Let as
usual k be Op=�p��' Fp2�.

De®nition 4.8. A 2-dimensional commutative formal group V over Op is a
formal Rp-module (for brevity, a FR-module) if it has height 4 and there is an
embedding

i : Rp ! End�V �:

The FR-modules play the role of the quaternionic spaces of the previous
section. Let �V be the formal group over k deduced from V by extension of
scalars from Op to k. It is equipped with the natural action of Rp given by
reduction of endomorphisms. Let End0� �V � :� End� �V � 
Qp be the algebra
of quasi-endomorphisms of �V , and let End0Bp

� �V � be the subalgebra of quasi-
endomorphisms which commute with the action of Bp.

Lemma 4.9. 1. The algebra End0� �V � is isomorphic (non-canonically) to
M2�Bp�.
2. The algebra End0Bp

� �V � is isomorphic (non-canonically) to the matrix
algebra Bp over Qp.

Proof. The formal group �V is isogenous to the formal group of a product of
two supersingular elliptic curves in characteristic p. Part 1 follows. Part 2
can then be seen by noting that the natural map

Bp 
 End0Bp
� �V �ÿ!End0� �V � ' M2�Bp�
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is an isomorphism, so that End0Bp
� �V � is abstractly isomorphic to the matrix

algebra Bp.

Denote by B�p;u the subgroup of elements of B�p whose reduced norm is a p-
adic unit.

De®nition 4.10. 1. A rigidi®cation of the FR-module V is an isomorphism

q : Bpÿ!End0Bp
� �V �;

subject to the condition of being ``positively oriented at p'', i.e., that the two
maximal orders Rp and qÿ1�EndRp� �V �� of Bp are conjugated by an element of
B�p;u.

2. A pair �V ; q� consisting of an FR-module V and a rigidi®cation q is called
a rigidi®ed FR-module.
3. Two rigidi®ed modules �V ; q� and �V 0; q0� are said to be isomorphic if there

is an isomorphism / : V ! V 0 of formal groups over Op, such that the induced
isomorphism

/� : End0Bp
� �V � ! End0Bp

� �V 0�

satis®es the relation /� � q � q0.

Remark. In [Dr] and [BC], a rigidi®cation of a FR-module V is de®ned to be
a quasi-isogeny of height zero from a ®xed FR-module �U to the reduction �V
modulo p of V . This de®nition is equivalent to the one we have given, once
one has ®xed an isomorphism between Bp and End0Bp

��U�. The de®nition
given above is in a sense ``base-point free''.

Recall that B�p;u acts (on the left) onHp via the natural action of B�p onHp

by conjugation. Note that B�p;u acts on the left on (the isomorphism classes
of) rigidi®ed FR-modules, by

b�V ; q� :� �V ; qb� for b in B�p;u;

where qb�x� is equal to q�bÿ1xb� for x in Bp.

Theorem 4.11 (Drinfeld). 1. The p-adic upper half planeHp is a moduli space
for the isomorphism classes of rigidi®ed FR-modules over Op. In particular,
there is a bijective map

W : �V ; q� : �V ; q� a rigidified FRÿmodulef g=�isomorphisms��ÿ! Hom�Kp;Bp�:

2. The map W is B�p;u-equivariant.
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Proof. See [Dr] and [BC], chapters I and II. For part 2, see in particular
[BC], ch. II, Sect. 9.

Corollary 4.12. All FR-modules have formal multiplication by Op.

Proof. If V is a FR-module, equip V with a rigidi®cation q. By theorem 4.11,
the pair �V ; q� determines a point P�V ;q� of the p-adic upper half plane Hp.
Note that the stabilizer of P�V ;q� for the action of B�p;u is isomorphic to O

�
p .

The claim now follows from part 2 of theorem 4.11.

Remark. As we will explain in the next paragraph, if V is an FR-module,
there exists an abelian surface A over Op with quaternionic multiplication by
R, whose formal group Â (with the induced action ofRp) is isomorphic to V .
Of course, quite often one has EndR�A� ' Z, even though EndR�V � contains
Op by corollary 4.12. In fact, combining Drinfeld's theory with the theory of
complex multiplication shows the existence of an uncountable number of
such abelian surfaces such that (i) EndR�A� � Z; (ii) EndRp�Â� ' Op. (A
similar phenomenon for elliptic curves has been observed by Lubin and Tate
[LT].)

We give a description of the bijection W, which follows directly from
Drinfeld's theorem. By lemma 4.12, identify EndRp�V � with Op. Let
w : Kp ÿ!Bp be the map induced by the composition

Opÿ!End0Bp
� �V �ÿ!Bp;

where the ®rst map is given by the reduction modulo p of endomorphisms,
and the second map is just qÿ1. Then W�V ; q� � w.

We now use Drinfeld's theorem to describe the p-adic uniformization of
the Kp-rational points of the Shimura curve X , i.e., the isomorphism

X �Kp� �Hp=C:

The curve X has a model X over Zp. Given a point in X �Kp�, we may extend
it to a point in X�Op�. In other words, given a pair �A; i;C�, where A is an
abelian surface over Kp with quaternionic action by i, and C is a level N�-
structure, we may extend it to a similar pair �A; i;C� of objects over Op. We
write � �A;�i; �C� for the reduction modulo p of �A; i;C�. A p-quasi endo-
morphism of �A is an element in End� �A� 
 Z�1p�. The algebra of all p-quasi
endomorphisms is denoted by End�p�� �A�. Likewise, we denote by End�p�R � �A�
the algebra of p-quasi-endomorphisms which commute with the action ofR.
Let Bp1 be the quaternion algebra over Q rami®ed at p and1, and let Rp1
be a maximal order of Bp1.
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Lemma 4.13. 1. The algebra End�p�� �A� is isomorphic to M2 Rp1 1
p

h i� �
.

2. The algebra End
�p�
R � �A� is isomorphic to R 1

p

h i
.

3. The subalgebra of endomorphisms preserving the level N�-structure �C on �A
is isomorphic to the Eichler order R N�� � 1

p

h i
.

Proof. 1. The abelian variety �A is p-isogenous to a product of a supersingular
elliptic curve in characteristic p with itself. Part 1 follows. To see part 2,
observe that the natural map

R
1

p

� �

 End

�p�
R � �A�ÿ!End�p�� �A� ' M2 Rp1

1

p

� �� �
is an isomorphism, and hence End

�p�
R � �A� 
Q is abstractly isomorphic to the

quaternion algebra B. Furthermore, the natural map

End
�p�
R � �A�ÿ!End�p�� �A�

has torsion-free cokernel, and hence End
�p�
R � �A� is a maximal Z�1p�-order in B.

Likewise, one sees that the subalgebra of End
�p�
R � �A� preserving the level N�

structure �C is abstractly isomorphic to the Eichler order R�N���1p�.
Fix an isomorphism

q0 : R
1

p

� �
ÿ!End

�p�
R � �A�;

having the following properties.

1. For each `njjN�, we require that q0�R�N��� 
 Z` preserves the subgroup
C`, so that it operates on it via a homomorphism R�N��ÿ!Z=`nZ. We
impose, in addition, that this homomorphism be equal to the orientation o�` .
2. For all `jNÿ, the algebra R` acts on �A` via q0, and stabilizes the subspace
corresponding to AI (where I is the maximal ideal of R`.) By remark 2 in
part I of this section, AI is equipped with a canonical F`2 -vector space
structure, and q0�R`� acts F`2 -linearly on it. We require that the resulting
homomorphism R`ÿ!F`2 be equal to the orientation oÿ` .
3. Let �V be the formal group of �A, and let q : Bpÿ!End0Bp

� �V � be the map
induced by q0 by extension of scalars from Z�1p� to Qp. We require that
qÿ1�EndRp� �V �� be conjugate to Rp by an element of B�p;u.

With these conventions, the homomorphism q0 is well-de®ned, up to con-
jugation by elements in C. The pair �V ; q� is a rigidi®ed FR-module, which is
completely determined by the isomorphism class of A, up to the action of C
on q by conjugation. Thus, �V ; q� gives a well-de®ned point on Hp=C
associated to A.
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IV Shimura curve parametrizations

We denote by pCD the Cerednik-Drinfeld p-adic analytic uniformization

pCD : Hp ÿ!X �Kp�;

which induces a map Div0�Hp�ÿ!Div0�X �Kp��, also denoted pCD by abuse
of notation. The Jacobian J of X=Kp is therefore uniformized by a p-adic
torus, and by proposition 3.4 and corollary 3.5, we have:

Corollary 4.14. The map pCD induces a p-adic uniformization

UCD : Hom��C;K�p �ÿ! J�Kp�;

such that the following diagram commutes:

Div0�Hp� ÿ!UAJ
Hom��C;K�p �

pCD # # UCD

Div0�X �Kp�� ÿ!UAJ J�Kp�:

Combining this corollary with the canonical inclusion ofM into Hom�C;Z�
given by Proposition 1.3, yields a natural p-adic uniformization

UCD : M
 K�p ÿ! J�Kp�;

which will also be denoted UCD by abuse of notation.
The Shimura curve X is equipped with natural Hecke correspondences

(cf. [BD1], Sect. 1.5), and the Hecke algebra acting on J is isomorphic to the
Hecke algebra T acting onM, in such a way that the actions of T onM and
on J are compatible with the inclusion ofM into the dual of the character
group of J over k. (See [BC], ch. III, Sect. 5.)

Recall the endomorphism gf 2 T attached to f which was used to de®ne
the map Mÿ!Z. This endomorphism also acts on Pic�X �, and induces a
(generically) surjective map

gf : Pic�X � ! ~E;

where ~E is a subabelian variety of J isogenous to E. From now on we will
assume that E � ~E.

Proposition 4.15. The p-adic uniformizations UTate and UCD of Tate and
Cerednik-Drinfeld are related by the following diagram which commutes up to
sign.
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M
 K�p ÿ!UCD J�Kp�
gf 
 id # gf #

K�p ÿ!UTate E�Kp�

(Note that both of the maps gf that appear in this diagram are only well-
de®ned up to sign.)

5 Heegner points

I Moduli description

We give ®rst a moduli de®nition of Heegner points. Let c be as before an
integer prime to N , and let O be the order of K of conductor c.

Given an abelian surface A with quaternionic multiplication and level N�

structure, we write End�A� to denote the algebra of endomorphisms of A
(over an algebraic closure of Q) which commute with the quaternionic
multiplications and respect the level N� structure.

De®nition 5.1. A Heegner point of conductor c on X (attached to K) is a point
on X corresponding to an abelian surface A with quaternionic multiplication
and level N� structure, such that

End�A� ' O:

It follows from the theory of complex multiplication that the Heegner points
on X of conductor c are all de®ned over the ring class ®eld of K of conductor
c. (Cf. [ST].)

II Complex analytic description

For the convenience of the reader we recall now how to de®ne Heegner
points using the complex analytic uniformization. (This material will not be
used in our proofs, but is quite parallel to the p-adic theory, which we do use
extensively.)

Given an embedding w of K into B, let w denote also, by abuse of
notation, its natural image by extension of scalars in H1 � Hom�C;B1�:
An embedding w : K ÿ!B is said to be an optimal embedding of conductor c
(relative to the Eichler order R�N�) if it maps O to R�N�� and does not
extend to an embedding of any larger order into R�N��.

Let P 2 X �H� be a Heegner point of conductor c, corresponding to a
quaternionic surface A over H . By choosing a complex embedding H ÿ!C,
the point P gives rise to a point PC in X �C�, which corresponds to the
abelian surface AC obtained from A by extension of scalars from H to C, via
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our chosen complex embedding. Let ~P be a lift of PC toH1 by the complex
analytic uniformization of proposition 4.1.

Theorem 5.2. The Heegner point ~P 2H1 corresponds to an optimal
embedding w : K ÿ!B of conductor c.

Proof. Let V � Lie�A�, and let the isomorphism q0 : Rÿ!EndR�K� be
chosen as in the discussion following lemma 4.6. The action of C by mul-
tiplication on V arises by extension of scalars from the action of the order O
of conductor c on A, and hence the point w necessarily comes (by extension
of scalars) from a global embedding of O to R�N�� which is optimal.

III p-adic analytic description

Let H be the ring class ®eld of conductor c, and let P � �A; i;C� be a
Heegner point of conductor c. By ®xing an embedding H ! Kp, we may
view P as a point of X �Kp�. We want to describe the Heegner points of
conductor c as elements of the quotient Hp=C. Recall the Gross points of
conductor c represented by the oriented optimal embeddings

wi : O! R
1

p

� �
; i � 1; . . . ; h

®xed in section 2. By lemma 2.5, the group D acts simply transitively on
these points. The embeddings wi determine local embeddings (which we
denote in the same way by an abuse of notation)

wi : Kp ! Bp:

Theorem 5.3. The classes modulo C of the local embeddings wi correspond via
the Cerednik-Drinfeld uniformization to distinct Heegner points on X of
conductor c, in such a way that the natural Galois action of D on these Heegner
points is compatible with the action of D on the Gross points represented by the
wi.

Proof. If P 2 X �Kp� is a Heegner point of conductor c, let �P 2 X �k� denote
the reduction modulo p of P . By our description of the p-adic uniform-
ization, the point P corresponds to the class modulo C of a local embedding
w : Kp ! Bp de®ned in the following way. Let

w0 : O � End�P � ! End� �P �

be the map obtained by reduction modulo p of endomorphisms. Identify
End� �P��1p� with R�1p� by using the conventions of section 4, so that w0 gives
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rise to a map from O to R�1p�. Then w is obtained from w0 by extension of
scalars from Z to Qp.

By proposition 7.3 of [GZ], w0 is an optimal embedding. Moreover, w0 is
C-conjugate to one of the wi. Finally, the proof of the compatibility under
the action of the group D is similar to that of proposition 4.2 of [BD2].

6 Computing the p-adic Abel-Jacobi map

Let w 2Hp � Hom�Kp;Bp� be a point on the p-adic upper half plane, and
let �w be its conjugate, de®ned by

�w�z� � w��z�:

The divisor �w� ÿ � �w� is a divisor of degree 0 on Hp.
Recall the canonical element L0p�w� 2M
 K�p;1 associated to w in sec-

tion 2, using the action of K�p induced by w on the Bruhat Tits treeT. When
needed, we will identifyL0p�w� with its natural image in Hom�C;K�p �, by an
abuse of notation.

Recall also the p-adic Abel Jacobi map

UAJ : Div0�Hp�ÿ!Hom�C;K�p �

de®ned in Sect. 3 and 4 by considering automorphy factors of p-adic theta-
functions.

The main result of this section is:

Theorem 6.1.

UAJ ��w� ÿ � �w�� �L0p�w�:

The rest of this section is devoted to the proof of theorem 6.1. We begin by
giving explicit descriptions, and elucidating certain extra structures, which
the ®xing of the point w 2Hp gives rise to.

The algebra Bp

We give an explicit description of the algebra Bp, which depends on the
embedding w. Identify Kp with its image in Bp by w, and choose an element
u 2 Bp so that Bp � Kp � Kpu and u anticommutes with the elements of Kp,
i.e., uz � �zu for all z 2 Kp. Note that u2 belongs to Qp, and is a norm from Kp

to Qp, since the quaternion algebra B is split at p. Moreover, the element u2

is well-de®ned up to multiplication by norms from Kp to Qp. We may and
will ®x u so that u2 � 1. From now on, write elements of Bp as a� bu, with a
and b in Kp. The conjugate of a� bu under the canonical anti-involution of
Bp is �aÿ bu. The reduced trace and norm are given by the formulae
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Tr�a� bu� � TrK=Q�a�; N�a� bu� � NK=Q�a� ÿ NK=Q�b� :

The embedding w allows us to view Bp as a two-dimensional vector space
over Kp, on which Bp acts by multiplication on the right. This yields a local
embeding Bp ÿ!M2�Kp�, de®ned by:

a� bu 7! a b
�b �a

� �
:

This embedding allows us to de®ne an action of B�p on the projective line
P1�Kp� (or P1�Cp�) by fractional linear transformations, by setting

c�z� :� az� b
�bz� �a

; if c � a� bu 2 B�p ; z 2 P1�Kp�:

This induces an action of the group C on P1�Kp�.

The domain Xp

Let

S1 � fz 2 Kp j z�z � 1g

be the p-adic ``circle'' of radius 1, and let Xp � P1�Kp� ÿ S1.

Lemma 6.2. The limit set of C acting on P1�Kp�is equal to S1. In particular, the
group C acts discontinuously on P1�Kp�.

Proof. To compute the limit set of C, observe that if cn is a sequence of
distinct elements of C, then one can write

cn �
an � bnu

pen
;

with an; bn 2 O�p , and limnÿ!1 en � 1. Hence

NKp=Qp
�an

�bn
� � 1 �mod p2en�;

so that the limit lim cnz0, if it exists, must belong to S1. Conversely, let z be
an element of S1, and let bn be a sequence of elements in B�p satisfying

lim
nÿ!1�b

ÿ1
n 1� � z:

By the ®niteness of the double coset space R�p nB�p =C, which follows from
strong approximation, there is an element b 2 B�p such that, for in®nitely
many n
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bn � rnbcn;

where rn belongs to R�p and cn belongs to C. Assume without loss of gen-
erality (by extracting an appropriate subsequence) that this equation holds
for all n. Then we have

z � lim�cÿ1n bÿ1rÿ1n 1�:
But the sequence bÿ1rÿ1n 1 is contained in a compact set, and hence has a
convergent subsequence bÿ1rÿ1kn

1 which tends to some z0 2 P1�Kp�. Hence
z � lim cÿ1kn

z0 is a limit point for C. Lemma 6.2 follows.
Using the embedding w, the ``abstract'' upper half plane Hp now becomes
identi®ed with the domain Xp.

The tree T

Let v0 � r�w� be the vertex on T which is ®xed by w�Kp�. This vertex
corresponds to the maximal order

Rp � Op � Opu;

where Op is the ring of integers of Kp. The vertices ofT are in bijection with
the coset space R�p Q�p nB�p , by assigning to b 2 B�p the vertex bÿ1 � v0.

We say that a vertex v ofT has level n, and write `�v� � n, if its distance
from v0 is equal to n. A vertex is of level n if and only if it can be represented
by an element of the form a� bu, where a and b belong to Op and at least one
of a or b is in O�p , and n � ordp�N�a� bu�� � ordp�NKp=Qp

�a� ÿNKp=Qp
�b��.

Likewise, we say that an edge e ofT has level n, and we write `�e� � n, if
the distance of its furthest vertex from v0 is equal to n.

The reduction map

We use our identi®cation of Hp with Xp to obtain a reduction map

r : Xp ÿ!T

from Xp to the tree of Bp.

Lemma 6.3. The divisor �w� ÿ � �w� onHp corresponds to the divisor �0� ÿ �1�
on Xp under our identi®cation of Xp with Hp.

Proof. The group w�K�p � acting on Xp by MoÈ bius transformations ®xes the
points 0 and 1, and acts on the tangent line at 0 by the character z 7! z

�z.

In general, if z is a point of Xp and b 2 B�p is such that bÿ10 � z, then r�z� is
equal to b. This implies directly part 1 and 2 of the next lemma.

486 M. Bertolini, H. Darmon



Lemma 6.4. 1. We have r�1� � r�0� � v0. More generally, if z 2 Xp �
Kp [1 does not belong to O�p , then r�z� � v0.
2. If z belongs to O�p , then the level of the vertex r�z� is equal to ordp�z�zÿ 1�.
3. If z1 and z2 2 Xp map under the reduction map to adjacent vertices onT of

level n and n� 1, then

z1 � z2 �modpn�:

Proof.We prove part 3. Choose representatives b1 and b2 in B�p for r�z1� and
r�z2�, with the properties

bi � xi � yiu; with xi; yi 2 Op and gcd�xi; yi� 2 O�p :

Since the vertices corresponding to b1 and b2 are adjacent, it follows that
b2bÿ11 � b2�b1=pn has norm p and level 1. Since

b2�b1 � �x2 � y2u���x1 ÿ y1u� � �x2�x1 ÿ y2�y1� ÿ �y1x2 ÿ x1y2�u;

it follows that

x1
y1
� x2

y2
�mod pn�;

so that bÿ11 0 � bÿ12 0 �modpn�. This proves the lemma.
Let /�0�ÿ�1� 2 Hom�C;K�p � be the automorphy factor of the p-adic theta-
function associated to the divisor �0� ÿ �1� as in section 3. By the results of
section 3, we have

UAJ ��w� ÿ � �w�� � /�0�ÿ�1�:

By de®nition, for d 2 C one has

/�0�ÿ�1��d� �
Y
c2C

cd�z0�
c�z0� ;

where z0 is any element in the domain Xp. Suppose that r�z0� � v0. Let

path�v0; dv0� � e1 ÿ e2 � � � � � esÿ1 ÿ es:

(Note that s is even, since d belongs to C.) Write ej � fve
j ; v

o
jg, where ve

j is the
even vertex of ej, and vo

j is the odd vertex of ej. Note that we have

vo
j � vo

j�1 for j � 1; 3; . . . ; sÿ 1;

ve
j � ve

j�1 for j � 2; 4; . . . ; sÿ 2;

Cve
s � Cve

1:
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Thus we may choose elements zo
j and ze

j in Xp�Kp� such that r�zo
j � � vo

j ,
r�ze

j� � ve
j , and

zo
j � zo

j�1 for j � 1; 3; . . . ; sÿ 1;

ze
j � ze

j�1 for j � 2; 4; . . . ; sÿ 2;

ze
1 � z0; ze

s � dz0:

Hence

�czo
1��czo

2�ÿ1 � � � �czo
sÿ1��czo

s �ÿ1 � 1; �cze
2��cze

3�ÿ1 � � � �cze
sÿ2��cze

sÿ1�ÿ1 � 1;

so that

/�0�ÿ�1��d� �
Y
c2C

czo
1

cze
1

� �
czo

2

cze
2

� �ÿ1
� � � czo

sÿ1
cze

sÿ1

� �
czo

s

cze
s

� �ÿ1
�
Y
c2C

czo
1

cze
1

� �Y
c2C

czo
2

cze
2

� �ÿ1
� � �
Y
c2C

czo
sÿ1

cze
sÿ1

� �Y
c2C

czo
s

cze
s

� �ÿ1
;

where the last equality follows from part 3 of lemma 6.4. Fix a large odd
integer n. For each 1 � j � s, let C�j� be the set of elements c in C such that
the set cej has level � n. By lemma 6.4, we have

�y� /�0�ÿ�1��d� �
Y

c2C�1�

czo
1

cze
1

� � Y
c2C�2�

czo
2

cze
2

� �ÿ1
� � �

Y
c2C�s�

czo
s

cze
s

� �ÿ1
�mod pn�:

Each of the factors in the right hand side of equation (y) can be broken up
into three contributions:

Y
C�j�

czo
j

cze
j
�

Y
`�cvo

j �<n

czo
j �

Y
`�cve

j �<n

c�ze
j�ÿ1 �

Y
`�cej��n

czo
j :

The ®rst two factors in this last expression cancel out in the formula (y) for
/�0�ÿ�1��d�. Hence we obtain

/�0�ÿ�1��d� �
Y

`�ce1��n

czo
1 �

Y
`�ce2��n

c�zo
2�ÿ1 � � �

Y
`�ces��n

c�zo
s �ÿ1 �mod pn�:

Now, ®x an edge e of level n, having v as its vertex of level n, and choose any
z 2 Xp with r�z� � v. If r is a variable running over Gn (which we view as
belonging to �Op=pnOp��=�Z=pnZ��), write re � ej if the edge re is C-
equivalent to ej. Using the fact that Gn acts transitively on the set of edges of
level n, we have
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/�0�ÿ�1��d� �
Y

re�e1

r
�r

z
� �we1 �

Y
re�e2

r
�r

z
� �ÿwe2 � � �

Y
re�es

r
�r

z
� �ÿwes �mod pn�

�
Y

re�e1

r
�r

� �we1 �
Y

re�e2

r
�r

� �ÿwe2 � � �
Y

re�es

r
�r

� �ÿwes ��zM �;

where M � hpath�v0; dv0�;
P

r2Gn
rei. Since the elementPr2Gn

re belongs to
the image of @�, and path�v0; dv0� is in the kernel of @�, it follows that M � 0
so that:

/�0�ÿ�1��d� �
Y

re�e1

r
�r

� �we1 �
Y

re�e2

r
�r

� �ÿwe2 � � �
Y

re�es

r
�r

� �ÿwes
:

The reader will notice that this last expression is equal to

hpath�v0; dv0�;L0p;n�w�i:

Hence

L0p�w� � /�0�ÿ�1� � UAJ ��w� ÿ � �w��;

and Theorem 6.1 follows.

7 Proof of the main results

We now combine the results of the previous sections to give a proof of our
main results. First, we introduce some notations. Having ®xed an embed-
ding H ! Kp, let P1; . . . ; Ph in X �Kp� be the h distinct Heegner points of
conductor c, corresponding via theorem 5.3 to our ®xed optimal embed-
dings w1; . . . ;wh. Let r1; . . . ; rh 2 D be the elements of D, labeled in such a
way that ri�P1� � Pi. By theorem 5.3, the Gross point corresponding to w1 is
sent by ri to the Gross point corresponding to wi. Write PK 2 Pic�X �Kp�� for
the class of the divisor P1 � . . .� Ph. Note that PK depends on the choice of
the embedding of H into Kp, only up to conjugation in Gal�Kp=Qp�. We
denote by �Pi the complex conjugate of Pi, and likewise for �PK . (No confusion
should arise with the use of the notation �P in section 5 to indicate the
reduction modulo p of the point P .) Let wp stand for the Atkin-Lehner
involution at p.

Theorem 7.1. 1 UCD�L0p�M=K�� � UAJ ��PK� ÿ �wp �PK��.

2. UCD�L0p�M=H�� �Ph
i�1 UAJ ��Pi� ÿ �wp �Pi�� � rÿ1i .
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Proof. By the formula at the end of section 2,

L0p�M=K� �
Xh

i�1
L0p�wi�;

where w1; . . . ;wh are as above. Hence,

UCD�L0p�M=K�� �
Xh

i�1
UCD�L0p�wi�� �

Xh

i�1
UCD�UAJ ��wi� ÿ � �wi���;

where the last equality follows from theorem 6.1. By theorems 5.3 and 4.7,
and by the commutative diagram of proposition 4.14, this last expression is
equal to

Xh

i�1
UAJ �pCD��wi� ÿ � �wi��� �

Xh

i�1
UAJ ��Pi� ÿ �wp �Pi�� � UAJ ��PK� ÿ �wp �PK��:

Part 1 follows. Part 2 is proved in a similar way.

Recall our running assumption that E � ~E is the subabelian variety of the
Jacobian J of the Shimura curve X , and that gf maps J to ~E. Let
ai � gf �Pi� 2 E�Kp�, and let aK � a1 � � � � � ah � traceH=K�a1�. Theorem 7.1
gives the following corollary, whose ®rst part is the statement of theorem B
of the introduction.

Corollary 7.2. Let w � 1 (resp. w � ÿ1) if E=Qp has split (resp. non-split)
multiplicative reduction. Then the following equalities hold up to sign:

UTate�L0p�E=K�� � aK ÿ w�aK ;

UTate�L0p�E=H�� �
Xh

i�1
�ai ÿ w�ai� � rÿ1i :

Proof. Apply gf to the equations of Theorem 7.1, using the commutative
diagram of proposition 4.15.
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