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THAINE'S METHOD FOR CIRCULAR UNITS 
AND A CONJECTURE OF GROSS 

HENRI DARMON 

ABSTRACT. We formulate a conjecture analogous to Gross' refinement of the Stark 
conjectures on special values of abelian L-series at s = 0. Some evidence for the 
conjecture can be obtained, thanks to the fundamental ideas of F. Thaine. 

1. Introduction. This paper formulates a refined analogue of the usual class number 
formula for a real quadratic extension of Q, using circular units. The statement of this 
conjecture is inspired by an analogous conjecture of Gross [Gr]. Strong evidence for 
this conjecture can be given thanks to F. Thaine's powerful method [Th] for generating 
relations in ideal class groups using circular units. 

The first two sections briefly recall Dirichlet's analytic class number formula and 
Gross's refinement of it; they are there mainly to fix notations and provide motivation. 
Section 4 states the new conjecture. The remaining sections are devoted to proving 
various results that support it. 
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NOTATIONS. If K is a number field and w is a place of K lying above a prime v of 
Q, we denote by Kw the localization of K at w, and let Nw be the order of its residue 
field. The w-adic norm || ||w is normalized so that it is equal to Nw"1 on uniformizing 
elements. 

Given a finite abelian extension M/K, we let 

(1) rec w : ^—>Gal(A/ /£) 

denote the reciprocity map of local class field theory. When w is unramified in M/K, it 
factors through the valuation map K„ —» Z and maps uniformizing elements to FrobH,, 
the Frobenius element in Ga\(M/K) characterized by 

(2) Frobvv(x) = xNw (mod w), 

where w is any place of M above w. 

This work was supported at different stages by a Sloan Doctoral Dissertation fellowship, an NSERC 
postdoctoral fellowship, and by NSF grant # DMS-8703372.A04. 

Received by the editors April 6, 1993. 
AMS subject classification: 11R11, 11R04, 11R18, 11R27, 11R29. 
© Canadian Mathematical Society, 1995. 

302 



THAINE'S METHOD 303 

We write Div(A )̂ for the free Z-module generated by the finite places of K, and 
P(K) for the submodule generated by the principal divisors. The class group C(K) is the 
quotient D\v(K)/P(K). Given a set S of places of K, let (S) be the Z-span of the elements 
ofSinDiv(£),andlet 
(3) Cs(K) = (S)\D'w(K)/P(K). 

2. Dirichlet's analytic class number formula. We recall briefly the analytic class 
number formula of Dirichlet relating the behavior of the L-series of a number field at 
s = 0 to the arithmetic properties of that number field. The exposition follows closely 
the one in [Gr]. 

Let AT be a number field, and choose a finite set S of places of K containing all of the 
archimedean places. Let T be a finite set of places of K disjoint from S. 

There is associated to this situation the local data which describes the splitting of the 
primes in K. This data is conveniently encoded in the Euler product 

(4) LSJ(K,s) = 110 ~ Nv-V1 11(1 - Nv1"5). 
v<£s veT 

Here the products are taken over the non-archimedean places of K. The Euler product 
defines the L-function LSj(K, s) in some right half plane of convergence, and it is known 
that LSJ{K, s) has a meromorphic continuation to the entire complex plane. 

The number field K together with the sets S and T gives rise to more subtle global 
invariants. 

1. The group (CÇ)̂  of S-units which are congruent to 1 modulo the places of T. This 
is a finitely generated abelian group which is free when T is large enough. Let r denote 
the rank of this group. By Dirichlet's unit theorem, one has r = #(S) — 1. 

2. The torsion subgroup [(0|)r]t0rsion which is cyclic of order wsj. (Typically we will 
choose T so that wsj ~ 1-) 

3. The Picard group Pic(0^)r of invertible Qs-modules together with a trivialization 
at T. It is a finite extension of Cs(K). Let hsj denote its order. 

4. The S-unit regulator Rsj, defined as follows. Let X = Div°(£) be the free abelian 
group generated by the formal linear combinations of places of S of degree 0, 

The logarithmic embedding log5: 0 | —* R (g)Xof the S-units is defined by 

(5) log5(w) = X>g||w||v<8>v. 

Both (O^)T and X are of rank r. Let 

(6) Ar log^: A'"O* —• Ar(R 0 X) 

denote the map induced by log5 on the top exterior powers, and define the regulator R$j 
by 
(7) Ar logs(l i A • • • A lr) = RS.T ® (v, A • • • A vr), 
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where 7 i , . . . , lr (resp. v i , . . . , vr) are integral bases for (0*S)T modulo torsion (resp. X), 
normalized so that R$j is positive. 

The theorem of Dirichlet asserts that the above global invariants appear in the Taylor 
expansion of the L-function LSj(K, s) which was constructed using purely local data. It 
is one of the simplest manifestations of a local global principle which is pervasive in 
number theory. 

THEOREM 2.1 (DIRICHLET). /. The L-series LSj(K, s) vanishes to order r at s = 0. 
2. The Taylor expansion ofLsj(K, s) at s = 0 is given by: 

T t r \ nSjRsj r ~( r+K 

LSj{K, s) = s + 0{s ). 

3. Gross's refined class number formula. We now turn to the refined class number 
formula of Gross, following closely the account given in [Gr]. 

Let L be a finite abelian extension of K which is unramified outside the places of 
S, and let G = Ga\(L/K). Define a complex-valued function 8G on the dual group 
G = hom(G,C*)by 
(8) êG(x) = LsAK,X,0l 

where, for a complex character \ : G —> C* and a complex number s with Ks > 1, the 
complex function LSJ(K, \,s) is defined by the convergent Euler product 

LS.T(K,X,S) = 11(1 - x(Frobv)Nv-*)-1 n ( l - x(Frobv)Nv'^). 
v£s ver 

This function has a meromorphic continuation to the entire complex plane and is regular 
at s - 0. Let 0Q G C[G] be the Fourier transform of 0G, 

Thus, 0G - HgeG a(g)g interpolates values of LS,T(K, X, 0), 

(9) E«fe)xfe) = ^K^,x,o). 
geG 

For the rest of this section, we make the following assumption on T, which forces wsj ~ 1 
so that the leading term in the class number formula is integral. 

HYPOTHESIS 3.1. Suppose that T contains two primes of unequal residue character­
istic, or that T contains a prime whose absolute ramification index in K is strictly less 
that the residue field characteristic minus 1. 

Under this condition, Gross [Gr] shows that the element QG belongs to the integral 
group ring Z[G]. 

FACT 3.2 (GROSS). 0G belongs to Z[G]. 



THAINE'S METHOD 305 

The order of vanishing of 6G: Let / denote the augmentation ideal in the group ring 
Z[G]. It is the kernel of the augmentation homomorphism e:Z[G] —> Z which sends 
a G G to 1. The powers / D I2 D • • • define a decreasing filtration on Z[G]. Because of 
the exact sequence 
(10) 0 — > I — > Z [ G ] - ^ Z — > 0 , 

one has Z[G]/I = Z. The higher quotients in the filtration are torsion. For instance, there 
is a natural homomorphism G —> I/I2 which sends a G G to a — 1 (mod T2). In fact, 
this is an isomorphism. More generally, there is a natural surjective map 

(11) Syn / (G)—>F/r l 

which sends cr\ <g> • • • <g)ar to (en — 1) • • • (ar — 1) (mod Y+x ). (This map is not necessarily 
an isomorphism; for a detailed study of the map Sym(G) —> © r /

r / / r H , the reader may 
consult [Pa], [HI], [H2].) 

The element #G which interpolates special values at s = 0 of the twisted L-function 
LSj(K,\,s) is what plays the role of the L-function in Gross's refined class number 
formula. To say that this element vanishes to order r is to say that it belongs to the r-th 
power of the augmentation ideal. 

CONJECTURE 3.3 (GROSS). The element 6G belongs to F. 

The leading coefficient 0G in the refined class number formula is defined to be the 
projection of 6G to Y/'F+x. It is natural to search for an interpretation of 6G which is 
analogous to the analytic result of Dirichlet. 

To do this, it suffices to change the definition of the regulator term Rsj defined in the 
previous section. Consider the homomorphism 

(12) r e c s : 0 * - ^ ( / / / 2 ) ® z X 

defined by 
(13) recs(w) = XXrecv(^v) — l) ® v, 

ves 
where uv G K^ is the natural image of u. Let Ar rec^ denote the induced map on the top 
exterior powers: 

Arrec5: A r0\ —> Ar(I/f ®X) —>(f/Ir+l)® ArX, 

and define the regulator Rss in Y /Y*1 by 

(14) Ar rec5(7i A • • • A 7r) = Rsj ® (vi A • • • A vr), 

where 7 i , . . . , lr and v i , . . . , vr are the integral bases chosen in Section 2. 

CONJECTURE 3.4 (GROSS). 

9G = —hsjRsj-
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REMARKS. 1. If AT has a complex place v, then the T-factors in the functional equation 
force a zero at s = 0 in the twisted L-function Lsj{K, x, s) for all x- Hence OQ; = 0. But 
recv is trivial, so that RS,T = 0 as well. Therefore the conjecture is trivially verified. It is 
only interesting when K is a totally real field. 

2. Because of the presence of the archimedean places, one has 2RSJ = 0 in F / P+]. 
(Also one can show that 26G - 0.) Thus Gross's conjecture for number fields is really a 
parity statement—it was proved by Gross when S contains only the archimedean places 
by using the 2-adic congruences of Deligne-Ribet for totally real fields [DR]. 

4. A refined conjecture for circular units. Let u be an even primitive Dirichlet 
character of conductor N. In order to simplify the exposition, we assume that uo is 
quadratic, and let K denote the corresponding real quadratic field. Choose an auxiliary 
real abelian extension M of Q with conductor prime to N, and let G denote its Galois 
group. For all \ in G, the Dirichlet L-series 

oo _ , 

(15) Ls(s,uX)= E ux(n)n-s=U(l-ux(p)p-s) 
(n,S)=\ p)(S 

vanishes at s = 0, because of the pole in the factor T(js) in the functional equation. 
One might be tempted to define a function 6G on G by 0'G(x) = L'S(Q, UJ\), and letting 
QG G C[G] be its Fourier transform as in Section 3. However, the coefficients of 0'G 

are not integral, or even algebraic. This leads to the problem of finding an appropriate 
substitute for 9G, and formulating a conjecture analogous to conjectures 3.3 and 3.4 for 
it. 

Fix a choice of primitive n-th roots of unity C^ G Q for each n, satisfying the 
compatibilities 

(16) C=C-
This choice determines a complex embedding ¥ of Qab, sending Ç# to e2mln. 

Let S be a square-free integer which is relatively prime to the conductor of UJ. Let 
Kg - K{\is). The circular unit as in Ks is defined by 

(H) as= I l a(Q,s-\r((T). 
aGGal(Q(/i<w)/Q(/i5)) 

Let r^ = Gal(Ks/K), and let / denote the augmentation ideal in the group ring Z[FS]. 
The theta-element Q'{OJ, S) is given by the formula 

(18) 8'(u,S)= X) (7«5 ® «7 G ^ (8) Z[Tsl 

Relation between 0'(u, S) and Z,̂ (0, UJ\)\ Let log: K*s —> C be a principal branch of 
the logarithm map induced by the complex embedding *F of Kg. Extending a character 
X G ts by linearity to the group ring Zfr^], one combines the maps log and \ to give a 
linear map 

log<g>x:AS<8>Z[r5]—^C. 
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We call a character \ of F s primitive if it does not factor through the natural homomor-
phism T^ —• !"> for any proper divisor T of £. The following theorem which describes 
the interpolation property of the circular units is due to Kummer. 

THEOREM 4.1. Assume that \ is primitive. Then 

\og®X{0\^S)) = £ x(")log | ra5 | = - 2 4 ( 0 , wx). 
<rers 

Thus 0'(OJ, S) can be viewed as an analogue of L's(s, UJ). 

Let 

Sspm = {l\S1cj(l) = \} 

Smen = {l\S,u;(l) = -l}. 

Let X~ be the group of divisors of K of degree 0 lying above S or oo on which the 
generator of Gal(X/Q) acts by —1. It is a free Z-module of rank r, where 

(19) r = #(5spIi t)+l. 

Let Voo = AQO — AQO be the difference of the two conjugate real places of K, and let 
vz = Xi — À/, where A/, Â, denote conjugate primes of K lying above // G £Spiit- Then 
{voo, v i , . . . , vr_i} forms a basis for X~. Let (0|)~ be the group of S-units of K on which 
the generator of Gal(A^/Q) acts by —1. This is also a free Z-module of rank r. Choose 
a basis u\,..., u)r for (Cg)~ m s u c n a waY m a t m e regulator Rs for the logarithmic 
embedding 

(20) (0*y —>X-®R 

relative to the bases {uj\,..., cur} and {VQO, VI , . . . , vr_i} is positive. 
From the non-vanishing of the classical Dirichlet L-series at s = 1 combined with the 

functional equation for these L-series, one knows that 

(21) ord5=0 L's(s,u) = r- 1, 

and that 

(22) \im L's(s,Lu)/(sr~l) = -2#s™«+lrhsRs. 

In the next section, we will show that a similar statement is true for the element 0'{UJ, S)\ 

THEOREM 4.2 (ORDER OF VANISHING). The element 0'(u;, S) belongs to the group 
K*S®F~X. 

The leading coefficient Q'{UJ, S) is defined to be the natural projection of ^(CJ, S) to the 
group K$ ® (F~l IT). One can interpret 0'(UJ, S) by means of a kind of S-unit regulator 
belonging to O* <g> (F~l / F). 
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The regulator: Let Y~ denote the group of divisors of K of degree 0 lying above S on 
which Gal(Q/Q) acts via the character u. This is a free module of rank r — 1 with basis 
{v i , . . . , vr-1}. One defines the map 

(23) rec5:(qÊ)-—>/5<g> lo­

using the reciprocity law of local class field theory as in Section 3. Define the partial 

regulators R[ E Fs~
l / Fs by the formula 

(24) rec5(7i A • • • A 7/-i A 7/+i A • • • A 7r) = #/ ® 0>i A • • • A vr_i). 

The regulator Rs G 0$ (g) (F~l /F) is given by 

(25) /fc = £(-l)/+17;®*/. 
/=i 

CONJECTURE 4.3. 

57(u;,^) = -2 # ( , S i n e r t ) + 1 M^-

We now give some evidence for Conjecture 4.3. Let 0'(CJ, 5)2 denote the projection of 
Q'(oj, S) in the group K$ (g) {F2~

x / F2), where h denotes the augmentation ideal in the group 
ring Z[|][r$]. The tensoring with the ring Z[^] has been made to avoid some technical 
complications associated with the prime 2: observe that (F2~

x /F2) = {F~x / F) <S> Z[j] is 
a finite abelian group of odd order, when r > 1. 

FACT 4.4. The natural map K* ® (Ffx /F2) —> K*s ® (F2~
x /F2) is an injection. 

The proof for this standard fact will be given in Section 9. 

Let n(S) be the greatest odd divisor of gcdns(l— 1). The following theorem gives some 
evidence for Conjecture 4.3: 

THEOREM 4.5. 7. Conjecture 4.3 is true when r = 1. 

2. 0'(u, S)2 belongs to K* <g) Ffx jF2. 
3. Ifgcd(hs(K), n(T)) = 1 for all T\S, then 0'(o;, S)2 belongs to (fs <g> (F2~

] /F2). 

4. hs(K) divides 0'(LJ,S)2. 

5. Suppose that Y s = T/ is cyclic, and that I is split in K/Q so that r = 2. Let X be a 
prime ofK above I, and let k\ ^ F/ denote the residue field at A. If the fundamental 
unit of K/Q is a generator for k*x, and gcd(/z(AT), n(lfj = 1, then 

~0'{u, l)2 = ±2hiRi (mod l\). 

The proof of this theorem, which uses the methods of Thaine [Th] in an essential way, 
will be given in Section 9. 
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5. The Euler system of circular units. Let S be the set of square-free integers 
prime to the conductor of K. For all S G S we are given the following data: 

1. An abelian extension Ks = K(fis) ofK with Galois group Fs = (Z/SZf. 
2. The circular unit a(S) in K$9 given by the formula 

(26) a(S)= n <r(Cw-ir(a). 
aeGal(Q(Cs^)/Q(Cs)) 

Writing S = l\ • • • ls, the extension/^ is a compositum of the fields Kj. which are linearly 
disjoint over K. Hence there is a canonical direct product decomposition 

(27) r5 = r7l x - x r / s 

which gives inclusions TT C F s for all divisors T of S. We will implicitly identify 
elements of r> with their images in Ts. For any T dividing S, the partial norm operator 
N^ in the group ring Z[Fs] is defined by 

(28) NT = J2 a. 
aerT 

These operators act on the field Ks in the natural way. Given T G S and / a prime in S 
which is prime to T, let 07 r G Gal(Â^/Q) be the automorphism sending the roots of 
unity to their /-th powers. 

PROPOSITION 5.1. 

Nl(a(Tl))=(l-a^)a(T). 

PROOF. We can write 

(29) Cri = CKn 

where al + bT= 1. Hence 

N,(l ~ CTI) = (1 - Cr)/(1 - O = (1 - vj}){\ - Cr), 

and the proposition follows from the definition of the circular units a(T) and a(77). 

PROPOSITION 5.2. a(Tl) = crJjOt(T) (mod A), where À w any prime ofKTi above I. 

PROOF. This follows from equation (29) together with the fact that a is an inverse 
for / in (Z/ TZ)* and that Q = 1 (mod A). 

Propositions 5.1 and 5.2 make up the axioms of an Euler system in the sense of 
Kolyvagin [Ko]. 

6. Divisibility properties of the circular units. In addition to the norm operator 
N/ defined in the previous section, the following derivative operators in the group ring 
Z[Fs] are a key ingredient in Kolyvagin and Thaine's method. For each prime / in 5, 
choose a generator 7/ for F/ and let 

(30) D ^ g / % D r = n D / , 
i=\ l\T 

the product being taken in the group ring Z[r>]. 

LEMMA 6.1. (7/ - 1)D/ = ( / - ! ) - N7. 
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PROOF. A direct computation. 
The group ring Z[T>] operates on the group K} in a natural way. Let 

(31) P(T) = DTa(T) G K*T, 

and let n(T) be the largest odd divisor of gcd/|r(/ — 1). 
From now on, we will assume that T is a product of primes which are split in K/Q. 

Although (3(T)9 unlike NTa(T), need not be invariant under the action of FT, it is invariant 
modulo n(T)-th powers. 

LEMMA 6.2. /3(f) belongs to (rT/K*T
n{T)fT. 

PROOF. By induction on the number of primes dividing T. Assume the lemma for all 
proper divisors of T, and write T = IQ. Modulo n(T), one has: 

(7/ - \)DTa(T) = (/ - 1 - Ni)DQa(T) (Lemma 6.1) 

= {O-JQ - l)DQa(Q) (Proposition 5.1) 

= 0 by the induction hypothesis. 

In the last step we use the fact that GLQ = 1 in Ga\(K/Q), so that OIQ belongs to VQ. 

LEMMA 6.3. The natural map K*/K*n{T) —> (K$/'K*T
n{T)fT is an isomorphism. 

PROOF. The group of n(T)-th roots of unity in Kj is trivial. Hence the sequence 

(32) 1 —>K*T^XtCT —> JCTjK\nT —> 1 

is exact. Taking r/-invariants gives rise to the cohomology exact sequence 

( 3 3 ) ! ^JC/KMT) _ ^ {K*T/K*«nfT — H\TT,K*T)n{T) —> 1, 

and the lemma follows from Hilbert's Theorem 90 {Hx (L r, K*T) = 0). 
Let K(T) denote the preimage of (3(T) by this isomorphism. For each prime / in 5, 

choose a place À of K above it. Write 

(34) vA:JT — > Z 

for the valuation map at A, and vA for the induced map on K*/^*"(r), making the following 
diagram commute: 

K* -^-> z 
1 I . 

K*/KMT) J±_> Z/n(t)Z 

Let ui denote the image of 7/ by the isomorphism T/ —>• (Z//Z)*. Given K in /f\ let 
redA(tt) G k\ be the reduction of K mod À, in the residue field k\ = Z//Z. Finally, let 

(35) l o g W / : £ * - ^ Z / ( / - l ) Z 

be the logarithm map to the base u\. The following proposition contains the information 
that we will need on the ideal factorization of the K{T). 
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PROPOSITION 6.4. 1. If I does not divide T, then VX{K(T)SJ = 0. 
2. If I is split in KT/Q, then 

VA (/c(r/)) = -logl l /(redA(/c(r)))(mod/i(r/)). 

PROOF. 1. If / does not divide T7, then A is unramified in Kr/K, and hence the 
valuation map vA extends from K*/K*n™ to K*T/K*T

n(T). But clearly vx((3(T)) = 0, since 
j3(T) is a unit in K*T. 

2. Let A' be a prime of Kj above A, and let A" be the prime of KJI above A'. Let 
v\i (resp. vy) be the valuations on Kj (resp KTj) normalized to be 1 on uniformizing 
elements, so that 

(36) vA/(/c) = — v A « ( « ) , « € *£. 

Writing 
(37) K(Tl) = l3(Tl)p-«Tl), p£KTh 

and using the fact that f3(Tl) is a unit, one finds 

(38) VX(K(TI)) =-^vAp). 

By definition of uj, one has 

(39) vy,(p) = logM/ (redA,((7/ - l)p)) (mod / - 1). 

But 

(-yi- \)P = Mfî)l(1'~ • l)/3(7*0] 

n(Tl) 
l)Dra(77) + (l --o-^)D ra(r)] 

—-D r a (77 ) , since aLT
 : 

n{Tt) 
= 1. 

Hence by Proposition i 5.2, 

(40) redv •'((7/ " l)p) = redA{^iDra(7)), 

and hence 

(41) log„,redA„((7, - l)p) = l o g ^ r e d y ^ ^ f l r ) ) ( m o d l~ »)• 

Combining equations (38), (39) and (41), one obtains 

(42) Î>A (n(Tlj) = - logKy (redA K(T)) (mod rc(77)) 
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as desired. 
If M is a Z-module and m belongs to M, we say that n G Z divides m if there exists 

m1 G M with n • m1 = m. Given a rational prime p, one defines ovdp(m) to be the integer 
M such that pM divides m, but pM+] does not. (If this integer does not exist one sets 
ordp(m) = oo.) Recall that Cs(K) is defined to be the quotient of the ideal class group of 
K by the subgroup generated by the prime ideals lying above S, and that hs(K) denotes 
its order. The main result of Thaine and Kolyvagin gives a bound on the order of Cs(K) 
in terms of the divisibilty of the elements tz(S). 

THEOREM 6.5 (THAINE, KOLYVAGIN). The greatest common divisor of n(S) andhs{K) 
divides K(S). 

PROOF. We prove this by induction on hs(K). If hs(K) = 1, then the theorem is trivially 
true. Otherwise, choose a prime p dividing hs(K). Suppose that ordp(«;(«S)) = Mo < oo, 
and let M = M0 + 1. We must show thatpM does not divide gcd(«(5), hs(K)). \fpM does 
not divide n(S), we are done. Hence, suppose that/?M divides n(S). (So that in particular, 
p is odd). Now, choose a prime / in S not dividing S, such that 

1. / splits in K/Q; let À denote a prime of K lying above it. 
2. l=\ (mod PM)(i.e.,l splits in Q(/y#)/Q). 

3. ori,(redA(«(S))) = M0. 
4. The image of A in Cs(K) 0 Zp is non trivial, and the exact sequence 

0 —>(\) —> CS(K) ®ZP~^ Csl(K) 0 Zp —> 0 

is split (and hence in particular ordp(A) = 0). 
Let F = K(jipM, «(S)1 /^). Conditions 2 and 3 are equivalent to the condition that FrobA 

in Gal(F/£) belongs to the subgroup Gal(F/A^Ay/)) and is non-trivial. Condition 4 is 
equivalent to a condition on FrobA in Ga\(Hs/K) where Hs is a non-trivial subfield of 
the Hilbert class field H of K. Since F and H are linearly disjoint over K (as can be 
seen for example by ramification considerations), it follows from the Chebotarev density 
theorem that conditions 1—4 can be imposed simultaneously. 

Let m = ordp^K,(Sl)). By combining Proposition 6.4 with condition 3 satisfied by /, 
one has 
(43) ordp(vA(«(S/)))=M0, 

and hence a fortiori m < M0. Moreover, since pM divides / — 1, it also divides n(Sl). 
Let p be the natural projection of K(S[) to K* /K*^ , and let K'(SI) = pl/pm which is well 
defined in K*/K*^ m. By equation 43 and condition 3, one has 

(44) V A ( « , ( S / ) ) = I I - / / # ° - W , 

where u is a unit in Z//?M"WZ. HencepMo"m annihilates the class of A in C(S)®Z/pM-mZ. 
Because of condition 4, we have 

(45) #(\)<pM°-m. 
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In particular, m < Mo, and by the induction hypothesis, 

(46) #CSi(K)®Zp<prn. 

Combining the inequalities (45) and (46) gives 

(47) #Cs(K)®Zp<pM\ 

so that/?M does not divide hs(K), as was to be shown. 

7. Formal properties of Q'(UJ, S). We now turn to the study of the element ff(u), S) 
defined by 

(48) tf(u>, S) = £ aa(S) ®aeK*s® Z[TS]. 

Given 

7 G G*l(Ks/Q) = Tsx Gal(A:/Q), 

let 1(7) denote its natural projection in TT. 

The group Ga\(Ks/Q) acts on the left of Kg (g) Z[FS] by the Galois action, and rs acts 
on the right by multiplication in the group ring. 

LEMMA 7.1. I6'(LU1S) = LU(I) • ff(u,S) -1(S)-1. 

PROOF. A change of variable argument. 

Given a divisor T of S, let PSJ\ K* ® Z[TS] ~^K*S® Z[TS] be the map induced by the 
projection r^ —» I> C VS. 

LEMMA 7.2. 

PssfifaS)) = 0'(o;, r> • I ! (1 - ^(0 • ^ r ) . 
/|s/r 

PROOF. One has 

(49) Psj{&(u, Sj) = E (N5/r ' ™fc ® *)• 
aerT 

Hence by Proposition 5.1 

(50) Ps^faS)) = ( n (1 - ^ r ) V V , ^ 
v/|s/r y 

which is equal to Q\UJ, T) • n ( l — ui(l)aLT) by Lemma 7.1. 
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8. The order of vanishing of 0'(u, S). Let us write S as S = PQ, where P - l\ • • • ls 

is a product of split primes in K/Q, and Q is a product of inert primes. When a runs over 
r$, write 
(51) a = or\ • - <TST, 

for its unique decomposition as a product with 07 G T/., and r £ T^. 

LEMMA 8.1. 

0'(o;,S)= £ aas{crx-\)'-'(as-\y 

- £ U / 7 T) • fl^, 7 -0 -110- */T(?)) • 
T\PJytPK l\P/T ' 

PROOF. By direct computation, 

(52) j:aas(a[-\)---((Ts-l>r = e,(uj,S)+ £ ^i{P / T)PSJQ{e\uj,S)). 
oeYs T\JfP 

The formula now follows from Lemma 7.2. 
We are now ready to prove Theorem 4.2. 

THEOREM 4.2 (ORDER OF VANISHING). The element Q'(UJ, S) belongs to K*s <g) F = 

PROOF. By induction on s, using Lemma 8.1 for the induction step. 

9. The leading coefficient. We now turn to the study of the element Q'(u, S) defined 
by projecting Q'(UJ, S) to the value group K*s ® (F2~

x M)-

LEMMA 9.1. The leading coefficient 6'(UJ, S)2 belongs to the subgroup of elements in 

(K*s <g> (F2~
l /F2))

Vs fixed by the left (Galois) action ofFs. 

PROOF. Given a in Ts, by Lemma 7.1 we have 

(53) (a - IjiïfaSk = V(u,Sh(a-x - 1), 

and Lemma 9.1 follows. 

LEMMA 9.2. Let F be a finite abelian group of odd order, and let F s act on the module 
K*S®F by the Galois action. Then the natural map 

K* ® r - > (K*s <g> rfs 

is an isomorphism. 

PROOF. By decomposing T as a direct product of cyclic groups, one reduces the proof 
of Lemma 9.2 to the case where F is cyclic of odd order n. If Ks contains no n-th roots 
of unity, then we are in the situation of Lemma 6.3. In general, one uses the fact that the 
restriction map 

(54) H\K,tin)-^H\Ks,Hn)rs 

is an isomorphism. 

LEMMA 9.3. n(S)(7/1 - ! ) • • • (7/, - 1) = 0 (mod F2). 
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PROOF. We can write (7/, — l)---(7/s — 1) as a sum of terms of the form 
(7^} - 1) • • • (7^} - 1) (mod F2\ where the 7^} are of order a power of p (p an odd 
prime) and at least one of the 7^ is of order exactly q = ^«W5)) . Hence it suffices to 
show the theorem when n(S) = q is a power of a prime. In that case, one has 

0 = ^ - 1 = E Q ( 7 / , - 1 ) ' , 

so that <7(7/. — 1) G /|- ^ n e r e s u l t follows. 
The following proposition gives an inductive formula for the leading coefficient 

PROPOSITION 9.4. 

0'(o;, S)2 = 2#(/'2>«(P) ® (7/, - 1) • • • (7/, - 1) 

T\P,T?P 

PROOF. This follows from Lemma 8.1 together with the fact that 

(55) £ eras <g> (a{ - 1) • • • (a, - l)r = 2#^Q)(3(P) 0 (7/, - 1) • • • (7/, - 1) 
oers 

in £* 0 (T^1 / f ) . Because (7/, - 1) • • • (7/T - 1) is killed by n(P) in 7?T! //$ (Lemma 9.3), 
one can replace f3(P) by K(P) in the formula. 

In the remainder of this section we will prove Theorem 4.5 which we first recall: 

THEOREM 4.5. 7. Conjecture 4.3 is true when r - 1. 2. ~Q'(OJ,S)2 belongs to K* (g) 
F2'/F2. 

3. Ifgcd(hs(K), n(T)) = I for all T\S, then 0'(u;, S)2 belongs to 05* ® {Ffl / F2). 

4. hs(K) divides O'iuj,^. 
5. Suppose that Ts - F/ is cyclic, and that I is split in K/Q so that r = 2. Let X be a 

prime ofK above I, and let k\ ~ F/ denote the residue field at X. If the fundamental unit 
of K/Q is a generator for k\, and gcd(h(K), n(lfj = 1, then 

Q'(uo, l)2 = ±2hiRi (mod l\). 

PROOF. 1. When r = 1, we have 0'{u, S) = PS,\ (fl'(u/, SJ), where PSA : Z[r5] -> Z is 
the augmentation map. By lemma 7.2, 

(56) PSA (0\^S)) = a ( l ) n ( l - ^(0) = 2# ( /^a(l), 
i\s 

since all the / dividing S are inert in K/Q. We know from Dirichlet's analytic class 
number formula that a(\) = 2h\R\, and hence the result follows. 

2. Combine Lemmas 9.1 and 9.2. 



316 HENRI DARMON 

3. By Proposition 6.4, we have VA (^(T7)) = 0(mod«(r)) for ail places À which do not 
lie above S. Let (K* /K*n(r))(S) denote the subgroup of elements in K* /K*n{T) satisfying 
this property. There is a natural exact sequence 

(57) 0 —> 0*s/o;n{T) —> (K*/K*n{T))(S) —> CS(K) ® Z/n(T)Z. 

The assumption that (hs(K), n(TJ) = 1 for all T\S implies that the natural map from 
°s/°sn{T) t 0 (K* /K*n{T))(S) is an isomorphism, so that the K(T) are S-units modulo 
n(T)-th powers. The result follows from Proposition 9.4. 

4. This is a direct consequence of Theorem 6.5 combined with Proposition 9.4. 
5. The fact that gcd(///(X), «(/)) = 1 implies, by the previous fact, that «(/) is an /-unit 

of K modulo n(l)-th powers, and hence 0'(o;, /) belongs to Oj (g (I2 /1\). We want to prove 
the equality of two objects in 0* g) (I/I2). For this, we use two maps: 

(58) </>,: o; <g> (I2/I
2) —* / 2 / 4 02: Of (g) (I2/I

2
2) —+ ij/ll 

The first is induced from the map vA: O* —> Z, and the second from the map recA: 0/ —-> 
T/ —> h/I2 given by the reciprocity law of local class field theory. Because 
gcd(/z(/f), «(/)) = 1, the kernel of the map </>i is just (fK g) (h/lj). The assumption that 
the fundamental unit for AT is a generator of k\ means that c/>2 is injective on 0*K g) (h/lj)-
Hence, if two elements in 0* g) (h/1\) have the same image by </>i and </>2, then they are 
equal. 

Recall that u\ G k\ denotes the element which corresponds to the chosen generator 7/ 
of Y1 by the reciprocity law of local class field theory. By Proposition 9.4, we have 

(59) 9 V , O2 =/</)& ( 7 / - 1 ) . 

Hence, by Proposition 6.4, 

(60) <l>x(V(u>, l)2) = vA(«(/)) <8> (7/ - 1) = logM/(«(l))(7/ - 1). 

Let u be a fundamental unit for K. By Dirichlet's class number formula, we can write 

(61) K(\) = u±2h, 

so that logM/(ft(l)) = ±2h \ogUj(u). It follows that 

(62) <j>i(0'M2) = ±2Alogtt/(«)(7/ - 1) = ±2A(rec(W) - l) . 

Since «;(/) = (3([)xn^l\ where x belongs to K*, and since 

normKl/K((3(l)) = 1 

by Proposition 5.1, we have by taking norms: 

(63) «(/)' l ^0%^/ 



THAINE'S METHOD 317 

Hence /ç(/)(/~"1)/w(/) = ± norm^/^x, so that n{lfa is a norm for some a > 0. Since norms 
lie in the kernel of the local reciprocity map, we find that 

(64) fa{&(u,th) = 0. 

We choose a Z-basis for O*, given by a fundamental unit u and an /-unit w(/). This 
can be done in such a way that 
(65) vx(u(l))=h/hh 

since this number is the order of the class of A in the ideal class group ofK. The regulator 
Ri can be written explicitly as 

(66) Ri = ±(u <g> (rec(w(/)) - l) - u(l) <g> (rec(w) - l) ). 

Hence, 
(67) <j)\{2hiRi) = ±2hivx(u(l)) <g> (rec(w) - l) = ±2h(rec(u) - l ) . 

It is immediate from the definition of Ri that 

(68) 02(4M/) = 0. 

Combining equations (62), (64), (67), and (68) we find that 

9'(uj, l)2 = ±2hlRl (mod l\\ 

as claimed. 
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