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In this note we consider the equations

xn + yn = z2, and xn + yn = z3,

which have a long history in connection with Fermat’s last theorem. Call an
integral solution (x, y, z) to one of the above equations proper if gcd(x, y, z) =
1, and say that it is non-trivial if xyz 6= 0. We propose the following conjec-
ture:

Conjecture.

1. The equation xn + yn = z2 has no non-trivial proper solutions when
n ≥ 4.

2. The equation xn + yn = z3 has no non-trivial proper solutions when
n ≥ 3.

Remarks:
1. It is easy to see that the equations x2 + y2 = z2 and x3 + y3 = z2 have
infinitely many proper solutions. Fermat himself showed that the equation
x4 + y4 = z2 has no non-trivial integer solutions, probably the most elemen-
tary and widely quoted example of his method of descent, and thus derived
a proof of Fermat’s last theorem for exponent 4.

2. The statement that xn + yn = z3 has no non-trivial proper solution when
n = 3 is the statement of Fermat’s Last Theorem for exponent 3, which was
proved by Euler in 1753.
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Andrew Wiles recently stunned the mathematical world by announcing
the proof of Fermat’s Last Theorem. In fact, he proved (for semi-stable
elliptic curves) the celebrated conjecture of Shimura and Taniyama which
asserts that every elliptic curve defined over Q is the quotient of a modular
curve X0(N). Earlier work of Frey [Fr], Serre [Sr2], and Ribet [Ri] had shown
that this conjecture implied Fermat’s last theorem.

Our main result is the following:

Theorem A. Let p > 13 be prime. If the Shimura-Taniyama conjecture is
true, then

1. The equation xp + yp = z2 has no non-trivial proper solutions when
p ≡ 1 (mod 4).

2. The equation xp + yp = z3 has no non-trivial proper solutions when
p ≡ 1 (mod 3), and p is not a Mersenne1 prime.

The proof of theorem A is based on a variant of Frey’s beautiful trick [Fr],
combined with the deep work of Serre and Ribet. An essential new ingredient
is a result of Kamienny on the finiteness of certain Eisenstein quotients over
imaginary quadratic fields.

The assumption that the Shimura-Taniyama conjecture is true cannot be
removed yet from the statement of the theorem, because, as we shall see,
the elliptic curves that arise in the proof are not semi-stable. However, this
assumption is not as formidable as it used to be! Indeed, one expects that
very soon the conjecture of Shimura and Taniyama will be established for all
elliptic curves, making theorem A unconditional.

Section 1 collects the basic facts on elliptic curves, modular Galois rep-
resentations and Serre’s conjectures that are used in the proofs. Section k
(2 ≤ k ≤ 3) gives the proof of theorem A for the equation xp + yp = zk.
Finally section 4 comments on the method and its limitations.

1Recall that a Mersenne prime is a prime of the form 2m − 1.
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1 Preliminaries

Let E be an elliptic curve defined over Q, let N be its arithmetic conductor,
∆ its discriminant, and j its j-invariant.

Let p be a prime which is greater or equal to 5. By considering the action
of GQ = Gal(Q̄/Q) on the p-division points of E, one obtains a Galois
representation

ρ : GQ −→ GL2(Fp).

Let N(ρ) be the Artin conductor of ρ, defined as for a representation in
characteristic zero, except that one ignores the contribution of the prime p
(cf. [Sr2], p. 180). We will need the following facts about N(ρ):

Lemma 1.1 .

1. The integer N(ρ) divides N . In particular, if E has good reduction at
l, then l does not divide N(ρ).

2. If E has multiplicative reduction at l 6= p, then

ordl(N(ρ)) =

{
0, if ordl(j) ≡ 0 (mod p);
1, otherwise.

These properties are explained in [Sr2], p. 207.

If l is a prime not dividing pN(ρ), then ρ is unramified at l. Let ρ(Frobl)
denote the image of the Frobenius conjugacy class at l in GL2(Fp).

Making a choice of a prime p̄ of Q̄ above p gives an extension of the
normalized valuation ordp : Q∗ −→ Z to ordp̄ : Q̄∗ −→ Q. Define ordp̄(0) =
∞ > 0. Given a, b ∈ Q̄, say that a and b are congruent (mod p̄),

a ≡ b (mod p̄), if ordp̄(a− b) > 0.
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Given an integer M > 0, we will be interested in holomorphic cusp forms
f of weight 2 on X0(M) which are eigenvalues of the Hecke operators and
the Atkin-Lehner involutions. We assume such a form has been normalized
so that its first Fourier coefficient is equal to 1. We can then expand f in a
Fourier expansion about the cusp ∞, by

f =
∞∑

n=1

anq
n,

where the an are algebraic integers. We will use the expression “eigenform of
level M” to denote a normalized newform of weight 2 on X0(M), since these
are the only types of modular forms that will occur.

In [Sr2], conj. 3.2.3? and 3.2.4?, J-P. Serre makes a general conjecture
relating Galois representations such as ρ to eigenforms:

Conjecture 1.2 (Sr?) Suppose that

1. The representation ρ is irreducible;

2. The curve E has either good reduction or multiplicative reduction at p,
and ordp(j) ≡ 0 (mod p).

Then there exists an eigenform f of level N(ρ) with Fourier coefficients
{an}n∈Z satisfying

al = trace(ρ(frobl)) (mod p̄) for all l 6 |pN(ρ).

Remark: The conjecture 3.2.3? of [Sr2] is a good deal more general than the
version given here; we have contented ourselves with stating only what we
will need. The condition 2 in the statement of the conjecture, which may
appear artificial, is necessary to ensure that the representation ρ is finite at
p. Otherwise, Serre’s conjecture associates to ρ a modular form of weight
p + 1 and level N(ρ), satisfying the same conclusions as above.

The conjecture of Shimura and Taniyama, combined with the theory of
Eichler and Shimura, can be stated as follows.

Conjecture 1.3 (ST?) Let E and ρ be as above. Then there exists an eigen-
form f of level N with Fourier expansion given by

f =
∞∑

n=1

anq
n, a1 = 1, an ∈ Z,

4



satisfying
al = trace(ρ(frobl)) (mod p) for all l 6 |pN.

A deep theorem of Ribet [Ri] shows that there are good reasons to believe
conjecture Sr?.

Proposition 1.4 (Ribet) Conjecture ST? implies conjecture Sr?.

In the proof of thm. A we will be assuming conjecture ST? only in order to
apply conjecture Sr?.

To check the hypotheses of conjecture Sr?, one needs to know when a
representation ρ arising from elliptic curves is irreducible. The following
powerful result of Mazur provides a good grip for handling such questions.

Proposition 1.5 (Mazur) If p > 13, and ρ is reducible, then j(E) belongs
to Z[1

2
].

Proof: Theorem 7.1 of [Mz] lists all the possible elliptic curves defined over
Q having a rational subgroup of order p, with p > 13. There are only finitely
many, and it can be checked that they all have integral j-invariant, except for
the pair of non-CM curves related by a 17-isogeny, whose j-invariant belongs
to Z[1

2
].

Mazur’s result sufficed in showing that conjecture ST? implies Fermat’s
last theorem (see [Sr2], §4.2, or [Fr]). A key ingredient in the proof of theorem
A is the following result of S. Kamienny:

Proposition 1.6 (Kamienny) Let K be a quadratic imaginary field, and
let p be a prime which is split in K and q a prime which is not. Suppose
that there is a prime n dividing the numerator of (p+1)(q−1)

24
but not q(q − 1),

and that n does not divide the class number of K. Then any elliptic curve
E over K having a subgroup of order pq defined over K has potentially good
reduction at all primes not dividing 6.

Proof: By [Ka], prop. 2.1., the n-Eisenstein quotient A(pq) associated to
X0(pq) gives a non-trivial optimal quotient of the new part of J0(pq) which
has finite Mordell-Weil group over K. The result follows from cor. 4.3. of
[Mz].

We will apply Kamienny’s result only in the cases where the quadratic
field K is Q(i) or Q(

√
−3), and q = 2 or 3:
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Corollary 1.7 Let p be a prime with p > 13.

1. Suppose that p ≡ 1 (mod 4). If E is an elliptic curve over Q(i), having
a Q(i)-rational subgroup of order 2p, then j(E) belongs to Z[i][1

6
].

2. Suppose that p ≡ 1 (mod 3) and that p is not a Mersenne prime. If E
is an elliptic curve over Q(

√
−3), having a Q(

√
−3)-rational subgroup

of order 3p, then j(E) belongs to Z[
√
−3][1

6
].

2 The equation xp + yp = z2

From now on, we assume that p is a prime which is > 13.
Let ap + bp = c2 be a non-trivial proper solution to the equation

xp + yp = z2.

Suppose that (a, b, c) satisfies one of the following congruences:

Case 1: a ≡ 0 (mod 2), c ≡ 1 (mod 4).

Case 2: a ≡ −1 (mod 4), c ≡ 0 (mod 2).

One can always make (a, b, c) satisfy one of the above systems of congruences,
by interchanging a and b and repacing c by −c if necessary. Let Ea,b,c be the
elliptic curve given by the following equations:

Case 1: Y 2 = X3 + cX2 + ap/4X;

Case 2: Y 2 = X3 + 2cX2 + apX.

The curve Ea,b,c has j-invariant

j = 26 (ap + 4bp)3

(a2pbp)
.

Its discriminant, ∆, is equal to (a2b)p in case 1, and to 26(a2b)p in case 2.
Using Tate’s algorithm (cf. [Ta]), we compute the arithmetic conductor

of Ea,b,c.

6



Lemma 2.1 .

1. In case 1, the curve Ea,b,c has multiplicative reduction at 2, and hence
its conductor over Q2 is 2.

2. In case 2, the curve Ea,b,c has additive reduction at 2, and its conductor
over Q2 is 25.

3. If l 6= 2, then Ea,b,c has either good reduction at l, or multiplicative
reduction.

Proof: 1. By setting Y = 8y + 4x, X = 4x, we get the following equation for
Ea,b,c in case 1:

y2 + xy = x3 + (
c− 1

4
)x2 +

ap

26
x.

Since p > 6 and c ≡ 1 (mod 4), the coefficients in the above equation
belong to Z2. Hence the curve Ea,b,c has reduction of the form

y2 + xy = x3 if c ≡ 1 (mod 8),

y2 + xy = x3 + x2 if c ≡ 5 (mod 8),

and these are both of multiplicative type.
2. By making the change of variable X = x + 1, the curve Ea,b,c has the
equation

y2 = x3 + (3 + 2c)x2 + (3 + 4c + ap)x + (1 + 2c + ap).

By applying Tate’s algorithm and using the fact that 1+2c+ap ≡ 0 (mod 4)
and that 3+4c+ap ≡ 2 (mod 4), we find that the fiber in the Néron model
at 2 has two connected components, and the conductor of Ogg2 is 25.
3. If l divides ∆, then l divides ab, and hence l does not divide c, since
the solution (a, b, c) is assumed to be proper. Therefore, the cubic equation
defining Ea,b,c has at most a double root, and the reduction is multiplicative.

2Here we are using Ogg’s formula which computes the conductor in terms of the number
of components in the singular fiber of the Néron model. The original proof of this formula
does not work in mixed characteristic 2, but recent work of Paul Lockhart and Joseph
Silverman[LS] shows that it holds for the cases we are interested in.
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Lemma 2.2 j(Ea,b,c) does not belong to Z[1
2
].

Proof: For if it did, then ab would be a power of 2. Assume without loss of
generality that a = 2α, and b = ±1. The equation becomes

2pα = c2 ± 1,

whose only solutions are α = c = 0, contradicting the assumption that
(a, b, c) is a non-trivial solution.

Let
ρa,b,c : Gal(Q̄/Q) −→ GL2(Fp)

be the mod p Galois representation attached to Ea,b,c, and let N(ρa,b,c) be its
Artin conductor.

Lemma 2.3 .

1. In case 1, the Artin conductor N(ρa,b,c) divides 2.

2. In case 2, the Artin conductor N(ρa,b,c) divides 32.

Proof: Since the j-invariant of Ea,b,c is 26(ap+4bp)/(a2pbp), and gcd(a, b) = 1,
it follows that ordl(j) ≡ 0 (mod p) for all odd primes l dividing ∆ (and hence
N). Hence by lemma 1.1, no odd primes divide N(ρa,b,c). The computation
of the conductor of E at 2 in parts 1 and 2 of lemma 2.1 shows that N(ρa,b,c)
is equal to 2 in case 1, and divides 32 in case 2.

Theorem 2.4 Assume conjecture ST?. Then the equation xp + yp = z2

has no proper solutions except for the trivial ones (1, 0,±1), (0, 1,±1), and
(±1,∓1, 0), when p ≡ 1 (mod 4).

Proof: The representation ρa,b,c is irreducible by prop. 1.5 combined with
lemma 2.2. Also, we have ordp(j) ≡ 0 (mod p). Hence Ea,b,c and ρa,b,c satisfy
the hypotheses in conj. Sr?. By conjecture ST? combined with Ribet’s prop.
1.4, conjecture Sr? holds, and hence there is associated to ρa,b,c an eigenform
f of level N(ρa,b,c) satisfying the conclusion of conjecture Sr?. This rules out
solutions in case 1, even without the assumption p ≡ 1 (mod 4), since there
are no eigenforms of level 2.
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In case 2, the representation ρa,b,c is associated to an eigenform of level
dividing 32. Since X0(32) has genus 1, there is only one such eigenform,
which corresponds to the curve

X0(32) = E−1,1,0 : Y 2 = X3 −X,

with complex multiplication by Z[i]. By the Chebotarev density theorem, the
representations ρa,b,c and ρ−1,1,0 are conjugate. From the theory of complex
multiplication, one knows that ρ−1,1,0 maps Gal(Q̄/Q) onto the normalizer H
of a Cartan subgroup of GL2(Fp). More precisely, there is an exact sequence

0 −→ C −→ H −→ Z/2Z −→ 0,

where C is a maximal commutative subgroup of GL2(Fp), and the field fixed
by ρ−1(C) is Q(i).

Now, when p = 1 (mod 4), it is known that C is a split Cartan subgroup,
which is the stabilizer of two one-dimensional Fp-subspaces in the space of
p-division points of Ea,b,c. Therefore, Ea,b,c has two subgroups of order p
which are rational over Q(i). In addition, it can be seen from the equations
that Ea,b,c has a rational subgroup of order 2. Part 1 of cor. 1.7 implies that
ab is divisible only by 2 and 3; since we are in case 2, and ab is assumed to be
odd, it follows that ab is a power of 3. Since gcd(a, b) = 1, assume without
loss of generality that a = 3α and b = ±1. Then we have

3pα = c2 ± 1,

and at least one of c ± 1 or c ± i is a unit. Hence c = 0, and the solution
must be a trivial one.

Remarks:
1. In [Fr], Frey considered the family of elliptic curves

Efrey
a,b,c : y2 = x(x− ap)(x− bp)

indexed by solutions ap−bp = cp of Fermat’s equation. The 3 trivial solutions
to the Fermat equation give rise to degenerate elliptic curves with nodal
singularities. In the family we consider, one of the trivial solutions, namely
(−1, 1, 0), gives rise to the elliptic curve with complex multiplications by Z[i].
This is the source of the extra difficulties, which make it necessary to invoke

9



prop. 1.6 and still prevent us from tackling the case p ≡ −1 (mod 4). A
similar difficulty occurs in the case of the equation xp + yp = z3, with Z[i]

replaced by Z[1+
√
−3

2
].

2. One can consider variants of the form Axp + Byp = Cz2 of the original
equation which have no trivial solution with z = 0. For such equations, one
can hope to prove more and with less effort, although the results one obtains
are less natural. To illustrate this, we can show:

Proposition 2.5 Assume ST?. If p is a prime which is 11 or > 13, then
the equation xp + 4yp = z2 has no proper solutions except for the trivial ones
(1, 0,±1) and (0, 1,±2).

Proof: Let ap + 4bp = c2 be a proper solution. We consider three seperate
cases:

Case 1: a is even; Ea,b,c : Y 2 = X3 + cX2 + ap/4X.

Case 2: a is odd, b is even; Ea,b,c : Y 2 = X3 + cX2 + bpX.

Case 3: a and b are odd; Ea,b,c : Y 2 = X3 + cX2 + bpX.

In cases 1 and 2 one finds as before that Ea,b,c is semistable and that N(ρa,b,c)
is equal to 2. From this one derives a contradiction, since there are no
eigenforms of level 2. In case 3, one finds that N(ρa,b,c) divides 16. Since
there are no modular forms of weight 2 and level dividing 16 (the curve X0(16)
has genus 0) we conclude that Ea,b,c cannot exist, as before. It follows that
Ea,b,c must be a degenerate elliptic curve, corresponding to ab = 0, leading
to the trivial solutions above.

3 The equation xp + yp = z3

Let (a, b, c) be a proper non-trivial solution to the equation

xp − yp = z3.

Suppose that a, b, c satisfy one of the following congruences:

Case 1: b is even, and c ≡ −1 (mod 4).

Case 2: ab is odd.
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Define the elliptic curve Ea,b,c as follows:

Case 1: Ea,b,c : Y 2 = X3 + 3cX2 + 4bp,

Case 2: Ea,b,c : Y 2 = X3 − 3(9ap − bp)cX + 2(27a2p − 18apbp − b2p).

Let j and ∆ denote the j-invariant and discriminant of the curve Ea,b,c. They
are given by:

Case 1:

j = −2433 (ap − bp)2

apbp
, ∆ = −2833apbp,

Case 2:

j = −33 (ap − bp)(9ap − bp)3

apbp
, ∆ = −21233apb3p.

Remark: The curves Ea,b,c that are considered in cases 1 and 2 are not twists
of one another as they were in section 2. Geometrically, the curve Ea,b,c in
case 1 arises as the pullback of a universal elliptic curve over the j-line to a
covering of degree 2 which is ramified above j = 0 and j = 1728. The curve
in case 2 arises from a universal family over X0(3). Since this last fact will
be important in the proof later, we record it as a lemma:

Lemma 3.1 In case 2, the curve Ea,b,c has a rational subgroup of order 3.

Proof: One can check that the point

P = (x, y) = (3c2, 4
√

bp)

belongs to Ea,b,c and generates a rational subgroup of Ea,b,c of order 3.

Now we study the conductor of Ea,b,c, as before:

Lemma 3.2 .

1. In case 1, the curve Ea,b,c has multiplicative reduction at 2. The con-
ductor of Ea,b,c over Q3 divides 27.

2. In case 2, the curve Ea,b,c has good reduction at 2. The conductor of
Ea,b,c over Q3 divides 27.

3. If l 6= 2 or 3, then Ea,b,c has either good reduction at l, or multiplicative
reduction.
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Proof: This is proved as for lemma 2.1, applying Tate’s algorithm. The
details are left to the reader.

As before, let ρa,b,c be the Galois representation arising from the action
of Galois on the p-division points of Ea,b,c.

Lemma 3.3 .

1. In case 1, the conductor N(ρa,b,c) is even and divides 54.

2. In case 2, the conductor N(ρa,b,c) divides 27.

Proof:
1. In case 1, by part 1 of lemma 3.2, the conductor of Ea,b,c at 2 is equal to
2. Moreover, the representation ρa,b,c is ramified at 2, and hence 2 divides
N(ρa,b,c) exactly. Likewise, the conductor of ρa,b,c at 3 divides 27. For all
other primes l, the curve Ea,b,c has multiplicative reduction, by part 3 of
lemma 3.2, and ordl(j) ≡ 0 (mod p). Hence l does not divide N(ρa,b,c), by
lemma 1.1, and therefore N(ρa,b,c) divides 54.

2. This follows in the same way from parts 2 and 3 of lemma 3.2 combined
with lemma 1.1.

Theorem 3.4 Assume conjecture ST?. Let p ≡ 1 (mod 3) be a prime which
is not a Mersenne prime. Then the equation xp + yp = z3 has no proper
solutions except the trivial ones (±1, 0,±1), (0,±1,±1), and (±1,∓1, 0).

Proof: As in the proof of th. 2.4, the representation ρa,b,c is irreducible and
ordp(j) ≡ 0 (mod p). Hence by conjecture Sr?, ρa,b,c gives rise to an eigenform
of level N(ρa,b,c).
Case 1: Since N(ρa,b,c) is divisible by 2 and divides 54, and there are no
eigenforms on X0(2), X0(6), and X0(18), the representation ρa,b,c must come
from an eigenform of level 54. Inspection of tables 5 and 3 in [MF] shows
that there are two such forms, whose fifth Fourier coefficients are ±3. On
the other hand,
a) If 5 divides ab, then Ea,b,c has multiplicative reduction at 5. If this reduc-
tion is split, then Ea,b,c is isomorphic to a Tate curve over Q5, and the group
scheme of p-torsion points of Ea,b,c over Q5 is an extension of Z/pZ by µp.
Hence the eigenvalues of Frob5 are 1 and 5. It follows that a5 = 6. If the
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reduction of Ea,b,c is non-split, then a5 = −6. But neither of these cases can
occur, since ±3 ≡ ±6 (mod p) would imply p = 2 or 3.
b) If 5 does not divide ab, then Ea,b,c has good reduction at 5, and one can
compute the trace of ρa,b,c(Frob5) directly, by counting the number of points
of Ea,b,c over F5. Running over all possible values of ap and bp in Z/5Z∗, one
finds that the possibilities for this trace are 0, ±1, and ±4. Since p > 7,
there are no values of a and b mod 5 for which this trace is congruent to ±3
(mod p).

Hence, in case 1, the curve Ea,b,c cannot exist, and thus we have proved
that the equation xp + yp = z3 has no proper solutions with xy even and
non-zero, assuming only conjecture ST?.

Case 2: Since there are no eigenforms of level 3 or 9, it follows from con-
jecture Sr? that ρa,b,c corresponds to an eigenform of level 27. There is only
one such form, since X0(27) has genus 1; in fact, X0(27) is the elliptic curve

E1,1,0 : Y 2 = X3 + 16,

which has complex multiplication by Z[1+
√
−3

2
]. By the Chebotarev density

theorem, ρa,b,c is conjugate to ρ1,1,0. By the theory of complex multiplication,
ρ1,1,0 maps to the normalizer H of a Cartan subgroup of GL2(Fp). This
Cartan subgroup is split if p ≡ 1 (mod 3), and is non-split otherwise, and
the quadratic field cut out by the homomorphism GQ −→ H −→ Z/2Z is the
field Q(

√
−3). Hence, if p ≡ 1 (mod 3), the curve Ea,b,c has two subgroups of

order p which are rational over Q(
√
−3). In addition, Ea,b,c has a subgroup

of order 3 rational over Q, by lemma 3.1. By part 2 of cor. 1.7, it follows
that ab is divisible only by 2 and 3, and hence is a power of 3 since ab is odd.
By an argument similar to the one of sec. 2, one concludes that c = 0 and
hence the solution (a, b, c) is trivial.

This concludes the proof of thm. 3.4. Theorem A follows by combining
thm. 2.4 and thm. 3.4.

4 Comments

1. It can be shown that the generalized Fermat equation

Axp + Byq = Czr, A, B, C ∈ Z, p, q, r ∈ N, ABC 6= 0,
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has finitely many proper solutions if 1
p

+ 1
q

+ 1
r

< 1 (see [DG]). The proof

given in [DG] is based on a descent argument using unramified coverings of
P1 − {0, 1,∞} of signature (p, q, r). (An algebraic covering map X −→ P1

is said to be of signature (p, q, r) if it is Galois, is unramified outside of 0,
1, and ∞, and if the ramification indices above these three points are p, q
and r respectively.) The traditional descent methods used to attack Fermat’s
last theorem, based on factorizing xp − yp over Q(µp), can be viewed geo-
metrically as exploiting a covering of signature (p, p, p) with solvable Galois
group, corresponding to an unramified covering of the Fermat curve. Frey’s
beautiful idea exploits the covering X(2p) −→ X(2) which is ramified over
the 3 cusps of X(2) and is of signature (p, p, p). The proof in this paper relied
on the modular coverings X(k, p) −→ X0(k), where X(k, p) is the modular
curve classifying elliptic curves with a subgroup of order k and full level p
structure; when k = 2, 3, this covering is of signature (k, p, p).

The coverings of signature (p, q, r) arising from modular curves (i.e., as
pullbacks of the covering X(p) −→ X(1)) can be classified; the possible
signatures are (2, 3, p), (2, p, p), (3, p, p), (3, 3, p) and (p, p, p). Thus, Frey’s
approach might be used to study which powers can be expressed as sums of
two relatively prime cubes, for example, but we have not attempted this.

2. The five triples of exponents listed in remark 1 show the limits of the
method used. No family of elliptic curves could be used to study the equa-
tion xp + yp = z5, for example. One might ask whether one can use other
families (say, families of curves of genus 2) to shed light on such equations.
Unfortunately, the analogue of Mazur’s theorem is not known in this case
(are there universal bounds on the torsion in Jacobians of genus 2 curves
over Q?), and the results obtained are thus bound to be weaker.

3. To remove the conditions p ≡ 1 (mod 4) for the equation xp + yp = z2,
or the condition p ≡ 1 (mod 3) for the equation xp + yp = z3, it seems one
would need to know more about the surjectivity of the Galois representations
associated to elliptic curves. For example, it is believed that when p is larger
than some explicit universal bound and E is an elliptic curve with no complex
multiplications, then the image of the Galois representation in Aut (Ep) is
surjective (cf. the discussion in [Sr1], p. 299, §4.3). This would be enough to
imply that the equations xp + yp = z2 and xp + yp = z3 have no non-trivial
proper solutions when p is large enough, assuming conjecture ST?.
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More precisely, suppose p ≡ −1 (mod 4) in case 1, or p ≡ −1 (mod 3)
in case 2. Let Xns(k, p) be the modular curve which classifies elliptic curves
together with a rational subgroup of order k and whose Galois representation
on p-division points maps to the normalizer of a non-split Cartan subgroup
of GL2(p). Then our curve Ea,b,c constructed from a non-trivial proper solu-
tion to the Fermat-type equation gives rise to a non-cuspidal rational point
on Xns(2, p) or Xns(3, p). As N. Elkies has remarked, when k = 2, 3, the
Jacobian of Xns(k, p) is isogenous to a part of the Jacobian of the curve
X0(kp2)/wp2 , where wp2 is the Atkin-Lehner involution. This latter Jacobian
has a p-Eisenstein quotient in its minus part for the Fricke involution wkp2

which is a good candidate for an optimal quotient of the Jacobian of Xns(k, p)
having finite Mordell-Weil group. Even if the finiteness of this p-Eisenstein
quotient is established, one still has to contend with the presence of other
cusps on Xns(k, p) which are rational over Q(µp)

+ and may lie in the way of
eliminating possible solutions by an Eisenstein descent argument.
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Gal(Q̄/Q), Duke Math. J. Vol. 54, no. 1, 179-230 (1987).

[Ta] Tate, J., Algorithm for determining the type of a singular fiber in an
elliptic pencil, in Modular Functions of One Variable, SLN 476, pp.
33–52.

16


