ON THE EQUATIONS z" = F(x,y) AND Ax? + By? = Cz'

HENRI DARMON anp ANDREW GRANVILLE

ABSTRACT

We investigate integer solutions of the superelliptic equation

2" = F(x,y), 1)
where F is a homogeneous polynomial with integer coefficients, and of the generalized Fermat equation
AxP + Byt = C?', (2)

where 4, B and C are non-zero integers. Call an integer solution (x, y,z) to such an equation proper if
ged(x, y,2) = 1. Using Faltings’ Theorem, we shall give criteria for these equations to have only finitely
many proper solutions.

We examine (1) using a descent technique of Kummer, which allows us to obtain, from any infinite
set of proper solutions to (1), infinitely many rational points on a curve of (usually) high genus, thus
contradicting Faltings’ Theorem (for example, this works if F(t, 1) = 0 has three simple roots and m > 4).

We study (2) via a descent method which uses unramified coverings of Py \ {0, 1,00} of signature
(p,q,r), and show that (2) has only finitely many proper solutions if 1/p+ 1/q + 1/r < 1. In cases where
these coverings arise from modular curves, our descent leads naturally to the approach of Hellegouarch
and Frey to Fermat’s Last Theorem. We explain how their idea may be exploited for other examples
of (2).

We then collect together a variety of results for (2) when 1/p + 1/q + 1/r > L. In particular, we
consider ‘local-global’ principles for proper solutions, and consider solutions in function fields.

Introduction

Faltings’ extraordinary 1983 theorem [15] (‘née Mordell’s Conjecture’ [41)) states
that there are only finitely many rational points on any irreducible algebraic curve
of genus > 1 in any number field. Two important immediate consequences are as
follows.

THEOREM. There are only finitely many pairs of rational numbers x,y for which
f(x,y) =0, if the curve so represented is smooth and has genus > 1.

THEOREM. If p > 4 and A, B and C are non-zero integers, then there are only
finitely many triples of coprime integers Xx,y,z for which Ax? + ByP = CzP.

Here we shall see that, following various arithmetic descents, one can also apply
Faltings’ result to integral points on certain interesting surfaces.

(Vojta [42] and Bombieri [2] have now given quantitative versions of Faltings’
Theorem. In principle, we can thus give an explicit upper bound to the number of
solutions in each equation below, instead of just writing ‘finitely many’,)
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The superelliptic equation. In 1929, Siegel [35] showed that a polynomial equa-
tion f(x, y) = 0 can have infinitely many integral solutions in some algebraic number
field K only if a component of the curve represented has genus 0. In 1964, LeVeque
[24] applied Siegel’s ideas to prove that the equation

Y =fx) (1°
has infinitely many integral solutions in some number field K if and only if f(X)
takes either the form c(X — a)?g(X)" or the form f(X) = c¢(X? — aX + b)"?g(X)™.
In all other cases, one can obtain explicit upper bounds on solutions of (1)*, using
Baker’s method (see [34]).

By using a descent technique of Kummer, we can apply Faltings’ Theorem to
the superelliptic equation (1), much as LeVeque applied Siegel’s Theorem to (1)*.

THEOREM 1. Let F(X,Y) be a homogeneous polynomial with algebraic coeffi-
cients, and suppose that there exists a number field K in which

z" = F(x,y) 8))

has infinitely many K -integral solutions with the ideal (x,y) = 1, and the ratios x/y
distinct. Then F(X,Y)=cf(X,Y)™ times one of the following forms:

(i) (X —aY) (X = BY);

(i) g(X,Y)"2, where g(X,Y) has at most 4 distinct roots;

(iii) g(X,Y)™3, where g(X,Y) has at most 3 distinct roots;

(iv) (X —aY)"2g(X,Y)™* where g(X,Y) has at most 2 distinct roots;

(v) (X —aY)g(X,Y)"2, where g(X,Y) has at most 2 distinct roots;

(vi) (X —aY)"3(X —BY)*™3(X —yY)™" where r < 6;
where a, b and r are non-negative integers, c is a constant, f(X,Y) and g(X,Y) are
homogeneous polynomials, and exponents "™/J are always integers. Moreover, for each
such F and m, there are number fields K in which (1) has infinitely many distinct,
coprime K-integral solutions.

This result answers the last of the five questions posed by Mordell in his
famous paper [28] (the others having been resolved by Siegel [35] and Faltings
{15]). (Actually, Mordell conjectured finitely many rational solutions in his last three
questions, where he surely meant integral.)

We deduce from Theorem 1 that there are only finitely many distinct, coprime
K-integral solutions to (1) whenever F(X,Y) has k (= 3) distinct simple roots
(over Q) and m > max{2,7 —k}.

The generalized Fermat equation. One last result of Fermat has finally been
re-proven [46]: that is, that there are no non-zero integer solutions to

Xp+yp=Zp

when p = 3. (This corresponds to the case p=qg=r >3 and A = B=C =1 of the
generalized Fermat equation

Ax? + By?! = Cz', (2)
where 4, B and C are non-zero integers.) Fortunately, Fermat never wrote down his

proof, and many beautiful branches of number theory have grown out of attempts
to re-discover it. In the last few years, there have been a number of spectacular
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advances in the theory of Fermat’s equation, culminating in the work of Faltings
(15], Ribet [31] and, ultimately, Wiles [46].

As we discussed above, Faltings’ Theorem immediately implies that there are
only finitely many triples of coprime integers x,y,z for which x” + y? = z”, One
might hope to also apply Faltings’ Theorem directly to (2), since this is a curve in
an appropriate weighted projective space. However, this curve often has genus 0 (for
instance, if p, ¢ and r are pairwise coprime), so that finiteness statements for proper
solutions must be reached through a less direct approach.

It has often been conjectured that (2) has only finitely many proper solutions if
1/p+1/q9 + 1/r < 1, perhaps first by Brun [6] in 1914. This is easily proved to be
true in function fields, and it follows for integers from the ‘abc’-conjecture. We shall
use Faltings’ Theorem to show the following.

THEOREM 2. For any given integers p,q,r satisfying 1/p+ 1/q + 1/r < 1, the
generalized Fermat equation

Ax? + By =Cz" (2)

has only finitely many proper integer solutions.

(Our proofs of Theorems 1 and 2 are extended easily to proper solutions in any
fixed number field, and even those that are S-units.)

Catalan conjectured in 1844 that 32 — 23 = 1 are the only powers of positive
integers that differ by 1. Tijdeman proved this for sufficiently large powers (>
expexpexpexp(730): Langevin, 1976). One can unify and generalize the Fermat and
Catalan Conjectures in the following.

THE FERMAT-CATALAN CONJECTURE. There are only finitely many triples of co-
prime integer powers xP,y4, z" for which

1 1 1
xXPt+yl=2z" with -+-+-<1. 2y
p q r

This conjecture may be deduced from the abc-conjecture (see Subsection 5.2).
There are five ‘small’ solutions (x, y,z) to the above equation:

1+22=3, 224+7=3 7P+133=2, 274177 =71 3 +11*=122%

(Blair Kelly III, Reese Scott and Benne de Weger all found these examples indepen-
dently.)
Beukers and Zagier have found five surprisingly large solutions:

17" +76271° = 210639282, 14143 + 2213459% = 657, 92623 + 15312283% = 113,
43% 4+ 96222° = 300429072, 33® 4 1549034 = 15613°.

In Subsection 4.3, we shall use these solutions to write down examples of non-
isogenous elliptic curves with isomorphic Galois representations on points of orders
7 and 8. We wonder whether there are any more solutions to (2): in particular,
whether there are any with p,q,r > 3.

Given Theorem 2, it is natural to ask what happens in equation (2) when
Ip+1/g+1/r>1

In the cases where 1/p + 1/q + 1/r = 1, the proper solutions correspond to



516 HENRI DARMON AND ANDREW GRANVILLE

rational points on certain curves of genus one. It is easily demonstrated that for
each such p,q,r, there exist values of A, B, C such that the equation has infinitely
many proper solutions; some such examples are given in Section 6. There also exist
values of 4, B, C such that the equation has no proper solutions (which can be proved
by showing that there are no proper solutions modulo some prime); though, for any
A, B, C, there are number fields which contain infinitely many proper solutions (see
Subsection 5.4).

In the cases where 1/p+1/q+ 1/r > 1, the proper solutions give rise to rational
points on certain curves of genus zero. However, even when the curve has infinitely
many rational points, they may not correspond to proper solutions of the equation.
Is there an easy way to determine whether equation (2) has infinitely many proper
solutions?

In the case of conics (p = g = r = 2), Legendre proved the local-global principle
in 1798; and using this we can determine easily whether (2) has any proper solutions.
However, in Section 8 we shall see that there are no proper solutions for

x? + 29y2 = 323,

despite the fact that there are proper solutions everywhere locally, as well as a
rational parametrization of solutions. We prove this using what we call a class group
obstruction, which may be the only obstruction to a local-global principle in (2)
when 1/p+1/q + 1/r > 1. We also study this obstruction for a family of equations
of the form x2 + By? = Cz".

It has long been known that there is no general local-global principle for (2)
when 1/p+1/q + 1/r = 1. Indeed, Lind and Selmer gave the examples

ut—17* =2w? and 3x* +4y3 =57°

respectively, of equations which are everywhere locally solvable but nonetheless have
no non-trivial integer solutions. This obstruction is described by the appropriate
Tate-Safarevié group, which may be determined by an algorithm that is only known
to work if the Birch-Swinnerton-Dyer Conjectures are true.

There are no local obstructions or class group obstructions to any equation

Ax? + By* = C2° (3)

if A, B and C are pairwise coprime. So are there are always infinitely many proper
solutions? If so, is there a parametric solution to (3) with x, y and z coprime
polynomials in 4, B and C?

Application of modular curves. The driving principle behind the proof of Theo-
rem 2 is a descent method based on coverings of signature (p, q,r) (see Section 3 for
the definition). Sometimes, these coverings can be realized as coverings of modular
curves. A lot more is known about the Diophantine properties of modular curves
than about the properties of Fermat curves, thanks largely to the fundamental work
of Mazur on the Eisenstein ideal [26]. Hence one can hope that descent using
modular coverings yields new insights into such equations. The basic example for
this is the covering X(2p) — X(2) which is of signature (p,p,p), ramified over
the three cusps of X(2), and forms the basis for the Hellegouarch-Frey attack on
Fermat’s Last Theorem. Thanks to the deep work of Ribet, Taylor and Wiles, this
approach has finally led to the proof of Fermat’s Last Theorem; and there is a strong
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incentive for seeing whether other modular coverings of signature (p,q,r) will yield
similar insights into the corresponding generalized Fermat equation (as also noted
by Wiles in his Cambridge lectures). In Subsection 4.3 we shall give a classification
of the coverings of signature (p, q,r) obtained from modular curves, and state some
Diophantine applications.
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1. Remarks and observations

There are many remarks to be made about what has been written above. For
instance, why the restrictions on pairs x,y in the statement of Theorem 1? What
if A,B,C are not pairwise coprime in Theorem 2? We include remarks on these
questions here, rather than weigh down the main body of the paper.

1.1 Proper and improper solutions. The study of integer solutions to homoge-
neous polynomials in three variables ‘projectivizes’ naturally to the study of rational
points on curves, by simply de-homogenizing the equation. However, the study of
integer solutions to non-homogeneous polynomials in three variables does not so
naturally ‘projectivize’, because there are often parametric families of solutions with
common factors that are of little interest from a number-theoretic viewpoint. As an
example, look at the integer solutions to x* + y3 = z% It is easy to find a solution
for any fixed ratio x/y: if we want x/y = a/b, then simply take z = a®> + b*, x = az
and y = bz. This is not too interesting. However, if we do not allow x, y and z to
have a large common factor, then we can rule out the above parametric family of
solutions (and others), and show that there are only finitely many solutions.

In general, we shall define a proper solution to an equation (1) or (2), in some
given number field K, to be a set of integer solutions (x, y, z) with the value of x/y
fixed, and (x, y) dividing some given, fixed ideal of K (and we thus incorporate here
the notion that the solutions may be S-units for a given finite set of primes S).

Notice that in this definition we consider a proper solution to be a set of integer
solutions (x, y, z) with the value of x/y fixed. This is because one can obtain infinitely
many solutions of (1) of the form x&™, y&™, z&4 (where d = deg(F)), and of (2) of
the form x&%, y&™P,z¢EP4, as € runs over the units of K, given some initial solution
(x,y,2). Thus a proper solution is really an equivalence class of solutions under a
straightforward action of the unit group of the field. (Actually, if F(x, y) = & 1s itself
a unit of K, then &™ = F(x¢m—D/d_yem=1/d) is 3 proper solution to (1); and so, by
Theorem 1, if F(X,Y) has three distinct factors, then there are only finitely many
such units. This well-known result also follows from Siegel’s Theorem.)

Even when we work with a homogeneous equation like the Fermat equation, it is
not always possible to ‘divide out’ a common factor (x, y) as we might when dealing
with rational integer solutions: for instance, if the ideal (x, y) is irreducible and non-
principal. (Even Kummer made this mistake, which Weil calls an ‘unaccountable
lapse’ in Kummer’s Collected works.) However, in this case let I and J be the ideals of
smallest norm from the ideal class and inverse ideal class of G = (x, y), respectively.
Multiply each of x, y,z through by the generator of the principal ideal I1J, so that
now (x,y) = GIJ. Since GJ is principal, we may divide through by the generator
of that ideal, but then (x,y) = I, one of a finite set of ideals. Thus it makes sense
to restrict solutions in (1) and (2) by insisting that (x, y) can divide only some fixed
ideal of the field.

Let X be the affine surface defined by equation (2). From a geometric perspective,
a proper solution (x, y,z) of (2) is the image of an integral point on the blowup of
X at the origin, where, here, ‘integral’ is taken with respect to the special divisor
(that is, the proper transform of (0,0,0) in the blowup). In recent years, a beautiful
theory of rational and integral points on surfaces has begun to emerge through the
work of Vojta and Faltings. We make no use of it here, since our descent reduces the
problem to results about curves. However, our approach is probably applicable for
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only a small class of surfaces, maybe just those that are equipped with a non-trivial
action of the multiplicative group.

If the degree of F is coprime with m, then we can always construct a parametric
improper solution of (1): since there exist positive integers r and s with mr —
deg(F)s = 1, we may take x = aF(a,b)*, y = bF(a,b)’, z = F(a,b)". More generally,
if g = ged(deg(F),m) = mr — deg(F)s, then we can obtain a solution of (1) from a
solution of F(a,b) = ¢8 by taking x = ac®, y = bc®* and z = ¢".

Equation (2) may be approached similarly, and indeed its generalization to
arbitrary diagonal equations (see [4]). The solutions to a diagonal equation a; X|' +
...+ a, X = 0 may be obtained from the solutions of a, Ylgl +...+a,Yp =0, where
each g; = ged(ej, L;) and Lj =Icm[e;, 1 <i<n, i+ j]. (If gj = e;s; — Ljr;, then we
may take X; = ;" [, Yj"L’/ej.)

1.2 What happens when A, B and C are not pairwise coprime? Evidently, any
common factor of all three of A, B and C in (2) may be divided out, so we may
assume that (4, B,C) = 1. But what if 4, B and C are not pairwise coprime?

If prime ¢ divides 4 and B but not C, then in any solution of (2), ¢ divides
Cz" and so z. Thus Cz" = C¢'z", and so we can rewrite C/" as C, and z’ as z.
But then ¢ divides each of 4, B and C, and so we remove the common power of ¢
dividing them. If £ now divides only one of 4, B and C, then there are no further
such trivial manipulations, but if £ divides two of 4, B and C, then we are forced to
repeat this process. Sometimes this will go on ad infinitum, such as for the equation
x*+2y3 = 423, In general, it is easily decided whether this difficulty can be resolved.

PROPOSITION 1.1.  Suppose that a, § and y are the exact powers of ¢ that divide
A, B and C, respectively. If there is an integer solution to (2), then (p, q) divides a—f3,
or (q,r) divides B — 7, or (r,p) divides y —a.

Proof. Let a, b, ¢ and d be the exact powers of ¢ dividing x, y, z and
(AxP,By?,Cz"), respectively. Evidently, d must be equal to at least two of a + ap,
B + bq, y + cr. From the Euclidean algorithm, we know that there exist integers a
and b such that ap — bq =  — o if and only if (p, q) divides « — f; the result follows
from examining all three pairs in this way.

2. Proper solutions of the superelliptic equation

To prove Theorem 1, we first ‘factor’ the left-hand side of (1) into ideals in the
field K (which may be enlarged to contain the splitting field extension for F), so
that these ideals are mth powers of ideals, times ideals from some fixed, finite set.
We then multiply these ideals through by ideals from some other fixed, finite set,
to obtain principal ideals. Equating the generators of the ideals, modulo the unit
group, we obtain a set of linear equations in X and Y. Taking linear combinations
to eliminate X and Y, we have now ‘descended’ to a new variety to which we may
be able to apply Faltings’ Theorem. If not, we descend again and again, until we
can.

The details of this proof are somewhat technical, and so we choose to illustrate
them in the next subsection with a simple example.



520 HENRI DARMON AND ANDREW GRANVILLE

2.1 A generalization of Kummer’s descent. In 1975 Erd6s and Selfridge [14]
proved the beautiful result that the product of two or more consecutive integers
can never be a perfect power. We conjecture that the product of three or more
consecutive integers of an arithmetic progression a (mod g) with (a,q) = 1 can never
be a perfect power except in the two cases parametrized below. This is well beyond
the reach of our methods here, though we now prove the following.

COROLLARY 2.1. Fix integers m > 2 and k = 3 with m + k > 6. There are only
Sfinitely many k-term arithmetic progressions of coprime integers whose product is the
mth power of an integer.

If the product of a three-term arithmetic progression is a square (the case k = 3,
m = 2), then we are led to the systems of equations a = Ax?, a+d = y?, a+2d = 122,
with A =1 or 2, so that x2 4 z2 = (2/4)y2. This leads to the parametric solutions
(22 — 2tu — u2)2, (2 + u?)?, (2 + 2tu — u?)? and 2(:2 — u?)?, (12 + u?)?, 8t2u?, where, in
each case, (t,u) =1 and t + u is odd (for 1 =1 and 2, respectively).

Euler proved in 1780 that there are only trivial four-term arithmetic progressions
whose product is a square, ruling out the case k = 4, m = 2. In 1782 he showed that
there are only trivial integer solutions to x> + y3 = 2z3, which implies that there are
no three-term arithmetic progressions whose product is a cube, ruling out the case
m=k=3

Now fix integers k > 3 and m > 2 with m+k = 7, so that 2/k + I/m < 1.
We shall assume that there exist infinitely many k-term arithmetic progressions of
coprime integers whose products are all mth powers of integers; in other words, that
there are infinitely many pairs of positive integers a and d for which

(a+d)a+2d)...(a+kd)=z" with (a,d) = 1. (2.1)
For any i # j we have that (a +id,a + jd) divides
((a +id) — (a+ jd), j(a + id) — i(a + jd)) = (i — j)(d,a) = (i — j).
Therefore, for each i, we have

a+id=z", fori=12,.. .,k

m—1
for some integers z;, where each 4; is a factor of Hpg_l p) . From elementary

linear algebra, we know that we can eliminate a and d from any three such equations;
explicitly taking i = 1, 2 and j above, we obtain

L2 = jhazy — (j— Daiz}, for j=3,4,... .k (2.2)

If m > 4, then any single such equation has only finitely many proper solutions,
by Faltings’ Theorem; and as there are only finitely many choices for the A;, this
gives finitely many proper solutions to (2.1).

More generally, the collection of equations (2.2) defines a non-singular curve C
as the complete intersection of hypersurfaces in P¥~!. By considering the natural
projection from C onto the Fermat curve in P? defined by the single equation (2.2)
with j = 3, we may use the Riemann-Hurwitz formula to deduce that C has genus
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g given by

28 —2=mk3 (2 (”‘ 2_ 1) = 2) + (k — 3)m*(m*=3 — mk=%)

since the degree of the covering map is m*=3, and the only ramification points are
where z; = 0 for some j > 4 (and it is easy to show that z; = z; = 0 is impossible).
Thus C has genus > 1, and so has only finitely many rational points, by Faltings’

Theorem. Therefore (2.1) has only finitely many proper integer solutions.

Suppose that in equation (1),

n
FX,Y)=aY" JJ(X —Y)",
i=1
where the «; are distinct complex numbers, and the r; are non-negative integers; we
enlarge K, if necessary, to contain the «;. Let S denote the multiset of integers s > 1,
each counted as often as there are values of i for which m/(m,r;) = s. Theorem 1 is
implied by the following,.

THEOREM 1'.  Suppose that there are infinitely many proper K -integral solutions
to (1), in some number field K. Then one of the following holds:

Rewriting (1) as the ideal equation

n

) [ [(@ox — Biy)" = (@)~ ()",

i=1
with f; = ago;, we proceed in the familiar way, analogous to the above. All ideals
of the form (y,aox — f;y) and (agx — Biy, aox — B;y) (with i # j) divide the ideals J
and (B; — f;)J, respectively (where J is that fixed ideal which is divisible by (aox, y)
for any proper solution of (1)). Therefore, by the unique factorization theorem for
ideals, we have

(aox — Biy) = 6:6", foreachi, 1 <i<n,
() = aobyg

for some ideals 6; of K and some set of ideal divisors a; of (J')"!, where

Jo=J| II B—8)

Ii<j<n

We may factor both sides of each of the above equations in terms of their prime
ideal divisors. If the exact power to which the prime ideal p divides (apx — B;y) or
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() 1s e, and p does not divide g;, then er; must be divisible by m, and thus e is a
multiple of m/(m,r;) = s;. Therefore, since all prime divisors p of o; divide J', we
can rewrite the above equations as

(aox — Biy) = 1:6;", foreachi, 1 <i<n,
() = 108y, (23)

where each 1; divides (J')%~!

Let §; and 7; be those ideals with smallest norm in the inverse ideal classes of
6; and 7; in K, respectively. Both 8;0; = (z;) and 7;r; = (w;) are principal ideals, by
definition. Moreover, 7,6 is principal by (2.3), and thus so is 50, = (4;), say. Let 4
be a fixed integer of the field, divisible by all of the A;. Multiplying (2.3) through by
A, we obtain

(ao(Ax) — Bi(Ay)) = ((A/A)wiz]"), foreachi, 1 <i<n,
(4y) = ((1/ Ao)wozy

In each of these ideal equations, the ideals involved are all principal, and so the
integers generating the two sides must differ by a unit. Dirichlet’s unit theorem tells
us that the unit group U of K is finitely generated, and so U/U% is finite; that is, for
each i, the ratio of the generators of the two sides of the ith equation above, a unit,
may be written as u;v;%, where u; is a unit from a fixed, finite set of representatives
of U/U%, and v; is some other unit. Replacing v;z; in the equations above by z;, as
well as Ax by x and iy by y, we obtain

apx — Biy = ui(A/A)wizi’, foreachi, 1 <i<n,
y = uo(l/lo)woz(s,".

Let p; = Au;w;/2; for each i, and let L be the field K extended by (p,~)1/5‘, i=0,1,...,n,
a finite extension,

Since J' has only finitely many prime ideal divisors, there are finitely many
choices for the 7;, and thus for the w;. Since the class group of K is finite, there
can be only finitely many choices for the 8, and thus for the 4;, and so for A: let
u be an integer divisible by all of the possible 1. Therefore there are only finitely
many possible choices for the p; and so for the fields L: let M be the compositum
of all possible such fields L. We now replace (p;)'/%z; by z; in the equations above,
to deduce the following.

There exists a number field M in which there are infinitely many proper M-integral
solutions x,y,zo,21,...,2n to the system of equations

apx — fiy =z, for each i, 1 <i<n,
y=1z;. (2.4)

Taking the appropriate linear combination of any three given equations in (2.4),
we can eliminate x and y. Explicitly, if 1 <i < j <k < n, then

(B — Bz + (B — Bz + (Bi— Bz =0,
and if ro > 1, then z' —z + (B — B;)z = 0. (2.5)
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Note that we obtain a proper solution here, since the (zf",zj-’ ) all divide the fixed
ideal (1)J; and the z;" /zj" are all distinct, for if z}' /z;" = (2{)%/(2})¥, then

ax —Biy _ aox—Bjy
aox' — Biy’  aox' — Bjy”’
and so (Bi — Bj)(x/y — x'/y") = 0, contradicting the hypothesis.
Notice that if F has n simple roots, then all of the corresponding s; = m.
Therefore, descending as we did above for (2.1), we see that (2.5) describes a curve
of genus > 1if 2/n+ 1/m < 1, and so we have proved the following.

PROPOSITION 2.1. If F(x,y) has n simple roots, where 2/n+1/m < 1, then there
are only finitely many proper solutions to (1) in any given number field.

2.2 Iterating the descent, leading to the proof of Theorem 1. The descent just
described is entirely explicit; that is, we can compute precisely what variety we
shall descend to. On the other hand, the descent described in Section 3 invokes the
Riemann Existence Theorem at a crucial stage, and thus is not, a priori, so explicit.
For this reason, we shall proceed as far as we can in the proof of Theorem 1’ using
only the concrete methods of the previous subsection, which turn out to be sufficient
unless the elements of the set S are pairwise coprime.

Indeed, if the elements of S are pairwise coprime, and are not case (i) or the third
example in case (vi) of Theorem 1/, then there must be three elements p,q,r € S
with 1/p+1/q + 1/r < 1. Therefore we can apply Theorem 2 to (2.5), and deduce
that there are only finitely many proper solutions to (1).

Now suppose that there are infinitely many proper solutions to (1) in some
number field. We need consider only those sets S in which some pair of elements
have a common factor: say pa,pb € S, where p > 2 and a > b > 1 are coprime. To
avoid case (i), we may assume that S contains a third element g > 2. (For the rest
of this section, ‘case’ refers to the case number of Theorem 1'.)

The equations (2.5) imply that there are infinitely many proper solutions of some
equation of the form Ax? + ByP = Cz? in an appropriate number field. So, applying
Proposition 2.1 to this new equation, we deduce that 2/p+1/g > 1. Thus p=2, 3
or 4, since q = 2.

Now suppose that S contains a fourth element, call it r, with g = r = 2. Applying
the descent procedure of Subsection 2.1, we obtain infinitely many proper solutions
to simultaneous equations of the form

axP+cy? =c3zf and (xF +cyf =cw'

Applying the descent procedure of Subsection 2.1 to the first equation here, we
see from (2.4) that x° and y® can both be written as certain linear combinations
of u? and v?, where u and v are integers of some fixed number field. Substituting
these linear combinations into the second equation above, we see that Cw™ can be
written as the value of a binary homogeneous form in # and v of degree pq. It is
straightforward to check that this binary form can have only simple roots, and so,
by Proposition 2.1, we have 2/pq + 1/r > 1. This implies that pg < 4, since r > 2.
On the other hand, pq = 4 since p,q = 2, and so we deduce that p = ¢ = 2 and
r=2

We have thus proved that if {pa, pb,q,r} is a subset of S, then p =g =r = 2.
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But then {2,2,2a,2b} is a subset of S and, applying the same analysis to this new
ordering of the set, we obtain that 2a = 2b = 2. Therefore if S has four or more
elements, then all of these elements must be equal to 2. If so, then we multiply
together the linear equations (2.4) that arise from each s; = 2, giving a form with
|S| simple roots whose value is a square. Proposition 2.1 implies that we must be in
case (ii).

Henceforth we may assume that S = {pa, pb,q}, where 2/p+1/q > 1 and p =2,
3or4,withg=2,a=2b>=1and (a,b)=1. If a= 1, then b = 1, and we must be in
one of the cases (iii), (iv), (v), or the first example in (vi). So assume that a > 2.

From (2.5), we obtain a single equation of the form Ax% + By® = Cz9. We could
apply Theorem 2 to this equation, but instead prefer to continue with the explicit
descents of Subsection 2.1. From (2.4), this equation now leads to p equations of the
form

ux® + iy’ =28, i=12..,p. (2.6)

Eliminating the y® term from the first two such equations, we obtain an equation of
the form x* = y,z{ + y,2z%; we deduce that 2/q + 1/a > 1 by Proposition 2.1, and so
q<4

If (p,q) > 1, then we may re-order S so that ap is the third element, and thus,
by the same reasoning as above, ap < 4. However, since a,p > 2, this implies that
a=p=2,b=1and g =2 or 4, and so we have case (iv) or (v). So we may assume
now that (p,q) = 1 which, with all the above, leaves only the possibilities p = 2,
g=3andp=3,q=2

If g =3, p=2, then a =2 or 3. This leads to the second and last examples in
(vi), and S = {6,4,3} which was already ruled out, taking 4 as the third element.

If p=3, g =2, then we can eliminate x* and y from the three equations in
(2.6) to obtain a conic in variables z,,z,,z3. As is well known, the integral points
on this may be parametrized by a homogeneous quadratic form in new variables u
and v, say. Solving for x* in (2.6), we now obtain that x? is equal to the value of a
homogeneous form in u and v, of degree 4. It is easy to check that the roots of this
form must be simple, and so, by Proposition 2.1, a < 2, leading to the last example
in (vi).

3. Proper solutions of the generalized Fermat equation
It has often been conjectured that
AxP + By? = Cz" 2

has only finitely many proper solutions if 1/p + 1/q + 1/r < 1. One reason for this
is that the whole Fermat-Catalan Conjecture follows from the ‘abc’-conjecture (see
[40] and Subsection 5.2). Another reason is that the analogous result in function
fields is easily proved (see Subsection 5.1). A simple heuristic argument is that there
are presumably N1/P+1/a+1/r+o(l) integer triples (x, y, z) for which —N < Ax? + By9 —
Cz" < N; and so if the values of Ax? + By9 — Cz" are reasonably well-distributed
on (—N,N), then we should expect that 0 is so represented only finitely often if
I/p+1/qg+1/r <1

Let S,,, denote the surface in affine 3-space A defined by (2). When p =g =,
the proper solutions are in an obvious two-to-one correspondence with the rational

points on a smooth projective curve in P2, The genus of this Fermat curve is (";l ),
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which is > 1 when p > 3; and Faltings’ Theorem then implies that such a projective
curve has only finitely many rational points.
Define the characteristic of the generalized Fermat equation (2) to be

1 1 1
xp,gr) =-+-+-—-1L
P g r

Fix an embedding of Q = C. Given a curve X, defined over Q, we shall consider
absolutely irreducible algebraic covering maps n : X — P, defined over Q. Such a
covering map = is Galois if the group of fibre-preserving automorphisms of X has
order exactly d = deg.

Moreover, if 7 is unramified over P; \ {0, 1,00}, and the ramification indices of
the points over 0, 1 and oo are p, ¢ and r, respectively, then we say that ‘z has
signature (p,q,r). One can show that such a map exists for all positive integers
p,q,r > 1, by using the Riemann Existence Theorem. The (topological) fundamental
group IT; of Py \ {0,1,00} is a group on three generators d, 1,0, satisfying the
one relation g¢016,, = 1. (Here o; is represented by the appropriate loop winding
once around the deleted point i.) Let I',,, be the group with three generators yo, y;
and y, satisfying the relations

Yo =¥ =V = YoV1¥e0 = L.

The map sending o; to y; defines a surjective homomorphism from II; to I'yg,,. A
standard result of group theory says that I'y,, is infinite when 1/p+1/g+1/r <1,
and has non-trivial finite quotients. Pick such a quotient, G. The homomorphism
I, — T4, — G defines, in the usual way, a topological covering of P; \ {0, 1,00}
which is of signature (p,q,r) and has Galois group G. The Riemann Existence
Theorem tells us that such a covering can be realized as an algebraic covering
of algebraic curves over C, and a standard specialization argument allows us to
conclude that this covering map can be defined over some finite extension K of Q.
(For more details, see Theorem 6.3.1 on page 58, as well as the discussion in Sections
6.3 and 6.4, in [32].)

From the Riemann—Hurwitz formula, we can compute the genus of X using the
covering map obtained from the Riemann Existence Theorem:

d d d
2—2g=d(2—2-0)—(d—;)—-(d—a)—<d—;> = dy(p,q,r).

Thus g < 1, g = 1, g > 1, according to whether x(p,q,r) > 0, x(p,q,r) = 0,
1(p,q,r) < 0. Since g and d are non-negative integers, we have the following.

PROPOSITION 3.1.  For any positive integers p,q,r > 1, there exists a Galois cov-
ering m : X — Py of signature (p,q,r). Let d be its degree, and let g be the genus
of X.

If x(p,q,r) > O, then g =0 and d = 2/y(p,q,r).

If x(p.q,r) =0, then g = 1.

If x(p,q,r) <O, then g > 1.

Let n : X — Py be such a covering map of signature (p, g,r). Since it is defined
over Q, it can be defined in some finite extension K of Q. By enlarging K if
necessary, we can ensure that the automorphisms of Gal(X/P;) are also defined
over K.
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Given a point ¢ € P;(K)\ {0, 1,00}, define n~!(t) to be the set of points P € X(Q)
for which n(P) = t; by definition, this is a set of cardinality d. Define L, to be the
field extension of K generated by the elements of n~!(t). Evidently, L, is a Galois
extension of K with degree at most d.

Define V to be the finite set of places in K for which the covering n : X — P,
has bad reduction.

For a given place v of K, let e, be a fixed uniformizing element for v. Then,
for any t € Py(K)\ {0,1,00} = K* — 1, we have t = ey, where u is a v-unit
and ord,(t) is a fixed integer, independent of the choice of e,. Define the arithmetic
intersection numbers

(¢t - 0), := max(ord,(t),0),
(t- 1), == max(ord,(t — 1),0),
(t - 00), := max(ord,(1/1),0).
The following result of Beckmann [1] describes the ramification in L,.
PROPOSITION 3.2 (Beckmann). Suppose that we are given a point t € Pi(K)\
{0,1,00}, and a place v of K which is not in the set V (defined above). If
(t-0),=0(modp), (t-1),=0(modg) and (t-o0),=0(modr), (3.1)
then L, is unramified at v.

Since this result is so fundamental to the proof of Theorem 2, we provide the
following.

Proof of Proposition 3.2 (Sketch). Itis shown in [1] that L, is unramified when
(1'0)v=(t' l)u =(t'(X3),) =0,

and v is not in V. Let K(T) = K(X) denote the inclusion of function fields
corresponding to the covering X — P;. Let # be a place of K above v. Completing
at a place 2 above (v, X), one obtains an inclusion of Puiseux series fields

K, (X)) = La((X'7)),

where L;/K, is unramified. If (¢ - 0), is not zero, then Puiseux series evaluated at
X =t converge, and we have

(Lo)s = Lo((t'7)).
The condition (¢ - 0), = 0(mod p) implies that L, is unramified above v. A similar

argument holds if (¢t - 1), # 0 or (t - ), # 0 (by localizing at (T — 1) and (1/T),
respectively).

Proof of Theorem 2. Let (x,y,z) be a proper solution to the generalized Fermat
equation

AxP + By? = Cz', (2)
and take t = AxP/Cz". The congruences in (3.1) are satisfied if v does not divide A4,

B or C, and so, by Proposition 3.2, L, is unramified at any v ¢ V,pc (the union of
V and the places dividing ABC).



ON THE EQUATIONS z™ = F(x,y) AND Ax? + By? = Cz" 527

Minkowski’s Theorem asserts that there are only finitely many fields with
bounded degree and ramification; and we have seen that each L, has degree < d,
and all of its ramification is inside V4pc. Thus there are only finitely many distinct
fields L, with t = AxP/Cz" arising from proper solutions x, y,z of (2); and therefore
the compositum L of all such fields L, is a finite extension of Q.

Since the genus of X is > 1 and L is a number field, Faltings’ Theorem implies
that X(L) is finite. Therefore there are only finitely many proper solutions x, y,z to
(2), as X(L) contains all d points of n~!(4x?/By7) for each such solution.

This argument (with suitable modifications) also allows us to bound the number
of proper solutions in arbitrary algebraic number fields.

Our proof here is similar to that of the weak Mordell-Weil Theorem: the role
of the isogeny of an elliptic curve is played here by coverings of P; \ {0, 1,00} of
signature (p,q,r), and Minkowski’s Theorem is used in much the same way (see
(44]).

Theorem 2 may be deduced directly from the abc-conjecture. In fact, unramified
coverings of Py \ {0,1,00} also play a key role in Elkies’ result [12] that the abc-
conjecture implies Mordell’s Conjecture.

It is sometimes possible to be more explicit about the curve X and the covering
map 7, as we shall see in the next few sections.

4. Explicit coverings when 1/p+1/q+1/r <1

The curve X (of the proof in Section 3) can be realized as the quotient of the
upper half plane by the action of a Fuchsian group I'; that is, a discrete subgroup
of PSL,(R) with finite covolume. Actually, X is quite special among all curves of
its genus, since it has many automorphisms. One can sometimes show that these
automorphisms determine X uniquely over C, and hence the curve X may be
defined over Q using the descent criterion of Weil. Examples in which even the
Galois action of I is defined over Q can be constructed using the rigidity method
(see [32]).

Those finite groups G which occur as Galois groups of such coverings are said
to be ‘of signature (p, q,r)’. Evidently, such groups have generators a, f,y for which

F=p=y =afy=1.

Because of the connection to the Fermat equation, it is natural to start with
coverings of signature (p, p, p), where p is an odd prime. Although we are far from a
satisfying classification of coverings of signature (p, p, p), we discuss the construction
of a few examples in the next two subsections, which lead to the approaches of
Kummer, and Hellegouarch and Frey (17, 18], for tackling Fermat’s Last Theorem.
In the third subsection, we extend the Hellegouarch-Frey method to some other
cases of the generalized Fermat equation, by exploiting coverings coming from
modular curves.

4.1 Solvable coverings of signature (p,p,p). Let n : X — P, be a covering of
signature (p, p, p) with solvable Galois group G. Let G’ = [G, G] be the derived group
of G, and let G* := G/G’ be the maximal abelian quotient of G. In fact, = is an
unramified covering of a quotient of the pth Fermat curve.
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PROPOSITION 4.1.  The group G is isomorphic to either Z/pZ or Z/pZ x Z/pZ.
The quotient curve F = X /G’ is isomorphic (over Q) to a quotient of the pth Fermat
curve. The map X — F is unramified.

We may construct an example as follows. Let

TP _g;‘)

1/p

L=Q T””,(

be an extension of Q(T), where {, is a primitive pth root of unity. The inclusion
Q(T) = L corresponds to a covering map n : X — P of signature (p, p,p) with
Galois group

G =(Z/pZy~' = Z/pZ,

where the action of Z/pZ on (Z/pZ)*~" in the semi-direct product is by the regular
representation ‘minus the trivial representation’ (that is, the space of functions on
Z/pZ with values in Z/pZ whose integral over the group is zero). Note that the
action of G is defined over Q({,). The group G*® is isomorphic to Z/pZ x Z/pZ,
and X is isomorphic to an unramified covering of the pth Fermat curve with Galois
group (Z/pZ)P~2. If a? + b? = cP is a non-trivial solution of the Fermat equation,
then, setting t = a”/b?, one finds that L, is the Galois closure of Q({p,(a — Cpc)‘/”)
over Q. A crude analysis shows that L,/Q({,) is unramified outside the prime (1—-{,)
above p. A clever manipulation (that may require replacing X by a covering which
is isomorphic to it over Q), and a careful analysis of the ramification in L., lead
to a contradiction by showing that such an extension cannot exist when p does
not divide the class number of Q({,). This gives a (vastly over-simplified) geometric
perspective of Kummer’s approach to Fermat’s Last Theorem.

4.2 Modular coverings of signature (p,p,p). Let X(N) be the modular curve
classifying elliptic curves with full level N structure. The curve X(2) of level 2
is isomorphic to P, and has three cusps: let ¢ be a function on X(2) such that
t =0,1,00 at these cusps. The natural projection

X(2p) — X(2)

is then a covering of signature (p, p,p) ramified over t = 0,1,00. Its Galois group
PSL,(F,) is a non-abelian simple group. If a” + b7 = ¢ is a non-trivial solution of
the Fermat equation, then, setting t = a?/b?, one finds that ¢t corresponds (via the
moduli interpretation of X(2)) to the elliptic curve

Y?=X(X—d")(X +bP)

(or its twist over Q(i)). The field L, is then the field generated by the points of
order p of this curve; and so we recover the Hellegouarch-Frey strategy for tackling
Fermat’s Last Theorem (see also pages 193-197 of [22]).

4.3 Modular coverings of signature (p,q,r). Wiles’ attack on Fermat’s Last Theo-
rem [38, 46] uses the Hellegouarch—Frey approach via modular coverings, described
above. Serre [33] has noted that this analysis can be extended to certain other
equations of the form x” + y? = czP. In fact, what they do is to study Galois
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representations in GL(F,) arising out of the p-division points of suitable elliptic
curves. It is thus natural to prove the following.

ProPOSITION 4.2.  Coverings X — Y of signature (p,q,r) can arise only as pull-
backs of the covering X(p) — X (1) (up to Q-isomorphism), via an auxiliary covering
¢ : Y — X(1) where Y ~ Py, for the following such coverings ¢.

(2,3,p) : the identity covering X(1) — X(1).

(3,3,p) : the degree two Kummer covering of the j-line, ramified over j = 1728
and j = 0.

(2,p,p) : the covering Xo(2) — X (1), where ¢ is the natural projection.

(3,p,p) : the degree two Kummer covering of the j-line, ramified over j = 0 and
j=1728.

(3,p,p) : the covering Xo(3) — X (1), where ¢ is the natural projection.

(p, p, p) : the covering X(2) — X(1), where ¢ is the natural projection.

Analogously to Subsection 4.2, we let t € Y be the rational point arising from a
solution to the appropriate generalized Fermat equation. The curve corresponding
to ¢t (that is, a curve with j-invariant ¢(t)) gives rise to a mod p Galois representation
with very small conductor, and one can hope to derive a contradiction from this.

The equations xP + y? = z2 and x? + y? = z3. Given a? + b? = ¢, with (a,b,c)
proper, we consider the curve

Y2 =X342cX? +a’X

arising from the universal family over Xo(2). The conductor of the associated mod p
representation is a power of 2 (which can be made to divide 32, possibly after
rearranging a and b).

Given a? — b? = ¢3, with (a, b, ¢) proper, the classification result states that there
are two ‘Frey curves’ that can be constructed, namely

Y2 = X3+ 3cX?+4b°
and
Y2 = X3 —3(9a% — bP)cX + 2(27a% — 18aPb® — b%).

The second comes from a universal family on Xo(3). Each of these curves gives rise
to a mod p Galois representation whose conductor can be made to divide 54, by
permuting a and b as necessary.

By analysing these representations (using a result of Kamienny on Eisenstein
quotients over imaginary quadratic fields [20]), the first author proved, in [7], the
following.

PrROPOSITION 4.3. Let p > 13 be prime. If the Shimura—Taniyama Conjecture is
true, then we have the following.
(i) The equation x” + yP = z2 has no non-trivial proper solutions when p
1 (mod 4).
(ii) The equation xP + yP = z* has no non-trivial proper solutions when p =
1(mod 3) and p is not a Mersenne prime. (A Mersenne prime is one of the

form 29 —1)
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The equation x> + y3 = zP. Inspired by Gauss’ proof that x* + y3 = z3 has no
non-trivial solutions over Q({3), where {3 is a primitive cube root of unity (see [30,
pp. 42-45]), we construct a ‘Frey curve’ corresponding to a proper solution (a, b, c)
of

a+b =,
where p > 3 is prime. Since Q({3) = Q(/—3) has class number one and a finite unit

group whose order is not divisible by p, we may factor the right-hand side of the
equation above so that all three factors

a=a+b, f=Cla+{’h, B=Ca+(b
are pth powers in Q(./—3), at least when 3 does not divide z. Furthermore, they
satisfy
at+B+p=0,

and hence give rise to a solution of Fermat’s equation of exponent p over Q(/—3).
Unfortunately, the Hellegouarch—Frey approach does not apply directly to Fermat’s
equation over number fields other than Q (in fact, ({,{?,—1) is a solution to

x" 4+ y" = z" in Q(/—3) when (6,n) = 1).
On the other hand, following Hellegouarch-Frey, we can consider the elliptic
curve

Ef:y* = x(x—=B)x+p)
defined over Q(y/~3). Expanding the right-hand side, the equation for E; becomes
¥ = x> — =3(a—b)x* + (a* — ab + b¥)x.
Although this curve is not defined over Q, a twist of E; over Q((—3)!/*) is
E :y* = x> +3(a—b)x* + 3(a® — ab + b*)x.

The j-invariant and discriminant of E are
3p3
a’b
Jj=23—r, A=-2'3cP
c<P

The conductor of the mod p representation associated to E can be shown to divide
2433 and 54 if c is even. An analysis very similar to the one in [7] shows that this
representation cannot exist when ¢ is even, and hence we have the following.

PROPOSITION 4.4. Let p > 13 be prime. If the Shimura—Taniyama conjecture is
true, then an even pth power cannot be expressed as a sum of two relatively prime
cubes.

The equation x> +y* = z’. When a? +b* = c?, the corresponding ‘Frey curve’ is
y? = x3 + 3bx + 2a,

which has discriminant 1728¢?; and the conductor of its associated Galois represen-
tation divides 1728. Because of the rather large conductor, the analysis along the
lines of the previous section seems rather difficult. In fact, the equation x? + y3 = 2’
does have a few proper solutions, including three rather large ones (mentioned in
the Introduction in connection with the Fermat—Catalan Conjecture).
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The proper solutions
(a,b,c) = (3,—-2,1), (2213459,1414,65), (21063928, —76271,17)
lead to the following (possibly twisted) ‘Frey curves’, each with conductor 864c:

y?=x3=3x46, y*=x>+16968x + 35415344

and
y? = x> — 228813x — 42127856,

respectively. These have isomorphic Galois representations on the points of order 7.
The ‘Frey curve’ corresponding to the proper solution (15312283,9262,113) is

y2 = x3 4+ 27786x + 30624566.

The associated representation on the points of order 7 is isomorphic to that of the
curve y? = x* —3x, which has complex multiplication by Z[i]. Since 7 is inert in Z[i],
this mod 7 representation maps onto the normalizer of a non-split Cartan subgroup
of GL,(F7). These examples address a question posed by Mazur in the introduction
of [27]. (Other examples of isomorphic mod 7 representations are given in [21]. We
actually need to use the main theorem of [21] to prove what is asserted above. We
are unable to check whether our isomorphisms are symplectic—that is, that they
preserve the Weil pairing.) Recently, Noam Elkies has proved that there are infinitely
many pairs of non-isogenous elliptic curves over Q giving rise to isomorphic Galois
representations on the points of order 7.

The large solutions of x> + y*> = +2z% may be used similarly to construct non-
isogenous elliptic curves with isomorphic Galois representations on the points of
order 8 (which we leave to the reader).

5. The generalized Fermat equation in function fields, and the abc-conjecture

In most Diophantine questions it is much easier to prove good results in function
fields (here we restrict ourselves to C[t]). In Subsection 5.1 below we show that (2)
has no proper C[t]-solutions when 1/p + 1/q + 1/r < 1. On the other hand, in
Section 7, we shall exhibit proper CJt]-solutions of (2) for each choice of p,q,r with
1/p+1/q+1/r > 1. (All of this was first proved by Welmin [45] in 1904, and
re-proved by an entirely different method by Silverman [36] in 1982.)

The proof of this result stems from an application of the abc-conjecture for
C[t], which is easily proved. Its analogue for number fields is one of the most
extraordinary conjectures of recent years, and implies many interesting things about
the generalized Fermat equation (which we discuss in Subsection 5.2 and Section 9).

It is typical, in the theory of curves of genus O and 1, that if one finds a rational
point, then it can be used to derive infinitely many other such points through some
geometric process (except for ‘torsion points’). However, it is not clear that new
points derived on the curves corresponding to (2) will necessarily lead to new proper
solutions of (2). In Subsection 5.3 we discuss a method of deriving new proper
solutions by finding points on appropriate curves over C[t].

5.1 Proper solutions in function fields. Liouville (1879) was the first to realize
that equations like (2), in C[t], can be attacked using elementary calculus. Relatively
recently, Mason ([25], but see also [37]) recognized that such methods can be applied
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to prove a very general type of result, the so-called ‘abc-conjecture’. A sharp version
of Mason’s result, which has appeared by now in many places, is as follows.

PROPOSITION 5.1.  Suppose that a,b,c € C[t] satisfy the equation a+b = c, where
a, b and c are not all constants and do not have any common roots Then the degrees
of a, b and c are less than the number of distinct roots of a(t)b(t)c(t) =

Proof. Define w(t) = []s)=0(t — 0). Since a+b = ¢, we have d +b' = ¢
(where each y’ means dy/dt), which implies that

aw(log(a/c))' + bw(log(b/c)) = w(a(loga)' + b(logb)' — (a + b)(logc))
=w@+b ~-c)=0.

Therefore a divides bw(log(b/c)), and so a divides w(log(b/c))’ since a and b have
no common root. Evidently, w(log(b/c)) # O, else b and ¢ would have the same
roots, which by hypothesis is impossible unless b and ¢ are both constants, but then
a, b and ¢ would all be constants, contradicting the hypothesis. Therefore the degree
of a is at most the degree of w(log(b/c)). However, if b/c = [Tbe(s)=0(t — 8)%, then
(log(b/c)Y Zbc(é)-o es/(t — ), so that w(log(b/c)) is evidently an element of C[t]
of degree lower than that of w. This gives the result for a, and the result for b and
¢ is proved analogously.

Applying this to a solution of (2) proves a strong version of our ‘Fermat—Catalan’
Conjecture for C[t]. Take a = Ax?, b = By?, ¢ = CZ’, to obtain pdeg(x), q deg(y),
rdeg(z) < deg(xyz) and so I/p+1/q+1/r> 1.

The proposition above (and even the proof) may be generalized to n-term sums
(see [25], [S] and [43]). From Theorem B of [5] we know that if yy,ys,...,y, are
non-constant polynomials, without (pairwise) common roots, whose sum vanishes,

then deg(y;) is less than the number of distinct roots of y;y;... ys, for each j.
Proceeding as above, we then deduce the following.

PROPOSITION 5.2. If p1,pa,...,Dpn are positive integers with

1/pi+1/pa+...+1/ps < 1/(n—2),

then there do not exist non-constant polynomials xi,x, ..., X,, without (pairwise) com-
mon roots, such that x§' + x5 + ...+ xI =0.

5.2 The abc-conjecture for integers, and some consequences. Proposition 5.1, and
particularly its formulation, has influenced the statement of an analogous ‘abc-
conjecture’ for the rational integers (due to Oesterle and Masser).

THE abc-CONJECTURE. For any fixed ¢ > O, there exists a constant k; > 0 such
that if a+ b = c in coprime positive integers, then
c <k, G(a,b,c)'*, where G(a,b,c) H p.
plabc

Fix ¢ = 1/83, and suppose that we are given a proper solution to (2) in which
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all terms are positive. Then
G(xp’yq’zr) < xyz < pr|1/p|yqll/q|zr|l/r < |zr|1/p+1/q+l/r < lzr'4]/42,

since 1/p+1/q + 1/r < 41/42. Therefore, by the abc-conjecture, we have z" < K?;u,
and thus the solutions of (2) are all bounded. This implies the ‘Fermat—Catalan’
Conjecture; and indeed this argument may be extended to include all equations (2)
where the prime divisors of ABC come from some fixed finite set (see [40]).

In [12] Elkies succeeded in applying the abc-conjecture (suitably formulated
over arbitrary number fields) to any curve of genus > 1, and deduced that the
abc-conjecture implies Faltings’ Theorem. His proof inspired some of our work here,
particularly Theorem 2.

The following generalization of the abc-conjecture has been proposed for equa-
tions with n summands, implying a result analogous to Proposition 5.2.

THE GENERALIZED abc-CONJECTURE. For every integer n = 3, there is a constant
T(n) such that for every T > T(n), there exists a constant kt > O such that if
x1+x3+...+x, =0 in coprime integers xi,xy,...,Xn, and no subsum vanishes, then

T
max |x;| < K .
: |j| T( H P)

PlX1X2..Xn

5.3 Generating new proper integer solutions when 1/p+ 1/q + 1/r =2 1. Given
integers p, q,r, we wish to find f(t),g(¢), h(t) € Z[t] \ Z, without common roots, for
which

tf (e + (1 — 0)g(t)? = h(t), (5.1)
and the degrees of f(t)?, g(t)4 and h(t)" are equal (to d, say). Applying Proposition
5.1 to any such solution, we determine that d+ 1 < d/p+d/q + d/r + 2, and so
lp+1/g+1/r>1.

Now if we find a solution to (5.1), let
F(u,v) = v"?f(u/v), G(u,v) =v¥g(u/v) and H(u,v) = v h(u/v).
Then, given any solution x, y, z to (2), we derive another:
X =xF(uv), Y =yGu,v), Z =zH(uv), (5.2)

where u = Ax? and v = Cz'.
If x, y,z had been a proper solution to (2), so that (u,v) = 1, then
k =(AXP,BY?) = (uF(u,v)’,vG(u,v)"),
which divides
K = (u,G(0,1)?)(F(1,0)?,v) Resultant(f, g).
Thus k is easily determined from the congruence classes of u and v (modK). We
may thus divide out an appropriate integer from each of X, Y and Z to obtain a
proper solution, provided that k is a [p, g, r]th power.

We measure the ‘size’ of a solution of (2) by the magnitude |x"y?z"|. Thus our
new proper solution is larger than our old proper solution unless

| XP /K1Y /K| |Z7 /K| < [xPy?z"],
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that is, |FP/k||G%/k||H" /k| < 1. Since each term here is an integer, this implies that
either one of them is zero, or else they are all equal in absolute value. Thus either
f(u/v)g(u/vih(u/v) = 0, or f(u/v)’? = g(u/v)? = h(u/v)" using (5.1) (here we do not
allow u = v or u = 0 since they would both imply xyz = 0).

5.4 Number fields in which there are infinitely many solutions. In Section 7 we
shall give values of a,b,c for which ax? + by? = cz" has a parametric solution, for
each choice of p,q,r > 1 with 1/p+1/q+ 1/r > 1. Now ax? is a pth power in
Q(a'/?,b'/4 /7y (similarly by and cz’), so we have a parametric solution, in this
field, to x? + y? = z". Then, given any choice of coprime 4, B,C, we can certainly
choose the parameters in an appropriate number field so that A divides x?, B divides
y4, and C divides z". This thus leads to a number field in which there are infinitely
many solutions of (2).

In the last subsection we described a technique that allowed us, given one proper
solution to (2), to generate infinitely many (except in a few easily found cases),
provided one has an appropriate solution to (5.1). In Section 6 an appropriate
solution will be found whenever 1/p+1/q+1/r = 1. Thus given algebraic numbers
x,y chosen so that C divides Ax? + By?, we can find z from (2), and then obtain
infinitely many solutions to (2) by the method of (5.1). If our original choices of x, y
lie in the torsion of the method of Subsection 5.3, then we may replace x by any
number = x (mod C) (and similarly y by any number = y (mod C)), and it is easily
shown to work for some such choice.

For any F(X,Y) and m satisfying the cases (i)-(vi) of Theorem 1, we claim
that there are number fields K in which (1) has infinitely many proper K-integral
solutions. To see this, start by taking K to be a field which contains c!/™ as well as
the roots of F(t,1) = 0. Then we shall try to select X and Y so that each of the
factors in cases (i)-(vi) is itself an mth power.

In (i) we can determine X and Y directly from the two linear equations X —aY =
u™, X — BY =™, where u and v are selected to be coprime with each other and
f — a, but with v — u divisible by  — a.

In each of the cases (i1i)—(vi) we obtain three linear equations in X and Y, which
we can assume are each equal to a constant times an appropriate power of a new
variable. Eliminating X and Y by taking the appropriate linear combination of the
three linear equations, we reach an equation of the form (2), with 1/p+1/q+1/r > 1.
Above, we saw how to find number fields in which there are infinitely many proper
solutions to such equations.

The only case not yet answered arises from case (ii) of Theorem 1, defining an
equation (2) with m = 2 and F quartic. Select x and y to be large coprime integers,
and z = . /F(x, y); by the appropriate modification of the Lutz-Nagell Theorem, we
see that these can certainly be chosen to obtain a non-torsion point on the corre-
sponding curve. Taking multiples of this point, we obtain an infinite sequence of solu-
tions to z2 = F(x, y) in the same field. As in Subsection 1.1, we may replace x and y by
appropriate multiples, to force (x, y) to belong to a certain finite set of ideals, and thus
find proper solutions (we leave it to the reader to show that these must be distinct).

6. The generalized Fermat equation when 1/p+1/q+1/r =1

In each of these cases, the proper solutions to (2) correspond to rational points
on certain curves of genus one. The coverings X are well known, and are to be found
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in the classical treatment of curves with complex multiplication; in fact, it has long
been known that the equations x? + y? = 2" with xyz 0 and 1/p+1/g+1/r=1
have only one proper solution, namely 32+ 1 = 23. Our discussion here is little more
than a reformulation of the descent arguments of Euler and Fermat, from their
studies of the Fermat equation for exponents 3 and 4.

In looking for appropriate solutions to (5.1), we note that we may look for
suitable Q[t]-points on the genus one curve E, : tf(¢)? + (1 — t)g(t)? = 1 (taking
r = 3, 6 and 4 below, respectively), which we shall be able to find by taking multiples
of the point (1,1). Thus, except in a few special cases, any one proper solution to
(2) gives rise to infinitely many.

6.1 Ax3 4+ By® = Cz3: the Fermat cubic. The elliptic curve E : v> = u®> — | has
j-invariant 0 and complex multiplication by Q(/=3). It has no non-trivial rational
points, as was proved by Euler in 1753 (though an incomplete proof was proposed
by Alkhodjandi as early as 972). In fact, the proper solutions to the equation

A+ By’ +Cz2* =0

correspond to rational points on a certain curve of genus 1, which is a principal
homogeneous space for E.

In 1886, Desboves [9] gave explicit expressions for deriving new proper solutions
from old ones (essentially doubling the point on the associated curve). In fact, these
identities correspond to doubling the point (1, 1) on E,, obtaining

t(t—2°+(1 -1 41> =(1-2)

Thus if we begin with a solution (x, y, z) of Ax* 4+ By’ = Cz, then we have another
solution to AX? + BY3 = CZ> given by

X=x(u—2), Y=yu+v), Z=:zv-2u),

where u = Ax3 and v = Cz3 (and k = (3,u + v)?). All cases where this fails to give a
larger proper solution correspond to the point (+1,+1,41) on x3 + y* = 223

6.2 Ax? + By? = Cz%: another Fermat cubic. The elliptic curve E : v? = u® — 1
also has j-invariant 0. The map 7 : E — P; defined by n(u,v) = u® = t has degree 6
and signature (3,2, 6). The points t = y3/2z% in P;(Q) derived from proper solutions of
x? = y3— 26 are in a natural 1-1 correspondence with the points (u,v) = (y/z%,x/2°)
in E(Q). Euler showed that E(Q) has rank 0, and hence x* = y* — z° has no
non-trivial proper solutions. One can look similarly at rational points on twists of
the curve E, when considering Ax? = —By?® 4+ Cz%.

In fact, Bachet showed that, other than 3?2 — 23 = 1, there are no non-trivial
proper solutions to x* — y* = 26,

Quintupling the point (1,1) on E,, we obtain
t(t"? + 4680t" —936090¢'° + 10983600:° — 151723125:% — 508608720t
+ 3545695620t° — 12131026560¢> + 27834222375t — 37307158200
+ 27119434230t — 10331213040t + 1937102445)% + (1 — £)(£® — 2088¢7
+ 64908¢% + 21384¢° + 1917270t* — 5616216¢° + 70071481
— 4251528t + 531441)> = (5t* + 360> — 1350¢% + 729)°.
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A straightforward computation gives that k is always the sixth power of an integer
dividing 283°. All cases where this fails to give a larger proper solution correspond
to the points (+1,1,+1) on 4y> — 3x? = 2%, and (43,2, +1) on x? — y? = 25,

6.3 Ax* + By* = Cz?*: the curve with invariant j = 1728. Fermat’s only pub-
lished account of his method of descent was his proof, in around 1636, that there are
no non-trivial proper solutions to x* 4+ y* = z2, thus establishing his Last Theorem
for exponent 4. In 1678 Leibniz showed that x* — y* = z2 has no non-trivial proper
solutions.

The elliptic curve E : v2 = u>—u has j-invariant 1728 and complex multiplication
by Q(\/—_l). The map = : E — P, defined by n(u,v) = u> = t has degree 4 and
signature (4,2,4). The points t = x*/y* in P|(Q) derived from proper solutions
of x* — y* = z? are in a natural 1-1 correspondence with the points (u,v) =
(x%/y%,xz/y?) in E(Q); and one can show easily that E(Q) has rank 0.

Tripling the point (1,1) on E,, we obtain

t(t? + 6t — 3)* + (1 — 0)(t* — 28> + 662 — 28t + 1)* = (31> — 6t — 1)*.

A straightforward computation gives that k is always the fourth power of an integer
dividing 8. All cases where this fails to give a larger proper solution correspond to
the point (1,1,1) on x* 4 y* = 222,

7. The generalized Fermat equation when 1/p+1/q+1/r > 1

In each of these cases the proper solutions to (2) correspond to rational points
on certain curves of genus zero. Sometimes, we can write down equations for Galois
coverings of signature (p, g,r), which may allow us to exhibit infinitely many proper
solutions to (2). To each such (p,q,r) we shall associate a certain (explicit) finite
subgroup I' of PGL,, corresponding to the symmetries of a regular solid. The
covering 7 is then given by the quotient map = : Py — P;/I'; and we may write
down equations for n over Q, even though the action of I' may not be defined
over Q. Rational points on these coverings will then lead to infinitely many proper
solutions to (2).

It is easy to show that there are infinitely many proper solutions of every equation
xP +y? = z" with 1/p+1/q+ 1/r > 1. If two of the exponents are 2, then the
solutions are easy to parametrize; small examples in the other cases include

13 +377=228%, 143344332 =424 3*4+46°=13> and 10°+3°=7.

7.1 Ax?+ By? = Cz': dihedral coverings. The dihedral group I' = Dy, = (0,7 :
0" = 12 = (07)® = 1), of order 2r, acts on t € X = P; by the actions a(t) = (¢
and t(t) = 1/t, where {, is a primitive rth root of unity. The function (¢" +t™")/4
generates the field of invariants of I', and so

Mt X — P defined by w5, (t) = (" + t_r)2/4
is a covering map of signature (2,2,r) with Galois group I'. One can recover the
parametric solution (' + 1) — (¢ — 1)> = 4¢" from .

Parametric solutions to x* + y* = z" may be obtained by defining polynomials
x and y from the formula x(u,v) + iy(u,v) = (u + iv)", with z = u® 4 v%. Parametric
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solutions to x? 4+ y2 = z" may be obtained by taking (u" +2""2v")? — (W' — 2" 2")? =
(2uv). In each case, we obtain proper solutions whenever v is even and (u,v) = 1.

To obtain a solution to (5.1), define polynomials f and h by h— \ftf =
(1 — Ol — (1 = 1))*, so that tf2 + (1 — t)(1 — (1 — £)2)* = h% With some
work we find that, in all cases, k = 1 and our new proper solution is larger than our
old one.

7.2 Ax® + By® = Cz2: tetrahedral coverings. The group of rotations, I', which
preserve a regular tetrahedron, is isomorphic to the alternating group on four letters.
The covering map of degree 4,

m : X' — Py defined by m(t) = —(t — 1)*(t — 9)/64t,
has signature (3,2,3), since 1 —m;(t) = (t2 — 6t —3)?/64t. Let X be the Galois closure
of X’ over P;. Since the covering map n; : X — X’ must be cyclic of degree 3,
and ramified at both 0 and 9 in X’, we may define it by my(u) = 9/(1 — u3). The
composition covering map mp33 = T; o T, : X — Py is then given by
(u® + 8)*u’ —(ub — 20u’ — 8)?
64(u3 — 1)%’ 64(u? — 1)3
The general solution to x* 4+ y* = z? splits into two parametrizations:
x=a(@ —8b°)/1, y=4aba+b)/2, z=(a®+20a’b> —8bS)/1’,
where (a,b) = 1, a is odd and t = (3,a + b) (due to Euler, 1756); and
x = (a* + 6a%b? — 3b%) /12, y = (3b* + 6a2b® — a*)/1?, z = 6ab(a* + 3b*)/13,
where (a,b) = 1, 3 does not divide a, and t = (2,a + 1,b + 1) (due to Hoppe, 1859).
One obtains infinitely many proper solutions of x*+y? = Cz?2 by taking ab = Ct2
even, with (a,b) = 1 and 3 not dividing 4, in Euler’s identity
(6ab + a* — 3b%)} + (6ab — a® + 3b*)* = ab{6(a®> + 3b%)}.
Moreover, Gerardin (1911) gave a formula to obtain a new solution from a given
one:

so that 1 —my33(u) =

m233(u) =

(@ + 4b*) — (3a’b)® = (a® + b*)(a® — 8b*)%.
A solution to (5.1) is given by
H(=7 — 42t + 12)* + (1 — £)(1 + 109t — 10982 — £3)? = (1 — 42t — 7t?)>.

The prime divisors of k can be only 2 and 3, but k is not necessarily a sixth power,
so proper solutions do not necessarily lead to new proper solutions of the same
equation.

7.3 Ax? + By* = Cz*: octahedral coverings. The group of rotations, I', which
preserve a regular octahedron (or cube), is isomorphic to the permutation group
on four letters. A map 7,34 : Py — P of signature (2,3,4) can be obtained by
considering the projection Py — P/T’, so that 7,34 has degree [I'| = 24. However,
we may obtain an equation for w34 without explicitly finding the I'-invariants or
even writing down the action of I', by observing that one can take my34 = ¢ - 1233,
where ¢ : P; — P, is a map of degree 2 for which

¢(1)=00, ¢(0)=¢(0)=0 and ¢ is ramified over 1.
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The only function ¢ with these properties is ¢(t) = —4t/(t — 1)?, so that

—2 (e — 1) + 8))
(u6 — 20u> — 8)*

mo34(u) =

and
((u® + 8)(us + 88u> — 8))?

(u — 20u3 — 8)*

We have a parametric solution to x2 + y3 = z* by taking A = a*, B = b* and
C=44—-3Bin

C?(164% +4084B + 9B*)* + (144A4B — cz)3 = AB(24A4 + 18B)*.

This leads to a proper solution if b is odd, 3 does not divide a, and (a,b) = 1.
We have a parametric solution to x2 + y* = z3 by taking P = p%, 0 = ¢ in

16PQ(P — 3Q)(P? + 6PQ + 810%)*(3P? + 2PQ + 3Q?)
+ 30+ P)(P*—18PQ +90%)* = (P —2PQ + 90%)*(P? + 30PQ + 90%).

This leads to a proper solution if p + g is odd, 3 does not divide p, and (p,q) = 1.
There is an easy parametric solution to 108x* + y* = z2 obtained by taking
U=u*,V=0*in

108UV(U + V)* + (U? — 14UV + V2 = (U 4+ 33U%V = 33UV2 — V3)%

This leads to a proper solution if uv is even and (u,v) = 1.

I —my3a(u) =

74 Ax? + By’ = Cz*: Klein’s icosahedron. We follow [19, p. 657] in describing
Klein’s beautiful analysis of x* 4+ y*> = z3. The group of rotations, I', which preserve
a regular icosahedron, is isomorphic to the alternating group on five letters. A map
n23s : Py — Py of signature (2,3, 5) can be obtained by considering the projection
P, — P;/T, with T thought of as a subgroup of PGL,. The ramification points of
orders 2, 3 and 5 occur, respectively, as the edge midpoints, face centres and vertex
points of the icosahedron.

The zeros of z(u,v) = uv(u'® + 1140’ — v'%) in P((C) lie at u/v = 0, o and
(" : 5) e%mi’5 corresponding to the twelve vertices of the icosahedron under stereo-
graphic projection onto the Riemann sphere. The homogeneous polynomials

y(u,v) = I_;T det(Hessian(z(u,v))) and x(u,v) = gg ’z)),

are invariant under the action of the icosahedral group. They satisfy the icosahedral
relation x(u,v)? + y(u,v)* = 1728z(u,v)° leading to Klein’s identity,

(a® 4 522a°b — 10005a*b* — 10005a°b* — 522ab> + b®)?
— (a* — 228a°b + 4944°b* + 228ab’ + b*)* = 1728ab(a* + 11ab — b?)°.

This gives proper solutions to x>+ y? = Cz* if we take ab = 144Ct>, with gcd(a, b) =
1 and a s 2b(mod 5).

The factor 1728 = 123 which appears above is familiar to amateurs of modular
forms (it appears in connection with the modular function j). Klein observed that
this is no accident, since our icosahedral covering can be realized as the covering of
modular curves X(5) — X(1), where X(1) is the j-line (and, indeed, our tetrahedral
and octahedral coverings above can be realized as the coverings X(3) — X(1) and
X(4) — X (1), respectively).
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8. The ‘class group’ obstruction to a ‘local-global’ principle
If 3 does not divide ab, then z = (a® + 29b%)/3, x = az, y = bz is a solution to
x? 4 29y% =323, (8.1)

Taking a = b =1 gives x = y = z = 10; taking a = 2, b = 1 gives x = 22,
y =z = 11. For every prime p, at least one of these two solutions has no more than
one of x, y,z divisible by p; that is, there exist ‘proper local solutions’ to (8.1) for
every prime p. So are there any proper solutions ‘globally’?

Suppose that we are given a proper solution to (8.1). Factor (8.1) as an ideal

equation:
(x + V=29y)(x — v/=29y) = 3)(z)*.

G = (x + /=29y, x — \/=29y) divides (2x,2+/—29y,3z%) = (2,z), which equals 1,
since if z were even, then x and y must both be odd, and so (8.1) would give
1 4+ 29 = 0(mod 8), which is false. Thus G = 1, and so (choosing the sign of y

appropriately)
(x+v=29y) = 3,1 +/=29)¢3 and (x —/=29y) = (3,1 — V=29)3,

where {,{_ = (z). This implies that the ideal classes to which (3,1 £ \/—29) belong
must both be cubes inside the class group C of Q(./—29). However, this is false,
since they are both generators of C, which has order 6. Therefore (8.1) has no proper
solutions, indicating that the ‘local-global’ principle fails.

It is not too hard to generalize this argument to obtain ‘if and only if” conditions
for the existence of proper solutions to (2), especially for carefully chosen values of
A, B, C and r. We prove the following.

PROPOSITION 8.1.  Suppose that r = 2, and b and c are coprime positive integers
with b = 1 (mod 4) and squarefree, and ¢ odd.

(i) There are proper integer solutions to x* + by* = cz" if and only if there exist
coprime ideals J.,J_ in Q(y/=b) with J_J_ = (c), whose ideal classes are
rth powers inside the class group of Q(/—b).

(ii) There are proper local solutions to x* + by? = cz" at every prime p if and
only if the Legendre symbol (—b/p) = 1 for every prime p dividing c; and
when r is even, we have (c/p) = 1 for every prime p dividing b, as well as
¢ =1(mod4).

Proof. Given proper integer solutions to x? + by? = cz’, the proof of (i) is
entirely analogous to the case worked out above. In the other direction, if the ideal
class of J; is an rth power, we may select an integral ideal {; for which J,.(} is
principal, (x 4+ \/—by) say. Then (x + by?) = (cz’) where (z) = Norm({, ), and the
result follows.

In (ii) it is evident that all of the conditions are necessary. We must show how
to find a proper local solution at prime p given these conditions. It is well known
that if prime p does not divide 2bc, then there is a solution in p-adic units x,y to
x? + by? = ¢, and so we can take (x,y,1). It is also well known that if prime p is
odd and (—b/p) = 1, then there is a p-adic unit x such that x> = —b, and so we
take (x, 1,0). Similarly, if (c/p) = 1, then there is a p-adic unit x such that x? = c,
and so we take (x,0,1). If r is odd and p does not divide ¢, then we may take
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(c"+tY/2 0, ¢). Finally, if r is even and ¢ = S(mod 8), then there is a p-adic unit x
such that x2 = ¢ — 4b, so we take (x,2, 1).

The conditions for proper integer solutions, given above, depend on the value of
(r,h) where h is the class number of Q(\/—_b). On the other hand, the conditions for
proper local solutions everywhere, given above, depend only on the parity of r. The
local-global principle for conics tells us that these are the same for r = 2; it is thus
evident that the conditions are not going to coincide if (r,h) = 3.

The techniques used here may be generalized to study when the value of an
arbitrary binary quadratic form is equal to a given constant times the rth power of
an integer. The techniques can also be modified to find obstructions to a local-global
principle for equations x? + by* = cz3, and probably to x> + by*> = cz2. On the other
hand, there are never any local obstructions for equations Ax2 4+ By* = Cz® which
have A, B, C pairwise coprime: if p does not divide AB or AC or BC, then we can
take (4B%,—AB,0) or (42C3,0,AC) or (0, B>C?, B2C), respectively. Could it be that
such equations always have proper integer solutions?

9. Conjectures on generalized Fermat equations

9.1 How many proper solutions can (2) have if 1/p+1/q+1/r < 1? Itisevident
that any equation of the form

(123 = y3zDx" + (21x5 — 25xD)y? = (xhyf — x{y3)2"

has the two solutions (x;, y;, z;). If there are three solutions to an equation (2), then
we may eliminate A, B and C using linear algebra to deduce that

P4 ,r P.4,r PLd,r — P,4,r p.4q.,r pP.4q.,r
X1¥223 + X3Y32) + X3)125 = X{ Y32y + X123 + X3, 2).

If 1/p+1/q + 1/r is sufficiently small, then the generalization of the abc-conjecture
(see Subsection 5.2) implies that this has only finitely many solutions. Thus there are
only finitely many triples of coprime integers A, B, C for which (2) has more than two
proper solutions. (Bombieri and Mueller [3] proved such a result unconditionally in
C[t], since [S] and [43] provide the necessary generalization of the abc-conjecture.)

If n=p=gq=r, then it is easy to determine A4, B,C from the equation above.
In fact, Desboves [8] proved that the set of coprime integers A, B, C, together with
three given distinct solutions to Ax" + By" = Cz", is in 1-1 correspondence with the
set of coprime integer solutions to

M+s"+t"=u"+0v"+w" with rst = uow,

where {r",s",t"} N {u",v",w"} = @. Applying a suitable generalized abc-conjecture
to this, we immediately deduce the following. There exists a number ng such that
if n > no, then there are at most two proper solutions to Ax" + By" = Cz" for any
given non-zero integers A, B, C. Moreover, there exist infinitely many triples 4,B,C
for which there do exist two proper solutions.

9.2 Diagonal equations with four or more terms. The generalized abc-conjecture
implies that

apxi +apxB + ..+ axh =0
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has only finitely many proper K-integral solutions, in every number field K, if
> ; 1/p; is sufficiently small. Here are a few interesting examples of known solutions
to such equations.

(i) Ryley proved that every integer can be written as the sum of three rational
cubes. (This appeared in the Ladies’ Diary (1825) 35.) For example, Mahler noted
that 2 = (1 + 6t%)* + (1 — 6¢3)> — (6t2)>. Ramanujan gave a parametric solution for
B}y +d =1

(3a* + Sab — 5b%) + (4a* — 4ab + 6b?)* + (5a® — Sab — 3b%)* = (6a* — 4ab + 4b*)*.

Examples include 3% +4%+ 5% = 6%, and Hardy’s taxi-cab number 134123 = 9>+ 10%,
(ii) Taking u = (xn—yn)/2, v = yn, Where (""”5‘/‘_3) = (5"‘2/‘_3) , in Diophantos’
identity

W ot (o) =20 + ww + 07, 9.1)

gives proper solutions to a* + b* + ¢* = 2d"; specifically,

Xn 2 I 4+(x"_y")4+y4=2x72". 92)
2 2 "

(iii) Euler gave the first parametric solution to x*+y* = a*+b*, in polynomials of
degree seven; an example is 59% + 158% = 1334 + 1344, By a sophisticated analysis of
Demjanenko’s pencil of genus one curves on the surface t* +u* +v* = 1, Elkies [11]
showed that there are infinitely many triples of coprime fourth powers of integers
whose sum is a fourth power. (This radically contradicts Euler’s Conjecture that for
any n = 3, the sum of n— 1 distinct nth powers of positive integers cannot be an
nth power.) The smallest of these is

95800 + 217519* + 414560* = 422481%.

(iv) In 1966, Lander and Parkin gave the first counterexample to Euler’s Conjec-
ture,

27° + 84° +110° + 133° = 144°.

In 1952, Swinnerton-Dyer had shown how to give a parametric solution to a° +b° +
¢’ = x° + y° 4+ 2°; a small example is 49° + 75° + 1075 = 395 4+ 925 + 100°.

(v) In 1976, Brudno gave a parametric solution to a® + b8 + ¢ = x6 + 6 + 26 of
degree 4; a small example is 3¢ + 195 + 226 = 106 + 156 + 236.

We do know of various examples of

Ax/ + By* + Cz/ = Dw™ (4)

with infinitely many proper solutions and 1/j+ 1/k + 1/¢ 4+ 1/m small, as follows.

(a) (9.2) is an example of an equation (4) having infinitely many proper solutions,
with 1/j+1/k+1/¢+1/m arbitrarily close to 3/4. We can also obtain this by taking
u=xP and v = y? in (9.1).

(b) In Section 6 we saw how to choose A4, B, C for any given 1/p+1/q+1/r =1so0
that there are infinitely many proper solutions to (2). Substituting u = Ax? and v =
By? of (2) into Diophantos’ identity (9.1), we obtain infinitely many proper solutions
of some equation (4) with exponents (4p,4q,4r, 2), so that 1/j+1/k+1/{+1/m = 3/4.

(c) By taking t = 2z" in the identity (t+1)* —(¢t—1)3 = 6t2+2, we obtain infinitely



542 HENRI DARMON AND ANDREW GRANVILLE

many proper solutions to x> + y* = 24z%" + 2w™; here 1/j+ 1/k + 1/¢ + 1/m is
arbitrarily close to 2/3.

(d) Elkies [13] points out that by taking 2+t —1=u? and > —t — 1 = Av?,
whenever this defines an elliptic curve of positive rank (for instance, when A = 5), in
the identity (> +t — 1)> + (2 —t — 1)> = 2(t® — 1), we obtain infinitely many proper
solutions to some equation (4) with 1/j+1/k+1/£+1/m=1/6+1/6+1/6+1/6 =
2/3.

(e) Elkies [13] also points out that )_ ._, a((ax)? + 2(ax) — 2)°> = 0. Thus by
taking x? 4+ 2x — 2 = ay? and x?> — 2x — 2 = bz? whenever this defines an elliptic
curve of positive rank over Q(i), we obtain infinitely many proper solutions in Z[i]
to some equation (4) with 1/j+1/k+1//+1/m=1/10+1/10+1/5+1/5=3/5.

(f) If we allow improper solutions, that is where pairs of the monomials in (4)
have large common factors, then one can obtain 1/j + 1/k + 1/£ + 1/m arbitrarily
close to 1/2 from the identity x*" + 2(xy)" + y?" = (x" + y")2.
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