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Introduction

The goal of this short document is to motivate and explain the notion of constructible
numbers. This is an important notion because it helps understanding and solving a lot
of ancient problems in Euclidean Geometry, more precisely, straightedge and compass
constructions (which is at the heart of the �rst �ve chapters of the course).

Before diving into constructible numbers, let's �rst recall what we can and cannot
do with a straithedge and a compass on the plane. To do this, we will rely on the set of
�ve axioms that Euclid stated at the beginning of the Book I of his Elements:

A1. It is possible to draw a straight line from any point to any point.

A2. It is possible to produce a �nite straight line continuously in a straight line.

A3. It is possible to describe a circle with any circleand distance (i.e., radius)

A4. All right angles are equal to one another.

A5. If a straight line falling on two straight lines make the interior angles on the same
sides less than two right angles, the two straight lines, if produced inde�nitely,
meet on that side on which are the angles less than the two right angles.

From these �ve axioms and some common notions, Euclid was able to deduce a lot
of propositions that will be very useful for the next section. I will try to state most of
them but it would take too much time to prove all of them:

Proposition I.3. Given two unequal straight lines, [it is possible] to cut o� from the
greater a straight line equal to the less.

This proposition simply states that given a segment AB, a line L and a point C
on L, it is possible to construct the point D on L such that AB = CD (Figure 1).
Propositions I.10 and I.11 are already clear from their statements.

Proposition I.10. [It is possible] to bisect a given �nite straight line.

Proposition I.11. [It is possible] to draw a straight line at right angles to a given
straight line from a given point on it.

The following proposition is a generalization of Thales' Theorem (Figure 2).

Proposition III.20. In a circle the angle at the centre is double of the angle at the
circumference, when the angles have the same circumference base.
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Figure 1: Proposition I.3

Figure 2: Thales' Theorem

Corollary (Thales' Theorem). In a circle, the angle on the circumference of a triangle
which has a side equal to the diameter is always a right angle.

The following and last proposition that we will need is Proposition VI.4.

Proposition VI.4. In equiangular triangles the sides about the equal angles are pro-
portional, and those are corresponding sides which subtend the equal angles.

In other words, it states that if two triangles avec the same angles (Figure 3), then
we have the following ratios:

AB

DE
=

BC

EF
=

AC

DF
.

The proofs of these propositions can be found in the Elements. It is a good exercise to
try to follow the proof or to �nd yours. We are now ready to talk about constructibility.

De�nition

To de�ne the notion of constructibility, let's recall that in Euclidean Geometry, we
cannot measure lengths, this comes from the fact that we can only use a straight edge
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Figure 3: Proposition VI.4

which is exactly the same as an unmarked ruler. However, we can compare lengths. For
example, if we are given a segment AB in which we construct the midpoint C, then
we can say that the length of AB is twice the length of AC or BC. This shows that
even though there is no general way of saying that a segment is short or long, there
is however a way of saying that a given segment is short or long if it is compared to
another. Therefore, we can take an arbitrary segment AB and de�ne the length of 1
as the lengh of AB, and then compare the length of every other segment to AB to
deduce the length of the other segments. In that case, we call AB the unit segment.
For example, if we let a segment AB be the unit segment, then the length of AC is 1/2
where C is the midpoint of AB. This motivates the following de�nition:

De�nition. A number x is said to be constructible if, given a unit segment, it is possible
to construct a segment of length x.

It is clear from this de�nition that we can only construct positive numbers. The example
above shows that 1/2 is a constructible number. In the same way, it is possible to
construct other numbers. For example, in the following construction (Figure 4), we
have that 2 is constructible because the segment AB has length 1 and the segment BC
also has length 1, it follows that AC has length 2. Thus, 2 is constructible.

If we repeat this process, we get that every positive integer is constructible (something
that we will prove later). Moreover, these are not the only constructible numbers because
we saw above that 1/2 is also constructible. What about other positive fractions ? Can
every positive fraction be constructible ? What about positive irrational numbers ?
Concerning irrational numbers, it is actually easy to show that at least one of them
is constructible. This comes from the fact that given the unit segment AB, we can
construct a square of side length 1 and hence, construct the diagonal which has length√
2. It follows that

√
2 (an irrational number) is constructible. We are now left with the

following questions: which numbers are constructible ? Are every positive real numbers
constructible ? The goal of the next sections is to answer these last two questions.
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Figure 4: 2 is constructible

Operations on Constructible Numbers

Throughout this section, we will �x a segment AB and de�ne it as the unit segment.
When the segment AB will be mentioned in this section, it referes to the unit segment.
Let's prove some useful properties of constructible numbers that will let us determine
easily which numbers are constructible.

Proposition A. If x and y are two constructible numbers, then x+y is also constructible.
Moreover, if x is greater than y, then x− y is also constructible.

Proof. Suppose that we are given segments CD and EF of length x and y respectively
(Figure 5), then by the second axiom (A2), we can construct the straight line L as the
extension of CD. Applying Proposition I.3 twice lets us construct the points G and H
on L such that the segment DG = DH = EF = y. It follows that the segment CG has
length x+ y. Therefore, x+ y is constructible. If x > y, then CH has length x− y and
so x− y is also constructible.

Figure 5: Proposition A

As a direct corollary, we have the following proposition:

Corollary. Every positive integer is constructible.

Proof. Since the segment AB is given and has length 1 by de�nition, then it directly
follows that 1 is constructible. By Proposition A, since 1 is constructible, then 2 =
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1 + 1 is constructible. Again, by the same proposition, since 1 and 2 are constructible,
then 3 = 1 + 2 is constructible. We can convince ourselves that this process can be
used to generate every other positive integer. A more rigorous proof can be done by
induction.

Thus, we have proved that the sum of two constructible number is also a constructible
number. In other words, constructible numbers are closed under addition. It turns out
that they are also closed under multiplication.

Proposition B. If x and y are two constructible numbers, then xy is also constructible.

Proof. Suppose that we are given segments CD and EF of length x and y respectively
(Figure 6). First, extend the segment EF into the straight line L1 (Axiom 2). Construct
the point G on the segment EF such that EG = AB = 1 (Proposition I.3), and from G,
construct the straight line L2 which is perpendicular to L1 (Proposition I.11). Similarly,
construct the straight line L3 that is perpendicular to L1 and that passes through F
(Proposition I.11). Next, construct the point H on L2 such that GH = CD (Proposition
I.3), and use it to construct the straight line L4 that passes through E and H (Axiom
1). To �nish the construction, de�ne the point I as the intersection between L3 and L4.

Let's now prove that IF has length xy. To do so, notice that the triangles EGH and
EFI have all their angles equal. Hence, from Proposition VI.4, we have the following
relation:

IF

GH
=

EF

EG
.

Now, recall that GH = CD = x, EF = y and EG = AB = 1. Hence, we can rewrite
the previous relation as

IF

x
=

y

1
.

and so IF = xy. Therefore, the number xy is constructible.

Figure 6: Proposition B and C
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Proposition B is not very useful for the moment because it doesn't let us construct
any more numbers than the positive integers (the multiplication of two positive integers
is still a positive integer). However, we cannot say the same about the next proposition.

Proposition C. If x and y are two constructible numbers, then x/y is also constructible.

Proof. The proof of this proposition is so similar to the previous one that we will use the
same diagram (Figure 6). Suppose that we are given segments CD and EF of length x
and y respectively. First, extend the segment EF into the straight line L1 (Axiom 2).
Construct the point G on the segment EF such that EG = AB (Proposition I.3), and
from G, construct the straight line L2 which is perpendicular to L1 (Proposition I.11).
Similarly, construct the straight line L3 that is perpendicular to L1 and that passes
through F (Proposition I.11). Next, construct the point I on L3 such that IF = CD
(Proposition I.3), and use it to construct the straight line L4 that passes through E and
I (Axiom 1). To �nish the construction, de�ne the point H as the intersection between
L2 and L4.

Let's now prove that GH has length x/y. To do so, notice that the triangles EGH
and EFI have all their angles equal. Hence, from Proposition VI.4, we have the following
relation:

IF

GH
=

EF

EG
.

Now, recall that IF = CD = x, EF = y and EG = AB = 1. Hence, we can rewrite the
previous relation as

x

GH
=

y

1
.

and so GH = x/y. Therefore, the number x/y is constructible.

We are now able to deduce an important corollary.

Corollary. Every positive rational number is constructible.

Proof. Let a/b be a positive rational number. Since we know that both a and b are
constructible (by the previous corollary), then Proposition C lets us conclude that a/b
is constructible. Since this is true for any arbitrary positive rational number a/b, then
every positive rational number is constructible.

Thus, we know that the set of constructible numbers contains at least all the positive
rational numbers but we also know that it contains more than that we saw earlier that
it also contains

√
2 (which is not rational). Hence, given a completely random positive

real number, it is still unclear whether it is constructible or not (as long as it is not
rational). The following (and last) proposition will shed more light on this issue.
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Proposition D. If x is a constructible number, then
√
x is also constructible.

Proof. Suppose that we are given a segment CD of length x (Figure 7). Extend it to the
straight line L1 (Axiom 2), and construct on L1 the point E such that DE = AB = 1
(Proposition I.3). Now, construct the point F by bisecting CE (Proposition I.10) and
construct the circle of center F and length CF (Axiom 3). At the point D, construct the
straightline L2 perpendicular to L1 (Proposition I.11) and call G the point of intersection
between L2 and the circle. The �nal step of the construction is to construct the line L3

that passes through C and G (Axiom 1), and the line L4 that passes through E and G
(Axiom 1).

Let's now prove that GD has the length
√
x. First, by Thales' Theorem, we have

that the triangle CGE is a right traingle in G. From this, we can show that the angle
DCG is equal to the angle DGE. Since the right triangles DCG and DGE have two
angles in common, then they must have their three angles equal. Thus, by Proposition
VI.4, we have the following relations:

DE

GD
=

GD

CD
.

If we now recall that DE = AB = 1 and CD = x, then we get that

1

GD
=

GD

x

which is equivalent to GD =
√
x. Therefore,

√
x is constructible.

Figure 7: Proposition D

Combining propositions A, B, C and D, we can construct very complicated numbers

such as
√
1 +

√
2 or

√√
2 +

√
3.5. Let's now use the proof of these propositions to

actually construct such a number. More precisely, let's construct
√

1 +
√
2 for example.
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First, let's construct
√
2. To do this, let's extend the unit segment AB into the

straight line L1 (Figure 8) (Axiom 2). Next, construct the straight line L2 that passes
through A and that is perpendicular to L1 (Proposition I.11), and construct the circle
C1 with center A and with radius AB = 1. De�ne the point C as the lower point of
intersection between C1 and L2. By construction of L2, then angle BAC is a right angle
and so BAC is a right traingle. It follows by the Pythagorean Theorem (Proposition
I.47) that AB2 +AC2 = CB2. But we have AB = AC = 1 so CB =

√
2.

The next step is to construct 1 +
√
2. To do this, simply construct the circle C2

with center B and radius BC =
√
2 (Axiom 3) and de�ne D as the right-most point of

intersection between C2 and L1. By construction, BD = BC =
√
2 and so the segment

AD has length 1 +
√
2.

The �nal step is to construct
√
1 +

√
2. Since we already constructed 1 +

√
2, then

we simply need to reproduce the construction in the proof of Proposition D. To do
this, we need to construct a circle with center on L1 such that the diamater has length
AD+1 = 2+

√
2. To do this, construct the midpoint E of the segment BD (Proposition

I.10) and construct the circle C3 with center E and radius AE (Axiom 3). De�ne F as
the right-most point of intersection between C3 and L1. Then, by construction, we have

AF = 2AE = 2(AB) + 2BE = 2 +
√
2.

It follows that C3 is the circle we wanted. To �nish the construction, simply construct
the line L3 that passes through D and that is perpendicular to L1 (Proposition I.11)
and de�ne G as the point of intersection between L3 and C3. By the proof of Proposition
D, we have that the segment DG has length

√
1 +

√
2.

Figure 8: Construction of
√
1 +

√
2
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Impossible Constructions

The question still remains, is every number constructible ? Are addition, subtraction,
multiplication, division and taking square roots the only operations we can apply to
construcible numbers ? In a sense, the answer is yes. I will not prove it here but
we indeed have the following characterization of constructible numbers: constructible
numbers are precisely the numbers that can be obtained by applying successive addition,
subtraction, multiplication, division, and taking square roots to rational numbers.

Now that we have a better understanding of constructible numbers, lets answer this
last question : are every positive real numbers constructible ? To answer it, we will have
to de�ne some terminology.

De�nition (Algebraic and Transcendental Numbers). A real number is said to be
algebraic if it is a root of a polynomial with integer coe�cients. If a number is not
algebraic, we call it transcendental.

For example, the number
√
2 is algebraic since it is a root of the polynomial x2 − 2.

Similarly, any rational number a/b is algebraic since it is a root of the polynomial ax−b.

What about the number
√
1 +

√
2 which we constructed earlier, is it algebraic ? The

answer is yes, and to prove it, let a =
√

1 +
√
2, then a2 = 1 +

√
2. Equivalently,

a2 − 1 =
√
2. Squaring both sides gives us (a2 − 1)2 = 2 and so we get

a4 − 2a2 + 3 = 0.

Therefore,
√

1 +
√
2 is algebraic since it is a root of the polynomial x4 − 2x2 + 3. This

motivates the following Theorem:

Theorem. Every constructible number is algebraic.

The proof of this theorem requires some notions of Field Theory that would take us out
of the scope of this document. The proof follows directly from the characterization of
constructible that is mentioned above. If you are familiar with �elds, I can show you the
proof or give you some good resources for the proof of this theorem. A direct corollary
to this theorem is the following:

Corollary. Every transcendental number is not constructible.

The question now becomes: is it possible to �nd a positive transcendental number ?
The answer is yes. Even more than that, the mathematician Georg Cantor proved in
the late 1800's that there are more transcendental numbers than algebraic numbers. In
the following decades, it was shown for example that both π or e (Euler's constant)
are transcendental. Therefore, yes, π is an example of a non-constructible positive real
number, and so not every positive real number is constructible.

But the fact that π is not construcible is actually of great importance because it also
gives an answer to a very old problem in Euclidean Geometry : is it possible to square
the circle. In modern terms, given a circle, is it possible to construct a square which
area is equal to the area of the circle ? We can now show that this is impossible.
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Theorem. Given a constructible number c, it is impossible to construct a square which
has the same area as the circle of radius c.

Proof. By contradiction, suppose that given a construcible number c, we can construct
a square with the same area as the circle of radius c. We knwow that the circle (and
so the square) must have area πc2. Since the square is construcible, then its sides
(which are segments) must be construcible as well. But since the area of the circle
is πc2, then its sides must have length

√
π · c. Since the sides are construcible, then√

π · c is a construcible number. By Proposition C,
√
π · c/c =

√
π is constructible. By

Proposition B,
√
π ·

√
π = π is construcible. This is in contradiction with the fact that

π is transcendental.

The same kind of argument lets us prove that a lot of such constructions are impossible
but again, it would take us far from the original goal of this document and it requires
some more advanced tools. If you have any question regarding the content of this
document, send me an email or ask me the question during the Tutorials.
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