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Euler Systems and Refined Conjectures of
Birch Swinnerton-Dyer Type

HENRI DARMON

ABSTRACT. The relationship between arithmetic objects (such as global
fields, or varieties over global fields) and the analytic properties of their L-
functions poses many deep and difficult questions. The theme of this paper
is the Birch and Swinnerton Dyer conjecture, and certain refinements that
were proposed by Mazur and Tate. We will formulate analogues of these
conjectures over imaginary quadratic fields involving Heegner points, and
explain how the fundamental work of V.A. Kolyvagin sheds light on these
new conjectures.

81 Preliminaries.

The relationship between arithmetic objects (such as global fields, or varieties
over global fields) and the analytic properties of their L-functions poses many
deep and subtle questions. The theme of this paper is the Birch Swinnerton-Dyer
conjecture, which concerns the case where the arithmetic object in question is
an elliptic curve defined over a global field.

Let E be an elliptic curve defined over the rational numbers. The conjecture
of Shimura-Taniyama-Weil asserts that E is modular, i.e., is equipped with a
rational map

¢: Xo(N) — E,
where Xo(V) is the modular curve of level N, defined over Q, which parameter-
izes elliptic curves with a distinguished cyclic N-isogeny. We assume that F has
this property. (For a specific F this can be checked by a finite computation.)
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2 EULER SYSTEMS AND REFINED CONJECTURES

The pullback of the Néron differential w on E is a cusp form of weight 2 on

Xo(N),

p*w = cf(q)dq/q,
where f(q) = >~ @nq" is normalized so that a; = 1, and ¢ denotes the Manin
constant associated to the modular parametrization .

Let K be a number field. (In the applications we discuss, K will be either Q,
or a quadratic field.) Given a place v of K, let K, denote the completion of K
at v, and let k, denote the residue field if v is non-archimedean.

Let S be a finite set of places of K, and let Eg(K) denote the subgroup of
finite index in E(K) which is defined by the exact sequence

0 — Es(K) — E(K) — @®yesEus(ky,) ® E/Ey(K) — Jg — 0,

where Fys(k,) denotes the group of non-singular points in the special fiber of E
at v, and where E/FEy(K) is the group of connected components in the Néron
model E/p, of E over SpecOf.

§1.1 Arithmetic invariants. The triple (E, K, S) gives rise to the following
arithmetic data:

1. The rank r of the finitely generated abelian groups E(K) and Fg(K).

2. The order of the conjecturally finite Shafarevich-Tate group III(E/K).
This is the group of elements in H!(K, E) whose restrictions in H'(K,, E) are
0 for all places v of K. It arises naturally in descent arguments.

3. The Néron-Tate canonical height associated to the Poincaré divisor on
E x E; it is a positive-definite bilinear pairing

<, >NTZE(K) XE(K) — R.

It gives rise to a regulator term.

We describe the general construction of the regulator suggested in [MT2].
While not strictly necessary for this section, the extra generality will be useful
later. Let (, ) denote a G-valued pairing on A x B, where G is an abelian group
and A and B are subgroups of finite index in F(K). We embed G as the degree
one elements in the graded algebra

Sym(G) = &r>0Sym” (G).

If A and B are free, the regulator R(A, B) in Sym(G) is defined to be the deter-
minant of the r x r matrix ((P;, Q;)), where Pi,..., P, and Qq,...,Q, denote
integral bases for A and B respectively which induce compatible orientations on
E(K)®R. The element R(A, B) is homogeneous of degree r and can be viewed
as belonging to Sym” (G). If A and B are not free, one needs the hypothesis that
there exist subgroups A" and B' of A and B which are free and of finite index,
such that multiplication by [A : A'][B : B'] induces an isomorphism on G. This
hypothesis is satisfied, for example, if G = R, or if G is finite and of order prime
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to the order of the torsion subgroups of A and B. One then defines R(A, B) by
the formula:

R(A,B)=[A: A1 [B: B 'R(A",B).
This definition is independent of the choice of A" and B'.

Let R denote the ring of germs of analytic functions of a complex variable s
in a neigbourhood of s = 1, and let I denote the ideal of germs which vanish
at s = 1. The choice of the local parameter (s — 1) determines an isomorphism
I/I? ~ C, and hence the Néron-Tate height can be viewed as taking values in
I/I?. Since Sym”(I/I?) maps to I"/I"*! via a natural projection map p, one
can define the regulator Rg by:

Rs :=p(R(E(K),Es(K))) € I"/T" 1.

4. The module H(E)p, , ") of global invariant differentials on E,o, is a
projective Og-module of rank 1, and can be written as

HY(E/o,, ") = Aw,

where A is a fractional ideal of K and w is a differential for E over K. To each
archimedean place of v we assign a period 7, as follows:

Yo = / |w] if v is real,
E(K,)

Yo = 2/ w A @ if v is complex.
E(Ky)

§1.2 The L-function. For each non-archimedean place v of K, let Nv be the
norm of v and let
ay, =1+ Nv—#FE(k,).
When E has good reduction at v, the local L-function L(E/K,,s) is defined by

L(E/Kva S) = (]. — avNU_S + N’Ul_QS)_l.

A definition of the local factor L(E/K,,s) can also be given for the places of
bad reduction of E, cf. [Si], p. 360. One always has:

L(E/K,,1) = Nv/#Eus(ky).
The L-series Lg(F/K,s) is given by the Euler product
Ls(E/K,s) = [ L(E/ K0, ),

vgS

taken over all non-archimedean places v of K which do not belong to S. The
Hasse bound |a,| < 2v/Nv implies that Lg(E/K,s) converges in the right half
plane R(s) > 3/2. One conjectures that it has a meromorphic continuation to
the entire complex plane, given by a functional equation. When FE is modular
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and K is Q or a quadratic field, the functional equation is known. In particular,
one can speak of the germ of Lg(F/K, s) at s = 1. Let 6 denote this germ.

§1.3 The Birch Swinnerton-Dyer conjecture. We give an S-integral formula-
tion of the Birch Swinnerton-Dyer conjecture.

CONJECTURE 1.1. 1. Og belongs to I".
2. Let 05 denote the image of 0g in I"/I"L. Then

0s = (][ Nv!)Disc(K) /2 (N qA) ([ [ ) - #LLL(E/K)#JsRs.
veS v

The arithmetic data associated to the triple (E, K, S), and the corresponding
L-function Lg(FE/K,s) live in different worlds. The conjecture of Birch and
Swinnerton-Dyer provides a mysterious bridge between them.

§1.4 The Euler System. In certain special cases, there is a sort of island
between the two worlds, which Kolyvagin calls an Euler system. The bridge
predicted by the Birch Swinnerton-Dyer conjecture can be constructed in two
seperate stages, using the Euler sysem as a stepping stone.

When K is a quadratic imaginary field satisfying certain extra hypotheses, the
Euler system is made up of Heegner points defined in the tower of ring class fields
of K. The bridge between the world of the L-function and the Euler system is
provided by the formula of Gross and Zagier. The work of Kolyvagin completes
the picture by showing how the Euler system of Heegner points controls the
arithmetic invariants r and III(E/K). Together, these two bridges yield the
most striking evidence so far for the Birch Swinnerton-Dyer conjecture. This
situation is summed up in the following diagram:
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Let us now be more precise. Let K be a quadratic imaginary field of dis-
criminant D < —4 such that every prime p which divides the conductor N of FE
splits in K/Q, and let w denote the corresponding odd Dirichelet character. If
N = p{* - pi¥, choose for each p; an ideal P; of K above it, and set

N = Pt e,

Given a positive square-free integer S which is relatively prime to N and D, let
Og denote the order of K of conductor T. The natural projection of complex
tori

C/0Os — C/(OsNN)!

corresponds to an N-isogeny of elliptic curves, and hence can be identified with
a point of X((V). By the theory of complex multiplication, this point is defined
over Kg, the ring class field of K of conductor S. Let a(S) denote the image of
this point in F(Kg) by the modular parametrization .

Given a prime [ which is split in K/Q, let o; in Gal(K'!/K) denote the Frobe-
nius element at A, where K! denotes the maximal abelian extension of K which
is unramified at [, and X\ is a prime of K above [. If [ is inert in K, let o; = 1.
Finally, given a square free integer T which is prime to D, let o = H”T oy.

Now define the regularized Heegner points by the formulas:

H(8) = 3 wT)w(T)og)po(T), = 3" ul)os/ra(T),

TS T|S

where p denotes the Mébius function, u(T) = (—1)#U7),
§1.5 The Gross Zagier formula. Let Gg = Gal(Kg/K), and let x : Gg — C*
denote a complex character of Gg. Let

ZX o)o

oceGs

X #Gs

denote the idempotent in the group ring C[Gg] associated to the character ¥,
and let

y=(x) = exy™(S) € E(Ks)® C
denote the projection of y*(S) to the y-component of E(Kg) ® C for the Gg-
action. Let (, )s denote the Néron-Tate pairing over Kg, extended to a Her-
mitian pairing on E(Kg) ® C.

The points y™ () and y~ (x) depend on the choice of the o; (i.e., the choice
of a prime A of K above [ for each [) but the complex number (y*(x), v~ (x))s
does not. From the formula of Gross and Zagier one expects this number to be
related up to some simple factors to the value of Lg(E/K,x,1). (By abuse of
notation, we identify S with the set of primes of K which divide it, so that the
L-function Lg(E/K,s) has the obvious meaning.)
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THEOREM 1.2. Assume that x : Gg — C* is unramified, i.e., factors through
G1, where G1 = Gal(K1/K) is the Galois group of the Hilbert class field of K.
Then
VD5 Ly(B/K,x,1)

+ - — 2
w0y~ (s = 85— EIE

A similar result should hold for ramified characters but the computations in
[GZ] were only carried out for characters of Gal(K;/K).

§1.6 The work of Kolyvagin. V.A. Kolyvagin has established a relation be-
tween the arithmetic of F/K and the system y®(S) of Heegner points.

Let Z be a subring of Q in which the following primes are invertible:

1. The primes 2 and 3.

2. All primes p for which Gal(Q(Ep~/Q) is not isomorphic to the full
GL3(Ep=). By a result of Serre [Se], this is a finite set of primes, if E has
no complex multiplications.

3. The primes p which divide #Gg.

Let Z[x] denote the ring obtained by adjoining to Z the values of the character
x- The points y* () can be viewed as belonging to the module E(Kg) Rz[Gs]
Z[x]. Let ry denote the rank of this module over Z[x]. It is equal to the
dimension of the x-component of E(Kg) ® C for the action of Gg, because
the order of E(Kg)ior is invertible in Z[x]. Let £(Kg) C E(Kg) denote the
submodule generated be the Heegner points of E(Kg).

THEOREM 1.3. If y*(x) # 0, then

1.ry=1

2. The module M = (E(Ks)/E(Ks)) ®zjas) Z]X] is finite.

3. The group III(E/Ks) ®z(as Z[X] is finite, and its order divides (#M)2.

Kolyvagin presents the proof of this theorem when yx is the trivial character,
but his methods extend to non-trivial ring class characters as well, as is shown
in [BD].

When L' (E/K, s) does not vanish at s = 1, then theorem 1.2 shows that the
Heegner point Trg, /(1) is non-torsion, and theorem 1.3 says that E(K) has
rank one. It also says that JII(F/K)® Z is finite and that its order is bounded
by a number which is consistent with the Birch Swinnerton-Dyer conjecture. In
fact, by a more careful analysis Kolyvagin shows that III(E/K) is finite in this
case.

§1.7 Refined conjectures. When L'(E/K,1) = 0, one does not know how to
prove the weak Birch Swinnerton-Dyer conjecture that the rank of F(K) is equal
to the order of vanishing of L(E/K,s) at s = 1. One does not even know how
to exhibit a non-torsion point on EF(K) (although the conjecture predicts that
the rank of E over K is at least 3!) Likewise, the finiteness of III(E/K) is still
unproved in this case.
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However, Kolyvagin has observed ([Ko4]) that from his methods it should
follow that the Euler system {y*(S)} of all the Heegner points carries enough
information to determine the structure of the Selmer groups Sel,n (E/K). The
precise result is too technical to state here (cf. [Ko4] or [Mc]).

These results suggested that one should study the relationship between the
Galois module of Heegner points and the arithmetic of E over K (the bridge
on the lower left in our diagram) as an interesting question in its own right.
This relationship can be formulated as a refined conjecture of Birch Swinnerton-
Dyer type whose statement is motivated by the classical Birch Swinnerton-Dyer
conjecture, but which avoids any mention of the complex-analytic L-function.
The fundamental reference for such refined conjectures is [MT2].

The refined conjectures presented in [MT2] are a close relative of the p-
adic Birch Swinnerton-Dyer conjecture (cf. [MTT]), where the Z,-extension is
replaced by a finite (typically, tamely ramified) abelian extension. The analogue
of the L-function is constructed using certain integral homology cycles on E(C),
the so-called modular symbols. The first section gives a slightly modified and
simplified presentation of the conjectures of Mazur and Tate.

In the second section homology cycles are replaced by Heegner points, and a
refined conjecture is formulated, of which much has been proved (cf. [D1], [D2])
thanks to the methods of Kolyvagin.

§2. The Mazur-Tate conjectures.

This section is devoted to an exposition of the conjectures in [MT2]. We
ignore the extremely interesting phenomena which occur when S is divisible by
a prime of multiplicative reduction for F, which are discussed in [MT?2], leading
to some simplification in the exposition. Also, we avoid the introduction of the
“regularized determinant” by working with regularized modular symbols instead,
which for our purposes seems more natural. Throughout this section, K = Q,
and S is a square-free integer prime to V.

§2.1 The Birch Swinnerton-Dyer conjecture. We briefly recall the statement of
the classical Birch Swinnerton-Dyer conjecture when K = Q, keeping the same
notations as in section 1.3.

CONJECTURE 2.1. 1. Og belongs to I".
2. Let 05 denote the image of Og in I"/I"T*. Then

0s = S Voo - #11I(E/Q)#JsRs.

Here v, denotes the period associated to the real completion of Q and the
Néron differential for E as in section 1.1.

§2.2 The Mazur-Tate regulator. Let Gs = Gal(Q(uns)"/Q) = (Z/SZ)*/ £ 1
be the Galois group of the maximal tamely ramified abelian extension of Q
unramified outside S.
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In [MT?2], pp. 731-734, Mazur and Tate define a height pairing

( )s:E(Q)x Es(Q) — Gis.

Let Z be a subring of Q in which the order of E(Q)o, is invertible, and let Ig
be the augmentation ideal in the group ring Z[Gs]. The map sending ¢ to o — 1
gives a homomorphism of Gg to Is/ Ig, and hence we can view the Mazur Tate
pairing as taking values in the graded Z-algebra

sym(Is/I3) = @0l /15T

(The natural convention that I°/I = Z is used.) Since multiplication by the
order of F(Q)tor induces an isomorphism on Ig/ Ig, we can define

RY" =p(R(E(Q), Bs(Q))) € I5/I5™,

where the regulator is computed with respect to the Mazur Tate height pairing.

§2.3 The modular symbols and the 0-element. The idea behind the Mazur
Tate conjectures is to replace the analytically defined object 85 by an algebraic
object (which we denote by 0¥7T) which plays the role of s. This element
belongs to the group ring Z[Gg], and is defined using modular symbols.

§2.3.1 Modular symbols. Let A C C be the Néron lattice of E, i.e., the set of
periods f,yw where v runs through all the 1-cycles in Hy(E(C),Z). Let Qt and
Q™ be the largest positive real numbers such that

ACZOT §iZO.

Given a divisor T of S, and a € Z/SZ, the modular symbol [a/T]" is defined by
the formula
a/T+ico
27r/ 0w = [a/T]*QF +ila/T] Q.
a/T

Note that the symbol [a/T] is indeed well defined, depending only on the value
of a mod S (in fact, mod T) thanks to the modular invariance of p*w. Let
T' denote the inverse of S/T modulo T. The regularized modular symbols are
defined by the formula

la/S]" =" u(S/T)[aT’/T).

T|S

Given a € (Z/SZ)*, let 0, denote the natural image of a in Gg.
The 6-element is defined by

1 a.,
5" = 5 Z [g] q € Z[GY].
a€(Z/SZ)*

Let [ be a prime not dividing S, and let z; be the canonical map Z[G;rl] —
Z[G{] induced by the projection Gg; — Gg. The interest of working with the
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regularized #-elements is that they are compatible under the maps z;, up to an
element in Z[GZ] which has the appearance of an Euler factor at [.

LEMMA 2.2.

zl(eg/ﬁT) = —Jl(l — Jflal +Uf2)9g/IT.

§2.3.2 Relation between M1 and Ls(E/Q,1). Let x be an even Dirichlet
character of conductor f dividing S, and let g = S/ f. The twisted L-series

Ls(E/Q, X S) = Z X(n)ann_s = H(l — X(p)app_s + XQ(p)pl—QS)—l
(n,S)=1 plS

is known to have an analytic continuation to the entire complex plane. Let
X:QIG§l—C
be the ring homomorphism obtained by extending x by linearity.

PROPOSITION 2.3.

T()Ls(E/Q.x.1)
20+ ’

X(08) = c(p)g

where T(x) = Ele x(a)exp(2mia/S) is the (slightly modified) Gauss sum.

The element denoted by 64,5 on p. 716 of [MT2] is not the same as our
element 0¥ T, but for characters of conductor exactly S, one does have

X(05) = x(0,)-

Thus the result for primitve Dirichlet characters follows from (formula (1), p.
718) of [MT?2]. In the general case it follows from lemma 2.2.

§2.4 The refined conjecture. With the notations of sections 2.2 and 2.3, Mazur
and Tate’s conjecture of Birch Swinnerton-Dyer type is analogous to the classical
S-integral conjecture 2.1.

CONJECTURE 2.4. 1. 0¥ belongs to If.
2. The image éf\gAT of 0T in Ig/[gle s given by

ONT = c(p)#IIL(E/Q)RsJs.

Remark: The formulation of the conjecture on the leading coefficient differs
slightly from the one in [MT2], where the #-element is constructed directly
from modular symbols, and the leading coefficient is conjecturally equal to a
regularized determinant built up from the Mazur Tate height pairings at level
T for all divisors T' of S. In fact, the two formulations are equivalent: see the
discussion in [D1], pp. 37-39.
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$3. Heegner points.

We keep the same notations as in section 2, but now we assume that K is
an imaginary quadratic field in which all primes dividing N are split so that
the Heegner points y*(S) over the ring class fields Ks of K are defined (cf.
section 1.4). Under the assumptions on K, the sign in the functional equation
for L(E/K,s) is —1, and hence this L-function vanishes to odd order at s = 1.
By the Birch Swinnerton-Dyer conjecture one expects that r is odd; writing
r =r+t+r~, where r™ and r~ denote the ranks of the plus and minus eignespaces
of complex conjugation acting on E(K), one thus expects that 7+ # r~ (mod 2).

§3.1 The regulator term. Let Gg = Gal(Kg/K), and let Z denote a subring
of Q in which #F(K )i, is invertible. Let Is denote the augmentation ideal in
the group ring Z[Gg]. Consider the Mazur Tate pairing ( , }s on E(K) x Es(K)
with values in Is/I3.

This pairing vanishes when it is restricted to the spaces E(K)T x Es(K)™ or
E(K)™ x Eg(K)~ (cf [MT1], p. 216). Thus when r* # r~ the regulator term
R(E(K), Es(K)) belonging to I%/I5"" formed from the pairing ( , )s is equal to
0. One is thus lead to search for a more sophisticated version of this regulator.
Define the extended pairing

’

() )s: E(K) x Es(K) — (Is/I§) & B(K)®?

(P,Q) — ((P,Q)s, P®Q).

We view the group (Is/I2) ® E(K)®? as the group of homogeneous elements of
degree one in the graded algebra

sym'(Gs) = ®rzol (I5/I5M) ®© (BK)™ @ (I57'/15)) |

The multiplication on this algebra is defined as follows: if & = (a1, as) and
8 = (B1, B2) are homogeneous elements of degrees r and s respectively (so that

a1 € IS5, ag € B(K)®? @ I /15,

B e I3/I5M, B € B(K)** @ I571/13),
define the product « - 3 as the homogeneous element of degree r + s given by the
formula:

a- B = (a1p, B2o1 + az1).

The regulator Rig is the term R(E(K), Eg(K)) associated to this pairing. It

is a homogeneous element of degree r. However, if r is odd, then the I/ Ig“-
component of this regulator term vanishes, and hence

Ry belongs to E(K)®? ® (I51)1%).

§3.2 The 6-element. We construct the -element 9; from the Heegner points
y*(9) as follows. Let AL and Ag be the resolvent elements associated to the
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Heegner points y+(S) and y~(S) respectively,

Af =3 oyt(S) ®o € B(Ks) ® Z[Gs),
oeGs

Ag= > oy (S)®o~' € BE(Ks) ® Z[Gs].
c€Gs

The element 9:9 is the tensor (over the ring Z[Gs]) of the elements A% and
Ag; it belongs to E(Kg)®? ® Z[|Gg],

bs=AfwAg= > oyt(S)ery (S @ ().
o,7€Ggs

Let 2 be the natural map from F(Kg)®? ® Z[Gs1] to E(Ks)®? ® Z[Gs]
induced by the homomorphism Gg; — Gg. The following lemma is the analogue
of lemma 2.2.

LEMMA 3.1.
zl(ﬂigl) = H:g(l —a+ D)4+ a;+ 1) ifl is inert in K,
zl(ﬁigl) = 9:9(1 —ajo; "t + 0,2 — oy + 07 2) if 1 is split in K.

Relation between 0 and L(E/K,1): Let h : E(Ks)®? — R be the canon-
ical Néron-Tate height, and let x : I's — C* be a complex character of I'g. As
before, we denote by

x:Z[l's] — C

the ring homomorphism obtained by sending o € T's to x(¢). By combining h
and x one gets a natural linear map:

h®x: E(Ks)®*?® Z[I's] — C.

The following theorem is a restatement of the Gross Zagier formula (theorem
1.2).

THEOREM 3.2. Suppose that S =1 so that Kg is the Hilbert class field of K.

Then ,
/ Ls(E/K,x,1
h© x(0) = AShsy/ Dyt K61 HLH;X’ )

§3.3 The refined conjecture. The Mazur Tate type conjecture is:

CONJECTURE 3.3. 1. g belongs to B(Kg)®? @ I5 .
2. The image 9:9 of 9:9 in B(Kg)®? ® Igfl/Ig belongs to the image of the
natural map

t: E(K)®? @IV /Iy — E(Ks)®? @ I57Y /15
3. O = t(PHIII(E/K)#JsRs).

Unlike conjecture 2.4, much evidence can be given for conjecture 3.3.
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Let Z denote a ring in which the following are invertible:

1. The primes 2 and 3.

2. All primes p < (r —1)/2.

3. All primes p such that Gal(Q(Ep~)/Q) is not isomorphic to GLa(Z,).
The methods of Kolyvagin [Kol,Ko02,Ko03] allow one to show:

THEOREM 3.4. Suppose that S is a product of primes which are inert in K.
Then parts 1 and 2 of conjecture 3.3 are true.

A proof of this result is given in [D1] and [D2]. In fact, more precise infor-
mation can be derived about the order of vanishing of 9;; cf. [D2].

An analogue of conjecture 3.3 can be made for elliptic curves over real qua-
dratic fields, replacing Heegner points by certain geodesic cycles associated to
binary quadratic forms of positive discriminant. See the paper [D3]| where com-
putational data in support of this conjecture is given.
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