Dan Romik
Topics in Complex Analysis



Also of Interest

ELEMENTARY
OPERATOR
THEORY

REAL
ANALYSIS

ELEMENTARY
FUNCTIONAL
ANALYSIS

Topics in Complex Analysis

Joel L. Schiff, 2022

ISBN 978-3-11-075769-9, e-ISBN (PDF) 978-3-11-075782-8
in: De Gruyter Studies in Mathematics

ISSN 0179-0986

Complex Analysis

Theory and Applications

Teodor Bulboacd, Santosh B. Joshi, Pranay Goswami, 2019
ISBN 978-3-11-065782-1, e-ISBN (PDF) 978-3-11-065786-9

Elementary Operator Theory
Marat V. Markin, 2020
ISBN 978-3-11-060096-4, e-ISBN (PDF) 978-3-11-060098-8

Real Analysis

Measure and Integration

Marat V. Markin, 2019

ISBN 978-3-11-060097-1, e-ISBN (PDF) 978-3-11-060099-5

Elementary Functional Analysis
Marat V. Markin, 2018
ISBN 978-3-11-061391-9, e-ISBN (PDF) 978-3-11-061403-9



Dan Romik

Topics in Complex
Analysis

DE GRUYTER



Mathematics Subject Classification 2020
Primary: 30-01, 11-01; Secondary: 52C07, 52C17

Author

Prof. Dan Romik
Department of Mathematics
University of California

One Shields Ave

Davis CA 95616

USA
romik@math.ucdavis.edu

ISBN 978-3-11-079678-0

e-ISBN (PDF) 978-3-11-079681-0

e-ISBN (EPUB) 978-3-11-079688-9

DOI https://doi.org/10.1515/9783110796810

[®) ov-ne-nb

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. For details go to http://creativecommons.org/licenses/by-nc-nd/4.0/.

Library of Congress Control Number: 2023935854

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2023 the author(s), published by Walter de Gruyter GmbH, Berlin/Boston. The book is published open
access at www.degruyter.com.

Cover image: Guy Kindler and Dan Romik

Typesetting: VTeX UAB, Lithuania

Printing and binding: CPI books GmbH, Leck

www.degruyter.com



To Abigail






Contents

Preface — XI

0 Prerequisites and notation — 1
0.1 Prerequisites —1

0.2 Notation —1

Exercises for Chapter 0 — 3

1 Basic theory — 4
1.1 Motivation: why study complex analysis? — 4
1.2 The fundamental theorem of algebra — 9
1.3 Holomorphicity, conformality, and the Cauchy-Riemann equations — 12
1.4 Additional consequences of the Cauchy-Riemann equations — 18
1.5 Power series — 20
1.6 Contour integrals — 22
1.7 The Cauchy, Goursat, and Morera theorems — 28
1.8 Simply connected regions and the general version of Cauchy’s
theorem — 32
1.9 Consequences of Cauchy’s theorem — 36
1.10 Zeros, poles, and the residue theorem — 46
1.11 Meromorphic functions, holomorphicity at co, and the Riemann
sphere — 50
1.12 Classification of singularities and the Casorati-Weierstrass theorem — 52
1.13 The argument principle and Rouché’s theorem — 53
1.14 The open mapping theorem and maximum modulus principle — 57
1.15 The logarithm function — 58
1.16 The local behavior of holomorphic functions — 60
1.17 Infinite products and the product representation of the sine function — 63
1.18 Laurent series — 68

Exercises for Chapter 1 — 71

2 The prime number theorem — 82

21 Motivation: analytic number theory and the distribution of prime
numbers — 82

2.2 The Euler gamma function — 83

23 The Riemann zeta function: definition and basic properties — 89

24 A theorem on the zeros of the Riemann zeta function — 97

25 Proof of the prime number theorem — 99

Exercises for Chapter 2— 110



VIII. — Contents

3 Conformal mapping — 118
31 Motivation: classifying complex regions up to conformal equivalence — 118
3.2 First singleton conformal equivalence class: the complex plane — 121
33 Second singleton conformal equivalence class: the Riemann sphere — 123
34 The Riemann mapping theorem — 124
35 The unit disc and its automorphisms — 126
3.6 The upper half-plane and its automorphisms — 129
37 The Riemann mapping theorem: a more precise formulation — 131
3.8 Proof of the Riemann mapping theorem, part I: technical background — 132
3.9 Proof of the Riemann mapping theorem, part II: the main
construction — 137
3.10 Annuli and doubly connected regions — 140

Exercises for Chapter 3 — 145

4 Elliptic functions — 146

4.1 Motivation: elliptic curves — 146

4.2 Doubly periodic functions — 149

43 Poles and zeros; the order of a doubly periodic function — 151

4.4 Construction of the Weierstrass p-function — 154

4.5 Eisenstein series and the Laurent expansion of p(z) — 158

4.6 The differential equation satisfied by g(z) — 159

4.7 A recurrence relation for the Eisenstein series — 160

4.8 Half-periods; factorization of the associated cubic — 161

4.9 ©(z) and p’(z) generate all doubly periodic functions — 163

4.10 ©(2) as a conformal map for rectangles — 165

4n The discriminant of a cubic polynomial — 168

412 The discriminant of a lattice — 170

413 The J-invariant of a lattice — 170

414 The modular variable t: from elliptic functions to elliptic modular
functions — 171

4.15 The classification problem for complex tori — 172

4.16 Equivalence between complex tori and elliptic curves — 177

Exercises for Chapter 4 — 179

5 Modular forms — 182

5.1 Motivation: functions of lattices — 182

5.2 The modular group ' = PSL(2,Z) — 184

53 The modular group as a group of Mdbius transformations — 185

5.4 The fundamental domain and the modular surface H/T — 186

5.5 The classification problem for complex tori, part II — 190

5.6 The point at ico, premodular forms, and their Fourier expansions — 191

5.7 Fourier expansions and number-theoretic identities — 194



Contents = IX

5.8 Modular functions — 199

5.9 Klein’s J-invariant — 205

5.10 The J-invariant as a conformal map — 208

5.11 The classification problem for complex tori, part III — 209
5.12 Modular forms — 209

5.13 Examples of modular forms — 214

5.14 Infinite products for modular forms — 218

Exercises for Chapter 5 — 228

6 Sphere packing in 8 dimensions — 233

6.1 Motivation: the sphere packing problem in d dimensions — 233
6.2 A high-level overview of the proof — 236

6.3 Preparation: some remarks on Fourier eigenfunctions — 237
6.4 The (+1)-Fourier eigenfunction — 239

6.5 The (-1)-Fourier eigenfunction — 250

6.6 A modular form inequality — 256

6.7 Proof of Theorem 6.1 — 263

Exercises for Chapter 6 — 265

A Appendix: Background on sphere packings — 267
A1 Sphere packings and their densities — 267

A2 Lattices and lattice packings — 268

A3 Periodic sphere packings — 268

A4 Lattice covolume — 269

A5 Dual lattices — 269

A6 The Poisson summation formula for lattices — 270
A7 Construction of the lattice £g — 271

A8 The Cohn-Elkies sphere packing bounds — 276
A9 Magic functions — 278

A0 Radial functions and their Fourier transforms — 279
AN Structural properties of £g magic functions — 281
A2 Summary — 284

Exercises for Appendix A— 286
Bibliography — 289
Web Bibliography — 291

Index — 293






Preface

This book covers the basic theory of complex analysis and a selection of advanced top-
ics. It evolved out of lecture notes from two quarter-long graduate classes that I taught
several times at the University of California, Davis in 2016-2021. The book is primarily
aimed at graduate students, advanced undergraduate students, and postgraduate math-
ematics researchers. It is suited for self-study or as a primary reference material for
approximately two semester-long graduate-level university courses.

The advanced topics covered in Chapters 2-5 are classical and are discussed in many
other places. It is my hope that my own exposition advances the pedagogy of the subject,
if only ever so slightly, by simplifying the explanations, logical arguments, notation, etc,
as much as it has been within my power to do.

The last chapter, Chapter 6, is more modern in content and covers Maryna Via-
zovska’s spectacular application of modular forms to the solution of the sphere pack-
ing problem in dimension 8. Published in 2016, this work was until now only accessi-
ble to learn about from the primary literature [71] and from a few expository papers
[12, 13, 20, 52]. The detailed exposition of Viazovska’s work in Chapter 6, and the ac-
companying Appendix A covering the relevant background material on sphere packing,
should be useful to students and researchers wishing to get up to speed about these
beautiful recent developments, which are at the forefront of much ongoing research.

The choice of topics you will find in this work is idiosyncratic and reflects my own
mathematical taste, interests, and biases. I make no claim that they are the most impor-
tant parts of the vast theory that is complex analysis; only that they are beautiful, that
they relate to many topics and theories that are of interest to a broad section of pure
mathematicians, and that they are, broadly speaking, a fine set of mathematical ideas,
one could devote one’s time to studying and thinking about. I hope some readers will
agree.

I am grateful to Guy Kindler for help with the book cover design and to Christopher
Alexander, Jennifer Brown, Brynn Caddel, Keith Conrad, Bo Long, Anthony Nguyen, Jian-
ping Pan, and Brad Velasquez for helpful comments on versions of the lecture notes the
book evolved from.

Davis Dan Romik
March 2023

@ Open Access. © 2023 the author(s), published by De Gruyter. [(c) IXEXEEM This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-201






0 Prerequisites and notation

0.1 Prerequisites

This book assumes knowledge of the following subjects, roughly at the level covered by
advanced undergraduate courses in the United States:

— Real analysis and multivariable calculus

— Topology of R" (mostly for n = 2)

— Complex numbers and their basic properties

— The transcendental functions €, sin z, cos z of a complex variable

In a few places, some familiarity with Fourier analysis is needed to fully understand
the material. Specifically, in Chapter 2 the Poisson summation formula is derived from
basic properties of Fourier series, and this is used to prove some of the fundamental
properties of the Riemann zeta function. Chapter 6 and Appendix A assume knowledge
of the Fourier transform in R" and its basic properties.

Starting in Chapter 3, and increasingly in Chapter 5, knowledge of the basic language
of group theory may be needed to fully understand some of the topics being discussed.
No results from group theory are used beyond the definition of a quotient group.

0.2 Notation

The following notation is used throughout the book.

— R —the real numbers

— C —the complex numbers

— Z — the integers

— i —the imaginary unit

— Re(z) —the real part of a complex number z

— Im(z) — the imaginary part of a complex number z
— Zz— the complex conjugate of a complex number z
— |z] — the modulus of a complex number z

— argz— the argument of a complex number z

— Dg(z) — the open disc of radius R centered at z

— D_p(z) —the closed disc of radius R centered at z

— Cg(z) — the circle of radius R centered at z

— cl(E) — the topological closure of a set E c C

— DD — the open unit disc D;(0)

— H — the upper half-plane: {z € C : Im(z) > 0}

— Q—acomplex region (open and connected subset of C)

@ Open Access. © 2023 the author(s), published by De Gruyter. [(c) IXEXEEM This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-001



2 —— 0 Prerequisites and notation

Big-O notation and asymptotic equality. Inafew places, the standard big-O notation
is used. Formally, the statement “F = O(G),” where F, G are complex-valued quantities
that depend on one or more variables, means that |F| < C|G| when the variable or vari-
ables in question range over some specified set of values (usually a neighborhood of
some limiting point). Big-O expressions can also be combined in various ways in formu-
las, e.g., “f(t) = o™ + O(tz) ast — co” means that f(¢) can be expressed as a sum of
two quantities of the forms 0(e™" and O(tz), respectively, as t — oo.

The statement F ~ G (read as “F is asymptotically equal to G”) means that F/G
converges to 1 in some limiting sense, which is either specified explicitly or inferred
from the context. For example,

sin(x) ~x asx —0
states an asymptotic equality, as does

(2n)! 4"

(n)?  mn

asn — oo.



Exercises for Chapter 0

Exercises for Chapter 0 =— 3

0.1 Important formulas. Below there is a list of basic formulas in complex analysis.
Review each of them, making sure that you understand what it says and why it is
true; that is, if it is a theorem, then prove it, or if it is a definition, then make sure
you understand it.

0.2

In the formulas below, a, b, ¢, d, t, x,y denote arbitrary real numbers, and w, z de-

note arbitrary complex numbers.

a.
b.

j.

k.

g e e

i=-1
(a+ bi)(c + di)
= (ac - bd) + (ad + bc)i
=i
Re(z) + iIm(z)
Re(z) - iIm(z)

Re(z) = 42

~ -

Z=
Z=

S <eg~ vnavosg -

lwz| = [w| - ||

Awl =zl < w + 2] < [w| + 2]

&Y = X(cos(y) + isin(y))

|ez| _ eRe(z)
€] < e
et = cos(t) + isin(t)
le] =1
it | it

cos(t) = &5—
. et et
sin(t) = o
=1
eiﬂi/z — il
ez]’[i — 1

Reminder of basic analysis concepts. Remind yourself of the definitions of the
following terms in real and complex analysis and the topology of C, referring to
other texthooks or online sources if necessary.

-

F@ e a0 o

real part
imaginary part
complex conjugate
modulus
argument

open set (in C)
closed set

closure

connected set

os o83~

bounded set
compact set
region

. convergent sequence

Cauchy sequence
limit point
accumulation point
continuous function



1 Basic theory

What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. ¥ is
surely fundamentally a real function.

Erwin Schrodinger, June 6, 1926 letter to Hendrik Lorentz

1.1 Motivation: why study complex analysis?

This book is about complex analysis, the area of mathematics that studies holomorphic
functions of a complex variable and their properties. Although this may sound a bit
specialized, there are (at least) two excellent reasons why all mathematicians should
learn about complex analysis. First, it is, in my humble opinion, one of the most beautiful
areas of mathematics. One way of putting it is that complex analysis seems to have a very
high ratio of theorems to definitions (i. e., a very low “entropy”): you get a lot more as

“output” than you put in as “input.”

The second reason is that complex analysis and, more generally, complex numbers,
have a large number of applications in both the pure mathematics and applied math-
ematics senses of the word. Moreover, many of these applications are to problems that
a priori look like they ought to have little to do with complex numbers. Here are a few
examples, including some that will be discussed later in the book:

— Solving polynomial equations. In 1545, the Italian thinker Gerolamo Cardano pub-
lished the famous formula for solving cubic equations, after learning of the solution
found earlier by Scipione del Ferro. Historically, this appears to have been the first
problem in mathematics to be solved using complex numbers. One surprising aspect
of Cardano’s formula is that it sometimes requires taking operations in the complex
plane as an intermediate step to get to the final answer, even when the cubic equation
being solved has only real roots.

— Proving asymptotic formulas. A well-known approximation to the factorial func-
tion n! is given by Stirling’s formula, which states that the behavior of the factorial
function for large values of n is given by

n

n! ~ VZﬂn(Z) 11

(using the notation of Section 0.2). Another famous asymptotic formula is the Hardy—
Ramanujan formula, which states that the number p(n) of integer partitions of n
behaves for large n like

1 a\ons3
e . 1.2)
4+/3n

A standard approach to proving these types of results uses complex analysis, as dis-
cussed, for example, in [28].

p(n) ~

@ Open Access. © 2023 the author(s), published by De Gruyter. [(co) EXEX=EH] This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-002



1.1 Motivation: why study complex analysis? == 5

— Counting prime numbers. Let 7(n) denote the number of primes less than or equal
to n. This function is known as the the prime-counting function. The prime num-
ber theorem states that

n
n(n) ~ @ asn — oo.

This is one of the most celebrated asymptotic formulas (and, indeed, one of the most
famous theorems) in mathematics. Because it deals with prime numbers, it stands
apart from the more general class of asymptotic formulas, such as (1.1)—(1.2) men-
tioned above, and its proof requires more specialized techniques. A standard path to
a proof of the prime number theorem goes through complex analysis, and this is the
subject of Chapter 2.

— Evaluation of complicated definite integrals. Complex analysis offers a set of tech-
niques for evaluating definite integrals that are difficult or impossible to derive using
standard calculus methods. An example is the integral

6[ sin(t) dt = 2—\/\2

(known as one of the Fresnel integrals). See Exercise 1.47 at the end of this chapter
for additional examples.

— Solving partial differential equations. Complex-analytic techniques are very use-
ful for solving several kinds of partial differential equation, particularly those arising
in various applied physics problems in hydrodynamics, heat conduction, electrostat-
ics, and more.

— Analyzing alternating current electrical networks. Electrical engineers learn that
the usefulness of Ohm’s law can be greatly extended by generalizing the notion of
electrical resistance to that of electrical impedance, a complex-valued quantity.
Complex analysis also has many other important applications in electrical engineer-
ing, signal processing, and control theory.

— Solution of the sphere packing problem in 8 and 24 dimensions. It was proved in
2016 that the optimal densities for packing unit spheres in 8 and 24 dimensions are
% and ’11—21? respectively. The proofs make use of complex analysis in a fundamental
way. The proof for the case of 8 dimensions is presented in Chapter 6.

— Applications in probability and combinatorics. Over the last few decades, com-
plex analysis has been applied in spectacular ways to prove asymptotic results
in probability and combinatorics. One such application is a proof of the Cardy-
Smirnov formula in percolation theory, which answers the following question:
consider a parallelogram-shaped section of cells in the honeycomb lattice with m
rows of cells, each containing n cells. Each cell is colored either black or white ac-
cording to the outcome of a fair coin toss, independently of all other cells (Fig. 1.1(a)).
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00

(a) (b)

Figure 1.1: (a) Percolation on a honeycomb: the Cardy-Smirnov formula gives the asymptotic probability
of a left-to-right crossing event. In this sample configuration, a left-to-right crossing has occurred, as illus-
trated by the trail of red dots representing one possible crossing path. (b) A self-avoiding walk of length 45
on the hexagonal lattice.

A left-to-right crossing event is the event that we can find a contiguous path of
white-colored cells connecting the left edge of the parallelogram to the right edge.
What is the asymptotic probability of this event in the limit as the side lengths of
the parallelogram grow to infinity but its shape tends toward a parallelogram with
a fixed aspect ratio?

Specifically, let P(m, n) denote the probability of a left-to-right crossing event. Cardy
conjectured [10] and Smirnov proved [64] the following result.

Theorem 1.1 (Cardy-Smirnov formula). As m,n — oo with the aspect ratio m/n con-
verging to a fixed value A € (0, co), the probabilities P(m, n) have the limiting behavior

m/n—A
for an explicit function ®(A).

A detailed account of Smirnov’s proof can be found in [34, 73]. The function ®(A) is
most naturally defined as a certain geometric invariant associated with the parallel-
ogram with corners 0, 1, (l+fi )A, and (“Tﬁi)/l +1and can be written down explicitly
in terms of modular forms [43] and other special functions from complex analysis.

A second example of a recent application of complex analysis to probability and com-
binatorics is the evaluation of the connective constant of the hexagonal lattice. Let
¢, denote the number of self-avoiding walks of length n in the hexagonal lattice that
start at the origin; that is, hexagonal lattice paths that do not intersect themselves;
see Fig. 1.1(b). Without the condition of the path being self-avoiding, the number of
such paths would be exactly equal to 3". The sequence (c,);>;, with initial values
1,3,6,12,24,48,90,174, 336, ... [W1], is much more mysterious, and its rate of growth
(as well as the rates of growth of similar sequences associated with the square lattice
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and other natural lattices) have been the subject of much study. From general consid-
erations it is fairly easy to see that the sequence grows roughly exponentially, that is,
there exists a constant ¢ > 0 such that c}l/ " — pasn — co. The constant g is known
as the connective constant of the hexagonal lattice. Nienhuis [51] conjectured in 1982
and Duminil-Copin and Smirnov [65] proved in 2010 the following remarkable result

concerning the value of .

Theorem 1.2 (Duminil-Copin-Smirnov theorem). The connective constant of self-avoi-

ding walks in the hexagonal lattice is equal to \2 + V2 = 1.84776, that is, the numbers
c, satisfy

Jlim M= \2+ V2,

— Running the universe. Nature uses complex numbers in the fundamental laws of
physics, Schrdodinger’s equation and quantum field theory. This is not a mere math-
ematical convenience or sleight-of-hand, but appears to be a built-in feature of the
very equations describing our physical universe. Why? No one knows.! (But it is a
fun topic for debate; see, e. g., [42], [W2], [W3].)

— Conformal maps. A conformal map is a mapping from one planar region to another
that preserves angles. This notion, which comes up in purely geometric applications
where the algebraic or analytic structure of complex numbers seems irrelevant, are
in fact deeply tied to complex analysis. Conformal maps were used by the Dutch artist
M. C. Escher (though he had no formal mathematical training) to create amazing art
and used by others to better understand, and even to improve on, Escher’s work. See
Fig.1.2 and [21, 59] for more on the connection of Escher’s work to mathematics. We
discuss conformal maps in detail in Chapter 3.

— Proving number-theoretic identities. Lagrange proved in 1770 a classic result in
number theory, which states that every positive integer can be represented as a sum
of four squares of integers. Jacobi later proved a more precise fact: if we denote by
r4(n) the number of distinct ways in which a positive integer n can be represented as
a sum of four squares (with different orderings counting as distinct), then we have
the remarkable identity

rym=8 > d (13)
d|n,4td

(In words: eight times the sum of divisors of n that are not divisible by 4.) This beau-
tiful identity and many others like it with a number-theoretic flavor can be proved

1 Schrodinger himself appeared dissatisfied with the idea that his equation uses complex numbers to
describe physical reality. See the epigraph at the beginning of this chapter and [42] for further discussion.
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The photo is only available in the printed edition.

using complex analysis; see Chapter 5 (and Exercise 5.21 at the end of that chapter
for the particular application to proving (1.3)).

— Complex dynamics. Iteration of complex-analytic maps can be used to generate
beautiful fractals with remarkable properties. A famous example is the iconic Man-
delbrot set (Fig.1.3) defined as the set of complex numbers ¢ € C for which the
sequence of functional iterates fc(")(O) of the map f.(z) = z* + ¢ starting from the
point z = 0 remains bounded.

This hasbeen just a short and necessarily very incomplete survey on the importance
of complex analysis. There are many other intriguing applications and connections of
complex analysis to other areas of mathematics.

In the next section, I will begin our journey into the subject by proving a famous
theorem about polynomials over the complex numbers.
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(a) (b)

Figure 1.3: (a) The Mandelbrot set. (b) Magnified details of a small region.

1.2 The fundamental theorem of algebra

One of the most famous results about complex numbers is the fundamental theorem of
algebra. Although the statement of the theorem is indeed very fundamental to algebra,
most of its known proofs rely on complex analysis in an essential way. Looking at a few
of these proofs seems like a fitting place to start our journey into the theory.

Theorem 1.3 (Fundamental theorem of algebra). Every nonconstant polynomial

p2) =a,2" +a, 2"+ +a, (n=1) (1.4)

with complex coefficients has a complex root.

The fundamental theorem of algebra is a striking and subtle result and has many
beautiful proofs. I will show you three of them.

First proof: analytic proof. Let p(z) be as in (1.4), and consider where |p(z)| attains its
infimum.
First, note that the infimum cannot be attained as |z| — oo, since

P@)] = 121" (10 + Gps2™ + @y o+ 0™

and, in particular,

fim POl _ g (15)

lzl—co |Z|"
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so for large |z|, it is guaranteed that |p(z)| > |p(0)| = |ay|. Now fix some radius R > 0 for
which |z| > R implies |p(z)| > |ayl, and choose a complex number z; in the disc Dy(0)
for which |p(zy)| = min, g [p(2)|. (The minimum exists because p(z) is a continuous
function on the disc.) We then have that

mg := inf|p(2)| = @f;%'l’@” = g}glp(z)l = |p(zy)-

Denote wy = p(zg), so that my = |wy|. We now claim that m; = 0. Indeed, assume by
contradiction that this is not the case. The idea is now to examine the local behavior of
p(z) around z,. Expanding p(z) in powers of z — z,, we can write

p(@) = wo + Y ¢i(z - z5)
j=

for some complex coefficients cy, ..., ¢,. This can also be written as
p(2) = Wy + cp(z - 2)K + -+ cy(z — 2)", (1.6)

where we denote by k the minimal positive index for which ¢; # 0. Now imagine starting
at the initial point z = z;, and then making a small perturbation away from z; in the
direction of some unit vector . We estimate the way that such a perturbation affects
the value p(z). Expansion (1.6) gives

p(zg +1e) = wy + cr¥e™® + ¢ ¥ EO Ly e e, .7

When r (the magnitude of the perturbation) is very small, the power r* dominates the
other terms 1’ with k < j < n; that is, (1.7) can be rewritten as

p(zo + 7€) = wy + (™ + cqre @0 14 ¢ K eM)
= wy + e (1+ g(r,0)), (1.8)
where we denote
g(r,0) = i irj"kei(j"k)e
? - Cr ’
Jj=k+1
Note that g(r, 0) satisfies a bound of the form
lg(r,0)| < Ar 1.9)

for all r € [0,1] and some constant A > 0.

To reach a contradiction, we now choose 6, the angle of the perturbation, to be such

that the vector ckrk e'kd “points in the opposite direction” from w,, that is, such that
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k ik0
¢ rie
S (=00, 0).
Wy

This is clearly possible: take 6 = %(arg w, —arg(cy) + ). The idea in doing this is that for
this choice of 0, the expression w; + ckrkeike that forms the dominant term in (1.8) will
have a smaller magnitude than wj if r is chosen small enough.

To make this precise, choose a number r € [0,1] smaller than the minimum of the
two numbers 1/(24) (where A is the constant in (1.9)) and (Jw,|/ |ck|)1/ kK This choice en-
sures the two inequalities
ike

e e™®| < lwol and |g(r,8)| < %

With those choices for 6 and r, we have that

ik9| "

(2o + 1e®)| = [wo + ¥ ™ (1 + g(r,0))] < |wy + cir¥e e g (r,0)]

1
= [wol — lexlr™ + lckIr¥|g(r, 8)] < Iwy| - §|ck|r" < [wol = |p(2o)]|-

This is in contradiction to the defining property of z, and completes the proof. O

Second proof: topological proof. 1f the constant coefficient a, = p(0) of p(z) is equal to 0,
then we are done, since 0 is a complex root of p(z). Otherwise, consider the image under
p of the circle |z| = r. Note that, on the one hand, for sufficiently small values of r, the
image is contained in a neighborhood of wy, so it cannot “go around” the origin.

On the other hand, for r very large, we have

. . a _ _ i a _ i
p(re”) = anr"em0<1+ ey e ’"9>
a
n n

= a,r"e™(1+ h(r,0)),

where h(r, ) is a function that satisfies lim,_,, h(r,0) = 0 (uniformly in 08). As 6 goes
from 0 to 2, this is a closed curve that goes around the origin n times (in an approxi-
mately circular path, which becomes closer and closer to a circle as r — o0).

Aswe gradually increase r from 0 to a very large number, to transition from a curve
that does not go around the origin to a curve that goes around the origin n times, there
has to be a value of r for which the curve crosses 0. This means that the circle |z| = r
contains a point z such that p(z) = 0, which was the claim. O

The argument presented in the topological proofis imprecise. It can be made rigor-
ous in a couple of ways—one way we will see a bit later is using Rouché’s theorem (see
Section 1.13 and Exercise 1.30 at the end of the chapter). The difficulty of making these
sorts of arguments precise, in spite of their appealing intuitive nature, gives a hint as to
the importance of subtle topological arguments in complex analysis.
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As another remark, the topological proof should be compared to the standard calcu-
lus proof that any odd-degree polynomial over the reals has a real root. That argument
is also “topological”, although much more elementary.

Third proof: typical textbook proof (or: “hocus-pocus” proof). This is a one-liner of a
proof that assumes some complex analysis knowledge. Recall that an entire function is
afunctionf : C — Cthatis everywhere holomorphic. Recall the well-known Liouville’s
theorem, which states that any bounded entire function is constant.

Assuming this result (which we will prove in Section 1.9), if p(z) is a polynomial
with no root, then 1/p(z) is an entire function. Moreover, it is bounded, since our earlier
observation (1.5) implies that lim,_,., 1/p(z) = 0. By Liouville’s theorem it follows that
1/p(z) is a constant, which then has to be 0, leading to a contradiction. O

To summarize this section, we saw three proofs of the fundamental theorem of al-
gebra. They are all beautiful—the “hocus-pocus” proof certainly packs a punch, which is
why itis a favorite of complex analysis textbooks—but personally I like the first one best
since it is fully rigorous while being completely elementary and not requiring the use
of either Cauchy’s theorem or any of its consequences, or of subtle topological concepts.
Moreover, it employs a “local” argument based on understanding how a polynomial be-
haves locally, where by contrast the other two proofs can be characterized as “global.”
It is a general principle in mathematical analysis (that has analogies in other areas of
mathematics, such as number theory and graph theory) that local arguments are con-
ceptually easier than global ones.

Suggested exercises for Section 1.2. 1.1,1.2.

1.3 Holomorphicity, conformality, and the Cauchy-Riemann
equations

In this section, we begin to build the theory in a systematic way by laying its most basic
cornerstone, the definition of holomorphicity, along with some of the useful ways to
think about this fundamental concept.

1.3.1 Definition of holomorphicity

A function f(z) of a complex variable is called holomorphic at z if the limit

hm f(ZO + h) _f(ZO)

1.10
h—0 h ( )
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exists. In this case, we denote this limit by f'(z,) and call it the derivative of f at z,. A
function of a complex variable defined on all of the complex plane that is everywhere
holomorphic is called an entire function.

The terms analytic, differentiable, and complex-differentiable are synonyms for
“holomorphic.” Some books will make a somewhat pedantic distinction between “ana-
lytic” and “holomorphic” as two distinct concepts that are defined in a priori different
ways but are then shown to be equivalent soon afterward, at which point the distinction
ceases to have any real importance. In this book, we do not follow that approach.

The following are basic properties of complex derivatives.

Lemma 1.4. Under appropriate assumptions (see Exercise 1.4), we have the relations

f+8)'@=f"2)+g @), 1.11)
(f8)' (2) = f'(2)g(2) + f(2)g' (2), (112)
1\ f@

2 ) ==, 113
<f > f(2)? (113)
</ﬁ > _['@28@) -f(2)8'(2) 114

g g(z)?
fo0)@=f"(g2)g 2. 1.15)
Proof. Exercise 1.4. O

The concept of the derivative in complex analysis is clearly at the heart of the sub-
ject, and there are several helpful ways to think about its meaning. Assume that f(z)
is holomorphic at z,. In the discussion below, we make the further assumption that

f'(z) # 0.

1.3.2 First interpretation of holomorphicity: local geometric behavior

If we write the polar decomposition f’(z,) = re® of the derivative, then for points z that
are close to z,, we will have the approximate equality

f@-fz) _

! . ]
2= 7, f'(zy) =re
or, equivalently,
f(2) = f(zq) + reie(z - Zg) + [lower-order terms],

where “lower-order terms” refers to a quantity that is much smaller in magnitude that
|z — zy| when z is close to z,. Geometrically, this means that to compute f(z), we start
from f(z,) and move by a vector that results by taking the displacement vector z — z,
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rotating it by an angle of 6, and then scaling it by a factor of r (which corresponds to a
magnification if r > 1, a shrinking if 0 < r < 1, or no scaling if r = 1). This idea can be
summarized by the slogan:

Holomorphic functions behave locally as a rotation composed with a scaling.

The local behavior of analytic functions in the case f'(z) = 0 is more subtle; see Sec-
tion 1.16.

1.3.3 Second interpretation of holomorphicity: the Cauchy-Riemann equations

Next, we interpret holomorphicity from the point of view of real analysis. Remembering
that complex numbers are vectors that have real and imaginary components, we can
denote z = x +1y, where x and y are the real and imaginary parts of the complex number
z,and f = u + iv, where u and v are real-valued functions of z (or, equivalently, of x and
y) that return the real and imaginary parts, respectively, of f. Now if f is holomorphic
at z, then the limit (1.10) exists as a complex limit, that is, independently of the way h
approaches 0 as a complex number. In particular, we can evaluate the limit in two ways
by considering two specific ways of letting h approach 0, as a pure real number or as a
pure imaginary number. For the first of those possibilities, we have
) . fz+h) -f(2)
e = im T
~ lim u(x + h+1iy) — u(x + iy) +iv(x+h+iy)—v(x+iy)
h—0, heR h h
v
ox  ox’

Similarly, for the second method of approaching 0, we get that

fz+h)-f@2)
h

f(2)=lim

u(x + h+iy) — u(x + iy) +iv(x+h+iy)—v(x+iy)

= 1
h—>01,I}11€i]R h h

_ lim u(X+ly+l}'l)—u(X+ly)+l.V(X+ly+lf'l)—V(X+ly)
h—0, heR ih ih

o ;v _ov_.ou
ay ay dy oy

Since these limits are equal, by equating their real and imaginary parts we get a cele-

brated system of partial differential equations, the Cauchy-Riemann equations:

ou ov ov ou
— =, —=- 1.16
ox 9y ox ay (116)
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We have proved that if f is holomorphic at z = x +iy, then the components u and v of
f satisfy the Cauchy-Riemann equations (1.16). A kind of converse to this is also true but
requires additional assumptions. Assume that f = u + iv is continuously differentiable
atz = x + iy (in the sense that each of u and v is a continuously differentiable function
of x,y as defined in ordinary real analysis) and satisfies the Cauchy—Riemann equations
there. This implies that f has a differential at z; that is, in the notation of vector calculus,
if we denote f, z, and Az as the column vectors

=) =G ()

then we have
u(z) Qo h
x 0
fU+An=<wn>+<£ é><;>+ﬂmmﬁ
ox oy 2
where E(Az) is a function of Az that satisfies

o E@2)] _
Az—0  |Az|

Now by the assumption that the Cauchy—Riemann equations hold, we also have

ou Ju au ou
v oV - ou ou >
& u/ ) \-Fh+Gh

which is the vector calculus notation for the complex number

ou ou .ou
(ax l—)(h1+lh2) <—X—15>AZ.

So we have shown that (again, in complex analysis notation)

St -f@) (a_u o E(Az)> u _ou
AZHO Az Az—0\ OX ay Az ox ay'
This proves that f is holomorphic at z with derivative given by f'(z) = & - la” We

summarize the above discussion with the following proposition.

Proposition 1.5 (Cauchy-Riemann equations). Let f = u + iv be a function of a complex
variable z with real and imaginary parts u and v, respectively. If f is holomorphic at z,
then the Cauchy—Riemann equations (1.16) are satisfied at z. Conversely, if equations (1.16)
are satisfied at z and if u and v are continuously differentiable functions at z, then f is
holomorphic at z.



16 —— 1 Basictheory

1.3.4 Third interpretation of holomorphicity: conformal maps

Going back to a more geometric way of thinking about holomorphicity, a further inter-
pretation of the meaning of this property is that holomorphic functions are conformal
mappings where their derivatives do not vanish. More precisely, assume as before that
f(z) is holomorphic at z, and f’(z,) # 0. Let y,, ¥, : (a,b) — C be two differentiable
parameterized planar curves defined on some interval (a, b) containing 0, such that
¥1(0) = y,(0) = z,. The tangent vectors to the curves y; and y, at z, are the complex
numbers v; and v, defined by

v =91(0), v, = y;(0). (117)
Similarly, the tangent vectors to the curves f - y; and f - y, at f(z,) are
wy=(foyp)'(0) wy=(feoyy)(0),

which, by a version of the chain rule from vector calculus adapted to complex-analytic
notation (Exercise 1.6), can be rewritten as

wy = f'(11(0)y1(0) = f' (z9)y1(0), (1.18)
wy = f(15(0))y5(0) = f'(29)y5(0). (1.19)

It follows that we can write the inner products (in the ordinary sense of planar vector
geometry) between the complex number pairs v, v, and wy, w, as

(v, Vy) = Re(vyvy),
(wy, wy) = Re(wywy) = Re((f" (29)y1(0))(f' (20)y5(0)))
= 1 (2)f"(20) Re(yy) = I @) [ (vy, ). (1.20)

If we denote by 6 and ¢ the angle between v;, v, and the angle between wy, w,, respec-
tively, we then get using (1.17)-(1.20) that

wiwy) I )P vy (v,

= = = cos .
(willwy|  If" Zo)wil If (Zg)vyl V1] Vsl

cos @ =

So we have shown that under the assumption that f'(z,) # 0, the function f(z) maps two
curves meeting at an angle 6 at z; to two curves that meet at the same angle at f(z). A
function with this property is said to be conformal at z,; see Fig. 1.4.

We can also prove that, under additional assumptions, the converse to the fact that
holomorphicity with a nonvanishing derivative implies conformality also holds, making
holomorphicity and conformality into nearly equivalent concepts. An important addi-
tional condition is that the conformal map needs to be orientation-preserving; this
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"

f f(zt))

foy

Figure 1.4: A conformal map f preserves the angle between curves crossing at a point: 6 = ¢.

condition can be seen to be necessary by considering the map f(z) = z, which is con-
formal but not holomorphic. Recall from vector calculus that for a differentiable vector
planar map f : U — R? (where U is some open set in R?), the Jacobian matrix of f is
the matrix of partial derivatives,

u o ou

[ ox oy

]f_< o av). (1.21)
ox oy

If det]; > 0, then we say that f preserves orientation.

Theorem 1.6. Iff = u + iv is holomorphic at z, and f'(zy) # 0, then f is conformal at
zy. Conversely, if f is conformal at z,, continuously differentiable at z in the real analysis
sense, and preserves orientation at z,, then f is holomorphic at z,.

The first claim of the theorem was already proved above. The converse direction is
proved with the help of the Cauchy-Riemann equations. First, we will need the following
simple lemma about linear transformations in the plane.

Lemma 1.7 (Linear conformal maps). Assume that A = (¢ Z) is a 2 x 2 real matrix. The

following are equivalent:

(@) A preserves orientation (that is, det A > 0) and is a linear conformal map, that is,
satisfies

(Awy, Aw,) (g, Wy)
[Awy| |[Aw,|  |wy| [y

(wi, wy € R\ {(0,0)}). (1.22)
(b) A takes the form

A= (—ab Z) for some a,b € R with a+1p*>0. (1.23)
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(c) A takes the form

A=r<cos€ —sin @

§nd  cosd ) for somer >0and 0 € R.

(That is, geometrically A acts by a rotation followed by a scaling.)

Proof that (a) = (b). Note that both columns of A are nonzero vectors by the assump-
tion that det A > 0. Now applying assumption (1.22) with w; = (1,0)", w, = (0,1)" yields
that (a,c) L (b,d), so that we must have

(b,d) = xk(-c,a) (1.24)

for some k € R\ {0}. On the other hand, applying (1.22) with w; = (1,1)" andw, = (1,-1)"
yields that (a+b,c+d) L (a- b, c - d), which is easily seen to be equivalent to a+ct=
b* + d*. When combined with (1.24), this implies that k = +1. So A is of one of the two
forms (4 ) or (¢ 5, ). Finally, the assumption that det A > 0 means that it is the first of
those two possibilities that must occur. O

Proof of the implications (b) < (c) and (b) = (a). This is left as an exercise (Exer-
cise 1.7). 0

Proof of Theorem 1.6. Assume that f is conformal, continuously differentiable, and
orientation-preserving at z,. Let y : (a,b) — C be a differentiable parameterized planar
curve with 0 € (a,b), y(0) = z,, and tangent vector v = y'(0) at z,. By standard prop-
erties of differentiable planar maps the tangent vector of f o y at f(wj) is J¢(z,)v (that
is, the Jacobian matrix of f at z; acting as a linear map on the vector v, interpreted as
a column vector). This means that f is conformal at z,, if and only if the matrix J;(z,) is
a linear conformal map in the sense of satisfying condition (1.22) in Lemma 1.7(a). Now
adding the knowledge that f is orientation-preserving at z,, the equivalence stated in
the lemma implies that J¢(z,) must be of the form given on the right-hand side of (1.23).
Comparing that form with (1.21), we see that this precisely means that f satisfies the
Cauchy-Riemann equations at z,. This means that the converse part of Proposition 1.5
applies, and we conclude that f is holomorphic at z, as claimed. O

Suggested exercises for Section 1.3. 1.3,1.4,1.5,1.6,1.7, 1.8, 1.9, 1.10, 1.11.

1.4 Additional consequences of the Cauchy-Riemann equations

In the previous section, we saw that the Cauchy-Riemann equations can be used to
prove the near-equivalence between holomorphicity with a nonvanishing derivative
and conformality. Another curious consequence of the Cauchy-Riemann equations,
which gives an alternative geometric picture to that of conformality, is that holomor-
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phicity implies the orthogonality of the level curves of u and of v. Thatis, if f = u + ivis
holomorphic, then

(Vi, V) = ((Uy, Uy), (Vy, Vy) ) = WDy + UyVy = VY, = Vv = 0.
Since Vu (resp., Vv) is orthogonal to the level curve {u = c} (resp., the level curve {v = d}),
this proves that the level curves {u = c} and {v = d} meet at right angles whenever they
intersect.

Yet another important and remarkable consequence of the Cauchy—Riemann equa-
tions is that, at least under mild smoothness assumptions (which, as we will see later, can
be removed) in addition to holomorphicity, u and v are harmonic functions. Assume
that f is holomorphic at z and is twice continuously differentiable (in the real analysis
sense) there. Then

Pu,Su_ o), o)

ox2 9y ox\ox/ oay\dy
_3@)_2(@)_&_&_0
“ox\ay/ oy\ox/ oxdy oyox

i.e., u satisfies Laplace’s equation

Au =0,
2 2
where A = % + % is the two-dimensional Laplacian operator. A function that satisfies
this equation is called a harmonic function. Similarly (check), v also satisfies

v v
= — 4t — =
ox2  oy?

=0.

So we have shown that u and v are harmonic functions. This fact is an important con-
nection between complex analysis, real analysis, and the theory of partial differential
equations.

We will later see that the assumption of f being twice continuously differentiable is
unnecessary, but proving this requires more advanced ideas (see Theorem 1.30 in Sec-
tion 1.9).

A final remark related to holomorphicity and the Cauchy-Riemann equations is the
observation that if f = u + iv is holomorphic, then its Jacobian matrix is given by

u u . 2
Jy = det (V" vy> = UyVy = UyVy = w2 +VE = Juy + vy = If' ). (1.25)
x Yy

This can also be understood geometrically—spend a moment thinking what the geomet-
ric interpretation is.

Suggested exercises for Section 1.4. 1.12.
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1.5 Power series

Until now we have not discussed any specific examples of functions of a complex vari-
able. Of course, there are the standard functions that you probably encountered already
in your undergraduate studies: polynomials, rational functions, €, the trigonometric
functions, etc. Aside from these examples, it would be useful to have a general way
to construct a large family of functions. Of course, there is such a way: power series,
which—nonobviously—turn out to be essentially as general a family of functions as one
could hope for.

To make things precise, a power series is a function of a complex variable z defined

by

f@ =) ayz-z)", (1.26)

n=0

where z, € C, and (a,);2, is a sequence of complex numbers. This function is defined
wherever the respective series converges.

For which values of z does this formula make sense? Define the number R € [0, co]
as

R= (lizn_}sél.}p |an|1/") ,

which we refer to as the radius of convergence of the power series. Its significance is
explained in the following simple result.

Lemma1.8. 1. The series (1.26) converges absolutely if |z — z,| < R.
2. The series (1.26) diverges for all z satisfying |z — zy| > R.

Proof. We assume that 0 < R < oo; the edge cases R = 0 and R = oo are left as an
exercise (Exercise 1.13). The defining property of R is that for all € > 0, we have that
la,| < (zlz +¢€)" if nis large enough, and R is the maximal number with that property. Let
z € Dp(0). Since |z| < R, we have |z|(% +¢€) < 1for some fixed € > 0 chosen small enough.
This implies that for all n > N (for some large enough N that depends on €),

00 n 0 1 n
ayz = ,
ot 3|5 <)ol
n=N n=N
so the series is dominated by a convergent geometric series and hence converges.

Conversely, if |z| > R, then |z|(}1e —€) > 1for some small enough fixed € > 0. Taking a
subsequence (a,, )24 for which |a,, | > (1% — ¢)" for all k (such a subsequence exists by
the definition of R), we see that

Ny
a, 2| > | |z] 1—e >1,
| Ny R
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that is, the power series (1.26) contains infinitely many terms with modulus > 1 and
hence diverges. O

Another important property of power series is given in the following theorem.

Theorem 1.9 (Power series are holomorphic). Power series are holomorphic functions in
the interior of their disc of convergence and can be differentiated termwise there; that is,
the derivative of the infinite series is equal to the series of the derivatives.

Proof. Denote

f2) = OZO: a,z" = Sy(z) + Ry(z), where

n=0

N [}
Sn@) =) a2, Ry()= ) a,z",
n=0 n=N+1

and let
(o)
g =) na,z" .
n=1

The claim is that f is differentiable on the disc of convergence and that its derivative is
the power series g. Since ™ - 1asn — oo, itis easy to see that f(z) and g(z) have the
same radius of convergence. Fix z, with |z,| < 7 < R. We wish to show that ’w

converges to g(z,) as h — 0. Observe that

f(zy + h}: -f(zy) _g(zg) = (SN(ZO + h’)l - Sn(zp) Sz,v(zo)>
4 R+ h})l “Rv0) | (51 (20) - g(20): 1.27)

In this last expression, the first term converges to 0 as h — 0 for any fixed N. To bound
the second term, fix some € > 0, and assume that |h| < r, and moreover that |h| is small
enough so that |z, + h| < r. Now make use of the algebraic identity

P -q = -@" T +p" g+ pg" g
to get that
Ry (2 +h) — Ry(2g) . i a| (2o + )" -2g
= n
h n=N+1 h
_ i L Yoo hf(zg + B 1K
n=N+1 " h

[ee]

Z |a, .

n=N+1

IN
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The last expression in this chain of inequalities is the tail of an absolutely convergent
series, so it can be made < € be taking N large enough (before taking the limitas h — 0).

Third, we have the limit S (zy) — g(z;) as N — oo, so we can choose N large
enough so that IS,’V(ZO) - g(zy)| < e. Having thus chosen N, we get finally from (1.27) and
the above estimates that

. h) -
hmsupM -8(zp)| <0+€e+e=2e
h—0 h
Since e was an arbitrary positive number; this shows that ’w — g(zg)ash — 0,
as claimed. O

Corollary 1.10. Holomorphic functions defined as power series are differentiable (in the
complex-analytic sense) infinitely many times in the disc of convergence.

Corollary 1.11. For a power series g(z) = ¥ n° a,(z — zy)" with positive radius of conver-
gence, we have

(n)
a, = gn—(!ZO). (128)

In other words, g(z) satisfies Taylor’s formula

oo .(n)
0= &gy
n=0 :

Suggested exercises for Section 1.5. 1.13, 1.14, 1.15, 1.16.

1.6 Contour integrals

We now introduce contour integrals, which are another fundamental building block
of the theory.

Contour integrals, like many other types of integrals, take as input a function to be
integrated and a “thing” (or “place”) over which the function is integrated. In the case of
contour integrals, the “thing” is a contour, which is (for our current purposes at least) a
kind of planar curve. We start by developing some terminology to discuss such objects.
A parameterized curve is a continuous function y : [a, b] — C. The value y(a) is called
the starting point, and y(b) is called the ending point (both a, b together are referred
to as the endpoints). Two curves y; : [a,b] — C, y, : [c,d] — C are called equivalent,
denoted y; ~ yy, if yo(t) = y1(I(¢)) where I : [c,d] — [a,b] is a continuous, one-to-one,
onto, increasing function. A curve y is called simple if it does not intersect itself, that is,
if y is injective. It is called closed if y(a) = y(b).
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What we will refer to as a curve is, formally speaking, an equivalence class of pa-
rameterized curves with respect to the equivalence relation defined above. We also use
the word contour as a synonym for curve.

In practice, we will usually refer to parameterized curves simply as “curves,” which
is the usual abuse of terminology that one sees in various places in mathematics, in
which one blurs the distinction between equivalence classes and their members, re-
membering that various definitions, notation, and proof arguments need to “respect
the equivalence” in the sense that they do not depend of the choice of a member. (As a
meta exercise, try to think of other examples of this phenomenon you might have en-
countered in your studies.)

For our present context of developing the theory of complex analysis, we will as-
sume that all our curves are piecewise continuously differentiable. More generally, we
can assume them to be rectifiable, but we will not bother to develop that theory. There
are yet more general contexts in which allowing curves to be merely continuous is ben-
eficial (and indeed some of the ideas we will develop in a complex-analytic context can
be carried over to that more general setting), but we will not pursue such distractions
either.

You probably encountered curves and parameterized curves in your earlier studies
of multivariate calculus, where they were used to define the notion of line integrals
of vector and scalar fields. Recall that there are two types of line integrals, which are
referred to as line integrals of the first and second kind. The line integral of the first
kind of a scalar (usually real-valued) function u(z) over a curve y is defined as

n

J u(zyds = lim Y u(z)As;, (1.29)

max As;—0 =
y J =
where the limit is a limit of Riemann sums with respect to a family of tagged partitions of
the interval [a, b] over which the curve y is defined as the norm of the partitions shrinks
to 0. Such a partition consists of partition points

a=ty<ty<---<t,=b,

and each partition subinterval [t;_j, ¢;] is “tagged” or marked with an arbitrary point 7;
chosen from the subinterval. Given this partition, we denote zj = )/(T]-), and the symbols
As; refer to finite line elements, namely As; = |z; - z;_4|. This notation gives meaning to
the right-hand side of (1.29).

The line integral of the second kind is defined for a vector field F = (P, Q) (using
the more traditional notation from calculus; in the complex analysis context, we would
regard this object as the complex-valued function F = P + iQ) by

n
J F.ds= jP dx +Qdy = mﬁ}l{lArE}qonlP(zj)ij +Q(z)Ay;,
y y =
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where the numbers z; are associated with the tagged partition as above, and

X;i=Re(z;), yj=Im(z), Axj=X;-X_y, AY;=Y;-Yj1.

It is well known from calculus that line integrals can be expressed in terms of ordi-
nary (single-variable) Riemann integrals. Take a couple of minutes to remind yourself
of why the following formulas are true (assuming that all the functions involved are
piecewise continuously differentiable):

J u(z)ds =

JF-ds:
y

(In (1.31), “” refers to the dot product of vectors in the plane.)
As a further reminder, the basic result known as the fundamental theorem of cal-
culus for line integrals states that if F = Vu, then

u(y@)|y' )| dt, (1.30)

F(y(t)) - y'(t) dt. (1.31)

Re— & N

[ F-ds = upyo) - u@).
Y

We are now ready to define contour integrals and arc length integrals, which are
the complex-analytic analogues of line integrals of the first and second kinds (and are
defined in terms of those integrals). For a function f = u +iv of a complex variable z and
a curve ), the contour integral jy f(2) dz (in words: the integral of f over the curve y) is
defined, loosely speaking, as the line integral of the second kind “j (u + v)(dx + idy)”.
More precisely, expanding this product of a complex number and a complex differential
and separating into real and imaginary components, this definition becomes

Jf(z)dz:<yjudx—vdy>+i<)jvdx+udy>, (1.32)

that is, the complex number whose real part is the line integral of F - ds and whose
imaginary partis the line integral of G-ds, where F and G are the vector fields F = (u, -v)
and G = (v, u). Appealing to (1.31), you can check easily that the contour integral can be
evaluated explicitly as the ordinary Riemann integral

b

jﬂnﬂ:jﬂﬂmymm. (133)

Yy a

Similarly, the arc length integral is defined as
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J F(2)\dz] = J F(z2)ds = yj uds + iJ vds, (1.34)

which is simply a line integral of the first kind in which the integrand is complex-valued.
If yis a closed curve, then we denote the contour integral as 4))} f(2) dz, and similarly
<_j'>y f(2) |dz| for the arc length integral.
A particular case of an arc length integral is the length of the curve, denoted len(y)
and defined as the integral of the constant function 1:

b

len(y) = I |dz| = J|y’(t)| dt.

Yy a

As mentioned above, our convention of mildly abusing terminology puts on us the
burden of having to remember to check that these definitions do not depend on the
parameterization of the curve. Indeed, if y; ~ y, are representatives of the same equiv-
alence class of parameterized curves, that is, y,(t) = y;(I(t)) for some nicely behaved
function, then using a standard change of variables in single-variable integrals, we see
that

d

FOaOWy0dt = jf(m(l(t)))(yl oI (6)dt

c

7@ az -
V2

b

FrI@))yiI@)I' o de = j F((O)yi(r) dr = J f(2)dz. (1.35)
N

a

Ot——a Ot——a

The analogous verification in the case of arc length integrals is left as an exercise
(Exercise 1.17).

Contour integrals have many surprising properties, but the ones on the following
list of basic properties are not of the surprising kind.

Proposition 1.12 (properties of contour integrals). Contour integrals satisfy the following

properties:

(@) Linearity as an operator on functions: for functions f(z), g(z) and complex numbers
a, B, we have

[@@+ps@ndz=a[r@dz+p [ dz
y y y
(b) Linearity as an operator on curves: if a contour T is a “composition” of two contours
Y1 and y, (in a sense that is easy to define graphically but tedious to write down pre-
cisely), then
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jf(Z) dz = jf(z) dz + Jf(z) dz.
T

41 )

Similarly, if y, is the “reverse” contour of y,, then

|rrdz--[r@raz

Y2 )41

(c) Triangle inequality:

Uf(z)dz

Y

< J[f(z)l ldz| < len(y) - supl|f(2)|.
zey

Proof. Exercise 1.18. O

Contour integrals have their own version of the fundamental theorem of calculus.

Theorem 1.13 (The fundamental theorem of calculus for contour integrals). Ify is a curve
connecting two points wy and w, in a region Q on which a function F is holomorphic, then

J F'(z)dz = F(w,) — F(wy).
y
Equivalently, the theorem says that to compute a general contour integral jy f(z)dz,

we try to find a primitive of f, that is, a holomorphic function F such that F'(z) = f(2)
on all of Q. (A term synonymous with “primitive” is antiderivative.) If we found such a
primitive, then the contour integral jy f(2) dz is given by F(w,) — F(wy).

Proof. For smooth curves, an easy application of the chain rule gives

b b
|F@a- [Fooyod-[E-y'od=-E-pol
Yy a a
= F(y(b)) - F(y(a)) = F(w,) — F(wy).
For piecewise smooth curves, this is a trivial extension that is left to the reader. O

Many of our discussions of contour integrals will involve the behavior of integrals
over closed contours and the interplay between the properties of such integrals and
integrals over general contours. As an example of this interplay, the above result has an
easy—but important—consequence for integrals over closed contours.

Corollary1.14. If f = F' where F is holomorphic on a region Q—that is, f has a
primitive—then for any closed contour y in Q, we have

qgf(z)dz - 0.
4
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This last result has the following partial converse.

Proposition 1.15. Iff : Q — C is a continuous function on a region Q such that

(Jif(z)dz:o
4

for any closed contour in Q, then f has a primitive.

Proof. Fix some z; € Q. For any z € Q, there is some curve y(zy,z) connecting z, and
Z (since Q is connected and open, hence pathwise-connected—a standard exercise in
topology). Moreover, it is also not hard to see that the curve can be assumed to be piece-
wise differentiable. Define

F(z) = J fw)dw. (1.36)
Y(29,2)

By the assumption this integral does not depend on which curve y(zy,z) connecting z,
and z was chosen, so F(z) is well-defined. We now claim that F is holomorphic and its
derivative is equal to f. To see this, note that if h is a complex number such thatz+h € Q,
then

F(z+h)-F(2) _

n f(@)
y(2o,z+h) Y(29,2)
-2 | rwaw-ra -5 [ g -r@)am, 137
y@z+h) y(z.z+h)

where y(z,z + h) denotes a curve in Q connecting z and z + h. When |h] is sufficiently
small so that the disc D (z) is contained in Q, we can take y(z, z + h) as the straight line
segment connecting z and z + h. For such h, we get that

R DBD p) < Tlen(ytzaz+h) sup [f) (2

h weDy(z)
= sup |[f(w)-f(z)|—0
weDy,(z) h—0
by the continuity of f. O

Lemma 1.16. Iff is holomorphic on Q and f' = 0, then f is a constant.

Proof. Fix some z, € Q. For any z € Q, as we discussed above, there is a path y(z, z)
connecting z, and z. Then
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@) - fz0) = j Flwydw = 0,

Y(29,2)
and hence f(z) = f(z,), that is, f is constant. O

Suggested exercises for Section 1.6. 1.17,1.18.

1.7 The Cauchy, Goursat, and Morera theorems

One of the central results in complex analysis is Cauchy’s theorem.

Theorem 1.17 (Cauchy’s theorem.). Iff is a holomorphic function on a simply connected
region Q, then for any closed curve in Q, we have

ﬂgf(z)dz - 0.
4

The challenges facing us are as follows: first, to prove Cauchy’s theorem for curves
and regions that are relatively simple (where we do not have to deal with subtle topolog-
ical considerations); second, to define what “simply connected” means; third, to extend
the theorem to the most general setting. This is done in the next section.

Two other theorems closely related to Cauchy’s theorem are Goursat’s theorem, a
relatively easy particular case of Cauchy’s theorem, and Morera’s theorem, which is a
kind of converse to Cauchy’s theorem.

Theorem 1.18 (Goursat’s theorem). Iff is holomorphic on aregion Q, T is a triangle con-

tained in Q, and 9T is the boundary of T (considered as a curve in the usual sense), then

95 f(2)dz =0, (138)
oT

Theorem 1.19 (Morera’s theorem). Iff : Q — C is a continuous function on a region Q
such that

;[)f(z) dz=0

for any closed contour in Q, then f is holomorphic on Q.
Morera’s theorem is proved in Section 1.9.

Proof of Goursat’s theorem. The proof can be summarized with a slogan “localize the
damage.” Namely, try to translate a global statement about the integral around the tri-
angle to a local statement about behavior near a specific point inside the triangle, which
would become manageable since we have a good understanding of the local behavior of
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a holomorphic function near a point. If something goes wrong with the global integral,
then something has to go wrong at the local level, and we will show that cannot happen.
(Although technically the proof is not a proof by contradiction, conceptually I find this
a helpful way to think about it).

The idea can be made more precise using triangle subdivision. Specifically, let T =
T, and define a hierarchy of subdivided triangles:

order 0 triangle: T,
order 1 triangles: Tj(l), 1<j<4,

. 2 .
order 2 triangles: T](k) 1<),k <4,

; . ®3) i
order 3 triangles: Tj)k)e,l <jke<4,

order n triangles: Tj(l”) 1S on <4

Here the triangles Tj(l”)

; (n-1)
triangle T]1 ke

of Tj(ln’?l ; see Fig. 1.5,

,,,,,

) into 4 subtriangles whose vertices are the vertices and/or edge bisectors

(0)

(2)
/\/T“\/\

Figure 1.5: The triangle T = T and the first few steps in its hierarchy of subdivided triangles.
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Now, given the way this subdivision was done, it is clear that we have the relation

4
f(z)dz:z ﬂg f(z)dz

T.("_l) ] n— aT (n)
Jrredn-1 Jrrein

(where 6T(") p refers as before to the boundary of the triangle T(”) o , considered as a
curve orlented in the positive sense) due to cancelation along the internal edges, and
hence

<ﬁ f(2)dz = Z $ rod
Juseend %

' 67}(1 Jn

So the contour integral around the boundary of the original triangle is equal to the sum

of the integrals around all 4" triangles at the nth subdivision level. Now a key obser-

vation is that one of these integrals has to have a modulus that is at least as big as the

average, that is, there exists an n-tuple j(n) = 'i"), -»j) € {1,2,3,4}" for which
4
’ <J§ F(2)dz| < Z cJS F(2) dz| < 4" SE f(z)dz}. (1.39)
oTO® = oT™
leJn @)

Moreover, we can choose j(n) inductively in such a way that the triangles T(") are nested,
that is, T]("n) C T](';l 11) for n > 1, o, equivalently, j(n) = (](” D,...,]fl"ll),k) for some

1 < k < 4. To make this happen, choose a value of k for which |g[>aT(n) f(z)dz| is
(j(n-1),k)

greater than or equal to the average

14
ik

§|5 f(2) dz|,

(n)
aT(](n 1).d)

which in turn can be seen (by induction) to be greater than or equal to

.4~ 4)]"(2) dz,

(2) dz| } 4) f(z)dz| >

o) (n-1)
aT]('l 1).d) iy

thereby justifying (1.39).
We now claim that the sequence of nested triangles T].((’;l)) shrinks to a single point,
that is, we have

)

n
ﬂ T]'(n) = {ZO}
n=0
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for some point z;, € T. Indeed, the diameter of the triangles goes to 0 as n — oo, S0
certainly there cannot be two distinct points in the intersection. On the other hand, the
triangles T(”) are all compact, and the finite intersections ﬂn 0 T\ it n) are nonempty, so by

the standard finite intersection property of compact sets the full intersection ()52, T]("n)
is also nonempty.
Having defined z,, write f(z) for z near z; as

f(2) = f(zo) +f'(2)(z - 2g) + Y(2)(z - 2,
where

f(Z) f(Zo)

Y(2) = ————=" ~f'(2).

The holomorphicity of f at z, implies that )(z) — 0 as z — z,. Denote by d™ the diam-
eter of T].(("n)) and by p™ its perimeter. Each subdivision shrinks both the diameter and
perimeter by a factor of 2, so we have

d™ = 271q©® p(n) _ 2_"p(0).

It follows that

‘ J f(z)dz’:‘ J (f(zg) + ' (2o)(z - 2g) + Y(2)(z - 2,)) dz

(n) (n)
aTl(n) aTi(ﬂ)

| [ weore-z0)de] < p™d® sup |y
a7 z€Tig)
Ti(n) ’

=47"p0d sup [yp(2)|.

zeT('”

This estimate allows us to finish, since combining it with (1.39), we get that

’ J f@ dz| < pd® sup [p@)] —— 0,
o1 2T
which establishes (1.38). O

The next few results illustrate how Goursat’s theorem, for all its apparent simplicity,
can be used to quickly derive even stronger versions of Cauchy’s theorem, gradually
building up our knowledge toward the general version that will be proved in the next
section.

Corollary 1.20 (Goursat’s theorem for rectangles). Theorem 1.18 is also true when we re-
place the word “triangle” with “rectangle.”



32 — 1 Basictheory

Proof. Obviously, a rectangle can be decomposed as the union of two triangles, with the
contour integral around the rectangle being the sum of the integrals around the two
triangles due to cancelation of the integrals going in both directions along the diagonal.

(]

Corollary 1.21 (existence of a primitive for a holomorphic function on a disc). If f is holo-
morphic on a disc D, then f = F' for some holomorphic function F on D.

Proof. The claim is identical to Proposition 1.15, but with a different set of assumptions.
In fact, the proof of that proposition can be easily adapted to prove the existence of a
primitive in the current setting. Specifically, we again define the purported primitive F
for f using (1.36), but this time using a particular choice of path y(z,,z) connecting z,
and z, namely, we take y(z,, z) to be the straight line segment from z, to z.

We now claim that with this definition, for h small in magnitude (so that z + h is
still in the disc D), the chain of equalities (1.37) still holds, where in this chain, we also
interpret y(z,z + h) as the straight line segment connecting z and z + h. If we can show
this, then the rest of the proof carries through as before. Now, upon inspection of (1.37),
we see that the first and third equalities still hold trivially; it is only the middle equality
that needs to be explained. This equality can be rewritten as

Jf(w)dw+ J fw)dw - J fw)dw =0,

Y(24,2) y(z,z+h) Y(zg,2+h)

a relationship between the contour integrals of f along the three straight line segments
Y(29,2), Y(2y, z + h), and y(z, z + h). This is simply the statement that the contour integral
along the boundary of the triangle with vertices z, z, and z + h is 0, which follows from
Goursat’s theorem. O

Theorem 1.22 (Cauchy’s theorem for a disc). Iff is holomorphic on a disc, then chyf dz=0
for any closed contour y in the disc.

Proof. By Corollary 1.21, f has a primitive, so Corollary 1.14 implies the claimed conse-
quence. O

1.8 Simply connected regions and the general version of Cauchy’s
theorem

We now develop the additional concepts required to formulate and prove the general
version of Cauchy’s theorem. A key notion is that of homotopy of curves. Given a region
Q ¢ C, two parameterized curves y;, ), : [0,1] — Q (assumed for simplicity of notation
to be defined on [0, 1]) are said to be homotopic (with fixed endpoints) if y;(0) = y,(0),
Y1(1) = y,(1), and there exists a function F : [0,1] x [0,1] — Q such that

1) Fiscontinuous.
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ii) F(0,t) = y4(t) forall t € [0,1].
iii) F(1,t) = y,(t) for all t € [0,1].
iv) F(s,0) = y4(0) for all s € [0,1].
V) F(s,1) =y,(1) for all s € [0,1].

The map F is called a homotopy between y; and y,. Intuitively, for each s € [0,1], the
function F; : t — F(s, t) defines a curve connecting the two endpoints y;(0) and y;(1). As
s grows from 0 to 1, this family of curves transitions in a continuous way between the
curve y; and y, with the endpoints being fixed in place; see Fig. 1.6.

7" =Fy

n) = (1)

71(0) = 7,(0)

Yy = F

Figure 1.6: A homotopy between two curves y; and y,, visualized as a one-parameter family of curves
t — Fy(t) that interpolate continuously between y; and y,, with the endpoints staying fixed.

A common alternative way to define the notion of homotopy of curves is for closed
curves, where the endpoints are not fixed, but the homotopy must keep the curves closed
as it is deforming them. The definition of a simply connected region then becomes a
region in which any two closed curves are homotopic. It is not hard to show that those
two definitions are equivalent.

It is easy (but recommended!) to check that the relation of being homotopic is an
equivalence relation; see Exercise 1.19.

Next, we define the notion of a simply connected region. A region Q is called simply
connected if any two curves y;, y, in @ with the same endpoints are homotopic. Note that
this is a topological property (in the sense that it is preserved under homeomorphism).
The complex plane, the unit disc, and any region homeomorphic to the unit disc are
simply connected regions (Exercise 1.20).

Theorem 1.23. Iff is a holomorphic function on a region Q, and y,,y, are two curves on
Q with the same endpoints that are homotopic, then

[r@d-[r@ .
Yo V1

Proof. Aswith the proof of Goursat’s theorem in the previous section, this proof is based
on the idea of reducing the global statement about the equality of the two contour in-
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tegrals into a local statement. Denote by F : [0,1] x [0,1] — Q the homotopy between
Yo and y;, and for any s € [0,1], denote by y, : [0,1] — C the curve y¢(t) = F(s,t). The
strategy of the proof is to show that there are values 0 = s, < §; < s3 <--- < s, =1such
that

[row=[radw= - [ fod- 10w

Vo Vs, Vors Vin

In fact, we can take s, = k/n for 0 < k < n with large n; we will define n more precisely
below. Fix 1 < k < n. To prove the equality between the two integrals fy f(z)dz and
Sk-1

jy f(z) dz, we decompose each of the two integrals into a sum of integrals over small
Sk
pieces of the contours y; _ and y,_by writing them as

j f@dz=Y J f(2)dz, (1.40)
Vsicq L TR
m
J f@dz=) j f(z)dz. (1.41)
Vs jleskut,-,l,r,-J

Here yg, ¢ 0] denotes the restriction of the contour y to the interval [¢;_;, ¢;], where ¢;
denotes some sequence of points 0 = t; < t; < --- < t, = 1 partitioning [0, 1] into
subintervals [¢;_;, ¢;]. We will show at the end of the proof that the partition ¢; = j/n for
0 < j < n-1,where nis large (and is the same n that was used for the definition of
s, above), works well for our purposes. Specifically, we will show that with the way we
defined s; and ¢; above and with n taken sufficiently large, the following assumption is
satisfied: for all 1 < k,j < n, there exists an open disc Dy ; ¢ Q containing the two curve
segments Vs, is_,.¢1 a0d Vg, 6)-

Under this assumption, to prove that the two integrals (1.40)—(1.41) are equal, it suf-
fices to prove that for any 1 < j < n, we have the equality

J f(2)dz = j f(z)dz (1.42)

Vsiqllg-1.4D) Vsillg_g.47)

between the integrals over the small subcontours.

For each 0 <j < n, let ;; denote a straight line segment (considered as a param-
eterized curve) from y; () to y, (¢;), and for each 1 < j < m, let Ty ; denote the closed
curve ysk_]([tj_l, t/-]) +10j— ysk([tj_l, t1) — N -1 (in words: the concatenation of the four
curves ys  ([tji_1, 1), Ny, “the reverse of yg ([¢;_4,¢]),” and “the reverse of n;;_4”). By
the assumption on the disc Dy ; the curve I'; ; is contained in Dy ;. Therefore by Cauchy’s
theorem for discs (Theorem 1.22) we have
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(ﬁf(z)dz -0,

Ty

or, more explicitly,

| row- | row- | roa-|roa

Vspeqllgj—.4) Vsillg_g.4;) Nij-1 Ni.j

Summing this relation over j and recalling (1.40)—(1.41), we get that

| reyaz- | raaz- il( | reae- [ r@ dz>
Vsea Ve I M Mkj
- [roa- [ r@w-o
Nk,0 Ni,m

(Here, in the next-to-last step the sum is telescoping, and in the last step, we note that
Nk,0 and 0y ,, are both degenerate curves, each of which simply stays at a single point.)
This is precisely equality (1.42) we wanted.

It remains to justify the assumption about the discs Dy ;. This is done as follows.
First, since the set A = F([0,1] x [0,1]) is compact, it is easy to see (for example, using
the Heine-Borel property) that there exists a number € > 0 such that the discs D.(z) are
contained in Q for all z € A. Second, since F is continuous, and hence also uniformly
continuous, on [0,1] x [0,1], there exists a number § > 0 such that forany 0 < s, <1
with |s - §'| + |t - t'| < §, we have

s (") = y5(0)] = |[F(s',¢') - F(s,0)| < €.

Let nbe an integer larger than 2/6, and let s = k/nand t; = j/n as before. We define the
discs Dy j by Dy j = De(ys, ,(tj_1)) and claim that they satisfy our assumption. Indeed, if
te [t]-,l, tj],then |t—t]-,1| <1/n<6/2,s0 |ysk71(t)—ysk71(tj,1)| < €. This shows that the curve
segment Vseallt ot is contained in Dy. Similarly, |t - tj_ll + 1Sk — Skl <1/n+1/n< 6, s0
Vs, (€) = Vs, (ti_1)| < €, that is, the curve segment Vsilltyo.6) is also contained in Dy ;. This
proves that our assumption about the discs Dy ; is satisfied and finishes the proof. [

Theorem 1.24 (Cauchy’s theorem, general version). If f is holomorphic on a simply con-
nected region Q, then for any closed curve in Q, we have

qﬁf(z)dz -0,
Y

Proof. Assume without loss of generality that y is parameterized as a curve on [0,1].
Then it can be thought of as the concatenation of two curves y; and —y,, where y; =
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Y012 and y, is the “reverse” of the curve y,;y/,5;. Note that y; and y, have the same
endpoints. By Theorem 1.23 we have

Jf(z)dz= J f(Z)dz:jf(z)dz—Jf(z)dz:O. O

Y Y17V N Y2
Combining Theorem 1.24 with Proposition 1.15, we get the following result.
Corollary 1.25. Any holomorphic function on a simply connected region has a primitive.

One subtle issue that is glossed over in many complex analysis textbooks is the ques-
tion of how to recognize when a region is simply connected. In many practical situations,
itis easy to recognize or at least accept as intuitively plausible, that the region under dis-
cussion is homeomorphic to a disc, which of course implies the property of being simply
connected. This informal style of reasoning will be sufficient for our needs in this book.
For those readers who prefer a higher level of rigor, we cite without proof the following
result from topology.

Theorem 1.26. Given any simple closed curvey in the plane, there is a region Q such that:
1. Qs bounded;

2. Qs the unique connected component of C \ y that is bounded;

3. Qs homeomorphic to a disc.

Because of the second property of Q given in the theorem, Q is usually referred to
as “the region enclosed by y.”

Theorem 1.26 is a version of the Jordan-Schoenflies theorem, which in turn is
a strengthened version of the Jordan curve theorem. These results have elementary
proofs that do not require complex analysis; see [9, 69] and [W6] for additional discus-
sion and references. A planar curve that is simple and closed is often referred to as a
Jordan curve.

Suggested exercises for Section 1.8. 1.19, 1.20, 1.21, 1.22.

1.9 Consequences of Cauchy’s theorem

Theorem 1.27 (Cauchy’s integral formula). If f is holomorphic on a region Q containing
the closed disc D_g(z,), then

1 Fw) f@ ifz € Dp(zp),
i # Wz dw =40 ifz € Q\ D_R(D), (1.43)
Cr(20) undefined ifz € Cy(zy)

Proof. The case where z € Q \ D_,(D) is covered by Cauchy’s theorem in a disc, since in
that case the function w — f(w)/(w-z) isholomorphic in an open set containing D_p(D).
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Figure 1.7: The keyhole contour T 5.

It remains to deal with the case z € Dy(z,). In this case, denote F,(w) = f(w)/(w-2z). The
idea is now to consider instead the integral

j} F,(w)dw = r(j) % dw,

where T, s is a so-called keyhole contour, namely a contour comprising a large circular
arc around z, that is a subset of the circle Cy(z;), and another smaller circular arc of
radius € centered at z, with two straight line segments connecting the two circular arcs
to form a closed curve, such that the width of the “neck” of the keyhole is §. (Here € and
6 are two small positive parameters; think of € as being small and of § as being much
smaller than e.) See Fig. 1.7. Note that the function F,(w) is holomorphic inside the region
enclosed by I', 5. Moreover, this region is clearly homeomorphic to a disc and so is simply
connected. Therefore Cauchy’s theorem gives that

<J> F,(w)dw = 0.
re,&

We now take the limit of this equation as § — 0. The two parts of the integral along the
“neck” of the contour I'; s cancel out in the limit because F, is continuous, and hence
uniformly continuous, on the compact set D_p(z,) \ D,(z). So we can conclude that

cﬁ F,(w)dw = 4) F,(w) dw. (1.44)
Cr(2o) C.(2)

The next and final step is to take the limit as € — 0 of the right-hand side of this equation.
Write
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Fw) = LW =/@ (W) f @) f(z)-WL. (1.45)

-7

Integrating each of these two terms separately, for the first term, we have

I CJ’> fw) -f(2) f(Z) dw| < 27¢ . sup If(W)e—f(Z)I
o) lw-z|=¢€
=21 sup |[f(w) f(z)| — 0 (1.46)
lw—z|=€
by the continuity of f; and for the second term,
<J5 £(2)- —dw £(2) cj; —dw orif (2) (147)

Ce(2) Ce(2)

(by a standard calculation; see Exercise 1.21). Combining (1.44) and (1.47) gives that

g[)c (20) 2mF (w) dw = f(z), which was the formula to be proved. O

An important particular case of (1.43) is the one in which z = z,. Cauchy’s integral
formula gives in this case that

n

f(Z)=% (j)f( ) :ljf(z+Reit)dt.

l(W z) 2m
Cr(zo) 0

In other words, we have proved the following result.

Theorem 1.28 (Mean value property for holomorphic functions). If f is holomorphic on a
region Q containing the closed disc D_g(z,), then the value f(z,) is equal to the average of
the values of f around the circle Cx(z;).

Considering what the mean value property means for the real and imaginary parts
of f = u+iv, which are harmonic functions, we see that they in turn also satisfy a similar
mean value property:

21
u(x,y) = % J u(x + Rcost,y + Rsint) dt. (1.48)
0

In fact, (1.48) holds for all harmonic functions and is a result known as the mean value
property for harmonic functions. This result is proved in many texthooks using meth-
ods from real analysis or partial differential equations. Alternatively, it can be derived
from the above considerations by proving that every harmonic function in a disc is the
real part of a holomorphic function.
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Theorem 1.29 (Cauchy’s integral formula, extended version). Under the same assump-
tions as in Theorem 1.27, f is differentiable infinitely many times, and for z € Dy(z,), its
derivatives f ™ (z) are given by

oy _ N fw)
e = o C Elﬁ) o (149)

Proof. We prove by induction that for all n > 0, f(z) exists, is differentiable, and is
given by the expression on the right-hand side of (1.49). For n = 0, this is the statement
of (1.43) in the case z € Dy(z,). For the inductive step, assuming that we have proved the
claim for a given value of n, the idea is now to show that the expression on the right-
hand side of (1.49) can be differentiated under the integral sign. More precisely, observe
that, by the inductive hypothesis, if z + h € Dg(z;) (wWhich is the case where h is close
enough to 0), then

(n) _r(n)
fPz+h) -2z n (J;f(W)'%< 1 1 )dw.
c

h " omi w-z-h (- z)nH

It is easily seen that as h — 0, the divided difference M converges to
(n+1)(w - z)™2, uniformly over w € C. (The same claim without the uniformity is just
the rule for differentiation of a power function; to get the uniformity, we need to “go
back to basics” and repeat the elementary algebraic calculation that was originally used
to derive this power rule; we leave this as an exercise.) It follows that

() _ £
lim P -7@ <f>(n+1)f(—w) 2

R0 h 27t (w — z)"+2
Cr(zg)
(n+1)! (]g f(w)
= dz. 1.50
27T (w — z)n+2 z (1:50)
Cr(zg)

This implies that f"*!(z) exists and is equal to the last expression in (1.50), which was
precisely the claim in the (n + 1)th case. The induction is complete. O

In Theorem 1.29, we have stated one of the most remarkable facts about holomor-
phic functions but hid it inside a technical-looking claim in a way that makes it seem
almost like an afterthought. Let us state it more explicitly to pay it proper respect.

Theorem 1.30 (Infinite differentiability of holomorphic functions). Ifa function f of a com-
plex variable is holomorphic in a region Q, then it is differentiable infinitely many times
there.

The real-analysis analogue of Theorem 1.30 is, of course, (very) false. As another
illustration of how remarkable this result is, recall that in Section 1.4, we proved that
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the real and imaginary parts of a holomorphic function are harmonic functions subject
to the extra assumption that those functions are twice continuously differentiable. We
now see that this assumption is not needed and the conclusion that u, v are harmonic
already follows just from the holomorphicity assumption. Moreover, as an added bonus,
we also get “for free” the statement that u and v are themselves infinitely many times
differentiable; that is, they are C* functions. (The fact that harmonic functions are C*°
can also be proved just using real analysis techniques, but it is nonetheless pleasing to
see it emerging out of the theory we are developing.)

Proof of Morera’s theorem. We already proved thatiff is a function all of whose contour
integrals over closed curves vanish, then f has a primitive F. By Theorem 1.29, F' = f is
also holomorphic. O

As another immediate corollary to the (extended) Cauchy integral formula, we now
get an extremely useful family of inequalities that bounds a function f(z) and its deriva-
tives at some specific point z € C in terms of the values of the function on the boundary
of a circle centered at z.

Theorem 1.31 (Cauchy inequalities). For f holomorphic in a region Q that contains the
closed disc D_g(z), we have

IF™@|<nR™ sup |[fw)]. (1.51)

|w-z|=R

Yet another remarkable fact we can now prove is the equivalence between the class
of holomorphic functions and the class of functions that are locally expressible as power
series. One direction in this equivalence—the easy one—was already proved in Theo-
rem 1.9. The other is given in the following result.

Theorem 1.32 (Holomorphic functions have convergent power series). Iff is holomorphic
in aregion Q that contains a closed disc D_y(z), then f has a power series expansion at z,

f@) =) ay,z-2)",
n=0

which is convergent for all z € Dg(z,). The coefficients a,, in this expansion are given (in
accordance with (1.28)) by a,, = f™(z,)/n.

Proof. The basic idea here is that Cauchy’s integral formula gives us a representation of
f(z) as a weighted “sum” (in fact, an integral, which is a limit of sums) of functions of
the form z — (w — z)~%. Each of the functions in the weighted sum has a power series
expansion since it is, essentially, a geometric series, so the sum also has a power series
expansion.
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To make this precise, write

1 1 1 1
w-z W-2z¢)-(2Z-2y5) WwW-2 1_(%)
00 n 00
_ 1 z( Z-1 ) _ Z(W _ ZO)—n—l(z B Zo)n'
W=2 n=0 w—2Z n=0

This is a power series in z — z,, which, for any fixed w € Cy(z,), converges absolutely for
all z such that [z—zy| < R (thatis, for all z € Dy(z,)). Moreover, the convergence is clearly
uniform in w € Cg(zy). Since infinite summations that are absolutely and uniformly
convergent can be interchanged with integration operations, we then get, appealing to
both the regular and extended versions of Cauchy’s integral formula, that

_ 1 fw)
f(z)_Zm' w—de

Cr(zp)

1 s —n— n
:Tmcji)f(w)r;(w—zo) Yz - z0) dw

which is precisely the expansion we were after. O
Theorem 1.33 (Liouville’s theorem). A bounded entire function is constant.

Proof. Let f be bounded and entire, and let M = sup,.¢ |f(2z)| < co. By the case n =1 of
the Cauchy inequalities (1.51), for any z € C and R > 0, we have

M
!

)| < =.
) s 5
Taking the limit as R — oo gives that f(z) = 0. Since f” is identically 0, f is constant by
Lemma 1.16. O

Exercises 1.23, 1.24, and 1.25 explore some additional ideas related to Liouville’s the-
orem and additional results that can be proved using a similar technique.

Proposition 1.34. Iff is holomorphic on a region Q, and f (z) = 0 for z in a set containing
a limit point in Q, then f is identically zero on Q.

The condition that the limit point z; is in Q in this result is needed. For example, the
function e'/? — 1 has zeros in every neighborhood of z, = 0 but is not identically zero.
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Proof of Proposition 1.34. Let z, € Q be a limit point of zeros of 0. This means that there
is a sequence (wy);2, of points in Q such that f(wy) = 0 for alln, w, — zyask — oo, and
wy # z, for all k. We know that in a neighborhood of zy, f has a convergent power series
expansion. If we assume that f is not identically zero in a neighborhood of z;, then we
can write the power series expansion as

n=m

f@ =) ayz-2)" = ) ayz-2z)"
n=0

= ay(z-2p)" ) agﬂ(z -2o)" = ap(z-29)" (1 + 8(2)),
n=0 m

where we define m to be the smallest index such that a,, # 0, and define g(z) =
Yoo agﬂ(z - zy)". Note that g is a holomorphic function in a neighborhood of z, that
satisfies g(z;) = 0. It follows that for all k,

AWy — 29)" (1 + gwy)) = f(wy) = 0,

but for large enough k, this is impossible, since w; -z, # 0 for all k and g(wy) — g(z;) =
0ask — oo.

The conclusion is that f is identically zero at least in a neighborhood of z,. Now we
claim that this also implies that f is identically zero on all of Q, because Q is a region
(open and connected). More precisely, denote by U the set of points z € Q such that f
is equal to 0 in a neighborhood of z. It is obvious that U is open; U is also closed by the
argument above, which shows that any point that is a limit of points in U must be in
U; and U is nonempty (it contains z,, again by what we showed above). It follows that
U = Q by the well-known characterization of a connected set in the plane as a set E that
has no “clopen” (closed and open) sets other than the empty set and E itself. O

Proposition 1.34 has an equivalent form that is more memorable, given in the next
result.

Theorem 1.35 (Zeros of holomorphic functions are isolated). If f is holomorphic on Q, is
not identically zero on Q, and f(zy) = 0 for z, € Q, then for some € > 0, the punctured
neighborhood D, (z,) \ {2y} of z, contains no zeros of f. In other words, the set of zeros of
f contains only isolated points.

Corollary 1.36. Iff,g are holomorphic on a region Q, and f(z) = g(z) for z in a set with
limit point in Q (e. g, an open disc or even a sequence of points z, converging to some
z € Q), then f = g everywhere in Q.

Proof. Apply the previous result to f — g. O

The previous result is usually reformulated slightly as the following conceptually
important result.
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Theorem 1.37 (Principle of analytic continuation). If f is holomorphic on a region Q, and
f. is holomorphic on a bigger region Q, > Q and satisfies f,(z) = f(z) for all z € Q, then
f, is the unique such extension, in the sense that if f, is another function with the same
properties, thenf,(z) = f,(z) forall z € Q,.

The function f, in Theorem 1.37, if it exists, is usually referred to as the analytic
continuation of f.

The principle of analytic continuation is of fundamental importance in complex
analysis. One of the common ways in which it is used is as a tool for justifying the con-
struction of interesting holomorphic functions in several stages, where one starts by
defining the function on a small region and then shows how to extend the definition to a
larger region (see Chapter 2 for two of the most famous examples of this idea). There are
often several ways of performing the extension, with no single one of them being neces-
sarily more natural or canonical than the others, so we typically appeal to the principle
of analytic continuation to explain why we end up with the same extended function
regardless of which particular construction is used. In that sense, the principle of ana-
Iytic continuation gives a philosophical justification for regarding naturally occurring
holomorphic functions, such as the Euler gamma function and Riemann zeta function
discussed in Chapter 2, as having a kind of idealized Platonic existence that transcends
any particular formula used to represent them.

This philosophical point of view can be illustrated in an amusing way in a more
elementary setting. In real analysis, we learn that “formulas” such as

1-1+1-141-14---= =, (1.52)

DN =

1+2+4+8+16+32+---=-1 (1.53)

do not have any meaning, despite the fact that they can be easily “proved” using alge-
braic manipulations of a somewhat dubious nature. However, in the context of complex
analysis, we can in fact make perfect sense of such identities using the principle of an-
alytic continuation! Do you see how? (Exercise 1.27.) Additional seemingly meaningless
formulas of this type, beloved by complex analysts and recreational mathematicians
alike, are

1

1+2+3+4+---=-—, 1.54
+2+3+4+ o (1.54)

1_2+3_4+“.:%_ (155)

These formulas have attracted considerable attention in recent years, being the subject
of a popular online video [W7], newspaper articles [W8], discussions on mathematics
blogs and forums [W9], [W10], [W11], a Wikipedia article [W12], and more. We will learn
in Chapter 2 that they, too, can be given a formal meaning that is no less precise or
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rigorous than the formulas involving convergent series that you are more familiar with
from real analysis; see Exercise 2.11.

We now discuss a particular case of analytic continuation that constitutes the most
minimalistic kind of continuation we can imagine, namely, a scenario in which a holo-
morphic function is extended to a region that is larger by a single point relative to the
original domain on which it is defined. This is usually described in terms of the so-called
removable singularity. A point z, € Q is called a removable singularity of a function
f : Q@ - C U {undefined} if f is holomorphic in a punctured neighborhood of z,, is not
holomorphic at z,, but its value at z, can be redefined so as to make it holomorphic at
Z,, that is, if we can perform an analytic continuation of f from Q \ {z,} to Q. Of course,
in this case the fact that the analytic continuation is unique is trivial; the issue here is to
understand when the continuation exists, and the next result gives a useful condition.

Theorem 1.38 (Riemann’s removable singularities theorem). If f is holomorphic in Q ex-
cept at a point z, € Q (where it may be undefined or be defined but not known to be
holomorphic or even continuous). Assume that f is bounded in a punctured neighborhood
D,(zg) \ {2y} of z. Then z,, is a removable singularity of f.

Proof. Fix some disc D = Dp(z,) around z, whose closure is contained in Q. Define the
function

Zoon 1 f(W)
f(2) = 7 4) dw (z € D). (1.56)

Cr(z9)

We claim that f extends f to a holomorphic function on D, which requires showing that
f(2) = f(z) forall z € D\{z,} and that f is holomorphic at z,. For the first part of the claim,
letz € D\{z,}. Consider a “double keyhole” contour K, s that surrounds most of the disc D
but makes diversions to avoid the points z, and z, circling them in the negative direction
around most of a circle of radius € (Fig.1.8). We assume that 0 < § < € < %lz - Zp|. Now
the region enclosed by K, s is simply connected, so, after applying Cauchy’s theorem and
a limiting argument similar to that used in the proof of Theorem 1.27 (taking the limit as
6§ — 0 with e fixed), we get that

f()—— fw) dw+i 95 f(—W)d (1.57)

2mi w-z 2l w-z
Ce(2) Ce(2p)
On the right-hand side, the first term is equal to f(z) by a straightforward application
of Cauchy’s integral formula. The second term can be bounded in magnitude using the
assumption that f is bounded in a neighborhood of zy; more precisely, denote M =
SUPyeD, (29)\(zo} |f (w)| < co. We have

[ § L0

Ce(29)

1 niMe
<2me sup |[f(w)]- PRy < Z 2
weC,(zy) 0 0




1.9 Consequences of Cauchy’s theorem = 45

Figure 1.8: The double keyhole contour K, s.

Thus the claim that f(z) = f(z) follows by taking the limit of (1.57) as € — 0.

Itremains to prove that f defined in (1.56) is holomorphic at z,. This is easy to see and
is something we already knew implicitly. For example, the relevant argument (involving
a direct manipulation of the divided differences %(f (z+h)—f(2))) appeared in the proof
of Theorem 1.29. Another approach is to show that integrating f over closed contours
gives 0 (which requires interchanging the order of two integration operations, which
will not be hard to justify) and then use Morera’s theorem. The details are left as an
exercise. O

We now introduce the concept of uniform convergence on compact subsets. If f
and (f,)n, are holomorphic functions on a region Q, we say that the sequence f, con-
verges to f uniformly on compact subsets if for any compact set K c Q, f,,(z) — f(2)
uniformly on K. This mode of convergence is preserved under differentiation, as the
following result makes precise.

Theorem 1.39. Iff, — f uniformly on compact subsets in Q and f,, are holomorphic, then
f is holomorphic, and f, — f' uniformly on compact subsets in Q.

Proof. The fact that f is holomorphic can be shown through a combination of Cauchy’s
and Morera’s theorems. More precisely, note that for each closed disc D_,(zy) ¢ Q, we
have f,(z) — f uniformly on D_,(z,). In particular, for each curve y whose image is
contained in the open disc D,(z;),

[r@a— [rod.
Y 4

By Cauchy’s theorem the integrals in this sequence are all zero, so jy f(z)dz = 0. Since
this is true for all curves y in the disc D,(z;), by Morera’s theorem, f is holomorphic
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on D,(zg). This holds for any disc whose closure is in @, and holomorphicity is a local
property, so we have shown that f is holomorphic on all of Q, as claimed.

Next, to show that f, — f’ uniformly on compact sets, we start by proving that uni-
form convergence holds on a certain family of discs. Let D,.(z,) be a disc whose closure
is contained in Q. For z € D,(z;), we have by Cauchy’s integral formula that

fo(w) 1 fw)

i@ ~1'@) = Zm (w z)? dw_ﬁc (w - z)?
4) fn(W) WAL
, W S w-z?

This implies that f (z) — f'(z) asn — oo, uniformly as z ranges on the disc D, 12(2p), since
fanw) — f(w) uniformly for w € C,(zq) ¢ D_,.(2y), and since the bound |w—z|’2 < (r/2)’2
holds for z € D, () and w € C,.(zy).

Now let K ¢ Q be compact. For each z € K, let r(z) be the radius of a closed disc
D_,(;(z) around z that is contained in Q. The family of discs {B, := Dj,)/2(2) : z € Q}
is an open covering of K, so by the Heine—Borel property of compact sets it has a finite
subcovering B, ,...,B, . We showed that fi(z) — f'(z) uniformly on every sz, S0 we
also have uniform convergence on their union, which contains K, so we get that f, — f’
uniformly on K, as claimed. O

Suggested exercises for Section 1.9. 1.23,1.24,1.25,1.26, 1.27.

1.10 Zeros, poles, and the residue theorem

We say that a complex number z is a zero of a holomorphic function f iff(z,) = 0. Zeros
in complex analysis behave rather like zeros of polynomial, in the sense that a zero must
have an integer multiplicity, known as its order. More precisely, we say that z, is a zero
of order m > 1 of a nonconstant holomorphic function f if it can be represented in the
form

f(2) = (z-2)"g(2) (1.58)

in some neighborhood of zy, where m > 1, and g is a holomorphic function in that neigh-
borhood such that g(z;) # 0. A zero of order 11is called a simple zero.

Lemma 1.40. The order of a zero is a well-defined concept. That is, if f is a nonconstant
holomorphic function and f (z,) = 0, then representation (1.58) with the properties of g as
given above exists for a unique integer m > 1.
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Proof. We make use of power series expansions and a calculation similar to that used
in the proof of Proposition 1.34. Write the power series expansion (known to converge
in a neighborhood of z;)

f@) =) ayz-2y)" = ) ay(z-2,)",
n=0

n=m

where m is the smallest index > 0 such that a,, # 0. Since a, = f(z,) = 0, it must be the
case that m > 1. If we now define

(o)

k

z) = z A2 — 2g)",
k=0

then clearly f(z) = (z - z))"g(2), and g(z,) = a,, # 0; this proves the existence of
representation (1.58). On the other hand, given a representation of this form, expanding
g(z) as a power series around z, shows that m has to be the smallest index of a nonzero
coefficient in the power series expansion of f(z) around z,. This proves the uniqueness
claim. O

In the definition above, in the case where z, is not a zero of f, the same represen-
tation (1.58) holds with m = 0 (and g = f), so in certain contexts, we may occasionally
describe this situation by saying that z, is a zero of order 0.

If f is holomorphic in a punctured neighborhood of a point z,, then we say that it
has a pole of order m at z, if the function h(z) = 1/f(z) (defined to be 0 at zy) has a zero
of order m at z,. A pole of order 11is called a simple pole. As with the case of zeros, we
can extend this definition in an obvious way by saying that f has a pole of order 0 if f
is holomorphic at z, or has a removable singularity there, and the value f(z;) (or the
redefined value lim,_,, f(z) that makes f holomorphic at z in the case of a removable
singularity) is nonzero.

Lemma 1.41. A function f has a pole of order m at z,, if and only if it can be represented
in the form

f(@) = (z-20)"g(2)
in a punctured neighborhood of z,, where g is holomorphic in a neighborhood of z, and
satisfies g(z,) + 0.
Proof. Apply the previous lemma to 1/f(z). O

Theorem 1.42. Iff has a pole of order m at z,,, then it can be represented in a unique way
as

f(2) = i_m + oy —L 4 G(2), (159)
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where G is holomorphic in a neighborhood of zy, and a_,, ..., a_y, are arbitrary complex
numbers with a_,, # 0.

Proof. The function g(z) = (z - z,)™f(z) is holomorphic in a neighborhood of z, and
satisfies g(z;) + 0. Write its power series expansion as

£2) =) by(z—zp)" (1.60)
n=0
=by+bi(z—29) + + Dby g(z-20)" "+ Y bz —zo)". (1.61)
n=m

Here b, = g(zy) # 0. Now defining G(z) = Y2, bm(z — 29)"™™ and converting (1.61) to
an expression for f, we get that

by b, b,
T (z -z " (z - zy)m1 +,.,+Zr_nz +6@,
0 0 0

proves the existence part of the claim; the uniqueness part is left as an easy exercise. [

which is of the correct form (1.59) if we further define a_; = by,_; for 1 < j < m. This

In representation (1.59) the expression

__ Gn A_m+1 Ay
f@)-6@ = (z-z)™  (z-2zy)m ! LR Zy

is called the principal part of f at the pole z,. The coefficient a_, is called the residue
of f at z; and denoted Res, (f).

The definitions of the order of a zero and a pole can be unified into a single con-
sistent definition of the (generalized) order of a zero, where if f has a pole of order
m at z;, then we say instead that f has a zero of order —m. Denote the order of a zero
of f at z,—an integer, which may be positive, negative, or zero—by ord, (f). With these
definitions, it is easy to check (Exercise 1.28) that

ord, (f +g) = min(ord, (f),ord, (8)), (1.62)
ordZO (fg) = ordZO )+ ordZO o). (1.63)

The residue theorem is a famous formula for evaluating integrals around closed
contours of functions holomorphic inside the region enclosed by the contour, except
for a discrete set of points. This theorem, like Cauchy’s theorem, has several different
formulations addressing different levels of generality. We further give three versions of
the theorem, which are sufficient for our needs.
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Theorem 1.43 (The residue theorem; simple version). Assume that f is holomorphic in a
region containing a closed disc D_p(z,), except for a pole at zy € D. Then

<_{> f(2) dz = 2iRes,, ().

Cr(zy)

Proof. By the standard argument involving a keyhole contour we see that the circle
Cg(zp) in the integral can be replaced with a circle C.(z) of a small radius € > 0 around
zy, that is, we have

$ roaz- § roa

Cr(zg) Cc(zq)

When € is small enough, to evaluate the integral over C.(z,), we can use decomposi-
tion (1.59) of f into its principal part and the remaining holomorphic part. Integrating
the right-hand side of (1.59) termwise over the contour C,(z,) gives 0 for the integral of
G(z) by Cauchy’s theorem; 0 for the integral powers (z— zo)k with -m < k < -2 by a stan-
dard computation (Exercise 1.21); and 2ria_; = 27ti Res, (f) for the integral of (z - Zo)
by the same standard computation. This gives the result. O

Theorem 1.44 (The residue theorem for discs). Assume that f is holomorphic in a region
containing a closed disc D_g(z,), except for a finite number of poles at zy, ... ., zy € Dp(z;).
Then

N
(j} f(z)dz = 2mi Z Res, (f).
Cr(2) k=1

Proof. The idea is the same as in the proof of Theorem 1.43, except that now we use a
contour with multiple keyholes (one for each z;) to deduce after a limiting argument that

N
$ roaz-y § roa
Calzo) k=1 c.(zi)
for a small enough ¢, and then proceeds as before. O

Theorem 1.45 (The residue theorem for simple closed contours). Let f be a function de-
fined in a region Q containing a simple closed curve y (oriented in the positive direction).
Denote by R, the region enclosed by y. Assume that f is holomorphic everywhere in Q
except for the finite set of points z;,...,zy € R,, where it has poles. Then

N
<j§ fz)dz =271 Y Res, ().
1 k=1
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Sketch of proof. Again, construct a multiple keyhole version of the original contour y
and then use a limiting argument to conclude that

N

(j)f(z)dz:Z 4) f(z)dz
y ez
for a small enough €. Then proceed as before. O

Suggested exercises for Section 1.10. 1.28.

1.11 Meromorphic functions, holomorphicity at co, and the
Riemann sphere

We extend the notion of holomorphicity in two directions by introducing the notions of

meromorphicity and holomorphicity at co. First, a function f : @ — C U {undefined}

on a region Q is called meromorphic if f is holomorphic except for a discrete set of

points, all of which are poles of f.

Second, let U ¢ C be an open set containing the complement C \ D_x(0) of a closed
disc around 0. A function f : U — C is holomorphic at co if g(z) = f(1/z) (defined on
a neighborhood D; £(0) of 0) has a removable singularity at 0. In that case, we define
f(oco0) = g(0) (more precisely, the value that makes g holomorphic at 0).

Conceptually, the above definitions can be thought of as extending the notion of
what a complex number is to include an additional “point at infinity.” Formally, we de-
fine the set of extended complex numbers, also known as the Riemann sphere, as the
set C = C U {oo} equipped with several layers of additional structure:

- Topological structure. We think of C as the one-point compactification of C; that
is, we add to C an additional element co and say that the open neighborhoods of co
are the complements of compact sets in C. This turns € into a topological space in a
simple way.

- Geometric structure. We can identify C with an actual sphere embedded in R®,
namely

1\ 1
s = {(X,Y,Z) R : X2+Y2+<Z—§> = 71}
(the sphere of radius 1/2 centered at (0, 0,1/2)). The identification works as follows:
the point at co is identified with the north pole (0, 0, 1) of the sphere; for other points,
the identification (X, Y,Z) € $> — a + ib € C is given by two reciprocal relations

. X .Y
a+ib=—— l—,

p—\
|

b a® + b >
1+a@+b>’1+a®+b* 1+a®+b?

X,Y,2) = <
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0,0,1)

0,0,0)

a+1ib

Figure 1.9: The Riemann sphere € = S? and the translation between points a + ib on the complex plane
and points P = (X,Y,Z) on the sphere via stereographic projection. The equator on the sphere is mapped
to the unit circle in C.

Geometrically, this identification corresponds to stereographic projection, where
the point a + bi is calculated from P = (X, Y, Z) by projecting the straight line segment
from the north pole (0,0,1) to P further out onto its unique intersection point with
the x—y plane, identified with the complex plane C in the obvious way; see Fig. 1.9. We
can check without difficulty that this geometric identification is a homeomorphism
between S%, equipped with the obvious topology inherited from R?, and C with the
one-point compactification topology defined above.

— Holomorphic structure. The above definition of what it means for a function on a
neighborhood of co to be holomorphic at co provides a way of giving C the structure
of a Riemann surface (the simplest nontrivial case of a manifold with a complex-
analytic structure). We will not discuss the topic of Riemann surfaces here; for more
details on this point of view, see, e. g., [23, 60].

From this new point of view of the Riemann sphere, the concept of a meromorphic func-
tion f : Q — C U {undefined} can be seen to coincide with the notion of a holomorphic
function f : @ — C; that is, the underlying concept of the definition is still holomor-
phicity, but it applies to functions taking values in C, a different Riemann surface, in-
stead of C. Similarly, the idea of a function f : Q — C being holomorphic at co corre-
sponds exactly to the notion of a function whose “true” domain of definition is actually
Q U {oo} in the sense that it can be extended to a holomorphic function on this larger
domain.
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To conclude this section, we also generalize the notion of the order of a zero or pole
at a point to include the behavior at the point at co. Let U ¢ C be an open set containing
the complement C \ D_z(0) of a closed disc around 0. We say that a functionf : U — C
has a zero (resp., pole) of order m at co if g(z) = f(1/z) has a zero (resp., pole) at z = 0
after appropriately defining the value of g at 0.

1.12 Classification of singularities and the Casorati-Weierstrass
theorem

If a function f : @ — C U {undefined} is holomorphic in a punctured neighborhood

D,(zy) \ {zy} of z;, then we say that f has a singularity at z if f is not holomorphic at z,.

We classify singularities into three types, two of which we already defined:

— Removable singularities: when f can be made holomorphic at z, by defining or
redefining its value at z;

— poles;

— any singularity that is not removable or a pole is called an essential singularity.

For a function defined on a neighborhood of co that is not holomorphic at co, we say
that f has a singularity at co and classify the singularity as a removable singularity, a
pole, or an essential singularity according to the type of singularity that z — f(1/z) has
atz =0.

The function z — e'/? is an example of a function with an essential singularity at
the point z = 0. Its behavior near that singularity is rather difficult to visualize. Indeed,
the next result shows that this is the case more generally.

Theorem 1.46 (Casorati-Weierstrass theorem). Iff is holomorphic in a punctured neigh-
borhood D,(zy) \ {zy} of z, and has an essential singularity at z,, then the image f (D, (zy) \
{zo}) of the punctured neighborhood under f is dense in C.

Proof. We prove the contrapositive of the claim: assume that for some r > 0, the im-
age f(D,(zg) \ {zp}) is not dense. Then the closure cl(f(D,(z,) \ {zy})) of this image does
not contain some point w € C. It follows that the function g defined by g(z) = m is
holomorphic and bounded in D,.(z;) \ {z}. By Theorem 1.38 its singularity at z; is remov-
able, so we can assume that it is holomorphic at z, after defining its value there. It then
follows that

1
@)=w+—
/ 8(2)
has either a pole or a removable singularity at z, that is, the singularity at z; is not
essential. O
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1.13 The argument principle and Rouché’s theorem

We define the logarithmic derivative of a holomorphic function f(z) as the function
f'(2)/f (2). Intuitively, this can be thought of as “the derivative of the logarithm of f.” A
word of caution is in order however: we have not actually defined what “the logarithm
of f” means, and when we actually define it a bit later (in Section 1.15), we will see that
“the logarithm of f” does not always exist. The logarithmic derivative on the other hand
clearly exists, so it is best to get used to thinking about it as a separate concept from that
of a logarithm rather than being derived from it.

Lemma 1.47. The logarithmic derivative of a product of holomorphic functions is the sum
of their logarithmic derivatives, that is,

(T fi)' & fil2)

HZ:lfk k=1 fk(z).

Proof. Show this for n = 2 and proceed by induction. O

Theorem 1.48 (The argument principle). Assume that f is meromorphic in a region Q and
that y is a simple closed contour in Q enclosing a region R, such that f has no zeros or
poles on the circle y. Denote its zeros and poles inside R, by zy, ..., z,, where z;. is a zero
of generalized order my. = ord, (f) (in the sense discussed in Section 1.10, where my  is a
positive integer if z;, is a zero and a negative integer if z; is a pole). Then

f (Z)
2m Fa) ka

= [total number of zeros of f inside R, counting multiplicities]

— [total number of poles of f inside R, counting multiplicities].

Proof. Define
=[[z-z0™f (.
k=1

Then g(z) is meromorphic on @, has no singularities or zeros on y, and has no poles or
zeros inside R, only removable singularities at z;, ..., z, (so after redefining its values
at these points, we can assume that it is holomorphic on R)). It follows that
n
f@) =T]ez-2z0"g@.

k=1

Taking the logarithmic derivative of this equation gives that
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f@ & m  gw
f(Z) k=1 Z—Zyg g(Z) '

The result now follows by integrating this equation and using the residue theorem (the
term g’ (z)/g(z) is holomorphic on an open set containing cl(Ry), so by Cauchy’s theorem
its contribution to the integral is 0). O

There is another way to look at the integral ﬁ 4))/ % dz, which gives an alternative
explanation for why it is an integer, as well as an alternative geometric interpretation
of its value. To see this, start by rewriting the integral (using the chain rule (1.84) from
Exercise 1.6) as

b b
Lff'@, 1 (flooy'e® 1 (Ffp@, 1 (1
i ¥ fo) dz = zmj O Znij Fopo &° ZnifJ w ™
a a %

that is, an integral of dw/w over the contour f - y, the image of y under f. Now note
that the differential form dw/w has a special geometric meaning in complex analysis;
namely, we have

dWW = “d(logw)” = “d(log |w| + iargw)”.

We put these expressions in quotes since the logarithm and argument are not single-
valued functions (see Section 1.15), so it needs to be explained what such formulas mean.
However, at least log |w| is well-defined for a curve that does not cross 0, so when inte-
grating over the closed curve f o y, the real part is zero by the fundamental theorem
of calculus. The imaginary part (which becomes real after the division by 27i) can be
interpreted intuitively as the change in the argument over the curve. That is, initially at
time parameter t = a, we fix a specific value of argw = argy(a); then as ¢ increases
from t = atot = b, we track the increase or decrease in the argument as we travel
along the curve y(t); if this is done correctly (i. e., in a continuous fashion), at the end
the argument must have a well-defined value. Since the curve is closed, the total change
in the argument must be an integer multiple of 27, so the division by 27 turns it into an
integer. The value of the integer has the intuitive meaning of “the total number of times
the curve f - y goes around the origin.”

This discussion leads us to another important concept, that of winding numbers.
Given a closed curve T that does not cross 0, the above reasoning involving the differ-
ential form dw/w, applied to the curve I instead of f - y, shows that an integral of the
form
1§z

i J z
r
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carries the meaning of “the total number of times the curve y goes around the origin,”
with the number being positive if the curve goes in the positive direction around the
origin; negative if the curve goes in the negative direction around the origin; or zero if
thereisno net change in the argument. This number is more properly called the winding
number of ' around 0 (also sometimes referred to as the index of the curve around 0)
and denoted Indp(0):

1 dz
Indr(O) = z—m é 7
T

More generally, we define the winding number of I around z,,, denoted Ind;(z;), as

Indr(zg) = 1 (JS

27Tl
T

dz
z-2y

assuming that I' does not cross z,. This can be interpreted as the number of times the
curve I' “winds around” an arbitrary point z,.

To summarize the discussion above, we defined the notion of winding numbers and
explained why the quantity Zlm (_f)y % dz that is the subject of the argument principle has
the additional interpretation as the winding number of the curve foy around 0. Note that
the winding number is a topological concept of planar geometry that can be considered
and studied without any reference to complex analysis. It is not very difficult to define
it in purely topological terms without mentioning contour integrals and then show that
the complex analytic and topological definitions coincide, but we will not pursue this
here. Try to think what such a definition might look like.

Theorem 1.49 (Rouché’s theorem). Assume that f, g are holomorphic on a region Q con-
taining a circle y = C and the disc U enclosed by it (or; more generally, a simple closed
contour y enclosing a region U). If |f (z)| > |g(z)| for all z € y, then f and f + g have the
same number of zeros in U.

Proof. Define f;(z) = f(z) + tg(z) for t € [0,1], and note thatf, = f and f; = f + g, and
that the condition |f(z)| > |g(z)| on y implies that f; has no zeros on y for any ¢ € [0,1].
Denote

which by the argument principle is the number of “generalized zeros” (zeros or poles,
counting multiplicities) of f; in U. In particular, the function ¢ — n, is integer-valued.
If we also knew that it was continuous, then it would have to be constant (by the easy
exercise: any integer-valued continuous function on an interval [a, b] is constant), so in
particular we would get the desired conclusion that n; = n,.
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To prove continuity of n,, fix a number ¢ > 0. Note that the function g(t,z) =
ft' (z)/f;(2) is continuous, hence also uniformly continuous, on the compact set [0, 1] x y.
Therefore there exists § > 0 such thatif 0 < t,s < 1 satisfy |t — s| < &, then |g(t,z) -
g(s,z)| < 2me/ len(y) (recall that len(y) denotes the length of the curve y). It follows that
for such ¢, s, we have

1 1 2ne
-ngl < — t,z) - g(s,z)| - ldz| < — dz| = e.
-l < 5 Qle(t.2) - g6, 1l < o b T 1zl =
y y
This is exactly what is needed to show that ¢ — n, is continuous. O

Rouché’s theorem has a rather amusing intuitive explanation (which Ilearned from
the book [48]). The slogan to remember is “walking the dog.” Imagine that you are walk-
ing in a large empty park containing at some “origin” point 0 a large lamppost. You start
at some point X and go for a walk along some curve, ending back at the same starting
point X. Let N denote your winding number around the lamppost at the origin—that is,
the total number of times you went around the lamppost with appropriate sign.

Now imagine that you also have a dog that is walking alongside you in some erratic
path that is sometimes close to you, sometimes less close. As you traverse your curve C;,
the dog walks along on its own curve C,, which also begins and ends in the same place.
Let M denote the dog’s winding number around the lamppost at the origin. Can we say
that N = M? The answer is yes, we can, provided that we know the dog’s distance to you
was always less than your distance to the lamppost. To see this, imagine that you had
the dog on a retractable leash; if the distance condition was not satisfied, it would be
possible for the dog to reach the lamppost and go in a short tour around it while you
were still far away and not turning around the lamppost, causing an entanglement of
the leash with the pole.

The above scenario maps in a precise way to Rouché’s theorem using the following
dictionary: the curve f o y represents your path; the curve (f + g) o y represents the dog’s
path; g o y represents the vector pointing from you to the dog; the condition |f| > |g]
along y is precisely the condition that the dog stays closer to you than your distance to
the pole; and the conclusion that the two winding numbers are the same is precisely the
statement of the theorem that f and f + g have the same number of generalized zeros in
the region U enclosed by y (see the discussion above regarding the connection between
the integral (27i) ™! cﬁy f'/f dz and the winding number of f - y around 0).

I recommend spending a few minutes thinking about the above correspondence
and making sure you understand it. You may forget the technical details of the proof of
Rouché’s theorem in a few weeks or months, but I hope you will remember this intuitive
explanation for a long time.

Rouché’s theorem is an important tool both for numerically estimating the numbers
of roots of polynomials and other functions in regions of interests and for theoretical ap-
plications. One illustration of the power of Rouché’s theorem is given in Exercise 1.30.
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In the next section, we also use Rouché’s theorem to prove two more well-known prop-
erties of holomorphic functions, the open mapping theorem and the maximum mod-
ulus principle.

Suggested exercises for Section 1.13. 1.29, 1.30.

1.14 The open mapping theorem and maximum modulus principle

Theorem 1.50 (Open mapping theorem). Any holomorphic function that is not constant
is an open mapping, that is, it maps open sets to open sets.

Proof. Let f be holomorphic and nonconstant in a region Q. Fix an arbitrary z, € Q,
and denote w, = f(z,). We need to show that f() contains a neighborhood of wy, that
is, that there exists some § > 0 for which f(Q) > Ds(wy). The reason Rouché’s theorem
can be brought into play is that the inclusion f(Q) > Ds(w,) amounts to the statement
that for w € Dg(wy), the function f(z) — w has at least one zero; and we know that this
is true for the function f(z) — wy, so we are precisely in a situation in which we want to
compare the number of zeros of two functions, where (if we restrict our point of view
to what is happening in a small neighborhood of z,) one function can be regarded as a
perturbation of the other.
To make this idea precise, define

F(z) = f(z) — wy,
G,(2)=wy—w,
hy(2) = F(2) + G,(2) = f(2) - w.

Let € > 0 be a number small enough so that the closed disc D_.(z) is contained in Q and
such that the point z = z; is the only zero of F(z) in the disc D.(z,). (Such € exists by the
property that zeros of holomorphic functions are isolated.) Now define

8 =inf{|f(z) - wy| : z € D_.(2y)}. (1.64)

By construction we have that § > 0 and |f(z) - wy| = & for z on the circle |z -z;| = €. This
means that for any w € Dg(w,), the condition |F(z)| > |G,,(z)| in Rouché’s theorem will be
satisfied for z € 0D, (z;). The conclusion is that the equation h,,(z) = 0 (o1, equivalently,
f(z) = w) has the same number in solutions as the equation f(z) = w; in the disc D.(z;).
The latter equation has precisely one solution, the point z = z,. Thus we have shown
that for w € Dg(w,) with 6 defined in (1.64), there exists z € D.(z,) such that f(z) = w.
This was precisely what we needed to establish that f is an open mapping. O

Theorem 1.51 (Maximum modulus principle). Iff is a nonconstant holomorphic function
on aregion Q, then |f| cannot attain a maximum on Q.
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Proof. This follows immediately from the open mapping theorem. O

For an interesting application of the maximum modulus principle, see Section 3.5.

1.15 The logarithm function

The logarithm function can be defined as
logz =log|z| +iargz

on any region Q that does not contain 0 and where we can make a consistent, smoothly
varying choice of argz as z ranges over Q. It is easy to see that this formula gives an
inverse to the exponential function.?

For example, if

Q=C\ (-00,0]
(the “slit complex plane” with the negative real axis removed), then we can set
Logz =log|z| + iArg z,

where Arg z is defined as a choice of arg z that takes values in (-, 7). The function Log z
is called the principal branch of the logarithm, a kind of standard version of the log
function that complex analysts have agreed to use whenever this is reasonably conve-
nient. However, sometimes we may want to consider the logarithm function on stranger
or more complicated regions. When can this be made to work? The answer is: when Q
is simply connected. We further give two results making this notion precise, the first
involving a situation where the logarithm exists and can be made unique in a relatively
canonical way, and the second in a more general setting that forces us to accept a (mild)
lack of uniqueness.

Theorem 1.52 (Existence of the logarithm: first version). Assume that Q is a simply con-

nected region with 0 ¢ Q, 1 € Q. There exists a unique function F : Q — C with the

following properties:

1) F is holomorphicin Q.

ii) ef@ =zforallzeQ.

iii) F(r) = logr (the usual logarithm for real numbers) for all real numbers r € Q suffi-
ciently close to 1.

2 Logarithms in complex analysis are a subtle concept. One common source of confusion is that the lan-
guage used to refer to them is inconsistent with their properties: it is common to speak of “the logarithm
function” when the use of the definite article is potentially at odds with the fact that a function satisfying
the properties of a logarithm is not unique.
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Proof. Uniqueness: if F and G are two functions satisfying the properties listed in the
theorem, then since F(r) = G(r) for real r in a neighborhood of 1, we must have F = G
by Corollary 1.36.

Existence: we define F as a primitive function of the function z — 1/z, guaranteed
to exist by Corollary 1.25. We can assume without loss of generality that F(1) = 0. We
then have that

d, _ _ - _
E(ze F@y = o7 @ _ 77 (2)e7@ = e 7D (1 - z/2) = 0,
so zeT@ is a constant function. Since its value at z = 1is 1, we see that ef @ Z, as
required. Finally, let € be chosen small enough so that the interval (1-¢, 1+¢) is contained

in Q. Then for r € (1-¢,1 + €), the fundamental theorem of calculus gives that

r r
F(r):F(1)+JF’(x)dx:0+j%=logr. O
1
Note that, a bit counterintuitively, the conclusion that F(r) = logr in the theorem
may not be satisfied for all positive real r € Q; see Exercise 1.33.

Theorem 1.53 (Existence of the logarithm: second version). Assume that Q is a simply
connected region with 0 ¢ Q. There exists a function F : @ — C with the following
properties:

1) Fis holomorphicin Q.

ii) ef@ =zforallzecQ.

The function F is unique up to an additive integer multiple of 27ti in the following sense: if
G is another function satisfying the same properties, then we have

G(z) = F(z) + 2mik (1.65)

for some integer k; conversely, any function G of the form (1.65) for some k € Z satisfies
the same properties.

Proof. Exercise 1.34. O

A function F with the properties given in Theorem 1.53 is called a branch of the
logarithm function on Q.

Next, we generalize the concept of a logarithm further by considering the following
question: given aregion Q and a holomorphic function f : @ — C, when can we “take the
logarithm of f>? That s, does there exist a holomorphic function g for which e§® = f(z)?
An obvious necessary condition is that f must not have any zeros; this generalizes the
requirement that 0 ¢ Q from Theorems 1.52 and 1.53. If Q is simply connected, then this
is also a sufficient condition. The precise result, including the extent to which the choice
of logarithm is unique, is as follows.
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Theorem 1.54 (Existence of the logarithm of a function). Iff is a holomorphic function on
a simply connected region Q and f + 0 on Q, then there exists a holomorphic function g
on Q satisfying

&P = f(2).

The function g is unique up to an additive constant of the form 2mik with integer k.

Proof. Theideais to define g as a primitive function of the function z + f’(z)/f (z), then
the reasoning is similar to the proof of Theorem 1.52. The details are left as an exercise
(Exercise 1.35). O

On a simply connected region Q, we can now define the power function z — z* for
an arbitrary a € C by setting
Za _ e(lF(Z),

where F is some branch of the logarithm on Q.2 In the particular case a = 1/n with
positive integer n, this has the meaning of the nth root function z — z'/", which satisfies

(Zl/n)n _ (e%F(z))" _ en%F(z) @ _,

Iff(z) = z/™ is an nth root function associated with some branch of the logarithm, then
for any 0 < k < n -1, the function g(z) = ik "f(z) will be another function satisfying
g(2)" = z. Conversely, it is easy to see that those are precisely the possible choices for
an nth root function. That is, nth root functions are unique up to multiplication by an
arbitrary nth root of unity.

Generalizing power functions further in a similar way as we did for the logarithm,
if Q is a simply connected region, f is a holomorphic function on Q that has no zeros, g
is a branch of the logarithm of f, and a € C is an arbitrary complex number, then the
function h(z) = e%¥® can be interpreted as the power function “f raised to the power
a.” In particular, for a = 1/n (n a positive integer), this function is usually referred to as
(a branch of) the nth root of f and has the property that h(z)" = f(z).

Suggested exercises for Section 1.15. 1.31, 1.32,1.33, 1.34, 1.35.

1.16 The local behavior of holomorphic functions

In Section 1.3, we considered what the property of being holomorphic at a point z, says
about the local behavior of the function near the point, focusing on the case when the

3 As with the phrase “the logarithm function,” saying “the power function” is somewhat misleading;
it is more correct to say “a branch of the power function.” However, mathematicians are human and
prone to employing mental shortcuts just like everyone else, so in practice, you will rarely encounter
mathematicians in the real world employing such precise terminology.
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derivative f'(z,) does not vanish. We now give a more complete analysis that covers a
more general situation. As we will show in Theorem 1.57, for a function f holomorphic
in the neighborhood of a point z;, we can canonically express the function as ¢ + wk,
where w is a new variable associated with z near z;, which takes values in the unit disc.
Thus, loosely speaking, f behaves locally “like a power function w +— w".”

We say that a holomorphic function f : @ — C is locally injective near a point

zy € Qif there is a neighborhood U of z, such that the restriction of f to U is injective.

Lemma 1.55. Letf : Q — C be a holomorphic function, and let z, € Q. If f'(z,) # 0, then
f is locally injective near z,.

Proof. Denote A = f'(z,) and ¢ = |)l|2. Denoting (z,w) = Re(zw) (the standard inner
product in the plane), we have (f'(z,),A) = IA* > €/2, and therefore by continuity also
(f'(z),A) > €/2 for all z in some disc Dg(z,). Let z, and z, be distinct points in Dg(z).
Then we have

Z 1
F2) - fz) = j fl@)dz = (2, - 2,) Jf’(zl +t(zy - 2)) dt.
Zy 0

This implies that

1
(2, — 2){f (29) ~ f(21),A) = (2, - zl)<(zz -Zq) Jf’(z1 +(zy - 27)) dt,/1>
0

1

€
= |z, —zl|2 J’(f'(z1 +1(zy —29)),A) dt 2 Elz2 —Z1|2 > 0.
0

In particular, f(z,) - f(zq) # 0. O

The next two classic results are both important consequences.

Theorem 1.56 (Inverse function theorem). Let f : Q — C be a holomorphic function. Let
7y € Q, and denote wy, = f(z,). Assume that f'(z,) # 0. Then f has a local holomorphic
inverse. More precisely, there exist an open neighborhood U of z,, an open neighborhood
V of wy, and a holomorphic function g : V — U such that:

1. f maps U bijectively onto V;

2. g maps V bijectively onto U’

3. g =L (in the set-theoretic sense of an inverse function);

4. The derivative of the inverse function g is given by

1

g'(wp) = ey (1.66)
0



62 — 1 Basictheory

Proof. By Lemma 1.55, f maps an open neighborhood U = Dg(z,) bijectively into V =
f(U). By the open mapping theorem, V is an open neighborhood V of w. Since the re-
striction fi; : U — V of f to U is continuous and open, it is a homeomorphism. Denote
its inverse by g : V — U. To see that g is holomorphic at z,, observe that

g —gwy) . gf@)-gf@) . z-1z
1 =1 = lim ————
W wow, ok f@) f) b @) [

-1
:<hm f(z)—f(20)> _ 1 (1.67)

=N " f(z)
which also gives formula (1.66). Similarly, replacing z, and w; in (1.67) by an arbitrary
pair of points z; € U and w; = f(z;) proves that g is holomorphic on all of V. O

Theorem 1.57 (Local behavior of holomorphic functions). Letf be holomorphicin aregion
Q. Let zy € Q, and let k > 1 denote the order of the zero of f(z) — f(z,) at z,. Then there
exist an open neighborhood U of z,, a number r > 0, and a function ¢ : U — D,.(0) such
that:

1. @ is holomorphic and bijective, and the inverse function ¢ is also holomorphic;*

2. 9(z9) =0;
3. We have

f(2) =fzo) + 02" (zeU). (1.68)

In other words, under the change of variables w = ¢(z), the function z — f(z), z € U,
is represented as w — f(z,) + wk, w € D,.(0), in terms of the new variable w.

Proof. By the definition of k we can represent f as

f(2) = f(20) + (2 - 20)*g(2)

with g holomorphic and g(z,) # 0. Since zeros of holomorphic functions are isolated, g
is also nonzero in some disc D.(z,), so by the discussion about nth roots at the end of the
previous section we can express g as

g2 =h@" (2 €D.(zy)) (1.69)

for some function h that is holomorphic (and also nonzero by (1.69)) in D,(z,). If we now
define

H(z) = (z - zy)h(2),

then we see that f(z) can be expressed as

4 A function with these properties is called a biholomorphism; see Chapter 3.
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f@) =f(zy) + ((z- zo)h(z))k =f(zq) + H(2)X, (1.70)

a representation that is similar to (1.68), but not yet with the correct domain and range
claimed in the theorem. Note that H(z,) = 0 and H ! (zy) = h(zy) # 0. By Lemma 1.55, H is
locally injective near z, thatis, its restriction Hp,, ) to a smaller disc Ds(z,) for some 6 €
(0, €) is injective. The restricted function, being holomorphic, is also an open continuous
mapping, so it maps the disc Dg(z,) homeomorphically to some open set V containing
H(zy) = 0. Letr > 0 be such that D,(0) c U, and denote U = (H|D§(z0))_1(Dr(0))- Then
¢ := Hy (the further restriction of H to U) maps U bijectively and homeomorphically
onto D,.(0), and its inverse is holomorphic. The above remarks together with (1.70) show
that it satisfies the properties claimed in the theorem. The proof is complete. O

Corollary 1.58. A holomorphic function f : @ — C is locally injective near z, € Q if and
only iff'(zo) # 0.

Suggested exercises for Section 1.16. 1.36.

1.17 Infinite products and the product representation of the sine
function

Complex analysis abounds in esthetically appealing identities involving integrals and
infinite sums. We will also encounter a variety of beautiful identities involving infinite
products. In this section, we develop the basic theory of such products and illustrate it
in one particularly elegant example, the infinite product identity for the sine function.

1.17.1 Infinite products of complex numbers

Let (c,)noq be a sequence of complex numbers. The infinite product [],2, ¢, is defined
as the limit of finite (partial) products limy,_, ., ]'[],:]:1 ¢y if the limit exists. In that case,
we say that the product [, ¢, converges.

Proposition 1.59. For a sequence of complex numbers (a, )5y, if Y noq |yl < oo, then the
infinite product [],2,(1 + a,) converges, and its value is 0 if and only if one of the factors
1+ a, is equal to 0.

Proof. Under the assumption, there exists some large enough N, > 1such that |a,| < 1/2
for all n > Nj. This implies that 1 + a, = exp(Log(1 + a,)), where Log(z) is the principal
branch of the logarithm function. Now by the Taylor expansion of the function z —
Log(z) (Exercise 1.31) there is some constant C > 0 such that

[Log(1 +w)| < Clw| if jw] < 1/2.
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It follows that

(e8] (e8]
Y [Logl+ay)| < C ) layl < oo,
n=N, n=N,

so in particular, the series Z;“;NO Log(1 + a,,) converges. We can now write

00 N N
[Ja+ay)= Jim [Ja+ay)= Jim [ ] exp(Log(1 +ay))

n=N, n=N, n=N,
N N
= lim exp( Y Log(+ ak)> = exp( lim ) Log(l+ ak)>
N—-oo n=N, N—oo e,
= exp( > Log(1+ ak)>.
n=N,

Thus we have proved that the infinite product H;“;NO (1+ a,) converges, and, moreover,
it converges to a nonzero value. Therefore, trivially, the product H?;No (1+ a,) also con-
verges and is equal to zero if and only if one of the factors 1 + a, for1 < n < N, is
Zero. O

1.17.2 Infinite products of holomorphic functions

Proposition 1.60. Let (f,).2, be a sequence of holomorphic functions on a region Q. If the
series .21 |fu| converges uniformly on compacts in Q, then the infinite product F(z) =
[Th21(1 + f,(2)) also converges uniformly on compacts. The limiting function F(z) is holo-
morphic and is nonzero everywhere except at the points z for which 1 + f,(z) = 0 for
some n.

Proof. Proposition 1.59 implies that the infinite product [];2,(1 + f,(2)) converges to a
nonzero limit for any z € Q. By repeating the same estimates in the proof of that propo-
sition in the context of z being allowed to range on a compact subset K ¢ Q, we see
that the sequence of partial products [;_;(1+f,) actually converges uniformly on com-
pacts, so the limiting function is holomorphic. The claim about the set of points z for
which F(z) = 0 is an immediate consequence of the corresponding condition in Propo-
sition 1.59. O

Proposition 1.61. Under the assumptions of Proposition 1.60, the logarithmic derivative
of the infinite product [ 1,2, (1+f,) is the sum of the logarithmic derivatives of the individual
factors, that is,

(2@ + /) =§ Jn (1.71)

szl(l_"fn) n:11+fn.
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Moreover; the infinite series in (1.71) converges uniformly on compacts in the set {z € Q :

[T (1 +f,(2)) # O}
Proof. Exercise 1.37 O

1.17.3 The sine function

As an illustration of the theory of infinite products, we prove the following classic result.

Theorem 1.62 (Infinite product formula for the sine function).
2

sin(nz) = nz H(l - Z—2> (z € C). 1.72)
n=1 n

Theorem 1.62 often comes up in an equivalent form of an infinite series identity,
obtained by taking the logarithmic derivative of both sides of (1.72). This result is known
as the partial fraction expansion of the cotangent function.

Theorem 1.63 (Partial fraction expansion of the cotangent function). The rescaled cotan-
gent function 1t cot(rrz) has three representations

1 1 1 & 2
— ) ==4 , 1.73
z Z+n n) z ZzZ—n2 (1:73)

¥ 1
7 cot(niz) = lim Z —  =Z
N—co & Z+1 =

neZ\{0}<
valid for allz € C\ Z.

The equivalence of the three sums in (1.73) and the convergence of the respective
expressions are easy to verify (Exercise 1.38). The first of the three formulas is sometimes
written in the form of the infinite series

(s8]
PV, ) - (1.74)
i Z N

with the caveat that this is to be interpreted in the “principal value” sense, where the
summation is performed symmetrically on positive and negative indices. This also gives
a bit of intuition of why we expect an identity such as (1.74) to hold: the series (1.74), as-
suming that we can make sense of it as defining a genuine function, is periodic with
period 1, and its local behavior around z = n for each integer n is the correct principal
value of the function 7 cot(sz) around that point, namely the simple pole ﬁ This in-
tuition is not quite a proof, but can be turned into one with some additional arguments
(see [3, Ch. 26]). Here we give a more complex-analytic proof based on contour integra-
tion.
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N+i+in
2

A

o

YN

|

1
-N-=—iN
2

Figure 1.10: The integration contour yy and the poles (as a function of w with z fixed) of the integrand

_ mcot(mw)
f(w) = w2t

Proof of Theorem 1.63. Let z € C\ Z. Fix a large positive integer N. We use the residue
theorem to evaluate the contour integral

77 cot(mw)

(W + z)?

Iy(2) =

over the contour yy going in the positive direction around the rectangle with vertices
(+(N +1/2), +N); see Fig.1.10. The integrand f,(w) = %(Z”)'Q’) has at its poles enclosed by
the contour the points w = —z (assuming that N is chosen large enough) and w = k € Z,

—N < k < N. The residues are evaluated without much difficulty as

2

bs
Res_,(f;) = _sinz—(nz)’
Res,(f;) = ﬁ (-N <k <N),
so the residue theorem gives that
2 N 1

(1.75)

IN(Z)=27Ti - Z m .

-2 +
sin“(mz)
Now consider what this means in the limit as N — oco. We claim that

Iy(2) Vo 0,
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which, together with (1.75), would imply the identity

2 o)

T__y (z+1n)2 (zeC\2). (1.76)

sin? (12)
To prove this, first note the auxiliary identities

|sin(x + iy)|2 = sin®x + sinh?y,
) (x.y € R),
|cos(x + )| = cos® x + sinh’y,

which we leave to the reader to verify. Taking x = +m(N + 1/2) and y arbitrary, these
identities imply the bound

12
cot(in(N + 1) + my>‘ M <1, 1.77)
2 1+ sinh*(ry)

and similarly, for y = +N and x arbitrary, we have

)
1+ sinh*(7zN) <9

|cot(rx + miN)| < >
sinh”(7iN)

(1.78)

The bounds (1.77)—(1.78) together show that on the contour yy, the integrand f,(w) is
bounded in magnitude by (N | A which implies that

()] < 22
(N~ z])? N—co

as claimed, proving (1.76).
Finally, to derive (1.63), let

F(z) = mcot(mz), G(z)=- 3 ZZZ 5
= z'-n
Note that
2

F'(z) = U

sin“(mz)

b 22 +n® 13 1 1
c@= -2 z (zz n2? 72 Zi< (z +n)? * (z- n)z>
T n_z_:m (z+ n)2

so that, by (1.76), F'(z) = G'(2). It follows that F(z) = G(z) + ¢ for some constant c.
However, F and G are both odd functions, so we must have c = 0,i.e.,F = G. O
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Proof of Theorem 1.62. Define the holomorphic functions
00 Z2
S(2) = sin(mz), T(2) = nzH(l - F)’
n=1

noting that the convergence of the infinite product to a holomorphic function is justified
by Proposition 1.60. Taking logarithmic derivatives, we see (using (1.71)) that

2z

S0 = 1 cot(mz), Q)

S'@ _ T'(z) 1
=+ (zeC\2).

2 2
n=1Z n

By (1.73) we therefore see that S'/S = T'/T or, equivalently, (S/T)’ = 0. It follows that
S = ¢, T for some constant ¢,. Rewriting this in the form

sin(7z) ae ( 7 >
= 1-—
nz “ H n?

n=1

and taking the limit as z — 0 show that ¢, = 1 and finish the proof. O

Aside from being a remarkable result in its own right, Theorem 1.62 has a number
of interesting consequences, discussed in Exercise 1.39. We will also use this result (in
the equivalent form (1.73)) several times in our studies of modular forms in Chapter 5.

Corollary 1.64. We have the infinite product formulas

() Z2
cos(mz) = (1 - > (1.79)
11 (n-1/2)?
z z/2 C 7
e -1=2ze ]‘[(1 S ) (1.80)
n=1
Proof. Exercise 1.40. O

Suggested exercises for Section 1.17. 1.37,1.38,1.39, 1.40, 1.41, 1.42.

1.18 Laurent series

A Laurent series is a generalization of a power series expansion and takes the form of
a two-sided infinite series

[ee]

f@ =) ayz-z)" (1.81)

n=-oo

for some z;, € C and complex coefficients (an);l“;_oo. Given such a series, it is easy to see
that it converges absolutely and uniformly on compacts in the annulus-shaped region
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Ap(zg) ={z : r<|z-2zy| <R},

where R s the radius of convergence of the power series Y > a,z", and r is the reciprocal
of the radius of convergence of the power series Y2, a_,w". Note that this region can
be empty, e.g.,ifr = co,R=0,0rr > R.

The basic question about when a function can be expressed as a Laurent series is
answered by the following theorem.

Theorem 1.65. Let 0 < r < R < oo. Let f be holomorphic in a region Q containing the
annulus A, p(zy). Then f(z) has a unique representation as a Laurent series (1.81), which
is absolutely convergent uniformly on compacts on A, p(z,). The coefficients a, are given

by
1 f(2)

i ) W dz (n € Z) (182)

with arbitrary p € (r,R).

Proof. Uniqueness: Given an expansion of the form (1.81) known to converge absolutely
uniformly on compacts on A, (zy), let p € (r, R), and observe that

1 _f@ o N
2ni (z - z) "*1 (]g (z-z )"+1< Z (2 = Zo) )dz
Cp(zo)
= z am<% # (z - Zo)m_n_l dZ) =a
m=—co ¢,z

(The last step uses the standard formula (1.92) from Exercise 1.21.) Thus the a, are deter-
mined uniquely and are given by (1.82).

Existence: Fix z € A, p(zy). Take numbers p_and p,, withr < p_ < |z-Zy| < p, <R.
Then,by a standard limiting argument involving a keyhole contour we can show that

fW) G- L fm
w-1z 271 w-z
Co, (@) Co_(2)

1
f(Z):Z_T[l

In this representation the factors ﬁ inside the two integrals can be expanded as geo-
metric series (in two different ways, one being valid for w € C, (z,) and the other for w
on the circle C, (zo)). This leads to

1 1
f(Z):Z_ﬂiC%)MI Z_Zof(W)dW
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S (jﬁ L %ng(W)dw

Z-2y1-
C,_(2o) i

_ 1 v _(2-20)"
= — <j> ;(W 2y W)
C,, (z) "

(w —zp)"
Zm 4) z o (z - z)’"“f(w)dw

n=0 0. (Z0)
v 1 m “m-1
+) oo fw)w - zo)™ dw )(z - z9) ™,
m=0 ¢, ()

where in the last step, we interchanged the summation and integration; this is easy to
justify, since the geometric series converge uniformly on the integration contours. We
have therefore obtained a representation for f(z), which we see is of the form (1.81) with
the coefficients a,, given by

L cJS W4 itnso,
(W _ Zo)n+1
(2o)

a, = P+
" L (J; f(—w) dw ifn<0.
(W _ Zo)n+1

(1.83)

C

o (20)

Finally, observe that (1.83) is equivalent to (1.82), since, by another application of
Cauchy’s formula on an appropriate keyhole contour, it can easily be shown that the
integral on the right-hand side of (1.82) is independent of the radius p of the integration
contour. O

Suggested exercises for Section 1.18. 1.43, 1.44.
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Exercises for Chapter 1

11

12

13

14

15

An immediate corollary of the fundamental theorem of algebra is that any complex
polynomial

p@2) =a,2" +a, 2"+ +a,

(where ay, ..., a, € C and a, # 0) can be factored as
n
p@) =a,[[-2)
k=1

for some z;,...,z, € C; these are the roots of p(z) counted with multiplicities. Use
this to prove that any such polynomial where the coefficients ay, . . ., a, are real has
a factorization

p(2) = a,01(2)Q,(2) ... Q1 (2),

where each Q,(z) is a linear or quadratic monic polynomial (i. e., is of one of the
forms z — ¢ or z* + bz + ¢) with real coefficients.
Ifp(z) = a,z" + a,_12" ' +--- + --- + ay is a polynomial of degree n such that

n-1
la,] > ) lajl,
J=0

then prove that p(z) has exactly n zeros (counting multiplicities) in the unit disc D.
Guidance. Use the fundamental theorem of algebra.

Note. This is a particular case of a less elementary fact, which can be proved using
Rouché’s theorem; see Exercise 1.29.

For each of the following functions, determine where it is holomorphic.

a. f(z)=z c. f(z)=|z| e. fiz)=2

b. f(z) = Re(2) d. f(@2) =z £ f(z)=1/z

For each of relations (1.11)—(1.15) in Lemma 1.4, explain precisely what holomor-
phicity assumptions are needed for the relation to hold and prove its correctness
under those assumptions.

Draw (approximately, or with as much precision as you can) the image in the
w-plane of the following figure in the z-plane
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1.6

17

1.8

19

-2

under each of the following maps w = f(z):

a. W:%Z c. w=z e. w=1/z

b. w=iz d w=@2+iz-3 £ ow=7-1

Let f be a holomorphic function in a region @, and let y : (a, b) — C be a differen-
tiable parameterized curve in Q. Prove that

% (y®)) =f' (y@)y @. (1.84)

Complete the proof of Lemma 1.7 by proving the remaining implications (b) < (c)
and (b) = (a), which were not proved in the text.

For each of the following functions u(x,y), determine if there exists a function
v(x,y) such that f(x + iy) = u(x,y) + iv(x,y) is an entire function, and if so, then
find it and try to find a formula for f(z) directly in terms of z rather than in terms
of its real and imaginary parts.

a. uxy) =x*-y* c. uy) =xt-6xty? +3x+yt-2

b. u(x,y) =y’ d. u(x,y) = cosxcoshy

Alternative form of the Cauchy-Riemann equations. A function f = u + iv of
a complex variable z = x + iy is traditionally thought of as a function of the two
coordinates x and y. However, if we think of the equations

Z=X+1ly, Z=Xx-1y

as representing a formal change of variables from the “real coordinates” (x,y) to
the “complex conjugate coordinates” (z, z), then it may make sense to think of f as
a function of the two variables z and z (pretending that those are two independent
variables). Thus we may suggestively write u = u(z,z) and v = v(z,Z) and consider
operations such as taking the partial derivatives of f, u, v with respect to z and z.
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Show that from this point of view, the Cauchy-Riemann equations

ou ov ou ov

xy o
can be rewritten in the more concise equivalent form

of
z 0

assuming that it is okay to apply the chain rule from multivariable calculus; and,
moreover, that in this notation, we also have the identity
of
!
zZ)=—.
f@=5
110 Letf : Q — Cbe afunction defined on a region Q such that both functions f(z) and
zf(z) have real and imaginary parts that are harmonic functions. Prove that f(z) is
holomorphic on Q.
111 Letp(z) = a,z" +a, 12" ' +---+a, be a complex polynomial of degree n > 2 (that is,
ay,...,a, € Canda, # 0),and let z, ..., z, be its roots counted with multiplicities.

Let wy,...,w,_, denote the roots of p’(z). Prove the following claim, known as the
Gauss-Lucas theorem.

Theorem 1.66 (Gauss-Lucas theorem). The points wy, ..., w,_q all lie in the convex
hull of zy, . .., zy, that is, each wy, can be expressed as a convex combination

Wy = aik)zl + aék)zz oot aflk)zn

for some coefficients al”, ..., a > 0 satisfying Py a}?k) =1

See Fig.1.11 for an illustration of this phenomenon.

0 72

b
Wy

25

3
* v We Z3

Figure 1.11: An illustration of the Gauss-Lucas theorem discussed in Exercise 1.11, showing the roots
24, ..., 27 of a polynomial p(z) of degree 7, their convex hull, and the roots wy, ..., wg of p'(2).



74 — 1 Basic theory

1.12 Mlustrate the claim from p. 19 regarding the orthogonality of the level curves of the
real and imaginary parts of holomorphic functions by plotting some of the level
curves of Re(f) and Im(f) for each of the following functions:

a. f(z) =2 b. f(z)=1/z c. fz)=¢

1.13 Complete the argument of the proof of Lemma 1.8 in the extreme cases R = 0, co.

1.14 Using the formula e’ = Y2, i[—': as the definition of the exponential function, prove
that

e ="’ (w,zeCQ).

115 The Bernoulli numbers. The Bernoulli numbers are the numbers (B,),2, defined
by the power series expansion

z
e -1

B
g (1.85)
n!

D18

0

=
Il

For example, the first three Bernoulli numbers are B, = 1, B; = -1/2, and B, = 1/6.
(a) Find the radius of convergence of the series (1.85).
(b) Prove that the Bernoulli numbers satisfy the following identities:

By1=0 (k=12,..), (1.86)
n-1
n+1
(n+1)B, = _kz:o< . )Bk (n=1), (187)
n-1 m
@n+ DBy = - ¥ ( )BZkBZ,,_Zk (n>2), (1.88)
& \ak
Z Z < B2n 2n
Zeoth(2) =y 22 g 1
2cot <2> n;) (2n)!Z (1.89)

Hint for (1.88). Show that the function g(z) = f(z) + z/2 satisfies the ordinary
differential equation g(z) — zg'(z) = g(2)* - 7%/4.

(c) Prove that

1/(2n) 1

= o (1.90)

2n

lim sup ol

n—oo

(See also Exercise 1.39, where we will derive a much more precise formula for
the asymptotic behavior of B,, for large n.)
1.16 Bessel functions. The Bessel functions (also known as Bessel functions of the
first kind) are a family of functions (J,),>_., of a complex variable, defined by

2k+n

~ 0 (_1)k z
Ja(2) = I;) mQ) . (1.91)
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(For example, note that J(-2vX) = Y2, % which is reminiscent of the exponen-
tial function and already seems like a fairly natural function to study.)

(a) For which z € C does the series (1.91) converge?

(b) Prove that the Bessel functions satisfy the following properties:

Jon® = (DY@,
Jai@ = Za(2) = a2,
" _ 1, Z2 - rl2
@ == Jh@) - (@),

(c) Prove the following additional identities:

i) 5 o

cos(zsint) = Jy(z) +2 i Jon(2) cos(2nt),

n=1

sin(zsint) = 2 OZO:]2n+1(z) sin((2n + 1)t),

n=0

cos(z cost) = J,(z) + 2 OZOZ(—l)"]ZH(z) cos(2nt),

n=1
sin(z cost) = 2 i(—l)"]z,lﬂ(z) cos((2n + 1)t),
n=0

]n(z) =

cos(zsint — nt) dt.

Al
o 4

1.17 Show that, analogously to the calculation in (1.35), the arc length integral (1.34) does
not depend on the particular parameterization chosen for the curve y.

118 Prove Proposition 1.12. (Part of the exercise is to define precisely the notions of
“composition of curves” and “reverse curve”).

1.19 Prove that homotopy of curves defined at the beginning of Section 1.8 is an equiv-
alence relation.

1.20 Prove that C is simply connected.

1.21 (@) Forr > 0 and n € Z, show that

omi ifn=-1,
95 z"dz:{ mon (1.92)

0 otherwise.
|z|=r

(b) Forwhichn € Z does the function f(z) = z" have a primitive in C\{0}? Explain.
(c) 1Isthe “punctured complex plane” C \ {0} simply connected? Explain.
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1.22

1.23

1.24

Cauchy’s theorem and irrotational vector fields. Recall from vector calculus that
a planar vector field F = (P, Q) defined on some region @ ¢ C = R* s called
conservative ifitis of theformF = Vg = (g—f, %) (the gradient of g) for some scalar
function g : Q — R. By the fundamental theorem of calculus for line integrals, for

such a vector field, we have
C'[)F -ds =0
y

for any closed curve y. Recall also that (as is easy to check) any conservative vector
field is irrotational, that is, it satisfies

curlF =0,

where, in the context of two-dimensional vector fields, the curl operator is defined
by

curlF = 0 _ a—P
ox oy
The following converse to this result can be shown: if the region Q is simply con-
nected, then a theorem in vector calculus says that an irrotational vector field is
also conservative.
Use these background results to show that if f = u + iv is holomorphic on a simply
connected region Q, then

$raraz=o
Yy

for any closed curve y in Q. (This is, of course, Cauchy’s theorem.)

Show that Liouville’s theorem (Theorem 1.33) can be proved directly using the “sim-
ple” (n = 0) case of Cauchy’s integral formula, instead of using the case n = 1 of the
extended formula as we did in the lecture.

Show that Liouville’s theorem can in fact be deduced even just from the mean value
property of holomorphic functions (Theorem 1.28), which, as you may recall, is the
particular case of Cauchy’s integral formula in which z is taken as the center of the
circle around which the integration is performed.

Guidance. Here it makes sense to consider a modified version of the mean value
property (that follows easily from the original version) that says that f(z) is the
average value of f(w) over a disc Dy(z) (instead of a circle Cg(2)), that is,

1 .
f@= ﬁDJ(J)f(X +iy) dxay,
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1.26

127

128

1.29

1.30
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where the integral is an ordinary two-dimensional Riemann integral. Explain why
this formula holds, then use it to bound |f(z;) - f(z,)| (for arbitrary complex num-
bers z,, z,) from above by a quantity that goes to 0 as R — co.

Prove the following generalization of Liouville’s theorem: let f be an entire function
that for all z € C satisfies the inequality

If(2)| <A +Blz|"

for some constants A, B > 0 and integer n > 0. Then f is a polynomial of degree at
most n.

Integration of a family of holomorphic functions with respect to a parameter.
LetI c Rbe aninterval, and let @ be a complex region. Let F(t, z) be a function of a
real parameter t € I and a complex variable z € Q. Assume that F(¢, z) is continuous
on I x Q, holomorphic in z for any fixed ¢ € I, and that for any compact set K c Q,
SUp,cx L |F(t,z)| dt < co. Prove that the function f : @ — C defined by

F(2) = JP(t,z) dt

I

is holomorphic on Q.

(@) Explain how to derive the formulas (1.52)-(1.53) through purely formal alge-
braic manipulations. Are these manipulations valid in any sense you are fa-
miliar with from real analysis?

(b) Explain how the principle of analytic continuation can breathe new life into
the two formulas by providing a context within which the formulas can be
interpreted as having a precise, well-defined (and correct) meaning.

Prove properties (1.62)-(1.63) of the generalized order of a zero of a holomorphic

function at a point z,. Can you give a useful condition for when equality holds

in (1.62)?

Ifp(z) = a,2" +a, 12" +---+---+a, is a polynomial of degree n such that for some

0 <k < n,we have

lal > Y layl,

W
then prove that p(z) has exactly k zeros (counting multiplicities) in the unit disc D.
Guidance. Use Rouché’s theorem.
Note. This result generalizes the result of Exercise 1.2.
Show how Rouché’s theorem can be used to give yet a proof of the fundamental
theorem of algebra. This proof is one way to make precise the intuitively compelling
“topological” proof idea discussed in Section 1.2.
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1.31

1.32
133

1.34
135
1.36
137
1.38

1.39

Prove that the principal branch of the logarithm has the Taylor series expansion
o0 (_1)71*1 n
Logz =) - (lz-1]<1) (1.93)
n=1

around z = 1.

What is (or are) the complex number (or numbers) represented by i'?

(a) Draw a simply connected region Q c C such that 0 ¢ Q,1,2 € Q, and such that
there exists a branch F(z) of the logarithm function on Q satisfying

FA)=0, F(2)=1log2+2ni

(where log 2 is the ordinary natural logarithm of 2 in the usual sense of real
analysis).

(b) More generally, let k € Z. If we were to replace the above condition F(2) =
log 2 + 27ri with the more general condition F(2) = log 2 + 2mik but keep all the
other conditions, would an appropriate simply connected region Q = Q(k) ex-
ist to make that possible? If so, then what would this region look like, roughly,
as a function of k?

Prove Theorem 1.53.

Prove Theorem 1.54.

Prove Theorem 1.56.

Prove Proposition 1.61.

Prove that the three infinite series in (1.73) all converge for z € C\ Z and represent

the same function.

Consequences of the infinite product formula for the sine function.

(@) By specializing the value of z in (1.72) to an appropriate specific value obtain
the following infinite product formula for 77, known as Wallis’ product (first
proved by John Wallis in 1655):

(b) By comparing the first terms in the Taylor expansion around z = 0 of both
sides of (1.72), derive the well-known identities

00 1 2 0 1
Yoy -4 (1.94)
(c) More generally, we can use (1.72) or, more conveniently, its equivalent cousin

(1.73) to obtain closed formulas for all the series

1 1 1 1
((Zk):zﬁ=1+27k+37k+47k+--- k=12..).

n=1
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(The notation {(2k) for these infinite sums is standard and has to do with
the fact that these are the special values of the Riemann zeta function {(s) =
Yo % at the positive even integers; see Chapter 2.) To see this, expand both
sides of the relation

7TC0t(JTZ)=1+ OZO“(L—1> (ze C\Z)
z Z+n n

n=-co
n#0

in a Taylor series around z = 0, making use of identity (1.89) from Exercise 1.15.
Compare the coefficients and simplify to get the famous formula

¢(2k) = 20k D2

(k=1). (1.95)

For example, using the first few values B, = %,34 = —%,BS = é, and Bg = —%,

we get
() 1 7.[2
)=y = =",
q€©) n;nz 5
) 1 7.[4
4H=Y = =,
{4 ;M 5
() 1 7.[6
=Y —=—,
¢() Z‘lne 945
(o) 1 7.[8
8 = —_—_ = —,
‘® n;ng 9450

where of course the first two values coincide with those from (1.94).
(d) Show that {(2k) = 1+ O(Z’Zk) as k — oo and deduce that the asymptotic
behavior of the Bernoulli numbers is given by

1 2(2K)!

By = (L+ 02 NV

k—

Note that this is consistent with the earlier weaker estimate (1.90).
1.40 Prove identities (1.79)-(1.80).
141 (a) Prove the infinite product formula

sin(z) = z ﬁ cos( Zz—n> (z€Q). (1.96)

Hint. sin(z) = 2sin(z/2) cos(z/2).
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(b) By substituting an appropriate value of z into (1.96) prove the formula

7 - 7

Z - > . >

first proved by Francois Viéte in 1593.
1.42 Evaluate the following infinite products:

00"1 =3.8. 15 2 48 _o
@ [ln 4 91 %19 =
o rhet _ 130T 5.y
(0) Hnl n - 4 9 16 25 "7 °

Later, in Chapter 2, we will encounter an interesting variation on these infinite
products; see Exercise 2.17.

1.43 Let f be holomorphic in a punctured neighborhood of a point z; € C. Assume that
f has a pole of order k at z,. Show that the Laurent series (1.81) in this case takes
the form

(e8]

f@ =) a,z-zp)".

n=-k

144 Letf(z) = z(2 ok By Theorem 1.65, f(z) has a Laurent series (1.81) that converges in
the punctured disc {0 < |z| < 2}, and separately from that, f(z) has a Laurent series
that converges in {2 < |z| < oo}. Find the coefficients a, explicitly for both those
Laurent series.

145 Let f(z) = p(z)/q(z) be a rational function such that deg q > degp + 2 (where degp
denotes the degree of a polynomial p). Prove that the sum of the residues of f(z)
over all its poles is equal to 0.

1.46 Sendov’s conjecture, an elementary statement in complex analysis proposed by
the mathematician Blagovest Sendov in 1959 and still open today, is the claim that
ifp(z) = (z-zy)...(z-z,) is a complex polynomial whose roots z;,j = 1,...,n, all lie
in the closed unit disc |z| < 1, then for each root z;, there is a root a of the derivative
p'(2) for which |z; - a| < 1.

(a) Prove the conjecture for the case n = 2 of quadratic polynomials.

(b) Prove that if in the inequality |z; — a| < 1, the number 1 is replaced by any
smaller number, then the claim is false.

(c) Prove the conjecture for the case n = 3 of cubic polynomials. (This is not a
completely trivial result; for one possible proof, see [11].)

1.47 Use Cauchy’s theorem and the residue theorem to calculate the following definite
integrals:

(o]

@) J e dx = VT

-0



()

(©)

(d)

(e)

®

(4]

g —3

g ——3 g ——8 g ——8 g —3

e

1

— ; )
TIX e2mux dx = e TTU

(o]
sin(tz) dt = J cos(tz) dt =
0

dx = .

cosh(x)

1

cosh(mx)

27TiUX _

s

- sin(rru)

" cosh(nu)

(u € R).

I

22

1

(u € R).

O<u<l.

(u € R).
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2 The prime number theorem

My distinguished friend:

Your remarks concerning the frequency of primes were of interest to me in more ways than one.
You have reminded me of my own endeavors in the field which began in the very distant past, in
1792 or 1793, after I had acquired the Lambert supplements to the logarithmic tables. Even before
I had begun my more detailed investigations into higher arithmetic, one of my first projects was
to turn my attention to the decreasing frequency of primes, to which end I counted the primes in
several chiliads and recorded the results on the attached white pages. I soon recognized that behind
all of its fluctuations, this frequency is on the average inversely proportional to the logarithm, so
that the number of primes below a given bound n is approximately equal to

J dn
logn’
where the logarithm is understood to be hyperbolic.

Carl Friedrich Gauss, letter to Johann Encke dated December 24, 1847

2.1 Motivation: analytic number theory and the distribution of
prime numbers

Humans have been fascinated by the prime numbers since antiquity. Euclid famously
proved that there exist infinitely many prime numbers; his ingenious proof still delights
us today. Erathostenes developed his eponymous sieve algorithm for finding all primes
up to some prescribed upper limit. They and the mathematicians who came after them
continued to puzzle over the apparent erraticism with which prime numbers seem to be
spread out among the natural numbers. For a long time, the only empirical observation
anyone dared to make concerning the primes was that as we look at higher and higher
numbers, primes seem to occur with a diminishing frequency.

It was only in the late eighteenth century that mathematicians started making more
quantitative guesses. Gauss observed privately in 1792 or 1793 (when he was around 16
years old!) that the density of primes found around a certain integer n falls like the
inverse of the logarithm of n; see the epigraphic quote above, and the historical survey
[30]. This is easily seen to be equivalent to the statement that the number 77(x) of prime
numbers up to a given upper bound x behaves like @ as x — oo. Legendre, who
was unaware of Gauss’s unpublished investigations, published an equivalent formula
in 1808. This statement is now known as the prime number theorem.

Theorem 2.1 (Prime number theorem). The prime-counting function ir(x) behaves asymp-
totically as

m(x) ~ @ as x — oo. 2.1)

@ Open Access. © 2023 the author(s), published by De Gruyter. [(co) EXEX=EH] This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-003
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What is so striking about this result is that it takes a set of objects that appear to be
the epitome of disorder; at least when inspected on a small scale, and in one clean, simple
statement decrees that they nonetheless obey a very rigid law on the large scale. More-
over, the connection to calculus in the form of the appearance of the natural logarithm
function seems surprising in view of the existence of prime numbers as fundamentally
discrete objects that do not appear to have any connection to the types of continuous
phenomena calculus was developed to understand.

Gauss’ conjecture, though bold and (as it turned out) correct, was ahead of its time;
he and his contemporaries lacked the tools to make any significant progress on the prob-
lem until several decades later. In fact, the entire field of complex analysis had yet to be
invented, and it would turn out that that branch of mathematics is rather crucial to the
methods involved in an eventual proof. Even when Riemann came up with some of the
ideas that would turn out to be the most significant, in a famous paper he published
in 1859—one of the most famous papers in the entire history of mathematics, titled On
the Number of Primes Less Than a Given Magnitude—significant work still needed to be
done, and several more decades would pass before the result became a proper theorem.
This happened in 1896, when two proofs were published independently by Hadamard
and de la Vallée Poussin.

The work that led to the proof has become a cornerstone of what is now its own
rich area of mathematics, known as analytic number theory. At the heart of this field
is one of the greatest mathematical questions of all time, the still unsolved Riemann
hypothesis, which can be thought of as being, in a rather precise sense, the “ultimate”
version of the prime number theorem [46].

In this chapter, our ostensible goal is a proof of the prime number theorem, which
in my opinion is the quintessential application of complex analysis.! However, this is
a case where the journey is no less interesting than the destination and will take us
through a study of two special functions that play a crucial role in the proof: the Eu-
ler gamma function and the Riemann zeta function. These functions are well worth
learning about for their own sake, independently of the prime number theorem, and be-
cause of their applicability to many other problems in pure and applied mathematics.

2.2 The Euler gamma function

The Euler gamma function (often referred to simply as the gamma function) is one
of the most important special functions in mathematics. It has applications to many
areas, such as combinatorics, number theory, differential equations, probability, and

1 To be fair, so-called “elementary” proofs of the prime number theorem that avoid the use of complex
analysis have been found, but this development came much later, required great effort and ingenuity,
and many mathematicians seem to agree that these proofs are conceptually less appealing and fruitful
for understanding the behavior of the prime numbers than the complex-analytic proofs.



84 —— 2 The prime number theorem

more, and is probably the most ubiquitous transcendental function after the “elemen-
tary” transcendental functions (the exponential function, logarithms, trigonometric
functions, and their inverses) that we learn about in calculus. The gamma function is a
natural meromorphic function of a complex variable that extends the factorial function
to noninteger values. In complex analysis, it is particularly important in connection
with the theory of the Mellin transform (a version of the Fourier transform associ-
ated with the multiplicative group of positive real numbers in the same way that the
ordinary Fourier transform is associated with the additive group of the real numbers).

Most textbooks define the gamma function in one way and proceed to prove several
other equivalent representations of it. I have always found that approach to be slightly
misleading; the truth is that none of the representations of the gamma function is more
fundamental or “natural” than the others. It seems more logical to me to present the
topic by listing the various formulas and properties associated with the gamma function
and then proving that that list adds up to a consistent whole, that is, that there exists a
unique mathematical object satisfying them.

Theorem 2.2 (Euler gamma function). There exists a unique function T of a complex vari-
able s that has the following properties:

1. T(s) is a meromorphic function on C.

2. Connection to factorials:T(n+1) =n!forn=0,1,2,....

3. Important special value: T(1/2) = V7.

4. Integral representation:

I(s) = J e*x*Tdx  (Res > 0). 2.2)
0

5. Infinite product representation:

. -1
o1 -ys S s/n
I'(s)=s"e H(l + n) e (s € C), 2.3)

n=1

where y = lim,_,..(1+ % + % +oeet % —logn) = 0.577215 is the Euler-Mascheroni
constant.
6. Limit of finite products representation:
n!'n®
I(s)=lim —— (s Q). 24
®) n—-oo §(s+1)---(s+n) ( ) @4
7. Zeros: the gamma function has no zeros (so I(s)™" is an entire function).
Poles: the gamma function has poles precisely at the nonpositive integers s =
0,-1,-2,... and is holomorphic everywhere else. The pole at s = -n is a simple
pole with residue
D"

Res,__,(I) = -

(n=0,1,2,...).
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9. Functional equation:
I'(s+1)=sI(s) (seC). (2.5)

10. Reflection formula:

I'(S)I1-s)= (s e Q). (2.6)

sin(ms)
To begin the proofs, we do have to define the function we are claiming exists some-
how, so we take formula (2.2) as our working definition of I'(s). Fix a > 0. If s is in the
half-plane {Re(s) > a > 0}, then

o0 (o) (o) (o)
J e x*ax| < J e’x|xs’1| dx = J e xReO1 gy < J e x*Ldx < oo.
0 0 0 0

Thus the improper integral (2.2) converges in the region Re(s) > 0 (uniformly on any
half-plane Re(s) > a > 0) and therefore defines a function I'(s) which, by the result of
Exercise 1.26, is holomorphic in that region.

Next, perform an integration by parts, to get that for Re(s) > 0, we have

x=0

o0 (o)
I(s+1) = J e X dx = - X°II° + J e Xsx*Ldx = sI(s),
0 0

which is the functional equation (2.5).
Combining the trivial evaluation I'(1) = fooo e " dx = 1 with the functional equation
shows by induction that T'(n + 1) = n!.

Why is the gamma function shifted from the factorial by 1?

The titular question above is a standard one that gets asked by many students introduced to the gamma
function but is rarely discussed in print. If you assume that that the gamma function is a well-behaved
extension of the factorial function to noninteger values is one of its most important properties, then the
shifting of the value of the argument by 1 seems to make little sense, and the competing definition of a
“factorial function”

II(s) = T(s + 1)

would appear to be the more logical and natural one. In fact, historically, both definitions coexisted for
some time, and the reasons why the notation I'(s) won the day and became established as the standard
one are not entirely clear; this may be more of an accident of history than anything else.

Nonetheless, there are indeed some good reasons to accept I'(s) as the more natural and sensible
notational convention, at least in the context of complex-analytic applications (as opposed to, say, uses
of the gamma function in combinatorics). See [W13] for further discussion of this issue.
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The special value I'(1/2) = /7 follows immediately by a change of variable x = u?
2
in the integral (2.2) and an appeal to the standard Gaussian integral f_ozo e du=+m

(o) o0 (o)
2 2
I(1/2) = J e x 2 dx = J e 2du= J e du= .
0 0 0

The functional equation (2.5), which so far we have only established in the region
Re(s) > 0, where our working definition (2.2) is valid, can now be used to perform an
analytic continuation of I'(s) to a meromorphic function on C. This is done in a series of
steps: as the first step, define

= o,

which is a function that is holomorphic on Re(s) > -1, s # 0, and coincides with I'(s) for

Re(s) > 0. By the principle of analytic continuation this provides a unique extension of

I'(s) to a meromorphic function in the region Re(s) > —1. Because of the factor 1/s and

the fact that I'(1) = 1, we also see that I';(s) has a simple pole at s = 0 with residue 1.
Next, for Re(s) > -2, we define

[i(s+1) T(s+2)
s s(s+1)’

Ty(s) =

a function that is holomorphic on Re(s) > -2, s # 0,-1, and coincides with I';(s) for

Re(s) > -1, s # 0. Again, this provides an analytic continuation of I'(s) to that region.

The factors 1/s(s + 1) show that I',(s) has a simple pole at s = -1 with residue -1.
Continuing by induction, having defined an analytic continuation I',,_;(s) of I'(s) to

the region Re(s) > -n+1,s + 0,-1,-2,...,-n + 2, we now define
r 1
et Lt R
S s(s+1)---(s+n-1)

By inspection we see that this gives a meromorphic function in Re(s) > —n whose poles
are precisely ats = -n +1,...,0 and have the claimed residues.

We constructed a sequence of meromorphic functions I, (s) that are analytic con-
tinuations of the original function I'(s) defined in (2.2) to a growing sequence of regions
whose union is the entire complex plane. By packaging all these continuations into a sin-
gle object we see that we have proved the existence of a unique meromorphic function
on all of C that is an analytic continuation of the original I'(s) and whose restriction to
each of the half-planes Re(s) > —n coincides with the nth function I';,(s) in the sequence.
By astandard abuse of notation, we continue to denote this global analytically continued
version of T'(s) by I'(s).

As a partial summary, we established the existence and uniqueness of I'(s) as a func-
tion of a complex variable satisfying properties 1, 2, 3,4, 8, and 9 in Theorem 2.2. We now
proceed with the proof of the remaining properties.
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Lemma 2.3. For Re(s) > 0, we have

n

I(s) = lim J<1 - 71) x5 Ldx. @7
0

Proof. The right-hand side of (2.7) can be rewritten as IOOO A=2)"X1on (x> dx (where
X denotes the characteristic function of a set). The integrand in this expression con-
verges to e *x*~! pointwise as n — co. By the elementary inequality 1 -t < e (t € R)
we have

< e xR (x5 0).

‘(1— > Xiom COX°™!

The claim therefore follows from the dominated convergence theorem. O
Lemma 2.4. For Re(s) > 0, we have

n

( X\ s, n!'n®
J(I_H>X dx_s(s+1)-~(s+n)'

Proof. For n =1, the claim is that

1
J(l —x)x¥tdx =
0

1
s(s+1)°

which is easy to verify directly. For the general claim, using a linear change of variables
and integration by parts, we see that

jl<1_") x*Lax = njlu "t

0
£ =1 1 £
ns[(l—t) - Jn(l—t)"‘lgdt]
0
-n. g J(l _ t)n 14(s+1)-1 d,
0
so the claim follows by induction on n. O

Combining the results of Lemmas 2.3 and 2.4, we obtain the “limit of finite prod-
ucts” representation (2.4), except that we only proved it for Re(s) > 0. To establish it for
general s, note first that
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s -1

s =t (1 ) (14 2) (142
P Y s e 1+1 1+2 1+n

n -1
_ g lS(Thy 3-logn) l—[<1 LS ) ok
k=1 k

which is an expression whose limit (if it exists) is the expression on the right-hand side
of (2.3). This shows that representations (2.3) and (2.4) are equivalent, and from the dis-
cussion above, both of them hold at least for Re(s) > 0.

We now check that the infinite product on the right-hand side of (2.3)—or rather
its reciprocal, corresponding to the entire function I'(s)™, which is slightly more
convenient—satisfies the assumptions of Proposition 1.60 (with Q = C) and there-
fore defines an entire function. Indeed, if K is a compact subset of C, then, for s € K, we

have
(e 2) \ o) >(l—-+0<%>)-1|
n n=1
2ol )] <
(Here the big-O notation hides a constant that depends on K but not on n.)

Therefore the infinite product [J72;(1 + $)e™™ indeed defines an entire function,
and relations (2.3) and (2.4) must hold for all s € C by the principle of analytic continu-
ation.

The last property that remains to be proved from the list of properties in Theo-
rem 2.2 is the reflection formula (2.6). To prove this, we use the functional equation to

transform the factor T'(1 - s) as (-s)I'(-s) and then apply the infinite product formu-
las (2.3) and (1.72) for the gamma and sine functions, respectively, to get that

>

n=1

1 1
L(S)[(1-5) TI(s)- (=S)[(-s)

_ e ﬁ<1+ E>e's/" . (—s)e”’sﬁ<1— i)es/"
s n n

n=1 n=1

1°—°[< 1- _> _ sin(7s) _ sin(7s)

TS s

as claimed.

An alternative method for proving (2.6) avoids the use of the infinite product formu-
las. Assume that s is real and satisfies 0 < s < 1 (proving the identity for such s implies
it for all s by analytic continuation). Then we have that

(o)

()T —s) = j et T (s) di = J etts<t J eV ) dv)dt
0 0

0
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(o) oo , 0
J otV 51 g J ( j ot+V) dt>v31 dv
0 0 N0

v o eSX X
dv = J 1+exdx (by setting v = ¢").
(e¢]

So the claim reduces to the definite integral evaluation

o0
e m
= 0<s<.
J 1+e¥ sin(7s) ( )
—00

This definite integral appeared in Exercise 1.47 and can be evaluated in a straightfor-
ward manner using contour integration techniques.

Suggested exercises for Section 2.2. 2.1,2.2,2.3,2.4,25, 2.6, 2.7.

2.3 The Riemann zeta function: definition and basic properties

The Riemann zeta function (often referred to simply as the zeta function when there
is no risk of confusion), like the Euler gamma function is considered one of the most im-
portant special functions in “higher” mathematics. However, the Riemann zeta function
is a lot more mysterious than the gamma function and remains the subject of many fa-
mous open problems, including the most famous of them all, the Riemann hypothesis,
widely regarded as one of the most important open problem in mathematics today.

The main reason for the importance of the zeta function is its connection with prime
numbers and other concepts and quantities from number theory. Its study and in par-
ticular the attempts to prove the Riemann hypothesis have also stimulated an unusually
large number of important developments in many areas of mathematics.

As with the gamma function, the Riemann zeta function is usually defined on only
part of the complex plane, and its definition is then extended by analytic continuation,
which can be done in many different ways. Again, this strikes me as in some sense “miss-
ing the point” of the Riemann zeta function as a natural mathematical object that exists
independently of which of the many formulas for it you choose as your definition. I will
present the function in the form of a theorem summarizing its most important formulas
and properties.

Theorem 2.5 (Riemann zeta function). There exists a unique function, denoted {(s), of a
complex variable s, having the following properties:

1. {(s) is a meromorphic function on C.

2. Series formula: for Re(s) > 1, {(s) is given by the series

5(3)=Z%:1+1+1+”“ 2.8)
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3. Euler product formula: for Re(s) > 1, {(s) also has an infinite product representa-
tion

1

{(s) ];[ e 2.9)
where the product ranges over the prime numbers p = 2,3,5,7,11,....
¢ (S) has no zeros in the region Re(s) > 1.

5. The “trivial” zeros: the zeros of {(s) in the region Re(s) < 0 are precisely at s =
-2,-4,-6,....
{(S) has a unique pole, located at s = 1. It is a simple pole with residue 1.

7. The “Basel problem” and its generalizations: the values of {(s) at even positive
integers are given by Euler’s formula

(_1)n—1 (ZT[)ZTI

¢ = —5am

By (m=1,2..) (2.10)

where (B,,)mo are the Bernoulli numbers, defined as the coefficients in the Taylor
expansion

o0
z y B ,m
17",
m=0 m!

Some of the properties of these remarkable numbers were discussed in Exercise 1.15.
8. Values at negative integers: we have

Bn+1
-n)=-——- =1,23...).
{(=n) — (n )

(Note that for negative even integers, this coincides with the property stated above
about the trivial zeros at s = -2, -4, -6, ... ., since the Bernoulli numbers satisfy By .1 =
0 for integer k > 1. However, this formula adds information about the values of {(s)
at negative odd integers.)

9. Functional equation: the zeta function satisfies

FA-5)={"(s) (seQ), (2.11)
where we denote by {*(s) the symmetrized zeta function
7' (s) = n‘5/2r< g )((s). 2.12)

An equivalent form for the functional equation is

{(s) =271 sin< % >1"(1 -8){(1-s). (2.13)
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10. Integral representation: an expression for {(s) valid for all s € C is

n‘3/2r<§>((s) - -% - % + % J(t_%l +E7)(0(0) - 1) dt, 2.14)

where 0(t) is the Jacobi theta function® defined as
0= Y e™i=142) ™, 2.15)

To begin the proof of Theorem 2.5, we take as the definition of {(s) the standard
infinite series representation (2.8). Since ¥, [n”°| = ¥, n"*¢®) we see that the series
converges absolutely precisely when Re(s) > 1 and that the convergence is uniform on
any half-plane of the form Re(s) > a with a > 1. In particular, it is uniform on compact
subsets, so {(s) is holomorphic in this region.

We now prove the Euler product formula (2.9). Intuitively, the remarkable identity
between the infinite series (2.8) and the product (2.9) is often described as an analytic
restatement of the fact that any positive integer has a unique factorization into primes.
Indeed, observe that each of the factors # in the product can be expanded as a ge-
ometric series in powers of p~*. Setting aside issues of convergence for a moment, the
product can therefore be written as

1 _ _ _ 1
M -Tlasrep™ep™e) = 3 (2.16)
p p n=17£1---p/,.{k

P1y--Pk Primes

This last summation is in fact a sum over all positive integers n (with each n being
summed over precisely once) by the fundamental theorem of arithmetic. So the sum
is equal to Y2, % ={(s).

This calculation is appealing and memorable but lacking in rigor, since we have
not said anything about the assumptions about s, nor justified our expansion of an infi-
nite product of infinite series into a single infinite series. A fully rigorous (though more
tedious) version of the same calculation proceeds as follows. Define the holomorphic

function

_s\-1
2(s)=[[(1-p™)

p
and note that this product converges absolutely if and only if the series }, p~%l =

2pb” Re®s) converges and in particular if Re(s) > 1. It follows that Z(s) is well-defined

2 The same name is also used to refer to several other closely related functions; see Section 5.13, where
some of those functions are discussed.
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and nonzero for Re(s) > 1. We now prove that in this region, Z(s) = {(s). This can be
done by manipulating the partial products associated with the infinite product defin-
ing Z(s) in a similar vein to (2.16): if we denote by (y(s) the product [[,.y # (still a
product over primes), then

) =1]

p<N

1
1-p*

=[la+pS+p = +p>+--)).

p<N

This is a product of a finite number of infinite series, each of them absolutely convergent
in Re(s) > 1. By the standard fact from analysis that in such a product, the summands
can be rearranged and summed in any order we desire, we see that the product can be
expanded as

1
2w
nepl gl

D1>---Dy Primes <N

So we have represented {y(s) as a series of a similar form to (2.8) but involving terms of
the form n~° only for those positive integers n whose prime factorization contains only
primes < N. This set of integers in particular contains all the integers in [1, N]. It follows
that

ORI YO ED IS

n>N

Taking the limit as N — oo shows that Z(s) = limy_,., {x(s) = {(s). This proves the
validity of the Euler product formula. As a corollary, we also get that {(s) has no zeros
in the region Re(s) > 1 (Property 4 in Theorem 2.5) since we already noted that Z(s) has
this property.

Next, we prove that {(s) can be analytically continued to a meromorphic function
on C that has a pole at s = 1 and is holomorphic everywhere else. In the process of doing
so, we will also obtain a proof of the functional equation (2.11). We will be aided by an
important result from harmonic analysis, the Poisson summation formula.

Theorem 2.6 (Poisson summation formula). Let f : R — C be differentiable infinitely
many times, and assume that sup, . |x"f ®(x)| < oo for all k,n > 0.3 Then

n=-oo

Y =Y fk, @17)
k=—00

where

3 A function satisfying these assumptions is called a Schwartz function. See Section A.6.
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Fw= [ foe ™ ax wem)

is the Fourier transform of f.
Proof. Define the function g : [0,1] — C by
[ee]
gX) =Y fx+n). 2.18)
n=-co

By the assumptions on f the series defining g(x) converges, and g is differentiable. Note
that g(0) = g(1), so that g can also be interpreted as a periodic function on R or, equiv-
alently, as a function on the circle R/Z; consequently, it is sometimes referred to as the
“periodicization” of f. Now, since g is periodic and differentiable, a standard result from
harmonic analysis [67, Thm. 2.1, p. 81] states that g(x) will have a pointwise convergent
Fourier series of the form

g =Y Zke™, 2.19)

k=—0c0
where g(k) are the Fourier coefficients of g given by

1

ﬂm=[ﬂmémmm.
0

In particular, the particular case x = 0 of (2.19) is the relation
g0) = ) g. 2.20)
k=-—00

Moreover, the Fourier coefficient g(k) can be expressed in terms of the Fourier coeffi-
cients of the original function f(x):

1 1
gk) = Jg(x)e*Z’Tikde - J Z fix+ n)efzmkxdx
0 0

1 n+l
= Z Jf(x +n)e TR gy = Z J Fwe 2 qy
n=-co g n=—co »
- j Fwe ™ gy = F). ©.21)

Combining (2.20) and (2.21), we get that
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g0 =Y fk,
k=-—00

the quantity on the right-hand side of (2.17). On the other hand, setting x = 0 in (2.18)
gives

g0)= ) f(n),

n=-oo

so (2.17) follows. O

Theorem 2.7 (Functional equation for the Jacobi theta function). The Jacobi theta function
0(t) satisfies the functional equation

1
9(?) =Vto@) (t>0). (2.22)

We remark that equations of the form (2.22) and its variants are studied in the theory
of modular forms, which is the subject of Chapter 5. Indeed, when we learn about this
more general theory, we will see that 6(¢) can be seen as belonging to a more general
class of Jacobi theta functions, which are special functions with many applications in
number theory and other areas of mathematics. See Section 5.13.1 and also Chapter 6.

Proof of Theorem 2.7. Fix t > 0, and define the function f : R — R (depending on the
parameter t) by

Fo) =™ 2.23)

The function f clearly satisfies the assumptions of (2.6), so (2.17) holds. Note that the
Fourier transform of f is given by

Fuw) = t Ve, 2.24)

Indeed, for t = 1, it is the standard integral

e—nx2 o2 g e—nuz (2.25)

g—38

2
(that is, the well-known fact that the function e ™ is its own Fourier transform; see Ex-

ercise 1.47), and for general ¢ > 0, this follows from (2.25) by a linear change of variables.
Now substituting (2.23)-(2.24) into (2.17) immediately gives (2.22). O

An alternative method of proving (2.22) using purely complex-analytic arguments
is discussed in Exercise 2.15.
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Lemma 2.8. The asymptotic behavior of 6(t) near t = 0 and t = +oo is given by

o(t) = o(%) (t - 0+), (2.26)
6(t)=1+0(e™) (t - co). 2.27)

Proof. The claim about the behavior of 6(t) as t — co is immediate from

Ze—]'[t
1-e ™’

(o) 2 (o)
0 -1=2) e™ <2y ™ =
n=1 n=1

which is bounded by 3e™™ if t > 1. This gives (2.27). Using (2.22) now gives that 6(t) =
t720(1/t) = V21 + 0(e™")) = O(t/*) as t — 0+, which proves (2.26). O

We are now ready to prove that {(s) can be analytically continued to a meromor-
phic function on C. This will be done by deriving representation (2.14) for Re(s) > 1 and
showing that the expression on the right-hand side of (2.14) in fact defines a meromor-
phic function on C. Start with the identity

(s8]
()
0

for Re(s) > 0. A linear change of variables x = zn’t brings this to the form

(o]
n*s/2r<§>n*5 = J e TSI gy (2.28)

Summing the left-hand side over n = 1,2,... gives 7/ 21‘(%)( (s)—the function we de-
noted {* (s)—except that in order for this sum to converge, we now make the more re-
strictive assumption that Re(s) > 1. Similarly, performing the same summation on the
right-hand side of (2.28), we have that

I 2t s/2-1 e 2\ s/2-1 009(0—1 2-1
ZJ"’_M ts/_dt.:J Yem ts/_dtzj—ts/_dt.
2
0 0

n=1 n=1 0

Here we again assume that Re(s) > 1; by Lemma 2.8 this ensures that the integral in the
last expression is absolutely convergent and therefore also, by the dominated conver-
gence theorem, that it is permissible to interchange the order of summation and inte-
gration as we did.

Summarizing the above discussion, we have obtained the representation

(o)

() = J(e(t)—l)tsfzfldt (Re(s) > 1)
0

N =
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for the symmetrized zeta function {*(s) defined in (2.12). It is convenient to rewrite this
as

{*(s) = Jqo(t)ts/z_l dt  (Re(s) > 1),
0

where we denote ¢(t) = %(O(t) —1). Next, we use the functional equation (2.22) for 6(t)
to bring this integral to a new form, which is well-defined for all s € C except s = 0,1.
More specifically, note that (2.22) can be expressed in the equivalent form

-1/2 ~1/2

1 1
o) =t (P(l/t)+it 5

We can therefore write, still assuming that Re(s) > 1,

o> dr + J ot ar
1

{*(s) =

C——n O ——

(o)
<t’1/2go(1/t) + %t’l/z - %)ts/“ dt + j ot dt
1

D | =

(e}
—% " J(t“*”/“ + Vo) dt. (2.29)
1

This is representation (2.14). Now observe that since ¢(t) = O(e™) as t — oo, the inte-
gral jloo(t(l’s)/ 271 ¢S/ 2’1)(/J(t) dt satisfies the assumptions of Exercise 1.26 and therefore
defines an entire function of s. Thus we have derived a formula for *(s) that defines a
meromorphic function on all of C, whose only poles are the simple poles at s = 0,1 (due
to the two terms —1/s and 1/(s —1) in (2.29)). This concludes the proof that {(s) can be an-
alytically continued to a meromorphic function on C. The functional equation (2.11) also
follows trivially: simply observe that the representation we derived for {*(s) is mani-
festly symmetric with respect to replacing each occurrence of shy 1 -s.

It is straightforward to verify that the two forms (2.11) and (2.13) of the functional
equation are equivalent (Exercise 2.8).

The claims from Theorem 2.5 that remain to be proved are properties 5-8. Property 7
was proved in Chapter 1 as one of the consequences of the partial fraction expansion of
the cotangent function (see Exercise 1.39). The remaining properties will now follow as
a sequence of easy corollaries to the results we already proved.

Corollary 2.9. The only pole of {(s) is a simple pole at s = 1 with residue 1.

Proof. Our representation for {*(s) expresses it as a sum of —%, %, and an entire func-
tion. Thus the poles of {*(s) are simple poles at s = 0,1 with residues -1 and 1, respec-

tively. It follows that
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{(s) = 1*T(s/2) ¢ (5)

has a pole at s = 1 with residue 7V 21"(1/2)’1 = 1and a pole (that turns out to be a remov-
able singularity) at s = 0 with residue 7101“(0)‘1 = 0. (That is, the pole of {*(s) at s = 0 is
canceled out by the zero of I'(s/2).) O

Corollary 2.10. {(-n) = -B,,1/(n+1) forn=1,2,3,....

Proof. Letn > 1. Using version (2.13) of the functional equation, we have that

{(=n) = 27" " Lsin(-n/2)T(n + D(n + 1)

= 2" " Lsin(-zn/2)ni¢(n + 1).

If n = 2k is even, then sin(-nn/2) = 0, so we get that {(-2k) = 0 (thatis, n = 2k is
one of the so-called “trivial zeros”). We also know from Exercise 1.15 that By, = 0 for
k=1,2,3,...,sothe formula {(-n) = B,,4/(n + 1) is satisfied in this case.

If on the other hand n = 2k — 1is odd, then sin(-m(2k - 1)/2) = (—1)k , and therefore
using (2.10), we get that

{(n) = (k272K ok — 1)1¢(2k)

= (_)kg 2kl 2K op 1y B
(-1) T ) 202! 2k
_ _% _ _ Bn+1
2k n+1
so again the formula is satisfied. O

Corollary 2.11. The zeros of {(s) in the region Re(s) < 0 are precisely the trivial zeros
s=-2,-4,-6,....

Proof. We have already established the existence of the trivial zeros. We leave to you to
verify that the fact that there are no other zeros follows immediately from the functional
equation. O

Suggested exercises for Section 2.3. 2.8,2.9,2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18.

2.4 A theorem on the zeros of the Riemann zeta function

Next, we prove a subtle and very important fact about the zeta function, which will play
a crucial role in our proof of the prime number theorem.

Theorem 2.12. {(s) has no zeros on the line Re(s) = 1.

Proof. For this proof, denote s = ¢ + it, where we assume that ¢ > 1 and ¢ is real and
nonzero. The proof is based on investigating simultaneously the behavior of {(o + it),
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{(o + 2it), and { (o) for fixed t as o \ 1. Consider the following somewhat mysterious
quantity:
X =10g|¢(0)*¢(0 + it)*{ (o + 2it)|.
Using the Euler product formula (2.9), we can evaluate X as

X = 3log|{(0)| + 41og|¢ (o + it)| + log|{ (o + 2it)|

=310g< H |1—p’“|_1>+410g< H |1—p’“"it|_1>

p prime p prime
+ log< H [1- p’c’mrl)
p prime
= Z (-3log|t-p™?| - 4log|1 - p’a’it| —log|1- p"”m|)
p prime
= ) (-3Re[Log(1-p )] - 4Re[Log(1-p~*™")]
p prime

~ReLog[1-p ?72)),

where in the last expression, Log(-) denotes the principal branch of the logarithm func-
tion. Now note that for z = a + ib with a > 1 and an arbitrary prime number p, we have
|p~%| = p~ < 1, so by the Taylor expansion (1.93) of the Log(-) function,

v P
_Log | —
mZ::1 m
and therefore
[ee] p—ma
-Re[Log(1-p7?)] = Z - Re[cos(mblogp) + isin(mblogp)]
m=1
(o8 p—ma
=y _— cos(mblogp).

This means that if we define quantities 5, and c, for n > 1 by

B, =tlogn, ¢, = {Um ifn = p" for some prime p,

0 otherwise,

then we can rewrite X as

X = Zc n~°(3+4cos B, +cos(2B,)).
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We can now use the simple trigonometric identity
3+4cos B+ cos(2f) =2(1+ cos ﬁ)2

to rewrite X yet again as

(o)
X=2% c,n?(1+cos B,

n=1

We have proved a crucial fact that X > 0 ox, equivalently, that
e* = |(0)°¢(a +it)*{(o +2it)| = 1. (2.30)

We now claim that this innocent-looking inequality is incompatible with the existence
of a zero of {(s) on the line Re(s) = 1. Indeed, assume by contradiction that {(1 + it) = 0
for some real t # 0. Then the three quantities {(a), {(o + it), and {(o + 2it) have the
following asymptotic behavior as g \, 1:

{(0)| = L +0(1) (since {(s)hasapoleats=1),
g-1

|{(o +it)| = 0(c - 1) (since {(s) has a zero at s = 1 + it),
|{ (o +2it)| = 0(1) (since {(s) is holomorphic at s = 1 + 2it).

Combining these results, we have that
e* = |(0)°¢(o +it)*{(0 +2it) = 0((6 - 1) (0 - 1)*) = O(c - 1).

Thus &¥ — 0aso \ 1, in contradiction to (2.30). This finishes the proof. O

2.5 Proof of the prime number theorem

The prime number theorem (Theorem 2.1) was proved in 1896 by Jacques Hadamard
and independently by Charles Jean de la Vallée Poussin using the groundbreaking ideas
from Riemann’s famous 1859 paper, in which he introduced the use of the Riemann zeta
function as a tool for counting prime numbers. The history of these developments is
described in great detail (both historical and technical) in the book [25].

The original proofs of the prime number theorem were very complicated and relied
on the “explicit formula of number theory” and some its variants (see the box on p. 109).
Throughout the twentieth century, mathematicians worked hard to find simpler ways
to derive the prime number theorem. This resulted in several important developments
(such as the Wiener Tauberian theorem and the Hardy-Littlewood Tauberian theorem)
that advanced not just the state of analytic number theory but also of complex analysis,
harmonic analysis, and functional analysis. Despite all the efforts and the discovery of
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several paths to a proof that were simpler than the original approach, all known proofs
remained quite difficult. A minor breakthrough occurred in 1980 when Donald Newman
discovered a surprisingly simple way to derive the theorem using relatively elementary
complex-analytic arguments. The proof presented here is adapted from of a version of
Newman’s proof due to Zagier [74]; see also [44, 49, 70].

Recall that the prime number theorem concerns the so-called prime-counting func-
tion 77(x) defined as the number of primes that are less than or equal to x. It is helpful
to write this in the form of a sum over primes, namely

7(x) = #{p prime : p<x}= ) 1

p<x

with the convention that the symbol p in summations always refers to primes. We also
define the Chebyshev function (x) as a closely related weighted sum

0o = pquogp lgxlogphong

In this definition, the first sum is over prime powers pk (with integer k > 1); the second
sum is an alternative and trivially equivalent way of writing (x) as a sum over primes
rather than over prime powers. Another customary and equivalent way to write the
function ¥(x) is as

Yoo = Y A,

n<x
where the function A(n), called the von Mangoldt function, is defined by

A(n) = logp ifn = p* with p prime,k > 1,
0 otherwise.

Lemma 2.13. The prime number theorem 1(x) ~ g is equivalent to the statement that

Px) ~

Proof. The functions (x) and 7(x) can be related to each other in an approximate sense
through two simple inequalities. First, observe that

21 gp{ J 2o gplog = ) logx =logx - 7(x). 2.31)

DX D<x P<Xx

Second, in the opposite direction, we have that forany 0 < € < 1and x > 2,

Y=Y logp> Y logpz Y log(x"™®)

p=x x\e<p<x xe<p<x
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= (1-e)logx(m(x) - m(x*)) = (1 - €) log x(m(x) — x"7€). (2.32)

Now assume that ¥(x) ~ x as x — oo. Then (2.31) implies that 77(x) > I‘f)(x))(, and therefore

lim inf %)

X—oo x/logx (233)

On the other hand, (2.32) gives that 77(x) < - - P09 y1-¢ which then implies that

= 1-e logx
: 7(x) 1 : log x 1
1 < —+1 —= =
1Xm_§)1()1p x/logx ~ 1-€ " lxm—>sol01p x¢€ 1-¢€

Since € was an arbitrary number in (0, 1), it follows that

. 7(Xx)
hirligp x/logx ~

(2.34)

Combining (2.33) and (2.34) gives that (x) ~ x/log x. This proves one of the two impli-
cations claimed in the theorem.

To prove the reverse implication, assume that 7(x) ~ and note that, by (2.31),

lx’

lim sup — l/)( X) < lim sup ) _ =

2.35
X—00 x—00 X/ IOgX ( )

On the other hand, (2.32) implies that

lim inf =—= l/) > lim inf( () - logx> =1-e.
X—00 x—oo \ x/logx  x¢

Again, since € € (0,1) was arbitrary, it follows that liminf, _, wT = 1. When combined
lP(x

X—00

with (2.35), we have shown that lim =1, as claimed. O

A hint of the significance of the Chebyshev function and the equivalent form ¥(x) ~
x of the prime number theorem is offered by the next lemma.

Lemma 2.14. For Re(s) > 1 we have

( (s) ZA(n) ns. (2.36)

Proof. Using the Euler product formula and taking the logarithmic derivative (which is
an operation that works as it should when applied to infinite products of holomorphic
functions that are uniformly convergent on compact subsets), we have

st(l p~) Zlogp-p‘s

( (S) 1-p~° 1-p=
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=Ylogp(p+p P +pF+)= Y Ylogp-p™
14 p prime k=1

3

=Y Amn”’. m

n=1

At this point in the discussion, we can already outline a plausible-sounding heuris-
tic explanation for why the prime number theorem might be true. Consider the two se-
quences a, = A(n) and b, = 1. By Lemma 2.13 the prime number theorem is equivalent
to the claim that

—Za~—Zb as X — 0o, (2.37)
n<x n<x
that is, that the sequences a,, and b,, exhibit similar average asymptotic behavior. On the
other hand, if we are willing to be a bit more flexible about interpreting what we mean
by “average”, that is, replacing the straightforward arithmetic averages by a certain class
of weighted averages, then there is a statement of this type that is easily seen to be true,
namely, the statement that

(o)

(o) —~Wnl% aso N L (2.38)
Indeed, the right-hand side of thisrelation is equal to 1, and the left-hand side is, by (2.36),
equal to "(;(& which converges to 1as ¢ \ 1due to the fact that both the numerator
and the denominator in this fraction have a simple pole with residue 1at g = 1.

The above argument raises the question of whether this heuristic explanation can
be turned into a proof. That is, is it generally true that an asymptotic equivalence of the
form (2.38) can be used to deduce the more natural equivalence (2.37)? Oy, if it is not true
in unrestricted generality, what additional assumptions are needed to make such a de-
duction correct, and are these assumptions satisfied for our particular case of interest?
The general area in which such questions belong is that of Tauberian theorems (a name
honoring an 1897 result of the mathematician Alfred Tauber, who proved an important
early result of this type). These questions turn out to be quite delicate, and although this
approach does in fact offer a viable route toward a proof of the prime number theorem
(see [47, p. 261]), following this route requires rather involved ideas from Fourier anal-
ysis. Here we take a slightly different path that, although also in line with the general
philosophy of Tauberian theorems, starts by further reducing the problem into that of
showing the convergence of a certain improper integral. The following lemma gives the
details of this simple reduction.

Lemma 2.15. Assume that the improper integral

(00 |\
J( 1) (2.39)

X X

converges. Then the prime number theorem follows.
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Proof. Keeping in mind Lemma 2.13, we will prove the contrapositive claim that if @
does not converge to 1 as x — oo, then the integral (2.39) cannot converge.

Assume that @ —~ 1. In this scenario, either L, = limsup,_,, @ >lorL_ =
liminf,_, @ < 1. In the first case, observe that there are arbitrarily large values of x

for which @ > 1+2¢, where we denote € = % > 0. For a value of x with that property,

using the fact that y(x) is weakly monotone increasing, we see that

(1+€)x (1+€)x 2
U(t) dt 1+ 2¢e)x dt €
-~ 1)=> -1 = =C
J t t ] 1+e)x 1+e)x 1+e¢

Thus we have shown that the function I(T) = LT(@ -1 % has infinitely many intervals
over which it changes value by at least the fixed positive constant C, which implies that
the improper integral (2.39) cannot converge.

Similarly, in the second case in which L_ < 1, we again note that there are arbitrarily
large values of x for which @ < 1 - 2¢, where € is defined as the constant € = %
(which is positive and trivially bounded from above by 1/4). For such x, again from the

monotonicity of i(x) we get that

[ (0 | (uor ) e (e
t t - (1-e)x 1-ex \l1-€/°
(1-e)x (1-€)x
This is again inconsistent with the possibility that the integral (2.39) converges. O

One additional ingredient of our proof is the following elementary bound on the
Chebyshev function.

Lemma 2.16. There is a constant C > 0 such that (x) < Cx for all x > 1.

Proof. The idea of the proof is that the binomial coefficient (2,:1) is not too large on the
one hand but is divisible by many primes (at least all primes between n+1and 2n) on the
other hand; hence it follows that there cannot be too many primes, and in particular the
weighted prime-counting function (x) can be easily bounded from above using such
an argument. More precisely, we have that

22":(1+1)Z":§<2:)>(2:>2 H p:exp< Z logp>

k=0 n<p<2n n<p<2n

= exp(t/)(Zn) -ypm- Y log p>. (2.40)

n<pk<2n, k>2

The sum in the last expression is easily bounded as

Y logp<10vnlog’n+10 (n>1) (2.41)

n<p*<2n, k>2
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(Exercise 2.19). Thus taking the logarithm of the first and last expressions in (2.40), we
get the bound

¥(2n) — ¥(n) < 2nlog2 +10vnlogn + 10 < %Cn

for all n > 1 with some constant C > 0. For n of the form n = 2™, m > 0, this allows us to
write

PE") = (2" - 2" )
FE" P+ (2 - 9(2)
< %C(Z"’_l +o4+20) < 2™,

thereby establishing the inequality ¥ (x) < %CX for any x that is a power of 2. Finally, for
a general integer x > 1, we can represent x as x = 2™ + £ forsomem > 0 and 0 < ¢ < 2™,
We then observe that

Yx) = p2" + €) < (@™ < 2™ < ¢x,

which is the desired bound. O

We are ready to state a Tauberian theorem, which in some sense forms the heart of
the proof of the prime number theorem.

Theorem 2.17 (Newman’s Tauberian theorem). Let f : [1,00) — R be a bounded function
that is integrable on compact intervals. Define a function g(s) of a complex variable s by

[o0]

g(s) = j FooxSdx. (2.42)
1

Clearly, g(s) is defined and holomorphic in the open half-plane Re(s) > 0. Assume that
g(8) has an analytic continuation to an open region Q containing the closed half-plane
Re(s) > 0. Then the improper integral

[ee]

J fx dx (2.43)
1

X

converges, and its value is equal to g(0), the value at s = 0 of the analytic continuation
ofg.
Before we proceed with the proof, it is worth pausing to appreciate the subtlety

of this result. The conclusion of the theorem about the existence of the improper inte-
gral (2.43) can be expressed as the statement that
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T 0o

lim I@ dx = lim | JO9 e ax
T—o0 X exo X

1 1
This sort of equivalence of limits seems to fall readily within the realm of real analysis. It
isremarkable that the condition needed for this conclusion to hold is a complex-analytic
condition involving the existence of an analytic continuation for the function g(s) (and,
moreover, to a region that contains parts that extend arbitrarily far from the real axis).
If you were not already convinced of the importance and relevance of complex analysis
to the rest of mathematics, I hope this will make you rethink your skepticism!

Proof of Theorem 2.17. Define a truncated version of the integral defining g(s), namely

T

gr(s) = Jf(x)x’“ dx

1

for T > 1. We claim that g (s) is an entire function of s for any fixed T. This can be proved
using Morera’s theorem: let y be a closed contour in C. Then

?gT(s) ds = (i; jf(x)x“dxds = JT V Fooxtdsdx = Jde =0.

In the above calculation, interchanging the order of the two integrals is justified by Fu-
bini’s theorem, which (as we can easily check) is applicable in the current situation.
Since the integral of gr(s) over an arbitrary closed contour y vanishes, gr is entire by
Morera’s theorem.

Now our goal is to show that limy_, ., g7(0) = g(0). This will be achieved through
an application of Cauchy’s integral formula. Fix some large number R > 0 and a small
number § > 0 (which depends on R in a way that will be explained shortly), and consider
the contour C consisting of the part of the circle |s| = R that lies in the half-plane Re(s) >
-& together with the straight line segment along the line Re(s) = —6 connecting the top
and bottom intersection points of this circle with the line (see Fig. 2.1(a)). Assume that § is
small enough so that g(s) (which by the assumptions of the theorem extends analytically
at least slightly to the left of Re(s) = 0) is holomorphic in an open set containing C and
the region enclosed by it. Then by Cauchy’s integral formula the difference g(0) — gr(0)
can be expressed as

s* \ ds

1 S
g(0) —gr(0) = i gg(g(s) -gr(s))T <1 + ﬁ>? (2.44)
C

Note that this equation would still hold true if the integrand on the right-hand side were
the simpler expression w; however, Newman’s inspired observation was that the

inclusion of the additional factors T°(1+ ;—Zz) actually helps by producing an integral that
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[so]

(@) (b) (c)

Figure 2.1: The contours C, A, B, and B'.

can be estimated effectively (while keeping the value of the integral the same). To see
how this works, start by separating the contour C into two parts, a semicircular arc A
that lies in the half-plane Re(s) > 0 and the remaining part B in the half-plane Re(s) < 0
(Fig. 2.1(b)). We can then write

g80)-gr(0) =1 +1,, (2.45)
where
1 s\ ds
= o J g(s) —gr(s)T ( R ) 5 (2.46)
1 s\ ds
= o J g(s) — gr(s))T < o ) 5 (2.47)

We now bound [; and I, separately. Denote
M = sup|f ()
t=1

(and recall the assumption that this number is finite). For s with Re(s) > 0, we are in the
region where formula (2.42) is valid, so we can bound the expression g(s) — gr(s) as

o0 T

1 1

[ T —Re(s)

Jf(X)X‘S 1 dx <MJ| x5~ 1|dX = MRTeT' (2.48)
T T

Note also that for s satisfying |s| = R, we have that
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S <R s>

— | — 4+ = =

R s R

Re(s) 2| Re(s)|
-

= RO T*C)|(s/R + s/R)|

2
TS<1+ s—)
RZ

=T (2.49)
The bounds (2.48)-(2.49) both apply on the subcontour 4, so by combining them we get
that

2M M
—. 2.
R (2.50)

1
L| < —(@R) = =
L] < 5 (TR) s
Next, we bound I, by bounding the contributions from g(s) and g;(s) separately, that is,
further decomposing that integral as

1 s ds 1 ds
Izz%é[g(s)T (1+ R2> ZmJ gr(oT <1+ﬁ)— i) @5D

In the case of J,, since gr(s) is an entire function and the only singularity of the integrand
is at s = 0, we can deform the integration contour B replacing it with the semicircular
arcB' = {s : |s| = R, Re(s) < 0} (Fig. 2.1(c)). By Cauchy’s theorem the value of the integral
remains the same. On the new contour B’ the bound (2.49) holds, and there we also have
the estimate

[ s—1 [ s—1 MT_Re(S)
s)| = xx”dstJx’* dx = ———.
lg:(9) 1jf< ) [t T
Therefore, similarly to (2.50), we have the bound
2M M
ol < (ﬂR) =% (2.52)

The remaining integral J; tends to 0 as T — oo (with R fixed), since the dependence
on T is only through the factor T°, which converges to 0 uniformly on compact sets in
Re(s) < 0asT — oo.

Combining this last observation with (2.45), (2.50), (2.51), and (2.52), we have there-
fore shown that

. 2M
lim sup|g(0) - g7(0)| < =
T—o00

Since R was an arbitrary positive number, the lim sup must be 0, and the theorem is
proved. O

Consider now the following application of Theorem 2.17 to a specific function: take

lP(X)

foo="2-1 =21
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as our function f(x). Note that f(x) is bounded by Lemma 2.16. The associated function
g(s) is then

g(s) = <@ - 1>x‘s‘1 dx

YoOx S dx — % = T( D A(n)> 2y - =

n<x

0 o e -1,
_ -5-2 _ _1
_;A(n)qx dx) ZA(n) :
- LS At ___L.M_l
s+l Z Almn s+l {(s+1) s (Re(s) > 0)

by (2.36). Recall that -’ (s)/{ (s) has a simple pole at s = 1 with residue 1 (because {(s) has
asimple pole at s = 1;itis useful to remember the more general fact that if a holomorphic
function h(z) has a zero of order k at z = z,, then the logarithmic derivative h'(z)/h(z)

has a simple pole at z = z, with residue k). So —s% . ‘2((55:11)) has a simple pole with residue
1 {'(s+1)

lats=0,and therefore -5 ((sT - has a removable singularity at s = 0. Thus the

identity g(s) = -7 - W - < shows that g(s) extends analytically to a holomorphic

function in the region

{seC: {(s+1) +0}L

By Theorem 2.12, g(s) in particular extends holomorphically to an open set containing
the half-plane Re(s) > 0.

We have therefore shown that f(x) satisfies the assumption of Newman’s Tabuerian
theorem. We conclude from the theorem that the improper integral

[ e
X e X
0 1
converges. By Lemma 2.15 the prime number theorem follows. O

Suggested exercises for Section 2.5. 2.19, 2.20, 2.21.
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The explicit formulae of number theory and the Riemann
hypothesis

The proof of the prime number theorem presented in this chapter made crucial use of the fact that {(s)
has no zeros on the line Re(s) = 1, but when following this approach, the connection between those two
facts seems somewhat opaque and mysterious.

Another, more advanced, approach to the prime number theorem that draws a clearer conceptual
line between the location of the zeros of {(s) and the validity of the asymptotic formula (x) ~ x is based
on the so-called “explicit formulae of number theory.” This is the name given to a family of identities, the
simplest of which being

Y =x-y %p —log(27) (x > 1,x noninteger). (2.53)

P

In this formula the sum on the right-hand side ranges over all zeros p of the Riemann zeta function
counted with their respective multiplicities. (In most textbooks the sum is separated into two sums, one
ranging over the trivial zeros, which can be evaluated explicitly, and the other ranging over the zeros in
the strip 0 < Re(s) < 1. Also, the sum is only conditionally convergent; refer to [47, p. 397] for the proper
way to interpret it to get a convergent sum.) Note that this is an exact identity, not an asymptotic result.
To convert it to an asymptotic result, the key observation is that each of the power terms x” has magni-
tude x*¢? Thus, knowing that Re(p) < 1 suggests that the term x” is of a smaller order of magnitude
than the “principal” term x and therefore plays a negligible role in the asymptotic behavior of ¢ (x). This
leads directly to the asymptotic formula ¢(x) ~ x. (Note that this argument is incomplete, since there
are infinitely many zeros, so we would be dropping infinitely many of these terms, which requires further
justification.)

The same type of reasoning involving (2.53) also suggests that even if we had more precise bounds
on the real parts of the zeros of {(s), we could prove quantitative versions of the prime number theorem
with explicit error bounds. The strongest statement of this type that is believed to hold is the celebrated
Riemann hypothesis.

Conjecture 2.18 (The Riemann hypothesis). All the nontrivial zeros of { (s) are on the “critical line” Re(s) =
1/2.

For more details, see [25, 46, 47] and [W14].
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Exercises for Chapter 2

21

2.2

2.3

24

Prove the following properties satisfied by the Euler gamma function:
(@) Values at half-integers:

1) _ @t _
F<n+£>_ 4"n!\/7—T (n=0,1,2,...).

(b) The duplication formula:
T(s)T(s +1/2) = 2" VT (2s).

(c) The multiplication theorem: for any k > 1,

1 2).. k—=1Y _ o \k-D/2;1/2-ks
F<S)T(S+k)F<s+k) F(s+ 7 )—(zm K> T (ks).

Prove the following representation for the gamma function:

I(s) = n; n!((;lli 3 + J ex*tdx (seQ).

For n > 1, let V, denote the volume of the unit ball in R". By evaluating the
n-dimensional integral

1 n
A, = ”j exp(—é lejz>dx1 dx, ... dx,
j=

R

in two ways, prove the well-known formula

Note. This problem requires applying a small amount of geometric intuition (or,
alternatively, having some technical knowledge of spherical coordinates in R"). For
the solution, see [W15].

The beta function is a function B(s,t) of two complex variables, defined for
Re(s),Re(t) > 0 by

1
B(s, 1) = J X1 - ) dx.
0

(@) Show that the improper integral defining B(s, t) converges absolutely if and
only if Re(s), Re(t) > 0.
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(b) Show that B(s, t) can be expressed in terms of the gamma function as

T'(s)I'(t)
I'(s+t)

B(s,t) =

Guidance. Start by writing I'(s)I'(t) as a double integral on the positive quad-
rant [0,00)? of R* (with integration variables, say, x and y); then make the
change of variables u = x + y, v = x/(x +y) and use the change-of-variables
formula for two-dimensional integrals to show that the integral evaluates as
I'(s +t)B(s, t).

2.5 The digamma function ¥(s) is the logarithmic derivative

I (s)
T(s)
of the gamma function, also considered as a somewhat important special function

in its own right.
(@) Show that ¥(s) has the convergent series expansions

P(s) =

(e8]

¢(8)=—V—§+Z

S
nn+s)

- _ - ,=1,-2,...),
v+ Z(n+1 n+s> (s#0 )

where y is the Euler—Mascheroni constant.
(b) Equivalently, show that ¥(s) can be expressed as

:—JLIQO(Z ——logn>

(c) Show that ¥(s) satisfies the functional equation

w(s+1>:w(s)+§ (5%0,-1-2,..).

(d) Show that

n

Y(n+1)=-y+ Z% (n=0,1,2,...).

k=1

That is, ¥(x) + y can be thought of as extending the definition of the harmonic
numbers H, = Y _, % to noninteger arguments.
(e) Show that ¥(s) satisfies the reflection formula

(1 - s) - Y(s) = 7 cot(ms).
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(f) Hereis a curious application of the digamma function. Consider the sequence
of polynomials

P,x)=x(x-1)...x-n) (n=0,1,2,...)
and their derivatives
Qu(X) = Pp(x).

By Rolle’s theorem, Q,(x) has precisely one root in each interval (k, k + 1) for
0 < k < n-1.Denote thisroot by k+a,, x, so that the numbers a, ; (the fractional
parts of the roots of Q,,(x)) are in (0,1).

A curious phenomenon can now be observed by plotting the points a, ;, k =
0,...,n -1, numerically, say for n = 50. You will see that for large n, the plot
appears to approximate a smooth limiting curve. The following precise state-
ment can be proved.

Theorem 2.19 ([56]). Let t € (0,1). Let k = k(n) be a sequence such that 0 <
k(n) <n-1,k(n) > coasn — oo, n —k(n) - coasn — oo, and k(n)/n — t
as n — oo. Then we have

. 1 1 1-t
lim a, xn) = p arccot ;_-[IOg —

n—oo t

In the above formula, arccot(-) refers to the branch of the inverse cotangent
function taking values between 0 and 7.

Prove Theorem 2.19 using the facts you learned about the digamma function.
2.6 Given two integrable functions f,g : R — C of a real variable, their convolution
is the function h = f = g defined by the formula

h(x) = (f * )(x) = jf(t)g(x—t) dt (x < R).

The convolution operation is extremely important in harmonic analysis, since it
corresponds to a simple multiplication operation in the Fourier domain; in prob-
ability theory, where it corresponds to the addition of independent random vari-
ables; and in many other areas of mathematics, science, and engineering.
For a > 0, define the gamma density with parameter q, denoted y, : R — R, as

YaX¥) = ie_"xa’_l)([o o) (X eR)

I'(a) ’

(where x4 denotes the characteristic function of a set A ¢ R). Note that y,(x) is
a nonnegative function whose integral equals 1, so that it is a probability density
function.
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Show that for all a, 8 > 0, we have

Ya * Vg = Vasp>

that is, the family of density functions (y,).so is closed under the convolution op-
eration. This fact is one of the reasons why the family of gamma densities plays an
important role in probability theory and appears in many real-life applications.
Show that the initial terms in the Laurent expansion of I'(s) around s = 0 are of the
form

I(s) = } -y+ (V—2 + ﬂ—2>s +0(s%),

12

where y is the Euler-Mascheroni constant.
Prove the equivalence of the two versions (2.11) and (2.13) of the functional equation
for the Riemann zeta function.
Show that the initial terms in the Laurent expansion of {(s) around s = 1 are of the
form

{(s) = —+V+0(S 1).

Define the function n(s) of a complex variable s by

i 1)"1 11

This function, a close cousin of the Riemann zeta function, is known as the Dirichlet

eta function.

(@) Prove that the series defining n(s) converges uniformly on any half-plane of
the form Re(s) > a withe a > 0, and conclude that n(s) is defined and holo-
morphic in the half-plane Re(s) > 0.

(b) Show that n(s) is related to the Riemann zeta function by the formula

n(s) = (1-2"5)¢(s)  (Re(s) > 1).

(c) Using this relation, deduce a new proof that the zeta function can be analyti-
cally continued to a meromorphic function on Re(s) > 0 that has a simple pole
at s = 1 with residue 1 and is holomorphic everywhere else in the region.

Now that you have learned about the Riemann zeta function and its properties, go

back and look at identities (1.54)-(1.55). Can you make sense of what these formulas

claim? How do they relate to {(s) and to the Dirichlet eta function n(s) discussed in

Exercise 2.10?



114 —— 2 The prime number theorem

2.12 Show that the Taylor expansion of the digamma function ¥(s) = % (discussed in
Exercise 2.5) around s = 11is given by

Ps)=-y+ Yy (D" N+ -D" (Is-1<1),
n=1

where y is the Euler—Mascheroni constant.
213 (a) Prove that for all x > 1,

H 11 > log x

(where the product is over all prime numbers p < x).
(b) Pass to the logarithm and deduce that for some constant K > 0, we have the
bound

> 1, loglogx - K (x> 1).

p=x

(It is also possible to show a matching upper bound of loglog x + K' for some
constant K’ > 0, that is, the harmonic series of primes 2p 117 divergesasloglog x,
in contrast to the usual harmonic series, which diverges as log x.)
2.14 Riemann’s contour integral representation for {(s). Prove another expression
for {(s) valid for all s € C:

CTA-s) [ (0° dx
§) = 2mi E[ex—l x’

(2.54)

where C is a keyhole contour coming from +co to 0 slightly above the positive
x-axis, then circling the origin in a counterclockwise direction around a circle of
small radius, and then going back to +co slightly below the positive x-axis.
Note. Representation (2.54) is due to Riemann, who used it in his famous 1859 pa-
per for his first proof of the analytic continuation and functional equation for his
eponymous zeta function. In the same paper, he proceeded to give a second proof
using the method described in Section 2.3. See [25, Ch. 1] for more details.

2.15 An alternative proof of the functional equation of the Jacobi theta function.
(@) Recall the definition of the Jacobi theta function 6(t) in (2.15). Use the residue

theorem to evaluate the contour integral

2
e—rrz t
o dz,
ez _ 1

YN

where yy is the rectangle with vertices +(N +1/2) +i (with N a positive integer),
then take the limit as N — oo to derive the integral representation
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oo~ —nzt oot e—nzt
o(t) = j g j S (50 (2.55)
—0o—1 —00+i

for O(t).
(b) Inrepresentation (2.55), expand the factor (¢#Z —1)~! as a geometric series in
e 2" (for the first integral) and as a geometric series in 2™ (for the second
integral). Evaluate the resulting infinite series, rigorously justifying all steps,
to obtain an alternative proof of the functional equation (2.22).
2.16 Define the following arithmetic functions taking an integer argument n:

27TiZ

d(n) = z 1 (the number of divisors function),
dln

ogn) = z d (the sum of divisors function),
dln

o) =#{l<k<n-1: gedk,n) =1}
(the Euler totient function),
N KA
(the von Mangoldt A-function),
u(n) = {(—l)k if n = pyp, - - - px is a product of k distinct primes,
0 otherwise,
(the Mobius p-function),
An) = (-DF ifn= P1Ds - - - P 1s a product of k primes,

(the Liouville A-function).

We saw that the zeta function and its logarithmic derivative have the series repre-
sentations

< S { ( —S
= ) Al
{(s) n;n 7o nzl (n)n

Both these series are of the general form

for some sequence (c,) ;. A series of this type is called a Dirichlet series.
Prove the following additional identities (valid for Re(s) > 1) expressing various
functions related to {(s) as Dirichlet series:
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~('(s)= ) logn-n’*,
n=1

= Y umn™,
n=1

¢(s)

{(s) < -s
T =) lumin,
{(2s) ,;‘ |
{(2s) s
T - Ao

{(s)? =Y dmyn™,
n=1

" ,Z‘p(")"s’
¢(8)¢(s-1) = i a(mn’®.
n=1
Evaluate the following infinite products:
@ Tpprme ot =3-5-2. 8. =2
(b) prrime%:%'%~%~%- .=2

(Compare with the products in Exercise 1.42.)

Show that the infinite product K := [, prime ’% whose value you computed in
Exercise 2.17 can be given the following geometric interpretation as “the fraction
of lattice points in Z? visible from the origin.” That is, assume that you are standing
at the origin point (0, 0) of an infinite grove of trees, positioned at the lattice points
(m,n) € z7? \ {(0,0)}. These are idealized trees that have zero thickness, so you will
be able to see the tree at (m,n) from your vantage point if and only if there is no
other tree obscuring the view from some position (m/k, n/k), where k is a common
divisor of m and n, that is, if and only if m and n are relatively prime.

Define

_ #{(m,n) € z7? \ {(0,0)} : |m|, |n] < N, m, n are relatively prime}
#{(m,n) € Z*\ {(0,0)} : |ml,|n| <N}

Ky

for N > 1. Prove that K, — K as N — oo. This gives a precise asymptotic meaning
to the above informal description of K as the fraction of lattice points visible from
the origin.

Prove the bound (2.41).

Let p, denote the nth prime number. Prove that the prime number theorem is
equivalent to the statement that

pn ~nlogn asn — oco.
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2.21 Define a sequence of numbers (8(n));2, by
B(n) =1lem(1,2,...,n),

where for integers a;, ..., ai, lem(ay, . . ., a;) denotes the least common multiple of

a4, . .., 4. This natural number-theoretic sequence of integers [W16] has the num-

bers 1,2, 6,12, 60, 60,420, 840, 2520, 2 520,27 720 as its first few values.

(@) Prove that f(n) = exp(¥(n)), where Y(x) = Zpkgx log p denotes Chebyshev’s
weighted prime counting function.

(b) Conclude using the equivalent formulation of the prime number theorem in
terms of Chebyshev’s function that

B(n) = MM asn - co.



3 Conformal mapping

Second Hypothesis: That small regions of the Earth should be displayed as similar figures in the
plane.

Leonhard Euler, “On the mapping of spherical surfaces onto the plane” (1777)

3.1 Motivation: classifying complex regions up to conformal
equivalence

As we discussed in Chapter 1, the notion of a conformal mapping is a highly appealing
geometric idea that can be explained to anyone without any requirement that they ever
heard of complex analysis, let alone understand any of the mathematics underlying it.
Anyone who can appreciate the art of M. C. Escher (see Fig.1.2 on p. 8) will intuitively
grasp that there is something special and beautiful about conformal maps.

Conformal maps are also an important tool in the toolkit of applied mathematicians.
They have many applications for solving important partial differential equations that
show up in physics, engineering, and in other areas as diverse as cartography [68] and
medical imaging [37].

In this chapter, we will approach the area of conformal mapping from a purely
complex-analytic direction. We will see that this side of the theory has a beauty all
its own, which, while subtle and requiring patience and contemplation to appreciate,
equals and perhaps surpasses the more obvious aspects appreciated by art lovers and
equation solvers.

Let Q c C be a complex region. In complex analysis, we often wish to understand
the classes of functions #(Q) and M(RQ) of holomorphic and meromorphic functions on
Q, respectively. You might think that the structures of these classes of functions would
depend in some highly sensitive way on the particular choice of the region Q. As it turns
out, this is largely untrue: although the structure of such a family does vary somewhat,
there are large families of regions Q for which the structure of H(Q) (respectively, M(Q))
is the same across all members of a given family, so that it is in practice enough to un-
derstand what is happening in one representative region of each family. Moreover, the
question of which family a particular region Q belongs to can in many cases be answered
using topological properties of Q.

To make this idea precise, we define an equivalence relation on regions that cap-
tures the notion that for two regions Q and Q', #(Q) and H(Q') “have the same struc-
ture.” This relation is called biholomorphism or conformal equivalence. We say that
Qand Q' are conformally equivalent if there is a bijective holomorphicmap g : Q@ — Q'
whose inverse is also holomorphic. Such a map g is called a bihelomorphism, biholo-
morphic map, or conformal map. Note that a conformal map must satisfy g’(z) # 0 for
3 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-004
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any z € Q, by Corollary 1.58. It is trivial to check that the relation of conformal equiva-
lence is, as its name suggests, an equivalence relation.!

If @ and Q' are conformally equivalent and related by a conformal map g : @ — €',
then each holomorphic function (respectively, meromorphic function) f : @ — C can
be used to define a holomorphic (respectively, meromorphic) function f : @' — C by

f=fog™

It is immediate to check that the correspondence f — f defines a bijection between
H(Q) and H(Q') (respectively, between M(Q) and M(Q")). Thus the conformal map
allows us to translate any question about holomorphic or meromorphic functions on Q'
to a question about holomorphic or meromorphic functions on Q. The definition of
conformal equivalence therefore captures precisely the notion of equivalence we were
interested in.

In many areas of mathematics, when we find an interesting equivalence relation,
this immediately leads to a standard set of interesting questions: how do we determine
equivalence? Can we describe all equivalence classes, or at least some particularly sim-
ple or important ones? Do there exist some canonical representatives in each of those
equivalence classes? How can we construct a map demonstrating equivalence, and to
what extent is it unique? And so on. Asking such questions for this particular equiva-
lence relation turns out to be very fruitful and is what the area of conformal mapping
is about.

Examples. Here are some regions that seem worth thinking about from the point of
view of conformal mapping, both theoretically and because they arise in applications
(for example, in the study of Laplace’s equation in mathematical physics, electrostatics,
hydrodynamics, etc):

1. the complex plane C

the punctured plane C \ {0}

theunitdiscD={z e C : |z|] < 1}

the upper half-plane H = {z € C : Im(z) > 0}

the Riemann sphere? C = C U {co}

G W

1 In this chapter, we use the term “conformal map” with a slightly different meaning than the sense in
which this term was used in Subsection 1.3.4. That subsection was concerned with understanding the
property of being conformal as a local property; here we develop the conceptually much richer set of
ideas related to understanding maps that are globally conformal—that is, conformal everywhere in the
local sense but also bijective. Moreover, the conformal maps from Subsection 1.3.4 were not assumed to
be orientation preserving. Here we focus on conformal maps that are holomorphic, which in particular
means that they are orientation preserving (see (1.25)).

2 The Riemann sphere is not quite a complex region in the usual sense; technically, it is a Riemann sur-
face, but we will still count it and trust that you understand how the various definitions apply in that sit-
uation; refer to Section 1.11. Actually, the same classification questions we are addressing in the context
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6. theslit plane C\ (-0, 0]

7. astrip S(x;,x,) ={z € C : 0 <Re(z) < 1}

8. arectangle{z € C : 0 <Re(z) < 1,a < Im(z) < b}

9. anannulusA(ry,ry) ={ze C : ry < |z| <1y}

10. a quadrant {z : Re(z) > 0,Im(z) > 0}

11. anellipse {z = x + iy : (%)2 + (%)2 <1}

12. the plane with an interval removed, C \ [-1,1]

13. the upper half-plane with an interval removed, H \ [0, {]
14. a “blob” (Fig.3.1)

Figure 3.1: Two blob-shaped regions. Are they conformally equivalent?

Can you guess what is the correct grouping of these regions according to conformal
equivalence? (Note: in example 9 of the annulus, we in fact have a family of regions,
which may not all be conformally equivalent to each other) By the end of this chapter,
you will know the answers.

Since conformal maps are continuous, the relation of conformal equivalence is a
stronger notion of equivalence than topological equivalence (a. k. a. homeomorphism).
We record this obvious but important fact as a lemma.

Lemma 3.1. Ifregions Q and Q' are conformally equivalent, then they are homeomorphic.

Next, if regions Q and Q' are conformally equivalent, with the conformal map g :
Q — Q' relating them, then is g unique? If not, can the extent to which it is not unique
be made precise? The answer to these questions is described in terms of the automor-
phism group of a complex region. More precisely, if § : @ — Q' is another conformal
map, then the map h : Q@ — Q defined by

h=g"%

of conformal equivalence apply more generally in the theory of Riemann surfaces. We will encounter
an interesting example of the classification of a class of Riemann surfaces up to conformal equivalence
in Chapters 4 and 5; see Sections 4.15, 5.5, and 5.11.
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is a conformal equivalence map between Q and itself. We call such a map a (conformal)
automorphism of Q. Conversely, if g : @ — Q' is a conformal mapandh: Q — Qisa
conformal automorphism, then g : @ — Q' defined by

g§=8°h

is also a conformal map from Q to Q', and clearly every conformal map g : Q@ — Q'
can be represented in such a way for some automorphism h : @ — Q (just define h
as above). Thus the family of automorphisms of Q precisely measures the extent of the
nonuniqueness of the conformal map g : @ — Q' for any Q' that is conformally equiv-
alent to Q. This family has the algebraic structure of a group, with the group operation
being composition of maps, and is thus referred to as the automorphism group of Q. We
denote this group by Aut(Q). We will seek to give explicit descriptions of automorphism
groups whenever this is possible.

To conclude this general discussion, we note one additional useful fact about con-
formal maps.

Lemma 3.2. In the definition of conformal equivalence, the condition that g~* is holo-
morphic can be dropped, that is, if g : @ — Q' is holomorphic and bijective, then g™ is
automatically holomorphic.

Proof. Since g satisfies g’(z,) # 0 for any z, € Q, the inverse function theorem (Theo-
rem 1.56) implies that the inverse map g " exists locally in a neighborhood of g(zy) asa
holomorphic function for any z; € Q. Since g is a bijection, the inverse function exists
globally (in the sense of set theory) as a function g ™! : Q' — Q. The fact that g% is locally
holomorphic implies that the global inverse function g~! is holomorphic, which is the
claim of the lemma. O

In the next few sections, we begin to classify some of the main conformal equiva-
lence classes that every complex analyst should be familiar with. The most important
classification result in this chapter is the Riemann mapping theorem, which is formu-
lated in Section 3.4.

Suggested exercises for Section 3.1. 3.1.

3.2 First singleton conformal equivalence class: the complex plane

The first conformal equivalence class we discuss contains just a single element, the com-
plex plane. This is explained by the following theorem.

Theorem 3.3. Let g : C — Q be a conformal map between C and a region Q. Then Q = C,
g(z) is a conformal automorphism, and g(z) has the form

giz)=az+b

for some complex numbers a, b with a # 0.
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Proof. Let g : C — Qbe a conformal equivalence map. We will prove that g(z) is of the
form g(z) = az + b with a # 0 just based on the assumption that it is an entire function
and that it is injective; the additional claims that Q = C and g(z) is an automorphism
will then follow.

Since g(z) is an entire function, it is either a polynomial, or it is not. We treat each
of those two cases separately (proving that g(z) is of the desired form in the first case
and proving that the second case cannot occur).

If g(z) is a polynomial, it cannot be a constant since those certainly are not injective
maps. We claim that it also cannot be a polynomial of degree k > 2, which if true would
leave only the option of a linear function g(z) = az + b with a # 0. The fact that poly-
nomials of degree higher than 1 are not injective is easy to see: a polynomial of degree
k has k roots counting with multiplicity, which means that either there are at least two
distinct zeros (contradicting the assumption of injectivity), or there is a single zero of
multiplicity k, which means that the polynomial is of the form g(z) = c(z - a)X. This
polynomial is clearly also not injective since in that case the equation g(z) = 1 has k
distinct solutions.

It remains to consider the other possibility of an entire function that is not a poly-
nomial. In that scenario, we claim that g(z) has an essential singularity at z = co. For
otherwise, by our classification of singularities (Section 1.12), g(z) must have a pole of
some order k at infinity. However, having such a pole implies that the rate of growth
of |g(2)| is restricted by the order of the pole; specifically, g(z) satisfies a bound of the
form |g(z)| < A+ B|z|k for all z, where A and B are positive real constants. Now a well-
known argument from basic complex analysis (Exercise 1.25) implies that g(z) is actually
a polynomial of degree at most k, which is a contradiction.

We are now in a good position to apply the Casorati-Weierstrass theorem (Theo-
rem 1.46) about the behavior of functions near an essential singularity. Denote w, =
£(0). Since g(z) is an open mapping by the open mapping theorem (Theorem 1.50), the
image g(ID) of the unit disc under g(z) contains an open neighborhood E of w,. But by
the Casorati-Weierstrass theorem the image g(C \ D_g(0)) of the complement of any
closed disc around 0 (i. e., any neighborhood of co) is dense in C and therefore has a
nonempty intersection with E. This intersection means that there exist points z; € D
and z, € C\ Dg(0) for which

&(z9) = g(zy).

Now if R > 1, then z; # z,. We have therefore shown that g(z) is not injective, which
contradicts our initial assumption. Thus the scenario of a conformal map on C that is
not a polynomial is impossible, and the proof is complete. O

By Theorem 3.3 the group of conformal automorphisms of C is

Aut(C)={z—az+b : a,beC,a+0}.
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3.3 Second singleton conformal equivalence class: the Riemann
sphere

There is a second conformal equivalence class that is a singleton, the Riemann sphere.
The following result is the analogue of Theorem 3.3 for C.

Theorem 3.4. Ifg : C — Q is a conformal map between C and a region Q, then Q = C,
g(z) is a conformal automorphism, and g(z) has the form

_az+b

T cz+d 3D

&(z)

for some complex numbers a, b, ¢, d with ad — bc + 0.

Proof of Theorem 3.4. We start by proving that @ = C. Assume that this is not the case,
i. e, that there is at least one point w ¢ C that is not in the image g(C). We can assume
without loss of generality that w = co; otherwise, replace the map g(z) with g(z) =
g(zﬁ. Once g(z) is shown to be of the desired form (3.1), solving the equation g(z) =
g(zﬁ for g(z) shows that g(z) is of that form as well.

Since g(z) does not take the value oo, it also cannot approach infinity, that is, there
does not exist a sequence (z,,)52; of points in C for which g(z,) — co. If such a sequence
existed, we could use the fact that C is compact to extract a convergent subsequence
Zy, > Z e C, whence it would follow, since g(z) is a continuous function, that g(Z) = oo,
which cannot happen since co is not in the image of g(z).

The fact that g(z) does not approach co means simply that g(z) is a bounded function
and a holomorphic one at that (our a priori assumption that allows Q to contain the
point co only means it is meromorphic). Thus it is a bounded entire function and hence
constant by Liouville’s theorem, a contradiction.

Having established that Q = C, we now know that g(z) is a genuine automorphism
of C. Denote w = Z(00). Once again, we can assume without loss of generality that w =
0o; otherwise, replace the map g(z) with g(z) = g(zﬁ as before. Under this assumption,
the restriction of g(z) to C is a conformal automorphism of C, so from the discussion in
the previous section we know that g(z) is of the form az + b for some a,b € C,a # 0. O

By Theorem 3.4 the group of conformal automorphisms of C is

- az+b

Aut(C) = {z — 210 :a,b,c,d e C,ad — bc # 0}. (3.2)
cz+d

The elements of this group are known as Mébius transformations. An important and

easy-to-check property of such transformations is that they act as 2 x 2 linear transfor-

mations; more precisely, given two Mobius transformations

ayZ + b,
CzZ+dy’

az+ by

T,(z) =
1@ Gz+d;

and T,(z) = (33)
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their composition is given by

az+p

m , (3.4)

(Ty o Ty)(z) =

where a, f,, § are the entries of the matrix

o) a)e &) =
y § ¢ d)\c; dy
For this reason, Mobius transformations are also known as fractional linear transfor-
mations.

The group (3.2) is also sometimes referred to as the projective linear group (of
order 2 over the complex numbers) and denoted PSL(2, C). The reason for this termi-

nology is as follows. If we define the special linear group (of order 2 over the complex
numbers) by

SL(2,C) = {(S b) . abcdeC, ad—bc:l},

d

then we can easily check that the association mapping a matrix (¢ Z) € SL(2,C) to the

Mobius transformation z — % is a surjective group homomorphism, which has the
subgroup {+(} 9)} as its kernel. Thus, by the first isomorphism theorem in group theory,

the group Aut(C) can be identified with the quotient group

SL2, C)/{£(§ )}

The quotienting operation in this context is often referred to as projectivization, which
leads to the name projective linear group both for the quotient group and the occasional
use of the same name and notation for the group of Mébius transformations.

The group PSL(2, C) is an important group in mathematics and even has interesting
connections to physics; see the box overleaf.

Suggested exercises for Section 3.3. 3.2.

3.4 The Riemann mapping theorem

We have seen two conformal equivalence classes consisting of a single element each.
Obviously, if all other equivalence classes were also singletons, the situation would be
extremely boring, and the notion of conformal equivalence would not even deserve its
own name. It is easy to see however that the true situation is, at least, more complicated
than this simplistic scenario (see Exercise 3.3).
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The group PSL(2, C) and the night sky of a relativistically
moving observer

Suppose you get into a spaceship and speed away from Earth, reaching a velocity of ac, where c is the
speed of light, and the fraction a is substantial (say, higher than 5 %). We know from science fiction
movies that your view of the stars as you peer through the spaceship window will appear distorted. But
how, exactly? This problem has a delightful connection to complex analysis and the automorphism group
PSL(2, C) of the Riemann sphere. In fact, your view of the celestial sphere of stars gets transformed by a
M@obius transformation acting on the celestial sphere precisely as if it were the Riemann sphere.

Mathematically, the connection is roughly as follows: it is well known from the theory of special
relativity that an observer moving at relativistic velocity v relative to the Earth (which for the sake of
discussion we assume is an inertial frame of reference) will have their time and space coordinates trans-
formed from the Earth’s time and space coordinate system according to a type of linear transformation
known as a proper, orthochronous Lorentz transformation. The group of such transformations can be
represented as the group of 4 x 4 real matrices

L] = {T € Maty,4(R) : det(T) =1, Ty; < 0, T'XT = X},

where X is the 4 x 4 diagonal matrix with diagonal entries —1,1,1, 1. In fact, it can be shown thatLI is iso-
morphic to PSL(2, C) and that the isomorphism p : LI — PSL(2, C) is such that for the moving observer
with a given associated Lorentz transformation T, the distortion of the moving observer’s celestial sphere
relative to the celestial sphere of the static frame of reference is described precisely by the Mébius trans-
formation p(T), under the obvious identification between the celestial sphere and the Riemann sphere.
See [53, Appendix B] and [55, Ch. 1] for the details of this surprising result.

On this optimistic note, it looks like there ought to be some interesting phenomena
for us to explore. This brings us to one of the most fundamental results on conformal
mapping, the Riemann mapping theorem, which identifies the first nontrivial confor-
mal equivalence class and the one that undoubtedly plays the most central role in com-
plex analysis.

Theorem 3.5 (Riemann mapping theorem: simple version). Let Q,Q' ¢ C be simply con-
nected complex regions with Q,Q' + C. Then Q and Q' are conformally equivalent.

As an immediate corollary, we get an interesting result in topology, an illustration of
the principle that the often symbiotic relationship between complex analysis and topol-
ogy involves a flow of ideas in both directions.

Corollary 3.6. Any two simply connected regions in the plane are homeomorphic.

This well-known result can also be proved without the use of complex analysis.
See [W17] for a related discussion.

To prove Theorem 3.5, we will need to develop some new theoretical ideas (which
are also interesting in their own right and are of broader applicability). A more precise
version of the theorem is stated in Section 3.7.

Tangentially to that effort, we also wish to understand the structure of the auto-
morphism groups Aut(Q) for regions Q belonging to the conformal equivalence class
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described by the theorem. By Exercise 3.1 all such groups are isomorphic in such a way
that the isomorphism between any two can be described in terms of conformal equiv-
alence maps g : @ — Q' relating different class members. Thus, to understand the
automorphism groups, it is in fact sufficient to classify the automorphisms for just one
representative member of the class. There are two fairly canonical choices for such a
member; the unit disc D and the upper half-plane H (and those two are easy to relate to
each other, though doing so is still interesting). We discuss these regions in the next two
sections.

Suggested exercises for Section 3.4. 3.3.

3.5 The unit disc and its automorphisms

The next result, known as the Schwarz lemma, is a simple yet powerful result about
holomorphic functions from the unit disc to itself that keep the origin fixed. It is an
important tool on the path to characterizing the automorphisms of the unit disc.

If g : D — D, then we say that g(z) is a rotation map, or simply a rotation, if it is
of the form g(z) = e%z for some 6 € [0, 271).

Lemma 3.7 (The Schwarz lemma). Let g : D — ID be a holomorphic function that satisfies
g(0) = 0. Then:

1. |g(2)| < |z|forallz € D.

2. If1g(z)| = |z| for some z + 0, then g(z) is a rotation.

3. 1g'0) <1

4. If1g'(0)| = 1, then g(z) is a rotation.

Proof. Since g(z) has a zero at z = 0, we know that it satisfies |g(z)| < C|z| for some
C > 0 and all z in some neighborhood of 0. This is a weaker inequality than the one we
are trying to prove, but in fact it is a helpful observation, as it can be restated as the
claim that h(z) = g(z)/z satisfies |h(z)| < C for all z € D\ {0}; that is, h(z) is bounded in a
punctured neighborhood of 0 and of course holomorphic there. By Riemann’s removable
singularity theorem (Theorem 1.38), h(z) therefore has a removable singularity at 0 and
can be extended to a holomorphic function on all of D (which we still denote h(z), as
per the usual convention when talking about analytic continuation). Now let z € D \
{0}, and let r be a real number with |z| < r < 1. By the maximum modulus principle
(Theorem 1.51) the maximum modulus of h(z) in the closed disc of radius r around 0 is
attained at the boundary of that disc. Therefore we have that
it
BT

; 1
_ ity _ -
= |h@)] < mg]h(wﬂ = Orsr}gzxﬂ|h(re )= s T

I&
Z

(In the last step, we used the fact that g(z) maps D into itself, so |[g(w)| < 1forallw € ID.)
Since this is true for all |z| < r < 1, we then have that
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)

zZ

< inf -=1,

- |z|<r<1 T

that is, |g(z)| < |z|, which was the first claim of the lemma. Now claim 3 also fol-
lows by taking an additional limit of these inequalities as z — 0, since |g'(0)] =
|lim,_, E2280)| = Jim,_, |£2).

Now, for the claim 2, note that an equality for some z € D in the bound |h(z)| < 1
means that |h(z)| attains its maximal value in the interior of the disc. By the condition
for equality in the maximum modulus principle, h(z) must be a constant, which is of
unit magnitude (since we know that |h(z)| = 1 for some z). That is, we have shown that
h(z) = € for some 6 or, equivalently, that g(z) is a rotation, giving claim 2.

Similarly, for the fourth claim, if 1 = |g'(0)| = lim,_, |‘¥| = lim,_,, |h(2)| = |h(0)|,
then again we see that |h(z)| attains its maximum value in the interior of the disc (in this
case at z = 0) and infer using the same argument as above that g(z) is a rotation. O

Corollary 3.8 (Automorphisms of the unit disc that fix 0). The automorphisms g : D — D
of the unit disc that fix 0 (that is, satisfy g(0) = 0) are precisely the rotations.

Proof. Obviously, a rotation is a conformal automorphism of ID that fixes 0. Conversely,
let g : D — D be an automorphism that fixes 0. Then both g(z) and its inverse func-
tion g‘1 (z) satisfy the assumptions of the Schwarz lemma. It follows that |g(z)| < z and
|g‘1(w)| < wforall z,w e D; or, setting w = g(z) for an arbitrary z € D in the second
inequality,

g@|<zandlzl <|g@)] = [g@)]|=lal

for all z € D. By part 2 of the Schwarz lemma, g(z) is a rotation. O

We can now exhibit a more general two-parameter family of automorphisms of D,
which are obtained by composing rotations with an additional family of automorphisms
that do not fix 0. As a first step, for w € D, we define the Mobius transformation

w-2z

(/’W(Z) =
Lemma 3.9. The transformation ¢,, is an automorphism of ID. Moreover; it has the fol-
lowing properties: (a) ¢,,(0) = w; (b) ¢,,(w) = 0; (c) q);} = Q-

Proof. Properties (a)—(c) are trivial to check through a direct calculation, which I leave
as an exercise. For the claim that ¢,, is an automorphism, note that if |z| = 1, then

w-z|  lw-z[ _ [w-z] _|w-z| _
-wz| 11-wzl-z2|  [z-wzzl [z-w|

0, (2)] =

Thus ¢,, maps the unit circle into itself. It is also injective (as a meromorphic function
on C) since it is a Mobius transformation. Therefore either ¢ maps the unit disc D into
itself and maps the complement D = {|z| > 1} of the closed unit disc into itself, or ¢,
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maps ID into ID and maps DD into ID. However, we know that ¢,,(0) = w and w € DD, so
that rules out the latter possibility. Finally, since we have established that ¢, (D) c D,
and we know that go;,l = ¢,,, the mapping of D into itself by ¢ is bijective, and ¢,, is a
conformal equivalence. O

The composition of an arbitrary member of the family of rotations (specified by a
real-valued parameter 0 € [0,27)) and an arbitrary member of the family ¢, specified
by the point w € D, is a map of the form

o W—-2

z e —,
1-wz

It turns out that all automorphisms of the unit disc are of this form. This is the well-
known characterization of the automorphism group Aut(ID), given in the following the-
orem.

Theorem 3.10 (Automorphisms of the unit disc). A function g : D — D is an automor-
phism of D if and only if it is of the form
z

g w-—
g(z)=¢ 152 3.7

for some 6 € [0,2rr) and w € D. The pair (6, w) in this representation is unique.

Proof. The “if” part was already explained above. To prove the “only if” claim, let g :
D — D be an automorphism. Denote w = g }(0) € D, and let h = g ¢,,. As the
composition of two automorphisms of D, h(z) is itself an automorphism of D. It also
leaves z = 0 fixed. By Corollary 3.8 it is a rotation and can be expressed as h(z) = ez for
some 6 € [0, 2r). Therefore g(z) = (h - ¢,,)(2) is of the desired form (3.7).

For the uniqueness claim, note that (3.7) implies that w = g %(0), which determines
w uniquely for a given automorphism g. Now if w # 0, then we have g(0) = e"w, which
can be written as e? = g(0)/w, and thus 6 is also determined uniquely from the map g.
In the second case where w = 0, we are back to the scenario of an automorphism that
fixes 0, which we have seen must be a rotation g(z) = ez, with 0 again clearly being
uniquely determined. O

An alternative, but less frequently used, characterization of the automorphisms of
the unit disc is given in the next result. The proofis left as an exercise (Exercise 3.4).

Theorem 3.11 (Automorphisms of the unit disc: alternative representation). A functiong :
D — D is an automorphism of D if and only if it is of the form

g(z) = ‘% 3.8)

for some u, v € C satisfying |u|* - |v|* = 1. The pair (u, v) is unique.
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The explicit description of the automorphisms of D in terms of the representa-
tions (3.7)-(3.8), involving formulas that one rarely encounters outside of complex anal-
ysis, masks the fact that the group of such automorphisms bears a close relationship
with a standard matrix group you may be familiar with from linear algebra, the theory
of Lie groups, topology, and other areas. As we will see in the next section, the connec-
tion becomes apparent when we switch from the unit disc to its “conformal sibling,” the
upper half-plane.

Suggested exercises for Section 3.5. 3.4.

3.6 The upper half-plane and its automorphisms

Lemma 3.12. The unit disc D and the upper half-plane H are conformally equivalent. The
pairofmaps ® : H —» D and ¥ : D — H given by
oz) = 2= and wz) = 22 (3.9)
Z+1 z-1
give an explicit pair of mutually inverse conformal maps mapping each of the regions onto
the other.

if 7 — ; 2 z-if . X+y-1)° L. . .
Proof. Note thatif z = x + iy, then |®(2)I" = =5 = (75, which is < 1if and only if

Im(z) = y > 0 (the geometric meaning of this statement is simply that ®(z) is the ratio
of the distances of z to i and —i, and the upper half-plane is precisely the locus of points
that are closer to i than to —i). Thus ® maps H into D and the complement of H into the
complement of D. Since we know that @ is a conformal map when regarded as a map
from C to itself, this is enough to imply that it maps H surjectively and conformally onto
D. Finally, it is trivial to verify by direct calculation that the inverse map to ®(z) is given
by the formula defining ¥(z). O

Theorem 3.13 (Conformal automorphisms of the upper half-plane). A functiong : H —
H is a conformal automorphism if and only if it is of the form

(3.10)

for real numbers a, b, ¢, d satisfying ad — bc = 1. The numbers a, b, ¢, d in this representa-
tion are unique up to a single choice of sign, in the sense that if a,b,c,d and a',b’,c', d’
are coefficients in two distinct representations, then (a’,b',c’,d') = +(a, b, ¢, d).

Proof. “If”: assume that g(z) has the stated form (3.10) with a, b, ¢, d real and ad - bc = 1.
As we already know from Theorem 3.4, g(z) is a conformal automorphism of C. More-
over, since a, b, ¢,d € R, we have
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(az+b> <(az+b)(cZ+d)>
m{—— |=Im| —————
cz+d lcz + d|?
1 2 _ ad - bc
= ——— Im(ac|z|” + bd + adz + bcz) = — Im(2). 31
lcz + dJ? (aclel ) lcz + dJ? @ G1D
This immediately implies that Im(g(z)) > 0 if and only if Im(z) > 0, that is, g is an
automorphism of H.
“Only if”: assume that g € Aut(H). Then f = ® o g o ¥ is an automorphism of the
unit disc, where ® and ¥ are given in (3.9). By Theorem 3.11, f can be expressed as

f(2) = g;—:;

for some p, v € C with |,u|2 - |v|2 = 1. To calculate what this means forg = Wo f - ®, we
switch to the notation of matrix multiplication, which, as we know from (3.3)—(3.5), is
a way to represent the action of Mobius transformations. The matrices associated with
the action of @, ¥, and f are

o<1 1) (0 2 -G p)

Therefore the map ¥ - f o @ is represented by the matrix product

e (v )G )G )

More explicitly, if we denote u = x + iy and v = u + iv to represent y, v in terms of their
real and imaginary parts, then this matrix product is

W - <—l —l) <x+ ly u+ lV) (1 —l>
1 -1/\u-iv x-iy/\1 i
:zl.(—x—u —y+v> _ 2i<a b>.
y+Vv  —x+U c d
The numbersa, b, ¢, d thus defined are real, and moreover it is easy to check that ad—bc =
1 (hint: determinants). Note that the scalar factor 2i multiplying the matrix is irrelevant
when we go back to considering g as a Mobius transformation instead of a matrix, that
az+b

is, we see that g(z) is indeed of the form o with a, b, ¢, d as claimed in the theorem. O

The automorphism group

az+b
+d

Aut(lH):{m—» :a,b,c,d e R, ad—bc:l]»

is known as the projective special linear group (of order 2 over the real numbers)
and sometimes denoted PSL(2, R). By the natural association between 2 x 2 matrices and
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Mobius transformations discussed in Section 3.3, it can be identified with the quotient
group
SL(2,R)/{£I},

where SL(2, R) is the special linear group of order 2 over R (the group of invertible 2 x 2
real matrices with determinant 1), and {+I} is its subgroup with two elements containing
the identity matrix and its negation.

3.7 The Riemann mapping theorem: a more precise formulation

We formulated in Section 3.4 a version of the Riemann mapping theorem that identi-
fies an interesting conformal equivalence class of complex regions. Conceptually, this is
what I regard as the main content of the theorem. Note that this formulation is carefully
“neutral” in the sense of not singling out any member of the equivalence class as being
more important or worthy of attention than others. However, in practice, we already
discussed the fact that the unit disc and upper half-plane are each in their own way
somewhat canonical members of the class. By contrast, other member regions such as,
say, the unit square, seldom play a particularly important role in the theory, although
from a purely geometric point of view, they may be just as natural, and they may appear
in specific applications.

Furthermore, as we inch our way toward a proof of the theorem, it does in fact
become convenient to fix a specific member of the class—the unit disc—as the target
region for the conformal maps we will construct. Another small conceptual advance
is to add more information about the conformal map mapping a given region Q to D
so as to ensure uniqueness. This leads us to the following more detailed version of the
theorem.

Theorem 3.14 (Riemann mapping theorem: detailed version). Let Q ¢ C be a simply con-
nected complex region with Q # C, and let z, € Q. Then there exists a unique biholomor-
phism F : Q — D with the property that

1. F(zy)=0

2. F'(zy) is a positive real number.

Proof of uniqueness. Let F; and F, be two biholomorphisms with the properties de-
scribed in the theorem. Then the conformal map ® = F, o F;’ !is an automorphism of D
that fixes 0, so by Corollary 3.8 it is a rotation, that is, of the form ®(z) = az for some a
with |a| = 1. On the other hand, the constant a can be expressed as

le(Zo)

a=0'0) = F(FO)(F) ) = 7
1\40

which shows that it is a positive real number. It follows that a = 1 and ®(z) = z, that is,
Fl = Fz. D
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The history of the Riemann mapping theorem

The Riemann mapping theorem was formulated by the great Bernhard Riemann in 1851 as part of his
PhD thesis. Riemann stated the result for regions with a piecewise smooth boundary and gave a proof
that contained useful ideas but was later realized to be flawed. Later nineteenth-century mathematicians
worked hard to fill in the gaps in Riemann’s argument, with varying levels of success. The first proof con-
sidered to be fully correct by modern standards was given by Osgood in 1900. Osgood’s proof, like others
before it, relied on the “potential-theoretic” approach (related to Dirichlet’s principle and the study of
Laplace’s equation) advocated by Riemann rather than on ideas of a more conceptually complex-analytic
nature. This approach, while interesting, has since fallen out of fashion as an approach to proving the
Riemann mapping theorem because of various technical shortcomings it has.

The proof of the theorem we present in Sections 3.8-3.9 is described in Walsh’s historical survey [72]
as the “standard modern proof.” You will find it described in most complex analysis textbooks, as it ap-
pears to be the simplest proof known today. For additional details on the interesting history of Riemann’s
famous theorem and the ideas developed out of it, see the historical reviews [33, 72].

The more difficult part of Theorem 3.14 is the existence claim. As we will see, the
key insight needed for the proofis that the problem of mapping Q conformally to ID can
be formulated as a maximization problem for a certain functional. Specifically, in the
class F consisting of all the injective maps from Q into ID that map z, to 0 and for which
F'(z,) is a positive real number, we will see that the one map that is also surjective (and
thus establishes the required conformal equivalence of Q to D) is the one for which
the number F'(z,) is maximal. This will be shown in a somewhat constructive way by
arguing that if F(z) is not surjective, then we can exploit the point that is “missing” from
the image to produce a new conformal map G : Q — ID with a larger value of G'(z,).
Although the basic idea of how this is done is fairly simple (see Lemma 3.21), there are a
few technical issues that need to be addressed to turn it into a complete proof, namely
showing that the class F is nonempty, that the functional F — F’(z,) attains a maximum,
and so on. The details are given in the next two sections.

3.8 Proof of the Riemann mapping theorem, part I: technical
background

In this section, we prove a few auxiliary results needed for the proof of the Riemann
mapping theorem. Two of the results, Montel’s and Hurwitz’s theorems, are theorems
in complex analysis. The third, the Arzela—Ascoli theorem, is a theorem in real analysis.
Let F be a family of complex-valued continuous functions on a complex region Q.
We say that F is locally uniformly bounded if for any compact set K ¢ Q, we have

sup |f(2)] < oo. (3.12)
feF, zeK

We say that F is locally uniformly equicontinuous if for any compact K ¢ Q and any
e > 0, there exists § > 0 such that
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ifz;,z, € K and |z, — zy| < 8, then sup|f(z)) - f(z,)| < &. (3.13)
feF

The following is a version of the well-known Arzela—Ascoli theorem, a staple of real
and functional analysis, slightly adapted to our setting.

Theorem 3.15 (Arzela-Ascoli theorem). Let F be a family of continuous complex-valued
functions on Q. Assume that the family is locally uniformly equicontinuous and locally
uniformly bounded. Then any sequence (f,),2, of functions in F has a subsequence (f, )2y
that converges uniformly on compacts in Q to some continuous function f.

Proof. Let Q = (). be a dense countable set of points in Q (ordered as a sequence
according to some arbitrary enumeration). The sequence (f,(z1))y2; is a sequence of
complex numbers taking values in a compact set {|z] < M;}, where we denote M; =
supse 7 If(z)l < oo (guaranteed to be finite by (3.12)). By compactness this sequence
therefore has a convergent sequence, which we denote by (f,fl)(zl))‘,ﬁ1 (instead of the
more traditional subsequence notation f;, (z1)). That is, f,fl) is the notation for the nth
function in the extracted subsequence of the original sequence of functions (f,(z)),.

Now we extract a further subsequence of this subsequence, noting that the sequence
(fn(l) (z5))524 is a sequence of complex numbers taking values in a compact set {|z| < M,},
where

My= sup [f(z)].
feF, ze{zy,2,}

(Again, the local uniform boundedness assumption guarantees that M, < o©0.) So
again by compactness, this sequence has a convergent sequence, which we denote
by (2 (21))52-

Continuing in this way, we proceed to successively extract nested subsequences

Byoo (), ... of the original sequence of functions, where each subsequence is

extracted as a further subsequence of the previous one. These subsequences have the
property that for each j > 1, the jth sequence (fn(i) oy 1s a subsequence of the original
sequence (f;,), for which f,fj) (z,,) converges to a limitasn - coform =1,2,...,j.

Now consider the “diagonal” sequence in this nested sequence of subsequences:
we let g, = f,f"). Then (g,);2; is a subsequence of (f,), with the property that g,(z,,)
converges to a limitasn — co forallm > 1.

We claim that the sequence of functions (g, (z)),; converges uniformly on compacts
in Q. Let K ¢ Q be compact, and let € > 0. Let § > 0 be a number, guaranteed to exist by

the assumption of local uniform equicontinuity, with the property that

ifz,z, e Kand |z, — 2, < 8, then sup|f(z)) —f(zy)| < ¢
feF 3

(Compare with (3.13): we merely replaced ¢ there with ¢/3, with the usual goal in
mind that some other bound later will end up smaller than &) The containment
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K ¢ UgegDsjp(8) gives an open covering of K, which by compactness has a finite sub-
covering (Ds/z(g‘j))]‘?zl. Select a point zy, of the countable dense set Q from each of the
subcovering discs Dg,(§;). Forany 1 < j < g, (gk(zv],)),‘ﬁ1 is a convergent sequence or,
equivalently, is a Cauchy sequence; therefore there exists an index N; > 1 such that

£
1862, - 8ic(2,)] < 3

whenever k,¢ > N;. Set N = max(Ny, Ny, ..., N,). Then for any w € K, we have that
w € Dgp(§;) C Da(zvj) for some 1 < j < q. It follows that, for k, £ > N,

196 w) - g W)] < |g.(w) - &(z,)| +8e(z,) - &i(2)
+Eoe
3

£ €
+|gk(z,) —gcW)| < = + =
This establishes that (g;(2))5-, is a Cauchy sequence uniformly on K and hence (by a
standard fact from real analysis) converges uniformly on K. The compact K was arbi-
trary, so we proved the existence of a subsequence that converges uniformly on com-
pacts; the fact that the limiting function must be continuous is standard, and the proof

of the theorem is complete. O

Returning to the realm of complex analysis, we now introduce the concept of a nor-
mal family of functions. Let Q be a complex region as before. A family 7 of holomor-
phic functions on Q is called normal, or a normal family, if every sequence (f,)n, in
the family has a subsequence (fy, );2; such that f, converges uniformly on compacts to

a holomorphic function g.

Theorem 3.16 (Montel’s theorem). Let F be a family of holomorphic functions on aregion
Q that is locally uniformly bounded. Then F is a normal family.

Proof. We claim that the added assumption of holomorphicity of the members of 7,
together with local uniform boundedness, implies that the family is uniformly locally
equicontinuous. Once we show this, the Arzela—Ascoli theorem will imply that every
sequence (F,);2; of elements in the family has a subsequence F,, that converges uni-
formly on compacts to a limiting function F. Then it would follow that F is holomorphic
by standard properties of uniform convergence on compacts (Theorem 1.39 on p. 45),
and we would be done.

We start by showing a weaker version of the required property that does not include
uniformity over compact subsets. Fix a point a € Q and a radius p > 0 such that D,,(a) ¢
Q. Later we will need to emphasize the dependence of p on a, so we will then denote it
by p(a). If z;, z, € D,(a), then by Cauchy’s integral formula we have, uniformly over all
feF,

If(Z1)—f(Zz)|:‘2im~ (j) f(W)<wizl_W}ZZ>dW’

[w-al=2p
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_|a-2z 4; fw)

27Tl w-2z))(w-1z,)
[w-al=2p
1 1 2M
< —lzy-25|- su w)|-2m(2p)= < —|z1 — 4], (3.14)
o1 2 IW—aIIzZpr | P 257 172

where we denote M = SUPfe 7, jw-al=2p |f(w)|, a finite number by the local uniform
boundedness assumption.
Now fix a number € > 0. If we define the number

_ min( p, PE
n= m1n<p, 4M> >0,

then by (3.14) we have the property that

if 2,2, € Dy(a), then supl|f(z) - f(z,)| < e. (3.15)
feF

This is the nonuniform local equicontinuity property alluded to above. Note that the
parameter n depends on the point a, so we will now redenote it by n(a) to emphasize
this dependence. (7 also depends on ¢, but the value of ¢ will remain fixed throughout
the discussion.)

Finally, we can derive the uniform-over-compacts version of local equicontinuity.
Let K ¢ Q be a compact set, and let € > 0 be the same as above. Consider the covering of
K by open sets given by

K c | Dya(@.

acK

By compactness there exists a finite subcovering

n

K | JDya) (@)

j=1

for some points ay,...,a, € K. Denote § = % min(n(a,),...,n(a,)). Then we claim that
for all z;,z, € K such that |z, - z;| < 6,

sup|f(z;) - f(zy)| < €. (3.16)
feF

Indeed, z; must belong to Dn(aj) j2(a;) for some 1 < j < n by the defining property of the
subcovering. This also implies that

’)(aj)<'7(aj) ’)(aj)_
2 T2 2

|2y —ajl <12y — 9] + 121 - ;| < S +

na),
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so altogether we see that both z;,z, are in Dn(aj)(aj). Relation (3.16) therefore follows
from (3.15). To summarize, we proved that for any compact set K ¢ Q@ and € > 0, (3.13)
is satisfied without choice of § as defined above; this proves that the family 7 is locally
uniformly equicontinuous and concludes the proof of the theorem. O

Theorem 3.17 (Hurwitz’s theorem). Let @ ¢ C be a region, and let (f,(z))ro, and g(z) be
holomorphic functions on Q such that f,,(z) — g(z) uniformly on compactsinQasn — oo,
where g(z) is not the zero function. If z, € Qisazero of g(z) of order k > 0, and D,.(zy) C Q
is a disc centered at z, such that the punctured closed disc D_,(zy) \ {zy} contains no
zeros of g(z), then for any large enough n, f,(z) has precisely k zeros in D,(z,) counting
multiplicities.

Proof. Recall that by the argument principle the order k of the zero of g(z) at z, can be
expressed as the contour integral

k= i (J) ‘M dz. (317
27 g(2)
|z—-2zy|=r
Denote by «, the number of zeros of f,,(z) in D,(z,) counting multiplicities. We wish to
express k, similarly as a contour integral over the same circle. This can be done but
requires first checking that f;,(z) does not have any zeros on the circle, which is indeed
true for large n. Let M = inf,_, |_.1g(2)| and note that M > 0 by the assumption that
g(z) has no zeros in the punctured disc D, (zy) \ {zy} and, in particular, on the circle. By
the uniform convergence of f,,(z) to g(z) on the circle there exists an index N > 1 such
that for alln > N, infj,_, |_. [f,(2)| > M/2, so that, in particular, f,(z) also does not have
any zeros on the circle |z — zy| = r as we wanted to show. Thus we have the expression

1 fr(@)
T 2mi fu(2)

|z—zy|=r

dz (3.18)

foralln > N.

Note also that on the circle |z—z,| we have not only the uniform convergence f,,(z) —
g(z), but also that of the derivatives f,{ (z) — g'(z) (recall Theorem 1.39). Combining those
facts, we deduce also that

f(2) g' )
Ja(2) oo g(2)

uniformly on the circle |z — z,| = r. Finally, this, together with (3.17) and (3.18), implies
that

1 g e, 1 g g,
i P @ e ¢ g @K

|z—zy|=r |z—zy|=r

Since k and k,, are all integers, it follows that k,, = k for all sufficiently large n. O
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Corollary 3.18. Let Q c C be aregion, and as in Hurwitz’s theorem, let (f,,(z))p2, and g(z)
be holomorphic functions on Q such that f,(z) — g(z) uniformly on compacts in Q. If the
functions f,,(z) are all injective, then g(z) is either injective or a constant.

Proof. Assume by contradiction that g(z) is not injective and also not a constant func-
tion. Then there exist distinct points a, b, € Q for which g(a) = g(b). We have the con-
vergence f,(a) — g(a), and so, if we define functions ¥(z) and ¢,(z),n =1,2,..., by

Y(z) = g(2) - g(a), ¢n(2) = f,(2) - fr(@),

then ¢,(z) — Y¥(z) uniformly on compacts in Q. Moreover, (z) is not the zero func-
tion. Therefore we are in a position to apply Hurwitz’s theorem. Specifically, note that
Y(b) = 0, and denote the order of the zero at b by k > 1. Let r > 0 be such that the
punctured closed disc D_,.(b) \ {b} does not contain any other zeros of ¢(z) (so, in partic-
ular, it does not contain the point z = a). Applying Hurwitz’s theorem, we conclude that
for all sufficiently large n, ¢,(z) has at least one zero in the disc D,.(b). However, this is
impossible, since ¢,(z) already has one zero at z = a and was assumed to be an injective
function. We have reached a contradiction, and the proof is complete. O

Suggested exercises for Section 3.8. 3.5, 3.6.

3.9 Proof of the Riemann mapping theorem, part II: the main
construction

From now on, let Q be a simply connected complex region with Q # C and z; € Q, asin
the statement of Theorem 3.14.

Lemma 3.19. There exists an injective holomorphic function G : Q — D.

Proof. We know that Q is not the entire complex plane, so take some point a € C\Q. The
function z — z — a has no zeros on Q, so, since Q is simply connected, by Theorem 1.53
there exists a branch of the logarithm function of z — a on it, that is, a holomorphic
function h(z) such that e"® = z —q forall z € Q.

Fix an arbitrary point § € Q, and define a function G : @ — C by

1

O 1 g -z

(3.19)
We claim that G(z) is holomorphic, injective, and bounded on Q; this would imply that
its scaled version F(z) = ¢G(z) is injective and maps into D if ¢ is a small enough positive
constant, which would prove the result.

To establish these properties of G(z), note first that h(z) is injective, since h(z) = h(w)
implies z — a = e"® = "™ = w _q soz = w. Clearly, G(z) = G(w) also implies
h(z) = h(w), so similarly implies z = w, which shows that G(z) is injective.
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Now the claim that G(z) is bounded is equivalent to the claim that
inf|h(z) - (h(B) + 2mi)| > 0.
zeQ

Assume by contradiction that this is not true. Then there is a sequence (z,),2; of points
in Q such that h(z,) — h(B) + 2mi. Exponentiating, we get that

Zy—a= ol S _ ) _ g _ g

n—oo

In other words, z, converges to  as n — oco. However, then we would have that h(z,)
converges to h(f) and not to h(B) + 27i. This gives a contradiction and finishes the proof.
O

Now define the family of functions
F ={F:Q — D : F(z) is holomorphic and injective, F(z,) = 0}.
The family F is not empty: if G(z) is an injective holomorphic function G : @ —» D

guaranteed to exist by Lemma 3.19, then clearly F(z) = ¢(G(z) — G(z,)) is an element of
F if ¢ is a small enough positive number. Define the number A € [0, co] by

A = sup|F'(zy).
FeF

Lemma 3.20. 0 < A < co.

Proof. Let F € F.To bound [F'(z,)| from above, observe that, by the Cauchy integral
formula, if r > 0 is a number for which the closed disc D_,.(z,) is contained in Q, then

N

1 F(w) ’ 1 1
F' =|— é ———dw| < —(@2nr)= F <
Feol=lam § gl e g

since F maps into the unit disc. Since this is true for all F € F, we get that A < % On the
other hand, we claim that |F’ (zp)| > 0, which would show thatA > 0.Indeed, if F ’(zo) =0,
then F(z) has a zero of order at least 2 in z,. By Corollary 1.58, F(z) is not locally injective
in any neighborhood of z,, in contradiction to the fact that F is injective. Thus |F’(z,)|
must be positive. O

We now come to the most important lemma of this section, which contains the key
idea behind our proof of the Riemann mapping theorem.

Lemma 3.21. Given F € F, if F(Q) ¢ D (that is, the image of Q under F does not cover all
of D), then there exists G € F for which |G’ (zy)| > |F'(zy)|.
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Proof. Take some w € D \ F(Q), known to exist by the assumption. Since w is not in the
image of @ under F, the point 0 is not in the image of the composed map ¢, F : Q — D,
where (recall from (3.6) and Lemma 3.9) ¢,,(2) = 7= is the standard automorphism of
D mapping 0 and w to each other. Since ¢,, - F does not take the value 0 and is defined
on a simply connected region, by the construction of nth root functions described in
Section 1.15 there exists a holomorphic branch of its square root, that is, a holomorphic

function S : Q — D satisfying

@) = (9 ° F)(2). (3.20)
Now define G : @ — D by the composition
G(z) = ((03(20) ° 8)(2). (3.2

We claim that G(z) has the properties claimed by the lemma. First,

G(29) = (@2, ° S)(2) = Ps4,)(S(20)) = 0.

Second, note that S(z) is injective since its square is injective as a composition of two
injective maps. Therefore G(z) is also injective. Both of those facts together show that
GeF.

Third and crucially, we wish to show that |G’ (z,)| > |F’(z,)|. To this end, note that
by (3.20) and (3.21), F(z) can be represented in terms of G(z) as

F(2) = 9, (955 ° G)@)°). (3.22)

(This is a key relation that deserves to be digested properly. Take a minute or two to
unwrap all the horrible notation and convince yourself that this relation is correct, and
see if you can find some deeper meaning here.) Alternatively, if we define the function
W:D — Dby

W (@) = 0(950)@)"),
then (3.22) can be rewritten as
F(z) = (W - G)(2). (3.23)
Note that
W(0) = 0(95()(0)") = P (S(20)") = P9 (F(0))) = F(0) = 0.

Thus W (z) satisfies the assumptions of Schwarz’s lemma, and we conclude that |IW'(0)| <
1, and in fact the strict inequality |W'(0)| < 1 holds, since W(z) is clearly not a rotation.
This is what we want, since by (3.23)
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[F'(zo)] = [W'(G(20))G' (z9)] = |W'(0)] - |G' ()],

which gives the desired conclusion that |G'(zy)| > |F'(zo)I. O
Lemma 3.22. The family F is a normal family.

Proof. The functions in F all map into the unit disc, so they are uniformly bounded, and
a fortiriori locally uniformly bounded. By Montel’s theorem, .7 is normal. O

Lemma 3.23. There exists an element F € F for which |F'(z,)| = A, that is, the functional
G |G'(zy)| attains a maximum in the family F.

Proof. Let (F);2; be a sequence of elements of F such that we have the convergence
|F,’1 (zp)] — A.ByLemma 3.22 there is a subsequence (Pnk )roq that converges uniformly on
compacts in Q to some limiting function F : @ — C, which moreover satisfies F(z,) = 0,
since F,(zy) = 0 for all n. Since uniform convergence on compacts implies convergence
of the derivatives, we have that |F'(z,)| = A. Since the F, are all injective, by Hurwitz’s
theorem, F either is a constant function or is injective, but we know from Lemma 3.20
that |F'(z)| = A > 0, and hence F is not a constant and is therefore injective.

Let z € Q. We know that |F(z)| < 1, since it is the limit of functions whose modulus
is bounded by 1. However, F is holomorphic, and hence by the open mapping theorem,
F(Q) is an open set contained in the closed disc {z : |z| < 1} and therefore is contained
in the open disc ID. Thus we have shown that F is an element of 7, and the proof is
complete. O

Proof of existence in Theorem 3.14. Take the element F ¢ F, guaranteed to exist by
Lemma 3.23, for which |F'(z,)| = A. By composing F with a rotation if necessary, we may
assume that F’(z,) is real and positive. By Lemma 3.21, F(z) must be surjective, which,
together with the positivity of F’(z,) and the properties implied by belonging to F, gives
that F(z) is the biholomorphism whose existence was claimed. O

Summarizing, we proved the uniqueness claim from Theorem 3.14 in Section 3.7,
and the existence claim was proved above. This finishes the proof of the Riemann map-
ping theorem.

3.10 Annuli and doubly connected regions

The topic of conformal mapping does not end with the consideration of simply con-
nected regions, where the problem of classifying complex regions up to conformal
equivalence is now essentially settled (at least in principle) by the Riemann mapping
theorem. To conclude this chapter, we give a brief taste of some of the interesting phe-
nomena that arise when we try to classify conformal equivalence classes of regions
that are not simply connected, starting with the next simplest case of regions that are
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Figure 3.2: An annulus A(ry, 13).

doubly connected. A region Q is called doubly connected if the complement C \ Q has
two connected components.®

One important class of doubly connected regions are the annuli. For 0 < ry < 1y, we
denote

A(rl,rz) = {Z . rl < |Z| < 7‘2},

an open annulus centered at 0 with internal radius r; and external radius r, (Fig.3.2).
It turns out that unlike the situation for simply connected regions, these annuli are not
all in a single conformal equivalence class, despite being homeomorphic. The precise
classification is given in the next result, sometimes known as Schottky’s theorem.

Theorem 3.24 (Conformal classification of annuli). Let 0 < r; < ryand 0 < p; < p,. The
annuli A(ry,r5) and A(py, po) are conformally equivalent if and only if

n_»p
ry P2

Proof. “If”:assume that :—; = %' Thenthemapz — %z = %Z is a conformal equivalence
between A(ry,1,) and A(py, p,)-

“Only if”: this is the nontrivial direction. Assume that A(ry, ;) and A(py, p,) are con-
formally equivalent. We start with a normalization that fixes the two inner radii at 1
to simplify things a bit: denote y = ry/ry and v = p,/p;. Then A(1, u) is conformally
equivalent to A(ry,7,) (by the scaling transformation mentioned in the “if” part), and

3 More generally, Q is called k-connected if C \ Q has k connected components and finitely connected
if it is k-connected for some k > 1.
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similarly A(1, v) is conformally equivalent to A(p;, p5). Therefore A(1, u) and A(1,v) are
conformally equivalent to each other. Let f : A(1,u) — A(1,v) be a conformal map. We
can assume without loss of generality that f maps the inner boundary circle |z| = 1to
itself and maps the outer boundary circle |z| = y of A(1, V) to its counterpart |z| = vin
A(1,v); otherwise, f maps the inner circle of A(1, u) to the outer circle of A(1, v) and vice
versa, and in that case, we can get a conformal map that maps the inner circle to itself
by replacing f by f(u/z) (the composition of f with the inversion z — u/z, which is a
conformal automorphism of A(1, u)).

For each 1 < r < y, let y, denote the circular contour {|z| = r}, and let T, = f o y, de-
note its image under the map f. The curve I, is a simple closed curve and hence encloses
a well-defined region (see Theorem 1.26 and the discussion following it in Section 1.8),
which we denote by Q,. The area enclosed by y, is, of course, 77r%. The area of Q, is a
continuous increasing function of r, which we denote a(r). Two important observations
about a(r) are that

A_=lima(r)=m and A, :=lima(r)= e,
rNd r/u

since A_ and A, are simply the areas enclosed by the inner and outer boundary circles
of A(1,v), respectively.
Now we claim that

a(r) > art foralll<r < U (3.24)

This would imply, by taking the limit as r .~ g, that mv* = A, > mu?, so we would get that
v > u. Reversing the roles of the two annuli would imply the reverse inequality v < g,
and we would get that u = v, which is the claim we wanted, and the proof would be
done.

To prove (3.24), we note that a(r) can be evaluated as a contour integral using a
complex-analytic version of Green’s theorem from calculus. Specifically, appealing to
the result of Exercise 3.7, we see that

o o
a(r) = % #Zdz -1 Jf(reit)a(f(reit)) dt = Jf(reif)f’(reit)eit dt. (3.25)

rr

N

Now let
(e8]
f@=) cz" (3.26)
n=-co
be the Laurent expansion of f, which converges uniformly on compacts in the annulus

1 < |z] < p where f is holomorphic (see Theorem 1.65). Substituting (3.26) into (3.25), we
get that
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a(r) = 1 J(Zc_ n ‘"")(Z mc,,r"e im_l)t)reit dt
2 n m
1 27
_Z —n+mJe T[anc|22n
2 nm n=-oo
0
Taking the limit as r \, 1 gives that
o0
Y nle,*=1.
n=-—oo

Now it follows that

o0 [ee]
a(r)-nr* =1 Z nlc,’r*" - n D nic,* =7 > nlc, (¥ - 1).
n=—co n=—co

n=-oo

Since each summand in this last expression is nonnegative, we have that a(r) - ar? > 0,
as claimed. O

Having classified the annuli up to conformal equivalence, we state without proof
an additional result that explains why the family of annuli plays a role in the theory of
conformal mapping of doubly connected regions that parallels the role of the unit disc
in the case of simply connected regions. For the proof, see [2, 6].

Theorem 3.25 (Conformal classification of doubly connected regions). The annuli A(1, p),
p > 1, form a complete set of conformal equivalence representatives for doubly connected
complex regions. That is, if @ ¢ C is a doubly connected region, then Q is conformally
equivalent to A(1, A) for precisely one value of A > 1.

The number mg = % log(A), where A is the outer radius of the annulus to which Q
maps, is called the conformal modulus of Q. Theorem 3.24 guarantees that if such a
number exists, then it is unique, and the much stronger Theorem 3.25 guarantees that
it exists. Thus mg, is an important example of what is known as a conformal invariant.
Much more can be said about mg, including a more direct way to define it that is intrinsic
to Q and does not rely on the idea of conformally mapping @ to an annulus; consult the
references mentioned above for details.

The final component in the discussion of conformal equivalence classes of doubly
connected regions is the identification of the conformal automorphisms of such a region.

Theorem 3.26 (Conformal automorphisms of an annulus). The conformal automorphism
group of the annulus A(ry, 1) is

Aut(A(r;, ) = fz - €%z : 0< 0 <21} U {z — eie% :0<0< 271}.
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That is, the automorphisms consist of the rotations z — ez, together with the composi-
tions of the inversion map z — % with a rotation.

Proof. Exercise 3.9. O

Suggested exercises for Section 3.10. 3.7, 3.8, 3.9.



Exercises for Chapter3 = 145

Exercises for Chapter 3

31

3.2

33

34
3.5

3.6
3.7

3.8

39

If @ and Q' are conformally equivalent with a conformal map g : @ — @', then
describe an explicit group isomorphism between Aut(Q) and Aut(Q").
Let 2y, Zy, Z3, Wy, Wy, W5 be elements of C. Prove that there is a unique Mébius trans-
formation mapping z; to w; forj =1,2,3.
Prove that besides the singleton conformal equivalence classes {C} and {C} de-
scribed above, any other conformal equivalence class K is infinite and in fact con-
tains an infinity of regions any two of which are not images of each other under an
affine transformation z — az + b.
Prove Theorem 3.11.
Show that the assumption of holomorphicity in Montel’s theorem (Theorem 3.16)
cannot be removed; that is, the result properly belongs in complex analysis and
does not have a real analysis analogue (at least not an obvious one).
Show that the real analysis analogue of Hurwitz’s theorem is not true.
The complex-analytic version of Green’s formula from multivariate calculus states
that if y is a simple closed contour in the plane, then the area A enclosed inside y is
given by
1 (-
A= % (j)z dz.
y
Show that this follows from the usual Green’s theorem in real-variable calculus.
Prove that the statement of Theorem 3.24 is also correct under the relaxed assump-
tion0 < r; <r,and 0 < p; < p,, which addresses also the case of “degenerate”
annuli with an inner radius of 0 (that is, punctured discs).
Prove Theorem 3.26.



4 Elliptic functions

The theory of elliptic functions is the fairyland of mathematics. The mathematician who once gazes
upon this enchanting and wondrous domain crowded with the most beautiful relations and con-
cepts is forever captivated.

Richard Bellman, “A Brief Introduction to Theta Functions” (1961)

4.1 Motivation: elliptic curves

Elliptic curves are fascinating objects studied in complex analysis, algebraic geometry,
number theory, cryptography, and other areas of mathematics. An elliptic curve £ is the
set of solutions to an algebraic equation of the form

E: yzzax3+bx2+cx+d 4.1

relating a cubic in x to a quadratic function of y, where the coefficients (and solutions)
are assumed to be elements of some field I, such as the rationals, reals, complex num-
bers, or a finite field. It is often helpful to assume further that the curve is nondegen-
erate, that is, that the cubic polynomial on the right-hand side of (4.1) has no multiple
roots (see Section 4.11 for a related discussion).

To study elliptic curves, it is helpful to first bring equation (4.1) to a simpler canon-
ical form, usually written as

£ Y =4 -gx-g 4.2)

through a standard change of variables; I skip the details of such a reduction. From here
on, we will take (4.2) as the definition of an elliptic curve.

A beautiful and surprising fact about elliptic curves that holds the key to many of
their amazing properties is that they form an abelian group in a natural way. The group
operation, denoted as a kind of “addition” operation P & Q for two points P = (xq,y;)
and Q = (x,,y,) on the curve, can be defined algebraically using a messy and strange
formula that you would never think to guess directly. However, the formula has a sim-
ple geometric interpretation, which is very easy to explain: the idea is that to compute
P & Q, you find the intersection point R = (x3,y3) of the line passing through P and
Q with the curve (other than the points P and Q themselves) and then reflect R in the
y-coordinate to define P ® Q = (x3,—y3); see Fig.4.1. The fact that this construction is
well-defined is tied to the subtle fact that a generic straight line intersects the curve at
precisely three points. (I use the word “generic” because there are also technicalities
involving degenerate cases where the line is tangent to the curve, which means that we
have to be careful in interpreting this definition for a “doubling” operation P + P, or
where one of the three intersection points is not actually there, in which case we add

@ Open Access. © 2023 the author(s), published by De Gruyter. [(co) EXEX=EH] This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-005
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Figure 4.1: An elliptic curve and the group addition law, visualized here for the curve y* = x® — x + % over

the real numbers.

an additional “point at infinity” to serve in its place. I ignore such technical issues in the
current informal discussion.)

Taking the above geometric construction, we can work out by an explicit calculation
that the algebraic expression for the coordinates of the result P & Q = (x3,—y3) of the
group addition of P and Q described above in geometric terms—again, in the generic
situation—are given by the supremely unintuitive formulas

2
_1 M) e
X3 = 1 < X=X, X1 — Xy, 4.3)
3
_y, = J(M)
3 4\ x1 - X,
N (3Y1 = X3y2) — 203y — X31) + 3X3Xp (XY — X) @4
(4 - xp)3

It is far from clear why these formulas should define an associative operation, let alone

a group law (at least the fact that the operation is commutative is easy to see). Even for

the geometric construction, associativity requires some effort to explain (see [62, Ch. 1]).
All of this raises many intriguing questions about elliptic curves in the specific con-

text of curves defined over the complex numbers:

1. Where does the group structure of elliptic curves “really” come from? That is, is
there a conceptual way of thinking about them that makes it easy to see that such a
group addition law should exist and that makes it possible to avoid the need for a
cumbersome calculation to verify that (4.3)-(4.4) define a valid group operation?

2. What does an elliptic curve look like topologically?
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3. Canwe classify all elliptic curves up to conformal equivalence as Riemann surfaces?
That is, how do we determine when two elliptic curves are conformally equivalent,
and how do we parameterize the conformal equivalence classes of elliptic curves?

4. What additional roles exist for elliptic curves within complex analysis? What other
topics or problems do they relate to?

It turns out that all these questions and more can be answered by studying a certain fam-
ily of meromorphic functions in the complex plane, called elliptic functions or doubly
periodic functions. In fact, all members of the family can be obtained from a single
function, the so-called Weierstrass gp-function, denoted ((z), along with its derivative
©'(2); and the map z — (p(2), ' (2)) gives a convenient parameterization of the elliptic
curve &, which does much to explain what the elliptic curve and its group law “really”
look like.

The situation is analogous to what happens in the case of a much simpler group
arising from an algebraic equation, the circle group

St ={(y) e RE : X* 4yt =1}
There too we have an abelian group “addition” law m given by

(4, y1) B (X2, Y2) = (X1Xg = Y1Y2, X1Y3 + Xg)1)-

Although this formula can be easily verified to satisfy the properties of a commutative
group operation through a purely formal calculation, to the uninitiated encountering it
for the first time, the reason why such a group law exists may appear mysterious. For-
tunately, there exists a “circular function” C : R — R that has the following properties:
1. The map ¢(t) = (C(t), C'(t)) maps a real number to an element of st

2. o(t+5s)=0(t)Bo(s) (that is, ¢ is a group homomorphism from (R, +) to (81, |)).

3. o(t+2m) = (), that is, ¢ is periodic with period 2r; equivalently, its kernel as a

group homomorphism is the additive subgroup 27Z of R.

These properties taken together imply that ¢ induces (by the first isomorphism theorem)
a group isomorphism between the quotient group R/(27Z) with “ordinary” addition
of real numbers (which in the quotient group becomes “addition modulo 277”) on the
one hand, and S! with the “exotic” addition law @ on the other hand. That is, the cir-
cular function C(t) and the map ¢ derived from it “linearize” the group operation and
make it apparent that the circle group is topologically a real interval with its two ends
glued together (that is, a circle), with the group operation being addition modulo 27. Of
course, you may have realized by now that the “circular function” is nothing more than
the familiar cosine function C(t) = cost. So in this point of view the cosine function
and its derivative can be thought of as gadgets that help us understand the algebraic
and topological structure of the circle group by parameterizing it in terms of a group
that is easier to understand. As we will see, the situation with elliptic curves and the
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use of the elliptic functions g(z) and p' (z) to parameterize them is quite similar. Also,
as happens with the case of the trigonometric functions, the functions we construct out
of this group-theoretic motivation will end up being useful for many other things.

We now proceed to make precise these somewhat vague notions in a way that gives
substance to the analogy described above. This will lead us to many new and beautiful
ideas that will take us far beyond the familiar realm of trigonometric functions.

4.2 Doubly periodic functions

The cosine and sine functions in the example discussed above are periodic functions
of a single real variable. We now double the dimensions and look for a meromorphic
function of a complex variable that is “periodic” in two different directions in the plane.
Such a function is called a doubly periodic function or an elliptic function. Formally,
we say that w € Cis a period of a meromorphic function f : C - Cif f(z + w) = f(2)
for all z € C. The set of periods of f(z) is denoted A; and is easily seen to be an additive
subgroup of C. We say that a meromorphic function f is doubly periodic if A; contains
two nonzero elements w,, w, that are linearly independent when considered as elements
of a vector space over the real numbers (this is equivalent to saying that the complex
number w,/w; is nonreal). Trivially, if f, g are doubly periodic with the same linearly
independent periods w;, w,, then so are f + g, f3, /% and the derivative f’.

Note that the constant functions have every complex number as a period. This illus-
trates the fact that the pair w;, w, of complex numbers attesting to the doubly periodic
nature of a function f is not unique. To understand the less trivial scenario of a func-
tion f that is doubly periodic but not constant, observe that in that case Ay must be a
topologically discrete additive subgroup of C, for otherwise f can be seen to be constant
by the uniqueness theorem for holomorphic functions (Corollary 1.36 on p. 42), since it
takes the same value on a set of points with an accumulation point. It then follows (see
Exercise 4.1) that A; must be of the form w;,Z + w,Z with nonzero numbers w;, w, that
are linearly independent over R; that is, Ay is a discrete rank-2 subgroup. A subgroup of
C of this form is called a lattice. The subgroup A of periods of a nonconstant doubly
periodic function f is called its period lattice.

Iff is anonconstant doubly periodic function with Ay = w,Z+w,Z, then we say that
wq, W, form a fundamental period pair for f. Not all pairs of periods are fundamental:
for example, if w;, w, is a fundamental period pair, then 2w, 2w, is a pair of periods,
which, while it attests to f being doubly periodic according to the above definition, is
not fundamental since 2w,Z + 2w,Z is a proper sublattice of A¢. On the other hand,
a nonconstant doubly periodic function has infinitely many fundamental period pairs,
since it is easy to see that the representation w,Z+w,Z of a lattice is far from unique; for
example, wZ+w,Z = (w;+kw,)Z+w,Z for any k € Z. A more precise characterization
of when two pairs (w;, w,) and (w], wj) generate the same lattice is given in the following
lemma.
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Lemmad4.. LetL = w,Z + w,Z and L' = w|Z + w}Z. be lattices. Then L = L' if and only
if w and w}, can be represented as

w; = aw; + by, (4.5)

Wy = cwy + dw,, (4.6)
where (‘g Z) is a 2 x 2 invertible matrix with integer entries, that is, a,b,c,d € Z, and
ad — bc = £1.

Proof. Proof of the “if” claim: assume that wj and wj have the form (4.5)-(4.6) with
a,b,c,d € Z,ad - bc = +1. Then w;, w) € W, Z + w,Z. This clearly implies that L' ¢ L. For
the reverse containment, invert relations (4.5)-(4.6) to see that

W, = d w - b w,
Y™ ad-bc ' ad-bc ¥
C ! a !

W, = — o+ W,
27 ad-bc ' ad-bc ?

which, because of the assumption that ad-bc = +1, is a representation of the form (4.5)-
(4.6) with coefficients satisfying the same conditions, but with the roles of the pairs
(wy, wy) and (w], wy) reversed. Therefore L < L', and altogether we have shown that
L=1L"

Proof of “only if”: assume that L = L', that is, w;Z + w,Z = w|Z + w}Z. In partic-
ular wy, Wy € WZ + w7, and w}, wy € W Z + w,Z. 1t follows that there exist integers
a,b,c,d,a,p,y, 6 such that

Wy = aw; +bw,,  w; = aw] + Py,

Wy = Cwy +dwy, Wy = YW + Sw.

Thus we have representation (4.5)—(4.6) with integer coefficients a, b, ¢, d. Moreover,
since the matrices (¢%) and (gg) are inverse to each other and have integer en-
tries, their determinants are also mutually reciprocal integers, so we must have that
ad - bc = +1. O

A doubly periodic function f with a fundamental period pair w;, w, is determined
uniquely by its values on the parallelogram

P, (W, wy) = {zg + tw; + sw, : 0 <t,s<1},

where z; € Cis an arbitrary point. This is geometrically obvious, since if we denote by
L = w,Z+w,Z the period lattice, then C s tiled perfectly by nonoverlapping L-translates
of P, (wy, w,) (that s, shifted copies of the form w+P, (w;, w,) with w € L), and the value
of f(2) for z in some L-translate w+P, (v, w,) reduces by periodicity to the shifted value
f(z-w), whichisin P, (wy, w,). Werefer to P, (w;, w,) as a fundamental parallelogram
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Zotw, /)
- /
/
/
//
)
Zg+w,

Figure 4.2: A fundamental parallelogram P, (wy, ;) and its L-translates.

for f; see Fig.4.2. Note that the fundamental parallelogram depends on the choice of a
fundamental period pair, so the choice of a parallelogram contains some arbitrariness
in the same way that the choice of a fundamental period pair is arbitrary. Moreover, the
additional (also arbitrary) parameter z, allows us to specify the “origin” of the paral-
lelogram,; it is convenient to have that extra degree of freedom to avoid slight technical
complications in some of the results below.

Suggested exercises for Section 4.2. 4.1.

4.3 Poles and zeros; the order of a doubly periodic function

An obvious goal that we have is to construct some nontrivial doubly periodic functions,
assuming that they exist.! To motivate our construction and help convince you that it is
in a sense the simplest one that has any chance of working, it would be helpful to under-
stand what sorts of constraints exist on doubly periodic functions. The next few results
show that there are in fact rather rigid constraints that such functions must satisfy.

1 A tip for the reader: when you are reading a mathematical text and read a definition of a new and
exotic class of mathematical objects, it is a good habit to always ask yourself right away: does such an
object even exist? For, although in the case of a textbook the answer will usually be “yes,” when you are
reading research papers on topics at the forefront of human knowledge, the answer will occasionally be
far from clear even to the writer of the text and may well turn out to be “no.” Even for textbook-level
mathematics, asking this question and spending a few minutes trying to answer it by yourself will often
provide you with insight far beyond what a purely passive reading of the text can offer.
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Proposition 4.2. There are no entire doubly periodic functions other than the constant
functions.

Proof. If f is entire and doubly periodic, then in particular f is bounded on the paral-
lelogram {tw; + sw, : t,s € [0,1]}, which is a compact set. By periodicity, f(z) is also
bounded on all of C and is therefore constant by Liouville’s theorem. O

We see from Proposition 4.2 that a nonconstant doubly periodic function f must
have poles; by applying the same result to 1/f we see that f must also have zeros. Note
that since the sets of zeros and poles of a holomorphic function are discrete, f can have at
most finitely many zeros and poles in any fundamental parallelogram. To avoid certain
technical issues, it is helpful to choose the “origin point” z,, for the fundamental parallel-
ogram P, (w, w,) in such a way that f does not have poles or zeros on the boundary of
the parallelogram. We call a fundamental parallelogram with such a property generic
(for the doubly periodic function f). It is easy to see that a generic fundamental paral-
lelogram exists.

Proposition 4.3. Let f be a doubly periodic function with fundamental period pair w;, w,.
Let P, (wy, w,) be a generic fundamental parallelogram for f. Then

f(z)dz =0, 4.7

aPzU ((1)1,(1)2)

where we consider the boundary oP, (wy, w,) as an integration contour oriented in the
usual way in the positive mathematical direction.

Proof. Decompose the contour I' = 0P, (w;, w,) as the concatenation

F=y1+y,+yYs+ Vs

of four contours y,, ¥y, V3, ¥4 corresponding to the edges of the parallelogram, where y;
is the directed line segment from z;, to z, + wy, y, is the directed line segment from z;, + w;
t0 zy + Wy + Wy;, Y5 is the directed line segment from z, + w; + w, t0 Z; + w,, and y, is the
directed line segment from z; + w, to z,. By the doubly periodic property of f we have

J fz)dz = - J F(w) dw,

N Vs

since the change of variables w = z + w, maps the integral on the left to the one on the
right (including the minus sign). Thus, in the contour integral on T, the contributions
from the integral over the two segments y; and y; cancel each other out. Similarly, by the
change of variables w = z + w; we get a cancelation of the second and fourth segments:

j fz)dz = - J F(w) dw,

%) Va
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so that in total we have

(JSf(z)dz: Jf(z)dz+ Jf(z)dz+Jf(z)dz+ Jf(z)dz: 0,
T

N V2 V3 Va
as claimed. O

Corollary 4.4. Under the assumptions of Proposition 4.3, the sum of the residues of f over
the poles of f in the fundamental parallelogram P, (w;, w,) is zero.

Proof. By the residue theorem the integral on the left-hand side of (4.7) is equal to 27i
times the sum of the residues. O

Corollary 4.5. A nonconstant doubly periodic function with a generic fundamental paral-
lelogram P, (wy, w,) must have at least two poles, counting multiplicities, inside the par-
allelogram.

Proposition 4.6. Let g : C — C be a doubly periodic function with fundamental period
pair wy, w, and a generic fundamental parallelogram P = P, (w,, w,). The sum of the
orders of the zeros of g(z) inside P is equal to the sum of the orders of the poles of g(z) in
the parallelogram, counting with multiplicities.

Proof. Apply Proposition 4.3 to f(z) = %, and note that by the argument principle
(Theorem 1.48) the resulting integral is 2s7i times the number of zeros minus the number
of poles of f in the interior of P. O

The last result enables us to define an important integer parameter associated with
a doubly periodic function, called its order. This is made precise in the next result, which
follows immediately from Proposition 4.6.

Corollary 4.7. Let f be a nonconstant doubly periodic function. There exists a unique in-

teger m > 2, called the order of f, with the following properties:

1. f has exactly m poles, counting with multiplicities, in any generic fundamental paral-
lelogram P, (wy, wy).

2. For any a € G, f(z) assumes the value a exactly m times (that is, the function z —
f(z) — a has m zeros), counting with multiplicities, in any fundamental parallelogram
P, (wy, w,) that is generic for the doubly periodic function f(z) - a.

Proposition 4.8. Let g : C — C be a nonconstant doubly periodic function with funda-
mental period pair w,, w,. Let P = P, (w;, w,) be a generic fundamental parallelogram for
g. Denote by z,, ..., z,, the zeros of g(z) in P, counting multiplicities, and let wy, ..., w,, be
the poles of g(z) in P, counting multiplicities. Then the number

M=

Z]'—
1 k

J

n

1

is a period of f.



154 — 4 Elliptic functions

Proof. Similarly to the proof of Proposition 4.3, we consider the contour integral

28'(2)
dZ)
(J; g(z)

oP

which by the residue theorem is evaluated as Zm’(zj'?=1 zj - Yoy Wi). We use the same
decomposition of the contour oP into four subcontours y;, 1 < j < 4, as in the proof of
Proposition 4.3. Note that by the periodicity of g the images of each of the subcontours
y1 and y, under g(z) (denoted g - y; and g - y,, respectively) are closed curves. Therefore
we can use the same changes of variable as in the proof of Proposition 4.3 to write

[£D g, 180,

;8@ PR ALY
! !
_ J 28 (2) dz—j @+ w)g@+w,)
; &(z) ;. 8z + w,)
!
d .
= —wZ)J ‘Z((ZZ)) dz = —wzgcy ?f = —Ww, - 211iM

for some integer m equal to the winding number (see Section 1.13) of the closed curve
g o y; around 0. (Note that g - y; does not cross 0 because we chose P to be a generic
parallelogram for g.) By similar reasoning,

zg'(2) wg'(w)
dz
(J; g(z) +4> gw)

%) Va

dw = w, - 2mTin

with n € Z. Combining these results gives that the quantity in (4.8) is of the form -mw, +
nw, for integer m, n and hence is a period. O

4.4 Construction of the Weierstrass p-function

We are now ready to construct our first doubly periodic function, the Weierstrass
p-function mentioned at the beginning of the chapter, which occupies a central place in
the theory of elliptic functions. The construction is motivated by the following general
principle that we see in many areas of mathematics: to construct an object with certain
symmetry, it is often helpful to start with a nonsymmetric object and then symmetrize
it by summing over its orbit under the action of the desired symmetry group. Our con-
struction follows this template, although in practice we will need to deviate from it in a
small way. In our situation the symmetry group is the group of translations z — z + w
where w is a period, so this will involve an infinite summation over the elements of the
period lattice L, which leads to slightly delicate issues of convergence. The next lemma
clarifies what kind of summations are well-behaved enough to be useful.
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The symbol

The mathematical symbol g (pronounced similarly to the name of the letter “p,” or sometimes as “Weier-
strass p” depending on the context) used for the Weierstrass elliptic function has an apparently unique
status in mathematical notation as a symbol that is reserved for denoting one mathematical object and
that object alone. Even the distinguished constants 7z, e, and i do not enjoy such an exclusivity! The symbol
g has its own code point in the Unicode string encoding system (U+2118) and its own escape string in the
HTML standard (&weierp;). It seems rather generous of the developers of these computing standards to
go to such lengths to please the fairly small group of mathematicians who use elliptic functions in their
work.

You may wonder how this quirky state of affairs came to be. It appears to have been little more
than a historical accident. Both the function g(z) and the notation for it were introduced by Weierstrass,
who for this purpose used a stylized handwritten lowercase p bearing some resemblance to the Sutterlin
alphabet used in handwritten German during that period in large parts of Prussia. Later authors ended
up adopting not only Weierstrass’s choice of the letter but also his particular stylization of it, and thus a
new symbol was born. For more details, refer to the online discussion [W18].

Figure 4.3: Weierstrass’ legacy in mathematical typography.

Lemma 4.9. Let L c C be a lattice, and let B > 0. The infinite sum

Y ﬁ 4.9

w#0
converges if and only if B > 2.
Proof. Exercise 4.2. O

Theorem 4.10 (The Weierstrass g-function). Fix a lattice L ¢ C. There exists a unique

meromorphic function, called the Weierstrass g-function and denoted p(z), with the fol-

lowing properties:

1. p(z) is a doubly periodic function of order 2 with period lattice L.

2. p(2) has a pole of order 2 at every period w € L, with Laurent expansion around the
pole beginning with

1
©(z) = m +0(z-w) (z- w), (4.10)

and no other poles.
3. p(z) is an even function.

Moreover; the uniqueness already holds for a function satisfying the first two properties
without assuming the even symmetry of o(z).
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Proof. Proof of uniqueness: if p(l) (z) and @(2) (z) are two meromorphic functions satis-
fying properties 1-2, then the function f(z) = p(l) (z)- p(z) (z) is doubly periodic and has
no poles. By Lemma 4.5 it must be a constant. However, its Laurent expansion around
z = 0 has the constant term 0 by (4.10), so in fact f(z) = 0 and @(1)(2) = @(Z) (2).

Proof of existence: we define p(z) as

1 1 1
@)= ;((z —w)? E) @1

This is a doubly infinite sum that can be written more explicitly in terms of a fundamen-
tal pair of periods w;, w, as

ey (1)
2 S \(Z-mwp-nwy)? (M +nwy)? /)
(m,n)#(0,0)

We claim that for any compact K c C, the series obtained from (4.11) by removing (if
necessary) finitely many terms that have poles in K converges absolutely uniformly on
K. This would show that (4.11) defines a meromorphic function on C with poles only at
the points of L where individual summands of the series have poles. To prove the claim,
fix a compact K ¢ C.Forz € K and w € L\ K, making the further assumption that
[w| > 2|z| (which applies to all but finitely many terms in the series), we have

1 _l B wz—(z—w)2 _ 220 — 7
z-w? | | RPz-w?| |0 z-w)?
2lz] l2[* c

< + <—,
lwl(lwl = 12D* ool - 1z)* ~ |

where C > 0is a constant that depends only on K. The absolute convergence of the series
now follows from Lemma 4.9.
Next, observe that g(z) is trivially even, since w ¢ L if and only if 0’ = ~w € L, so

1 1 1
“%zeﬁ+z@4ﬂw_ﬁ>

weL
w#0

- zlz 3 <(—z+1w')2 B (—j)’)2>

w'eL
w#0

1 1 1
2 Xaar ) v

w'eL
w#0
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Next, to prove that g(z) is doubly periodic, differentiate (4.11) termwise to get

, 2 1 1
p(z)_—z—g—zém_—zém. (4.12)
w#0

This infinite series is manifestly doubly periodic, as it is a true symmetrization with
respect to the orbit of the L-action as discussed at the beginning of this section. (In fact,
the expression ), (z - w)~3 is probably the simplest possible formula we can write
that defines a nontrivial doubly periodic function, except that the resulting function is
of order 3 and thus not the “simplest” in the sense of having the smallest order possible.)
Now let w € L, and denote g,,(z) := p(z + w) — p(2). Since

g,2)=¢'z+w) -¢'(2) =0,

that is, the derivative of g, is identically 0, we get that g,(z) is a constant. Taking z =
—-w/2gives g,(z) = p(w/2)—p(-w/2) = 0since p(z) is even. Thus g,(z) = 0 and p(z+w) =
©(z) for all z, which shows that g(z) is doubly periodic.

Finally, note that p(z) has a pole of order 2 at z = 0 with principal part le After
subtracting that principal part, we are left with

1 1 1
o= o)

wEeL

w#0
which is holomorphic in the neighborhood of 0, with the constant term in its Taylor
expansion obtained by setting z = 0 in this expression, which gives

1 1
;<(o—w)2_ﬁ>=°

w#0

This proves the Laurent expansion (4.10) for the case z = 0, and the expansion around
a general period w € L follows by periodicity. O

Note that the construction of the function g(z) depends on the choice oflattice L. For
the time being, we regard the lattice as fixed, but later on, we will start caring more about
this dependence, and it will be helpful to have a notation that emphasizes it. To that end,
two common ways to denote the function g(z) associated with a specific lattice L are as
©1.(z) or as g(z; L). At some point in the discussion, we will also replace L with a complex
variable 7, called the modular variable, which parameterizes the space of lattices in a
convenient way (see Section 4.14). In that context the notation g(z; 7) is used to denote
the Weierstrass g-function including its dependence on both complex variables z and 7.

Suggested exercises for Section 4.4. 4.2.
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4.5 Eisenstein series and the Laurent expansion of p(z)

Let L c Cbe alattice. Define the quantities G,,, n > 3, associated with L by

1
G, = —.
n
wel\0 w

(4.13)

The G, are known as the Eisenstein series. As with the remark above about p(z), the
value of G,, depends on the lattice L, and when we wants to emphasize that, the notation
G,(L) can be used, or G,(7) once we switch to the point of view involving the modular
variable 7. Note that G,,_; = 0 for kK > 2 because of each term associated with w € L
canceling out the term associated with —w. Thus the interesting Eisenstein series are
the even-indexed ones G, Gg, Gg, . . .. As the next result shows, these series are closely
related to the Weierstrass g-function.

Theorem 4.11. The Laurent expansion of p(z) around z = 0 is given by
(z)—l+§(2n+1)c 2L 56,2 456 1 1G4 4.14)
) Z w2 = g 4 6 8 : :

Proof. Keeping in mind the standard Taylor expansion

1

A x? =1+2x+3°% +4° + -+,
-X

we write

“’(Z):zlﬁz((z—lmz _$>:zlz+z<wz(1+<é»2_$>

weL weL
w#0 W#
4

1 1 z z 2 z 3 z
B ORORORORS
Z oW w w w w
w#0
1 1 1)\ 1)\ 3
=?+2< Z —3>Z+3< z F)Z +4< z E)Z + .-
weL\0 weL\0 weL\0

1

= +2Gz+ 3G,2* +4G5z® + 5Gez* + -
1

= + 36422 + 56624 + 7ng6 e,

as claimed. Note that this calculation technically involved a rearrangement of terms in
a double summation (the summation over w € L and the summation over the powers of
z/w in each of the hypergeometric series 1/(1- (z/ w))? being expanded), which needs to
be justified. This is easy to do and addressed in Exercise 4.3. O

Suggested exercises for Section 4.5. 4.3.
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4.6 The differential equation satisfied by p(z)

The first two Eisenstein series G, and G play a special role in the theory of the Weier-
strass g-function and of elliptic curves. It is traditional to define rescaled versions of
them, labeled g, and g3, by

gz = 6064, g3 = 14066 (415)

The quantities g, and g; are known as the elliptic invariants. The role they play is
hinted at by the following result (compare to (4.2)).

Theorem 4.12. The function p(z) satisfies the nonlinear differential equation
0 (@) = 4p(2)° - g0(@) - gs. (4.16)

Proof. Theidea is to consider the behavior of each term in (4.16) near z = 0. Using (4.14),
we have

0(2) = 12 +3G,2* +5Ggz* + 0(2°),
Z

@' (z) = —% +6G,z +20GeZ + 0(2°),
VA

4 24G
o (2} = 5 —224 - 80Gg + 0(z%),

3 1 96 2
P@) = 5+ 2_24 +15Gg + 0(z%).

We see that by taking an appropriate combination of ¢’ (z)z, ©(2),and p(z)3 we can cancel
the pole at z = 0 (and hence all the poles throughout the complex plane, since all of the
functions involved are doubly periodic with poles only at periods). Specifically, we have
the Taylor expansion

©'(2)* - 4p(2)* + 60G,p(z) = —140Gg + O(z) 4.17)

around z = 0. This is a doubly periodic function without poles and therefore a constant
by Proposition 4.2. The value of the constant must be equal to the constant coefficient
on the right-hand side of (4.17), namely —140Gg = —g5. Thus the relation ' (z)? - 4¢(z2)® +
&p(z) = —g3 holds as an identity of meromorphic functions, proving (4.16). O

Corollary 4.13. The function p(z) also satisfies the second-order differential equation

' (2) = 6p(2)* - %gz. 4.18)

Proof. This follows immediately from (4.16) by differentiating both sides and dividing
by 2¢' (2). O
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4.7 A recurrence relation for the Eisenstein series

Starting from the differential equations (4.16) or (4.18) and comparing Taylor coefficients
on both sides, we get interesting identities relating the different Eisenstein series. For
example, the coefficient of 7% on the left-hand side of (4.16) is

~2-2-42Gg + 36G; = —168Gg + 36G3,
whereas the coefficient of z2 of the expression on the right-hand side of that equation is
4-3.7Gg+4-3-3-3G5 - 60 -3G2 = 84Gg — 72G5.

Equating the two and simplifying give the identity

Gg = %Gi- 4.19)
Similarly, inspecting the coefficients of z* and z® on both sides of (4.16) gives two addi-

tional identities of this type, namely

5

GlO = EG4GG, (420)
1 2

GlZ = E(LIZGALGS + ZSGS) (421)

The above idea can be exploited systematically by extracting the coefficient for any
power z2", In the general case, this results in a recurrence relation for the Eisenstein
series.

Proposition 4.14. The Eisenstein series can be computed recursively starting with the two
initial values G4, Gg. Specifically, for any k > 4, we have the recurrence relation

3 k-2

= k-3 @E- Dk D }zz (& = D@k -2 ~ )Gy Gor-- (4.22)

Proof. Expand both sides of (4.18) as a Laurent series in z using (4.14). For the left-hand
side, we have

o0
©"(2) = Z% +6Gy+ Y (21 + 121+ 2)(2N + )Gy, 2™

n=1

For the right-hand side,
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2

1 o0
S Y 2k + 1)Gopyp2™ > -30G,
k=1

1
60(2)° - 782 = (

_Gi

|:2(2n +3)Gonia
n=1

n-1

6
Z 2+ 1)(2(n - ) +1)Gyj12Gopn ])+2]zz + 7 +36G, 306G,

Equating the coefficients of z*" in these expressions gives (4.22). O

An alternative method of proving (4.22) that does not rely on doubly periodic func-
tions is explored in Exercise 4.6; see also Exercise 4.7 for further applications of this
method.

Corollary 4.15. All the Eisenstein series Gy, k > 2, can be expressed as polynomials in G,
and Gg with rational coefficients (that do not depend on the lattice L they are associated
with).

Suggested exercises for Section 4.7. 4.4,45,4.6,4.7.

4.8 Half-periods; factorization of the associated cubic

Let wy, w, be a fundamental period pair for our fixed lattice L. Denote by v;, vy, v the
numbers

1 1 1
Vy = Ewl, Vy = E(A)z, V3 = E(wl + (,Uz), (423)
which we refer to as the half-periods associated with the fundamental period pair
Wy, Wy,

Lemma 4.16. The function ' (z) is a doubly periodic function of order 3. Its zeros in any
fundamental parallelogram P, (w;, w,) that is generic for ' (z) are the unique three points
in the parallelogram that are congruent modulo the lattice L to the half-periods vy, v, vs,
respectively, and they are all simple zeros.

Proof. We know that '(z) is of order 3 since its poles are the periods, and each one is
of order 3 (the principal part is —2/(z — w)3; see (4.12)). Thus there are precisely three
zeros counting multiplicities in a generic fundamental parallelogram, and if we identify
three distinct zeros in such a parallelogram, then they are necessarily all simple. Now
recall that p(z) is an even function, so p' (2) is odd. We also know that the values (@’ (vj)
of ¢'(z) at the half-periods are finite numbers (that is, each v isnot a pole of p'(2)), since

2 We say that two complex numbers a and b are congruent modulo L ifa — b € L.
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' (z) only has poles at periods. Combining these observations we see that for any of the
half-periods v;,

') = ' () = ~'(-v; +2v) = ' (v)). (4.24)

Thus g’ (v;) = 0 forj =1,2,3, and in any generic fundamental parallelogram P, (w;, w,),
the three zeros of ' (z) will be those three points that are congruent to v;, v,, vs modulo L.
O

The values of p(z) at the half-periods are also important. We denote them by
ey, ey, €3, that is,

1 1 1
e = p(z(Ul), e = K)(E(Dz), €3 = p(i(wl + (Uz)). (425)

Lemma 4.17. The numbers ey, e, e are distinct and are the three roots of the cubic poly-
nomial 4x® - g,x — g (Where g, and g, are the elliptic invariants defined in (4.15)), that is,
we have the factorization

43 — g,x — g3 = 4(x — e))(X — &,) (X — e3).
Proof. If we denote h(x) = 4x> — g,x — g3, then, by (4.16),
h(e)) = h(p(v) = 4p)° - gap(v) - & = (') = 0.

Thus e, e,, e; are zeros of h(x). It remains to show that they are distinct. Assume by
contradiction that e; = e, for some 1 < j < k < 3. This would mean that the function
©(z) - & has a zero of order atleast 2 at z = Vj (since p' (v]-) = 0 by Lemma 4.16) and also
a zero of order at least 2 at z = v, counting multiplicities. So in total p(z) — ¢; would
have at least 4 zeros in the fundamental parallelogram Py(w;, w,). This contradicts the
fact that p(z) is of order 2, and the proof is finished. O

The definitions of e, e,, and e; makes it seem like they are dependent on the choice
of a fundamental pair wy, w,. In fact, when regarded together, they depend only on the
lattice itself, as the next result shows.

Corollary 4.18. The numbers ey, e,, €5, considered as an unordered triple of numbers, are
independent of the choice of fundamental period pair w,, w,. That is, if w{, wj is another
fundamental period pair for L and e}, e}, e} are the numbers associated with it analogously
to e, e, €3, then

{e{) eé, eé} = {61, ez, 83}.

Proof. The e; are the roots of the cubic polynomial 4x* - g,x — g3, whose coefficients do
not depend on the choice of fundamental pair. O
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4.9 p(z) and p'(z) generate all doubly periodic functions

We say that a function f is L-periodic or periodic with respect to L if any w € L is a pe-
riod of f. Our general discussion of doubly periodic functions earlier in the chapter mo-
tivated and complemented our explicit construction of the Weierstrass g-function, but
it seems desirable to give an explicit way to generate all doubly periodic functions with
respect to a fixed lattice L. The next two theorems give an elegant solution to this classi-
fication problem, which highlights the central role played by the Weierstrass p-function
in the theory of doubly periodic functions.

Theorem 4.19. Let L c C be a lattice. The set of even meromorphic functions that are
periodic with respect to L coincides with the set of functions of the form

f(2) = R(p(2)), (4.26)

where R(w) is a rational function.

Proof. 1ff(z)is of the form (4.26), then clearly f(z) is even, meromorphic, and L-periodic.
Conversely, let f(z) be even, meromorphic, and L-periodic. Assume that f(z) is non-
constant, since otherwise there is nothing to prove. Fix a fundamental parallelogram
P =P, (w;, w,) that is generic for f; as an extra precaution, choose this P in such a way
that it does not contain any points of L on its boundary (it is easy to see that this is pos-
sible). Now define the even doubly periodic function

 TTjae@) - p(ay)

= m ) (4.27)
[Tx=1(p(2) = p(by))

g(z)

whereay,...,a,,b;,...,b,, are some points in P that will be specified shortly. The plan for
the proofis as follows: we will find values for these points for which g(z) defined by (4.27)
has the same zeros and the same poles in C\ L as f(z) (counting with multiplicities). We
will then show that this property implies that f(z) = cg(z). Thus f(z) would be of the
form (4.26), and the claim would be proved.

To show that points ay, ..., ay, by, . .., b, with the desired properties exist, consider
the zeros first. The key property we need is the following claim: if the list of zeros of f(z)
in P that are not elements of L, counting with multiplicities, consists of points ¢y, ..., ¢,
then v = 2n is an even number, and we can order the points in pairs ¢;;_j, ¢,; so that for
each 1 <j < n, cy_4 is congruent to —c,; modulo L (that is, ¢;;_y + ¢;; € L). To prove this,
let a be any of zero of f(z) that is not in L, and let u denote its order. We consider two
cases: first, if a is not a half-period, that is, a is not congruent to —a modulo L, then since
f(z) is even, —a is also a zero of f(z) (and of the same order as a), so the list of zeros that
are notin L has anumber f € P that is congruent to —a modulo L, is distinct from a, and
appears in the list of zeros the same number u of times as a does. Thus we can pair up
the u appearances of @ with the u appearances of § as required.
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Next, consider the case where a is a half-period. In that case, we claim that the mul-
tiplicity i of a as a zero of f(z) is an even number, so the required pairing would simply
be u/2 pairs of a, a. The justification for this claim is that a being a zero of f(z) of order
u means that

f@=f@=f"@=-=f*"@=0 fPa=o0.

However, we also know that f is even, and therefore any derivative f @ (z) of f of even
order is also even, and any derivative f#~(z) of f of odd order is an odd function. Then
by a calculation similar to (4.24), taking into account that 2a € L, we get that

@ =¥V a) = f UV ar 20) = f UV @),

whence f%Y(a) = 0 forj > 1. Since f*(a) # 0, u must be even.

Having shown that the zeros ¢y, ..., ¢, can be matched in the way claimed above,
we now define the numbers a;,...,a, by a; = ¢, 1 < j < n, that is, we include in the
lista,, ..., a, asingle representative from each pair ¢,;_j, ¢;;. The numbers by, ..., by, are
now defined by repeating the same construction as with the zeros but for the function
1/f instead of f.

We defined the numbers a,, ..., a, and by, ..., b,,. They were all chosen as elements
of P\ L, so that p(aj) and g(b, ) are all finite complex numbers; thus the right-hand side
of (4.27) is a well-defined expression.

We now claim that g(z) has the same zeros and poles as f(z) in P \ L, counting mul-
tiplicities. Let @ € P \ L be a zero of f(z) of order y. Denote by  the unique point
in P for which g is congruent to —a modulo L. Again, we consider the cases where a
is a half-period or not a half-period separately. If a is not a half-period, then by our
construction the list of numbers ay, ..., a, includes u numbers y that are equal to ei-
ther a or . Each of them corresponds to a factor in the numerator of g(z) of the form
©(z) — p(y) = p(2) - p(a) = p(z) — p(B), which is a function that has simple zeros at a
and at § and no other zeros or poles in P \ L. None of the other factors in the products
that make up the numerator and denominator of g(z) have a zero or pole at a. Thus the
order of the zero of g(z) at ais u.

In the case where a is a half-period, we have a = f. The function h,(z) = p(z) - p(a)
has a double zero at a (the point z = a is a zero of h,, of order at least 2, since both h, and
its derivative vanish there, but h, is a doubly periodic function of order 2, so the order
of the zero is exactly 2) and no other zeros or poles in P \ L. This function was included
u/2 times in the product in the numerator of g(z), and again, none of the other factors
in the products in the numerator and denominator of g(z) has a zero or pole at a. So in
this case, we also have shown that the order of the zero of g(z) at a is u.

We showed that the zeros of g(z) in P \ L match the zeros of f(z) in P \ L, with the
same multiplicities. Applying the same reasoning to the poles (that is, comparing the
zeros of 1/f(z) with those of 1/g(z)) shows that the poles of g(z) in P \ L match the poles
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of f(z) in P \ L and their multiplicities. The conclusion is that the function f(z)/g(z)
is a meromorphic L-periodic function all of whose zeros and poles are elements of L.
However, such a function must be constant: for otherwise, if it had a zero of any order
atz = 0, then by periodicity it would have a zero at any w € L and therefore no poles,
and similarly, if it had a pole at z = 0, then it would have a pole at all w € L and therefore
no zeros. Since we know that any nonconstant doubly periodic function must have hoth
zeros and poles, neither of those situations can occur.

To summarize, we proved that f(z) coincides with the function cg(z) for some con-
stant c, as claimed. The proof is complete. O

Theorem 4.20. Let L c C be a lattice. The set of meromorphic functions that are periodic
with respect to L coincides with the set of functions of the form

f(Z) = R(@(Z), @/(Z))’ (428)

where R(&, {) is a rational function in two variables.

Proof. Iff is of the form (4.28), then it is meromorphic and L-periodic. Conversely, given
a meromorphic and L-periodic function f, decompose f(z) in the standard way as a sum
f(z) = g(z) + h(z) of an even function g(z) and an odd function h(z), where

h(z)

g(Z) — f(Z) +2f(_Z)’

_f@)-f(-2)
=

Now note that g(z) is an even L-periodic function and therefore by Theorem 4.19 can be
represented as a rational function in g(z). Similarly, h(z) is an odd L-periodic function,
which means that h(z)/g'(2) is even and L-periodic. Therefore h(z) can be represented
as g'(z) times a rational function in g(z). Combining the two representations for g(z)
and h(z) gives the desired representation for f(z). O

Suggested exercises for Section 4.9. 4.8,4.9.

4.10 gp(z) as a conformal map for rectangles

Among the remarkable properties of the Weierstrass g-function, it provides a solution
to the natural geometric problem of conformally mapping a rectangle onto a half-plane.
This happens in the case where the associated lattice L is a rectangular lattice, that is,
when it is of the form L = Z + i{AZ for a real parameter A > 0. The precise result is as
follows.

Theorem 4.21. Let A > 0, let L = Z + iAZ be a rectangular lattice, and let p(z) = p(z; L)
be the associated Weierstrass elliptic function. The map (z) restricted to the rectangle
R=(0, %) x (0, lA) is a conformal map from R to the lower half-plane {z : Im(z) < 0}.
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Proof. Denote by R’ the closed rectangle [0, %] x [0, 1A]. First, note that the restriction
of p(z) to R' is injective. Indeed, a = 0 is the unique point in R’ that gets mapped to co.
On the other hand, if a € R"\ {0}, then the function @(z) - p(a) has simple zeros at a and
1+ iA — a and (since p(z) is a doubly periodic function of order 2) at no other points in
the fundamental parallelogram Py(1,iA). When a = (1+iA4)/2, those two points coincide,
and for any other a € R’ \ {0}, the second zero 1 + iA — a is not in R'. This proves the
injectivity claim. It follows that @(z) maps R conformally to its image ©(Q).

To understand why the image () is the lower half-plane, it is helpful to examine
the behavior of p(z) as one traverses the boundary dR of the rectangle in an anticlock-
wise direction, starting at 0. Denote e; = (1/2), e, = @(iA/2), e3 = p((1 + iA)/2) as
in (4.25). We claim that oR is mapped under (z) to the real line (including the point
at infinity, the image of 0). More specifically, the numbers e;, e,, e; have the ordering
—00 < €, < e3 < € < 00, and as z moves successively along the four boundary edges
[0,1/2], [1/2,(1 + iA)/2], [(1 + iA)/2,iA/2], and [iA/2, 0],3 the image (z) descends from
+00 to e; (the image of the first boundary edge), then from e, to e; (second boundary
edge image), then from e; to e, (third boundary edge image), and finally from e, to —co
(fourth boundary edge image).

This geometric picture is easily justified by the following list of simple claims.

1. (z) takes real values on the segment (0,1/2).

Proof. This is immediate from (4.11).
2. (2z) is decreasing on (0,1/2].

Proof. The derivative () is nonzero everywhere in R’ except at the three points
1/2,(1+1iA)/2, and iA/2. Thus p(t) regarded as a function of a real variable ¢ € (0,1/2]
is monotone. It must be decreasing rather than increasing, since the Laurent expan-
sion (4.10) around w = 0 implies that

1}{8 ©(t) = +oo
(in the sense of ordinary real limits from calculus).

3. (z) takes real values on the segment [1/2, (1 + iA)/2].

Proof. By representation (4.12) for the derivative of p(z), we have

! 1 . ].
el -+it)=-2 T - .
2 mnez (5 + it —m —iAn)®

3 Here we use the notation [a, b] to denote the directed straight line segment connecting a point a to
another point b. Similarly, the notations (a, b), (a, b], and [a, b) are further used to denote open and half-
open straight line segments, consistently with the usual notation for intervals from real analysis.
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S s e
nezmol 5 +it-m—iAn)® (3 +it - (1-m) - iAn)?
>

1 1
[ 1 i 37" 1, 3
nezm=1t (3 —m+1i(t — An)) (m- 3 +i(t - An))
This represents (@' (% + it) as a sum of terms of the form

22
1 1,68y

ar P (xR Oy

over pairs x = 1/2 - mand y = t — An (both real numbers if ¢ is assumed real). Thus
we see that p’ (z) takes imaginary values on the segment [1/2, (1 + iA)/2]. Since we
already know that g(1/2) is a real number, we get that

1/2+it
(172 + it) = p(1/2) + J @ (2)dz
1/2

isalsoreal for 0 < t < A.
4. (z) is decreasing on the segment [1/2, (1 + i4)/2].

Proof. Again, from the knowledge of where ' (z) takes nonzero values we conclude
that the function t — ¢(1/2 + it) is monotone for 0 < t < A. Again, it is not only
monotone but in fact must be decreasing: if it were increasing, then p(1/2 + it) for
0 < t < Awould be a real number in (e;, co). That is impossible, since as discussed
above, p(z) is injective on the closed rectangle R', and the real numbers in (e, co)
were already shown to belong to the image of the interval (0, 1/2).

Using similar arguments, it is not difficult to verify the following additional claims:
5. g(z) takes real values on the segment [(1 + iA)/2,iA/2].

6. g(z) is decreasing on the segment [(1 + i4)/2,iA4/2].

7. g(z) takes real values on the segment [i4/2,0).

8. (2) is decreasing on the segment [iA/2,0).

This completes the explanation about the mapping properties of p(z) on the boundary
of R. Now since g(z) maps the rectangle boundary to the real axis and is injective on
R', we see that R itself must get mapped either to the lower half-plane or to the upper
half-plane. Appealing again to the Laurent expansion (4.10), we see that for z in R that is
close to 0 (for example, z of the form e(1 + i) where € > 0 is small), (z) lies in the lower
half-plane, so @(R) is the lower half-plane, as claimed. O

Fig. 4.4 illustrates how the Weierstrass p-function associated with the square lattice
Z? can be used to conformally map a square to the unit disc.
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Figure 4.4: For the square lattice Z* = Z + iZ, if we take ¥ to be any conformal map from the lower half-

plane to the unit disc, then the map z — ¥ o p(z) maps the square (0, %) x (0, %) conformally onto the unit

disc. The figure shows the action of the map in the case where p(w) = J\/Lii %.

4.11 The discriminant of a cubic polynomial

The discriminant of a complex polynomial p(z) = a,z" +--- + @,z + a, of degree n > 1
is defined by

A =@ [T @-z)s (4.29)

I<i<j<n

where z;,...,z, denote the roots of p(z), counting multiplicities. Note that this defini-
tion does not depend on the ordering of the roots. Trivially, p(z) has multiple (that is,
nonsimple) zeros if and only if A, = 0. What in addition makes A, a useful quantity is
that it is of the form afl"‘z multiplied by a symmetric polynomial in the zeros of p(z),
and therefore, by a standard result from algebra, it can be expressed as a polynomial in
the coefficients of p(z), providing an explicit criterion for checking if a polynomial has
multiple zeros. For example, for a quadratic polynomial p(z) = az* + bz + ¢, we learn in
basic algebra that A, = b* - 4ac. The derivation is trivial.

If p(z) = 42° — az - b is a cubic polynomial given in the “reduced” form we are using
for our elliptic curves discussion, then the formula expressing the discriminant in terms
of the coefficients a, b is less well known, and its derivation is a bit less trivial.

Lemma 4.22. The discriminant of the cubic p(z) = 4z° — az — b is given by

A, = 16(a® - 27b%). (4.30)

p

We note that in some books, the discriminant of a cubic polynomial 42> — az - b =
4(z - 21)(z — 2,)(z — z3) is defined as 16(z; — zz)z(z1 - 23)2(22 - 23)2, which differs from
our definition (4.29), the usual definition for general degree n polynomials, by a factor
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of 1/16. For that alternative scaling, the correct formula would bhe Ap = a® - 27b%. See
also (4.35).

Proof of Lemma 4.22. Denote the zeros of p(z) by z;, z,, z;. By comparing coefficients of
powers of z in the equation

p(z) = 472 —az-b = 4z -21)(Z-29)(z - 25)
we get the relations

‘lll ::Z1+Z2+Z3:0,

‘uz = lez + 21Z3 + 2223 = —g,
= Z9Z9Zs = b
U3 = 212373 = i
Next, differentiate p(z) to get that
P'(2) = 4z - 20)(Z - 2) + 4z - 2,)(2 — 23) + 4z - 2) (2 - 23),
so in particular

P (z)) = Az, - 2,)(2, - 23),
p,(zz) =4(zy - 2¢)(2 — 23),

p'(25) = 4(z3 — 2)(23 — Z,).
Therefore

A, = —4p' (2))p' (2,)p' (23).
On the other hand, p'(z) = 122% — a, so we get that

A, = -4(122 - a)(1225 - a)(122 - a)

= —A[12°20257% —12°a(Z22% + 2375 + 2225) + 12a% (22 + 25 + 25) - ). (4.31)

In this expansion, we have that

2
222 o2 b
22523 = U3 = —, 4.32
1223 = H3 = 76 (4.32)
2., .2, .2 2 _ _a
Zy + 2y + 25 = (Zy + Zy + Z3) —2(zlzz+zlz3+zzz3)_0—2yz_z. (4.33)

This also gives that
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2

a 2 2
i Uy = 4(212y + 2123 + ZyZ3)

= 4(2%25 + zfzg + zgzg) +8212925(21 + Zo + Z3),

which yields the relation
20 22 22 @
02+ 123t Bl = 1 (4.34)

Substituting (4.32), (4.33), and (4.34) into representation (4.31) for Ap gives finally that

b? a a
A, = —4<123— VR a3> = 16(a’ - 27b%),
16 16 2

as claimed. O

4.12 The discriminant of a lattice

Let L c C be alattice, and let g, g5 be the associated elliptic invariants defined in (4.15).
The quantity

A=gs-27g; (4.35)

is called the discriminant of the lattice L. In the context of the theory of modular forms,
which is the subject of the next chapter; it is called the modular discriminant. Note that,
as we see from (4.30), A is simply the discriminant of the cubic polynomial 4z° — g,z — g5
(with the different scaling convention mentioned after the statement of Lemma 4.22).
By (4.29), (4.30), and Lemma 4.17 it can also be rewritten as

A =16(e; — ;) (e; — e3)"(e, — €3)’, (4.36)

where ey, e, e are given by (4.25). We also get the following conceptually important re-
sult.

Corollary 4.23. The discriminant A of a lattice L is always nonzero.

4.13 The J-invariant of a lattice

Another important parameter associated with a lattice L is known as Klein’s J-inva-
riant. It is defined by

& &
A gd-27g2
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which evaluates to a complex number since A is never 0. Klein’s J-invariant plays an
important role in the theory of modular functions and modular forms, and we will have
more to say about it later; see Sections 5.9-5.10.

4.14 The modular variable 7: from elliptic functions to elliptic
modular functions

Up until now, we considered the Weierstrass elliptic function associated with a specific
fixed lattice L and denoted it by (z), letting the dependence on L remain implicit in the
notation. However, it turns out that there is much to gain from considering the lattice it-
self as another variable the Weierstrass g-function and other related quantities depend
on. Moreover, while a priori it might seem that “functions of a lattice-valued variable”
are a cumbersome notion to attempt to study, it turns out that we can encode the depen-
dence on the lattice in a natural way with a single complex variable, called the modular
variable and denoted 7. From this new point of view, the function g(z) (which, as we
have also said, can sometimes be denoted g(z; L)) becomes a function of two complex
variables, now denoted g(z; 7). Historically, the functions that we now refer to as elliptic
functions were known as elliptic modular functions to signify this double dependence
on the variable z, with respect to which they are doubly periodic, and the variable 7, the
dependence on which has its own interesting flavor, captured by the term “modular.”
This term seems to be mostly used in older textbooks.

To explain the connection between L and 7, note that our convention to represent
lattices as L = wyZ + w,Z involve certain degrees of freedom that are not interesting
in the sense that they can easily be eliminated and play no further role in the analysis.
First, the ordering of w;,w, is immaterial; that is, the ordered pair w,, w, represents
the same lattice as w,, w;. We can get rid of this double representation of lattices by
considering the pair w;, w, to come ordered in such a way that the parallelogram with
vertices 0, w;, Wy + Wy, W, is “oriented in the positive direction.” Equivalently, this means
that their quotient w,/w, lies in the upper half-plane.

Second, lattices can also be scaled and rotated; that is, a pair w;, w, representing
the lattice L = w,;Z + w,Z can be replaced by w] = Aw;, 0} = Aw, for some scalar
A # 0 to obtain the lattice L' = w{Z + wjZ. Although L' are L are technically distinct
lattices, from the point of view of complex analysis, they are equivalent in the sense
that the Riemann surfaces C/L and C/L' are conformally equivalent via the scaling map
z — Az; meromorphic functions that are L-periodic are trivially in bijection with those
that are L'-periodic; the Weierstrass g-function associated with L is in a simple relation
to the p-function associated with L'; etc. Formally, we say that lattices L, L' related by
L' = AL for some A # 0 are homothetic. The above remarks can be summarized as
saying that our main interest is in understanding lattices up to the equivalence relation
of homothety.
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For this reason, we now define the modular variable

w
T=-2,

Wy
a parameter taking values in the upper half-plane H, and which we consider to be canon-

ically associated with the lattice
L. =Z+1Z.

Asremarked above, this lattice is equivalent via a rescaling operation as described above
to the lattice

L = wlz + wzz.

With this notation, the original lattice L and fundamental period pair w;, w, need not
play any further role in the analysis.

As we will see in the next chapter, the transition to the parameterization of lattices
using the modular variable 7 will reveal many additional layers of depth and beauty
to the theory and open up a new complex-analytic area to explore, that of the modu-
lar surface and various families of meromorphic functions that are associated with it,
which are known as modular functions and modular forms.

4.15 The classification problem for complex tori

You might have noticed by now, or seen it pointed out somewhere, that the doubly pe-
riodic functions we have been studying can be naturally identified with functions on
a quotient space C/L in which we consider points z,z' as equivalent if they are con-
gruent modulo the lattice L. This quotient space (which is indeed a quotient group) is
topologically homeomorphic to the torus T2 = S' x S!, a compact surface. It also comes
naturally equipped with the structure of a Riemann surface, inherited from C (in this
book, we will not discuss the formal details of how this structure is set up, but at an in-
tuitive level, it is not hard to appreciate that quotienting by a discrete subgroup leaves
the complex structure “locally” similar to that of a normal complex region Q), so when
thought of in that way, we refer to it as a complex torus. The doubly periodic functions
that are periodic with respect to the lattice L, which are the meromorphic functions on
C that “respect” the equivalence relation of congruence modulo the lattice, can be seen
from this point of view as simply meromorphic functions on the complex torus C/L. So
the theory of doubly periodic functions is precisely the study of the complex-analytic
structure of complex tori.

This way of thinking takes us back to the discussion of conformal mappings from
Chapter 3 and the problem of classifying complex regions, or in the current context Rie-
mann surfaces, up to conformal equivalence. Each lattice L gives rise to its own complex
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torus, but what can be said about how to decide when one complex torus C/L is biholo-

morphic to another complex torus C/L'?* (Note that there is no hope for a complex

torus to be biholomorphic to anything that is not topologically a torus, such as an ordi-

nary complex region Q c C, since conformal equivalence is stronger than topological

homeomorphism.) Thus we arrive at the classification problem for complex tori. This

consists broadly of several related questions:

1. First, what are necessary and sufficient conditions that two lattices L,L' ¢ C must
satisfy for the biholomorphism relation C/L = C/L’ to hold?

2. Second, can we find a nicely behaved set of representatives covering all conformal
equivalence classes for the tori C/L, with each class being covered exactly once?

3. Third, can this set of representatives be parameterized using a canonical “invariant”
of some kind to make its description even simpler? (What this means exactly will
become clearer later.)

Before you continue reading, pause for a minute to think what you might expect a solu-
tion to this classification problem to look like, keeping in mind some of the phenomena
we discussed in Chapter 3, such as the Riemann mapping theorem and the classification
of annuli and doubly connected regions up to conformal equivalence.

We will have to develop some additional theory to fully answer these questions. As
we will see, the answers are related to the theory of modular forms, discussed in the
next chapter. For now, we can formulate an initial attempt at a solution that answers
the first of the questions formulated above. The remaining questions are answered in
Sections 5.5 and 5.11.

Theorem 4.24 (Classification of complex tori: first part). Let L,L' ¢ C be two lattices in

the complex plane.

(@) The complex tori C/L and C/L' are biholomorphic as Riemann surfaces if and only
if the lattices L and L' are homothetic.

() IfL,L' are given explicitly as

L=wZ+wZ, L =wZ+wZ, 4.37)

in terms of respective fundamental period pairs (w;, w,), (v}, w}) for the two lattices,
then the homothety condition in part (a) is satisfied if and only if

W, cw, + dw;

Wy _ aw, + bwy

for some a,b,c,d € Z such that ad — bc = +1.

4 When talking about Riemann surfaces, it seems a bit more customary to use the term “biholomorphic”
rather than “conformally equivalent”, although the two terms are generally regarded as synonymous.
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Proof. (b) It is immediate from Lemma 4.1 that L and L' given in (4.37) are homothetic
if and only if

Wy = Aaw; + Bw,),

wh = Alywn + Suy)

for some complex number A # 0 and integers a, §,y, 6 € Z such that a8 — By = +1. It is
easy to see that this is equivalent to the condition described in the theorem.

(a) We start by proving the “if” part of the claim. Assume that L' = AL with A’ # 0.
Define the map f : C/L — C/L' by

fz+L)=Az+L,

that is, the map taking the coset z + L in the quotient group C/L to the coset Az + L'
in the quotient group C/L'. We claim that f is well-defined (i. e., that the definition is
independent of the choice of a member z of the coset). Indeed, if z;, z, are members of
the same coset of C/L, thatis, z; + L = z, + L, then

/’121 +L, = /1Z1 +/1L :A(Zl +L) = A(ZZ +L) = AZZ +LI,

s0 Az; and Az, are in the same coset of C/L’.

It is easily checked that this map also respects the Riemann surface structure of
the quotient groups C/L and C/L’, that is, that it is holomorphic. Applying the same
reasoning with the roles of I and L' swapped, the map g : C/L’ — C/L defined by

gw+L)=21"'w+L

is a well-defined holomorphic map of C/L’ into C/L, and trivially g and f are inverse to
each other, thus the two surfaces are biholomorphic.

Now we prove the “only if” part, which is the less obvious part. Assume that C/L =
C/L' (meaning that the two tori are biholomorphic), and let f : C/L — C/L' be a biholo-
morphism. We can assume without loss of generality that f maps the zero coset 0 + L to
the zero coset 0 + L' (otherwise, replace f with its composition with a translation map
z+ L'+~ z+a+ L' for a suitable a). Motivated by the proof of the “if” part above, it
seems natural to ask whether f can be represented as a map of cosets inherited from
an “ordinary” complex-valued function of a complex-valued parameter. In other words,
we look for an entire function f : C — C for which

fz+L)=f(@z)+L' (4.38)

forall z € C.Schematically, it is helpful to think of such f as the “solution” to the problem
of completing the dashed line in the commutative diagram
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o

c/L —— g

where ¢; : C — C/L and ¢, : C — C/L’ denote the quotient maps associated with the
quotient groups C/L and C/L’, respectively. That is, ¢; and ¢, are given by

0 (z)=z+L, op(w)=w+L"

If you have studied topology or other areas of mathematics where such diagrams appear,
you are probably aware that the question of when we can “solve” such an equation in
the unknown map is a rather subtle one in general; in our particular situation, it will
not be very hard, fortunately. If such f exists, it is often referred to as a lifting of f (with
respect to the quotienting maps ¢;, ¢;/ that “descend” from the “upstairs” part of the
diagram to the “downstairs” part).

Now assume that such f can be shown to exist—we will prove this shortly. Since
f(0+L) = 0+L', we must have f(0) € L, and again we may assume without loss of
generality that £(0) = 0 by replacing f by its composition with translation w — w — £(0)
if necessary.

The function f is entire by assumption. We claim that it is in fact a conformal au-
tomorphism of C. The reason is that if g : C/L' — C/L denotes the inverse map to
f, then the same assumption we made above about the existence of a lifting for f also
implies that there exists a lifting for g, that is, an entire function g : C — C such that
gw+L") = gw) + Lforallw € C. Then it is easy to see that the fact that f and g are
inverse to each other or, in other words, that f - g is the identity function, together with
the normahzationf(O) = 0 = g(0), implies also that the compositionf o g of the lifted
maps coincides with the identity function at least locally in a neighborhood of 0; and
similarly for g - f. Therefore by analytic continuation in fact f g and g - f both coincide
with the identity function globally on all of the complex plane. Thus we see that f and g
are inverse maps, and thus f is an automorphism, as claimed.

Now we can apply the classification theorem for automorphisms of the complex
plane (Theorem 3.3) and conclude thatf(z) is of the formf(z) =Az+bwith A # 0.In our
case, f(0) = 0,50 b = 0 and f(z) = Az. In that case, for any w ¢ L, we have

L'=0+L' =f0+L)=f(w+L)=f(w)+L = w+L,

so Aw € L'. This proves that AL < L'. Applying the same reasoning to the inverse map
gw) = f1(w) = A~w gives the opposite inclusion AL > L, so finally we get that L' = AL,
as claimed.

It remains to prove the existence of the lifting f of f. The reason why it exists is
fundamentally a topological one and has to do with the notion of a covering map. I will
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sketch the argument, which is somewhat abstract and uses some background from the
theory of Riemann surfaces, and then also provide a self-contained proof that manages
to avoid any Riemann surface machinery.

The abstract explanation is as follows. In a general version of this situation, visual-
ized by the diagram

u —— 7V

in which X, Y, U,V are Riemann surfacesand ¢ : X — U and ¢ : Y — V are covering
maps, a theorem from Riemann surfaces says that the lifting f is guaranteed to exist if
the Riemann surface X at the top-left corner of the diagram is simply connected. (In that
case, X is called the universal cover or universal covering space of U.) Fortunately,
we are in precisely that scenario. So if you are familiar with that result, then the proof
is complete, and no more effort is required.

Now for the self-contained argument: the function f - ¢; is a holomorphic map from
Cto C/L'.Letz, € C.Bythe definition of the Riemann surface structure on C/L’, in some
open disc U, centered at zy, this map is represented by an ordinary holomorphic map
&;, : Uy, — Csuchthat f o g, = @ o g, , thatis,f(z+ L) = g, (z) + L' forallz € U, .

It is also easy to see that any other holomorphic map h : U, — C representing f in
such a way will have the form

h(z) = g,,(2) + w' (4.39)

for some w’ € L'. This is because the assumption on 8, and himplies that h(z) - g, (2) €
L' for any z € U, , 5o (4.39) has to hold for some w' € L' that might depend on z; but
z h(z) - 8z, (z) is a continuous function of z, UZO is connected, and L' is discrete, so in
fact the ' has to be the same for all z € U, .

Observe further that for any h as above, again by (4.39) we have b’ = gZ’O, that is,
the derivative gZ’U (2) is actually independent of the choice of g, from the set of possible
choices. By similar reasoning it is also easy to check that if zy, z; € C have the property
that U, nU, # 0, then gz’0 and gz’1 agree on U, N U, . We can therefore define a global
(entire) function H : C — C such that HIUZO = gz’0 for each of the local representation
functions g, .

Now let f : C — C be the primitive of H satisfying f(0) = 0 (guaranteed to exist by
Corollary 1.25). We claim that f satisfies the claimed property (4.38) of being a lifting for
f. This equation is true for z = 0 by definition. Moreover, assume that we already know
that f(zy + L) = f(zo) + L' for some z, € C. We claim that this implies the same property
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fz+L)=f(z)+L forallz e U,, (the open disc centered at z, as above). This is because
in that disc we can write

f@+L) = (f0)2) = (9 ° £,)@) = ¢1,(&,,(2)
=0y (gzo(zo) + jgz’o(w) dw)
=Qp (gzo(zo) + jH(W) dw)

Zy

= 01:(8,,(20) + f(2) - f(2))

= 01(85,(20)) + 91 (f(2)) — 91 (f (29))
= f(01(20) + 00 (F@) - o1 (F(20)) = 91 (F(@) = f(2) + L',
where we use the fact that ¢; is a group homomorphism (and use “+” to denote addition

both in € and in the quotient group C/L’).
The conclusion from the above discussion is that if we define the set

E={zeC:(fo0)@) = (9 -f)(2)}

(the set of points for which (4.38) holds), then E is nonempty (it contains z = 0) and open.
Moreover, E is a closed set: if (z,,);l“;1 is a sequence of pointsin E and z, — £ asn — oo,
then

(F o 91)(@ = (f o @) lim 2, ) = lim (f = 9;)(z,)

Tim (g1« )(zo) = (9 o P)( lim 2,) = (g1 <])(E),

so £ isin E as well.

We showed that E c C is closed and open (that is, it is a “clopen” set in topology
jargon) and is nonempty. The complex plane C is connected, which means that its only
clopen subsets are itself and the open set. Thus E = C. This establishes the lifting prop-
erty of f and finishes the proof. O

Suggested exercises for Section 4.15. 4.10.

4.16 Equivalence between complex tori and elliptic curves

At the beginning of this chapter, we presented the topic of elliptic curves as motivation
for the study of doubly periodic functions, but until now, we have not explained the
precise way in which the study of doubly periodic functions is helpful for understanding
the structure of elliptic curves. In fact, the connection between the two subjects is very
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close and can be summarized by the slogan “elliptic curves are equivalent to complex
tori.” The key lies in the differential equation (4.16) satisfied by p(z), which implies that
for a given lattice L ¢ C with invariants g,, g5, the point (x,y) = (p(2), p'(2)) lies on the
elliptic curve € described in (4.2). Moreover, the map z — (p(2), p’(z)) is, when properly
interpreted, a biholomorphism and an isomorphism of groups between the complex
torus C/L and the elliptic curve £.

The following result gives a fuller description of this intriguing and highly nonob-
vious correspondence between two classes of objects.

Theorem 4.25 (Equivalence between complex tori and elliptic curves). Let L c C be a lat-
tice with associated invariants g, and g;. Let £ = £(g, g3) denote the elliptic curve

£ y=a'-gx-g

over the complex numbers, including the point at co. Then:

1. The elliptic curve £ is nondegenerate and is equipped in a natural way with the struc-
ture of a compact Riemann surface.

2. Themap ¢ : C/L — & defined by

(0(2),¢'(2)) ifz¢lL,
00 ifzel,

0z+L)= {

is a biholomorphism of Riemann surfaces.

3. If&is also regarded as an abelian group with the group law defined as in Section 4.1,
and C/L is viewed as a quotient group of C, then ¢ is a group isomorphism in addition
to being a biholomorphism.

4. The association L — (g, 83) is a bijection from the set of lattices onto the set of
nondegenerate elliptic curves over C.

The upshot of this result is the remarkable fact that the study of elliptic curves over
C coincides (albeit in a rather nontrivial way) with the study of complex tori C/L. In
particular, we get that any elliptic curve is topologically a torus, which does not seem
obvious from the definition. Moreover, the problem of classifying elliptic curves up to bi-
holomorphism reduces to the already-discussed classification problem of complex tori.

The proof of Theorem 4.25 is beyond the scope of this book and requires a more
involved discussion of the group structure and Riemann surface structure on elliptic
curves. For the details, see [61, Ch. 6].
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Exercises for Chapter 4

41

42
43

44

45

4.6

Prove that a topologically discrete additive subgroup of C must be the zero sub-

group of the form wZ for some w € Z or of the form w;Z + w, with w,, w, linearly

independent over the real numbers.

Prove Lemma 4.9.

Identify the precise region of convergence of the Laurent expansion (4.14) and

prove the necessary bounds that justify that in that region the rearrangement in

the proof of Theorem 4.11 is valid.

To practice the technique demonstrated at the beginning of Section 4.7 that led to

the Eisenstein series identities (4.19)-(4.21), use your favorite computer algebra sys-

tem to extract additional Laurent expansion coefficients from the differential equa-

tions (4.16) and (4.18) and see what kinds of explicit identities you get.

Try to apply the method of proof of Proposition 4.14 by equating the coefficients

of z2" in the Laurent expansions for both sides of (4.16) instead of (4.18). Do you get

any new identities involving the Eisenstein series?

This exercise explores an alternative and more direct method for proving the re-

currence (4.22), which was found by Zagier [74].

a) To illustrate the idea behind the method in a simple example, consider the bi-
variate rational function

Check that R(s, t) satisfies

R(s,t) —R(s+t, t) —R(s,s+1t) = % (4.40)
set

b) Sum both sides of (4.40) over all integer pairs s,t > 1 and perform a bit of
creative rearrangement of terms to conclude that

(@ =S

(where {(s) is the Riemann zeta function). This is a nice identity in that for
example it makes it possible to deduce Euler’s identity {(4) = ’;—; from its easier
cousin {(2) = %2

¢) Show thatifwe sum the sides of (4.40) instead over all pairs of complex numbers
s, t in the “half-lattice”

L, ={pw;+qw, : p,q € Zwithp>1or[p=0andq>1]},

then by an analogous calculation we in fact obtain identity (4.19) relating the
Eisenstein series G, and Gg, which is the case k = 4 of (4.22).
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4.7

d)

e)

f)

g)

h)

Generalizing the idea above, let k > 2 and define

2%-2
1 1 1
Re(s,)= —53+5 Z; Py S
r=
1 1 1 k-3 _ 2k-3
_ + + .
sk gy k2 st

Show that Ry (s, t) satisfies the identity

k-1
1
Rk(s, t) —Rk(s+t, t)—Rk(S,S+ t) = Z 32]t2—k—2] (44].)
j=1

(To practice your computer algebra skills and save yourself a tedious calcula-
tion, see if you can get the computer to prove this for you!)

Show that summing both sides of (4.41) over all integer pairs s, t > 1yields the
recurrence relation

{(2k) = Z (@HCEk-2) (k>2), (4.42)

2k1

satisfied by the values of the Riemann zeta function at positive even integers.
Show that if we assume that {(2) = %2, then (4.42), together with standard prop-
erties of the Bernoulli numbers discussed in Exercise 1.15, can be used to give
a new proof by induction of formula (2.10) from Chapter 2.

Finally, show that summing both sides of (4.41) over all complex numbers s, t
in the half-lattice L, as in part c) above gives exactly (4.22).

The above calculations highlight an interesting connection between the values
{(2n) and the Eisenstein series G,,, wherein the former can be viewed as a
certain limiting case of the latter. Can you make this notion more precise? See
Section 5.7 for additional clues.

The Eisenstein series are known to satisfy other summation identities. As an exam-
ple (taken from [57]), by extending Zagier’s method described in Exercise 4.6, or in
any other way, prove the identity

1 (4n+1)'i Zk )

G = G G .
6n+2 6n+1 ((271)')2 ) 2n+2k J4n—-2k+2

2n+2k 1

4.8 (a) Prove the following addition theorems for the Weierstrass p-function and its

derivative:

@' (2) - ' W)\’

1
pz+w)= 71( o2) = pw) > —p(2) - p(w), (4.43)
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@’(z+w)=—1<”(z)_“'(w) !

3
i\ p@) - pw) ) " 0@ - pw))?
x [(p(2)°0' (2) - p(w)’e’ (W)
~2(p(2)*0' (W) - pw)’p' (2))
+3p(2)pw)(p(@)p' (W) - pw)p'(2))]. (4.44)

Guidance. It may be useful to note that assuming (4.43), the second iden-
tity (4.44) is equivalent to the determinantal identity

1 1 1
piz) pw) piz+w)
') e'w) —p'z+w)

=0.

(b) Use (4.43)-(4.44) together with the fact that the Weierstrass g-function and its
derivative parameterize the elliptic curve (4.2) to prove that formulas (4.3)-
(4.4) define a valid group addition law on the elliptic curve € in (4.2).
4.9 Prove the duplication formula

1202 - & \*

1
o2) = 1( 202) ) ~20t0)

410 (a) Given alattice L c C, identify the complex numbers A for which AL = L.
(b) Given a lattice L ¢ C, find all the conformal automorphisms of the complex
torus C/L.



5 Modular forms

There are five elementary arithmetical operations: addition, subtraction, multiplication, division,
and modular forms.

Martin Eichler!

5.1 Motivation: functions of lattices

Our investigations of elliptic functions in the previous chapter gave rise to a host of in-
teresting quantities associated with a lattice L ¢ C; among them, the Eisenstein series
Gy, modular discriminant A, and Klein’s J-invariant. As we discussed in Section 4.14,
these quantities can be viewed as functions of the modular variable 7 that we use to pa-
rameterize (up to a trivial scaling operation) the space of lattices, associating it canoni-
cally with the lattice L, = Z + 7Z. Moreover, we saw that these functions satisfy inter-
esting identities, such as the relations Gg = %Gi, Gy = %6466, and the more general
recurrence relation (4.22). As we will see a bit later (Section 5.7), these types of complex-
analytic identities encode identities of a purely number-theoretic nature; for example,
the relation just mentioned between Gg and Gﬁ is equivalent to the curious identity

n-1
a;(n) = 03(n) +120 ) o3(k)az(n-k) (n=1), (5.1)
k=1

where g, (m) denotes the generalized sum-of-divisors function defined as

ay(m) =y d* (5.2)

dim

(the sum of the a-powers of the divisors of m). And this is just beginning to scratch the
surface of the wealth of remarkable phenomena these functions are involved in.

From now on we will make the dependence on the modular variable 7 more explicit
by writing G, (7), A(7), and J(7) instead of Gy, A, and J. At the heart of the phenomena
mentioned above is the fact that the functions Gy (7), J(7), A(7) all satisfy interesting
“transformation properties,” that is, functional equations that relate their value at 7 to
their value at % for a certain class of Mobius transformations 7 — %2 This fact is

ct+d”
essentially immediate from the definitions; we record it as a lemma.

Lemma 5.1. The functions Gy (7) (k > 2), J (1), and A(7) satisfy the functional equations

atr+b
GZk< — ) = (c7 + d)* Gy (7), (5.3)

1 This quote may be apocryphal; see the discussion in [W19].

@ Open Access. © 2023 the author(s), published by De Gruyter. [(co) EXEX=EH] This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-006
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at+b

]( CHd) =]J(1), (54
at+b _ 12

A( pr— ) = (¢t + d) "Gy (1) (5.5)

forallt e Hand a, b, c,d € Z satisfying ad — bc = 1.

Proof. Relations (5.4)-(5.5) follow immediately from (5.3) and the definitions of J(7) and
A(7). To prove (5.3), apply definition (4.13) of G, to write

at+b 1
sz( — ) = Z
at+b\2k
ct+d (mmez2\(0,0) (M +Nmg)

= (ct+ )X Z (m(ct +d) + n(at + b))ka
(m,n)eZ*\(0,0)
=(ct+d)* > ((dm+bn)+ (cm+ an)r)_Zk. (5.6)

(m,n)eZ*\(0,0)

Denoting new summation indices p = dm + bn and q = cm + an or, in matrix notation,

()G ()
p) \b d)\m)’
we can rewrite the last expression in (5.6) as

1
(CT + d)Zk Z m, (57)

where the summation ranges over the possible pairs (p, q) associated with (m,n) € Z2\
{(0,0)} through the above linear transformation. However, the assumptions on a, b, ¢, d
imply that the matrix (¢ §) maps Z* \ {(0,0)} bijectively onto itself, so the summation
range is exactly 7? \ {(0, 0)}, and we see that (5.7) is precisely (cT + d)Zk Goy (7). O

Coneptually, the transformation properties (5.3)-(5.5) can be regarded as a kind of
family of internal symmetries of the functions G, (7), J(7), and A(7). As the easy calcu-
lation above shows, these symmetries are simply a manifestation of the fact that the
functions were originally defined in terms of infinite summations over a lattice, and so
they must transform in a specific way when we switch from one fundamental period
pair w,, w, generating the lattice to another. However, it turns out that functions with
similar internal symmetries arise in many other places where the reason for the sym-
metry holding is not nearly as self-evident (we will see examples of this later; see Sec-
tion 5.13). The systematic study of functions with these types of symmetries, which we
now undertake, is the beginning of the theory of modular forms, a rich subbranch of
complex analysis that has strong connections to elliptic functions, number theory, and
numerous other topics in mathematics.

Suggested exercises for Section 5.1. 5.1.
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5.2 The modular group I’ = PSL(2, Z)

Lemma 4.1 and Theorem 4.24(b) give conditions for two lattices to be equal and homoth-
etic, respectively. It is convenient to think about these types of equivalences in terms of
group actions. The condition for the equivalence of two lattices w, Z+w,Z and w; Z+w}Z
given in Lemma 4.1 can be interpreted as the statement that (w;, w,) and (w}, w}) are in
the same orbit under the action of the general linear group of order 2 over Z defined

by

a b

GL(2,7Z) = {(c d) :a,b,c,deZ, ad—bc:ﬂ}.

Our interest is mainly in describing lattices up to homothety, which means that we can
consider the action of a smaller group. Let

a b

SL(2,Z) = {(c d) :a,b,c,deZ, ad—bc:l}

be the special linear group of order 2 over Z. Note that SL(2, Z) has a normal subgroup
{+I} of order 2 comprising the identity matrix I and its negative. We define the group I
as the quotient group

I' = SL(2, Z)/{I}.

This group is known as the modular group (or in certain contexts as the projective
special linear group of order 2 over Z). The notation I' is in common use in the theory
of modular forms. The alternative notation PSL(2, Z) is also sometimes used to denote
the same group.

It turns out that I' is the “correct” group to work with for our complex-analytic pur-
poses, since it measures the precise extent of nonuniqueness when studying lattices up
to homothety and parameterizing them using the modular variable 7 as discussed in
Section 4.14. This will be explained in Sections 5.3-5.4. We start however by thinking
about I' from a more abstract group-theoretic point of view.

Working with quotient groups is a bit cumbersome, and in the case of I the quotient-
ing is quite minimal, involving the identification of pairs +A of matrices. It is therefore
common to abuse notation slightly and still denote elements of I as 2 x 2 matrices with
the understanding that both such a matrix A and its negation —A represent the same
element of I' and that all matrix equations written in this context are only assumed to
hold modulo the subgroup {+1}.2

2 Note that we can get away with this without running into trouble as long as we only multiply matrices,
as opposed to adding them or performing other operations that do not behave well under the quotienting
homomorphism.
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Three elements of I that play a special role in its analysis are the matrices

0 1 11 0 1
o (0D (U v (Y1) 6w

Note that $> = I (in the sense of the abuse of notation mentioned above), Ud = I, and
Tk = ((1] ’{) so that S, U, and T generate cyclic subgroups of I of orders 2, 3, and oo,
respectively.

Theorem 5.2. The group T is generated by the elements T, S.

Proof. LetA = (4 Z) e I'. We may assume that ¢ > 0; otherwise, replace A by —A (recall
that the two are equal as elements of I'). We prove by induction on ¢ that A can be rep-
resented as a product of elements of the form S and Tk, k € Z.Inthecase c = 0, A is of
the form (§ Z), and since det A = ad = 1 and the entries are integers, actually

A=<1 b>=Tb or A=<_1 b>=<1 _b>=T‘b,
0 1 0 - 0 1

both of which are of the required form.

For the inductive step, we assume that the claim has been proved in the case where
the entry in the south-west corner of the matrix is strictly less than c. Dividing d by ¢
with remainder, we let g, r > 0 denote the integers for which

d=qc+r, 0<r<ec.

Then

AT’q—<a b)(l —q)_(a —aq+b>
“\c d/\o 1/ \c r )’

AT = <aq—b a> _ (—aq+b —a) M
-r ¢ r -

and therefore

Applying the inductive hypothesis to the matrix M on the right-hand side, we see that it
can be expressed as a product of group elements involving appearances of S and powers
(negative or positive) of T. Therefore A = MST? can also be expressed in such a way, and
we are done. O

5.3 The modular group as a group of Mobius transformations

In Section 4.14, we introduced the point of view wherehy the space of lattices up to ho-
mothety is parameterized in terms of the modular variable 7 taking values in the upper
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half-plane. The following lemma adapts the statement of Theorem 4.24(b) to that new
point of view.

Lemma5.3. Let 7,7’ € H. The lattices L, = Z + tZ and L, = Z + t'Z are homothetic if
and only if T’ is related to T via

, at+b
T =
cT +

for somea,b,c,d € Z, ad — bc = 1. (5.9)

Proof. Exercise 5.2. O

From Lemma 5.3 we see that the study of lattices up to homothety can be regarded
as the study of the set of points in IH quotiented out by the action of a group of Mébius
transformations of the form (5.9). In fact, this group is canonically isomorphic to the
modular group I’ with the isomorphism sending the element +( %5 ) of I to the Mdbius
transformation 7 +— %. In another small abuse of notation that is standard practice
in the field, we still use the same letter I' to denote this group and still refer to it as the

modular group. That is, we write

I'=SL(2,2)/{xI} = {T — at +b :a,b,c,deZ, ad - bc = 1]»
ct+d
with the convention that the map 7 — % is simply another way to represent the group

element +( ¢ g ) of T. When referring to group elements, we will often use the same letter
to denote an element of I' thought of either as a matrix (with a + sign ambiguity) or as
a Mobius transformation. In particular, the group elements S, T, and U defined in (5.8)
have the expressions

S(7) = _—1, T(y=t+1, U(r)= L
T T+1

in their interpretation as M6bius transformations.

Being able to switch at will between the two alternative points of view of working
with matrices on the one hand and Mobius transformations on the other is convenient,
since some arguments become simpler when considered from one of the points of view,
and others are easier to understand from the alternative one.

Suggested exercises for Section 5.3. 5.2,5.3.

5.4 The fundamental domain and the modular surface H/T

Having identified the modular group as capturing the notion of the equivalence of two
modular parameters 7,7’ that represent the same lattice, it is natural to ask for a com-
plete set of equivalence class representatives, that is, a set of values of 7 such that each
point in the upper half-plane is equivalent to precisely one. (This question is precisely
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analogous to the idea that led us to the notion of a fundamental parallelogram in the
study of elliptic functions.) The identification of such a set is one of the famous results
of the field. It is given by

1 1
D=47€H : —= <Re(r -
{ S <Re(m <

and [|T| > 1or|7| :1,§ <argt < %ﬂ]}

We call D the fundamental domain under the action of I; see Fig. 5.1.

6?/;\<3
-1 1

Figure 5.1: The fundamental domain D.

Theorem 5.4. The translates A(D), A € T of the fundamental domain D under the ele-
ments of T tile the upper half-plane without overlap, except for specific exceptions given
below. More precisely, each T € H has a representation of the form

T = A(7p) (5.10)

for some A € T and 1, € D. The point 7, is unique. The Mobius transformation A is also
unique if ty # 1, i3, If 1y = i, then there are precisely two distinct representations

7= 44(0) = Ay()

where Ay, A, € T are related by Ay = A(S. If 7y = e”/3 then there are precisely three
distinct representations

T =A1(€2m/3) =A2(e27'[i/3) =A3(e2”i/3)

where Ay, Ay, A, € T are related by A, = A,U and A; = AU
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Proof. Let 7 € H. We prove the existence of A and 7, satisfying (5.10). Recall from (3.11)
that for a, b, ¢, d € R, we have the formula

at+b ad - bc
I = I . 5.11
<cr+d> lcT +dJ? m(7) 61D

Im(7)

In particular, Im(A(7)) = 1227

for A = (4b) e I. Now the set of points

{ct+d : (c,d) € Z*\ (0,0)}

is discrete and in particular disjoint from a neighborhood of 0; hence there exists some
point of the form ¢, + d, in this set for which |c7 + d| is minimal. It is clear that for this
o> dy we must have ged(cy, dy) = 1 (otherwise, divide each of ¢, and d, by their g.c. d. to
get a pair with a smaller value of |c7 + d|). This in turn implies that there exist integers
a, and b, for which ayc, + byd, = 1, in other words, such that the matrix 4, = ( lc’g *d‘;“ )is
an element of T. By the construction this A, has the property that Im(4,(7)) is maximal
over all A € I'. By replacing A, by TkAO for a suitable k € Z (thus replacing A, (7) with
Ay(7) + k, which does not affect the imaginary value) we can also assume without loss
of generality that —% < Re(4,7) < % still retaining the maximality property.

Having chosen A, denote T = Ay(7). We claim that |7’| = 1. To see this, assume by
contradiction that |7'| < 1. Then letting B = SA,, we have

[Im(B(7))| = [Im(S7")| = [Im(-1/7")| > |Im(7")| = |Im(A,7)|,

contradicting the maximality property of A,.

Now if 7/ € D, then we can denote A = Aal, Ty = 7/, and get that (5.10) holds, so we
are done with the proof of the existence claim. Otherwise, we must have |7'| = 1 and
3 < arg(t') < 7. Inthat case, let 7y = St' = ~1/7" and note that 7, € D, so that if we
define A = (SA,) ", then (5.10) again holds. Thus the existence of the representation has
been proved.

Now assume that 7 has two distinct representations 7 = Aty = A't) with 7y, 7; € D
and 4,A’ ¢ T. Our goal is to show that this can only happen in the specific situations
listed in the theorem.

Assume without loss of generality that Im(T{)) > Im(7,) (otherwise, switch their la-
bels). Denote B = (4’ )’1A. Then T(’) =Bty = @+b where a, b, c,d denote the entries of B.

cTy+d’
Then by (5.11) we get that

letg+d| <1 (5.12)

Since 7y € Dandc,d areintegersand 7, € D, there are not too many ways this inequality
can hold. First, we could have ¢ = 0 and d = +1. In that case, we must have a = d, and
therefore B is of the form
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(£l b\ (1 b\ 4
B‘(o i1>_<0 1>‘T'

Then 7} = Bty = 7, + b. The conditions —% < Re(7y) < % then guarantee that b = 0, so B
is the identity map, A’ = 4, and 7|, = 7, so that this is the case where the two represen-
tations 7 = A7, = A T(’, are the same, which is not relevant to the current discussion.

A second possibility for (5.12) to hold is that d = 0, ¢ = 1, and |7;| = 1. In that case,

B is of the form
_(a F\ (xa -1\ .,
B‘(ﬂ o>_<1 o)‘T S

Therefore T(') = —Tl + a, or alternatively, if we write 7, = e?and a = +a, then
0

Ty = e 4 g,

For this to hold with 7y, 7/ elements of D and a an integer, we must have that either
a=0,B=8 and7y=15=1, (5.13)
or
a=-1,B=T"S, and 7y = 7) = e, (5.14)
In the first subcase (5.13), the two representations for 7 become
T = A(i) = AS(i). (5.15)
In the second subcase (5.14), we get that Bl= U, so the two representations are
T = A(e¥) = AU(7P). (5.16)

The third and final possibility for (5.12) to hold is that ¢ = d = +1and 7, = 7}, = ¥/,
Assume without loss of generality that ¢ = d = 1 (in the other case, replace a, b, ¢, d with
the numbers —a, -b, —c, —d, respectively, which represent the same element of I'). In that
case the condition ad — bc = 1 forces a = b + 1, and we see that B is of the form

b+1 b b arr—1
B= =T .
( 1 1> U

Then

(b+1)T0+b=b+ o _p.
To+1 Ty + To+1

!
Ty = Bty =

1 .
=b+1-——=b+1+" P =b+1+71).
em/3
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Thus we must have b = -1, and therefore B = ($ !) = U, Bl =U" = U? and we get
that the two representations for 7 are

T = A(e¥) = AU (7). (5.17)

Summarizing, we showed that representation (5.10) is unique except for the three
possible exceptions we identified, which are given by (5.15), (5.16), and (5.17). Those were
precisely the exceptions listed in the theorem. This finishes the proof. O

The fundamental domain D can be thought of as the “arena” where modular func-
tions and modular forms “live.” We will do all our analysis in reference to this arena.
This is mostly straightforward, except for some technical subtleties that will arise when
functions have zeros or poles on the boundary of D. (This is analogous to the issue that
led us to consider fundamental parallelograms of the form P, (w;, w,) with an arbitrary
origin point z; in Chapter 4 as a way to avoid having to worry about doubly periodic
functions that have zeros or poles on the boundary of the parallelogram. In the case of
modular forms, this issue is harder to work around using a simple translation trick of
that type.)

We mention in passing that there is a more advanced, but conceptually clearer, point
of view, in which the correct object to regard as the arena on which modular forms and
functions are defined is the quotient space H/T, that is, the space of orbits of H under
the action of I. This quotient space is equipped in a natural way with the structure of
a Riemann surface and is called the modular surface. The fundamental domain D is
just one particular coordinate chart (in the sense of being an element of the atlas of
charts a Riemann surface and other manifold-like objects come equipped with) that is
used to perform calculations on it. Understanding this point of view will make various
arguments and calculations in some of the proofs in this chapter appear more intuitive
and motivated but is not strictly necessary from a formal point of view, so we will not
discuss the details of how such arguments can be presented from the point of view of
Riemann surfaces.

Suggested exercises for Section 5.4. 5.4.

5.5 The classification problem for complex tori, part II

We now return to the classification problem for complex tori discussed in Section 4.15.
Previously we solved the first part of the problem when we gave a necessary and suf-
ficient condition for two tori C/L and C/L’ to be biholomorphic. Now we can use the
results of the previous section to give a solution to the second part, namely finding a
canonical system of representatives under this equivalence relation on the family of
lattices.
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Theorem 5.5 (Classification of complex tori; second part). The family of complex tori
{C/L,; : T €D} (5.18)

(where L, = Z + ©Z as before) forms a complete set of biholomorphism representatives
of the complex tori C/L, that is, each complex torus C/L is biholomorphic to C/L., for
precisely one 7y € D. If L is given explicitly as L = wZ + w,Z with w,/w, € H, then 7 is
the unique element of D related to T = w,/w, via (5.10) for some A € T, with the biholo-
morphism being the homothety z — w,z (more precisely: the map of Riemann surfaces
whose lifting is the homothety map, in the sense discussed in the proof of Theorem 4.24).

Proof. First, we show that no two elements of the family (5.18) are biholomorphic. As-
sume that 7y, 7, € Dwhere C/L,, and C/L,, are biholomorphic. Then by Theorem 4.24(a),
L. and L, are homothetic. By Lemma 5.3 we have

_at+b
c+d

T =A(ry) forsomeA = <i b) eT.

d
Of course, 7, can also be represented as I(7,), where I is the identity element of I, so
since 7y, 7, € D, the uniqueness claim in Theorem 5.4 implies that 7; = 7,.

For the remaining claim that the tori (5.18) include a representative of all biholo-
morphism classes of complex tori, let L = w;Z + w,Z be a lattice, where the ordering
of wq, w, is chosen such that 7 := w,/w; € H. Let 7, € D be the unique point in the
fundamental domain, guaranteed to exist by Theorem 5.4, such that

aTO +b

T=AT) = Ty +d

forsomeA:<a b)el‘.
c d

By Lemma 5.3 the lattices Z + 7Z and Z + 7,Z are homothetic, that is, we have
Z+7t2 = ANZ + t1yZ)
for some A # 0. It then follows that
L=wZ+wZ=w(Z+7TZ) = WAZ + TyZ) = ALy,

Thus L and L., are also homothetic, and by Theorem 4.24(a), C/L is biholomorphic to
(C/LTU, as claimed. O

5.6 The point at ico, premodular forms, and their Fourier
expansions

In the sections below, we will start defining certain classes of functions that generalize
properties (5.3)—(5.5) of the explicit functions we constructed. All of them will share one
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particular property that will be useful to name: we say that a functionf : H - Cisa
premodular form?® if it is

1. holomorphic;

2. periodic with period 1, that is, satisfies f(7 + 1) = f(7) for all T € H; and

3. for some constant C € R, f(7) satisfies the asymptotic bound

If(0)] = 0(e“™@) " as Im(r) — oo, uniformly in Re(7). (5.19)

We say that a function f : H — C is a weak premodular form if it satisfies the same
conditions as for a premodular form, but with the first condition being relaxed to that
of f being meromorphic.

Proposition 5.6. Let f : H — C. Then f(7) is a premodular form if and only if it has an
expansion of the form
58] .
f@ =) ame™ (reH), (5.20)

n=-m

which converges absolutely, uniformly on compacts in H, and where m > 0 is an integer.
We refer to expansion (5.20) as the Fourier expansion of f. The coefficients a(n) are called
the Fourier coefficients of f and can be recovered as

172
a(n) = J F(x +iy)e” 0D gy (y > 0 arbitrary). (5.21)
-/

Proof. The change of variables g = e”™ defines the bijective correspondence
f(0) — 8@
defined via the relation
£(1) = g(e”™) (5.22)

between holomorphic functions f : H — C that are periodic with period 1 and holo-
morphic functions g : D\ {0} — C on the punctured unit disc. If we add the assumption
that f(7) satisfies a bound of the form (5.19), then that translates to the condition that
g(q) must satisfy a bound of the form

lg(@| = 0o(g™), q—o,

3 Note that this term is not standard in the literature.
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for some constant M € R. Of course, this asymptotic bound is nothing particularly ex-
otic; it is easily seen to be equivalent to the statement that g(g) has either a removable
singularity or a pole at g = 0. From Section 1.18 and Exercise 1.43 we know that any such
function has a Laurent series of the form

o0

g@= ) anq",

n=-m

which converges (absolutely and uniformly on compacts) for g in the punctured disc.
Translating this back to the language of f(7), this shows exactly that the condition of f
being a premodular form is equivalent to it having the Fourier expansion (5.20) with
the appropriate convergence. Finally, the coefficients can be extracted in the usual way
as an integral on the circular contour {|q| = r}, 0 < r < 1, using the residue theorem.
Specifically, if we denote for convenience r = ey, y > 0, then we have

1 @ 1 gre™)
am = — ¢ ¢ — J 8T ) omiyre”™ dx
27Ti qn+1 27Ti rn+1e2m(n+1)x
lql=r -1/2
1/2 1/2
_ J g(€FTO) g 2mintes) gy J Flx + iy)e 20w gy
-1/2 -1/
which is exactly (5.21). O

As we see from the proof above, the growth restriction on |f(7)| as Im(7) — oo
for premodular forms is equivalent to the statement that under the change of variables
q = ¥ such a function expressed as a function of q is a holomorphic function on the
punctured unit disc with a pole or removable singularity at g = 0. This suggests intro-
ducing the notion of “the point at ico” as a way of discussing the behavior of premodular
forms near g = 0 while still thinking in terms of the variable 7. We will use the notation
D = D U {ico} to denote the fundamental domain with this point at ico added. We will
refer to D as the extended fundamental domain. We also introduce the following bit
of terminology to describe the behavior of f(7) near the point ico: if the function g(q)
associated with f(7) as in (5.22) has a pole of some order k > 1, then we say that f(7) has
a pole of order k at ico. If g(q) has a zero of order k > 1at q = 0, we say that f(7) has a
zero of order k at ico. As usual, we can unify those two concepts and regard both zeros
and poles as two aspects of the same thing by declaring that f(7) has a (generalized)
zero of order k at 7 = ico if g(q) has a generalized zero of order k at ¢ = 0in the sense of
having an ordinary zero of order k if k > 1, a pole of order —k if k < 0, or neither a zero
nor a pole if k = 0. (Refer to the parallel discussion on this terminology in Section 1.10.)
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5.7 Fourier expansions and number-theoretic identities

The functions G, (7), A(7), and J(7) are all periodic functions with period 1 and, as we
will see shortly, satisfy the growth condition (5.19) for being a premodular form. It turns
out that their associated Fourier expansions, which we will now derive, are extremely
interesting and lead to identities of a purely arithmetic nature.

Theorem 5.7 (Fourier expansion of the Eisenstein series). For k > 2, the Eisenstein series
Gy (1) is a premodular form and has the Fourier expansion

(Zm)Zk 00

Gy (T) = 20 (2K) +2 k=1 2 Z o1 (Mq" (g =€, 7 e H), (5.23)

where 0y,_1(n) is the generalized sum-of-divisors function defined in (5.2).

Proof. Start with the partial fraction expansion of the cotangent function

7 cot(mz) = 1+Z(——1> (5.24)
z Z\z+n n

n#0

(see (1.73)). Differentiating this expansion p times gives

dP S 1
@(n cot(nz)) = (-1)°p! H:Zoo T (p=1). (5.25)

On the other hand, note that for z € H,

. 2 . S g
mcotnz = ]TCOS]T m(l - —) =-mi[1+2 z e?mitz ,
sin 71z 1- e?mz =
and therefore also

p © ,
%(7‘[ cot(nz)) = -y’ Y e (p>1). (5.26)
¢=1

Now

Gxm= Y ;iny{ >3

(mmE0,0) (MT + n* 5 mz0 ne—eo (MT + n)Zk
=20(2k) +2
{2k mzl n_z_: (mt + n)Zk

00 (_1)21(—1 1 de—l
= 20(2k) +2 Z 2k -1 m1 graki

(7 cot(mtm))

[ D 070 R A —
=20 (2k) + e
mzl 2k - 1)! ez=1
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_ 2027y & 2k-1\ ,2int
= 2¢(2k) + 2k - 1! ,;(.e,mzﬂe >e

em=n

2(27Ti)2k N Zmnf
= 20(2k) + @D nz _1(n)e (5.27)

which is the claimed expansion. Since g,;,_;(n) is bounded by a polynomial in n, expan-
sion (5.23) clearly converges absolutely and uniformly in a neighborhood of ¢ = 0 and
defines a holomorphic function there. As we remarked in the previous section, this im-
plies that G, (7) is a premodular form. O

Theorem 5.8 (Fourier expansion of the modular discriminant). The modular discriminant
A(7) is a premodular form. Its Fourier expansion is given by

A7) = 2m)%(q - 24¢% + 252¢° - 1472¢" + - )

= (2m)* Yamq" (q= e 7 ¢ H). (5.28)

Here the normalized coefficients (7(n)),2, are a sequence of integers, which are given ex-
plicitly by

7(n) =8000 ) 03(j)as(k)as(n - j - k) = 147 )" as(j)as(n - j) (5.29)

jk=0 j=0
J+k<n

for all n > 1, where 0; and a5 denote the generalized sum-of-divisors functions as before
with the additional convention that g5(0) = ﬁ and 05(0) = ~50

Proof. WehaveA(7) = 603G4(T)3 =27 ~14OZGG(T)Z, so A(7) trivially inherits the property of
being a premodular form from G,(7) and Gg(7). To get its Fourier expansion, note that,
by (5.23) and (1.95),

3

60°G,(7) _603< ap (2”) Zag(n)tI)

3

- 20 60’ (Zog(n)q )

= 2m)"-8000 ) ( Y as()as(k)os(n—j - k))q”

n=0 \ Jjk=0
J+k<n

= ) (1728 8000 Z( Y. a3()os(K)as(n _,-_k>>q">

j,k=0
J+k<n

and, similarly,
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2% @) &
27 - 140° 2_-927.140% Z- -2 n
02G4(7) 0 ( o 210 ngos(n)q

= @) . 147 z (Z 05(j)as(n —j))q"

n=0 \j=0

[ee] n
- (27‘[)12< % +147 ;(Zﬂ 05 (j)as(n — j))q">.
Subtracting these two expressions leads to (5.28)—(5.29).

It remains to show that 7(n) is an integer. Observe that in representation (5.29), all
the summands are integers, except possibly those for which one or both of the summa-
tion indices j, k are equal to 0. The total contribution of these exceptional summands to
7(n) can be expressed as

n-1
3x8 00003(0)203(n) +3x800005(0) Z 03(k)as(n — k) + 2 x 14705(0)a5(n)
k=1
5 = 7
= 3703( + 100 k;og(k)ag(n = k) + 505
n-1 3 5
5d° +7d
=100 k -k =
Y. os(Koy(n—k)+ Y

k=1 dln

This is in fact an integer, since it is easy to check that 5d° + 7d° is divisible by 12 for any
integer d. (Another famous formula for A(7) that we will prove later makes it immediate
to see that the 7(n) are integers; see Theorem 5.31 in Section 5.14.) O

The sequence of normalized Fourier coefficients
(t(n)) oy = 1,-24,252,~1472,4830,-6 043, ...

of the modular discriminant is called Ramanujan’s tau function.” It is a celebrated
mathematical object with many remarkable properties. To name one example, one of
the surprising results of the theory of modular forms, which we will not prove here, is
the following property, conjectured by Ramanujan in 1916 and proved shortly afterward
by Mordell.

4 Beware the small notational quirk of the theory wherein the letter 7 is used to denote both the se-
quence 7(n) and the modular variable 7.
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Theorem 5.9 (Multiplicativity of Ramanujan’s tau function). If m,n > 1 are relatively
prime integers, then t(mn) = t(m)t(n).

For the proof, see [5, Ch. 6].

Theorem 5.10 (Fourier expansion of Klein’s J-invariant). Klein’s J-invariant is a premodu-
lar form and has the Fourier expansion

J(r) = LG +744 + 196 884 + 21493760¢" + )
1728\ q

-1 (1 + i cmq" | (q=¢"",7ecH).
1728\ q " &

The coefficients c(n) are all positive integers.

Proof. Exercise 5.5. O

The coefficients c(n) are also a much-studied sequence of numbers. In the late 1970s,
they were found to be related to dimensions of the irreducible representations of the so-
called monster group, a connection that was developed into a deep mathematical the-
ory and is sometimes referred to as monstrous moonshine. The story of this discovery
and some of the amazing mathematical ideas it led to is told in [29].

More mundane, but still interesting, is a result due to Petersson from 1932, which
states that the asymptotic rate of growth of the coefficients c(n) is given by

1 e4ﬂ Vn
V2n3/4

This result is conceptually related to another famous result, the Hardy-Ramanujan
formula for the asymptotic rate of growth of the number p(n) of integer partitions of n.
That formula states that

c(n) ~ asn — oo. (5.30)

TT\2n/3

p(n) ~ Le asn — oo. (5.31)

4+/3n
Both (5.30) and (5.31) can be proved using complex analysis; see [22], [66, Appendix A].
The Fourier expansions (5.23) and (5.28) make it possible to translate various iden-
tities involving the functions G,;, and A into number-theoretic identities.

Theorem 5.11. We have the following number-theoretic identities for all n > 1:
n-1

07(n) = 03(n) +120 )" a3(k)a(n - k), (5.32)
k=1

n-1
0y(n) = %(210501) —-100;(n) + 5040 Z o3(k)as(n - k)), (5.33)
k=1
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n-1

013(n) = 11ag(n) — 1005(n) + 2640 Z a3(k)ag(n — k), (5.34)
k=1
65 691 691

T(n) = Zgeou() + 5=05(n) - Z a5(k)as(n - k). (5.35)

Proof of (5.32) and (5.33). We consider the Fourier expansions of both sides of the iden-
tity Gg = %Gi from Section 4.7. By (5.23) the left-hand side is

2 2 & .
6y - 2408 + 220 3 o Pk <480+nzla7<n>q >

The right-hand side is

2

4 oo
§<25<4>+2( 2o )

8 8 oo 8 oo /n-1
o 32 n 2561 B n
~ 5t I n;as(mq ) Z<Zc73(k)03(n k))q

n=1\k=1

Equating the coefficients at ¢" in the above expressions gives identity (5.32).
Identity (5.33) follows similarly from the Eisenstein series identity G;q = %6466,
which we also discussed in Section 4.7. We omit the details of this simple calculation. [

The principle behind identities (5.34) and (5.35) is similar. They follow by equating
the Fourier coefficients in the Eisenstein series identities

6
Gy = 561G, (5.36)
A = 1200(1430G, - 691G?), (5.37)

respectively. These are not identities that we have previously derived, but they are con-
ceptually similar to (4.19)-(4.21) and can be proved without great effort using the results
of Section 4.7. However, rather than pursue this method, we will instead show in Sec-
tion 5.12 a more elegant way of obtaining them (and similar identities) by applying more
general ideas we will develop about modular forms.

Many more identities with a similar flavor to (5.32)-(5.35) are known to exist and
can be proved using modular form techniques (or, through a much more painstaking
analysis, using manipulations of a purely elementary nature [63]). As an example of a
more sophisticated identity whose proof requires additional background, we mention
the following identity due to Niebur [50]:

n-1
t(n) = n'oy(n) - 24 Y (35k* - 52k°n + 18k’ n*) oy (K)o (n — k).
k=1
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The above discussion gives a glimpse into some of the close connections that ex-
ist between arithmetic and modular forms. As seen in the examples above, one way in
which these connections manifest themselves is that the Fourier coefficients of naturally
occurring modular forms (or mildly renormalized versions of them) are often integers
with interesting arithmetic properties.

Suggested exercises for Section 5.7. 5.5.

5.8 Modular functions

A meromorphic function f : H — C is called a modular function if it is a weak pre-
modular form and satisfies

f(aHb) =f(1) (5.38)

ct+d

forallt e Hand A = (¢ Z) e I'. That is, a modular function is a true meromorphic func-
tion on the modular surface (including also the point ico). Note that since I' is generated
by the elements T, S, to verify the modular invariance property (5.38), it suffices to check
that f(7) satisfies

f@+)=f(0), f(-17)=f(r), (reH). (5.39)

(The first of these two equations is already guaranteed by the condition that f(7) is a
weak premodular form.)

A modular function f(7) that is not the zero function has only finitely many zeros
and poles in D: indeed, the zeros and poles cannot have ico as an accumulation point
(otherwise, ico would be an essential singularity rather than a pole or removable singu-
larity), which means that all the zeros and poles of f(7) in the closure cl(D) are concen-
trated in the intersection of the closure with the strip {0 < Im(7) < M} for some M > 0.
This intersection is compact, so if there were an infinite sequence of zeros or poles of
f(7) in it, it would have an accumulation point, so it would be identically zero or have
an essential singularity in H, which is not allowed.

An essential property of modular functions is analogous to Proposition 4.6 we en-
countered in our discussion of elliptic functions in Chapter 4; loosely speaking, it states
that the total number of zeros of a modular functions in the fundamental domain is
equal to its total number of poles (as usual, counted with multiplicities, and the point
ico needs to be included in the count as well). An additional caveat in the current set-
ting is that the “numbers” being referred to are actually weighted counts of points with
respect to a certain weight function. We define the weight w(z) of a point 7 € D by
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1 . i
3 ift =1, ‘
1 oifr=€",
w(T) = ) )
1 ift=ioo,
1 otherwise.

Theorem 5.12 (The weight formula for modular functions). Let f : H — C be a modular
function other than the zero function. Then

Y w@= ) w@). (5.40)
f(&)=0 f({)=00

Here the summation on the left-hand side ranges over zeros & of f(t) in D, counted with
multiplicities, and the summation on the right-hand side ranges over poles { of f(t) in D,
counted with multiplicities. In both summations, we include the point ico with appropriate
multiplicity if f(t) has a zero or a pole there.

Proof. Consider a contour integral of the form

f'()
dt (5.41)
g) f(©

around a suitable contour G that, as a first approximation, hugs the boundary of the fun-
damental domain D up to some vertical level M in the imaginary direction (Fig. 5.2(a)).
The parameter M > 0 is chosen larger than the imaginary values of any of the zeros
or poles of f(7), other possibly than the point ico (we discussed earlier why such an
M exists). Now the general idea of the proof is to evaluate the contour integral in two
ways. This is not conceptually difficult, but involves some technicalities of a somewhat
tedious nature (which are nonetheless essential to check carefully), so to make things
clearer pedagogically, we build up the calculation in several successive versions, each
improving on the previous one.

First version. In the first version of the proof, we assume for simplicity that f(7) does
not have any zeros or poles on the boundary of D. The integration contour in that case
takes the form shown in Fig. 5.2(a) and decomposes as a sum of five subcontours

G=Y1+Vo+V3+Vst+Vs

Denote by X the total number of zeros of f(7) in D and by Y the total number of poles,
counted with multiplicities. Then the integral (5.41) is equal to 27i(X - Y).

On the other hand, denote by Z the order of the zero f(7) has at ico (with the
usual convention that Z is taken negative if f(7) has a pole there). Breaking up the inte-
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Mo M Mo
Y2 Y2 Y2
] ]
Y
] ]
Y3 Yo Y3 Y1 Y3 71
A A A
Y6 Y8
{“;7
Y4 Y5 Y4 Y5 Y4 Y5
(a) (b) (c)

Figure 5.2: (a) The integration contour G used in the first version of the proof. (b) The modified version of
G with detours added around zeros and poles on the boundary of D. The detours on y5 are images of the
detours on y, under the inversion map 7 +— —1/7. (c) The third version in which detours (labeled yg, y7, yg)
are also added around i, €"/3, and e*/3,

gral (5.41) into the integrals over the five subcontours Vi 1 <j < 5, we wish to show that
it is equal to 27iZ. This will give the equation

X+Z=Y orequivalently X=Y-Z,

and one or both of these two equations (depending on whether Z > 0, Z = 0, 0or Z < 0;
that is, whether ico is a zero, a pole, or neither a zero nor a pole) is what (5.40) claims
under our simplified assumptions on f (7).

Start with the contributions to (5.41) from the subcontours y; and y;. Those are
trivially seen to cancel each out, summing up to 0 because of the periodicity property
f@+1) =f(7).

Second, we show that the contributions from the subcontours y, and y; likewise
cancel each other out. This follows by making the change of variables p = —1/7 in the
integral over ys;, which maps y; to —y, and therefore gives that

f'(0) J f'(=1/p) dp J f'(p)
—>dr = = == dp. (5.42)
J @ SN AN

Vs —Va Va
(The last equality follows from the relation T_Zf '(-1/1) = f'(1), obtained by differenti-
ating the second identity in (5.39).)
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The contribution from the integral over the remaining subcontour y, can be eval-
uated by once again using the change of variables q = €™ which transforms this sub-
contour into a circle of radius e around ¢ = 0 in the g-plane. Denote ¢(q) = f(7);
as discussed in the proof of Proposition 5.6, ¢(g) is a holomorphic function on the punc-
tured unit disc because f(7) is periodic and has a zero of order Z (or a pole of order —Z)
at the origin. Under this change of variables, we have

f'(@©) = ¢'(9)q (0),

and therefore

@4 9@ ¢'(@)
=2 dr = —=dq,
7o o 10T g M
which then implies that
@, 9'(@ (q
J f (T) " (]gz
q e M

nicely mapping the integral to a similar-looking one in the variable g, except that the in-
tegralin the g variable is over a closed curve (and receives a minus sign since the change
of variables maps the subcontour y, to a circle oriented in the negative (clockwise) di-
rection around g = 0). By the argument principle (Theorem 1.48) this last integral is
equal to 277i times the number of zeros minus the number of poles of ¢(q) inside the cir-
cle |q| = e”™  Since M was taken large enough so that f(7) has no zeros or poles with
imaginary value greater than M, its value is equal to 27iZ.
Putting the above results together, we have shown that

f'(@
Zm f(r) dz

~ o [(J;((TT)) o .[]}((T)) dT)
*(J]}((T)) J]}((TT) )*J};%(T) ] ~0+0-2

As we pointed out earlier, this was exactly the equality needed to balance the books and
conclude that (5.40) holds.

Second version. For the next iteration of the proof, consider a situation in which f(7)
might now have zeros or poles on the boundary of D but assume that it does not have
polesatt = iort = "3, The above proof can then be amended by modifying the
integration contour G to add small “detours” bypassing each of the boundary zeros and
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poles, as shown in Fig. 5.2(b). The requirements for the detours are as follows: first, the
detours on the subcontour y; of G dip into D, are matched by detours of the same shape
moving away from D along the subcontour y;, and are small enough so that each detour
goes around exactly one of the distinct zeros and poles. In this way, the contributions to
the integral (5.41) from the subcontours y; and y; still trivially cancel each other out as
before.

Second, for the detours along the two circular arc segments y, and ys, they also
move away from the unit circle in opposite directions, with the detours on y, dipping
into the fundamental domain, and those in y; moving away from it. The precise shapes
of these detours are not important; it is important to make them small enough (so that
each detour only goes around a single pole or zero), and the shape of each detour around
a zero or pole 7, along ys; should be associated with the shape of the detour around the
“reflected” point —1/7, lying along y, in such a way that y; coincides with the image of
Y4 under the map 7 — -1/7.

Again, because the contours y, and y; have been matched to each other as we de-
scribed, we will still have cancelation of the contributions to the integral (5.41) from y,
and ys (since the first equality in (5.42) remains valid).

Now, with the modifications to the contour G described above, you can easily con-
vince yourself that the integral (5.41) is still equal to 27i(X - Y), where X and Y denote
the same quantities as before. As a result, all the arguments from the first version of the
proof remain valid, and we conclude that (5.40) holds in the same way as before.

Third version. So far we have avoided thinking about zeros and poles at 7 = i and
T = 73 so we did not really have to grapple with the question of where the weights
1/2 and 1/3 in the definition of the weight function w(7) come from. We now prove the
theorem in its full generality, in the setting where f(7) is allowed to have zeros and poles
on the boundary of D, including possibly at 7 = i and 7 = ¢"/3. Let X, Y, Z be as before,
except that we now define X and Y more carefully as the respective numbers of zeros
and poles of f that are in D other than the points T = iand T = e?™ /3 Now denote
additionally by Q and R the orders of the zeros of f(r)att =iand 7 = e7iI3, respectively
(again with the convention that they are negative if we have poles instead of zeros). In
this setting, we modify the contour again, introducing additional detours around 7 = i,
7 =2¢" 3, and 7 = e/ 3, as shown in Fig. 5.2(c). These detours are taken as circular arcs
of some radius r, chosen small enough so that no other zeros or poles of f(7) lie within
distance r of the special points 7 = i, /3, and /3,
With this notation, the decomposition of G into segments now has the form

G=Y1+Vy+Vg+ Vst Y5+ V() +y,(r) +yg(r),

where yg = y6(r), Y7 = y;(r), and yg = yg(r) denote the three added circular arcs; we
emphasize their dependence on r in our notation for reasons that will become clear
shortly.
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Now retracing the reasoning in the previous version of the proof, we see that the
conclusion X — Y = —Z is now modified to

ye gL [ fO, f'@ L f'(0)
X-¥=-Z+ j g o J oy e j o (5.43)

V(T V Vg(r)

To understand the contribution from the new integrals over yg(r), y;(r), and yg(r), con-
sider the local behavior of f(7) near 7 = i,e”™/*. Using our notation Q, R for the orders
of the zeros at these exceptional points, we can factor f(7) as

f(@) = (t-1)°(1)

for 7 in some neighborhood V of i, with g(7) being holomorphic and nonzero in that
neighborhood. Therefore the integral over y,(r) can be evaluated (assuming that r is
small enough so that the disc of radius r around i is contained in V) as

J j;((_:)) =Q J %dr+ J ‘Z:((TT)) dr.

y2(r) y2(r) y2(r)

Denote by 6, the angle subtended by the circular arc y,(r) (relative to the center point
i of the circle of which that arc forms a part). Then by explicit parameterization of the
integral of 1/(7 — i) above, it is easily seen that that integral (without the constant Q in
front of it) is equal to —0,. For the second integral involving g’ (t)/g(t), we can bound it
as

‘ J g(r) dr| < 2nMr,

&(1)

y2(r)

where M is a positive constant such that |g’(7)/g(7)| < M for 7 € V. Thus we have shown
that

j O 4~ _06, + o(r) (5.44)

for small r. Furthermore, it is geometrically obvious (and trivial to show formally if
desired) that 6, —» masr — 0.

Similarly, the integrals over yg(r) and yg(r) can be understood by writing a factor-
ization for f(7) of the form

£(0) = (z - ) no), (5.45)

valid in a neighborhood of e?/3 with h(t) holomorphic and nonzero in that neighbor-
hood. By the periodicity of f this also implies that for 7 in a neighborhood of ¢/ =
¢”3 4 1, we have a similar factorization
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FO) =f(r-1) = (r - P hz - 1), (5.46)

where again 7 — h(7-1) is holomorphic and nonzero in the neighborhood of ¢"/3, From
representations (5.45)-(5.46) by a similar calculation as the one that led us to (5.44) we
get that

f'(1)
f(@)

J f© dt = -R¢, + O(r) and J dt = —R¢, + O(r)

(T
Ys(r) ! Ys(r)
for r near 0, where ¢, denotes the angle subtended by each of the circular arcs yg(r) and
ys(r) relative to the center points e*/> and ™/* of the circles of which these arcs are a
part. It is easy to see that ¢, — m/3asr — 0.

Combining (5.43) and the other results noted above, we have shown that
Oy

¢r
EQ - ?R + O(r)

X-Y=-Z-

for r near 0. Passing to the limit as r — 0, this becomes
1 1

X-Y=-Z--Q-=:R,
ZQ 3

which, as we see upon inspection, is simply another way of writing (5.40). O

Corollary 5.13. Let f : H — C be a nonconstant modular function. Then f takes on any
value an equal number of times in D; that is, the weighted number of zeros of f(t) — a in
D calculated in the sense of the left-hand side of (5.40) is the same for any a € C.

Proof. The right-hand side of (5.12) remains the same when we replace f(7) by f(7) — a.
O

Corollary 5.14. A modular function without poles in D is a constant.

Proof. If f is a modular function without poles in D, then f(7) must in fact be bounded,
since f is bounded in a neighborhood of ico (that is, a half-plane of the form {Im(z) >
M}), and separately from that, it is bounded in the (compact) intersection of {0 < Im(7) <
M} with the closure cl(D) of the fundamental domain.

Now since f is bounded, that means that for some a € C, the equation f(7) = ahasno
solutions. By Corollary 5.13, if f were nonconstant, then the equation f(7) = a would have
no solutions for all a € C, which is obviously impossible. Therefore f is a constant. [

5.9 Klein’s J-invariant

Let us now apply some of the understanding we developed on modular functions to
Klein’s function /(7).
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Lemma 5.15. The Eisenstein series G, (7) satisfy

Gy (D) =0 ifkisodd, and
Gy (e”®) = 0 isk is not divisible by 3.

Proof. We have

Guld= Y = Y :

N2k T ok
(m,n)eZ?\(0,0) (m + nl) (m,n)€Z2\(0,0) t (_lm + n)

- (- S W)
(mmezi\o,0) I n)

which implies that Gy (i) = 0 if k is odd. Similarly, we write

1

21i/3\2k
(m,n)eZ?\(0,0) (m + ne )
1

e2(2k)mi/3 (me—Zni/3 + n)Zk

Gl =

(m,n)eZ*\(0,0)
_Akoi 1
= et Z 271i/3 2k
(mnyez\0,0) (M=€7 =1) +1n)

—Aki 1
= ¢l Z i3Ik
(mnyezt\0,0) (1= 1M) + (=m)e==)

i 1 i .
:e4km/3 _ 4km/3G2k(e2m/3).

w00 P T qe?i/3y2k

—akri/3

Since e # 1if k is not divisible by 3, the desired conclusion follows.

Proposition 5.16. The function J(t) is a modular function. At the special points T = i,

7 = e/ 3, and T = ioo, it takes the values

T =0, JG) =1, J(ico) = oo.

The zero at e/ is of order 3, the zero of J (1) — 1 at T = i is of order 2, and the pole at ico

is simple.

Proof. We know from Lemma 4.23 that A(7) isnever zero for 7 € H, and from the Fourier
expansion (5.28) we see that A(7) has a simple zero at 7 = ico. Therefore J(7) has a simple

pole at ico and no other poles. We can also see using Lemma 5.15 that

FAOK

JO= o~ 2gs0?
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since g;(i) = 140G(i) = 0. Similarly, g,(€*™/%) = 60G,(e?™®) = 0, s0

J(e¥) 5(e713)3 B

A(ezm/3) -

Now the zero of J(7) at e”/3 must be of an order that balances out the simple pole at

ico in accordance with (5.40). This implies that it is a zero of order 3. Applying the same
reasoning to the zero of J(7) — 1 at 7 = i shows that that zero is of order 2. O

Corollary 5.17. The function J(t) takes on any value in D exactly once; that is, the
weighted number of zeros of J(t) — a in D calculated in the sense of the left-hand side
of (5.12) is equal to 1 for any a € C.

Proof. By Proposition 5.16 the right-hand side of the sum in (5.40) for the case f = J is
equal to 1. The claim therefore follows from Corollary 5.13. O

We now show that J(7) gives rise to all possible modular functions, as the next result
explains.

Theorem 5.18. A meromorphic function f : H — C is a modular function if and only if it
is of the form

f(@) =R(J(1))

for some rational function R(w).

Proof. The “if” part is obvious; for the “only if,” let f(7) be a modular function that is
not identically zero. Denote by y;., the order of the zero of f(7) at ico. Denote by y; the
order of the zero of f(7) at i. Denote by u, the order of the zero of f(7) at p := 3 In
these definitions, we use the usual convention that u, (for a = i, p, ico) is negative and
equal to minus the order of the pole at a if there is a pole at that point instead of a zero.

Denote the zeros of f in the fundamental domain, counted with multiplicities but
excluding the points i, p, ico, by z;, ..., z,. Denote the poles of f in the fundamental do-
main, with the same exclusions, by wy, ..., wy.

Relation (5.40) translates to the concrete statement that

1 1
s R k. (5.47)

Since n, k, and y;,, are integers, we see that y; must be even, and y, must be a multiple
of 3.
Now define the function

13 [ 0(@ = ()

o . (5.48)
[Tim U (@) = Jw))

g(0) = (J(0) - 1" (o)
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Let h(7) = f(7)/g(7). This is a modular function; let us examine where it has zeros and
poles. By Corollary 5.17 each of the factors J(7) -] (a) participating in the product in (5.48)
(where a = z; or a = w; for some j) has a simple zero at z = a and no other zeros.
Therefore the zeros of f at z;,...,z, and the poles of f(z) at wy, ..., w, are precisely
canceled out by the factors J(7) —](zj) and (J(7) —](w]-))’1 in g, so the points zy, ..., z,,
Wy, ..., Wy are not zeros or poles of h. No other zeros or poles at any other points of
the fundamental domain that are not the special points ico, i, p are contributed by any
multiplicand. Thus h may have zeros or poles at the three special points but nowhere
else.

In fact, there are no zeros or poles at the special points either, since by Proposi-
tion 5.16 the factor (J(7) — 1)”f/ % has a zero of order Y; at i, which cancels out the zero of
order y; of f(7) at i; similarly, the factor J (7)*/3 has a zero of order 1, at p, canceling out
the zero of the same order of f(7) at p; and, finally, the order of the zero of h(7) at ico is

by (5.47).

The conclusion is that h(7) is a modular function with no poles or zeros and is there-
fore a constant by Corollary 5.14, that is, h = ¢ with ¢ € C. We have therefore shown that
f(7) = cg(1), which is a rational function in j(7), as claimed. O

5.10 The J-invariant as a conformal map

Another thing that makes J(7) a natural function is that it is a conformal map and eluci-
dates the structure of the modular surface H/T as a Riemann surface.

Theorem 5.19. The function J(t) is a biholomorphism between the modular surface H/T
and the Riemann sphere C.

Sketch of proof. J(t) maps H to C but respects the equivalence relation induced by the
action of the modular group I. Thus it induces a function (which, abusing notation
slightly, we also denote by J) J : H/T — C. Adding the point ico, which gets mapped
by J to the point co on the Riemann sphere (this is just the fancy Riemann surface way
of saying J(7) has a simple pole at ico, as we stated in Proposition 5.16), turns J into a func-
tion from the full modular surface to the Riemann sphere. This function is holomorphic:
thisisreasonably obvious at a generic point of H/T but requires an explanation in terms
of the Riemann surface structure of H/T at the special points 7 = i, 3 ico. To avoid
an involved digression into Riemann surfaces, we omit the details.

Moreover, we claim that the induced function is in fact a bijection and therefore
a biholomorphism of Riemann surfaces. Indeed, Corollary 5.17 states that J(7) takes on
any value a exactly once on D (or, equivalently, on H/T) in the sense of the weighted
sum (5.40) over solutions of f(¢) = a. For a = 0, this corresponds to the triple zero at
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T = ¥/ (which is the only zero; otherwise, the weighted sum would be greater than
1); for a = 1, this corresponds to the double zero of J(7) — 1 at T = i, which again must be
the only solution to the equation J(7) = 1; for a = oo, this corresponds to the simple pole
at T = ico. For any other a € C, the equation J(7) = a must have at least one solution
7 € D, and since 7 is not one of the special points i, et/ 3, ico, it has weight w(z) = 1, and
therefore (5.40) guarantees that it is the only solution. Thus J is a bijection. O

5.11 The classification problem for complex tori, part III

We saw in Section 5.5 that the fundamental domain D is a natural index set for the fam-
ily of biholomorphism classes of complex tori C/L. While this is satisfying at one level,
it still leaves some room to complain that the fundamental domain is an oddly shaped
region, with various identifications along its boundary induced by the action of I' mak-
ing its structure odder and still more mysterious. However, the result of the previous
section clarifies things by showing that this structure is in fact simply that of the set of
complex numbers, with the J-invariant acting as a conformal map translating between
the two sets. Thus we arrive at the following result, which complements the results of
Sections 4.15 and 5.5 and completes our solution of the classification problem for com-
plex tori.

Theorem 5.20 (Classification of complex tori; third part). The conformal map J~* parame-
terizes the biholomorphism classes of complex tori C/L in the following precise sense: for
any z € C, denote by 7t (z) the point in the fundamental domain D for which J(1y) = z.
(Theorem 5.19 guarantees that 7(z) exists and is unique.) Then the map z — Ly, is a
bijection between C and the biholomorphism classes of complex tori.

Proof. Immediate from Theorem 5.5. O

Recall also that Theorem 4.25 established a bijection between the family of complex
tori C/L and the family of elliptic curves £(g,,g3). Thus Theorems 4.24, 5.5, and 5.20,
which together formed our solution to the classification problem for complex tori, when
combined with Theorem 4.25, also give a complete solution to the analogous classifica-
tion problem for elliptic curves.

5.12 Modular forms

As Theorem 5.18 makes evident, the property of being a modular function is such a
strong one that we end up with a fairly small collection of functions, the rational func-
tions in J(7), which, moreover, does not include most of the interesting functions we
already encountered and which served as motivation for the much of the theory we
developed so far in this chapter, such as the Eisenstein series and the modular discrim-
inant.
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Fortunately, the true richness and beauty of the theory starts to emerge once we
expand our notion of modularity from modular functions to the more general concept
of modular forms. For an integer ¢ > 0, we say that a function f : H — C is an entire
modular form of weight ¢ if it is a pre-modular form, is holomorphic at ico (that is, the
Fourier expansion (5.20) contains no terms with n < 0), and satisfies the condition

f< Z;:Z) = (cr+d)€f(r) forall7 € H, <(c1 Z) eTl. (5.49)
We say that f : H — C is a weak modular form of weight ¢ if it is a weak premodular
form and satisfies (5.49). Note that the notion of modular functions coincides with that
of weak modular forms of weight ¢ = 0.

In practice, to check that a function is a modular form, it is sufficient and necessary
to check that it is periodic and transforms in a certain way under the map 7 — -1/7, as
the next lemma explains.

Lemma 5.21. A function f : H — C satisfies (5.49) if and only if it satisfies the functional
equations

fa+D)=f(@), f(11)=1f(. (5.50)
Proof. Exercise 5.6. O

Another simple observation is that if f is a nonzero (weak or entire) modular form
of weight ¢, the weight must be an even integer. This is necessary for the condition (5.49)
to be self-consistent, since we can apply this relation with the group element (¢ g) of T
being equal to either (¢ ') or (% 1) (both representing the same Mébius transforma-
tion 7 — -1/7), to get that

-1 1
0 =1(2)=1(%) - cotfo = e,
implying that either f is identically zero or ¢ is even.

The following result is an analogue of Theorem 5.12 for modular forms and is of
fundamental importance.

Theorem 5.22 (The weight formula for modular forms). Let f : H — C be an entire mod-
ular form of weight ¢ that is not the zero function. Then

12 ) we=¢ (5.51)
£(©)=0

Here the summation extends over all zeros & of f (1) counted with multiplicities, including
the point ico if it is a zero.

5 The logic behind not attaching the label “weak” to modular functions is that, as Corollary 5.14 shows,
there is no useful notion of a “strong” or “entire” modular function. Nonetheless, this terminology is a
bit inconsistent and a possible source of confusion to be aware of.
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Proof. The proof involves a repetition of the calculation used in the proof of Theo-
rem 5.12, where we consider the same contour integral (5.41) as we did in that proof.
In the current setting, the modular transformation property (5.49) that generalizes the
simple notion of modular invariance associated with a modular function will affect the
calculation in a specific way, which needs to be carefully examined. We will not go over
the full calculation again, but simply point out where the change happens, which is in
the consideration of the contour integrals of f'(7)/f (t) over the subcontours y, and y; of
the overall integration contour G (refer to the proof of Theorem 5.12 for the definitions).
Where previously we saw in (5.42) that the two integrals cancel led each other out,
now there will be a residual effect from the factor 7° appearing in the transformation
property (5.50). Specifically, the version of (5.42) updated for the current situation is

Jf’(r) i J f'-1/p) dp __Jf’(p) dp—Je

PR NG TN (O
Qi3
f'(p) dp f'(p) i
= [ dp+e | T =- | dp+—e
y[f(p) P J P V[f(p) P77

We leave to the reader to check that when the reasoning of the proof of Theorem 5.12
is carried out again but with the new term 7i¢/6 included, the result is precisely (5.51).
(Note that another difference from the case of modular functions is that in the current
setting, poles are not allowed, which means that when repeating the calculation from the
proof of Theorem 5.12, all the terms associated with counting poles can be setto 0.) O

Theorem 5.22 gives us a powerful tool for understanding what sort of functions can
be entire modular forms of different weights. We now aim to use it to classify the mod-
ular forms of even weight ¢ = 2k for any k > 0. We start by answering this question for
small values of k.

Proposition 5.23. Let f(7) be a modular form of even weight ¢ = 2k < 10. Then:
(@ Ife=0,thenf isaconstant.

(b) Ife =2, thenf is the zero function.

(©) If¢ € {4,6,8,10}, thenf is a constant multiple of Gy.

Proof. The case ¢ = 01is the case of modular functions without poles. In this case, we al-
ready saw in Corollary 5.14 that the only functions with these properties are the constant
functions.

For the case £ = 2, note that by the definition of the weight function w(¢) for-
mula (5.22) cannot be satisfied with any possible (multi)set of zeros, as the smallest pos-
itive contribution on the left-hand side can be 4, so f must be the zero function.

Similarly, for other values ¢ € {4,6,8,10}, formula (5.22) can be satisfied but only
in very limited ways. Specifically, it is impossible to have any zeros at points other than
T =1, 2t/ 3, since for such zeros, we have 12w(¢) = 12, which is too large. So we need
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to consider for each value of ¢ different solutions in nonnegative integers a, b of the
equation

¢ =4a + 6b.
Here a and b denote the orders of the zero of f(7) at 7 = 3 and 7 = i, respectively.

In the case ¢ = 4 the only solutionisa = 1, b = 0, that is, f(7) must have a simple
zero at 7 = 73 and no other zeros. By the same reasoning applied to the Eisenstein
series G, instead of to f, G, as well must have a simple zero at 7 = ¢#/ and no other
zeros. Therefore f(7)/G,(7) is an entire modular form of weight 0 and hence a constant
by part (a).

In the case ¢ = 6, we get that a = 0 and b = 1, so f(7) must have a simple zero at
7 = 1 and no other zeros. Again, the same conclusion must also apply to Gg, so f(7)/Gg(T)
is an entire modular form of weight 0 and hence a constant.

In the case ¢ = 8 the unique solution is a = 2, b = 0, so f(7) must have a zero of
order 2 at 7 = ¢¥™* and no other zeros. Therefore f(r)/ G4(T)2 is an entire modular form
of weight 0 and hence a constant. Since Gi is proportional to Gg (see (4.19)), the claim
follows in this case.

Finally, in the case ¢ = 10, we get that a = b = 1, so f(7) has a simple zero at 7 = i,
a simple zero at 7 = 2/ 3, and no other zeros. Therefore f(7)/(G4(7)Gg(7)) is an entire
modular form of weight 0 and hence a constant. Since we know from (4.20) that G,Gg is
proportional to Gy, this case is also proved. O

The next result characterizes all entire modular forms of an arbitrary even weight.
This is best stated in terms of linear algebra. For k > 0, we define the vector space My
(over the field of complex numbers, naturally) as the space consisting of all entire mod-
ular forms of weight 2k.

Theorem 5.24. (a) The vector spaces M, are finite-dimensional. Their dimensions are
equal to

2k-2 :

=== if2k = 2 (mod 12),
dlm Mzk = 12

L%J +1 otherwise.

(b) A linear basis for My, is the set
A = {Gy(0)*G4(1)? : a,b € Z, a,b > 0, 4a + 6b = 2k}. (5.52)
(c) Another linear basis for My, is the set
By = {GZk,lza(T)A(T)“ caeZ, 0<ax< {%J 12a + 2k - 2} (5.53)

with the notational convention that G, = 1.
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Proof. We prove part (c) (which also trivially implies part (a)) by induction on k. The
base cases 2k = 0,2,4,6,8,10 form precisely the content of Proposition 5.23. For the
inductive step, let 2k > 12. We claim that M,, is spanned by the set 5. To show this, let
f € My,. Let a = f(ico) be the constant coefficient in the Fourier expansion for f. Then
g(1) = f(7) - acsz’é—i(;j) is an entire modular form of weight 2k and satisfies g(ico) = 0.
Therefore the function g(7)/A(7) is an entire modular form of weight 2k — 12, that is,
an element of the space M,;_4,. By the inductive hypothesis it can be represented as a

linear combination of the form

g

A’ - ;CaGZk—IZ—lza(T)A(T)a

for some coefficients c,, where the sum ranges over all a > 0 for which 2k —12-12a > 0
and 2k - 12 - 12a # 2. In terms of the original modular form f, this means that we have
represented f in the form
a a+l
(T) = =——=Gu(T) + ) ;G (D)A(T)™,
f GZk(lOO) 2k ; a“2k-12(a+1)
which is a linear combination of elements of 5. This proves that B, spans M.
To establish linear independence, assume that we have a linear relation of the form

Z CaGop_12a(DA(D)" = 0

over the appropriate range of indices a. In particular, for 7 = ico, this implies that ¢, = 0,
since Gy (ico) = 2 (2k) # 0 (recall (5.23)). The remaining expression can be factored as

A(D) Z ¢,Gop_12a(T)DD)* = 0,

ax1

that is,

Z "‘aGZk—lz—lz(a—n(T)A(T)a*1 =0,

a>1

so by the inductive hypothesis, ¢, = 0 for all a. The proof by induction is complete.
Finally, to prove part (b), since we already showed that B, is a linear basis, it is
sufficient to show that any element of 53 can be represented as a linear combination
of elements of A, and that .4; and B; have the same cardinality. The second claim is
left as an exercise (Exercise 5.7). For the first claim, use (4.22) and an induction to show
that for any j > 2, G; can be represented as a linear combination of terms of the form
GZGZ, where p, q > 0 are integers satisfying 4p + 6q = 2j (this is a slightly more precise
version of Corollary 4.15). Then, taking 2j = 2k — 2a and using the fact that A is a linear
combination of Gi and Gé, we see that G,,_,,A% can similarly be expressed as a linear
combination of monomials G4G. with 4a + 6b = 2k, as claimed. O
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Corollary 5.25. Any entire modular form can be expressed as a polynomial in G, and Gg.

Proof of (5.36) and (5.37). We now revisit our earlier discussion about the Eisenstein se-
ries identities (5.36)—(5.37) and the number-theoretic identities (5.34)—(5.35) they imply.
The main thing to observe is that Theorem 5.24 reduces these identities and similar ones
to essentially a triviality, since it represents an equality between elements of a finite-
dimensional (indeed, very low-dimensional in the situation at hand) vector space, whose
existence can be guessed based on simple linear-algebraic considerations, and whose
precise form can be derived mechanically.

The verification in the case of (5.36) is as follows: since the space My, of modular
forms of weight 14 is of dimension 1 and contains both G4 and G,G;0, there must be
a linear dependence between these two modular forms, that is, a relation of the form
G4 = ¢G4G,0 for some constant c. The value of the constant ¢ can now be found simply
by comparing the zeroth Fourier coefficient of the two sides of the relation. (You can
check that this leads to ¢ = 6/13.)

The verification of (5.37) is similar but involves the two-dimensional space M,
which contains the modular forms A, Gy, and Gé as elements. Again, because of our
knowledge of the dimension of the space, we can deduce the existence of a linear
dependence relation of the form A = aGy, + bGé for some unknown constants a, b. Look-
ing at the first two Fourier coefficients gives two linear equations for the coefficients
a, b, which (again, you are encouraged to check) are easily solved to give the values
a =1200x1430 and b = -1200 x 691. O

Suggested exercises for Section 5.12. 5.6, 5.7, 5.8.

5.13 Examples of modular forms

We have already encountered some of the most important examples of modular forms,

namely:

1. The Eisenstein series Gy, k > 2, is a modular form of weight 2k.

2. The modular discriminant A = g5 — 27g2 is a modular form of weight 12.

3. Klein’s J-function | = gzg/A is a modular function and a weak modular form of
weight 0.

Although Corollary 5.25 guarantees that all modular forms can in fact be represented in
terms of these known, “obvious” examples, other examples of modular forms sometimes
appear “in the wild,” arising out of formulas that do not make it at all obvious that these
functions are either modular forms or related toEisenstein series.® Below we survey a
few important examples.

6 Moreover, many more examples come up in more advanced parts of the theory when we broaden
the notion of what a modular form is to allow for functions that have nice transformation properties
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5.13.1 Theta functions

In our study of the Riemann zeta function in Chapter 2, we encountered the function
X 2
e(t) — Z e—rm t
n=-co

(see (2.15)) whose functional equation 8(1/t) = V6(t) (Theorem 2.7) provides one of
the standard ways of analytically continuing {(s) to a meromorphic function on C and
proving its functional equation. This function is in fact a mildly disguised modular form
(although of weight half, and under the action of a subgroup of T rather than the full
modular group) and belongs to a much larger family of functions known as theta func-
tions. Switching to the notation more customary to use in the theory of modular forms,
we define functions

e . 2

92(,[) _ Z em(n+1/2) T’ (5.54)
n=-co
] .2

i) = ) €, (5.55)
n=-oo

0,0 = Y (D (5.56)
n=—oo

We will refer to them as the Jacobi thetanull functions.’

Theorem 5.26. The functions 0;(7) satisfy the following transformation properties under
the generators T, S of the modular group I':

0,(T +1) = €40,(1),  6,(-1/7) = V=it 6,(1), (.57)
0t +1) = 0,(0), O5(-1/7) = V=it 65(1), (5.58)
0,(c+1) = 05(0), 6,(-1/7) = V=it 0,(2). (5.59)

Proof. Thisis Exercise 5.9. Note that the relations involving 0]-(’1' +1) are immediate from
the definitions; the relation between 65(-1/7) and 05(7) is the same as the transformation
property 6(1/x) = v/x0(x) discussed above from the theory of the Riemann zeta function;
and the remaining relations involving 6;(-1/7) forj = 2,4 are proved using an argument

with respect to only a subgroup of the full modular group or otherwise relax or generalize the various
conditions a modular form is expected to satisfy. Here we focus mostly on the forms that are modular
under the full action of T.

7 The functions 0;(7) are also sometimes referred to as Jacobi theta constants or Jacobi theta func-
tions. The term “Jacobi theta function” also denotes a more general function of two complex variables z
and 7, which specializes to our 6; under certain substitutions of the “elliptic” variable z.
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involving the Poisson summation formula similarly to that used to prove the functional

equation for 65(-1/7).

Theorem 5.27. We have the following identities:

nt 8 3 3
G, = %(92 +05 +6)),

6
Go = gz (6 + 67 - 363(65 + 63)
6
_ ﬁ((eg + 65+ 63) —54(0,0,0,)%)",

A = 16”12(626394)8.

Proof. Exercise 5.10.

5.13.2 The modular lambda function

Define the function A : H — C by

_ &0 —e(D)
ey (1) —ey(7)’

A7)

O

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

where e;(7), e,(7), e5(7) are the quantities derived from the Weierstrass gp-function as-
sociated with the lattice L = Z + 7Z according to (4.25). The function A(7) is known as
the modular lambda function. It is a modular form, although not quite of the ordinary

kind we are used to work with. The next result adds more details.

Theorem 5.28. (a) A(7) is a modular function under the action of the congruence group

I'(2) discussed in Exercise 5.4, that is, A(7) satisfies

at+b a b
)l( CT+d> =A(t) forall (c d) e I'(2).

(b) Klein’s J-invariant can be expressed in terms of A(t) as

(1-A+2%)3

Proof. Exercise 5.11.

O

The modular A function has interesting applications to parts of complex analysis
that seem a priori unrelated to modular forms. The most well-known such application

is its use in giving a slick proof of a deep result known as Picard’s theorem.
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Theorem 5.29 (Picard’s theorem). Let f : C — C be an entire function such that two
distinct complex numbers a, b are not in the image of f. Then f is a constant.

The proof, although conceptually simple, involves a use of the monodromy theorem,
which is outside the scope of this book. See [1, Ch. 8] for the details.

Another appearance of the modular lambhda function is in connection with a maxi-
mization problem in the theory of conformal mapping of doubly connected regions. This
is discussed in [2, Sec. 4.12].

5.13.3 The zeros of p(z) and their modular properties

Fix a lattice L = w{Z + w,Z. In our discussion of doubly periodic functions in Chapter 4,
we saw that both p(z) and its derivative p’ (z) have their poles at the points of L and that
p' (z) has its zeros at the half-periods %wl, %wz, %(wl + w,). We also discussed that p(z)
takes every value twice in any fundamental parallelogram as a doubly periodic function
of order 2. It might therefore seem like a curious omission that we never discussed the
question of where the zeros of p(z) are located. In fact, the question of the location of
the zeros as a function of the lattice L turns out to be quite nontrivial and gives rise to
an interesting modular form.

Let us denote the location of one of the zeros of (z) by Z. This is a function of the
lattice L, so we can write Z = Z(L) or

Z=7(7)

if we switch to the notation involving the modular variable 7 taking values in the upper
half-plane and representing the “canonical” lattice L, = Z + 7Z, that is, the defining
equation of Z(7) is

p(Z(T);1)=0 (7 €H).

It is natural to think of Z(7) as a multivalued function of 7 in the sense that—
similarly to the logarithm and kth root functions, we are familiar with from basic
complex analysis—it takes its values in the quotient of the complex plane by some
discrete group of symmetries. In our case the set of zeros of p(z) has two obvious sym-
metries: it is L-periodic, and (since g(z) is even) it is invariant under reflection z — -z.
Thus Z(7) can be thought of as a function of 7 that is well-defined up to a translation
by an arbitrary element of L and a sign change. Moreover, the location of any one zero
of p(z) determines the location of all of its zeros, since if Z lies in some fundamental
parallelogram, then either Z is a half-period and then must be of order 2 (in which case
there are no other zeros in the parallelogram), or Z is not a half-period, is a simple
zero, and is matched by another zero at the unique point in the parallelogram that is
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congruent to -Z modulo L. That is, geometrically, the zeros come in pairs of points that
are reflections of each other around the center of the parallelogram.

It is worth keeping in mind that when we discuss multivalued functions, we are
really talking about functions taking values in a certain Riemann surface. We will not
explore this point of view in depth, but if you find it interesting, then try to think what
the Riemann surface is in this case.

The question of understanding the behavior of Z(7) seems to have been addressed
for the first time in a 1982 paper by Eichler and Zagier [26], who derived a formula for
this function. A more explicit formula was found in 2008 by Duke and Imamdoglu [24].
It seems possible that the last word has not yet been said on this interesting and quite
nontrivial problem.

We present below without proof Eichler and Zagier’s result, which ties in a nice way
to our current discussion of modular forms.

Theorem 5.30. (a) The function Z(t) is holomorphic.

(b) The function Z" (7)? is a single-valued function of 7, that is, an ordinary holomorphic
function on H.

(c) The function Z" (t)* is a weak modular form of weight 6 for the modular group T. It
is given explicitly by

Z"(1) = —124 41672 22 AD*
E(7)3

6
(d) Z(t) can be expressed explicitly as

1 (log(5+2V6) A(p)
Z(T):Z+TZ+51<T+1447H\/_J(p T)E( 72 dp).

5.13.4 Infinite products

Modular forms often arise in applications in the form of certain types of infinite prod-
ucts, where, again, the fact that the function expressed in such a way is a modular form
is not easily apparent. This is the subject of the next section.

Suggested exercises for Section 5.13. 5.9, 5.10, 5.11.

5.14 Infinite products for modular forms

One additional beautiful and somewhat mysterious aspect of the theory of modular
forms is the fact that many modular forms that are commonly encountered in the theory
have elegant representations as infinite products. It is not clear whether there is a good
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conceptual explanation for why this happens so frequently [W20], or whether instead it
is yet another vivid illustration of John von Neumann’s famous quip that “in mathemat-
ics you don’t understand things. You just get used to them.”® Our goal in this section is
to prove a few of the most well-known identities of this type.

5.14.1 The modular discriminant

The following result is one of the famous identities of modular form theory.

Theorem 5.31. The modular discriminant A has the infinite product representation
= 24 i
M@ = mPq[J1-¢")" (=€, e H), (5.65)
n=1

One reason why identity (5.65) is interesting is that it highlights an unexpected con-
nection between the modular discriminant and integer partitions, since the function on
the right-hand side of (5.65) is, up to trivial factors, the generating function of integer
partitions raised to the power —24. The connection between modular forms and integer
partitions goes much further than this single identity and has far-reaching consequences
that go quite deep into the theory; you can learn about it in more specialized books, such
as [5].

The existence of identity (5.65) is closely tied to yet another intriguing object, which
we will now study, the weight 2 Eisenstein series G,. One motivation for introducing
G, is that Theorem 5.24 suggests an annoying gap in the dimensions of the vector spaces
M, (T'). Noticing this, we might wonder whether the definition of a modular form of
weight 2 can be modified somehow to lead to some useful family of functions rather than
the empty set and—which is related—whether formula (4.13) defining the Eisenstein
series can be made to make sense for the exponent 2 through some simple modification.
The answer to both these questions is “yes”; in fact, the modification to (4.13) is the most
obvious one that one can think of and consists of replacing an absolutely convergent
series by a conditionally convergent one. The next result explains what happens when
such a modification is carried out.

Theorem 5.32. Define the weight 2 Eisenstein series G, by

e 1
Gy(1) = [ —] (5.66)
’ mze:Z ng:Z (mT + n)z
(m,n)#(0,0)

8 Von Neumann said this in response to a complaint from a colleague that he did not understand the
method of characteristics [75, p. 208].
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(@) Expression (5.66) defines a meromorphic function G,(t) on the upper half-plane.
(b) G, transforms under the actions of the generators T, S of T as

Gy(T +1) = Gy(7), (5.67)
G,(~1/7) = TGy(7) — 27mit. (5.68)

(c) G, is apremodular form with the Fourier expansion

2 [e) .
G, (7) = %(1 ~uy ol(n)q"> (q =€ 7 ¢ H). (5.69)

n=1

Note that (5.69) is the case 2k = 2 of the Fourier expansion (5.23). Thus we see yet
another way in which G, can be thought of as extending the definition of the original
Eisenstein series Gy, k > 2, in the most natural way possible by a kind of “analytic con-
tinuation” (very loosely speaking), that is, by taking one of the formulas that represent
those series and simply observing that it continues to represent a well-defined object
even in the case 2k = 2.

Proof. (a) For m = 0, the inner sum in (5.66) is equal to 2{(2) = 7T2/3. For m # 0, this
inner sum can be summed using (5.25) as

= 1 1 d *
> e m —(mcot(mmr)) = —5——.
=, (mT + n) m drt sin®(nmmt)

It is now easy to see that the infinite series ) ., sin"2(mmt) converges absolutely uni-
formly on compacts in H (since | sin(z)| grows exponentially in | Im(z)|). Thus G,(z) is
well-defined and holomorphic on H.

(c) The calculation is essentially a repetition of (5.27): again using (5.25) and also (5.26),
we have

Y| T ]

mez nez
(m,n)#(0,0)
2 [es) 00 2 o0 00
Vs 1 T 1
=—+ —_——=—+2 —_—
3 ,r;o n:z—:oo (mt+n? 3 mZ:1 ,,,Z_zoo (mt + n)?
7 2 i i 2rmie 7T2 ZOZO: z 2
=——87T gemm‘fz__8n, < €>emm'
3 m=1¢=1 3 n=1\ em=1

= H—z 1-24 020: g, (n)e”™*
3 1 :

n=1

as claimed.
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(b) The first relation (5.67) is obvious from (5.69) and also easy to check directly
from the definition of G,. Thus the main challenge is to prove (5.68). As in the proof of
(c) above, we start by attempting to replicate the calculation that we used to prove the
analogous property (5.3) (in the particular case of the transformation S(z) = —1/z) for the
“proper” Eisenstein series. However, in this case, we are in for a surprise. Specifically,
multiplying the left-hand side of (5.68) by 72 gives

TGy (-1 = Y [Z m]z‘z +202)7

m#0-nez
2 2
B SH?Jr,,;OLZZ(nT—lm)Z] :%+n§0[%+%(mfm)z]
2
- %+%@+,§0[gb (nrim)z]
:§+;[,;) (nr}m)z] :%2+;[n§0 (mr1+n)2]'

Comparing this to (5.66) and (5.68), we see that the proof of (5.68) reduces to showing the
following curious rearrangement identity:

S(E s ) YY) - 2 (5.70)
mzo VA (mt + n) m m#)(mr+n) T
In other words, what we have here is a naturally occurring example of a condition-
ally convergent double summation for which changing the order of summation not
only changes the value of the series (which can happen, as we know from calculus),
but changes it in a predictable and rather interesting way.® It is precisely this change
that accounts for G, satisfying the “exotic” transformation property (5.68) (sometimes
described as a “quasimodular” relation) rather than the more standard modular trans-
formation relation satisfied by the other, absolutely convergent Gy.

Denote the first double sum on the left-hand side of (5.70) by X and the second by Y.
We have

1 1 1
B Z[;<(mr+n)z(mr+n+1) +mr+n_mr+n+1>]

=2 [; (mr+n)2(mr+n+1)] +) [;(mrl+n - mT+1n+1>]'

m+0 m#+0

9 The examples illustrating this sort of order-dependence phenomenon in calculus textbooks often have
a rather contrived feel to them. This one seems more natural.
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A key observation here is that the first of these two double summations is absolutely
convergent. Similarly,

1 1 1
Yz;[z<(mr+n)2(mr+n+l) +mr+n_mr+n+l>]

m#0
1 1 1
:;[%0 (mr+n)2(mr+n+1)] +Z‘[n§b<mr+n - m'[+n+1>]’

and thus, by absolute convergence, the difference X — Y is now seen to be equal to

z [z<mr1+n - mr+1n+1>] _Z[ Z<mrl+n - mr+1n+1>]' 5.71)

m#0*- n n tm#0

The first of these new double series is trivial to evaluate, since the internal summation
is telescoping: we have

R
=2 [J}EE}O i <m11+n_mr+1n+1>]

m+0 n=-N
. 1 1
=Z[hm< - )]:Zo:o.
mFoLN—c0 mr-N mt+N+1 mz0

The second double series in (5.71) is only slightly more challenging. Write

Z[Z<mrl+n_ mr+1n+1>]

n tm#0
N-1
i, 2|2 )
N—oo Syl p\mr+n mr+n+1
N-1
=limZ[Z< 1 )]
N—oo 0| Sy\mT+n mr+n+1

. 1 1
= lim Z( - >
N—oo = mr-N mt+N

. °°< 1 1 1 1 )
= lim Z - + -
N—co mrt-N mt+N -mt-N -mt+N

m=1

o0
:lim2<1—1>

N—co /= mr-N mt+N
(oe)
=-2 lim Z(N L. Nl ) (.72)
TN—>OOm:1 ?+m ?—m
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Appealing to the partial fraction expansion of the cotangent function in one of its variant
forms,

ncot(nz):%+ozo:< ! + ! >

Z\z+m  z-m

(a trivial recasting of (5.24)), we see that the last expression in (5.72) is equal to

2 .. N T 2 . N
—— lim (mcot{ — |- —= ) =—— lim cot| — |.
T N—>oo T N T N—-oo T

By a straightforward calculation (Exercise 5.12) this is equal to —2mi/7, and there-
fore (5.71) is equal to 2mi/7, which is what we have reduced our claim to. The proof
is complete. O

Proof of Theorem 5.31. Define A : H — C by

(8]
&) = e q[ (- )™

n=1
By Proposition 1.60 the product converges uniformly on compacts in H and defines
a holomorphic function with no zeros, which, since it can be expanded as a series in
powers of g with good convergence properties, is a premodular form. Our goal is to
prove that A() = A(7), and this will pass through a curious relationship to the Eisen-
stein series G,. Namely, the logarithmic derivative of A(7) is given by

X! [} . 21inT © 00 .
—A~ © _ ami—24 ) rine”  _ 2711'(1 -4yny ezmm>
A7) n=1 1

_ eZninr b ]
o .
= zm<1 -24 Z( Y n)emm)
ML o
=omi[ 1-24 ) oy (m)e”™ | = 9(;2(1). (.73)
m=1 m

We claim that this connection implies that A(z) is a modular form of weight 12. By
Lemma 5.21 it suffices to prove that A satisfies

A(-1/7) = t%A(1) (7 € H). (5.74)
However, the logarithmic derivative of the left-hand side is equal to

d x ~ .
= (A-1/7) 1 A'(-1/7)  6i
dr - L
A1) T2 A(-1j7) nt? 21D
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= %(TZGZ(T) - 2mtit) = %GZ(T) + %

which is the same as the logarithmic derivative of the right-hand side of (5.74). Therefore
if we recall the trivial fact that if f, g are two meromorphic functions that are not identi-
cally zero for which f'/f = g'/g, then f = cg for some constant ¢, then, together with the
fact that (5.74) is satisfied for 7 = i, we deduce that (5.74) holds for general 7 € H. Thus
A(t) is a modular form of weight 12. As such, it is an element of the vector space My, (T),
which we know (Theorem 5.24) is of dimension 2 and spanned by the original modular
discriminant A(7) and the Eisenstein series Gy,. It follows that A = aA + BG,, for some
a,p € C. Comparing the constant and linear terms in the Fourier expansions of A, Gy,
and A shows that @ = 1 and § = 0 and finishes the proof.?’ O

The relation between A and G, that was obtained as part of the proof is of indepen-
dent interest, so we note it as a corollary.

Corollary 5.33. The functions A(t) and G,(7) are related to each other via

A'(t)  6i
ND) ;Gz(r) (T € H).

5.14.2 The modular lambda function

In this and next subsections, we denote Q = €™ (This is the square root of the parameter
q = e we have been using throughout much of the discussions in this chapter and is

more convenient for some expansions discussed below.™)

Theorem 5.34. The modular lambda function A(t) defined in (5.64) and the complemen-
tary function 1 — A(t) have the infinite product representations

~ o0 1 + an 8
A(t) =160 g( 7 ool ) , (5.75)
) B 0 1q1_ an—l )8
1-A(7) = g<—1 T (5.76)

with Q = €T e H.

10 In fact, the constant coefficients of A and A are 0, which means they both belong to the codimension-1
subspace of My,(T) of forms with a constant coefficient 0. Such forms are known as cusp forms. So an
alternative way of phrasing the argument above without mentioning G;, is by saying that A must be
proportional to A, since they are both cusp forms of weight 12, and since the space of such forms is one-
dimensional and spanned by A.

11 In many textbooks on modular forms, the letter ¢ may be used alternately for either €M or ¥
depending on the context, so pay close attention to the definitions when you read the literature.
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Proof of (5.75). Fix T € H, and let L, = Z + 7Z denote as usual the associated lattice
with fundamental period pair w; = 1, w, = 7, and let p(z) = (z; L;) be the Weierstrass
function of L,. Define the meromorphic function F : C — C by the expression
1)1—27‘[1’2)(1 + eni(2n+l)f—2niz)

(1+ e
I

n=—oco

F(z) = (5.77

(1 + eZmnT Zmz)z

Denote the nth factor in this two-sided infinite product by {,, = {,(z; 7). The product
of ¢, over positive values of n clearly converges absolutely, uniformly as z ranges over
compacts in C away from any poles of individual factors, due to the exponential decay of
|eZM"7 | Moreover, {, hasthe symmetry {_,(-z; 7) = {,(z; T), which is easy to check, imply-
ing the same convergence also for the product over negative n. Thus F(z) is well-defined
and is a meromorphic function with poles only at places where one of the individual
factors ¢, has a pole (more on that below).

The usefulness of F(z) is related to the fact, which we now observe, that it is a doubly
periodic function with period lattice L. This is easy to see: the relation F(z + 1) = F(z)
holds trivially, and to show that F(z + 7) = F(z), observe that the substitutionz — z + 7
maps each factor ¢, to its predecessor {,_,, that is, we have the relation (,(z + 7;7) =
(nfl (Z; T)'

Next, an examination of the factors involved in the definition of {,, and their zeros
(as a function of z with fixed 7) reveals that F(z) has double poles at the half-period
z = v; = 1/2 (in the notation of (4.23)) and all its L -translates, and double zeros at the
half-period z = v; = (1+ 7)/2 and all its L,-translates. There are no other zeros or poles.
This means that in fact F(z) has the same zeros and poles as the doubly periodic function
p(z) e 2. Therefore the quotient F(z)/ @éi 23 is a doubly periodic function with no poles
and so must be a constant. Taking z = 0 shows that the constant is equal to F(0) (the
limit of % as z — 0is1because of cancelation of the principal parts of the poles of
the numerator and denominator at z = 0; refer to (4.10)). So we have shown that

Fz) = F0) 22 =%
©(z) - e
Now set z = v, = 7/2 in this identity to get that

F(z/2) = F(vy) = P(O)"E 2; F<0> — FOA(x).
1

In other words, we have shown that the lambda function can be represented in terms
of F(z) as A(t) = F(t/2)/F(0). Making the relevant substitutions into (5.77), we see that

(1+ e 271 1)T)(1+e]'[l(2n+1 )
0) l_[ 1+ eme‘)Z

_1+QHa+Q)
B 4
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y ﬁ (1 + anil)(l + an+1)(1 + Q*(Zﬂ*l))(l + Q*(ZYH»l))
1+ Q2n)2(1 + szn)z

(1+Q)2 00 (1 QZrl 1)2(1 QZH+1)2 1 lo_o[ 1+02n—1)4

4Q i s TaQ L At
Similarly,
00 i(2n-2)t 7Ti(2n)T
~ (1+ €MEDT) (1 4 A7)
F(t/2) = nlj[oo 1+ em'(Zn—l)'[)Z

_ ﬁ 1+ Q")+ QM)A+ Q)1+ Q)

- 1+ QZn—l)Z(l + Q—(Zn—l))z

_ﬁ(noz” DAL+ @ 1"—"[ L+ "

- A (1+QZn -1)4 1 1+ QZn 1)4
Combining the above results yields precisely the infinite product formula (5.75). O
Proof of (5.76). Exercise 5.15. O

5.14.3 The Jacobi thetanull functions

Our final result on infinite product expansions concerns the Jacobi thetanull functions.

Theorem 5.35. The Jacobi thetanull functions have the infinite product representations

0,(7) = 20" ]0'0[(1 — M1+ QMY (5.78)
n=1
05(0) = [ [(1- @™ (1 + Q™ ) (5.79)
n=1
6,(1) = [ J(1- ™)1 - @™, (5.80)
n=1

with the usual notation Q = e T e H.

As a corollary of (5.75), (5.76), and (5.78)—(5.80), we obtain two additional remarkable
identities relating A(7) to the Jacobi thetanull functions.

Corollary 5.36. The modular lambda function A(t) satisfies the relations

(60 ) 94(r)>4
A(r)—<93(r)>, l—A(T)—< 5,0 ) (5.81)

Additional interesting corollary worth noting is the following.
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Corollary 5.37. The Jacobi thetanull functions satisfy the identity
6,(7)* + 0,(1)* = 05(1)*. (5.82)

The infinite products (5.78)-(5.80) are particular cases of a more general product
identity for the full Jacobi theta function (involving two variables z and 7), known as
the Jacobi triple product identity.

Theorem 5.38 (Jacobi triple product identity). We have the identity
Y exp(min’t + 2rinz)

n=-oo

(1 _ e2nm“r)(1 : e(2n—1)frir+2ni2)(1 : e(2n—1)nir—27ri2) (5.83)

—1s

T
[N

forte Handz € C.

For a complex-analytic proof of identity (5.83) using techniques of a flavor similar
to those used in the proof of Theorem 5.34; see [66, Ch. 10]. An alternative approach
proceeds by rewriting (5.83) as

00 ) 00 ~ ~ ~
Z Xnyn _ 1—[(1 —in)(l +yX2n 1)(1+y 1X2n 1)
n=-o0o n=1

(by making the substitutions x = €™, y = ¢?™#) or, equivalently,

= 1 S n*.n > 2n-1 -1_2n-1
Hl—xzn z X"y :H(1+yx YA +y X,
n=1 n=—o0o n=1

This can be given a combinatorial proof by interpreting both sides as bivariate gener-
ating functions for certain classes of objects associated with integer partitions. These
classes are then shown to be in explicit bijection with each other, implying the equality
of the coefficients at xjyk on both sides of the equation for all j, k. See [54, Sec. 6] for
details.

Proof of Theorem 5.35. Exercise 5.17. O

Suggested exercises for Section 5.14. 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21.



228 —— 5 Modular forms

Exercises for Chapter 5

5.1

5.2

5.3

54

Show that the Weierstrass p-function, regarded as a function g(z; 7) of both the “el-
liptic” variable z and the modular variable 7, satisfies the transformation relation

p( CTZ+ d; ?;:2) =(cT + d)zp(z, T) (zeC, TeH) (5.84)
foralla, b, c,d € Z for which ad - bc = 1.

Prove Lemma 5.3. (Hint: reminding yourself of the statement of Theorem 3.13 from
Chapter 3 might be helpful.)

Structure of the modular group. Prove that the algebraic structure of the modular
group I' can be expressed succinctly by the relation

FEZZ*ZS.

In words, this says that I' is isomorphic to the free product of the cyclic groups of
orders 2 and 3. More precisely, show that it is freely generated by the elements
S, U, that is, that if the standard cyclic groups Z, and Z; have respective generators
denoted y, and y;, then the map

(where Z, = Z; denotes the free product of those groups) defined by

() =S, olys) =0,

and extended in the obvious way to a group homomorphism is a group isomor-
phism. (Note: this is a well-known result. A simple proof is given in [4].)
The congruence subgroup I'(2). Let

T'(2) = {A = <? Z) €l : a,dareodd, b,care even} .

It is easy to see that I'(2) is a subgroup of the modular group I either through direct
verification or by noting that I'(2) is the kernel of the homomorphism that sends
any matrix A in T' to its reduction mod 2, an element of the matrix group SL(2, Z,).
The group I'(2) belongs to the class of subgroups of I' known as the congruence

subgroups.
(a) Prove that the two matrices
(1 2 (1 0\ ¢
A-(O 1> and B-(Z 1>—A (5.85)

generate I'(2).
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-1 1

Figure 5.3: The fundamental domain G for the congruence subgroup I'(2).

5.5
5.6
5.7

5.8

5.9
5.10

511

(b) Prove that I'(2) is freely generated by A and B. That is, the only products we
can form from A, A‘l, B, and B! that give the identity element are those that
reduce to the identity element by successively canceling out the appearances
of AA™, A™'A, BB, and B"'B.

(c) Prove that the set

1 1
g:{ze]H:—ls|Re(z)|<1,z—§ >1, z+£

zl}u{O}

(Fig.5.3) is a fundamental domain under the action of I'(2) in a sense that you
should formulate precisely as an analogue of the statement of Theorem 5.4.
(d) Find theindex [T : T(2)].
Prove Theorem 5.10.
Prove Lemma 5.21.
Fill in the missing detail in the proof of Theorem 5.24 by proving that |Aj| = |B|
for all k > 0, where .4; and By are defined by (5.52)—(5.53).
Write a computer program to generate the change of basis matrices (in both direc-
tions) between the two linear bases .4, and 5y, for the vector space M, described
in Theorem 5.24. Investigate these matrices for small values of k and see if you can
work out a formula for them that is valid in the general case, or find other interest-
ing patterns.
Prove the transformation properties (5.57)—(5.59).
Prove Theorem 5.27. The idea is to show that each of the functions on the right-hand
sides of (5.60)—(5.63) has the right structural properties that make it an element of
the space M, for an appropriate value of k, then conclude that it is a constant
multiple of the function on the left-hand side, and finally find a way to determine
the value of the constant.
Prove Theorem 5.28.
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5.2 Prove thatifz € C \ R, then

lim cot(Nz) =

N—oo

-1 if Im(z) > 0,
i if Im(z) <0.

5.13 Prove that G, satisfies the general transformation relation

Gz<ar+b> =(cT + d)ZGz(T) - 2mic(ct + d), <a b> eT,
ct+d c d

under the action of the modular group.

5.14 Prove that G,(i) = 7.

5.15 Prove the infinite product formula (5.76) by applying a similar technique to that

used in the proof of (5.75).

5.16 (a) Enteratruncated version ofthe infinite product formula (5.75) into a computer
algebra system of your choice, to obtain the first 10 coefficients in the Q-series
expansion of the modular A function.

(b) Enter the first few coefficients into the search box on the On-Line Encyclopedia
of Integer Sequences [W21]. If you have the correct coefficients, then the search
results will show you a lot of additional information and references on this
sequence of numbers and on the modular lambda function. (You can also try
doing the same with the Fourier coefficients for A, the Eisenstein series, or
other sequences of integers that you encounter in modular forms or any other
area of mathematics.)

5.17 Show how to derive formulas (5.78)—(5.80) from (5.83).

In the exercises below, we define renormalized versions of the Eisenstein series G,, G,, Gg
by

E,(T) = %Gz(r) =1-24) a(n)q", (5.86)
n=1
45 S n
Ey() = —Gy(7) =1+ 240 Y a3(n)q", (5.87)
n=1
Eg(1) = 9i‘2c;6(r) =1-504 ) a5(n)q". (5.88)
21 |

These versions of the Eisenstein series are often used in the literature in connection with

number-theoretic applications.

5.18 (a) Prove that E,, E4, and Eg satisfy the following system of differential equations,
known as Ramanujan’s identities:

1

) 1
S B (D) = E(Jsz(r)2 - E,(1)), (5.89)
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21154(1) = (Ey(T)E,(7) - E4(7)), (5.90)
ZiES(r) 5 (Ea(D)Eg(7) - Ey(0)?). (5.91)

(b) For each of identities (5.89)-(5.91), find the Fourier expansions of both sides
and compare the coefficients to obtain interesting number-theoretic identities.
5.19 Prove the identities

Ey () = (452(21) +E2<2> +EZ<T ; 1))

Ey(T) = (16]5‘4(2'[) +E4(2> +E4<T;r1>>.

5.20 Prove the identities

.\‘
+
[EnN

0,(7)" = %( ( ) E2<§>> (5.92)
05(7)* = %(4}52(21) E2< )) (5.93)
0,(0)* = %(4152(%) E2< ‘ ;’ 1)) (5.94)
0,(7)% = %(54@) - E,(21)), (5.95)
05(7)® = %(16}5‘4(7) E4< t ; 1)) (5.96)
0,(0)® = %(16)54(1) —134(%)). (5.97)

Guidance for proving (5.92)-(5.94). Define the functions

E(5H) - Ex3)

4E,(217) - E5(3)
Ry(7) = W)‘lz’

4Ey(27) - Ey(%2
Ry(7) = W’

¢1 :RZ +R3 +R4,
¢y = RyR3 + RyRy + R3R,,
®3 = RyR3R,.

Show that ¢, ¢,, @5 are entire modular forms of weight 0 and use this to show that
¢ =3, ¢y =3, 93 = 1. Deduce from thisthat R, =R; = R, = 1.
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5.21 Show that by expanding both sides of (5.93) and (5.96) as Fourier series and compar-
ing the coefficients, we will obtain interesting number-theoretic identities related
to counting the number of ways in which integers can be represented as a sum of
squares. Specifically, let r,(n) and rg(n) denote the numbers of ways to represent
an integer n as a sum of 4 squares and as a sum of 8 squares, respectively. Prove
the following identities, due to Jacobi:

r(m=8 Y d,
d|n, 4+d
rg(n) = 16(-1)" Y (-1)%d’.
dln

(In particular, we get the fact that every integer can be expressed as a sum of four
squares, a famous result in number theory proved by Lagrange in 1770.)
5.22 Use (5.92)—(5.93) to prove that

205(7)* - 0,(0)*

()
’ri
2 =1+24) Gygq(n)e”™™, (5.98)

n=1

where 0,44(n), the odd divisor function, is defined by

Goaa(M =Y d (n21).
ddolc{ld

5.23 Use the Jacobi triple product identity (5.83) to derive the following identity, known
as the Euler pentagonal number theorem:

(1-x") = f (~D)xKBRD2 1y < 1),

k=-00

18

=
I
uN



6 Sphere packing in 8 dimensions

Discovery in mathematics is not a matter of logic. It is rather the result of mysterious powers which
no one understands, and in which unconscious recognition of beauty must play an important part.
Out of an infinity of designs, a mathematician chooses one pattern for beauty’s sake and pulls it
down to earth, no one knows how.

Marston Morse, “Mathematics and the arts” (1959)

6.1 Motivation: the sphere packing problem in d dimensions

In 1611, two years after publishing the first two of his famous laws of planetary motion,
the astronomer Johannes Kepler also published a curious observation about geometry
in an essay titled “On the Six-Cornered Snowflake.” Kepler speculated that the most ef-
ficient way to pack solid spheres of equal size in three-dimensional space was using
the lattice arrangement now known as the face-centered cubic (Fig. 6.1). This packing
results in a packing density—the fraction of the volume of the packed space occupied
by the interior of the spheres—of #2, and Kepler’s conjecture was the statement that
no other configuration of spheres can achieve (in a limiting sense when this is done
over larger and larger volumes that fill up space) a higher packing density. Although
intuitively plausible, even obvious-sounding to anyone who has tried to stack oranges
or other spherical objects, the conjecture nonetheless proved extremely resistant to at-
tempts by mathematicians over the ensuing centuries to prove it rigorously. In the late
twentieth century, it stood as one of the most famous and longest-standing open prob-
lems in mathematics (among other markers of status, it was included as part of the 18th
problem on Hilbert’s famous list of 23 problems) and was finally proved by Thomas Hales
[39] in 1998.

We will not discuss Hales’s proof, which is very involved and does not use complex
analysis; the book [38] is a good reference on this topic. However, it turns out that sphere

(a) (b)

Figure 6.1: The Kepler conjecture, proved by Thomas Hales in 1998, states that the highest density for
packing spheres in R®is 7/3V2. The packing density for the two lattice packings: (a) the cubic close pack-
ing (derived from the lattice known as the face-centered cubic) and (b) the hexagonal close packing.

@ Open Access. © 2023 the author(s), published by De Gruyter. [(c) IXEXEEM This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-007
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Figure 6.2: The hexagonal packing is the densest way to pack unit circles in the plane.

packing is extremely interesting to study in other dimensions as well (where “spheres”
now refer to hyperspheres of appropriate dimension, and the meaning of “packing” re-
mains the same). For example, the case of sphere packing in two dimensions (that is,
circle packing) is also interesting, though it is much simpler to understand than in three
dimensions and has as its solution the hexagonal lattice packing with a packing density
of x/LTz (a fact that was shown, in increasing levels of generality and rigor, by Gauss in
1831, Thue in 1890, and T6th in 1940); see Fig. 6.2. Much research in recent decades has
focused on studying the question in dimensions higher than 3; see [18].

Our goal in this chapter is to explain the remarkable mathematical ideas behind the
recent solution of the sphere packing problem in dimensions 8 and 24. These are cur-
rently the only dimensions apart from d = 2, 3 for which the problem has been solved.
Specifically, we will give a detailed proof of Viazovska’s theorem.

. y . . A 8. 7t
Theorem 6.1 (Viazovska’s theorem). The optimal sphere packing density in R” is 5¢;.

Theorem 6.1 was proved by Maryna Viazovska [71] in 2016.! Following the appear-
ance of her groundbreaking paper, Viazovska’s new insights led within days to a success-
ful solution of the problem in dimension 24 by her and her collaborators Cohn, Kumar,
Miller, and Radchenko [16]. In 2022, Viazovska was awarded the Fields Medal for these
remarkable achievements and for further contributions to related problems in geome-
try and Fourier analysis. For more details, see [12, 13, 20, 52].

One of the remarkable aspects of the solutions to the sphere packing problem in
both dimensions 8 and 24 is that they use very little geometry: in fact, what little geo-
metrical reasoning appears only does so in connection with the explicit constructions

1 This statement (and our name for Theorem 6.1) are simplifications: this theorem summarizes the re-
sults and contributions of several mathematicians. However, in this writer’s opinion, Viazovska’s contri-
bution being the last, as well as being inarguably most ingenious and remarkable, makes her deserving
of being the eponym of the theorem.
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of the optimal packings (which imply lower bounds for the packing density), whereas
the proof of the matching upper bounds for the packing density instead draws primarily
on complex analysis and the theory of modular forms, spiced up with a bit of Fourier
analysis. If you have read Chapter 5, then you are well equipped to tackle this modern
and quite beautiful application of complex analysis.

The E; lattice and sphere packing

The Eg sphere packing is a packing in which each of the spheres of the packing is centered at a vertex
of the so-called Eg lattice, a lattice with many remarkable properties that is closely associated with (and
shares a notation with) the exceptional Lie algebra Eg.

As the Eg packing is an intrinsically 8-dimensional object, it is somewhat difficult to visualize what
the packing “looks like.” One can nonetheless gain some understanding of the qualitative behavior of the
packing by considering what a single “cell” of the packing looks like — that is, a single sphere centered
at the origin together with the spheres of the packing that are tangent to it. In the case of the Eg packing,
there are 240 such tangent spheres. Each of the tangent spheres is itself tangent to 56 of the other 239
spheres. This is visualized in the figure below, where the 240 spheres are represented as dots, and two
dots representing spheres that are mutually tangent are connected with a line. (The positions of the dots
are given by a particularly symmetric two-dimensional projection of their sphere centers in R®.)

A formal construction of the Eg lattice is given in Section A.7 in the appendix.

Figure 6.3: A two-dimensional projection of a packing cell in the Eg sphere packing, which realizes the
optimal sphere packing in R®, having a packing density of z*/384.
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6.2 A high-level overview of the proof

To understand the proof of Theorem 6.1, a bit of background is required to set up the
problem for the final part of the proof, the part that involves complex analysis and is of
main interest to us. Our presentation is self-contained and is split between this chapter
and Appendix A. Here we give a brief overview of the full structure of the proof:

1.

Background material: this consists of definitions and basic facts about sphere pack-
ings and lattices. This material is presented in Sections A.1-A.6 of the Appendix.
Lower bound: construction of an optimal packing. An 8-dimensional sphere
packing now known to be optimal is the E; sphere packing and is based on the
Eg lattice; see the box on the next page. A few basic facts about this lattice will be
needed, and we discuss the relevant material in Section A.7 in the Appendix. This
is the “easy” part of the proof (at least in the sense that it is based on little more
than elementary linear algebra), which gives a lower bound on the optimal sphere
packing density.

Upper bound, part I: the Cohn-Elkies bounds and magic function conjectures.
Conceptually more difficult is to prove an upper bound on the packing density, as
that involves proving that no packing can have a density better than some number.
Since the family of possible packings is very large (in fact, infinite-dimensional), it is
not obvious how to approach this. A beautiful technique for deriving upper bounds
was introduced by Cohn and Elkies [14], who discovered that the Poisson summation
formula from harmonic analysis (more precisely, a multidimensional version of it
for lattices) is just the right tool for the task. Their bounds, belonging to a class of
bounds known as linear programming bounds, give a way of associating a numerical
upper bound for the packing density with certain functions of a single (real) variable
with nice properties. The problem then becomes that of optimizing the bound over
the relevant family of functions in the hope of producing a sharp bound.
Amazingly, the numerical calculations Cohn and Elkies performed for many differ-
ent values of the dimension d, which gave numerical bounds that were in many
cases better than those previously known, revealed that for d = 2, 8, and 24, their
bounding technique seems to approach the value known (in the case d = 2) or be-
lieved at the time (in the cases d = 8 and 24) to equal the optimal packing density.
They conjectured that in those dimensions, there exists a so-called “magic function,”
a function in the class of bounding functions for which the associated upper bound
for the optimal sphere packing density matches the known lower bound and hence
serves as a certificate that solves the sphere packing problem in that dimension.
We explain the Cohn-Elkies bounding technique and their magic function conjec-
tures in Sections A.8—-A.11 of the Appendix.

Upper bound, part II: Viazovska’s modular form construction. Cohn and Elkies’s
work reduced the sphere packing problem, at least in dimensions 8 and 24, to the
problem of constructing a magic function. Viazovska discovered just the right tech-
nique for constructing the function with the desired properties in dimension 8 (and



6.3 Preparation: some remarks on Fourier eigenfunctions =— 237

her ideas proved also applicable to dimension 24 with minor modifications) by mak-
ing an ingenious use of modular forms. Explaining the details of her construction is
the main goal of this chapter.

To the reader who is completely unfamiliar with the topic of sphere packings and wishes
to gain a full understanding of the proof of Theorem 6.1, a recommended path is to read
Appendix A first and then proceed to reading the remainder of this chapter. Section A.7,
which only deals with the explicit construction of the Eg lattice, is not necessary to
understand any other parts of the proof and may be skipped on a first reading.

6.3 Preparation: some remarks on Fourier eigenfunctions

From here on, we assume that you are familiar with the material and notation of Ap-
pendix A. The starting point for our proof is Theorem A.29, which, as explained in Sec-
tion A.12, provides a kind of roadmap for constructing an Eg magic function, based on
constructing separately the Fourier-even and Fourier-odd components @, (r) and ®_(r)
associated with a hypothetical radial magic function; these functions will be constructed
with the goal of manufacturing (+1)-Fourier eigenfunctions having the prescribed set
of zeros (of appropriate orders) at v2n, n = 1,2,.... Once these functions are con-
structed, they can be combined into a single radial function having the two functions
as its Fourier-even and Fourier-odd components. The hope is that for the function thus
constructed, the necessary conditions of Theorem A.29 will also turn out to be sufficient.

Thus, forgetting about magic functions for the moment, our immediate goal is to
construct radial Fourier eigenfunctions in 8 dimensions with the correct set of zeros.
We will prove the following result.

Theorem 6.2. There exist radial Schwartz functions ¢,,¢_ : R® — R with the following
properties.
1. ¢, (x) is a (+1)-Fourier eigenfunction, that is,

]:8[(p+] =0,

where Fg denotes the Fourier transform in 8 dimensions (see the definition in (A.5)).
2. @_(x) is a (-1)-Fourier eigenfunction, that is,

Felo_1=-0_.

3. Each of the radial profiles ¢, (r), 9_(r) has zeros atr = V2n,n = 1,2,3,..., with the
zero at V2 being simple and the other zeros being of order 2.

Where do we begin to look for such functions? Well, probably the most famous ex-
ample of such an eigenfunction is the Gaussian function
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y0x) = eI’
for which it follows trivially from the analogous property of the one-dimensional Gaus-
sian,

Fs(MY) = yy).
This will be useful to us in the following way: if we let

yo(x) = e 7SI
s(X) =
denote a rescaled Gaussian, then because of the scaling behavior of the Fourier trans-
form, we have

E110) = ) 6

This identity is valid not just for a real positive scaling parameter s, but in fact for any
s in the half-plane Re(s) > 0, since in that case, y(x) has good decay and integrability
properties.

Thus we see that the rescaled Gaussian y, is not a Fourier eigenfunction if s # 1, but
a linear combination of y; and y,; of the form ay, + by, with a, b satisfying

a=+sh (6.2)

is an eigenfunction (associated with eigenvalue +1 according to the choice of sign
in (6.2)). More generally, we can take sums of such linear combinations involving differ-
ent values of s, or even integrals with respect to s of the form

FO0 = J W(s)y,(x) ds = J w(s)e ™M g, 63)

where w(s) is some weight function, and where the integration is taken over some range
of values of s in the half-plane Re(s) > 0. Under appropriate assumptions over how w(s)
relates to w(1/s), the resulting function will be a Fourier eigenfunction. This gives a rich
source of potential eigenfunctions to use for our construction.

It seems most natural to choose the interval (0, co) as the range for the integration
in (6.3); the integral (6.3) can then be thought of simply as the Laplace transform

J w(s)e ™ ds, 6.4)
0

in the variable z = ||x||2. In that case the weight function will need to satisfy w(1/s) =
+s72w(s), a condition reminiscent of one of the defining equations for a modular form.



6.4 The +1 Fourier eigenfunction =— 239

However, thisistoo naive of an idea and does not work, as it does not lead to a viable path
to choosing the weight function w(s) in a way that causes the function f(x) to have zeros
at the desired radii. It turns out that a more clever choice is required that also incorpo-
rates certain nonreal values of the scaling parameter s (see equations (6.31) and (6.54)).
Modular forms still enter the picture, but they do so in a much more subtle and surpris-
ing way. The details are given in the next two sections.

6.4 The (+1)-Fourier eigenfunction

In this section, we complete half of the proof of Theorem 6.2 by constructing the func-
tion @, (x) and establishing its properties. The construction for ¢_(x) is given in the next
section. Both the functions ¢, (x) and ¢_(x) are constructed by taking the Laplace trans-
form of two functions U : H —» C and V : H — C, which are given explicitly in terms
of modular forms.

Let 7 be a complex variable taking values in the upper half-plane, and let g = e
as in Chapter 5. We will use the normalized versions E, and Eg of the Eisenstein series
G, and Gg defined in (5.87)-(5.88). With these definitions, it is useful to observe that

27TiT

1728

Ey (1) - Eg(7)* = 0P

A7), (6.5)

a scalar multiple of the modular discriminant (see (4.15), (4.35)).
Now define the function U(7) by

(TE5(T) + 4E4(7))*

U(7) = 108 EA(F ~E(0 (6.6)
This can be expanded in the form
! 2 !
U(t) = 108(%)72 + 864(M>r
E4(7)° - E¢(7) E4(7)° - E¢(7)
Ey(0)’ )
+1 728< E 0P -E 02/ 6.7)

which will be convenient for certain calculations and highlights the structure of U(7) as
a kind of “polynomial” in 7 whose “coefficients” are themselves holomorphic functions
in 7 that have useful modular properties and in particular are 1-periodic.

Lemma 6.3. The function U(t) takes real, nonnegative values on the positive imaginary
axis.

Proof. Referring to (5.87)—(5.88), it is evident that E,(7) and Eg(7) take real values on
the positive imaginary axis and that E;(7) takes imaginary values there. Therefore (6.6)
implies that U(7) isreal for 7 = it, t > 0. Moreover, in the fraction in (6.6), the numerator
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is the square of a real number (hence nonnegative) for 7 = it, and the denominator
is a positive scalar multiple of A(it), which is itself a positive real number, as can be
seen, e. g., from the infinite product representation (5.65). Combining these observations
shows that U(it) > 0 fort > 0. O

Lemma 6.4. U(7) satisfies the transformation properties

1 1
U<—;> = F(U(T+1)—2U(T)+U(T—1)), (6.8)
U(-1 + 1) - Lue-n, (6.9)
T T
U(—1 - 1) = lZU(T +1). (6.10)
T T

Proof. Start by noting that
' 1, d d
Ej(-1/7) = rz<§54(—1/r)> = rz%(};@(—m)) = TZE(T4E4(T))
= (T Ey(7) + 4T°Ey (7)) = (TE}(T) + 4E4(T)).

It follows that

((-1/7)Ey(-1/7) + AE4(-1/7))?*
Ey(-1/7)* - Eg(-1/7)?
((-1/7)T° (TEY(T) + 4E4(7)) + 4T E, (7))
TlZ(E4(T)3 - EG(T)Z)
e 1 Ej(1)?
=108 Ey(7)° — Eg(0)%

U(-1/7) =108

=108

(6.11)

On the other hand, by (6.7) and the comment above about the parenthesized expressions
in that representation being 1-periodic, the discrete second difference U(7 +1) - 2U(7) +
U(t - 1) on the right-hand side of (6.8) is easily seen to be

108( £y >((z’ +1)% =277 + (T - 1))
E4 6

3 EZ

EJE, ) B _
+864<E§—E§ ((t+1) -2+ (1-1)

Ez
+1728< 4 )(1-2+1)
E3-E

3_ 2
4~ g

12 12

4 E4
Ey - E £y - E

This last expression by (6.11) is equal to 272U (~1/7). This proves (6.8).
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Next, if we denote U(t) = U (-1/7), then by (6.11), U(t) is also 1-periodic. Using this
fact, we can write
-1 )
T

u(-2er)e =g |
A
(e
-9(- -1t = -,

which proves (6.9). Finally, (6.10) is obtained by substituting -1/7 in place of in (6.9). O

Lemma 6.5. On the positive imaginary axis near T = ico and t = 0, U(t) has the asymp-
totic behavior

U(it) = €™ — 2407t + 504 + O(t*e™™)  (t — o0), (6.12)
U(it) = (e ") (t — 0). (6.13)
Proof. Using (5.87)-(5.88), the initial terms of the Taylor expansions (in powers of the

variable gq) of each of the parenthesized expressions in (6.7) can be readily obtained,
giving the asymptotic relations, as 7 — ico and ¢ — 0,

Et 4007 )
B Rl 3 4o (6.14)
Ej(DE\(T) _ 5mi
B E0r 18 0@ 6.15)
2
o PN 0(q). (6.16)

= +
E (1 —Eg(t)? 1728 24

Substituting these relations into (6.7) gives (6.12). To get (6.13), use (6.11) together
with (6.14) to get that,as t — 0,

EL(i/t)?* 108, 4007* 2g-tlt

LN AV A A -
U(it) = 108(-it) Ea07 - Eg17 3

+ (e "),

which proves the claim. O
Now define the holomorphic function

ico

A(z) = 4isin (7; > J U(t)e™dr, 6.17)
0
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where the integral is a contour integral along the positive imaginary line. The motiva-
tion for this definition is that ¢, (x) will later be constructed by substituting Ix|1? for z
(see (6.30)). This gives a variant of the Laplace transform-based construction (6.4), but
with the additional term of sinz(’%""z) introduced to force the function to have zeros at
the correct points ||x] = V2, V4, V6, .. .. (The sine factor is squared since we want all
but one of the zeros to be double zeros; recall Theorem A.29.) Some analysis is now re-
quired to verify that the idea can lead to a Fourier eigenfunction or indeed that ¢_ (x)
thus defined is even a legitimate function on R®. We focus on the properties of A(z) as
a holomorphic function first before turning to a discussion of ¢, (x) but keep the substi-
tution z = ||x||2 in mind as you read the next few results.

Lemma 6.6. The integral in (6.17) converges in the half-plane Re(z) > 2 and defines a
holomorphic function there.

Proof. By Lemma 6.5 the integrand in (6.17) (with the parameterization 7 = it) satisfies
the asymptotic bounds

[Uite™| = 0(e 7DD (t - o0),
lU(l-t)e—mzl _ O(tze—n(Re(z)+2)/t) (l' N 0).

The constant implicit in the big-O notation does not depend on z. Thus, if we write the
integral in (6.17) as I; (z) + I,(z), where I, (z) = jg U(r)e™™ drand I(z) = [~ U(r)e™ dr,
then, by the standard complex analysis lemma on integrals of a family of holomorphic
functions with respect to a parameter (Exercise 1.26 on p. 77), the improper integral I;(z)
converges in the half-plane Re(z) > -2 and defines a holomorphic function there. Simi-
larly, I,(z) converges and is holomorphic in the half-plane Re(z) > 2. O

Next, we show that A(z) can be continued analytically to the half-plane Re(z) > 0,
and a bit later; we will show that it can be continued analytically even beyond that half-
plane. As per the usual convention in complex analysis, we continue to use the same
notation A(z) to denote all analytic continuations of A(z).

The formula for the first analytic continuation involves integration over four paths,
which we denote by ¥_y, ¥, ¥;, and ¥;,,, collectively forming the shape of an inverted
pitchfork (or an inverted Greek letter ¥), as shown in Fig. 6.4. These paths are defined
as follows:

Y_, is the circular subarc of the unit circle leading from -1 to i;
Y, is the circular subarc of the unit circle leading from +1 to i;
— W, is the straight line segment from 0 to i;

- W, is the infinite straight line segment from i to ico.
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lIJioo

Yo

-1 0 1

Figure 6.4: The “pitchfork paths” W_;, ¥y, ¥y, ¥

Lemma 6.7. The function A(z) has the alternative expression

A(z) = —i j U(r +1)e" dr — i J U(r - 1) dr

v, ¥
+2i J U™ dr - 2i J 2U(-1/0)e" dr. 6.18)
¥, Yico

Expression (6.18) extends the definition of A(z) to a holomorphic function on the half-plane
Re(z) > 0.

Proof. Denote the right-hand side of (6.18) by A(z), and rewrite this function as
A(z) = —i(A_1(2) + A(2) - 24y(2) + 24, (2)),

where we set

A ,2)= J U(t + 1)e™ dr, (6.19)
¥,y
A2 - J U(z - 1€ dr, (6.20)

v
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A,(2) = j U(2)e"™ dr, 621)
¥y

Ai(2) = J PU(-1/1)e™™ dr. (6.22)
lpioo

Now Zlo(z) is the same as the integral I;(z) from the proof of Lemma 6.6. It was estab-
lished in that proof that this integral converges to a holomorphic function in the region
Re(z) > -2. The convergence of A, (z) to a holomorphic function, also in the region
Re(z) > -2, follows in a similar manner using (6.11) and (6.14).

Next, to verify the convergence of the integral A_,(z), we first rewrite it by applying
a change of variables £ = -1/(7 + 1). It is easy to check that this maps the contour ¥_,

into the reverse of the straight line segment [— + 11 1 5 +100), so we get the expression

1 .
§+lOO

A4(2) =~ J U(-1/ge " &

&’
Denoting ¢ = —% + it, where t > 1/2, we have the bounds
| I/E)I —Zm
(refer again to (6.11) and (6.14)) and, under the assumption that Re(z) > 0,
—miz(E7141)) _ -1 -1
e | = exp[n(Re(2) Im(f +1) + Im(2) Re(f +1))]

= exp[ nRe(z) mIm(z ) —1/4

1/4 14 < exp(n[Im(z))).

Therefore we conclude that given a compact set K ¢ {Re(z) > 0}, there is a constant
C > 0 such that for all z € K, we have

N\»—‘

J |U(T " 1)em'1'2| |d’l’| J IU(_1/5)| . |e—m‘z(g*1+1)| E%

v, _

o0
<C J et < &
/

1,1
3+l
2

This implies the convergence of the integral to a holomorphic function in the half-plane
Re(z) > 0 by the result of Exercise 1.26.

The convergence of A,(z) is proved similarly to the case of A_;(z) by making the
substitution ¢ = —1/(t — 1); details are left to the reader.
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Having established that A(z) is well-defined and holomorphic on Re(z) > 0, it re-
mains to check that it extends the definition of A(z). Assume that Re(z) > 2. First, rewrite
definition (6.17) of A(z) as

ico
Az) = _l-(erriz/Z _ e—ﬂiZ/Z)2 J U(T)eniTZdT
0
ico
= —i(™ -2+ e7™) I U(t)e"“dr
0
ico ico ico
- —i( j U(t)e™ ™V qr — 2 J U(t)e™™ dr + J U(t)e™ ez dT)
0 0 0
1+ico —1+ico
_ _i< J U(p - 1)e™ dp + J U(E + 1) df
1 |

) J U™ dr — 2 j U(r)e"™ dr), (6.23)
lI!O ‘pioo

where in the last step, we make the substitutions p = 7+ 1, £ = 7 — 1, and for the middle
integral, decompose the integral over the segment [0, ico) into two integrals over ¥, and
v,
Next, observe that in (6.23), we can transform the integrals over the segments
[-1,-1 + ico) and [1,1 + ico) by deforming the contours: specifically, the segment
[-1,-1 + ico) can be deformed into ¥_; + ¥;,, and the segment [1,1 + ico) can be de-
formed into ¥, + ¥;,. Because of the exponential decay of the integrand as Im(7) — co
(a fact which follows from the assumption that Re(z) > 0, expression (6.7), and the
asymptotic estimates (6.14)—(6.16)), an application of Cauchy’s theorem together with an
easy limiting argument shows that this deformation leaves the values of the respective
integrals unchanged. The first transformed integral can therefore be rewritten as

1+ico
J U(p - 1)e™ dp = J Ulp-1)e™ dp + I U(p - 1)™? dp,
1 L1 Yico

and similarly the second transformed integral becomes

—1+ico

J U(E+1)enig‘z dé = j U(E+1)em‘g‘z dE + .[ U(E+1)€m& dz.

-1 v Yico

Substituting these expressions into (6.23), collecting terms, and then making use of (6.8)
give



246 —— 6 Sphere packing in 8 dimensions

A(z) = —i< J Ut - 1) dr + J U(t +1)e"% dr
¥, v,

+ J (U(t+1) -20(7) + U(r - 1))e™™ dr -2 J U(r)e™ df>
Yio 9,

= —i< J Ut - 1) dr + J U(t + 1) dr
1 -1
+2 J 22U(-1/0)e" dr -2 J U(t)e™™ dr)
‘Pioo ‘{IO
= —i(A1(2) + A_1(2) + 24,0, (2) — 24(2)) = A(2),
as claimed. O

Next, it is useful to derive yet another representation for A(z), which continues it
analytically to an even larger half-plane.

Lemma 6.8. The function A(z) is also given by the alternative expression

A(z):—4sin2<ﬂ> 1(—1 —@+%>
2 Jln\z-2 z2 z

(o]
+ J(U(it) — ™™ 4+ 2407t — 504)e ™ dt]. (6.24)
0

The right-hand side of (6.24) defines a holomorphic function on the half-plane Re(z) > -2
(after interpreting its values at the points z = 0 and z = 2 in a suitable limiting sense
to account for removable singularities at those points) and therefore gives an analytic
continuation of A(z) to that half-plane.

Proof. Assume first that Re(z) > 2. Motivated by (6.12), we write

A(z) = -4 sin2<%> U(it)e ™ dt

nz
=-4 sinz( — >
2

+(U(it) - ™™

—g o —3

[(e2™ — 2407t + 504)

~t o

+ 2407t — 504) )™ dt

(o]

=4 sin2< %) [ j(ez’" — 2407t + 504)e " dt

(o)

+ J(U(it) — ¢¥™ + 2407t — 504)e ™ dt |.
0
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Evaluating the first of the two integrals in the last expression, we obtain the represen-
tation

Az =—4sin2<— - —
@ n(z-2) mz? Tz

ﬂz)[ 1 240 504
2

(o0}

+ J(U(it) — ™™ + 2407t — 504)e ™ dt |. (6.25)
0

Finally, observe that by (6.12) and the usual appeal to the integration lemma from Exer-
cise 1.26, (6.25) converges to a holomorphic function in the half-plane Re(z) > -2. O

Lemma 6.9. The function A(z) has the special value

A(0) = 240m. (6.26)

Proof. A(0) is the value of A(z) at the removable singularity z = 0 of the expression
in (6.24). It is easily calculated as

. 4 . o nz 1 240 504
A(0) = lim( —— =) —-— - =+ =
©) zl—r>[(1)< nsm < 2 ><Z—2 z2 T ))

. 2
:lim<@ . ésin2<72>> :240nlim<w> = 2407t. O
2 7 2 z—0\  (71z/2)

The next two lemmas establish some useful technical bounds.

Lemma 6.10. We have the bound

(o)
J et g < ze‘m (6.27)
0

foralla,b > 0.
Proof. Exercise 6.1. O
Lemma 6.11. For any k > 0, there exist constants C;, C, > 0 such that the kth derivative
A(k)(z) of A(z) satisfies the bound

A0 (2)] < e @VR@  (Re(z) > 3). (6.28)
Proof. Denote a(z) = j;o U(7)e™™dr. Then, for z with Re(z) > 3, we have

oo 1 oo
a(k)(z) = i(—ﬂ')k J tkU(it)eimz dt = i(—ﬂ)k<J + J )tkU(it)errtz dt.
0 01
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Using Lemma 6.5, we see that there exists a constant C > 0 such that

o0
(k+2 -t Re@-27/t g J kg (Re(@)-2)t dt)

|a® @) < cr* (
1

< an<

In the last expression, by (6.27) the first integral is bounded from above by c;e™ VRe@ gor
some constants ¢, ¢, > 0.1t is similarly easy to check that the second integral (including
the leading multiplicative factor 2" e " **@) is hounded by c;e ™ *¢® for some constant
¢3 > 0. Combining these two bounds, we get a bound of the form

o0
o TUR(D-21/t gy | 2T ;T Re(2) J {k g (Re@-2)(¢-1) dt).

1

St—g O——

|a® @) < c4e™ VD (Re(2) > 3) (6.29)

with constants ¢y, ¢5 > 0 (possibly depending on k).
Finally, note that

A% @) = ‘;Z—i(siﬁ(%)a(z))‘ _
k

<2l

j=0

i (?)ag)(z) : %(sir@( %))‘

j=0
)
dzk 2 ’

so the bound (6.29) (or more precisely, the family of bounds indexed by k > 0) also easily
implies a bound of the form (6.28) for A(z) for any k > 0 with constants C;, C;, which may
depend on k. O

We now use the function A(z) to define a radial Fourier eigenfunction in R®. Define
the radial function ¢, : R® - Chy

0,00 = A(IxI?). (6.30)

By Lemma 6.7, for x # 0, this can be expressed explicitly as

Q. (x) =i J Ut + l)emf”xIIZ dr—i J Ut - 1)6,771'TIIXII2 dr

v, k2
+2i j U™ gr o J 201/ gr. 6.31)
¥, ¥ico

This should be thought of as the “correct” version of (6.3), in which the weight function
w(s) and the range for the integration are explicitly revealed.
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Lemma 6.12. ¢, (x) is a Schwartz function.

Proof. This follows from Lemma 6.11 and Lemma A.23. The details are left as an exercise
(Exercise 6.2). O

Lemma 6.13. ¢, (x) is a (+1)-eigenfunction for the Fourier transform in R®.

Proof. We evaluate the Fourier transform of ¢, by commuting the transform operator
JFg with the integrals in (6.31) and applying (6.1) (or rather, the generalized version of this
relation that applies to complex s; see (A.12)—(A.13) in Section A.7) inside each integral.
Lety € R?\ {0}. Then

Felg 1) = —i J Uz + ) F [P |y dr - i J U(c - )7 [ ) y) de

v, ¥,
+2i j U(0)F [ (y) dr - 2i J U110 F [T (y) de
1{10 l{',ioo
- J U(r + 17V g J U(r - )4 CVOnE g
v v,
+0i J U SV gr _ o J 2U(-10)r G 6.32)
¥ Pico

Now, in each of the four integrals in the last expression, make the change of variables
p = —1/7. This change has the effect of permuting the four pitchfork paths ¥_,, ¥y, ¥,
Y, according to

Y, ,—¥, ¥Y)—-Y (6.33)

(where -, refers to ¥;,, with the reverse orientation). Thus the expression in (6.32)
becomes

: 1 4 ipyl dp . 1 4_miplyl> AP
—i U(——+1> e ——lJU———l PV
J p ) P p )P p*

2 J U(—%>p4e”ipllyllz Z—’z’ 20 j(—l/p)zU(p)p4e”ip|M|2 Z—é’. (6.34)
ico 0

By (6.9) and (6.10) this is equal to

-1 j U(p - npte I L _; j U(p + Dptemebt”
v, p ¥, p

~2i J p2U<—%>emp”y”z dp + 2i J U™ dp = ¢, (y).
Yy

ico
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We proved the equality 73[9, ]1(y) = ¢, (y) forally € R%\ {0}. By continuity the claim
also holds for y = 0. O

Lemma 6.14. The radial profile ¢ (r) associated with ¢ (x) has zeros atr = \V2n, n =
1,2,3,.... Thezeroatr = V2 is simple, and the zeros atr = \2n,n =2, are of order 2.

Proof. By (6.25), A(z) has zeros at z = 2n,n = 1,2,3,..., with the zero at z = 2 being
simple and the zeros at z = 2n, n > 2 being of order 2. Since ¢ (r) is related to A(z) via

the result follows. O

Suggested exercises for Section 6.4. 6.1, 6.2, 6.3, 6.4.

6.5 The (-1)-Fourier eigenfunction

Let 6;(7), j = 2,3,4, be the Jacobi thetanull functions, discussed in Subsections 5.13.1
and 5.14.3. We define

(6.35)

05(0)* + 6,(0)"  0,(0)* - 6,(0)* )

V(T):m( 60° | Oy0F

Lemma 6.15. The function V(t) takes real, nonnegative values on the positive imaginary
axis.

Proof. We can see from (5.54)—(5.56) and (6.35) that V(7) isreal on the positive imaginary
axis. For the nonnegativity claim, it is helpful to use the connection of the theta functions
0,, 05,0, to the modular lambda function A(7) (see Sections 5.13.2, 5.14.2, and 5.14.3). Using
identities (5.81), we have that

R 94+94+94 94_1_9§+9§19§+l.93‘93

128 05 68 o3 68 6 6
1/1 1 1-2 1(1- )t)(2+/1+2/12)
==+ =2 4(1-1-2
6§(A2+A xTaA ) oF pe

Now note that A(it) € (0,1) for t > 0, as is apparent from either the second iden-
tity in (5.81) or from the infinite product representation (5.75). Since the function x —
a”O(ZX*Z"Z) is positive for x € (0,1), and since clearly 65(it)* > 0 for t > 0, from the
definition we get that V(it) is nonnegative (in fact, positive) for ¢t > 0. O

Lemma 6.16. V(7) satisfies the transformation properties

1 1 1
V<—;> = SV -V +D) = (V@ - V(E-1), (6.36)
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1 1

V<—;> = —Z?(V(T +1) = 2V(1) + V(T - 1)), (6.37)

V<_1 . 1> -2V, (6.38)
T T

V<—1—1>=-%Vu+1) (6.39)
T T

Proof. From (6.35) and the transformation relations (5.57)-(5.59) satisfied by the func-
tions 6;(7) we get immediately that

e 05(0)* + 0,(1)*  05()* + 0,(7)* )
Vit+1)=V(t-1) = 128( 6,(0F + 6.0 , (6.40)
200 41— _40af 83D + 60" %uf—mwf>
TV (-1/1) = 128( e + e ) (6.41)

which, together with (6.35), gives (6.36). Relation (6.37) then follows trivially. We also
obtain from (6.41) that V(t) = 72V (-1/7) satisfies V(7 + 1) = —V(7). This in turn im-
plies (6.38) and (6.39) in a manner analogous to the proof of (6.9) and (6.10) from (6.8) in
the previous section. O

From now on, we adopt the notation Q = €™ = g%/ introduced in Subsection 5.14.2.
As we can see from (5.54)(5.56) and (5.78)(5.80), the functions 63, 63, and 6] in terms
of which V(7) is defined are all naturally expressed as power series in the variable Q, so
this notation is helpful for asymptotic calculations.

Lemma 6.17. On the positive imaginary axis near T = ico and t = 0, V() has the asymp-
totic behavior

V(it) = €™ + 144 + 0(e™) (t — o), (6.42)
V(it) = 10 240%™ + 0(e7Y)  (t — 0). (6.43)

Proof. By writing out the series expansions for 6;(z) in powers of Q up to low order we
find that, as 7 — ioco,

0,(1)* = 16(Q + 4Q° + 6Q° + 80" +13Q”) + 0(Q™), (6.44)
05(7)* = 1+ 8Q +240% + 320° + 240" + 48Q° + 960° + 0(Q"), (6.45)
0,(7)* = 1-80Q +240Q* - 320° + 240" - 48Q° + 960° + 0(Q"). (6.46)

Upon substitution of these relations into (6.35), further mundane algebraic calculations
give the expansion

V(1) = é +144 — 5120Q + 70 524Q" — 626 688Q° + 4265 600Q" + 0(Q°) (6.47)
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for V(7). This gives (6.42). A similar calculation using (6.41) gives
T2V (-1/7) = -2048(5Q + 612Q° + 23598Q°) + 0(Q"), (6.48)

easily implying (6.43) on setting 7 = i/t. O
Now by analogy with (6.17) define

ico

B(z) = 4i sin2<%> I V(r)e"“dr (6.49)
0

(a contour integral along the positive imaginary line).

Lemma 6.18. The integral in (6.49) converges absolutely uniformly on compacts and de-
fines a holomorphic function in the half-plane Re(z) > 2.

Proof. This follows from (6.42)-(6.43) analogously to the proof of Lemma 6.6. O

We now proceed to perform an analytic continuation of B(z) to the half-plane
Re(z) > —1in two steps that are analogous to Lemmas 6.7 and 6.8 from the previous
section.

Lemma 6.19. The function B(z) has the alternative expression

B(z) = -i J V(T + 1)e7TiTZ dr —i J V(r - 1)em"[z dr

v, ¥y
12 j V(D) dr + 2i j 2V(-1/0)e" dr. (6.50)
‘PU lPioo

Expression (6.50) analytically continues B(z) to the half-plane Re(z) > 0.

Proof. This is similar to the proof of Lemma 6.7. As in that proof, denote the right-hand
side of (6.50) by B(z), which we represent as

B(z) = —i(B_1(z) + B,(2) — 2By(2) — 2B, (2)),

where

B2 - J V(z+1)e" dr,
v,

By(z) = j V(- 1)e™® dr,
lIJl

By(z) = J V(r)e"¥ dr,

¥y
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B, (2) = J 22V (~1/7)e"% dr.
"Pioo

The proof that the integrals converge in the half-plane Re(z) > 0 and are holomorphic
there is similar to the analogous claim for the integrals (6.19)—(6.22) and is omitted.

We now check that B(z) coincides with B(z) where the latter is defined. Assume that
Re(z) > 2. Rewrite definition (6.49) of B(z) as

ico
B(z) = _l-(eniz/Z _ e—m‘z/Z)2 I V(T)eniTZdT
0
ico
=-i(e™ -2+e™) J V(r)e"“dr
0

ico ico ico
=i J V(r)e™ V2 gr 4 2i J V(D)™ dr — i J V(0)e" TV gr
0 0
1+ico —1+ico

- J V(p -1 dp — i j V(E + 1) gz
1 -1
2 J V(D) dr + 2i j V(D) dr. 6.51)
¥ Pieo

Now as in the proof of Lemma 6.7, the reader can check that the straight line contours
[-1,1, +ico) and [-1,1, +ico) can be deformed into the concatenated contours ¥_; + ;.
and ¥, + ¥, , respectively, without changing the values of the respective contour inte-
grals. Performing this deformation transforms (6.51), after some minor rearrangement
and regrouping of terms, into the relation

B(z) = —i< J V(r - 1)e" dr + J V(T +1)e" dr
¥, v,

+ J (V(T +1) = 2V (1) + V(T - 1)) % dr - 2 J V(7)™ dT),
Yo ¥y

whereupon, after making use of (6.37) to simplify the third of the four integrals, we fi-
nally get that

Bz) = —i( J V(r - 1)e" dr + J V(r +1)e" dr
lPl v 1

-2 j V(1) dr -2 J V(7)™ dT)
Pico ¥y
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= —i(B,(2) + B_1(2) - 2B,,(2) - 2By(2)) = B(2),

as was to be shown. O

Lemma 6.20. The function B(z) is also given by the alternative expression

B(z) = -4 sin2<%>[%<z—iz + #) + J(V(it) ~144 - ™)e ™ dt |. (6.52)
0

Representation (6.52) analytically continues B(z) to the region Re(z) > -1 (with the obvi-
ous limiting interpretation at the points z = 0 and z = 2, which are removable singulari-
ties).

Proof. LetRe(z) > 2. Starting from (6.49), we write

_ aeinl[ T2 T . -7zt
B(z) = —4sin ( 5 >JV(lt)€ dt

0
o0 00
=-4 sin2< ’%) [ J(V(it) ~144 - e")e ™ dt + J(144 + e)e dt]
0

(o]
= —4sin2<%)[1;—j + ﬁ + J(V(it) — 144 — &™)e ™ dt].
0

Now inspect the last integral to conclude from (6.42)-(6.43) (appealing as before to the
result of Exercise 1.26) that this integral converges and defines a holomorphic function
onRe(z) > -1. O

Lemma 6.21. B(z) satisfies
B(0) = 0. (6.53)

Proof. Immediate from (6.52). O

Lemma 6.22. For any k > 0, there exist constants Cy, C, > 0 such that the kth derivative
B0 (z) of A(z) satisfies the bound

|B(k)(l)| < Clefcz‘/m (Re(2) > 3).

Proof. Similar to the proof of Lemma 6.11. O

Now let _ : R® — C be the radial function defined by

o_(x) = B(IxI%).

For x # 0, we can write explicitly
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o_(x) = —i J V(T + 1)e’”'T""||2 dr —i J V(- 1)e’”'T""IIZ dr

v, ¥,
+2i J Vet g 4o j 2v(-1/0)em M gr. (6.54)
¥, Pioo

Lemma 6.23. ¢_(x) is a Schwartz function.
Proof. Analogous to the proof of Lemma 6.12. O
Lemma 6.24. ¢_(X) is a (-1)-eigenfunction for the Fourier transform in R®,

Proof. Thisis a calculation similar to the one in the proof of Lemma 6.13. Namely, using
representation (6.54) and commuting the integrals and Fourier transforms, we have for
y € R%\ {0} that

Folo 1) = -i j V(r + DF [ ]y dr - i j V(r - 1)F[€" | y) de

v, @,
20 j V(@) B[ () dr + 2i J V(1) F [ (y) de
v, L
- J V(T + )tV g J V(z - 1yr- 4V g
v, ,
20 j V(o)r 4O gr 4 9 J V() te VO g (6.55)
9, v,

Now making the change of variables p = —1/7 asin the proof of Lemma 6.13 and recalling
that the pitchfork paths get permuted as in (6.33), the expression in (6.55) becomes

_ iJ’ V<_1 +1>p4eﬂipILVII2 d_lz) i J V<_1 _1>p4enip|Lvu2 d_lz)
P p P p
1 -1

—2i J V(-l)p‘*emp'ly“z d—’z’ —2i J(—l/p)zV(p)p4e”ip|M|Z d—‘z’. (6.56)

p p p

ico 0

Finally, making use of (6.38)—(6.39) (the analogues of the relations (6.9)-(6.10) that were
used in the proof of Lemma 6.13) gives an expression, which we easily recognize as being
equal to —¢_(y). O
Lemma 6.25. The radial profile §_(r) associated with ¢_(x) has zeros atr = \2n, n =

0,1,2,.... The zero at r = V2 is simple, and the zeros atr = \2n,n = 0,2,3,..., are of
order 2.

Proof. 1t follows from (6.52) that B(z) has simple zeros at z = 0 and z = 2 and double
zerosatz =4,6,8,....Since p_(r) = B(rz), the result follows. O
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The results of this section and the previous one, taken together, prove Theorem 6.2.
This gets us most of the way toward an eventual proof of Theorem 6.1. Note that so far
our analysis has treated the functions ¢, (x) and ¢_(x) completely separately from each
other. To complete the proof of Theorem 6.1, we will need to gain some additional insight
into how the two functions relate to each other or, going back to the two functions U(7),
V(7) in terms of which ¢, (x) and ¢_(x) were defined, how those two functions in turn
compare with each other. This is discussed in the next section.

6.6 A modular form inequality

Our goal in this section is to prove the following result.

Theorem 6.26 (Viazovska’s modular form inequality). The functions U(t) and V(7) satisfy
the inequality

ugt) <v(at) (t>0). (6.57)

Inequality (6.57) plays a key role in the proof of Theorem 6.1; as we will see in the
next section, it is needed to establish the fact that our constructed magic function can-
didate satisfies the nonnegativity condition in Theorem A.21.

Viazovska’s original proof of Theorem 6.26 in [71] relied on computer calculations.
The proof presented below, adapted from [58], offers a more direct approach.

6.6.1 Preparation

As preparation for the proof, recall the functions U(t) and V(7), which made minor
appearances in the proofs of Lemmas 6.4 and 6.16. They are given by

_ (EI)Z
U(7) = T2U(-1/7) = 108 ——2—,
(@) = 2D = 108520
_ 94 04 4_ 4
V(r) = 22V(-1/7) = —128< 370 % 94).
68 08
4 3

Because of the reciprocal relation between it and i/t = —1/(it), inequality (6.57) is equiv-
alent to the claim that both the inequalities U(it) < V(it) and ~U(it) < -V (it) hold for
t > 1. As a further simplification, we can clear the denominators in the expressions for
U(7), V(1), U(t), V(7) by multiplying all four functions by Ej - Ex (which can also be writ-
ten as %(929304)8 by (5.63) and (6.5); this function takes positive values on the positive
imaginary axis). This leads us to defining the functions F, F, G, G by

F(1) = %(Ei — E)U(r) = (E})*7? + 8ELE,T + 16E2, (6.58)
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- 1 —

F(0) = oo (B} - EU(D) = () (6.59)
6(r) = %(24—7(929304)8>V(r) — 865(612 + 6%6° + 659 — 612), (6.60)
G(1) = ﬁ(il(ezege@*‘)’v(r) = —865(632 + 6,65 + 0365 - 612). (6.61)

The normalization by a common numerical factor of 1/108 is added to simplify some of
the formulas. Our goal is now to prove the pair of inequalities

—F(it) < -G(it) ift=>1, (6.62)
F(it) < G(it) ift>1. (6.63)

By the above remarks this will be sufficient to imply (6.57).

6.6.2 Some special values of modular forms

Our proof of inequalities (6.62)—(6.63) will rely on the numerical values of certain con-
stants obtained from evaluating various modular forms and related functions at 7 = i.
The relevant evaluations are given below.

Lemma 6.27 (Special values of modular forms at 7 = i). We have the following identities:

Ey(i) = 32% ?8 ~ 145576, (6.64)
Ey()) = 3r(217/T i’si ~ 2.911521, (6.65)
0,(i) = % ~ 0.91357, (6.66)
0s(i) = \F/;: ‘3‘/)4 ~ 108643, (6.67)
04(0) = % ~ 0.91357. (6.68)

In these formulas, T is the Euler gamma function.

Sketch of proof. For the proof of (6.66)—(6.67), refer to [8, p.325] (which appeals to re-
sults from Chapter 17 of [7]) or see alternatively [19], where these identities appear as
equation (2.21) on p. 307. Evaluation (6.66) also implies (6.68) through the observation
that 8,(i) = 6,(i), a consequence of (5.57).

Formula (6.64) can now be shown using (6.66)—(6.68) and identity (5.60) from Chap-
ter 5 expressing E, in terms of the thetanull functions.

Finally, (6.65) is obtained by combining (6.64) with the results of Exercises 5.14
and 5.18, recalling the fact (shown in Lemma 5.15) that E¢(i) = 0. O
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The evaluations in the lemma are closely related to Gauss’s lemniscate constant

w:zf dx T4’
JVT-xt 2vam
an important mathematical constant. See [19], [27, Sec. 6.1], [W22], [W23] for more details.

The proof of (6.62)-(6.63) given below is robust in the sense that it does not de-
pend on the exact values given in the lemma; the inequalities we are dealing with
have “slackness,” so we really only need approximate numerical values of the five con-
stants (6.64)—(6.68). These constants are all expressible as rapidly converging infinite
series, so, as an alternative to relying on the closed-form evaluations (6.64)-(6.68), we
can simply calculate the numerical values to a few digits of accuracy using a computer.

6.6.3 Proof of (6.62)

We proceed with a proof of inequality (6.62). To develop first a rough sense of why we
expect such an inequality to hold, at least for large values of ¢, it helps to look at the
expansions of the functions involved in powers of the variable Q. Those are given, as we
can easily check using a computer algebra system, by

—F(7) = 2304007°Q" + 8294 400772Q° + 113356 800772Q® + 831283 2007°Q™°

+43379712007%Q% + - -+, (6.69)
~G(7) = 1638400° + 16121 856Q° + 333250 560Q” + 3199 467 520Q°
+194725478400" + - --. (6.70)

When 7 = it, we have Q = e™, so a key point to note is that for large ¢, the dominant
term in the expansion of —F(it) decays like "™, whereas the dominant term in the
expansion of —G(it) decays like e ™, so we will certainly have that —F(it) < —G(it) if t is
large enough.

In fact, with a bit of additional reasoning, we can show that the inequality holds for
allt > 1. First, observe that the coefficients in expansion (6.69) are all nonnegative; this is
immediate from (5.87) and (6.59). Second, we claim similarly that the coefficients in (6.70)
are all nonnegative. To see this, note that, by the transformation properties (5.57)—(5.59)
of the thetanull functions, we can represent G(7) as

G(1) = p(z +1) - y(2),
where y(7) is defined by

P(7) = 86565 + 86,265,
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Now the substitution 7 — 7 +1 corresponds to replacing Q by —Q. Therefore the Q-series
expansion of —G(7) has all even coefficients equal to 0 and all odd coefficients equal to
twice the respective coefficients of y(7), which are manifestly nonnegative. This proves
the nonnegativity claim.

From the above remarks it now follows that the function t — —Q’Bf(it) = —¢"F (it)
is a decreasing function of ¢ (since each term in its Q-series expansion is a nonnegative
coefficient times the decreasing exponential e ™). This implies that for t > 1, we have
the bound

—eE(it) < e F(i) = e (EL (i)
or, using (6.65),

9r(1/4)'

RV 31
—e"F(it) < e
(i) 1024 12

~105043.78 (t=>1). (6.71)

On the other hand, by (6.70) and the observation about the nonnegativity of the coeffi-
cients of —G(t) we have the bound

- &G(it) > 163840 (6.72)

for all ¢ > 0. Combining (6.71) and (6.72) gives (6.62). O

6.6.4 Proof of (6.63)

As with the proof of (6.62), before tackling inequality (6.63) for the full range ¢ > 1, it
is helpful to put on our asymptotician hat and first ask the question of why we should
expect the inequality to hold for large t. The answer is that the asymptotic expansions
of the functions F(it) and G(it) are given by

F(it) = 16 + (—3 8407t + 7680)Q + (230 40077°t* — 990 7207t + 990 720)Q*

+ (8294 4007°t* — 2520576077t + 16 803 840)Q° + - - -, (6.73)
G(it) = 16 + 19200 — 819200Q° + 1077120Q* — 8 060 928Q° + 41725 440Q°
— 166 625280Q” + 553 054 080Q% — 1599733760Q° + - - -, (6.74)

where Q = ™™ as before. Here (6.74) is an ordinary Q-series expansion, whereas (6.73) is
a somewhat nonstandard type of expansion that involves powers of Q = e™™, with each
coefficient being itself a quadratic polynomial in ¢ (refer to (6.58) to understand where
this structure comes from).

Now the insight we get from these two expansions is that they share the same con-
stant term 16 and that both have a next-order term proportional to Q* with coefficients
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7680 -3 8407t and 1920, respectively. Since 7680—-3840mt < 0 < 1920 for ¢ > 1, again we
see that for ¢ large, once the lower-order terms have decayed sufficiently, the relation
F(it) < G(it) will necessarily hold.

To turn this line of argumentation into a proof of the stronger claim that the inequal-
ity F(it) < G(it) holds for all t > 1, we need to gain some measure of control over those
lower-order terms, since for moderately sized ¢, they are not altogether negligible. This
requires more subtle reasoning than that used in the proof of (6.62), since in the current
case, both expansions (6.73) and+ (6.74) involve a mixture of terms with positive and
negative coefficients.

Lemma 6.28. Define
W(t) = 63265 + 0365 + 02265 + 65612, (6.75)
The coefficients in the Q-series expansion of W are nonnegative.
Proof. Denote for convenience
Z=0;, X=0, Y=27-X.

Note that 02 =7 -X, by (5.82). Now Z and X have Q-series expansions with nonnegative
coefficients. Moreover, recalling (5.82), we see that Y can be writtenas Y = Z + 02 =
65(7)* + 65(7 + 1)*, which implies that Y also has a Q-series expansion with nonnegative
coefficients. Therefore by straightforward algebra we get that

W) =22+ 22X} + 222 - X)* + 222 - X)°
3 2
X+Y\ .2 (X+Y)\ 3
= X 27 )\ x
< 2 ) +< 2 )
+<X+Y>3<—X+Y>2+<X+Y>2<—X+Y>3
2 2 2 2

= %(GXS +15X*Y + 10X°Y% + Y°).

This representation clearly shows that the Q-series expansion of W also has nonnegative
coefficients. O

Next, it is helpful to renormalize the functions F and G by defining the new functions

(o) = =20 = @ (E)'e - 87 EjE e - 160 (E} - 1),
L0 = -2 = 807636 + 6368 + 030} - o) 2]

Inequality (6.63) can now be restated as the claim that K(it) > L(it) for t > 1. This will
follow from the combination of the following two lemmas.
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Lemma 6.29. L(it) <2297 forallt > 1.
Lemma 6.30. K(it) > 3747 forallt > 1.
Proof of Lemma 6.29. The expansion of L(it) in powers of Q is easily written as

L(it) = -1920 + 819200 — 1077 120Q* + 8 060 928Q° — 41725 4400*
+166 625280Q° — 553 054 080Q° + 15997337600 + - - - (6.76)

(compare with (6.74)). Again using the substitution 7 — 7 + 1, we also have

—L(it + 1) = 1920 + 819200 + 1077120Q* + 8 060 928Q° + 41725 440Q*
+166 625280Q° + 553054 080Q° + 1599 733760Q" + - - - 6.77)

On the other hand, using the usual properties of this substitution, we have
~L(T+1) = Q%(G(r +1) - 16) = 8Q2[65(6% + 6365 + 6565 + 637) - 2]
= 8Q4(W(1) -2)
(with W defined in (6.75)). Lemma 6.28 reassures us that the coefficients in expan-

sion (6.77) are nonnegative, and consequently the coefficients in (6.76) appear with
alternating signs. Now defining

L(t)-L(t+1)
2

>

H(t) =

we see that H(it) has the expansion
H(it) = 819200 + 8 060 928Q° + 166 625 280Q° + 1599733 760Q” + - - -

with coefficients that are also nonnegative and majorize those of L(it). Note moreover
that the constant coefficient in L(it) is —1920, whereas the constant coefficient in H(it)
is 0. Therefore the bound L(it) < H(it) — 1920 holds for all ¢ > 0. In fact, since H(it) is
decreasing in ¢, we get a constant upper bound for L(it) on the interval [1, co), namely

L@it) <H()-1920 (t=1).

To make this bound explicit, we express H(7) directly in terms of thetanull functions.
Appealing to (5.57)-(5.59) as before, we have
H(t) = -4Q72[65(63 + 6365 + 656; — 67) - 2
—65(6, + 6365 + 0565 + 6,7) + 2]
- 102 (050l + 0765+ 6% - o)
= 4Q7(6(65" - 0°) + 6,(65 + 63)).
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Therefore, making use of (6.66)—(6.68), H(i) can be calculated as

20
H(i) = 4™ ( ) ) (@7 -1+ @24 +1)

(2m)3/4
20 20
= 4e2”M(8 +4) = 3 LU 91616,
(2m)1s 20485715
We conclude that L(it) < 4217 - 1920 = 2297 for all t > 1, as claimed. O

Proof of Lemma 6.30. The asymptotic expansion for K(it) is

K(it) = (38407t — 7680) + (—230 4007°t* + 990 72071t — 990 720)Q*
+ (~82944007*t* + 252057607t — 16 803840)Q" + - - -

We separate K(it) into three components, defining
K (t) = 38407t + (~230 4007°¢* + 990 72071t — 990 720)Q%,
Ky (t) = Q 2EL(it)*t* — 16Q2(E,(it)* — 1) + (230 40077*¢* + 990 720) @7,
K;(t) = —8iQ E, (it)E,(it)t — (38407t + 990 7207tQ"),

so that we have
K(it) = K1(t) + K, (t) + K5(2).

The asymptotic behavior of K,(t) and K;(¢t) can be understood from the expansions

K,(t) = ~7680 — (8294 4007°t* + 16 803 840)Q*
— (113356 8007°t* + 126 819 840)Q° — - - -,
K(t) = 252057607tQ* + 253 639 6807tQ° + 1500 019 2007tQ° + - - - .

We now make the following elementary observations:
1. The function K;(t) is increasing on [1, co).

Proof. Assume that t > 1. Then

K] (t) = 3840me 2™ (2™ + 1207°t* - 6367t + 774)
> 38407e ™ (™™ + 1207t — 6367t + 774).

The last expression is of the form e 2™ times a quadratic polynomial in ¢, which, as
it is easy to check, is positive on the real line. Thus we have shown that K] (t) > 0 for
t > 1, which proves the claim.

2. The function K,(t) is increasing on [1, co).

Proof. By inspection the expansion of K, (t) consists of the constant term —7 680 plus
a sum of lower-order terms, each being of the form —(at®+b)e™"™ for some nonnega-
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tive coefficients a, b and positive integer n. Each such term is an increasing function
oftfort > nlﬂ so in particular for ¢ > 1.

3. Kzt)=0forallt > 0.

Proof. The expansion of K;(t) has nonnegative coefficients.

Combining the above observations, we get that for ¢ > 1,

K(it) = K;(t) + Ky(t) = Ky (1) + Ky(1)
= —e™(=Ey(i)* + 16E,(i)* - 16) + 38407 + 990 7207e "
16 16

_ _ezﬂ< or(1/4)°  9T(1/4)
1024712 ° 4096 7712

m( 45T(1/4)'
= —¢ -
1024 712

- 16) + 38407 + 990 7207¢ 2"

- 16) + 38407 + 990 7207t~ %" ~ 37471,

as claimed. O

6.7 Proof of Theorem 6.1

Define the functions

C(z) = A(z2) + B(2),
D(z) = A(z) — B(2).

Lemma 6.31. The functions C(z) and D(z) are holomorphic in the region Re(z) > -2 and
have the explicit representations

8

C(z) = -4 sin2<%> (U(it) + V(it))e ™ dt (Re(z) > 2), (6.78)

S—

80

D(z) = -4 sin2<%) (U(it) - V(it))e ™ dt  (Re(z) > 0), (6.79)

S E—

Proof. The holomorphicity is immediate from the analytic continuation of A(z) and B(z)
discussed in Sections 6.4-6.5. Similarly, relation (6.78) is an immediate consequence of
Lemmas 6.6 and 6.18. Relation (6.79) follows as well from these lemmas for z satisfying
Re(z) > 2, but here we make the stronger claim that this representation remains valid in
the larger half-plane Re(z) > 0; this is related to the fact that in the analytically contin-
ued representations (6.24) and (6.52), the poles 2—12 inside the parenthesized expressions
cancel each other out upon subtracting the two formulas. To make this more precise,
observe that combining estimates (6.12), (6.13), (6.42), and (6.43) gives that
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U(it) - V(it) = 0(t) (t — o0), (6.80)
U(it) - v(it) = o(t*e™")  (t — 0), (6.81)

and this is clearly sufficient to imply the absolute convergence of the integral in (6.79),
uniformly on compacts in the half-plane Re(z) > 0. By the principle of analytic continu-
ation, since the right-hand side of (6.79) is equal to D(z) for Re(z) > 2, it must also equal
D(z) on Re(z) > 0. O

Define ¢ : R® - R by
000 = C(IXI*) = @, 00 + @_(x).

By Lemmas 6.12 and 6.23, ¢(x) is a radial Schwartz function. By Lemmas 6.13 and 6.24 its
Fourier transform is

Fa[91(0) = 9, (x) — o_(x) = D(Ix|I*).

In other words, ¢, (x) and ¢_(x) are the Fourier-even and Fourier-odd components in
the Fourier parity decomposition of ¢; see (A.20)—(A.21).

Theorem 6.32. The function ¢ is a magic function for the lattice Eg. Consequently,
4
Doptimar (8) = 3%1, and the Eg sphere packing is optimal.

Proof. Let p, = V2.In R®, we have

nt !

1(B, (0)) = 50— = —,
vol(Bpy20) = 2i7) = 384
which is precisely the packing density of Eg (see Theorem A.8). Therefore we need to
show that ¢ satisfies the three conditions of Theorem A.21 with the particular value of p
being equal to V2. Indeed, by (6.26) and (6.53) we have

0(0) = ¢, (0) + ¢_(0) = 2407 > 0,
?(0) = ¢,(0) — ¢, (0) = 2407,

so the first condition is satisfied. Next, (6.78), when combined with Lemmas 6.3 and 6.15,
implies that ¢(x) < 0 for all x € R? with Ixll > V2. This confirms the third condition.
Finally, (6.79), together with inequality (6.57), implies that 7g[¢] is everywhere nonnega-
tive. This is the second condition of Theorem A.21 and the final one needed to be verified.
The proof that ¢ is a magic function for Eq and therefore that the E; sphere packing is
optimal for sphere packing in 8 dimensions is complete. O

Suggested exercises for Section 6.7. 6.5, 6.6, 6.7.
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Exercises for Chapter 6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Prove Lemma 6.10.

Prove Lemma 6.12.

Explain why the operation of commuting the Fourier transform with the integrals
in (6.32) is justified.

Show that the function A(z), which was analytically continued to a holomorphic
function on the half-plane Re(z) > -2 in Lemma 6.8, can in fact be continued ana-
lytically to an entire function.

Find the special values $(v2), (%)’ (V2), d(V2), (§)' (V2) associated with the radial
profile @ of the Eq magic function ¢, the radial profile of the Fourier transform of
o, and their derivatives.

Prove that the magic function ¢(x) satisfies the following properties:

@  [gs @00 dx = 2407,

) 352 o3(mB(V2Zn-1) = 0.

(© Yyer, @(x +y) =240nforally € R®,

Magic function for the Leech lattice. [16] Prove that there exists a magic function
for the Leech lattice in dimension 24.

Guidance. Repeat the proof of this chapter with appropriate modifications. The
function U(7) should be replaced by

9« 1y (D)T + (DT + 1y (7)

U, (7) =691
24(T) E - 27

with p, Wy, i, defined by

1o (T) = 36(25E; — 49E;),
{y(7) = 67i(48EGE; + 2(25E5 — 49E;3)E,),
U1y(7) = 71*(25E; — A9ESE, + 48E4ELE, + (25E; — A9E3)ES).

In place of V(7), use

762°05 + 76205 + 2038
(E} - EB)?

Voo (1) = 12° x

See Exercise A.16 in the Appendix for the relevant properties of the Leech lattice.






A Appendix: Background on sphere packings

This appendix presents the background material on sphere packings and related notions
that is necessary to understand the developments of Chapter 6. The material discussed
here mostly does not involve any complex analysis (with the one notable exception be-
ing the proof of Proposition A.17 in Section A.7). Before reading this appendix, we rec-
ommend reading Sections 6.1 and 6.2 for motivation.

A.1 Sphere packings and their densities

Fix a dimension d > 2. Given r > 0 and x € RY, denote by B,.(x) the Euclidean ball of
radius r centered at x. A sphere packing in R? consists of a union of balls of equal radii
with nonoverlapping interiors. We commonly denote a packing as

P=PX,r) =B ),

xeX

where X ¢ R? is the set of centers of the balls participating in the union, and r is their
common radius. The upper packing density associated with a sphere packing P is

A% — limsup vol(P N Bg(0))

Al
R—o00 VOI(BR(O)) ( )

In the case where the limsup in (A.1) is in fact an ordinary limit, we say that P has a
packing density. In that case, we denote A; by Ap and refer to this quantity simply as the
packing density of P.

The optimal packing density of R? is defined to be

Aoptimal(d) = sup{Ap : P is a sphere packing in RY.

A sphere packing P in R% is called optimal if it has a packing density and its packing
density is equal to Agpimal (d)-

Theorem A.1 ([35], [36, Sec. 3.viii]). An optimal sphere packing in RY exists.

Sphere packings have a trivial scale invariance property: replacing all the balls
B,(x) in a sphere packing P by their scaled copies B;,.(Ax) for some constant A > 0 re-
sults in a sphere packing with the same packing density. For this reason, when proving
facts about packing densities for general sphere packings, we can assume without loss
of generality that a packing has some specific common sphere radius r (where r can be
chosen arbitrarily for some reason of convenience).

Suggested exercises for Section A.1. A.l

@ Open Access. © 2023 the author(s), published by De Gruyter. [(c) IXEXEEM This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-008
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A.2 Lattices and lattice packings

Alattice in R% is a set of points of the form

d
A= {anxj P My,..., Ny € Z},
j=

where xy,...,X, is a linear basis for R%. Another notation for the same set is @;1:1 Z -
X;. (This may be referred to as the Z-span of the vectors x;,...,X4. The spanning set
Xy>...,Xq 1s said to be a basis for the lattice A; note that it is not unique.) Given a lattice,
itis easy to check that the associated union of balls P(A, r) is a sphere packing if and only
ifr <r,(A), where

n

Z 1;X;

r.(A) = 1min
* 2 5

(..o eZd\{(O,...,O)}]».

We refer to the sphere packing P(A, r, (A)) as the lattice sphere packing (or lattice pack-
ing) associated with the lattice A and denote its packing density by §,.

It is not known whether in every dimension d there exists a lattice A whose associ-
ated sphere packing is optimal. This is the case in the dimensions d = 2, 3, 8,24, which are
the only dimensions for which the value of Ay, (d) has been established rigorously.

A.3 Periodic sphere packings

Lattice sphere packings are a particular case of a more general family of sphere pack-
ings called periodic sphere packings. These are packings that have a periodic structure
associated with a lattice. More precisely, let A be a lattice in R?, let A = {x;,...,X,,} ¢ R?
be a finite set of points, and let r > 0 be a number. Assume that |[x + Xj - Xg |l = 2r for all
1<j,k<mandallx € A, except for the case x = 0 and j = k. Then the union of balls of
radius r centered around A-translates of the points of A is a sphere packing; that is, we
define

P=PX,r), whereX=A+A={xj+y:lsjsm,yeA}. (A.2)

A sphere packing constructed in such a way is called a periodic sphere packing (or
periodic packing).

It is not known whether in every dimension d there exists a periodic sphere pack-
ing that is optimal. However, periodic packings are sufficiently general that they come
arbitrarily close to being optimal, as the following result makes precise.

Lemma A.2 ([14, Appendix A]).
Aoptimal(d) = sup{Ap : P is a periodic sphere packing in R}
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A.4 Lattice covolume

The covolume of a lattice A = @]‘il Z-x;, denoted covol(A), is defined as the absolute
value of the determinant of the matrix containing the vectors x, .. ., x4 as its rows.

Lemma A.3. The definition of covol(A) is independent of the choice of basis x, ..., Xz for
the lattice. Moreover; the covolume has the following geometric interpretation: it is the
volume of the set

{tlxl + tZXZ + -+ thd : tl"' "td € [0,1]}
(called the fundamental cell, or fundamental parallelepiped, of the lattice associated
with the basis xy, ..., Xg).
Proof. Exercise A.2. O

LemmaA.4. 1. Foralattice A c R% the packing density of the associated lattice sphere
packing is given by

vol(B, (1y(0)  7%r,(A)?
) = = — . (A3)
covol(A) 1"(5 + 1) covol(A)
2. For a periodic sphere packing P as in (A.2), its packing density is
d/2,.d
. mvol(B,(0)) mir (A4)

covol(A) (¢ +1) covol(A)

(In (A.3)-(A.4), T denotes the Euler gamma function.)

Proof. The second equality in each of relations (A.3) and (A.4) follows from the well-
known formula for the volume of the unit ball in R%; see Exercise 2.3 on page 110. The
proof of the additional claim relating the explicit quantities in (A.3) and (A.4) to the pack-
ing densities §, and Ap is left as an exercise (Exercise A.3). O

Suggested exercises for Section A.4. A2, A3.

A.5 Dual lattices

If A is a lattice in RY, then its dual lattice is the set denoted A* and defined by
A ={yeR?: (x,y) € Zforallx e Al.

The fact that A* is a lattice follows from Lemma A.5.
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LemmaA.5. IfB = {x;,..., Xy} is a basis for the lattice A, let B* = {yy,...,y4} be the dual
basis, when considering B as a linear basis for R% that is, the vectors Vi>-..,Yq are the
unique vectors satisfying

<Xj’yk> = 6]1{ (1 Sj, k < d)

(where & denotes the Kronecker delta). Then we have A* = @1"1:1 Z-y;.
Proof. Exercise A4. O

Suggested exercises for Section A.5. A4, A5.

A.6 The Poisson summation formula for lattices

In Chapter 2, we discussed the Poisson summation formula for functions of a single real
variable (Theorem 2.6), a classical result from Fourier analysis, in the context of our
proof of the functional equation of the Riemann zeta function. There is a version of the
same result for functions on R% involving summation over lattices. This result relates the
summation of values of a nicely behaved function on R? over a lattice to the summation
of its Fourier transform over the dual lattice and plays an important role in the study of
sphere packings.

To state the result, first recall some basic facts about Fourier transforms in d dimen-
sions. The Fourier transform in R? is the operator F, taking a function f : R? — C to
the function F;[f] given by

FfIo) = jf(x) exp(-27i(y, X)) dx, (A5)

R4

assuming appropriate integrability conditions. We also denote the Fourier transform of
f by f The Fourier transform acts in a particularly nice way on Schwartz functions.
A function f : R? > Ris called a Schwartz function if it satisfies

Jiyde . yla .
X1 X Xd

ke ... akdf

sup _—
ki~ Ky kq
ax1 axz ---axd

X=(Xq5Xg)ER?

< 00

for any integers j,...,jg K> ..., kg = 0. The following is a standard fact from analysis;
see [41, p. 301] for the proof.

Proposition A.6. The Fourier transform of a Schwartz function is also a Schwartz func-
tion.

We can now state the Poisson summation formula for lattices.
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Theorem A.7 (Poisson summation formula for lattices). Let A ¢ RY be a lattice, and let
f: R? - C be a Schwartz function. Then

Zf 0 = covol(A Z fo). (A.6)

XeA

Another, slightly more general, version of the Poisson summation formula for lat-
tices is

Y flx+t Covol o Y fo)exp(2mify,t)) (t € RY). (A7)

X€eA YEA*

In fact, equations (A.6) and (A.7) are equivalent, since (A.6) is the case t = 0 of (A.7),
and conversely, the general case of (A.7) for arbitrary ¢t € R? is immediately obtained
from (A.6) on applying that relation to the function g(x) = f(x + t).

Proof of Theorem A.7. Exercise A.6. O

Suggested exercises for Section A.6. A.6.

A.7 Construction of the lattice Ej

The goal of this section is to construct the lattice Eg, which plays a central role in the
sphere packing story. We will prove the following result.

Theorem A.8. There exists a lattice in R®, denoted Eg, with the following properties:
4

1. The packing density &, of the sphere packing associated with Eg is 35

2. The set of Euclidean norms of points of the lattice Eg is

{V2n : n=0,1,2,...}.

An immediate corollary of the existence of Eg is the following conceptually impor-
tant result.

Corollary A.9. The optimal sphere packing density Agyimai(8) in 8 dimensions satisfies

4
Aoptimal(g) 2 @

Several different constructions of Eg are known; perhaps its most natural manifes-
tation is as the lattice spanned by the Eg root system, an object associated with the Eg
Lie algebra, one of the so-called exceptional Lie algebras that appears in a famous clas-
sification theorem. [40, p.238] Here we give an elementary construction of Eg, which
provides a straightforward path to a proof of our claims (while offering little insight
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into what makes Eg so special and interesting). Define the vectors xy,...,Xg € R® as the
columns of the matrix

2 -1 0 0 0 ;

0 1 -1 0 0o 0 ;

0 0 1 -1 0o o0 1
yo| © 0 0 1 -1 0 0 :

o 0 o 0o 1 -1 0 1 |

o 0 0 0 0 1 -1 1

0 0 0 0 0 1 3

0 0 0 0 0 0 3

and define

Lemma A.10. Eg is a lattice with basis Xy, . . ., Xg, and its covolume is 1.

Proof. The x; are clearly linearly independent, so Eg is indeed a lattice in R, and
covol(Eg) = det(M) = 1. O

Lemma A.11. The lattice Eg has an alternative representation as

8
Eg = «I(yl,...,yg) ez’ : Y y=0 (modZ)]»

j=1

8 8
1
u{(yl,...,ys)e<2+§) Zlyjzo (modZ)}. (A8)

j=

Proof. Denote the two sets participating in the union on the right-hand side of (A.8) by
I3 and Jg, respectively. By inspection, xy,...,X; € Ig, Xg € Jg, and Ig U Jq is closed under
the taking of linear combinations with integer coefficients. This shows that Eg ¢ I3 U Jg.
Conversely, if y = (y4,...,Yg) € I, then we can write

8
Y= ax
j=1

(regarding y for convenience as a column vector), where
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. B A"
a, 01 11111 -6 Vs
as 0011111 -5 ¥s
G | _ppyo| 000 1111 Ya
as 000011 1 -3 ¥s
ag 000001 1 -2 Yo
a 0000O0GO0 1 -1 ¥,
ag 0000DO0TO0TO0 2 Ve

Again by inspection, the assumption that y; are integers satisfying Z}il Yj = 0 (mod 2)
immediately implies that ay, . . ., ag obtained in this way are themselves integers and that
therefore y = Zle a;X; € Eg. This shows that Iy ¢ Eg. To show that also J ¢ Eg, observe
thatify € Jg, theny — xg € I3, so the previous calculation shows thaty = xg + Z}il ax;,
where a; are integer coefficients, and thus once again we have thaty € Ej. O
Lemma A.12. For any x,y € Eg, we have (x,y) € Z.

Proof. For1 < j,k < 8, define t;; = (x;,x;); explicitly, the numbers (tj)k)]-g)k:1 are the
entries of the symmetric matrix

4 -2 0 0 0 0 0 1
2 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 0

. 0 0 -1 2 1 0 0 0
M M= 0 0 0 -1 2 -1 0 0
0 0 0 0 -1 2 -10

0 0 0 0 0 -1 2 0

1 0 0 0 0 0 0 2

Now if x,y € Eg, then express x,y as x = 218:1 ax;andy = Zﬁzl by x; with integer
coefficients a, by. Then

8
xy) = z tj)kajbk, (A9)
k=1
which is manifestly an integer. O
Lemma A.13. For any x € Eg, we have ||x||2 € 27.

Proof. This is immediate from (A.9) on setting y = x and noting that the double sum can
be rewritten as

8 8
2
Z tj’kajak = z t]Ja] +2 Z t]')ka]'ak,
jk=1 j=1 1<j<k<8

which is easily recognized as an even integer. O
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Lemma A.14. The packing density of the sphere packing associated with Eg is %.

Proof. Since the squared norms |x|? for x € Eg are nonnegative even integers, the
minimal norm of a nonzero vector is at least V2. On the other hand, the vector x =
(1,1,0,0,0,0,0,0) = x; + X, is one specific vector in Eg with that norm, so V2 is in fact
precisely the minimal nonzero norm. This establishes that

V2
Eg) = —.
Now using (A.3) together with the already established fact that covol(Eg) = 1 gives the

claim. O
LemmaA.15. Eg = E;.

Proof. Lemma A.12 can be reformulated as the statement that E; < Eg. To prove the
reverse inclusion, let y;,...,yg € R? denote the elements of the dual basis to Xg5 .5 Xge
These are simply the rows of M ! (or if they are thought of as column vectors, then the
columns of (M~1)T). Now observe the somewhat trivial matrix equation

M =M (M)

14 24 20 16 12 8 4

24 42 35 28 21 14 7

20 35 30 24 18 12 6

6 28 24 20 15 10 5 -8
12 21 18 15 12 8 4

8 14 12 10 8 6 3

4 7 6 5 4 3 2

7 12 -10 -8 -6 -4 -2 4

For each 1 < j < 8, the jth column y; of the matrix (M )T can be expressed as a lin-
ear combination of x, ..., xg with coefficients taken from the jth column of the matrix
MYM™T (e. g, y; = 14X, +24x, + 20X + 16X, + 125 + 8X + 4X; — 7xg). These coefficients
are all integers, and thus y; € Eg. Since y,, ..., yg are a basis for Eg (see Lemma A.5), we
have shown that Eg < Eg. This completes the proof that Eg = Eg a

Our last remaining task for this section is to prove the second claim in Theorem A.8.
We already showed that all the squared norms of Eg lattice vectors are even integers; it
remains to show that all positive even integers are in fact squared norms of Eg vectors.
This will follow from a much more precise statement. Define the numbers (a, )2, by

a, =#{x e Eg : Ix|% = 2n}.

Note that, trivially, a; = 1.
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Lemma A.16. For some constant C > 0, we have the bound a,, < Cn* for alln > 1.
Proof. Exercise A.7. O

Proposition A.17. We have the relation
a, = 24005(n)

(where g3(n) is defined in (5.2)) for alln > 1.

Remarkably, this result, which has a distinct number-theoretic flavor, can be proved
using a complex-analytic argument involving modular forms. The idea is to form a kind
of generating function for the squared norms of Eg lattice vectors (known in the theory
of lattices as the theta series of the lattice) and study its complex-analytic properties.
More precisely, define a function of a complex variable 7 by

. () .
'7(T) _ Z emrllxllz — z aneZmnr. (A.10)
n=0

X€Eg

Lemma A.18. The infinite series (A.10) converges absolutely and uniformly on compacts
on the upper half-plane H and defines a holomorphic function there.

Proof. By Lemma A.16,

it x| 4 —2mn Im(7)
z e <1+ Z Cn’e ,

x€Eg n=1

which converges uniformly in any half-plane of the form {r : Im(7) > x} where x > 0
and a fortiori on any compact subset of H. The holomorphy follows from the standard
theory (Theorem 1.39). O

Lemma A.19. The function n(t) is a modular form of weight 4.

Proof. The equation n(z + 1) = n(7) is immediate from (A.10), i. e., n(z) transforms cor-
rectly under the generator T of the modular group I'. We need to show that n(z) also
transforms in the correct way under the generator S, that is, that n(7) satisfies the equa-
tion

n(=1/7) = (7). (A11)

By Lemma 5.21 that would imply that n(7) is a modular form of weight 4.
To prove (A.11), define the function £, : R® — C depending on a parameter 7 € H

by

£(x) = T (A12)
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In the case where 7 lies on the positive imaginary axis, i.e., 7 = it with t > 0, this is
2

an 8-dimensional scaled Gaussian e ™! , which transforms under the (8-dimensional)

Fourier transform as

Fr) = T4 gy y) = VOV, (A13)

(For general 7 € H, this equation still holds, but if you are feeling queasy about this or
cannot be bothered to check it, just assume that 7 is on the positive imaginary axis for
now.) Applying the Poisson summation formula (A.6) and keeping in mind Lemma A.15
give

Y L= fo). (A14)

X€Eg YEEg

This is precisely what we need, since the left-hand side of (A.14) is equal to n(7), and,
by (A.13), the right-hand side is equal to 7-*7(~1/7). Thus we have established (A.11).
(As a final step, if you previously assumed that 7 is imaginary, then now appeal to the
principle of analytic continuation to argue that since the equation (A.11) holds on the
positive imaginary axis, it must hold on all of H.) O

Lemma A.20. We have the identity
n(7) = Ey (1) (7 € H), (A15)

where E, denotes the normalized version of the Eisenstein series G, defined in (5.87).

Proof. By Theorem 5.24 the vector space M, of modular forms of weight 4 is one-
dimensional and contains n(7) and E4(7). Thus we have

o8 . (8] .
1+ ) a,™ = KEy(t) =K - (1 +240 ) ag(n)ez’""f)

n=1 n=0
Equating the Oth Fourier coefficients on both sides gives K = 1, proving the claim. O

Proof of Proposition A.17. This follows immediately from (A.15), again by comparing the
Fourier coefficients on both sides. O

Suggested exercises for Section A.7. A.7, A.8.

A.8 The Cohn-Elkies sphere packing bounds

Theorem A.21 (Cohn-Elkies sphere packing bounds [14]). Letf : R? - R be a Schwartz
function, and let p > 0 be a number. Assume that the following conditions are satisfied:
1L f(0)=f(0) > 0;

2. The Fourier transformf is real-valued, andf(y) >0forally e R%
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3. f(x)<Oforallxe RY such that Ixll = p.
Then Apiima (d), the optimal packing density in RY, satisfies

dj2 d

mTp
Aoptimal(d) < VOI(Bp/Z(O)) = m (A.16)

Proof. By Lemma A.2 it suffices to prove that Vol(BP/Z(O)) is an upper bound for the
packing density of any periodic sphere packing with common sphere radius p/2 (see the
remark about scale invariance in Section A.1). Let P be such a packing, defined in terms
of a lattice A and a finite set {X;, ..., X;,,} as in (A.2). Recall that the fact that the common
radius of the spheres in the packing is p/2 means that the Euclidean norm |[x + Xj - Xl
for any 1 < j,k < m and lattice point x € A is either 0 (in the case x = 0 and j = k) or is
otherwise bounded from below by p.

Let1 < j,k < m. Applying the Poisson summation formula (A.7) with ¢ = x; - x; gives

Zf(x+xj—xk)

XeA

Y F) exp(2mi(y, x; - X)) (A17)

cov ol(A) yerr

Summing this relation over all j, k further gives that

z Zf(x+xj—xk)

J.k=1xeA

1

W](A) z z f())) eXp(Zﬂi(y,Xj - X))

J.k=1yeA*

Y Fo) Z exp(271i(y, X;))exp(27i(y, X))

yeA* Jok=1

covol(A Z f()’)(Z exp(27i(y, x; )))(kz_:l exp(2ni(y,xk))>

YEA*

covol(A)

2

> fo) (A18)

YeA*

Z exp(27i(y, x;))| -

j=1

covol(A

The first and last expressions in this chain of relations are manifestly real numbers,
and we will reach our desired conclusion by upper-bounding the former and lower-
bounding the latter. Specifically, we have that

=f(0) ifx=0andj=k,
<0 otherwise,

f(x+x]-—xk) is {
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by our observation above about ||x + X; — x|l combined with the third condition in the
theorem about f. Thus the leftmost expression in (A.18) is bounded from above by mf(0).
On the other hand, by the second condition f satisfies, the rightmost expression in (A.18)
can only be made smaller by discarding all terms y € A\ {0}. Thus the expression is
bounded from below by ﬁi(mf(o) = #;(A)f (0). Combining these two bounds yields
the inequality

covol(A) = m.

This is exactly what we need, since the packing density then satisfies

B mvol(B,,(0))

p = < VOI(Bp/z(O)),

covol A
as the inequality in (A.16) claims. (The second, more explicit expression in (A.16) for the
upper bound follows from the well-known formula for the volume of the unit ball in
R% see Exercise 2.3 on page 110.) O

A.9 Magic functions

Given a lattice A ¢ R? with packing density §,, a Schwartz function f : R - Ris called
amagic function for A if it satisfies the assumptions of Theorem A.21 with the particular
value of p for which

VOl(Bp/Z(O)) = SA'

By Theorem A.21, if we were to prove the existence of a magic function for some specific
lattice A, that would imply that Agpimal(d) = 85, and that the lattice packing associated
with A is optimal for sphere packing in RY, thereby resolving the sphere packing prob-
lem in dimension d.

Magic functions are a tool that seems almost too powerful (or “magic,” hence the
name) to exist. Indeed, heavy numerical experimentation done by Cohn and Elkies
suggested that in most low dimensions they do not; but in a few special dimensions,
the numerical evidence suggested that they do exist, leading to the following conjec-
ture.

Conjecture A.22 (Cohn-Elkies [14]). Magic functions exist for the following dimensions
and lattices:

1. d = 2: the hexagonal lattice (Z.- (1,0)) D(Z - (1, B)) in R%;

2. d = 8: the lattice Eg;

3. d = 24: the Leech lattice (described in [18, Sec. 5.11]).
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Viazovska [71] proved the second of these conjectures by finding an explicit con-
struction of a magic function for the lattice Eg; her proof, using complex analysis and
modular forms, is the subject of Chapter 6. A subsequent construction using similar
methods of a magic function for the Leech lattice in the case of 24 dimensions, prov-
ing the third conjecture, was given by Cohn et al. [16]. The first conjecture regarding the
existence of a magic function for the hexagonal lattice in R? remains open (as of 2023).

A.10 Radial functions and their Fourier transforms

Afunctionf : R - Ris called radially symmetric, or a radial function, if f (x) depends
only on the radial coordinate of x, that is, if f(x) = f(y) whenever | x| = ||y||. Clearly, f(x)
is radial if and only if it can be represented as

£00 = F(lIxI)

for some function f : [0, c0) — R. The function f(r) is determined uniquely, as f(r) is the
unique value that f(x) takes on the sphere {x : |x|| = r}. We refer tof(r) as the radial
profile of f(x).!

Iff: R? > Risa general—not necessarily radially symmetric—function, then we
can apply a standard analytic trick to f(x) to obtain a radial function to perform radial
symmetrization, that is, to average out the function over concentric spherical shells of
equal radius around 0. More precisely, we define

a0 = —— [ FlIxIy)do 10

a-1 7,
the integral over the unit sphere §é1 = {y e R? vl = 1} with respect to its surface
area measure d,_q, normalized to be a weighted average by dividing by the total sphere
surface area s;_; = 0, 4(S*!). We call f,,4(x) the radially symmetrized version of f (x).
Note that f is radial if and only if it coincides with its radially symmetrized version.

LemmaA.23. Letf : R? > R be a radial function. Then f(x) is a Schwartz function if
and only if the radial profile f (r) satisfies the following properties:

1. f(r) is the restriction to [0, co) of an infinitely differentiable even function on R.

2. rmr) —— 0foralln,m>0.

Proof. Exercise A.9. O

1 Some authors commit the mild abuse of not making a clear distinction between a function and its
radial profile, for example, by referring to them interchangeably and denoting both of them with the
same symbol.
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Lemma A.24. The radially symmetrized function f,,q(x) has the following alternative ex-
pression:

1

Jraa ) = Va(S0@) _

J f(Ax) dvy(A). (A19)
0(d)

The meanings of the symbols in this formula are as follows: SO(d) is the special orthogonal
group of order d, that is, the group of d x d orthogonal matrices with determinant 1; and
vy s the Haar measure on SO(d), that is, the unique (up to scalar multiplication) Borel
measure on SO(d) that is invariant under the group action, i. e., satisfies v (A - E) = v4(E)
for all A € SO(d) and all Borel sets E c SO(d) (with A - E denoting the set of matrices
{AB : B¢ E}).

Proof. Exercise A.11. O

Lemma A.25. Iff : R? — RisaSchwartz function, then @ = (f)yaq; that is, the Fourier
transform of the radial symmetrization of f is equal to the radial symmetrization of the
Fourier transform of f.

Proof. If Aisad x d orthogonal matrix and g : R? - R, then denote by g4 the function
g “rotated by the transformation A”, that is,

240) = g(Ax) (x e RY).

It is trivial to check that @D = ()4 (the Fourier transform commutes with orthogonal
transformations). Now using (A.19) (applied to both f and f), it follows that

— 1
G = 7o msoL)ﬂAx) vl |
1
=7 d[x " 4(50(d) SOL) fa0) d"”’(A)] »

! ) 1 -
= m J (fA)(Y) dv,(A) = m J (f)A(y) dvy(A)
SO(d) $0(d)
1 r -~
= Wso,!fd) f(Ay) dvd(A) = (f)rad(y). 0

From Lemma A.25 it follows in particular that the Fourier transform of a radial
Schwartz function f : R? — Ris also a radial function. Because of this, when discussing
radial functions, it is helpful to think of the Fourier transform in d dimensions as an
operator acting directly on the associated radial profile. That is, if f : R? — R has an
associated radial profile f(r), and g(y) = F4[f1(y) denotes the Fourier transform of f (x)
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with associated radial profile g(p), then we refer to g(p) as the radial Fourier trans-
form off(r) and denote this as

2(p) = 72 1p).

See Exercise A.13 at the end of this Appendix for more details (which are interesting but
not needed for our purposes) on how this transform can be described more explicitly
and some of its properties.

Radial Schwartz functions have a decomposition into “even” and “odd” parts with
respect to the taking of radial Fourier transforms. This is explained in the following
lemma.

LemmaA.26. Letf : R? - R be a radial Schwartz function. Then f has a unique repre-
sentation of the form

f=fi+f, (A.20)
wheref.,,f_ : R? 5 R are radial Schwartz functions with
}—d[f+] :f+) }—d[f—] = _f—’

that is, f, are eigenfunctions of the Fourier transform with associated eigenvalues +1 and
-1, respectively. The Fourier transform of f is then given by

Falfl=fi - f- (A.21)
andf., f_ are given by
; :fuzfdw ; :f—gd[fy
Proof. Exercise A.12. O

We call (A.20) the Fourier parity decomposition for radial Schwartz functions. We
call f, the Fourier-even part of f and call f_ the Fourier-odd part of f.

Suggested exercises for Section A.10. A.9, A.10, A.11, A.12, A13.

A.11 Structural properties of E; magic functions

Theorem A.21 provides a powerful technique for proving upper bounds on the optimal
packing density of R%. This was used in [14] to prove improved numerical upper bounds
for Agptimal(d)- Even more intriguingly, it raises the natural question of how we can go
about using the theorem to try to derive a sharp upper bound in any given dimension,
or at least one that is best possible using the method. Needless to say, this is a highly
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nontrivial question. The difficulty lies in the fact that we are trying to optimize the bound
(the quantity on the right-hand side of (A.16)) over a rather peculiar-looking space of
functions. Without any further clues as to what sort of properties an optimizing function
f might have, this is tantamount to groping in the dark.

Fortunately, in the case of 8 and 24 dimensions, Cohn and Elkies pointed out that we
can infer some interesting structural properties of a hypothetical optimizer by using the
additional (conjectured, at that point) knowledge that in those dimensions, the optimiz-
ers are magic functions for the Eg and Leech lattices, respectively. Let us see what those
structural properties are. We focus here on the case of 8 dimensions, where these prop-
erties turned out to be the crucial clues that ultimately led Viazovska to her construction
of an Eg magic function.

First, we can strip away one apparent layer of complexity from the optimization
problem by noting that although the class of functions f we are optimizing over consists
of functions on R? (that is, functions of d real variables), there is no real loss of generality
in assuming that the function in question is a radial function—a huge simplification,
since radial functions are described in terms of their radial profile, which is a function
of a single real variable. The idea is made precise in the following lemma.

Lemma A.27. Iff : R > Risa function satisfying the conditions of Theorem A.21 with
parameter p, then there exists a radial Schwartz function g : R? - R that satisfies the
same conditions with the same value of p.

Proof. Take g = fi..q, the radially symmetrized version of f, which is also a Schwartz
function (Exercise A.10). Using Lemma A.25, it is easy to check that g satisfies the same
conditions that f satisfied, with the same value of p. O

A second important observation concerns a necessary condition a function must
satisfy to be a magic function.

Lemma A.28. Iff : R? 5 R is a Schwartz function that is a magic function for a lattice
Ac le, then it must satisfy

fxX)=0 forallx e A\{0} and
fx)=0 forallx € A*\ {0}.

Proof. First, note that we can assume without loss of generality that A has the property
that

r.(A) = p/2.

Indeed, if A does not satisfy this, then we can replace it by a scaled version aA of itself
with a > 0 chosen so as to cause this equation to be satisfied; the scaling does not change
the value of §,, so f would still be a magic function for the rescaled lattice.
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Now combining the Poisson summation formula (A.6) with the assumptions on f,
we have that

fO=fO+ Y fo)=) fx

xeA\{0} XeA
covol(A) yg; f 0 = covol(A)( f(0) +y€AZ;{O}f (Y))
FO)  f0)

(A.22)

~ covol(A) ~ covol(A)”

This is equivalent to saying that covol(A) > 1, which in turn is equivalent (refer to (A.3))
to the relation

8, < Vol(B,_ (4)(0)).

Since we assumed that f was a magic function, 6, is also equal to vol(B,/,(0)), so a final
equivalent reformulation of the inequality between the leftmost and rightmost terms
in (A.22) is the statement that p/2 < r,(A). However, we started the proof by assuming
that p/2is equal tor, (A). This means that both (weak) inequalities in (A.22) must actually
hold as equalities. The only way in which this can be true is if all the summation terms
that were discarded to obtain those inequalities—the terms f(x) for x € A\ {0} in the
first inequality, which were known to be nonpositive, and the terms f(y) for y € A \ {0}
in the first inequality, which were known to be nonnegative—are necessarily 0; this was
exactly the claim to prove. O

Combining the above results and specializing to the case of Eg, we easily obtain the
following result.

Theorem A.29 (Necessary condition for Eg magic). Let f : R® — R be a radial Schwartz
function, and let f, and f_ denote the Fourier-even and Fourier-odd parts of f as in (A.20).
Define the functions ®,®,®,,®_ : [0,00) — R by

o(r) = f(r) (the radial profile of f),
®(r) = FP@)(r) (the radial profile of f),
®,.(r)=f.(r) = w (the radial profile of f,),
®_(r)=f.(r) = w (the radial profile of f ).

Iff is a magic function for Eg, then the following conditions hold:
1 ®(0) = B(0) > 0;
2. @), d(r), @ +(r), and ®_(r) have zeros at the pointsr = V2n forn=123,....
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3. ®(r) does not change signs atr = V2n for n = 2,3,... (so its zeros there are of even
order; assuming that it is real-analytic so that the order of the zeros is well-defined).

4. ®(r) does not change signs at r = V2n forn = 1,2,3,... (so its zeros there are of even
order, assuming that it is real-analytic).

5. If®(r) does not have zeros in (0, V2), then it changes signsatr = V2, so its zero there
is of odd order; assuming that it is real-analytic.

Proof. Exercise A.14. O

Suggested exercises for Section A.11. A.14, A.15.

A.12 Summary

In this appendix, we have developed a solid framework for the study of the sphere pack-
ing problem in d dimensions, with a focus on the case of d = 8, from the point of view
of the connections of the problem to harmonic analysis. The main tool is an analytic re-
sult, Theorem A.21, which, along with related observations such as Lemma A.27, reduces
the problem to a purely analytic question: namely, can a radial function be constructed
with certain special properties involving simultaneous conditions on the function and
its Fourier transform?

An additional tool of importance is Theorem A.29. This result plays a motivational
role in helping us think about the sphere packing problem in 8 dimensions, as it nar-
rows down considerably the class of functions that we need to consider as hypothetical
magic function candidates. Specifically, the theorem suggests that to find an Eg magic
function, we should look for a function ®(r) of a single (radial) real variable that has
the property that both ®(r) and its radial Fourier transform ]-‘gad[cb] have zeros at the
points r = V2, V4, V6, .... This is a rather idiosyncratic problem quite unlike anything
else mathematicians had ever seen before, and its solution eluded the researchers think-
ing about the problem until Viazovska came up with her breakthrough solution in 2016.
Conceptually, what makes the problem hard is that it is difficult to control the zeros of
a function and its Fourier transform simultaneously: it is straightforward to construct
functions with a given set of zeros and functions whose Fourier transform has a given
set of zeros, but no standard tools or ideas in (pre-2016) harmonic analysis offer much of
a clue for how to do both of those things at the same time, or indeed give much insight
into whether it can be done at all.

One of the conditions in Theorem A.29 offers a possible way out of this conundrum:
specifically, the point of considering separately the components ®, and @_ in the Fourier
parity decomposition of @ is that each of those components is an eigenfunction of the
radial Fourier transform, and thus, if we can force it to have the required set of zeros,
then its Fourier transform will automatically have those zeros as well. So the problem
is reduced to constructing radial Fourier eigenfunctions that have zeros (with certain
constraints on their orders) at v2n, n = 1,2,.... Of course, the condition of being a
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Fourier eigenfunction is not a trivial one to satisfy either, especially when combined
with the constraints on the zeros, so it is not a priori clear that this observation makes
the problem anymore tractable; it seems conceivable that we have merely traded one
difficult-to-satisfy condition for another.

Nonetheless, constructing Fourier eigenfunctions with the correct set of zeros turns
out to be precisely the right approach. This was the path taken successfully in Via-
zovska’s solution of the sphere packing problem in 8 dimensions; for the details, read
Chapter 6, which you now have the necessary background to tackle.

Suggested exercises for Section A.12. A.16, A.17.
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Exercises for Appendix A

Al

A2
A3
A4
AS
A6

A7
A8

A9
A0

All
Al12
A13

Is an optimal sphere packing in R? unique? Why, or why not? If not, then what
can be said about the extent of the nonuniqueness?

Prove Lemma A.3.

Prove Lemma A 4.

Prove Lemma A.5.

Prove that for any lattice A in ]Rd, covol(A*) = covol(A) ™%

Prove Theorem A.7. One possible proof proceeds in two steps: first, prove the re-
sult for the specific lattice A = 78 by deducing it from the original Poisson sum-
mation formula for functions on R. Second, derive the result in full generality by
starting with the formula for 7% and applying a linear coordinate change.

For a more direct approach, see [15, Appendix A].

Prove Lemma A.16.

Another construction of the lattice Eg (discussed, for example, in [12]) starts by
postulating the existence of a basis x;, ..., xg € R® whose Gram matrix (the matrix
of inner products (xj,xk)) takes the form

2 -1 0 0 0 0 0 O
1 2 -1 0 0 0 0 O

0 -1 2 -1 -1 0 0 0

(oxa)’s = 0 0 -1 2 0 0 0 O
Pk k=1 0 0 -1 0 2 -1 0 0
00 0 0 -1 2 -1 0

0 0 0 0 0 -1 2 -1

0 0 0 0 0 0 -1 2

Prove that such a basis exists and try to redevelop the results of Section A.7 based

on this construction.

Prove Lemma A.23. (See also [32, Sec. 3], [17, Subsec. 2.3].)

Prove that the radially symmetrized version of a Schwartz function is a Schwartz

function.

Prove Lemma A.24.

Prove Lemma A.26.

Radial Fourier transforms in R%. [31, Sec. B.5], [45, Secs. 4.20, 4.23]

(@) Letf : R? — R be a radial function with a well-defined Fourier transform.
Denote F(r) = f(r) and G(p) = f(p) (the radial profiles of f and f, respec-
tively). Prove that F and G are related to each other by

2 o0
G(p) = pd/_’; JP(r)rd/Z]d/z_l(Zﬂpr) dr, (A.23)
0
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2 (o)
F(r) = rd/’zf_l j G(p)p™ 415+ 2mpr) dp. (A24)
0

Here we use the notation J,(z) for the Bessel function of the first kind of
index a, an entire function defined by

_y ) (2
Ja(2) = z n!l"(n+a+1)<2>

n=0

2n+a

(see also Exercise 1.16 on p. 74). The integral transform that associates a func-
tion G on [0, 0c0) with another function F on [0, c0) according to (A.23) is
known as the Hankel transform.

(b) Prove that if f : RY — R is a radial square-integrable function that is an
eigenfunction of the Fourier transform, that is, F;(f) = Af, then A = 1 or
A=-1

(c) Leta > 0. Define the sequence of polynomials (L5 (x))5>, by the formula

1900 = i &% (n + a)xk.

= ko \n-k

The polynomials L (x) are called the Laguerre polynomials with parame-
ter a. Prove that the polynomials L} (x) satisfy the orthogonality relation

I'm+a+1)

o Smn (m,n = 0).

J Ly (0OLy, (x)e ™ x" dx =
0

Here §,,, denotes the Kronecker delta.
(d) Letd > 1. Define the radial functions yg(x) = Gg(||x||) on le, n=>0,by

Glr) = e LY 2m?)

no 1\k _
_ e_ﬂrz Z ﬂ(n +d/2 1)(27T)kr2k.
= k! n-k

Prove that yﬁ is an eigenfunction of the Fourier transform with eigen-
value (-1)".

Prove that the sequence (y?)%°, forms an orthogonal basis of the subspace
L%ad(le) of Lz(le) consisting of radial functions. (In other words, together
with the previous claim, this shows that the sequence (yﬂ oo diagonalizes the
restriction of the d-dimensional Fourier transform to the radial functions.)
A14 Prove Theorem A.29.

~

(e
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A15 How close are the conditions listed in Theorem A.29 to being sufficient for the
function f to be a magic function for Eg? That is, what additional mild assumptions
on ®(r) and ®(r) would guarantee that f is a magic function?

A.16 The Leech lattice. Prove the following analogue of Theorem A.8:

Theorem A.30 ([18, pp. 131-134]). There exists a lattice in ]R24, denoted L,, and
known as the Leech lattice, with the following properties:

. . . . . . 12
(a) The packing density of the sphere packing associated with L,, is %
(b) The set of Euclidean norms of points of Ly, is

{V2k : k=0,2,3,4,...}.
(c) The numbers (by)y., defined by
by = #{x € Ly, : IIx|* = 2n}
are given explicitly by

65520
b, = W(Un(n) -1(n)) (n=1).

For the definitions of a4;(n) and t(n), see (5.2) and (5.28).

A17 Formulate an analogue of Theorem A.29 for the case of a magic function for the
Leech lattice in 24 dimensions.
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