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Introduction
Let E/Q be a modular elliptic curve of conductor N , and let K be an imaginary

quadratic field. Rankin’s method gives the analytic continuation and functional
equation for the Hasse-Weil L-function L(E/K, s). When the sign of this functional
equation is −1, a Heegner point αK is defined on E(K) using a modular curve or
a Shimura curve parametrization of E.

In the case where all the primes dividing N are split in K, the Heegner point
comes from a modular curve parametrization, and the formula of Gross-Zagier [GZ]
relates its Néron-Tate canonical height to the first derivative of L(E/K, s) at s = 1.
Perrin-Riou [PR] later established a p-adic analogue of the Gross-Zagier formula,
expressing the p-adic height of αK in terms of a derivative of the 2-variable p-adic L-
function attached to E/K. At around the same time, Mazur, Tate and Teitelbaum
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[MTT] formulated a p-adic Birch and Swinnerton-Dyer conjecture for the p-adic L-
function of E associated to the cyclotomic Zp-extension of Q, and discovered that
this L-function acquires an extra zero when p is a prime of split multiplicative reduc-
tion for E. The article [BD1] proposed analogues of the Mazur-Tate-Teitelbaum
conjectures for the p-adic L-function of E associated to the anticyclotomic Zp-
extension of K. In a significant special case, the conjectures of [BD1] predict a
p-adic analytic construction of the Heegner point αK from the first derivative of
the anticyclotomic p-adic L-function. (Cf. conjecture 5.8 of [BD1].) The present
work supplies a proof of this conjecture.

We state a simple case of our main result; a more general version is given in
section 7. Assume from now on that N is relatively prime to disc(K), that E is
semistable at all the primes which divide N and are inert in K/Q, and that there
is such a prime, say p. Let OK be the ring of integers of K, and let uK := 1

2#O×
K .

(Thus, uK = 1 unless K = Q(i) or Q(
√
−3).)

Note that the curve E/Kp has split multiplicative reduction, and thus is equipped
with the Tate p-adic analytic uniformization

ΦTate : K×
p −→ E(Kp),

whose kernel is the cyclic subgroup of K×
p generated by the Tate period q ∈ pZp.

Let H be the Hilbert class field of K, and let H∞ be the compositum of all the
ring class fields of K of conductor a power of p. Write

G∞ := Gal(H∞/H), G̃∞ := Gal(H∞/K), ∆ := Gal(H/K).

By class field theory, the group G∞ is canonically isomorphic to K×
p /Q

×
p O×

K , which

can also be identified with a subgroup of the group K×
p,1 of elements of K×

p of norm

1, by sending z to ( zz̄ )
uK , where z̄ denotes the complex conjugate of z in K×

p .
A construction of [BD1], sec. 2.7 and 5.3, based on ideas of Gross [Gr], and

recalled in section 2, gives an element Lp(E/K) in the completed integral group

ring Z[[G̃∞]] which interpolates the special values of the classical L-function of E/K

twisted by complex characters of G̃∞. We will show (section 2) that Lp(E/K)

belongs to the augmentation ideal Ĩ of Z[[G̃∞]]. Let L′
p(E/K) denote the image

of Lp(E/K) in Ĩ/Ĩ2 = G̃∞. The reader should view L′
p(E/K) ∈ G̃∞ as the first

derivative of Lp(E/K) evaluated at the central point. One shows that the element

L′
p(E/K) actually belongs to G∞ ⊂ G̃∞, so that it can (and will) be viewed as an

element of K×
p of norm 1.

Using the theory of Jacquet-Langlands, and the assumption that E is modular,
we will define a surjective map ηf : J −→ Ẽ, where Ẽ is an elliptic curve isogenous
to E over Q, and J is the Jacobian of a certain Shimura curve X. The precise
definitions of X, J , ηf and Ẽ are given at the end of section 4. At the cost
of possibly replacing E with an isogenous curve, we assume from now on in the
introduction that E = Ẽ. (This will imply that E is the “strong Weil curve” for
the Shimura curve parametrization.)

A special case of our main result is:

Theorem A
The local point ΦTate(L′

p(E/K)) in E(Kp) is a global point in E(K).
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When L′
p(E/K) is non-trivial, theorem A gives a construction of a rational point

on E(K) from the first derivative of the anticyclotomic p-adic L-function of E/K,
in much the same way that the derivative at s = 0 of the Dedekind zeta-function
of a real quadratic field leads to a solution of Pell’s equation. A similar kind of
phenomenon was discovered by Rubin [Ru] for elliptic curves with complex multi-
plication, with the exponential map on the formal group of E playing the role of
the Tate parametrization. See also a recent result of Ulmer [U] for the universal
elliptic curve over the function field of modular curves over finite fields.

We now state theorem A more precisely. In section 5, a Heegner point αK ∈
E(K) is defined as the image by ηf of certain divisors supported on CM points of
X. Let ᾱK be the complex conjugate of αK .

Theorem B
Let w = 1 (resp. w = −1) if E/Qp has split (resp. non-split) multiplicative reduc-
tion. Then

ΦTate(L′
p(E/K)) = αK − wᾱK .

Theorem B, which relates the Heegner point αK to the first derivative of a p-adic
L-function, can be viewed as an analogue in the p-adic setting of the theorem
of Gross-Zagier, and also of the p-adic formula of Perrin-Riou [PR]. Unlike these
results, it does not involve heights of Heegner points, and gives instead a p-adic
analytic construction of a Heegner point.

Observe that G∞ is isomorphic to Zp×Z/(p+ 1)Z, so that its torsion subgroup
is of order p + 1. Choosing an anticyclotomic logarithm λ mapping G∞ onto Zp
determines a map from Z[[G∞]] to the formal power series ring Zp[[T ]]. Let Lp(E/K)
be the image of Lp(E/K) in Zp[[T ]], and L′

p(E/K) the derivative of Lp(E/K) with

respect to T evaluated at T = 0. Since ΦTate is injective on K×
p,1, theorem B

implies:

Corollary C
The derivative L′

p(E/K) is non-zero if and only if the point αK−wᾱK is of infinite
order.

Corollary C gives a criterion in terms of the first derivative of a p-adic L-function
for a Heegner point coming from a Shimura curve parametrization to be of infinite
order. Work in progress of Keating and Kudla suggests that a similar criterion
(involving the Heegner point αK itself) can be formulated in terms of the first
derivative of the classical L-function, in the spirit of the Gross-Zagier formula.

The work of Kolyvagin [Ko] shows that if αK is of infinite order, then E(K) has
rank 1 and X(E/K) is finite. By combining this with corollary C, one obtains

Corollary D
If L′

p(E/K) is non-zero, then E(K) has rank 1 and X(E/K) is finite.

The formula of theorem B is a consequence of the more general result given in
section 7, which relates certain Heegner divisors on jacobians of Shimura curves
to derivatives of p-adic L-functions. The main ingredients in the proof of this
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theorem are (1) a construction, based on ideas of Gross, of the anticyclotomic
p-adic L-function of E/K, (2) the explicit construction of [GVdP] of the p-adic
Abel-Jacobi map for Mumford curves, and (3) the Cerednik-Drinfeld theory of p-
adic uniformization of Shimura curves.

1 Quaternion algebras, upper half planes, and trees

Definite quaternion algebras

Let N− be a product of an odd number of distinct primes, and let B be the (unique,
up to isomorphism) definite quaternion algebra of discriminant N−. Fix a maximal
order R ⊂ B. (There are only finitely many such maximal orders, up to conjugation
by B×.)

For each prime `, we choose certain local orders in B` := B ⊗ Q`, as follows.

1. If ` is any prime which does not divide N−, then B` is isomorphic to the algebra
of 2 × 2 matrices M2(Q`) over Q`. Any maximal order of B` is isomorphic to
M2(Z`), and all maximal orders are conjugate by B×

` . We fix the maximal order

R` := R⊗ Z`.

2. If ` is a prime dividing N−, then B` is the (unique, up to isomorphism) quater-
nion division ring over Q`. We let

R` := R⊗ Z`,

as before. The valuation on Z` extends uniquely to R`, and the residue field of R`
is isomorphic to F`2 , the finite field with `2 elements. We fix an orientation of R`,
i.e., an algebra homomorphism

o
−
` : R` −→ F`2 .

Note that there are two possible choices of orientation for R`.

3. For each prime ` which does not divide N−, and each integer n ≥ 1, we also

choose certain oriented Eichler orders of level `n. These are Eichler orders R
(n)
` of

level `n contained in R`, together with an orientation of level `n, i.e., an algebra
homomorphism

o
+
` : R

(n)
` −→ Z/`nZ.

We will sometimes write R` for the oriented Eichler order R
(1)
` of level `.

For each integer M =
∏

i `
ni

i which is prime to N−, let R(M) be the (oriented)
Eichler order of level M in R associated to our choice of local Eichler orders:

R(M) := B ∩ (
∏

`6|M

R`
∏

`i

R
(ni)
`i

).

We view R(M) as endowed with the various local orientations o
+
` and o

−
` for the

primes ` which divide MN−, and call such a structure an orientation on R(M).
We will usually view R(M) as an oriented Eichler order, in what follows.
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Let Ẑ =
∏

` Z` be the profinite completion of Z, and let

B̂ := B ⊗ Ẑ =
∏

`

B`

be the adelization of B. Likewise, if R0 is any order in B (not necessarily maximal),

let R̂0 := R0 ⊗ Ẑ.
The multiplicative group B̂× acts (on the left) on the set of all oriented Eichler

orders of a given level M by the rule

b ∗R0 := B ∩ (bR̂0b
−1), b ∈ B̂×, R0 ⊂ B.

(Note that b ∗R0 inherits a natural orientation from the one on R0.) This action of

B̂× is transitive, and the stabilizer of the oriented order R(M) is precisely R̂(M)
×

.
Hence the choice of R(M) determines a description of the set of all oriented Eichler

orders of level M , as the coset space R̂(M)
×\B̂×. Likewise, the conjugacy classes

of oriented Eichler orders of level M are in bijection with the double coset space

R̂(M)
×\B̂×/B×.

Let N+ be an integer which is prime to N−, and let p be a prime which does
not divide N+N−. We set

N = N+N−p.

Let Γ be the group of elements in R(N+)[ 1p ]
× of reduced norm 1. Of course, the

definition of Γ depends on our choice of local orders, but:

Lemma 1.1
The group Γ depends on the choice of the R` and R

(n)
` , only up to conjugation in

B×.

Proof. This follows directly from strong approximation ([Vi], p. 61).

The p-adic upper half plane attached to B
Fix an unramified quadratic extension Kp of Qp. Define the p-adic upper half plane
(attached to the quaternion algebra B) as follows:

Hp := Hom(Kp, Bp).

Remark. The group GL2(Qp) acts naturally on P1(Kp) by Möbius transformations,
and the choice of an isomorphism η : Bp −→ M2(Qp) determines an identification
of Hp with P1(Kp) − P1(Qp). This identification sends ψ ∈ Hp to one of the two
fixed points for the action of ηψ(K×

p ) on P1(Kp). More precisely, it sends ψ to the

unique fixed point P ∈ P1(Kp) such that the induced action of K×
p on the tangent

line TP (P1(Kp)) = Kp is via the character z 7→ z
z̄
. More generally, a choice of an

embedding Bp −→ M2(Kp) determines an isomorphism of Hp with a domain Ω
in P1(Kp). In the literature, the p-adic upper half plane is usually defined to be
P1(Cp) − P1(Qp) = Cp − Qp, where Cp is the completion of (an) algebraic closure
of Qp. From this point of view, it might be more appropriate to think of Hp as
the Kp-rational points of the p-adic upper half plane. But in this work, the role of
the complex numbers in the p-adic context is always played, not by Cp, but simply
(and more naively) by the quadratic extension Kp.
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We will try as much to possible to work with the more “canonical” definition of
the upper half plane, which does not depend on a choice of embedding of Bp into
M2(Kp). The upper half plane Hp is endowed with the following natural structures.

1. The group B×
p acts naturally on the left on Hp, by conjugation. This induces a

natural action of the discrete group Γ on Hp.

2. An involution ψ 7→ ψ̄, defined by the formula:

ψ̄(z) := ψ(z̄),

where z 7→ z̄ is the complex conjugation on Kp.

The Bruhat-Tits tree attached to B.

Let T be the Bruhat-Tits tree of B×
p /Q

×
p . The vertices of T correspond to maximal

orders in Bp, and two vertices are joined by an edge if the intersection of the
corresponding orders is an Eichler order of level p. An edge of T is a set of two
adjacent vertices on T , and an oriented edge of T is an ordered pair of adjacent
vertices of T . We denote the set of edges (resp. oriented edges) of T by E(T ) (resp.
→

E (T )).
The edges of T correspond to Eichler orders of level p, and the oriented edges

are in bijection with the oriented Eichler orders of level p.
Since T is a tree, there is a distance function defined on the vertices of T in a

natural way. We define the distance between a vertex v and an edge e to be the
distance between v and the furthest vertex of e.

The group B×
p acts on T via the rule

b ∗R0 := bR0b
−1, b ∈ B×

p , R0 ∈ T .

This action preserves the distance on T . In particular, the group Γ acts on T by
isometries.

Fix a base vertex v0 of T . A vertex is said to be even (resp. odd) if its distance
from v0 is even (resp. odd). This notion determines an orientation on the edges
of T , by requiring that an edge always go from the even vertex to the odd vertex.
The action of the group B×

p does not preserve the orientation, but the subgroup
of elements of norm 1 (or, more generally, of elements whose norm has even p-
adic valuation) sends odd vertices to odd vertices, and even ones to even ones. In
particular, the group Γ preserves the orientation we have defined on T .

The reduction map

Let Op be the ring of integers of Kp. Given ψ ∈ Hp, the image ψ(Op) is contained
in a unique maximal order Rψ of Bp. In this way, any ψ ∈ Hp determines a vertex
Rψ of T . We call the map ψ 7→ Rψ the reduction map from Hp to T , and denote
it

r : Hp −→ T .
For an alternate description of the reduction map r, note that the map ψ from Kp

to Bp determines an action of K×
p on the tree T . The vertex r(ψ) is the unique

vertex which is fixed under this action.

The lattice M
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Let G := T /Γ be the quotient graph. Since the action of Γ is orientation preserving,
the graph G inherits an orientation from T . Let E(G) be the set of (unordered) edges
of G, and let V(G) be its set of vertices. Write Z[E(G)] and Z[V(G)] for the modules
of formal Z-linear combinations edges and vertices of G, respectively.

There is a natural boundary map ∂∗ (compatible with our orientation)

∂∗ : Z[E(G)] −→ Z[V(G)]

which sends an edge {a, b} to a − b, with the convention that a is the odd vertex
and b is the even vertex in {a, b}. There is also a coboundary map

∂∗ : Z[V(G)] −→ Z[E(G)]

defined by

∂∗(v) = ±
∑

ṽ∈e

e,

where the sum is taken over the images in E(G) of the p+ 1 edges of T containing
an arbitrary lift ṽ of v to T . The sign in the formula for ∂∗ is +1 if v is odd, and
−1 if v is even.

Recall the canonical pairings defined by Gross [Gr] on Z[E(G)] and on Z[V(G)].
If e is an edge (resp. v is a vertex) define we (resp. wv) to be the order of the
stabilizer for the action of Γ of (some) lift of e (resp. v) to T . Then

〈ei, ej〉 = wei
δij ,

〈〈vi, vj〉〉 = wvi
δij .

Extend these pairings by linearity to the modules Z[(E(G)] and Z[V(G)].

Lemma 1.2
The maps ∂∗ and ∂∗ are adjoint with respect to the pairings 〈 , 〉 and 〈〈 , 〉〉, i.e.,

〈e, ∂∗v〉 = 〈〈∂∗e, v〉〉.

Proof. By direct computation.

Define the module M as the quotient

M := Z[E(G)]/image(∂∗).

Given two vertices a and b of T , they are joined by a unique path, which may
be viewed as an element of Z[E(G)] in the natural way. Note that because of our
convention for orienting T , if a and b are even vertices (say) joined by 4 consecutive
edges e1, e2, e3 and e4, then the path from a to b is the formal sum

path(a, b) = e1 − e2 + e3 − e4 ∈ Z[E(G)].

Note that we have the following properties of the path function:

path(a, b) = −path(b, a), path(a, b) + path(b, c) = path(a, c).
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Also, if a and b are Γ-equivalent, then path(a, b) belongs to H1(G,Z) ⊂ Z[E(G)].

Proposition 1.3
The map from M to Hom(Γ,Z) which sends m ∈ M to the function

γ 7→ 〈path(v0, γv0),m〉

is injective and has finite cokernel.

Proof. The pairing 〈 , 〉 gives an injective map with finite cokernel

M −→ Hom(ker(∂∗),Z).

But
ker(∂∗) = H1(G,Z).

Let Γab denote the abelianization of Γ. Then the map of Γab to H1(G,Z) which
sends γ to path(v0, γv0) is an isomorphism modulo torsion (cf. [Se]). The proposi-
tion follows.

Relation of M with double cosets

We now give a description of M in terms of double cosets which was used in [BD1],
sec. 1.4.

More precisely, let

JN+p,N− = Z[R̂(N+p)×\B̂×/B×]

be the lattice defined in [BD1], sec. 1.4. (By previous remarks, the module JN+p,N−

is identified with the free Z-module

ZR1 ⊕ · · · ⊕ ZRt

generated by the conjugacy classes of oriented Eichler orders of level N+p in the
quaternion algebra B.) Likewise, let

JN+,N− = Z[R̂(N+)×\B̂×/B×].

In [BD1], sec. 1.7, we defined two natural degeneracy maps

JN+,N− −→ JN+p,N− ,

and a module Jp−new
N+p,N−

to be the quotient of JN+p,N− by the image of JN+,N− ⊕
JN+,N− under these degeneracy maps.

Proposition 1.4
The choice of the oriented Eichler order R(N+p) determines an isomorphism be-

tween M and Jp−new
N+p,N−

.

The proof of proposition 1.4 uses the following lemma:
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Lemma 1.5
There exists an element γ ∈ R(N+)[ 1

p
]× whose reduced norm is an odd power of

p.

Proof. Let F be an auxiliary imaginary quadratic field of prime discriminant such
that all primes dividing N+ are split in F and all primes dividing N− are inert in F .
Such an F exists, by Dirichlet’s theorem on primes in arithmetic progressions. By
genus theory, F has odd class number, and hence its ring of integers OF contains
an element a of norm pk, with k odd. Fix an embedding of OF in the Eichler order
R(N+), and let γ be the image of a in R(N+)[ 1

p
]×.

Proof of proposition 1.4.
Recall that Rp ⊂ Bp denotes our fixed local Eichler order of level p. By strong
approximation, we have

R̂(N+p)×\B̂×/B× = R×
p Q×

p \B×
p /R(N+)[

1

p
]×.

The group R×
p Q×

p is the stabilizer of an ordered edge of T . Hence R×
p Q×

p \B×
p is

identified with the set
→

E (T ) of ordered edges on T , and the double coset space

R×
p Q×

p \B×
p /R(N+)[ 1p ]

× is identified with the set of ordered edges
→

E (G+) on the

quotient graph G+ := T /R(N+)[ 1p ]
×.

But the map which sends {x, y} ∈ E(G) to (x, y) ∈
→

E (G+) if x is even, and to

(y, x) if x is odd, is a bijection between E(G) and
→

E (G+). For, if {x, y} and {x′, y′}
have the same image in

→

E (G+), then there is an element of R(N+)[ 1p ]
× which sends

the odd vertex in {x, y} to the odd vertex in {x′, y′} and the even vertex in {x, y}
to the even vertex in {x′, y′}. This element is necessarily in Γ, since it sends an
odd vertex to an odd vertex. Hence the edges {x, y} and {x′, y′} are Γ-equivalent,
and our map is one-one. To check surjectivity, let γ be the element of R(N+)[ 1

p
]×

given by lemma 1.5. Then the element (x, y) of
→

E (G+) is the image of {x, y} if x
is even and y is odd, and is the image of {γx, γy} if x is odd and y is even. To
sum up, we have shown that the choice of the Eichler order R(N+p) determines
a canonical bijection between JN+p,N− and Z[E(G)]. Likewise, one shows that the
Eichler order R(N+) determines a canonical bijection between JN+,N− and the set
of vertices V(G+), and between JN+,N− ⊕ JN+,N− and Z[V(G)]. (The resulting
map from Z[V(G+)] ⊕ Z[V(G+)] to Z[V(G)] sends a pair (v, w) to v+ − w−, where
where v+ and w− are lifts of v and w to vertices of G, which are even and odd
respectively.) Finally, from the definition of the degeneracy maps given in [BD1]
one checks that the following diagram commutes up to sign:

JN+,N− ⊕ JN+,N− −→ Z[V(G)]
↓ ↓ ∂∗

JN+p,N− −→ Z[E(G)]
,

where the horizontal maps are the identifications we have just established, and the
left vertical arrow is the difference of the two degeneracy maps. (Which is only
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well-defined up to sign). From this, it follows that M = Z[E(G)]/image(∂∗) is
identified with the module

Jp−new
N+p,N−

= JN+p,N−/image(JN+,N− ⊕ JN+,N−)

of [BD1].

Hecke operators

The lattice M is equipped with a natural Hecke action, coming from its description
in terms of double cosets. (Cf. [BD1], sec. 1.5.) Let T be the Hecke algebra acting on
M. Recall that N = N+N−p. The following is a consequence of the Eichler trace
formula, and is a manifestation of the Jacquet-Langlands correspondence between
automorphic forms on GL2 and quaternion algebras.

Proposition 1.6

If φ : T −→ C is any algebra homomorphism, and an = φ(Tn) (for all n with
gcd(n,N−p) = 1), then the an are the Fourier coefficients of a normalized eigenform
of weight 2 for Γ0(N). Conversely, every normalized eigenform of weight 2 on Γ0(N)
which is new at p and at the primes dividing N− corresponds in this way to a
character φ.

Given a normalized eigenform f on X0(N), denote by Of the order generated
by the Fourier coefficients of f and by Kf the fraction field of Of . Assuming that
f is new at p and at N−, let πf ∈ T ⊗ Kf be the idempotent associated to f by
proposition 1.6. Let nf ∈ Of be such that ηf := nfπf belongs to T ⊗Of .

Let Mf ⊂ M⊗Of be the sublattice on which T acts via the character associated
to f . The endomorphism ηf induces a map, still denoted ηf by an abuse of notation,

ηf : M → Mf .

In particular, if f has integer Fourier coefficients, then Mf is isomorphic to Z.
Fixing such an isomorphism (i.e., choosing a generator of M f ), we obtain a map

ηf : M → Z,

which is well-defined up to sign.

2 The p-adic L-function

We recall the notations and assumptions of the introduction: E is a modular elliptic
curve of conductor N , associated to an eigenform f on Γ0(N); K is a quadratic
imaginary field of discriminant D relatively prime to N . Furthermore:

1. the curve E has good or multiplicative reduction at all primes which are inert
in K/Q;

2. there is at least one prime, p, which is inert in K and for which E has multi-
plicative reduction;

3. the sign in the functional equation for L(E/K, s) is −1.
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Write
N = N+N−p,

where N+, resp. N− is divisible only by primes which are split, resp. inert in K.
Note that by our assumptions, N− is square-free and not divisible by p.

Lemma 2.1
Under our assumptions, N− is a product of an odd number of primes.

Proof. By page 71 of [GZ], the sign in the functional equation of the complex

L-function L(E/K, s) is (−1)#{`|N−p}+1. The result follows.

Let c be an integer prime toN . We modify slightly the notations of the introduction,
letting H denote now the ring class field of K of conductor c, and Hn the ring class
field of conductor cpn. We write H∞ =

⋃

Hn, and set

Gn := Gal(Hn/H), G̃n := Gal(Hn/K),

G∞ := Gal(H∞/H), G̃∞ := Gal(H∞/K), ∆ := Gal(H/K).

(Thus, the situation considered in the introduction corresponds to the special case
where c = 1.) There is an exact sequence of Galois groups

0 −→ G∞ −→ G̃∞ −→ ∆ −→ 0,

and, by class field theory, G∞ is canonically isomorphic to K×
p /Q

×
p O×

K .

The completed integral group rings Z[[G∞]] and Z[[G̃∞]] are defined as the inverse

limits of the integral group rings Z[Gn] and Z[G̃n] under the natural projection
maps. We set

M[Gn] := M⊗ Z[Gn],

M[[G∞]] := lim
←

n

M[Gn] = M⊗ Z[[G∞]],

and likewise for Gn and G∞ replaced by G̃n and G̃∞. The groups G∞ and G̃∞ act
naturally on M[[G∞]] and M[[G̃∞]] by multiplication on the right.

In this section, we review the construction of a p-adic L-function Lp(M/K), in a
form adapted to the calculations we will perform later. A slightly modified version
of this construction is given in section 2.7 of [BD1]. It is based on results of Gross
[Gr] on special values of the complex L-functions attached to E/K, and on their
generalization by Daghigh [Dag].

Let

Ωf := 4π2

∫∫

H∞/Γ

|f(τ)|2dτ ∧ idτ̄

be the complex period associated to the cusp form f . Write d for the discriminant
of the order O of conductor c, u for one half the order of the group of units of O
and nf for the integer defined at the end of section 1 by the relation ηf = nfπf .

Theorem 2.2
There is an element Lp(M/K) ∈ M[[G̃∞]], well-defined up to right multiplication

by G̃∞, with the property that

|χ(ηf (Lp(M/K)))|2 =
L(f/K, χ, 1)

Ωf

√
d · (nfu)2,
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for all finite order complex characters χ of G̃∞ and all modular forms f associated
to T as in proposition 1.6.

Proof. See [Gr], [Dag] and [BD1], sec. 2.7.

Corollary 2.3

Setting
Lp(E/K) := ηf (Lp(M/K)) ∈ Z[[G̃∞]],

where f is the modular form associated to E, one has

|χ(Lp(E/K))|2 =
L(E/K, χ, 1)

Ωf

√
d · (nfu)2,

for all finite order characters χ of G̃∞.

Remark. One sees that the interpolation property of corollary 2.3 determines
Lp(E/K) uniquely, up to right multiplication by elements in G̃∞, if it exists. The
existence amounts to a statement of rationality and integrality for the special values
L(E/K, χ, 1). The construction of Lp(M/K) (and hence, of Lp(E/K)) is based on
the notion of Gross points of conductor c and cpn.

Gross points of conductor c

Recall that O is the order of conductor c in the maximal order OK , where we
assume that c is prime to N . We equip O with an orientation of level N+N−, i.e.,
for each `n||N+, an algebra homomorphism

o
+
` : O −→ Z/`nZ,

and for each `|N−, an algebra homomorphism

o
−
` : O −→ F`2 .

An embedding ξ : O −→ Rξ of O into an oriented Eichler order Rξ of level
dividing N+ is called an oriented embedding if it respects the orientations on O
and on Rξ, i.e., if the diagrams

O ξ−→ Rξ O ξ−→ Rξ
↓ o

+
` ↓ o

+
` ↓ o

−
` ↓ o

−
`

Z/`nZ = Z/`nZ F`2 = F`2

commute, for all ` which divide N+N−.
The embedding ξ is called optimal if it does not extend to an embedding of any

larger order into Rξ. The group B× acts naturally on the set of oriented optimal
embeddings of conductor c, by conjugation:

b(Rξ, ξ) := (bRξb
−1, bξb−1).

Definition 2.4
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A Gross point of conductor c and level N+N− is a pair (Rξ, ξ) where Rξ is an
oriented Eichler order of level N+ in B, and ξ is an oriented optimal embedding of
O into Rξ, taken modulo conjugation by B×.

We denote by Gr(c) the set of all Gross points of conductor c and level N+N−.

Given ξ ∈ Hom(K,B), we denote by ξ̂ ∈ Hom(K̂, B̂) the natural extension of
scalars.

The group
∆ = Pic(O) = Ô×\K̂×/K×

acts on the Gross points, by the rule

σ(Rξ, ξ) := (ξ̂(σ) ∗Rξ, ξ).

Lemma 2.5
The group ∆ acts simply transitively on the Gross points of conductor c.

Proof. See [Gr], sec. 3.

One says that (Rξ, ξ) is in normal form if

Rξ ⊗ Z` = R` for all ` 6 |Np,
Rξ ⊗ Z` = R

(n)
` as oriented Eichler orders, for all `n||N+,

Rξ ⊗ Z` = R` as oriented orders, for all `|N−.

(Note in particular that we have imposed no condition on Rξ ⊗ Zp in this defini-
tion.) Choose representatives (R1, ψ1), (R2, ψ2), . . . , (Rh, ψh) for the Gross points
of conductor c, written in normal form. (This can always be done, by strong ap-
proximation.) Note that

Ri[
1

p
] = R[

1

p
] as oriented Eichler orders,

and that the orders Ri are completely determined by the local order Ri ⊗ Zp. Let
v1, . . . , vh be the vertices on T associated to the maximal orders R1 ⊗ Zp, . . . ,
Rh ⊗ Zp. The vertex vi is equal to r(ψi), i.e., it is the image of ψi (viewed as a
point on Hp in the natural way) by the reduction map to T .

Gross points of conductor cpn

Let n ≥ 1, and let On denote the order of K of conductor cpn.

Definition 2.6
A Gross point of conductor cpn and level N is a pair (Rξ, ξ) where Rξ is an oriented
Eichler order of level N+p in B, and ξ is an oriented optimal embedding of On into
Rξ, taken modulo conjugation by B×.

To make definition 2.6 complete, we need to clarify what we mean by an orientation
at p of the optimal embedding ξ. (For the primes which divide N+N−, the meaning
is exactly the same as before.) The oriented Eichler order Rξ ⊗ Zp corresponds to
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an ordered edge on T , whose source and target correspond to maximal orders R1

and R2 respectively. We require that ξ still be an optimal embedding of On into
R2. (It then necessarily extends to an optimal embedding of On−1 into R1.)

We let Gr(cpn) be the set of Gross points of level cpn, and we set

Gr(cp∞) :=

∞
⋃

n=1

Gr(cpn).

The group G̃n = Ô×
n \K̂×/K× acts on Gr(cpn) by the rule

σ(Rξ, ξ) := (ξ̂(σ) ∗Rξ, ξ).

Lemma 2.7
The group G̃n acts simply transitively on Gr(cpn).

Proof. See [Gr], sec. 3.

In particular, the group G̃∞ acts transitively on Gr(cp∞). As before, we say that
a Gross point (Rξ, ξ) of conductor cpn is in normal form if

Rξ ⊗ Z` = R` for all ` 6 |Np,
Rξ ⊗ Z` = R

(n)
` as oriented Eichler orders, for all `n||N+,

Rξ ⊗ Z` = R` as oriented orders, for all `|N−.

Recall the representatives (R1, ψ1), . . . ,(Rh, ψh) for the Gross points of conductor
c that were chosen in the previous paragraph.

Lemma 2.8
Every point in Gr(cp∞) is equivalent to an element in normal form, and can be
written as (R0, ψi), where ψi ∈ {ψ1, . . . , ψh}, and R0 ⊗ Zp is an oriented Eichler
order of level p. A point in Gr(cp∞) described by a pair (R0, ψi) is of level cpn,
where n is the distance between the edge associated to R0 on T , and the vertex
associated to Ri.

Proof. The first statement follows from strong approximation, and the second from
a direct calculation.

By lemma 2.8, the set Gr(cp∞) can be described by the system of representatives

E(T ) × {ψ1, . . . , ψh}.

The action of G∞ = K×
p /Q

×
p on Gr(cp∞) in this description is simply

σ(R0, ψi) := (ψ̂i(σ) ∗R0, ψi).

Construction of Lp(M/K)
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Choose one of the representatives of Gr(c), say, (v1, ψ1). Choose an end of T orig-
inating from v1, i.e., a sequence e1, e2, . . . , en, . . . of consecutive edges originating
from v1. By lemma 2.8, the Gross points (en, ψ1) are a sequence of Gross points of
conductor cpn. Consider the formal expression

(−1)n
∑

σ∈G̃n

σ(en, ψ1) · σ−1

and let Lp,n(M/K) denote its natural image in M[G̃n].

Lemma 2.9

The elements Lp,n(M/K) (n ≥ 1) are compatible under the natural projection

maps M[G̃n+1] −→ M[G̃n].

Proof. This follows directly from the definiton of the action of G̃n on Gr(cpn)
given above, and from the definition of the coboundary map ∂∗. They yield that
the formal expression NormKn+1/Kn

(en+1, ψ1) + (en, ψ1) is in the image of the
coboundary map ∂∗, and hence is zero in M. The lemma follows.

Lemma 2.9 implies that we can define an element

Lp(M/K) ∈ M[[G̃∞]]

by taking inverse limit of the Lp,n(M/K) via the projections M[Gn+1] → M[Gn].
The element Lp(M/K) satisfies the conclusions of theorem 2.2. It should be

thought of as a p-adic L-function (or rather, the square root of a p-adic L-function)
over K, associated to modular forms for T. If f is any such modular form, then
the element ηfLp(M/K) is equal to the element θN+

∗
,N−
∗

defined in [BD1], sec. 5.3

(in the special case when f has rational coefficients).
Note that Lp(M/K) depends on the choice of the initial point (v1, ψ1), and on

the end e1, . . . , en, . . . of T originating from v1, but only up to multiplication (on

the right) by an element of G̃∞.

Recall the augmentation ideal I of Z[[G̃∞]] described in the introduction. More

generally, let I∆ be the kernel of the augmentation map Z[[G̃∞]] −→ Z[∆].

Lemma 2.10
Lp(M/K) belongs to M⊗ I. In fact, Lp(M/K) belongs to M⊗ I∆.

Proof. Since ∆ acts simply transitively on (v1, ψ1), . . . , (vh, ψh), let σi be the
element such that

σiv1 = vi.

Let I∆ denote, by abuse of notation, the image of I∆ in Z[G̃n]. Note that we have
the canonical isomorphisms

Z[[G̃∞]]/I∆ = Z[G̃n]/I∆ = Z[∆].

By the compatibility lemma 2.9, the image of Lp(M/K) in M[[G̃∞]]/I∆ is equal
to the image of Lp,1(M/K) in M[G1]/I∆ = M[∆], which is equal to:

h
∑

i=1

(
∑

vi∈e

e) · σ−1
i .
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But each of the terms in the inner sum belongs to the image of ∂∗, and hence is 0
in M. Thus, Lp(M/K) belongs to M⊗ I∆, and also to M⊗ I, since I∆ ⊂ I.

Remark. If χ is any character of ∆ and f is any modular form attached to T, then
the functional equation of L(f/K, χ, s) has sign −1, and hence L(f/K, χ, 1) = 0
for all such characters. The interpolation formula of theorem 2.2 implies then
that Lp(M/K) belongs to I∆. The point of the proof of lemma 2.10 is that the
construction of Lp(M/K) also implies this directly, without using the relation with
L-function values.

Let
L′
p(M/K) ∈ M⊗ (I/I2) = M⊗ G̃∞

and
L′
p(M/H) ∈ M⊗ (I∆/I

2
∆) = M[∆] ⊗G∞ = M[∆] ⊗ (K×

p,1)

be the natural images of the element Lp(M/K). Since Lp(M/K) is well-defined

up to right multiplication by G̃∞, the element L′
p(M/K) is canonical, and does

not depend on the choice of (v1, ψ1) or on the choice of the end of T originating
from v1. The element L′

p(M/H) is well defined, up to right multiplication by an
element of ∆.

We now give an explicit description of L′
p(M/K) and L′

p(M/H) in Hom(Γ, K×
p,1)

which will be used in the calculations of section 6 and 7. Let ψ be any point in Hp,
corresponding to a local embedding of Kp into Bp. The embedding ψ gives rise to
an action of K×

p /Q
×
p on the tree T by multiplication on the right, fixing the vertex

v0 := r(ψ). Choose a sequence of ends e1, . . . , en, . . . originating from v0, and let

L′
p,n(ψ) = (−1)n

∑

σ∈Gn

ψ(σ)(en) ⊗ σ−1

be the element of M⊗Gn (here we denote by en the element in M associated to the
edge en). The elements L′

p,n(ψ) are compatible under the obvious projection maps
M⊗Gn+1 −→ M⊗Gn, and hence the element L′

p(ψ) ∈ M⊗G∞ can be defined
as the inverse limit of the L′

p,n(ψ) under the natural projections. By proposition

1.3, we may view L′
p(ψ) as an element of Hom(Γ, K×

p,1), given by

L′
p(ψ)(δ) = lim

←

n

〈path(v0, δv0),L′
p,n(ψ)〉 ∈ G∞ = K×

p,1, ∀δ ∈ Γ.

In this notation, we have

L′
p(M/K) =

h
∑

i=1

L′
p(ψi),

L′
p(M/H) =

∑

σ∈∆

L′
p(ψ

σ
1 )σ−1.

3 Generalities on Mumford curves
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Following [Jo-Li], we call a smooth complete curve X over Kp an admissible
curve over Kp if it admits a model X over the ring of integers Op of Kp, such that:

(i) the scheme X is proper and flat over Op;

(ii) the irreducible components of the special fiber X(p) are rational and defined
over Op/(p) ' Fp2 , and the singularities of X(p) are ordinary double points defined
over Op/(p);

(iii) if x ∈ X(p) is a singular point, then the completion ÔX ,x of the local ring
OX ,x is O-isomorphic to the completion of the local ring O[[X,Y ]]/(XY − pm) for
a positive integer m.

Let Γ be a finitely generated subgroup of PGL2(Kp), acting on P1(Cp) by Möbius
transformations. A point z ∈ P1(Cp) is said to be a limit point for the action
of Γ if it is of the form z = lim gn(z0) for a sequence of distinct elements gn
of Γ. Let I ⊂ P1(Cp) denote its set of limit points and let Ωp = P1(Kp) − I.
The group Γ is said to act discontinuously, or to be a discontinuous group, if
Ωp 6= ∅. A fundamental result of Mumford, extended by Kurihara, establishes a 1-1
correspondence between conjugacy classes of discontinuous groups and admissible
curves.

Theorem 3.1
Given an admissible curve X over Kp, there exists a discontinuous group Γ ⊂
PGL2(Kp), unique up to conjugation, such that X(Kp) is isomorphic to Ωp/Γ.
Conversely, any such quotient is an admissible curve over Kp.

Proof. See [Mu] and [Ku].

If D = P1 + · · ·+ Pr −Q1 − · · · −Qr ∈ Div0(Ωp) is a divisor of degree zero on Ωp,
define the theta function

θ(z;D) =
∏

γ∈Γ

(z − γP1) · · · (z − γPr)

(z − γQ1) · · · (z − γQr)
,

with the convention that z −∞ = 1.
Let Γab := Γ/[Γ,Γ] be the abelianization of Γ, and let Γ̄ := Γab/(Γab)tor be its

maximal torsion-free quotient.

Lemma 3.2
There exists φD ∈ Hom(Γ, K×

p ) such that θ(δz;D) = φD(δ)θ(z;D), for all δ in

Γ. Furthermore, the map φD factors through Γ̄, so that φD can be viewed as an
element of Hom(Γ̄, K×

p ).

Proof. See [GVdP], p. 47, (2.3.1), and ch. VIII, prop. (2.3).

Let

ΦAJ : Div0(Ωp) −→ Hom(Γ̄, K×
p )

be the map which associates to the degree zero divisor D the automorphy factor
φD. The reader should think of this map as a p-adic Abel-Jacobi map.
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Given δ ∈ Γ, the number φ(z)−(δz)(β) does not depend on the choice of z ∈ Ωp,

and depends only on the image of α and β in Γ̄. Hence it gives rise to a well-defined
pairing

( , ) : Γ̄ × Γ̄ → K×
p .

Lemma 3.3
The pairing ( , ) is bilinear, symmetric, and positive definite (i.e., ordp ◦ ( , ) is
positive definite). Hence, the induced map

j : Γ̄ → Hom(Γ̄, K×
p )

is injective and has discrete image.

Proof. See [GVdP], VI.2. and VIII.3.

Given a divisor D of degree zero on X(Kp) = Ωp/Γ, let D̃ denote an arbitrary lift
to a degree zero divisor on Ωp. Let Λ := j(Γ̄). The automorphy factor φD̃ depends

on the choice of D̃, but its image in Hom(Γ̄, K×
p )/Λ depends only on D. Thus ΦAJ

induces a map Div0(X(Kp)) −→ Hom(Γ̄, K×
p )/Λ, which we also call ΦAJ by abuse

of notation.

Proposition 3.4
The map Div0(X(Kp)) −→ Hom(Γ̄, K×

p )/Λ defined above is trivial on the group
of principal divisors, and induces an identification of the Kp-rational points of the
jacobian J of X over Kp with Hom(Γ̄, K×

p )/Λ.

Proof. See [GVdP], VI.2. and VIII.4.

To sum up, we have:

Corollary 3.5
The diagram

Div0(Ωp)
ΦAJ−→ Hom(Γ̄, K×

p )
↓ ↓

Div0(X(Kp))
ΦAJ−→ J(Kp)

commutes.

4 Shimura curves

Let B be the indefinite quaternion algebra of discriminant N−p, and let R be an
(oriented) maximal order in B (which is unique up to conjugation). Likewise, for
each M prime to N−p, choose an oriented Eichler order R(M) of level M contained
in R.

Let X be the Shimura curve associated to the Eichler order R(N+), as in [BD1],
sec. 1.3.

I Moduli description of X



19

The curve X/Q is a moduli space for abelian surfaces with quaternionic multipli-
cation and N+-level structure. More precisely, the curve X/Q coarsely represents
the functor FQ which associates to every scheme S over Q the set of isomorphism
classes of triples (A, i, C), where

1. A is an abelian scheme over S of relative dimension 2;

2. i : R → EndS(A) is an inclusion defining an action of R on A;

3. C is an N+-level structure, i.e., a subgroup scheme of A which is locally
isomorphic to Z/N+Z and is stable and locally cyclic under the action of R(N+).

See [BC], ch. III and [Rob] for more details.

Remarks

1. The datum of the level N+ structure is equivalent to the data, for each `n||N+,
of a subgroup C` which is locally isomorphic to Z/`nZ and is locally cyclic for the
action of R(N+).

2. For each ` dividing N−p, let I ⊂ R` be the maximal ideal of R`. The subgroup
scheme AI of points in A killed by I is a free R`/I ' F`2 -module of rank one, and the
orientation o

−
` : R` −→ F`2 allows us to view AI canonically as a one-dimensional

F`2 -vector space.

II Complex analytic description of X

Let
B∞ := B ⊗ R 'M2(R).

Define the complex upper half plane associated to B to be

H∞ := Hom(C,B∞).

Note that a choice of isomorphism η : B∞ −→ M2(R) determines an isomorphism
of H∞ with the union C − R of the “usual” complex upper half plane

{z ∈ C : Imz > 0}

with the complex lower half plane, by sending ψ ∈ Hom(C,B∞) to the unique fixed
point P of ηψ(C×) such that the induced action of C× on the complex tangent line
TP (C − R) = C is by the character z 7→ z

z̄
.

Let Γ∞ = R(N+)× be the group of invertible elements in R(N+) (i.e., having
reduced norm equal to ±1). This group acts naturally on H∞ via the action of B×

∞

by conjugation.

Proposition 4.1
The Shimura curve X over C is isomorphic to the quotient of the complex upper
half plane H∞ attached to B∞ by the action of Γ∞, i.e.,

X(C) = H∞/Γ∞.
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Proof. See [BC], ch. III, and [Rob].

In particular, an abelian surface A over C with quaternionic multiplications by R
and level N+ structure determines a point ψ ∈ H∞ = Hom(C,B∞) which is well-
defined modulo the natural action of Γ∞. We will now give a description of the
assignment A 7→ ψ. Although not used in the sequel, this somewhat non-standard
description of the complex uniformization is included to motivate the description
of the p-adic uniformization of X which follows from the work of Cerednik and
Drinfeld.

The complex upper half plane as a moduli space. We first give a “moduli”
description of the complex upper half plane H∞ := Hom(C,B∞) as classifying
complex vector spaces with quaternionic action and a certain “rigidification”.

Definition 4.2
A quaternionic space (attached to B∞) is a two-dimensional complex vector space
V equipped with a (left) action of B∞, i.e., an injective homomorphism i : B∞ −→
EndC(V ).

Let VR be the 4-dimensional real vector space underlying V .

Lemma 4.3
The algebra EndB∞(VR) is isomorphic (non-canonically) to B∞.

Proof. The natural map

B∞ ⊗ EndB∞(VR) −→ EndR(VR) 'M4(R)

is an isomorphism, and hence EndB∞(VR) is abstractly isomorphic to the algebra
B∞.

Definition 4.4
A rigidification of the quaternionic space V is an isomorphism

ρ : B∞ −→ EndB∞(VR).

A pair (V, ρ) consisting of a quaternionic space V and a rigidification ρ is called a
rigidified quaternionic space.

There is a natural notion of isomorphism between rigidified quaternionic spaces.

Proposition 4.5
There is a canonical bijection betwen H∞ and the set of isomorphism classes of
rigidified quaternionic spaces.

Proof. Given ψ ∈ H∞ = Hom(C,B∞), we define a rigidified quaternionic space as
follows. Let V = B∞, viewed as a two-dimensional complex vector space by the
rule

λv := vψ(λ), v ∈ V, λ ∈ C.
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The left multiplication by B∞ on V endows V with the structure of quaternionic
space. The right multiplication of B∞ on V is then used to define the rigidification
B∞ −→ EndB∞(VR).

Conversely, given a rigidified quaternionic space (V, ρ), one recovers the point ψ
in H∞ by letting ψ(λ) be ρ−1(mλ), where mλ is the endomorphism in EndB∞(VR)
induced by multiplication by the complex number λ.

One checks that these two assignments are bijections between H∞ and the set
of isomorphism classes of rigidified quaternionic spaces, and that they are inverses
of each other.

We now describe the isomorphism X(C) = H∞/Γ∞ given in proposition 4.1. Let
A be an abelian surface over C with quaternionic multiplication by R and level N+

structure. Then the Lie algebra V = Lie(A) is a quaternionic space in a natural
way. (The quaternionic action of B∞ is induced by the action of R on the tangent
space, by extension of scalars from Z to R.) Moreover, V is equipped with an
R-stable sublattice Λ which is the kernel of the exponential map V −→ A.

Lemma 4.6
1. The endomorphism ring EndR(Λ) is isomorphic (non-canonically) to R.

2. The set of endomorphisms in EndR(Λ) which preserve the level N+-structure
on Λ is isomorphic (non-canonically) to the Eichler order R(N+).

Proof. The natural map

B ⊗ (EndR(Λ) ⊗ Q) −→ EndQ(Λ ⊗ Q) 'M4(Q)

is an isomorphism, and hence EndR(Λ)⊗Q is abstractly isomorphic to the quater-
nion algebra B. Furthermore, the natural map

EndR(Λ) −→ EndZ(Λ)

has torsion-free cokernel, and hence EndR(Λ) is a maximal order in B. Likewise,
one sees that the subalgebra of EndR(Λ) preserving the level N+ structure (viewed
as a submodule of 1

N+ Λ/Λ) is an Eichler order of level N+.

Fix an isomorphism

ρ0 : R −→ EndR(Λ),

having the following properties.

1. For each `n||N+, ρ0(R(N+)) ⊗ Z` preserves the subgroup C` (viewed as a sub-
group of 1

`n Λ/Λ). By the remark 1 above, R(N+) operates on C` via a homo-
morphism R(N+) −→ Z/`nZ. In addition, we require that this homomorphism be
equal to the orientation o

+
` .

2. For all `|N−p, the algebra R` acts on 1
`
Λ/Λ, and stabilizes the subspace V

corresponding to AI (where I is the maximal ideal of R`). By the remark 2 above,
V is equipped with a canonical F`2 -vector space structure, and ρ0(R`) acts F`2 -
linearly on it. We require that the resulting homomorphism R` −→ F`2 be equal
to the orientation o

−
` .
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With these conventions, the homomorphism ρ0 is well-defined, up to conjugation
by elements in Γ∞. Let ρ : B∞ −→ EndB∞(VR) be the map induced from ρ0 by
extension of scalars from Z to R. The pair (V, ρ) is a rigidified quaternionic space,
which depends only on the isomorphism class of A, up to the action of Γ∞ on ρ by
conjugation. The pair (V, ρ) thus gives a well-defined point on H∞/Γ∞ associated
to A.

It is a worthwhile exercise for the reader to check that this complex analytic de-
scription of the moduli of abelian varieties with quaternionic multiplications corre-
sponds to the usual description of the moduli space of elliptic curves as H∞/SL2(Z),
in the case where the quaternion algebra B is M2(Q).

III p-adic analytic description of X

The fundamental theorem of Cerednik and Drinfeld states that X is an admissible
curve over Qp and gives an explicit description of the discrete subgroup attached to
X by theorem 3.1. More precisely, let B, R, and Γ ⊂ R(N+)[ 1p ]

× be as in section

1. (So that B is the definite quaternion algebra obtained from B by the Cerednik
“interchange of invariants” at p.) Then we have:

Theorem 4.7 (Cerednik-Drinfeld)

The set of Kp-rational points of the Shimura curve X is isomorphic to the quotient
of the p-adic upper half plane Hp attached to B by the natural action of Γ, i.e.,

X(Kp) = Hp/Γ.

Under this identification, the involution ψ 7→ ψ̄ of Hp corresponds to the involution
τwp of X(Kp), where τ is the complex conjugation in Gal(Kp/Qp), and wp is the
Atkin-Lehner involution of X at p.

Proof. See [C], [Dr] and [BC].

In particular, an abelian surface A over Kp with quaternionic multiplications by
R and level N+ structure determines a point ψ ∈ Hp = Hom(Kp, Bp) which is
well-defined modulo the natural action of Γ. We will now give a precise description
of the assignment A 7→ ψ. Crucial to this description is Drinfeld’s theorem that
the p-adic upper half plane Hp parametrizes isomorphism classes of certain formal
groups with a quaternionic action, and a suitable “rigidification”.

The p-adic upper half plane as a moduli space. We review Drinfeld’s mod-
uli interpretation of the (Kp-rational points of the) p-adic upper half plane Hp.
Roughly speaking, Hp classifies formal groups of dimension 2 and height 4 over Op,
equipped with an action of our fixed local order Rp and with a “rigidification” of
their reduction modulo p.

In order to make this precise, we begin with a few definitions. Let as usual k be
Op/(p)(' Fp2).

Definition 4.8
A 2-dimensional commutative formal group V over Op is a formal Rp-module (for
brevity, a FR-module) if it has height 4 and there is an embedding

i : Rp → End(V ).
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The FR-modules play the role of the quaternionic spaces of the previous section.
Let V̄ be the formal group over k deduced from V by extension of scalars from Op

to k. It is equipped with the natural action of Rp given by reduction of endomor-

phisms. Let End0(V̄ ) := End(V̄ ) ⊗ Qp be the algebra of quasi-endomorphisms of

V̄ , and let End0
Bp

(V̄ ) be the subalgebra of quasi-endomorphisms which commute
with the action of Bp.

Lemma 4.9
1. The algebra End0(V̄ ) is isomorphic (non-canonically) to M2(Bp).
2. The algebra End0

Bp
(V̄ ) is isomorphic (non-canonically) to the matrix algebra Bp

over Qp.

Proof. The formal group V̄ is isogenous to the formal group of a product of two
supersingular elliptic curves in characteristic p. Part 1 follows. Part 2 can then be
seen by noting that the natural map

Bp ⊗ End0
Bp

(V̄ ) −→ End0(V̄ ) 'M2(Bp)

is an isomorphism, so that End0
Bp

(V̄ ) is abstractly isomorphic to the matrix algebra
Bp.

Denote by B×
p,u the subgroup of elements of B×

p whose reduced norm is a p-adic
unit.

Definition 4.10

1. A rigidification of the FR-module V is an isomorphism

ρ : Bp −→ End0
Bp

(V̄ ),

subject to the condition of being “positively oriented at p”, i.e., that the two max-
imal orders Rp and ρ−1(EndRp

(V̄ )) of Bp are conjugated by an element of B×
p,u.

2. A pair (V, ρ) consisting of an FR-module V and a rigidification ρ is called a
rigidified FR-module.

3. Two rigidified modules (V, ρ) and (V ′, ρ′) are said to be isomorphic if there
is an isomorphism φ : V → V ′ of formal groups over Op, such that the induced
isomorphism

φ∗ : End0
Bp

(V̄ ) → End0
Bp

(V̄ ′)

satisfies the relation φ∗ ◦ ρ = ρ′.

Remark. In [Dr] and [BC], a rigidification of a FR-module V is defined to be a
quasi-isogeny of height zero from a fixed FR-module Φ̄ to the reduction V̄ modulo
p of V . This definition is equivalent to the one we have given, once one has fixed an
isomorphism between Bp and End0

Bp
(Φ̄). The definition given above is in a sense

“base-point free”.

Recall that B×
p,u acts (on the left) on Hp via the natural action of B×

p on Hp

by conjugation. Note that B×
p,u acts on the left on (the isomorphism classes of)

rigidified FR-modules, by

b(V, ρ) := (V, ρb) for b in B×
p,u,
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where ρb(x) is equal to ρ(b−1xb) for x in Bp.

Theorem 4.11 (Drinfeld)
1. The p-adic upper half plane Hp is a moduli space for the isomorphism classes of
rigidified FR-modules over Op. In particular, there is a bijective map

Ψ : {(V, ρ) : (V, ρ) a rigidified FR−module} /(isomorphisms)
∼−→ Hom(Kp, Bp).

2. The map Ψ is B×
p,u-equivariant.

Proof. See [Dr] and [BC], chapters I and II. For part 2, see in particular [BC], ch.
II, sec. 9.

Corollary 4.12
All FR-modules have formal multiplication by Op.

Proof. If V is a FR-module, equip V with a rigidification ρ. By theorem 4.11, the
pair (V, ρ) determines a point P(V,ρ) of the p-adic upper half plane Hp. Note that

the stabilizer of P(V,ρ) for the action of B×
p,u is isomorphic to O×

p . The claim now
follows from part 2 of theorem 4.11.

Remark. As we will explain in the next paragraph, if V is an FR-module, there
exists an abelian surface A over Op with quaternionic multiplication by R, whose

formal group Â (with the induced action of Rp) is isomorphic to V . Of course,
quite often one has EndR(A) ' Z, even though EndR(V ) contains Op by corollary
4.12. In fact, combining Drinfeld’s theory with the theory of complex multiplication
shows the existence of an uncountable number of such abelian surfaces such that
(i) EndR(A) = Z; (ii) EndRp

(Â) ' Op. (A similar phenomenon for elliptic curves
has been observed by Lubin and Tate [LT].)

We give a description of the bijection Ψ, which follows directly from Drinfeld’s
theorem. By lemma 4.12, identify EndRp

(V ) with Op. Let ψ : Kp −→ Bp be the
map induced by the composition

Op −→ End0
Bp

(V̄ ) −→ Bp,

where the first map is given by the reduction modulo p of endomorphisms, and the
second map is just ρ−1. Then Ψ(V, ρ) = ψ.

We now use Drinfeld’s theorem to describe the p-adic uniformization of the Kp-
rational points of the Shimura curve X, i.e., the isomorphism

X(Kp) = Hp/Γ.

The curve X has a model X over Zp. Given a point in X(Kp), we may extend it
to a point in X (Op). In other words, given a pair (A, i, C), where A is an abelian
surface over Kp with quaternionic action by i, and C is a level N+-structure, we
may extend it to a similar pair (A, i, C) of objects over Op. We write (Ā, ī, C̄) for
the reduction modulo p of (A, i, C). A p-quasi endomorphism of Ā is an element in

End(Ā)⊗Z[ 1
p
]. The algebra of all p-quasi endomorphisms is denoted by End(p)(Ā).

Likewise, we denote by End
(p)
R (Ā) the algebra of p-quasi-endomorphisms which
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commute with the action of R. Let Bp∞ be the quaternion algebra over Q ramified
at p and ∞, and let Rp∞ be a maximal order of Bp∞.

Lemma 4.13
1. The algebra End(p)(Ā) is isomorphic to M2(Rp∞[ 1p ]).

2. The algebra End
(p)
R (Ā) is isomorphic to R[ 1p ].

3. The subalgebra of endomorphisms preserving the level N+-structure C̄ on Ā is
isomorphic to the Eichler order R(N+)[ 1p ].

Proof.
1. The abelian variety Ā is p-isogenous to a product of a supersingular elliptic
curve in characteristic p with itself. Part 1 follows. To see part 2, observe that the
natural map

R[
1

p
] ⊗ End

(p)
R (Ā) −→ End(p)(Ā) 'M2(Rp∞[

1

p
])

is an isomorphism, and hence End
(p)
R (Ā)⊗Q is abstractly isomorphic to the quater-

nion algebra B. Furthermore, the natural map

End
(p)
R (Ā) −→ End(p)(Ā)

has torsion-free cokernel, and hence End
(p)
R (Ā) is a maximal Z[ 1p ]-order in B. Like-

wise, one sees that the subalgebra of End
(p)
R (Ā) preserving the level N+ structure

C̄ is abstractly isomorphic to the Eichler order R(N+)[ 1
p
].

Fix an isomorphism

ρ0 : R[
1

p
] −→ End

(p)
R (Ā),

having the following properties.

1. For each `n||N+, we require that ρ0(R(N+)) ⊗ Z` preserves the subgroup C`,
so that it operates on it via a homomorphism R(N+) −→ Z/`nZ. We impose, in
addition, that this homomorphism be equal to the orientation o

+
` .

2. For all `|N−, the algebra R` acts on Ā` via ρ0, and stabilizes the subspace
corresponding to AI (where I is the maximal ideal of R`.) By remark 2 in part I of
this section, AI is equipped with a canonical F`2 -vector space structure, and ρ0(R`)
acts F`2 -linearly on it. We require that the resulting homomorphism R` −→ F`2 be
equal to the orientation o

−
` .

3. Let V̄ be the formal group of Ā, and let ρ : Bp −→ End0
Bp

(V̄ ) be the map induced

by ρ0 by extension of scalars from Z[ 1
p
] to Qp. We require that ρ−1(EndRp

(V̄ )) be

conjugate to Rp by an element of B×
p,u.

With these conventions, the homomorphism ρ0 is well-defined, up to conjugation
by elements in Γ. The pair (V, ρ) is a rigidified FR-module, which is completely
determined by the isomorphism class of A, up to the action of Γ on ρ by conjugation.
Thus, (V, ρ) gives a well-defined point on Hp/Γ associated to A.

IV Shimura curve parametrizations
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We denote by πCD the Cerednik-Drinfeld p-adic analytic uniformization

πCD : Hp −→ X(Kp),

which induces a map Div0(Hp) −→ Div0(X(Kp)), also denoted πCD by abuse of
notation. The Jacobian J of X/Kp

is therefore uniformized by a p-adic torus, and
by proposition 3.4 and corollary 3.5, we have:

Corollary 4.14
The map πCD induces a p-adic uniformization

ΦCD : Hom(Γ̄, K×
p ) −→ J(Kp),

such that the following diagram commutes:

Div0(Hp)
ΦAJ−→ Hom(Γ̄, K×

p )
πCD ↓ ↓ ΦCD

Div0(X(Kp))
ΦAJ−→ J(Kp).

Combining this corollary with the canonical inclusion of M into Hom(Γ,Z) given
by proposition 1.3, yields a natural p-adic uniformization

ΦCD : M⊗K×
p −→ J(Kp),

which will also be denoted ΦCD by abuse of notation.
The Shimura curveX is equipped with natural Hecke correspondences (cf. [BD1],

sec. 1.5), and the Hecke algebra acting on J is isomorphic to the Hecke algebra T

acting on M, in such a way that the actions of T on M and on J are compatible
with the inclusion of M into the dual of the character group of J over k. (See [BC],
ch. III, sec. 5.)

Recall the endomorphism ηf ∈ T attached to f which was used to define the map
M −→ Z. This endomorphism also acts on Pic(X), and induces a (generically)
surjective map

ηf : Pic(X) → Ẽ,

where Ẽ is a subabelian variety of J isogenous to E. From now on we will assume
that E = Ẽ.

Proposition 4.15
The p-adic uniformizations ΦTate and ΦCD of Tate and Cerednik-Drinfeld are re-
lated by the following diagram which commutes up to sign.

M⊗K×
p

ΦCD−→ J(Kp)
ηf ⊗ id ↓ ηf ↓
K×
p

ΦTate−→ E(Kp)

(Note that both of the maps ηf that appear in this diagram are only well-defined
up to sign.)
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5 Heegner points
I Moduli description

We give first a moduli definition of Heegner points. Let c be as before an integer
prime to N , and let O be the order of K of conductor c.

Given an abelian surface A with quaternionic multplication and level N+ struc-
ture, we write End(A) to denote the algebra of endomorphisms of A (over an
algebraic closure of Q) which commute with the quaternionic multiplications and
respect the level N+ structure.

Definition 5.1
A Heegner point of conductor c on X (attached to K) is a point on X corresponding
to an abelian surface A with quaternionic multiplication and level N+ structure,
such that

End(A) ' O.

It follows from the theory of complex multiplication that the Heegner points on X
of conductor c are all defined over the ring class field of K of conductor c. (Cf.
[ST].)

II Complex analytic description

For the convenience of the reader we recall now how to define Heegner points using
the complex analytic uniformization. (This material will not be used in our proofs,
but is quite parallel to the p-adic theory, which we do use extensively.)

Given an embedding ψ of K into B, let ψ denote also, by abuse of notation,
its natural image by extension of scalars in H∞ = Hom(C,B∞). An embedding
ψ : K −→ B is said to be an optimal embedding of conductor c (relative to the
Eichler order R(N+) if it maps O to R(N+) and does not extend to an embedding
of any larger order into R(N+).

Let P ∈ X(H) be a Heegner point of conductor c, corresponding to a quater-
nionic surface A over H. By choosing a complex embedding H −→ C, the point
P gives rise to a point PC in X(C), which corresponds to the abelian surface AC

obtained from A by extension of scalars from H to C, via our chosen complex em-
bedding. Let P̃ be a lift of PC to H∞ by the complex analytic uniformization of
proposition 4.1.

Theorem 5.2

The Heegner point P̃ ∈ H∞ corresponds to an optimal embedding ψ : K −→ B of
conductor c.

Proof. Let V = Lie(A), and let the isomorphism ρ0 : R −→ EndR(Λ) be chosen
as in the discussion following lemma 4.6. The action of C by multiplication on V
arises by extension of scalars from the action of the order O of conductor c on A,
and hence the point ψ necessarily comes (by extension of scalars) from a global
embedding of O to R(N+) which is optimal.

III p-adic analytic description

Let H be the ring class field of conductor c, and let P = (A, i, C) be a Heegner
point of conductor c. By fixing an embedding H → Kp, we may view P as a point
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of X(Kp). We want to describe the Heegner points of conductor c as elements
of the quotient Hp/Γ. Recall the Gross points of conductor c represented by the
oriented optimal embeddings

ψi : O → R[
1

p
], i = 1, . . . , h

fixed in section 2. By lemma 2.5, the group ∆ acts simply transitively on these
points. The embeddings ψi determine local embeddings (which we denote in the
same way by an abuse of notation)

ψi : Kp → Bp.

Theorem 5.3
The classes modulo Γ of the local embeddings ψi correspond via the Cerednik-
Drinfeld uniformization to distinct Heegner points on X of conductor c, in such a
way that the natural Galois action of ∆ on these Heegner points is compatible with
the action of ∆ on the Gross points represented by the ψi.

Proof. If P ∈ X(Kp) is a Heegner point of conductor c, let P̄ ∈ X(k) denote the
reduction modulo p of P . By our description of the p-adic uniformization, the point
P corresponds to the class modulo Γ of a local embedding ψ : Kp → Bp defined in
the following way. Let

ψ0 : O = End(P ) → End(P̄ )

be the map obtained by reduction modulo p of endomorphisms. Identify End(P̄ )[ 1p ]

with R[ 1p ] by using the conventions of section 4, so that ψ0 gives rise to a map from

O to R[ 1p ]. Then ψ is obtained from ψ0 by extension of scalars from Z to Qp.

By proposition 7.3 of [GZ], ψ0 is an optimal embedding. Moreover, ψ0 is Γ-
conjugate to one of the ψi. Finally, the proof of the compatibility under the action
of the group ∆ is similar to that of proposition 4.2 of [BD2].

6 Computing the p-adic Abel-Jacobi map
Let ψ ∈ Hp = Hom(Kp, Bp) be a point on the p-adic upper half plane, and let ψ̄
be its conjugate, defined by

ψ̄(z) = ψ(z̄).

The divisor (ψ) − (ψ̄) is a divisor of degree 0 on Hp.

Recall the canonical element L′
p(ψ) ∈ M ⊗ K×

p,1 associated to ψ in section 2,

using the action of K×
p induced by ψ on the Bruhat Tits tree T . When needed, we

will identify L′
p(ψ) with its natural image in Hom(Γ, K×

p ), by an abuse of notation.
Recall also the p-adic Abel Jacobi map

ΦAJ : Div0(Hp) −→ Hom(Γ, K×
p )

defined in sections 3 and 4 by considering automorphy factors of p-adic theta-
functions.

The main result of this section is:
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Theorem 6.1
ΦAJ ((ψ) − (ψ̄)) = L′

p(ψ).

The rest of this section is devoted to the proof of theorem 6.1. We begin by giving
explicit descriptions, and elucidating certain extra structures, which the fixing of
the point ψ ∈ Hp gives rise to.

The algebra Bp

We give an explicit description of the algebra Bp, which depends on the embedding
ψ. Identify Kp with its image in Bp by ψ, and choose an element u ∈ Bp so that
Bp = Kp ⊕ Kpu and u anticommutes with the elements of Kp, i.e., uz = z̄u for
all z ∈ Kp. Note that u2 belongs to Qp, and is a norm from Kp to Qp, since the
quaternion algebra B is split at p. Moreover, the element u2 is well-defined up to
multiplication by norms from Kp to Qp. We may and will fix u so that u2 = 1.
From now on, write elements of Bp as a+ bu, with a and b in Kp. The conjugate of
a+ bu under the canonical anti-involution of Bp is ā− bu. The reduced trace and
norm are given by the formulae

Tr(a+ bu) = TrK/Q(a), N(a+ bu) = NK/Q(a) −NK/Q(b).

The embedding ψ allows us to view Bp as a two-dimensional vector space over
Kp, on which Bp acts by multiplication on the right. This yields a local embeding
Bp −→M2(Kp), defined by:

a+ bu 7→
(

a b
b̄ ā

)

.

This embedding allows us to define an action of B×
p on the projective line P1(Kp)

(or P1(Cp)) by fractional linear transformations, by setting

γ(z) :=
az + b

b̄z + ā
, if γ = a+ bu ∈ B×

p , z ∈ P1(Kp).

This induces an action of the group Γ on P1(Kp).

The domain Ωp

Let
S1 = {z ∈ Kp | zz̄ = 1}

be the p-adic “circle” of radius 1, and let Ωp = P1(Kp) − S1.

Lemma 6.2
The limit set of Γ acting on P1(Kp) is equal to S1. In particular, the group Γ acts
discontinuously on P1(Kp).

Proof. To compute the limit set of Γ, observe that if γn is a sequence of distinct
elements of Γ, then one can write

γn =
an + bnu

pen
,
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with an, bn ∈ O×
p , and limn−→∞ en = ∞. Hence

NKp/Qp
(
an

b̄n
) ≡ 1 (mod p2en),

so that the limit lim γnz0, if it exists, must belong to S1. Conversely, let z be an
element of S1, and let bn be a sequence of elements in B×

p satisfying

lim
n−→∞

(b−1
n ∞) = z.

By the finiteness of the double coset space R×
p \B×

p /Γ, which follows from strong

approximation, there is an element b ∈ B×
p such that, for infinitely many n

bn = rnbγn,

where rn belongs to R×
p and γn belongs to Γ. Assume without loss of generality (by

extracting an appropriate subsequence) that this equation holds for all n. Then we
have

z = lim(γ−1
n b−1r−1

n ∞).

But the sequence b−1r−1
n ∞ is contained in a compact set, and hence has a conver-

gent subsequence b−1r−1
kn

∞ which tends to some z0 ∈ P1(Kp). Hence z = lim γ−1
kn
z0

is a limit point for Γ. Lemma 6.2 follows.

Using the embedding ψ, the “abstract” upper half plane Hp now becomes identified
with the domain Ωp.

The tree T
Let v0 = r(ψ) be the vertex on T which is fixed by ψ(Kp). This vertex corresponds
to the maximal order

Rp = Op ⊕Opu,

where Op is the ring of integers of Kp. The vertices of T are in bijection with the
coset space R×

p Q×
p \B×

p , by assigning to b ∈ B×
p the vertex b−1 ∗ v0.

We say that a vertex v of T has level n, and write `(v) = n, if its distance from
v0 is equal to n. A vertex is of level n if and only if it can be represented by an
element of the form a+ bu, where a and b belong to Op and at least one of a or b
is in O×

p , and n = ordp(N(a+ bu)) = ordp(NKp/Qp
(a) −NKp/Qp

(b)).
Likewise, we say that an edge e of T has level n, and we write `(e) = n, if the

distance of its furthest vertex from v0 is equal to n.

The reduction map

We use our identification of Hp with Ωp to obtain a reduction map

r : Ωp −→ T

from Ωp to the tree of Bp.

Lemma 6.3
The divisor (ψ)− (ψ̄) on Hp corresponds to the divisor (0)− (∞) on Ωp under our
identification of Ωp with Hp.
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Proof. The group ψ(K×
p ) acting on Ωp by Möbius transformations fixes the points

0 and ∞, and acts on the tangent line at 0 by the character z 7→ z
z̄
.

In general, if z is a point of Ωp and b ∈ B×
p is such that b−10 = z, then r(z) is equal

to b. This implies directly part 1 and 2 of the next lemma.

Lemma 6.4
1. We have r(∞) = r(0) = v0. More generally, if z ∈ Ωp ⊂ Kp ∪∞ does not belong
to O×

p , then r(z) = v0.

2. If z belongs to O×
p , then the level of the vertex r(z) is equal to ordp(zz̄ − 1).

3. If z1 and z2 ∈ Ωp map under the reduction map to adjacent vertices on T of
level n and n+ 1, then

z1 ≡ z2 (mod pn).

Proof. We prove part 3. Choose representatives b1 and b2 in B×
p for r(z1) and

r(z2), with the properties

bi = xi + yiu, with xi, yi ∈ Op and gcd(xi, yi) ∈ O×
p .

Since the vertices corresponding to b1 and b2 are adjacent, it follows that b2b
−1
1 =

b2b̄1/p
n has norm p and level 1. Since

b2b̄1 = (x2 + y2u)(x̄1 − y1u) = (x2x̄1 − y2ȳ1) − (y1x2 − x1y2)u,

it follows that
x1

y1
≡ x2

y2
(mod pn),

so that b−1
1 0 ≡ b−1

2 0 (mod pn). This proves the lemma.

Let φ(0)−(∞) ∈ Hom(Γ, K×
p ) be the automorphy factor of the p-adic theta-function

associated to the divisor (0) − (∞) as in section 3. By the results of section 3, we
have

ΦAJ((ψ) − (ψ̄)) = φ(0)−(∞).

By definition, for δ ∈ Γ one has

φ(0)−(∞)(δ) =
∏

γ∈Γ

γδ(z0)

γ(z0)
,

where z0 is any element in the domain Ωp. Suppose that r(z0) = v0. Let

path(v0, δv0) = e1 − e2 + · · · + es−1 − es.

(Note that s is even, since δ belongs to Γ.) Write ej = {vej , voj }, where vej is the
even vertex of ej , and voj is the odd vertex of ej . Note that we have

voj = voj+1 for j = 1, 3, . . . , s− 1,

vej = vej+1 for j = 2, 4, . . . , s− 2,

Γves = Γve1.
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Thus we may choose elements zoj and zej in Ωp(Kp) such that r(zoj ) = voj , r(z
e
j ) = vej ,

and

zoj = zoj+1 for j = 1, 3, . . . , s− 1,

zej = zej+1 for j = 2, 4, . . . , s− 2,

ze1 = z0, zes = δz0.

Hence

(γzo1)(γz
o
2)

−1 · · · (γzos−1)(γz
o
s)

−1 = 1, (γze2)(γz
e
3)

−1 · · · (γzes−2)(γz
e
s−1)

−1 = 1,

so that

φ(0)−(∞)(δ) =
∏

γ∈Γ

(

γzo1
γze1

) (

γzo2
γze2

)−1

· · ·
(

γzos−1

γzes−1

) (

γzos
γzes

)−1

=
∏

γ∈Γ

(

γzo1
γze1

)

∏

γ∈Γ

(

γzo2
γze2

)−1

· · ·
∏

γ∈Γ

(

γzos−1

γzes−1

)

∏

γ∈Γ

(

γzos
γzes

)−1

,

where the last equality follows from part 3 of lemma 6.4. Fix a large odd integer
n. For each 1 ≤ j ≤ s, let Γ(j) be the set of elements γ in Γ such that the set γej
has level ≤ n. By lemma 6.4, we have

(†) φ(0)−(∞)(δ) ≡
∏

γ∈Γ(1)

(

γzo1
γze1

)

∏

γ∈Γ(2)

(

γzo2
γze2

)−1

· · ·
∏

γ∈Γ(s)

(

γzos
γzes

)−1

(mod pn).

Each of the factors in the right hand side of equation (†) can be broken up into
three contributions:

∏

Γ(j)

γzoj
γzej

=
∏

`(γvo
j
)<n

γzoj ·
∏

`(γve
j
)<n

γ(zej )
−1 ·

∏

`(γej)=n

γzoj .

The first two factors in this last expression cancel out in the formula (†) for
φ(0)−(∞)(δ). Hence we obtain

φ(0)−(∞)(δ) ≡
∏

`(γe1)=n

γzo1 ·
∏

`(γe2)=n

γ(zo2)
−1 · · ·

∏

`(γes)=n

γ(zos)
−1 (mod pn).

Now, fix an edge e of level n, having v as its vertex of level n, and choose any z ∈ Ωp

with r(z) = v. If σ is a variable running over Gn (which we view as belonging to
(Op/p

nOp)
×/(Z/pnZ)×), write σe ≡ ej if the edge σe is Γ-equivalent to ej . Using

the fact that Gn acts transitively on the set of edges of level n, we have

φ(0)−(∞)(δ) ≡
∏

σe≡e1

(
σ

σ̄
z)we1 ·

∏

σe≡e2

(
σ

σ̄
z)−we2 · · ·

∏

σe≡es

(
σ

σ̄
z)−wes (mod pn)

=
∏

σe≡e1

(
σ

σ̄
)we1 ·

∏

σe≡e2

(
σ

σ̄
)−we2 · · ·

∏

σe≡es

(
σ

σ̄
)−wes · (zM ),
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where M = 〈path(v0, δv0),
∑

σ∈Gn
σe〉. Since the element

∑

σ∈Gn
σe belongs to the

image of ∂∗, and path(v0, δv0) is in the kernel of ∂∗, it follows that M = 0 so that:

φ(0)−(∞)(δ) ≡
∏

σe≡e1

(
σ

σ̄
)we1 ·

∏

σe≡e2

(
σ

σ̄
)−we2 · · ·

∏

σe≡es

(
σ

σ̄
)−wes .

The reader will notice that this last expression is equal to

〈path(v0, δv0),L′
p,n(ψ)〉.

Hence

L′
p(ψ) = φ(0)−(∞) = ΦAJ ((ψ) − (ψ̄)),

and theorem 6.1 follows.

7 Proof of the main results

We now combine the results of the previous sections to give a proof of our main
results. First, we introduce some notations. Having fixed an embedding H →
Kp, let P1, . . . , Ph in X(Kp) be the h distinct Heegner points of conductor c,
corresponding via theorem 5.3 to our fixed optimal embeddings ψ1, . . . , ψh. Let
σ1, . . . , σh ∈ ∆ be the elements of ∆, labeled in such a way that σi(P1) = Pi.
By theorem 5.3, the Gross point corresponding to ψ1 is sent by σi to the Gross
point corresponding to ψi. Write PK ∈ Pic(X(Kp)) for the class of the divisor
P1 + . . .+Ph. Note that PK depends on the choice of the embedding of H into Kp,
only up to conjugation in Gal(Kp/Qp). We denote by P̄i the complex conjugate of
Pi, and likewise for P̄K . (No confusion should arise with the use of the notation P̄
in section 5 to indicate the reduction modulo p of the point P .) Let wp stand for
the Atkin-Lehner involution at p.

Theorem 7.1

1. ΦCD(L′
p(M/K)) = ΦAJ((PK) − (wpP̄K)).

2. ΦCD(L′
p(M/H)) =

∑h
i=1 ΦAJ((Pi) − (wpP̄i)) · σ−1

i .

Proof. By the formula at the end of section 2,

L′
p(M/K) =

h
∑

i=1

L′
p(ψi),

where ψ1, . . . , ψh are as above. Hence,

ΦCD(L′
p(M/K)) =

h
∑

i=1

ΦCD(L′
p(ψi)) =

h
∑

i=1

ΦCD(ΦAJ((ψi) − (ψ̄i))),
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where the last equality follows from theorem 6.1. By theorems 5.3 and 4.7, and by
the commutative diagram of proposition 4.14, this last expression is equal to

h
∑

i=1

ΦAJ (πCD((ψi) − (ψ̄i))) =

h
∑

i=1

ΦAJ ((Pi) − (wpP̄i)) = ΦAJ ((PK) − (wpP̄K)).

Part 1 follows. Part 2 is proved in a similar way.

Recall our running assumption that E = Ẽ is the subabelian variety of the Jacobian
J of the Shimura curve X, and that ηf maps J to Ẽ. Let αi = ηf (Pi) ∈ E(Kp), and
let αK = α1 + · · ·+ αh = traceH/K(α1). Theorem 7.1 gives the following corollary,
whose first part is the statement of theorem B of the introduction.

Corollary 7.2

Let w = 1 (resp. w = −1) if E/Qp has split (resp. non-split) multiplicative reduc-
tion. Then the following equalities hold up to sign:

ΦTate(L′
p(E/K)) = αK − wᾱK ,

ΦTate(L′
p(E/H)) =

h
∑

i=1

(αi − wᾱi) · σ−1
i .

Proof. Apply ηf to the equations of theorem 7.1, using the commutative diagram
of proposition 4.15.
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