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Summary. In [MT1] ,  Mazur  and Tate present a "refined conjecture of Birch 
and Swinner ton-Dyer  type" for a modular  elliptic curve E. This conjecture 
relates congruences for certain integral homology cycles on E(C) (the 
modu la r  symbols) to the arithmetic of E over Q. In this paper we formulate 
an analogous conjecture for E over a suitable imaginary quadrat ic  field K, in 
which the role of the modular  symbols is played by Heegner points. A large 
part  of this conjecture can be proved, thanks to the ideas of Kolyvagin on the 
Euler system of Heegner points. In effect the main  result of this paper can be 
viewed as a generalization of Kolyvagin 's  result relating the structure of the 
Selmer group of E over K to the Heegner points defined in the Mordel l-Weil  
groups of E over ring class fields of K. An explicit application of our method 
to the Galois module  structure of Heegner points is given in Sect. 2.2. 
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1 Preliminaries 

Let E be a modu la r  elliptic curve. There is a morph i sm 

~b :Xo(N)  ~ E 

defined over  Q, where N is the ar i thmetic  conductor  of E and Xo(N) is the 
algebraic curve which classifies pairs of elliptic curves related by a cyclic N-isogeny. 

The  pull-back of a N6ron differential ~o on E is an eigenform f o f  weight 2 on 
Xo(N) with Fourier  expansion given by 

(~*(@ = c(40 ~ a,q"dq/q, q = e2~iL 
n = l  

The Four ier  expansion is normalized so that  al = 1, and c(q~) is the Martin constant 
associated to the modu la r  paramet r iza t ion  4~. The Hasse -Wei l  L-function 
L(E/Q, s) can be identified with the L-series a t tached to f, 

L ( f s ) =  ~ a,n -S. 
n = l  

F r o m  Hecke 's  theory one knows that  L(f ,  s) has an Euler product  and a functional 
equat ion relating its value at s to its value at 2 -  s. The pari ty of  the order  of 
vanishing of the L-function at the central point  s = 1 can be read off f rom the 
functional equation. More  precisely, let e denote the eigenvalue of the Atkin 
Lehner  involut ion wN acting o n f  Then L(f,  s) vanishes to odd order  at s = 1 if 
e. = 1, and to even order if ~ = - 1. 

Fix a quadrat ic  imaginary  field K of discriminant  D in which all primes dividing 
N are split. I f N  = p~ . . . .  p~k, one may  choose for each pi an ideal Ni of  K above it, 
and set 

y = . ~  . . . .  ~ k .  

Given a positive integer Twh ich  is relatively prime to ND, let (9 r denote  the order  
of K of conductor  T. Because T is pr ime to N, the ideal Or  c~ Jt p is invertible, and 
the natural  projection of complex tori 

C / O r  ~ C/(6:r c~ X ) -  

corresponds  to a cyclic N-isogeny of elliptic curves. Hence it can be identified with 
a point  of Xo(N). By the theory of complex multiplication, this point  is defined over 
K r ,  the ring class field of K of conductor  T. Let ~(T) denote the image of this point  
in E ( K r )  by the modu la r  parametr iza t ion  ~b. 

2 Statement of the results 

2.1 The conjecture of  Mazur Tate type 

Given a square-free integer S = 11 �9 �9 �9 I t  prime to ND, write 

Gs = Gal(Ks/KO, Fs = Gal(Ks/K) . 

Define the regularized Heegner  points by the formulas  

/ffs = ~ #(T)oc(T), /~'  = ~ p ( T ) o ( T ) ~ ( T ) ,  
TIS TIS 
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where t~ is the M6bius function, and o9 is the quadratic Dirichlet character 
associated to K. Let A(E, S) (resp. A'O(E, S)) denote the formal resolvent associated 
to the Heegner point fls (resp. /~'): 

A(E,S):= ~ a f l s | 174  
ae/'s 

AO(E,S): = ~ afl~d|174 
ae Fs 

The role of the 0-element of [MT1] will be played by the element 

O'(E, S):= A(E, S) |  S) ~ = ~ afls | tfl~'| a t - l "  
a,  t e  Is 

it belongs to the triple tensor product E(Ks)| Z [Fs]. 
For technical reasons it will be convenient to replace Z by a subring Z of Q and 

view O'(E, S) as belonging to E(Ks) | | Z[[ 's]  by extending scalars from Z to Z. 
For the time being we make no assumptions on Z. Let I denote the augmentation 
ideal in the group ring Z [Fs], and let r denote the rank of the Mordell- Weft group 
of E over K. We conjecture the following: 

Conjecture 2.1 (order of vanishing) For an3, Z, the element O'(E, S) belongs to the 
subgroup E(Ks) | | U -1 of E(Ks) 02 | Z[Fs]. 

Remarks. 1. This statement is analogous to the part of the Birch Swinnerton-Dyer 
conjecture which predicts that the order of vanishing of the complex L-function of 
E over K is equal to r. Our conjecture involves r - 1, and not r, because of the 
philosophy that O'(E, S) should mirror the behavior of L'(E/K, s) at s = 1. A justifi- 
cation for this philosophy is provided by the analytic formula of Gross and Zagier 
[GZ]. More precisely, let h:E(Ks) | --* R be the canonical Neron-Tate height over 
Ks, and let Z:Fs -~ C* be a complex character of Fs, extended by linearity to the 
group ring of Z[Fs]. Combining h and Z gives rise to a natural linear map: 

h | z : E ( K s )  | @ Z f F s ]  ~ C . 

Tllenrem 2.2 (Gross Zagier) Suppose that S = 1 so that Ks is the Hilbert class field 
of K. Then 

h | x(O'(E, S)) = c(~b) 2 [Ks "K] ~ ~ '  X, 1_). 
- - j j e ~ c ) O  A co 

2. Conjecture 2.1 is inspired by the refined conjectures of Birch Swinnerton-Dyer 
type introduced by Mazur and Tate. For  an explanation of these conjectures, the 
reader may consult the fundamental reference [MTI] ,  or [D2]. It seems that such 
refined conjectures provide a congenial setting for the Euler Systems of Kolyvagin 
to express themselves: the properties of such Euler systems (relations between 
special elements and arithmetic) are naturally formulated as conjectures of Mazur 
Tare type. This program has been carried out in the simpler case of cyclotomic 
units [D1], where one finds conjectural formulas which are a slight generalization 
of those of Thaine [Th]. 
3. What of the original Mazur Tate conjectures? At present, still no proof is 
known. What one might need in this case is a cyclotomic Euler system, consisting 
in a compatible system of cohomology classes 

c.,p~ H1 (Q(kl,), Tp(E)) . 
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In a remarkable recent development, Kato [Ka] has succeeded in constructing 
precisely such an Euler system, using elements in Kz of modular curves constructed 
from Steinberg symbols of Siegel units. He has also succeeded in relating his Euler 
system to the special values of the complex L-function L(f ,  )~, 1) twisted by 
Dirichlet characters, and hence to modular symbols. It seems possible that this 
work of Kato will shed light on the Mazur Tate conjectures. 

Assuming Conjecture 2.1, we can project O'(E, S) to an element O'(E, S) in the 
group E(Ks) | Q (I r-1/1 r). This element plays the role of the leading coefficient in 
the refined Birch and Swinnerton-Dyer conjecture. To make a conjecture about its 
value, let 

u = �89 # ( •* ) ,  ~ = # E ( K ) , o r .  

Given a prime p dividing N, let mp denote the order of the group of connected 
components in the special fiber at p for the NOron model of E over Spec(Z). Let 

m =  l-I m p . 
pin 

Finally, let B denote the "Birch Swinnerton-Dyer constant" 

B = c ( 4 ~ ) ' u ' m ' ~ / #  UI(E/K) 'T -1 . 

It is conjectured (cf. [GZ, p. 311]) that B is an integer and that, when E(K)/E(K),or 
is generated by a single element P, the following identity is true in E(K)/E(K)tor: 

TraCeKi/K(~(l)) = +_ BP. (1) 

This conjecture follows by comparing the Gross Zagier formula with the classical 
Birch and Swinnerton-Dyer conjecture. 

Now we define a regulator term belonging to E(Ks) | | (I r- 1/i ~). Let 

Es(K) = ker(E(K) ~ (| O(O, ,E/Eo(K, , ) ) ) ,  

and let Js be the order of the cokernel of this map. In [MTI, MT2-], Mazur and 
Tate define a height pairing 

( ) s : E ( K ) x E s ( K ) ~ I / I  2 �9 

(In fact, their height pairing takes values in Gs, but we use here the isomorphism 
I /I2 ~_ Gs.) 

Suppose first that E(K) is free over Z, and let P1 . . . . .  Pr (resp. Q1 . . . . .  Qr) 
denote integral bases for E(K) (resp. Es(K)) which induce compatible orientations. 
The partial regulator Rii in Ir -1/ I  r is defined to be the determinant of the ijth 
minor of the pairing matrix ((Pi, Qj)s) with entries in I / I  2. The regulator Rs is 
given by the formula 

R s =  k ( - 1 ) i + J P i | 1 7 4  (2) 
i , j = l  

When E(K) is not free, one normalizes this definition as in [MT1, p. "735]: choose 
finite index subgroups A and B of E(K) and Es(K) which are free, and define the 
regulator R(A, B) by picking bases P1 . . . . .  Pr and Q1 . . . . .  Qr for A and B, 
and using the formula (2). If the multiplication by the product of indexes 
j =  [E(K):A][Es(K):B]  induces an isomorphism on the abelian group 
E(K)| | i ~- x/y,  then one defines 

Rs = R(A, B) j -  1 . 



A refined conjecture of Mazur-Tate type for Heegner points 127 

This quantity, when it is defined, does not depend on the choice of A and B. 
Furthermore,  suitable A and B for which j is invertible exist, say, if r > 1 and T is 
prime to the order of Fs, or if v is invertible in the ring Z. From now on to simplify 
we assume that Z contains Z [ ~ - 1 ] .  Under  this assumption we can state the main 
conjecture: 

Conjecture 2.3 Assume that ~-  a ~ Z. Then 
1. The element O'(E, S) belongs to E(Ks)  | | I r- 1. 
2. The leading coefficient O'(E, S) E E(Ks) @2 | (I r- 1/1') belongs to the image of  

the natural map 

t :  E(K) | | ( I r -1 / I  ~) ---, E(Ks) | | ( l r -1 / I r )  . 

3. 0"(E, S) = t(c(q~) 2" u 2" ~ I l I (E/K)" JsRs). 

Remark. 1. When r = 1 and S = 1, we have: 

J1R1 = m2~-2P | P , 

where P is a generator  (modulo torsion) for E(K). Note  that this equation is true in 
E(K)  | Z regardless of the choice of P, since z is invertible in Z. Hence Conjecture 
2.3 follows in this case from the conjectured equation (1), which is itself a conse- 
quence of the classical Birch and Swinnerton-Dyer conjecture. 
2. The conjecture we have formulated is compatible under the norm from Ks to 
Kr ,  when T is a divisor of S (cfi Sect. 3.2). This is the motivat ion for working with 
the regularized Heegner points. 

We now state the main results of this paper which give evidence for conjecture 
2.3. 

To do this we suppose that the following primes are invertible in Z:  
1. The primes 2 and 3. 
2. All primes p < (r - 1)/2. 
3. All primes p such that Gal(Q(Ep~)/Q) is not isomorphic to GL2(Zp). 
4. All primes p which divide m. 

Note  that assumption 3 forces z to be invertible in Z. The set of primes satisfying 
condit ion 3 (and hence, all four of the above) is a finite set if and only if E has no 
complex multiplications, by a result of Serre [Se]. 

Complex conjugat ion acts on the Mordell-Weil  group E(K). Let r + and r -  
denote the ranks of the + and - eigencomponents E(K) + and E(K) -  of E(K) 
under this involution, and let 

p = m a x ( r + , r - )  - 1, i f r  + 4 : r - ,  

p = r + = r -  = r/2, i f r  + = r -  

Note  that the order  of vanishing of L ( E / K ,  s) is odd; hence by the Birch Swinner- 
ton-Dyer  conjecture, one expects that r is odd, so that  r + and r -  should have 
opposite parities and equality r + = r -  should never hold in our situation. 

Theorem 2.4 (Main result) Suppose that S is a product o f  primes which are inert in K. 
Then O'(E, S) belongs to the subgroup E(Ks)  | | 120 of  E(Ks) | | Z[G] .  

Since 2p _>-- r - 1 (with equality holding if and only if [r + - r - [  = 1), Theorem 2.4 
implies part 1 of conjecture 2.3 about  the order of vanishing, slightly weakened 
because of the assumptions which were made on Z. 
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If [r + - r - [  > 1, then 2p > r - 1, and the Theorem 2.4 proves more than what 
is predicted by Conjecture 2.3. Can one give a conceptual account of this extra 
vanishing? At least one can show that when [r + - r - ]  > 1, the regulator term Rs 
vanishes (cf. Proposition 5.12). However, in that case, the leading coefficient should 
be defined to be the projection of O'(E, S) in the group E(Ks) | | (IZP/I 2p+ 1). We 
were not able to supply a prediction, even a conjectural one, for the value of this 
leading coefficient, except when 2p = r - 1. 

Assume now that [r + - r - [ - -  1. Given a prime p, let 0"(E, S)(;j denote the 
reduction modulo p of ~7'(E, S), i.e., the natural image of O'(E, S) in the group 
E(Ks)|174 (Ir-1/I  r) | Z/pZ.  Let tp be the natural map induced by t, 

tp: E(K) | | (I r- 1/I~) | Z / p Z  ~ E(Ks) | | (I r- 1~It) @ Z / p Z  . 

Note that the module ( F - 1 / F )  | Z / p Z  is trivial unless p divides the order of Fs 
and p is not invertible in the ring Z. A p-descent argument establishes the following: 

Theorem 2.5 1. ff'(E, S)(p) belongs to the image of tp. 
2. l f  p divides # III(E/K)Js, then O'(E, S)(p) = O. 

2.2 Application to the Galois module structure of  Heegner points 

In stating the following result, we do not strive for the greatest generality of what 
can be shown by our methods, but only present an illustrative special case. 

An abelian extension L of K is said to be of dihedral type if it is normal over 
Q and the involution T in Gal(K/Q) acts on Gal(L/K) by za~-  1 = a-  1. Let L be 
a dihedral type extension of K with Galois group G = Z/pZ,  where p is a prime 
which does not divide 6m, and satisfies 

GaI(Q(Ep~)/Q) = Aut(Tp(E)). 

Assume that L is ramified only at primes of Q which are inert in K/Q.  Then L can 
be embedded in a ring class field of K, whose conductor over K is a product of inert 
primes. Le t /2  denote the smallest such field, and let c~ ~ E(L) be the trace of the 
Heegner point in E(/2) defined in section 1. The Z [G]-module g(L) generated by 
c~ is a quotient of a free Z [G]-submodule of rank 1 of E(L). The work of Kolyvagin 
tells us that the position of the module d~ in E(L) is strongly related to the 
arithmetic of E(L), a fact which was foreshadowed by the analytic formula of Gross 
and Zagier. 

Denote by do(L)c the complex representation of G attached to do(L), i.e., the 
image of do(L) | C in E(L) | C. Given a prime 1 4: p, let do(L)t denote the image of 
do(L) in E(L) |  F',, where F'~ is the algebraic closure of the finite field F~ with 
l elements. 

The representation g(L)c splits into a direct sum of eigencomponents do(L)~ 
attached to complex characters X of G. By applying the methods of Kolyvagin one 
can show (cf. [BD]) that 

if g(L)~: 4= 0 then dimc(E(L) | C) z = 1. 

Likewise one has a decomposition of the representation do(L)~ into eigencom- 
ponents do(L)( associated this time to F'rvalued characters of G. From the methods 
of Kolyvagin one expects (at least if I is large enough) that 

if do(L)~ 4:0 then dim~,(Sel~(E/L)) x = 1 , 

where Selt(E/L) is the/-Selmer group. Evidence for this is given in [BD]. 
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In both cases the module of Heegner points tells us whether the ranks of certain 
eigenspaces in Mordell Weil groups or/-Selmer groups are one or not. 

The situation changes greatly when one considers the module g(Ljp, the image 
of g(L) in E(L) | Fp. This module no longer decomposes into eigenspaces for the 
G-action, since the representation is a modular representation: the group ring 
Fp[G] is isomorphic to the local ring Fp[g]/(ev). Let 

(E/K)  +- r + = dimv, Sel v 

where the superscripts of + and - denote the + and - eigenspaces for the 
action of complex conjugation on Selp(E/K). Let 

+ 
p p = m a x ( r  + , r ; ) - l ,  i frp # r ; ,  

= + ~ r p  + = r ;  = rv/2, if r v . pp rp 

Theorem 2.6 dimG(g(L)v ) < p - pp. 

Thus the Fp-dimension of g(L)p reflects some quantitative information about the 
rank of the p-Selmer group of E over K. This result leads to several natural 
questions: 
1 Is the bound of Theorem 2.6 sharp? We can only provide a conjectural answer 
when IIIp = 1 and when [r~ - r ;  I = 1 by relying on the philosophy of conjecture 
2.3. 
2. What is the nature of the module of G-invariants (o~(L)p)G? This module is 
necessarily non-trivial and one-dimensional if (g(L)p) is non-trivial. In many cases 
one can show that it gives rise to elements in the Selmer group Selv(E/K ). Can one 
predict what these elements are? 

The remainder of this paper is devoted to the proofs of Theorems 2.4, 2.5, and 
2.6. In Sect. 3 we state an explicit result about congruences for certain combina- 
tions of Heegner points over ring class fields (Theorem 3.15 of Sect. 3.3), and show 
that this result implies Theorem 2.4. Section 4 is devoted to the construction and 
study of certain cohomology classes made from Heegner points which generalize 
those that were studied by Kolyvagin. Finally, the Sect. 5 is devoted to a proof of 
Theorem 3.15. 

3 Restatement of the results 

3.1 Calculus o f  abelian group rings 

Let G be a finite abelian group. Given an element a of order n~ in G, define the 
derivative operator in the group ring Z [ G ]  by the formula: 

D~ = Z a ' .  
i = 0  

If G = ( a )  is cyclic, then D O is the norm element in the group ring and D~ is the 
derivative operator used by Kolyvagin. 

One can decompose G as a product of cyclic groups 

G = G1 x ' "  " x G t ,  
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where the order ni of Gi is a multiple of the order nj of Gj whenever i < j. This 
decomposition is not unique, but. the orders ni are well-defined. Choose a generator 
a~ for each G ,  and view these generators as elements of G. Given a multi-index 
_k = (kl, �9 �9 �9 k,) of integers, the partial derivative operator Dk in the group ring 
Z I G ]  is defined to be 

Dk = D~'I " ' "  D~'~ . 

Let M be a Z[G]-module ,  and let a be an element of M. We wish to study the 
resolvent element 

~, a a | 1 7 4  
a ~ G  

The following gives a Taylor expansion formula for this resolvent element around 
the augmentation ideal. 

Theorem 3.1 (Taylor formula) 

0 = ~ D k a @ ( a l - -  1) k . . . .  ( a t - - t )  k ' ,  
k 

where the sum is taken over all t-tuples k = (k~ . . . . .  kt) of positive integers. 

The proof is a routine computation, and we omit it. Observe that althougb the sum 
is taken over an infinite set, all but finitely many of the terms are zero: the partial 
derivative D~ vanishes once one of the k~ is greater than n~. 

Let p be a prime that is not invertible in Z. The natural inclusion of Q in Qp 
induces a map Z -~ Zp. Let I v denote the augmentation ideal in the group ring 
Zp[G], and let 0p denote the image of 0 in M | Zr [G ]. 

Lemma 3.2 The element 0 belongs to M | t" if and only if Op belongs to M @ I" e .for 
all primes p which are not invertible in Z. 

Proof The successive quotients lk / I  k+~ are finite abelian groups whose orders are 
divisible only by the primes which are not invertible in Z. Since an element in 
a finite abelian group is trivial if and only if it maps to zero in each p-primary part  
of the group, the result follows. 

Let ep: Zp[G] ~ Zp denote the augmentation map on the group ring. 

Lemma 3.3 Assume that x and y belong to the group ring Zp[G] and that the product 
xy  belongs to I~. I f  ep(y) is invertible in Zp, then x belongs to I~. 

lk / l  k+l for all k. Proof Multiplication by y induces an isomorphism on _p,_p 

Lemma 3.4 I f  a is of order prime to p, then (a - l) belongs to lpfor all r. 

Proof Let n be the order of a. Then 

0 = a n - - 1  = n ( ~ - - l ) + ( ~ ) ( a - - 1 ) 2 + ' ' ' + ( a - - 1 )  2. 

The right-hand side is equal to 

Since the second factor maps to n by ep, and n belongs to Z*,  the result follows from 
Lemma 3.3. 
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L e m m a  3.5 I f  the order o f  a is q, a power o f  p~ then q(a - 1) belom, lS to I~. 

Proo f  As in the p roof  of Lemma 3.4 one finds 

q ( ~ - 1 ) + ( ~ ) ( ~ - l ) Z +  ' ' ' + ( c ~ -  l ) ~ = 0 .  

~ K 

Hence 

Applying Lemma  3.3, one finds that  q(a - 1) belongs to I~. 

L e m m a  3.6 Let  q be the maximal  power o f  P dividinq the order c?f a. Then q(a - 1) 
belongs to I t. 

P r o o f  Write ~r = a1~2, where a l  is of order q and cr 2 is of order pr ime to p. The 
result follows f rom the identity 

( o r -  l ) = ( a l -  1 ) ( a 2 -  1)+(~r 1 -  1 ) + ( ~ 2 -  1) 

combined with Lemmas  3.4 and 3.5. 

Given k = (kx . . . . .  kt), let 

n(_k) = gcd ni.  
k,>O 

(Recall that  the n~ are the orders of the a~). Let np(k) denote the maximal  power of 
p dividing n(_k). 

L e m m a  3.7 Suppose r < p. Tile element Op belongs to I~ i f  for  all t-tuples 
k_ = (kl . . . . .  kt) with kl + " �9 " + k, < r, we have 

Dka =- 0 (mod nl,(_k)). 

Proo f  This follows from the Taylor  formula 3.1 together with Lemma  3.6. 

We say that an element a in a Z-module  M is divisible by an integer n if there 
exists a' in M with a = na'. 

L e m m a  3.8 Suppose that all primes which are strictly less than r are invertible in Z.  
Then the element 0 in Z [G]  belonfjs to t ~ i f  

n(k_) divides Dka for  all k = (k l ,  �9 �9 �9 k,) with kl + " �9 " + k, < r . 

P roo f  Combine  Lemmas  3.2 and 3.7. 

We conclude this section with a proper ty  of  the derivatives D k that will be 
useful later: 

L e m m a  3.9 I f  tr is o f  order n, then 

This is proved by a s traightforward computa t ion .  
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3.2 Generalities on Heegner points 

We give ourselves fixed embeddings Q -~ C and 0 --* 0p for every prime p. Com- 
plex conjugation Frob~ e Gal(C/R) acts by Galois automorphisms on any Galois 
extension of Q. Similarly, the Frobenius element at p, Frob r acts on any Galois 
extension of Q which is unramified at p. 

We recall some standard facts on Heegner points over ring class fields of K. We 
do not strive for the greatest generality, but only state the results in the form which 
we shall need in the proofs. A more thorough discussion can be found in [G r l ]  or 
[Gr4]. 

Let 5 p be the set of square-free integers prime to ND which are products of 
primes which are inert in K. For all T~ 5 p we are given the following data: 

1. An abelian extension KT of K, the ring class field of K associated to the order 
of conductor T. It is ramified only at the places of K which lie above the 
primes dividing T. Thus K1 is the Hilbert class field of K. One writes 
G = Gal(K1/K), G r = Gal(KT/K1) and Fr  = Gal(KT/K). 

2. The Heegner point ~(T) in E(Kr). 
Writing T = ll �9 �9 �9 Is, the extension KT is a compositum of the fields Kt, which are 
linearly disjoint over K1. Hence there is a canonical direct product decomposition 

G r = G l l x ' ' ' x G l 5  

which gives inclusions Gs c Gr and Is  c F r  for all divisors S of T. We will 
implicitly identify elements of Gs with their images in Gr. For any S dividing T, the 
partial norm operator Ns in the group ring Z [Gr]  is defined by 

Ns = NGs = ~ a .  
~r e Gs  

For each prime l, choose a generator 6~ of G~, and write D~ for the partial derivative 
D~,. Thus D] is the derivative operator studied by Kolyvagin. These operators acts 
on the field K r  and on the MordellWeil group E(Kr)  in the natural way. 

Given S e A '~ and l a prime in ~ which is prime to S, let 2 denote a prime of 
K above I and let a4,s e Fs be the Frobenius automorphism associated to )~. 

Proposition 3.10 NI(~(SI)) = ate(S). 

Proof. See [Gr4, p. 240, Proposition 3.7]. 

Proposition 3.11 ~(SI) - 6a.sc~(S) (mod 2'), where 2' is any prime of  Kst above ~. 

Proof. See [Gr4, p. 240, Proposition 3.7]. 

Propositions 3.10 and 3.11 make up the axioms of an Euler system for Heegner 
points in the sense of Kolyvagin [Ko3]. 

The action of complex conjugation Frob~o on the Heegner points is given by the 
following proposition: 

Proposition 3.12 Frob~o~(T) = eao~(T) + (torsion)for some 60 ~ F T. 

(Recall that e is the eigenvalue for the operator ws acting on f;  it is opposite to the 
sign in the functional equation for L(f,  s).) 

Proof. See [Gr4, p. 243, Proposition 5.3]. 
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We make a brief digression concerning the compatibility of Conjecture 2.3 
under norms. Writing T = St, le t /h  denote the map 

#l: E(Kr)  | | Z[Cr-I --* E(Kr) | | Z[Fs]  

induced by the homomorphism Fr  ~ Fs.  

Proposition 3.13 ~t(g'(E, T)) = # E(k3"  O'(E, S), where kt = 6'K/16)K. 

P r o o f  By Proposition 3.10 combined with a direct computation, the behavior of 
the regularized Heegner points fit and f17 under norms is given by: 

N , f l r = ( l +  1--at)fls,  fl'~ = (l + 1 + at)fl's ~ . 

The result now follows from the formula 

# E(kl) = (l + 1 -  at)(l + 1 + a t ) .  

On the other hand the naturality of the Mazur Tate pairing implies that 

~ t ~  )T = ( , ) s  

on E ( K ) x  Er(K), so that 

I~ t (JrRr)  = # E(kt)" J s R s  �9 

Hence Conjecture 2.3 is compatible with the map /h when l is inert in K / Q  
A similar compatibility can be shown when I is split in K / Q .  Hence in particular, 
Conjecture 2.3 in the case r = 1 follows from the classical Birch Swinnerton-Dyer 
conjecture, thanks to the formula of Gross and Zagier. 

The compatibility under norms is the reason for using the regularized Heegner 
points fls instead of the simpler points a(S) in the definition of O'(E, S). 

3.3 A divisibility theorem for  Heegner  points 

In this section, we state a theorem on congruences for certain combinations of 
Heegner points over ring class fields. Using the results of Sects. 3.1 and 3.2, we 
show that it implies Theorem 2.4. 

Let q be a power of a prime p which is not invertible in the ring Z. Let 

~r = {l rational prime, Frobl = Frob~ in K(I~q)/Q} �9 

Lemma 3.14 The prime l belongs to 5 f  q i f  and only i f  it is inert in K / Q  and q divides 
l + l .  

Any finitely generated Z/qZ-module M can be decomposed as 

M = (Z/qZ) rqtM) x M', 

where the exponent of M' divides q strictly. The integer rq(M) does not depend on 
the decomposition. 

Let Selq(M) be the q-Selmer group for E / K  which arises out of the descent for 
the isogeny of multiplication by q. Complex conjugation Froboo acts on Selq(M) 
and splits it into + and - eigenspaces since q is odd. Let rq + and r~- denote the 
values of rq(Selq(E/K)  +) and rq (Se l q (E / K) - )  respectively. Let 

p q = m a x ( r  + , r q ) -  1, i f r  + 4 : rq ,  

pq = r + = r~ = rq/2, if r + = rq-. 
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The class group C of K can be decomposed (non-canonically) as a product  

C = C ' x ( ~ 1 ) x "  " ' x ( G ) ,  

where q does not divide the exponent of C' and each ~i is of order  a power of 
p which is greater or equal to q. 

Given S = 11 �9 �9 �9 I, a product  of distinct primes in ~ q ,  let Dk be the partial 
derivative operator  in the group ring Z[Fs] of the form: 

Dk = Nc,D~', �9 �9 �9 D~:Dk, ' ' ' "  D~:, 

where _k = (Jl . . . . .  j,,, kl . . . . .  k O is an (a + s)-tuple of positive integers. One 
defines the support  of Dk to be the integer S, its conductor  S' to be the product  of 
the li with kl > 0, and i t so rder  to be k = J l  + " ' ' + j ,  + kl + " �9 " + k~. There is an 
obvious partial ordering on the set of partial derivatives with support  S. Given 

t k' = (j'l . . . . .  j'~, k'l . . . . .  k,0, one says that Dk_, is less than Dk if 

j;K=j,, k l G k  , Vt.  

Theorem 3.15 Let q be a power qf a prime which is not invertible in Z. I f  
order(Dk) < pq, then 

D k ~ ( S ) - - 0  ( m o d q ) .  

Claim 3.16 Theorem 3.15 implies Theorem 2.4. 

Proof Let S = l l  . . . I ,  be a p r o d u c t  of primes which are inert in K. Let D~ be 
a partial derivative of support  S and conductor  S' which is of order < p. We can 
write 

Dk = D'Ns/s, , 

where D'  has support  S'. By Proposi t ion 3.t0, 

D~cc(S) = ( t ~s/s, a~)D' ~(S') " 

Fix a prime p which is not invertible in Z and let q be the largest power ofp  dividing 
n(_k). By definition all the primes dividing S' belong to 2/~q. Since p < rOq, we can 
apply Theorem 3.15 to conclude that D 'a(S ' )  - 0 (mod np(_k)). Hence n(_k) divides 
D k~(S) whenever o r d e r ( D k ) <  p. By Lemma 3.8 it follows that the resolvent 
element 

Os = Y~ ~ ( S )  | o ~ E(Ks) | Z [ r s ]  
a e F  s 

belongs to E(Ks) |  I ~ Similarly the elements Or for all T dividing S belong to 
E(Ks) | I ~ as well as the elements 0} which are obtained by applying to Or the 
involution sending o e Fs to a-~.  The elements A(E, S) and A(E, S) ~ introduced in 
Sect. 2.t can be expressed as combinat ions  of  the OT and the 0* over the integral 
group ring Z[Fs]. Hence they belong to E(Ks) | I ~ as well. Therefore 

O'(E, S) belongs to E(Ks) | | 12p . 

4 The Heegner cohomology classes 

4.1 More on derivatives 

Let q = pM be a power of  a prime p which is not  invertible in Z. 
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Lemma 4.1 1. ( a t - t ) D ~  = (  I +  k 1) - a z D ~ - t  

2. For a l l O < k  < p, 

(a~-  1)D~ - - a i D e - 1  ( m o d  q ) ,  

and a similar formula hold for the D~ . 

Proof Part 1 is a restatement of Lemma 3.9. For part 2, one uses the fact that 

and hence the binomial coefficient / ( l +  1~ \ q divides l + 1 (Lemma 3.14), \ k J 
The group Gal(Ks/Q) is a semi-direct product of GaI(K/Q) = (Frob.~ with 

Fs. Complex conjugation Frob~ acts on Fs by the formula: 

FroboocrFrob~ 1 = a -  1 . 

Extending this action to the group ring Z/qZ[Fs-1, one has the following action of 
Frob~ on Dk: 

Lemma 4.2 Frob~ DkFrobL a = ( -  l)kDk + (lower order derivatives). 

Proof It suffices to show this for a partial derivative operator of the form D~. In 
this case, one has 

Frob~D~'FrobL ~ -  ( -  1)kD~ = ~ f ( i )a l ,  (3) 
i = O  

ist   edu , onmodqo / 
a polynomial with rational coefficients taking integral values at integral arguments. 
Moreover the degree o f f  is strictly less than k. The Z-module of all such polynomial 

( ' )  k' functions is spanned by the k' with < k. Hence the left-hand side of (3) can be 

expressed as an integral combination of partial derivatives of lower order. 

4.2 The Heegner cohomology classes 

Fix a product S of primes in ~q, and let D e be a fixed partial derivative in the group 
ring Z [Fs]. Define a set L~q, ~ of rational primes as follows: 

2Pq.E = {l rational prime] l , fNDp and Frobt = Frob~ in K(Eq)/Q } . 

Lemma 4.3 A prime I not dividing NDp belongs to ~q. E if and only if it belongs to 5f q 
and in addition q divides a~. 

Proof If I e ~Pq.E, we have the equalities of the minimal polynomials of Frobi and 
Frob~ acting o n  Eq: 

x 2 - a l x + l = x  2 -  l ( m o d q ) .  

The lemma follows by equating coefficients of these two polynomials. 

Lemma 4.4 I f  L is a solvable extension of Q, then Eq(L) = 0. 

Proof Suppose Ep(L) 4: 0. Since Gal(0/Q) acts transitively on the p-torsion in E, 
this implies that L contains all of the p-torsion points, which is impossible since 
GLz(Z/pZ) is not solvable when p > 3. 
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Choose a prime I which satisfies the following conditions: 

I ,~ND'p 'S ,  Frobl = Frobo~ in Ks(Eq)/Q.  

Clearly this implies that I belongs to ~q. E. Let P denote the class of Dk~(S) in 
E(Ks)/qE(Ks). Let T = SI, and let P(1) denote the class of D k ' D J ~ ( T )  in E(KT)/ 
qE(KT). We make the following assumption: 

H y p o t h e s i s  4.5 For all the partial derivatives D' which are strictly less than DkD~, 
the class of D' ~(T)  is 0 in the group E(KT)/qE(Kr) .  

Under hypothesis 4.5, one has: 

Lemma 4.6 The class of P(l) is fixed under the action of FT. 

Proof Let a = ~ for some l dividing T or a = ~2 for some j. Then 
(1 - a)DkD~ = D', where D' is some partial derivative which is strictly less than 
D kD~, by Lemma 4.1. Hence (1 - ~)P(I) = 0, by Hypothesis 4.5. 

From Lemma 4.4, the group Eq(KT) is trivial and hence the following sequence 
is exact: 

0 ~ E(KT) ~ E(KT) ~ E(KT)/qE(KT) ~ O. 

Taking FT-invariants yields an exact cohomology sequence 

0 ~ E(K)/qE(K) ~ (E(KT)/qE(KT)) rT ~ H I(FT, E(KT))q. 

Let d(1) = 6P(l). We will identify d(l) with its image by inflation in Hi(K ,  E)q. 
The class d(l) is the global cohomology class which plays a key role in 

Kolyvagin's method. We now undertake to analyze its properties. 

Behavior of the class d(l) under complex conjugation: Complex conjugation Frob~ 
acts on the group H 1 (K, E)q in the natural way. Let ek = (-- 1)k + 1 ~ be the parity of 
the order of D_k, times the sign in the functional equation. 

Propos i t ion  4.7 The class d(l) is in the ek-eigenspace for the action of Frob~.  

Proof By Lemma 4.4, the group E(KT) has no q-torsion, and hence the torsion 
subgroup E(Kr)tor is killed in E(Kr)/qE(KT).  Hence by Lemma 3.12 we have 

Frob~ [ct(T)] = ~Oo [r , 

where [a(T)]  denotes the image of ~(T) in E(KT)/qE(KT). Combining Lemma 4.2 
with the Hypothesis 4.5 that all lower order partial derivatives of ~(T) vanish, we 
find: 

Frob~P(l)  = ekaoP(l ) = gkP(l ) . 

The last equality follows from Lemma 4.6. Since the map ~ used to construct the 
class d(l) from P(1) is equivariant with respect to the Galois actions, it follows that 
d(l) is in the ek-eigenspace for Frob~.  

Local behavior of the class d(l): Given a place v of K, let d(l)~ denote the restriction 
of d(1) in H 1 (K~, E)q. The prime I is inert in K/Q. Let 2 be the place of K above it. 
The prime 2 splits completely in Ks/K;  choose a place 2' of Ks above 2. Finally, the 
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extension Kr/Ks  is completely ramified at 2'; let 2" denote the unique place of KT 
above 2'. The localization d(l)~ belongs to 

H l (GaI((Kr)~,,/K~), E((KT)~,,))q = H 1 (Gl, E((K r)~"))- 

Fact 4.8 The choice of generator cq of G~ determines a canonical inclusion of 
HI(Gt, E((KT)~,,))q inside Eq(kz). 

Proof Since the kernel of the reduction map E((KT)~,,) ~ E(kz) is a pro-I group, 
the group H~(Gt, E((Kr)x,,))q injects into HI(Gt, E(kz))q = hom(Gz, E(ka))q. The 
latter group can be identified with E(k~)q thanks to the chosen generator a~ of Gt. 

Theorem 4.9 1. For all archimedean places and all places which do not divide I or the 
conductor S' of Dk, the class d(1)~, is equal to O. 
2. The image of d(1)x in E(ka)q is equal to 

(I + 1)Frob~ - a l p ,  

q 

where ff is the reduction of P mod 2'. 

Proof 1. If v is archimedean, then K~ = C and E/K~ has trivial Galois cohomol- 
ogy, Suppose now that v is a non-archimedean place not lying above S'l. 
By construction the class d(l)o is inflated from a class in Ht(Ks,~/K, E)~. Since 
the extension Ks,~ is unramified at v, the class d(t)~ comes from a class in 
H 1 (K~ . . . .  /Kv, E)q. Let E ~ denote the connected component of the N6ron model at 
v, and let J,~ = E/Eo. The group HI(K~ . . . .  /K, ,  E ~ vanishes, (cf. [Mi, Chap. I, 
Proposition 3.8]), and hence HI(K~ . . . .  /K~, E)q injects into H~(K~ . . . .  /K,,, Jv)q. 
By the assumption that q is not invertible in Z, we know that q is prime to m and 
hence to the order of J~. Hence the group H ~ (K ~ . . . .  /K~, J~)q is trivial, and the class 
d(l)~ vanishes. 
2. The image of d(1)a in E(k~) by the isomorphism defined above is the point 

reda,,((az - ~)P(l!)  = red~,,( (a' - 1)DqqdDk-~(T)) , 

where redz,, :E((KT)z,,)--q, E(kz) is the reduction map. But 

(at - 1)DtD_ka(T) = (1 + 1 - Nl)D_ka(T) (by Lemma 4.1) 

= (l + 1)Dkc~(T) - atD_k~(S) (by Proposition 3.10). 

Hence, 

r edz , , ( ( a~ -~)P( t ) )  = r e d ; : , ( / +  l q  FrobooDka(s) at _q _ 

by Proposition 3.11 combined with the fact that F r o b ~ , = F r o b ~ .  
/~ = redz,,(D_ka(S)), the lemma is proved. 

Since 

4.3 Tate duality 

The cup product in cohomology combined with the Weil pairing 

Eq (~ Eq --~ ldq 
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give rise to a pairing 

H 1 (Kz, Eq) x H 1 (K~, Eq) ~ H2(Kx, pq) --- Z / q Z  . 

(The identification H2(K,~,/2q) -- Z / q Z  is provided by the map 

inv2 : HE(Kz, #q) ~ Z / q Z  

of local class field theory.) It is a result of Tate that this local pairing is non- 
degenerate (el. [Mi, Chap. t, Corollary 2.3]). 

The local q-descent exact sequence 

0 -~ E(K~)/qE(K~) ~ H1 (Kz, G)  -~ H I(K~, E)q ~ 0 

allows us to view E(Kz) /qE(Kz)  as a submodule of H 1 (K~, Eq). This subspace is 
maximal isotropic for the local Tate pairing (cf. [Gr4, p. 247, Proposition 7.5], or 
[Mi, Chap. I, Theorem 2.6]). Therefore one gets a perfect pairing 

( , ) :E(Kz)/qE(K;~) x H I ( K x ,  E)q ~, Z / q Z ,  

i.e., an isomorphism 

H I(K~, E)q ..-, (E(K,O/qE(Kz))*.  (4) 

Here the superscript �9 denotes Pontryagin dual, i.e., for a Z/qZ-module M, 

M* = horn(M, Z/qZ) . 

By composing the dual of the natural map S e l q ( E / K ) ~  E(K;~)/qE(K;~) with the 
isomorphism (4), one obtains a m/~p 

~b~ : H I(K ~, E)q -~ Selq(E / K)* . 

Similarly, if S is any submodule of the Selmer group Selq(E/K), one obtains by 
restriction a map H 1 (Kz, E)q ~ S*, which by abuse of notation we denote by the 
same letter ~z. The map ~bz commutes with the action of complex conjugation on 
the modules H I(Kx, Eq) and Selq(E/K), and hence preserves the decomposition 
into eigenspaces of the modules. 

We will be exploiting the cohomology class d(l) in the following way. Let 
Selq(S') ~ Selq(E/K) be the kernel of the map 

Selq(E/K) ~ Ov Is" E(K~)/qE(K~.) . 

Proposition 4.10 The local class d(l)x is in the kernel of the map 

q~z :H ~(Kz, E)~ ~ --* (Selq(S')*) ~ . 

Proof  Let s belong to Selq(S'), and let sz denote its image in E(Kz)/qE(Kz).  We 
need to show that 

(sz, d(1)z) = O. 

Let d(1) denote a lift of d(1) to the group H i ( K ,  Eq). The cup-product s c~ d(l) 
belongs to the global Brauer group H ~ (K,/~). By the definition of the local pairing, 
we have: 

~, (s~, d(1)~) = ~ invv(s w aT(l)). 
I1 t ;  

The latter sum is 0, by the reciprocity law of global class field theory. On the other 
hand, if the place v does not divide S'2, then d(l)~ = 0, by theorem 4.9, If the place 
v divides S', then so = 0, since s �9 Selq(S'). Hence all of the terms in the first sum are 
zero, with the possible exception of (s~, d(l)x). It follows that (s~, d(l);~) = O. 
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4.4 Application of the Ckebotarev density theorem 

We make the following hypotheses: 

Hypothesis 4.11 The point P = Dk~(S) is not the q-th power of a point in E(Ks). 

Hypothesis 4.12 rq(Selq(S')~9 > 1. 

Set F = Ks(Eq). We start with a few cohomological lemmas. 

Lemma 4.13 The fields Ks and K(Eq) are linearly disjoint over K. 

Proof The intersection of the Ks and K(Eq) is a subfield of K(Eq) which is abelian 
over K and hence is contained in K(#q), since GaI(K(E~)/K)= GL2(Z/qZ). But 
K s ~ K(#q)  = K ,  since S and q are relatively prime. 

Lemma 4.14 Let (Z/qZ) 2 be equipped with the natural action of GL2(Z/qZ). Then 

HP(GL2(Z/qZ), (Z/qZ) 2) = O . 

Proof Let C-~ (Z/qZ)* be the center of GL2(Z/qZ) consisting of the scalar 
matrices. The Hochschild-Serre spectral sequence 

He(PGL2(Z/qZ), Hq(C, (Z/qZ)Z)) ~ HP+q(GL2(Z/qZ), (Z/qZ) 2) 

shows that HP(GL2(Z/qZ),(Z/qZ) 2) = 0, since C has order prime to q, and 
H~ (Z/qZ) z) = 0 (here we use the fact that q is odd). 

Lemma 4.15 The restriction map Hi(K, Eq)--* Hi(Ks, Eq) is injeetive. 

Proof Its kernel is the group Hi(Ks~K, Eq(Ks)) which is trivial since Eq(Ks) = 0 
by lemma 4.13. 

Lemma 4.16 The restriction map Hi(Ks, Eq)-~ Hi(F, Eq) is injective. 

Proof By Lemma 4.13, we have GaI(F/Ks) = GL2(Z/qZ),  and the kernel of the 
restriction map is the group 

H ~(F/Ks, Eq) = H~(GL2(Z/qZ), Eq). 

This group is trivial by lemma 4.14, and the result follows. 

Lemma 4.17 The restriction map Hi(K, Eq)-~ Ht(F, Eq) is injective. 

Proof Combine Lcmma 4.15 and 4.16. 

Let I be a rational prime satisfying the condition 

Condition 4.18 1XND'p'S, Frobt = Frob~ in F/Q. 

In this case, I is inert in K/Q. Let 2 be the unique prime of K above t. The prime 
)~ splits completely in F/K. Choose a prime 2r of F above it. The residue field of F at 
2~ is identified with k~. 

Proposition 4.19 There exists a prime 1 satisfying the Condition 4.18 such that 
1. The image oj'16 in E(ka)/qE(kD is non-zero. 
2. The map Sel0(S') ~ ~ (E(ka)/qE(k~)) ~ is surjective. 

Proof By the Hypothesis 4.11, the class P in E(Ks)/qE(Ks) is non-trivial. Complex 
conjugation acts on E(Ks)/qE(Ks) in a natural way, and P can be written uniquely 
as a sum of projections onto the + and - eigencomponents for this action. At 
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least one of these projections is non-trivial: call it P'. The cohomology class in 
H ~(Ks, Eq) corresponding to P' is also non trivial; hence, so is its restriction in 
Ha(F, Eq), by Lemma 4.16. Let (1 denote this restriction. 

By Hypothesis 4.12, we may choose an element of order exactly q in Selo(S')~% 
and the image ~2 of this element in H ~ (F, Eq) is still of order exactly q, by Lemma 
4.17. 

Both (1 and (z are homomorphisms from Gal(F~b/F) into Eq. Let F be the 
smallest extension of F which is cut out by ~a and (2 and is Galois over Q. Let 
U = Gal(F/F).  There is an exact sequence 

1 ~ Gal(ff/F) ~ Gal(F/Ks) --, Gal(F/Ks) ~ 1 

II II 

U GL2(Z/qZ) 

which determines a GL2(Z/qZ)-action on U, Similarly, complex conjugation 
Frob~ acts on U by inner automorphisms. The cohomology classes ~ ,  and (2 are 
fixed under the action of GLz(Z/qZ) on horn(U, Eq), since they come from classes 
in Hi(Ks,  Eq) by inflation. Let U + denote the subspace of U which is fixed by 
Frob~.  The class (1 belongs to a fixed eigenspace of horn(U, Eq) for the action of 
Frob~,  by construction. The class (2 belongs to the ~k-eigenspace, since it comes 
from a class in Selq(S') ~k. Hence both (1 and pM-l~2 are non-zero on U +. 
Otherwise, they would map U onto a given eigenspace of Eq for the Frob~-action, 
contradicting the GL2(Z/qZ)-invariance of the image. Thus, we can find ? e U + 
such that 

(1(~) =~ 0, (2(~)) is of order exactly q . 

Now choose l such that 

Frobr = Frob~ ~ in ff/Q , 

where the equality is one of conjugacy classes in the group Gal(F/Q). One can find 
such a prime, by the Chebotarev density theorem. Clearly, ! satisfies the Condition 
4.18. In addition, 

(l(Frob,~,,) = ( l (Frob 2) = ( l (?Fr~  ~) m_ (1(?  2) :# 0 .  

Hence, P is not a q-th power in E(ki)/qE(k~), and condition 1 is satisfied. By the 
same computation, one shows that ( 2 ( F r o b j  is of order exactly q in Eq, which 
implies that the image of (2 in HI(K~, Eq) ~ is itself of order exactly q, so that 
condition 2 is satisfied as well, since 

(E(Kx)/qE(Ka)) ~ ~-- Z/qZ . 

This proves the proposition. 

5 Proof of the main results 

5.1 Proof of Theorem 3.15 

Given a Z/qZ-module M, define r,(M) to be 

rp(M) = dimG(M | Fp). 
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Lemma 5.1 U'O ~ A' ~ A f A" is an exact sequence of  Z/qZ-modules,  then 

rq(A) < rq(A') + rp(A") . 

Proof  We may assume without loss of generality t h a t f i s  surjective. Let N denote 
the image of A M -  ~ in A". Because of the surjectivity assumption, the module A" /N  
is annihilated by p. There is a natural exact sequence of Fp-vector spaces: 

0 ~ pM-1A '  -+ pM-1A ~ A " / N  

pM- l a ~--~ f (a)  . 

Hence 

d im~(p  M- I A) < dimF~(pU-l A ') + d imvp(A" /N) .  

The lemma now follows from the fact that dimvp(p ~ -  1A) = rq(A) (and likewise for 
A') and from the inequality dimFp(A"/N) < rp(A"). 

Lemma 5.2 For any prime v o f K  which lies above a prime of  Zf  q, 

rp(E(K~)/qE(Kv) ~) < I . 

Proof  We have 

rp(E(Kv)/qE(K~) ) = rv(E(Kv)/pE(Kv) ) = rv(E(k,,)/pE(k~)), 

because the norm of v is prime to p. Since E(k~,) is a finite group, the group 
E(kv)/pE(k~) is isomorphic to Ep(k~) which is at most 2 dimensional. Moreover, we 
know that 

# E(kv) +- = l + 1 ~ at . 

Since p divides I + l, the order of  E(k~) is divisible by p if and only if p divides a,, 
and then p divides the order of each eigenspace so that 

rp(E(k~)/pE(k,,) • = 1. 

Let Dk_ be as in the previous section a partial derivative of order k with support 
S and conductor S', and let ek = (-- 1) k§ t~. Consider the modules 

Selq(S'), A ( S ' ) =  OvIs,E(K~)/qE(K~) 

which fit into the exact sequence 

0 ~ Selq(S') • ~ Selq(E/K) • ~ A(S')  • . 

Let Selq -+ denote the plus and minus eigenspaces for the action of complex conjuga- 
tion on Sel~(E/K). 

Theorem 5.3 I f  order(D k) < rq(Selq(S') ~) + rp(A(S')~), then 

Dk~(S) = 0 (mod q).  

Proof  The weight of D k is defined to be 

wt(Dk) = order(Dk) - # {l]S such that I belongs to Aaq, E} . 

We will show Theorem 5.3 by induction on wt(Dk_). 

Step 1 Case where wt(D_k) < 0. In that case, Dk contains a factor of the form D ~ 
with I~ Lfq, e. But then, by Proposition 3.10, 

D%(S) = a t "  ~ ( S / l )  , 
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which is 0, since q divides at by L e m m a  4.3. Thus one always has D~_7(S)= 0, 
without  assuming any inequality for the order  of Dk. 

Step 2 Proo f  for wt(Dk) = w > 0: We make the induction hypothesis  that Theorem 
5.3 holds in weight strictly less than w. We argue by contradiction,  assuming that  
P = D k~(S) is non-zero but that  

order(D_k) < rq(Selq(S') ~k) + rp(A(S')~k) . 

L e m m a  5.4 rq(Selq(S') ~) > 0. 

Proof Otherwise we would have 

order(D_k) < rv(A(S' /") .  

The r ight-hand side in this inequality is less than or equal to the number  of primes 
dividing S', by L e m m a  5.2, and thus cannot  be greater than order(Dk)- 

Invoking  Proposi t ion 4.19, we choose a prime l satisfying the conditions 

Conditions 5.5 1. Frobt  = F rob~  in Ks(Eq)/Q. 
2. ff =g 0 in E(kz)/qE(kz). 
3. The map Selq(S') ~ ~ (E(K~)/qE(K~)) ~ is surjective (or, dually, the map 

r :H  ~ (K~, E)~ ~ ~ (Selq(S')~) * 

is injective). 

The crucial observat ion is that the Hypothesis  4.5 of Sect. 4.2 is still satisfied in 
our new setting. 

L e m m a  5.6 The partial derivative DkD~ t satisfies the Hypothesis 4.5 of Sect. 4.2. 

Proof Let D '  be a partial  derivative which is strictly less than DkD~. We assume 
without loss of generality that  the order  of D'  is equal to k, the order  of Dk. L e m m a  
5.1, applied to the exact sequence 

1 ~ Selq(S'l) ~ ~ Selq(S') ~k --, (E(K~)/qE(K~.)f ~ 

shows that  

rq(Selq(S') ~) < rq(Selq(S'l) ~) + rp(E(K~)/qE(KD ~) 

= rq(A'(S'l) ~) + 1 (by L e m m a  5.2). 

Also, by L e m m a  5.2, 

rp(A(S') ~) = rp(A (S'l) ~) - 1 . 

Combin ing  these two inequalities, we find that  

order (D' )  = k < rq(Sel~(S'l) ~) + rp(A(S'l)~) . 

Since the suppor t  of D'  is divisible by an extra prime in ~q,E,  

wt(D')  < wt (Dk) .  

Thus we m a y  apply the induction hypothesis  to conclude that  D'~(S) = 0. 
Because of this lemma,  we can apply the construct ion of Sect. 4.2, to obtain 

a class d(l) in H~(K, E)q. Combin ing  1 and 2 of Condi t ions 5.5 satisfied by l with 
Theorem 4.9, we find 

d(l)z 4 :0  . 
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By Proposi t ion  4.10, it follows that the map  

~bx : H  I(K~, E),] ~ ~ (Selq(S')~k) * 

fails to be injective, contradict ing the third of the Condi t ions 5.5. 
We now derive some consequences of the main  result. 

Corollary 5.7 I f  order(Dk) < rq(Selq(S') -~) + rp(A(S')-~O - 1, then 

D~_-:r - 0 (mod q) .  

Proof Suppose that  P = D_k~(S) 4 :0  (rood q). Then, by Proposi t ion 4.19, we can 
choose a prime l such that 

1. Frobz = Frob~. in Ks(Eq)/Q. 
2. /~ 4 :0  in E(k~)/qE(k~). 

We observe that  the point DkD]:~(T)  = P(l) is non-zero in E(KT)/qE(KT). For, 
either there is a partial  derivative D '  strictly less than DkD]  such that  D ' a ( T )  is 
non-zero rood q, in which case Dk_D~ is also non-zero rood q by L e m m a  4.1; or 
DkD~ satisfies the Hypothesis  4.5, in which case we can apply the general construc- 
tion of Sect. 4.2 to obtain a cohomology  class d(l) in H I(K, E)q. By Theorem 4.9, 
this class is non-zero locally at 2, and hence a for t ior i  globally. Hence the point P(I) 
from which it comes is non-zero as well. By the assumption,  

order(D_kD~) < rq(Selq(S') -~ )  + rp(A(S')-~). 

on the other  hand, 

rq(Selq(S') -~) + rp(A (S') -~) < rq(Selq(S'l) -ak) + rv(A (S'l)-~k) , 

by the same calculation as in the proof  of L e m m a  5.6. Combining  the two 
inequalities together,  we find 

order(Dk_D~) < rq(Selq(S'l) -~) + rp(A(S'l)-~) . 

Let k' = order(D_kD 1) = k + 1. Since ( -  1) k' = - ek, we can apply Theorem 5.3 to 
conclude that  DkD~ = 0 m o d  p, which is a contradiction. 

Corollary 5.8 1. / f  order(Dk) < rq(Selq~), then D_k~(S) =-- 0 (rood q). 
2. Iforder(D_D < rq(Selq ~) - 1, then Dk~(S) -- 0 (rood q). 

Proof By L e m m a  5.1, 

rq(Selq ~) < rq(A'(S') ~) + rp(A"(S')~) . 

Hence Par t  1 follows from Theorem 5.3. Par t  2 of the corollary follows similarly 
from Corol lary  5.7. 

We finally come to the p roof  of Theorem 3.15 whose s tatement  we recall: 

Theorem 3.15: Let q be a power of a prime which is not invertible in Z, and let Dk be 
a partial derivative whose support S is a product of primes in Yq.  Iforder(D_D < pq, 
then 

D k ~ ( S ) = 0  ( m o d q ) .  

Proof If the inequality is true, then either 

order(Dk_) < rq(Sel,] ~) or order(D_k) < rq(Selff ~) - 1 . 

The result then follows from Corol lary  5.8. 
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5.2 Proof of  Theorem 2.5 

We now turn to the proof of Theorem 2.5. We assume that I r + - r - ]  = 1, so that 
2t) = r - 1. To study the leading coefficient O'(E, S)~p~, we must study the images of 
the elements Dk~(S) in E(Ks)/pE(Ks), where D k is a partial derivative of order 
p and support S. 

Part 2 of Theorem 2.5 will follow from: 

Proposition 5.9 I f  D_k0t(S) 4:0 mod p, then IIIp(E/K) -- 0, and the map 

Selp(E/K)- | 
is surjective (i.e., Js | Fp = 0). 

Proof. If Dk~(S) 4:0 rood p, then by Theorem 5.3 and Corollary 5.7, we have: 

p > rp(Selp(S) ~) + rp(A(S) ~) > rp(Selp(E/K) ~) > r~,  

p > rp(Selp(S) -~)  + rp(A(S) -~k) - 1 > rp(Selp(E/K) -~)  -- 1 > r -~  - 1 . 

Since 2p -- r -- l, we have equalities everywhere, and hence IIIp(E/K) = O. Also, 
since rp(Selp(E/K)) = rp(Selp(S)) + rp(A(S)), the map 

Selp(E/K) ~ A (S) 

is surjective. 

To show Part 1, we must show that 

Proposition 5.10 D_k~(S) is in the image of the natural map 

E(K)/pE(K) ~ E(Ks)/pE(Ks) . 

Proof. Consider the exact sequence 

0 ~ E(K)/pE(K) ~ E(Ks)/pE(Ks) ~ H ~(K, E)p 

(cf. Sect. 4.2). Let P be the image of D_k~(S) in E(Ks)/pE(Ks), and let d be the image 
of P in H X(K, E)p. The cohomology class d is the obstruction for the point P to 
come from E(K)/pE(K); we want to show that it vanishes. By Theorem 4.9, the 
class d is trivial locally except possibly at the places dividing S. Hence by the 
definition of the local Tate pairing and the reciprocity law of global class field 
theory (cf. Sect. 4.3), the image ofd in OvlsH I(K~, E)p maps to 0 in Selp(E/K)*. But 
by Proposition 5.9, the map Selp(E/K) ~ A(S) | Fp is surjective, and hence dually 
the map 

GvlsHa(K~, E)p ~ Selp(E/K)* 

is injective. Therefore the class d is locally trivial everywhere; it belongs to 
UIp(E/K). By Proposition 5.9, IUp(E/K) = 0, and hence d = 0. 

To conclude, we make some remarks concerning the Mazur Tate height pairing 

( , ) s :E (K) •  ~ ( I / I 2 ) ,  

where I denotes the augmentation ideal in the group ring Z [Fs]. 

Claim 5.11 I f  P ~ E(K) and Q ~ Es(K) belong to the same eigenspaces for the action 
of complex conjugation, then ( P, Q) = O. 
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Proof Let r = F r o b ~  denote  complex conjugat ion.  By the l ineari ty of the Mazur  
Tate  pai r ing and the fact that  P and  Q belong to the same eigenspace for z, we have: 

(zP, zQ> = (P, Q> . 

On the other  hand,  the behavior  of the Mazur  Tate  pai r ing under Galo is  act ion 
(cf. [MT2,  p. 216, (3.4.2)3), 

<zP, zO)s  = z<zP, Q ) s  r - 1  = - <P, Q ) s ,  

and  hence since I/12 is of odd  order,  <P, Q)s = O. 

Because of this claim, the pai r ing matr ix  has all of its (r - 1) • (r - l ) -minors  
equal  to 0 whenever  lr + - r - I  > 1. Hence the regula tor  Rs vanishes. Since the 
leading coefficient ff'(E, S) is also zero in E(Ks) | | I r - 1 / l  r (because 2p > r - 1), 
we have shown: 

Proposi t ion 5.12 I f  Ir + - r - I  > 1, then both the regulator Rs and the leading 
coefficient O'(E, S) are zero in E(Ks) | | (I ~- 1~It), where I denotes the augmenta- 
tion ideal in the group ring Z [ F s ] .  Hence Conjecture 2.3 is true in this case, after 
tensorin 9 with Z. 

5.3 Proof of  Theorem 2.6 

We finish with the p roo f  of Theorem 2.6 (cf. Sect. 2.2). 

Theorem 2.6 dimv,(~(L)v) < p - pp. 

Proof Let ~r be a genera to r  for the g roup  G, and let ct be the Heegner  point  in E(L). 
By app ly ing  L e m m a  4.1, one sees that  the non-zero  vectors among  

0 1 " ' ,  D ~ - I ~  D ~ ,  D~c~, . 

give a basis for the vector  space gp over  Fp. By Theorem 3.15 the par t ia l  derivatives 
of ~ of  o rder  < pv are  0 m o d  p, and the result follows. 
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