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Kolyvagin’s descent and Mordell-Weil groups
over ring class fields?)

By Massimo Bertolini®) at New York and Henri Darmon?) at Cambridge

1. Introduction
Let E/@ be a modular elliptic curve with the modular parametrization:
¢:X,(N)— E,

where X,(N) is the complete curve over @ which classifies pairs of elliptic curves
related by a cyclic N-isogeny. The curve E is equipped with the collection of Heegner
points defined over ring class fields of suitable imaginary quadratic fields.

More precisely, let K be an imaginary quadratic field in which all rational primes
dividing N are split and let @ be the order of K of conductor ¢ prime to N. There exists
a proper (-ideal A" such that the natural projection of complex tori

1 C/0 - C/N !

is a cyclic N-isogeny. The moduli interpretation of X,(N) identifies the diagram (1) with
a point of X,(N). By the theory of complex multiplication, this point is defined over H,
the ring class field of K of conductor c. Let « € E(H) be its image under ¢.

The group G=Gal(H/K) acts naturally on the Z-module E(H), and E(H)® C
can be decomposed as a direct sum of eigenspaces under this action:

E(H)® C = @ EH),

xXeG

where G = Hom (G, C*) is the group of complex characters of G. Let
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be the idempotent in the group ring giving the projection onto the y-eigenspace.

Gross and Zagier [3] proved the following limit formula when ¢=1 (so that H is
the Hilbert class field of K):

L(E/K, x, 1)=ah(e,a),

where L(E/K, y, s) is the L-series of E/K twisted by the character y, a¢ is a non-zero
invariant depending on E and K, and & is the canonical height extended by linearity to
E(H)® C. In view of the conjecture of Birch and Swinnerton-Dyer, Gross formulated
the following:

Conjecture 1. 1. If e, a0, then dimo E(H)* =1.

In his paper on Euler systems [4], Kolyvagin proves the above conjecture when y
is the trivial character. We will apply Kolyvagin’s descent techniques to prove the
general case when E has no complex multiplications.

2. Preliminaries

Our strategy will be to do a p-descent for a suitable prime p. We choose p so that
1. py6cN Disk(K),

2. Q(E,)/@ is a GL,([F,)-extension,

3. p=1(mod # G).

These conditions can be imposed simultaneously, provided that E has no complex
multiplications, by combining the “open image” theorem of Serre [8] with the result of
Dirichlet on primes in arithmetic progressions. The following lemma is a simple
consequence of conditions 1 and 2:

Lemma 2. 1. If L is an extension of @ which is unramified at all primes dividing
Np, then Gal(L(E,)/L) = GL,(F,).

Proof. The extension @ (E,)/@ is ramified only at places dividing N p, and hence
@Q(E,) and L are linearly disjoint over @ (the intersection of these two fields is
an unramified extension of @, which is @ by Minkowski’s theorem). Hence
Gal(L(E,)/L)= Gal(Q (E,)/@) = GL,(F,).

By condition 3, any [,[G]-module M splits as a direct sum of primary
representations:

M= M~

xXeG
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where y ranges over the [F,-valued characters of G. (By choosing a reduction map
Z[l"’#G] - Fpa
we identify complex and [ -valued characters of G.) Notice that if e,a is non-zero in

E(H)® C, then it is also non-zero in E(H)® [, for almost all primes p. Furthermore,
lemma 2. 1 implies that E,(H)=0 and hence

dim¢ E(H)* =dim; (E(H)® [F,)*.
Conjecture 1. 1 is thus reduced to the following “mod p” analogue:
Theorem 2.2. If e,a+0in E(H)® [F,=E(H)/pE(H), then
dimy., (E(H)/p E(H)}' =1.

Let us introduce some conventions and results that will be used throughout. We
fix an algebraic closure @ of @ which contains all of the field extensions which will be
introduced later on. Let t € Gal(@Q/@) be a fixed complex conjugation corresponding to
a choice of an embedding @ o C, and denote by [t] its conjugacy class. It will be
convenient to identify t with its images in finite quotients of Gal(@Q/@). If M is a
module on which 1 acts, the superscripts + and — are used to designate projection
onto the eigenspaces for the action of ¢t (we assume that 2 is invertible in End, (M), so
that M decomposes as a direct sum of such eigenspaces):

M*={meM|tm=+m}.

Also, if x e M and X = M, we let

1
xizz(xj:rx),
X*t={x*|xeX}.

For conciseness, we shall occasionally use the notation M/p to denote the [F,-vector
space M ® [F,=M/pM.

Let H[n]c @ denote the ring class field of K associated to the order @), of

conductor cn, where (n, pN)=1, let G,=Gal(H [n]/H), and let a(n) be the Heegner point
corresponding to the N-isogeny

C/0, — CHO, A N) 1.

By class field theory, G, is canonically isomorphic to (O/nO)*/(Z/nZ)*, and complex
conjugation acts on the group Gal(H [n]/K) by

) txt '=x
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Let ¢= +1 denote the negative of the sign in the functional equation for L(E/@, s). The
following describes the action of T on the Heegner points in E(H [n])/p:

Lemma 2.3. There exists o, € Gal(H [n]/K) such that w(n)=eaooc(ﬁ) in E(H[n])/p.
Hence, te, a(n)=¢)(d,) ezo(n).

Proof. In [2], it is observed that
to(n) = g0 a(n) + torsion,

for some g, € Gal(H[n]/K). By lemma 2.1, the group E(H [n]) has no p-torsion, and the
first statement follows. The second is a consequence of the identity:

Tex = ex—T,

which results from equation (2).

Kolyvagin’s idea is to construct elements in the dual of the Selmer group,
Sel3“*!(E/H) = Hom (Sel,(E/H), [F,),

via local Tate duality, and to control the size of this module by certain global
cohomology classes related to Heegner points. Section 3 is devoted to the construction
and study of these “Heegner cohomology classes”.

3. The Heegner cohomology classes
Definition 3. 1. A rational prime / is said to be special if [} N pc and
Frob, (K (E,)/@) =[1].
Observe that, if [ is special, then
3) a;=14+1=0 (mod p),

where a, denotes the trace of Frobenius acting on the Tate module T,(E). This follows
from comparing the minimal polynomials of Frob, and 7 acting on E,,.

Let n denote a squarefree product of special primes, and let | be a special prime
not dividing n. The prime [/ is inert in K by definition; let A =(l) be the unique prime of
K above it. The prime 4 splits completely in H[n]/K (its image in G,=(0/nO)*/(Z/n2Z2)*
by the Artin map is trivial), and any prime A’ of H[n] above A is totally ramified in
H[nl]. Fix a choice of 1, and denote by A” the unique prime of H[nl] above it. The
following proposition summarizes the properties of Heegner points that will be needed
in the constructions:



Bertolini and Darmon, Kolyvagin’s descent and Mordell-Weil groups 67
Proposition 3. 2. The system of Heegner points a(n) € H[n] satisfies:
L. Trypymm a(nl)=a,a(n);
2. a(nl)=Frob, a(n) (mod A").

These two properties are axiomatized by Kolyvagin in his definition of “Euler
systems” with congruence [4], § 1. For a proof, see for example [2], prop. 3. 7.

Since H[n] is the compositum of the extensions H[I] which are linearly disjoint
over H, we have a canonical isomorphism G,=][] G,, allowing us to view G, as a

lin
subgroup of G,. By class field theory, each G, is isomorphic to (¢,/A)*/(Z/l)*. Choose for
each [ a generator o, of G,, and let

l

TI',= Z U;G Fp[Gl]’

i=0
l .
D,= Z io € FP[G,],
i=1

D,=[] D e F,[G,].

lin
Lemma 3.3. D,a(n) e (E(H [n])/p)¢.
Proof. For all primes ! dividing n,
(a—1)Dy=1+1-Tr,=-Tr,
where the last equality follows from eq. (3). Combining prop. 3. 2 with eq. (3), one has:
—Trya(n) = —a,a(n/l)=0.

Hence g,D, a(n) = D, a(n); since the g, generate G,, the lemma follows.

By lemma 2. 1, E,(H[n])=0, and the following sequence is exact:
0 — E(H[n]) > E(H[n]) — E(H[n])/p — 0.
Taking G,-invariants yields the exact sequence of [F,[ G]-modules:
0 — E(H)/pE(H) — (E(H [n))/p)*" — H'(G,, E(H[n])), — 0.

Let v(n) be the image of D,«(n) in H'(G,, E(H[n])),. By abuse of notation, we identify
v(n) with its image in H'(H, E), under inflation.

Let w be a prime of K lying above the rational prime v. There is a natural
localization map

res,:H— &P H,, .

w'|w
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By abuse of notation, we identify the map res,, with its image by any functor (from the
category of étale algebras to the category of [F,-vector spaces). The context will make it
clear what the source and target of res,, are. Denote by [, the residue field of H,,,.

Lemma 3. 4. The behaviour of the class v(n) under the localization maps is given by:
1. If v does not divide n, then res,, v(n)=0.
2. For | special, there is a canonical G-equivariant isomorphism

T:@ H'(H,, E),~ @ Hom (u,(F;), E,(F;))

Par) AlA

such that, when | divides n, the homomorphism T (res,v(n)) maps each u,(F,) onto the
subgroup of E,(IF, ) generated by

<<__1 thF ;"b‘ = “’) D, a(n/l)

where we identify the point D, a(n/l) with its reduction mod 4'.

When v is a place of good reduction for E, part1 follows from standard
cohomological arguments, using the fact that v(n) is inflated from a class in
H'(H[n]/H, E) and that the w' are unramified in H[n]/H. The general case is proved in
[2], prop. 6. 2. The isomorphism in part 2 is explicitly constructed in [2], prop. 6. 2,
using local class field theory.

Part 2 of lemma 3. 4 will be applied via the following corollary:

Corollary 3.5. There is a G-equivariant isomorphism

@ H'(H,, E), > @ E(F)/p

A4 ANA
which sends res; v(n) to res; D, a(n/l).

(Observe that res; D, a(n/l) is well-defined in @ E(F;)/p.) Using the map T of
A[A
lemma 3. 4, a choice of generators for u,([F,/) defines a (non-canonical) isomorphism

i:@ H'(H,, E), = 1@9 E,(F;).

AlA

By choosing the generators appropriately, we may ensure that i sends res, v(n) to

((l +1) Frob,— g,

’ > res; D, a(n/l).

(I+1) Frob,—a,
p

can be shown by decomposing E([F,) into eigencomponents for the action.of the

involution Frob,. The trivial and non-trivial components are of order /+1—a, and

[+ 1+ a, respectively, and hence W is an isomorphism on the eigencomponents.) The

composition Wi gives the desired map.

The operator W=( ) induces an isomorphism E(F,)/p — E,(F; ). (This
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4. Local Tate duality: generating Sel**'(E/H)

Local Tate duality [6] gives a perfect pairing

{w i E(Hy)/pxH' (H;, E), — ZIpZ

which identifies ) H'(H,., E), with (@ E(H,)/p)***. The p-Selmer group Sel,(E/H)
PA v

consists of the cohomology classes s € H'(H, E,) whose restrictions res,(s) € H'(H,, E,)
belong to E(H,)/p for all places v of H, where we view E(H,)/p as a subspace of
H'(H,, E,) by using the local p-descent exact sequence

0— E(Hl)/p - HI(HU, Ep) - H’(Hva E)p — 0.
Transposing the map:

res, : Sel, (E/H) — (D) E(H,.)/p).

A'a
and using the identification given by the local Tate pairing, we get a homomorphism

¥,: @ H'(H,., E), — Sel®* (E/H).

A4
Let X, denote the image of ¥, in Sel{"*'(E/H). We choose an auxiliary special prime [,
and define the following Galois extensions of @:
F=H[l](E,),
M = F(a/p)“*,
M, = F(DI, O‘(’])/P)Gal,
M=MyM,,

where the superscript “Gal” indicates taking normal closure over @. (The reasons for
these definitions will become clear in the next section.) By lemma 2. 1,

Gal(F/Q) = Gal (H[l,1/@) x Gal (@ (E,)/@) = Gal (H[!,1/@) x GL, (F,).

The Galois groups V,, V;, and V of My, M,, and M over F are [,vector spaces
equipped with a natural action of Gal(F/@Q).

41 Journal fir Mathematik. Band 412



70 Bertolini and Darmon, Kolyvagin’s descent and Mordell-Weil groups

Given a subset U of V, define
& (U)={l rational prime |Frob,(M/@) = [tu], for ue U}.

Note that every € £ (U) is special.

Proposition 4. 1. If U* generates V*, then the X,, with | ranging over ¥ (U),
generate Sels* (E/H).

Proof. Let s be in Sel,(E/H). To prove the proposition, it suffices (by the
non-degeneracy of the local Tate pairing) to show that res,(s)=0 for all [ e ¥ (U)
implies s =0. Assume without loss of generality that s is in an eigenspace for the action
of 7. Let us identify s with its image by restriction in:

H'(F, Ep)Ga](F/H) < Homg, g,y m) (Gal(M/F), E,),

where M denotes the maximal abelian extension of F whose Galois group is of
exponent p. The restriction is injective because it can be written as a composition

HI(H, Ep) — HI(H(EP), Ep)Gal(H(Ep)/H) — Hl(F, Ep)Gal(H(Ep)/H).
Both arrows are injections: the kernel of the first is

0,

H'(H(E,)/H, E,)= H'(GL,(F,), F;)
and the kernel of the second is
HomGal(H(Ep)/H) (Gal(F/H (Ep))’ Ep) =0.

Choose a minimal Galois extension M of @ containing M with the property
that s factors throught Gal(M/F). Let x € Gal(M/F) be such that x|, € U. By the
Chebotarev density theorem, we may find [ e £ (U) such that Frob,(M/Q)=[tx]. The
hypothesis res,(s) = 0 means that:

s(Frob,.(M/F))=0,
for all primes ' of M above I. On the other hand, for some A’ above I,
Frob, (M/F)=(tx)*=x*x =(x*)?,
and hence s(x*)=0. Since U™ generates V*, the homomorphism s vanishes on
Gal(M/F)*. Hence the image of s is contained in an eigenspace of E, for the action of 7.
In particular, it is a proper Gal(H[l,] (E,)/H[l,])-submodule of E,. Hence it is trivial,
since

Gal(H[Il,] (E,)/H[l,])=GL,(F,)

by lemma 2. 1. Therefore s=0.
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5. Global Tate duality: relations in Sel$** (E/H)
The tool for finding relations in Sel$** (E/H) is:

Proposition 5. 1. If s € Sel ,(E/H) and y € H'(H, E),, then
Y (res,,s, res,y>, =0,

where the sum is taken over all places of H.

This proposition is an immediate consequence of the global reciprocity law for
elements in the Brauer group of H, taking into account the definition of the local Tate
duality [6].

We suppose that the auxiliary special prime [; of the previous section satisfies the
following property:

(4) res;, ey +0

(and hence res; e,a=+0, by lemma 2.3.) Such an [, exists by the Chebotarev density
theorem applied to the extension H(E,) (e;a/p)/@, using the hypothesis that ez 40 in
E(H)/p. By corollary 3. 5, condition (4) implies that

(5) res;, e;v(l;) +0.

We need to examine the extensions M of F defined in the previous section.
Let MZ (resp. M, M%) denote the extensions

F(eza/p) (resp. F(eiDlla(ll)/p)r F(ei“/l’, ez Dy, a(l,)/p)).

Lemma 5.2. The extensions M% and M7¥ are linearly disjoint over F.

Proof. Indeed, linearly independent points in E(H[I,])/p give rise to linearly
disjoint extensions over F. This is because the map

EH[L]))/p — Homg,#/p114) v, E,)

is injective, and linearly independent elements of Homg,#/up,; (Vs E,) cut out linearly
disjoint extensions over F (use the fact Gal(F/H[I,])= GL,(F,), by lemma 2. 1). Hence,
if M¥ and M7 were not linearly disjoint over [, we would have:

ezDy a(ly)=ueza in E(H[l,])/p, ue F}.
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The exact sequence
0 — (E(H)/p)* — (E(H[1,])/p)°* — H'(G,,, E)} — 0,
e; Dy a(ly) — ezpv(ly)
and equation (5) show that this cannot happen.

We now describe the action of complex conjugation on V%, by using 2.3 and the
relation 1D, = — D,t. There are two cases:

Cuse 1. y=j. Complex conjugation t acts on V*=V{x V*=E,x E, by

(X, y)T=(ex(00) Tx, —£%(a0) T).

Case 2. y =7 Then t does not stabilize V* or V7 but interchanges these two
components. The action of 7 on

VEXVEXVEXVEE];
is given by:
t(x, y, z, W)t =(1(00) T, £x(00)TX, —&](00)TW, —ex(00)T2).
We define a subset U of V' as follows:

(6) Case 1: U*={(x, y)|ef(oo)tx+x and —e}(d,) Ty + y generate E |,

(7) Case2: U*@® U*={(x, y, z, w)ley(op) tx +y and —ej(0,) Tz +w generate E,}.

Note that, in both cases, U satisfies the property of prop.4.1. Let [ be a prime in
Z(U):

Lemma 5.3. The local cohomology classes res;e;v(l) and res;ezv(ll,) generate

(D H'(Hy, E),)".

PP

Proof. Since P H'(H,, E),~(EP E(H,)/p)*** is isomorphic to two copies of
A 1A
the regular representation as an [F,[ G]-module, we have

dimg (@ H' (H, E),f=2.

Par
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The isomorphism of corollary 3.5 sends res;e;v(l) and res,ezv(ll;) to ezx and
e; Dy, a(l). The frobenius condition on [ in the definitions (6), (7) of U show that these

two points are linearly independent in (@ E(F;)/p. Hence res;e;v(l) and res;ezv(ll;)
AlA

are linearly independent, and span (@ H'(H,, E),)*. We recall that X, is the image
Pur) :

of () H' (H,, E),)™ in Sel,(E/H)".

V2
Proposition 5.4. The module X[ is of dimension 1 over F,.

Proof. By prop. 5. 1 and part 1 of lemma 3. 4, the kernel of the map

(P H'(H,, E),) — X[

Py

contains the non-trivial element res;e;v(l). On the other hand, X F#0: it does not
vanish identically on eja, since res;ezo# 0, and the local Tate pairing is non-degenerate.
Hence X} is one-dimensional.

Proposition 5.5. All of the X[ are equal, for l e ¥ (U).

Proof. We show that X7=X] for all le £ (U). By prop. 5.1 applied to the
Heegner class e;v(Il;), we have:

¥ (res, ezv(l1,)) + P, (res,, ezv(l1;)) =0 in Selg* (E/H)*.

By lemma 5.3, ¥(res,e;v(/l,)) generates X7. Hence ¥, (res, ezv(/l;)) is non-zero and
generates X/, and X/ = X/.

6. Conclusion of the proof

Let § denote the coboundary map E(H)/p — H'(H, E,). We can now show:

Theorem 6. 1. The following are true:

1. Sel (E/H)*=[F,dé(e,®);

2. E(H)/pEH)*=1F,¢,x.

Proof. By prop. 4. 1, the X7 generate Sel$**! (E/H)* when [ ranges over (U). On
the other hand, each X ,7 is one-dimensional, and all the X} are equal. Hence

dimg, Sel3** (E/H)* = dim, Sel, (E/H)* =1,

and Sel, (E/H)* is generated by the non-zero element d(e, o). It follows that (E(H)/p)* is
one-dimensional, generated by the Heegner point e, o.

Remarks. 1. In [1], Gross formulates his conjecture for abelian varieties which
are quotients of the jacobian of the modular curve X, (N). The argument given above
extends to this more general situation. For more details, see [5].

2. For applications of the formalism of Euler systems to different arithmetic
situations, see [7].

42 Journal fiir Mathematik. Band 412
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