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This book is intended as a textbook for a first course in the theory of
functions of one complex variable for students who are mathematically
mature enough to understand and execute € — 6 arguments. The actual pre-
requisites for reading this book are quite minimal; not much more than a
stiff course in basic calculus and a few facts about partial derivatives. The
topics from advanced calculus that are used (e.g., Leibniz’s rule for differ-
entiating under the integral sign) are proved in detail.

Complex Variables is a subject which has something for all mathematicians.
In addition to having applications to other parts of analysis, it can rightly

claim to be an ancestor of manv areas of mathematics (e.c.. homotopv theorv

A22L AL LN QAL QLIBPVOIUL VL LGLL Y QLAY VI GQUIIVIIIGAUIVY (Ve 6 AIVIIIVLIU P Y LLIVUL 5

manifolds). This view of Complex Analysis as ““An Introduction to Mathe-
matics’ has influenced the writing and selection of subject matter for this book.
The other guiding principle followed is that all definitions, theorems, etc.
should be clearly and precisely stated. Proofs are given with the student in

mind. Most are presented in detail and when this is not the case the reader is
4 A1 mvnnlonlss sulhat o mmtocimo O cbrad 40 B Sen b oo o o
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exercises are varied in their degree of difficulty. Some are meant to fix the
ideas of the section in the reader’s mind and some extend the theory or give

apphcatrons to other parts of mathematics. (Occasionally, termrnology is used
aor ] domain )
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6
/1.2 are basic. It is possibl
to cover this material in a singie semester only if a number of proofs are
omitted. Except for the material at the beginning of Section VI.3 on convex
functions, the rest of the book is independent of VI.3 and VI.4.

Chapter VII initiates the student in the consideration of functions as
pUl[lLb lIl a nreme Space. IHC erUllb ()1 an llrbl l[lI'CC bCLllOIlb 01 Ullb LIldpLCf
are used repeatedly in the remainder of the book. Sections four and five need
no defense; moreover, the Weierstrass Factorization Theorem is necessary
for Chapter XI. Section six is an application of the factorization theorem.
The last two sections of Chapter VII are not needed in the rest of the book
although they are a part of classical mathematics which no one shouid
completely disregard.

The remaining chapters are independent topics and may be covered in any
order desired.

Runge’s Theorem is the inspiration for much of the theory of Function
Algebras. The proof presented in section VIII.1 is, however, the classical one
involving ““pole pushing’. Section two applies Runge’s Theorem to obtain a
more general form of Cauchy’s Theorem. The main results of sections three
and four should be read by everyone, even if the proofs are not.

Chapter IX studies analytic continuation and introduces the reader to
analytic manifolds and covering spaces. Sections one through three can

be considered as a unit and will give the reader a knowledge of analytic

it
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viii Preface
continuation without necessitating his going through all of Chapter IX.

Chapter X studies harmonic functions including a solution of the Dirichlet
Problem and the introduction of Green’s Function. If this can be called
applied mathematics it is part of applied mathematics that everyone should

know.
hey are independent, the last two chapters could have been

combmed into one entitled ‘“Entire Functions”. However, it is felt that
Hadamard’s Factorization Theorem and the Great Theorem of Picard are
sufficiently different that each merits its own chapter. Also, neither result
depends upon the other.

With regard to Picard’s Theorem it should be mentioned that another

proof is available. The proof p"esem d here uses only elementary arguments
while the proof found in most other books uses the modular function.

There are other topics that could have been covered. Some consideration
was glven to 1nclud1ng chapters on some or all of the followmg conformal

1 .1 A 1 .

and these topics were the victims. For those readers who wou
this material or to further investigate the topics covered in thi
bibliography contains a number of appropriate entries.

Most of the notation used is standard. The word “iff” is used in place of

»
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proof. When a function (other than a path) is being discussed, Latin letters
are used for the domain and Greek letters are used for the range.

This book evolved from classes taught at Indiana University. I would like
to thank the Department of Mathematics for making its resources available
to me during its preparation. I would especially like to thank the students
in my classes; it was actually their reaction to my course in Complex Variables
that made me decide to take the plunge and write a book. Particular thanks
should go to Marsha Meredith for pointing out several mistakes in an early
draft, to Stephen Berman for gathering the material for several exercises on
algebra, and to Larry Curnutt for assisting me with the final corrections of the
manuscript. I must also thank Ceil Sheehan for typing the final draft of the
manuscript under unusual circumstances.

Finally, I must thank my wife to whom this book is dedicated. Her
encouragement was the most valuable assistance I received.

John B. Conway
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asked me to prepare a list of corrections for a third printing. When I
mentioned that I had some ideas for more substantial revisions, they
reacted with characteristic enthusiasm.

There are four major differences between the present edition and its
predecessor. First, John Dixon’s treatment of Cauchy’s Theorem has been
included. This has the advantage of providing a quick proof of the theorem
in its full generality. Nevertheless, I have a strong attachment to the
homotopic version that appeared in the first edition and have proved this
form of Cauchy’s Theorem as it was done there. This version is very
geometric and quite easy to apply. Moreover, the notion of homotopy is
needed for the later treatment of the monodromy theorem; hence, inclu-
sion of this version yields benefits far in excess of the time needed to
discuss it.

Second, the proof of Runge’s Theorem is new. The present proof is due
to Sandy Grabiner and does not use “pole pushing”. In a sense the “pole
pushing” is buried in the concept of uniform approximation and some
ideas from Banach algebras. Nevertheless, it should be emphasized that the
proof is entirely elementary in that it relies only on the material presented
in this text.

Next, an Appendix B has been added. This appendix contains some
bibliographical material and a guide for further reading.

Finally, several additional exercises have been added.

There are also minor changes that have been made. Several colleagues
in the mathematical comm nity have helped me greatly by providing

T T — s - O T T TS

.
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thank publicly Earl Berkson, Louis Brickman, James Deddens, Gerard
Keough, G. K. Kristiansen, Andrew Lenard, John Mairhuber, Donald C.
Meyers, Jeffrey Nunemacher, Robert Olin, Donald Perlis, John Plaster,
Hans Sagan, Glenn Schober, David Stegenga, Richard Varga, James P.

Williams. and Max Zorn

) 11, : 1 41 'I a1 4 rer a s xr__1 T A 94 1 A 1

Finally, I wish to thank the staff at Springer-Verlag New York not only
for their treatment of my book, but also for the publication of so many
fine books on mathematics. In the present time of shrmkmg graduate
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to our als(npune by increasing its efforts to disseminate t
ments in mathematics.
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Chapter 1

The Complex Number System

§1. The real numbers

We denote the set of all real numbers by R. It is assumed that each

reader 1s acquainted with the real number system and all its properties. In
articular we assume a knowledge of the i

anaal/ ~ s 1% 1 %

ac nf th |1r\rom- m nAd infimiir £
Lo Ul L 1¢ U IHmiiiiiunil \ 1
of R (every set in R which is bounded above has a supremum).
also assumed that every reader is familiar with sequential convergence in

R and with infinite series. Finally, no one should undertake a study of

Complex Variables unless he has a thorough grounding in functions of one
real variable. Although it has been traditional to study functions of several
1 1 1 1 1 r a1 41

real variables before studying analytic function theory, this is not an
essential prerequisite for this book. There will not be any occasion when
the deep results of this area are needed.

§2. The field of complex numbers

We define C, the complex numbers, to be the set of all ordered pairs
(a, b) where a and b are real numbers and where addition and multiplication
are defined by:

- 7

(a, b)+(c,d) = (a+c, b+d)

(a, b) (c, d) = (ac—bd, bc+ ad)
It 1s easily checked that with these definitions C satisfies all the axioms for

a field. That 1s, C satisfies the associative, commutative and distributive
laws for addition and multmllcatlon (0,0) and (1,0) are 1dent1t1eq for

,

=
Oa
s:n

l
.
l

€n 1 L.
mber (a 0). This mapping a — (a, 0)
defines a ﬁeld 1somorph1sm of [R C so we may consider R as a subset of
,b) = a+bi. From this point on we abandon

p—
A!'
" ©
=+
(¢')
=
o
!
O

the e
fact, for each z in C, z2+1 = (z+1i) (z—i). More generally, if z and w are
complex numbers we obtain

224+ w? = (z+iw) (z—iw)

1
1



2 The Complex Number System
Ry latting » and w1 ha ranl mitmhoare 7 and A wa ran Altain (rith ath ~ and
io ) l\/\,\.llls & Al v UL 1vAaAl 11UllIUCL1ID U AdAllI\l U YWy vadll vuvialll \Wltll UULI1L G aAallul
1 a—ib a b
= = -1
. 2
a+ib  a*+b* a*+b? a’+b?

so that we have a formula for the reciprocal of a complex number

Whan « 7Y xrrita - Al sh A~ h =D\ warnall v and h tha wornl and T aosmn v

YY RIUI1 VY 1ILU 4 — U T W \u, U < U\\} Cidil 4 allu U LIV 7CUL ali\a irniuxiirniag
parts of z and denote this bya = Rez, b = Imz.

We conclude this section by introducing two operations on C which are
not field operations. If z = x+iy(x, y € R) then we define |z] = (x*+3?)* to
be the absolute value of z and Z = x—iy is the conjugate of z. Note that

2.1 |z|* = zZ

In particular, if z # 0 then

z
z |z
Tha fAllAatxrismae newa lncin sasnnsmantiac ~AF alhocnliita sralivhan nsvAd A~AAsmitrorntan
L1110 1UI1IVUWI] 15 alT vadsiv plUPClLle Ul auUOLIULC valucod adiiu UUUJUEGLCD
whose verifications are left to the reader.
_ 1 _
2.2 Rez = }(z+Z2) and Imz = Q—'(Z_Z)'
l
2.3 (z+w) =z+4+w and zw = zZw.
~ A [ R I I I R |
V1S, 4 IAWI - Iél |W|.
2.5 jz/w] = |zl/lwl.
2.6 1Z| = |z].

The reader should try to avoid expanding z and w into their real and

imaginary parts when he tries to prove these last three. Rather, use (2.1),
(2.2), and (2.3).

'Yoarcices
A A TN T

M LB

1. Find the real and imaginary parts of each of the following:

. ’ - A\ 3.

1 z—a 5 3451 [(—14+i/3Y)%;

-3 —(@eR); z7; -—;

z z+a Ti+1 2

/—1—1‘\//3\6 148\

( — ;" |—=]) for 2<n<8.

\ < / \v</
7 Find the ahenlute Ua]ne anﬂ coniugate of each of the followino *
bt ® A A3ANG LILlW AAVOVIULWLWS VY 14 1IN\ W llJUsuL\/ Vi vAawvill Uil Luilwv lUllU'vllls.

(1 N6, ;17
\1 .
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The complex plane 3
real nnml\pr I"F an‘ nn]v
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omplex numbers, prove the followmg equations:

.

F":
1 &
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I
P
~h
N
5 e
Q.
m
-
o
o

|z+w|? = |z]*+2Re zw + |w|>.
|z—w|? = |z]*—2Re zw+ |w]>.
[z+wl* + [z=wl* = 22"+ |w]).

5. Use induction to prove that for z = z;4+...42z,; w=ww,...w,:

W = |wyl...w|;Z2=2+...4Z,;; W =W;...W,

6. Let R(z) be a rational function of z. Show that R(z) = R(Z) if all the
coefliciente in R(~») are raal

WUNLLINVANVILILD AL ‘\\l-t} QUiwv 1wlile

§3. The complex plane

From the definition of complex numbers it is clear that each z in C can
be identified with the unique point (Re z, Im z) in the plane R2. The addition
of complex numbers is exactly the addition law of the vector space R2.
If z and w are in C then draw the straight lines from z and w to 0 (=(0, 0)).
These form two sides of a parallelogram with 0, z and w as three vertices.
The fourth vertex turns out to be z+ w.

Note also that |z—w]| is exactly the distance between z and w. With this
in mind the last equation of Exercise 4 in the preceding section states the
parallelogram law: The sum of the squares of the lengths of the sides of a
parallelogram equals the sum of the squares of the lengths of its diagonals.

A fundamental property of a distance function is that it satisfies the
triangle inequality (see the next chapter). In this case this inequality becomes

|z)—2z,| < |z7—2z3] + |z3—2,]

for complex numbers z,, z,, z3. By using z, —z, = (z; —z3)+(z3—2,), it is
easy to see that we need only show

3.1 |z4+w| < |z| + |w|(z, we C).

To show this first observe that for any z in C,

3.2 —|z] < Rez < |z]
—lzl <« Imz < |Z]
Hence, Re (zw) < |zW| = |z| |w|. Thus,

|z+w]? = |z|* +2Re (zw) + |w|?

< |22 +2|z| [w]+|w|?

= (Jz[+wD)?,

from which (3.1) follows. (This is called the triangle inequality because, if we
represent z and w in the plane, (3.1) says that the length of one side of the
triangle [0, z, z+w] is less than the sum of the lengths of the other two sides.

Or, the shortest distance between two points is a straight line.) On encounter-



4 The Com

ing an inequality one should always ask for necessary and sufficient conditions

that equality obtains. From looking at a triangle and conS1dermg the geo-

metrical significance of (3.1) we are led to con31der the condition z = tw

for some teR, ¢t > 0. (or w =tz if w = 0). It is clear that equality will
y )

tha Arigin Tn o i€ vwn 1Anls
1 UIC vligllil. i la\«l, il W€ 100K

occur when the two puuuo are colinear wi
at the proof of (3.1) we see that a necessary and sufficient condition for
|z+w| = |z] +|w| is that |zw| = Re (zw). Equivalently, this is zw > 0 (i.e., zw
is a real number and is non negative). Multiplying this by w/w we get

[w]*(z/w) = 0if w # 0. If

4+

VS Iy ~ N L0 - e,
LIICILI L =Z U dllu £ = [Ww.
By induction we also get

Now that we have given a geometric interpretation of the absolute value
let us see what taking a complex conjugate does to a point in the plane.
This is also easy; in fact, Z is the point obtained by reflecting z across the
x-axis (i.e., the real axis).

Exercises

1. Prove (3.4) and give necessary and sufficient conditions for equality.
2. Show that equality occurs in (3.3) if and only if z,/z, > O for any integers

Landl 1 « L 1 -~ & ~r whirh - £ 0N
n 11U iy 1 = Ny &t = Iy 1VUL VViliVL Ll 7V
3. Let ae R and ¢ > 0 be fixed. Describe the set of points z satisfying

for every possible choic

(¢]
@]

nd vrgin a ratatinn N
a.uu, uouls ivitaiivil v

above equauon.

§4. Polar representation and roots of complex numbers

Consider the point z = x+iy in the complex plane C. This point has
polar coordinates (r, 6): x = r cos 0, y = r sin 6. Clearly r = |z| and 0 is

the angle between the positive real axis and the line segment from O to z.
Notice that 8 nlus anv multinle of 27 can be substituted for 9 in the above

1 VYU uwvww uiide v Au Qily Hiuiupiav (€393 ouliLw ALA i1V UV Y W

equations. The angle 0 is called the argument of z and is denoted by 6 = arg z.
Because of the ambiguity of 8, “arg” is not a function. We introduce the
notation

4.1 cis 8 = cos 6+isin 6.



Polar representation and roots of complex numbers 5
Let zy = ry cis 6, z, = ry cis 6,. Then z,z, = ryr, cis 6, cis 0, = ryr,

[(cos 8, cos 6,—sin 6, sin 6,)+i (sin 8, cos 0,+sin 6, cos 6,)]. By the

formulas for the sine and cosine of the sum of two angles we get

4.2 lez == rlrz CiS (01+02)

Alternately, arg (z,z,) = arg z, +arg z,. (What function of a real variable
takes products into sums?) By induction we get forz, = r,cis 6, 1 < k < n.

4.3 212y ... 2, =FiFy...F,Cis(0,4...4+6)
In particular,
4.4 z" = r" cis (n0),

for every integer n > 0. Moreover if z # 0, z-[r~! cis (—=6)] = 1; so that
(4.4) also holds for all integers n, positive, negative, and zero, if z # 0. As a
special case of (4.4) we get de Moivre’s formula:

(cog B47cin V' — cos nf-+1<in »nh
(Cos U+1s1n 0)" = COS no 181N no.

We are now in a position to consider the following problem: For a given
complex number a # 0 and an integer » > 2, can you find a number z
satisfying z”" = a? How many such z can you find? In light of (4.4) the
solution is easy. Let a = |a] cis «; by (4.4), z = |a|'/" cis («/n) fills the bill.

i : 1
However this is not the only solution because z’ = |a|'/" cis — («+2w) also
n

LR 2

satisfies (z')" = a. In fact each of the numbers

1
4.5 la| !/ CiS;(cx+2ﬂ'k), 0<k<n-—l1,

S r A AN

in an nth root of a. By means of (4.4) we arrive at the following: for each
non zero number a in C there are » distinct nth roots of a; they are given by
formula (4.5).

Example
Calculate the nth roots of unity. Since 1 = cis 0, (4.5) gives these roots as

. . . ﬂ
I,cis—,cis—,...,cis— (n—1).
n n n

In particular, the cube roots of unity are

(147 /2 ——(1—7/2)
TN/ D) \2 TN I

1
NI V

N

Exercises



The Complex Number System

o

Calcuilate the following:

(a) the square roots of i

(b) the cube roots of i

(c) the square roots of /3 +3i

. ., .

2 A s fiavo ; :

3. A primitive nth root of unity is a comp
1

I,

a,a* ...,a""" are distinct nth roots of unity. Show
primitive nth and mth roots of unity, respectively, then ab is a kth root of
unity for some integer k. What is the smallest value of k? What can be said
if a and b are nonprimitive roots of unity?

4. Use the binomial equation

(n1LhV" — }
\u ] u} LJ

(") 4
k=0\k/u o

and compare the real and imaginary parts of each side of de Moivre’s
formula to obtain the formulas:

where

n (7 -2 2 () -4 p ;4
cos nd = cos 0—-(2) cos" ™ sin 0+(4) cos" *f@sin* 6—. ..
: n n—1 : h n—3 fn3
sin nf = ) coSs 0 sin 0 — 3 cos 0 sin® 0+. ..
~ x . . 27Tt‘ o, - ~ i1 . 1 . . R n—1 n
5. Let z = cis for an integer n > 2. Show that 1 +z+...+z""" = 0.

n
e

6. Show that ¢(f) = cis ¢ is a group homomorphism of the additive group
R onto the multiplicative group T = {z: |z| = 1}.

7. If z e C and Re(z")=0 for every positive integer n, show that z is a
positive real number.

§5. Lines and half planes in the complex plane

Let L denote a straight line in C. From elementary analytic geometry,
L is determined by a point in L and a direction vector. Thus if a is any point
in L and b is its direction vector then

= {z=a+th: —0 <t < w0}

Since b # 0 this gives, for zin L,

In fact if z is such that

then
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As a first step in answering this question, observe that since b is a direction
we may assume |b| = 1. For the moment, let us consider the case where
a=0, and put H, = {z: Im (z/b) > 0}, b =cis B. If z = r cis 0 then
z/b = rcis (6 —pB). Thus, z is in H, if and only if sin (6—B) > 0; that is, when
B < 8 < w+B. Hence H, is the half plane lying to the left of the line L if

H,

) \\\\\\\\\\\\\\\“

AL
SPRCTLVLAN A e

we are ‘““walking along L in the direction of 4.’ If we put

AT
s =4z:Im{ —— | > 0;
C \ 2/

then it is easy to see that H, = a+H, = {a+w: we H,}; that is, H, is the
translation of H, by a. Hence, H, is the half plane lying to the left of L.
Similarly,

v _ 1 (279 _ ol
l\ m —_— ~N VvV
DR N |
A8 J
is the half plane on the right of L
Exercise
1. Let C be the circle {z: |z—¢| =r}, r > 0; let a = c+r cis « and put
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'e /Z_a\ 3\
Lﬂ = {Z: Im(*——b——') = 0}

where b = cis B. Find necessary and sufficient conditions in terms of 8 that
L, be tangent to C at a.

§6. The extended plane and its spherical representation

Often in complex analysis we will be concerned with functions that be-
come infinite as the variable approaches a given point. To discuss this situa-
tion we introduce the extended plane which is CU {0} = C_,. We also
wish to introduce a distance function on C,, in order to discuss continuity
properties of functions assuming the value infinity. To accomplish this
and to give a concrete picture of C, we represent C_, as the unit sphere
in R?,

S = {(x4, X5, x3) e R¥: X2+ x24x2 = 1}.

Let N = (0, 0, 1); that is, N is the north pole on S. Also, identify C with
{(x1, x3, 0): x;, x, € R} so that C cuts S along the equator. Now for each
point z in C consider the straght line in R* through z and N. This intersects

N
/-'\\
s SN\
/ SN\
p \
z
/ \ |
L \\ / /
N 7
~N //
\\ //

the sphere in exactly one point Z # N. If |z| > 1 then Z is in the northern
hemisphere and if |z|] < 1 then Z is in the southern hemisphere; also, for
|z| = 1, Z = z. What happens to Z as |z| — o0? Clearly Z approaches N;
hence, we identify N and the point o in C_,. Thus C_ is represented as
the sphere S.

Let us explore this representation. Put z = x+iy and let Z = (x,, x,, X3)

be the corresponding point on S. We will find equations expressing x,, x
and xy. Iin termg of x and ¥. The line in R3 thronoh » and N i is gver} by

il v 3 RIL LWRRLAD Jw il X Iiw 141 411 UN bleUule ~ u.x g4y

{IN+(1—08)z: —0 < t < oo}, or by
6.1 {(A=Dx,(1=0)yp,1): —0 < t < o0}

L . Amea Dl P -~ Py

Hence, we can find the coordinates of Z if we can find the value of ¢ at



The extended plan nd its spherical representation 9

1= 1=+ -1)>%*+12
= (1=0)*|z]*+1¢

From which we get

142 _ (1 __AN21-12
1—=i" = (=7 iz~
Since t # 1 (z # o0) we arrive at
21
! = 112 4 1
]Zl T 1
Thus
2x 2y |z|2~1
6.2 Xy =—F5——, X, = —5—, X3 =
S N P e N PR
But this gives
£ z+2z _I'(Z—Z_) iZiz—i
||+ 1 |z]*+1 lz|*+1

If the point Z is given (Z # N) and we wish to find z then by setting
t = x5 and using (6.1), we arrive at

cu

64 z = X1t X
1—x,; —X;
Now let us define a distance function between points in the extended
plane in the following manner: for z, z’ in C,, define the distance from z to z’,

d(z, z"), to be the distance between the corre spnndmg points Z and Z’ in R3
If Z =(xy, x5, x3) and Z' = (x{, x3, x3) then

n2 n2 n214
6.5 d(z, 2) = [(x1 —x1) "+ (xz —x3)* + (x5 —x3)°]

Using the fact that Z and Z’ are on S, (6.5) gives

£ r = ="\ ~ lo VPPN ST ST AN
.0 la\z, Z2')]” = £—4(X X+ XX+ X3X3)

(=)

2|z—z’
o7 4e.) = e e &7 <O
In a similar manner we get for zin C
6.8 d = 2
| &) = Py
This correspondence between points of S and C_, is called the stereographic

PP 7]
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Exercises

1. Give the details in the derivation of (6.7) and (6.8).
2. For each of the following points in C, give the corresponding point of
S: 0, 1+z 3+2i.

P = {(xy, X3, x3): x1B1+x,8,+x383 =1}
where (84, B, B3) is a vector orthogonal to P and / is some real number.
T+ can he accnirmed that 1t R2 _ 1 Tlee thic infarmatinn ta chaw that
1AL vailil vULv dUlliVUl tllat lTIJZ TlJS — Lo oW L1111 1111V1i111AalivVvil WV 11U YY uilal

A pro;ects onto a circle in C.
5. Let Z and Z’ be points on S corresponding to z and z’ respectively. Let
W be the point on S correspondmg to z+2z'. Find the coordinates of W in



Chapter 11

Metric Spaces and the Topology of C

§1. Definition and examples of metric spaces

A metric space is a pair (X, d) where X is a set and d is a function from
X x X into R, called a distance function or metric, which satisfies the following

o AL L. L. s memd - 2. UL
onditions for x, y, and z in X:

(@)

dx v >0
W\ ) = V¥
dix,y) =0i1fand only if x = y
d(x, y) = d(y, x) (symmetry)

d(x, z) < d(x, y)+d(y, 2) (triangle inequality)

B(x;r) = {yeX: dlx,y) <r}

B(x;r) = {yeX: dx,y) <r}.
B(x; r) and B(x; r) are called the open and closed balls, respectively, with
center x and radius r.

Examples

1.1 Let X = R or C and define d(z, w) = |z—w|. This makes both (R, d)
and (C, d) metric spaces. In fact, (C, d) will be the example of principal
interest to us. If the reader has never encountered the ¢ ‘oncept of a “retric

o
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=
=
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c
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=
=
o
(¢']
o
A
©
Q
=}
2 @
=]
Q.
Q.
c
=,
=
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=
(’D
©
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Q.
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space before this, he should

of this chapter.
1.2 Let (X, d) be a metric space and let Y < X; then (Y, d) is also a metric

cSnacrae
Oyu\d\/

s N -1 1 . I L\ | .. P T LI Mlaw /M I\ 2.
1.3 Let X = C and define d(x+iy, a+ib) = |[x—a|+|y—b|. Then (C, d) is

a metric space.

1.4 Let X = C and define d(x+iy, a+ib) = max {|x—a|, |y—5|}.

1.5 Let X be any set and define d(x,y) = 0if x = y and d(x,y) = 1if x # y.
To show that the function d satisfies the triangle inequality one merely
considers all possibilities of equality am()ug x, y, and z. Notice here that
B(x; €) consists only of the point x if e < 1 and B(x; €) = X if ¢ > 1. This
metric space does not appear in the study of analytic function theory.

1.6 Let X = R" and for x = (x4, ..., x,), ¥y = (J15-.., ¥, in R" define

d(x; y) = [i' (xj—yj)Z]%

Lj=1 J

11
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1.7 Let S be any set and denote by B(S) the s nctions f: S —>C

Y AT

such that

r-r
o)
-y.,

u A5 ull AM

| flle = sup {|f(s)]: s S} < 0.

That is, B(S) consists of all complex valued functions whose range is con-
tained inside some disk of finite radius. For fand g in B(S) define d(f, g) =

| f—gllo. We will show that d satisfies the triangle inequality. In fact if f
g, and A are in B(S) and s is any point in S then |f(s)—g(s)| = |f(s)—h(s)+
h(s)—g(s)| < |f(s)—h(s)|+ |h(s)—g(s)| < [f—hllo+ Ilh—gllo- Thus, when the
supremum is taken over all s in S, || f—gllo, < ||f—#llo+1h—gll,, Which is
the triangle inequality for d.

1.8 Definition. For a metric space (X, d) a set G < X is open if for each
x in G there is an € > 0 such that B(x; ¢) < G.

Thus, a set in C is open if it has no “edge.” For example, G = {z e C:
a < Rez < b}isopen; but {z: Rez < 0} U {0} is not because B(0; ¢) is not
contained in this set no matter how small we choose e.

We denote the empty set, the set consisting of no elements, by [].

1.9 Proposition. Let (X, d) be a metric space; then:
(a) The sets X and ] are open; i
(b) If Gy, ..., G, are open sets in X then so is () G;

k=1
(n\ ’f $62 « 72 T 30 A rnllortinn nf nnon cote 1m Y T Aanv indovino <ot
lUJ J \-ll)’ W W LuviicLLivrnt UJ U[/CI[ DCLO i A, Jg Ul LHHILUCT ALIL oC L,
Ve Y e B ry - 7
then G = U {G;: je J} is also open.

Proof. The proof of (a) is a triviality. To prove (b) let xe G = (") G; then
k=1

xeG,fork =1,...,n. Thus, by the definition, for each k there is an ¢, > 0
such that B(x; ¢,) < G,. Butif e = min {e;, €,,...,¢,} thenfor1 < k < n
B(x; €) < B(x; ¢) < G,. Thus B(x; €) < G and G is open.

The proof of (c) is left as an exercise for the reader. |l

There is another class of subsets of a metric space which are distinguished.
These are the sets which contain all their “edge’; alternately, the sets whose
complements have no “edge.”

1.10 Definition. A set F < X is closed if its complement, X — F, is open.

The following proposition is the complement of Proposition 1.9. The
proof, whose execution is left to the reader, is accomplished by applying
de Morgan’s laws to the preceding proposition.

1T 11 Daencenoids ne (Vv AN L ‘o on
.11 flUpUBlllUll Lel 4, 4) ve a metric s

(a) The sets X and ] are closed;

(b) If Fy, ..., F, are closed sets in X then so is U F,;
k21

(c) If {F;: jeJ} is any collection of closed sets in X, J any indexing set,
then F = N {F;: je J} is also closed.

s Tl ...
uce. Lricri.

The most common error made upon learning of open and closed sets
is to interpret the definition of closed set to mean that if a set is not open it is
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1 | PPN
closed. Th s, of course, is false as can be

U {0}; it is neither open nor closed.

1.12 Definition. Let A be a subset of X. Then the interior of A, int A, is the
set ) {G: G is open and G < A4}. The closure of A, A~, is the set () {F: F
is closed and F © A}. Notice that int 4 may be empty and 4~ may be X.

If A = {a+bi: g and b are rational numbers?} then sim aneouslv 4~ = C

nlta
AL LA l“ 1 ye W& CLLIING (/ Ui w Lb!l.l\lllul .IIUAIAUVLUJ LCilwill UJvlilililuviivAllw (S ) Py S -
and int A = []. By Propositions 1.9 and 1.11 we have that 4~ is closed and
int A is open. The boundary of A is denoted by ¢4 and defined by 64 = A~
NX-A4)".

1.13 Proposition. Let A and B be subsets of a metric space (X, d). Then:
(a) A is open if and only if A = int A;
(b) A is closed if and only if A = A~ ;
c)intA=X—-(X-A4)"; A" = X—int (X—A); 94 = A~ —int-4;
d) (AVB)" =A"UB~;
(e) xo €int A if and only if there is an € > 0 such that B(x,; €) < A;
(f) xge A~ if and only if for every e > 0

Proof. The proofs of (a)-(e¢) are left to the reader. To prove (f) assume
xo€A™ = X—int (X—A); thus, x,¢int (X—A). By part (e), for every
e > 0 B(x,; €) is not contained in X — A. That is, there is a point y € B(x,; €)
which is not in X—A4. Hence, y e B(x,; €) N A. Now suppose xo¢ A~ =

X—int (X—A). Then x; eint (X—A) and, by (e), there is an ¢ > 0 such
that B(x.: ¢\ Y—-A. That 1¢ Ry * YN

L A CAA I K] \./ 7 L3 A 114V 1Ty .Ll\.’wo, \./ IIL

satisfy the condition. i}
Finally, one last definition of a distinguished type of set.

y
A

I
[]
w
Q
=+
=

1.14 Definition. A subset A of a metric space X is dense if A~ = X.

The set of rational numbers @ is dense in R and {x+iy: x, yeQ} is
dense in C.

Exercises

1. Show that each of the examples of metric spaces given in (1.2)—(1.6) is,
indeed, a metric space. Example (1.6) is the only one likely to give any
difficulty. Also, describe B (x;r) for each of these examples.

2. Which of the following subsets of C are open and which are closed: (a)
{z |zl<1} (b) the real axis; (¢) {z:z"=1 for some integer n>1}; (d)
{zeC:zisrealand 0<z<1}; (e) {zeC:zisreal and 0=z<1}?

3. If (X, d) is any metric space show that every open ball is, in fact, an open
set. Also, show that every closed ball is a closed set.

4. Give the details of the proof of (1.9¢).

S. Prove Proposition 1.11.

6. Prove that a set G < X is open if and only if X—G is closed

7. Show that (C_, d) where d is given by (I. 6.7) and (1. 6.8) is a metric space
8. Let (X, d) be a metric space and Y < X. Suppose G < X is open; show
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that G N Y is open in (Y, d). Conversely, show that if G; = Y is open in
(Y, d), there is an open set G X such that G1 =GNY.

9. Do Exercise 8 with “closed’ in place of “open.”
10. Prove Proposition 1.13.
11. Show that {cisk: k>0} is dense in T={zeC:|z|=1}. For which

caliiae ~F ( ~lad LON SN Ao
vaiue€s o1 o lb ¢l S(KU ) K, =VUy UCIle lIl l '

§2. Connectedness

Let us start this section by giving an example. Let X = {zeC: |z] < 1

U {z: |z—3| < 1} and give X the metric it inherits from C. (Henceforward,
whenever we consider subsets X of R or C as metric spaces we will assume,
unless stated to the contrary, that X has the inherited metric d(z, w) = |z—w]|.)
Then the set A = {z: |z| < 1} is simultaneously open and closed. It is closed
because its complement in X, B = X—A = {z: |z—3| < 1} is open; 4 is
open because if ae 4 then B(a; 1) < A. (Notice that it may not happen
that {zeC: |z—a| < 1} is contained in A—for example, if a = 1. But the
definition of B(a; 1) is {zeX: |z—a| < 1} and this is contained in A.)
Similarly B is also both open and closed in X.

Th1s is an example of a non-connected space.

2.1 Definition. A metric space (X, d) is connected if the only subsets of X
which are both open and closed are [] and X. If A < X then A is a connected
subset of X if the metric space (4, d) is connected.

An equivalent formulation of connectedness is to say that X is not
connected if there are disjoint open sets 4 and B in X, neither of which is
empty, such that X = 4 U B. In fact, if this condition holds then 4 = X—B
is also closed.

2.2 Proposition. 4 set X < R is connected iff

X is an interval.

Proof. Suppose X = [a, b], a and b elements of R. Let A < X be an open
subset of X such that a e 4, and 4 # X. We will show that 4 cannot also be
closed—and hence, X must be connected. Since 4 is open and a € 4 there is
an € > 0 such that [a, a+¢€) < A4. Let

r =sup {e: [a,a+e) = 4}
Claim.[a,a+r) < A.Infact,ifa < x < a+r then, puttingh = a+r—x > 0,
the definition of supremum implies there is an ¢ with r—h < € < r and
[a, a+€) € A. Buta < x = a+(r—h) < a+e implies x € A and the claim is

established.

HaAawavar oL »
il VUVUL’ R

A-fori

V ¢ A;forii, on SS
of A4, there is a 6 > 0 with [a+r, a+r+38) < A. But this gives [a, a+r+35)
< A, contradicting the definition of r. Now if 4 were also closed thena+r € B
= X — A which is open. Hence we could find a § > 0 such that (a+r—3,
a+r] < B, contradicting the above claim.

The proof that other types of intervals are connected is similar and it will

be left as an exercise.
The proof of the converse is Exercise 1. |}
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[z,w] = {tw+(1=0)z: 0 <t < 1}

A polygon from a to b is a set P = U [z,, w,] where z; = a, w, = b and
k=1

W, =Z4q forl <k <n-1; P =[a, , 24 - - - 2, Dl

KT -0 7 L™ Y { P4

2.3 Theorem. An open set G < C is connected iff for any two points a, b in
G there is a polygon from a to b lying entirely inside G.

Proof. Suppose that G satisfies this condltlo and let us assume that G is
i G

not connected. We will obtain a contradiction. From the definition, G =
AL) R whare 4 and R are ]f\nﬂ'\ onen and r\]ncpr‘ A R =M and neither
L1 N A YYI1IVAINV 41 AllN LJ Qi UVl \.IIJVIA CAL1ING vlvuvu, LAV V AS u, CAL1INEG 11Vviliivi
4 i D e ooty T oad oo o A o1 L Do T Ticrmmil ncto 4l mcen e ol D
A nor B is empty. Let ae A and b € B; by hypothesis there is a pmygur P

-
O

from a to b such that P < G. Now a moment’s thought will show tha
of the segments making up P will have one point in 4 and another in B.
So we can assume that P = [a, b]. Define,

Then SNT =[], SUT=10,1],0e Sand 1 € T. However it can be shown
that both S and T are open (Exercise 2), contradicting the connectedness of
[0, 1]. Thus, G must be connected.

Now suppose that G is connected and fix a point ¢ in G. To show how to
construct a polygon (lying in G!) from a to a point b in G would be difficult.
But we don’t have to perform such a construction; we merely show that one
exists. For a fixed a in G define

= {b e G: thereis a polygon P < G from a to b}.

The plan is to show that A4 is simultaneously open and closed in G. Since
ac€ A and G is connected this will give that A = G and the theorem will be
proved

4hhntd A 5 Ao 1A4- L~ A AaexnAd 1.¢ D __T.. o LYl la. -~
lU bllUW l,l d.l. 1‘1 lb VUptil 1L U= Ad allu ICL I = Uy <1y ¢ o oy An, U] UC a
polygon from a to b with P = G. Since G is open (this was not needed in the

first half), there is an € > 0 such that B(b; ¢) < G. But if z € B(b; ¢) then
[b, z] < B(b; €) < G. Hence the polygon Q = P U [b, z] is inside G and goes
from a to z. This shows that B(b; €) < A4, and so A4 is open.

To show that A4 is closed suppose there is a point zin G—A4 and let e > 0
be such that B(z; €) < G. If there is a point b in A N B(z; €) then, as above,
we can construct a polygon from a to z. Thus we must have that B(z;e) N 4
= [, or B(z; &) = G—A. That is, G— A4 is open so that A4 is closed.

2.4 Corollary. If G < C is open and connected and a and b are points in G
then there is a polygon P in G from a to b which is made up of line segments

pnrn”ol 10 plfhpr fha real or 1mn01nnrv YIS
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Proof. There are two ways of proving this corollary. One could obtain a



¢-+

QJ"
2..
D
3
bl

.

xu 1\/111\1

new polygon is obtalned w1th the desired properties. However, this proof
is more easily executed using compactness (see Exercise 5.7). Another proof

can be obtained by modlfymg the proof of Theorem 2.3. Define the set A4 as
on’s segments a
1

H

:
wit
YYiuil

ZI .
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one exception. If z € B(b; ¢) then {b, z] ma ut it
is easy to see that if z = x+iy, b = p+iq then the polygon [b, p+iy] U
[p+iy, z] < B(b; €) and has segments parallel to an axis. |l

It will now be shown that any set S in a metrlc space can be expressed,

TMNaf 243 crilhcat N AF o camntbswin cianna Anzas s A aanza
L.J LJCINItIoN. 1‘\ SUoOS€t L/ 01 a meiric spacv A lb a cornporie it

of
maximal connected subset of X. That is, D is connected and there is no
connected subset of X that properly contains D.
If the reader examines the example at the beginning of this section he
i er

ore, these are

YV 3
Al
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Al ~s -~ ~ o o~ e nsm~tlha I\"g\m“lf\ l/\‘r v N 1 1 l_ ]
ne Oniy COmMponenis 01 A. ror anoiner eXampi€ It A = U, 1, 7, 3, ¢« + 4«
Then clearly every component of X is a point and each point is a component.

is not.

2.6 Lemma. Let x, € X and let {D;: j € J} be a collection of connected subsets
of X sucn that xy € D; for each jin J. Then D = \ ) {D;: jeJ} is connected.

Proof. Let A be a subset of the metric space (D, d) which is both open and
closed and suppose that 4 # []. Then 4 N D is open in (D}, d) for each j

J

and it is also closed (Exercises 1.8 and 1.9). Since D; is connected we get that
either AND; =[Jor AN D; = D, Sirce A # [ there is at least one &
such that 4 N D, # []; hence, A N D, = D,. In particular x, € 4 so that
xo€ AN D; for every j. Thus AN D; = D;, or D; = A, for each index j.

This gives that D = A, so that D is connected. |

2.7 Theorem. Let (X, d) be a metric space. Then:
£\ Laonl <. 2 V 2 onnsedatiand i o ommiicimminiid ALV
\a) Ldlnt Ag Ul A W coniatnieq tn da compornernt o A.
(b) Distinct components of X are disjoint.

Note that part (a) says that X is the union of its components.

Proof. (a) Let 2 be th collection of connected subsets of X which contain
i e @ so that &9 # []. Also noti
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2 = Z’a

a
contradiction. [}

2.8 Proposition. (a) If A < X is connectedand A < B < A~ , then B is connected.
(b) If Cis a component of X then C is closed.
The proof is left as an exercise.

2.9 Theorem. Let G be open in C; then the components of G are open and
there are only a countable number of them.

Proof. Let C be a component of G and let x, € C. Since G is open there is an
e > 0 with B(x,; €) < G. By Lemma 2.6, B(x,; €) U C is connected and so
must be C. That is B(x,; €) < C and C is, therefore, open.

To see that the number of components is countable let S = fn-l-ih

vizlen AABLIEAS WA EAE RS AL L wiiti v

a and b are rational and a+bie G}. Then S is countable and each com-
ponent of G contains a point of S, so that the number of components is
countable. |}

Exercises

i LT R BT T

1. The purpose of this exercise is to show that a connected subset of R is an
interval.

(a) Show that a set 4 < R is an interval iff for any two points a and b
in A with a < b, the interval [a, b] < A.

(b) Use part (a) to show that if a set 4 < R is connected then it is an
interval.

2. Show that the sets S and 7 in the proof of Theorem 2.3 are open.

3. Which of the following subsets X of C are connected; if X is not connected,
what are its components: (a) X = {z: |z] < 1} U {z: |z—2] < 1}. (b) X =

{0, i)U{H-— tn > 1{. (¢) X =C—(A4 U B) where 4 = [0, o) and B =
U J

{z=rcis0:r=0,0<0< x0}?

4. Prove the following generalization of Lemma 2.6. If {D;: jeJ} is a

collection of connected subsets of X and if for each j and k in J we have

nD=1|){D;:jeJ}is connected.

Y i

,-
L,

=band d(z,_y, z,) < efor 1 < k < n. Is the hypothe51s that F be closed
needed? If Fis a set which satisfies this property then F is not necessarily

connected, even if F is closed. Give an example to illustrate this.

§3. Sequences and completeness

One of the most useful concepts in a metric space is that of a convergent
sequence. Their central role in calculus is duplicated in the study of metric
spaces and complex analysis.

b | at ___ YO O Y S e
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there is an integer N such that d(x, x,) < ¢ whenever n > N.
Alternately, x = lim x, if 0 = lim d(x, x,).
If X =Cthen z = lim z, means that for each ¢ > 0 there is an N such

-
=
)
-

N

|
3
A
m
<
o=
o
.'3
V
=

3.2 Proposition. A set
x = lim x, we have x

F S
L o W
tha

n
1v
-~
L

n
O <
1 s )
nat x e r

, there is a point X, 1N
= F by Proposition 2.8.
Now suppose F is not closed; so there is a point x, in F~ which is not

in F. By Proposition 1.13(f), for every € > 0 we have B(x,; e) N F # [].

, SO

In particular for every integer n there is a point x, in B( Xo; - | N F. Thus,
n

.y R TP . L ;

d(xo, x,) < - which implies that x, — x,. dince x, ¢ F, this says the con-
n

dition fails. |l

3.3 Definition. If 4 < X then a point x in X is a limit point of A if there
is a sequence {x,} of distinct points in 4 such that x = lim x,,.

The reason for the word “distinct’ in this definition can be illustrated
by the following example. Let X = C and let 4 = [0, 1] U {i}; each point
in [0, 1] is a limit point of 4 but i is not. We do not wish to call a point such
as 7 a limit point; but if “distinct” were dropped from the definition we
could taken x, = i for each i and have i = lim x,,.

3.4 Proposition. (a) A set is closed iff it contains all its limit points.
(b) If A < X then A~ = AV {x: x is a limit point of A}.
The proof is left as an exercise.
From real analysis we know that a basic property of R is that any sequence

wxrlhnoa tnmmne ant Alacane ¢tAasatha 1ot lha Anmvangant Coinlh
WwWIiiOSC (Eriiis gCL blUbCl lUgCLllCl as n ECLD 1a15¢, mMusSt o€ Con CISC 1t. Juull
sequences are called Cauchy sequences. One of their attributes is that you

know the limit will exist even though you can’t produce it.

3.5 Definition. A sequence {x,} is called a Cauchy sequence if for every
e > 0 there is an integer N such that d(x,, x,) < € for all n, m > N.

If (X, d) has the property that each Cauchy sequence has a limit in X
then (Y 1]\ is /'nmnlofo

viawaa

3.6 Proposition. C is complete.

Proof. If {x,+iy,} is a Cauchy sequence in C then {x,} and {y,} are Cauchy
sequences in R. Since R is complete, x, — x and y, — y for points x, y in R.

It follows that x+iy = lim (x.+iy.). and so C is complete -
follows that Iy = lim (x,+1,), and so L 1s complete.
Cancidar © with 4o maptrin JIT £7 and T £ T at o o e metntc trn -
LOonsiacr L, witn its metric @ (1. 6.7 ana 1. 0.0). L&t z,, Z 0€ points in € ;
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any sequence {z,} with lim |z,| = oo is Cauchy in Cw, but, of course, is not
Cauchy in C.

If A < X we define the diameter of A by diam 4 = sup {d(x, y): x and
A},

y are in

3.7 Cantor’s Theorem. A metric space (X, d) is complete iff for any sequence

= JJ S

{F,} of non-empty closed sets with F;, > F, > ... and diam F, — 0, ﬂ F,
consists of a single point.
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by deﬁmtlon d(x,,, X,) < diam Fy. By the hypothesis N can be chosen
sufficiently large that diam Fy < e; this shows that {x,} is a Cauchy sequence.
Since X is complete, x, = lim x, exists. Also, x, is in Fy for all n > N

e o]
since F,, = Fy; hence, x, is in Fy for every N and this gives xo e[| F, = F.
n=1
So F contains at least one point; if, also, y is in F then both x, and y are in
F, for each n and this gives d(x,, y) < diam F, — 0. Therefore d(x,, y) =
or X, = J.
Now let us show that X is complet if it satisfies the stated condition.

Y o o M ociables camciamAA fie aem A assd X 1= . el nn
et {x,} be a Cauchy sequence in X and put F, = {x,, X,+1,...; ; then

> F;>....1If e >0, choose N such that d(x,, x,) < € for each n,
m 2 N; this gives that diam {x,, x,,,...} < € for n > N and so diam
F, < e for n > N (Exercise 3). Thus diam F, — 0 and, by hypothesis, there
is a point x, in X with {x,} = F, N F, N ... . In particular x, is in F,,
and so d(x,, x,) < diam F, — 0. Therefore, x, = lim x,. |}

There is a standard exercise associated with this theorem. It is to find a
sequence of sets {F,} in R which satisfies two of the conditions:

(a) each F, is closed,

(b) Fio2 F,> ...,

(¢) diam F, — 0;
but which has F = F; N F, N ... either empty or consisting of more than
one point. Everyone should get examples satisfying the possible combina-
tions.

" r-'

3.8 Proposition. Let (X,d) be a complete metric space and let Y < X. Then
(Y,d) is a complete metric space iff Y is closed in X.

Dunnf It ic laft angc an avarrica tn ]nn(‘r flﬂ f (VY A\ nr\mr\]afa whanavar V ic
1 ’UUJ. 10 10 IVIl Ad Aill VAVIVIDUL LU DIIVU W Lilal \ Y } llll.}lb LV WIHILVILIVYOL T 1D
a closed subset. Now assume (Y,d) to be complete; let x, be a limit point

of Y. Then there is a sequence {y,} of points in Y such that x,=limy,.
Hence { y,,} is a Cauchy sequence (Exercise 5) and must converge to a

point y, In ) since (Y,d) 1s complete. It follows that y,=x, and so }
r 70 5 \ 7 r P Q

cantaing 0" te limit nointe Haneca Y ic claced hu Proanncitinn 24 1R
contamns aii 1ts iimit PULLIW. TIVILC 1 1D viUdvu U nivpusiuvil J.%. 1
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Exercises

P2 S22 I

1. Prove Proposition 3.4.

2. Furnish the details of the proof of Proposition 3.8.

3. Show that diam 4 = diam A~

4. Let z,, z be points in C and let d be the metric on C,,. Show that |z,—z| — 0
if and only if d(z,, z) — 0. Also show that if |z,| - oo then {z,} is Cauchy
in C_. (Must {z,} converge in C_?)

5. Show that every convergent sequence in (X, d) is a Cauchy sequence.
6. Give three examples of non complete metric spaces.

7. Put a metric d on R such that |x,—x| — 0 if and only if d(x,, x) — 0,
but that {x,} is a Cauchy sequence in (R, d) when |x,| — co. (Hint: Take
inspiration from C_.)

8. Suppose {x,} is a Cauchy sequence and {x, } is a subsequence that is
convergent. Show that {x,} must be convergent.

§4. Compactness

¢ ,
infinite sets. Most properties of compact sets are analogues of properties
of finite sets which are quite trivial. For example, every sequence in a finite
set has a convergent subsequence. This is quite trivial since there must be at

least one noint which is repeated an infinite number of times. However the
AvGSu 1% pVARAL V ARANV/AA AVEPVALVILE QGil Z11IRI1EIVY IAWILIUWE U valiz

came Statement remaing frie F SBnita? io ranlaced ko Sanmamact

same statement remains true if “finite” is replaced by “compact.’

4.1 Definition. A subset K of a metric space X is compact if for every collec-
tion ¢ of open sets in X with the property

there is a finite number of sets Gy, ..., G, in Fsuchthat K< G, UG, U

[ A A ~nllandine ~F cnta @ caticofiivma AN 6 ~allad 4o nnsinee ~AF e i€
. Uy, £ LULICLLIVLL Ul dCLd 7 dalbdlylllyg \(¢r.4) 1> Lvalicew a ctover Ul i, 1
each member of @ is an open set it is called an open cover of K.

Q-’:-‘»

Clearly the empty set and all finite sets are compact. An example of a

non compact setis D = {zeC: |z < 1} It G, = qz:|z| <1 — -ptorn =
( n

2,3,..., then {G,, Gj,...} is an open cover of D for which there is no
finite subcover.

4.3 Proposition. Let K be a compact subset of X; then:
(a) K is closed,;

Proof To nrove nart {2) we will show that — Iet x.€¢ K™ * bv Pro-
P VVJ. A WV tll\/'v t’“l‘r \“} Y W YV iA44A VIiIAVYY Ciil44L AN AN A & /‘0 AN [ VJ A AWV
_ 1
position 1.13(f), B(x,; €) N K # [] for each € > 0. Let G, = X—B{ x,; -
n

o0 0

- = 1 7~

and suppose that x, ¢ K. Then each G, is open and K < U G, (because | )

n= n=1



Compactness 21

/ \
B(io; )z {x0}). Since K is compact there is an integer m such that
G

_ 1
. But G, < G, < ...sothat K < G, X—B(xo; —~> . But this
m

)r"\ K = [, a contradiction. Thus K = K

To prove part (b) let ¥ be an open cover of F. Then, since F is closed,
4G U {X—F} is an open cover of K. Let G,, ..., G, be sets in 4 such that
KcG,u...G,UX-=F). Clearly, Fc G,YV...UG, and so F is

# ha

aQ
AT
: £ e (2 F ~ I -~ ~

seci 'O'ipiupeil_y\llp}u wheneve 11*1,1’2,..., ‘n; 7,
F, # []. An example of such a collectlon is {D—G,, D—G3, ...} where
the sets G, are as in the example preceding Proposition 4.3.

QG VULIVVIIVAIl Vi JUuUUOwLD v VT OQy Lk r/

4.4 Proposition. A set K = X is compact iff every collection % of closed
subsets of K with the fi.p. has (\ {F: Fe F} # [.

Proof. Suppose K is compact and % is a collection of closed subsets of K
having the f.i.p. Assume that () {F: Fe %} =[] and let ¥ = {X—F:
Fe%}. Then, \J{X—F: FeF}=X—(){F: Fe#}=X by the
assumption; in particular, 4 is an open cover of K. Thus, there are F,, . . .,

7i 1 it

ich that I(gll(){ FY— Y _N\F Rut this

lill ‘ 'xk. Arv L 1210

Fe%

A n e S]LAVAA Lllul. ERN U
k=1 k=1

< X—K, and since each F) is a subset of K it must be that ﬂ F, = []. This
contradicts the f.i.p.
The proof of the converse is left as an exercise. |}

AL e Wnee: o SNSRI SRS SRS SN

4.0 U rUlldry. Luery compact eLric Space 1y corripilete.

Proof. This follows easily by apnlvineg the above pronosition and Theorem
J‘ A LLIAD AVi1ANV YYD vuulll UJ ut/ylj‘ll& Viliw AUV ¥V W ylvt}\/ulblvll CALENE A AAWSN/ A Wil

Proof. Let S be an infinite subset of X and sunnose S has no limit noints
J - AdWw L [ /W G411 11111111 0Ww DU UUOWL i LR CALling Uul.lt.l\luv T AAGA D LA A4AARiA W Y\Jllll-u
T ¢ (-~ ~ YV lan & camitam~a AL A 40t e ~tends e O dlen. I ( ~
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~

A+ 1, - - -} also has no limit points. But if a set has no limit points it contains
all its 11m1ts points and must be closed! Thus, each F, is closed and {F,:

0
> 1} has the f.i.p. However, since the points a,, a,, . . . are distinct, () F,
= [, contradicting the above proposition. [Jj n=t1

4.7 Definition. A metric space (X, d) is sequentially compact if every sequence
in X has a convergent subsequence.

It will be shown that compact and sequentially compact metric spaces
are the same. To do this the following is needed.

40 T _L_______9 e T _. = f ~ LN EL Y § SUER R S |
4.0 LCDESZUC'S Loverng Lemnind. 1 (4, d 1y sSequeritiaily cormpdct dna
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set G in G with B(x; €) < G.
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Proof. The proof is by contradiction; suppose that ¢ is an open cover of X
and no such € > 0 can be found. In particular, for every integer » there is a

/1)
point x, in X such that B{ x,; - | is not contained in any set G in %. Since X
n

is sequentially compact there is a point x, in X and a subsequence {x,, }
such that x, = lim x,. Let Gy € ¢ such that x,e€ G, and choose € > 0
such that B(x,; €) < Go,. Now let N be such that d(x,, x,) < €/2 for all

~ AN Tat w haa mn
= 4Y. LLL llk Uw au_y 111

=3

g

k
1 ™1 /7

1/m). Then d(x,, y) < d(xo, x,)+d(x,,, y) < €/2
1/m) < B(xy; €) < G,, contradicting the choice of x,,.

There are two common misinterpretations of Lebesgue’s Covering
Lemma; one implies that it says nothing and the other that it says too much.
Since ¥ is an open covering of X it follows that each x in X is contained in
some G in . Thus there is an € > 0 such that B(x; €) < G since G is open.
The lemma, however, gives one € > 0 such that for any x, B(x; €) is con-
tained in some member of ¢. The other misinterpretation is to believe that
for the € > 0 obtained in the lemma, B(x; €) is contained in each G in ¢
such that x € G.

4.9. Theorem. Let (X, d) be a metric space; then the following are equivalent
Statements:
(a) X is compact;
(b) Every infinite set in X has a limit point;
(c) X is sequentially compact;
(d) X is complete and for every € > O there are a finite number of points
X1, ..., X, In X such that

4
“¥13 T T 9 ""mn

Proof  That (a2) imnlies (B) i< the cstatement of Corollarv 4 6

froof. 1hat (a) uuy..vu (b) 1s the statement ol Vv.uuu._, (¢
(1) limmim]iac T at (oo X Ten o ammiimmea fv V oamd orimemmon s o A
\U) lulplle \b} LCLl 1"""I O a bcqucllbc lll A dllu DUPPUDC, Wll.llUul IUDD Ol

generality, that the points x,, x,, ... are all distinct. By (b), the set {x,,

X3, ...y has a limit point x,. Thus there is a point x,, € B(x,; 1); similarly,

there is an integer n, > n, with x,, € B(xy; 1/2). Contmumg we get integers
. s

with x, € B(x,; 1 /

ng < n, <...,
tially compact.

(c) implies (d): To see that X is complete let {x,} be a Cauchy
sequence, apply the definition of sequential compactness, and appeal to

Exercise 3.8.

Nowlet e > 0Qand fix x; e X. If X = B(x,: <) then we are done: other-
Now lef € > nd nx x; € A. Ir X b X, €) then we are gone; other
------ Al s e ~ U n{ .. 2\ A~ .. LV D{.. -« N1 1 DI A\ vxrn e Az
WiS€ Cnoose x, € X —B(x; ¢€). Again, it X = B(x;¢€) U B(x,; ¢) we are done;
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if not, let x5 € X—[B(x,; €) U B(x,; ¢)]. If this process never stops we find a
sequence {x,} such that
n
Xnt1 €X — U B(xy; €)-
k=1
But this implies that for n # m, d(x,, x,,) = € > 0. Thus {x,} can have no
convergent subsequence, contradicting (c).

(d) implies (c): This part of the proof will use a variation of the “pigeon
hole principle.” This principle states that if you have more objects than you
have receptacles then at least one receptacle must hold more than one
object. Moreover, if you have an infinite number of points contained in a
finite number of balls then one ball contains infinitely many points. So
part (d) says that for every ¢ > 0 and any infinite set in X, there is a point
y € X such that B(y; €) contains infinitely many points of this set. Let {x,}
be a sequence of distinct points. There is a point y, in X and a subsequence
{x(D} of {x,} such that {x"'} = B(y,; 1). Also, there is a point y, in X
and a subsequence {x¥} of {x{!’} such that {x®¥} < B(y,; }). Continuing,
for each integer k > 2 there is a point y, in X and a subsequence {x®*'} of
{x%~ DY such that {x®} = B(y,; 1/k). Let F, = {x%}~; then diam F, < 2/k

and F;, > F, © ... . By Theorem 3.6, ﬂ F, = {xo}. We claim that x{? —

x, (and {x{'} is a subsequence of {x, }) In fact, x, € F, so that d(x,, xX{) <

diam F, < 2/k, and x, = lim x{¥.
(0\ 1mnh¢=q (a\ Let  be an open cover of X. The preceding lemma gives

A% = 2% p2 3 _ ________

an € > 0 such that for every x € X thereisa G in w1th B(x; €) < G. Now
(c) also implies (d); hence there are points x,,...,x, in X such that

n

X = {J B(x;; €). Now for 1 < k < nthereis aset G, € 4 with B(x;; €) < G,.
H

ence X = | ) G,; that is, {Gy, ..., G,} is a finite subcover of ¥. B

= - \J TKI T°°TT W 1% 7 35 =n -

4.10 Heine-Borel Theorem. A subset K of R" (n > 1) is compact iff K is closed
and bounded.

Proof. If K is compact then K is totally bounded by part (d) of the
preceding theorem. It follows that K must be closed (Proposition 4.3);
also, it is easy to show that a totally bounded set is also bounded.

Now suppose that K is closed and bounded. Hence there are real
numbers a,,...,a, and b,,...,b, such that K < F=[a,,b,]X ... X[a,,b,]. If
it can be shown that F is compact then, because K is closed, it follows that
K is compact (Proposition 4.3(b)). Since R”" is complete and F is closed it
follows that F is complete. Hence, again using part (d) of the preceding
theorem we need only show that F is totally bounded. This is easy
although somewhat “messy” to write down. Let € >0; we now will write F
as the union of n-dimensional rectangles each of diameter less than e.

Afs .| ne -A_ wxra sl — D 2\ w7
AILCT ng [l S WC WIIli ave r U D{(X;,€) W
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strategy is left to the reader (Exercise 3). |l

Exercises

1 c;ﬂ;ok tha mne~nf AF DeAannAcitian A A

de X 111iI011 L1IG }llUUl Vil 1 IUPUDItIUll *T." T

~ r a V4 N 1 Vd == — _
2. Letp=(pPyy...sPy)and g =gy, ..., q,,) be pomts in R p < g
for each k. Let R = [py, q,1%. ..%x[p, ¢,] and show that

n ;3
diam R = d(p, q) = [Z qx—Dx) ]
3. Let F={a,, b,]%...x][a, b,] < R* and let ¢ > 0; use Exercise 2 to
show that there are rectangles R, ..., R, such that F = | J R, and diam
k=1

R, < e for each k. If x, € R, then it follows that R, < B(x; e).

4. Show that the union of a finite number of compact sets is compact.

5. Let X be the set of all bounded sequences of complex numbers. That is,
{x,3eX iff sup {|x,|: n =1} < 0. If x = {x,} and y = {y,}, define
d(x, y) = sup {|x,—y,|: n = 1} Show that for each x in X and € > 0, B(x; ¢)
is not totally bounded although it is complete. (Hint: you might have an
easier time of it if you first show that you can assume x = (0, 0, .. .).)

6. Show that the closure of a totally bounded set is totally bounded.

o

§5. Continuity

One of the most elementary properties of a function is continuity. The

presence of contmulty guarantees a certain degree of regularlty and smooth-

withaAant whinsh f 10 AR s ¢+~ r\l\fnnv\ anyy
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space. Since the main subject of this book is the theory of functions of a
complex variable which possess derivatives (and so are continuous), the study
of continuity is basic.

5.1 Definition. Let (X, d) and (Q, p) be metric spaces and let f: X — Q be
a finction Tfa cY an nd e O then Iim f{y) — /0 1f for everv e ~ O there 1¢ a
A4 A viiilwiivVvil A ~ LA 11N W ﬁ“’ Vil\/1ii ‘ll‘lJ \J\t} WA/ Al AV wiYwi - - WV Lilwiw AU «

J
8 > 0 such that p(f(x), w) < € whenever 0 < d(x, a) < 6. The function f'is
continuous at the point a if lim f(x) = f(a). If fis continuous at each point of

X—>a

X then f is a continuous function from X to Q.

5.2 Pronosition. Let - (X. d) —>(Q. o) be a function and a e = fla)
t Let f: (X, d) = (Q, p) be a function and ac X, o = f(a).
'rl'n fn”/\‘ 1Ty sewn nﬂnl!‘-ln’n 1t ot et nsannseatoe
L ItC JuLtowir (274 Cq LQiCriL sLaterricril
(a) fis continuous at a;
(b) For every € > 0, f ~1(B(«; €)) contains a ball with center at a;
(c) « = lim f(x,) whenever a = lim x,,.
The proof will be left as an exercise for the reader.
That wna tha lact sae~mAcitinsm nAamnanmine ~Anntiniriter AF a Firnntinn ot A
1lial vwad LIV 1adl PIUPUDILIUII CUILILC1 11E 15 LCUILIU lull.)’ Ul a 1Uliviivii at a
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on all of X.

5.3 Proposition. Let f: (X, d) —(Q, p) be a function. The following are
equivalent statements:

(a) fis continuous;

(b) If A is open in Q then f~(A) is open in X

(c) If T is closed in Q then f~'(T) is closed in X.

Proof. (a) implies (b): Let A be open in Q and let x e f~1(A). If w = f(x)
then w is in A; by definition, there is an € > 0 with B(w; €) < A. Since fis

=3
o
2

=

co*tmuous, part (b) of the preceding propes;tion gives a 8 > 0 with B(x; 8)
r—1s s LN r— 172~ ry AN\
< £~} (B(w; €) < f~1(A). Hence, f~'(A) is open.

(b) implles (c): If I' = Qs closed then let A = Q—T. By (b), f~'(A) =
X—f"YI) is open, so that f~!(T") is closed.

(c) implies (a): Suppose there is a point x in X at which f'is not continuous.
Then there is an € > 0 and a sequence {x,} such that p(f(x,), f(x)) > €
for every n while x = lim x,. Let I' = Q—B(f(x); €); then I' is ciosed and
each x, is in £~ 1(I"). Since (by (¢)) f (1) is closed we have x e £~ }(T"). But
this implies p(f(x), f(x)) = € > 0, a contradiction. |}l

The following type of result is probably well understood by the reader
and so the proof is left as an exercise.

& 4 Pron 7
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provided g(x) # 0 for every x in X.

5.5 Proposition. Let /- X — Y and g: Y — Z be continuous functions. Then g o f
(where g o f(x) = g(f(x))) is a continuous function from X into Z.

- lery

.l' 1€ TT.' open i 7 tha (
ticn g \V

< Y ic anen in Ve hance
Proof. If U is open in Z ) 1S open in r,; nence, j

(gof)'(U) is open in X. W

5.6 Definition. A function f: (X, d) — (Q, p) is uniformly continuous if for
every e > O thereis a 8 > 0 (depending only on €) such that p(f(x), f(»)) < €
whenever d(x, y) < 6. We say that fis a Lipschitz function if there is a constant
M > 0 such that po(f(x), f(»)) < Md(x, y) for all x and y in X.

It is easy to see that every prschltz function is uniformly continuous.

In fact, if € is given, take 8 = /M. It is even easier to see that every uniformly

continuous functlo n is continuous. What are some examples of such func-
2

tlons‘? If X =Q=R then f(x) = x° is contmuous but not uniformly

ic not a T lﬂQ(‘]"ll 7 functin The followine nrovidec a “mq] hv cunnlv of
A0 LAV L A ‘—lltlo\il‘llr‘d AGLIWRLIVU LR A Liw ANJRENV VY ll‘& tJ‘. N YiE W “A vy Vul‘-ll) Uut/y‘] i
) (PP MUY AR S
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Let A < X and x € X; define the distance from x to the set A, d(x, A), by

d(x, A) = inf {d(x,a):ac A}.

5.7 Proposition. Let A < X; then:

foN I AN I A—N\.

(@) d(x, A) = d(x, A7);
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(b) dx, 4) = 0 iff x A7
(©) |d(x, A)—d(y, A)| < d(x, y) for all x, y in X.

Proof. (a) If A < B then it is clear from the definition that d(x, B) < d(x, A).
Hence, d(x, A7) < d(x, A). On the other hand, if ¢ > 0 there i

- T e \ > - Ve — b == ' == b =
yin A~ such that d(x, A7) = d(x, y)=e/2. Also, there is a point a in 4 with
d(y, a) < €/2. But |d(x, y)—d(x, a)| < d(y, a) < €/2 by the triangle inequality.

In particular, d(x, y) > d(x, a)—e¢/2. This gives, d(x, A7) > d(x, a)—e >
d(x, A)—e. Since € was arbitrary d(x, A~) > d(x, A), so that (a) is proved.
(b) If xe A™ then 0 = d(x A7) = d(x, A). Now for any x in X there is

a mlnllelng sequence 1unJ' in A such that d(x A} = lim d\./\, “n) So if
d(x, A) = 0, Iim d(x, a,) = 0; that is, x = lim a, and so xe€ A~

(c) For ain A d(x, a) < d(x, y)+d(y, a). Hence, d(x, A) = inf {d(x, a):

< inf {d(x, y)+d(y,a):ae A} = d(x, y)+d(y, A). This gives d(x, A)—
d(y, A) < d(x, y). Similarly d(y, A)—d(x, A) < d(x, y) so the desired in-
equality follows. i

Notice that part (c) of the proposition says that /: X — R defined by
f(x) = d(x, A) is a Lipschitz function. If we vary the set 4 we get a large
supply of these functions.

It is not true that the product of two uniformly continuous (Lipschitz)
functions is again uniformly continuous (Lipschitz). For example, f(x) = x
is Lipschitz but f-fis not even uniformly continuous. However if both f and
g are bounded then the conclusion is valid (see Exercise 3).

Two of the most important properties of continuous functions are
contained in the following result.

5.8 Theorem. Let f: (X, d) — (2, p) be a continuous function.
(@) If X is compact then f(X) is a compact subset of (.
(b) If X is connected then f(X) is a connected subset of ().

Proof. To prove (a) and (b) it may be supposed, without loss of generality,
that f(X) = Q. (a) Let {w,} be a sequence in Q; then there is, for each

>1,a point x, in X with », =f(x) Since X is compact there is a point
xin Xanda buusequence 1xn ; such that x = lim X But if w = j\x), then
the continuity of f gives that w = lim w,, ; hence Q 1s compact by Theorem
4.9. (b) Suppose £ < Q is both open and closed in Q and that X # [].
Then, because f(X) = Q, [] # f~1(2); also, f~*(X) is both open and closed
because fis continuous. By connectivity, f ~!(£) = X and this gives Q = X.

Thus, Q is connected. [}

5.9 Corollary. If f: X — Q is continuous and K < X is either compact or
connected in X then f(K) is compact or connected, respectively, in Q.

5.10 Corollary. If f: X — R is continuous and X is connected then f(X) is an
interval.
2 Il____ P_A_- a1 _ B R S at B o B S | N S L m _
llllb l 1HOWS 1TOINIl tIC CNdracierization OI connecicd SuosCils O Ik as
intervalis.
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b BV o7 SN >

3 l.l 1mermeulate value 1ne0rem l_]] [a DJ - R is Conllnuous ana j\a) < <
< f(b) then there is a point x, a < x < b, with f(x) = &.

5.12 Corollary. If f: X — R is continuous and K < X is compact then there are
points xo and yo in K with f(x,) = sup {f(x): x € K} and f(y,) = inf {f(x):
x e K}.

Proof. If « = sup {f(x): x € K} then « is in f(K) because f(K) is closed and
bounded in R. Similarly 8 = inf {f(x): x € K} is in f(K). R

5.13 Corollary. If K < X is compact and f: X — C is continuous then there
are points xy and y, in K with

| f(xo)| = sup {[f(x)]: x € K} and | f(y,)| = inf {|f(x)]: x € K}.
Proof. This corollary follows from the preceding one because g(x) = |f(x)|
defines a continuous function from X into R.

5.14 Corollary. If K is a compact subset of X and x is in X then there is a

point y in K with d(x, y) = d(x, K).

Proof. Define f: X — R by f(y) = d(x, y). Then f is continuous and, by

Corollary 5.12, assumes a minimum value on K. That is, there is a point

y in K with f(y) < f(z) for every z € K. This gives d(x, y) = d(x, K). I}
The next two theorems are extremely important and will be used re-

thic h IS st A £
pvat\.«dl_y LhiGugh out this book with no SpECIiIC reierence

numbers.

A tha thanram
L1IV LIIVUiLI VI

5.15. Theorem. Suppose f: X — Q is continuous and X is compact; then f is
uniformly continuous.

Proof. Let € > 0; we wish to find a § > 0 such that d(x, y) < 6 implies
p(f(x), f(»)) < e. Suppose there is no such &; in particular, each 6 = i/n
will fail to work. Then for every n > 1 there are points x, and y, in X with
d(x,, y,) < 1/n but p(f(x,), f(¥,)) = €. Since X is compact there is a sub-
sequence {x, } and a point x € X with x = lim x,,.

Claim. x = lim y,,. In fact, d(x, y,,) < d(x, x, )+ 1/n, and this tends to zero

¢ < p(f(%), fI)
< p(f(%), @)+ p(w, (7))

and the right hand side of this inequality goes to zero. This is a contradiction
and completes the proof. |}
5.16. Definition. If 4 and B are subsets of X then define the distance from
A to B, d(A, B), by

d(A, B) = inf {d(a,b): ac A, b e B}.

a1 17 4

WNT a2 . L4 0 D € N\ tl AN e
Notice that if B is the single-point set {x} then a4, {x;) = alx, A). 1
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A = {y} and B = {x} then d({x}, {y}) = d(x, y). Also, if AN B # []
then d(4, B) = 0, but we can have d(4, B) = 0 with 4 and B disjoint. The
most popular type of example is to take 4 = {(x, 0): xe R} < R? and
B = {(x, €): x e R}. Notice that 4 and B are both closed and disjoint and
still d(4, B) = 0.

E1

Theorem. If A and B are disjoint sets in X with B closed and A compact
then d(A, B) > 0.
Proof. Define f: X — R by f(x) = d(x, B). Since A N B = [J and B is closed,

f(a) > O for each a in A. But since A4 is compact there is a point a in 4 such
that 0 < f(a) = inf {f(x): xe A} =d(A, B). R

\-l

Exercises

1. Prove Proposition 5.2.

2. Show that if fand g are uniformly continuous (Lipschitz) functions from
X into C then so is f+g

3. We say that /: X — C is bounded if there is a constant M > O with
|f(x)] < M for all x in X. Show that if f and g are bounded uniformly
continuous (Lipschitz) functions from X into C then so is fg.

4. Is the composition of two uniformly continuous (Lipschitz) functions
again uniformly continuous (Lipschitz)?

5. Suppose f: X — Q is uniformly continuous; show that if {x,} is a Cauchy
sequence in X then {f(x,)} is a Cauchy sequence in €. Is this still true if we
only assume that f is continuous? (Prove or give a counterexample.)

6. Recall the definition of a dense set (1.14). Suppose that € is a complete
metric space and that f: (D, d) — (2; p) is uniformly continuous, where D is
dense in (X, d). Use Exercise 5 to show that there is a uniformly continuous
function g: X — Q with g(x) = f(x) for every x in D.

7. Let G be an open subset of C and let P be a polygon in G from a to b.
Use Theorems 5.15 and 5.17 to show that there is a polygon Q < G from a
to b which is composed of line segments which are parallel to either the real
or imaginary axes.

8. Use Lebesgue’s Covering Lemma (4.8) to give another proof of Theorem
5.15.

9. Prove the following converse to Exercise 2.5. Suppose (X, d) is a compact

metric snace havino the nrnnPrh/ that for everv ¢ > 0 and for anv noints a

metric space having the property that for every 0 and for any points ga,
b in X, there are points zy, z,, ..., z,in X withz, = @, z, = b, and d(z,_ 4,
z;) < efor 1 < k < n. Then (X, d) is connected. (Hint: Use Theorem 5.17.)
10. Let fand g be continuous functions from (X, d) to (Q, p) and let D be
a dense subset of X. Prove that if f(x) = g(x) for x in D then f = g. Use

this to show that the function g obtained in Exercise 6 is unique
‘«‘AAU U AN VYV AAA A JNANWIAWIOW VUV 1D ulllﬂ“vl

VIAEA Y LiAWw X WIAWLAV AR viiiiiwvas

§6. Uniform convergence

Let X be a set and ({2, p) a metric space and suppose f, fi, f5, ... are
functions from X into Q. The sequence {f,} converges uniformly to f—written
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f=u—lim f—if for every € > 0 there is an integer N (depending on e
alone) such that p(f(x), f,(x)) < € for all x in X, whenever n > N. Hence,

sup {p(f(x), fu(x)): xe X} < e

The fi n 1< thic: If X 1s not inst a set but a metric enace and eac
thenrst p m 1S this: 1f A 1S not just a set but a metric space and €ach
nnnnn tinuous does it follow that fis continuous? The answer is ves
_/,, is continuous does it follow th t / is continuous ! 1nc¢ answer is yes.

6.1 Theorem. Suppose f,: (X, d) — (X2, p) is continuous for each n and that
f = u—Ilim f,; then f is continuous.

Proof Fix . in Y and ¢« > n we wish to find a 8 > 0 such that o f(x.)
rroof. riXx xo 11 X and € > U wish to nnd a o > U such that p( /(Xg),
£7 2\ Mmin Al N - S o:“,!A r s 1 £ tlaea o it e £ lela
f(x)) < e when d(x,, x) < 6. Since f = u—1lim f,, there is a function f, with

p(f(x), f.(x)) < €/3 for all x in X. Since f, is continuous there is a § >
such that p(f,(x,), f,(x)) < €/3 when d(x,, x) < 8. Therefore, if d(x,, X) <

p(f(x0), f(X) < p(f(x0), fux0))+ p(fulX0)s £ulX))+ p(fu(), f(X)) < . W
Let us consider the special case where Q = C. If u,: X — C, let f(x) =

u (x)+. . +u.,(x) We say f(x) = Y u,(x) iff f(x) = lim f,(x) for each x in X.
=1

The series L u, is uniformly convergent to fiff f= u—1lim f,.

& o

l
x

6.2 Weierstrass M-Test. Let u,: X — C be a funcz‘ton such that |u, (x)] <M,

for every x in X and suppose the constants satisfy 7 M, < oo. Then Y‘ u, is
n—l 1
uniformly convergent.

Proof. Let f,(x) = u,(x)+. ..+u,(x). Then for n > m,

0
11X —=faO)] = |ty () +. . . Fu,(x)] < Z M, for each x. Since ). M,
k=m+1 1
.......... LN 2a n n,ﬂ-.AvL-. camiimmma e M Thite thave to a mitemadems & ~ M
CONVEI gLS, 1],1\/‘)} D d d.Ublly sCLuciice lll C. 101HUd UICIC 15 d nuiliovcl ¢ €
with ¢ = lim f(x). Define f(x) = &; this gives a function f: X — C. Now
e} o0 v o]
fG)=f =1 X u) < ¥ | < ¥ Mg
k=n+1 k=n+1 k=n+1

OO

blllbc L IVIk

1 k:i'iTl
M. < ¢ whenever n» > N Thig oivee | fIxXY—F (x| < ¢ for all ¥ in Y when
A ‘k ~ < YV LAWILIW ¥V Wi " Z_ 40 A AlAD bl'vu IJ \J‘] Jn\/\*/l ~ ~ ANJR il vV 411 LR YY AAWAL
n>NR
Exercise

I. Let {f,} in a sequence of uniformly continuous functions from (X, d)
into (€2, p) and suppose that f = u—Ilim f, exists. Prove that f is uniformly
continuous. If each f, is a Lipschitz function with constant M, and sup
M, < oo, show that fis a Lipschitz function. If sup M, = oo, show that f
may fail to be Lipschitz.



Chapter 111

Elementary Properties and Examples of
Analytic Functions

§1. Power series

In this section the definition and basic properties of a power series will
C grve 1. The power series will then be used to glvc CAdlllple of an—alytic
functions. Before doing this it is necessary to give some elementary facts on

infinite series in C whose statements for infinite series in R should be well

y O

[e o]
known to the reader. If q, is in C for every n > O then the series ) a,
m n=0

converges to z iff for every e > 0 there is an integer N such that | Z a,—z| < €
wnhneanaver m > M T"\e CPP;QS v 77 PNINNOVoroC nhcnlnfo v IF v lﬂ l conveargeg
VYLAWIANW YA T . A Ve A Al Jwiilw Ll u-n \/V’GUD'S\«U uuuvtubbs'y a1 LJ Iunl vvnxvv;evu

1.1 Proposition. If Y a, converges absolutely then ) a, converges.
Proof. Let € > 0 and put z, = ay+a,+...+a, Since ) [a,| converges
there is an integer N such that ) |a,| < . Thus, if m > k > N,

n=N

< < <
lzm_zkl = l L anl < L lanl < L Ianl < e
n=k+1 n=k+1 n=N

That is, {z,} is a Cauchy sequence and so there is a z in C with z = lim z,.

Hence ) a, = z.

AlbU ICLdll LIlC UC.lHi 10 SO
R. If {a,} is a sequence in R then define

E;

lim inf g, = lim [inf {a,, a,+,, - ..}]

n—> o

lim sup a, = lim [sup {a,, @,+1, - - - }]

n— oo
n alternate notation f'or Iiminfag and Iim sup ¢. 1s lim ¢ and lim 2o TIf
A RAAd CALA N A AL [ % AANY A AdXA A ) § ALk ALl n ALLR “y u" A ALAAR un CALING ALALL un. AL
L o (. A S TS A WS S DY I S R
U, = 111 4,, 4,4+ 15 ¢ * . 4 tICI iU § Id dll 111 ICdblIlg D> uc 01 1Cdl NUILIIVCID

equence

or {— oo0}. Hence, lim inf a, always exists although it may be + co. Similarly
lim sup a, always exists although it may be + oo.

A number of properties of lim inf and lim sup are included in the exercises

of the easiest examples of a power series (and one of the most useful) is the

Q0

geometric series ). z". For which values of z does this series converge and
n=0

20
v
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when does it diverge? It is easy to see that 1 —z"*! = (1—=2) (1 +z+...+2",
so that

1 n+1
n —Z
1.2 l+z+...+2"= ——m—.
1—-2z
Iflzl <« 1 then 0 = Iim 2" and ¢n the oeometric ceriec 1e converoent wit
AL lﬂl ™~ i LCilwili U ALALAL 4Lu CALRING UV ViAW bv\/lllvbl‘v VWi AWN AV Vvll'vlbvl“ VY ALAL

If |z| > 1 then lim |z|" = oo and the series diverges. Not only is this result
t r

an archetype for what happens to a general power series, but it can be used
to explore the convergence properties of power series.
[o o]

1.3 Theorem. For a given power series Z a,(z—a)" define the number R,
0<R< o,by n=0

1

— 1 1/
— = lim sup |a,|™/",

then:

(@) if |z—a| < R, the series converges absolutely:
(b) if |z—a| > R, the terms of the series become unbounded and so the
series diverges;
(c) if 0 < r < R then the series converges uniformly on {z: |z| < r}.
Moreover, the number R is the only number having properties (a) and (b).

Proof. We may suppose that a = 0. If |z| < R there is an r with |z| <r < R.

. . 1
Thus, there is an integer N such that |a,|!/* < - for all n > because - >
r
n
1\ Nt ¢bhane 1| _1_ A o~ 1o Bl /IZI\ Lo 11 .~ AT This caasc ¢lans
— J. Dut uicll [d,] < dalid S0 [dy< l <~ \—} 101 all n = IV, 1115 5dYyd tlal
R/} r' \ 7 )

n | >

"\
) , and since —
R.

~

L /1
the tail end Z a,z" is dominated by the series (I

the power series converges absolutely for ea
Now suppose r < R and choose p such t

ach |z| <
0se | choose that r < » ve
1 AL
for all n > N. Then if |z| < r, |a,z"| <

]

N be such that |a,| <

1
p"

P
uniformly on {z: |z| < r}. This proves parts (a) and (c).

r . : .
(—) < 1. Hence the Weierstrass M-test gives that the power series converges

71\ 1 1

To prove (b), let |z| > R and choose r with |z| > r > R. Hence

1
- <

5| -
AY 2 )

1
11

LY .
es infl
n

—

lim sup, this gi initely many integers n wi

s
z

< |a,|*'". Tt follows that |a,z"| > < ) and, since (l I) > 1, these terms
r

u
he number R is called the radius of convergence of the power series.
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l. L F I\r

rL \n = e e tas cua memeismss smsisas wised PUpgs Ly N
a given power Seriey wiin radius vy con-=

PEVER ", Y PV I L Y . »
i.4 Proposition. If ) a,z—a)" is
vergence R, then

= hm Ian/an+ll

if this limit exists.

Proof. Again assume that @ = 0 and let « = lim |a,/a, ,|, which we suppose
to exist. Suppose that |z| < r < « and find an integer N such that r <
|a,/a,+,| for all n > N. Let B = |ay|r"; then |ay, |r¥*! = |ay|rr <
lay|r™ = B; |ay sV t? = |ays oV 1 < |ays1r¥ ! < B; continuing we get

n
lar® <« Bforallm > N Rut than |a 7" |y 2h] IZI ,Zl foralln > N
l“n' l - AF AL QAL IV Z_ IVe AJUAL LILVIL I“n‘ I Iu"’ I n -: n AWVAL WBAL TV o, 4TV
w r r
Since |z| < r we get that ) |a,z"| is dominated by a convergent series and

hence converges. Since r < « was arbitrary this gives that « < R.
On the other hand if |z| > r > «, then |a,| < r|a,+,| for all n larger than
some integer N. As before, we get |a,"| = B = |ayr"| for n > N. This

z
oives |l " > R 2] which annroaches oo as »n do ence. ¥ a.z" diveroes
51 Ywo |una ' - ,rln YV illwil uyl}lvuvxlvo VN AT e uvvuo Adwiiwwy LJ Lad SAY wi mywo
and so R < a. Thus R=a. |}
o0 z”
Consider the series ), — ; by Proposition 1.4 we have that this series
n:on.
has radius of convergence co. Hence it converges at every complex number
and the convergence is uniform on each compact subset of C. Maintaining a
smnewnllal wiitlh Anlatiliige wra Aacicmnta ¢hin caming )
paraici witi CaiCuius, wé acsignatc tnis series Oy
o0
< — z"
e =expz = —
n=0 h:
the exponential series or function.
Daoarall tha FAllAssiing smmensancids o Coomonn sl sl PR oI SO o S R PR fal. o
NCLail uic 101iv W1115 plUpUblUUl 1o uic ticvry 0ol in lllC bC[le LUIC

L d . - 1
1.6 Pronosition. Tet N a(7—oV and N b (7 — m\' bo nower corioe with radiue
- rvu---v--' b : Wn\“ “I L R a : Un\‘-l w, v tlv rreis [ AT Jy 2w FVeeie 7 v AVREAD
n{‘ NNAINNNDVIYNDIAN D N ze S N D4.4
0j convergence =r > V. rut

Cn = Y ab,_i;
k=0
then both power series N la b)Y (z—aY and Y ¢ (7 — D hove radiuse of con-
¥z eries ) \a,v+b,)\z—a) ana ) C,\z—a) have radius of con
Movoonrs S v A
vocrgconie i1, uriu
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Analytic functions

7 . v LN\ £ s 7. \n . CY 2 s \n
2\t o)\ e—a) = | a\z—a) + ) 0,\Z2—a) |
Y clz—a)" = [> az—a)"] [, b(z—a)"]
for|z—a| < r.

Proof. We only give an outline of the proof. If 0 < s < r then for |z| <
we get Y |a,+b,) [z]" <Y la)s"+Y |Bls" < 005 Y e) 12" < (¥ la,|

ni i<l

O |b,ls") < . From here the proof can easily be completed. H

\../ \o

Exercises

1. Prove Proposition 1.5.

. Give the details of the proof of Proposition 1.6.

Prove that lim sup (a,+b,) < lim sup a,+lim sup b, and lim inf (a,+b,)
> lim inf a,+lim inf b, for {a,} and {b,} sequences of real numbers.

4. Show that lim inf @, < lim sup a, for any sequence in R.

5. If {a,} is a convergent sequence in R and a = lim a,, show that ¢ = lim
inf @, = lim sup a,.

6. Find the radius of convergence for each of the following power series:

(a) Z a'z", ae C; (b) Z a’z", aeC; (c) ) k"z", k an integer #0; (d) ). 2.
n=0 n=0

7. Show that the radlus of convergence of the power series

w N

R, (1w

N Y e
ey

n=1 n

is 1, and discuss convergence for z = 1, —1, and i. (Hint: The nth co-
efficient of this series is not (—1)"/n.)

§2. Analytic functions

rf:r\ Pnnr\f;nnc- are r-]a‘f-:ﬂarl and cnm
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and imaginary parts of an analytic function.
2.1 Definition. If G is an open set in C and f: G—C then f is differentiable
at a point a in G if

i+ fla+h)—f(a)

lim

h—0 h

called the derivative of
that fis differentiable
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< O O (u} deuueo a nc
f’ is continuous then we say that f'is continuously differentiable.
If £’ is differentiable then fis twice differentiable; continuing, a differentiable
function such that each successive derivative is again differentiable is called
infinitely differentiable.
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1
unless it is stated to the contrary.)
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The following was s Iy predicted by the reader.
2.2 Proposmon. Iffi G=>Ci ﬁ"erentzable at a point a in G then f is
continuous at a.
Proof. In fact,
e T D -fa)l]
lim | f(z)~f(a)| = tllm——iz—;i— |- Ilmf1 |z— all =f(@0=01

2.3 Definition. A function f: G—C is analytic if f1s continuously differen-
tiable on G.
It follows readily, a

analvticon G Alcn if f and o are a alvhr‘ on G and G. is the
A ‘“l CAW NS AA A J 4 ‘Auv, AL J - b AL W & ‘w.J CAN AL NJ SRAANE I I A Cildw
et nfF mntnte 1 £ wwhaca 5 Aaac®t yamic L ¢bnee £/ 0 aimnli tin ~m 77
set of points in & where g doesn’t vanish, then J/ & 1s anaiytic on G,.

oM o~ 1 1

Since constant functions and the function z are clearly analytic it
follows that all rational functions are analytic on the complement of the
set of zeros of the denominator.

Moreover, the usual laws for differentiating sums, products, and

- g(f(zo))
proof?)

Case 1 Suppose f(z,)#f(zo+ h,) for all n.

In this case
gof(z.+h )—oof(z.) o f(z
O J \*~0 n’ O\ \

o J A\ .

hn f(ZO+ hn —f(ZO) h"

Since lim[ f(zy+ A,) — f(z,)]=0 by (2.2) we have that
1
J

limh, [ gof(zo+

Case 2 f(zy)=f(z,+ h,) for infinitely many values of n.
Write {h,} as the union of two sequences {k } and {/,} where f(z,)#
f(zo+ k,) and f(z5)=f(zo+1,) for all n. Since f is differentiable, f'(z,)=

lim/ -~ lrf( o+ 1) —f(z.)]=0. Also lim N oof(~ +1)—g°f(z,)]=0. By
AAR 0 ' J \H £ ll Al l" l6 J \HO L] \ 0

Coce I 15 l.—lr oo r/_ L L\ e £\ n/ \ —_N TLA-‘tA,A

ase J, UMK, [&°(Z + K)~ & °f(zo)]=8&'(f(20)) f'(29) =0. Therefore
limh, '[gof(zo+ h,)—gof(20)]=0=g'(f(20)) f'(20)-

The general case easily follows from the preceding two. i
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ic on an open set containing A.
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Perhaps the definition of analytic function has been anticlimatic to many
readers. After seeing books written on analytic functions and year-long
courses and seminars on the theory of analytic functions, one can excuse a
certain degree of disappointment in discovering that the definition has
already been encountered in calculus. Is this theory to be a simple generaliza-
tion of calculus? The answer is a resounding no. To show how vastly different
the two subjects are let us mention that we will show that a differentiable
function is analytic. This is truly a remarkable result and one for which there
is no analogue in the theory of functions of a real variable (e.g., consider

1 ) ) )
x? sin —) . Another equally remarkable result is that every analytic function
X
is infinitely differentiable and, furthermore, has a power series expansion

about each noint nf its domain. How can such a humble hvnothesis oive

WL We Tl LU sET R TTMNeRT A AV VY wiiii JUwuwii & AULV ALYy PPURAAVOLIO iV WV

such far-reaching results? One can get come indication of what produces
this phenomenon if one considers the definition of derivative.

In the complex variable case there are an infinity of directions in which a
variable can approach a point a. In the real case, however, there are only two

avenues of apprnanh Continuity, for example, of a function defined on R

A VUAWAL, VLRI ALy 11w Newviiziwes Wi

idere 4haio 1o Fase fomonn tL

........ 4 e PR, | £ p
LI 1D 1al 110111

can be discussed in terms of ugu and lef
case for functions of a complex variable. So the statement that a function of
a complex variable has a derivative is stronger than the same statement about
a function of a real variable. Even more, if we consider a function f defined

-
(@)
]
=
=+
Pt o
o}
o
[
=
'~<

on G < C as a function of two real variables by putting g(x, y) = f(x+iy)
£ {4 A DY A BN NSRS S-Sy thhnt £ g Danrlhat A fXavamtinlala 27211 sand Acmgrren
101 \.k, _y} € U, Liclil lCLilJllllls Lllc I.j UC I'ICLIICL UINICITIHILIAUIC Wil 110Ul CIIdDUi1IC

that f has a derivative in our sense.
In an exercise we ask the reader to show that f(z) = |z|* has a derivative
only at z = 0; but, g(x, y) = f(x+iy) = x*+y* is Frechet differentiable.
h t differentiability implies analytlclty is proved in Chapter IV; but

Now » ¢L,.L - PR Y P TA SRR S

...,. 3ra T ATrA ammEzrmge cARIAl ARa aeen s
Il 5 t IOW W¢C plUVC tldat [JUWCI SCIICS diC a ldl)’tlb IUUL«UUIID

2.5 Proposition. Let f(z) = Y a,(z—a)" have radius of convergence R > 0.
Then: n=0
(a) For each k > 1 the series

nn—1)...(n—k+1a(z—a)"*

IMS

2.6

n=k

has radius of convergence R;
(b) The function f is infinitely differentiable on B(a; R) and, furthermore,
f®(z) is given by the series (2.6) for all k > 1 and |z—a| < R;
(c) Forn = 0,

1
2.7 a, = — f"(a).
n!

Proof. Again assume that a = 0.

(a) We first remark that if (a) is proved for k = 1 then thecasesk = 2,.
i1l €AllAsxxy; Tea Fant thno mocn L —— D fot lha Altninad lhear amnliias maet (o) £Ase
wiil 10110OW. 1il 1avt, LLIC LdAdl /A — 4 Lall Ul vLaliicu Uy appl_yl 15 Pdll \a) 1U1
k = 1 to the series Y na,(z—a)"~'. We have that R™* = lim sup |a,|'/"; we
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wrieh t~ chnw thnt D—l — liean crvem |z el |1/( - 1) N~y 14 F£All Ao ‘-‘w/\ PIIAn+al’c
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im 108" im pl/e=1 i
rule that lim = 0, so that lim » = 1. The result will follow from
n->o H— n—
Exercise 2 if it can be shown that lim sup |q |/ V=R~
1: /{(n— . n’ .. :

Let (1( ) !—um sup |a, i!/(" D; then R’ is the radius of convergence of
V V .z" Notice tha \“ a,,2"+a, \“ a,z"; hence 1f|7| < R’
LJ " y4) n+1 “n+1

0
then Y la,z"| < |aol+]z] Z |ap4 12" < c0. ThlS gives R’ < R. If |z| < R and

z # 0 then ) |a,z"| < oo and ) la,,,2"| < I?l Y a2 + Iaol < 00, 50

2]

that R < R’. This gives that R = R’ and completes the proof of part (a).

(b) For |z] < Rputg(z) = Y na,z" 1, s,(2) = ) @z*, and R(z) = ).
=1 k=0 k=n+1

a,z*. Fix a point w in B(0; R) and fix r with |w| < r < R; we wish to show
that f’(w) exists and is equal to g(w). To do this let 8 > 0 be arbitrary except
for the restriction that B(w; §) < B(0; r). (We will further restrict & later in
the nrnnf\ Let z € B(w; 8\ then

| et ALNL &4 © D\ W UJ,, LALLIAZ

7 o 1A)
' & [ 44

28 1O,y | SR80 s;(w)] + 5,09 —gw)]
Z—W B Z—Ww
+ 'Rn(Z)—Rn(W)'l
L Z=w ]
Now
Rn(z)_Rn(w) — 1 i ak(zk_wk)
Z—W Z—W k=n+1
=S (E)
Sty \z-w
k.—.
el B N T T e}
| z=w|
Hence, _
IR —RM)| _ & k-1
I I < L |Gy |KT
I

N . ¢uch
Fa 1 [SACA P ¥ a A\ e —_ 4V 1
IR(z)—R,(w)| e
I n n | < - (7 ¢ Rlw: &
~ @ E AW, 9.
| z—w | 3
Also, lim s,(w) = g(w) so there is an integer N, such that |s,(w)—g(w)| < —2—
whenever n > Tet n — the mavimim nf the twn inteagare A and A/
VY AAWwiiw VWi e —_ 4V 2. AL T L1l 11iAQAAANL111\311 VL LCiiWw LYY U 111 lvs\/l o 4V 1 CLLINE 4V 2'
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Then wa can chnanecea 8 ~ 0O ench that
A 1IVI1I1 VT WwAll VIIVUOV U~ U JOuULvill Lildabv
Sn(Z)_Sn(w) ’ €
— s, (w)| < =
Z—Ww 3
whoanavar N « |l —_wl « § Puntting thece tneanalitiae tnoether with eanation
YYI1IVEIIV YL U N IL 'VI ™~ v A uLllllé LiiVv OV lllubluullldvo l«vé\«tll\ll Yviilii \n.luutxvxx
7/~ O\ | L T
(£.6) W€ Nnavce inadt
J(@2)—f(w)
— g(w)| <
Z—Ww
for 0 < |z—w| < 8. That is, f'(w) = g(w)
(c) By a straightforward evaluation we get f(0) = f(9(0) = a,. Using
1l WANZ VY . ARSI s (.4 V72 \ U AL S VS NG SRR Y « SIS DU, S AN |
\L.O) \l I d = U}, w¢e gCLJ \U} =K 'ak dIild LIl glVUb 101111Uld \L.I}. | ]

n=
Hanra avn 7 — V >N/l 1q¢ analutic in © Rofare fiirthar avamining the
ncncee, CXpz= /2, 2 /h. 16 dlldiyud 1l C. DCIOIC TUnulh CAaalililliilg uic
L _n
n=v
exnonential function and definino cocr and cin > the followino recult must
\rl\lJVll\rlltlul 1UilVv iiviL Qlias uwxxxxxllb YUUD & QIINE Ulil &y WLW l\.lll\l"lll& AWOIWAL 111U
be proved

2.10 Proposition. If G is open and connected and f:G — C is differentiable
with f'(z) = 0 for all z in G, then f is constant.

Dunnf EFiv » s L2 and lat D 14- A (o 7 £\ — .. Ve wva wxssll
1 70U). 1 1A 4 111 U allu 1Ll WO —_— J \40} 1 — "« &t \uU. J \A} -_— (Uoj, WO WwWill
show that A = G by showing that A is both open and closed in G. Let ze G

and let {z,} < A be such that z = lim z,. Since f(z,) = w, for each n > 1
and f'is continuous we get f(z) = w,, or z € A. Thus, A is closed in G. Now
fix a in A, and let € > 0 be such that B(a; €) < G. If z € B(a; ¢), set g(t)=

£+~ 1L (1 ;f\n\ N < ¢+ -« 1 Than
J U< T2 tjjy, V > ¢t > 1. 11Nl

o(1) — g(s) o(1) — o(s) (t—5)z+(s—1a
2.11 o\*J o\ — o\*/ o\ \ V4 \{ J
t—s (t=s5)z+(s—1)a t—s
Thus, if we let t—s we get (A.4(b), Appendix A)
. g(t)—g(s)
Iim ——ﬁ— = f'(sz+(1—9)a) (z—a) =
t=s -9

That is, g'(s) = 0 for 0 < 5 < 1, implying that g is a constant. Hence,
f(2) = g(1)=g(0) = f(a) = w,. That is, B(a; €) < A and A4 is also open. i

Now differentiate f(z) = ¢*; we do this by Proposition 2.5. This gives
that

n,l/Z\ _ % n zn—l - %\ 1 Z,,—l . Tw‘ 1 - P TN
]()_Luv _41.‘_1“ _432 =J2).
n=1 Ii. n=1 \’l 1}. n=0 It .

Thus the complex exponential function has the same property as its real
counterpart. That is

2.12 e =¢°
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12—
& z

Put g(z) = "¢~ 7 for some fixed ain C; then g'(z) = €*fe* " *+e*(—€*7%) = 0.
Hence g(z) = w for all z in C and some constant w. In particular, using
e® =1 we get w = g(0) = e°. Then e’e®~* = ¢° for all z. Thus e**? = e%®
for all @ and b in C. This also gives 1 = ee~* which implies that e* # 0
for any z and e¢™% = 1/e®. Returning to the power series expansion of €?,
since ali the coefficients of this series are real we have exp Z = exp z. In
particular, for 6 a real number we get |e'’|? = e'% ™" = ¢° = 1. More
generally, |¢*|? = e%e® = €% = exp (2 Re z). Thus,

2.13 lexp z| = exp (Re z).

We see, therefore, that ¢* has the same properties that the real function e*
has. Again by analogy with the real power series we define the functions
cos z and sin z by the power series
A
cosz=1—-—+ — +. - ..
2! 4! (2n)!
) 23 25 . L 22n+1 ‘
nz=z—-—+ —+...+(-0)' 77— +...
S1 21 + S T +( ) (VL 1)1 -
J e o a \Lrll- T 1} .

Each of the series has infinite radius of convergence and so cos z and sin z
are analytic in C. By using Proposition 2.5 we find that (cos z)’ = —sin z
and (sin z)’ = cos z. By manipulating power series (which is justified since
these series converge absolutely)

1
2.14 cosz = Y(e“+e™ )  sinz = 2—_(ei‘—e"")
i

This gives for z in C, cos? z+sin® z = 1 and

[ ¥4 1
2.15 e’ = cosz+isinz
Tn narticiilar if we let » — raal numhber i w ot0 3
In particular if we let z = a real number 9 in (2.15) we get €'° = cis 4.
Hence, for zin C
i
2.16 z = |z|e

x 4+ iy ) V)

where #=argz. Since e**?=¢e%" we have |e’|=exp(Rez) and arge’=
Im:z.

A function f is periodic with period c if f(z+c)=f(z) forall z in C. If ¢
is a period of e’ then e’=e**“=¢%° implies that e“=1. Since 1=|e|=
exp Re(c), Re(c)=0. Thus ¢ =if for some 8 in R. But 1 =e“=e®=cosf+
isinf gives that the periods of e’ are the multiples of 2#i. Thus, if we
divide the plane into infinitely many horizontal strips by the lines Imz =
7(2k — 1), k any integer, the exponential function behaves the same in
each of these strips. This property of periodicity is one which is not present
in the real exponential function. Notice that by examining complex func-
tions we have demonstrated a relationship (2:15) between the exponential
function and the trigonometric functions which was not expected from our
knowledge of the real case.
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Now let us define log z. We could adopt the same procedure as before
and let log z be the power series expansion of the real logarithm about some
point. But this only gives log z in some disk. The method of defining the
logarithm as the integral of ¢t~! from 1 to x, x > 0, is a possibility, but
proves to be risky and unsatisfying in the complex case. Also, since €” is not
a one-one map as in the real case, log z cannot be defined as the inverse of €.
We can, however, do something similar.

We want to define log w so that it satisfies w = ¢ when z = log w.
Now since e # 0 for any z we cannot define log 0. Therefore, suppose e = w
and w # 0; if z = x+iy then |w| = ¢ and y = arg w+2nk, for some k.
Hence

217 1n
us

o A I

is the solution set for & = w. (Note that log |w| is the usual real logarithm.)

2.18 Definition. If G is an open connected set in C and f: G — C is a con-
tinuous function such that z = exp f(z) for all z in G then fis a branch of
the logarithm.

Notice that 0 ¢ G.

Suppose f is a given branch of the logarithm on the connected set G
and suppose k is an integer. Let g(z) = f(z)+2#ki. Then exp g(z) = exp f(2)
= z, s0 g is also a branch of the logarithm. Conversely, if f and g are both
branches of log z then for each z in G, f(z) = g(z)+ 2=ki for some integer k,
where k depends on z. Does the same k work for each z in G? The answer is

1
yes. In fact, if A(z) = 5 [f(z)—g(2)] then k is continuous on G and A(G)
v

< Z, the integers. Since G is connected, A(G) must also be connected

(Theorem II. 5.8). Hence there is a k in Z with f(z)+27ki = g(z) for all z in
G. This oives
G. This gives

Y10 DPwanncitinn If (7 — 0 70 nnon and rannon
«.27 L IOPOSKION. 1 U ~ L I5 gpen ana connec

(0]
N

on G then the totality of branches of log z are the functions f(z)+2nki, k € Z.
Now let us manufacture at least one branch of log z on some open
connected set. Let

that 6€.1:4% tha nlana alAana tha macatioa wanl Avic M Aanels, £ 26 ~Ansmnmnantad
ual. J.D, i LIV piallv alvlig UL 1ivgatllve 1val aaAlo. \.Aca.u_y U 1D L UIlllICLLICuU
and each z in G can be uniquely represented by z = |z]e*® where —7 < 6 < .

For 6 in this range, define f(re'®) = log r+i6. We leave the proof of con-
tinuity to the reader (Exercise 9). It follows that fis a branch of the logarithm

NP B S e JY

2.20 Proposition. Let G and (& be open subsets of C. Suppose that - G — C
and g: Q — C are continuous functions such that f(G) < Q and g(f(2)) = z
for all z in G. If g is differentiable and g'(z) # O, f is differentiable and

1
f (Z) 17 7 N\
g'(/(2)
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If g is analytic, f is analytic
Proof. Fix a in G and let h e C such that # # 0 and a+h € G. Hence a =

g(f(a)) and a+h = g(f(a+h)) implies f(a) # f(a+h). Also
| _ 8Ufla+h) —e(f(@)

h
_8Utath)—g(f(@) flat+h)—fla)
fla+h)—f(a) h

Now the limit of the left hand side as &7 — 0 is, of course, 1; so the limit

of the right hand side exists. Since lim [f(a+h)—f(a)] = O,
h—0

. g(./ \a-+ ”U g(./ \a})
o Nt —j@ LY@

‘Hence we get that
flath)—f(a)
h

Vo7 AN\ N\ s

exists since g'(f(a)) # 0, and 1 = g'(f(a))f (a).
Thus, f'(z) = [g'(f(2))]"'. If g is analytic then g’ is continuous and this

gives that f'is analytic. [}

3

1
i1
h

.
M
-

o=

2.21 Corollary. A branch of the logarithm function is analytic and its derivative

Ic 7_1. ~

[

Anciomntn tlha  cameds i branch of the losarit 1. 1 alamra

\A A ucmguaw LI1C Pdlubl.ual vlalicilr 01 Ulc 1ogariiiill  dceiiicd avove
on C—{z: z < 0} to be the principal branch of the logarithm. If we write
log z as a function we will always take it to be the principal branch of the

logarlthm unless otherwise stated
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b
et on which there is a branch of log . If we write g(z) = z° as a
function we will lways understand that z° =

nft
A L1

1.1
1 1 uacday, LUllllCLLCUIleb

C
plays an important role in analytic function theory. For example, Proposition
2.10 is false unless G is connected. This is analogous to the role played by
intervals in calculus. Because of this it is convenient to introduce the term
“region ” A region is an open connected subset of the plane.
llllb SCCUOI-I COT]CIUQCb WllIl a UISCUSSIOH ()l l[1€ LdULl’ly-I\lCﬁ ann EqUa-
tions. Let /1 G — C be analytic and let u(x, y) = Re f(x+1iy), v(x, y) = Im

Jf(x+iy) for x+iy in G. Let us evaluate the limit

£ = tim LD S

h—=0

o
o}
e}
-+ -
=
a
(@)
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] CL

in two different ways. First let # — 0 through real values of 4. For 4 # 0
and A real we get
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£fo 71\ VoA AT AN, 2R A
./\4'7'”} —J\<) J\-’V'f'”'f")’)_./\““f")’)
h h
u(x+h, y)—u(x,y) . v(x+h, y)—ov(x, y)
== +l
h h
T atting 5 0 oivecg
‘d\l‘-tllls I < \J 51'V\J
ou ov
2.22 f'(2) = —(x. V) +1 —(x. v
Lnkis J &) W S T \Xs V)
ox ox

Now let & — 0 through purely imaginary values; that is, for 2 # 0 and
h real,

fz+ih)—f(z2) _ ulx, y+h)—ulx,y)  vlx, y+h)—vx,y)
ih ’ h ' h
Thus,
) .ou ov
2.23 f(@) = —t—a—(x, )+ —(x,p)
y 9y

7~ AN L e B 1o 2

Equating the real and imaginary parts of (2.22) and (2.23) we get the
Cauchy-Riemann equations
ou ov ou ov

2.24 — == and — = - —
ox 0y oy 0x

Suppose that # and v have continuous second partial derivatives (we will
eventually show that they are infinitely differentiable). Differentiating the

C')llr‘l’\\l!plpmahﬂ ennatinne again we oet
uuvll} ANAINWILILL1CL11A2 U\luutlullﬂ “bulll AR e\/b
%u % %u %
— = and = -
ox oxay oy 0yox
Hence,
o o*u  *u
483 542 + a2 v

Any function with continuous second derivatives satisfying (2.25) is said to
be harmonic. In a similar fashion, v is also harmonic. We will study

harmnanie fiinctinng 1r\ Chantar Y
11AL 111IVI1IIV 1T UlLIVLIVIID 111 \_/llal.ll-\rl Ve ¥
Let G be a region in the plane and let # and v be functions defined on

G with continuous partial derivatives. Furthermore, suppose that ¥ and v
satisfy the Cauchy-Riemann equations. If f(z)=u(z)+ iv(z) then f can be
shown to be analytic in G. To see this, let z=x+iy € G and let B(z;r) <
G.If h=s+it € B(0;r) then

Applying the mean value theorem for the derivative of a function of one
variable to each of these bracketed expressions, yields for each s+it in
B(0; r) numbers s; and ¢, such that |s,| < |s] and |¢,| < |¢] and

v 1o
XT3,

(u
2.26 I
(
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@(s, 1) = [u(x+s, y+ 1) —u(x, )] —[u(x, y)s+uy,x, y)]

(2.26) gives that
o o )

Y\, } S [,

s+it  s+itl”

But |s] < |s+it], |t| < |s+it], |s{| < |s], [t;] < |t|, and the fact that u, and u,
are continuous gives that

!
2.27 im P80 _ g

s+it—0 S+i[

u(x+s, y+0)—u(x, y) = u(x, y)s+u,(x, y)t+ (s, 1)
where ¢ satisfies (2.27). Similarly

where ¢ satisfies
s, t
2.28 1 ¥(s, 1) =

s+it»0 S+it

Using the fact that v and v satisfy the Cauchy-Riemann equations it is easy to
see that

4

1~ £
Yix, L)

\-/

Y N
Y,

+

= U(2)+10,(2) +

S+ it (@) +io(2) s+it

In light of (2.27) and (2.28), f is differentiable and f'(z) = u.(z)+iv.(2).

Since u, and v, are continuous, f’ is continuous and f is analytic. These
results are summarized as follows.

2.29. Theorem. Let u and v be real-valued functions defined on a region G
and suppose that u and v have continuous partial derivatives. Then f: G — C
defined by f(z) = u(z)+iv(z) is analytic iff u and v satisfy the Cauchy-Riemann
equations.

Exa'nple. Is u(x, y) = log (x*+ y*)* harmonic on G = C— {0}? The answer
is yes! This could be shown by differentiating u to see that it satisfies (2.25).

However, it can also be shown by observing that in a neighborhood of each
noint of G uis the real part of an analytic function defined in that neighbor-

r

- .,1.'..» Dt 3 T

Mr\":r\ﬂn wrhi L il
111y Harinomiv 1Urcuons wiicii

1 lap +.1
Wiil UL L

aken
up in more detail in Section VIII. 3, is the following. Suppose G is a region
in the plane and #: G — R is harmonic. Does there exist a harmonic function

v: G — R such that f = u+iv is analytic in G? If such a function v exists it is

called a harmonic conjugate of u. If v, and v, are two harmonic conjugates
AF b S N (ot s N (1 Ui ) ie analutic an (O and onlv
of u then i(v; —v,) = (u+iv,)—(u+iv,) is analytic on G and only takes on
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M .o 4Ll ~4 [ P V. (I S ~L -
llows that two harmonic conjugates of a

purely imaginary values. It
harmonic function differ by a constant (see Exercise 14).

Returning to the question of the existence of a harmonic conjugate, the
above example u(z) = [zl of a harmomc function on the region G = C—

0O hae nn hor t \'1'7011]11 kp naccihle ta
Ui Uw HU Olulv LU
RPN

DR
—

nd this cannot be done.

(Exercise 21.) However, there are some regions for which every harmonic
function has a conjugate. In particular, it will now be shown that this is the
case when G is any disk or the whole plane.
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2.30 Theorem. Let G be either the whole plane C or some open disk. If
u: G — R is a harmonic function then u has a harmonic conjugate.

Proof. To carry out the proof of this theorem, Leibniz’s rule for differentiating
under the integral sign is needed (this is stated and proved in Proposition IV.
2.1).LetG = B(0; R),0 < R < o0, and let u: G — R be a harmonic function.
The proof will be accomplished by finding a harmonic function v such that
u and v satisfy the Cauchy-Riemann equations. So define

(x,y) = f u (x, H)dt + p(x)
0

and determine ¢ so that v, = —u,. Differentiating both sides of this equation
with respect to x gives
o £ ~a se) ‘-:.. £~ ¢\ de 10 10N\
VX, ¥) = | Uxel X, 1) GET P AX)
0
y
= —f u,,(x, 1) dt+¢'(x)
0
= —uy(xs y)+uy(x’ 0)+(P’(X)
So it must be that ¢'(x) = —uy(x, 0). It is easily checked that u and
y x
o6, ) = [ ux, = [ (s, 0)ds

do satisfy the Cauchy-Riemann equations. i

Where was the fact that G is a disk or C used? Why can’t this method of
proof be doctored sufficiently that it holds for general regions G? Where
does the proof break down when G = C— {0} and u(z) = log |z|?

Exercises

1. Show that f(z) = |z|* = x*+»* has a derivative only at the origin.
2. Prove that if b,, a, are real and positive and 0 < b = lim b,, a = lim
sup a, then ab = lim sup (a,b,). Does this remain true if the requirement of

itiyit A
PO Slu‘vuy iS ur"pped?
~
J.

o1 In 1
Show that Iim nl'" = 1.
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4. Show that (cos z)’ = —sin z and (sin z)’ = cos z.
5. Derive formulas (2.14).
6. Describe the following sets: {z: e =i}, {z: e = —1}, {z: &€ = —i},

{z: cos z = 0}, {z: sin z = 0}.
7. Prove formulas for cos (z+ w) and sin (z+w).

oi11 "

; where is this function defined and analytic?

8. Define tan z =
cos z’

9. Suppose that z,, ze G = C—{z: z < 0} and z, = r,e"", z = re'® where
—m < 0,08, < m. Prove that if z, — z then 6, —>f)an_dr —r.

10. Prove the following generalization of Proposition 2.20. Let G and Q be
open in C and suppose f and 4 are functions defined on G, g:Q—C and
suppose that f(G) <. Suppose that g and A4 are analytic, g’(w)#0 for any
w, that f is continuous, 4 is one-one, and that they satlsfy h(z)=g(f(2)) for

z in G. Show that fis analytic.

[0 93V va

11 Ciinnnca that £
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integer. Prove that z" = exp (nf(2)) for all z in G

12. Show that the real part of the function z* is always positive.

13. Let G = C—{z: z < 0} and let » be a positive integer. Find all analytic

functions f: G — C such that z = (f(z))" for all z€G.
2

> . A fln at G +
14, Qup“"se Je G—->Cis aﬂal'.y'uu ang wmat U 1S connecica.

f(2) is real for all z in G then fis constant.

1
15. Forr > 0let 4 = {w: w = exp (—) where 0 < |z]| < r; ; determine the
\

\*/ J
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n
r
s
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3
3
o §
F-Q’ -
-+
fos

set A.

16. Find an open connected set G < C and two continuous functions f and
g defined on G such that f(z)? = g(z)* = 1—z2 for all z in G. Can you make
G maximal? Are f and g analytic?

17. Give the principal branch of \/1—z.

10 T pot £ 17 n M ha Lonmnchace ~Ff -0 ....A b respect +1
10. .t J U —>u auug G — C be branches of z a 1 27 1CSpeC 1vc1_y ouuw

that fg is a branch of z**? and f/g is a branch of z*~°. Suppose that f(G) < G
and g(G) < G and prove that both fo g and g o f are branches of z?°.

19. Let G be a region and define G* = {z: Ze G}. If f: G — C is analytic
prove that f*: G* — C, defined by f*(z) = f(z), is also analytic.

20. Letz,,z,, ..., z, be complex numbers such that Re z, > 0 and Re(z, ..
z) > 0 for 1 < k < n. Show that log(z,...z,) =logz,+ ... + log z,,
where log z is the principal branch of the logarithm. If the restrictions on the

z, are removed, does the formula remain valid?
21. Prove that there is no branch of the Inaarifhm definedon G = C— [n}.

(Hint: Suppose such a branch exists and compare this with the principal
branch.)

§3. Analytic functions as mappings. Mobius transformations

ConS1der the function defined by f(z) = z2. If z = x+iy and u+iv=£(2)

o o N\
2

then p = x*—»? v = 2xy. Hence, the hyperbolas x2—y? = ¢ and 2xy = d
are mapped by f into the straight lines u = ¢, v = d. One interesting fact is
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3 of
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their images do. This is not an isolated phenomenon and this property will

be explored in general later in this section.

Now examine what happens to the lines x = cand y = d.
2

x = c¢(yarbitrary); fmaps thislineintou = ¢*—y and v = 2 Ehml--atmo
\/ I 3IJ r ) 7 o
vwwa ant that v — ~ 10 mannad Antn tha r\nr lhnla . 2 P =/|n2(.. . n2\ Cimilarly
)’ \AAY s\/l, tilat A — L 1O luayyvu \VISAV B BILY) l}“l vvia v -TL \fk C }- wililllial l_y,
gy 4 2 2 2
f takes the line y = d onto the parabola v* = 4d“(u+d”). These parabolas
2

intersect at (c2—d?, +2|cd)). It is relevant to point out that as ¢ — 0 the

parabola v = —4c?(u—c?) gets closer and closer to the negative real axis.
This corresponds to the fact that the function z* maps G = C— {z z < 0}

ntn s Da ~ N1 Natice alen that — rand v ==n{ nd v — v o= — A\
Ulll.U 1‘4 . 1\\.4 é ~ UI LI NULIVG alDU Lllal. A C auu /\ C \ 1u _— ’ _y }

are mapped onto the same parabolas.

What happens to a circle centered at the origin? If z = re'® then f(z) =
rie?'t; thus the circle of radius r about the origin is mapped onto the circle
of radius r? in a two to one fashion.

Finally, what happens to the sector S(«, B) = {z: « < arg z < B}, for
a < B7 It is easily seen that the image of S(«, B) is the sector S(2«, 28). The
restriction of f to S(«, B) will be one-one exactly when f—a < m.

The above discussion sheds some light on the nature of f(z) = z? and,
likewise, it is useful to study the mapping properties’ other analytic functions.
In the theory of analytic functions the following problem holds a paramount
position: given two open connected sets G and 2, is there an analytic function
f defined on G such that f(G) = Q7 Besides being intrinsically interesting,
the solution (or rather, the information about the existence of a solution)
of this problem is very useful.

3.1 Definition. A path in a region G < C is a continuous function vy :[a, b]—
G for some interval [a,b] in R. If y'(¢) exists for each ¢ in [a,b] and
Y :[a,b]—C 1s continuous then y is a smooth path. Also y is piecewise
smooth if there is a partition of [a,b], a= t0<t <...<t,=b, such that y 1s
smooth on each subinterval [7,_,,¢], 1< j

To say that a function y: [a b]—><E has a derlvative v'(?) for each point ¢

in [a,b] means that

o y(t+h)—v(1)
lim 5 =v'(1)
h—0 n

exists for a <t < b and that the right and left sided limits exist for t=a and
t=b, respectively. This is, of course, equivalent to saying that Rey and
Imy have a derivative (see Appendix A).

Suppose y:[a,b]—G is a smooth path and that for some ¢, in (a,b),

Y'(ty)#0. Then y has a tangent line at the point z,=y(#,). This line goes
throuch the nnmt z- In the direction of (the ver‘tnr\ Y (t ): or. the slope of

LRV AN WAL 2 232 A0 RRAILAARIVAL AL R0 VRAREZ fOos MRy AL SALY

the line 1s tan(argy (2))- If v, and y, are two smooth paths with v,(¢))=
v,(t,) =z and yi(¢,)#0, v5(¢,)#0, then define the angle between the paths
v, and vy, at z, to be

o
=
o
~
N .\
~~
~
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N’
o
]
oQ
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=
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Suppose y is a smooth path in G and f: G—C is analytic. Then o=foy
is also a smooth path and o’(¢)=/f"(y(1))Y'(?). Let zy=v(t,), and suppose
that y'(z9)#0 and f'(z,)#0; then o'(f))#0 and argo’(fy)=argf'(z,)+
argy’'(ty). That is,

3.2 argo’(ty) —argy'(ty) =argf'(zo).

Now let y, and y, be smooth paths with v,(¢,)= v,(,) =z, and y(¢,)#*
0% v5(¢,); let o, =f°y, and o0,=f°y,. Also, suppose that the paths y, and y,
are not tangent to each other at z,; that is, suppose yi(¢,)# v5(,). Equa-
tion (3.2) gives

3.3 arg yy(t;) —arg yi(t,) = arg o3(t;) —arg o{(1,).

This says that given any two paths through z,, f maps these paths onto two
paths through w, = f(z,) and, when f'(z,) # 0, the angles between the curves
are preserved both in magnitude and direction. This summarizes as follows.

3.4 Theorem. /f /- G — C is analytic then f preserves angles at each point
zo of G where f'(z,) # 0.
A function f: G — C which has the angle preserving property and also has

D=1

'9= Al
z—a 1€ uj

existing is called a conformal map. If f is analytic and f'(z) # O for any z
then f'is conformal. The converse of this statement is also true.

If f(z) = €* then fis conformal throughout C; let us look at the expo-
nential function more closely. If z = c+iy where c is fixed then f(z) = re”
for r = €° That is, f maps the line x = ¢ onto the circle with center at the
origin and of radius e°. Also, f maps the line y = d onto the infinite ray
{re': 0 <r < oo}

_______ e —_— J'_ S S \—/
i
We have already seen that ¢ is one-one on any horizontal strip of width
<2n.LetG = {z: —m < Imz < #n}. Then f(G) = Q@ = C—{z: z < 0}; also
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Jf maps the vertical segme'its {z = c+iy, —m < y < =} onto the part of the
circle {e¢’®: —m < 6 < =}, and the horizontal line y = d, —7 < d < =,

goes onto the ray making an angle d with the positive real axis.
Notice that log z, the principal branch of the logarithm does the opposite.

It maps Q onto the strip G, circles onto vertical segments in G, rays onto
horizontal lines in G.

he expioration of the mapping properties of cos z, sin z, and other
analytic functions will be done in the exercises. We now proceed to an
amazing class of mappings, the M&bius transformations.

s . az+b
3.5 Definition. A mapping of the form S(z) = — is called a linear frac-
cz+d
tional transformation. If a. b. ¢, and d also satisfv ad—bc # Q then S(2) is
[ZAVEF1% 22 1 u'luJ Vitissacr e AL u’ U’ \r, CLLANGE W& WAAUVY UMLIULJ “wws Lo 7 \J CAAWwWiAd U\Hl AV
called a Mobius transformation.
. ey ® . -1 dz—b .
If S is a M®obius transformation then S™'(z) = satisfies
—cz+4a
S(S™(2)) = STY(S(2)) = z; that is, S~' is the inverse mapping of S. If
S and T are both linear fractional transformations then it follows that So T

1

1
is also. Hence, the set of Mobius maps forms a group under composition.
Unless otherwise stated, the only linear fractional transformations we will
consider are Mobius transformations.

H
0w

Let S(z) = az+b4 ; if A is any non-zero complex number, then
cz+d
. (A@)z+(Ab)
D 2) =T T AN
(Ac)z+(Ad)

That is, the coefficients a, b, ¢, d are not unique (see Exercise 20).
We may also consider S as defined on C_ with S(o0) = a/c and S(—d/c)

= oo, (Notice that we cannot have a = O = ¢ or d = 0 = ¢ since eithe
situation would contradict ad—bc # 0.) Since S has an inverse it maps C

onto C,,
If S(z) = z+a then S is called a translation; if S(z) = az with a # 0
then Sis a dzlatton if S(z) = "%z then it is a rotation; finally, if S(z) = 1/z

Proof. First, suppose ¢ = 0. Hence S(z) = (a/d)z+(b/d) so if S,(z) = (a/d)z,
S,(z) = z+(b/d), then S, S; = S and we are done.

o

Now let ¢ # 0 and put S,(z) = z+djc, S,(2) = 1/z, S5(z) = ——— 2,

Sy(z) = z+ajc. Then S = S, 0535, 5. A
What are the fixed points of S? That is, what are the points z satisfying
S(z) = z. If z satisfies this condition then

P
o

22 ., r 1 N\~
cZ -t-\a—a Z—0D =
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Hence, a Mobius transformation can have at most two fixed points unless

) = z for all z.
Now let S be a Mobius transformation and let a, b, ¢ be distinct points

in C with « S(a) B = S(b) 'y S(c). Suppose that T is another map
h

1S
nd ¢ as fixed ints and, there-

S(z

w
"
o+
<
3 &
5]
3
p|

I
o]
/J
00

no
rY

Ye
[ & uu Linw

VV} ik Llls prop J. FAVD U U § ™ xu a, 9 all 4 AW CiAiwa
nn mT—1 Q T bt 3 ali . TLoa . O __ 11,‘ a o NARL o tavate o
101€, 1 oy = 1 = tne 1aentity. 1nat is, O = T. Hence, a Mobius map is

U
uniquely determined by its action on any three given points in C,,.
Let z,, z5, z, be points in C. Define S: C, — C_ by

s = (12))(222) i wnees

4,1 \
ol _ 2T%3 .o — -
u\a} _— i1 LZ W,
Z_Z4
22_24 .
Siz)=—"—— if z3= o0;
z—2z,
zZ—z
S(z2) = — 23 if 2. = o0
S(z2) 1 4 .
2)—2;3

In any case S(z,) = 1, S(z3) = 0, S(z,) = oo and S is the only transforma-
tion having this property.

3.7 Definition. If z, € C then (z,, z,, z3, z,). (The cross ratio of z,, z,, z3,
and z,) is the image of z;, under the unique M&bius transformation which
takes z, to 1, z; to 0, and z, to oco.

For example: (z,, z,, z3, z,) = 1 and (z, 1, 0, ) = z. Also, if M is any
Moébius map and w,, w,, w, are the points such that Mw, = 1, Mw; = 0,
Mw, = oo then Mz = (z, w,, wiz, wy).

Z3, Z4 are aistinct points

» U
¢
"
L
=
":
-l .
-l ]
=
"l
\N

formation th
(Zla 22y 23, 24) = (Tzla TZZs TZ3, TZ4)
for any point z,.

Proof. Let Sz = (z, z,, z3, z4); then S is a M&bius map. If M=ST!

then M(Tz,) = 1 M(Tz;) =0, M(Tz,) = oo; hence, ST = (z, Tz,,
Tz. Tz Yfor all C noarticular. if z = 7z, fhP desired rest ]f follows. 1N
J, - “4/ ANJER ALL & ‘ll Vw. A LA t/ul L‘v“‘“" AL L s Hl LAAW W WUIAL WAL A WUIUWIAL AVALNV VY U -

3.9 Propeosition. If z,, z, z, are distinct points in C and w,, ws, w, are also
distinct points of C,, then there is one and only one Mdbius transformation S
such that Sz, = w,, Sz3 = w3, Sz, = w,

Prnnf IPf ‘7;(7 7~ 7 - 7A\ ‘7:(’7 24 £8) - nl.‘ Q‘hr‘ nnt Q; M—l
s 'VVJC B W & A et \‘-t, “2’ ~3, H4l, AVE & \h’ WZ’ Wj, W4I CALANG y“b AT AVE A e
(Maneliy O lhico thn daciead memmanic; T D fa oo~ el NASLS (s aam wisiil Do
Cildlly O Ild> LIC Acslicdu plUpCl Ly. 11 £\ 15 allOUICT viODIWS [nap witl I\AJ -
~ -~ . e 1 PR N ~ - N
w; for j = 2, 3, 4 then R™! o § has three fixed points (z,, z5, and z,). Hence
R l'oS=ILorS=R BN
It is well known from high school geometry that three points in the plane
determine a circle (Recall that a circle in C  naceino throunoh oo correenonds
AW LW LLlll11lWw W Wil wiw \A\v\rull LAIiCAL 4 Wil Wiw 111 ‘_/w Huuu‘ll& Llll\.’u&ll el \/Ullvuyvlluu
b~ n cbmmsoelit 1iaa o Saa 'R G PRV IR [ S 4 2 I DR ARy RS R
toda DLIQISIIL 1IN 111 L. rnicnce tere 1S no neea 1o lIlJCbl. lI LIIC plCVlUub Sldic-
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b aa¥V-%al “ ‘L\D “1 I‘] “ﬂ I IIIIII A nfv-n ] L\D “l [» R a¥=% ‘ 71] 1\& I\ﬂIIAA (s}
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mrcle) The next result explains when four points lie on a circle.

3.10 Propesition. Let z,, z,, z5, z4 be four distinct points in C . Then (z,, z,,
Z3, 24) is a real number iff all four points lie on a circle.

Proof. Let S: C, — C,, be defined by Sz = (z, z,, z3, z4); then S "}(R) = the
set of z such that (z, z,, z5, z,) is real. Hence, we will be finished if we can
show that the image of R, under a Mdbius transformation is a circle.

b
Let Sz = a:; ;ifz = xe Rand w = S !(x) then x = Sw implies that
c
S(w) = S(w). That is,
aw+b do+b
co+d ca+d

Cross multiplying this gives

3.11 (a¢—ac) |w|? +(ad—be)w + (bé — da)a + (bd— bd) =

If a¢ is real then ac—dc = 0; putting « = 2(ad—bc), B = i(bd—bd) and

multiplying (3.11) by i gives

3.12 0 = Im (ew)—B = Im (aw —p)

since B is real. That is, w lies on the line determined by (3.12) for fixed « and

B. If ac is not real then (3.11) becomes
lw|*+pw+yd—8 =0

for some constants y in C, § in R. Hence,

3.13 lw+y| =

where
21 s lad — bc)
A= (49t = 20 > 0.

Since y and A are independent of x and since (3.13) is the equation of a circle,
the proof is finished. il

3.14 Theorem. A Mobius transformation takes circles onto circles.

Proof. Let T" be any circle in C_, and let S be any Mobius transformation.
Let z,, z3, z4 be three distinct points on I' and put w; = Sz, forj = 2, 3, 4.
Then w,, w;, w, determine a circle I''. We claim that S(I') = I'’. In fact,

for anv z in 0:.00

Qi) & aik

3.15 (2, 25, 23, 24) = (82, w,, W3, wy)

by Proposition 3.8. By the preceding proposition, if z is on I'" then both
sides of (3.15) are real. But this says that Sze I, .

an let " and T be two mr cles in (]:00 andlet z,. z

Ly £y &3y &44) D4 =

§

{~ \
&y Wy, W3, Wy).
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follows that F(I') =

3.16 Proposition. For any given circles I' and T'' in C_, there is a Mdbius
transformation T such that T(T') = I’. Furthermore we can specify that T

take any three points on I' onto any three points of I''. If we do specify Tz;
fnrl 2, 3, 4 (distinc 7.1nr\ then T is uni.

\Wes e s u

Proof. The proof, except for the uniqueness statement, is given in the previous
paragraph. The uniqueness part is a trivial exercise for the reader. |l
Now that we know that a Mdbius map takes circles to circles, the next

question is: What happens to the inside and the outside of these circles?
TO answe h 1S we mtrnd uce some new gonggpt&

3.17 Definition. Let I" be a circle through points z,, z;, z,. The points z,
z* in C, are said to be symmetric with respect to I if

N
N

21Q (- -\ (v > > 5\
J.10 (z* yZ4) = \2, 27,23, Z4).

]
o]
-
Y
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CIIUS O Cll
points z,, 23, z,. It is left as an exercise for the reader to show that symmetry
is independent of the points chosen (Exercise 11).

Also, by Proposition 3.10 z is symmetric to itself with respect to I' if
an if ze .

nn ‘/]
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Let us investigate what it means for z and z* to be symmetric. If I' is a
straight line then our linguistic prejudices lead us to believe that z and z*
are symmetric with respect to I' if the line through z and z* is perpendicular
to I and z and z* are the same distance from I' but on opposite sides of T'.
This is indeed the case.

If T is a straight line then, choosing z, = oo, equation (3.18) becomes
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and z* are equidistant from each point on I'. Also

* -— —

Z —Z3 Z_Z3
Im =Im——
2,723 2,—2Z3

— T san 2—23,

—— =111
_Zﬂ__Z‘)
L 9

Hence, we have (unless z € I') that z and z* lie in different half planes deter-
mined by I'. It now follows that [z, z*] is perpendicular to T.

Now suppose that I' = {z: |[z—a|] = R} (0 < R < o). Let z,, z5, z, be
points in I'; using (3.18) and Proposition 3.8 for a number of M&bius trans-
formations gives

I

(% - » \
\4 5 £2543544)
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Q
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Hence, z* = a+ R*(z—a) ! or (z*—a) (—a) = R From this it follows that

so that z* lies on the ray {a+#(z—a): 0 < t < oo} from a through z. Using
the fact that |z—al |z* —a| = R* we can obtain z* from z (if z lies inside I')
as in the figure below. That is: Let L be the ray from a through z. Construct

a llIlC P perpenm(,mar to L at z dIl(.l at the pOlIll. WHCI"C P lIll.CrbC(,[b r con-
struct the tangent to I'. The point of intersection of this tangent with L is
the point z*. Thus, the points a and oo are symmetric with respect to I'.

3.19 Symmetry Principle. If a Mobius transformation T takes a circle T',
onto the circle T', then any pair of points symmetric with respect to I'y are
mapped by T onto a pair of points symmetric with respect to I,.
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Proof. Let z,, z3, z4 € I';; it follows that if zand z
respect to I'; then
sk —_
(T2%, T2y, Tz3, Tz4) = (2%, 25, 23, 24)

= (Z’ 229 235 Z4)

= Tz Tz Tz. T> )

- \.l.‘a’ ‘02, “'3’ ‘04}

by Proposition 3.8. Hence 7z* and Tz are symmetric with respect to I',. [l

Now we will discuss orientation for circles in C_,; this will enable us to
distinguish between the ““inside” and “outside” of a circle in C_. Notice
that on C, (the sphere) there is no obvious choice for the inside and outside
of a circle.

3.20 Definition. If I' is a circle then an orientation for I' is an ordered triple
of points (z;, z,, z5) such that each z; is in I.

Intuitively, these three points give a direction to I'. That is we “go”
from z, to z, to z5. If only two points were given, this would, of course, be

g’ uous.

c»

az+b
cz+d’
Since T(R,,) = R, it follows that a, b, ¢, d can be chosen to be real numbers
(see Exercise 8). Hence,

m L
1

3

Py L_

= &uu L 24, 22, 23

m. ~lcn~ DU
€ IX, aiso, pu

T .4 Tz = (2. 2. Z5. 22)
LCl LIs = \4, 21,4 Z}

az+b
Tz = —
czZ+da
az+b
= - (cz+d)
lez+d]?
1 ) _
= ——— [ac|z|* + bd+ bcz + adz)
jcz+d]?
Hence,
Im ( ) (ad—bc)I
miz, z,, 25,2 = ———,1m2z.
19 €25 <3
b 9 9 Icz—{-d‘z
T1"° foe T (» »~» - > Y < OV 1c either the nnner or lawer half nlane
i Mo’ la A1i1 \“’ P+ 1 ) ‘42 ’ r 3’ ™~ \J J a0 Wwilliiwil Lilw uyl—l\il Ly 3 AV YY Wi 41€L1 ylullv
1t 1l T LN e N e £d LN N ANTmba it T L. ia
depending on whether (ad—bc) > O or (ad—bc) < 0. (Note that ad—bc is

the “determinant” of 7.)
Now let I' be arbitrary, and suppose that z,, z,, z3 are on I'; for any
Mobius transformation S we have (by Proposition 3.8)

{z:Im (z, 2, 2,, z3) > 0} = {z:Im (Sz, Sz,, Sz,, Sz3) > 0}

= S '{z:Im(z, Sz,, Sz,, Sz3) > 0}
]'“ =~ ved s cu ‘n« £ C Al Acnnm on L. C T Ant~ D thnm (o0 Tonn (5 -
111 au cuiar, if o lb Tnoscn SO ll al, (O] lllalJb 1 VULV Nw, LLICIL £ . 1111 (<&, <,
z,, z3) 0} is equal to S ~! of either the upper or lower half plane.

If (z,, z,, z3) is an orientation of I" then we define the right side of T’
(with respect to (z,, z,, z3)) to be

{z:Im (z, z, z,, z3) > 0}.
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Similarly, we define the left side of T' to be
{z:Im (z, z,, z,, z3) < O}.
The proof of the following theorem is left as an exercise.

3.21 Orientation Principle. Let I'; and I', be two circles in C,, and let T be

a Mébius transformation such that T(T',) = T',. Let (z,, z,, z,) be an orienta-
tion for F Then T takes the right cnip and the left side of F onto the right

faITvew MEvee & DevaT

side and left side of T, with respect to the orientation (Tz,, T Z,, 123).
Consider the orientation (1, 0, o) of R. By the definition of the cross

ratio, (z, 1, 0, oc0) = z. Hence, the right side of R with respect to (1, 0, o)

is the upper half plane. This fits our intuition that the right side lies on our

rioht ac we walk alono from1to0to oo
lla‘.ll- [ € 2% ) ¥ W AAA ST PN “lvl‘b U\ ARNJALX A -\ 7 LA 4 A
As an exambple consider the following problem: Find an analvtic function
MAd all CAdll lplU COMSIGCT i€ 10110W1 g pProuviciii. 1'i1u ali aliaiyus ijuiivuou
f:G—C, where G = {z: Re z > 0}, such thatf(G) = {z:|z] < 1}. We

solve this problem by ﬁndmg Mobius transformatlon which takes the

imaginary axis onto the unit circle and, by the Orientation Principle, takes
G onto D (that is, we must choose this map carefully in order that it does not
cpmd £ nnd~n (- 1\
s€na G onto {z: |.4| > 13).
If we give the imaginary axis the orientation (—i, 0, i) then {z: Re z > 0}
is on the right of this axis. In fact,
2z
(29 —ia 0, t) = .
z—1
~N_ = hd
Lz Z+11
z—i Z+i
— c (17124
= — " (z]*+i2)
21

Hence, {z: Im (z, —i, 0, i) > 0} = {z: Im (iz) > 0} = {z: Re z > 0}.
Giving T the orientation (—i, —1, i) we have that D lies on the right of I.
Also,

2 z+1
1 = T " —..
@ =i -Ld=:7 75
If
2z [ 2i \ [z4+1\
Sz=-—— and Rz =|(-—|| )
Z—1 \l—l/\Z—l/

then T = R~ 'S maps G onto D (and the imaginary axis onto I'). By algebraic
manipulations we have

oz—1
2= z+1
ef—1
Combining this with previous results we have that g(z) = 711 maps
the infinite strip {2' |Im z| < m/2} onto the open unit disk D. (It is worth

z__1
i

tanh (z/2).)

mentioning that
e+1



54 Elementary Properties and Examples of Analytic Functions

T ot 77 @l b - . Fiad 4 anal ivevnts

¢ open connected sets; to try to find an analytic function f
such that f(G,) = G, we try to map both G, and G, onto the open unit disk.
If this can be done, f can be obtained by taking the composition of one
function with the inverse of the other.

As an example, let G be the open set inside two circles I'; and I',, inter-

secting at points a and b (a # b). Let L be the line passing through a and b

(z—a)
and give L the orientation (oo, a, b). Then Tz = (z, o, a, b) = | : ,,,]
\#—0/
maps L onto the real axis (7oo = 1, Ta = 0, Th = o0). Since 7 must map
circles onto circles, T maps I'; and I', onto circles through 0 and co. That is,
T(T,) and T(T',) are straight lines. By the use of orientation we have that
T(G) = {w—a < arg w < a} for some « > 0, or the complement of some
such closed sector. By the use of an appropriate power of z and possibly a
rotation we can map this wedge onto the right half plane. Now, composing
with the map (z—1) (z+1) ! givesamap of Gonto D = {z: |z| < 1}.

Exercises

Find the image of {z: Re z < 0, |

1.

function.

2. Do exercise 1 for the set {z: [Im z| < #/2}.

3. Discuss the mapping properties of cos z and sin z.

4. Discuss the mapping properties of z" and z'/" for n > 2. (Hint: use polar

coordinates.)

5. Find the fixed points of a dilation, a translation and the inversion on C,,.
6. Evaluate the following cross ratios: (a) (744, 1,0, o) (b) (2, 1 —i, 1, 1 +i)
(C) (0’ 1’ ia _1) (d) i— 19 0, 1+l7 0)

z+b
7. If Tz = find z,, z;, z, (in terms of a, b, ¢, d) such that 7z = (z
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= 1 L
az+0
8. If Tz = +d show that T(R ) = R iff we can choose a, b, ¢, d to be
cz+
real numbers.
az+b . .\
9. If Tz = Td’ find necessary and sufficient conditions that 7T'(I') =
cz+

where T is the unit circle {z: |z| = 1
10. Let D = {z: |z] < 1} and find a
(D) =

11. Show that the definition of symmetry (3.17) does not depend on the
choice of points z,, z3, z,. That is, show that if w,, w;, w, are also in I" then

quation (3.18) is satisfied iff (2%, w,, ws;, w,) = (2, w,, w;, w,). (Hint: Use
hy § \* - - 2 L I </ \*? A 39 Q4/° \ * it

N
J

12. Prove Theorem 3.4.
13. Give a discussion of the mapping f(z) = 3(z+1/z).
14. Suppose that one circle 1s contained inside another and that they are
tangent at the point a. Let G be the region between the two circles and
map G buufuuuauy onto the o opfn u unit disk. ( \1uut first t iy \4 —u) l.}
15. Can you map the open unit disk conformaily onto {z:0<|z|<1}?
16. Map G = C—{z: —1 < z < 1} onto the open unit disk oy an analytic
function f. Can f be one-one?
17. Let G be a region and suppose that f: G — C is analytic such that f(G)
is a subset of a circle. Show that fis constant.

z—ia

1 Toat —on <cn < h <o o0 an
AUe Bd W U MY N U S WYW Al

d

put Mz = .
z—ib

{z:Im z=b}, L, = {z: Im z =a} and L; = {z: Re z = 0}. Determine
which of the regions 4, B, C, D, E, F in Figure 1, are mapped by M onto the

regions U, V, W, X, Y, Z in Figure 2.

A D
b / U w
1
[0
B E 1
0\\ y /1 1
\_/
X Z
- Ly
ral r
C r
| N
-5
Figure 1 Figure 2
10 T o4 anmAd A Ls no v Bvprnica 1Q and lat 1ag hha tha trneinninal hranarl AF
17, LCL U, U, AllU /vl DC ad 111 LACIVIDU 10 allU IVL 1VUE UL LIV plilivipal vlalivil U1

the logarithm.
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(a) Show that log (Mz) is defined for all z except z = ic, a < ¢ < b; and
if #(z) = Im [log Mz] then 0 < A(z) < = for Re z > 0.
(b) Show that log (z—ic) is defined for Re z > 0 and any real number c;

also prove that |[Im log (z—ic)| < 7irif Rez > 0.

g_ = i[log (z—ib)—log (z —ia)]

(Hint: Use the Fundamental Theorem of Calculus.)
(e) Combine (c) and (d) to get that

b
- -b
h(x+iy) = j E—g}—_—t)—z dt = arctan (J’_x‘_’) —arctan (}—’—x—)

(f) Interpret part (e¢) geometrically and show that for Re z > 0 A(z) is the
angle depicted in the figure.

ib
N
\
N
V4
/
/
/
/
(.
_ az+b az+B
20. Let Sz = —and Tz = < ; show that S = T iff there is a non zero
cZ+a Yz +0
complex number A such that « = Aq, B = Ab, y = Ac, § = Ad.

21. Let T be a Mobius transformation with fixed points z, and z,. If S is a
Mobius transformation show that S ~! 7S has fixed pomts S7!z,and S~
22, \a) Show that a M&bius transformation has 0 and oo as its Oi‘lly uxed

pomts iff it is a dilation.
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71\ o1

(b) Show that a Mobius transformation has oo as its only fixed point iff

it 1s a translation.

23. Show that a Mobius transformation T satisfies T(0) = oo and T(0) = 0

iff Tz = az™! for some a in C.

24. Let T be a Mobius transformation, T # the identity. Show that a

Mobius transformation S commutes with 7" if S and T have the same fixed

points. (Hint: Use Exercises 21 and 22.)

25. Find all the abelian subgroups of the group of Mobius transformations.

26. (a) Let GL,(C) = all invertible 2x 2 matrices with entries in C and

let A be the group of Mobius transformations. Define ¢: GL,(C) — .# by
/ a b\ az+b

Y\cd/ +d’
el
)

Fmd the l(

2228+ il anwa ad

ne
(b) Let SL,(C) be the subgroup of GL,(C) consisting of all matrices of
determinant 1. Show that the image of SL,(C) under ¢ is all of .#. What
part of the kernel of ¢ is in SL,(C)?
27.If @ is a group and .4 is a subgroup then A is said tob normal subgroup

-y

of @ if S™'TS ¢ &/ whenever Te A and S

- s = Y VY aawa. (<39 [ 94

€
r\ﬂ mnAarmanl cnilhaenries AF @ nen IV LT _ thn 1Adaméiscs
vl ly 1nullilal auusxuupa O1 & iIC Yy U = Wil iucil

Prove that the group 4 of Mobius transformation
28. Discuss the mapping properties of (1—z)'.
29. For complex numbers « and 8 with |a]*+|B)*=1

EAADN nnd B eoa1E
1 J) allld J itselil.

simple group.

[7,]
y—n

andlet U={u,,:|al*+|B|*=1}.

<
=
—
N
—
]

a,

(a) Show that U is a group under composition.

(b) If SU, is the set of all unitary matrices with determinant 1, show that
SU, is a group under matrix multiplication and that for each 4 in SU,
there are unique complex numbers a and B with |af*+|B]*=1 and

(c) Show that _ _\ > U, g is an isomorphism of the group SU,
onto U. \— B a/

(d) If / E{G,%, i,;, .} let H,=all the p01ynormals of aegree <2{. For
U, p=u in U define T“’ H,—H, by (T“’j)(z) (ﬁz+a)‘f(u(z)) Show

that 7" is an mvertlble linear transformation on H, and ut>T\" is an
injective homomorphism of U into the group of 1nvert1ble linear transfor-

matinne nf H Ant~
111ativiio Ul ‘l, V1wV l‘{a
30. For |z| <1 define f(z) by

£(2)= exp{—zlogl( ;’)J f

(a) Show that f maps D={z:|z| <1} conformally onto an annulus G.
(b) Find all Mobius transformations S (z) that map D onto D and such
that f(S(z))=f(z) when |z|< 1.



Chapter 1V

Complex Integration

1
analytic functions. The theorems presented here constitute one of the pillars
of Mathematics and have far ranging applications.

We will begin by defining the Riemann-Stieitjes integral in order to
define the integral of a function along a path in C. The discussion of this
integral is by no means complete, but is limited to those results essential to
a cogent exposition of line integrals.

1.1 Definition. A function y: [a, b] — C, for [a, b] < R, is of bounded variation
if there is a constant M > 0 such that for any partition P = {a = t, < 1,

<...<t, = b} of [a, b]

i P) = ¥ M)Al < M.

V(y) = sup {v(y; P): P a partition of [a, b}}.

Clearly V(y) < M < oo.
It is easily s how that y is of bounded variation if and only if Re y
and Im y are of bounded variation. If real valued and is non-decrea mg

4

!

W

[

»

1

¢

w

¢

¢

[

C

¢

§

s

-

ot
\ ~2

Jund o
s W

than ., o AF Latinded variatinm an g AN { Nevarrica 1
uicn <y 1S O1 bounded variation and V\‘y) yY\0)—y\a). \DXCIUBC 1) v

examples will be given, but first Iet us give some easily deduced propertles t
these functions.

p
s

c-» w
b— .

o

1.2 Proposition. Let y: [a, b] — C be of bounded variation. Then:
(a) If P and Q are partitions of [a, b] and P < Q then v(y; P) < v(y; Q);
(b) If o: [a, b] — C is also of bounded variation and o, B € C then ay+ o

l(‘ nf hnun/]ofl Dariation nn/" V(NAIJ— Qn\ < | l V{»\ \_l_ IQ' V{n\

UUVRIsMILA VBT LRRILIVIE WL r \w, ] —_— Iui-l 1 4 \,’}THJI r \U}o

The proof is left to the reader.

The next proposition gives a wealthy collection of functions of bounded
variation. In actuality this is the set of functions which is of principal concern
to us.

1.3 Proposition. If y:[a,b]—C is piecewise smooth then vy is of bounded
variation and

b
ve) = [yl dr

58
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Proof. Assume that y is smooth (the complete proof is easily deduced from
this). Recall that when we say that y is smooth this means vy’ is continuous.
Let P={a=1<t;<...<t,=b}. Then, from the definition,

l)’(tk) Y(te-1)|

I [\/]g

v(y; P) =

I
I!Ms

If y'() |

tk-1

1473

IA
M3

| Iy a
l J

k tic-1

b
= [\ ar

Hence V(y) < [%|y'(¢)| dt, so that y is of bounded variation.

Since y’ is continuous it is uniformly continuous; so if € > 0 is given we
can choose 8, > 0 such that [s—¢| < 8, implies that |y'(s)—'(f)] < e. Also,
we may choose 8, > O such that if P= {a=1t;, < t,<...<t, = b} and

DI s £f 2 ) N 1 o L e Y . Q al
1P| = max {{(f{r—1i-41): 1 < k < mj <o, tnen

Oldr = 3 )l (=) < o

where 7, is any point in [f,_,, #]. Hence

[reold < e+ ¥ Iyl =ty
. k=1

tk

f y'(t) dt

tk—1

IA
m

[ wey—y@lar

tke—1

m m
+ ) + )
k=1 k=1

If |P||<8=min(é,,8,) then |y'(1,)—v'(

K N

N <efortin[t,_,,t]and
H m
J@ldt < e+e(b—a) + kZI y(t) — y(t- )|

= {1+ (b—a)]+v(y; P)

Y7

£\
Vv).

IA

L \1
o—d)|+

~

rs
e[l +
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[ ol < v,

R TR TR I A LOT |

wilicll yicids cquality. g

14T egrem T ot a,- rn Iﬂ — (P ho of h un od narviation and cun nose thnt
Ae™W A KAwVUa Alle A , - L ¥4 VJ ' (22 4% 22 USRI s VIS Ui uu[—’ v (2 K12 22
f: [a, b] — C is continuous. Then there is a complex number I such that for

every € > 0 there is a 8§ > 0 such that when P = {t, < t, <...<t,} is a
partition of [a, b] with ||P|| = max {(ty—t,-,): 1 < k < m} < 8 then
i m |

II—Vf‘(q-\,r\ ol '
I k?IJ\ KJ L/ \*KkJ F\*k—1 I
for whatever choice of points v, t,_; < 7, < K.

This number 7 is called the integral of f with respect to y over [a, b} and
is designated by

I=[fdy= ff(t) dv(s).

Proof. Since f is continuous it is uniformly continuous; thus, we can find
(inductively) positive numbers 8, > 8, > 85 >... such that if |s—¢| < &,

1f(s)—f(¢)| < —. For each m > 1 let &,, = the collection of all partitions P
m
of [a, b] with ||P|| < §,,; so &, © P, > +--. Finally define F,, to be the

closure of the set:

15 {k;f(rk)[y(m-y(tk-1>1:Pe% and f,_; < 7 < 1,).

n

The following are claimed to hold
Fl > Fz D and

1.6 diam F, < 2 V()
m
If this is done then, by Cantor’s Theorem (II. 3.7), there is exactly one com-
plex number 7 such that /€ F,, for every m > 1. Let us show that this will
complete the proof. If € > 0 let m > (2/e) V(y); then € > (2/m) V(y) =
diam F,. Since / € F,,, F, < B(I; ¢). Thus, if 8 = §,, the theorem is proved.
Now to prove (1.6). The fact that F;, © F, >... follows trivially from

to show that the diameter of the set in (1.5) is < V(y) This is done in two

stages, each of which is easy although the first is tedlous

If P={1,<...<t,} is a partition we will denote by S (P) a sum of the
Fncin N L/ N[l s N\ n o4 A1 wwhare ~ 16 any meint with 7 — - <t
iUl111 AJ \Tk)lY\lk) Y lk_ l}] WIICIC k Id anly puiiit Wil by |1 =T =t
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Fix m=1 and let P € £, ; the first step will be to show that if P < Q (and
hence Q € #,) then |S(P)—S(Q)|< — V(y) We only give the proof for

the case where Q is obtained by addmg one extra partition point to P. Let
1<p<mandlet _1<t*<t,; suppose that PU{#'}=Q.If t,_ <o <1
1*<o¢'<1, and

S(Q)= 2 f(ok)[ Y(4)— Y(’k—l)] +f(°)[Y(t*)‘ Y(tp—l)]

k¥*p
+£(a) v(1,)—v(%) ],
then, using the fact that | f(1)—f(0)| < l for |1 — 0| <3,
|IS(P)—S(Q)|= |k§P (7 = (a] [¥(t) — (- DV +S(7p) [(t,) — ¥(tp- 1))
—f(©) [y(r*) —v(t,- D1 —=f(") [¥(2,) — y(t")]|

l 70N y N AN N Vy/ . AY r

l/\

1 «
mi
+[f(7p) = ()] [(2,) - Y(t*)]l

1
Sm Y ) —v(t-1)] + — I'}’(t*) Y(tp-1)]

k%p

<= V(@)
m

For the second and final stage let P and R be any two partitions in £,,. Then
Q = P U R s a partition and contains both P and R. Using the first part
t

IS(P)=S(R)|<|S(P)=S(Q)|+IS(Q)~S(R) <2V ().

we

oQ

1.7 Proposition. Let f and g be continuous functions on [a, b} and let y and o
be functions of bounded variation on [a, b). Then for any scalars « and B:

@) [o(af+Bg) dy = « [G fdy+B [; gdy

(b) Jafd(“}"*'ﬁo) = «f} fdy+B 5 fdo.

The following is a very useful result in calculating these integrals.
1.8 Proposition. Let y: [a, b] — C be of bounded variation and let f: [a, b] — C
be continuous. If a =ty < t; <---< t, = b then

¢ o
| fdy =% | fay
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As was mentioned before, we will mainly be concerned with those y
which are piecewise smooth. The following theorem says that in this case
we can find [fdy by the methods of integration learned in calculus.

1.9 Theorem. If y is piecewise smooth and f:[a,b]— C is continuous then

j;bfdv= j;bf(t)v’(t)dt-

Proof. Again we only consider the case where y 1s smooth. Also, by
looking at the real and imaginary parts of y, we reduce the proof to the
case where y([a,b]) =R. Let € >0 and choose 6 >0 such that if P={a=1,
<...<t,=b} has |P||<§ then
b n
1.10 ffdy - 2 f(m) [Y(Ik)_Y(tk-—l)]t < }e
la k=1 |

and

b n
111 [faw @y de = 3 fny' () (=t < de

) =

for any choice of 7, in [t,_,, t]. If we apply the Mean Value Theorem for
derivatives we get that there is a 7, in [, _,, £,] with y'(7,) = [¥(t,) —(t,- )]
(te—t.-1) " !. (Note that the fact that y is real valued is needed to apply the
Mean Value Theorem.) Thus,

3 S ) ~Ate-] = 3, S0y ) (=m0

ualities

~

1.10) and (1.11) give:

Kiils

b b

[ fav = [ fo' @ ar

< €.

J 1
If y: [a, b] — C is a path then the set {y(f):a < ¢

and is denoted it by {y}. Notice that the trace of

set. y is a rectifiable path if v is a function of bounded variation. If P is a
partition of [a, b] then v(y; P) is exactly the sum of lengths i

, 0] then vy, )18 exactl
£., T vt
acc O1 y. 10 8ay i
A Y
).

V.

)

1 4 1 .

y has finite length and its length is V(y

If v: [a, b] - C is a rectifiable path with {y} <« E< C and f: E—~C
1s a continuous function then fo y is a continuous function on [a, b]. With
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1 19 Nafinis: If

i am aze [ L1 s M ¢ a =
delds LJTIIIIUIVIE 11 Y. Uy, VU] ™7 L 1D a 1

defined and continuous on the trace of y then the (/ine) mtegral of f along yis

b
| £ty a(o.

noted bv L. F=( f(z\rb
SIS JyJ\

As an xample let us take y: [0, 2#] — C to be y(t) = e* and define
1

1 o
jy; dz = [ e~ (ie") dt = 2mi.

Using the same definition of y and letting m be any integer = 0 gives
_[5 z™dz = (i"e i’"’(ie”)dt=i_[(2,” exp (i(m+1)t) dt=if§" cos (m+ 1)t dt—
fo sin(m+ 1)tdt=

Now let a,b C and put y(t)—tb-i-(l —t)a for 0=t <1. Then y(t) b
—da, ana Ublﬂg ll'le runadmenlal lneorem Ot Ca. CUIUS weE ge[ [Ila[ Ior
? 71 AN r. 7 e N Am 2 l 77 md 1 4 1\
n=0, { 2%z = (b—a) |} (tb+(1—t)a]" dt = 7 @ b,
n

There are more examples in the exercises, but now we will prove a certain
“invariance” result which, besides being useful in computations, forms the
basis for our definition of a curve

If y: [a, b] — C is a rectifiable path and ¢: [¢, d] — [a, b] is a continuous
nan-dacrancing fiinctinn whace imaga ic all Af a2 Al fi1a o) — 2 and
13V LL uvutvuolus LUliVviivil YWI1lUoVw 111iAagv 10 all Vi l“, UJ \I \/o, \f/\\«} “u alilu
¢(d) = b) then y o ¢: [c, d] — C is a path with the same trace as y. Moreover,

y o ¢ is rectifiable because if ¢ = 55 < §;, <*--< s, = d then a = ¢(s5,) <
@(s;) <--- < ¢(s,) = b is a partition of [a, b]. Hence

so that V(y o @) < V(y) < 0. So if f is continuous on {y} = {y o @} then
[, .o fis well defined.

1.13 Proposition. If y: [a, b] — C is a rectifiable path and ¢: [c, d] — [a b

is a continuous non-decreasi ing f__m'tmn with m(r'\ = a, g)(d\ b; the r any
Lmntinm € nantrnintia An {- ]
_,u!u.uun_/ Curniiirsuviuy uvIrIt 1)’,’

Yo@

Proof. Let € > 0 and choose 81 > 0 such that for {s, < s, <--"<3s,}, a
partition of [c, d] with (s;—s,-,) < 8;, and s, < o, < 5, we have

] _ 1
n
1.14 [ £= 3 1o pod) Iy o 9ls) =7 o #lsic- ]| < e
Yoo k=1
Similarly choose 8. > 0O cuch that if {7 f. < < t Y ic a nartition of
AJARARAIAGLL IJ WIAV VUV UW v2 - \J [CACS 29 S LCilCL N a4k ll O ~ & l ~ ™~ l" ’ A “4 yul CAiVAN/ LA /A
la, b] with (¢, —#,-,) < 6, and #,_, < 7, < {;, then
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| o

n |
. - 1) W) — Y- ) < Ze.
L15 f k;f(( ) () — vtk < 1

But ¢ is uniformly continuous on [c, d]; hence there is a 8 > 0, which can be
chosen with 8 < §,, such that |p(s)—¢(s’)| < 8, whenever |s—s’| < 8. So if

{$g < 8§y <---< s,} is a partition of [¢c, d] with (s,—s,_;) < 8 < &; and

8 7
t. = ofs.). t ft_ T IREETS nartitinn of a2 Al with (. — ¢, \
k Y\ukl’ [ 9 l 0 — J AD u yul LCALVANJALA A4 L“ UJ YYALLAL \’k ‘k

< 8,. If 5,_; < 0 < s and 7, = ¢(o,) then both (1.14) and (1.15) hold
Moreover, the right hand parts of these two differences are equal! It follows
that

’\

an < t.
WA _‘b

|/\

AL

[ [ 7|l <« «
ly Yoo |
Since ¢ > 0 was arbitrary, equality is proved. |}
We wish to define an equivalence relation on the collection of rectifiable

paths so that each member of an equivalence class has the same trace and

en that fl‘\n na intaagral Af a fiinctinn caontinuiniie an thic trace 1c the came for
INJ Lllulr Liiw A1 llll.\lsl. Al Vil A 1LUIIVIIVI1LA WWVWI1Ll111UV WU Vil L1110 L1 AvV AD Viliw JWiliw A Vs
- ‘.-u_ :A_ a1 1Y o bl _a L £ - | R
cac p Ul 111 U woOuia SCCII1 U (0

S 1
equivalent if o = y o ¢ for some function ¢ as above. However, this is not

an equivalence relation!

1.16 Definition. Let o: [c, d] > C and y: [a, b] - C be rectifiable paths.
The path o is equivalent to y if there is a functlon @: [c, d] — [a, b] which is

continuous, strictly increasing, and with ¢(c) = a, ¢(d) = b; such that
a=~om Wa call thae fiinction o a rhanoco nf naramoptor
v \'Io YV v wadll Lilv 1 uUuliviivil K’J a ure 1160 UJ l/ul “irsc L1t

A curve is an equivalence class of paths. The trace of a curve is the trace
of any one of its members. If fis continuous on the trace of the curve then the
integral of f over the curve is the integral of f over any member of the curve.

A curve i1s smooth (piecewise smooth) if and only if some one of its
ranracantativac 1c cmnnth iarourice cmnnth)
l\rl}l Yolvlitatltiviuvo 1D D111vutLll WIUU\/WIO\/ DlllUUlll}.

Henceforward, we will not make this distinction between a curve and its

representative. In fact, expressions such as “let ¥ be the unit circle tra-
versed once in the counter-clockwise direction” will be used to indicate a

curve. The reader is asked to trust that a result for curves which is, in fact,
a racnlt Anly alant mathe will nat he ctatad
a ivoull Villy aUUul patiis will 1lUutl UL swawvu,
T s . r 1.1 ~ 1 11 R | .1 - 4 - I 1_ ll/\ ~
Let y: {a, b] — C be a rectifiable path and for a < 1 < b, let |y| (¥) be

V(y; [a, t]). That is,

ly| (f) = sup :ki lv(t) —y(t~ DI: {to, . - ., t,} is a partition of [a, 7]

r

71 _ 1 ! L r.x 0 ° L. 1 - ] ] 11 N £~ . ) Jh [ S . AU
Clearly |y| (#) 1s Increasing and so |y|: [a@, 0] — T 1S of bounded variation.
f 1s continuous on {y} define

o
="

[ £1dz] = [ fore)) dly] @).
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wW—1) for —b < t < —a. Another notation for this is y~'. Also if ceC
let y+c¢ denote the curve defined by (y+c¢) () = y(¢ )+c The following
proposition gives many basic properties of the line integral.

=+

1.17 Proposition. Let y be a rectifiable curve and suppose that f is a function
continuous on {y}. Then:
(2 [Lf=—1[ _f
I

(b) val 5y 1f11dz] < V() sup [l f(2)]: z € {o3}];
(c) If ceC then [, f(z)dz = |,, f(z—¢) dz.

The proof is left as an exercise.

£ 1 LIS I
101 LHIIC lIlngf’dlb.

1.18 Theorem. Let G be open in C and let y be a rectifiable path in G with
initial and end points o and B respectively. If f: G — C is a continuous function
with a primitive F. G — C, then

(Recall that F is a primitive of f when F’ = f.)

The following useful fact will be needed in the proof of this theorem.

1 10 ' PaY s 23 205 I £ 7o n; Ano ant nath
1.47 LAI1IIIA. IJ U D uri opcre yei lll Uy Y lu UJ*_’U h) u Pulll
f:G—C is continuous then for every € >0 there is a polygonal path

such that T'(a)=y(a), T(b)=7y(b), and |[, f— [ f|<E.

Proof. Case 1. Suppose G is an open disk. Since {y} 1s a compact set,
d=dist({y}, dG)>0. It follows that if G= B(c;r) then {y} = B(c;p) where
p=r—3d. The reason for passing to this smaller disk is that f is uniformly
(‘nntmnmm in R(r p) = G. Hence without loss of generality it can be

assumed that f 1s umformly continuous on G. Choose ) >O such that
| f(z2)— f(w)| < e whenever |z—w|<8. If y:[a,b]>C then y is uniformly

continuous so there is a partition {#,<¢,<...<t,} of [a,b] such that

reedijiuui s U
) 3

Q&

I in

1.19a lYy(s)—y(0)| <8

if t,_,<s,t<¢t; and such that for 1, _, <7, <t, we have

1.20 lff kglf Y(Tk))[Y(tk) Y (4 ]!<5
Define I :[a,b]—>C by
I'(r)= ) ltk—l [(fk"f)Y(’k—l)'*‘(t I I)Y(tk)]

if t,_, <r<t,. So on [t t.1, T'(Y) traces out the straight line segment
K—1 K LK — 12k D> \*"/ P =4 i

fram ~ (¢ Yt v ) that 1¢ T ig a noalvannal math in &7 Eram 71 1Qa)

11\U111 [ \lk — l} AV r \lk}, iiiati lD, p s 10 A yun_ysuual l}al.ll 1R J 1 Ulll \ 1.1 7(1}
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171 ITY N asl = M~ 8 £ Py
| ¥V 3 § I \ )’\lk}I\U 1U1 lk_l.ll :lk'
Since [ f= [5f(T()["(t)dt it follows that
[ < Y(8) —v(5-1) (0 rfy sy o
| J= 2 P | JULp)at.
“1 k=1 ko k=1 Yo

Using (1.20) we obtain

<ct z FED =16 )= [ 1

/.\

=YDt — 1 —y) }

|/\
0 M

Applying (1 21) to the integrand gives

.
~<“a

ro - . ,
Jlrf! =ete _>_ 1Y (1) = y( - )l <e(1+ V(7).
k=1

The proof of Case I now follows.

Case II. G is arbitrary. Since {y} is compact there is a number r with
0<r<dist({y},dG). Choose § >0 such that |y(s)— y(¢)] <r when |s—1]|<
6. If P={1,<t,<...<t,} 1s a partition of [a,b] with ||P| <8 then
ly()—v(t,_ )| <rfort,_,<t<t. Thatisif y,:[t,_,,2,]>G is defined by
Y (£)=7v(¢) then {y,}<=B(y(t_,);r) for I<k<n. By Case I there 1s a
polygonal path T, :[¢, _,,t,]—=B(y(t,_,);r) such that T',(f,_))=v(t_))
Lo(t)=v(%), and |[, f— [ |<e€/n. If T()=T,(2) on [#,_,,4] then T has
the required properties. [}

Proof of Theorem 1.18. Case I. vy :[a,b]—C is piecewise smooth. Then j f=

)Y (dt = [LF(y())Y(Ddt = [J(Fey)(Hdt = F(Y(b))*
F(y(a))= F(B)— F(a) by the Fundamental Theorem of Calculus.

Case 1I The General Case. If €¢>0 then Lemma 1.19 implies there is a

polygonal path ' from a to f such that |/ f— [ f|<e. But I is piecewise
mooth, so by Case I It f_F'(R\ F(a). He plf N fF'(R\—F(nrYlI(:

ALK Aky TV g € A\ | 4 x \u/ A VW l £ \RJ NS

ince €>0 is albluai'y, the desired chauL_y' follows. -
The use of Lemma 1.19 in the proof of Theorem 1.18 to pass from the
piecewise smooth case to the rectifiable case is typical of many proofs of

results on line integrals. We shall see applications of Lemma 1.19 in the
future.

U) 92

_____ A |

PROT I S A | o mn 4~ Lo 71\
A curve y: [a, b] — C is said to be cl

d if y(a) = y(b).
1.22 Corollary. Let G, y, and f satisfy the same hypothesis as in Theorem
1.18. If v is a closed curve then

J 1%

(=0
J
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The Fundamental Theorem of Calculus says that each continuous
function has a primitive. This is far from being true for functions of a
complex variable. For example let f(z) = |z|* = x*+y2 If F is a primitive
of f then F is analytic. So if F = U+iV then x*+y* = F'(x+iy). Now,
using the Cauchy-Riemann equations,

oU oV oU oV
=x*+y? and — = — =
ox 6y dy  0x
oU
But — = 0 implies that U(x, y) = u(x) for some differentjable function u
oy
n L; 2 2 ou TN 1 A A L
But this gives x“+y” = E = u (x), a cicar contraaiction. Anotner way to
x

see that |z|? does not have a primitive is to apply Theorem 1.18 (see Exercise
8).

Exercises

1. Let y: [a, b] > R be non decreasing. Show that vy is of bounded variation
and V(y) = y(b)—y(a).

2. Prove Proposition 1.2.

3. Prove Proposition 1.7.

4. Prove Proposition 1.8 (Use induction).

5. Let v(t) = exp ((=1+i)¢t 1) for 0 < t < 1 and y(0) = 0. Show that v is
a rectifiable path and find V(y). Give a rough sketch of the trace of y.

6. Show that if y; [a, b] — C is a Lipschitz function then y is of bounded
variation.

7 QL ... 4+L ~;e TN 11 . M AL A . 24 oiem 1 £ N 4

/. Snow tnat y: [U, 1 — C, aeifinea oy y{f) = ¢+1if sin - ior ¢ # U ana
t

(0) =0,isa path but is not rectifiable. Sketch th h

8. Let v and o be the two polygons [
paths and calculate [, f and f, f where f(z)

9. Define y: [0, 27r] — C by ¥(t) = exp (inf) where n is some integer (positive,
M 1
: o
negative, or zero). Show that | 3 dz = 2=in
z
)

10. Define y(t) = €' for 0 < ¢t < 27 and find |, z" dz for every integer n.
11. Let y be the closed polygon [1—i, 1+4+i, —1+4+i, —1—i, 1—i]. Find
(1,

| -az

Jy 2

- ~e

o [e
12. Let I(r) = J - dz where y: [0, 7] — C is defined by y(f) = re''. Show
Y

that lim I(r) = O.
1
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14. Prove that if ¢: [a, b] - [c, d] is continuous and ¢(a) = ¢, ¢(b) = d
then ¢ is one-one iff ¢ is strictly increasing.
15. Show that the relation in Definition 1.16 is an equivalence relation.

16. Show that if ¥ and o are equivalent rectifiable paths then V(y) V(o
17 thw fhaf IF .,, rn Iﬂ _;(I'“ le a naﬂ'} then fhpr is an e a

Lilwii Cilw

a' 1o 1n n
- LY, 1] > L.

i8, Prove Proposition 1.17.
19. In the proof of Case I of Lemma 1.19, where was the assumption that y
lies in a disk used?
20. Let y(t) = 1+e"for0 <t < 2mrand ﬁnd j'y (z2 D~ 4z
> 1

"1 nt L\ __ Wt £ _ -1 1_
21. Let 'y\t} = € 10l —7 = and 11[1(1] [Z —1) az.
22. Show that if F, and F, are primitives for f: G — C and G is connected

then there is a constant ¢ such that F,(z) = ¢+ F,(z) for each z in G.

23. Let y be a closed rectifiable curve in G and a ¢ G. Show that for n > 2,
f,z—a)™"dz = 0.

24. Prove the following integration by parts formula. Let f and g be analytic
in G and let y be a rectifiable curve from a to » in G. Then j fg' = f(b)g(b)—

flag@) -, g

§2. Power series representation of analytic functions

In this section we will see that a function f, analytic in an open set G,
has a power series expansion about each point of G. In particular, an analytic

function is infinitely differentiable.
We begin by proving Leibniz’s rule from Advanced Calculus.

2.1 Proposition. Let ¢: [a, b] X [c, d] — C be a continuous function and define
g:[c,d]—C by
b

2.2 g(f) = f (s, 1) ds.

Op
Then g is continuous. Moreover, if—h;: exists and is a continuous function on

Y

hen g is continuously differentiable and

, . . . 3<p . .
from the first part that g’ is continuous since o 1 continuous. Hence, we

Vv

A
G

naa
1AW\
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o
Fix a point ¢, in [c, d] and let ¢ > 0. Denote 5:—' by ¢,; it follows

that ¢, must be uniformly continuous on [a, b] x [c, d]. Thus, thereisa é > 0
such that lp,(s’, t)—gy(s, £)] < € whenever (s—s)?+(t—t)* < 8% In

24 lpa(s, £)—@,(5, 10)| < €

whenever |t—t,] < & and a < s < b. This gives that for |[t—7y] < & and
a<s<hb,

J“\" A\ 4
to

| ¢ I
2.5 i[ (s, ) —@,(s, o) d i<e!t—t0!.

But for a fixed s in [a, b] () = ¢(s, ) —tp,(s, ty) is a primitive of @,(s, 1) —
®,(s, 7,). By combining the Fundamental Theorem of Calculus with in-
equality (2.5), it follows that
905, D)= (s, 16)—(E—10)ps(s, 10)] < € 11|
for any s when |t—1,| < 8. But from the definition of g this gives
b I
(2p] S tn)dl G(b—'a)

~
0 a |

when 0 < |t—¢y| < 5. 1
This result can be used to prove that

d

o

Sds=2m if | <1

OQ._.._3 N
m

Actually, we will need this formula in the proof of the next proposition.
is

for0 <t < 1,0 < s < 27; (Note that ¢ is continuously

Let ¢(s, t) = =

€ —is
differentiabie because [z] < 1.) Hence g(r) = [§* ¢(s, #) ds is continuously
differentiable. Also, g(0) = 2; so if it can be shown that g is a constant,
then 27 = g(1) and the desired result is obtained.

Now
2z
W= [ =2
g(t) = - S;
(1s tZ)2
0
but for ¢ fixed, ®(s) = zi(e—tz)"! has D'(s) = —zi(e® —t2) " 2(ie") =
isf ,ls N\ —2 u, \l'/\ \mm \Im/n\ n g | ’ . g
~ s e ) -4 - V- o VaV-% Ve J —— — — ~ . ~— -—— ey ~ P} .~ a am
ze\e —t ) cice g \t} = W\T)—W\V) = v, 50 g nust be a constant
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The next result, although very important, is transitory. We will see a
much more general result than this—Cauchy’s Integral Formula; a formula
which is one of the essential facts of the theory.

2.6 Proposition. Let f: G — C be analytic and suppose B(a; r) < G(r > 0).
If ¥(t) = a+re', 0 < t < 2m, then

for |z—a| < r.

- i1

Proof. By considering G; = 1— (z—a): z€ G} and the ( f(
r

=\
) =Ju

Q

+
0

g
rz) we see that, without loss of generality, it may be assumed that a
and r = 1. That is we may assume that B(0; 1) < G.

1

Fix z. |z| 1.3t mict be chawn th
KFiX z, |z] < 1; it must o the

-/ )]dv

f(e")e“
=

We will apply Leibniz’s rule by letting

is __ is
o5, 1) _f(z+t£i z))e

f(z)’

. 4
= &

for 0 <t<1and 0 <5 < 2n Since [z+He*—2)] = |z(1-0)+1e”] < 1,
¢ is well defined and is continuously differentiable. Let g(£) = [2* (s, 1) ds;
so g has a continuous derivative.

The proposition will be proved if it can be shown that g(1) = 0; this is
done by showing that g(0) = 0 and that g is constant. To see that g(0) = 0
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2n

g(0) = [ ols, 0) ds

0

- J [f e’ _ f(z)] s
e —Zz

2n

(=]

elS

ol
=/2) | =%

J

0

ds — 27rf(z)

€ —Z

ds = 2x prior to the statement of this pro-

position.
To show that g is constant compute g’. By Leibniz’s rule, g'(¥) =
@,(s, t) ds where

However, for 0 < t < 1 we have that ®(s) = —it"f(z+1(e*—2)) is a
primitive of @,(s, 7). So g'(t) = ®(27)—P(0) = 0 for 0 < ¢ < 1. Since g’ is
continuous we have g’ = 0 and g must be a constant. |}

How is this result used to get the power series expansion? The answer is
that we use a geometric series. Let |z—a| < r and suppose that w is on the
circle |w—a| = r. Then

w—z {'z a (w a)i(z a)

a n=0 \W—4d

since |z—a| < r = |w—a|. Now, muitiplying both sides by [f(w)/2=i] and
integrating around the circle y: |[w—a| = r, the left hand side yields f(z) by the

preceding proposition. The right hand 51de becomes—what? To ﬁnd the
answer we must know that we can distribute the integral thron

~ AARAWweidV aAwiaNS vaall wisii ax uu--v v vaa

M
uiil

Cl)

2 P

o Mo B P NS T 2 ) ALY +gi A SR Y T o al . T . ) -
2.7 Lemma. Let y De a rectifiable curve in C and suppose tnat F, ana F are
continuous functions on {y}. If F = u—lim F, on {y} then

JrF=1iIiJan
Y 4



72 Complex Integrat

ion
Proof. Let € > 0; then there is an integer N such that |F,(w)— F(w)| < ¢/V(y)
for all w on {y} and n > N. But this gives, by Proposition 1.17(b),

fF—fF f(F—F,,)

IA

[ 1EG) = Fy(w)] |dw]

Y

IA

€
whenever n > N. I}

£rr_N\ V4 \h Vg

[ 0]
2.8 Theorem. Let f be analytic in B(a; R); then f(z) = ) az—a)" for
n=0
1
|z—a| < R where a, = — f"(a) and this series has radius of convergence > R.
n!

Proof. Let 0 < r < R so that B(a; r) < B(a; R). If y(t) = a+re™, 0 < t < 2m,
then by Proposition 2.6,

1 ™ rroo N
Ly Jw)
fi@) = — | dw for |z—a| <
2711J w—z
7
But, since [z—a| < r and w is on the circle {y}
f09l lz=al" _ M (lz—alY
lw—al**t T r\ r )
i . |z—d :
where M = max {|f(w)|; |w—a| = r}. Since < 1, the Weierstrass
r

M-test gives that > f(w)
nnA

(z—a)"/(w—a)"*! converges uniformly for w on
!Al n" T r-322bhasks] q 7 .

tha A: sion prec ~As

Vs O LCINiNa <./ ang unc aiSCussSion pic Ullls ll.

1 w 1
2.9 f@=> |5 Sy | z—ay

27i | (w—a)"

n=0
if we set

Lo L[ S

" 27.*1.,' (w—a)"*t1 "

Y

then q, is independent of z, and so (2.9) is a power series which converges
for |z—a| < r.

. , 1
It follows (Proposition III. 2.5) that a, = — f'"(a), so that the value of q,
n!

is independent of y; that is, it is independent of r. So

(o0}

2.10 f@ =) afz—a)

n=20

for |z—a| < r. Since r was chosen arbitrarily, r < R, we have that (2.10)
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holds for |z—a] < R; giving that the radius of convergence of (2.10) must
be at least R.

@
2.11 Corollary. If f: G — C is analytic and a € G then f(z) = Z (z—a)" for
|z—a| < R where R = d(a, 9G).
Proof. Since R = d(a, ¢G), B(a; R) < G so that f is analytic on B(a; R).
The resuit now foliows from the theorem. i

2.12 Corollary. If f: G — C is analytic then f is infinitely differentiable.
2.13 Corollary. If f: G — C is analytic and B(a; r) < G then
n' f flw)

F@) =

*t:‘_
on
<

|
£

where y(t) = a+re", 0 < t < 2m.

2.14 Cauchy’s Estimate. Let f be analytic in B(a; R) and suppose |f(z)| < M
for all z in B(a; R). Then

(n) <
1@ < =

Proof. Since Corollary 2.13 applies with r < R, Proposition 1.17 implies
that

(MM niM

£\ Ve
@) =\ 3, Jpri 2 =

Since » < R is arbitrary, the result follows by letting r —~ R—. |}
We will conclude this section by proving a proposition which is a special
case of a more general result which will be presented later in this chapter.

ytic in the disk B(a; R) and suppose that vy is a

F f be
closed rectifiable curve in B(a; R). Then
[r=0.
Y
Proof. This is proved by showing that f has a primitive (Corollary 1.22).
Now, by Theorem 2.8, f(2) = Z..,,(z—a) for |[z—a| < R. Let
[ a — [ a
F(z) = z " )(z—a)"t! = (z-—a)z —— ) (z—a)".
—\n+1 5 \n+1

Since lim (n+1)!/" = 1, it follows that this power series has the same radius
of convergence as Y, a,(z—a)". Hence, F is defined on B(a; R). Moreover,
F'(z) = f(z) for |z—a] < R. R

Exercises

1. Show that the function defined by (2.2) is continuous.

~ PSS I A | [ S [ o 4 UV PSS PN al . el a ==se -
2. Prove the following analogue of Leibniz’s rule (this exercise will be
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frannantly 1
mvyucii

t
rectifiable curve in G. Suppose that ¢: {y} x G — C is a continuous functlon
and define g: G - C

on cat and let u kp
wii O\/L “UliNd 1wl u

g(2) = f e(w, z) dw

oo
. . b . . . .
then g is continuous. If e exists for each (w, z) in {y} x G and is continuous
z

then g is analytic and

g'(2) = f %%3 (w, z) dw.

3. Suppose that y is a rectifiable curve in C and ¢ is defined and continuous
on {y}. Use Exercise 2 to show that

o [ o)
™(z) = n!
g™ (2) n.J w2y dw
b4

4. (a) Prove Abel’s Theorem: Let Y a, (z—a)" have radius of convergence 1
and suppose that ) g, converges to 4. Prove that

lim Yar" =4

r—1- ~ "

(Hint: Find a summation formula which is the analogue of integration by
parts.)

(b) Use Abel’s Theorem to prove that log 2 = 1—4+34—
5. Give the power series expansion of log z about z = i a--d ﬁ nd its radius of
convergence.

6. Give the power series expansion of \/z about z = 1 and find its radius of
convergence.
7. Use the results of this section to evaluate the following integrals:

~ e
T plz

e .
(@) | 5 4z ) = e, 0<t<2a
Z
y
[ dz it
(b)) | —, w(t) = a+re", 0<t<2m
. Z—a
?
* oo
olll £ .
(c) 3-dz, () =€, 0 <t<2m
A
Y
log z ,
(d) g: dz, w(t) = 1+1e", 0<t<27and n > 0.
Zu LA, 2

~e
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8. Use a Mobuis transformation to show that Proposition 2.15 hoids if the
disk B(a; R) is replaced by a half plane.
9. Use Corollary 2.13 to evaluate the following integrals:

r~ ,z -z
PN e —e S [ o et tetacar and D it n -
(a) n — AZ WINCIC n lb a posiuve mteger ana y\/) = e , VU < [ < 4w,

J z

¥

(o o
(b) T Where 7 is a positive integer and y(f) = €, 0 < ¢ < 2m;

J =9y

Y

A A

az

(c) | ———— where (1) = 2. 0 < t < 2. (Hint: expand (z2+ 1) ! by
\*/ 22+1 b AN s = = il expand (7 + 1) Dy

means of partial fractions);

(sin
@ | 32 4z where (1) = €, 0 < ¢ < 2n:
] z
Y
" Zl/m .
(€ | ——— dz where y(r) = 1+1e",0 < t < 2m.
J ="
L4
[ z2+1 it _
10. Evaluate A dz where (1) = , 0 <t < 2n, for all possible
J z2(z°+4)
Y
valuesof r,0 < r < 2and2 < r < oo.
11. Find the domain of analyticity of

also, show that tan f(z) = z (i.e., fis a branch of arctan z). Show that

2k+ 1
f(z) = z(—l)" for [2] < 1
(Hint: see Exercise I11. 3.19.)
1 QL ~ver 4L~
14. OI1IVW Lllidl
[v o]
E
2k
secz =1 + E ‘ 2k
= (2k)!
for some constants E2 E These numbers are called Euler’s constants
What is th ad f converoence of thic cpmne‘) Tlce the fart that 1 — ~ne ~
MVIIV VI gVviive Ul D dviiIvo L oL Liiv 14Aavl Lilat 1 — LUD <&
sec z to show that
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: : : ef—1 L :
13. Find the series expansion of about zero and determine its radius
z
of convergence. Consider f(z) = and let
w. —
f(z\ = Y ——l—( _Zk
J \T7 kL—(J] k!

be its power series expansion about zero. What is the radius of convergence?
Show that

(n+1) (n+1)
O=ag+ | , la+ - +| \a,.
\ 1/ \ n )

Using the fact that f(z)+3z is an even function show that q, = 0 for k odd
and k > 1. The numbers B,, = (—1)""a,, are called the Bernoulli numbers
for n > 1. Calculate B,, B,," - By,.

14. Find the power series expansion of tan z about z = O expressing the
coefficients in terms of Bernoulli numbers. (Hint: use Exercise 13 and the

ent »— 1 tan 7))
VULl & 2t o)

Aall &

N’ =p

then choose (z—a q(z). Hence, p(z) = (z—a)s(z)+r(z) and r(z) must
be a constant polynom1al But letting z = a gives 0 = p(a) = r(a). Thus,

p(2) = (z—a)s(z). If we also have that s(a) = 0 we can factor (z—a) from
oY Cantinninag wae oot nfl7\ — (»_ A\ t(-y\ vhore 1 « < deoras nf nf>)
u\a}. \/Ullblll“lllé \AAY: SUL P\LI \‘4 u ‘v} V'.ll\il\a P 8 ~ s = U\/él\l\r Vi ll\h},

1 af N\ - 1 PR I 2l _a 7\ s N Ar 1 _____ _ _ 2f N\ h
ana l\Z} lb 4 polynomidi sucn tixat i(a) # U. AISO, dcgree I(2) = Uucgrec
p(z)—m.

3.1 Definition. If /- G — C is analytic and a in G satisfies f(a) = O then a
is a zero of f of multiplicity m > 1 if there is an analytic function g: G - C
such that f(z) = (z—a)"g(z) where g(a) # 0.

Returning g to the discussion of polynomials, we have that the multiplicity

nf o Torn I\P (s ] nn]vnn 12
Vi QA4 Lviv Vil G y\ll 11V1111Q4

If n = the degree of the olynomlal p(z) and a,, ..., g, are all the dlstmct
zeros of p(z) then p(z) = (z—a )™ - - (z—a)™s(2) where $(z) is a polynomial
with no zeros. Now the Fundamental Theorem of Algebra says that a

n’ ry

polynomial with no zeros is constant. Hence, if we can prove this result we
‘v‘v’iu have cnereadad in camnlately factarinog nf~) inta tha f\rnrlnr-f af firct

AVYWw OouUuvwLvLVUILAGL 11 UUIILPIULUI lu\.ll.\llllls F\L} 1118\ Ll PIUUU\./L Vi 11100
degree polynomials. The reader might be pleasantly surprised to know that

after many years of studying Mathematics he is right now on the threshold
of proving the Fundamental Theorem of Algebra. But first it is necessary to
prove a famous result about analytic functions. It is also convenient to

LY alidlytiv 1ULILL 1 RN B AN
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w242 PR RN X P e A~ kil 2 Aafamad A
J-L UCllllltlUIl ﬂll emue_/unuwn lb a IUIIL«LIUU Wlllb iS UCU €a an
is a

analytic

in the whole complex plane C. (The term “‘integral function” so used.)

The following result follows from Theorem 2.8 and the fact that C
contains B(0; R) for arbitrarily large R.

pu | POy P
U all dlyl

3.3 Proposition. If f is an entire function then f has a power series expansion

1) = ¥ az

with infinite radius of convergence.
In light of the preceding proposition, entire functions can be considered
as polynomials of “infinite degree”’. So the question arises: can the theory of

pnlvnnmlale be oeneralized to entire functions? For example. can an entire

VLY 11V 111D HVIIVIGIILVY LV VIIUIL Y A WIIVIHIVIID « 24 Vi vaQllipivey wii Qi viivii v

function be factored? The answer to this is difficult and is postponed to
Section VII. 5. Another property of polynomials is that no non constant
polynomial is bounded. Indeed, if p(z) = z"+a,_;2" '+ - +a, then
lim p(z) = lim z" [14a,_,z '+ +ayz™"] = oo. The fact that this also

Z—> 0 Z—> 0

holds for entire functions is an extremely useful result.

3.4 Liouville’s Theorem. If f is a bounded entire function then f is constant.
Proof Suppose |f(z)] < M for all z in C. We will show that f'(z) = 0 for

all z n C To do this use Cauchy’s Estimate (Corollary 2.14). Since f is
el R(~- D\ we havp that If’ \| < RI/R S ce R was a arhi-

YWw viiQe l — ALAN Fs vv Qx v

o
Pt
—
r‘ wn
v
P
b
-

e ~t LN N Lo o L - ]
> Ildl] \Z} = U lUf Cdclll £ lIl ‘L/ ]

The reader should not be deceived into thinking that this theorem is
insignificant because it has such a short proof. We have expended a great
deal of effort building up machinery and increasing our knowledge of analytic
functions. We have plowed planted and fertilized ; we shouldn’t be surprised
if, occasmnauy, bumcuuug is available for €asy piCKIi‘lg

Liouville’s Theorem will be better appreciated in the tollowmg applica-

tion.

3.5 Fundamental Theorem of Algebra. If p(z) is a non constant polynomial
then there is a complex number a with p(a) = O.

Proof. Suppose p(z) # 0 for all z and let f(z) = [p(z)] " !; then fis an entire
function. If p is not constant then, as was shown above, lim p(z) = o0;

Z —>©

so lim f(z) = 0. In particular, there is a number R > 0 such that |f(z)| < 1

Z—>0

if |z| > R. But fis continuous on B(0; R) so there is a constant M such that
|f(z)] < M for |z] < R. Hence f'is bounded and, therefore, must be constant
by Liouville’s theorem. It follows that p must be constant, contradicting our
assumption. |l

3.6 Corollary. If p(z) is a polynomial and a,, ..., a, are its zeros with a;

having multiplicity k ; then p(z) = c(z—a)"- - (z—a,)™ for some constant c
and k.« L) e

Wiswr v Vv,

’
D .4 ~ rnam A 2 anen 1o A
I\Ull.ulllllg tot weell © ltllC UIILUUIID auu pu1yuuuua D, tne
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£ ,

arned that this cannot be taken too far. For example, if p
is a polynomial and a € C then there is a number z with p(z) = a. In fact,
this follows from the Fundamental Theorem of Algebra by considering the
polynom1al p(z) a. However the exponential function fails to have this

nertv <in
yvl DJ [V P98

~ ablines, ¢l o
U dIlIVUW Lila

=
@]

ceCitme ]’\P ‘IQ]’II
(S84 W w vai

verthalece w
u \ A 48

o that can 1s, a function analytic
in C omits at most one value. This is known as Picard’s Little Theorem and
will be proved later.) Moreover, no one should begin to make an analogy
between analytic functions in an open set G and a polynomial p defined on
C; rather, you should only think of the polynomials as defined on G.

T avnimmmls 1.4
IOl CKd.lllpIC, 1CL

hi
I€ aoil

"3

«w

N

v (D

]

o
~~

=

7/ < \

&) = cos 2, I
=)

. 1+
Notice that I—Z maps D = {z:|z| < 1} onto G = {z: Re z > 0}. The zeros

A

of f are the points )n

777777 ln77+2
However, as n — oo the zeros approach 1 which is not in the domain of

analyticity D. This is the story for the most general case.

3\
n is odd‘t SO

3.7 Theorem. Let G be a connected open set and let f: G — C be an analytic

(b) there is a point a in G such that f"(a) = 0 for each n > 0;
(¢) {z€G: f(z) = 0} has a limit point in G.

Proof. Clearly (a) implies both (b) and (c). (c) implies (b): Let ae G and a
limit point of Z = {z € G: f(z) = 0}, and let R > 0 be such that B(a; R) <
§ 7

G. Since a is a limit point of Z and f is continuous it follows that f(a) = 0.
11 oo Awa 1 nn 1ntacar . 13 — Y .. s — _‘1 e
Supp\’)oc iere i1s an integer n > 1 such that f‘ u) ——-f. (u) **** *f'(" )(u)

th Q s
= 0 and f™(a) # 0. Expanding f in power series about a gives that

@)=Y afz—a)
k=n

for|z—a| < R If

o0

g2 = ) afz—a)™"

k=n
then g is analytic in B(a; R), f(z) = (z—a)"g(z), and g(a) = a, # 0. Since
g is analytic (and therefore continuous) in B(a; R) wecanfindanr, 0 < r <
R, such that g(z) # O for [z—a| < r. But since a is a limit point of Z there
is a point b with f(b) = 0 and 0 < |b—a| < r. This gives 0 = (b—a)"g(b)
and so g(b) = 0, a contradiction. Hence no such integer n» can be found;
this proves part (b).

(b) implies (a): Let A = {zeG: f™(z) = 0 for all n > 0}. From the

hypothesis of (b) we have that 4 # []. We will show that A4 is both open
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and closed in G; by the connectedness of G it will follow that A must be G
and so f = 0. To see that A4 is closed let ze€ A~ and let z;, be a sequence in
A such that z = lim g,. Since each f™ is continuous it follows that
f™(2) = lim f™(z,) = 0. So ze A and A4 is closed.

To see that A4 is open, let ae 4 and let R > 0 be such that B(a; R) < G.

The'l Jf( ) =3 nn(o_n)" for } l < \nhere a = — f(")(n — O

n > 0. Hence f(z) = O for all z in B(a; R) and, consequently, B(a; R) < A.
Thus A is open and this completes the proof of the theorem. |l

3.8 Corollary. If f and g are analytic on a region G then f = g iff {z€G:
Lo . ad Y Lne o 172e2id snndsad 220 £
J\Z) = g\Z)y ras a umii point in .

This follows by applying the preceding theorem to the analytic function
/-8
3.9 Corollary. If f is analytic on an open connected set G and f is not identi-

cally zero then for each a in G with f(a) = 0 there is an integer n > 1 and an
analytic function g: G — C such that g(a) # 0 and f(z) = (z—a)"g(z) for all

z in G. That is, each zero nffhnv ﬁmrp muh‘mhmtv

Sl LT ses FrsAss N

Proof. Let n be the largest integer (> 1) such that f*~1(g) = 0 and define
1
g(2) = (z—a) "f(z) for z # a and g(a) = oy f™(a). Then g is clearly analytic

in G— {a}; to see that g is analytic in G it need only be shown to be analytic

in a neighborhood of a. This is accomplished by using the method of the
prnnf that (P\ imblies (h\ in the theorem. I

A vaalan AL2ApIRIWS ASA VAANW vAANWNSA waiae

3.10 Corollary. If f: G — C is analytic and not constant, a € G, and f(a) = 0
then there isan R > 0 such that B(a; R) < G andf(z) # 0for0 < |z—a| < R.

Proof. By the above theorem the zeros of f are isolated. i

There is one instance where the analogy between polynomials and analytic
functions works in reverse. That is, there is a property of analytic functions
which is not so transparent for polynomials.

3.11 Max

funnhntg

um Modulus Theorem. If G is a region and f: G — C is an analytic
JI that theve is a point a in G with | f(n\l > l f'(ﬂl for all z in G, then

orey e

3: .-.

_[ l.) constant.

Proof. Let B(a; r) < G, y(t) = a+re* for 0 < t < 2n; according to Pro-
position 2.6

1 * £7..0\
f@=— |1 aw
27ni | w—a
y
-1 f fla+re"y dt
am )
(V]



80 Complex Integration

2n

@)l < f fa+re| dt < |£()

1
2
since |f(a+re™)| < |f(a)| for all t. This gives that

0= f [1/(@)|~|f(a-+ re")] di;

but since the integrand is non-negative it follows that |f(a)| = |f(a+re")|
nr all t R/fnreever S nce r was arbltraru we ho\/p fhaf f mans anvy dicl
1L @il AvVAUL A\ s 11 \AJ 1 P s 1 ) J 411C4 tJ\J ull] NAAiJIw
DS .. D\ — 7Y ° a4 a1 _ -_A.-l_ | 2P R R R S, L\ T 212 PG BURRRYS R o
D\d, n) — U 1O e CIICIC lZI = IO(l WIICIC a = Jd). put this 1 plle Lidt y
is constant on B(a; R) (Exercise III. 3.17). In particular f(z) = « for |z—a|

< R. According to Corollary 3.8, f = «.

According to the Maximum Modulus Theorem, a non-constant analytic
function on a region cannot assume its maximum modulus; this fact is far
from obvious even in the case of polynomials. The consequences of this
theorem are far reaching; some of these, along with a closer examination of
the Maximum Modulus Theorem, are presented in Chapter VI. (Actually,

the reader at this point can proceed to Sections VI. 1 and VI. 2.)

Exercises

1. Let f be an entire functi

O
and an integer n > 1 such tha
polynomial of degree < n.

2. Give an example to show that G must be assumed to be connected in
Theorem 3.7.

3. Find all entire functions f such that f{x) = €¢* for x in R.

4. Prove that e*7% = ee® by applying Corollary 3.8.

5. Prove that cos (a+b) = cos a cos b—sin a sin b by applying Corollary 3.8.
6. Let G be a region and suppose that f: G — C is analytic and a € G such
that | f(a)| < |f(2)| for all z in G. Show that either f(@) = O or fis constant.
7. Give an elementary proof of the Maximum Modulus Theorem for
polynomials.

8. Let G be a region and let f and g be analytic functions on G such that
f(2)g(z) = 0 for all a in G. Show that either f= 0 or g = 0.

9. Let U: C — R be a harmonic function such that U(z) > O for all z in C;
prove that U is constant.

n and suppose there is a const:
t |f(z)] < M|z]" for |z] > R. Show that fis a

10. Show that if f and g are analytic functions on a region G such that fg is
analytic then either f is co wt.mt or g=0.
§4. The index of a closed curve

s 2mrint

We have already shown that jY(Z—a) Ydz=2min if y()=a+e*™.
The following result shows that this is not peculiar to the path y.
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4.1 Proposition. If v:[0, 1]-C is a closed rectifiable curve and a ¢ {y} then

| dz

2w ) z—a
Y

IS an integer.

Proof. This 1s only proved under the hypothesis that y is smooth. In this
~ 1 _£° _ rn 11 s 1
case denne g:|U, ij»C by
Vall 27 N\
N vls)
)= as
g(1) J, ) —a
0
Hence, g(0)=0 and g(1)=/ (z—a)~ 'dz. We also have that
’
, Y'(1)
g'(t)=—— for 0<r<l1
y\)—
But this gives
Al N B ol B ()
i \YTa=e Y —g \Yy—aj

—gl ;e N N
Y —v(y—a) (y—a)|

So e 8(y—a) is the constant function e #O(y(0)—a)=y(0)—a=
e ¥y (1)— a). Since y(0)=y(1) we have that e #V=1 or that g(1)=2mik
ome integer k. @

=

(o)

"
v

Ave

4.2 Definition. If y is a closed rectifiable curve in C then for a ¢ {v}

—a\ Y4,
u} UL
is called the index of y with respect to the point a. It is also sometimes
called the winding number of y around a.
Recall that if y:[0, 1]-C is a curve, —y or y~ ! is the curve defined by
10N t

(— vV ADN=v(]l -1 (thic 1s actunallv a re
\ ’ /\.’I ‘ / \U“‘u A0 MV\«M“AIJ “A A w A4 A4
definition). Also if y and o are curves defined on {0, 1] with y(1)=4(0)
L1 . . P SRURY Y. ™ -1 .« . N N7 ofN e 2
théen y+o 1S the curve (}'+0)([) Y(Zt)) MUsStrs 3 and (y+o)(f)=o(l

<

t < 1. The proof of the following proposition is left to the reader.

"O

4.3 Proposition. If vy and o are closed rectifiable curves having the same
initial points then

Y (—v:a) for every a ¢ {v});
y+o'a)=n’y, a)+ n(a;a) for every a ¢ {y}u{o}.
Why is n(y;a) called the winding number of y about a? As was said

before if y(£)=a+e*™™ for 0<t <1 then n(y;a)=n. In fact if (b—a)<1

D

then n(y;b)=n and if |b—a|>1 then n(y;b)=0. This can be shown
directly or one can mvoke Th°orem 4.4 below. So at least in this case
n(y;b) measures the number of times y wraps around b — with the minus

sign indicating that the curve goes in the clockwise direction.
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The following discussion is intuitive and mathematically imprecise.
Actually, with a little more sophistication this discussion can be corrected
and gives insight into the Argument Principle (V.3).

If v 1s smooth then

. =1 rl Y/(t) -
](z—a) dz=’ —/‘ﬁdf
Yo y\t)—a
Taking 1nsp1rat10n from calculus one is tempted to write [.(z—a)” Tdx =
log[y(#) — a]|/Z¢- Since y(1)=v(0), this would always give zero. The diffi-
culty lies in the fact that y(7) — a is complex valued and unless y(¢) — a lies
in a region on which a branch of the logarithm can be defined, the above
inspiration turns out to be oniy so much hot air. In fact if y wraps around
the point a then we cannot define log(y(¢) — a) since there is no analytic
branch of the logarithm defined on C—{a}.
Nevertheless there is a correct interpretation of the preceding discus-

sion. If we think of logz =1log|z|+ iargz as defined then
f(z—a) dz=log[y(1)—a]~log[y(0)—a]=

[Qov(l al—loglv ( 1+1[ re[v()—al—are[ v(O)—all.
Gt~ 11 AN bl Siv\Y o[_l\/ ] o M\YJ 1/

Since the difficulty in defining logz i1s in choosing the correct value of
argz, we can think of the real part of the last expression as equal to zero.
Since y(1)=vy(0) it must be that even with the ambiguity in defining argz,
arg[y(1)— a]—arg[y(0) — a] must equal an integral multiple of 2#, and
furthermore this integer counts the number of times y wraps around a.

Let y be a closed rectifiable curve and consider the open set G=C —
{y}. Since {y} is compact {z:|z|> R} < G for some sufficiently large R.
This says that G has one, and only one, unbounded component.

rnnotsy he 1 holanoino 1N PSP NN 2]
CuvriotuInt JUI u UCLU 551115 GU u CUIripuri UJ JV
a belonging to the unbounded component of G.

Proof. Define f: G—C by f(a)=n(y;a). It will be shown that f is continu-
ous. If this 1s done then it follows that f(D) 1s connected for each
component ined in the set of int egers it

fn"n\xlc th

NJALAVU Y

SD‘

~ 7

the components of G are open

=d(a,{y)). If |a—b|<8<;r then

dle
!_f(a)—f(b)l=§1;f[(z—a) ~(z=b) "] ]
Y !
_ 1 [ (a—b) i
277] (z—a)(z—b)
|a— b [' |dz|

<
27 Jv |z —al|z— b
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Cauchy’s Theorem

A oo

But for |n—h|(—r and z on {y} we have that |z—a|>r>

|z—b|>1r. It follows that |f(a)~— f(b)|<-— V(y). So if €>0 is given
r?

1y an
2

then, by choosing § to be smaller than 1 r and (7r’%)/28V (), we see that f
must be continuous. (Also, see Exerc1se 2.3)

Now let U be the unbounded component of G. As was mentioned
haofara tha thoanram thoara 1¢ an R SN0 enich that I=~f>:1>INR 1 If e >0
UCIUIV UIU LIV UILVILL UIVILV 1D Al IN -~V sucn wuiatlv o =2 L4 |4~ LN f« 21 X 7V

| 1

choose a with V(y) uniformly for z on {y};
|n(y; a)| <e. That is, n(y; )—>O as a—00. Since n(y;a) is constant on

then
U, it must be zero.

1. Prove Proposition 4.3.

2. Give an example of a closed rectifiable curve y in C such that for any
integer k there is a point a ¢ {y} with n(y;a)=k.

3. Let p(2) be a polynomial of degree n and let R >0 be sufficiently large
so that p never vanishes in {z:|z|> R}. If y(t)= Re", 0 <t <27, show that

r p'(2)
) 5@
4. Fix w=re?#0 and let y be a rectifiable path in C— {0} from I to w.
Show that there is an integer k such that | z~'dz=logr+ i +2mik.

dz =2min.

§5. Cauchy’s Theorem and Integral Formula

We have already proved Cauchy’s Theorem for functions analytic in a
disk: if G is an open disk then [, f=0 for any analytic function f on G and
any closed rectifiable curve y in G (Proposition 2.15). For which regions G

does this result remain valid? There are regions for which the result is
false. For example. if G = P—-[ﬂ\ and f(7\— 7! then -v(t\:o” for <<

QidSw 4 Vi vAlilipiivg 12 J Qiivd J\&«)y7 & taaviz

27 gives that [ f=2mi. The d1ff1culty with C {0} is the presence of a hole
(namely {0}). In the next section it will be shown that [ f=0 for every
analytic function f and every closed rectifiable curve y in regions G that
have no “holes.”

In the present section we adopt a different approach. Fix a region G
v A asmalutin Frrsmntinsm £ v\ Yo thara o ~AAsmAitine A o nl/\nar‘ '-nnf:c;nl\la
aliu aill a 1a1_y le 1u llbll llJ Ull U, 1D LICIC A VCUILIUILIVILL Ull A LVIUDUU 1\l Liliauly

curve y such that /. f=0? The answer is furnished by the index of y with
respect to points out51de G. Before presenting this result we need the
following lemma. (This has already been seen in Exercise 2.3.)

5.1 Lemma. Let y be a rectifiable curve and suppose @ is a function defined

and continuous on {v}. For each m=1 let F,_ (z)=[ @(w)(w—2z)""dw for
z ¢ {y}. Then each F,, is analytic on C— {y} and F (z) mF, . (2).

Proof. We first claim that each F,, is continuous. In fact, this follows in the
same way that we showed that the index was continuous (see the proof of
Thanram A4 A) Nno noad Anlhy Anhecarva that cineca [a) Q rnmMmnant m 1c
1HVVIVLIIED 777 ). ULIC LIVGVU VIILY UUUDLIE VL Ldlal, dllivh ]\Y}{ o \.«Ulllya\—l, \_V 10
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bounded there; and use the factorization.

11 _r.1 i 1 1
(w=—2)" (w—a)" LW™2 W“’Jk=1(w—2)'"”k(w—a)k_'
i I
(w=2)"(w=a)  (w—z)""'(w—ay

5.2 =(z—g)

+

+ 1
(w—z)(w—a)”
The details are left to the reader.
Now fix a in G=C—{y} and let z € G, z #a. It follows from (5.2) that

F, (Z) F, (a) fw(W)(w—a)_'dij“_+fq>(W)(w—a)_'"

y  (w=2)" Y w—z

53 dw
Since a ¢ {y}, p(w)(w—a) ¥ is continuous on {y) for each k. By the first
part of this proof (the part left to the reader), each integral on the right
hand side of (5.3) defines a continuous function of z,z in G. Hence letting
z—a, (5.3) gives that the limit exists and

F’()f (p(w)l W+ —ﬂ)?dw
(w— a)"'+ , (w=a)”

3 % 7] { ~

MLy, 1\4

5.4 Cauchy’s Integral Formula (Flrst Version). Let G be an open subset of
the plane and f: G— C an analytic function. If v is a closed rectifiable curve
in G such that n(y;w)=0 for all w in C— G, then for a in G—{v}

1 [ f(g) .
n(via)f(a)=5—~ | T— 4
,

Proof. Define ¢ : G X G—>C by ¢(z,w)=[f(2)—f(W)]/(z—w) if z#w and
@(z,z)=f'(z). It follows that ¢ is continuous; and for each w in G,
z—>@(z,w) 1s analytic (Exercise 1). Let H={we C:n(y;w)=0}. Since
n(y;w) is a continuous integer-valued function of w, H is open. Moreover
Hu G=C by the hypothesis.

Define g:C—>C by g(2)=/,p(z,w)dw if zeG and g(z)=/ (w—
2) " Yf(wyaw if ze H. IfZEG H then
fw)=f(2)
dw= d
Jotzwydn= [ = d
~ f(w‘
_ ’ J N\ 7
JYW—
f(w)
=f d
S W=z

Hence g is a well-defined function.
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— nam bt n Lonam bl aa

By Lemma 5.1 g is analytic on C; that is, g is an entire function. But
Theorem 4.4 implies that H contains a neighborhood of oo in C . Since f

is bounded on {y} and Jim n (w—2z)" =0 uniformly for w in {y},
s f(w)
55 llm g(z)= hm |
—00 J w—

In particular (5.5) implies there is an R >0 such that |g(z)|<1 for
|z] = R. Since g is bounded on B (0; R) it follows that g is a bounded entire
function. Hence g is constant by Liouville’s Theorem. But then (5.5) says
that g=0. That is, if a e G—{y} then

( f(z)—f(a) |
—_—da

0= Z2—da
N ECPR

This proves the theorem.

Aaad g yllv AAwN/2 wiiie mEmm

Often there is a need for a more general version of Cauchy’s Integral

Formula that involves more than one curve. For example in dealing with
an annulus one needs a formula involving two curves.
5.6 Cauchy’s integrai Formuia (Second Version). Let G be an open subset of
the plane and f: G— C an analytic function. If vy,,...,Y,, are closed rectifiable
curves in G such that n(y,;;w)+--- +n(y,;w)=0 for all w in C— G, then
for ain G—{v}

f (Z)
3 n(via)= 2
( )E ()= o | S d
YA
Proof. The proof follows the lines of Theorem 5.4. Define g(z,w) as it was

done there and let H={w:n(y;w)+--- +n(y,;w)=0}. Now g(z) is
defined as in the proof of (5.4) except that the sum of the integrals over
Yis---» Y, 18 used. The remaining details of the proof are left to the reader.

——
Though an easy corollary of the preceding theorem, the next result is
very important in the development of the theory of analytic functions.

5.7 Cauchy’s Theorem (First Version). Let G be an open subset of the plane
and f: G—C an analytic function. If vy,,...,v,, are closed rectifiable curves in

G such that n(y;;w)+ - -+ +n(y,,; w)=0 for all w in C— G then
L.
A
[ =0
k=17
Proof. Substitute f(z)(z — a) for f in Theorem 5.6. l
Let G={z:R,<|z|<R,) and define curves y, and v, in G by y,(#)=
; U o> Zj i i2 J ii\t/
re’, y,(y=re™" for 0<t<27, where R, <r,<r,<R,. If |w|<R,,
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n(y;;w)=1= —n(y,; w); if |w| = R, then n(y,; w)=n(y,; w)=0. So n(y;w)
+n(y,;w)=0 for all win C—-G.

5.8 Theorem. Let G be an open subset of the plane and f: G—C an analytic

function. If y,,...,v,, are closed rectifiable curves in G such that n(y;w)
+ -+ +n(y,,;w)=0 for all win C— G then for ain G—{y} and k 2 1

1%(a) 2 n(y,;a)= k'z 27”] . f(zi+I

J=1

Proof. This follows immediately by differentiating both sides of the for-
mula in Theorem 5.6 and applying Lemma 5.1. i

5.9 Corollary. Let G be an open set and f: G—C an analytic function. If y is
a closed rectifiable curve in G such that n(y;w)=0 for all w in C— G then
for a in G—{vy)

k! f f(z2)

ST an(y;a)= 5= dz.

V4 lll' ( ye+!
Jyu—a)
Cauchy’s Theorem and Integral Formula is the basic result of
complex analysis. With a result that is so fundamental to an entire theory
it is usual in mathematlcs to seek the outer limits of the theorem’s validity.

5.10 Morera’s Theorem. Let G be a region and let f: G— C be a continuous
function such that [f=0 for every triangular path T in G; then f is analytic
in G.

Proof. First observe that f will be shown to be analytic if it can be proved
that f is analytic on each open disk contained in G. Hence, without loss of
generality, we may assume G to be an open disk; suppose G=B(a; R).

1] tha h th + that £ ha | = > 1 T Aafs
USC ik uypGLueSIS WO prove LllaLJ nas a puuuuvc Or Z in U Gaeline

F(2)= (4., ) F1X z5 in G; then for any point z in G the hypothesis gives
that F(z)=f[a,201f+ f[%zlf. Hence

F(z)—F(z,
(2)— F(zp) _ lf[]f-

This gives
cT r
F2)=Fz0) _ fy = 1 F—f(z0)

z—2Z, (z—z0)
[ZO)ZJ
1 il

= - - [f(w)—f(z0)] dw.
(z2—2zp)

[20’2]
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But by taking absolute values

F(z) = F(z)

Z2— 2y

—f(2)| = f(2) = f(20)l-

which shows that
F (Z)’~ F (Zo)

zZ—2 Z—ZO

=f(2)- N

Exercises

i. Suppose f: G—C is analytic and define ¢: G X G—>C by ¢(z,w)=[/(2)
—fW)(z—w) "' if z#=#w and ¢(z,z)=f'(z). Prove that ¢ is continuous and
for each fixed w, z—q@(z,w) is analytic.

2. Give the details of the proof of Theorem 5.6.

Tt D —=Ds7+1.1Y ~— DN 1 R

b M. N_/D A\ T at
5. Let D+—D\_.1,2}, U= D\J; J) \u_,_uu J. L&l
’\

~ v~ ha
I 1'2’ r3 vv vu
whose traces are [z —1]=1, |z+1|=1, and |z|=2, respectively. Give Y Y2
and vy, orientations such that n(y,;w)+ n(yz,w)+ n(y;; w)=0 for all w in
C-G.

4. Show that the Integral Formula follows from Cauchy’s Theorem.

5. Let y be a closed rectifiable curve in C and a &{y}. Show that for n=>2
[,(z—a)""dz=0.

6 Let f be analytic on D= B(0; 1) and suppose | f(z)| <1 for |z] < 1. Show
IO

7. Let y(f)=1+¢e" for 0<¢<27. Find | (

)" dz for all positive in-

z—1
tegers n.
8. Let G be a region and suppose f,: G—>C is analytic for each n> 1.
Cunnnce that [ £ ~ranveraae nniformlyu ta a functinon £ G Show that f
UU}J}JUDV uiiat lJnj UUI‘.'VIB\/D WUilil Vvl ilil v a lull\f‘-lvllJ \J~ T AFLALAJ VY Ullu‘-J

9. Show that if f:C—C is a continuous function such that f is analytic off
[—1,1] then f is an entire function.
S In

10. Use Cauchy’s Integral Formula to prove the Cayley-Hamilton Theo-

rem: If 4 ican n » matriv nuar and f(:\=detl( > — 4) 1¢c the characteric-
A1l /3 10 QAll It 7\ 1t 111AAl 1IN UV wlr U ullUJ \(.r} uvt\a ll} 1V Uilw Vviidliddviwiiaio

a1 1 L 4 il ___ Lf AN __ N Tl accmnion wsxrac taliaie Fanaan 4 e e e

tic poiynomial oI 4 tnen j{A)=U. (1niS €XerCis€ was takeén Irom a paper

by C'. A. McCarthy, Amer. Math. Monthly, 82 (1975), 390-391)

§6 The homotopic version of Cauchy’s Theorem and simple connectivity

This section presents a condition on a closed curve y such that [ f=0
for an analytic function. This condition i1s less general but more geometric
than the winding number condition of Theorem 5.7. This condition is also
used to introduce the concept of a simply connected region; in a simply

AN tad Canchu’le Thanran ralsd £ avarv analuts £ ~tinn

conneciea 1 C51U11 Lvaulny § 1ncorem m vaiia 101 €very anaiyuc TUNncuon

and every closed rectifiable curve. Let us illustrate this condition by
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considering a closed rectifiable curve in a disk, a region where Cauchy’s
Theorem is always valid (Proposition 2.15).

Let G=B(a; R) and let y:[0, 1]>G be a closed rectifiable curve. If
0<¢t<1and 0<s<1, and we put z=ta+(1—1)y(s); then z lies on the
straight line segment from a to y(s). Hence, z must lie in G. Let y,(s)=
+(1—1)y(s) for 0=s<1 and 0=<¢=<1. So, y,=7v and vy, i1s the curve
constantly equal to a; the curves y, are somewhere in between. We were
able to draw y down to a because there were no holes. If a point inside y
were missing from G (imagine a stick protruding up from the disk with its
base inside y), then as y shrinks it would get caught on the hole and could
not go to the constant curve.

e __*,° Ao P

6.1 Definition. Let vy, v,:[0, 1]>G be two closed rectifiable curves in a
region G; then vy, is homotopic to y, in G if there is a continuous function
I':[0, 1]1X[0, 1]—>G such that

[ T(s,0)=y4(s) and F(s D=v,(s) (0=s=1)

TN A=TY1 &Y (O
\I\U,‘} .l.\l,l} \

L
0.4

I/\
/\

1
1)

So if we define v,:[0, 1]->G by y,(s)=1I'(s,?) then each y, is a closed
curve and they form a continuous family of curves which start at y, and go
to y,. Notice however that there is no requirement that each y, be

rectifiable. In practice when y, and vy, are rectifiable (or smooth) each of
the v, will also be rectifiable (or smooth).

If v, i1s homotopic to v, in G write v.~v,. Actuallv a notation su b a

22 J0 4v AsvanUvVpaw ’I AXX VY A Avws ’U ’l A AvLweiLaL y A ANS AL vwv a

Yo~7v,(G) should be used because of the role of G. If the range of I is
required to be in G then, as we shall see shortly, all curves would be
homotopic. However, unless there is the possibility of confusion, we will
only write y,~,.

It 1s easy to show that

3
7

It 1 ~” 1s an equivalence relation. Clearly any
o 10 L MAQA.‘.'A t~ 1tanlf TF .. a: and T.IN 11v/IN 11 - £ cntinfinc £ N
\,Ul Ve iS 11 llUl.U}J C WU 1WLCIL. 11 Y0~ Yl i1 1 . I_U lJ/\lU lJ U dAlidIIUDd \U L}
then define A(s,t)=I(s,1—1¢) to see that y,~y,. Finally, if y,~v, and
v,~7, with I satisfying (6.2) and A:[0, 1]X[0, 1]> G satisfying A(s,0)=
AT
A AT
I A , yl N
A
%
r
0
A(I?)
i /J’
UM A
i
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Y,(5), A(s,1)=1v,(s), and A(0,¢#)=A(l1,¢) for all s and ¢; define P[0,
[0, 1]->G by

1]X

Then

..
C)
[ ]

6.3 Definition. A set G 1s convex if given any two points a and b in G the
line segment joining a and b, [a,b], lies entirely in G. The set G is star
shaped if there 1s a point a in G such that for each z in G, the line segment
irely in G. Clearly each convex set i1s star shaped but the
t

1
i

a- star shaped and z and w are points in G then [z,a,w] 1s a polygon in G
connecting z and w. Hence, each star shaped set is connected.

6.4 Proposition. Let G be an open set which is a— star shaped. If vy, is the
curve which is constantly equal to a then every closed rectifiable curve in G is
homotapic to v,.

Proof. Let y, be a closed rectifiable curve in G and put I'(s,7)=ty,(s)+
(1-1)a. Because G 1s a— star shaped, I['(s,t) e G for 0<s,1< 1. It is easy to

o
"1

TL _

111€ bllu&ll()n ln WIllLl’l a curve lb IlOIIlOlOpl(. {0 a constant curve lb one
that we will often encounter. Hence 1t i1s convenient to introduce some new
terminology.

6.5 Definition. If vy 1s a closed rectifiable curve in G then y 1s homotopic to
zero (y~0) if y is homotopic to a constant curve.

6.6 Cauchy’s Theorem (Second Version). If f: G— C is an analytic function
and vy is a closed rectifiable curve in G such that y~0, then

=(.
y

This version of Cauchy’s Theorem would follow immediately from the
first version if it could be shown that n(y;w)=0 for all w in C—-G
whenever y~0. This can be done. A plausible argument proceeds as
follows

Let y,=v and let y, be a constant curve such that y,~vy,. Let I satisfy
(6.2) and define h(1)= n(y,;w), where v,(s)=T(s,7) for 0<s, ¢ <1 and w is
fixed in C— G. Now show that A is continuous on [0, 1]. Since A is integer
valued and A(0)=0 it must be that A(¢)=0. In particular, n(y;w)=0 for all
winC—-G.

The only point of difficulty with this argument is that for 0 <z <1 it

may be that vy, is not rectlflable
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this assumption and providing the details to transform the preceding
paragraph into a legitimate proof (Exercise 9). Indeed, in a course de-
signed for physicists and engineers this is probably preferable. But this is
not desirable for the training of mathematicians.

The statement of a theorem is not as important as its proof. P
important in mathematics for several reasons, not the ieast of which 1s that
a proof deepens our insight into the meaning of the theorems and gives a
natural delineation of the extent of the theorem’s validity. Most important
for the education of a mathematician, it is essential to examine other
proofs because they reveal methods.

A good method i1s worth a thousand theorems. Not only is this
statement valid as a value judgement, but also in a literal sense. An
important method can be reused in other situations to obtain further
results.

With this in mind a complete proof of Theorem 6.6 will be presented.
In fact, we will prove a somewhat more general fact since the proof of this
new result necessitates only a little more effort than the proof that
n(y;w)=0 for w in C— G whenever y~0. In fact, the proof of the next
result more clearly reveals the usefulness of the method.

6.7 Cauchy’s Theorem (Third Version). If y, and v, are two closed rectifiable
curves in G and yy~v, then

~ ~

[ =1 ¢

JYO JY 1 i

for every function f analytic on G.

Before proceeding let us consider a special case. Suppose I satisfies (6.2)
and also suppose I' has continuous second partial derivatives. Hence
o217 a2
(220 § v 1

osot  Otds

throughout the square I? = [0, 1]x [0, 1]. Define

1
1

( oT
g0 = | f(I(s, D) — (s, 1) ds;
J as

0

then g(0) = [,, f and g(1) = [,, f. By Leibniz’s rule g has a continuous
derivative,

r AT AT A271
o'( — ‘ | £UT (¢ )\ d ,di €L (T ¢ N 4 I <
& \¢) ' I J P\ )y VUMWY ) I “uo

os ot 0t 0s
J L. . |
0
But

a I—I r F\ a _| Yaweli F\ 8F aF + r F 821-‘

-_— o] e = [e] —_— le) [
Vo) TV e ) T el s

5 I ar | g5 Ot 0501
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annra
1IVIIVG

g'(t) = AT(L, 1)) ";1; (1, H—fTO, 1) 95; 0, 1).

Since I'(1, ) = I'(0, ¢) for all ¢ we get g'(r) = O for all ¢. So g is a constant;
in particular [, /= [,, f.

Proof of Theorem 6.7. Let T': [°—>G satisfy (6.2). Since T is co
and I? is compact, T is uniformly continuous and T'(/?) is a compact

subset of G. Thus

ntinuous

vAAN AR

and put

that I'(J..) < B(Z,, r). So if we let P, be the closed polygon [Z.,, 7‘+i,k5

TEETEY T NT KIS —\—j’(7 ' Vad _"
7 7 than
+1,k+15 Zjk+1> Zyl; then

from Proposition 2.15 it is known that
6.8 f=
Pk
for any function f analytic in G.
It can now be shown that [, = [, f by going up the ladder we have
constructed, one rung at a time. That is, let Q, be the closed polygon [Z,, ,,

Zl,k A ] We will show that Ivof .[Qof IQ:f— ) = .[an fw
(01“16 rungatat “‘1(‘:') To see that J),oj JQOJ observe that lfO‘U) = )’oU) for
jo, i+l
- sl =
n n

then o;+[Z;,,, ¢, Z;0] (the + indicating that o; is to be followed by the
polygon) 1s a closed rectifiable curve in the dlSk B(Z;q; r) < G. Hence

{ o ( R I N
[r=- [ r= [ =
o) [Zj+1,0, Zjo) (Zjo,Zj+1,0]

Adding both sides of this equation for 0 < j < n yields fv,, f= ,er f. Similarly
(. F=1(, f

JY1V J¥1v
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To see that [, f=/,  fuse equation (6.8); this gives
k k+1
n—1
6.9 0= f
J=0ij
Z,+1,k+1
\ Zj+2,k+1
/ 1
Zj.k‘v"i(
Z}-}l,k\\
Zj+2 k

However, notice that the integral [, f includes the integral over [Z;,  \,
Z+1,k+1), which is the negative of the integral over [Z;. 1 y+1, Zj+14ls
which is part of the integral [ ,, . f. Also,

> _rofa®kN_ i k\_ ~
Lo,k = Lo = LT )T 4
\ Il/ \ ll/
so that [Zy 111, Zo.u]l = —[Z, Z, 1 +.)- Hence, taking these cancellations

into consideration, equation (6.9) becomes

0=

This completes the proof of the theorem. |l
The second version of Cauchys Theorem immediately follows by

Inff-ﬂn - '-\A a ~rnanctant math 111 (6 T

l\wlbllls Yl UL a Luilidsuaill l}alll 111 \U. I}.

6.10 Corollary. If v is a closed rectifiable curve in G such that y~O0 then
fase vy Frse 1] vy 720 A _ 17

I\Y VV}—UJ 7T Wil vw tri o U.

The converse of the above corollary is not valid. That is, there is a
closed rectifiable curve y in a region G such that n(y;w)=0 for all w in
C — G but y is not homotopit to a constant curve (Exercise 8).

If G is an open set and y, and vy, are closed rectifiable curves in G then
MIA; . \ /a: PAY Fnr Ann]ﬂ 7 1N p _ f? V\rn‘r;f"at‘l LYY /f:\ ' ot as {i\; pel 7”’
l\ Y } \ l, u} 11Ul valldl 4 111 v \¥ lJl UViuulvu YO"" rl\U } AL ro\l} C

s —2mit o n - 1 Fasy 1 ety o el
and y,(t) e ™ for 0=<t=<1. Then n(yy;0)=1 and n(y,;0)= —1 so that

Yo and y, are not homotopic in C— {0}.

6.11 Definition. If v,,v,:[0, 1] G are two rectifiable curves in G such that
Yo(0)=7v,(0)=a and y,(1)=7v,(1)=b then y, and y, are fixed-end-point
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homotopic (FEP homotopic) if there is a continuous map I': 725G such

6.12 I(s,0) = yo(s)  T(s, 1) = 7,(5)
I'o,¢1) =a ', » =

for0 <s,t< 1.

Again the relation of FEP homotopic is an equivalence relationship on
curves from one given point to another (Exercise 3).

Notice that if y, and y, are rectifiable curves from a to b then y,—1y,

is a closed rectifiable curve. Suppose I satisfies (6. 12) and define y: [0, 1] > G

ho o) — o 2 Fme N = o o 1 <5 20 mnd LN
vy Y\W) = Vo\Vd) 1L U = JH = '3', '}’\J} = U IUI ‘3' > \ 3‘, alndu 'y\b) == 'yl
(3—3s)for £ < s < 1. We will show that y ~ 0. In fact, define A: 7> — G by
TG3s(1—1),7) if 0<s<4%
As,7) = {D(1—1,3s—14+2t—3st) if 4 <s<3%
<

y(@G=3)(1-1) if 3<s

Although this formula may appear mysterious it can easily be understood
lav: caniee ~ LL..A» L‘A.. a oixrmie sraotiie ~Af 2 A o thhn cn bt ndiae AL T 4 b L o
UYy JSCUILIE Lilal 1Vl a glVC 1 valuC Ul [, /) 1D tIC 10OLIICULIVILI U1 1 LU LT UUUllUdIy
of the square [0, 1 —7] x[¢, 1] (see the figure). It is left to the reader to check

that A shows y ~ 0.

0 + !
=1

Hence, for f analytic on G the second version of Cauchy’s Theorem gives

[r=[r-]7

b4 Yo N

La ) P4 : b 1 sl ~r

This is summarized in the following.

6.13 Independence of Path Theorem. If y, and y, are two rectifiable curves
in G from a to b and vy, and vy, are FEP homotopic then

f . [ .
) J=) 7
Y Yo YY1
for any function f analytic in G.
Those regions G for which the integral of an analytic function around a

closed curve is always zero can be characterized.

6.14 Definition. An open set G is simply connected if G is connected and
=% r-% A 94 I\Ir\nnr‘ ral R ot B8~ ;"\ fz ;ﬂ ‘\I\MI\*I\“ Pal *I\ e 7-% 72 %
\rVCl_y LCIUDCU LUL VU 111 U DD llUlllUlU})lb LU LC1V
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.15 Cauchy’s Theorem (Fourth Version). If G is simply connected then

[,J=0 for every closed rectzﬁable curve and every analytzc functzon 1.
Let us now take a few moments to digest the concept of simple connected-
ness. Clearly every star shaped region is simply connected. Also, examine the

complement of the spiral r = 6. That is, let G = C—{6e®®: 0 < 6 < ©0};

\\1a

then G is simply connected. In fact, it is easily seen that G is open and
connected. If one argues in an intuitive way it is not difficult to bec o'ne

convinced that every curve in G is homotopic to zero. A rigorous proof w

be postponed until we have proved the following: A region G is szmply

connected iff C, — G, its complement in the extended plane, is connected in C

This will not be proved untll Chanter VIII. If th_ s criterion is applied to the
t f

napici
reoinn (7 oh AY .
l\rélvll g hd

~rANQIQ
VULLIDID

point ¢
Notice that for G = C— {0}, C G = {0} is connected but C,—G =
{0, oo} is not. Also, the domain of the principal branch of the logarithm is

simply connected.
It w

a2Q Q
Yvwao o1

l\fpnn
11 a

[ 4
ltiiat

\.J

-

Vad

n the integral of f around every
ext result should not be too sur-

function f has a primitive in a
closed rectifiable curve in G i
prising in light of this.

or
A2 §
e
& 4

region
zero. The

w &
=2

6.16 Corollary. If G is simply connected and f: G— C is analytic in G then f
has a primitive in G.

Proof. Fix a point @ in G and let v,, y, be any two rectifiable curves in G
from a to a point z in G. (Since G is open and connected there is always a
path from a to any other point of G.) Then, by Theorem 6.15,0 = {,, _,,
f= _[yl f— j'n f (where y, —vy, is the curve which goes from a to z along y,
and then back to a along —y,). Hence we can get a well defined function
F: G — C by setting F(z) = |, f where y is any rectifiable curve from a to z.
We claim that F is a primitive of f.

If zye G and r > O is such that B(z,; r) < G, then let y be a path from
ato zy. For zin B(zy; r) let vy, = y+[z,, z]; that is, y, is the path y followed
by the straight line segment from z, to z. Hence

F(2)— F(z.) 1 r A
\Z)—4iZg) _ 1 ,
zZ—2, (z—2zy) “l20:2]

Now proceed as in the proof of Morera’s Theorem to show that

F'(zg)=f(z,)- B

Perhaps a somewhat less expected consequence of sxmp!e connectedness
dlhhin Cant ¢hint A2 Lanscnlh AL VAo L7\ ce:linaan L 240 nsanle.dl sad smmcimse wre s ) Mg
IdD LIIC 14dCl Lllial 4 vl dlivil Ul J.Ug_/ké} WllCle D dlldlyl CvCl lellblle,

HP—
2. ¢
[75]
7
o
a.
lom ]
o
Q
—*

consequence of the preceding corollary.

6.17 Corollary. Let G be simply connected and let f: G— C be an analytic
Sfunction such that f(2)#0 for any z in G. Then there is an analytic function
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g:G—>C such that f(z)=expg(z). If zy € G and e"°=f(z,), we may choose g
such that g(z,)=w,.

7
Dunnf Qinrna £ smaviaer wamiohoao f o numalitin ~ 7Y o Tlae; 4hha samnnadiaan~
1r1v J IV J 1HIUYLlL  valudiiod, — - f n dlalyllb vil U, MU, Uy LIIC PICDCUI 15
J
corollary, it must have a primitive g,. If 4(z) = exp g,(z) then 4 is analytic
and never vanishes. So, h is analytic and its derivative is

h(2)f'(z)—h'(2)f(2)
h(z)?

But 4’ = gih so that hif'—fh’ = 0. Hence f/h is a constant ¢ for all z in G.
That is f(z) = c exp g,(2) = exp [g,(2) +¢'] for some ¢’. By letting g(z) =
g1(2)+c'+2nik for an appropriate k, g(zo) = w, and the theorem is
proved. |

Let us emphasize that the hypothesis of simple connectedness is a topo-
logical one and this was used to obtain some basic results of analysis. Not
only are these last three theorems (6.15, 6.16, and 6.17) consequences of
simple connectivity, but they are equivalent to it. It will be shown in
Chapter VIII that if a region G has the conclusion of each of these
theorems satisfied for every function analytic on G, then G must be simply
connected.

6.18 Definition. If G 1s an open set then y 1s homologous to zero; in symbols
y=0, if n(y;w)=0 for all w in C—G.

Using this notation, Corollary 6.10 says that y~0 implies y~0. This
result appears in Algebraic Topology when it is shown that the first
homology group of a space is isomorphic to the abelianization of the
fundamental group. In fact, those familiar with homology theory will
recognize in the proof of Theorem 6.7 the elements of simplicial approxi-
mation.

Exercises

1. Let G be a region and let o,, o,: [0, 1] - G be the constant curves
o,(t) = a, o,(t) = b. Show that if y is closed rectifiable curve in G and y ~ o,
then y ~ o,. (Hint: connect g and b by a curve.)

2. Show that if we remov

2 ow that e the requirement “I'(0, ¢) = I'(1, ¢) for all ¢~

i i e Sabinhd > My 2y \%y g0 ot
from Definition 6.1 then tl"e curve yo(t) = €™, 0 < ¢ < 1, is homotopic to
the constant curve y,(f) = 1 in the region G = C— {0}.

3. Let € = all rectifiable curves in G joining a to b and show that Definition
gives an equivalence relation on %.

{0} and show that ev ery closed curve in

vailse W

Ariveva wwhAaca $mnna 10 ~AAn 4-.-...-.,\/-1 3:m > 1ol 11
LCUlLve wiludl labC lb Lulitallicu i1l <. |[4] = 14.
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( d

5. Evaluate the integral J = 2|cos 20| e® for 0 < 6 < 2.
7
0<

+
6. Let y(6) = 6e for 6 <27 and y(0) = 4n—6 for 27 < 0 < 4m.

7. Let f(2) = [(z—3—i)(z—1-30)-(z—1-3)-(z—3—i)] " and let y be the
polygon [0, 2, 2+2i, 2i, 0]. Find |, f.
8. Let G = C—{a, b}, a # b, and let y be the curve in the figure below.

vy
il

e T —
M NG
/ DS AN
.\ yd /
AN e e
S~ -
(a) Show that n(y; a) = n(y; b) = 0.
(b) Convmce yourself that y is not homotopic to zero. (Notice that the
word is “‘convince’” and not “prove”. Can you prove it?) Notice that this

example shows that it is possible to have a closed curve y in a region such
that n(y; z) = O for all z not in G without y being homotopic to zero. That
is, the converse to Corollary 6.10 is false.

9. Let G be a region and let y, and y, be two closed smooth curves in G.
Suppose y,~7v, and I satisfies (6.2). Also suppose that y,(s)=I(s,?) 1s
smooth for each ¢. If we C— G define h(¢)=n(y,;w) and show that A:
[0, 1]—>Zis continuous

YN~ "N YN

4 FO)) Y

— & )
N /



Counting zeros ; the Open Mapping Theorem 97
§7. Counting zeros; the Open Mapping Theorem

In this section some applications of Cauchy’s Integral Theorem are
given. It is shown how to count the number of zeros inside a curve; also,
using some information on the existence of roots of an analytic equation,
it will be proved that a non-constant ana unction on a region maps

In section 3 it was shown that if an analytic function fhad a zeroatz = a
we could write f(z) = (z—a)™g(z) where g is analytic and g(a) # 0. Suppose
G is a region and let f be analytic in G with zeros at a, . . ., a,,. (Where some
of the a, may be repeated according to the m 1ltin1icity of the

2 |fn Fr\——( Vs |} — 77 (ﬁ=n »\ ara o~ 10 N n Ve
(=3 Wil J\&«) — \ ul \< u2} . o \& uMIS\A} YWIIVIi 5 10 alia _y Vil
2(z) # O for any z in G. Applying the formula for differentiating a product
gives
I( 4
f(2) 1 1 1 g'(2)
7.1 = + +- 4+ +
f@ z-a, z-—a, z—a, g(2)
L. - ’ _ Nl ~eey a4blia 2L o A .. 4l e a0 L0 4L O 10
10 2 #+ dqy ...,y INOW Llildal ULS IS5 JdOIIC, UIC pIrool Ol UIc 10110WINg

theorem is straightforward.

7.2 Theorem. Let G be a region and let f be an analytic function on G with

zeros ay, . . . , a, (repeated according to multiplicity). If y is a closed rectifiable
curve in G which does not pass through any point a, and if y =~ 0 then

- Pl VR

‘ J“Z’dz Y nly; a)

271 ) f(2) k=1
?
Proof. 1f g(z) # O for any z in G then g'(z)/g(2) is analytic in G; since y = 0,
Fad rs N\
Cauchy’s Theorem gives | £42) 4, — o, So, using (7.1) and the definition of
] 2@
Y

the index, the proof of the theorem is finished. |}

7.3 Corollary. Let f, G, and y be as in the preceding theorem except that

a,,...,a, are the points in G that satisfy the equation f(z)=a; then
1 (&, S
. e = 2, MYy, &)

m;’f(z —a k=1

)
~~
N
N
+
o
p—

As an illustration, let us calculate | dz where y is the circle
J z +Z+1

2. Since the denominator of the integrand factors into (z—w)) (z—w,)

211200 A0 CLIIOAIAIIA0OL O 10 1ICEI allQ 1aClOfs @ Wai,

|7| ”
1<1 ~
where w; and w, are the non-real cubic roots of 1, Theorem 7.2 gives

2z+1

> - dz = 4mi.
Jz tz+1
7
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As another illustration, let y:[0, 1]—>G be a closed rectifiable curve in
C, y~0. Suppose that f is analytic in G. Then fey =0 is a closed rectifiable
curve in C (Exercise 1). Suppose that a is some complex number with
a ¢ {a}=f({y}), and let us calculate n(o;a). We get

J \NU & )70

where g, are the points in G with f(a,)=a. (To show the second equality
above takes a little effort, although for y smooth it is easy. The details are
left to the reader.)

Note. It may be that there are infinitely many points in G that satisfy the
equation f(z)=a. However, from what we have proved, this sequence
must converge to the boundary of G. It follows that n(y;z)#0 for at most
a finite number of solutions of f(z)=a. (See Exercise 2.)

Now if Bin C— {0} belongs to the same component of C—{¢} as does

a, then n(o;a)=n(o;B); or,

Z n(y; z(a)) = Z n(y; z (B))
k J

where 2, (a) and z;( B) are the points in G that satisfy f(z)=a an df(z)=
respectively. If we had chosen y so that n(y; (.k\a),=l for each k, we
AN

would have that f(G) contains the component of C— f({y}) that contains
a. We would also have some information about the number of solutions of
f(z2)=p. This procedure is used to prove the following result which, in
addition to being of interest in itself, will yield the Open Mapping

Theorem as a consequence.

7.4 Theorem. Suppose f is analytic in B(a; R) and let « = f(a). If f(z)—« has
r J 4 \"" 73 J J T/ J J \TJ

a zero of order m at z = a then there is an € > 0 and 8 > O such that for

{—a| < 8, the equation f(z) = L has exactly m simple roots in B(a; e).

A simple root of f(z) = (is a zero of f(z) — { of multiplicity 1. Notice that
this theorem says that f(B(a; €)) © B(«; 8). Also, the condition that f(z) —«

have a zero of finite multiplicity guarantees that f is not constant.

TTT TTTTTJ
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Proof of Theorem. Since the zeros of an analytic function are isolated we
can choose € > 0 such that € < 1R, f(z) = « has no solutions with 0 <
[z a[ < 2e, andf(z) # 0 1f0 < |z—ad] <Ze (Ifm > 2 then f'(a) = 0.)
Let () = a+e exp 27it), 0 <t < 1, an puL o= foy. Now a ¢ {0}; so
there is a 8 > 0 such that B(a; 8) N {o} = [J. Thus, B(a; 8) is contained in
the same component of C— {c}; that is, ]a—C] < & implies n(o; «) = n(o;

{) = Z n(y; z({)). But since n(y; z) must be either zero or one, we have that
K=1
there are exactly m solutions to the equation f(z) = { inside B(a; €). Since

f(z) # 0 for 0 < |z—a| < ¢, each of these roots (for { # «) must be simple
(Exercise 3).

7.5 Open Mapping Theorem. Let G be a region and suppose that f is a non
constant analytic function on G. Then for any open set U in G, f(U) is open.

Proof. If U < G is open, then we will have shown that f(U) is open if we
can show that for each g in U there is a 8 > 0 such that R(n( S\ c f'(f/'\

where « = f(a). But only part of the strength of the precedmg theorem is
needed to find an € > 0 and a & > O such that B(a; €) < U and f(B(a; €)) =

B(«;8). W

If X and Q are metric spaces and f: X — Q has the property that f(U)
is open in { whenever U is open in X, then fis called an open map If fisa
one-one and onto map then we can define the inverse map f~!: Q — X

y f!(w) = x where f(x) = w. It follows that f~! is continuous exactly
when £ is open; in fact, for U < X, (f"HY(U) = f(U).

7.6 Corollary. Suppose f: G — C is one-one, analytic and f(G) = Q. Then

Y Q— C is anaiytic and (f 1) (w) = [f'(2)]" where v = f(2).

Proof. By the Open Mapping Theorem, f~! is continuous and Q is open.
Since z = f~1(f(2)) for each z € Q, the result follows from Proposition III.

~ A~

2.20. 0

Exercises

I. Show that if f: G—C is analytic and v is a rectifiable curve in G then foy
is also a rectifiable curve. (First assume G is a disk.)

t F;lea Anrva 1in 2 annh
l11iauviv LUl vy 1il1 U dulll

<

"t

G

£

=3
"‘:3
wn’ |
a5

z € C:n(y;z)=0}. (a) Show that
o show that if f: G—C is analytic

.C3<

[Ny}

' N~ - ! b - -

12:d(z2,0G)<5r} b) Use part (a)

then f(z)=a has at most a finite number of solutions z such that
n(y;z)#0.

3. Let f be analytic in B(a; R) and suppose that f(a) = 0. Show that ais a
ISR L DY LU VRNV ol e ¢ Rl § VPR N e LN N an A LM N N

Zero o1 multipicCity m i1 a = =j@ =vanaj g v
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4. Suppose that /: G — C is analytic and one-one; show that f'(z) # 0 for
any z in G.

5. Let X and Q be metric spaces and suppose that f: X — Q is one-one and
onto. Show that f is an open map iff fis a closed map. (A function fis a
closed map if it takes closed sets onto closed sets.)

6. Let P: C > R be defined by P(z) = Re z; show that P is an open map
but is not a closed map. (Hint: Consider the set F = {z: Im z = (Re )1
and Re z # 0}.)

7. Use Theorem 7.2 to give another proof of the Fundamental Theorem of
Algebra.

§8. Goursat’s Theorem

Most modern books define an analytic function as one which is differen-
tiable on an open set (not assuming the continuity of the derivative). In this
section it is shown that this definition is the same as ours.

Goursat’s Theorem. Let G be an open set and let f: G — C be a differentiable
function; then f is analytic on G.
Proof. We need only show that f’ is continuous on each open disk contained

in G; so, we may assume that G is itself an open disk. It will be shown that
fis analytic by an application of Morera’s Theorem (5.7). That is, we must

show that {; f = O for each triangular path T in G.
P o) r- . . % - 31 4+ A L ol 1.1 a0 1L _ 1 a1
LCL 4 = |4, 0, C, d] and ICL A DC L€ ClOSCA SCL 10I'IMNeca Oy 4 4lla 1ts 1151AC,
Notice that T = Now using the midpoints of the sides of A form four

0A. N
triangles A,, A,, A5, A, inside A and, by giving the boundaries appropriate

\
T~

directions, we have that each T; = 0A; is a triangle path and

r 7 3
)/ .4
7 -
Among these four paths there is one, call it 7M. such that Ifwn f| > |, £l

o ’ — Wi

forj=1,2,3, 4 N te that the length of each T'; (perimeter of A )—denoted
by AT;)—is 3/T). Also diam T; = } diam T finally, using (8.1)

J

£

[~ ]

L )

ol
S,

'~‘.

I -~ l<4 [ ,I
W= g
T
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Now perform the same process on T¢1), getting a triangle T(® with the
analogous properties. By induction we get a sequence {T™} of closed tri-
angular paths such that if A™ is the inside of T™ along with T™ then;

8.2 A > A®) 5 -
Q2 L1 - A L1 .
8.3 |Jr1|\,,| [ 7]
3 - 2
IS D I
8.4 ATV = 3AT™);
8.5 diam Ar+1) _ 1 iam A
e WiQill & I iiqaill & .

These equations imply:

8.6 |£f|s4" J f|;
8.7 AT™) = 3¢ where ¢ = AT);

8.8 diam A™ = (3)"d where d = diam A,

Since each A™ is closed, (8.2) and (8.8) allow us to apply Cantor’s

Theorem (II. 3.6), and get that () A®™ consists of a singie point z,,.
n=1

Let € > 0; since f has a derivative at z, we can find a > 0 such that
B(zy;8) < Gand

K!) [ AN—=Fz ) —F(z)(z—2) < e lz—2z.]
s 1J\*=J J =T/ J \TOU/ \ U/i ] Ul

1 1 | o ~1 1 al 10 A (n) /71\n 1 . Qs
whenever |z—2zy| < 8. Choose n such that diam A = (3)"d < o. Since

zo € A™ this gives A™ < B(z,; 8§). Now Cauchy’s Theorem implies that
0= IT"‘) dZ = .‘.T(n) 4 dZ. Hence

I N T ]
| ] S =1 ) U@)=1(20) =1 (20) (z2—20)] €2

(Y Y
T(n) TM)

<e [ 2=zl ldz]
1,

< e [diam AM] [AT™)]
= edA})
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this gives

[ 7] < reatipy = ea



Chapter V

Singularities

In this chapter functions which are analytic in a punctured disk (an open
disk with the center removed) are examined. From information about the
behavior of the function near the center of the disk, a number of interesting
and useful results will be derived. In particular, we will use these results to
evaluate certain definite integrals over the real line which cannot be evaluated
by the methods of calculus.

§1. Classification of singularities

This section begins by studying the best behaved singularity—the
removable kind.

1.1 Definition. A function f has an isolated singularity at z = a if there is an
R >0 such that f is defined and analytic in B(a;R)—{a} but not in
B(a; R). The point a is called a removable singularity if there is an analytic
function g: B(a; R)—C such that g(z)=f(z) for 0<|z—a|<R.

sinz 1
Tl SrinntiAnno 1 . anAd
1 1 L1VI11D s s Alilu

Sy

aven
CAIJ

However, only —— has a removable singularity (see Exercise 1). It is left to

z
the reader to see that the other two functions do not have removable
singularities.
has an analytic extension to B(a; R), J,f = 0 for any closed curve in the
punctured disk; but this may be difficult to apply. Also it must happen that
lim f(z) exists. This is easier to verify, but a much weaker criterion is

zZ—>a

available.

J
R
/

1.2 Theorem. If [ has an isolated singularity at a then the point z = a is a
removable singularity iff
lim(z—a)f(z) =0

z=ra

Proof. Suppose f is analytic in {z: 0 < |z—a| < R}, and define g(z) =

(z—a)f(z) for z # a and g(a) = 0. Suppose lim (z—a)f(z) = 0; then g is

clearly a continuous function. If we can show that g is analytic then it follows
that a is a removable singularity. In fact, if g is analytic we have g(z) =
(z—a)h(z) for some analytic function defined on B(a; R) because g(a) = 0
(IV. 3.9). But then A(z) and f(z) must agree for 0 < |z—a| < R, so that a is,
by definition, a removable singularity.

103



104 Si

To show that g is analytic we apply Morera’s Theorem. Let T be a
triangle in B(a; R) and let A be the inside of T together with T. If a ¢ A then
T~0in {z: 0 < |z—a| < R} and so, ;g = 0 by Cauchy’s Theorem. If a
is a vertex of T then we have T = [a, b, c, a]. Let x €[a, b] and y €[c, a] and

c

"\

AN AN

form the triangle T, = [a, x, y, a]. If P is the polygon [x, b, c, y, x] then
frg=1[r g+lprg=[r, g since P~0 in the punctured disk. Since g is

Ji1i O u i o S

|

continuous and ol M 0O for anv e >~0 v and y can be chosen such that

VILUIILB U WY GQiiu [ \«) Ve AWVL Qiiy © o VUV N Qllea WAl UW WILVUOWILI UWwii

|g(2)| < ¢/£ for any z on T,, where £ is the length of T. Hence |[; g| =
fr, 8| < e; since € was arbitrary we have ;g = 0.

Ifae Aand T = [x, y, z, x] then consider the triangles T, = [x, y, a, x],
T, =y, z, a, y], T; = [z, x, a, z]. From the preceding paragraph [, g = 0

AZ

y

AY

for j=1,2,3 and so, jrg = [r,g+fr,g+[r,& = 0. Since this exhausts all
possibilities, g must be analytic by Morera’s Theorem. Since the converse is
obvious, the proof of the theorem is complete. |}

The preceding theorem points out another stark difference between
functions of a real variable and functions of a compiex variable. The function

1
f(x) = |x|, xR, is not differentiable because it has a ‘“‘corner” at x = 0.
Such a situation does not occur in the complex case. For a function to have
an honest singularity (i.e., a non-removable one) the function must behave
badly in the vicinity of the point. That is, either |f(z)| becomes infinite as z
nears the point (and does so at least as quickly as (z—a) ™), or | f(z)| doesn’t
have any limit as z — a.
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1.3 Denﬁition. If z = a is an isolated singularity of f then a is a pole of f
f(z)| = co. That is, for any M > 0 there is a number ¢ > 0 such that

—
-
P
—_
3

zZ—>a

|f(2)] = M whenever 0 < |z—a| < e If an isolated singularity is neither a
pole nor a removable singularity it is called an essential singularity.

It is easy to see that (z—a) ™™ has a pole at z = a for m > 1. Also, it is
not difficult to see that although z = 0 is an isolated singularity of exp (z™1),
it is neither a pole nor a removable singularity; hence it is an essential singu-
larity.

Suppose that fhas a pole at z = a; it follows that [ f(z)] ! has a removable
singularity at z = a. Hence, A(z) = [f(z)]”! for z # a and h(a) = 0 is

analytic in B(a; R) for some R > 0. However, since h(a) = 0 it -ollows by
Carallary TV 20 that hi~) o (> _ 2\ML () fAar came analy )f l not on L wnth
\/Ulullﬂl] A Ve Jeos LILIAL Il\h) \L u} lll\b, 1V1LI OVlllv allal i1 11wt 11 'll YYitlil
h,(a) # 0 and some integer m > 1. But this gives that (z— a)"’f(z [h,(2)]1

has a removable singularity at z = a. This is summarized as follows.

1.4 Proposition. If G is a region with a in G and if f is analytic on G— {a}
with a pole at z = a then there is a positive integer m and an analytic function
g:G— C such that

[V 2287

g(z)

(z—a)™

1.5 f(z) =

1.6 Definition. If f has a pole at z = a and m is the smallest positive integer
such that f(z) (z—a)™ has a removable singularity at z = g then f has a pole
of order m at z = a.

Notice that if m is the order of the pole at z = g and g is chosen to
satisfy (1.5) then g(a) # 0. (Why?)

Let f have a pole of order m at z = a and put f(z) = g(z) (z—a)™™. Since
g is analytic in a disk B(a; R) it has a power series expansion about a. Let

e

g2) = Ap+A,_z—a)+ - +A,z—a)" ' +(z—a)" Z a,(z—a)*.

Hence

1.7 flz) = An +-+ 4 + 2,(2)
(z—ay" (z—a)

where g, is analytic in B(a; R) and A4,, # 0.

A In_ A {»_n\_l 1c ralla tha o e ¥ MY nt ~» —
flm\é u} T T /1 I\L u} 19 vativ Lt1Iv Dllls uitur l.lul al <4 “
As an example consider a rational function r(z) = p(z)/q(z), where

p(z) and ¢(z) are polynomials without common factors. That is, they have
no common zeros; and consequently the poles of r(z) are exactly the zeros of
q(z). The order of each pole of r(z) is the order of the zero of g(2). Suppose

n(n\ — N and lat T~ ha tha cinanlar rmart Af wl~) at ~ Thaon v{‘v\z
q } UV allu vt AJ\L} ULw LIV Dlusbual yalt vl I\L} al «€. LrLi1Ivil '\L}
4
r

\ A
z). iMore-

'

r,(z) and r,(z) is a rational function whose poles are also poles of
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over, it is not difficult to see that the singular part of r,(z) at any of its poles
is also the singular part of r(z) at that pole. Using induction we arrive at the
following: if a,,- - -, a, are the poles of r(z) and S;(z) is the singular part of
r(z) at z = a; then

1.9 r(z

\-/

i Si(z)+ P(z)

where P(z) is a rational function without poles. But, by the Fundamental
Theorem of Algebra, a rational functlon without poles is a polynomial! So

P(z) is a polynomial and (1.9) is nothing else but the expansion of a rational
functinn hy nartinl fraocrtione
Lulnvavil Uy placetee Jialeeiis

Y. al 1 - i g

1S [Illb cxpdnblon Dy de'lel lI'dLllUIlb \1 7) pecuuar Unly to I'dllOIldl
functions? Certainly it is if we require P(z) in (1.9) to be a polynomial. But
if we allow P(z) to be any analytic function in a region G, then (1.9) is valid
for any function r(z) analytlc in G except for a ﬁmte number of poles.
(e.g., f(z) = (cos z)” '); can we get an analogue
finite sum by an infinite sum? The answer to this is yes and is contained in
Mittag-Leffler’s Theorem which will be proved in Chapter VII..

There is an analogue of the singular part which is valid for essential
smgu]armes. Actually we will do more than this as we will 1nvest1gate

functions which are analytic in an annulus. But first, a few definitions.

1.10 Definition. If {z n=0, +1, +2,...} is a doubly inﬁnite sequence of

complex numbers, Z z, is absolutely convergent if both Z z, and 2 z_

n= — o0

o0 0 oo
are absolutely convergent. In this case » z,= Y z_,+ Y z,.Ifu,isa
ad 3 ya (] ya) 3
¢ n= -0 n=1 n=0
o0
Vo I R o B o S N 1 amd O LNt alea a1 Lol
uncuaon ona st o ifornm =9, r1,...d4ld L u,ps)is aosoiute y (.«OIIVCI'gC 1T
- 00 o) @
for each s e S, then the convergence is uniform over S if both ) u, and )
n=0 n=1
u_, converge uniformly on S
The reason we are ln‘rn'h'nn anrcelvece tn ahenhite converaencea ic that thic
A 1L F 8 I\U11 vY (€% &~ llllltlllb VUIUOWVITVTWVY LU AAUUOViIULLW \J\Ill'\rlé\tll\d\/ AT Lii1QAbL L1110
1 Y oS | e 4 e e ph | -.itL A_C

converge. In fact, the series z - satisfies this criterion but it is clearly not a
n#®0 N 0
series we wish to have convergent. On the other hand, if ) z, is absolutely

- QO

convergent with sum z then it readily follows that z = lim ) z,.

n=-—-m
If0 < R; < R, £ o and a is any complex number, define ann (a; R;,
D\ _ (- D — I’-_nl _~ D N Atina that ann (N D\ 1c a sniinntiirad
1\2} -—_ 14. 1\1 ~ IA u| ~ 1\2}‘. INULIVU Lllal allll \u, V, 1\2) D a puuutuu,u

disk.
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1.11 Laurent Series Development. Le? f be analytic in the annulus ann (a; R,,
R,). Then

0

&)= Y al—ay

n=—00

where the convergence is absolute and uniform over ann (a; rq, r,)” if R, <
ry < ry < R,. Also the coefficients a, are given by the formula

1 /()
" 2mi | z—a)tt!

1.12 dz

where vy is the circle |z—a| = r for any r, R; < r < R,. Moreover, this series
is unique.

Proof. If R{ < ry < ry < R, and vy,, v, are the circles |z—a| = ry, [z—a| =
r, respectively, then y; ~ v, in ann (a; R, R,). By Cauchy’s Theorem we
have that for any function g analytic in ann (a; R, R,), §,, g ={,,& In
particular the integral appearing in (1.12) is independent of r so that for each
integer n, a, is a constant. Moreover, f,: B(a; R,) — C given by the formula

1.13 £2) = -21— i (_'_")z dw,

where |z —a|<r,, R, <r,<R,, is a well defined function. Also, by Lemma
IV.5.1 f, 1s analytic in B(a; R,). Similarly, if G={z:|z—a|>R,} then
f1:G—C defined by

1.14 fie) = — — AR
2l w— z
jfw— a| ri

where |z—a| > r, and R, < r; < R,, is analytic in G.

If R, < |z—a| < R, let ry and r, be chosen so that R, < r; < |z—a| <
r, < R,. Let y,() = a+r.e” and y,(f) = a+r,e”, 0 < t < 2x. Also choose
a straight line segment A going from a point on y, radially to y, which
misses z. Since y, ~ vy, in ann (a; R,, R,) we have that the closed curve

[ N )
()

\_/
N
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y = y— A=y, 1) ic hamotonie ta 7zarn Alen nl~,. 2 = 1 and nls,. ») = 0
’ (A " [ RCA N 0 J llUlllULUylV LV L&A Ve L1321V llv\ 2, ‘-t} 4 «QiiNag 'l\ 1, l-t} \v4
gives, b Cauchy’s Integral Formula, that
1) = 1 [ fw) 7
27i J w—z
Y

1 'f(w) . 1 [ flw) 4
d aw

.——_.w_____

2mi J w—z 27i f w—z
Y2 71

= f2(2) +/1(2)-
The plan now is to expand f; and f, in power series (f; having negative
powers of (z—a)); then adding them together will give the Laurent series
development of f(z). Since f, is analytic in the disk B(a; R,) it has a power
series expansion about a. Using Lemma IV. 5.1 to calculate f{(a),

a0

1.15 fo(2) = Z a(z—a)"

where the coefficients a, are given by (1.12).
Now define g(z) for

0 <z < —byg(Z) fil a

so z = 0 is an isolated smgulantv We claim that

A
N\-/

singularity. In fact, if r > R, then let p(z) = d(z, C) where C is the circle
{w: |w—a| = r}; also put M = max {|f(w)|: we C}. Then for [z—a| > r
@ <
1 Z = T " e
p(z)
But 11m p(z) = o0; so that
_ 1)
lim g(z) = lim fJ a+ -}=0.
20 20 z)
Hence, if we define g(0) = O then g is analytic in B(0; 1/R,). Let
[+ 0]
1.16 gz)= > Bz
n=1

be its power series expansion about 0. It is easy to show that this gives
o0

1.17 fik)= > a_(z—a)"

n=1

where a_, is defined by (1.12) (the details are to be furnished by the reader
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1.18 Corollary. Let z = a be an isolated singularity of f and let f(z) = ),

a,(z—a)" be its Laurent Expansion in ann (a; 0, R). Then: -®
(a) z = a is a removable singularity iff a, = 0 for n < —1;
J b
() e nse 1 nalo Af Avdosw 1 5 A 2L 0N nd A =nrnvm < — (2 L1\
\U’ r-J “ ullulc UJ virucr i1 UJ u_.m 7= VYV uniu u" UJUI n = \IIIT l},
(¢) z = a is an essential singularity iff a, # O for infinitely many negative
integers n
Proof. (a) If a, = 0 for n < —1 then let g(z) be defined in B(a; R) by
> o]
r AWV thiie o muet ha analutic and agraac with £in tha nIInNr_
Luuo, 6 111U0Ll ULV QAlialyluliv allul asluuo WlLllJ 411 Uil yuuv

0
isk. The converse is equally as easy
(b) Suppose a, =0 for n < —(m +l) then (z—a)™f(z) has a Laurent
Expansion which has no negative powers of (z—a). By part (a), (z—a)™ (z)
has a removable singularity at z—a. Thus f has a pole of order m at z =

The converse follows by retracing the steps in the preceding argument.

(c) Since f has an essential singularity at z = a when it has neither a
ramnavahla cinarlaritar n r\'- a nnla nart /o) FAallaue fram narte fa) and 7R R
Av111vU vyQuilu Dlllsulallt 11V a PUIU lJalL \\d} 1VIIVVYWO 11Vl ycu. i \a} ali\l \U}- -

One can also classify isolated singularities by examining the equations
1.19 lim [z—af* [f(z)| = 0

z—a
41 AN 1leam | = IS | LN\ . am
AoV 11111 |4—u| IJ\ }I = W

N
PRy emrranelon.. o 10 m~ireliean

where s is some rea
reader is strongly encouraged to work through these exercises.

The following gives the best information which can be proved at this time
concerning essential singularities. We know that f has an essential smgulanty

at z = g when Iim |f(7\| fails to exist (“‘existing” in

VALWAA asx WARAN & Vl‘lul—‘

0

zZ—>a

the limit is infinity). This means that as z approaches a the values of f(z)
must wander through C. The next theorem says that not only do they wander,
but, as z approaches a, f(z) comes arbitrarily close to every complex number.
Actually, there is a result due to Picard that says that f(z) assumes each
complex value with at most one exception. However, this is not proved until
Chapter XII.

1.21 Casorati-Weierstrass Theorem. If f has an essential singularity at z =
then for every 6 > 0, {f[ann (a; 0, 8)]}~ =

Proof. Suppose that f is analytic in ann (a' 0, R); it must be shown that if

¢ and € > 0 are given then for each § > 0 we can find a z with |z—a| < 8
anrl 1NN —pl 2 ¢ Acciime thic to he alcn that ic acenme there ic a 2 1in C

ALGE IJ \A’-} \rl S S L3IV MLILW O LILEVD WV UWw xuxov, viaiQa L ID, CUJIU1lIW LilwiliWw 1V & 111 w
am A “w N s~k alooa | LN N O 11 mmm fae Y DY T 10aan
dlld € > U >SUucCll tiidl |J\Z}—L| = € 10 dll 2 11 U = 4allll \&, U, 0). 111U 11l

|z—a| ™! f(z)— c|= 00, which implies that (z—a)~'(f(z)—c) has a pole
at z=a. If m is the order of this pole then lim |z —a|™*!|f(z)—c|=0.

sy
£ =G

ance
A Aviiwve

| —
|b
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hm lz~al’"+‘l f(z)|=0 since m 21. But, according to Theorem 1.2, this

77777 Iv \7 7/

glves that f(z)(z—a)™ has a removable singularity at z=a. This con-
tradicts the hypothesis and completes the proof of the theorem. i

byl

1 Farh Af tha fallauwin
e LuAWll UVl Lilv 1VIIVYYVIL]

=+

[¢]
oW
Q
S‘
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-y
<
$V)
-
N
I
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mnectinane £
Uil uviis g4

had 6
Determine its nature; if it is a removable singularity de ne f(O) so that fis
analytic at z = 0; if it is a pole find the singular part; if it is an essential
singularity determine f({z: 0 < |z| < 8}) for arbitrarily small values of é.

aQ N 1
1140 Qi1 1

-]
— b

. sin z .. ... cosz
(@) f(z) = - , (b) f(2) = . ;
cosz—1 -
© f)) = ——; (@ f@) = exp (=7);
Yo £~ 1 1) / 1\
(e) f\z) _ 108 \42-1- 1) , (f) f(z) — \_1 ) :
Z y/
241 _
@ f6) = ;7 () f2) = (1=e)™";
@) /) = zsin () S = sin .

2241
(Z2+z+D (z=-1*
3. Give the details of the derivation of (1.17) from (1.16).

1

X

4. Let f(2) = ——— ; give the Laurent Expansion of f(z) in each of
z2(z—-1)(z-2)

the following annuli: (a) ann (0; 0, 1); (b) ann (0; 1, 2); (c) ann (0; 2, o).

5. Show that f(z) = tan z is analytic in C except for simple poles at

2. Give the partial fraction expansion of r(z) =

w . . .
z = 2 + nm, for each integer n. Determine the singular part of f at each of

these poles.
6. If f' G — C is analvtic except for poles show that the poles of f cannot

aJ v-v a A Yy a a vaiav2 U1 J 2

have a limit point in G.

7. Let f have an isolated singularity at z = a and suppose f'# 0. Show that
if either (1.19) or (1.20) holds for some s in R then there is an integer m such
that (1.19) holds if s > m and (1.20) holds if s < m.

8. Let £, a, and m be as in Exercise 7. Show: (a) m = 0iff z = a i1s a remov-
able singularity and f(a) # 0; (b) m < 0iff z = a is a removable singularity
and f has a zero at z = a of order —m; (c) m > 0 iff z = a is a pole of f of
order m.

9. A function f has an essential singularity at z = a iff neither (1.19) nor
(1.20) holds e
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10. Suppose that f has an essential singularity at z = a. Prove the following
strengthened version of the Casorati-~Weierstrass Theorem. If ¢ C and
e > 0 are given then for each 8 > 0 there is a number «, [c—«| < ¢, such
that f(z) = « has infinitely many solutions in B(a; 9).

11 V DS I — /1\ ~
11. Give the Laurent series uevelopment of ](Z) exp \; , Lan you

\“/

M h")
his result?

2. (a) Let Ae C and show that

1
a,= - e “‘cosntdt

for 0 < |z| < oo, where

=n|»--

x
J cos (nt—Assin t) dt.
0

13. Let R > 0 and G = {z: |z| > R}; a function f: G — C has a removable
singularity, a pole, or an essential singularity at infinity if f(z~') has, respec-
tively, a removable singularity, a pole, or an essential singularity at z = 0.
If f has a pole at co then the order of the pole is the order of the pole of
fz"Hatz=0.

(a) Prove that an entire function has a removable singularity at infinity
iff it is a constant.

(b) Prove that an entlre function has a pole at infinity of order m iff it is a
polynomial of dezree m.

(c) Characterize those rational functions which have a removable singularity
at infinity.

(d) Characterize those rational functions which have a pole of order m at

infinity.
14. Let G = {z: 0 < |z| < 1} and let f: G — C be analytic. Suppose that
y is a closed rectifiable curve in G such that n{y; a) = O for allain C-G.

od
What is |, f? Why?
15. Let f be analytic in G = {z: 0 < |z—a] < r} except that there is a
sequence of poles {a,} in G with a, — a. Show that for any w in C there is
a sequence {z,} in G with a = lim z, and w = lim f(z,).
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16. Determine the regions in which the functions f(z)=(sin;‘)‘l and

1
g(z)= f (t—z)~'dt are analytic. Do they have any isolated singularities?

Do they have any singularities that are not isolated?
17. Let f be analytic in the region G=ann(a;0, R). Show that if I l | f(x+

iy)>dxdy <o then f has a removabie singularity at z=a. buppose that

p>0 and f f | f(x+ iy)|P dx dv < 00; what can be said about the nature of

the singularity at z =q?

§ 2. Residues

The inspiration behind this section is the desire for an answer to the
following question: If f has an isolated singularity at z=a what are the
possible values for [ f when vy is a closed curve homologous to zero and
not passing through a? If the singularity is removable then clearly the

-y

[ =2 [=4

inteoral will be zero. If z=a is a pole or an essential singularity the answer
A4 bl“‘ VV RAL UV &NvAVU s L) & “ A0 l.l\.ll\.« Vi All WIOUOwWi1Avikl l’“lbul“lllj VALY WSAAV i
S emmd o aloco i o Lol oo Lo £ 1 __ Ll 1laal. L0 . -Va_ Yo Front LA ~mnsmea
D 1101 AIWdAdYDd £4C10 DUl Caill UC 10Ul WILl LIIcC UIIIIDUILy 111 14all, 101 >OUIIIC
curves v, the answer is given by equation (1.12) with n= —1

2.1 Definition. Let f/ have an isolated singularity at z = a and let

fe) = ) a,(z-a)
be its Laurent Expansion about z = a. Then the residue of f at z = a is the
coefficienta_ . Denote this by Res (f;a) = a_,. The following is a generaliza-
tion of formula (1.12) for n = —1.

2.2 Residue Theorem. Let f be analytic in the region G except for the isolated
singularities a,, a,, . . ., a,. I y is a closed rectifiable curve in G which does not
pass through any of the points a, and if y =~ 0 in G then

1 n
i [f =k; n(y; &) Res (f; ay).

Proof. Let my=n(y;a,) for 1<k =<m, and choose positive numbers
ri,...,r, such that no two disks B (a,;r,) intersect, none of them intersects
{v}, and each disk is contained in G. (This can be done by induction and
by using the fact that y does not pass through any of the singularities.) Let

v (N=g0 4+ r ovnl —Dorim f\fnrO(ffl Then for 1 < ;7 < m

,k\t}—uk 1 Ik\/l\y\ Llll”lkl, AL 1. 11iwvili 1UV1 8 ‘_‘J - e
m
7. N A Q] 7 . \ N
nyYs; )+ 2 n\Yg: &) =Y.
Since y~0(G) and B(a,;r) <G,

Y |

.‘/-
nyy,d)—T

x-
I [\d 3
3
—~
=
Q
) —

Il
=)
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for all @ not in G—{ay,...,a,}. Since f is analytic in G—{ay,...,a,,}
Theorem IV.5.7 gives

23 0=ff+i[f

S~
—_
N
2
I

|
g M8
~
Q
-
7
-
.
s
[¢]
r
a
o
[t
q
=
-
[¢)
>ﬂ
go
o
[
s
w
|
@)
o

series converges uniformly on B(ak,rk) Hence ff 2 b f(z—ak)"

But J{ (z—a,)'=01f n# —1 since (z —a,)" has a primitive. Also f(z—
a)” —2mn(yk,ak)Res( f;a,). Hence (2.3) implies the desired result -

Remark. The condition in the Residue Theorem that f have only a finite
number of isolated singularities was made to simplify the statement of the
theorem and not because the theorem is invalid when f has infinitely many

isolated singularities. In fact, if f has infinitely many singularities they can

Aanly arcnimnlata An A ‘m1r?\ T w—e A, AN\ than flﬂ\o fart that vl

vill avvulliuiaiv vil vu. vvii .} i1 7 u\\ 4 j, U J Uivil uiv 1avt uiatl r~v
V4 /g 17 - T

Vg e

gives that n(y;a)=0 whenever d(a; 0G) <5 >r. (See Exercise 1V.7.2.)

The Residue Theorem is a two edged sword, if you can calculate the
residues of a function you can calculate certain line integrals and vice versa.
Most often, however, it is used as a means to calculate hne integrals. To use

in 011 v wo
11 L1110 J \AA Y

-+
[T Y

‘ll' n
11

[ %Y

pole.
Suppose f has a pole of order m > 1 at z = a. Then g(z) = (z—a)"f(2)
has a removable singularity at z = a and g(a) # 0.Letg(z) = by+b,(z—a)+

- be the power series expansion of g about z = a. It follows that for z near
but not equal to a,

<M

o0
f@)=——+-+ + Y b, (z—a)
(Z—,,\"’ (7 a LO m+k )

This equation gives the Laurent Expansion of f in a punctured disk about
z = a. But then Res ( f; a) = b,,_,; in particular, if z = a is a simple pole

Res (f 7 — n(n\ m (z—a)f(2). This is summarized as

N

N

J ¥ S\*J

By \& )+ A1LIID X0 Uuiiiiiie

2.4 Proposition. Suppose [ has a pole of order m at z = a and put g(z) =
(z—a)"f(2); then
1
Res (f;a) = ——— g™ V(a).
(130 = (587 0@
The remainder of this section will be devoted to calculating certain integrals
by means of the Residue Theorem

2.5 Example. Show

‘20 x2 ™
] 1+ T 12
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4 ,

o z

If f(2) = s then f has as its poles the fourth roots of —1. These are

A
exactly the numbers '’ where
g=" 37 éf and 7— .
4’ 4’ 4° 4

Let

a, = exp (zl}l +(n—1) g])

for n =1, 2, 3, 4; then it is easily seen that each a, is a simple pole of f.
Consequently,

n 7 L. A - Ve NN 2. \N—1/ \N—1s \—1
nesJsay) = Im (Z2—ay)j(z) = aj(a,—a;) a,—az) \a,—4a,)

-l_i—lex i
Tapn FTP\T4)

A

Res (f; a,) =14ﬁ—' = %exp( "

Similarly

Now let R > 1 and let y be the closed path which is the boundary of
the upper half of the disk of radius R with center zero, traversed in the
counter-clockwise direction. The Residue Theorem gives

[ e

—R —1 0 I R

Ziniff= Res (f; a;)+Res (f; ay)

—i

22
But, applying the definition of line integral,
R n
1 " 1 s x2 1 I R3.,3”
T;IA_/’=,., - Adx+,._|. A A dt
2ai J7 2mi J 1+x* 27 ) 1+ R%e*
Y ~-R 0
This gives
£ 2 4 3it
2.6 [ X ™ [
J 1+ x* V2 J 1+ R**
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4, 4i

For 0 <t <, 1+ R%* lies on the circie centered at 1 of radius R*; hence
|1+ R%*'|= R*— 1. Therefore

'” 34t 3
.p3 € 7R .
|IR {—‘—‘n.i—tdtﬁ PR
S, TR | T R

2

and since li 2 = O for all x in R, it follows from (2.6) that
X

x2

1, 4 dx
1+X

R
x? o
—— dx = lim |
1+x° R J
— N

i
|
—Jw

]

2.7 Example. Show

Ol

iz

The function f(z) = f_— has a simple pole at z = 0. If 0 < r < R let y be the

closed curve that is depicted in the adjoining figure. It follows from Cauchy’s

|
=
|
~
O
~

(e r
2.8 0= | —dx+ |
R

where yi and y, are the semicircles from R to —R and —r to r respectively.
Rut

AL

R R
(sinx 1 [e*—e™ ™
| = i dx
J A LlU A
r r
R e
1 etx 1 "etx
=—l—dx+— | —dx
2i ) x 2i | x
r -R
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4

j%dz = ifexp (iRe'%) do
. 0 .

jexp (i Re'%)| db

exp (— R sin ) df

O SOt

By the methods of calculus we see that, for & > O sufficiently small, the
largest possible value of exp (—R sin ), with 6 < § < =—3§, is exp (—R
sin 8). (Note that 6 does not depend on R if R is larger than 1.) This gives that

oll

-
<
~
&
<

-8
(@l e [
Arl ~ I8 0 AV I_ D cies A\ JA
l uLl = U T ' LaAp \ z
(4 l 6.1

< 26+ exp (— R sin 9).
If ¢ > 0 is given then, choosing 8 < } e, there is an R, such that exp (— R

sin &) < -~ for all R > R,. Hence

T
(e’
lim | —dz=0.
R—-
YR
iz __
Since . has a removable singularity at z = 0, there is a constant
) |é.iz_ 1'
M > 0such that{ ; < M for |z] < 1. Hence,
z
e —1
f dz| < nrM;
z
. lyr |
that is, ,
. {'elz_l
0 = lim | dz.
r-0J 4

Yr
1
But f - dz = —mi for each r so that
z

Yr [ iz
—mi=1lim | —dz
r-'OJ z
Yr

So, if we let r -0 and R — oo in (2.8)

o0
(sin x

J X

X =

(SRR
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Notice that this examplie did not use the Residue Theorem. In fact, it could
have been presented after Cauchy’s Theorem. It was saved until now because
the methods used to evaluate this integral are the same as the methods used
in applying the Residue Theorem.

2.9 Example. Show that fora > 1,
n
do
at+cosf |[qg2_1
0
. i
Ifz =¢"%thenZ = - and so
z
1 z242az+1
a+cos 0 = a+3(z+2) = a+{;(z + ) —, -
z
Hence
n 2z
Il‘ d9 I{‘ db
Ja+cosb J a+cos 0
0 0
. dz
= —-j] -—
z24+2az+1
where y is the circle |z] = 1. But z2+2az+1 = (z—«) (z—pB) where o =
—a+(@*-D%, B = —a—(a*—1)*. Since a > 1 it follows that |«] < 1 and
|B| > 1. By the Residue Theorem
f dz o
2 =T o

JZ +2az+1 vai—1
y

by combining this with the above equation we arrive at

2.10 Example. Show that

To solve this problem we do not use the principal branch of the logarithm.
Instead define log z for z belonging to the region

e s N 1 w -
U=1zet:z¢uano—3<argz<—

dat

| Y
\"W-"J
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:r-=||-i04n AN f,a,wl //\E sl 10 YAt N =~ = - D
ifz=|z|¢€ -‘Fuwuu—-zxux?,n t\Z) = 108 [Z|Tiv. LELU < F < I\

and let y be the same curve as in Example 2.7. Notice that £(x) = log x for
x > 0, and Ax) = log |x|+=i for x < 0. Hence,

R n
n 1e ({z) , [logx , . [[logR+i0] , .,
2.11 J 132 dz = T ax+u<J 1+ R2a20
7 r 0
-r (]
(" log |x|+mi . ([log r+if] .,
) e S e e
—UR n
Now the onlv nole of A7) (1LY 1 incide ~ is at 7 — i+ furthermore thic
4 Y/ TYY CAAW \IAL.IJ tl\ll \JA V\h, \A 1 b ’ AAAJANAW AV AV ’ lulﬁll\illll\ll\l, LAARD
1
is a simple pole. By Proposition 2.4 the residue of Az) (14+2z%)~?! is 2%
i
™
[log |i| +4=i] = 1 So,
{ Az) i
I 1, -2 dz = Y
J1+z° 2
b4
Also
R -r R R d
(logx . . [loglxl+mi flogx dxtni |-
J1+x? J  1+x? l J1+x
r -R r
Letting r — 0+ and R — oo, and using the fact that
Q0
dx =
1+x2 2
(Exercise 2(f)), it follows from (2.11) that
[e o]
log r+i0] .
f sdx =3 lim ir ———[ 57 € df
r-0+ 1 €
0
T
([log R+i] |,
— 1 lim iR | —— e'%df.
0
We now show that both of these limits are zero. If p > 0 then
[ T - oz
o | == et < 200 L gg + — 2 | 68
| ] 1+p%€” | 11=p" ) I1=p")
| o I 0 0
7p |log p| p
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2.12 Example. Show that j Y dx = ,w if0<c< 1.
I+x sin ¢
0

To evaluate this integral we must consider a branch of the function z™°.
The point z = 0 is called a branch point of z7¢, and the process used to

YR

evaluate this integral is sometimes called integration around a branch point.

LetG = {z:z # 0and 0 < argz < 2= }; define a branch of the logarithm
on G by putting (re’®) = log r+if where 0 < 8 < 2#. For z in G put
f(z) = exp [—c£(2)]; so fis a branch of z™°. We now select an appropriate

curve yin G. Let 0 < r < 1 < Rand let 6 > 0. Let L, be the line segment
fr_LSI R-LSH VR the part of the circle |7l R from R-I—Sl counterclockwise

vy AN Gas Vi Liiv wai Vi 22V 222 ARSI AN 2 v

to R—6i; L, the lme segment [R—3&i, r—46i]; and y, the part of the circle
|z| = r from r—3&i clockwise to r+6i. Put y = Ly +yg+L;,+7,.

Since y ~0 in G and Res (f(z) (1+2)"!; —=1) = f(—=1) = e” ", the
Residue Theorem gives

)
2.13 J T3 dz = 2mie” i"e,
Y

Using the definition of a line integral

[ f(z)d B /’Rf(t+i8)d
) 2= Tvaad

Ll r

Let g(¢,8) be defined on the compact set [r, R]X[0, 3 7] by

+id

+—C

|
S —
d

Q? N’

| f(r+
g(1,8)=|=
|+ |+

when 6 >0 and g(7,0)=0. Then g is continuous and hence uniformly

continuous. If € >0 then there is a §, such that if (r—1')>+(§—8")*< 83

then In{r S\——a(i’ ,“/‘/R. In p“rt‘ Jlar, a(t,x\/c/p when r<t<R
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and § <4,. Thus

~R —C ~ f(z

~ 1 J
2.14 j, T3 4= hm L 1+2

N’

Similarly, using the fact that /(z)= m +2mi

2.185 — o ~2mic { ! dfr= lim l

Now the value of the integral in (2.13) does not depend on . There-
fore, letting 60+ and using (2.14) and (2.15) gives

N
et
)

Now if p>0 and p#1 and if y, is the part of the circle |z|=p from

Vp®—08% +ib to \p?— 8% —i§ then

| ~ £\ I —c

Y EEASEA PR, W

'J I+z 7|7 |1=p| 7"
Yo

Ia . — e - —dmic fR ,t_c .|< r < . R—C ~
izme —(1=e7) | l+zdt!_ =7 27 * =g 2R
r

But as r—»0+ and R—oo the right-hand side of this last inequality
converges to zero. Hence

©
r t—c
Vi 0" i%C = (] — o~ 2inC) l - Ar-
27Tl i€ ,Jl t.,.,,
0
or,
0
r :—c inc
l 4 ’ Lml e
J 14¢ 1 e—21uc
0
27
= em'c_e—nic
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Exercises

1. Calculate the following integrals:

[+ o
\ "cosx—ld

> o]
Jx +x? +1 J  x?
6 5

n

cos 26d6 db
© f s wherea® <1 (d) J (m wherea > 1.
0

1—2acosf+a
0

2. Verify the following equations:

n/2
L 4o -
@ | — if a>0;
J a+sin® 6 2fa(a+1)}?
0
log x ™ dx m
= - -, f =<
© _[(1+ )2 4 ® Jl+x2 2
I eax .
= 1
(g) J 1_*_exdx pr— if 0<ax<l;

2n

(h) |r log sin? 26d6 = 4 |rlog sin 8d0 = —4m log 2.
0 0

3. Find all possible values of [ expz~ 'dz where v is any closed curve not
passing through z=0.

4. Suppose that f has a simple pole at z = a and let g be analytic in an open
set containing a. Show that Res (fg; a) = g(a) Res (f; a).

5. Use Exercise 4 to show that if G is a region and fis analytic in G except
for simple poles at ay, ..., a,; and if g is analytic in G then

1 n
Y [ ; n(y; a) g(a) Res (f; @)

wi
v
y



122 Sinoularities

(o2t A2 s

for any closed rectifiable curve y not passing through a,, ..., a, such that
y~ 0in G.

6. Let y be the rectangular path [n+4+ni, —n—%+ni, —n—%—ni, n+%—ni,
n+34+ ni] and evaluate the mtegral j'yvr(z+a) 2 cot wzdz for a # an 1nteger

Asxy thad 15aa 2 sing ot o i PP
how that lim Jy m(z+a)” * cot mzdz = 0 and, by using the first part, deduce
at e

sinfma Z (a+ (a+n)?

(Hint: Use the fact that for z=x+1y, |cosz|*=cos? x+sinh? y and
|sinz]>=sin®> x+sinh’ y to show that |cotmz|<2 for z on y if n is
sufficiently large.)

7. Use Exercise 6 to deduce that

_ i !
- (7 1 112
“ (2n+1)
8. Lety be the polygonal ath defined in Exercise 6 and evaluate |, m(z* —a®) ™'
cot wzdz for a # an integer, Show that lim f m(z>—a*)" ! cot nzdz = 0, and
consequently >
1 o0
wcotma = - +
a

for a # an integer.
9. Use methods similar to those of Exercises 6 and 8 to show that

7 1 < 2(-1)a
sinma a + ; a’—n?

for a # an integer.
10. Let y be the circle |z = 1 and let m and n be non-negative integers.
Show that

r !
(Dt 2 2t
. p!(n+p)! >0
L ()rd: | o
Vori ' 7M+n+1
4 "J -
b4
X 0 otherwise

ey

11. In Exercise 1.12, consider a, and U,, as functions o I A

use Exercise 10 to compute power series expansions for a,(A) and b,(A).

(b,(2) is called a Bessel function.)

12. Let f be analytic in the plane except for isolated singularities at a,, a,,
, @,. Show that

Res (f; ©0) = — 121 Res (f; a,).



rinciple 123
(Res(f; o) is defined as the residue of —z ~*f(z~ ") at z=0. Equivalently,

Res(f; o0)= — —21—.ff when y(t)= Re", 0 <1< 2w, for sufficiently large R.)
What can you say if f ha

13 Tet fhe an enti a bhbe( ench at gl =~ and Al <
A o Aswi f U Qill viitid v 1 ll i i1 “HWy U — W Ouwvil L1lQL |u| ™~ AN il lUl ™~ A\
T€ ../ __ D_it - 4 -~ N axsanliiaa s [ Tr_ N /. INV— 107N 1 T Tan ¢L%0 nciale
nyl) = Re’,U <t < Zmevaluate §, [(z—a) (z—0)] f(z)dz. Use this result
to give another proof of Liouville’s Theorem
§3 The Argument Principle
Sunnose that fis analvtic and has a zero of order m at z = a. So f(2) =
{ ~ ANl D\ xxirhhnsn 2l AN L N YTawn~n
(Z—aj g\z) winere glaj # v. rence
I( ’
f(2) m g'(z
3.1 @

@ z-a 5@

and g’'/g is analytic near z = a since g(a) # 0. Now suppose that f has a
pole of order m at z = a; that is, f(z) = (z—a) ™g(z) where g is analytic
and g(a) # 0. This gives

f@_-m  g@

3.2 =
f@)  z—a g@)
an ')Gﬂl‘ﬂ (T’/ﬂ 1Q Qﬂﬂ]‘lf;[‘ near 7 — o1
CLiliNg u&ulxx 6 /6 10 uLl“lJ $iw lilwviiil & oo
ATom dm o2 ali bl oo 66 b at o SRS DR T TR TR F T
Also, to avoid the phrase ‘“‘analytic except for poles” which may have
already been used too frequently, we make the following standard definition

3.3 Definition. If G is open and f'is a function defined and analytic in G except
for poles, then fis a meromorphic function on G.

Suppose that fis a meromorphlc function on G and define f: G - C,,
“" “A*f:n" /"\ — 7~ ‘IY‘\Q“A"A' ~y s v\/\‘a I\‘p f T" o ﬁ:"l “t\‘lf\‘l’ﬁ 4+ at f :{\
U oLiLLILE J\<«) — W 1IV1IVYLl & lb a pPUILV Ul J. 11l Vadlly 1ULIVUWDO Llat J 1o

Pl ~ AN e 11 1 ~

continuous from G into C, (Exercise 4). This fact aliows us to think of
meromorphic functions as analytic functions with singularities for which
we can remove the discontinuity of f, although we cannot remove the non-
differentiability of f.

S RAAANA VAL ARG V2R ~2 -

34 Aronment Princinle 7 ot f he moeromaornhic in G with noloe n n._ n

Lo 2 g “ls‘-lll'll‘ F S llll‘rlrl‘. P A 2 J U Irivig V"lu'l["bb sIE NJ rveesry tlu“ru t’l, t’z, . 9 t’m
and zeros z,, z,, ..., z, counted according to multiplicity. If y is a closed
rectifiable curve in G wzth ~ 0 and not passing through p,, s Pm

Ziy ..., 2, then

35 LD = § iz - 3 atvin)
. . - y <k b
271 | £(z) = ~ J
Y

VA G k=1 ~k j=1° pj S\</
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Why is this calied the ‘“Argument Principle”’? The answer to this is not
completely obvious, but it is suggested by the fact that if we could define
log f(z) then it would be a primitive for f’/f. Thus Theorem 3.4 would give
that as z goes around y, log f(z) would change by 2#iK where K is the integer
on the right hand side of (3.5). Since 2#iK is purely imaginary this would
give that Im log f(z) = arg f(z) changes by 27K.

Of course we can’t define log f(z) (indeed, if we could then |, f’/f = 0
since f”/f has a primitive). However, we can put the discussion in the above
paragraph on a solid logical basis. Since no zero or pole of flies on y there
is a disk B(a; r), for each a in{y}, such that a branch of log f(z) can be defined
on B(a; r) (simply select r sufficiently small that f(z) # 0 or o in B(a; r)).
The balls form an open cover of {y}; and so, by Lebesgue’s Covering Lemma,
there is a positive number ¢ > 0 such that for each a in {y} we can define a
branch of log f(z) on B(a; ¢). Using the uniform continuity of y (suppose
that y is defined on [0, 1]), there is a partition 0 = ¢5 < ¢; < - < f, =1
such that y(f) e B(y(t;_); ) fort;_; <t <t;and 1 <j < k. Let £; be a

o
=
o
<
:r-
v(‘
:..
(¢]
(@]
~
gl
oq
<\
a
w
=
=

branch of log f defined on B(y(t;_,); ¢) for 1 < j < k. Also, since the Jj-th
and (j+1)-st sphere both contain y(¢;) we can choose ¢, ..., £, so that
4 (y(tl)) = fz(Y(tl)) £,((t;)) = v’a(ytz)) O 1(V(t= 1)) = G((te-1))-

If y; is the path vy restricted to [£;_,, t;] then, since £ = f'[f,

for 1 < j < k. Summing both sides of this equation the right hand side
“telescopes” and we arrive at

where a = y(0) = y¢(1). That is, £,(a)— £,(a) = 27iK. Because 2xiK is purely
imaginary we get Im £, (a)—Im ¢,(a) = 2=K. This makes precise our con-
tention that as z traces out vy, arg f(z) changes by 27 K.

The proof of the following generalization is left to the reader (Exercise 1).

3.6 Theorem. Let f be meromorphic in the region G with zeros z,, z, . . . , 2,
and poles p,, . . ., p, counted according to multiplicity. If g is analytic in G
and vy is a closed rectifiable curve in G with y ~ 0 and not passing through
any z; or p; then

[‘
5|87 = Inly;z) — Y glpnly; p).
'Y

We already know that a one-one analytic function f has an analytic
inverse (IV. 7.6). It is a remarkable fact that Theorem 3.6 can be used to give
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..... Comce mnn PR lo 1eavrnnca Qirsasan~ncna D N and that £
a lUIIIIUId 101 Ldlbulduug Llllb HIVCIdU, SUppUdC N\ > v ana wnat Lj1

and one-one on B(a; R); let Q = f[B(a; R)]. If |z7—a|] < Rand ¢ = f(z) €
then f(w)— ¢ has one, and only one, zero in B(a; R). If we choose g(w) =
Theorem 3.6 gives

Ezo

where y is the circle [w—a| = R. But z = f~!(£); this gives the following

........ +L is one-one Bla: R). If Q = flB(a: R and v
SUPPUSE tnat _] i§ one-one on U\u, nNy. 1] S J 1 P\&«, 4N)] it )y

|z—a| = R then f~'(w) is defined for each w in Q by the formula
1 ’
f—l(w) — . Zf (Z) dZ
27 ) f(2)—w

3.8 Rouché’s Theorem. Suppose f and g are meromorphic in a neighborhood
of B(a; R) with no zeros or poles on the circle y={z:|z—a|=R}. If Z,Z
(P, P,) are the number of zeros ( poles) of f and g inside y counted according
to their multiplicities and if

£(2)+8(2)<|f ()| +]g(2)]
on v, then
Z;—P=Z,—P,.
Proof. From the hypothesis
f(2) f(2)

QCI
\./

I <| }+ I
| 5147
ony. If A=f(2)/g(z) and if A is a positive real number then this inequality
becomes A+ 1<A+1, a contradiction. Hence the meromorphic function
f/g maps y onto £2=C—[0, o). If / is a branch of the logarithm on § then
[(f(2)/g(2)) is a well-defined primitive for (f/g)’(f/g)”" in a neighbor-

hood of Y. Thus

2—f(f/g) (f/8)""

1L _&
i J | f g |
JY L J o J
=(Zf—P f) (Z ) |
This statement of Rouché’s Theorem was discovered by Irving Glicks-
‘\orn { Anro» Alnfl. AA fla’u Q2 /1Q7A) ‘QA_]Q-’\ In tho mnro r\loccir\o‘
U\rls \l'l’llc’. iviuweeri. Ivi llll_}’ O \l/IU} 10V IUI}- A11 LUliIv 111ViIV viQooivai

statements of the theOrem, f and g are assumed to satisfy the inequality
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|f4- 0| (I o| on v. This weaker version often suffices in

AL e X AXIT VYV VRRinwi wivi a - i a

can be seen in the next paragraph.
Rouché’s Theorem can be used to give another proof of the Fundamental

Theorem of Algebra. If p(z) = z"+a,z" '+ - -+ +a, then

Q

=|=

p(Z) =1 4 ﬂ “ e
Z" x i z i i
and this approaches 1 as z goes to infinity. So there is a sufficiently large

number R with

N

p(z)

z"

<1

for |z| = R; that is, |p(z)—2z"| < |z|" for |z| = R. Rouché’s Theorem says
that p(z) must have n zeros inside |z| =

We also mention that the use of a circle in Rouché’s Theorem was a
convenience and not a necessity. Any closed rectifiable curve y with y ~ 0 in
G could have been used, although the conclusion would have been modified
by the introduction of winding numbers.

Exercises

1. Prove Theorem 3.6.

2. Suppose f is analytic on B(0; 1) and satisfies | f(z)| <1 for |z|—1 Fll’ld
the number of solutions (counting multiplicities) of the equation f(z)=2z"
hara » 1¢c an intagar laracar than Ar annal tn 1
1INVEIN 7 1D Qll llll\/B\/l luls\.«l Ltiiqaiil U1 \y\.luul Vv 1.

0)=0, f'(0)#0 and f(z)#0 for
>0. Define g: B(0; p)—>C by

1 )

27 ] f(2)—w
J, T

where y is the circle |z|=R. Show that g is analytic and discuss the
properties of g.
4. If f is meromorphic on G and f: G—>C__ is defined by f(z)=co when z is
a pole of fand f(z)=f(z) otherwise, show that f is continuous.
5. Let f be meromorphic on G; show that neither the poles nor the zeros of f

have a limit noint in G.

LAV W PR T o AV ii1

6. Let G be a region and let H(G) denote the set of all analytic functions on
G. (The letter ““H” stands for holomorphic. Some authors call a differentiable
function holomorphic and call functions analytic if they have a power series
expansion about each point of their domain. Others reserve the term

A~

be analytic in B(0; R) with
R. Put p=min{|f(z)|:]z|=R} >

ol o) =
B\wj

“analytic” for what many call the complete analytic function, which we will
m o~ d PR P PR, ~<z; 4L~ PR S iy R [ S a . L6\ I A
not describe here.) Show that H(G) is an integral domain; that is, H(G) is a
commutative ring with no zero divisors. Show that M(G), the meromorphic

functions on G, 1 a ﬁeld.

'3
2
=R
m
2.
8
P
&
=)
<
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aLiSco, is Every mMCror paiC iunciion on u i quo O1

functions on G? Alternately, is M (G) the quotient field of H (G)" The answer
is yes but some additional theory will be required before this answer can be

proved
7. State and prove a more general version of Rouché’s Theorem for curves
other than circles in G.

8. Is a non-constant meromorphic function on a region G an open mapping
of G into C? Is it an open mapping of G into C_,?

9. Let A > 1 and show that the equation A—z—e™* = 0 has exactly one
solution in the half plane {z: Re z > 0}. Show that this solution must be

man ) thn anlss ) RS l‘)
lCdl VV lldl Ilappvrin LU Lllb DUlutlUll as A — {

10. Let f be analytic in a neighborhood of D= B(0; 1). If | f(z)| <1 for
|z| =1, show that there is a unique z with |z| <1 and f(z)=z. If | f(2)| <1
for |z|]=1, what can you say?



Chapter VI

The Maximum Modulus Theorem

'8

y c
seen in Theorem IV. 3.11. In the ﬁrst section this theorem is presented again
with a second proof, and other versions of it are also given. The remainder
of the chapter is devoted to various extensions and applications of this
maximum principle.
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1.1 Maximum Modulus Theorem—First Version. If f is analytic in a region G
and a is a point in G with | f(a)| = |f(2)| for all z in G then f must be a constant
Sfunction.

Proof. = f(G) G) : and put « = f{a@). From the hypothesis we have that

| > |€] Ior each € in Q; as in the discussion preceding the theorem « is in
0Q N Q. In particular, the set Q cannot be open (because then Q N 0Q = ).
Hence the Open Mapping Theorem (IV. 7.5) says that f must be constant. i

n
32

t-t
¢—>

1.2 Maximum Modulus Theorem—Second Version. Let G be a bounded open

set in C and suppose f is a continuous function on G~ which is analytic in G.
Then

A Ts I

nax {|f(z)|:ze G™ } = max {|f(2)|: z € 0G}.

Proof. Since G is bounded there is a point a € G~ such that |f(a)| > |f(2))
for all zin G~. If fis a constant function the conclusion is trivial; if fis not
constant then the resuit follows from Theorem 1.1. |§

Note that in Theorem 1.2 we did not assume that G is connected as in
Theorem 1.1. Do you understand how Theorem 1.1 puts the finishing touches
on the proof of 1.2? Or, could the assumption of connectedness in Theorem
1.1 be dropped?

Let G = {z = x+iy: —4m < y < }=} and put f(2) = exp [exp z]. Then
f is continuous on G~ and analytic on G. If z€ G then z = x + =i so
[f(2)| = lexp (+ie¥)] = 1. However, as x goes to infinity hroueh “the real

numbers f(v\_\m This does not contradi
WA u, J \-’“} A ALALO A S A W4 ST LA L W\ LA LANS

Theorem because G is not bounded.
In light of the above example it is impossible to drop the assumption of
the boundedness of G in Theorem 1.2; however, it can be replaced. The

1A
120
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substitute is a BIowl th condition on ff(Z}| as z approac ches iumity. 1 fa
it is also possible to omit the condition that f be defined and continuous

G~. To do this, the following definitions are needed.

ct,
on

1.3 Definition. If /: G - R and ae€ G~ or a = oo, then the limit superior of
f(2) as z approaches a, denoted by lim sup f(z), is defined by

zZ—a

lim sup f(z) = lim sup {f(2):ze G N B(a; r)}

z—a r=-0+

(If a = oo, B(a; r) is the ball in the metric of C_.) Similarly, the limit. inferior
of f(2) as z approaches a, denoted by lim inf f(z), is defined by

z-va

It is easy to see that lim f(z) exists and equals « iff « = lim sup f(z) =

Z—>a Z—>a
11m inf f(2).
If C C then let @wvv denote the boundary of G in C_, and call it the
P PR Lonsizadrsise ~F £ T annl., AT o A € Y ic WAsiemAdAaAd 4anAdA 2 1
€ rnu UUMIluCUy Ul U. blCdlly U — U 11 U 1d voulldiu aiiud v g —

Xt

0G U {o0} if G is unbounded.
After these preliminaries the final version of the Maximum Modulus

Theorem can be stated.

1.4 Maximum Modulus Theorem—Third Version. Let G be a region in

C and f an analvtic ﬁlnr-hnn on G. Suppose there is a constant M such that

&Ll Jp e sEUIY Ui { of ddadd M L UTsI v Fa4 MLUis sises

lim sup |f(2)| < M for all ain 0,G. Then |f(z)| < M forall zin G.

¢

ol
N
)

'~z ann~lh

ain 9,,G, there is a ball B(a; r) such that | f(z)| < M+8 for all zin G N B(a;
r). Hence H~ < G. Since this condition also holds if G is unbounded and
a = o, H must be bounded. Thus, H~ is compact. So the second version of
the Maximum Modulus Theorem applies. But for z in 0H, |f(z)| = M+36

since H™ < {z: |f(z)] > M+3}; therefore, H = [] or f is a constant. But
the hunothecic i nhpc that H = M if flc constant. -

Cilv 11y pPURILWOLS Alllyllvu v &x | Ak u

Notice that in the example G = {z Im z| < % } f(2) = exp (), f
satisfies the condition lim sup |f(z)| < 1 for all @ in G but not for a = 0.

z—a

Exercises
1. Prove the following Minimum Principle. If f is a non-constant analytic
function on a bounded open set G and is continuous on G, then either f

has a zero in G or |f| assumes its minimum value on 0G. (See Exercise IV.
3.6.)
J.\Jo}

2 Let G be a bounded region a r and
L. LCL U UC 4 obouIliacua ICg OlIl dlU SUpposC J lb UUIILUIUUUD Il U allu
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- L L1 N\

aualytic (o) there is a constant ¢ > 0 such that IJ Z)=c
for all z on the boundary of G then either fis a constant function or f has a
zero in G.
3. (a) Let f'be entire and non-constant. For any positive real number ¢ show
that the closure of {7: | Al < £} ic the cot {»- lf(—;\l
LALAAL LIilW WIVUWAW Vi (H IJ \QII T L %3 J AV LAdWwW UWwh t
/LY T -4 IS VRIS TN R S DI R Y I SN BN R |
(V) Lt P DU 4 pPOLYIIVILdl 411U SHHOW Llal CacCil COINPOIICTL t o1 W“-|1P\<)| < Cy
contains a zero of p. (Hint: Use Exercise 2.)

(c¢) If p is a polynomial and ¢ > O show that {z: |p(z)| = c} is the union
of a finite number of closed paths. Discuss the behavior of these paths as
¢ — 0.

A T 2o N - o o D ~-ad s A __ (o . -~ |1 - D ~ezy alia alo_ . S
4 L VUS T < N dl0 DUl A = 2. T = IZI = NNg. OIIOW Lldal UICIC 1S d
positive number € > 0 such that for each polynomial p,

sup {|p(z2)—z"Y:ze A} > €

This says that z~! is not the uniform limit of polynomials on A.
5. Let f be analytic on B(0; R) with [f(z)] < M for |z| < R and |f(0)| =

a > 0. Show that the number of zeros of fin B(0; 1 R) is less than or equal to
1 / M
log (——) . Hint: If z,, ..., z, are the zeros of fin B(0; §R), consider
a

log 2
the function

and note that g(0) = f(0). (Notation: H a, = a,a,...a, )
6. Suppose that both f and g are analytic on B(O R) W1th | f(2)] = |g(z)] for

Co Stam A, |A] = 1, such that / = Ag.

7. Let f be analytic in the disk B(0; R) and for 0 < r < R define A(r) =
max {Re f(z): |z] = r}. Show that unless f is a constant, A(r) is a strictly
increasing function of r.

8. Suppose G is a region, f: G — C is analytic, and M is a constant such that
whenever z is on 9,G and {z,} is a sequence in G with z = lim z, we have
lim sup [f(z,)] < M. Show that [f(z)] < M, for each z in G.

§2. Schwarz’s Lemma

2.1 Schwarz’s Lemma. Let D = {z: |z| < 1} an. ppose f is analytic on D

(a) |f(2)| < 1 forzin D,

(b) f(0) = 0.
Then |f'(0)| < 1and|f(z)| < |z| for all z in the disk D. Moreover if | f'(0)| =
or gfl f(z)! = !Z!fv some z # 0 then there is a constant c, lr! = 1, such that
Sw) = ew for all w in D.
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Proof. Define g: D—C by g(2)= /(2) for z#0 and g(0)=f"(0); then g is
analytic in D. Using the Maximum Modulus Theorem, |g(z)|<r~"' for
|z|]<r and 0<r<1. Letting r approach 1 gives |g(z)| <1 for all z in D.
That is, | f(z)| <|z| and |f'(0)|=|g(0)| < 1. If | f(2)|=|z| for some z in D,
z#0, or |f'(0))=1 then |g| assumes its maximum value inside D. Thus,
again applying the Maximum Modulus Theorem, g(z)=c for some con-
stant ¢ with |c|=1. This yields f(z)=cz and completes the proof of the
theorem. |l

We will apply Schwarz’s Lemma to characterize the conformal maps of

the open unit disk onto itself. First we introduce a class of such maps. If
la| < 1 define the Mobius transformation:

z—a
1—az

®.(2) =

Notice that ¢, is analytic for |z| < |a| ™! so that it is analytic in an open disk
containing the closure of D = {z: |z] < 1}. Also, it is an easy matter to
check that

PuP-a(2)) = z = @_ (p,(2))-

for |z| < 1. Hence ¢, maps D onto itself in a one-one fashion.
Let 4 be a real number; then
i0

i0 e —a
lpa(e”)] = |——
! 1 —de*
_ elo_al
éio_a-!

=1

This says that ¢, (D) = éD.
Thege f‘ar‘t

A llwow 180w

Cf)
)
3
o
o]

2.2 Proposition. If |a| < 1 then ¢, is a one-one map of D = {z: |z| < 1}
onto itself, the inverse of ¢, is ¢_,. Furthermore, ¢, maps oD onto oD, ¢, (a)
= 0, ‘P;(O) = 1—[a|2, and (P;(a) = (1 - ,aIZ)—l.

T at ne caa hAaw thaca fiinctiAan ~ran h nga
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Lemma. Suppose f is analytic on D with |f(z)| < 1. Also, suppose |a| <
and f(a) = « (so |«| < 1 unless fis constant). Among all functions f having
these properties what is the maximum possible value of |[f'(a)|? To solve
this problem let g = ¢, o fop_,. Then g maps D into D and also satisfies
g(0) = ¢ (f(a)) = ¢ (x) = 0. Thus we can apply Schwarz’s Lemma to obtain
that [g’(0)] < 1. Now obtain an explicit formula for g’(0). Applying the chain
rule
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g'0) = (¢, ° /) (90)p-.0)
= (¢, of)'(@) (1-1a]*)

—t
w
[\

* [hed| ’ a
I—I“IZf( )
Thus,
1_ |al2
2.3 If'(@)] < —L
1—|al®

Moreover equality will occur exactly when |g’'(0)] = 1, or, by virtue of
Schwarz’s Lemma, when there is a constant ¢ with |[¢| = | and

24 f(2)=¢_

for |z| < 1.

We are now ready to state and prove one of the main consequences of
Schwarz’s Lemma. Note that if |¢| = | and |a| < 1 then f = cp, defines a
one-one analytic map of the open unit disk D onto itself. The next result
says that the converse is aiso true.

(cg,(2))

O

Y8 Than -om I » £ n N ho ~ N N mrelsstin maan Af D nntn stoolf And
.o 11ICOICII. L.C J L — L UcC u vricturic nutyu(. riu UJ L7 oriv llJCIJ unu
suppose f(a Then there is a complex number ¢ with |c| = 1 such that
f = g,

Proof. Since f is one-one and onto there is an analytic function g: D — D
such that g( f(z)) = z for |z] < 1. Applying inequality (2.3) to both fand g
gives |f'(@)| < (1—|a]®~! and |g'(0)] < 1—|a|? (since g(0) = a). But since
1 = g'(0)f"(a), |f'(@)| = (1—]|al®>)~'. Applying formula (2.4) we have that
f=cp,forsomec, |c|] =11

=l

xercises

g(Z) — f(z)—a
1-4f(2)
where a = f(0), prove that
JWI— 2] |f(z)| FANZiRNIE4
1-1£(0)} |2] L+[£(0)] |2|
for |z| < 1.

2. Does there exist an analytic function f: D — D with f(3) = 2and f'(3) =
£?
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!

....... P --h L1\ n .
3. Suppose f: D — C satisfies Re f(z) > 0 f

fis analytic.
(a) Show that Re f(z) > O for all z in D.
(b) By using an appropriate Mobius transformation, apply Schwarz’s

Lemma to nrove that if f{0) = 1 then
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|f(2)] <

—

for |z| < 1. What can be said if f(0) # 1?
(c) Show that f also satisfies

(Hint: Use part (a)).

4. Prove Caratheodory’s Inequality whose statement is as follows: Let f be
analytic on B(0; R) and let M(r)=max{|f(2)|:|z|=r}, A(r)=
max{Ref(z): |7|_r1 then for 0<r <R, if A(r) =0,

RLEALINI A [ 3 L9 % 4 a8, LEN

R+r
M(r) <

— AR+ IfO)]

(Hint: First consider the case where f(0) = 0 and examine the function
g(z) = f(R2) RAR)+/(R2)]"* for |2| < 1)

5. Let f be analytic in D = {z: |z| < 1} and suppose that |f(z)] < M for
all zin D. (a) If f(z,) = 0 for 1 < k < n show that

for |z < 1. (b) If f(z,) = 0 for 1 < k < n, each z, # 0, and f(0) = Me'**
(z425 . .. 2,), find a formula for f.

6. Suppose f is analytic in some region containing B(0; 1) and |f(z)| = 1
where |z| = 1. Find a formula for f. (Hint: First consider the case where f
Laoc A TamAo 2
n 10 ZE€ros in B(0; 1).)

7. Suppose [ is analytic in a region containing B(0; 1) and |f(z)] = 1 when
1.

|z| = 1. Suppose that f has a simple zero at z = }(1+i) and a double zero

at z=73. Can f(0)=1?

8. Is there an analytic function fon B(0; 1) such that | f(z)| < 1 for |z| < 1
J J \%¥) J hadades =y Qg =/ avE AT ’

I’/ﬂ\ - l and I‘”n\ S 3‘) T€ o~ Famd arrnls A f Tn :4 [RPUg. ) |

J\W) = 3, dlla j \Vv) = g 11 30, 1IIla SuCii an j. i8S it unique !

§3. Convex functions and Hadamard’s Three Circles Theorem

In this section we will study convex functions and logarithmically convex

.......... <z; +L ~ L o 4l mn s e s i mzmam okl a2 4l o 4 ,
IUIlbUUllb dllU bIlUW tnat DULII IUIlbLlUllb dppcal lIl LUIIIICLUUII Wll.ll tne btuuy

of analytlc functions.
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3.1 Definition. if [a, b] is an interval in the real line, a function f- [a, b] > R
is convex if for any two points x, and x, in [a, b]

S@x,+(1=0)x;) < tf(x)+(1=0)f(x,)

whenever 0 < ¢t < 1. A subset 4 < C is convex if whenever z and w are in
A, tz+(1—t)wisin A for 0 < ¢ < 1; that is, A is convex when for any two
points in A4 the line segment joining the two points is also in 4. (See 1V. 4.3
and 1V. 4.4.)

What is the reiation between convex functions and convex sets? The
answer is that a function is convex if and only if the portion of the plane
lying above the graph of the function is a convex set.

3.2 Proposition. A function f: [a, b] — R is convex iff the set

A={(x,y):a<x<bandf(x) <y}

is convex.

Proof. Suppose f: [a, b] > Ris a convex_ function and let (x,, y;) and (x,, ;)
be points in 4. If 0 < 7 < 1 then, by the definition of convex function,
St +(1=10)x,) < ff(xz)+(1—t)f(x1) < 2+ (1=0y;. Thus 1(x;, y;)+

(1-=1) (xy, y1) = (tx,+(1=0)xy, ty,+(1—1)y,) is in A; so A is convex.
Suppose A4 is a convex set and let x,, x, be two points in [a, b]. Then
(tx,+ (A —=0Dxy, tfix))+(1—=0Df(x;)) is in A if 0 <t <1 by virtue of its

\C \ 7 Vad l’ v \~ \~ l e

convexity. But the definition of A gives that f(tx, +(1-0)x) < tf(x;) +
V4 Py n a _

(1—1)f(x,); that is, f'1s convex. ]

3.3 Proposition. (a) A function f: [a, b] - R is convex iff for any points

"

Xy, ..., X, in [a, b] and real numbers ty, ..., t, > 0 with ) t, = 1,

f(ki thk\) < k; (5.

(b) A set A < C is convex iff for any points z,,...,z, in A and real

n n
numbers t,, ..., t, > 0 with Z t =1, Z 1,2, belongs to A.

TYri_ xxYrs

What are the virtues of convex functions and sets? We have already seen

the convex sets used in connection with complex integration. Also, the fact

that disks are conve sets has played a definite role, although this may not

act is taken for granted. The us
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first course of calculus the fact (proved below) that f is convex when f” is
non-negative is used to obtain a local minimum at a point ¢, whenever
f'(to) = 0. Moreover, convex functions (and concave functions) are used to
obtain inequalities. If f: [a, b] — R is convex then it follows from Proposition
2 11 at flv\ < mav (£(a\ AV far all X inflr K1 Wa now ot vean

she L1L l«J \AN) = liaa ‘(J \ul J \W)s§ 1Vl all 111 lu Uj. YYV 1LIUW 5 llecessa
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>ondition for the COHVCXl[y of a function.
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3.4 Propos . A differentiable function f on [a, b] is convex iff ' is increasing.

Proof. First assume that f is convex; to show that f’ is increasing let
a < x <y<band suppose that 0 < ¢ < 1. Since 0 < (1-x+ty—x =
t(y —x), the definition of convexity gives that

S =0)x+1ty)=f(x) - =/
1(y—x) y—x

Letting ¢t — O gives that
35 71y < L=/
y—x

Similarly, using the fact that 0 > (1—¢)x+ty—y = (1 —1¢) (x—y) and letting
t — 1 gives that

3.6 f'y) = f(}’) f(x)

So, combining (3.5) and (3.6), we have that f” is increasing.

Now supposing that f’ is increasing and that x < u < y, apply the Mean
Value Theorem for differentiation to find r and s-with x < r<u<s <y
such that

ey f)—f(x)
J )= —
Uu—Xx
and
, S —=f(uw)
Sy =",
fo ===
Qlanma LI\ o LN\ 4l ~lcrmc dlans
OINCE 7 (1) < J (§) thiS Zives tnat

Vo FUAN L0\ Lf -\ L1\
J\U)—JX) < JUU)—JW)
u—x  y—u

whenever x < u < y. In particular by letting u = (1—-¢)x+ty where
0<t <1,

JfW—-fx _ S-S |
t(y—x) (I—t)(y x)’

and hence
A=) [fW)—f)] < (Lf ) —fW)].

This shows that f must be convex. i

In actuality we will mostly be concerned with functions which are not
only convex, but which are logarithmically convex; that is, log f(x) is convex.
Of course this assumes that f(x) > 0 for each x. It is easy to see that a
logarithmically convex function is convex, but not conversely.

rems

3.7 Theorem. Let a < b and let G be the vertical smp ‘[X'i"ly a<x< b}.
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mum
Suppose f: G~ — C is continuous and f is anaiytic in G. If we define M:
[a, b] — R by
M(x) = sup {|f(x+iy)|: —0 < y < 0},

and | f(z)| < B for all z in G, then log M(x) is a convex function.
Before proving this theorem, note that to say that log M(x) is convex
means (errmce ‘h thatfora < x < u < y < b,

(y—x) log M(u) < (y—u) log M(x)+(u—x) log M(y)
Taking the exponential of both sides gives

3.8 M@ < M(x)P" M@y«

rl\nr\a;yaﬁ I wA o aa A -~ | FY P Y FEAY O MNAAsMTIAY YYIIa “\,l\'v/\ #Ln‘-
WIHUIRRVRL U@ &S A SN U NN Yy = U. AU, Dlll\.«C IUB .lVl \J\} 1D VCUIIVCA WU 11aVvUl Llial
log M(x) is bounded by max {log M(a), log M(b)}. That is, fora < x < b

A AZAD

3.9 Corollary. If f and G are as in Theorem 3.7 and f is not constant then

| /@] < sup {|f(W)|: we oG}
for all z in G.
To prove Theorem 3.7 the following lemma is used.

3.10 Lemma. Let f and G be as in Theorem 3.7 and further suppose that
()] < 1 fnr z on 0G. Then lf{'f\l <1 fnr all zin G.

IJ \*=7]

Proof. For each € > 0 let g,(z) = [1+e(z—a)]~! for each z in G™. Then for
z=x+iyin G~

IA

|Re [1+e(z—a)]| ™!

+e(x—a)] !

|g(2)|

Il
p—
o

1.
So for z in G |f(2)g(z)| < 1. Also, since f is bounded by B in G,

IA

[f(2)g2)] < Bl +e(z—a)| ™!
-1
<|]

Soif R= {x+iy:a<x<b, |y < B/e}, inequality (3.11) gives | f(2)g.(2)|
< 1 for z in oR. It follows from the Maximum Modulus Theorem that
|f(2)g(2)| < 1for zin R. Butif |[Im z| > Bfe then (3.11) gives that | f(2)g.(2)|
< 1. Thus for all zin G.

~ a9
J.11

l/\

/@) < [1+e(z=a)|.
Letting € approach zero the desired result follows. |l

Proof of Theorem 3.7. First observe that to prove the theorem we need only
o 0‘\'1(‘"\

taulioli
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IA ol B [ )

for a < u < b (see (3.8)). To do this recail that for a constant 4 > 0,
A* = exp (z log A) is an entire function of z with no zeros. So g(z) defined by

g(z) = M(a)(b—z)/(b - “)M(b)(z —a)/(b—a)

—
I

_l.

<

(R
[T Y
(]
09
~
N
>
[

M (a) Yb—x)/(b—a M(b)(x—a)/(b—a).

(It is assumed here that M (a) and M(b) # 0. However, if either M(a) or
M(b) is zero then f = 0.) Since the expression on the right hand side of
(3.12) is continuous for x in [a, b] and never vanishes, |g| ~! must be bounded
in G™. Also, |g(a+iy)| = M(a) and [g(b+iy)| = M(b) so that |f(z)/g(z)| <
for z in dG; and f/g satisfies the hypothesis of Lemma 3.10. Thus

1f2)| < |g()], z€G.
Using (3.12) this gives fora < u < b

which is the desired conclusion. gg ]
Hadamard’s Three Circles Theorem is an analogue of the preceding
theorem for an annulus. Consider ann (0; R, R,) = 4 where 0 < Ry <R,

< oo. If G is the strip {x+zy log R1 <x< log en the exponential
1 one can prove the

iiw wisa

.':r‘

3.13 Hadamard’s Three Circles Theorem. Let 0 < R, < R, < oo and suppose
f is analytic on ann (0; R,, R,). If R, <r < R,, define M(r) = max
{|f(re’®)]: 0 < 0 < 2n}. Then for Ry <r; <r <r, <R,

Another way of expressing Hadamard’s Theorem is to say that log M (r)
is a convex function of log r.

1. Let f: [a, b] — R and suppose that f(x) > O for all x and that f has a
continuous second derivative. Show that f is logarithmically convex iff
() f(x)=[f'(x)]* = 0 for all x.

2. Show that if f: (a, b) — R is convex then f'is continuous. Does this remain
true if fis defined on the closed interval [a, b]?

3. Show that a function f: [a, b)] > R is convex iff any of the following

equivalent condltlons is satisfied:

/f(u) u 1\\
(o 0 < v < 11 <« v < h ogivae dat () v 1 >0
\u} U > A N U N —_— Uél'\lo v J\/\’}A i — WV
‘ LN\ . 1’
\JVU) )V 1/
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£{1,) {'( ) I‘f‘,\:flx\
b)a<x<u<y<bgves 21 IV

]

U—x y—x
©a<x<u<yc< bgivesf(u)—f(x) <f(y)——f(u).
u—x  y—u

Interpret these conditions geometrically.

4. Supply the details in the proof of Hadamard’s Three Circle Theorem.
5. Give necessary and sufficient conditions on the function f such that
equality occurs in the conclusion of Hadamard’s Three Circle Theorem.
6. Prove Hardy’s Theorem: If fis analytic on B(0; R) and not constant then

1) =2 |
27 |
0

is strictly increasing and log I(r) is a convex function of log r. Hint: If
0 <r, <r<r, find a continuous function ¢: [0, 2#] - C such that
P(0)f(re®) = |f(re’)] and consider the function F(z) = [3" f(ze'®)e(0)db.

(Note that r is fixed, so ¢ may denend on r.)

7. Let f be analytic in ann (0, R,, R,) and define

2n

B = 1 [ 7oy

Show that log 7,(r) is a convex function of logr, R, < r < R,.

§4. The Phragmen-Lindelof Theorem

Thic cortinn nracante cama racnlte Af F Phraoman and indalAf (nn‘—\=
A 1110 ovhvilivil PIMOUIILD OVILIV 1WVOoUIlo V1 Lo, 1111 asuxuu aliul L AJAlINUVIVL \PUU
1 1ONON 1 1 1 n 1 1
€

lished in 1908) which extend the Maximum Principle by
ment of boundedness on the boundary.
The Phragmen-Lindel6f Theorem bears a relation to the Maximum

Modulus Theorem which is analogous to the relationship of the following
and | f{\|l < I_l_lql‘i' than f1 a

J 10 Ulltlre all\u LI \L}I — 1T|b| tiivii g lO a

asing the require-

resu Wt ta T4 1o0uvi iHa’c thanram Tf £ ic anti
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constant function. (Prove it!) So it is not necessary to assume that an entire
function is bounded in order to prove that it is constant; it is sufficient to
assume that its growth as z — oo is restricted by 1+|z|*. The Phragmen-
Lindelo6f Theorem places a growth restriction on an analytic function
f» G — C as z nears a point on the extended boundary. Nevertheless, the
conclusion, like that of the Maximum Modulus Theorem, is that /'is bounded.

4 1 Dl\ronmnn=' b alnf Thonram T ot (7 ho o cimanly rannontod vooinn an nt
oA N IMAQINMUIITILAIIUTIUL LICVULIVIRLe LCL T UT G ounypi luornnciCe icgiUrn i
] be an anaiyncpmcnon onu Suppose there is an anatyUCJunczwn (17 G — C
which never vanishes and is bounded on G. If M is a constant and 0,G = AU B

such that:

(a) for every a in A, lim sup|f(z)| <M,

Z2—a
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(b) for every b in B, and y > 0, lim sup [f(2)] |e(2)|" < M;
z=b
then |f(z)|< MforallzinG.

Proof. Let |p(z)| < « for all z in G. Also because G is simply connected there
is an analytic branch of log ¢(z) on G (Corollary IV. 4.16). Hence g(z) = exp
(n log ¢(2)) is an analytic branch of ¢(z)" for » > 0; and [g(2)| = |e(2)|".
Define F: G—>C by F(z) = f(z)g(z)x™"; then F is analytic on G and
|F(z)| < |f(2)] since |@(z)] < « for all z in G. But then, by conditions (a)
and (b) on ¢,G, F satisfies the hypothesis of Theorem 1.4. Thus
|F(z)| < max (M, «x""M) for all z in G. This gives

/@) < |e(2)] " max (M, «™"M)

for all z in G and for all » > 0. Letting  — 0+ gives that |f(z)] < M for
all zin G. |}

4.2 Corollary. Let a > 1 and put
J -_ 4 r
( _ )
G=1{z:|argz| < —}.
2a

Suppose that f is analytic on G and there is a constant M such that lim sup

Z—>W

for all z with |z| sufficiently large, then |f(z)| < M for all z in G.

Proof. Let b < ¢ < a and put ¢(z) = exp (—z°) for z in G. If z = re®,
i6] < m/2a, then Re z° = r° cos cf. So for zin G

ip(2)] = exp (—r° cos cb)

when z = re®. Since ¢ < a, cos ¢d > p > O for all z in G. This gives that ¢ is
bounded on G. Also, if > 0 and z = re'? is sufficiently large,

| /(2| lp(2)|" < P exp (r®—=re cos ch)
< Pexp (r’ —yrep)

But r®—nrp = ré(r®"°—np). Since b < ¢, r*°°—>0+ as r — oo so that

r®—nr‘p - — oo as r - c0. Thus

lim sup |f(2)] [¢(2)]" = O

Hence, f and ¢ satisfy the hypothesis of the Phragmen-Lindel6f Theorem
so that | f(z)| < M foreachzin G. |l

Note that the size of the angle of the sector G is the only relevant fact
in this corollary; its position is inconsequential. So if G is any sector of angle
w/a the conclusion remains valid.
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4.4 Corollary. Let a > 1,

and suppose that for every w in ¢G, lim sup | f(z)| < M. Moreover, assume that

Z—-)W
nnnnnnnnn QN thowun sa0 2 Anzrat st Jedale waewes ,J,...n,.,l e S\ cernls tlt
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4.5 |f(2)] < Pexp (8]z]9)

for z in G and |z| sufficiently large. Then | f(z)] < M for all z in G.

Proof. Define F: G — C by F(z) = f(z) exp (—ez®) where € > 0 is arbitrary.
If x > 0 and 8 is chosen with 0 < 8 < e then there is a constant P with

|F(x)| < Pexp[(6—e)x°].

But then [F(x)] >0 as x > o0 in R; so M; = sup {|F(x)|: 0 < x < o0}
< 00. Define M, = max {M,, M} and

H, = {zeG:0 < arg z < =n/2a},
H_ = {ze€G:0 > argz > —=/2a};
then lim sup [f(z)] < M, for all z in éH, and dH_. Using hypothesis (4. 5)

Z>w

Corollary 4.2 gives |F(z)] < M, for all zin H, and H_ hence, |F(z)| <

+ AAL — AA Y Fant ;§ AA ~ A +than aggrimag ite
L 17.12 = ivi. iii lawvi, i1 IVIZ —_ lyll ~ lyl Liiv 11 Il ' assumes 1its

maximum value in G at some point x, 0 < x < oo (because |F(x)] -0 as
x — oo and lim sup |f(x)| = 11m sup |F(x)| < M < M,). This would give

x>0

that F is a constant by the Max1mum Principle and so M = M,. Thus,
M, = M and |F(z)| < M for all z in G; that is,

| /()] < M exp (e Re z%)

for all z in G; since M is independent of €, we can let e — 0 and get | f(z)] < M
forall zin G. |

Let G = {z: z # 0 and |arg z| < =/2a} and let f(z) = exp (z°) for z e G.
Then | f(z)| = exp (|z]* cos af) where 0 = arg z. So for z in oG |f(2)| = 1;
but f(z) is clearly unbounded in G. In fact, on any ray in G we have that
| f(z)] — co. This shows that the growth condition (4.8) is very delicate and
can’t be improved.

Exercises

1. In the statement of the Phragmen-Lindelof Theorem, the requirement
that G be simply connected is not necessary. Extend Theorem 4.1 to
regions G with the property that for each z in d_ G there is a sphere V 1n
C, centered at z such that VNG is simply connected. Give some

cxamples OI reglons Uld[ are not 51mply LOIIIICL[CU DUI l'ldVC [Illb prupcrty
and some which don’t.
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2. In Theorem 4.1 Suppose€ there are bounded an 1_yuu functions P> Pos -

@, on G that never vanish and d,G=A U B,U ...U B, such that condition
(a) 1s satisfied and condition (b) is also satisfied for each ¢, and B,. Prove
that | f(z)|< M for all z in G.

3. Let G = {z: |Im z| < in} and suppose f: G — C is analytic and lim sup

Z W

| f(z)] < M for win 0G. Also, suppose 4 < oo and a < 1 can be found such
that

I— o

|f(2)| < exp[4 exp (a [Re z|)]
z in G. Show that |f(z)| < M for all z in G. Examine exp (exp z) to
. :

act n cihla nrnnrfh coandition Pon we follp 7 = 1 oknnn‘)
oL yuoolun\, sLUWLIL conaition. i1 a [4

4. Let f/: G — C be analytic and suppose M is a constant such that lim sup
|f(z,)] < M for each sequence {z,} in G which converges to a point in J,G.
Show that |f(z)| < M. (See Exercise 1.8).

5. Let f: G — C be analytic and suppose that G is bounded. Fix z, in G

and suppose that lim sup |f(z)] < M for w in oG, w # z,. Show that if

Z >WwW

lim |z—z,| |f(2)] = O for every € > 0 then |f(2)] < M for every z in 0G.

1~ il V5 B IV S N
Z—>Zp

(Hint: If a ¢ G, consider ¢(z) = (z—-zo) (z—a)~ ')
6. Let G = {z: Re z > 0} and let /- G — C be an analytic function with
lim sup |f(z)| < M for w in oG, and also suppose that for every & > O,

lim sup {exp (—¢/r |f(re®)|: 6] < 1=} = 0.

r—0
Show that |f(z)] < M for all z in G.
7. Let G = {z: Re z > 0} and let f: G — C be analytic such that f(1) = 0
and such that lim sup |f(z)| < M for w in ¢G. Also, suppose that for every

Z—ow

S N 8 <« 1 there ic a caonctant P e
U’ J ™~ v T~ 1, Cilwi v a0 U WwUllowvleiiy x JUWAL

Prove that

{\Hmt Consider f(z)



Chapter VII

i
Snace of Analvtic Functions

vruvv A 4

In this chapter a metric is put on the set of all analytic functions on a
fixed region G, and compactness and convergence in this metric space is

discussed. Among the applications obtained is a proof of the Riemann
AAnsmsnzen or ThAan~enes
Iv appuls Theorem.

Actually some more general resuits are obtained which enabie us to also
study spaces of meromorphic functions.

§1. The space of continuous functions C(G,S2)
iapter (€2, d) will always denote a complete metric space.
Although much of what is said does not need the completenes of ), those
results which hold the most interest are not true if (2, d) is not assumed to
be complete.

1.1 Definition. If G is an open set in C and ({2, d) is a complete metric space
than dacionate hu 7767 O\ the cet af all cantinnoane fiinctiane fram G 10
LLVIR Uloigliaiv Uy U (U, a¢) UIL oL Ul all LUNIUITUUUS 1UliCUULS 11VUILL U WU e

t
The set C(G, 2) is never empty since it
functions. However, it is possible that C(G, ) contains only the constant
functions. For example, suppose that G is connected and Q = N = {l,
2, ... L If fisi C((’ Q) then f(G) must be connected in Q and, hence, must

However, our principal concern will be when  is either C or C . For
these two choices of Q, C(G, Q) has many non constant elements. In fact,
each analytic function on G is in C(G, C) and each meromorphic function

on G is in C(G, C_) (see Exercise V. 3.4).
TA nnt a motric an 7107 O) wo mingt iret nrava a fart alhAant anan gnheoate
AV IJUL QA 111V iliv Vil \./\U, QH} YY&o 111UODL 11100 leV\/ alavli Quuutl Uy\/ll SUUDVLY
of C. The third part of the next proposition will not be used untii Chapter
VIII
1.2 Proposition. If G is open in C then there is a sequence {K,} of compact
CD
subsets of G such that G = | ) K,. Moreover, the sets K, can be chosen to
n=1
antiotes sl L£~T1 - PR LV RPN
SULLY Yy INE JULLOWIT conaiioryy .

(a) Kn < int Kn+1;
(b) K < G and K compact implies K < K, for some n;
(¢) Every component of C_,— K, contains a component of C_—G.

142
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i e P P ~TT T

since K|, is clearly bounded and it is the intersection o
of C, K, is compact. Also, the set

]z < n+1} 0 {z: dz,C=G) > n—il}

is open, contains K,, and is contained in K, , ;. This gives that (a) is satisfied.
[e 0} e o]
Since it easily follows that G = ] K, we also get that G = (] int K,; so if
n=1 n

K is a compact subset of G the sets {int K,} form an open co_ver of K. This
gives part (b).
To see part (c) note that the unbounded component of C,— K, (2C_ — G)

must contam oo and must therefore contain the comoonent of
A he 1 !

Iso
i x1S
|

-

nbounded commnonen
v A

z
_8

41w ull\‘\lu Ww\/i11 tl\lll

t

L 3 iv
PRI oI o ‘e
COInp nent ol Cowo—n, Il

C'C

PR
oundaca

1
" \"" n)
IR A U
z 18 1n the component D ot C  —K,, b'kw; —) < D. It D, 1s the component
n
of C_, — G that contains w it follows that D, < D. |}
If G = U K, where each K, is compact and K, < int K, ,, define

n=1

1.3 pu(f, &) = sup {d(f(2), g(2)): z € K, }
for all functions f and g in C(G, €2). Also define

1.4 o(fg) = 3 @y —tal8)
&Y Tp(fg)

since #(1+1)"" < 1for ail ¢ > 0, the series in (1.4) is dominated by ) ()" and
must converge. It will be shown that p is a metric for C(G, €2). To do this the
following lemma, whose proof is left as an exercise, is needed.

1.5 Lemma. If (S, d) is a metric space then

d(s, 1)

Al o #)
UV, L)

pis, 1) =

P

|
-T-

is also a metric on S. A set is open in (S, d) iff it is open in (S, n); a sequence
is a Cauchy sequence in (S, d) iff it is a Cauchy sequence in (S, p).

1 Valfa NNt o gt o
1.0 r[upualuuu. (C\U, ), p) IS a melric §
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Proof. It is cle ar that p o) = oo ) Also, since each p, satisfies the tnanglp

4 FUU e AL 2O VA 11dav J S - F\&o Vil oy DRSO

inequality, the preceding lemma can be used o show that p satisfies the

triangle inequality. Finally, the fact that G = U K, gives that f = g whenever
fe)=0om@

The next lemma concerns subsets of C(G, Q) x C(G, Q) and is very useful
because it gives insight into the behavior of the metric p. Those who know
the appropriate definitions will recognize that this lemma says that two
uniformities are equivalent.

1.7 Lemma. Let the metric p be defined as in (1.4). If ¢ >
nt

1(‘ ﬂ X S n ﬂ"/] 7 pnmnnnt oot
- V WIrwe W vV t’“\flr [S4 =2 4

1.8 sup {d(f(2),g2(2)):ze K} < 6 = p(f, 2)
Conversely, if 6 > 0 and a compact set K are given, there is an € > 0 such
that for f and g in C(G, ),

1.9 p(f, g) < e =sup {d(f(2), g(2)):ze K} < 6.

Proof. If € > 0 1s fixed Iet p be a positive integer such that i }

n=p+

t
and put K = K. Choose 8 > Osuchthat0 <t <3 givesr'_—t < }e. Suppose

f and g are functions in C(G, Q) that satisfy sup {d(f(2), g(z)): ze K} < 8.

Since K, ©« K, =Kfor1 <n <p, pff, g <8 for 1 <n < p. This gives
Pﬁ(J9 g) 1
< %€
1+ p,(f, 8)

That is, (1.8) is satisfied. o w
Now suppose K and 8 are given. Since G = \ K, =) int K, and K is

1 n=1
thlS glVCS

kl
kn

compact there is an integer p > 1 such that

\ o

£ £\ un I N\ . \\. o - )
Pp\J> &) = SUp (dij\<), g\2)). < € i j

S t
Let € > 0 be chosen so that 0 < 5 < 2P e implies —— < 8; then — < 2P ¢

I—s 1+1¢
L C e e p s . p(f, 8) . e FR
mmplies £ < o. S0 1t p(/, g) < e then —— -~ < 2% e and this gives p,(/, g)
LT Pk &)

7 NN\

< 6. But this is exactly the statement contained in (1.9). i

1.10 Propesition. (a) 4 set O < (C(G, Q), p) is open iff for each f in O there
is a compact set K and a & > 0 such that
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(WY A ooiinians (£ 20 (00007 OV 2\ poiasnmsoc ~ £ 3
(D) A sequerice 1/,,; in (C(G, u), p) converges to f i

uniformly on all compact subsets of G.

Proof. If O is open and fe O then for some ¢ > 0, 0 > {g: p(f, g) < €}.
But now the first part of the preceding lemma says that there is a 6 > 0

and a compact set K with the desired properties. Conversely, if ¢ has the
stated property and fe @ then the second part of the lemma gives an ¢ > 0

SVl pavpvaLy Gl Ciiw Svwss PRy i oviav ivixixii 5 11 T - v

such that 0 > {g: p(f, g) < €}; this means that @ is open.
The proof of part (b) will be left to the reader. |l

1.11 Corollary. The collection of open sets is independent of the choice of the

e 0}
r/ ) 24 c ) 244

o (7 Y L. . (Wl e I 1 ¢~ )} ’ e
sets {K,}. That is, if G = \ J K, where each K, is compact and K, < int K, .,
n=1

and if n is the metric defined by the sets {K,} then a set is open in (C(G, Q), u)
iff it is open in (C(G, ), p).

Proof. This is a direct consequence of part (a) of the preceding proposition
since the characterization of open sets does not depend on the choice of the
sets {K,}. Hl

Henceforward, whenever we consider C(G, (2) as a metric space it will
be assumed that the metric p is given by formula (1.4) for some sequence

(e o]
{K,} of compact sets such that K, < int K,,, and G = ] K,,. Actually, the
n=1
requirement that K, < int K,,, can be dropped and the above results will
remain valid. However to show this requires some extra effort (e.g., the
Baire Category Theorem) which, though interesting, would be a detour.
Nothing done so far has used the assumption that Q is complete. How-

ever, if Q is not complete then C(G, Q) is not complete. In fact, if {w,} is

a non-convergent Cauchy sequence in Q and f,(z) = w, for all z in G, then
{f.} is a non-convergent Cauchy sequence in C(G, Q). However, we are
wno o o ho § AN 2 V4 >
ncennming that 106 nnamnlata and thic agivec tha fAallAuwring

aoouuuu5 tliatl =& 1D UUII]PI\.{LU alil\ul Liilo BIVUD 11V 1VELIVU VYLD

Proof. Agaz.. utilize Lemma 1.7. Suppose{f,} is a Cauchy sequence in C(G, )

Tlhawmw fAar paorhlh AAzenmn~ cpnt LI — £ tlhn swnctmintinme ~F thhna v ndinic £ ¢~ L7

111C11 lUl Calll L«Ulllpabl. SUL N = U LT TOOLHIVUIUILIL U6 IO TUIICLIVID f, U N

gives a Cauchy sequence in C(K, Q). That is, for every 6 > O there is an

integer N such that

1.13 sup {d(f(2), fu(2)): z€ K} < &

£z 32 2200 ~ AJ Tea canstimizlae ( £\ 26 2 Carsnhs: comiiam~a 3 Ne on ¢hhnwns 10 o

101 7L, i Z 1Y, 111 paliudial (Ju\<)s 15 a \.«anlly SL{ULIILL lll -}-4, SLU tIICiC id a
f(z) =1 nf G—>Q;

point f(z) in Q such that f(z) = lim f,(z). This gives a functio
it must be shown that f is continuous and p(f,, f) — O.

Let K be compact and fix § > 0; choose N so that (1.13) holds for n,
m > N. If z is arbitrary in K but fixed then there is an integer m > N so that

d(f(2), £.(2)) < 8. But then
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for all n > N. Since N does not depend on z this gives
sup {d(f(2), /(2)): ze K} -0
as n — oo. That is, {f,} converges to f uniformly on every compact set in G.

.. aa s 2ad ha ArAamsarcaanre 10 13118 man e ~ead L Tlo st
p I UIdI, tne CONVCIELIILC lb LHlllUIlIl OlI1 dll LIUDCU Udllb LU[lldlIlCU lIl U

his gives (Theorem II. 6.1) that f is continuous at each point of G. Also,
Proposmon 1.10 (b) gives that p(f,, /) = 0.

The next definition is derived from the classical origins of this subject.
Actually it could have been omitted without interfering with the development
of the chapter. However, even though there is virtue in maintaining a low
ratio of definitions to theorems, the classical term is widely used and should
be known by the reader.

1.14 Definition. A set # < C(G, Q) is normal if each sequence in % has a
subsequence which converges to a function fin C(G, Q).
This of course looks like the deﬁmtlon of sequentlally compact subsets,

~ Lha 1 Ln ont 01; l.. “navé
OC II1 i STt . 111IC JTICAL

Lon]
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1.15 Proposition. A set F < C(G, Q) is normal iff its closure is compact.

1.16 Proposition. A set & < C(G, Q) is normal iff for every compact set
K < G and 6 > O there are functions f, ... .f, in & such that for [ in F
there is at least one k, 1 < k < n, with

sup {d(f(2), f(2)):ze K} < 6.

Proof. Suppose % is normal and let K and § > 0 be given. By Lemma 1.7
there is an ¢ > 0 such that (1.9) holds. But since # ~ is compact, .% is

totally bounded (actuallv there are a few details to fill in here). So there

are f. f in % such that
are fi, ..., Ja # such that

7 < U (fohf) <9
But from the choice of € this gives

£. ~\ (- - & - - K.
S I\ J\e)) = Oy ¢ = Dy,

~

that is, # satisfies the condition of the proposition.

For the converse, suppose # has the stated property. Since it readily
ollows that % ~ also satisfies this condition, assume that Z 1s closed. But

e co uplete. And, again using Le
it readily follows that # is totally bounded. From Theorem II.
compact and therefore normal. |l
This section concludes by presenting the Arzela-Ascoli Theorem. Al-

though its proof is not overly compllcated 1t i1s a deep result which has

-
!
»
-
J
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Let (X,, d,) be a metric space for eachn > 1 and let X = ]:[ X, be their

n=1
cartesian product. That is, X = {¢{ = {x,}: x,€ X, for each n > 1}. For
¢ = {x,} and 7 = {y,} in X define

. oy 1/ 5 N ‘0_0‘ r1\n dn(xna _ytg)
1.17 d(é,m) = 3 @ s
n=1 LT 8G\Xps V)

1.18 Proposition. ( [T X. d), where d is defined by (1.17), is a metric space.
n=1

If &= (X2 isin X =[] X, then & — ¢ = {x,} iff x* — x, for each n.
n=1

Also, if each (X,, d,) is compact then X is compact.

Proof. The proof that d is a metric is left to the reader. Suppose d(&, ¢) — 0;
since

I T < nd(ER ) €)

k— o l+d (xk, x )

This gives that xX — x, for each n > 1. The proof of the converse is left to
the reader.

Now suppose that each (X, d,) is compact. To show that (X, d) is com-
pact it suffices to show that every sequence in X has a convergent subsequen

this is accomplished by the Cantor diagonalization process. Let & =
for each k > 1 and con51der the sequence of the first entries of the ¢*; that
is, con51der {xf}*_, < X,. Since X, is compact there is a point x, in X,

and a subsequence of {x¥} which converges to it. We are now faced with a
i £ e
I

a c O
v s
n
11

A
problem in notation. If this subsequence of {x¥}_, is denoted by {x& } }i2q
there is little confusion at this stage. However, the next step in the proof is to

consider the corresponding subsequence of second entries {x%} =, and take
a subsequence of this. Furthermore, it is necessary to continue this process
for all the entries. It is easy to see that this is opening up a notational

the entries. It 1s asy see that this i1s openin nal
b

Pandoras Box. However, there is an alternative. Denote the convergent

ky 1 k 7 Al ) 1 1 . i1

K € Ny, WIEre l\\Jl 1S an infinite SUDSC[ o1 1ne

1}
Then there is a pomt x, in X, and an infinite subset N, < N1 such hat
lim {x%: keN,} = x,. (Notice that we still have lim {x¥: ke N,} = x,.)
Continuing this process gives a decreasing sequence of infinite subsets of
N, N, ® N, ...; and points x, in X, such that
1.19 lim {x*: keN,} = x,

Let k; be the jth integer in N; and consider {£*/}; we claim that i ¢ =
{x,} as k — oo. To show this it suffices to show that

1.20 x, = lim x%

kj— o
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for each n > 1. But since jvj < N, forj=n, {x;: j = n} is a subsequence

of {x*: ke N,}. So (1.20) follows "from (1.19. W
The following definition plays a central role in the Arzela-Ascoli Theorem.

1.21 Definition. A set & < C(G, Q) is equicontinuous at a point z, in G iff
r every € > O there is a 8 > 0 such that for |z—z0] < 6,

d(f(2), f(zo)) < ¢

for every fin & . & is equicontinuous over a set E < G if for every e > 0 there
isa & > O such that for zand z’ in F and |z—2'| < §,

—y

d(f(2), f(z')) < €
for all fin &F.
Notice that if & consists of a single function f then the statement that &
is equicontinuous at z, is only the statement that f is continuous at z,. The
important thing about equicontinuity is that the same 8 will work for all

the functions in &. Also, for & = {f} to be equicontinuous over E is to
remure that fm nmfnrmlv continuous on E. For a larger famllv Z to be

equicontinuous there must be uniform uniform continuity.
Because of this analogy with continuity and uniform continuity the

following proposition should not come as a surprise.

1.22 Proposition. Suppose & < C(G, Q) is equicontinuous at each point of G;
then & is equicontinuous over each compact subset of G.

Proof. Let K < G be compact and fix ¢ > 0. Then for each w in KX there is
a 8, > 0 such that
d(f(w"), f(w)) <

INJ N\ YJ N\

[

€

for all fin & whenever Iw- ’! < §,. Now {B(w; 8,): we K} forms an open

M2 Sai g ais YV AAVaAw ¥V WA ~

cover of K; by Lebesgue s Covering Lemma (II. 4.8) there is a 8 > O such
that for each z in K, B(z; 8) is contained in one of the sets of this cover.
So if z and z’ are in K and |z—2’| < 8 there is a w in K with 2z’ € B(z; 8) <
B(w; 8,). That is, z—w| < 8, and |z—2z’| < §,,. This gives d(f(2), f(w)) < e

and d( f'(z'\ f'(w“ < 4e; so that d(f(z\ t"(z’“ < e and & is equicontinuous
\J 7% J \’ & \J \"/>J N\ 1
over K. -

1.23 Arzela-Ascoli Theorem. 4 set # < C(G, Q) is normal iff the following
two conditions are satisfied.:

£aN Lo ooml o 2 Y (LN £ TEY Lo rrssismenni alacriwe fan )
(@) jor eacn z in G, {j(2): f € F; nas compact ciosure in §l;

(b) & is equicontinuous at each point of G.

Proof. First assume that & is normal. Notice that for each z in G the map
of C(G, Q) — Q defined by f ~ f(z) is continuous; since & ~ is compact its

image is compact in Q and (a) follows. To show (b) fix a point z, in G and
lat = ~ N T€fE D < N 10 ~lh~ncan an that I 5/» - D\ — £ than I 10 ~nAarmarnant
VL © .~ U, 11 I\ ~ VU 1D ULI11VUODVIL DU Liial 1y - U\Ao, 1\} M~ U LiIVlil 1 1D VU llyabt
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and Proposition 1.16 implies there are functions f; in % such that
Yol | vib G-l i J 1 sJn ML as
for each fin & there is at least one f; with
€
1.24 sup {d(f(2), fi(2)):ze K} < 3
Dirt citmmna nnnlh £ 20 AnmtimziAro thaen1ca 8 N - Q8 o D cunirnh ¢thhnt 1o P RN
DUL blll\.«C Cdblljk lb bUllllllUUU LRIt 1dD a o, vV <~ 0 N~ I\, Sucini tnat lé"‘éo] <~ O

implies that

d(fi(2), flzo)) < ;

< k < n. Therefore, if |z—z4| < 8, fe &, and k is chosen so that

d(f(2), f(z0)) = d(f(2), [i(2)) +d(fi(2), filz0)) + d(fi(20), [ (20))

< €

That is, & is equicontinuous at z,,.
Now suppose Z satisfies conditions (a) and (b); it must be shown that #
is normal. Let {z,} be the sequence of all points in G with rational real and

imaginary parts (so for z in G and 8 > O there is a z, with [z—z,| < 8). For
eachn > 1 let

={fG):feF}™ = Q;

O ot LN LV TN D o o 2 4t e a L Lacs Dmam el man 110
from part (a), (X,, d) is a compact metric space. Thus, by Proposition 1.18,
©
X = 11 ic a comnact metrie enace Far £fin % define f in hv
l 1 1‘" A A4 lel‘y“vt ALdlWilA LW L’yuvv A UL J Adl <7 WALl AW J AdLd LA VJ
n=1

=), fz), ..}

Let {f,} be a sequence in & ; so {f,} is a sequence in the compact metric
ace X. Thus there is a ¢ in X and a subsequence of {f,} which converges

tn £ Far the cale Af convenient natatinn acciime that £ —_ Iim i‘ A cain
L2 S Y A Ul Lilv JANY VUl WUVILVWILIWVIIL 11V AVIVILy AUOUUILIVY iy ALRAL Jk l.\&ulll
£ Do~ 2 el .. 1 10

lrom OpUblllUIl 1.10,

1.25 lim fi(z,) = {,}

where ¢ = {w,}.
It will be shown that {f,} converges to a function fin C(G, Q). By (1.25)
o :

this function f\m" have to satisfv f(z.) = w.. The importance
............... will have to satisty f(z,) w,. 1he po

that it imposes control over the behavior of {f,} on a dense subset of G. We
will use the fact that {f,} is equicontinuous to spread this control to the rest
of G.

To find the function fand show that {f,} converges to fit suffices to show
that {£,} is a Cauchv seguence. So let K be compact setin G and let ¢ > 0
‘‘‘‘‘ {fi} 1s a Cauchy sequence. So let X be compact set in G a ;
e/ T atnian 177 3¢ cnxfBlnne ¢t G Ad o 1inntoger T onieh that £An L 7 S T
Uy L.CIIIa 1.7 1L DUILILLS LU 1HIU all 1HICELL J dUlldl Ulal 1Vl R, J = J,

1.26 {df(2), [(2)): ze K} < e
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point of G it is equicontinuous on K, by Proposition 1.22. So choose 9,
0 < & < IR, such that

€
’

127 VONICHRS
fAar all £ 1 ,0.1'7 whanavar » and »/ ava 108 EF  anth ';-v___;-v’l - S NAawus 1ot N ha
1Vl au_/ 111 7 WIIVIIVYUL & aAliu & ailv 111 IXI wWitll Ié y4 ' ~N v 1INUW VL L/ UL

the collection of points in {z,} which are also points in K, ; that is

D={z:z,¢K,}
If z € K then there is a z, with |z—z,| < &; but 8 < }R gives that d(z,, K)
Avr that » -~ F TJan~ra (DI QY . VU 20 o ~man ~rnune ~nFf F T at
~ 71\, Ul Lliiatl 4” < i LAV1IVG IU\W, U}. w < Uj 1d all U}JCII LUVLlL VUl . LAUL

K < |J B(w;; ).
i=1

Since lim fi(w;) exists for 1 < i < n (by (1.25)) there is an integer J such that

1.28 d(fiw), fi(w)) < g

fori=1,...,n.
Let z be an arbitrary point in K and let w; be such that |w;—z| < 8. If
k and j are larger than J then (1.27) and (1.28) give

d(f(2), £}(2)) < d(fu(2), fulwd) +d(fil(wd), [;(wD)) +d(f;(wy), £;(2))
< e,

Since z was arbitrary this establishes (1.26). |}

Exercises

t
1. Prove Lemma 1.5 (Hint: Study the function f(¢) = iTt fort > —1.)

2. Find the sets K, obtained in Proposition 1.2 for each of the following
n

choices of G: (a) G is an open dlsk_; (b) G is an open annulus; (¢) G is the
nlane with » nairwice dicinint crlacad Adicke ramnvad: (A) 7 ic an infinite ctrin:
yluxxv YYiLLd b P“ll YYIOW IO jVILIIL wIVUOWU JIoODDD l\/lllUV\tu, \u} \J 10 il 11111111LlWw OtLL 1}},
£\ 1M ~ -z

)G =0C-4.

3. Supply the omitted details in the proof of Proposition 1.18.

4. Let F be a subset of a metric space (X, d) such that F~ is compact. Show
that F'is totally bounded

< Qll“ﬂnoﬂ !f\ 10 29 CoanNnIIanra ‘:ﬂ F{f: \ ‘IY"\;(‘I’\ ArANUaraosg tn ff\ﬂf] ;'7 1 ;D (s
- UHPIJUD\/ IJnJ' 10 Q ovquuuuu 11 \/\U, éﬁ} yviliwvlil \/UllVUls\/D LUJ Ali\3 14”)' 10 a
sequence in G which converges to a point z in G. Show lim f,(z,) = f(2).

6. (Dini’s Theorem) Consider C(G, R) and suppose that {f,} is a sequence

in C(G, R) which is monotonically increasing (i.e., f,(2) < f,+.(2) for all

z in G) and lim f,(z) = f(z) for all z in G where f e C(G, R). Sho hatf,, -> f.
ffe

7 Lef!fl c (7 O)and sunBose that { £1 1q egu nt\ ntinnatg
3 1_, A\, Q‘i} aliul PPU v tliat 1./")’ 10 M\-l 1IL1I1IUuUVU U J \U, way

I

and f(z) = lim f,(z) for each z then show that f, — f.
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8. (a) Let f be analytic on B(0; R) and let f(z) = ia,,z" for |z] < R. If
f(2) = Zn a,z*, show that f, —f in C(G; C). "

(b) Ifeot G = ann (0 0, R) and let f be analytic on G with Laurent series

i DU PR o SR Y \“ e =P Dhas L2\ L U SIS R IS NI R ol
UCVCIOPLIICIIL J\<) = L Upcs « TUL Jpl<) L ars  alld >O0w that j, ==/ Ul
C(G; C). RET® =T
§2. Spaces of analytic functions
T ot £ L nem ~emam csslacas ~0 oL 1. _.1. o sl o
LCt U DC dll Opcll SUDSCL 01 UIC COUIIPICX pd 11 I(vU) I Ue

collection of analytic functions on G, we can consider H (G ) as a subset of
C(G,C). We use H(G) to denote the analytic functions on G rather than
A(G) because it is a universal practice to let 4(G) denote the collection of
continuous functions f: G~ —C that are analytic in G. Thus A(G)#
H(G). The letter H is used in reference to “analytic” because the word
holomorphic is commonly used for analytic. Another term used in place of
analytic is regular.

The first question to ask about H(G) is: Is H(G) closed in C(G,C)?
The next result answers this question positively and also says that the
function f—f’ is continuous from H (G) into H (G).

21 eorem. If{ £} is a seauence in H(QG) and f belongs to C(G. C) such that
2.1 Theorem. If{f.} is a sequence in H(() and f belongs to C(G, L) sucn that
£ o F bl £ 0 analutin and £K) s £K)Y fhau onnl tmtogor I ~ 1
Jn ’J ‘v”ClJ W arniuLytLic u’lujn ’J JU cucrn it sc’ N = 1.

Proof. We will show that f is analytic by applying Morera’s Theorem (IV.
5.10). So let T be a triangle contained inside a disk D <G. Since T is
compact, { f,} converges to f uniformly over 7. Hence [, f=lim[,f,=0
since each f, is analytic. Thus f must be analytic in every disk D < G; but

this gives that f is analytic in G.
To show that f(k) ._;f(k) let D = B(n »\ f"; t

aQ nnmhp
DALV VY VARG F AFN\Wy T [ 94

W ULV Y

= R then Cauchy’s

for z in D. Using Cauchy’s Estimate,
'M,R
(k) ) — £K) k —
2.2 L) —f ()|_ e for [z—a| <r,
where M, = sup {|fi(w)—fw)|: lw—al = R}. Butsince f, - f, lim M, = 0.
) & PRI czio Lo £ N 4L oo (k) LK) i e D e N N mss f L
nclce, I1u lUllUWb 11Ul \4.4) Ulal j" -] unnoriy on o\d, r). INOw 11 A
is an arbitrary compact subset of G and 0 < r < d(K, 0G) then there are
n
a,,...,a, in K such that K < | ) B(a;; r). Since f{¥ — f® uniformly on
j=1
aach Rla.- Y the convargence ic nnifarm oan [ ]
WiAWAL U\uj, ',’ CAANW vvnnvvnev;xvv AD SALAKANJALLAAR \JLL AXMN -
Mn wxrsll Alesincra macitimens 4t dlo oo d2 e TTFLN\ o 4L e e L2 L 2
YWU WIill alwayYd addUllC lilal ulIC 1ICLIIC Ol [ \U) 1D UC 1ICLIIC winell 1t
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inherits as a subset of C(G, C). The next result follows because C(G, C) is
complete.

2.3 Corollary. H(G) is a complete metric space.

If f,: G — C is analytic and ) f,(z) converges uniformly on

compact sets to f(z) then

96 = ¥, S

It should be pointed out that the above theorem has no analogue in the
theory of functions of a real variable. For example it is easy to convince
oneself by drawing pictures that the absolute value function can be obtained
as the uniform limit of a sequence of differentiable functions. Also, it can
be shown (using a Theorem of Weierstrass) that a continuous nowhere
differentiable function on [0, 1] is the limit of a sequence of polynomials.

Surely this is the most emphatic contradiction of the corresponding theorem
for Real Variables. A contradiction in another direction is furnished by the

following. Let f,(x) = % x"for 0 < x < 1. Then 0 = u—1im f,; however the
sequence of derivatives {f,} does not converge uniformly on [0, 1].

To further illustrate how special analytic functions are, let us examine a
result of A. Hurwitz. As a consequence it follows that if f, — f and each f,
never vanishes then either f = 0 or f never vanishes.

2.5 Hurwitz’s Theorem. Let G be a region and suppose the sequence {f,} in
H(G) converges to f. If f #2 0, B(a; R) < G, and f(z) #+ O for |z—a| =
then there is an integer N such that for n > N, f and f, have the same number
of zeros in B(a; R).

Proof. Since f(z) # 0 for |z—a| =
= inf {|f(2)|: |z—a| = R} > 0.

But f sfuniformlvon {71l — 4l 1 ¢ there ic an inteoar A enich that if
BN 7] WwiiaiVUliily Vil lu | < G| 4 ) U UUIVI Y 1D aill 111[.\.«5\./1 4¥Y Oouwvll uuial 11
S AN aemd o Sl D el as
n=1v dlulé u|—1\ LIICI1

1
/()= £ ()I<F8<If (D) <[ f(2)+11, (2)].
Hence Rouché’s Theorem (V.3.8) implies that f and f, have the same
number of zeros in B(a; R). B

2.6 Corollary. If {f,} < H(G) converges to f in H(G) and each f, never
vanishes on G then either f = 0 or f never vanishes

In order to discuss normal families in H{G) the owing terminology is
needed.
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2.7 Definition. A set % ”(f;\i

uvn.---u Nrame i [ >4 AL\

|f(2)| < M, for |z—a| < r.
Alternately, & is locally bounded if there is an r > O such that
sup {|f(2)|: |z—a| < r,feF} < .

That is, # is locally bounded if about each point a in G there is a disk on
which % is uniformly bounded. This immediately extends to the requirement
that # be uniformly bounded on compact sets in G.

2.8 Lemma. A set ¥ in H(G) is locally bounded iff for each compact set
K < G there is a constant M such that
fAl = M
for all fin & and z in K.
The proof is left to the reader

Proof. Suppose % is normal but fails to be locally bounded; then there is a
compact set K < G such that sup {|f(z)|: ze K, fe &} = co. That is, there
is a sequence {f,} in & such that sup {|f,(2)|: z € K} > n. Since & is normal
there is a function fin H(G) and a subsequence {f,,} such that f, — f. But
this gives that sup {|f,.(2)—f(2)|: ze K} -0 as k > . If |f(2)] < M for
zin K,

m, < sup {|f,(2)—f(2)|: ze K} + M;

since the right hand side converges to M, this is a contradiction.

Now suppose & is locally bounded; the Ascoli-Arzela Theorem (1.23)
will be used to show that .# is normal. Since condition (a) of Theorem 1.23
is clearly satisfied, we must show that % in equicontinuous at each point
of G. Fix a point a in G and € > 0; from the hypothesis there is an r > 0

and M > 0 such that E(a r) < G and |f(z)| < M for all z in E(a' r) and

Lo an | = and £~ O« thaw 110is
101 dll J lll J' LCL |4—U| < '2" alia j = .77, LGl Ublllg \,auul_y b l"()rml,ua

with y(f) = a+re”, 0 < t < 2m,

|f@-f(2)] <

f(w) (@=2) dwl
J =0 v=2)

Letting 8 < min {{;r _rA} } it follows that |[a—z| < § gives |f(a)—f(2)|

< ¢ ToOr Cfﬁ
< € 1Us n .z
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2.10 Corollary

awe B

bounded.

s LX

Exercises

1. Let f, f1, f>, ... be elements of H(G) and show that f, — f iff for each
closed rectifiable curve y in G, f,(z) — f(z) uniformly for z in {y}.

2. Let G be a region, let a € R, and suppose that f: [a, 0]xG —C is a
continuous function. Define the integral F(z) = [ f(1, z)dt to be uniformly

convergent on compact subsets of G if lim % f(z, z)dt exists uniformly for z

b—>w
2 pmcs mmtmmimn it el . _ 1 1.

in any compact subset of G. Suppose that this ii‘ltegf'c‘u does converge uni-
formly on compact subsets of G and that for each ¢ in (a, ), f(z, *) is
analytic on G. Prove that F is analytic and

F®(@2) = J’_@_"f(t,Tz) dt

0z

a
b

3. The proof of Montel’s Theorem can be broken up into the following
sequence of definitions and propositions: (a) Definition. A set # < C(G, C)
is locally Lipschitz if for each a in G there are constants M and r > 0 such
that | f(z)—f(a)] < M|z—a| for all fin & and |z—a| < r. (b) If F < C(G,
C) is locally Lipschitz then # is equicontinuous at each point of G. (c) If
& < H(G) is locally bounded then % is locally Lipschitz.
4. Prove Vitali’s Theorem: If G is a region and {f,} <« H(G) is locally
bounded and f € H(G) that has the property that A ={z € G:limf (z)=
f(2)} has a limit point in G then f,—f.
5. Show that for a set & < H(G) the following are equivalent conditions:
(a) & is normal;
(b) For every € > 0 there is a number ¢ > 0 such that {¢f: fe F} <
B(0; €) (here B(0; €) is the ball in H(G) with center at 0 and radius ).
6. Show that if # < H(G) is normal then F#' = {f’: fe Z} is also normal.
Is the converse true? Can you add something to the hypothesis that %’ is
normal to insure that & is normal?
7. Suppose .# is normal in H(G) and Q is ope
every fin#. Show that if g is analytic on Q an

o J T T

then fnnf' fc J,In—]. 1Q nnrmo]

8. Let D = {z |z| < 1} and show that &% < H(D) is normal iff there is a
sequence {M,} of positive constants such that lim sup \/M,, <1 and if

o 0]
f(2) =Y a,z"is in & then |a,| < M, for all n.

0
5. Let D=B(0; 1) and for 0<r<1 let y,(1)=e*", 0<t<1. Show that a
sequence { f,} in H (D) converges to f iff j | f(2)—f,(2)| |dz|—>0 as n—o0
for each r, 0< r<1.
10. Let {f,} < H(G) be a sequence of one-one fun ons which converge

=
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b
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=
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11. Suppose that {f,} is a sequence in H(G), f is a.non-constant function,
and f, — f in H(G). Let a € G and « = f(a); show that there is a sequence
{a,} in G such that: (i) @ = lim a,; (ii) f,(a,) = « for sufficiently large n.
12. Show that lim tan nz = —i uniformly for z in any compact subset of
G={z:Imz > 0}

13. (a) Show that if fis analytic on an open set containing the disk B(a; R)

VaAwas

2n R

|f@))? < 7%J‘J‘If(a+re‘°")l2 rdrdé.
00

(b) Let G be a region and let M be a fixed positive constant. Let & be
the family of all functions f in H (G) such that ff | f(2)|* dxdy < M. Show

that % is normal.

§3. Spaces of meromorphic functions

If G is a region and fis a meromorphic function on G, and if f(z) = o
whenever z is a pole of G then f :G—>C,is ontmuous functlon (Exermse

V. 3.4). If M(G) is the set of all meromorphic functions on G then consider
M(G) as a subset of C(G, C_) and endow it with the metric of C(G, C,).
In this sectlon thls metric space will be discussed as H(G) was discussed in

Recall from Chapter I that the metric d is defined on C_, as follows
for z; and z, in C
d 2|z, —z,|
(z1,25) =

[(1+]z,5) A+ |z, )1 ’
and for zin C

(1+|z»F

Notice that for non zero complex numbers z, and z,,

d(z, ) =

/ 1 1
3.1 dz,,z,)=dl—, =);
\z1 z,/
and forz # 0
. L (1
3.2 az,0) =d|~-, |
\? /

i wwiais viiia e

L“
d(z,z,)—0 then |z -z |—>O
Some facts about the relationship between the metric spaces C and C,
are summarized in the next proposition. In order to avoid confusion B(a; r)
will be used to designate a ball in C and B(a; r) to designate a ball in C.

Also recall that if {z,) 1s a sequence in C and zeC that satisfies
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3.3 Proposition. (a) If a is in C and r > 0 then there is a num
that B (a; p) < B(a; r).

(b) Conversely, if p > 0 is given and a € C then there is a number r > 0
such that B(a; r) < B, (a; p).

(©) If p > 0 is given then there is a compact set K < C such that C,—K
< By (05 p).

(d) Conversely, if a compact set K < C is given, there is a number p > 0
such that B_(x; p) < C_—K.

The proof is left to the reader.

The first observation is that M(G) is not complete. In fact if f(z) = n
then {f,} is a Cauchy sequence in M(G). But {f,} converges to the function
which is identically o in C(G, C_) and this is not meromorphic.
However this is the worst that can happen.

3.4 Theorem. Let {f,} be a sequence in M (G) and suppose f, — f in C(G, C,).

Then either f is meromorphic or f = co. If each f, is analytic then either f is
analytic or f = oo.

st Qiimmece thana At ~ and YPRY
Proof. Suppose there is a point a in G wuuj\u) # oo and put M = |J\aj|-

Using part (a) of Proposition 3.3 we can find a number p > O such that

B_(f(a); p) < B(f(a); M). But since f, — f there is an integer n, such that
d(f.(a), f(a)) < 4pforalln > n,. Also {f, fi, fs, . ..} is compact in C(G, C,)
so that it is equicontinuous That is, there is an r > O such that [z—a| < r
ii‘ﬁplies uu,,\A), _/,,\a)) < -zp That gch‘:S that uu,,u), /\a)) <p for iz—-a{ <r
and for n > n,y. But by the choice of p, [£,(2)| < [f,(2)—f(a)|+|f(a)] < 2M
for all z in B(a; r) and n > n,. But then (from the formula for the metric d)

[/(2) =1 ()] = d(f(2), £(2))

11 A2\
(1+4M )
Qr z 1 B(n' Y and » > n. Since Al f(7Y f(>) -~ 0 uniformlv for > 1
P e i =] Al \W’ '} CA LIS e ety 'iol WTALAWN W\Jn\ﬁl, J \H,I A4 MAAAAVLIIIAJ ANSA et AAS
........ 4ot | L6\ £ 0N\ N ziemiCmsninale; £mse o S D e 32 Qinpme ¢hn
D\u r), Llllb 5‘VCD Lilat ljnkéj- \Z)l > U Uulioiiny 101l < 111 D, r). Ol LI

tail end of the sequence {f,} is bounded on B(a; r), f, has no poies and must
be analytic near z = aforn > n,. It follows that fis analytic in a disk about a.
Now suppose there is a point a in G with f(a) = oo For a function g in

/1\
C(G, C,) deﬁneé by { L | (2) = —l— if g(z) # 0 or oo; { ) (2) = 0if g(2) =
g \&/ 8(2)

A1) o o1 i
co; and ké) (z) = oo 1f g(z) = 0. It follows that g’e (G, C_). Also, since

. ) 1 1
f. =~ fin C(G, C,) it follows from formulas (3.1) and (3.2) that Pl in

J 4

1
C(G, C,). Now each function — is meromorphic on G; so the preceding

n

: : 1 1
paragraph gives a number » > 0 and an integer n, such that - and - are

VAR

analvtic on Rla: r)
analytic on Bla; r)
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1 1
Hurwitz’s Theorem (2.5) either fi = 0 or ; has isolated zeros in B(a; r). So

: 1 .. .. :
if f# oo then i # 0 and f must be meromorphic in B(a; r). Combining this
with the first part of the proof we have that fis meromorphic in G if fis not
identically infinite.

1
If each f, is analytic then — has no zeros in B(a; r). It follows from

: 1 :
Corollary 2.6 to Hurwitz’s Theorem that either P =0 or p never vanishes.

J 7

1
But since f(a) = oo we have that - F has at least one zero; thus f = oo in

B(a; r). Combining this with the first part of the proof we see that f = oo or f
is analytic. [l

' V' 4 ~

s 3V -2 o Vg, | LN\ . . 's by - _ 7 4 - 4 . _
3.5 Coroliary. M(G) U {0} is a complete metric space.

3.6 Corollary. H(G) U {0} is closed in C(G, C,).
To discuss normality in M (G) one must introduce the quantity

2/1(2)|
1+]f(2)]

for each meromorphic function f. However if z is a pole of f then the above
expression is meaningless since f'(z) has no meaning. To rectify this take the
limit of the above expression as z approaches the pole. To show that the
limit exists let a be a pole of f of order m > 1; then

A A

+ ...+ =t
(z— a)"' (z—a)

f(z) = g(2) +

for z in_some disk about a and g analytic in that disk. For z # a

mA, N A ]
T ¢ o @ w\ I
)4

(z—a)" + .. ( ~ ) + g(z)

_ 2z—a" " YimA,,+ .. .+ A z—a)"" ' ~g'(2) —a)" "
lz—al®™+|A,+ ... +A,(z—a)" " +g(2) (z—a)"|?
I
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im 2@ _
z—a 1+,f(2)|2
If m = 1 then

Al £rs N\

im 2@ _ 2
z~a 1+[f2)]* |44

3.7 Definition. If f is a meromorphic function on the region G then define
p(f): G— R by

A O\ LN\ 2lf’(z)l
rUIZ) = 1.1.|f{—;\|2
V<]
whenever z is not a pole of f, and
im 2|f’
W) (@ = lim 2L OL

e L+ |1
if a 1s a pole of f.

It follows that u(f) e C(G, C).

The reason for introducing w(f) is as follows: If f: G — C, is mero-
morphic then for z close to z’ we have that d(f(z), f(z’)) is approximated by
u(f) (2) |z—2’|. So if a bound can be obtained for u(f) then fis a Lipschitz
function. If f belongs to a family of functions and u( f) is uniformly bounded
for fin this family, then the family is a uniformly Lipschitz set of functions.
This is made precise in the following proof.

3.8 Theorem. A family % < M(G) is normal in C(G, C,) iff u(F) = {u(f)
fC %—1 '.(‘ In/-n II) l\nnn I)I’

J ~ ’ W) UL vvsriuuc e

2n

Note. If f,(z) = nz for n > 1 then u(f) (z) = 1—+——ZI—P . Thus & = {f,} is
normal in C(G, C_.) and w(&#) is locally bounded. However, # is not
normal in M(G) since the sequence {f,} converges to the constantly infinite
function which does not belong to M(G)

[e} xr

I'I'O()] 0] Theorem 3.8. We Wlll assume that }L(d") IS lOCﬂlly bounded and
prove that & is normal by applymg the Arzela-Ascoli Theorem. Since C

is compact it suffices to show that % is equicontinuous at each point of G.
So let K be an arbitrary closed disk contained in G and let M be a constant
s . < M far all o 1:a EF anmd all £20 92 Yot o and =/ ha awliteses
Wi l I.L\J} \L} vl 1V1 all <& 111 Iy Hu aill J 111 & . LAL £ allu e CllUll.ld.ly

pom[s in K.
Suppose neither z nor z’ are poles of a fixed function fin & and let

« > 0 be an arbitrary number. Choose points wy = z, w;, ..., w, = z' in

K which satisfy the following conditions:

39 win [w

~1, W] implies w is not a pole of f;
L K 17 Kl r
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310 ) |we—we_y| < 2z—2'[;
k=1

L+]/w)l* —l<a 1<k<n;
[(1+|f(Wk)|2)(1+|f(Wk DI

|f(Wk) —f(We—1)

I W= Wiy

o < a1

{ 2
\"’k—l)l < «, i.

IA

I-
n

IA

£
- J

To see that such points can be found select a polygonal path P in K satisfying
. 9) and (3 10). Cover P by small disks in which conditions similar to (3.11)
dﬂu \J IL) ﬂUlU LIlOObC a llIlllC SUDLUVCY dIlU UlCIl plbl( pUlIll,b Wo, v ey Wn
on P such that each segment [w,_,, w,] lies in one of these disks. Then
{wg, ..., w,} will satisfy all of these conditions. If B, = [(1+|f(Wi-1)|?)

(1+]fw) )] then

d(f2), [N < D d(f(We-1), S(Wy)

[\/l= M=

=
]
KRN

| f(w) —f(w, )|

S =f (W) = [ W= )| Wi —wie—4

Wi— W |

IA
-
[N

x>~
]

—
oW
E

]

lf(Wk Dl [We=wi-1]

=1Bk

Using the fact that 2|f'(w)| < M(1+|f(w)|*) and the conditions on
Wos - - - » W, this becomes

df@). &) < 22 > El W= o| + M > <1+lf§3wk_1)l ) Wy wr_
k=1 k

k=1 Pk

n
< (4a+2oM) |z—Z'| + z M|w,—w,_4]

< (4o+2aM+2M)|z—2

~

Since « > 0 was arbitrary this gives that if z and z’ are not poles of f then
3.13 d(f(2), f(z)) < 2M|z—Z|.
Now suppose z' is a pole of f but z is not. If w is in K and is not a pole
then it follows from (3.13) that

d(f(2), ©) < d(f(2), f(w))+d(f(w), ©0)

”A/{|-7= ILI’/’Yﬂ)\ ~ )
s 1VI IL V |Tu\J\W}, W}-

IA
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(poles are isolated ') thls gives that (w) —>f( ) = oo and |z—w| — |z—2Z’|.
Thus (3.13) holds if at most one of z and z’ is a pole. But a similar procedure
gives that (3.13) holds for all z and z" in K. So if K = B(a; r) and € > 0 are

"C

given then for 8 < min {r, ¢/2M} we have that |z—a| < 8§ implies d(f(2),
I\ « - and Sicindanaendent af fin Z Thic aivec that % ic aqimicantiniiniic
J \u}} ™~ :, aQali\ug U 10 lllU\.«}J\yllu\/llb Ul‘l 111 e~ « A1110 glv\do Lii1AAl 7 10 v\iulvullbllluvuo

at each point @ in G.
The proof of the converse is left to the reader. i

Exercises

1. Prove Proposition 3.3.
2. Show that if % < M(G) is a normal

locally bounded.

§4. The Riemann Mapping Theorem

XX7 I A Lo

\A4 ™~ Wlbl’l to ueune an CquVd 1ence rCldllOIl DelWCCIl reglons lIl \L/ AIlEr
doing this it will be shown that all proper simply connected regions in C
are equivalent to the open disk D = {z: |z| < 1}, and hence are equivalent
to one another.

if there i

) I
L7

1 1s conformally eq walent to G, 1
functmn - G, — Cs ich that fis one-one and f(G,) = G

It is immediate that C is not equivalent to any bounded region by
Liouville’s Theorem. Also it is easy to show from the definitions that if G,
is simply connected and G1 is equivalent to G, then G, must be simply

nnected. If £ is the principal branch of the square root then f is one-one
and chnawe that p= f'r' s < NV 1c ananiuvalont tn tha richt alf nlana
alillu S11Uwo uiiat © €. € = VI Vjulvaivlit LU UiV 1iglit liail pians

4.2 Riemann Mapping Theorem. Let G be a simply connected region which is
t the whole plane and let a € G. Then there is a unique analytic function
f: G — C having the properties:

(2) fla) = 0 and f'(a) > O
\u} J\“} uuuu_] \u} ~ U,
LN L0

(D) j'is one-one;

©) f(G) = {z:]z] < 1}

The proof that the function f is unique is rather easy. In fact, if g also
has the properties of fand D = {z: |z] < 1} then fog~!: D — D is analytic,

one-one, and onto. Also fo g~ (0) = f(a) = 0 so Theorem VI. 2.5 implies
there is a constant ¢ with |¢] = 1 and fog~!(z) = cz for all z. But then
f(z) = cg(z) gives that 0 < f'(a) = cg’'(a); since g'(a) > O it follows that
c=l,orf=g

To motivate the proof of the existence of f, consider the family & of all

analytic functions f having properties (a) and (b) and satisfying |f(z)| < 1
for zin G. The idea is to choose a member of % having property (c). Suppose

The idea is to choose a mer having p C).
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{K,} is a sequence of compact subsets of G such that O K, = Gand ac K,
n=1

for each n. Then {f(K,)} is a sequence of compact subsets of D = {z: ||

< 1}. Also, as n becomes larger f(K,) becomes larger and larger and tries to

£11 tha Aicl N Dy ~kA~ 300 b3 e (774 ¢+l ¢lan ~coilla
1111 UUL LllC QisSK L. l)y \.«llUUbllls a IUIIDLIUIIJ lll 7 Wll.ll lllC 1alscat PUDDIUIC

derivative at a, we choose the function which “‘starts out the fastest™ at z = a.
It thus has the best possible chance of finishing first; that is, of having

a0

,.Ulf(K") =

Before carrying out this proof, it is necessary for future developments
to point out that the only property of a simply connected region which will
be used is the fact that every non-vanishing analytic function has an analytic
square root. (Actually it will be proved in Theorem VIII. 2.2 that this property
is equivalent to simple connectedness.) So the Riemann Mapping Theorem
will be completely proved by proving the following.

X s volad ; + ¢l olnl
4.3 Lemma. Let G be a region which is not the whole
7

every non-vanishing analytic function on G has an analytic
then there is an analytic function f on G such that:

(a) f(a) = 0 and f"(a) > O;
(b) f1s one-one;

(©) f(G) =D = {z:|z] < 1}.
Proof. Define & by letting
& = {fe H(G): fis one-one, f(a) = 0, f'(a) > 0, f(G) < D}

Since f(G) < D, sup {|f(2)|: ze G} < 1 for fin & ; by Montel’s Theorem
& is normal if it is non-empty. So the first fact to be proved is

4.4 F # [
It will be shown that
4.5 F~ =% U {0}

Once these facts are known the proof can be completed. Indeed, suppose (4.4)
and (4.5) hold and consider the function f— f'(a) of H(G) — C. This is a

continuous function (Theorem 2.1) and, since & ~ is compact, there is an

fin F~ with f'(a) > g'(a) for all g in &. Because & # [, (4.5) implies
that fe &#. It remains to show that f(G) = D. Suppose we D such that
w ¢ f(G). Then the function

f@)—w

1-af(@)
is analytic in G and never vanishes. By hypothesis there is an analytic function
h: G — C such that

4.6 ()P = -
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Since the Mobius transformation 7¢ = f—_— maps D onto D, h(G) < D.
—w
Define g: G — C by

(@] hz)—ha)
1'(a) 1-h@h)

ol )
\<)

Then g(G) < D, g(a) == 0, and g is one-one (why?). Also
|h'(a)] . h'(a) [1 = |h(a)|*]

£ V@ -
A G)]
=[G’
But |#(a)|> = |—w| = || and differentiating (4.6) gives (since f(@) = 0) that
2h(@)h'(@) = £'(@) (1—|w]?).
Therefore
2'(@) _f@d —lo>) 1
2J/| 1—o]
_ 1+ o]
-7 (37)
> f(@)

This gives that g is in % and contradicts the choice of f. Thus it must be
that f(G) = D.

Now to establish (4.4) and (4.5). Since G # C, let be C—G and let g
be a function analytic on G such that [g(z)]> = z—b. If z, and z, are points
in G and g(z,) = +g(z,) then it follows that z, = z,. In particular, g is

one-one. Bv the O nen qunmo Theorem there is 2 number r > 0 such tb

~J "‘“’ iniead ol uthd ®AAVIL WAL a2 numo
4.7 g(G) = B(g(a); )
QA 1fthara 106 a Attt ~ Y cninh L\nf afl »\ )2 74 al A\ W than » <~ o P PAY
DU 11 LIINIV Id a }}Ullll. < lll WU dSu\uill tiiat 5\L} U\ g\u}, I} LNl 7 -~ I \ Ts\u”
= | —g(z)—g(a)|. According to (4.7) there is a w in G with g(w) = —g(2);

but the remarks preceding (4.7) show that w = z which gives g(z) = 0. But
then z—b = [g(z)]* = O implies b is in G, a contradiction. Hence

4.8 gG) N {L: [{+g@)| < r} =

Tet IU be the disk {¢: {Z4+o(a)] < r¥ = B(—o(a): ¥). There is a Mobius

Let U be the disK (6! |[6+8\W)| < ry L{—gla), r). 1here 1s a MODIUS

nnnnnnnnnnn T wvnlh dlinse TUMD 7=\ T ad -~ T o~ +lhnen ~ by

l[dllblUlllldLlUll 4 dSulll lllat £1\L,—U ) = U. LLL F1 = 4 °x, ULl g1 D
If we still

analytic and g,(G) < D. If « = gl(a) then let g,(z) = ¢, © gl(z),
have that g,(G) < D and g, is analytic, but we also have that g,_(a) = 0.
Now it is a simple matter to find a complex number c, |c

o (7Y = ro () hae pocitive derivative at » — a2 and ic therefore 1n %
6 3\“/ ‘/6 2\“} AA000 yvu“-l W WAWwil “i ¥ W “aL r < L1l AV L) CAdlwili Wi N/4 v, a4 o
Thic actalllich o 74 A
L1111 COYLAUILINIICD \“f “).
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ILet z. he an arhitrarv element of (G and it / — f(> Y- let / — (> Y T ot
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Then f,(z) — {, never vanishes on K since f, is one-one. But f,(z)— ¢, — f(z)—{
uniformly on K, so Hurwitz’s Theorem gives that f(z) — { never vanishes on
Kor f(z) = {. If f(z) = { on K then fis the constant function { throughout
G; since f(a) = 0 we have that f(z) = 0. Otherwise we get that f(z,) # f(zl)
for Z, # 24, that is, _/ is one-o1
so (4.9) implies that f'(a) > 0 a
of the lemma is complete. |}

1€. But 11/1 S one-on

€ lIlCIlJ Call 11ICvel lellb[l
and fis in #. This proves (4.5) and the proof

4.10 Corollary. Among the simply connected regions there are only two
equivalence classes; one consisting of C alone and the other containing all the
proper simply connected regions.

Ternmendona

LACIUDLD

1. Let G and Q be open sets in the plane and let /: G — Q be a continuous
function which is one-one, onto, and such that f ~!: Q — G is also continuous
(a homeomorphism). Suppose {z,} is a sequence in G which converges to a
point z in dG; also suppose that w = lim f{(z,) exists. Prove that w e 9Q.
2. (a) Let G be a region, let a € G and suppose that f: (G— {a}) - C is an
analytic function such that f(G— {a}) = Q is bounded. Show that f has a
removable singularity at z = a. If f is one-one, show that f(a) € 0.

(b) Show that there is no one-one analytic function which maps G =
{z: 0 < |z| < 1} onto an annulus Q = {z: r < |z| < R} where r > 0.
3. Let G be a simply connected region which is not the whole plane and
suppose that zZ e G whenever zeG. Let ae GN R and suppose bat I
G — D = {z: |z] < 1} is a one-one analytic function with f(a@) = 0, f'(a)>0
and f(G) = D. Let G, = {ze€G: Im z > 0}. Show that f(G,) must lie
entirely above or entirely below the real axis.
4. Find an analytic function f which maps {z: |z| < 1, Re z > 0} onto

e+

B(0; 1) in a one-one fashion.
g T at £ ha analiéin ~Am £ . fmwe Da o ~. Nl Asan A tlh Da /N < N I‘n
Je LCI._/ UC a ldlyllb VIl U — 14. INC < > U], UIIC=Vl1IC, WlLll I\CJ\A’ ~ VU 1ul

all z in G, and f(a) = a for some real number a. Show that |f'(a)| <
6. Let G, and G, be simply connected regions neither of which is the whole
plane. Let f be a one-one analytic mapping of G, onto G,. Let ae G, and

put « = f(a). Prove that for any one-one analytic map & of G, into G2 with
L{ ~\ —_ A .‘- “I\‘Ir\t.vﬂ Ln‘- | L7 n\l e I L1 N\ C‘ nnnnnnn ia et aoo mwand A Tha
n\u) — & 1L 1UIIUWD Lllal lll \u)| >~ L/ \u}l PPUDC Il 15 IUL AddUlllICU U ULV

one-one; what can be said?

7. Let G be a simply connected region and suppose that G is not the whole
plane. Let A = {£: |£|] < 1} and suppose that f is an analytic, one-one map

Of (G anto A with fia\ — 0 and £ {a S 0O for come noint 2 1in G Tet o he
\J 11V el "ll,llJ \“} \J ulluJ \ul - vV 1V [SAV S S L) yvlllL “W 111 Je. EJwE 6 Uw
PRSP memm o df o i e Y i A Y i . s dniecens ~E L
dally OLUICT alldlyuc, OIC-0IIC lldp O1 U OIlL AN daI1ld CXPICDD &g 111 CLIIS Ot /.



164 Compactness and Convergence
8. Let ry, r,, R,, R,, be positiv

3 1> =743 ~

1
that ann (0; r,, R,) and ann (0; r,, R,) are conformally equivalent. (The
converse of this is presented in Exercise X. 4.)

9. Show that there is an analytic function f defined on g =ann(0;0, 1) such
that f never vanishes and f(G)= B(0; 1).

ve numbers such that R,/r, = R,/r,; show

§5. The Weierstrass Factorization Theorem

r\rnh]pm 1iven a caaguence {a n (; url»nn ac na limit naint in G and a
y;vullel. NJ1VWwil QO Ov\iuvll\/\/ luk! 111 \J YViliwil 1140 11V 1111110 t}\.lllll- 111 7 Qi
A e Send - PR ) PSR FE. Y PR |
sequence of integers {m,}, is there a function f which is analyuu on G and

such that the only zeros of f are at the points g, with the mulitiplicity of the
zero at g, equal to m, ? The answer to the question is yes and the result is due
to Weierstrass.

If there were only a finite number of points a,...,a, then f(z) =
(z—a)™ ...(z—a,)™ would be the desired function. What happens if there
are infinitely many points in this sequence? To answer this we must discuss
the convergence of infinite products of numbers and functions.

Clearly one should define an infinite product of numbers z, (denoted
by J] z.) as the limit of the finite products. Observe, however, that if one of
n=1

the numbers z, is zero, then the limit is zero, regardless of the behavior of
the remaining terms of the sequence. This does not present a difficulty, but
it shows that when zeros appear, the existence of an infinite product is
trivial.

5.1 Definition. If {z,} is a sequence of complex numbers and if z = lim ﬂ Z
k=1

exists, then z is the infinite product of the numbers z, and it is denoted by
[e 0]
Suppose that no one of the numbers z, is zero, and that z = 1 | z, exists
n=1

and is also not zero. Let p, = “ for n > 1; then no p, is zero and

Pn k-
Pn-1
for the cases where zero appears, a necessary condition for the convergence
of an infinite product is that the n-th term must go to 1. On the other hand,

note that for z, = a for alln and |a] < 1, []z, = 0 although lim z, = a # 0.
Because nf' the fact that the Pxnnnentm] nf a sum is the m‘nduct of the

exponentials of the individual terms, it is possible to discuss the convergence
of an infinite product (when zero is not involved) by discussing the con-
vergence of the series » log z,, where log is the principal branch of the

logarithm. However, before this can be made meaningful the z, must be

= z,. Since z # 0 and p, — z we have that lim z, = 1. So that except
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n=1

zero number iff the series Y log z, converges.
n=1

Proof. Let p, = (zl- oz, z =re®, —w < 0 < =, and {p,) = log |p,| +i0,
where 0—7 < 0, < 0+=. If s, = log z, + - - - +log z, then exp (s,) = p, SO
that s, = £( p,.,)+2mk for some integer k,. Now suppose that p, — z. Then
S,—S,—; = log z, = 0; also #(p,)— /(p,,_l)—>0 Hence, (k,—k,-,) — 0 as
n — co. Since each k, is an integer this gives that there is an n, and a k such
that k,, = k, = k for m, n > ny. So s, — £(z)+2nik; that is, the series
Y log z, converges. Since the converse was proved above, this completes the
proof.

Consider the power series expansion of log (14-z) about z =0
z" z?
log (1+2) = Z( S == T,
n=1 2
which has radius of convergence 1. If |z] < 1 then
|, log (1+2)] 5
1 — = |3z—%z°+.. |
z
2
< 3(|z] +|z]*+. . .)
I
=41
I—|z]
If we further require |z| <  then
log (142
1 — log (1+2) <.
l z
This gives that for |z| < %
5.3 3|z| < |log (142)] < 3|z|.
This will be used to prove the following result.
EA Dorccncldlne. 7T _+ Do o o 1. 2L 2l anvtre & 1o 71 & _\
Dot r[UpUblll . L€l INC 2, > — 1, Lnen ine series L 10g (1+2,) C nverges

absolutely iff the series ) z, converges absolutely.

D..~ T U 1ol mmmcraccac am n 72 AN
I'fUU_]. 11

L |z,| converges then z, —0; so eventually |z,| < . By (5.3)
is dominated by a convergent series, and it must converge
also. If, conversely, Y |log (1+2z,)| converges, then it follows that |z,| < }

for sufﬁmentlv large n (why?). Again (5.3) allows us to conclude that ) |z,
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first temptation should be av 1ded That is, we do not want to say that
I |z, converges. Why? If [] |z,| converges it does not follow that [] z,

converges. In fact, let z, = —1 for all n; then |z,| = 1 for all n so that

n

[T |z.] converges to 1. Hawever [ ] z, is + 1 depending on whether # is even
k=1

||‘> f\l\ﬁ‘ln"
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or odd, so that || z, does not converge. Thus, if absolute convergence is to
imply convergence, we must seek a different definition.
On the basis of Proposition 5.2 the following definition is justified.

5.5 Definition. If Re z, > 0 for all n then the infinite product [] z, is said to

converge absolutely if the series 7' log z, converges absolutely.
According to Proposition 5. 7 and the fact that absolute convergence of

a series implies convergence, we have that absolute convergence of a product
implies the convergence of the product. Similarly, if a product converges
absolutely then any rearrangement of the terms of the product results in a
product which is still absolutely convergent If we combine Proposmons 5.2

5.6 Corollary. If Re z, > O then the product || z, converges absolutely iff
the series Y. (z,— 1) converges absolutely.

Although the preceding corollary gives a necessary and sufficient con-
dition for the absolute convergence of an infinite product phrased in terms
with which we are familiar, it does not give a method for evaluating infinite
products in terms of the corresponding infinite series. To evaluate a particular
product one must often resort to trickery.

We now apply these results to the convergence of products of functions.
A fundamental question to be answered is the following. Suppose {f,} is a

sequence of functions on a set X and f,(x) — f(x) uniformly for x in X;
when will expn (f.(x)) —>exp (f(x)) uniformly for x in X? Relow is a partial

il Va2 AP RUun\"™/ J \vv)) w=iiaaoiaiil Aa Sy il a2eaV

answer which is sufﬁment to meet our needs.

5.7 Lemma. Let X be a set and let f, fl, f>, ... be functions from X into C

such that f,(x) — f(x) uniformly for x in X. If there is a constant a such that
Re f(x) < a for all x in X then exp f,(x) — exp f(x) uniformly for x in X.
Proof. If € > 0 is given then choose 8§ > 0 such that [¢ — 1| < ee™® whenever
|z| < 8. Now choose n, such that |f,(x)—f(x)| < & for all x in X whenever
> ny. Thus
ce™ > [exp [f,(x)—f(D] -]
exp £u) _ ||
lexpf(x) |

It follows that for any x in X and for n > n,,
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of continuous functions from X into C such that ), g,(x) converges absolutely
and uniformly for x in X. Then the product

1) = T1 (+8,)

converges absolutely and uniformly for x in X. Also there is an integer ny such

that f(x) = 0iff gx) = —1 for somen, 1 < n < n,.

Proof. Since ). g,(x) converges uniformly for x in X there is an integer n,
such that |g,(x)| < 4 for all xin X' and n > .n,. This implies that Re [1 4 g,(x)]
> 0 and also, according to inequality (5.3), |log (1+g,(x))| < 3 |gu(x)| for
all n > ny and x in X. Thus

@

h(x) = Y log(1+g,(x))
n=no+1
converges uniformly for x in X. Since 4 is continuous and X is compact it
follows that 4 must be bounded; in particular, there is a constant a such that
Re h(x) < afor all x in X. Thus, Lemma 5.7 applies and gives that

[o o]

exph(x) = [] (1+g,(x))

n=no+1

converges uniformly for x in X.
Finally,

------ v\ — 1 Lo (v .o
JW) = 11 T8 1\X } L
and exp h(x) # O for any x in X. So if f(x) = O it must be that g,(x) = —

for some n with 1 < n < ny. B
We now leave this general situation to discuss analytic functions.

5.9 Theorem. Let G be a region in C and let {f,} be a sequence in H(G) such
that no f,, is identically zero. If ) [f,(2) — 1] converges absolutely and uniformly
o0}

on compact subsets of G then [ | f,(z) converges in H(G) to an analytic function

n=1

f(@). If a is a zero of f then a is a zero of only a finite number of the functions
£,» and the multiplicity of the zero of f at a is the sum of the multiplicities of the
zeros of the functions f, at a.
Proof. Since Y [f,(z)—1] converges uniformly and absolutely on compact
subsets of G it follows from the preceding theorem that f(z) = H 1(2)
converges uniformly and absolutely on compact subsets of G. That is, the
infinite product converges in H(G).

Suppose f(a) = 0 and let r > 0 be chosen such that B(a; r) = G. By

hypothesis, Y [£,(z) ] converges uniformly on B(a; r). According to Lemma
8 there is an inte n such that f(z) = f.(2) f(7\a/7\ where g does not

Lilwiw 1T i1 1IN 6 UUWILl LIIQGL J\4& ) - J1\<J * n\<«)8\<~) Vilwiw VWO AANv

vanish in B(a; r). T h proof of the remainder of the theorem now follows. B

Let us now return to a discussion of the original problem. If {a,} is a
sequence in a region G with no limit point in G (but possibly some point
may be repeated in the sequence a finite number of times), consider the
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a,). According to Theorem 5.9 if we can find functions g (z)
which are analytlc on G, have no zeros in G, and are such that
2|(z —a,)g,(z) — 1| converges uniformly on compact subsets of G; then f(2)=
II(z - a,)g,(2) is analytic and has its zeros only at the points z = a,. The saf-

est way to guarantee that g (z) never vanishes is to express it as g,{(z)=exp

b () fAr cntrmo analutin Frimads e £ =2\ T L. 4 fn meemm 1l o~ a1 .

un\/.) 101 SUTIINC aniaiyud function 4 n,\Z ). 111 1aCt, if G is simj 1y conneciea it
11 —— ~ - . =
oliows that g,(z) must be of this form. The functions we are looking for

were introduced by Weierstrass.

5.10 Definition. An elementary factor is one of the following functions E(2)
forp = 0. 1

I.I \I, .l, e o o o
Eyz) =1-z,
z2 zP
E\z) = (l—z)exp<z + 5 + ... +;),p > 1.
The function E,(z/a) has a simple zero at z = a and no other zero. Also
[ a—b)
if b is a point in C—G then E,| — | has a simple zero at z = a and is

A\z—b
analytic in G. These functions will be used to manufacture analytic functions
with prescribed zeros of prescribed multiplicity, but first an inequality must
be proved which will enable us to apply Theorem 5.9 and obtain a con-
vergent infinite product.

5.11 Lemma. If |z| < 1 and p > 0 then |1—E,(z)| < |z|PT'.

Proof. We may restrict our attention to the case where p > 1. For a fixed
p let

E()=1+ kZ1 a,z*

ion about z = 0. By differentiating the

a2 & ~ re 1Y NeiiAwa v;...w-..-;

ies e
the original expression for E p(z) we obtain

(e 0]
Efz) = ) kaz*"!
= —zPexplz+ ...+ =)
\ p)

Comparing the two expressions gives two pieces of information about the
coefficients g,. First, a; = a, = ... = a, = 0; second, since the coefficients
ZP
of the expansion of exp (Z oot ) are all positive, g, < Ofork > p+1

\ P,
Thus, |a,| = —a, for k > p+1; this gives
o0
O=EMN =14+ ) a,
k=p+1
or
- <«
L A= 2 =1L
k=p+1 k=p+1
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=Y
o

Hence, for |z| < 1

H

E) -1 =] ) a7
k=p+1
o0
— lzlpt1 | X, k—p—1]
(ol | L Yk~
k=p+1
@O
<P X e
k=p+1
= |2+

which is the desired inequality. i

Before solving the general problem of finding a function with prescribed
zeros, the problem for the case where G = C will be solved. This is done for
several reasons. In a later chapter on entire functions the specific information
obtained when G is the whole plane is needed. Moreover, the proof of the

general case, although similar to the proof for C, tends to obscure the rather
simple idea behind the proof.

5.12 Theorem. Let {a,} be a sequence in C such that lim |a,| = oo and a, # 0
for all n > 1. (This is not a sequence of distinct points; but, by hypothesis, no

point is repeated an infinite number of times.) If {p,} is any sequence of integers
such that

5.13 N
Ly

for all r > O then

YW L AN

converges in H(C). The function f is an entire function with zeros only at the
points a,. If z, occurs in the sequence {a,} exactly m times then f has a zero
at z = zy of multiplicity m. Furthermore, if p, = n—1 then (5.13) will be

Proof. Suppose there are integers p, such that (5.13) is satisfied. Then,
to

accordine Temma S 11
“Vvvlullle AdWwAl1A1110A e L l’
+1 pntl
Z pn r
II—E (Z/an)l < (—
n ||
whenever |z| < r and r < |a,|. For a fixed r > O there is an integer N such
that |a,| > r for all n = N (because lim |a,| = ). Thus for each r > 0 the
series Z I1— —E, (z/a,,)|—> is dominated by the convergent series (5.13) on the
disk B(0; r). ThlS gives that ) [1 —-Epn(z/a )] converges absolutely in H(C).

h1

By Theorem 5.9, the infinite product »(z/a,) converges in H(C).
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S dd T e 5 vn 21 ' A tmitormre A cri~bl a1l L [o YUY » SRS | N T
matier. ror any r tnere 18 an Integer /v sucil tnatl |a,| > <r 1or dli n = Iv.

This gives that (Tarhl) < 1 forall n > N; so if p, = n—1 for all n, the tail
end of the series (5.13) is dominated by ) (3)". Thus, (5.13) converges.

There is, of course, a great latitude in picking the integers p,. If p, were
bigger than n—1 we would have the same conclusion. However, there is an
advantage in choosing the p, as small as possible. After all, the smaller the
integer p, the more elementary the elementary factor E, (z/a,). As is evident
in considering the series (5.13), the size of the integers p, depends on the rate
at which {|a,|} converges to infinity. This will be explored later in Chapter
XI.

5.14 The Weierstrass Factorization Theorem. Let f be an entire function and

let {a,} be the non-zero zeros of f repeated according to multiplicity ; suppose

f has a zero at z=0 of order m>0 (a zero of order m=0 at z=0 means

f(0)#0). Then there is an entire function g and a sequence of integers { p,}
such that

_ ma(2) Z

s = e | [ £, (7).

Proof. According to the preceding theorem integers {p,} can be chosen such

= A
. m
i) == [ £, )
n=1 n
has the same zeros as f with the same multiplicities. It follows that f(z)/h(z)
has removable singularities at z = 0, a,, a,,... . Thus f/h is an entire
function and, furthermore, has no zeros. Since C is simply connected there

ic an entire functin enich that
>3 A A% AL W ANS [ ] 4 o

ix

)

is an analytic function f defined on G whose only zeros are at the points aj;
furthermore, a; is a zero of f of multiplicity m;.

5.16 {z:]z] > R} < Gand |a;| < Rforallj > 1

It must be shown that with this hypothesis there is a function f in H(G)
with tha 7 % ac 1te Anlyu 7arnc and 1 — tha mnltsemlinity AFtha var~A at » — ~
YViLll L1V ul S Ao 1L Ulll_y LUl VU Allu lllj — 11V Lllullll}llbll.y Ul LIIV V1V al £ — uj,
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5.17 lim f(z) = 1.

In fact, if such an f can always be found for a set satisfying (5.16), let G, be
an arbitrary open set in C with {«;} a sequence of distinct points in G, with
no limit point, and let {m;} be a sequence of integers. Now if B(a; r) is a
disk in G, such that «; ¢ B(a; r) for all j > 1, consider the Mobius trans-
formation Tz = (z—a)~'. Put G = T(G,); it is easy to see that G satisfies
condition (5.16) where a; = Ta; = (x;—a)”'. If there is a function f in
H(G) with a zero at each a; of multiplicity m;, with no other zeros, and such
that f satisfies (5.17); then g( z) = f(Tz) is analytic in G, — {a} with a remov-

\ J N\ 4

o
able singularity at z = a. Furtherm

of multiplicity m;.

So assume that G satisfies (5.16). Define a second sequence {z,} consisting
of the points in {a;}, but such that each a; is repeated according to its multi-
plicity m;. Now, for each n > 1 there is a point w, in C—G such that

Iwn—znl = d(Z,,, C_G)

Notice that the hypothesis (5.16) excludes the possibility that G = C unless
the sequence {a;} were finite. In fact, if {a;} were finite the theorem could
be easily proved so it suffices to assume that {a;} is infinite. Since |a;

fnr all 1 and In 1 has no lim

WAl LwiV AV vAwild aj

IA
=

Consider the functions

£ /z,,—w,,\ .
n\ /’

zZ—Ww,
AY b4

each has a simple zero at z = z,. It must be shown that the infinite product
of these functions converges in H(G).
To do this let K be a compact subset of G so that d(C—G, K) > 0. For

Atvr mnad

I I -

| | < [2a—wa| [d(ws, )]

|Z—Wn|

= Izn wnl [d(C—Gs K)]_l
It follows that for any 8, 0 < & < 1, there is an integer N such that

L
| | <o
|27 Wal

m

5.18 {
I
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converges uniformly and absolutely on K. According to Theorem 5.9
2 Z,—W
— E n n
o - [ [ &(252)

converges in H(G), so that fis an analytic function on G. Also, Theorem 5.9

implies that the points {a;} are the only zeros of f and m; is the order of the
zero at z = q; (because a; occurs m; times in the qeauence {z.}). To show

U Lo VLWL AL LARLIL O A% SR B2

that lim f(z) = 1, let ¢ > 0 be an arb1trary number and let R, > R (R, will

Z—> @

be further specified shortly). If |[z] > R, then, because |z,|] < Rand w,e C—
G < B(0; R),
|20 = Wil 2R

So, if we choose R; > R so that 2R < 8(R,—R) for some 8, 0 < & < 1,
(5.18) holds for |z| > R, and for all n > 1. In particular, Re E( _W") > 0
Z—Ww,

or all n and

|z] > R;; so that

5.19 1f(2)~1

H

1S a2 meanineful eauation. On the other hand (5.3) and (5.18) oive that
-~ AL OL“I vﬂuwvnle N AL SAAW W LAAWA AARA LA WS \V v, A ALANS \V.Lv/ bl'v CAAVS ™
| © /Z w \ | @ | /Z —w \ !
n n n n
Z logE,,(z_W ) < z log E, p— )
n=1 n n=1 n
< N §|E /Zn_wn\ _ 1'
_LQ_' "\z——w } l
n=1"1 \ n/j |
©
n=1 2
2 2
J 0
21-6

for |z| = R,. If we further restrict 8 so that e —1| < e whenever
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then equation (5.19) gives that | f(z2)—1! < ¢ whenever lz| >  That 1i¢
Wwili VH 1#9 % 8 a1 J } &l'vh’ CALLAL L IJ \HI ‘.I ~ ~ VY llwWwilw Vwi ‘Hl — ‘\1. A ARGAL lu’

lim f(z) = 1. W

Z—>®

One of the more interesting results that follows from the above theorem
says (in algebraic terms) that M(G) is the quotient field of the integral
domain H(G). Avoiding this Ianguage the resuit is as follows.

....... 4 £ e Al s i
3.‘“ Lurolldfy. IJJ l.} a ,’lerUf’lUrp,llL Ju’lbllu’l on an UpEI et Ot 61 inere are

analytic functions g and h on G such that f = g/h.

Proof. Let {a;} be the poles of f and let m; be the order of the pole at a;.
According to the preceding theorem there is an analytic function 4 with a
zero of multiplicity m; at each z = a; and with no other zeros. Thus 4f has
removable singularities at each point a;. It follows that g = hf is analytic in

G

Exercises
1 Qb o el TT 71 0 o amconane alicalica l. S0 TT 71 40 1o N mmcmiraeoac
I. Show tnat | | (1+2Z,) COnverges aosorutely i | j (1+[Z,]) CONVErges.
A T a4 1 log (l +Z) — 1
4. rrove unat 1im — 1.

z—=>0 z

3. Let fand g be analytic functions on a region G and show that there are
analytic functions f;, g,, and A on G such that f(z) = h(2)f;(z) and g(z) =
h(z)g,(z) for all z in G; and f; and g, have no common zeros.

4. (a) Let 0 < |a| < 1 and |z] < r < 1; show that

|a+lalz| 1+
|(1—dz)a| = 1—r
(b) Let {a,} be a sequence of complex numbers with 0 < |a,|] < 1 and
Y (1—la,]) < co. Show that the infinite product
B( ) 1£r!g"! /Qn'—z\
=117 \12az)

converges in H(B(0; 1)) and that |B(z)| < 1. What are the zeros of B?
(B(z) is called a Blaschke Product.)

(c) Find a sequence {a,} in B(0; 1) such that ) (1—|a,|) < co and every
is a limit point of {a,}.

22222062 © 0 20 ¢ 2222222 2223 M2 s

5. Discuss the convergence of the infinite product H — for p > 0.

r i |
6. Discuss the convergence of the infinite products [[| 1 + - | and ﬂl Il.
L ” o "l

7. Show that lwl \1 - —)

8. For which values of z do the products [T =z") and [] (1+2*") converge?

Is there an open set G such that the product converges uniformly on each
compact subset of G? If so, give the largest such open set.

Sewai ) S
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9. Use Theorem 5.15 to show there is an analytic function fon D = {z: |z|
< 1} which is not analytic on any open set G which properly contains D.
10. Suppose G is an open set and {f,} is a sequence in H(G) such that
f(2) = [] f:(2) converges in H (G) (a) Show that

L Ifk(z) 11 /) |

n#¥k

converges in H(G) and equals £’ (z). (b) Assume that f is not the identically
zero function and let K be a compact subset of G such that f(z) # 0 for all
z in K. Show that

@ <o)
@ 4 £

n=1"

and the convergence is uniform over K.
11. A subset . of H(G), G a region, is an ideal iff: (i) f and g in £ implies
af+bg is in £ for all complex numbers a and b; (i) fin .# and g any function in
H(G) impiies fg isin Z. £ is called a proper ideai if # # (0) and # # H(G);
S is a maximal ideal if # is a proper ideal and whenever £ is an ideal with
J < ¢ then either # = £ or f = H(G); £ is a prime ideal if whenever
f and g € H(G) and fg € £ then either fe # or ge Z. If fe H(G) let Z(f)
be the set of zeros of f counted according to their multiplicity. So Z'((z—a)?)
= {a, a, a}. If ¥ < H(G) then Z (&) = N {Z(f): f €S}, where the zeros
are again counted according to their multiplicity. So if & = {(z—a)> (z—b),
(z—a)?} then Z(¥) = {a, a}.

(a) If fand g € H(G) then f divides g (in symbols, f|g) if there is an 4 in
H(G) such that g = fh. Show that f|g iff Z(f) = Z(g).

b) If & < H(G) and & # [] then f is a greatest common divisor of
& if: (i) f|g for each g in H(G) and (ii) whenever h|g for each g in H(G),
hlf. In symbols, f = g.c.d.&. Prove that f = g.c.d.&. ifft Z(f) = Z (&)

and show that each nnn-pmnh/ subset of H(G) has a o.c.d

Adv wlwiai 1aViA"wi DULUOWL Vi 2a\WVjy ko St evie

© If 4 <G let #£(A) = {fe H(G): Z(f) © A}. Show that J(4) is a
closed ideal in H(G) and #(A4) = (0) iff A has a limit point in G.
(d) Let ae G and # = F({a}). Show that £ is a maximal ideal.

(e) Show that every maximal ideal in H(G) is a prime ideal.
(f) Give an example of an ideal which is not a prime ideal

ras \r“ul;ny;v i Rii anawisa X1 AJ aAv L rll AAAw s wisse

At sen Friveendiae L +l.ne £omae

12. Find an entire function J such that j\n-rm) = 0 for every integer n
(positive, negative or zero). Give the most elementary example possible (i.e.,
choose the p, to be as small as possible).

13. Find an entire function f such that f(m+in) = 0 for all possible integers

OULULIVIL pPUUSIVIV.

§6. Factorization of the sine function

In this section an application of the Weierstrass Factorization Theorem
to sin =z is given. If an infinite sum or product is followed by a prime
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(apostrophe) , y."or [[), then th
the indicated 1nd1ces n except n = 0. For example,

n=-—o n=1 n=1
Tl rasac ~AF ciom —m {2 TINZ\ ara naranicaly tha infagare s maranvor
LIIC ZO1TOD UL dSIH TTe = = J all pPillisuiy LIV 1HIVELVIS,, HIVILUYVLL,

1 n oo
1 r -~ vy, ViivL Lail

sin wz = [exp g(2)] z H' (1 - f) e/
n

n=—o0o0 \

or, because the terms of the infinite product can be rearranged,

o0 22
6.1 sin 7z = [exp g(2)] = I l 1 - —
n
n=1
far cnme antire fimctian of 2 T8 L0\ qien otlane ot 0 ol 1
101 S0LIC CHLITC TUlILUVLL F<2). 1l f\<) = Sl 772 UICTL, aCCOoraing to 1n€orcm 4.1,
£
mCoOt 7wz ="——=

Lo a4

and the convergence is uniform over LOIIldel Suosets OI the plane U.'lal
contain no integers (actually, a small additional argument is necessary to
justify this—see Exercise 5.10). But according to Exercise V. 2.8,

a0
1 < 2z
r4 n?l F4 - I
Fnse ~» nAt an 1ntacar QA 1f svanct lha that » 10 a rANctant cavwu nl-y\ — v Far all -
11Ul & 11Ul All 111L95C1. DU I 111USl UL Lliat 5 10 a wviidialiii, sa 5\4} - U 1V1l Qall <.
It follows from (6.1) that for 0 < |z| < 1
© 2
sinmz  e° / z \
S TT1(1=2).
nz z 1l 1\ n?)
"= 1 N 4
Letting z approach zero gives that e* = =. This gives the following:
o0
72
6.2 Sln7r2=7r2| I 1——2
n
n=1
r\url d—‘nn NAAMITIArFAINAAA 1A v-n:“r\um e rnee MNrRevesan b cnrhoants AL MO
aliu Lilv LU IVCIECIIUC 15 11U1 111l UYLl VUV upabt QUUDCLdY UL L.



176 Com

Exercises

2 4z2
1. Show that cos =z = [1 — —~——2]
g 2n—1)

2. Find a factorization for sinh z and cosh z.

Tz . [7mz 2 (1+(=1)"z
3. Show that — | = — | = | I — ).
ow tha cos<4) sm<4> ( 1 )

n=1

T -Iir (2n)?
) 2n—1) 2n+1)"

:lk
"o
-

-t

c

)

> |
|

B |
u-A'—-
7~~~

1 1
d z_ » 5] , where d is the spherical metric on C_ (see (3.1)), it follows that
2

1
J l converges to - in M(G). It is an easy exercise to show that j—l con-

(/) f (/o)

1
verges uniformly to — 7 on any compact set K on which no f, vanishes. (What

does Hurwitz’s Theorem have to say about this situation). Since, according
to Theorem 5.12, the infinite product

°° / -\
ﬁ \ e~ #n

n_l\ n)

converges in H(C) to an entire function which only has simple zeros at

z = -1, =2,..., the above discussion yields that
— [ 2\"1

71 [T(1+2) e
w=1 \ h/

converges on compact subsets of C—{—1, —2,...} to a function with
simple poles at z = —1, =2, ....

7.2 Definition. The gamma function, I'(z), is the meromorphic function on C

with simple poles at z = 0, —1, . .. defined by

7.3 T A

. I'z) = 1 + - .
(2) =~ ﬂ( n) e
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The first thing that must be done is to show that the constant y exists;
this is an easy matter. Substituting z = 1 in (7.1) yields a finite number
c=||(l+—) et/
w=1 \ iy

equatlon (7. ) for z =1 gives I'(1) = 1. ThlS constant y is called Euler
constant and it satisfies

7.4 e}' — ﬁ/} + 1\‘1,1/n
n=1 \\ n/}

Since both sides of (7.4) involve only real positive numbers and the real
logarithm is continuous, we may apply the logarithm function to both sides
of (7.4) and obtain

~
|

I

z [’1‘ — log (k+1)+1log k]

|
5‘
oQ
7~~~
Ru
.+
Z
+.
O
)]
an

| I——

S |

) — log (n+1):| .

Adding and subtracting log n to each term of this sequence and using the
e (n+1\

fact that lim log = 0 yields
n
1 1
7.5 y=lim|{1]+ -+ + - ) —logn
noo | < njy J
This last formula can be used to approximate y. Equation (7.5) is also
ncad + Aariva annthoar aviraccinm fAar TV Hearm tha dAafinitian ~Ff TS it
[SLI"AN Sy 8 u Yu aliviiivi CAPICDDIUII 1VU1 1\4} A 1VUILLIL LUV UVLHILINIVIL V1 L4 1L

it
o
§.
N &~
+ Q
b

e n! [/ 1\
+ —

n—o Z(Zz+1) ... (z+n) \\ njj
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M) = ,.11.12 z(z+1)...(z+n)

cimnla
Uauss lelU bl npic UClllelUll O

[72]
&
e
w
'.:T:
Q.
(@)
<
H Pl
=
3]
a9
(X}
3
3
)
b=ty
C.‘
-
O
=
@]
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7.7 Functional Equation. For z # 0, —
I'z+1) = zI'(2)

To obtain this important equation substitute z+1 for z in (7.6); this
gives

I'z+1) = lim ntn*
z
oo (Z+1) ... (z+n+1)

P DL |
T ez D E+n) || z4n+1
X \ s I . |
= z['(2)
n
since lim =
(z n+l)
........... . v . .\.1\__ L I\ TV e 1 1N
Now consider I'(z+2); we have I'(z+2) = I'((z+ 1)+ 1) = + D) T'(z+ 1)
by the functional equation. A second application of (7.7) gives ['(z+2) =
z(z+ 1)I'(z). In fact, by reiterating this procedure
7.8 I'z4+n) = zEz+1D)...¢+n-DI(2)
for n a non negative integer and z # 0, —1,.... In particular setting z = 1
gives that
7.9 I'r+1) =

That is, the I' function is analytic in the right half plane and agrees with the
factorial function at the integers. We may therefore consider the gamma

function as an extension of the factorial to the complex plane; alternately,
ifz# —1, =2,... then lett )i a"stlﬁablerh'ﬁ ition of z!.
As has been PoO1 inte

to find the residue of I
V. 2.4 that

N 1 . L
—U,—l,...,WCWlbu

o this recall from Proposition
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m (7.8)
I'z+n+1)

z(z+1)...(z+n=1)"

So letting z approach —n gives that

n
)
;
)
)
J
”
t
]
)
J
~>

z+nl'() =

7.10 Res (I'; —n) =

According to Exercise 5.10 we can calculate I'’/T" by

L a VAN - 0
7.11 /I Y.
I'(z) z ,.é'l n(n+z)
for z # 0, —1,... and convergence is uniform on every compact subset

of C—{0, —1,...}. It follows from Theorem 2.1 that to calculate the
derivative of I''/I" we may differentiate the series (7.11) term by term. Thus
when z is not a negative integer

TR\ 1 I
7.12 (m) -+ Z ey

Will we calculate the second derivativ The answer to this question
b L . o cmczzrmee b~ bl o S 151 4D e <5 OTnie WO 131 4 4
15 110, 1101C dIISWCL 1O UIC 1plica qUCbLlUIl Ul WI y yUI C Ooula waliit 1o
derive formulas (7.11) and (7.12) is that they allow us to characterize the

gamma function in a particularly beautiful way.

Notice that the definition of I'(z) gives that I'(x) > 0 if x > 0. Thus,
log I‘(x) is well defined for x > 0 and, according to formula (7.12), the
second derivative of wg r U) is alwaya puuuvc ACCGi‘uII‘lg to rfOpOSiliOi‘l
VI. 3.4 this implies that the gamma function is logarithmically convex on
(0, o0); that is, log I'(x) is convex there. It turns out that this property
together with the functional equation and the fact that I'(1) = 1 completely

characterize the gamma function.

ND_L_ RA_ II ______

7.13 Bohr-Molierup T eorem. Let [ be a function defined on (0, o) such that
f(x) > 0 for all x > 0. Suppose that f has the following properties:

(a) log f(x) is a convex function,
() f(x+1) = x f(x) for all x;
() (1) =
Then f(x) = I'(x) for all x.
Proof. Begin by noting that since f has properties (b) and (c), the function
also satisfies
7.14 fix+n) = x(x+1)...(x+n=1)f(x).

,,,,,

for every non-negative integer n. So if f(x) = I'(x) for 0 < x

IA
pomd
>
-
=
—
(7]
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equation will give that f and I are everywhere identical. Let 0 < x £ 1 and
let n be an integer larger than 2. From Exercise VI. 3.3

log f(n—1)—log f(n) _ logf(x+n)—logf(n) _ logf(n+1)-log/(n)
(n—ND—n - (x+n)—n - (n+1)—n

Since (7.14) holds we have that f(m) = (m—1)! for every integer m > 1.
Thus the above inequalities become

log f(x+n)—log (n—1)!
X

—log (n—2)!+log (n—1)! < < logn!—log(n—1)!;

VoS
Ul
T\

xlog(n—1) < logf(x+n)—log(n—1)! < xlogn.

Adding log (n—1)! to each side of this inequality and applying the
exponential (exp is a monotone increasing function and therefore preserves
inequalities) gives

=1 (n—-1D! < flx+n) < n*(n-1)!

Applying (7.14) to calculate f(x+n) yields

(n=1D*(n-1)! n*(n—1)!
x(x+1)...(x+n-1) </ < x(x+1)...(x+n-1)
n* n! l_x+n—|

X(x-i-l)...(ATlt}L it _.|

Since the term in the middle of this sandwich, f(x), does not involve the
integer n and since the inequality holds for all integers n > 2, we may vary
the integers on the left and right hand side independently of one another
and preserve the inequality. In particular, n+1 may be substituted for n on
the left while allowing the right hand side to remain unchanged. This gives

n*n! n*n! X+n
< f(x) <
x(x+1)...(x+n) x(x+1)...(x+n)] n

(x+n)

Fnwe all ~ M aAd e TN 1IN ANV ~acar 42lo0 ol o 150 o ~m Qeannn 1.

101 all nt Z 4 allld A 11|V, 1), INOW ldKkC LIC 1INt a> i —> W llle ll in \ }
\ n /

= 1, Gauss’s formula xmphes that I’ f(x) for 0 < x < 1. The result

The integrand in 7.15 behaves badly at t = 0 and ¢ = oo, so that the
meaning of the above equation must be explicitly stated. Rather than give
a formal definition of the convergence of an 1mproper integral, the properties

f tl‘\l rtinila intagral aea Aaweiva A T amein 7 halAws foan alen Fvarnica

1is p?u ticuiar uuc51 al aiv UCIIVCU lll Lliliia /7. lU OCIOW \OLL aldu Lavividy
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7.16 Lemma. Let S = {z: a < Rez < A} where ) <a < A < .

It
co
)

(a) For every € > O thereisad > O such that for all zin S

8
'f e 71 dt| < e

l2
whenever 0 < o < B < 6.
(b) For every ¢ > O there is a number « such that for all z in S

Ife"‘t"1 dt' < e
I |

whenever B > a > «.

Proof. To prove (a) note that if 0 < ¢ < 1 and z is in S then (Re z—1) log
t < (a—1) log t; since e” ' < 1,

f —~t,z=1) . .Rez—1 _ .a-—1
e & | =1 <1
Soif 0 < a < B <1 then
B B
fe"‘t“’dt < J.t“_ldt
[ 4 a
|
=-p"—a)
“

forallzin S. If e > O then we can choose 8,0 < & < 1, such that a~ (8% —«“)
< € for |«—B| < 8. This proves part (a).

To prove part (b) note that for zin S and t > 1, |*~!| < ¢4~ !. Since
t4~1 exp (—137) is continuous on [I, o0) and converges to zero as ¢ — oo,
there is a constant ¢ such that t4~! exp (—317) < ¢ for all + > 1. This gives
that

vaiwaa

-1
2% .

Again, for any e > 0 there is a number « > 1 such that |2¢(e
whenever «, B > «, giving part (b). [}

The results of the preceding lemma embody exactly the concept of a
uniformly convergent integral. In fact, if we consider the integrals

1

[‘e_'tz'1 dt

J
-4
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for 0 < « < 1, then part (a) of Lemma 7.16 says that these integrals satisfy
a Cauchy criterion as « — 0. That is, the difference between any two will be
arbitrarily small if « and B are taken sufficiently close to zero. A similar
interpretation is available for the integrals

for « > 1. The next proposition formalizes this discussion.

7.17 Proposition. If G = {z: Re z > 0} and
I
L@ =|e et dr
1/n

Jor n > 1 and z in G, then each f, is analytic on G and the sequence is con-
vergent in H(G).

Proof. Think of f,(z) as the integral of ¢(¢, z) = e 't*~! along the straight line
1

segment [— , n] and apply Exercise 1V. 2.2 to conclude that f, is analytic.
n

Now if K is a compact subset of G there are positive real numbers a and 4
such that K < {z: a < Re z < A4}. Since

1/'n m
D) =f(2) = J e 'l dr + J e 'l dt
1/m

for m > n, Lemma 7.16 and Lemma 1.7 imply that {f,} is a Cauchy sequence

in H(G). But H(G) is complete (Corollary 2.3) so that {f,} must converge. H
If £ is the limit of the functions {f,} from the above proposition then
define the integral to be this function. That is,
Q0
7.18 f(z).—.fe 14, Rez > 0
0
To show that this function f(z) is indeed the gamma function for Rez > 0
1 2l Vs ) k o VAN ~

we only have to show that f{( I'(x) for x > 1. Since [1, o0) has limit
points in the right half plane and both fand I" are analytic then it follows
that f must be I' (Corollary 1V. 3.8). Now observe that successive performing

of inteoration hv narts on (I —t/n\"tx 1 vmlde

ARV pAGNAVAL oS Awine T

t\n x—1 2 n!nx

e s
Jkl _;} ' at:x(x-i—l)...(x-{-n)

which converges to I'(x) as n — oo by Gauss’s formula. If we can show that
the integral in this equation converges to [P 27>~ 1 dt — f(x) as n — oo then
o' PREES LHRa LIV LURVIEYS Y jo S
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1
1

™1 ~ e ~ 1L e ~ . b . _ 1 .1 PR P | 2 Vg & BN P o S, al_ _
Theorem 7.15 is proved. This is indeed the case and it follows from the
following lemma.

7.19 Lemma. (a) { ( 1 + E) } converges to € in H(C).
n

(GAN / J

Y ST A
(b) leZUthen\l——) <e “foralln >t
n

Proof. (a) Let K be a compact subset of the plane. Then |z| < » for all z in
K and » sufficiently large. It suffices to show that

uniformly for z in K by Lemma 5.7. Recall that

< owk
log (14+w) = ) (=D I

=1

bl

for |w| < 1. Let n > |z] for all z in K; if z is any point in K then

z 122 123
nlogll+-)=z—-—+ -5 —....
n

Son
LS A4

i we(102) o<1 ()]

taking absolute values gives that

N

/

I N

nloo +

i., (1 4 \_
I\ n)

l/l
N

<
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t
nlog(l — —) < —t;
n

and since exp is a monotone function part (b) is proved. |
Do~ PR ~ 1 4amA e N A1 4~ T
rrou _/ UJ 1neurem / lJ Fl)&.& <~ 1 4llQ ICL € >~ U, ACCOULUILIE 1O L.C]
we can choose « > 0 such that

7.21 Je"t""‘ dt < i

P

whenever r > «. Let n be any integer larger than « and let f, be the function
defined in Proposition 7.17. Then

n 1/n

fifx) — f(l —£)nt"“dt= - n(l —f)nt-“‘dt+
- . n, N n

0 4

flee ()]

i/n
Now by Lemma 7.19 (b) and Lemma 7.16 (a)

Qe

X

1/ 1/n

Pl

7.22 r”/1 —-) Fldr < re”t“‘=1 dt < =
[ s :

for sufficiently large n. Also, if n is sufficiently large, part (a) of the preceding
lemma gives

\/ t\" ) €
[1—--) —ef|<-—
I\ nj | 4M«k
for ¢ in [0, x] where M = [§ ™! dt. Thus
~ ; t‘ n* i
7.23 Hie"——(i—~\}it’_!dtis‘£
lJ L \ R/ 4 P

Using Lemma 7.19 (b) and (7.21)

I _. (. eNTo. .| f.
Hle ' —(1—-) [Fidf<2|e'rdt <
IV L n; 1 | J

NI m

P

for n > «. If we combine this inequality with (7.22) and (7.23), we get

iy = [(1 =Y i1af <«
| J\ n) l
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for n sufficiently large. That is

-1 _.X
n.n

= lim! f(x) — _i
Tox(x+1) ... (x+n) ]

""" JB\"T

= f(x)—T(x).

This completes the proof of Theorem 7.15. [}
As an application of Theorem 7.15 and the fact that I'(}) = /= (Exercise

3) notice that
0
\/w = J e 't~? dt.
0

Performing a change of variables by putting ¢ = s? gives

an
/",f o YN\ A
\/n—Jc S \«5) a
0

[+ ]
-2
= 2 f e % ds
)
That is,
w —
-2 kK
Je ds = ~—
0
la p2 PPN PR | L _ 1
T'his integral is often used in probability theory.

w
2. Show that l(z) I'(1 —z) = = csc =z for z not an integer. Deduce from this

that I'(3) = /=
3. Show: /= I'(2z) = 22*7!'T'(z) I'(z+%). (Hint: Consider the function I'(z)

P+3) Q)" L)

A —~eee 4L 2 Y _ h Y SN ‘,; ,-J - , Y o r'd . Y o\ B IS ERY
4. Show that log 1'(2) is defined for z in € —{— oo, 0] and that
o / Z\ Z—l
logF(\=—logz-—-vz—Y‘llogll-l-—\—-—l,
\“/ o y (=]

U e
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6. Show that
2 (=1 tz-
I'z) = — 21 dy
@ ,,Z'o nl(z+n) e
1

forz #0, —1, =2,... (not for Re z > 0 alone).
7. Show that

f sin (£2) dt = f cos (1) dt = /1=

0 0
8, and v > 0 and express do nt r the

Let u > U ana v > v ana CAPLULDYD L \M} J. \U} as a UUUblC in
rst

qu uadrant of the plane. By cnangmg to pOlaI' coordinates show t

n/2
I'(u) T(v) = 2D (u+v) f (cos 6)2“~ ! (sin 6)2°~ ! d6.
0

The function

I'w) T'(v
B(u, v) = ————

F'u+v)

-
-’

AN

is called the beta function. By changes of variables show that

1
B(u, v) = Jflz"-l (1—£)°~t dt
0
A tll -1
- (1 + t)u+v
Can this be generalized to the case when » and v are complex numbers with
nnnnnnnnnnnnn +9

PUDILIVC LCCll pau
9. Let «, be the volume of the ball of radius one in R”
mductlon and iterated integrals that

T (2)T(nf2)

where o, is defined in problem 9. Show that if n = 2k, k > 1, then &, = #*/k!
11. The Gaussian psi function is defined by

I"(z)
¥Y(z) =
(2) o)
( a) Show that ¥ is meromorphic in C with simple polesatz =0, —1, ...
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71 N\ ATM7 1N\

(b) Show that ¥(1) = —y.
(c) Show that ¥(z+1)-Y¥(z) = -
(d) Show that ¥(z)—¥(1—z) = —= cot =z.

(e) State and prove a characterization of ¥ analogous to the Bohr-
Mollerup Theorem.

§8. The Riemann zeta function

Let z be a complex number and » a positive integer. Then [n*| = jexp
(z log n)| = exp (Re z log n). Thus

n

Y k7% = ) exp(—Rezlogk)
k=1

k=1

'—Pez

- Xk

Soif Re z > 1+e€ then

nd absolutely n {z: Re z > 1+¢}. In particular, this
seriescomefgesmn : an analvtic function &(

8.1 Definition. The Riemann zeta function is defined for Re z > 1 by the
equation

7(>) —
S\¢) —

The zeta function, as well as the gamma function, has been the subject
of an enormous amount of mathematical research since their introduction.
The analysis of the zeta function has had a profound effect on number
theory and this has, in turn, inspired more work on {. In fact, one of the
most famous unsolved problems in Mathematics is the location of the zeros
of the zeta function.

We wish to demonstrate a relationshi

YV W VVAUL NAWALLANY ll VYV Wwwii i u AVALAWLAN/ AL (Rhiins

the gamma function. To do this we appeal to Theorem 7.15 and write



0
Q
B
<3
o
:
:
£
|
S
o
-
¢

I

8
for Re z > 0. Performing a change of variable in this integral by letting
t = nu gives

®
I'z) = n? f e """ dt;
(1)
that is
o
n"T(z) = f e "1 dy.
0

If Re z > 1 and we sum this equation over all positive », then
8.2 (2T = ) 7 T(2)
n=1

©

{e—nt z—-1 dt
J

15

{
Ms

n

We wish to show that this infinite sum can be taken inside the integral sign.
But first, an analogue of Lemma 7.16.

8.3 Lemma. (a) Let S = {z: Re z > a} where a > 1. If € > O then there is
7

ciirh that far All = &
number 8,0 < § < 1, sucn fnutJUI aii Z in o

Q

whenever 6 > B8 > a.
(b) Let S = {z: Rez < A} where —o0 < A < oo. If € > O then there is

a number « > 1 such that for all z in S

B
f(e'—l)‘lf-l dt

-]

< €

~

wheneuver ‘3 x> K.
Proof. (a) Since e'—1 > tfor all ¢t > 0 we have thatfor0 < ¢t < landzin S

Since @ > 1 the integral [ % dt is finite so that & can be found to satisfy (a).
(b) If # > 1and zis any point in S then, as in the proof of Lemma 7.16 (b),

"= < (ef =D)AL < cet (e 1)L
)
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8.4 Corollary. (a) If S={z:a<Rez < A} where ]l <a < A < o then
the integral

e 6}

J(e'—l)-%z-ﬂl dt

0

converges uniformly on S.
(b) If S= {z: Re z < A} where — 0 < A < o0 then the integral

0

f(e‘—l)—lzz—1 dt

U2)(z) = f(e‘-—l)"t"l dt
0

Proof. According to the above corollary this integral is an analytic function
in the region {z: Re z > 1}. Thus, it suffices to show that {(z)I'(z) equals this

integral for z = x > 1.
From Lemma 8.3 there are numbers « and 8,0 < « < 8 < o0, such that:

a
(‘
7t n—1l.x—-1 1. _ €
e —1) { a (Z,
J $
0
0
* €
(e'=1)" 11 dr <7

we,

k=1 k=1
foralln > 1,
a
w
N —nt,x—1 €
> e "t dt<;,
Mhnnd &
n=1%
)
o d

€
e ™ l1dt < -.
4

s

n=14¢
"B
Using equation (8.2) yields
I @ |« B
'C(x)l‘(x) — (=Dt tdl < e+ | Y fe""'t""l dt
0 n=1 a
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side is exactly . |}

We wish to use Proposition 8.5 to extend the domain of definition of { to
{z: Re z > —1} (and eventually to all C). To do this, consider the Laurent
expansion of (e*—1)""; this is

S L1, %,
. = - - - a z
e—~1 z 2 ; "
n=1
for some constants a,, a,, . ... Thus [(e'—1)"! —¢7!] remains bounded in a

neighborhood of ¢ = 0. But this implies that the integral

It L1 >~ dt
(%)

converges uniformly on compact subsets of the right half plane {z: Re z > 0}
and therefore represents an smalvh(‘ function there. Hence

AVAN AN a -~ L5284~

)zz dt4+(z—=1)"" J dr,

and (using Corollary 8.4(b)) each of these summands, except (z—1)"1, is
analytic in the right haif plane. Thus one may define {(z) for Re z > 0 by
setting it equal to [I'(z)]~! times the right hand side of (8.7). In this manner
{ is meromorphic in the right half plane with a simple pole at z =1 (> n™!
diverges) whose residue is 1.

Now suppose 0 < Re z < 1; then

~

87  U)I() = J (

o

(z—1)"' = — | £ 24t

o
J

1
Applying this to equation (8.7) gives

oo
o

A e aaa 1t 4L T nizea e e e ~
Agdlil CONSIACTINEG th Laurent CAapdinioll v
1__ 1

[(e'=1)~ +1] < ¢t for some constant ¢ and all ¢ in
[0, 1]. Thus the integral

he unit interval

o

ft/ 1
| (
J\e'—l
0

is uniformly convergent on compact subsets of {z: Re z > —1}. Also, since

lim t|—
t— 0 \e -1
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there is a constant ¢’ such that

1 1<C: £ > 1
e—1 ¢) " ¢t> T 7

This gives that the integral

[e.¢]

1 1\ .,
J(e‘—l — t—)t dt
1

converges uniformly on compact subsets of {z: Re z < 1}. Using these last
two integrals with equation (8.8) gives

bt < Bl

[o o]

1
1 1 1\ ,_ 1 1 1\ ,_
8.9 C(z)F(z)=f(et_l . f) t* 1dt_5;+J<e‘—1 -—;)tz Ldt
0 1

for 0 < Re z < 1. But since both integrals converge in the strip —1 < Re z
< 1(8.9) can be used to define {(z) in {z: —1 < Re z < 1}. What happens
at z = 07 Since the term (2z) ! appears on the right hand side of (8.9) will
{ have a pole at z = 0? The answer is no. To define {(z) we must divide (8.9)
by I'(z). When this happens the term in question becomes [2z['(z)]”! =
[2T'(z+1)]~! which is analytic at z = 0. Thus, if { is so defined in the strip
{z: —1 < Re z < 1} it is analytic there. If this is combined with (8.7),
{(2) is defined for Re z > —1 with a simple pole at z = 1.
Now if —1 < Re z < O then

1 1
- —)t"‘dt, —1 <Rez<O.
t 2,

fb
)—a

But

A straightforward computation with Exercise V. 2.8 gives

o0

o] 1
P4 1

cot (3if) = = — dit » ————
it ﬁ_ﬁ12+4n2‘n'2
for t # 0. Thus
[ 1 1 1)1 < 1
\o 7~ 135); =42 2222
\C P [ 2 L/ [ 2 n=1t T "Iy da
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PZo B Wa St

Appiying this to (8.10) gives

. = dt
8.11 {T() = 2 J (Z v )
0 B
- d
2ZIJt2+4n21r2 d
"m0
_2S oyt (S a
< )2 +1
0
tz
= 2(2m) (1 — dt
2y~ )L2+1 ,
0

g 1
f R f 1 0 justify the interchangin ng o
the sum and the integral.) Now for x a real ".umber with al < x< 0, the
change of variable s = t* gives (by Example V. 2.12)
o
t* 1 “ s¥=D
8.12 [‘42|1dt=; — ds
J ¢ T 1 LJ DT 1
0 0

1

— m cosec [$7(1 —Xx)]

T2

1

= ~ m seC (37x)

P4

But Exercise 7.3 gives
1 'l—x) . I‘(l-x)
= sin 7x = [2 sin (37x) cos (37x)]
I'(x) ™
Combining this with (8.11) and (8.12) yields the following.
8.13 Riemann’s Functional Equation.
U(z) = 2Q2n)*"'T(1 —2)¢(1 —2) sin (3=2)
for -1 < Rez <
Actually this was shown for x real and in (—1, 0); but since both sides

of (8.13) are analytic in the strip —1 < Re z < 0, (8.13) follows. The same
type of reasoning gives that (8.13) holds for —1 < Re z < 1 (what happens

at z2= 07). But we wish to do more than this. We notice that the right hand
side of (8.13) is analytic in the left hand plane Re z < 0. Thus, use (8.13) to

extend the definition of 717\ to Re z <« 0, We summarize what was done as

wiALWAANS wAiw NSwWAALAALANSLZ \“J *V ARV L N Ve VY VW UWILIKMQLLILw VY

€A sy
1U11UWwW

UJ
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8.14 Theorem. The zeta ﬁlnf'r; car

- SEAwVaA wanad v

plane with only a simple pole at z
Riemann’s functional equation.

Since I'(1-z) has a pole at z = 1, 2, ... and since { is analytic at z =
2, 3, ... we know, from Riemann’s functional equation, that

8.15 &(1—2) sin (3nz) =

for z =2, 3,... . Furthermore, since the pole of I'(1-2z) at z = 2, 3, ...
is simple, each of the zeros of (8.15) must be simple. Since sin (3nz) = 0

meromorphic in the

vy wrew

v r
or z # 1 { satisfies

whenever z is an even integer, {(1—2z) = 0forz = 3, 5,.... Thatis {(z) =
0 for z= -2, —4, —6,... . Similar reasoning gives that { has no other
ram~noe ~ttoidas tha ..I.-...AA atsisa e N > Da - -~ 10
ClUD UUWLIUL LU VIVDCU DLUIP ©. V &> Nv £ = 1.

8.16 Definition. The points z = —2, —4, ... are called the trivial zeros of {
and the strip {z: 0 < Re z < 1} is called the critical strip.

We now are in a position to state one of the most celebrated open questions
in all of Mathematics. Is the following true?

The Riemann Hypothesis. If z is a zero of the zeta function in the critical
strip then Re z = 3.

It is known that there are no zeros of { on the line Re z = 1 (and hence
none on Re z = 0 by the functional equation) and there are an infinite
number of zeros on the line Re z = 1. But no one has been able to show that
{ has any zeros off the line Re z = 4 and no one has been able to show that

all zeros must lie on the line

AL WA NSD ARANVADY AAW “SAE ViAW AlAiwe

A positive resolution of the Riemann Hypothesis will have numerous
beneficial effects on number theory. Perhaps the best way to realize the
connection between the zeta function and number theory is to prove the
following theorem.

8.17 Euler’s Theorem. If Re z > 1 then

Z -mz
—pn m=0

foralln > 1. Now if n > 1 and we take the product of the terms (1 —p; *)~*
for 1 < k < n, then by the distributive law of multiplication and by (8.18),
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]

product of powers of the prime numbers p,, . .., p, alone. (The reason that
no number n;* has a coefficient in this expansion other than 1 is that the
factorization of n; into the product of primes is unique.) By letting n — oo
the result is achieved. |}

Exercises
1. Let &2) = z(z—1)n"**{(z2)I'(3z) and show that ¢ is an entire function
which satisfies the functional equation ¢(z) = &(1 —2).

2. Use Theorem 8.17 to prove that ) p.! = co. Notice that this implies

that there are an infinite number of primes.

< d(n)
3. Prove that {*(z) = Z \z} for Re z > 1, where d(n) is the number of

1 n

divisors of n.

4. Prove that {(z){(z—1) = Z o) , for Re z > 1, where o(n) is the sum of
n=1

1 o
5. Prove that €-1) _ Z ) for Re z > 1, where ¢(n) is the number of
&(2) ~
integers less than n and Wthh are relatively prime to n.
A u(n)

— = » —— for Re z > 1, where u(n) is defined as follows.
{(z) ,7—1 n*

Let n = p{'ps® ... pkm be the factorization of n into a product of primes
P15 -+, Pm and suppose that these primes are distinct. Let u(1) = 1; if

6. Prove that

ki =...=k, =1 then let u(n) = (—1)"; otherwise let u(n) = 0.

{'(z < A(n
7. Prove that —g(z)) - ,‘,;::, ,,z) for Re z > 1, where A(n) = log pif n =
p™ for some prime p and m > 1; and A(n) = 0 otherwise.

8. (a) Let %(2) = {'(2)/{(z) for Re z > 1 and show that lim (z—zy)n(2) is

zZ—>Z0

always an integer for Re z, > 1. Characterize the point z, (in its relation to )
in terms of the sign of this integer.
(b) Show that for e > 0

Ren (1 +e+it) = — A(m)n= 19 cos (¢ log n)

n

i

where A(n) is defined in Exercise 7.
(c) Show that for all € > 0,

3Ren(14+€¢)+4Ren (1+e+if)+Ren (1+e+2if) < 0.
(d) Show that {(z) # 0 if Re z = 1 (or 0).



Chapter VIII

Runge’s Theorem

In thic ¢
connectedness. Also proved is a Theorem of Mittag-Leffler on the ex-
istence of meromorphic functions with prescribed poles and singular parts.

81. Runge’s

N
~
[0}
)
N
R

In Chapter IV we saw that an analytic function in an open disk is given
by a power series. Furthermore, on proper subdisks the power series con-
verges uniformly to the function. As a corollary to this result, an analytic

function on a disk D is the limit in H(D) of a sequence of polynomials. We
t1ian: Can thic

acl tha aque

Q 1ic ha ganeralizad ta arhitraryv recinneg (79 Tha angwar
AN LIV \lu OklUll \/uu Llll Uw s\;ll\«l allL\/u LV Al Ullla y 1\.«51\.}110 J e 111w Alldoyvvuil
1S no. As one mlgnt expeCI the Coun[er-exampie i1s furnished Dy {Z:

0 < |z] < 2}. If {p,(2)} is a sequence of polynomials which converges to an
analytic function f on G, and y is the circle |z| = 1 then |, f = lim |,p, = 0.
But z7!is in H(G) and [,z™" # 0.

The fact that functions analytic on a disk are limits of polynomials is due
to the fact that disks are simply connected. If G is a punctured disk then the
Laurent series development shows that each analytic function on G is the
uniform limit of rational functions whose poles lie outside G (in fact at the
center of G). That is, each fin H(G) is the limit of a sequence of rational
functions which also belong to H(G). This is what can be generalized to
arbitrary regions, and it is part of the content of Runge’s Theorem.

We begin by proving a version of the Cauchy Integral Formula. Unlike
the former version, however, the next proposition says that there exists
curves such that the formula holds; not that the formula holds for every
curve.

1.1 Proposition. Let K be a compact subset of the region G; then there are
ctsornindit liisn coerirapitie - - 2 £ L cainls tlnt £z sepins fsizantsze £ e
SLTAIREIe Lne Sexrrerils Yl’ .,Yn 7/ nouen nar jor cvcery Ju/l(,llUIl J
(G),
n
1 | f(w)
f(2) = E i dw
W_
P i z
Tk

£ Il L TL_. I' .. coreem-de £ £ 7
J Zin N, 1ne ine segmenis jorm a inite number o] closed polygons.

Qg tha K —

t oSume Lll L I\ —
(th )~ Let O<8< 1d(K,C—G) and place a “grid” of horizontal and
vertical lines in the plane such that consecutive lines are less than a
distance § apart. Let R,,...,R,, be the resulting rectangles that intersect K

ttle we mav
LUl

a2
Yvvw 11iQa

o8]

102
170
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~

there are onlv a finite

ere nly number of them because K is compact). Also let dR
. ) ) J
be the boundary of R, 1<,<m, considered as a polygon with the

counter-clockwise direction.
If zeR;, 1 < j < m, then d(z, K) < /28 so that R; = G by the choice

of 6. Also, many of the sides of the rectangles R,, ..., R., will intersect.
SLppose R; and R; have a common side and let o; ﬂnd o; hp the line segments
s AD nmAd AD wagsantioals cnirnh that D A D __ I'_ VIV . -1 TEenta +hha
111 U1\ iy allu U.l\' ICDPC\/L VCI)’, Suulill tilalt l\l i1 1\_] —_ 1(1]} —_ 1”1] 1'10UI111 LLIC

dlrectlon given 0R; and JR,, o; and o; are directed in the opposite sense. So
if ¢ is any contmuous functlon on {a-},

fqp+l¢

U:

Se

Let v,,...,v, be those directed line segments that constitute a side of
exactly one of the R;, 1 <j <m. Thus

1.2 Zf¢=i @

{ n

for every continuous function ¢ on U oR;.
j=1
We claim that each y, is in G— K In fact, if one of the y, intersects K, it
is easy to see that there are two rectangles in the grid with y, as a side and

so both meet K. That is, y, is the common side of two of the rectangles

R,, ..., R, and this contradicts the choice of y,.
If z belong to K and is not on the boundary of any R; then
o) = 1 [fw)
2ni\w—z
m
is continuous on | ] oR; for fin H(G). It follows from (1.2) that
o < U Jj* J \~/ \ 4
i=1
= 1 [ flw 1 [ fw)
1.3 z—_ S0 o= S L dw.
_12771 w—2z k=12’n’l w—z
J= OR;j Yk
Dest w lhAalaanc ¢4~ ¢hin 2nbncaince AL A 4le. Aeman I£f = 4+ D
DUl < UClUllsb LO LIIC 11ILCIIVUL Ol C)&d.bll)’ UIIC I\J 11 £ & I\j,
1 [ flw)
I = 0;
2ni | w—z
OR;

and if z is in R;, this integral equals f(z) by Cauchy’s Formula. Thus (1.3)
becomes

1.4 fz) = Z

whenever ze K — | J 9R;. But both sides of (1.4) are continuous functions
i=1

J
on K (because each y, misses K) and they agree on a dense subset of K.
Thus, (1.4) holds for all z in K. The remainder of the proof follows. Il
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This next lemma provides the first step in obtaining approximation by

rational functions.

1.5 Lemma. Let y be a rectifiable curve and let K be a compact set such that

Ko {y} = [O. If fis a continuous function on {y} and € > O then there is a
rational function R(z) having all its poles on {y} and such that

Jf()

< €

Y

forall z in K.

Proof. Since K and {y} are disjoint there is a number r with 0 < r < d(K,
{y}). If y is defined on [0, 1] then for 0 < s, ¢ < 1 and zin K

@) )
-z  Hs)—z

f (O)(8) =Sy (Ny(2) —zLf (1) —f (¥(5))]

= 2

1|
< _2!f(7(t))| |}’(S) V(t)l + 3 b'(t)l If(V(S))
2]

—SOO)] + 3 SO~/ (D)

There is a constant ¢ > 0 such that |z] < ¢ for all z in K, |y(f)] < ¢ and
| f(¢(®))] < cforall tin [0, 1]. This gives that for all s and ¢in [0, 1] and zin K|
if(y(t‘)) B f(V(S))
) —z '}’(S)_Z
Since both y and f o y are uniformly continuous on [0, 1], there is a partition
{0=t,<t; <...<t,=1}such that

OW) _ fea))|
W=z~ we)—2| - V@)

for t;_y <t<t;, 1<j<n, and z in K. Define R(z) to be the rational

f‘nnr‘hnn
;;;;;;;;

IV(S) y(1)] + lf (r(8)) =)

4
1.0

R(z) Z f(t;- 1)) Iy ) — (2 1)) y(t;-1)—21""

v

J

The poles of R(z) are ¥(0), ¢(t,), . . ., y(t,—,). Using (1.6) yields that

“ (Trom  fou,-0],

N I v I‘\|
wez ' TN TN L o=z oy -2)

” “ j=lt-J L7\’ ~ \*j—17 <]
; )
<— Jd! 6
S Y
V(v) —
tji—1

for all z in K. i
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ot
a rational function with a pole at oo. It is easy to see that a rational
function whose only pole is at oo is a polynomial.

1.7 Runge’s Theorem. Let K be a compact subset of C and let E be a subset
of C — K that meets each component of C_— K. If f is analytic in an open
set containing K and € >0 then there is a rational function R (z) whose only
poles lie in E and such that

|f(2) =R (2)|<e
for all z in K.
The proof that will be given here was obtained by S. Grabiner (Amer.
Math. Monthly, 83 (1976), 807-808). For this proof we place the result in a
different setting. On the space C (K, C) we define a distance function p by

p(f.g)=sup{|f(z)—g(2)|:z € K}
for f and g in C(K,C). It is easy to see that p(f,,f)—0 iff f=u—limf, on
K. Hence C(K,C) is a complete metric space.

So Runge’s Theorem says that if f is analytic on a neighborhood of K
and €>0 then there is a rational function R (z) with poles in E such that
p(f,R)<e. By taking e=1/n it is seen that we want to find a sequence of
rational functions {R,(z)} with poles in E such that p(f,R,)—0; that is,
such that f=u—1limR, on K.

Let B(E)=all functions f in C(K,C) such that there is a sequence
{R,} of rational functions with poles in £ such that f=«—1limR, on K.
Runge’s Theorem states that if f is analytic in a neighborhood of K then
f| K, the restriction of f to K, is in B(E).

1.8 Lemma. B(FE) is a closed subalgebra of C(K,C) that contains every
rational function with a pole in E.

To say that B(FE) is an algebra is to say that if f and g are in B(E) and
a € C then af, f+ g, and fg are in B(FE). The proof of Lemma 1.8 is left to
the reader.

1.9 Lemma. Let V and U be open subsets of C with V < U and dV nU=[].
If H is a component of U and HNV#[] then H< V.

Proof. Let a e H NV and let G be the component of V such that a € G.
Then Hu G is connected (I1.2.6) and contained in U. Since H is a
component of U, G < H. But dG < dV and so the hypothesis of the lemma
says that dG N H=[]. This implies that

H-G=HN[(C-G )UdG]

=HN(C—-G")

so that H— G 1s open in H. But G is open implies that H—G=HN(C—
G) 1s closed in H. Since H is connected and G#[], H— G=[]. That is,
H=GclV. B
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1.10 Lemma. If a e C— K then (z—a)~' € B(E).

Proof. Case 1. © ¢ E.
Let U=C—K and let V={aeC:(z—a) 'e B(E)}; so EcV cU.

1.11 Ifae Vand|b—a|<d(a,K)thenbfscV

The condition on b gives the existence of a number r, 0<r <1, such that
|b—a|<r|z—a| for all z in K. But

-1
-1 -1 b—a
1.12 (z—=b) =(z—a) |1
zZ—a
TV (L Ml =1 . -1 FAase all - i: K giveg that
ricIicce |U al Ié ul N/ N1 10U all 2 11 N~ g1Vl Ulat
o0
b—a ]! b—a\”
113 [1_ S
z—a Zo\z—a
NPANMYIAroag nifAarmly An E W tho Woaitarctrace AM_tact
DUIIVCIBCD uuuunuu_y UllL 1 U-y LLICT YV RUIUIDLULIADD IVITLUDL

then (z—a)~'Q, (z) e B(E) since a e V and

B(E) is an algebra Since B(FE) 1s closed (1.12) and the uniform conver-
gence of (1.13) imply that (z—b)"'e B(E). Thatis, b e V.

Note that (1.11) implies that V' is open.

If b e dV then let {a,} be a sequence in V' with b=1ima,. Since b ¢ V it
follows from (1.11) that |b—a,|> d(a,, K). Letting n—oo gives (by I1.5.7)
that 0=d(b,K), or b € K. Thus aV nU=[].

If H is a component of U=C— K then Hn E#[], so Hn V#[]. By
Lemma 1.9, H < V. But H was arbitrary so Uc V, or V= U.

ase

~GoC
T

L

m
o v

At l-. Adsin M. thhn sismlansiaa dn
Cl 11 ICUIC Ul ‘L’oo' \./IIUUDC UO ll LIIC uIltoouliuacu UlllpUllClll Ul
] ~

q, K such that d(ay, o)< ;d(0,K) and |a,|>2max{|z]:z € K}. Let
Ey=(E—- {oo})u{ao} so E, meets each component of C — K. If ae C—

K then Case 1 gives that (z —a)~' € B(E,). If we can show that (z—ay) ™!
e R(E) then it follows that B(E o)< B(E) and so (z—a)” ::B(E) for

= &5\ 4v y viia A% avaanvw VWD waalan \2()) = & \(4iv ) QRiie OV

each a in {3 K.
Now |z/ay| < 3 for all z in K so
1 1
== - 2 (z/a,)"
27 4a ao(l—z/ao) A p=0
converges uniformly on K. So Q,(z2)= —a, '=" _(z/a,)* is a polynomial
and (z—ay)” —-u—llm() on K. Since Q, haq its only pole at o, Q, €

B(E). Thus (z—ay,) "' e B(E). [
The Proof of Runge’s Theorem. If f is analytic on an open set G and K < G
I / istence of a

1S a
v 1 Ail\a Ay

than far each £ S0 Pranncits mma S imnlv the evicten of
L1IVIL 1VI vaAanidl © -~ U 1 lUlJUUlll i1 1. willllida o/ 1Ry IV VALOWVAL i

sl 1 6L D /_N oolall N AN L .-~ sl _a | £r_\ Ds N\l -~ _ £
rational function R{z) with poles in € — K such tnat |j{(z)— R(Zz)| <€ 101
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1.14 Corollary. Let G be an open subset of the plane and let E be a subset of
C . — G such that E meets every component of C._— G. Let R(G,E) be the
set of rational functions with poles in E and consider R(G,FE) as a subspace
of H(G). If f € H(G) then there is a sequence {R,} in R(G,E) such that
f=lmR,. That is, R(G,FE) is dense in H(G).

Proof. Let K be a compact subset of G and € >0; it must be shown that

there 1s an R in R(G,E) such that |f(z) R(z)|<e for all z in K.
1{1nn "/III l 2 th

o Proposi ere is a
o Propositi there 1s a
d each component of Cw—K, contain
C. — G. Hence, E meets each component of K
follows from Runge’s Theorem. |
The next corollary follows by letting E={o00} and using the fact that a

rational function whose only pole is at oo is a polynomial.
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1.15 Corollary. If G is an open subset of C such that C_— G is connected
hen fnr oNr nnl\ tir fa nnt:nn f Nnn > thon 1¢ a4 comuonre nf nolvnnmiale [ n 1
Jur Culrn uuu&]u\, Ju BLetUTE J UTe XJ anirt 15 G otyucrniic vy puyynurreis O\ p, |

such that f=limp, in H(G

Corollary 1.14 can be strengthened a little by requiring only that £~
meets each component of C* — G. The reader is asked to do this (Exercise
D).

The condition that £~ meet everv comnonent of C_—G cannot be
A Alw WAL VAN AR -, AAANW/ W W A IJ vv;l‘rlvllvllv AP § \/w A WwOALLLIANI L U
walovad Thic nanm o canm b ~mocd ring the punctured plane C— {0} = G
1ClaACU. 1111 Lall UC S€en Uy DUllblUCl 11 g LIIC Pullblulcu p allc v — ‘(U} = u.

So C,—G = {0, co}. Suppose that for this case we could weaken Runge’s
Theorem by assuming that E consisted of co alone. Then for each integer
> 1 we could find a polynomial p,(z) such that

1 1L |1 e \| . 1
1.16 |- — pPal2)| < -
7 n
12 rn
12| 1 -
for— <zl <n. Then|l—zp(2)] < — <1 for - < |z] <n Butif |zl =n
n n
then
|/\|_1| 1\|411 N 1) 142
1P\2)| = — [2P\2)| = — |2Ppl2)— 11 T~ = .
2
By the Maximum Modulus Theorem, |p,(z)| < - for |z| < n. In particular
n
” f'r\ N n llﬂ:pf\"ml‘l Nr 'H' pd 1 T‘ﬂl:n I\'An"]‘l nt\r\f"nrl:nfb Il ‘A\ nr\r‘ Dl‘!f\"'ﬂ
Fﬂ\"} —7 UV uliul llllly Vil ILI = 1 L1110 uu..cul_y VUILILL AUVl \l 1V) ailiud d11IvUvD

<o

™ P

that £ must be the set {0, c}.
Of course, the point in the above paragraph could have been made by
appealing to what was said about this same example at the beginning of
this section. However, this further exposition gives an introduction to a
concept whose connection with Runge’s Theorem is quite intimate.

1 %1 Th.. 248 4 ¥ L. P R
1.4l DLJC o, 1LCL N DC d bUlllpd Suposct O
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that for every polynomial p

|p(w)| < max {|p(z)|:ze K}.

That is, if the right hand side of this inequality is denoted by ||p|lk, then

~

= {w:|p(w)| < IIpllg for all polynomials p}.

If Kis an annulus then K 1s the disk obtained by filling in the interior hole.
In fact, if K is any compact set the Maximum Modulus Theorem gives that
K is obtained by filling in any “holes” that may exist in K.

Exercises

1. Prove Corollary 1.14 if it is only assumed that £~ meets each compo-
nent of C_—G.

2. Let G be the open unit disk B(0; 1) and let K = {z: 1 < |z] < }. Show
that there is a function f analytic on some open subset G; containing K
which cannot be approximated on K by functions in H(G).

Remarks. The next two problems are concerned with the following question

l @21 iven t cot K ~rAanta ad in an at (7 — (7 FrinrtiAang 1n
\J1lvVuiil a UUlllya\/L DUL FAN \/Ulltalll\tu 111 all UPU[I DUL Ul — U, \Jall IUIIMLIUUD lll

TRL Y TI YT L7\

H(G,) be approximated on K by functions in H(G)? Exercise 2 says that
for an arbitrary choice of K, G, and G, this is not true. Exercise 4 below
gives criteria for a fixed K and G such that this can be done for any G,.
Exercise 3 is a lemma which is useful in proving Exercise 4.

3. Let Kbe a compact subset of the open set G and suppose that any bounded
component D of G—K has D™ N éG # []. Then every component of C  — K
contains a component of C —G.

4. Let K be a compact subset of the open set G; then the following are
equivalent:

(a) If fis analytic in a neighborhood of K and € > 0 then there is a g

in H(G) with |f(z)—g(z)| < e for all zin K

(Y If D ic a haonunded caomnanaent of G — then D™ N 3 £ M-

\V) A1 L/ 10 6 UV ULIULU wWilp ULVt Vi T A% Liivil s LIS A o B Y

£\ YO o 2 nsmnr zamamd Son £ L al. . al._ .. 2 _ O..___ i . L _ TTLrN\ ___S.l

(C) 11 215 ally pOlilt 11 U — A UICH UICTC 15 a 1Uncuon j 1 £1(U) willl

|/(2)] > sup {|f(W)]|: win

5. Can you interpret part (c) of Exercise 4 in terms of K?
6. Let K be a compact subset of the region G and define KG = {ze@G
| £\ LY Far all £330 LI\
IJ\L}I —~ ”J ||K 1VU1 allj 11 II\U}/( .

(a) Show that if C—G is connected then K; = K.

(b) Show that d(K, C—-G) = d(Ks, C—G).

(c) Show that R; < the convex hull of K = the intersection of all convex
subsets of C which contain X.
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I\ TLO

(d) IfKg < G, < G and G, is open then for every g in H(G,)and e > 0
there is a function fin H(G) such that |f(z)—g(z)| < € for all z in K. (Hint:
see Exercise 4.)

§2. Simple connectedness

Recall that an open connected set G i
laged » G hla in (7 1ic ham
ViV 11V

ol 1
\.«lUO\.«U l\f\f 1114 111 \J 1O

s simply connected if and only if

Tha nurnnce nf thic

117 V\l TOTN
1 Pl\/ LU LNVLIV. 1V }Jul PUD\.« vi Llll

~
vu

[¢]

v

- Q

1 o Vad b 1 - 4 1

section is to prove some equivalent formulations of simple connectedness.

2.1 Definition. Let X and Q be metric spaces; a homeomorphism between
X and SZ is a continuous map f: X — Q which is one-one, onto, and such
that f~': Q — X is also continuous.

NAntica that 1f £ Y_v O e Aana_nna NNt~ and rantinninne than £ ic a
INULIVL Liiat 11 J LN T 7 ak 1O UIlILVT Ull\.a, Viilv, aAaliud VvUILILIIIUuUuUD Liiv l J 19 aAa
homeomorphism if and only if f is open (or, equivalently, f is closed).

If there is a homeomorphism between X and (2 then the metric spaces
X and Q are homeomorphic.

We claim that C and D = {z: |z| < 1} are homeomorphic. In fact
f(z) = z(1+|z])"! maps C onto D in a one-one fashion and its inverse,
fHw) = o(l —|w|)7?, is clearly continuous. Also, if f'is a one-one analytic
function on an open set G and Q = f(G) then G and Q are homeomorphic.
Finally, all annuli are homeomorphic to the punctured plane.

2.2 Theorem. Let G be an open connected subset of C. Then the following are

equivalent
(2) G is simplv connected:
(a) G is simply connected,;
(Y salase Y 0 Lo mveninss Adocnd smns ol s miiienn o S Y
(o) m(y;, a) = U jor every ciosed rectifiavle curve y in G and every point
ain C—-G;

(c) C,—G is connected,;
(d) For any f in H(G) there is a sequence of polynomials that converges

to fin H(G);
(AN Lhw s ITY(\ miad i3y Alacod wontiballs Asiseins . [ £ _ n
(e) For any fin H{(G) and any closed reciijjiaole curve y in U, j, j = U
(f) Every function f in H(G) has a primitive;

(g) For any fin H(G) such that f(z) # O for all z in G there is a function g
in H(G) such that f(z) = exp g(2);

(hY Lz ey £ 52e (0N cainls th x¢ £ _/_, N
\l) r'or ary j u I\U) JuUcrt ItulJ\A) V)

g in H(G) such that f(z) = [g(2)]*;

(i) G is homeomorphic to the unit disk;

(J) If u: G — R is harmonic then there is a harmonic function v: G — R
such that f = u+iv is analytic on G.

£re 211 > 2
JOr aii Z ir

Proof. The nlan is to show that (a) = (b) = = (1) = (a) and (h) = (1
)] p! S w that (a) (b) ... (1) (2) and (h) ()

— () AAan A~AF thaca irmnlinatiAng haowa aleanAdsy hanm AAnna

-— \s}- 1v1auy Ul LLIUDU 111IpLivativlld 11avoe aucauy UCU11l UUllC.
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iable curve in G and a a pO‘i‘ in the
complement of G then (z—a is analytic in G, and part (b) follows by
Cauchy’s Theorem.

(b) = (c¢) Suppose C,—G is n

d B are AICI(\Iﬂf non-
i J Y § Ulll‘-, AANJ 11

N
Y
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» 3 @
=
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either in 4 or in B, suppose that oo is in B; thus, A must beac
of C (4 is compact in C_ and doesn’t contain c0). But then G, = GU 4 =
C,—B is an open set in C and contains A. According to Proposition 1.1
there are a finite number of polygons y,, ..., v, in G;—A = G such that

for every analytic function f on G,

)

o

~

(w)
aw

w—2z

f@&=> -
Ly 2mi

=Y
= L_.___‘

=

for all z in A. In particular, if f(z) = 1 then
= z n(yy; 2)
k=1

for all z in 4. Thus for any z in A there is at least one polygon vy, in G such
that n(y,; z) # 0. This contradicts (b).

(¢) = (d) See Corollary 1.15.

(d) = (e) Let y be a closed rectifiable curve in G, let f be an analytic
function on G, and let {p,} be a sequence of polynomials such that f = lim p,
in H(G). Since each polynomial is analytic in C and y ~0in C, |, p, = 0
for every n. But {p,} converges to f uniformly on {y} so that |, f= lim

pn=0.
b (e) = (f) Fix a in G. From condition (e) it follows that there is a function
F: G — C defined by letting F(z) = [, f where y is any rectifiable curve in G
from a to z. It follows that F’ f(qee the proof of Corollary IV. 6.16).

(f) = (g) If f(2) # Ofor all zin G then f’/fis analytic on G. Part (f) implies
there is a function Fsuch that F’ = f'/f. It follows (see the proof of Corollary
IV. 6.17) that there is an appropriate constant ¢ such that g = F+ ¢ satisfies
f(z) = exp g(z) for all z in G.

(g) = (h) This is trivial.

(M = MIfG = C then the functi

(h) = () If G = C then the function z(1 +|z|) " ! was shown a hor
morphism 1mmed1ately prior to this theorem. If G # C then Lemma VII. 4.3
implies that there is an analytic mapping f of G onto D which is one-one.

Such a map is a homeomorphism.

(i) = (a) Let h: G— D = {z: |z] < 1} be a homeomorphism and let y
be a closed curve in G (note that y is not assumed to be rectifiable). Then
(s) h(y(s)) is a closed curve in D. Thus, there is a continuous fu“lctiO“l

ts
fa—

0) =o(s)for0 < s < 1, A(s, 1) = OforO
< 1. It follows that ' = A~' o A is a con-

and A(O t) = A(l, ¢t <t
nd demonstrates that y is homotopic to the curve
h™

hmmuq map of I? into G
I o

v LU LIV VUL VL

l(n\ The details are left to the reader

Lilvw 1wdivivie
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(h\=>(|\ Rnnpose that G # C; then the Riemann Manmno Theorem
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implies there is an analytic function 4 on G such that A4 is one-one and A(G)
= D.Ifu: G — Ris harmonic then#, = u o h~! is a harmonic function on D.
By Theorem III. 2.30 there is a harmonic function v,: D — R such that
fi = uy+iv, is analytic on D. Let f = f, o h. Then f is analytic on G and

is the real part of f. Thus v = Im f = v; o h is the sought after harmonic
nnnnnnn q:ﬂf‘ﬂ TL\AA"AM T" q Q l [oFaY nv\v\':an “I\ p I;\ "‘I\'ll\ 1Lro r-l\m IL\\
bouuga DILIVE 1 1IVVUILNILL 111, &IV AldU ayyuco (AW ) \J} 1VIIVUW)D 11V111 \ll}.
G) = (g) ose f: G — C is analytic and never vanishes, and let u =

Re f, v = Imf If U: G — R is defined by U(x, y) = log |f(x+iy)| = log
[u(x, y)*>+iv(x, y)*]* then a computation shows that U is harmonic. Let V
be a harmonic function on G such that g = U+iV is analvtic on G and

vaalsw KiiBay v

z in G. That is, f/h is an analytic function whose range is not open. It follows
that there is a constant ¢ such that f(z) = ¢ h(z) = c exp g(z) = exp [g(z)+
¢,]- Thus, g(z)+c, is a branch of log f(z).

This completes the proof of the theorem. i

This theorem constitutes an aesthetic peak in Mathematics. Notice that it
says that a topological condition (simple connectedness) is equivalent to
analytical conditions (e.g., the existence of harmonic conjugates and Cauchy’s
Theorem) as well as an algebraic condition (the existence of a square root)
and other topological conditions. This certainly was not expected when
simple connectedness was first defined. Nevertheless, the value of the theorem
is somewhat limited to the fact that simple connectedness implies these nine
properties. Although it is satisfying to have the converse of these implica-
tions, it is only the fact that the connectedness of C,— G implies that G is
simply connected which finds wide application. No one ever verifies one of
the other properties in order to prove that G is simply connected.

For an example consider the set G = C—{z = re": 0 < r < o0}; that

is, G is the complement of the infinite spiral r = 6, 0 < 8 < oo. Then

1Ty U 10 Riiv WUl p/iviiiviiv Ai1iirixitv Uil T

C, — G is the spiral together with the point at infinity. Since th:s is connected,
G is simply connected.

Fvorecico

AJNACANVIAIDOW

1. The set G={re": —c0<t<0 and l+e'<r<l+2e'} is called a
A

cornucopia. Show that G i1s simply connected. let K=G~ 1ic int K con-
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nected?

§3 Mittag-Leffler’s Theorem

Consider the following problem: Let G be an open subset of C and let
fe Y ln o camitan~a ~f Aictinat mAainte 1n £ cuir that fa 1 ac nn limit nAaint
1uk; uUvT DCHUC ILO UL UIDUILIVL PUILLIWL 111 U SuUVill Llat Up § 1140 11V LU pulLiie
in G. For each integer £ > 1 consider the rational function

my
3.1 S = > 2k
k 4 z—a )J ’
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where m, is some positive integer and A4y;, ..., 4, are arbitrary complex
coefﬁcwnts Is there a meromorphic function f on G whose poles are exactly
the points {a,} and such that the singular part of f at z = g, is S;(2)? The

answer is yes and this is the content of Mittag-Leffler’s Theorem.

3.2 Mittag-Leffler’s Theorem. Let G be an open set, {a,} a sequence of
distinct points in G without a limit point in G, and let {S,(z)} be the sequence
of rational functions given by equation (3.1). Then there is a meromorphic
function f on G whose poles are exactly the points {a,} and such that the
singular part of f at a; is S,(2).

Proof. Although the details of this proof are somewhat cumbersome, the

idea is simple. We use Runge’s Theorem to find rational functions {R.(z)}

with poles in C,—G such that { ' Si(z)— R(2)} is a Cauchy sequence in
k=1

M (G). The resulting limit is the sought after meromorphic function. (Actually
we must do a little more than this.)
Use Proposition VII. 1.2 to find compact subsets of G such that

©
= U Kna Kn < int Kn+1’
n=1

and each component of C,— K, contains a component of C_—G. Since
each K, is compact and {a,} has no limit point in G, there are only a finite
number of points g, in each K,. Define the sets of integers 7, as follows:

I, = {k:aq e K},

I, = {k: a. € Kn_Kn—l}
for n > 2. Define functions f, by
[z = ) S«2)

kel,

for n> 1. Then f, is rational and its poles are the points {a,:k e I,} <K, —
K _. (If I, 1S empty let f =().) Since f, has no poles in K, (fgr n>2)itis

A e TTTTYJn T TRTT @ TTTY st, T

analytlc in a nelghborhood of ._1- According to Runge S Theorem there
is a rational function R, (z) with its poles in C__ — G and that satisfies

D-R@| < @

for all z in K,_,;. We claim that

o o]
33 @) = fi(2) + }, [fi(2)—R(2)]
n=2
is the desired meromorphic function. It must be shown that f is a mero-
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morphic function and that it has the desired properties. Start by showing
that the series in (3.3) converges uniformly on every compact subset of
G—{a,: k > 1}. This will give that f is analytic on G—{a,: kK < 1} and it
will only remain to show that each a, is a pole with singular part S,(z). So
let Xbea wmyact subset of G— {q,: k > 1}; then K is a compact subset of
G and, therefore, there is an integer N such that K < K. If n > N then
|£,(2)— R,(2)] < (3)" for all z in K. That is, the series (3.3) is dominated on K
by a convergent series of numbers; by the Weierstrass M-test (II. 6.2) the
series (3.3) converges uniformly on K. Thus fis analytic on G— {q,: k > 1}.

Now consider a fixed integer kK > 1; there is a number R > 0 such that
la;—a| > R for j # k. Thus f(z) = 5;(z)+g(z) for 0 < |z—a;| < R, where
g is analytic in B(a,; R). Hence, z = a, is a pole of fand S,(z) is its singular
part. This completes the proof of the theorem. i

Just as there is merit in choosing the integers p, in Weierstrass’s Theorem
(VII. 5.2) as small as possible, there is merit in choosing the rational functions
R,(2) in (3.3) to be as simple as possible. As an example let us calculate the
simplest meromorphic function in the plane with a pole at every integer n.

o0

m L 1 DI R DD S N—1 .. O s \N—1 1 . .
T'he simplest singular part 1s (z—n) ~ but ) (z—n) ~ does not converge in

M(C). However (z—n) '+ (z+n)"! = 22(-22—112)'1

does converge in M (C). The singular part of this function at z = nis(z—n) 1.
In fact, from Exercise V. 2.8 we have that this function is = cot =z.

Exercises

1. Let G be aregion and let {a,} and {b,,} be two sequences of distinct points
in G such that a, # b,, for all n, m. Let S,(z) be a singular part at q, and let
P be a positive integer. Show that there is a meromorphic function fon G
whose only poles and zeros are {a,} and {b,,} respectively, the singular part
at z = a, is S,(z), and z = b,, is a zero of multiplicity p,,.

2. Let {a,} be a sequence of points in the plane such that |a,|] — oo, and let
{b,} be an arbitrary sequence of complex numbers.

(a) Show that 1f integers {k,} can be chosen such that

o0 / k

34 N \

“\a,) a,
converges absolutely for all r > 0 then

(e o]

z\* b,
35 —
“—\a,) z-—a,

converges in M{(C) to a function f with poles at each point z = a,.
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(h\ Show that if lim st i

k, = n for all n.
(c) Show that if there is an integer £ such that the series

T b

W
=)

k

= n
n—1

converges absolutely, then (3.4) converges absolutely if k, = k for all n.

(d) Suppose there is an r > 0 such that |a,—a,| > r for all n # m. Show
that ) |a,|”* < oo. In particular, if the sequence {b,} is bounded then the
series (3.6) with & = 2 converges absolutely. (This is somewhat involved and
the reader may prefer to prove part (f) directly since this is the only applica-
tion.)

(e) Show that if the series (3.5) converges in M(C) to a meromorphic
function f then

y oSy, 51+( \+ +( V'
=18 J

z—a, \a,/

(f) Let w and ' be two complex numbers such that Im (w'/w) # 0.
Using the previous parts of this exercise show that the series

Z(z)——+2( +1+Z)
/

— \A} w)
[ 44

where the sum is over all w = 2nw+2n'w for n, n’ =0, +1, +2,... but
not w = 0, is convergent in M (C) to a meromorphic function { with simple
poles at the points 2nw+2n’w’. This function is called the Weierstrass zeta

Sfunction.
(g) Let po(z) = —'(2); g is called the Weierstrass pe function. Show that

Y G S
L \(z—w)z wz/

where the sum is over the same w as in part (f). Also show that

0(2) = P(+2nw+2n'w")

S DI JUTPUR. . Y4
ad 2w dnd Zw .

2 2ed S PR

I a imcgcrb n dIlU I'l . l Ildl lb Sd lb UUUUI)’ pPer lUUlL Wllll pC 10

3. This exercise shows how to deduce Weierstrass’s Theorem for the plane
(Theorem VII. 5.12) from Mittag-Leffler’s Theorem.

(a) Deduce from Exercises 2(a) and 2(b) that for any sequence {a,} in C
h

-
I

with lim @, = o and aq, # 0 there is a sequence of integers {k,} such that
T 1 1 1/ 2\ 1/ z\k—17]
h(z) = > | +—+—(=)+...+=(=) |
n%i | z—a, a, a, \a,/ a, \a,,/ _j

is a meromorphic function on C with simple poles at a,, a,, ... .
The remainder of the proof consists of showing that there is a function f
such that & = f’/f. This function f will then have the appropriate zeros.



Runge’s Theorem
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y, and y, are any rectlﬁable curves in C— {a,, a,,...} from O to z and A is
the function obtained in part (a), then there is an integer m such that

fh - (h = 2mwim.
"o o7

(c) Again let A be the meromorphic function from part (a). Prove that
or z # a,, d,,...an any rectifiable curve in C— {a,, a,, ...},
f 5é 1 2 d Y y tﬁ bl C 1 2

f(z) = exp ( f h)

defines an analytic function on C— {a,, a,, ...} with f'/f = h. (That is, the
value of f(z) is independent of the curve y and the resulting function f is
analytic.

(d) Suppose that z € {a,, a,, . . .}; show that z is a removable singularity
of the function f defined in part (c). Furthermore, show that f(z) = 0 and
that the multiplicity of this zero equals the number of times that z appears
in the sequence {a,, a,,...}.

(e) Show that

0 1 kn
3.7 f(z)=g(l—g—n)exp[i+i(i>z+...+%‘(i) ]

Remark. We could have skipped parts (b), (c), and (d) and gone directly

from (a) to (e). However this would have meant that we must show that (3.7)
converges in H(C) and it could hardly be classified as a new proof. The steps
outlined in parts (a) through (d) give a proof of Weierstrass’s Theorem
without introducing infinite products
4. This exercise assumes a knowledge of the terminology and results of
Exercise VII. 5.11.

(a) Define two functions fand g in H(G) to be relatively prime (in symbols,
(f, g = 1) if the only common divisors of fand g are non-vanishing functions

in H(G). Show that (f g)=1if Z(f)nZ(g) =

(b) If (f, g) = 1, show that there are functions f}, g, in H(G) such that

ffi+gg, = 1. (Hint: Show that there is a meromorphic function ¢ on G
such that f; = pg € H(G) and g|(1—£).)

() Let f1,...,f,€H(G) and g = g.cd {f;,...,f,}- Show that there
are functions ¢,,..., ¢, in H(G) such that g = ¢, f;+ ...+ ¢,f,. (Hint:
Use (b) and 1nductlon )

- ~ s = < . == 2 2 - - ~ -
(d) If {#,} is a collection of ideals in H(G), show that f = []Fa 18
aldv all 1ucatl. 11 < ~ I1I\U} Uilll iILL & 1J / 1d all 1uval Ul 11\J) aiiu

(G that contains &
< k < n}. J is called

N
|
aY

rove that £ is the smallest ideal in H
rl

and J = {p, fi+ ... +@ufu: € H(G), fr e & for
the ldeal generated by & and is denoted by 57
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(f) An ideal # is called a fixed ideal if Z' (S
a free ideal. Prove that if # = (&) then Z(SF) = Z(
ideal is fixed.

1 - - e ﬁn- I Af\ﬂl

Ulf" .
1 11 \U lb a Pllllbl}}al lucal
# []; otherwise it is called
) and that a principal

‘%

Saia

D“

# be a fixed ideal and prove that there is an f in H(G) with
ﬁ‘l’(f) Z(F) and #£ < (f). Also show that £ = (f) 1f J is finitely gener-

ated.
(i) Let  be a maximal ideal that is fixed. Show that there is a point

a in G such that &4 = “ —c’c')).

() Let {a,} be a sequence of distinct points in G with no limit point in G.
Let # = {fe H(G): f(a,) = O for all but a finite number of the a,}. Show
that £ is a proper free ideal in H(G).

(k) If £ is a free ideal show that for any finite subset & of £, Z(%¥)
# [J. Use this to show that .# can contain no polynomials.

(1) Let # be a free ideal; then £ is a maximal ideal iff whenever g € H(G)
and Z(g) N Z(f) # [ for all fin £ then ge £.

5. Let G be a region and let {a,} be a sequence of distinct points in G with
no limit point in G. For each integer n > 1 choose integers k, > 0 and
constants A%, 0 < k < k,. Show that there is an analytic function f on G
such that f%®(a,) = k!4%. (Hint: Let g be an analytic function on G with a
zero at a, of multiplicity k,. Let # be a meromorphic function on G with
poles at each a, of order k, and with singular part S,(z). Choose the S, so
that f = gh has the desired property.)

6. Find a meromorphic function with poles of order 2 at 1, /2, \/3,...
such that the residue at each pole is 0 and lim (z—./n)*f(z) = 1 for all n.

z>4/n

et



Chapter 1X

Analytic Continuation and Riemann Surfaces
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G; when can f be extende analytic function f; on an open set G,
which properly contains G? If G, is obtained by adjoining to G a disjoint
open set so that G becomes a component of G,, f can be extended to G, by
1 any way we wish on G, —G so long as the result is analytic.
o to eliminate such trivial cases it is reqUired that G, also be a region.

Actually, this process has aiready been encountered. Recali that in the
discussion of the Riemann zeta function (Section VII. 8) {(z) was initially
defined for Re z > 1. Using various identities, principal among which was
Riemann’s functional equatlon { was extended so that it was deﬁned and
aualyuu in C— { 11; with a buuplc yuxc at z = 1. That i is, { was anal

continued from a smaller region to a larger one.

Another example was in the discussion that followed the proof of the
Argument Principle (V.3.4). There a meromorphic function f and a closed
rectifiable curve y not passing through any zero or pole of f was given.
If z = a is the initial point of y (and the final point), we put a disk D, about
a on which it was possibie to define a branch £, of log f. Continuing, we
covered y by a finite number of disks D,, D,, ..., D,, where consecutive
disks intersect and such that there is a branch £; of log fon D;. Furthermore,
the functions ¢; were chosen so that £,(z) = £;_,(z) for zin D;_, N D,
2 < j < n. The process analytically continues ¢, to D, U D,, then D, U D,
U D;, and so on. However, an unfortunate thing (for this continuation)
happened when the last disk D, was reached. According to the Argument
Principle it is distinctly possible that Z,(z) # ¢£,(z) for z in D, N D,. In fact,
£(2)—£,(z) = 2#iK for some (possibly zero) integer K.

This last example is a particularly fruitful one. This process of continuing
a function along a path will be examined and a criterion will be derived
which ensures that continuation around a closed curve results in the same

function that begins the continuation. Also the fact that continuation around
a closed path can lead to a different function than the one rted with, will

wiLOowe piavii wisiz A NeiiiVviwaiv 2 viiliiz

introduce us to the concept of a Rleman Surface.

This chapter begins with the Schwarz Reflection Principle which is more
like the process used to continue the zeta function than the process of
continuing along an arc.

[oR
o
=

If G is a region and G* = {z:Z € G} and if fis an analytic function on G,
then f*: G* — C defined by f*(z) = f(Z) is also analytic. Now suppose that

210
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DJ a
- f(z) is analytic on G. Since G is connected it must be hat G contains an
open interval of the real line. Suppose f(x) is real for all x in G N R; then
g(x) = Oforx in G N R. But G N R has a limit point in G so that f(z) = f(Z)

he fact that f must satisfy this equation is used to extend a function
1.0~ . | 7Y~ ) R ~ NY . 11 _C Y
acnned on U MY 2. 1m 2 =2 Uy Lo dll O GU.
e.,G =

If G is a symmetric region (i. G*)thenletG, = {ze G:Imz > 0},
= {zeG: Im z < 0}, and G0 = {zeG: Im z = 0}.

1.1 Schwarz Reflection Principle. Let G be a region such that G = G*. If
f: G, U Gy,—C is a continuous function which is analytic on G, and if
f(x) is real for x in G, then there is an analytic function g: G — C such that

g(z) - fG) forzin G, UGy

Proof. For z in G_ define g(z) = f(Z) and for z in G, U G, let g(z) = f(2).
It is easy to see that g: G — C is continuous; it must be shown that g is
analytic. It is trivial that g is analytic on G, U G_ so fix a point x4 in G,
and let R > 0 with B(x,; R) < G. It suffices to show that g is analytic on
B(x,; R); to do this apply Morera’s Theorem. Let T = [a, b, c, a] be a triangle
in B(xo; R). To show that [rf = 0 it is sufficient to show that [pf =0

a

/\
7N\
/ AN

b G_
whenever P is a triangle or a quadrilateral lying entirely in G, U G, or
G_ U G,. In fact, this is easily seen by considering various pictures such as
the one abO've Therefore assume that T <Gy U Go and [a, b] < G,. The
I i e Exercise

for a general proposition which proves all these cases at once.)

Let A designate T together with its inside; then g(z) = f(z) for all z in A.
By hypothesis f is continuous on G, U G, and so f'is uniformly continuous
on A. Soife > Othereisad > Osuch that whenzand z' € A and iZ—A | < )
then [f(2)—f(z")] < e. Now choose o and 8 on the line segments [c, a] and
[b, c] respectively, so that |x—a| < & and |[8—b| < 8. Let T, = [«, B, ¢, o]
and Q = [a, b, B, «, a). Then [pf = |1, f+of, but T, and its inside are
contained in G, and f is analytic there; hence

e

1.2 ff=

[ £
J7
o
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¢

Butif 0 < ¢ < 1 then
[1BB+(1—t)a]—[th+(1—1)a]| < &
so that
| f@B+(1—=a)—f(th+(1—1)a)| < e.
If M = max {|f(z)|]: ze A} and ¢ = the perimeter of T then

13| r+ [ f]=le- a)ff(tb-i—(l—t)a)dt—(ﬁ—a)ff(tﬂ—i—(l—t)oc)dt

(a, b] (8, al
1
< |h—al ,{rf(fl‘_L/I — NN —F(tRL(1 =f\~\/hl
—_— IU u| IJ LJ\IUT\I L}u} J l,JT\l L}%}ull
0
1
+lb=a) = B=a)| |[ f1B+(1 = Da)a]
0
< elb—al+ M|(b—-B)+ («—a)|
- PO YAAS
= I/TLJ U
Also
’ f fl < Mla—o| < M3
(a, al
and
INE
[b B]

Combining these last two inequalities with (1.2) and (1.3) gives that

Ir

” /| < e/+4Ms.

v

T
Cinea 1+ 3¢ nAQCT At~ Al ~Aon - nimd cinmra aelaldn ¢ £ 1V . 2L _4
DLIVE I 1D PpOUNDIUIC LU CHOOM 0 < € aild ulLC € is arolrary, 1t rolows tidt

frf = 0; thus f must be analytic. |l
Can the reflection principle be generalized? For example, instead of

requiring that G be a region which is symmetric with respect to the real axis,
suppose that G is symmetric with resnect to a circle. {npﬁmrmn 111. 1’,7)‘

dhdd off wlhd vaaslen Sy tJ . <« 111V
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answer is provided in the exercises below.

e

Exercises

1. Let y be a simple closed rectifiable curve with the property that thereis a
point a such that for all z on y the line segment [a, z] intersects {y} only at z;
ie. [a, z] N {y} = {z}. Define a point w to be inside vy if [a, w] N {y} =
and let G be the collection of all points that are inside .

(a) Show that G is a region and G~ = G U {y}.

(b) Letf: G~ — C be a continuous function such that fis analytic on G.
Show that {, f

(c) Show that n(v:2) = +1if z =0ifze¢ G~
v/ SN0owW 1hat iy s <) 1A i1i & 1 VoiiA & S

o
=)
(o
S
~
e’
RiN

Remarks. It is not necessary to assume that y has such a point a as above;
each part of this exercise remains true if y is only assumed to be a simple
closed rectifiable curve. Of course, we must define what is meant by the
inside of y. This is difficuit to obtain. The fact that a simpie ciosed curve
divides the plane into two pieces (an inside and an outside) is the content of
the Jordan Curve Theorem. This is a very deep result of topology.
2. Let G be a region in the plane that does not contain zero and let G* be
the set of all points z such that there is a point w in G where z and w are
symmetric with respect to the circle |£|=1. (See III. 3.17.)

(a) Show that G* = {z: (1/2) € G}.

(b) If /: G — C is analytic, define f*: G* — C by f*(z) = f(1/2). Show
that /* is analytic.

(c) Suppose that G = G* and f is an analytic function defined on G
such that f(z) is real for z in G with |z| = 1. Show that f = f*.

(d) Formulate and prove a version of the Schwarz Reflection Principle

where the circle |£| = 1 replaces R. Do the same thing for an arbitrary circle.
3 Tet f' F G GO be as in the statement of the Schw

) V2 ]
~e AJVU o Uw €U 113 Lilw Uitliltwitiwiin Ciiw vvu

Principle and let f: G, UGy—>C, be a continuous function such that fis
meromorphic on G .. Also suppose that for x in G, f(x) € R. Show that there
is a meromorphic function g: G — C_, such that g(z) = f(z) forzin G+ U G,
Is it possible to allow f to assume the value o0 on G,?

rz Reflection
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Let us begin this section by recalling the definition of a function. We use
the somewhat imprecise statement that a function is a triple (f, G, Q2) where

N/
G and QQ ara cete and fic a ““rule” which accioneg to each element of (G a uniaue
CAALANGE wWw WA W JWwWiD ““UJ AV A Uiw VY AALWAA “oul&llu VW WAWAL WiWIiIliWwWIALV VA A I ¢ 9 “l“ﬂ“v
| PR AL N TLhiio £z $x37~ fir:0mndimnanc ¢~ s ¢his Ghsems svnéd ~aalo: caneand el o1
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be the same but the domains and the ranges must coincide. If we enlarge the
range  to a set Q, then (f, G, Q,) is a different function. However, this
point should not be empha51zed here; we do wish to emphasize that a change

in the domain results in a new function. Indeed. the purpose of analvtic
AAA CAAW AN AARRALALLE A WINAANALD LAl AL v Al ’ CAAW l—’ul t/vuv NS A “‘l“l) Ciw
PRSP Sy .n 4t Amlawcea ¢ha At Thive las 77 (o MDA = ~ 11 awmd
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g(2) = Z (—1yt2

n=1

for zin D. Then (f, G, C) # (g, D, C) even though f(z) = g(z) for all z in D.
Nevertheless, it is desirable to recognize the relationship between f and g.
This leads, therefore, to the concept of a germ of analytic functions.

2.1 Definition. A function element is a pair (f, G) where G is a region and
fis an analytic function on G. For a given function element (f, G) define the
germ of f at a to be the collection of all function elements (g, D) such that
ae D and f(z) = g(z) for all z in a neighborhood of a. Denote the germ
by [f1..

Notice that [f], is a collection of function elements and it is not a function
element itself. Also (g, D) €[f], if and only if (f, G) € [g],. (Verify!). It should
also be emphasized that it makes no sense to talk of the equality of two
germs [f], and [g], unless the points a and b are the same. For example, if
(f, G) is a function element then it makes no sense to say that [f], = [f],
for two distinct points @ and b in G.

2.2 Definition. Let y: [0, 1] — C be a path and suppose that for each ¢ in
[0, 1] there is a function element (f,, D,) such that:

(@) (1) e D,;
(b) for each ¢ in [0, 1] there is a 8 > O such that |s—¢| < & implies
y(s) € D, and

n()f(f D)\
\JOs &0 =

(f1, D) is obtained from (f,, D,) by analytic continuation along y.

Before proceeding, examine part (b) of this definition. Since y is a
continuous function and (¢) is in the open set D,, it follows that there is a
8 > 0 such that y(s) e D, for |s—t| < 8. The important content of part (b)

§F N7
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whenever |s—¢| < @.
Whether for a given curve and a given function element there is an
analytic continuation along the curve can be a difficult question. Since no

degree of generality can be achieved which justifies the effort, no existence
thanranc fAar analutin ~rantintiatinne will ha meAavad Farh individiial ~ace
LIILUICIIIS 1UL allalyllv LUILLILIITUAQLIVUIID  will UL pluyeud iL.auvil lliulviuual vaowy
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will be considered by itself. instead uniqueness theorems for continuations
are proved. One such theorem is the Monodromy Theorem of the next
section. This theorem gives a criterion by which one can tell when a con-

tinuation along two different curves connecting the same points results in the
cama Friinmatinn alamant
OAlliVv 1 Uulivilvil VivIlIViIt.
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tinuations along this curve of the same function element result in the same
function element. Alternately, this result can be considered as an affirmative
answer to the followmg question: Is it possible to define the concept of

2.4 Proposition. Let y: [0, 1] — C be a path from a to b and let {(f,, D,):
0<t<1}and {(g, B,): 0 <t < 1} be analytic continuations along y such

that [fola = [gola- Then [f1]p = [g1]s-
Proof. This proposition will be proved by showing that the set

T = {t € [Os 1] [gf‘!]}r(!) = [g!]y(t)}

is both open and closed in [0, 1]; since T is non-empty (0 € T') it will follow
that 7" = [0, 1] so that, in particular, 1 € 7.

The easiest part of the proof is to show that T is open. So fix ¢ in T and
assume ¢t # 0 or 1. (If ¢t = 1 the proof is complete; if ¢ = O then the argu-
ment about to be given will also show that [a,a+ 6) = T for some 6 > 0.)
By the definition of analytic continuation there is a 8 > 0 such that for
|s—t| < 8, y(s) e D, " B, and

{[fs] y(s) — [.ft] y(s)*
[gs] y(s) — [gt]y(s)

But since t € T, f,(z) = g/z) for all z in D, " B,. Hence [f,],5) = [g4,s for
all y(s) in D, N B,. So it follows from (2.5) that [f],, [g], whenever
|s—¢| < 8. That is, (-8, t+38) < T and so T is open.

To show that 7T is closed let ¢ be a limit point of 7, and again choose
8 > 0 so that y(s) e D, N B, and (2.5) is satisfied whenever |s—| < &. Since
t is a limit point of T there is a point s in T with |s—¢| < §;s0 G = D, N B,
N D, N B, contains y(s) and, therefore, is a non-empty open set. Thus,
fl>) = 0(7\ for all z in G by the definition of 7. But. according to (2.5)

Js\<~J Ss\~) 2vi QKis NewiiizavANs iz ASliLy GQVVVANILS &~ 9

f(2) = f(2) and g,(2) = g,(z) for all z in G. So f(z) = g(z) for all z in G
and, because G has a limit point in D, N B,, this gives that [f],, = [g],q)
That is, te€ T and so T is closed. |l

2.5

-~ o == s ae

2.6 Definition. If y: [0, 1] > C is a path fromato b and {(f,, D,):0 <t < 1}
is an analytic continuation along y then the germ [f,], is the analytic con-
tinuation of [f,), along vy.

The preceding proposition implies that Definition 2.6 is unambiguous.
As stated this definition seems to depend on the choice of the continuation
{(f,, D,)}. However, Proposition 2.4 says that if {(g,, B,)} is another con-
tinuation along y with [ /o], = [go], then [fi], = [g1],- So in fact the definition
does not depend on the choice of continuation.

2.7 Definition. If (f, G) is a function element then the complete analytic
function obtained from (f, G) is the collection & of all germs [g], for which
G

there is a point ¢ in G and a path y from a to b such that [g], is the analytic
mmnendlan i ndt e LT LT Al an o
continuation of | f |, along y
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A collection of germs # is called a complete analytic function if there is a
function element (f, G) such that # is the complete analytic function ob-
tained from (f, G)

is 1 mmater1a1 any point in G
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for all z in G.
Although there is no ambiguity in the deﬁnition of a complete analytic

refrain from calling an object a funetlo.. l..--less it is indeed a fu..ctlon. To
rmialba TL an Firemntinty AmA va110 mrnsmiifantizeas o AAranin l..n wamoan wall laa M)
11H1ARNC & a lullbLlUll VUI11C lllubl, 1Hialnnuliaviuilc a uuxucuu \ 11IC 1a IEC Wlill UC ‘L/)
and show that % gives a “rule”. This is easy. In a sense we let & be its own

domain; more precisely, let

R = {(29 [f]z): [ﬂz € '97}

AR..A i « 00 m i T £ +1. 2 e lannmsanc am L) A |
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function. Nevertheless there is still a lingering dissatisfaction. To have a
satisfying solution a structure will be imposed on # which will make it
possible to discuss the concept of analyticity for functions defined on £.
In this setting, the function # defined above becomes analytic; moreover, it
reflects the behavior of each function element belonging to a germ that is in
& . The introduction of this structure is postponed until Section 5.

Exercises

1. The collection {D,, D,,..., D,} of open disks is called a chain of disks
if D;_ynD; #Oforl <j<nlIf{(f;, D;): 0 <j < n}isa collection of

function elements such that {D,, Dy, ..., D,} is a chain of disks and f;_,(z)
=fiz)forzinD; ,NnD; 1<j<n; then {(f; D;): 0 < j < n}is called

an analytic continuation along a chain of disks. We say that (f., D,) is obtained
by an analytic continuation of (f,, D,) along a chain of disks.

(a) Let {(f;, D;): 0 < j < n} be an analytic continuation along a chain
of disks and let a and b be the centers of the disks D, and D, respectively.
Show that there is a path y from a to b and an analytic continuation {(g,, B,)}

,,,,, 447123 (e} S ARl V45 |

along y such that {y} < _U Dj, [fols = [gols, and [£.], = [21]s-

(b) Conversely, let {( f,, D,): 0 <t < 1} be an analytic continuation
along a path y: [0, 1] - C and let a = y(0), b = y(1). Show that there is an
analytic continuation along a chain of disks {(g;, B;): 0 < j < n} such that

1v Luiitiliiva QIS & 8

n

2. Let D0 = B(1; 1) and let f,, be the restriction of the principal branch of
Jz to D,. Let y(f) = exp (2mt) and o(f) = exp (4nit) for 0 < ¢ < 1.

(a) Find an analytic continuation {(f;, D,): 0 < t < 1} of (f;, D,) along
~ and choaw that I'£1. — r_;.f1
/ CALING D11V YY LliAat LJ 1_]1 l JOJI
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(b) Find an analytic continuation {(g,, B,): 0 < ¢t < 1} of (f,, D,) along

o and show that [g,];, = [go];-

3. Let f'be an entire function, D, = B(0; 1), and let y be a path from O to 4.

Show that if {(f;, D,): 0 < ¢ < 1} is a continuation of (f, D,) along y then

f1(z) = f(z) for all z in D,. (This exercise is rather easy; it is actually an

exercise in the use of the terminology.)

4. Let v: [0, 1] = C be a path and let {(f,, D,): 0 <t < 1} be an analytic

continuation along y. Show that {(f;, D,): 0 < ¢ < 1} is also a continuation

along v.

5. Suppose y: [0, 1] > C is a closed path with y(0) = ¥(1) = a and let

{(fi» D,): 0 <t < 1} be an analytic continuation along y such that [f,], =

[f5), and f;; # 0. What can be said about (fo, Dg)?

L/ Odag &4 A24AL LAl UL 248 QUVUL =0/

6. Let D0 = B(1; 1) and let f,, be the restrlction to D, of the principal
branch of the logarithm. For an integer n let y(¢) = exp (2nint), 0 < t < 1.
Find a continuation {(f,, D,): 0 < t < 1} along y of (f,, D,) and show that
[f1]1 [fn+27”n]1

7. Let y: [0, 11 - C be a path and let {(f,, D,)): 0 <t < 1} be an analytic
Y [ S A | r [Q Wiy o | %4 e - J J
continuation along y. Suppose G is a region such that /(D)) < G for all ¢,

and suppose there is an analytic function #: G — C such that h(fy(z)) = z
for all z in D,. Show that A(f,(z)) = z for all z in D, and for all ¢.
Hint: Show that T = {t: h(f(z)) = z for all z in D,} is both open and

t y: [0, 1] — C be a path with 4(0) = 1 and y(¢) # O for any ¢. Suppose
that {(f;, D,): 0 < r < 1} is an analytic continuation of f,(z) = log z. Show
that each f; is a branch of the logarithm.

§3. Monodromy Theorem

Let a and b be two complex numbers and suppose y and o are two
paths from a to b. Suppose {(f,,D,)} and {(g,,B,)} are analytic continua-
tions along y and o respectively, and also suppose that [ f,], =[ go],. Does it
follow that [ f,],=[g,],? If Y and o are the same path then Proposmon 24
BIVCD an affirmative answer. However, if Y and o are distinct then the
answer can be no. In fact, Exercises 2.2 and 2.6 furnish examples that
illustrate the possibility that [ f,],#[g,],- Since both of these examples
involve curves that wind around the origin, the reader might believe that a
sufficient condition for [f,], and [ g,], to be equal can be couched in the
language of homotopy. However, since all curves in the plane are homo-
topic the resuit would have to be phrased in terms of homotopy in a
proper subregion of C. For the examples in Exercises 2.2 and 2.6, this
sought after criterion must involve the homotopy of the curves in the
punctured plane. This is indeed the case. The origin is discarded in the
above examples because there is no germ [A4], centered at zero that belongs
to the complete analytic function obtained from ( f,, D).

If (f, D) is a function element and a € D then f has a power series expan-
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sion at z = a. The first step

investigate the behavior of the radius of convergence for an analytic continua-
tion along a curve.

3.1 Lemma. Let y: [0, 1] — C be a path and let {(f,, D,): 0 <t < 1} be an
analytic continuation along y. For 0 < t < 1 let R(t) be the radius of con-
vergence of the power series expansion of f, about z = y(t). Then either R(t)
= o0 or R: [0, 1] = (0, ) is continuous.

[

n prnv ing the Monodromv Theorem is to

CAAV AVAVIAVURRA R aaay A AAWN/L WARA XD o

Proof. If R(t) = oo for some value of ¢ then it is possible to extend f, to an
entire function. It follows that f(z) = fi(z) for all z in D, so that R(s) =

for each s in [0, 1]; that is R(s) = co. So suppose that R(¢) < oo for ..l! L.
E‘:v ¢ 2m TN 11 and lat — — .04 1A¢
11A ¢ 111 |V, 1] allu IvL ¢ — ')/\l«}, j 928
0
—_— n
f@) =) 7(z—7)
n=0

be the power series expansion of f, about 7. Now let 8§, > 0 be such that

In___{' - irmnliae that .o\ ~ P | FL )
lb ll ~ Ul llllPllCD itiiat '}’\s)} < Ut l J U\T 1\\[)’ a.uu L/S.I)’(S) lJ tJy(s)' L'IA O
with [s—¢| < &; and let ¢ = y(s). Now f, can be extended to an analytic,

function on B(7; R(?)). Smce f, agrees with f, on a neighborhood of o, f; can
be extended so that it is also analytic on B(r; R(t)) U D,. If f, has power
series expansion

o,(z—0)"

P18

)= ),

about z = o, then the radius of convergence R(s) must be at least as big as
the distance from o to the circle [z—7| = R(#): that is, R(s) = d(o, {z: |z—1]
= R(#)}) > R(t)—|r—o|. But this gives that R(#)—R(s) < |[y(£)—(s)|. A
similar argument gives that R(s)— R(¢) < |y(t)—y(s)|; hence

[R(s) = R®)| < A=
for |s—1t| < 8,. Since y: [0, 1] — C is continuous it follows that R must be
continuous at . |}

3.2 Lemma. Let y: [0, 1] — C be a path from a to b and let {(f,, D,): 0 < t

1Y Lo ~ir ~mmnadstsn nnmmtsmasmtsnie alae -, Lensun o s sasszaabhons - ~ M cssnle ¢l s
= lf UC Wit urtudt yiiL coritinidutLiornt ui (] 'y AINECrec > u rtdrnioer € 2~ J SUucCrt Lriat
if o: [0, 1] = C is any path from a to b with |y(t)—o(f)| < € for all t, and if

s
{(g,, B): 0 <t <1} is any continuation along o with go] [fol.; then
[g1]s = [f1le-

Proof. For 0 <t < 1 let R(t) be the radius of convergence of the power

series expansion of f; about z = y(¢). It is left to the reader to show that if
e of € will suffice. So suppose R(¢t) < oo for all .
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Fur hermnre suppose that D, is a disk o dl_]_ _R_() about -y(fl |

oy

exposition will be greatly simplified by it

Since |o(t)—v(¢)| < € < R(?), o(t)e B, D, for all t. Thus, it makes
sense to ask whether g,(z) = f(z) for all z in B, N D,. Indeed, to complete
he proof we must show that this is precisely the case for 1 = 1. Define the
et T= {tclo, 1]: f(z) = gz) for z in B t
T is a non-empty open and closed subset of
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This is done by showing that
[0, 1].

From the hypothesis of the lemma, 0 € T so that T # []. To show T is
open fix ¢ in T and choose 8 > 0 such that

(/) =v(D)] < € [flys) = [filyesys
3-4 IU(S)'—U(t)I < ¢ [gs]o(s) = [gt]a(s)9 and
o(s) € B,
whenever le—tl <« &8 Wa will naw chaow that R AR A D A D £ M far
1° ¢ S 0. VWU il HIUW OIUW ulal Ogih VD iV ogih v iy F ] 1Vl
|s—t] < 8; in fact, we will show that o(s) is in this intersection. If [s—¢] < &
then

|o(s)—¥(s)| < € < R(s)
so that o(s) € D,. Also

lo(s) —¥(D)] < |o(s) =) +|y(s) —¥()] < 2¢ < R()
by (3.3); so o(s) € D,. Since we already have that o(s) € B, N B, by (3.4),
o(s)eB_NB,ND,ND, =G.

Since ¢ € T it follows that f,(z) = g«(z) for all z in G. Also, from (3.4) f(2) =
f(z) and g(z) = g,(z) for all z in G. Thus f(z) = g,(z) for z in G; but since
G has a limit point in B; N D it must be that s € 7. That is, (t—38, t+38) < T
and T is open. The proof that T is closed is similar and will be left to the
reader. |}

3.5 Definition. Let (f, D) be a function element and let G be a region which
en

contains D; then (f, D) admits unrestricted analytic continuation in G if for
anuv nath ~, 1in 2 wit initinl naimt in N thoro 1c an analutic cantinnatinn Af
au] yat ’ § )’ 111 \J VvVviulii iiiiuiQl l}UlllL 111 L7 lLiiviwv 10 Qil aual_y Liv wvuiliiiiualivil vl

If D= {z:|z—1| < 1} and f is the principal branch of \/ z or log z then
(f, D) admits unrestricted continuation in the punctured plane but not in
the whole plane (see Exercise 2.7).

It hace heen ctated hefare that an avictenca thenarem far analutic ~cAn
Al 1XiAad ULUL1I otaivu ULIVUIUL uiidal all VAISILVLILY uivuIviil 1V drialyue CUlLl-
T 1 e s 1

tinuations will not be proved. In particular, if (f, D) is a function element
and G is a region containing D, no criterion will be given which implies that
(f, D) admits unrestricted continuation in G. The Monodromy Theorem
assumes that G has this property and states a uniqueness criterion.

3.6 Monodromy Theorem. Let (f, D) be a function element and let G
region containing D such that (f, D) admits unrestricted continuation

ATt eissss

be
rzG;
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a nd lo o nathe in G from 71 tn he lot S(£ D))
9 u’ “w IC [ &3 II“‘I‘J L J J’U”l “w v U’ [2 o5 2 l\J’ Ut}
<t < 1}and{(g, D):

4 \
L Yo Y

0< :0 < 1} be analytic continuations of (f, D) along
Yo and y, respectively. If v, and v, are FEP homotopic in G then

ot
i

CB

\./"‘

...............

P(t9 0) = YO(t) P(t7 1) = '}/1(t)
I'O,u) =a I'l,uy=b>

forall fand uin [0, 1]. Fix u, 0 < u
by y.(¢) = I'(¢, u), from a to b. By h ypothesis there is an analytic continuation

{(he» D1,u): 0

of (f, D) along y,. It follows from Proposition 2.4 that [g,], = [#,, ,], and
[f1]s = [h;, ols- So it suffices to show that

[hl,O]b = [hl,I]b'

< 1 and consider the path y,, defined

IA

t <1}

To do this introduce the set
U= {uel0,1]: [hl,u]b = [hl,o]b}>

and show that U is a non-empty open and closed subset of [0, 1]. Since

1 5
Necl] IJ] £T1 To chnul that 77 ic hoth onen and claced we will ectahlich the
= \J, s 7T e AV J11VYY LIV U 10 UV UPUI‘ QliIN VIV OWNE YYOW VYidll ol UllIUoll Vi
ATl o
toliowing.

3.7 Claim. For u in [0, 1] there is a 8 > 0 such that if lu—v| < & then [h, ], =
[/, .]s- For a fixed u in [0, 1] apply Lemma 3.2 to find an € > O such that if
o is any path from a to b with |y, (f)—a(?)| < € for all ¢, and if {(k,, E,)} is
any continuation of (f, D) along o, then

3.3 (A1, u)s = [Kilo-
Now I' is a uniformly continuous function, so there is a § > 0 such that
if [u—v| < & then |y, (1) — y, ()] = [I'(¢t, W)—T(¢, v)| < e for all ¢. Claim 3.7

now follows by applying (3.8).
Suppose v € U and let 8 > 0 be the number given by Clai

<

o
definition of T/ (u_ L8 T/ so Uis oven. If uc /™ and agal
lllllll U, “w o Vl L 10 vall ALl “w - CLLING u&u l

chosen as in (3.7) then there is a » in U such that [u—v| < 8. But by (3.7)
[h,Js = [y, )p; and since ve U [, ], = [hy, o)y Therefore [y,,], =
[/, ols so that u € U; that is, U is closed. i

The following corollary is the most important consequence of the

onndromv Thenrem
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3.9 Corollary. Let (f, D) be a function element which admits unrestricted
continuation in the simply connected region G. Then there is an analytic
function F: G — C such that F(z) = f(z) for all z in D.

ronf Fix 21in D and lat » ha anv
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and {(f,, D,): 0 <t < 1} is an analytic continuation of (f, D) along y then
let F(z, v) —fl(z) Since G is simply connected F(z, v) = F(z, o) for any

two paths y and o in G from a to z. Thus, F(z) = F(z, y) gives a well defined
function F: G — C. To show that F is analytic let z€ G and let y and

{(f,, D,)} be as above. A simple argument gives that F(w) = f,(w) for win a
neighborhood of z (Verify!); so F must be analytic. |
Exercises

1. Prove that the set 7 defined in the proof of Lemma 3.2 is closed.

2. Let (f, D) be a function element and let a € D. If y: [0, 1] — C is a path
with y(0) = @ and y(1) = b and {(f,, D,): 0 < ¢t < 1} is an analytic con-
tinuation of (f, D) along v, let R() be the radius of convergence of the power
series expansion of f, at z = y(¢).

(a) Show that R(¢) is independent of the choice of continuation. That is,
if a second continuation {(g,, B,)} along y is given with [g,], = [f], and #(¢)
is the radius of convergence of the power series expansion of g, about

y(1) then r(t) = R(¢) for all ¢.

(l‘\\ Sunnoce t
\U’ uuyt]uav L 9

D
of the logarithm to D, and y(¢)

Q
114

R().

(¢) Let (f, D) be as in part (b), let 0 < @ < 1 and let y(t) = (1—at)
exp (2nit) for 0 < t < 1. Find R(¢)

(d) For each of the functions R(¢) obtained in parts (b) and (c), find
POy (D . N - 4 - 1) A L el L 1 ~emm e~ a4l 11 ~ 0L o1
nn {(n¢Z). Vv =171 = 1lydsaliuncuon 01 4 d4nd examine tne ocnavior ol tnis

function as a — oo or a — 0.
3. Let I': [0, 1]x[0, 1] — G be a continuous function such that I'(0, v) = a,
I'(l, u) = b for all u. Let yu(l‘) I'(z, u) and suppose that {(f,, D,.,):
1
J

"Ch that [JfO,u}a = [JfO,v]a fcr

t convergence of the power
series expansion of f, , about z = I'(¢, u). Show that either R(z, u) = o or
R: [0, 11x[0, 1] — (0, o0) is a continuous function.

4. Use Exercise 3 to give a second proof of the Monodromy Theorem.
aces and Neighborhood Systems

The notion of a topological space arises by abstracting one of the most
important concepts in the theory of metric spaces—that of an open set.
Recall that in Chapter II we were given a metric or distance function on a
set X dIlU lIllb IIlClrlL was leC(l to ucu‘ne WH&L lb meant Dy an open set. In a
topological space we are given a collection of subsets of a set X which are
called open sets, but there is no metric available. After axiomatizing the
properties of open sets, it will be our purpose to recreate as much of the

theory of metric spaces as is possible.

4.1 Definition. A topological space is a pair (X, .7°) where X is a set and .7~
is a collection of subsets of X having the following properties
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£\ ™ ar 1w ar .
(a) [JeJ and X eJ ;

(b) if Uy,...,U,arein J then (| U;e.T;
=1

(c) if {U;:iel}is any collectién of sets in .7 then | ) U;isin J.

iel

The collection of sets .7 is called a topology on X, and each member of J~
is called an open set.

Notice that properties (a), (b), and (c) of this definition are the
properties of open subsets of a metric space that were proved in Proposi-
tion II. 1.9. So if (X,d) is a metric space and 7 is the collection of all open
subsets of X then (X,7") is a topological space.

When it is said that a topological space is an abstraction of a metric
space, the reader should not get the impression that he is merely playing a
game by discarding the metric. That is, no one should believe that there is a
distance function in the background, but the reader is now required to prove
theorems without resorting to it. This is quite false. There are topological
spaces (X, 7°) such that for no metric d on X is 7 the collection of open
sets obtained via d. We will see such an example shortly, but it is first neces-
sary to further explore this concept of a topology.

The statement “Let X be a topological space” is, of course, meaningless;
a topological space consists of a topology 7 as well as a set X. However,
this phase will be used when there is no possibility of confusion.

4.2 Definition. A subset F of a topological space X is closed if X — F is
open. A point a in X is a limit point of a set A if for every open set U that
contains a there is a point x in AN U such that x#a.

Many of the proofs of propositions in this section follow along the same
lines as corresponding propositions in Chapter II. When this is the case the
proof will be left to the reader. Such is the case with the following two
propositions.

4.3 Proposition. Let (X, 7)) be a topological space. Then:

(a) (] and X are closed sets;

(b) if F,, ..., F, are closed sets then F; U ...\ F_ is closed,
N~/ U 17 b4 n 1 n b4
(©) if {F;:iel}is a collection of closed sets then () F; is a closed set.

4.4 Proposition. A subset of a topological space is closed iff it contains all its
limit points.

Now for an example of a topological space that is not a metric space
A — — . P At OF Aol ~AF A1l cnte TT crinlh that.
Let X=[0,1]={r:0<¢<1} and let 7 consist of all sets U such that
(1) if O then X' — U is either empty or a sequence of points in X;
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that no metric can give the collection of open sets .7, suppose that there is

such a metric and obtain a contradiction. Suppose that 4 is a metric on X
such that U e Z iff for each x in U there is an € > 0 such that B(x; ¢) =
{y:d(x,y) < e} = U Nowletd =(0,1);if Ue.7 and 0 € U then thereisa
point @ in U m A, a # 0 (in fact there is an infinity of such points). Hence,
0 is a limit point of A. It follows that there is a sequence {z,} in A such that

A+ 0O s Rt ifF I — vV v £ ¢ Pnronvn\— Y_ §¢ \l\n
v o] .5 0N

dt,, 0)—~>0.Butif U= {xeX: x #t,foranyn} = X-{t,, ¢t,,..
0e U and U is open. So it must follow that ¢, € U for n sufficiently large;
this is an obvious contradiction. Hence, no metric can be found.

This example illustrates a technique that, although available for metric

spaces, is of little use for general topological spaces: the convergence of
nen T ihla tn dafine “~rAnvarcant caananca?® in a tanalacical
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space U.)O l[‘), but this LOHCCpt lb not as lnumately COHHCC[CO WlUl the
structure of a topological space as it is with a metric space. For example, it
was shown above that a point can be a limit point of a set 4 but there is no
sequence in A that converges to it.

If a topological space (X, 7)) is such that a m four
with the property that a set is in 7 iff it is open in (X, d), hen ’X, T) is
said to be metrisable. There are many non-metrisable spaces. In addition to
inventing non-metrisable topologies as was done above, it is possible to
define processes for obtaining new topological spaces from old ones which
will put metrisable spaces together to obtain non-metrisable ones. For
example, the arbitrary cartesian product of topological spaces can be defined;
in this case the product space is not metrisable unless there are only a count-
able number of coordinates and each coordinate space is itself metrisable.
(See VII. 1.18.)

Another example may be obtained as follows. Consider the unit interval
I = [0, 1]. Stick one copy of I onto another and we have a topological space
which still “looks like” I. For example, [1, 2] is a copy of I and if we stick
it onto I we obtain [0, 2]. In fact, if we “stick” a finite number of closed
intervals together another closed interval is obtained. What happens if a
countable number of closed intervals are stuck together? The answer is that
we obtain the infinite interval [0, o0). (If the intervals are stuck together on
both sides then R is obtained.) What happens if we put together an uncount-
able number of copies of 7? The resulting space is called the long line. Locally
(i.e., near each point) it looks like the real line. However, the long line is not

metrlsable. As a general rule of thumb, it may be said that if a process is used
to obtain new spaces from old ones, a non-metrisable space will result if
the process is used an uncountable number of times.

For another example of a space that is non-metrlsable let X be a se
b, c}. Let 7 = {a}, {b
ot

he fannd
ov na

consisting of three points—say X = {a, b, t {0, X, 1,
{a, b} }; it is easy to check that 7 is a topology for X. To see Lha X, 7)
is not metrisable notice that the only open set containing c is the se 1tse1f.

There do not exist disjoint open sets U and V such that ae U and ceV.
On the other hand if there was a metric d on X such that .7 is the collection
of open sets relative to this metric then it would be possible to find such
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open sets (e let I = B( cand V = Rlr: e\ w < dla »~2\ In other
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words, (X, ,7 ) fails to be metrisable because 7~ does not have enough open
sets to separate points. (Does the first example of a non-metrisable space also
fail because of this deficiency?) The next definition hypothesizes enough open
sets to eliminate this difficulty.

4.5 Definition. A topological space (X, 7)) is said to be a Hausdorff space
if for any two distinct points @ and b in X there are disjoint open sets U and
V such that ae U and be V.

Every metric space is a Hausdorff space. As we have already seen there
are examples of topological spaces which are not Hausdorff spaces. Many
authors include in the definition of a topological space the property of a
Hausdorff space. This policy is easily defended since most of the examples of
topological spaces which one encounters are, indeed, Hausdorff spaces.
However there are also some fairly good arguments against this combining
of concepts. The first argument is that mathematical pedagogy dictates
that ideas should be separated so that they may be more fully understood.
The second, and perhaps more substantial reason for not assuming all spaces

to be Hausdorff, is that more examples of non-Hausdorff spaces are arising

in a natural context. Even though there will be no non-Hausdorff space
which will appear in this book, this separation of the two concepts will be
maintained for a while longer.

The next step in this development is the definition, in the setting of
tannlnoical enacee af certain caoncente encainntered in the thearv of metric
LUIJ\IIU&IV“I utluvvu, N A Wwwid Liililda vvnxvvyl.u WALAAWN/ UUliIVWAWwWNS 111 LCilw LIIV\ILJ \JAi AAAWALL AW
spaces and the stating of analogous propositions.

4.6 Definition. A topological space (X, .7) is connected if the only non-
empty subset of X which is both open and closed is the set X itself.

4.7 Proposition. Let (X, ) be a topological space; then X = \ ) {C;: iel}
where each C, is a component of X (a maximal connected subset of X). Further-
more, distinct components of X are disjoint and each component is closed.

4.8 Definition. Let (X, 7) and (Q, &%) be topological spaces. A function

f: X - Q is continuous if f~1(A)e T whenever Ae S
4.9 Proposition. Let (X, 7)) and (Q, &) be topological spaces and let - X — Q
be a function. Then the following are equivalent

(a) fis continuous,

(b) if A is a closed subset of Q then f~1(A) is a closed subset of X;

(c) ifae X and if f(a) e A € & then there is a set U in  such that ae U
and f(U) < A.

4.10 Proposition. Let (X, 7)) and (Q, &) be topological spaces and suppose
that X is connected. If f- X — Q is a continuous function such that f(X) = Q
then Q is connected.

4
4



} there are a finite number of sets U,, ..., U

in @ such that X < | ) U,.
k=1

4.12 Proposition. Let (X, 7)) and (Q, %) be topological spaces and suppose
K is a compact subset of X. If f- X — Q is a continuous function then f(K) is
compact in 2.

If (X, d) is a metric space and Y < X then (Y, d) is also a metric space.
Is there a way of making a subset of a topological space into a topological
space? We could, of course, declare every subset of Y to be open and this
would make Y into a topological space. But what is desired is a topology on
Y which has some relationship to the topology on X; a natural topology on a
subset of a topological space.

If (X, ) is a topological space and Y < X then define

Ty={UnY:UeT}.
It is easy to check that 7y is a topology on Y.

4,13 Definition. If Y is a subset of a topological space (X, ) then J is
called the relative topology on Y. A subset W of Y is relatively open in Y
if WeJy; Wis relatively closed in Y if Y—W e Jy.

Whenever we speak of a subset of a topological space as a topological
space it will be assumed that it has the relative topology unless the contrary
is explicitly stated.

4.14 Proposition. Let (X, 7) be a topological space and let Y be a subset of X.

(a) If X is compact and Y is a closed subset of X then (Y, J y) is compact.
(b) Y is a compact subset of X iff (Y, T y) is a compact topological space.
(© If (X, 7)) is a Hausdorff space then (Y, I y) is a Hausdorff space.

( d) If (X, T) is a Hausdorff space and (Y, T y) is compact then Y is a closed
heot nf Y

UOLTE Uy LR

Proof. The proofs of (a), (b), and (c) are left as exercises. To prove part (d)
it suffices to show that for each point ain X —Y there is an open set U such

anmd TT v e mznd o e VO, L ann 2m 2 am
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there are open sets U, and V', in X such thatae U,, ye V,,and U, NV, =
] (because (X, 3’) is a Hausdorff space). Then {V, N Y: y e Y} is a collec-
tion of sets in 7 y which covers Y. So there are points y,, ..., y,in Y such

that ¥ < U(VyimY)CUV V. Since ae U,, foreacht aeU = ﬂ
i=I i=I i=1
U,,; also Ue J . It is easily verified that UN V = U (Unv,)=0so

that UNY = [. 1 =1
The proof of this proposition yields a stronger result.

4.15 Corollary. Let (X, J) be a Hausdorff space and let Y be a compact
subset of X; then for each point a in X—Y there are open sets U and V in X
suchthatae U, Y< V.and UNnV = .

If we return to the consideration of metric spaces we can discover a new
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way to define a topology. The sequence of steps by which open sets are
obtained in a metric space are as follows: the metric is given, then open balls
are defined, then open sets are defined as those sets which contain a ball

about each of their points. What we wish to mimic now is the introduction
. ""\IC‘ I(‘ I‘I\ﬂﬁ “\‘I An'ﬁn;nn (s ] ﬂaiﬂl‘\k
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subsets of X having the fo

(a) for each U in A, xe U,

(b) if U and Ve, thereisa Win A such that W< UN V;

(¢) if Ue AN, and Ve N, then for each z in U N V there isa Win A
such that W< UN V.

ollowing propertles

Then the collection {4 : x € X} is called a neighborhood system on X.

If (X, d) is a metric space and if x € X then A = {B(x;€): e > 0} gives

a collection {4.: x € X} which is a neighborhood system. In fact, this was
the prototype of the above definitions.

Notice that condition (c) relates the neighborhood systems of different
points. If only conditions (a) and (b) were satisfied, it would not follow that
these neighborhoods would be open sets in the topology to be defined. For
example, if X is a metric space and .4, is the collection of closed balls about
x then {A.: x € X} satisfies conditions (a) and (b) but not (c). Moreover, it
is easy to verify that by letting x = y = z condition (b) can be deduced from
(c) (Verify!).

The next proposition relates neighborhood systems and topological
spaces.

4.17 Proposition. (a) If (X, J) is a topological space and N, = {Ue T :
x e U} then {N,: x € X} is a neighborhood system on X.

(b) If {N,: x € X} is a neighborhood system on a set X then let T = {U:
x in U implies there is a V in N, such that V < U}. Then 7 is a topology on
Xand NV, < T for each x.

(c) If (X J) is a topological space and {N,: x e X } is defined as in part
(a), then the topology obtained as in part (b) is again 7 .

(d) If {N,: x € X} is a given neighborhood system and 9 is the topology
defined in part (b), then the neighborhood system obtained from  contains
{AN.: xeX}. That is, if V is one of the neighborhoods of x obtained from I~

then there is a U in ,/V,c such that U < V.

o] \
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sets in .7 is clearly in .7, .7 is a topology. Finally, fix x in and let U ¢
If ye U it follows from part (c) of Definition 4.16 that there is a ¥ in ./V
such that ¥V < U. Thus Ue 7. I}

4.18 Definition. If {4 : x € X} is a neighborhood system on X and .7 is the
topology defined in part (b) of Proposition 4.17, then .7 is called the topology
induced by the neighborhood system.

4.19 Corollary. If {A.: x € X} is a neighborhood system on X and I is the
induced topology then (X, J) is a Hausdorff space iff for any two distinct

points x and y in X there is a set Uin N, and a set V in N, such that

Y7 ~ Y/ M
unNny =]
Exercises

1. Prove the propositions which were stated in this section without proof.
2. Let (X, Z) and (2, &) be topological spaces and let Y < X. Show that
if 1 X — Q is a continuous function then the restriction of fto Y is a con-
tinuous function of (Y, ) into (2, &).

3. Let X and Q be sets and let {4 : xe X} and {/#,: eQ} be neigh-
borhood systems and let .7 and & be the induced topologle and Q

respectively.
(a) Show that a function f: X — Q is continuous iff when x € X and
= f(x), for each A in .# , there is a U in A", such that f(U) < A.

(b) Let X = Q = C and I,t N, =M, = {B(z;¢): e >0} foreach zin C.
Interpret part (a) of this exercise for this particular situation.

4. Adopt the notation of Exercise 3. Show that a function f> X — Q is open
iff for each x in X and U in A4 there is a set A in .# , (Where w = f(x)) such
that A < f(U).

5. Adopt the notation of Exercise 3. Let ¥ < X and define %, = {YNU
UeA,} for each y in Y. Show that {% Y} is a neighborhood system

y
for Y and the topology it induces on Y is J .
6. Adopt the notation of Exercise 3. For each point (x, w) in X x Q let

Uiy = {UxD: UeN,, Ae M}
(a) Show that {% . (x, w)e XxQ} is a neighborhood system on

7 3

X x € and let & be the induced topology on X x {2.
(b) If Ue J and A € &, call the set Ux A an open rectangle. Prove that
a set is in & iff it is the union of open rectangles.
(¢) Define p;: XxQ — X and p,: XxQ—-Q by p,(x, w) = x and

P,(x, w) = w. Show that p, and p, are open continuous maps. Furthermore
if (Z, Z) is a topological space show that a function f: (Z, Z) - (X' xQ, P)
is continuous iff p, o f* Z — X and p, o f: Z —  are continuous.

§5. The Sheaf of Germs of Analytic Functions on an Open Set

.
AnnlAaginal
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P sed on this Sp (in the next bcuuuu; This will furnish
the setting in which to study the complete analytic function as an analytic
function.

If (f, D) is a function element, recall that the germ of (f, D) at a point
z = a in D is the collection of all function elements (g, B) such that a< B
and g(z) = f(z) for all zin B N D. This germ is denoted by [f],

5.1 Definition. For an open set G in C let
SL(G) = {(z,[f),): z € G, fis analytic at z}.

Define a map p: £(G) — C by p(z, [f],) = z. Then the pair (<(G), p) is
called the sheaf of germs of analytic f"nazons on G. The map p is called the
A a

ral —1rc_ N

projection map; and for each z in G, p~'(z) = p~'({z}) is calied the stalk or
fiber over z. The set G is called the base space of the sheaf.

Notice that for a point (z, [f],) to be in £(G), it is not necessary that f be
defined on all of G; it is only required that f be analytic in a neighborhood

of »
Vi 4.

How do we picture this sheaf? (There are, of course, too many dimensions
to form an accurate geometrical picture.) One way is to follow the agri-
cultural terminology used in the definition. On top of each stalk there is a
collection of germs; the stalks are tied together into a sheaf. A better feeling for
< (G) can be obtained by examining the notation for points in &(G). When we
consider a point (z, [ f1,) in #(G), think of a function element ( f, D)in the germ
[f], instead of the germ itself. For every point w in D there is a point (w, [f],,)
in #(G). Thus about (z, [ f],) there is a sheet or surface {(w; [f],): we D}.
In fact, #(G) is entirely made up of such sheets and they overlap in various
ways. Alternately, we can think of &#(G) as the union of graphs; each point
(z, [f],) in &(G) corresponding to the point (z, f(z)) on the graph of (f, D).
(The graph of (f, D) is a subset of C? or R*) Two function elements are
equivalent at a point z if their graphs coincide near z.

A topology will be defined on #(G) by defining a neighborhood system.
For an open set D contained in G and a function f: D — C analytic on D
define
5.2 N(/,
That is, N(f, D) is defined for each function element (f, D). If we think of
& (G) as a collection of sheets lying above G which are indexed by the germs,
then N(f, D) is the part of that sheet indexed by f and which lies above D.

5.3 Theorem. For each point (a, [f1,) in F(G) let
(T.. D\e » -~ D .. 1M1 __ £
‘/'(a,[f]a) = Wig, pj.ucouandigly = LJ las-

then {N 51 (@, [f1) € F(G)} is a neighborhood system on F(G) and the
induced topology is Hausdorff. Furthermore. the induced topology makes the
map p: F£(G) — G continuous.

Proof. Fix (a, [f],) in
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consequence of (c).) Let N(g,, B,) and N(g,, B,) € ¥ 41, and let

5.4 (b, [4]) € N(g1, B1) N N(g2, B,).

It is necessary to find a function element (k, W) such that N(k, W) e ANy 111,
and N(k, W) < N(g,, Bl} N N(gz, B,). It follows from (5.4) thatbe B, N\ B,
and [h}, = [g,]s = [g2)s- If be W = B, N B, and h is defined on W then

N(h, W) < N(g;, B)) N N(g, B,).
To show that the induced topology is Hausdorff, use Corollary 4.19. So
let (a, [f],) and (b, [g],) be distinct points of &(G). We must find a neighbor-

il O 4 9 ﬂ vi \u, lJ jal CAiini 6 11UV u 4V N i \Vy b uu WA A AL
N(f, A) " N(g, B) = [J. How can it happe“n that (a, [f]) # (b, {g]ls)? There
are two possibilities. Either a # b or a = b and [f], # [gl.. If a # b then

let A and B be disjoint disks about a and b respectively; it follows immediately
that N(f, A) " N(g, B) = (J. If a = b but [f], # [gl., we must work a little
harder (but not much) Since [f], # [g]a there is a disk D = B(a' r) such that
both f and g are defined on D and f(z) # g(z) for 0 < |z—a| < r. (It may

happen that f(a) = g(a) but this is inconsequential.)

Claim. N(f, D)\ N(g, D) =

In fact, if (z, [4),) e N(f, D) " N(g, D) then z € D, |h], = [f],, and [A),; =
[g].. It follows that fand g agree on a neighborhood of z, and this is a contra-
diction. Hence the induced topology is Hausdorff.

Inf ’f l\n an open

p'(U) = {(z,[fl):ze U}.
So if (z, [f],) € p" 1(U) and D is a disk about z on which fis defined and such

that D = U, N(f, D) < p~'(U). It follows that p must be continuous

that N(f, D) < p”(U). It follows that p must 1tinu
(Exercise 4.3). @@

. Consider what was done when we showed that the induced topology was
Hausdorff. If a # b then (a, [f],) and (b, [g],) were on different stalks
p~1(a) and p~1(b); so these distinct stalks were separated. In fact, if a € 4,

c —_ ,\-1 n_l — —_—

beBand AN B =[] then p7'(4) N (B) = (0. If a = b then (aq, | f],)
and (a, [g],) lie on the same stalk 'l(a) Since [f], ;’ [g], we were able to
divide the stalk. That is, one germ was “higher up” on the stalk than the

other.

In the remainder of this section some of the properties of #(G) as a
topological space are investigated. In particular, it will be of interest to
characterize the components of &(G). However, we must first digress to

study some additional topological concepts.

o4 _ __ 4+ L PO space 1€ .- P

5.5 Definition. Let (X, 7) be a topological space. If xy and x, € X then an
arc (or path) in X from x, to x, is a continuous function y: [0 1] - X such
that 4(0) = x, and ¢(1) = x,. The point x, is called the initial point of y and
called the final point or terminal point. The trace of y is the set {y} =

=
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points x, and x, in A there is a path from x, to x, whose trace lies in 4. The
topological space (X, 7)) is called locally arcwise or pathwise connected if
for each point x in X and each open set U which contains x there is an open

arcwise connected set V such that xe Vand V < U.
TAer an~rh + 130+ V 1a¢ A7 o tha A~Allantinm ~F all Asmnm aenaoa ~eamantad
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subsets of X which contain x. Then X is locally arcwise connected iff
{AN.: xe X} is a neighborhood system which induces the original topology
on X. (Verify!)

The proof of the following proposition is left to the reader.

g

~—’
o~
N

A is an arcwise connected subset of X then A is connected.
(b) If X is locally arcwise connected then each component of X is an open

1
X={t+isin; : t>0}u{sz‘: -l <s<l1}

Since X is the closure of a connected set it is itself connected. However,
there is no arc from the point 1/= to i which lies in X. X is also an exampl
a topological space which is connected but not locally arcwise connected.

Suppose X is connected and locally arcwise connected; does it follow
that X is arcwise connected? The answer is yes. In fact, this is an abstract
version of a theorem which was proved about open connected subsets of the
plane. Since disks in the plane are connected, it follows that open subsets of
C are locally arcwise connected. Recall that in Theorem II. 2.3 it was proved
that for an open connected subset G of the plane, any two points in G can
be joined by a polygon which lies in G. Hence, a partial generalization of this
(the concept of a polygon in an abstract metric space is meaningless) is the
following proposition whose proof is virtually identical to the proof of II. 2.3.

e

5.7 Proposition. If X is locally arcwise connected then an open connected
subset of X is arcwise connected.

We now return to the sheaf of germs of analytic functions on an open
set G.

5.8 Prg
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a
connected subset of G such that there is an analytic function f defined o
Then N(f, U) is arcwise connected in S(G).

Proof. Let (a, [f]) and (b, [f],) be two generic points in N(f, U); then
a, b e U. Since U is a region there is a path y: [0, 1] - U from a to b. Define
o: [0, 11— N(f, U) by

L4\ __ f [\
o) = W),
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Clearly o(0) = (a, [f],) and o(1) = (b, [f],); if it can be shown that o is

continuous then o is the desired arc.
Fix ¢ in [0, 1] and let N(g, V) be a neighborhood of o(¢). Then () e V

and [f],) = [g],)- So there is a number r > 0 such that B(y(¢t);r) <« UNV

and f(z) = g(z) for |z—y(t)| < r. Also, since y is continuous there is a
8 > 0 such that |y(s)—y(f)] < r whenever |s—¢| < 5. Combining these last
two facts gives that

(t—=38, t+8) < o Y(N(g, V)).
It follows from Exercise 4.3 that o is continuous. [}

cally arcwise ¢ cted and the components of £(G)

Proof. The first part of this corollary is a direct consequence of the preceding
proposition. The second half follows from Proposition 5.6(b) and Pro-
position 5.7. |}

In light of this last corollary, it is possible to gain insight into the nature
of the components of &(G) by studying the curves in F(G).
5.10 Theorem. There is a path in L(G) from (a, [f],) to (b, [g],) iff there is a
path y in G from a to b such that [g], is the analytic continuation of [ f], along y.
Proof. Suppose that o: [0, 1] - £(G) is a path with ¢(0) = (q, [f],), o(1) =
(b, [g],). Then y = poo is a path in G from a to b. Since o(¢t) € L(G) for
each ¢, there is a germ [f}],,, such that

o(t) = (r(1), [fidyop)-

We claim that {[f],,: 0 <t < 1} is the required continuation of [f],
along y. Since [f], = [f,), and [g], = [ fl],,, it is only necessary to show that
n

{{fd,»} is a continuation. For each ¢ let D, be a disk about z = () such
that D — (7 and f ic dafnad an N Fivy £1in rn 11 cince NNOF D)) ic a neich-
tiian U[ J auu_/' 10 Uwilllvil Vil Ut L 1IN L 111 LU, 1], D11V 1Y \J t Ut} 10 & 11\11511
borhood of o(¢) and o is continuous, there is a § > 0 such that
-1
(=3, t+08) < " (N(f,, D)
That is, if [s—¢| < &8 then ((s), [f)..s) = a(s) € N(f,, D,). But, by definition
5 i i WA R WEI b3V M/ \J 15 1% 5 =J
thic ogiveqe that ~ LN D and T £1 — £1 and thic ie nrecicely the ~an.
L1110 slVUD tiiac )’\O} “ Ut aii\g leJ-y(s) lJ tjy(s)’ aliuld L1110 10 lJlU\-/lDUlJ Lillv VU111
dition needed to insure that {(f,, D,): 0 < ¢ < 1} is a continuation along y

(Definition 2.2).
Now suppose that y is a curve in G from a to b and {[f]],,: 0 <t < 1}

is a continuation along y such that [fo]a = [f], and [f,], = [g],- Define o:
N 11 s @P>N\ hy (1 — () TF] it 1 claimed that 4 1Q a nath fram

[0, 1] - &(G) by o(t) = (v(?), l.lt.ly(t)}s ML IS LIATTEE Hdb ¢ 15 4 pathi 1Tom
(a, [f],) to (b, [g],). Since the initial and final points of o are the correct ones
it is only necessary to show that o is continuous. Because the details of this
argument consist in retracing the steps of the first half of this proof, their
execution is left to the reader. ||}

5.11 Theorem. Let € < £(G) and let (a, [f],) € € ; then € is a component of
F(G) iff
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Proof. Suppose € is a component of F(G); by Corollary 5.9 € is an open
arcwise connected subset of #(G). So by the preceding theorem, for each
point (b, [g],) in €, [g], is the continuation of [f], along some curve in G.

Conversely, if [g], is the continuation of [f], along some curve in G then
o1} halanoe tao the comnanent of () which containe (o [ £1)- that
\U, ls]b} UUIUIIBD LU Lilv \/Ullll.lUll\tllI. Vi o/ \U} YYiilwvil wUlilailliio \u, LJ Ja}, LtiiQat

is, (b, [gl,) € €
Now suppose that % consists of all points (b, [g],) such that [g], is a
continuation of [f],. Then % is arcwise connected and hence is connected.

If €, is the component of #(G) containing % then by the first half of this
nranf 1t fallawe that @ — @ [ |
PIUVUL 1L 1UHU WO Lilat © Ui1. m0

Notice that the point (a, [ f],) in the statement of the preceding theorem
has a transitory role; any point in the component will do.
Fix a function element (f, D) and recall that the complete analytic

are analutic cantinnatinng nf I 1 far anv a2 1in D (ces NMaofinitinn 7\ T ot
QAlVv AQlialytllv vuililiiiuatltiviio vl lJ Ja 1Vl Qall «“ 111 KX/ \D\t\d PELAIIOIINNAVIVY L.l} j W3 9
5.12 G = {z:thereisa germ]/[gl in.% }

[§ o Lo iz J s

it follows that G is open. In fact, if z € G then there is a germ [g], in & and a
disk B about z on which g is defined. Clearly B < G so that G is open.
It follows from Theorem 5.11 that

591‘3 *@ {( 5 [g]zr) [g]z e"o/‘:}

is a component of #(C) and that p(#) = G. (It is also true that Z < S(G).)

5.14 Definition. Let % be a complete analytic function. If Z is the set
defined in (5 13) and p is the projection map of the sheaf #(C) then the
Fapiy

A'r 1g7)/] +hia ~fF di L

(7
.12) is called the base space of F.
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5.15 Theorem. Let F be a complete analytic function with base space G and

let (2, p) be its Riemann Surface. Then p: # — G is an open continuous map.

Iso, if (a, [f],) is a point in R then there is a neighborhood N(f, D\ of (a,[f],)
7
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Proof. Consider # as a component of #(C). Since p: £(C) — C is con-

tinuous it follows that p: #Z — G is continuous. To show that p is open it is

sufficient to show that p(N(f, U)) is open for each (f, U) (Exercise 4.4). But

p(N(f, U)) = U which is open.

If (a, [f],)eZ let D be an open disk such that
1S an

o
£
=8N
o
=

w,
<
a
w

P o
(b, [f],) and (c, [f],) are distinct points of N(f, D) then b #
that p is one-one. |}

l(emarics in l[b b[dn(ldra usage
function consists not only of wha

| Q,.
oQ
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Exercises

I. Define F: #(C) — C by F(z, [f],) = f(z) and show that F is continuous.
2. Let # be the complete analytic function obtained from the principal
branch of the logarithm and let G = C— {0}. If D is an open subset of G
and f: D — C is a branch of the logarithm show that [f], € &% for all a in D.
Conversely, if (f, D) is a function element such that [f], € & for some aq in
D, show that f/: D — C is a branch of the logarithm. (Hint: Use Exercise 2.8.)
3. Let G = C— {0}, let &# be the complete analytic function obtained from
the principal branch of the logarithm, and let (%, p) be the Riemann surface
of & (so that G is the base of #). Show that # is homeomorphic to the graph
I' = {(z, e*): z € G} considered as a subset of Cx C. (Use the map h: #Z — T
defined by A(z, [f],) = (f(z), z) and use Exercise 2.) State and prove an
analogous result for branches of z!/",

4. Consider the sheaf S(C), let B = {z: |z—
branch of the logarithm defined on B. and |

IvAL Vi ovhiv av s aanazs LiliWwNe i1 Asg QRikNG Pt i 1 & kAL A/

(@) Let D = {z: |z| < 1} and show that (3, [£],) and (%, [£}],) belong to the
same component of p~!(D). (b) Find two disjoint open subsets of &(C)
each of which contains one of the points (3, [£],) and (4, [£],).

1| < 1}, let £ be the principal
v/(z\ —_ /(7\_1_7 lfor al] >1in R

§6. Analytic Manifolds

In this section a structure will be defined on a topological space which,
when it exists, enables us to define an analytic function on the space. Before
making the necessary definitions it is instructive to consider a previously
encountered example of such a structure. The extended plane C, can be
endowed with an analytic structure in a neighborhood of each of its points.
If ae C, and a # oo then a finite neighborhood U of a is an open subset of
the plane. If ¢: U — C is the identity map, ¢(z) = z, then ¢ gives a ‘“‘co-
ordinatization” of the neighborhood U. (Do not become confused over the
preceding triviality. The introduction of the identity function ¢ seems an
unnecessary nuisance. After all, U is an open subset of C so we know what it

means to have a function anal\/hn on I/, Whv brine un m? The answer is that

O Lty 12 Vw (1 i vsiiwuiwvi Ciw iz VY ARy Ulidim Ups Y A Liw R0V iJ viilae

for the general definition it is necessary to consider pairs such as (U, ¢);
trivialities appear here because this is a trivial example.) If a = oo then let
= {z: |z| > 1} U {0} and define ¢,: U, - C by ¢, (z) =z~ for

z ;é 0, p (0) = 0. So ¢, is a homeomorphism of U_ onto the open disk
R(O:- 1Y Hence to eac nninf ain C anair(l] o) ic attached cuch that I/
U\V’ LI. A AWIiIlWwWwW LU WwWiAWwWil t—’vll“ s AAA Vw ““ t’“ll \Va, Y l AV LALLM WILAWNE UNAWIL VidWAN va
e e matcbhlinchamd A o oamd o e a himie o e o YT mimbm cm ~immm ciile
DD a llClgllUUl noodu Ul 4 diiu (Pa 1> a lUlllCUlllUlplllblll U Ua ULV all Upt:u Suv-

set of the plane. What happens if two of the sets U, and U, intersect? Suppose
for example that a # o0 and U,Nn U, # [J. Let G, = B0; 1) = ¢, (U,)

and let G, = ¢ (U,) (=U,). Then mml(z) — 21 for all z in G; thus

mom_1(7\—7_1f0ra“21 e (U, NU). Since 0 ¢ U, 0¢¢ (T/ NU)
Pa © P \& w2l e,
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e N

so that ¢, o qp;l lb analytic on its domain. Similarly, if both @ and b are
finite then @, o ¢, ! is analytic on its domain. This is the crucial property.

6.1 Definition. Let X be a topological space; a coordinate patch on X is a
pair (U, ¢) where U is an open subset of X and ¢ is a homeomorphism of U
onto an open subset of the plane. If a € U then the coordinate patch (U, ¢)
is said to contain a.

on. An analytzc mamfold isa pa1r (X <I)) where Xisa Hausdorff

~vrdinmata mn

and (11) if ( a,(pa), (U,, p,) €E® with U, N U, #[] then @, o, ' is an analytlc
function of ¢, (U, nU,) onto ¢, (U, N U,). The set ® of coordinate patches
is called an analytic structure on X.

An analytic manifold is also called an analytic surface.

Note immediately that ¢, ¢, ' is one-one since both ¢, and ¢, are.
Henceforward, for the sake of brevity, care will not be taken in mentioning
the appropriate domain of a function such as ¢, o ¢, *

Next, it must be emphasized that the definition of an analytic manifold
is tied to its analytic structure. It is possible to give the open disk two in-
compatible analytic structures (one of them the natural one). This is also the
case with the torus which can be made into an analytic manifold in an un-
countable number of incompatible ways. (Exercise 4.) But this investigation
must be postponed until we have the notion of an isomorphism between
analytic surfaces.

With the collection of coordinate patches introduced prior to Definition
6.1, C becomes an analytic manifold. However a closed disk is not a mani’-
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mamfold.
A number of examples of analytic surfaces will be available after sub-

stantiating the following observations which are gathered into a proposition.

a4 7

6.3 Proposition. (a) Suppose (X, ®) is an analytic surface and V is an open
connected subset of X. If

thon (I D )\ ic an analotier curfaro (A TF (Y D) ic an analvtier crurfars and
Lrecre \V ,YV} D Wi uluu_ytu, JuIJ“LC- \UI IJ \A,Y} O urt u’lul]‘lt JWIJ“LC LUrilse wuu
is a topological space such that there is a homeomorphism h of X onto §2, then
with
|
¥={(h(U),9on""):(U,9) € @},
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Analytic Manifolds
Proof. (a) This is a triviality

A 2223 A (8 vaavalliavye

(b) It is clear that 2 is connected, that ¥ is a collection of coordinate
patches for €2, and that each point of {2 is contained in at least one member
of ¥. So let (U,¢) and (V,u) € ® such that A(U)nh(V)#[]. But then
UnV#0 since h(U)nh(V)=h(UNV). So, (poh~ Do(ueh™H =
(moh_'\o(ho I‘—"POJUV ' which i 1
(Q, “I") i) an a"i l_y iC

In virtue of part (a) of the preceding proposition the following assump-
tion is made on all analytic structures ® that will be discussed:

If (U,p) € ® and V is an open subset of U then (V,¢) € ®.

manner.
Proposition 6.3 also implies that any space that 1s homeomorphic to a
region in the plane is an analytic surface. Hence a piece of paper with a
.n 2]

C n it i1s an analytic surface. Is this a shock to you? If the reader has
mxrm comn e cimbee~ A ntl e e OO et Ll 01D g senner lin Grraesescoa
CVCl SCCIl all HIToAaucuoIl O JHICICIIUaUIC H1allll OIS, 1IC Illay UC DUIPIIDCU

If X is a subset of R? then X is a differentiable 2-manifold if each point
in X is contained in a coordinate patch (U, ) such that ¢ "' :p(U)—-U <
R® has coordinate functions with continuous partial derivatives. That is, let
G=@(U) and ¢ '(s,0)=(&(s,1), n(s,t), ¢(s,t)) for all (s,f) in G. It is
required that £ n, and { be functions from G into R with continuous
partial derivatives. A folded piece of paper is not a differentiable 2-mani-
fold. In fact, if (U,q) is a patch that contains a point on the crease then
@~ ! has at least one non-differentiable coordinate function. Since analytic-
ity is a stronger notion than differentiability this seems confusing, but the
explanation is simple. If 4 is a homeomorphism of X onto the region G in
the plane then an analytic structure is imposed on X via h. In fact, by
considering X with this structure we are only considering G under a
different guise. In the definition of a differentiable 2-manifold there is no
differentiable structure “imposed” on X; the structure is restricted by
conditions that it inherits as a subset of R (where there is already a
differentiable structure).

In a similar fashion the surface of a cube in R® is an analytic surface
since it is homeomorphic to C

Suppose now that G is a region and f: G—C is an analytic function
such that f'(2)#0 for any z in G. We wish to give the graph

T'={(z,f(z):2¢G}

L\ \</J J
an analytic structure. If p: I' - G is defined by p(z, f(z)) = z then p is a
homeomorphism of I' onto G; consequently I' inherits the analytic structure
of G as in 6.3(c). But this does not use the analyticity of f, let alone the fact
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that /' doesn’t vanish. This is surely an uninteresting
rephrase the problem: put an analytic structure on I' tha
to the analytic properties of f.

le o = (a, f(a)) in I'. Since f"(a) # O there is a disk D, about a such that

nn D T
. Let

S Ler DU lO
ti connected”

6'4 Ua = {(Zaf(z)):ZEDa}
and define ¢,: U, — C by

6.5 @
for each (z, f(2)) in U,.

6.6 Proposition. Let G be a region in the plane and let f be an analytic
Sfunction on G with non-vanishing derivative. If T is the graph of f and

¢ = {(U,p):xel', U, and ¢, as in (6.4) and (6.5) }

then (I', @) is an analytic manifold.

Proof. Since I" is homeomorphic to G it must be connected. Fix « = (a, f(a))
in I'; it is left to the reader to show that ¢, is a homeomorphism of U, onto

ffn\ annnep .that R = (h f/h\\er with U NnU, #+ 1 and compute

\‘-’a, l.lv J \U/ e VY iLil Vd \Jﬂ 7 L] SA1ivd W ililpwlw
®q © @s 1. Since f: D, — C is one-one there is an analytic function g: 2 — D,,,
where Q = f(D,), such that f(g(w)) = w for all w in €. Since ¢z(Uy) =

it follows that @5 '(w) = (g(w), w); thus g, o (pB w) = ¢ (g(w), w) = o for
each o in @y(U, N Uj). In particular ¢, o g5 ! is analytic. [l

Henceforward, whenever the graph of an analytic function with non-
................

le]lblllllg UCllVdUVC lb bUllblUClCU as an dlldl)’LlL« llldllllUlU lL Wlll 8]+ dbDUUICd
that it has the analytic structure given in the preceding proposition.

6.7 Theorem. If (£, p) is the Riemann surface of a complete analytic function
and® = {(U, p): U is open in R, p is one-one on U}, then (X, ®) is an analytic
manifold.

Proof. 1t follows from Theorem 5.15 that each point of # is contained in an
open set on which p is one-one and that p is a homeomorphism there.
Furthermore, if (U, p) and (V, p)e® and UN V # [ then po (p|U)™" is
the identity map. (The notation p|U is used to denote the restriction of p to
U.) Since Z is connected it is an analytic surface. i

6.8 Definition. Let (X, ®) and (2, ¥) be analytic manifolds and let f/: X — Q
be a continuous function; let a € X and « = f(a). The function f'is analytic at
a if for any patch (A, ¢) in ¥ which contains « there is a patch (U, ¢) in @
which contains a such that:

() f(U) < A;

J N\ 7 5

G oo Foon lic analutic an of I7) — ¢
\lj gojop 15 ania:yul Oil vy \
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if 1t 1s analvtic at each nnmf of X
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The function is analvtic on

2 1i% aveiVil a2 Lelilet

The condjtion that (U, ¢) can be found such that ae U and fU) < A
is a consequence of the continuity of f (Proposition 4.9(c)). The heart of the
definition is the requirement that ¢ o fo @~ ' be an analytic function from
o(U) < C into C.

For two mv N
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analytjc surfaces there m may be manv annlyhn functiong
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function is analytic; but there may be no other analytic functions. For
example, if X = C and Q is a bounded region in the plane then Liouville’s
Theorem implies there are no non-constant analytlc functlons from X into

Q). Also, suppose that f: C — C is an analytic function; then f(C,) is com-
mant an that tha vrogtrintinn ~Ff £~ O oa a hAanndad analutin p‘lﬂl\“f\v\ ~n M
pavit dSU uiiat v 1Volliviivil vl J LU U IdD a Uuuliluvu a.ualyu» 1uUulIviivll VUl ©.
Again, Liouvilie’s Theorem says that each such f is a constant function. On

the other hand, if p is a polynomial and a € C then both p(z) and p(_*_)
z—a

are analytic functions from C_, to C,,. In fact, these are practically the only
analytic functions from C_ to C_ (Exercise 7).

If (X, @) is an analytic surface then there are many analytic functions
defined on open subsets of X. For example, if (U, ¢) e ® then ¢: U - C is
analytic. It follows (Proposition 6.10 below) that fo ¢: U — C is analytic
for any analytic function f: (U) — C.

Before proving some of the basic properties of analytic functions on
manifolds, one further example will be given. This example is stated as a
theorem and justifies the terminology ‘“‘complete analytic function™.

6.9 Theorem. Let F be a complete analytic function with Riemann Surface
(2, p). If & : R — C is defined by

F(,[f1) = £z

) = f(7\
J V4

Z
then. & is an analytic function.

Proof. Fix « = (a,[f],) in Z and let D be a disk about a on which f'is defined
and analytic. Let U be the component of p~!(D) which contams a; 80 (U, p)

is a coordinate patch. Let p~! denote the inverse of p: U — p(U). We must
chaw that T o ~— 1 e analutic an (TN c © But far » in (7))
DIV Lllal 77 © IJ d a 1a1_yuu Uil P\U} ~ . DUl 1Vl < 111 P\U Js

that is, &# o p~ ' = f which is analytic. i
The next several results are generalizations of theorems about analytic

£ AN M4 O Y VY. SRPE TR 1Y Y.
6.10 Proposition. Suppose (X, ®), (Y, V), and (Z, £) are analytic manifolds
and f: X — Y and g: Y — Z are analytic functions; then gof: X — Z is an

analytic function.
The proof is left to the reader.

6.11 Theorem.
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o
analytic functions from X into Q. If {x € X: f(x) = g(x)} has a limit point in X

then f = g.
Proof. Define the subset 4 of X by

3
£
o
o
o
o)

1e reader will be req
y hypothesis there is a point
a in X such that for every nelghborhood Uofa there is a point x in U with
x # a and f(x) = g(x). It is easy to conclude that f(a) = g(a) = «. If

(A, ¥) e ¥ and « € A then there is a Datch (U, @) in ® such that f(U) and g(U)
are contained in A with both o fop™! and iy o go ¢~ ! analytic in a disk D
about zy = ¢(«). But the hypcth*sm gives that o is a limit point of {z e D:

pofop l(2) = ¢ g°<P"1( )} = F. In fact, if f(x) = g(x) then ¢(f(x)) € F.

Yogoe (2) for all z in D; or f(x) = g(x) for all x
in U N ¢~ (D). Hence aeA and A R

6.12 Maximum Modulus Theorem. Let (X, O) be an analytic manifold and
let f: X — C be an analytic function. If there is a point a € X and a neighborhood
U of a such that |f(a)| = |f(x)| for all x in U then f is a constant function.
The proof is left to the reader.
The Maximum Modulus Theorem allows us to generalize Liouville’s

Theorem in the following way.

6.13 Liouville’s Theorem. If (X, @) is a compact analytic manifold then there
is no non-constant analytic function from X into C.

6.14 Open Mapping Theorem. Let (X, ®) and (Q, ¥') be analytic manifolds
and let f- X — Q) be a non-constant analytic function. If U is an open subset of

Nnno FT7)
Pe N thCI J\ } 0 UpciIt Ltk <4,

be an open subset of X and let x € f(U). If ae U such that
« = f(a) and (A, ¥) € ¥ which contains «, then let (V, ¢) € ® such that f(V)
< A and Yo foe~! is analytic. Let W = UN V; then W is open and so
(W) is an open subset of the plane. Since fis not a constant function it

follows from Theorem 6.11 that s o fo @~ ! is not constant. Hence, the Open

U
d

Manning Theorem for functions of a comnplex variable imnlies that J{ f(W“
uu.yy“.b T'heorem for functions of a complex variable implies that AVARL

) =1/ £T1/Y) lo Aman M Tt thnm LU _ L=10 10 LN I ~mmsn
=ofoe (¢(W)) is open C. But then fiW) = ¢~ " {(f(W)) is open

and « € f(W) < f(U). Sof(U) must be open. i

6.15 Definition. If (X, ®) and (2, ¥) are analytic manifolds, an isomorphism
of X onto Q is an analytic function f: X — € which is one-one and onto. If
an isomorphism exists then (X, @) is said to be isomorphic to (2, ).

If £+ X — Q is an isomorphism then f is an open mannmg by (6.14). It

follows that f~1: Q> Xis a homeomorphlsm. Is £~ ! also analytlc? The
answer is yes and the reader is asked to prove the next proposition.

_________ V e N isom 4l £=1.. 0O vV s,
U.].U rrupumuuu. l_/j —> X2 LY drt yorri r[}”lb”l nert L2l A YA

zsomorphzsm.

| PP
YO drt
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g S

connected region in the plane and G # C, then G is isomorphic to the open
unit disk if both are considered as analytic surfaces. Also recall that Proposi-
tion 6.3(c) states that if (X, @) is an analytic manifold and A: X - Q is a
homeomomhmm of X onto the topological space 2, then / i

has an analyti tu S a h
that is, iff 4 is an isomorphism from (X, ®) onto (X, ¥).
As an example let X = Cand Q = {z: |z|] < 1}, and define h: X — Q by
_ 7z _

14]z]°

(»\ —
MZ)

Then A is a homeomorphism of C onto €2, but it is clearly not analytic.
So using A and the analytic structure on C, a structure can be induced on Q
which is completely unrelated to its natural structure. For example, with this
induced structure 2 will have no bounded non-constant analytic functions.

Consider the following situation: let G be a region in the plane and let
[+ G — C be an analytic function with non-vanishing derivative. Let (g, D)
be a function element such that g(D) < G and f(g(z)) = z for all z in D.
(That is, g is a “local” inverse of f.) If & is the complete analytic function
obtained from (g, D) and (£, p) is its Riemann surface, let us examine
whether # and the graph of f are isomorphic analytic manifolds. (The
analytic structure for the graph of f was introduced in Proposition 6.6.)
The answer to this question is yes provided that the domain of f is not
restricted. To illustrate what can go wrong let G = {z: |z| < 1} and let f be
the exponential function e®. There % consists of all germs of branches of the
logarithm (Exercise 5.3); so Z is rather large and complicated. However,
{(z, €*): ze G} is a simple copy of the disk G. The difficulty arises because
the domain of ¢* has been artificially restricted. If instead G is the whole
complex plane then % and the graph of G are indeed isomorphic analytic

.................. e 228 A% A2V RARS IV PR KAial ) A

surfaces (see Exercise 5.3).

6.17 Definition. Let f: G — C be an analytic function with non-vanishing
Aarivativea I€ A 07 and ~ — ff\ lat fo0 N ha a Frinctinn nlqmnnf aninh that
Uuvillivatltivie. 11 U © U alivu &k —_/\u/, ivi \ ) U} uUv 1 UlIVLIVILIL VIVILIIVIIL SUlLll Lliial
« € D and f(g(z)) = z for all z in D. If & is the complete analytic function
obtained from (g, D) then & is called the complete analytic function of local

inverses for f.

There are two questions that arise in connection with this definition.
First, does the definition of the complete analytic function of local inverses
for f depend on the choice of the function element? Could we have started
with another local inverse and still have obtained the same complete analytic
function? Second, does # contain the germ of every local inverse of f? The
answer to each of these questions is given in the following proposition; it

6.18 Proposition. Let f be an analytic function with non-vanishing derivative
onarecion G Tot aamdhcl; ~ — (A R — (hY- and lot A and A ho Adicke
sbvu J AL U KB U ~ U, KA J \u}, H J \U}’ witu eyl ‘—lo wuite ul U ®ivivo
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irnér L_/uiC tions go- AO —C
and g,: A — C with go(x) = a, g,(B) = (g ( ) =& for all § in A,,
f(g,(0) = Cfor all { in A,. Then there is a path o in f(G) from « to B such

that (g,, A,) is the continuation of (g,, Ay) along o.

TD

k.

Proof. Since G is connected there is a path y in G from a to b. For 0 <
let D, be a disk abou ,( ) such that D < G and on whi

19 .l/t Uw a Yy
o = foy and let A, be a disk about o(¢) such that A, < f(D,). Fmally, let
g,: A, — C be an analytlc function such that

f(g()) = Lfor Lin A,

olal(t)) —
S\¥\*))

= IA

('D ~.

nn r\n o
i Vil N~

-

NIOIN AUV II. \ Uwix Lllul. LI — U AAlla Vi I

Claim. {(g,, A,)} is an analytic continuation along o. To show this fix ¢ and
let 8 be chosen so that y(s) e f~'(A,) N D, whenever |s—t| < 8. Now fix s

with [s—!,' < & and let B be a disk about y(s) such that B < f~1(A)) N D,
~ N LI 2a nm ~impim cot mrmototmcime AN _ L£L AN amd LD\ — £
Y ,. DU_/\D} 1d dll OpPLCIl dCLl LUlldlllllg gv) = J\YW)) allld j D) ~ Jj\U,;)
By definition g(f(z)) = z for z in B; thus f(g,({)) = { for all { in f(B). But

z
f(B) < A, which gives that f(g,({)) = { for all { in f(B). But for { in f(B)

)
both gs(C) and g,(¢) are in f~1(A)) " D, N D, and f is one-one here. Hence

g ({) = a()’\f‘nr NZin f(R):
J Qi H I 2y

1 = [a] whenever le—¢t < &
AAJ \ J wi I

o.(s) — l6thr(s) VViliwilwy cl N~ Ve

CF"Cn

Ss\>
L o
1

}
w
1 [ ] 3

S ciaiim

Recall that if (#, p) is the Riemann surface of a complete analytic func-

tion %, the symbol # is also used to denote the analytic function & :
C

R defined by #(z, [f],) = f(z) (Theorem 6.9).

6.19 Proposition. Let f be an analytic function on a region G which has a non-
nanichino devinatine lot % ho the rnmnlote analvtie functinn of Inral innercoe
CUILioriLre UCTIVULIUC, ICL v UcC i Lurinicie wridi )yl junicuivrie UJ tULuUtL trivcroco
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and Tot (B ) he
UJ _/, ana i u , P) O€

f(G) then
7(z, [g].) = (8(2), 2)

defines an isomorphism between the analytic manifold Z and graph (f).

Before proving this proposition we must show that under the same
hypothesis each member of # is a local inverse of f. This provides a partial
converse to Proposition 6.18.

6.20 Lemma. Let f, G, & and (%, p) be as in the preceding proposition.
If[gl, € F then there is a disk D about a on which g is defined and such that

Proof. Fixlol in & (50 (a [0l ) e @\' then. bv hv hpcm a(n\ Fla Tol) e

LS ig 2~ Lo la/ © )y vailil s Y 2) pPULIILOLS 0 \%y L& las

G. If b = f(g(a)) then there is a disk B about b and an analytlc function
h: B — C such that A(b) = g(a) and f(h(z)) = z for all z in B. From Propo-
sition 6.18, [4], € Z. Alsoa = p(a,[g],) € p(#) = f(G). According to Theorem
5.11 there is a path y in f(G) from a to b such that [A], is the continuation

-

along y of [g],. Let {(g,, D,)} be a ccntinl.atlon along y such that [g], = [g]
a WN\o 1 7)) . LO Vla Lo ia
and [~ 1 — I Moo a crtlhoat T AF TN 11 ke,
ailiu 1511b -_ Llljb AJVI1IIIV A DUUDLL 4 VIl lU, 1_] Uy
T = {t:f(g(2) for all zin D,}

We want to show that 7 = [0, 1]. In fact, once this is proved it follows that
0 e T so that (g, D) must be a local inverse of f.

CQinnrna T ~AAantaina N At it evanict ha ch A that 1a lanth t\ ary

JIHIVG 1 LULILAllld 1 lL lD 11 1= lll)l.y Py 1L 111UdDL UL D11V Vil Lllal 1 15 UL P Wil
and closed in [0, 1]. For any number ¢ in [0, 1] let & > O such that [g], =

[,y Whenever |s—¢| < 8. If te T then f(g(z)) = f(g(2)) = z for all z
in Dy D, and |s—t| < é. It follows that (r—38, t+8) = T and so T is open.
IfteT” then there is an s in T such that |s—¢| < 8. For z in D, " D, we

hava that ffol\\ — flo (Y — # that ¢+~ T That ic T 10 ~rlAacad | ]
11ave Liiat J \6 ‘\L}} - J \65\"}} -_— DU Lllal. { < . illat .lD, xz 10 VIUVUODW\AIL,. -
Proof of Proposition 6.19. 1t follows from the preceding lemma that (g(a), a) €

graph ( 1) if (a, [g],) € Z. Thus, = does indeed map Z into graph ( f ).
Suppose (o, f(«)) € graph (f) and a = f(«). If (g, D) is a function element
such that ae D, g(a) = «, and f(g(z)) = z for all z in D, then [g], € # and

Il

7(a, [g],) = («, f(«)). That is 7(#) = graph (f). To show that r is one-one
let (a,[g],) and (b, [h],) € £ such that :r(a [g]) = =(b, [h],); that is, (g(a), a) =

a’ \™¥> L""1D/ \*™> Loia’ \“Y>7 L .ID/ \O\™/3 =/
/L/’q\ l\\ Tlr\‘in Y — L ﬂﬂA h/n — L‘/l\\ —— - R‘I\"AI\IIA" ' r-$22%22%2] A ‘)n 1mn‘1'oo
\Il\U}, U}- 1uuo, U — U allul 6\“} _ I[\U} -— X lVlUlCUVCl, LA11llllAa V.oV llll}}llvb
that
6.21 f(g(2)) = f(h(2))
for z in a neighborhood of a. But f'(«) # 0, so that fis one-one in a neigh-
IAvrhhAa~nd AF Y _ Tt FAllAwria Fonm L 01) that T~] — ' and tharafAre - 1c
UUl1IVUU VUl § — X, 11 1UVLHIUW)D 110VU111 \U.Ll} tiiat ls]a —_ I.”Jf! allu utiiviviviv, ¢ 1o
one-one.

It remains to show that = is analytic. This is actually an easy argument
once the question to be answered is made explicit. So fix (q, [g],) in Z and

put « = g(a). Let A be a disk about « on which fis one-one and let D be a
Aicl abhAant 4 An whicrh o ic Aafinad and cnirh that N — AN T ot TT — (r
UIODA AUVUVUULl ¢4 Ull wililvil 5 1> UL1LIIUU Aallul Suwvill tiial /7 ~— J \u} p WL ) T ) l\‘;,
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f()): LA} and define ¢: U — C by ¢({, f(0) = f({); so (U, ¢) is a co-
ordinate patch on graph (f) (Proposition 6.6). Also N(f, D) = {(z, [gl.):
ze D} gives that (N(g, D), p) is a coordinate patch on # (Theorem 6.7)
containing (a, [g],), and satisfying 7(N(g, D)) < U. Hence to complete the
proof it must be shown that ¢ o 7 o p~! is an analytic function on D. This is
trivial. In fact, if z € D then

potop }(2) = @or(z,[gl)
= ¢(g(2), z)

—_— e
“

t is, @ o 7 o p~ ! is the identity function on D. H

¢ the nunctured nlane and f/v\ — 7" fn come nor if G — € and
[S] Cilw ull\/lvu Wws ylullv CLL1iIN\3 J \h [C AV S ¥4 e i 9 s \J \ g “LAilig
sa

f(z) = €” then the hypothesis of Proposition 6.19 is satisfied. Let us examine
this a little more closely for the case where f(z) = z%, ze G = C—{0}. So
2 is isomorphic to the graph of z%; let I' = {(z, z%):z # 0}. Now r: # — I

is defined by 7(a, [g]) = (g(a), a) Recall that % : # — C is defined by
Zl(a Tol) — of A\ Far thic cace % acte like the canare rant fiinction In other
[ >4 \u, LSJ } 5\“}- 4 VUl 1110 Loy s Awio 11]\\, tllv o\iuul\- 1VUUVUL 1 UulivuIvil 411 ULlivi
- ) TR o SRS | IR T DRI I TV o SIS S S o1 TN LIS
WorUb, W€ nnave 10una a nawurai a 1411l O AcHNIuoIn o1 2-. 11C Correspondaing
function on I' would project (z, z?) to its first coordinate.

Even though we have shown that # (a very abstract object) is equivalent
to a less abstract oblect (the graph I'), this is still somewhat dlssatlsfvmg
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Plane 1 Plane 2

Therefore, we would like to have a more geometric picture of the Riemann
surface. Con51der two coples of the plane that have been sht along the

1
he union of the e two *-axes are identified
and the two ~-axes are identified. So if a curve in Plane 1 approaches the
*.axis and hits it at —x then it exits in Plane 2 at —x on the *-axis. For the

point —1 on the *-axis a typical neighborhood would consist of a half
disk about —1 above the *-axis in Plane 1 and half a disk about —1 below
the *-axis in ridne 2. This 1s a representation of the Riemann surface of local

inverses for z? (the Riemann surface of \/z for short). To see this define a
map k: X — Z as follows. If z is in Plane 1, z not on the negative real axis,
let h(z) = (z, [g],) where g is the principal branch of the square root. If z
is in Plane 2 but not on the negative real axis let A(z) = (z, [g],) where —g
is the principal branch of the square root. It remains to define A(z) for z on
the *-axis and the ~-axis. This we leave to the reader along with the proof
that the resulting function 4 is an isomorphism (the space X has a natural
analytic structure).

In the case f(z) = z" we can carry out the same construction, but here
copies of the plane are required. if f(z) = e the same 1deas are again em-
ployed but now it is necessary to use an infinite number of planes indexed by
all the integers. In the case of the surface for z'/", a curve which passes
through the negative real axis of one plane exits through the negative real
axis of the next one. If it is in the n-th plane, then it exits through the negative
axis of the first plane. For the surface of log z, a curve can continue hopping
from one plane to the next and will never return to the plane where it started
unless it “retraces its steps”

Exercises

1. Show that an analytic manifold is locally compact. That is, prove that if
a € X and U is an open neighborhood of a then there is an open neighborhood
Y7 £ . .- 1 ab. a0 Y/~ - ¥y ___ 1 Y7 i e

y O@ d >SucCil tndat v — ana IS Compact
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structure if it is a manifold? (a) A cone in R>. (b) {(x,, x,, x3) € R>: xf+x§
+x3=1orx}+x5>1and x; = 0}
3. The following 1s a generalization of Proposition 6.3(b). Let (X, ®) be an
analytic manifold, let { be a topological space, and suppose there is a con-
tinuous function # of X onto { that is locally one-one (that is, if x e X
there is an open set U such that x € U and 4 is one-one on U). If (U, ¢) € ®
and A is one-one on U let A = A(U) and let ¢: A — C be defined by y(w) =
@ o (h/U)"!(w). Let ¥ be the collection of all such pairs (A, ). Prove that
(Q, ¥) is an analytic manifold and 4 is an analytic function from X to €.
4. Let T = {z: |z] = 1}x {z: |z] = 1}; then T is a torus. (This torus is
homeomorphic to the usual hollow doughnut in R*.) If w and «’ are complex
numbers such that Im (w/w") # 0 then w and w’, considered as elements of
the vector space C over R, are linearly independent. So each z in C can be
uniquely represented as z = tw+1t'w’; t, t’ in R. Define h: C — T by h(tw+
tw') = (e*™", e2™"). Show that A induces an analytic structure on T. (Use
Exercise 3.) (b) If w, w’ and {, {’ are two pairs of complex numbers such that
Im (w/w’) # 0 and Im (¢/{') # 0, define o(s{+s'L) = (e*™*, €*™*) and
r(to+t'w’) = (™, e*™"). Let G = {to+t'w’:0 <t < 1,0 <t < 1}and
= {s{+5'0":0 <5 < 1,0 < s < 1};show that both ¢ and r are one-one
on G and Q respectively. (Both G and Q are the interiors of parallelograms.)
If &, and @, are the analytic structures induced on 7 by 7 and o respectively,

and if the identity map of (7, ®,) into (7, ®,) is analytic then show that the
anphnn f F — O defined hv f — "1 T |c ana]\lhn (Tn sav fhaf the

IWwLEW L e NAWILLILIWNAE QilQiy vive ay 188e  viiw

identity map of (7, ®,) into (T, <I>a) is analytic is to say that ®, and @, are
equivalent structures.) (c) Let w = 1, 0" =i, { = 1, {’ = o« where Im « # 0;
define o, 7, G, Q and f as in part (b) Show that ®, and @, are equivalent
analytic structures if and only if « = i. (Hint: Use the Cauchy-Riemann

o

annatione ) (dA)Y Can vou ogeneraliza nart (c)? Caoniecture a oeneralization?

vﬂu“‘-lvllu. \\‘} s CAAR JV“ &vll\alullb\/ t.lul + \\./, \/VIIJUVU“AV “. evllvl CRliL.eaviNvJ 1

5 (a) Let f be a meromornhic function defined on C and suppose as two

J. (a) LCLJ OC 4 IICTOII Ip[llb Iu 101 aciinea on © ana ppch_/ I as two
’

1
independent periods w and »’. That is, f(z) = f(z +nw+n w') for all zin C
and all integers » and n’, and Im (w/w’) # 0. Usmg the notation of Exercise
4(a) show that there is an analytic function F: T — C_ such that f = Fo h.

(For an examnle n a meromor n]ﬂnn function wit vo indenandent nerindc
\j. /i “Lia \Il\ulllyl\d /A4 ALANV/ A \.llllvll.] LA Wlilwiivil YYAL1lil LYY\ lllu\ay\/lluvllb PULIU\JQ
can Fovarmica VITT A 3\ N
SCC LEACICIMC V1. 4.4(E).)

(b) Prove that there is no non-constant entire function with two indepen-

dent periods.
6. Show that a
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f# oo, let a,,...,a, be the points in C where f takes on the
Show that there are polynomials p,, py, ..., p, such that

L)

1) = po2) + zpk =

for zin C.
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(c) If f is one-one, show that either f(z) = az+b (some a, b in C) or
a .
f(z) = — + b (some a, b, cin C).
c—c

8. Furnish the details of the discussion of the surface for /z at the end of
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a discussion forfs1milar to the discussion of \/E at the end of this section.

§7. Covering spaces

In this section the concept of a covering space will be introduced and
some of its elementary properties will be deduced. One byproduct of this
study is the fact that two closed curves in the punctured plane are homotopic
iff they have the same winding number about the origin.

Intuitively, a topological space X is a covering space for the topological
space 2 if X can be wrapped around Q in such a way that it can be easily

nnwrannpd What is meant hv ‘wrapping” one space around another?

wiivviQpyy VY A1d8e X5 1xiwisisn VVilspops A vitw

This seems to indicate that we want a functlon from X onto Q. To say that
it must be easily unwrapped must mean that we can find an inverse for the
function.

7.1 Definition. If Q is a topological space then a covering space of €2 is a pair
(X, p) where X is a connected topological space and p is a continucus function
of X onto Q such that: for each w in Q there is a neighborhood A of w such
that each component of p~'(A) is open, and p maps each of these components
homeomorphically onto A. Such an open set A is called fundamental and A
is properly covered.

Both (C, exp) and (C— {0}, z") are covering spaces of the punctured
plane; also, each open disk in the punctured plane is fundamental. If I' =
{z: |z| = 1} and p: R — I is defined by p(¢) = exp (2wit), then (R, p) is a
covering space of I'. Every proper arc in I' is fundamental.

The following is a list of properties of covering spaces. Their proof is
left to the reader.

7.2 Proposition. Let (X, p) be a covering space of €.

(a) p is an open mapping of X onto (2.

(b) If x € X then there is an open neighborhood U of x on which p is a
homeomorphism.

(c) Every fundamental open set is connected.

(d) If Q is locally arcwise connected then so is X.

In light of part (b) of the preceding proposition it is natural to ask if
every locally one-one function p of X onto Q2 makes (X, p) a covering space of
Q. The answer is no. For example,let X = {ze C:z # 0,0 < argz < 5n/4},

2
p(z) = z%, and let QQ = p(X) = C— {0}; then p is locally one-one. Let A, =
(&. 1 & I VY £ nesr 32 N e T4 e ancss ~ cap 4L~ =1/A \ ~Amcic
{€: |é—i] < r}forany r, 0 < r < 1. It is easy to see that p~ '(A,) consists
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of two components. One o €
homeomorphically onto A,, while the other is not. In fact, ¢ = iis not in the
image of this second component.

One of the most 1mportant propertles of covering spaces is the fact that

20 e s amam

nd lat ., n
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v
3

X
}P
> Q

~

To say that v can be lifted is to say that the diagram can be completed in
such a way that it is a commutative diagram:

X

o«

/

~21

/ l

rd

Y

that is, one can go from one place in the diagram to another without being
nr\v\nr\v- ad alaAss ‘11"\ nath
LUILIVCL 1ica aUUUL Yyill l patiil

It is an 1mportam property of covering spaces that every path may be
lifted when the base space is locally arcwise connected. Actually a stronger

result which will be of use later can be proved.

ig talan
o U .

i o

4]

a covering space of th space

with F(0,0) = w

0
=
R

WS
[S——y
X
p—
=
—

c
such that f(U 0) =xpandpo F = F.
Before giving the proof of this theorem let us state an important corollary.

7. 5 Corollary Let (X, p) be a covering space of the space Q. If v is a path in Q

1 point wy and p(x,) = w,, then there is a unique lifting 9 of v with
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L£760j. 1IN F. [O, 1] X {0, 1} —Q by F(S, t) = ‘}'(S); so F 1s continuous a

F(0, 0) = wgy. According to Theorem 7.4 there is a unique function F

[0, 1]x[0, 1] — X such that F(0, 0) = x, and p o F = F. Let %(s) = F(s, 0);

then § has mmal point Xo and i s a hftmg of y. To prove the umqueness of 7,
X

4

pod(s) = y(s) = F(s, t). By the uniqueness part of

Thus 7(s) = F(s, 0) = K(s, 0) = 6(s). I

Proof of Theorem 7.4. Let {0 =59 <85, < ...<s,=1}and {0 =1, < ¢,
<...<t, = 1} be partitions off [0, 1] such that for 0 < i, j < n—1,

(isn t+ IJ X l[_p ]+1.|)

is contained in a fundamental open set A;; in Q. (Verify that this can be done.)
Now wg = F(0, 0) e Ayo. Let Uy, be the component p~!(A,,) which
contains x,. Since p|U,, is @ homeomorphism of U, onto A, it is possible
to define F: [0, s5,]x[0, t,] = X by

F!(S, t) = (PIIJOO)_1 ° F(S, t)'
Now extend F to [0, 5,]x[0, t,] as follows. F({s,}x[0, ¢,]) is connected
(Why?) and, since F({s;}x[0, ¢,]) < A,,, it is contained in p~}(A,,). Let
U,, be the component of p~!(A,,) which contains F({s,}x[0, #,]). Then

n|U is a homeomorphism; define

F~(Ss t) = (.p!UIO)-l ° F(S9 t)

for (s, £) in [sy, 5,]x[0, #,]. This gives a continuous function £ on [0, s,]x
[0, t,]. (The domain can be written as the union of two closed sets, on each
of these sets F is contmuous and F~ agrees on their intersection; hence Fis

h Q
o
=
:l
E
€
S
€
w
)
53
:J"

3

4

function F: [0, ‘J x [0, 1] — X such that po F = F and F(0, 0) = x,. Since
at each stage of this construction the deﬁmtlon of F is unique (because p is
a homeomorphism on each U;)), it follows that F is unique. i

The next result is called the Monodromy Theorem. To distinguish this

a Qn a na W r'—\ ch wae nhtaina M L
114V dalliv ualuc Viih vwad UULalllCu 111 S
1

€

version is referred to as the “‘abstract’ theorem. Later it wil
the original theorem can be deduced from this abstract one.

®]
(¢
w
=
Q
£
-
:—
o
£

7.6 Abstract Monodromy Theorem. Let (X, p) be a covering space of Q and
let y and o be two paths in Q with the same initial and final points. Let ¥ and
& be paths in X with the same initial points such that ¥ and & are liftings of v

and o respec tively. If y ~ o (FEP) in Q then ¥ and & have the same final
nste A S o~ ~ ICED\ 12 YV
points ana y ~ o0 \(rcrj in A

Note. Although we have not defined the concept of FEP homotopy between
two curves in an arbitrary topological space, the definition is similar to that
given for curves in a region of the plane (Definition IV. 6.11).

Dyunnf T at ... and ...
y 'UUJ L2 9 wo alilu
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Let xo€p Ywy) such that §(0) = &(0) = x,. By hypoth h
continuous function F: [0, 1]x[0, 1] — Q such that F(0, ?) = w,, F(1, ) =
wy, F(s, 0) = (s), and F(s, 1) = o(s) for all s and ¢ in [0, 1]. According to
Theorem 7.4 there is a unique continuous function F: [0, 1]x[0, 1] > X
such that F(0, 0) = x, and po F = F. Now F({0}x

a thecis there i1g a
1144 W AIEJ Lilwviw a0 @

no F = F lmnhpe that F(OY<TO0O 1D < »~ 1w ) Rut pnr\h omnonent of
r’ P Fa ‘l“yllvs’ Vil v X \ l\,} 7N LU, l‘l} r’ \w 0/. AF AL WA Wwilk V‘l‘yvllvllb NS A
- PN SR I S D nt (Exercise A\ nand DAY TA 1N 2 mmsman P |
p~!(w,) consists of a single point (Exercise 4) and F({0} x [0, 1)) is connected.
a t

Therefore F(0, t) = x, for all ¢. Similarly, there is
F(1, t) = x, for all ¢ and p(x,) = w,.

By the uniqueness of § and the fact that s — F (s, 0) is a path with initial
naint v which lifte ~, 1t muct he that J(c) — Ffe O Similarly &) — Fie 1
yu‘ll‘; J‘O VY LAANV/AAL ARA VD s AV RALVIVUV Uw LilAb ,\u} xz \U’ V} AJALLLIRAGRL l), V\u, Fs \U’ ‘j
L Cmn ~O1) ~/71\ - /1 o\ Lo 11 4 i T A a4 el
Therefore (1) = 6(1) = x; = F(1, 1) for all ¢, and F demonstrates that
7 ~6(FEP) in X. B

In order to show that the Monodromy Theorem can be deduced from
the preceding version, it is necessary to first prove a lemma. This preliminary
result is actually the Monodromy Theorem for a disk and the reader is

R ho f/is

¢ A7 UL WU W

A < B and (g, A) admzts unrestrzcted analytzc continuation in B. If vy is a closed
curve in B with y(0) = y(1) = ain A and {(g,, A,,)} is an analytic continuation

Of(g, A) along Y then [gO] = [gl]a'
The next theorem will facﬂltate the

«©
-~

7.8 Theorem. Let (f, D) be a function element which admits unrestricted
continuation in the region G, and let € be the component of the sheaf (< (G), p)
that contains (2, [f),,) for some zy in D. Then (€, p) is a covering space of G.

Proof. Let B be any disk such that B < G and let % be the component of
p~*(B) which is contained in €. The proof will be completed by showing
that p maps % homeomorphically onto B.

Fix (a, [g],) in %; then

7.9 Claim. (z, [h],) € % iff z € B and [A], is the continuation of [g], along

some curve in B.
Tn fact if(» Thl1 Yic cnich a n n}nttl en

tharae ic
ARiL AQAVLy i1 \ 4y l”] } Au Jouuwil QA \J/iii 1iwvi w

.
1 a
4 i1 Ag

\ 4 ¥ lxp—l(n\[(‘ y(B))
from (a, [g],) to (z, [A],) (Theorem 5.10). Thus (z, [h]z) must belong to the
same component of p~'(B) as does (a, [gl,); that is, (z, [4],) € %. For the
converse, let (z, [h],) € % ; since % is pathwise connected (Proposition 5.7)

there is a nath in  from
of [

— D

ce
tinuation
restricted

Tt nnlu rem
AL Viii 1w
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that if (A rlﬂ\oﬂ(}a rb]\cﬂ/fhan{l — T11 nltcn

LilAb 11 Uy |/t]p) @lra (U, Ll\rjb} - w tilwvil Iljb - Lf\ojb u lllce w 1S a

connected, this is exactly the conclusion of Lemma 7.7. |}
Let us retain the notation of the preceding theorem. Fix ¢ in D and let

and o be paths in G from a to a point z = b. Suppose tha {( fe» D)} and
g,, B,)} are continuations of (f, D

N

¢ of (f, D) along y and o respectively; so [f,], =
[80)s = [f]a Now §(2) = ((8), [/i),ry) and 6(8) = (o(9), [nt]a(t)) are paths in ¢
(see the proof of Theorem 5.10) with the same initial point (a, [f],). More-
over po§ = yand p oG = o; so y and & are the unique liftings of y and o to

%. Accordmg to the Abstract Monodromy Theorem, if y ~ o(FEP) in G
then $ and 6 have the same final point. That is, (b, [f1],) = (1) = (1) =

(b, [g,]s) so that[f;], = [g,],- This is precisely the conclusion of Theorem 3.6.

For another application of the Abstract Monodromy Theorem we wish
to prove that closed curves in the punctured plane are homotopic iff they
have the same winding number about the origin. To do this let I' = {z:
|z| = 1}; as we observed at the beginning of this section, if p(f) = exp (2=it)
then (R, p) is a covering space of I'. If v is any rectifiable curve in C— {0}
it is easy to see that y is homotopic (in C— {0}) to the curve o defined by
o(t) = y(1)/|¥(#)] (Exercise IV. 6.4). So assume that |y(¢)] = 1 for all ¢
Similarly, we can assume that y(0) =

Let § be the unique curve in R such that $(0) = 0 and y(¢) = exp 2#i§(¢)).
Since y is rectifiable it is easy to see that § is also rectifiable. Also

1 (dz
n(y, 0) =521
2mi § z
Y
1 " dy(1)
2w ) ()
0
1
_ 1 [dexp (2#if(1))
Twmi) 0
0
1
(‘
= | dj(1);
J
o
SO
7.10 n(y, 0) = ¥(1)
since $(0) = 0
So if o is also a /e with |o(?)] = 1, o(0) = 0 = o(1)

s also a clos v
and n(y; 0) = n(o, 0) =n then “( ) = n where & is the unique lifting
1x[0, 1]

— I" be defined by
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37O e mn dlas wsis

e rectifi duuuy of Y and o was Umy used to define the wmding
o about the origin. It is possible to extend the definition of
to non-rectifiable curves.

7.11 Definition. If y is any closed curve in C— {0} with ¥(0) = ¢(1) = 1,
let y(f) = y(t)/l/(¢)| and let § be the unique curve in R such that $(0) = 0
and y(t) = exp Quij(?)); the winding number of y about the origin is

n(y; 0) = §(1).

Proof. It was shown above that if n(y; 0) = n(e; 0) then y ~ o. Conversely,
if v ~ o then the Abstract Monodromy Theorem implies that the liftings §
and ¢ such that $(0) = 6(0) = 0 have the same end point. That is, n(y; 0) =
n(ce: Q). N
Yy V) -

Exercises

1. Suppose that (X, p) is a covering space of Q and (€2, =) is a covering space
of Y; prove that (X, = o p) is also a covering space of Y.

2. Let (X, p) and (Y, o) be covering spaces of  and A respectively. Define
pXo: XxY —>QxA by (pxo) (x, y) = (p(x), o(y)) and show that (X'x Y.
pxa) is a covering space of QxA.

3. Let (Q, ¥) be an analytic manifold and let (X, p) be a covering space of Q.
Show that there is an analytic structure ® on X such that p is an analytic

function from (X, @) to (Q, ¥).

b

4. Let (X, p) be a covering space of Q and let w € Q). Show that each com-
ponent of p~!(w) consists of a single point and p~!(w) has no limit points in
X.

5. Let Q be a pathwise connected space and let (X, p) be a covering space of
Q. If w, and w, are points in Q, show that p~!(w,) and p~!(w,) have the same
cardinality. (Hint: Let y be a path in Q from «, to wz; if x; € p”Yw,) and
7 is the lifting of y with initial point x; = §(0), let f(x,) = §(1). Show that
fis a one-one map of p~ !(w;) onto p~ H(w,).)

6. In this exercise all spaces are regions in the plane.

7

=
)
o
Y
!
(=s
|
(@]
(@]
@)
=
(ang

z, and consider a certai
f o y; apply the Monodromy Theorem.)
b) Suppose that (G,, f;) and (G,, f,) are coverings of the region Q such

both f1 and fz are analytlc Show that if G, is simply connected then
such ‘h“ f' f\ 1S a covering of

u VvvaAA vA

-~

¢
»
&
,
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f

G, - > G,
\ /
\ /

|
Q’

(c) Let (G4, f1), (G,, f3) and Q be as in part (b) and, in addition, assume
that both G, and G, are simply connected. Show that there is a one-one
analytic function mapping G, onto G,.

7. Let G and Q be regions in the plane and suppose that f: G — Q is an
analytic function such that (G, f) is a covering space of 2. Show that for every
region , contained in Q which is simply connected there is an analytic
function g: Q, — G such that f(g,(w)) = w for all w in Q,.

8. What is a simply connected covering space of the figure eight?

9. Give two nonhomeomorphic covering spaces of the figure eight that are
not simply connected.

10. Prove that the closed curve in Exercise IV.6.8 is not homotopic to zero
in the doubly punctured plane.



Chapter X

Harmonic Functions

In this chapter harmonic functions will be studied and the Dirichlet
Problem will be solved. The Dirichlet Problem consists in determining all
regions G such that for any continuous function f: G — R there is a con-

tinuous function u: G™—R such that u(z) = f(z) for z in oG and u is
hrxrmr\n;r\ in Y Altornatoly wo ara aclkad tAa AdAatarmina all reacinne > Q11

QL1 111V111w 111 \J., [1x1ilvlllAlivi ’ YwWuw alwv aox\uu LU Nl lialllLlv Gl Lvex\.u.xo AV JuUuwil
that Laplace’s Equation is solvable with arbitrary boundary values.

§1. Basic properties of harmonic functions

We begin b recallmg the following definition and giving some examples

<

1.1 Definition. If G is an open subset of C then a function u:G—R is

harmonic if u has continuous second partial derivatives and
P*u  u
ox? + oy*

n is called LAPLACE’S EQUATION.

We also review the following facts about harmonic functions.

(1) (Theorem I11.2.29) A function f on a region G is analytic iff Re f = u
and Im f = v are harmonic functions which satisfy the Cauchy-Riemann
equations.

(2) (Theorem VIIL.2.2(j)) A region G is simply connected iff for each
harmonic function # on G there is a harmonic function » on G such that
f = u+ivis analytic on G.

= 0.

Dn
Ul
1 G’
(L
<
. &)
C

1.2 Definition. If /: G — C is an analytic functionthenu = Re fand v = Im f
are called harmomc conjugates.
terminology, Theorem VIIL.2.2(;

minology, m VI
harmonic function on a simply connected region has a harmonic
conjugate. If u i1s a harmonic function on G and D is a disk that is
contained in G then there is a harmonic function v on D such that u + iv is
analytic on D. In other words, each harmonic function has a harmonic
conjugate locally Finally note that if v, and v, are both harmonic
COi‘lj‘ugaLt‘:S of u then l(vl —02)—\u+lvl)—(u-rlv ) Is an ana y tic function
whose range is contained in the imaginary axis; hence v, = v, + ¢, for some

constant c.
1.3 Proposition. If u: G — C is harmonic then u is infinitely differentiable.

Proof. Fix z, = xq+iy, in G and let & be chosen such that B(z,;0) < G.

252



Basic properties of harmonic functions 253
Then u has a harmonic conjugate v on B(z,;8). That is, f = u+iv is analytic

IR0 QG 1iQRr1IAVILI WU v AL AT v A3y g

and hence infinitely dlﬁ“erentlable on B(ZO,S). It now follows that u is
infinitely differentiable. [l

The preceding proposition gives a property that harmonic functions share
with analytic functions. The next result is the analogue of the Cauchy
Integral Formula.
1.4 Mean Value Theorem. Let u: G — R be a harmonic function and let B(a; r)
be a closed disk contained in G. If y is the circle |z—a| = r then

2n

u(a) = u(a+re'®) db

NI
3

;
|
;

Proof. Let D be a disk such that B(a;r) = D < G and let f be an analytic
function on D such that u = Re f. It is easy to deduce from Cauchy’s Integral
Formula that

2n

L[
~—Jj +re'")dU
0

Ja) = o
By takmg the re lp rt ofeach side of this quatlon omplete the roof. Il
h it.

~ .. &Y MM L _ . .l _

4 2~ ™0 — il .Y m l
1. uenn on. [\ LOHUHUUUD IU 1CLIoN U . U — K Nas ll'lC IVI(:'CZH l roperly
(MVP) 1f henever B(a;r) < G

2n

1 [u(a+ re'®) do.
J

u(a) = -
27
In the following section it will be shown that any continuous function
defined on a region that has the MVP must be a harmonic function. One
of the main tools used in showing this is the following analogue of the
Maximum Modulus Theorem for harmonic functions.

1.6 Maximum Principle (First Version). Let G be a region and suppose that
u is a continuous real valued function on G with the MVP. If there is a point
a in G such that u(a) = u(z) for all z in G then u is a constant function.

Proof. Let the set A be defined by

= {zeG:u(z) = u(a)}.
Since u is continuous the set A is closed in G. If z, € A let r be chosen such
that B(z,;r) < G. Suppose there is a point b in B(z,;r) such that u(b) # u(a);

then, u(b) < u(a). By continuity, u(z) < u(a) = u(z,) for all z in a neighbor-
hood of b. In particular, if p = |z,—b| and b = z5+pe’, 0 < B < 27 then
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~ e

there is a proper inte

for all 6 in 1. Hence, by the MVP

1
u(zo) = e [“(20+Pelo) di < u(z,),

OQ_

a contradiction. So B(zq;r) < A and A is also open. By the connectedness
of G, A =G. R

1.7 Maximum Principle (Second Version). Let G be a region and let u and
v be two continuous real valued functions on G that have the MVP. If for
each point a in the extended boundary 0. G,

limsupu(z) < llmmfu(z)

Z2—a

then either u(z)<v(z) for all z in G or u=vo.

Proof. Fix ain ¢,G and for each 8 > Olet G; = G N B(a;8). Then according
to the hypothesis,

0 > lim [sup{u(z):z e G5} —inf{v(z): z € G;}]

6—0

= lim [sup{u(z):z e G5} +sup{—v(z):z € G;}]
50
> lim sup {u(z)—v(z):z € G4}.
5-0
So lim sup [u(z) —v(z)] < O for each a in 9,G. So it is sufficient to prove the

z—a

theorem under the assumption that v(z) = O for all z in G. That is, assume

1.8 lim sup u(z) < 0

for all @ in dG and show that either u(z)<O0 for all z in G or u=0. By
virtue of the first version of the Maximum Principle, 1t suffices to show
that u(z) <0 for all z in G.

Suppose that u satisfies (1.8) and there is a point b in G with u(b)>0.
Let €>0 be chosen so that u(b)>e¢ and let B={ze G u( )_>_ 3. If
4 VORVS M /| oy .. 10 a1 M N Q7 N\ AA,A ~1 Py
ace OooU uien ( b) lmpues merc1Isa o=o4a) SUCD tnat (Z)Q( rall zin

a. That is, there is a § >0 such that if ze€ G and
1 u(z)<e. Thus.

= il J

Bc {zeG:d(z, 0,G) > 6}.
This gives that B is bounded in the plane; since B is clearly closed, it is
compact So if B # [, there is a point z, in B such that u(z,) > u(z) for all z

B. Since u(z) < e for z in G— B, this gives that ¥ assumes a maximum
u must be constant. But this constant must be

l‘l Sv Uw wihrriadvisiaite ASs vl viii) wwaaJdwiRidir d2iweOL U
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The following corollary is a useful special case of the Maximum Principle.

a4 aa% 20022 % o S o L2

1.9 Corollary. Let G be a bounded region and suppose that w:G ~—>R is a
continuous function that satisfies the MVP on G. If w(z)=0 for all z in G
then w(z)=0 for all z in G.

Proof. First take w = v and v = 0 in Theorem 1.7. So w(z) < Ofor all z or
w(z) = 0. Now take w = v and u = 0 in (1.7); so either w(z) > O for all z or

(
w(z) = 0. Since both of these hold, w = 0. i
Even though Theorem 1.7 is called the Maximum Principle, it is also a
Minimum Principle. For the sake of completeness, a Minimum Principle

corresponding to Theorem 1.6 is stated below. It can be proved either by
appealing to (1.7) or by considering the function —u and appealing to (1.6).

1.10 Minimum Principle. Let G be a region and suppose that u is a continuous
real valued function on G with the MVP. If there is a point a in G such that
u(@) < w(z) for all z in G then u is a constant function.

Ja)

o . . ou ou
1. Show that if # is harmonic then so are u, = P and u, = P
X Y

2. If u is harmonic, show that f = u,—iu, is analytic.

n
3. Let p(x, ) = Y a,x*y' forall x, y in R.
k,1=0

Show that p is harmonic iff:

@) k(k—Day - +I(—-Day-,,, =0for2 <k, < n;
(b) a,-y,1=a,=0for2 <1 <n;
©) Gpn-1 =@n=0for2 <k =<n

4. Prove that a harmonic function is an open map. (Hint: Use the fact that
the connected subsets of R are intervals.)
5. If fis analytic on G and f(z) # O for any z show that u = log|f|is harmonic

on G.
6. Let u be harmonic in G and suppose B(a;R) < G. Show that

1 rr
u(@) = — JI JI u(x, y) dx dy
B(a;R)
7. For |z| < 1 let
2
L\1-z/ |

Show that # is harmonic and lim u(re'®) = 0 for all 6. Does this violate
r—1-—

Theorem 1.7? Why?
8. Let u:G — R be a function with continuous second partial derivatives
and define U(r, ) = u(r cos 6, r sin 0).

(a) Show that
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ox* oyt or? or  26*
0 ( aU) *U
=r\"> + 202
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W\ T at 2: lhava tha me~navtr that 1¢ Aanande anlu An lol amd nAt ars » That
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is, u(z) = ¢(|z]). Show that u is harmonic iff u(z) = a log |z|+b for some

constants a and b.

9. Let u:G — R be harmonic and let A = {z € G:u,(z) = uy (z) = 0}; that
is, A is the set of zeros of the gradient of u. Can A have a limit point in G?
10. State and prove a Schwarz Reflection Principle for harmonic functions.
11. Deduce the Maximum Principle for analytic functions from Theorem
1.6.

§2. Harmonic functions on a disk

Before studying harmonic functions in the large it is necessary to study
them locally. That is, we must study these functions on disks. The plan is to
study, harmonic functipns on the open unit disk {z:|z] < 1} and then inter-
pret the results for arbitrary disks. Of basic importance is the Poisson kernel.

2.1 Definition. The function

forO0 <r<1land —o0 < 6 < oo, is called the Poisson kernel.
Let z = re'®, 0 < r < 1; then

1 r i6
e Utn(+z42+ .. )
l_rezo \ N\ J
el
=1+2) "
n=1
w 3
= 142 rein?
n=1

Hence,

[a—

| ol
T ) 142

(/ .n\\ _
\1-re’’) n

= 14 Z rn(ein0+e—in0)

n=1

e »? ~ne nfl
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Also 1+re'®  1+re®—re”"*—r? so that
1—re* |1 —re'|?
1-r? 1 +re*f
2.2 P(6) = = R .
{©) 1—2r cos +r? e(l—re"’)

n

(ﬂifﬂ@ﬁ=h

(b) P(6) > O for ail 8, P(—6) = P,6), and P, is periodic in 6 with period
2m;
(c) P(O) < P(d)if0<d<|f <
(d) for each 8 > 0, lim P,(6) = O uniformly in 8 form = |6 = 8.
r—+1-
Proof. (a) For a fixed value of r, 0 < r < 1, the series (2.1) converges
uniformly in 6. So

1 w 1 (
_— - I"I—— in® =
o J- P,(6) db Fz_wr 217] e do = 1

(b) From equation (2.2), P.(0) = (1—-r?)|1—re'®|"% > 0 since r < 1.
The rest of (b) is an equally trivial consequence of (2.2).
(c) Let 0 < é < 0 < = and define f:[5, 6] - R by f(¢) = P.t). Using
(2.2), a routine calculation shows that f'(f) < 0 so that f(8) > f(6).
(d) We must show that
lim [sup{P,(0):8 < || <=}] =0
r=1-
But according to part (c), P,(f) < P,(d) if 5 < |f] < =; so it suffices to show
that lim P,(8) = 0. But, again, this is a trivial consequence of equation (2.2).]1

r—+1-

Before going to the applications of the Poisson kernel, the reader should
take time to consider the significance of Proposition 2.3. Think of P,(f) not
as a function of r and 8 but as a family of functions of 6, indexed by r. As r

approaches 1 these functions converge to zero uniform u_ly on any closed
Thictaneal shich does not contain 0 —= 0 (art &Y Never thalace
subinterval of |_—7r, 71'] which does not contain § = 0 {part Gj. INevertneiess,

part (a) is still valid. So as r approaches 1, the graph of P, becomes closer to
the 6 axis for 8 away from zero but rises sharply near zero so that 2.3(a) is
maintained

2.4 Theorem. Let D = {z:|z| < 1} and suppose that f:0D — R is a continuous
function. Then there is a continuous function u:D~— R such that
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Moreover u is unique and is defined by the formula
n
;] it
2.5 u(re'®) = P.(0—1)f(e") dt
-
L N —~ 8w - 1 N ~ A -~ DV __
Joru = r < i1,U< b < oam.

Proof. Define u:D — R by letting u(re'®) be as in (2.5) if 0 < r < 1 and
letting u(e'®) = f(e'?). Clearly u satisfies part (a); it remains to show that u
is continuous on D~ and harmonic in D.

(i) uis harmonicin D. If0 < r < 1 then

) 1 F1+re:(0—t)1
ure®) = o | Re| —— 5=, J f(e™) dt
-n
k(4
o (U [14re 7]
= Re 12—".! f(e*?) | roi(0-0 |atr

e —re

1 : [ et +re'
=Re{2—J‘f(e“) ITERRT dty.

2 —Z
-
. .
Qinra 17 — Ra o wa nnoA nnlv chaw that o ic analutic Rut thic i1 an eacvy
OINCC ¥ = K€ g WC NECaG Ooniy Snow tnat g 1S ana:ryuc. out s 1§ an €as
ol o xXr

consequence of Exercise 1V.2.2.

(i1) u is continuous on D~ . Since u is harmonic on D it only remains to
show that u is continuous at each point of the boundary of D. To accomplish
this we make the following

2.6 Claim. Given o in [—m, ml and € > O thereisa p, 0 < p < 1, and an arc
A f 5D ahat 2% ere that tnr A < » 1 and olo in A4
/1 O1 UL/ allul € Sulil tiidu 1U1 1 anu € i A4,

|u(re’®) —fle™)| < «

Once claim 2.6 is proved the continuity of u at e™ is immediate since fis a
nction

continuous function

To avoid certain notational difficulties, the claim will only be proved for
« = 0. (The general case can be obtained from this one by an argument
Wthh involves a rotation of the variables.) Since f is co ntmuous at z =1

there is a 6 > 0 such that

s Mo
o |
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:FIQI/S Tat Al — m i

I (0] < 0. L&l M = max {}J (3 ){:}9} < ‘T}; from PerOSitiGn 2.3 (d) there
is a number p, 0 < p < 1, such that
2.8 P(6) < +
. < —
r 3IM

1 T l

for p < r < 1and |f] = 35. Let 4 be the arc {¢:|6] < 18}. Then if e® € 4
and p < r < 1,

n

. 1 .
u(re®)—f(1) = 7 J P,(6—-1)f(e") dt—f(1)

-

1 [ it it
= 27rJ P(6—0)f(e")—f(D)]dr+ ,_2;_] P(6-0)[f(e")—f(D)]dL.

| < lt] =8

If |f| > 8 and |8] < 33 then |[t—6| > 1§; so from (2.7) and (2.8) it follows that

P / \
u(re) —f(D)] < ; e+2M () = e
3 \3M)

This proves Claim 2.6.

Finally, to show that u is unique, suppose that v is a continuous function
on D~ which is harmonic on D and v(e’®) = f(e'?) for all 6. Then u—v is
harmonic in D and \u—u; \4} = 0 for all z in oD. It follows from Curollary

1.9 that u—v = 0.1

2.9 Corollary. If u: D ~—R is a continuous function that is harmonic in D
then

u(re'®y =

i

¢
J P(0—1t)u(e™) dt

for0 < r < 1 and all 6. Moreover, u is the real part of the analytic function

it ), -
T <

3]

1
- u(e™) d.
2

(\
N

n
.
I
J
-n

Proof. The first part of the corollary is a direct consequence of the theorem.
The second part follows from the fact that fis an analytic function (Exercise
IV.2.2) and formula (2.2). |}

2.10 Corollary. Let ac C, p > 0, and suppose h is a continuous real valued
function on {z:|z—a| = p}; then there is a unique continuous function
w:B(a; p) — R such that w is harmonic on B(a; p) and w(z) = h(z) for |z—a|

viiwaa
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o z—ay. : :
it is an easy matter to show that w(z) = u(—) is the desired function on
p

B(a; p). W
It is now possible to give the promised converse to the Mean Value
heorem.

Theorem. If u:G — R is a continuous function which has the MVP then
is harmonic.

Proof. Let a e G and choose p such that B(a; p) < G; it is sufficient to show
that u is harmonic on B(a; p). But according to Corollary 2.10 there is a
continuous function w: B(a; p) — R which is harmonic in B(a; p) and
w(a+ pe'®) = u(a+pe'®) for all 6. Since u—w satisfies the MVP and
(u—w)(z) = 0 for |z—a| = p, it follows from Corollary 1.9 that u = w in
B(a; p); in particular, # must be harmonic. |}

To prove the above theorem we used Corollary 2.10, which concerns
functions harmonic in an arbitrary disk. It is desirable to derive a formula
for the Pmsson kernel of an arbitrary disk ; to do this one need only make a

in the foarmula D )

S 111 Uil 1vVviiauia \Lv A}

If R > 0 then substituting r/R for r in the middle of (2.2) gives
R?—r?

R2—2rR cos 0+r%

Fa) oY ‘l

o . N - " 11 L] . I S e Ds | . .
IOT V = r < K ana all v. DO 1I u 1S continuous on oa narmonic Iin

\_/

n

1 R?>—r? :
2.13 u(a+re'®) = 5 J [ ! :, u(a+ Re') dt

R?—2rR cos (—1)+r?

4

Now (2.12) can also be written

R2— 2
IReir_reiolz
and R—r < |Re''—re®| < R+r. Therefore
R—r R*—r? _ R+r

R+r = R*—2rRcos (0—t)+r* = R—r"
If u > 0 then equation (2.13) yields the following.

2.14 Harnack’s Inequality. If u: B(a; R) — R is continuous, harmonic in
B(a; R),andu > O then for 0 < r < Rand all 8

B Salf) ~

Before proceeding, the reader is advised to review the relevant definitions
: £ tha mintmin graras £767 MM Qanéinm YVIT 1)
and properties of the metric space {(U, ) (dection Vii.i)
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2.15 Definition. If G is an open subset of C then Har((G) is the space of

LA L LA o Y i1 Y L3 il A 13%  OpfLL L

harmonic functions on G. Smc ar(G) < C(G, R) 1t is given the metric that
it inherits from C (G, R).

2.16 Harnack’s Theorem. Let G be a region. (a) The metric space Har(G) is
complete. (b) If {u,} is a sequence in Har(G) such that u;, < u, < ... then
either u,(z) — oo uniformly on compact subsets of G or {u,} converges in
Har(G) to a harmonic function.

Proof. (a) To show that Har(G) is complete, it is sufficient to show that it is
a closed subspace of C(G, R). So let {u } be a sequence in Har(G) such that
u,—>u in L,\U N) Then U_,t:mma 1v.2. /) it follows that » has the MVP and
so, by Theorem 2.11, ¥ must be harmonic.

(b) We may assume that u;, > O (if not, consider {u,—u,}). Let u(z)
= sup {u,(z):n = 1} for each z in G. So for each z in G one of two possi-
bilities occurs: u(z) = oo or u(z) € R and u,(z) — u(z).

Define

X
i
Q

zeG:u(z) = o}

/7 -

cu(z) < ©};

then G = AU Band A N B = [J. We will show that both 4 and B are open.
If a € G, let R be chosen such that B(a; R) < G. By Harnack’s inequality

&
Il
~-
N
m
Q

2.17 —ufa) < u(z) < ——

for all zin B(a; R) and all n > 1. If a € A then u,(a) — oo so that the left half
of (2.17) gives that u,(z) — oo for all z in B(a; R). That is, B(a; R) < A and
so A is open. In a similar fashion, 1f ae B then the right half of (2.17) gives
that u(z) < oo for |z—a| < R. T

har

“\
[SJSSLVISRRY J ID vu

and (2 17) gives that M u,(a) < u,(z) for |z—a| < p. Hence u,(z) -
uniformly for z in B(a, p). In other words, we have s
> 0 such that u,(z) — oo uniformly fo

G there is a p > 0 such that »,(z) forml |z—a| < p. From this
it is easy to deduce that u,{z) - o© unhormly for z in any compact set.

n Pal £\ - o 11 Y ) - D 4L __. ~ o

Now suppose B = G, or that u(z) < oo for all zin G. If p < R then, as

above, there is a constant N, which depends only on a and p such that
M u(a) < u(z) < N u,(a) for |z—a| < pand all n. Soif m < n

0 < u,(2)—u,(z) < Nu,(a)—M u,(a)

(a), must converge to a harmonic function. Since u,(z) — u(z), u is this

harmonic function. |}
It is possible to give-alternate proofs of Harnack’s Theorem. One involves
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applying Dini’s Theorem (Exercise VII.1.6). Another involves using the
Monotone Convergence Theorem from measure theory to obtain that u has
the MVP. However, both these approaches necessitate proving that the
function u is continuous. This is rather easy to accomplish by appealing to

o semm a1 ~

(Z. 17 I} anu the IaCL that un{Z) - u&Z} for ali zZ, these facts lIIlply hat

R—|>—al
.l\ A I

| ]
| |
R+ |z—ad| ua) < uz) < R—|z—q| ua)
Hence
_M u(a) < w(z)—u(a) 2|z—d| u(a):
R+|z—a| R—|z—a]
2 |z—aq|
- < —
) ~(@)] < @

So as z — a, it is clear that u(z) — u(a).

Exercises

1. Let D = {z:|z| < 1} and suppose that f: D~ — C is a continuous function
such that both Re fand Im fare harmonic. Show that

f(e®*)P(0—1) dt

k.—ﬁ 3

. 1
flre®) = —
LT

for all re’? in D. Using Definition 2.1 show that fis analytic on D iff

foralln > 1.

2. In the statement of Theorem 2.4 suppose that f is piecewise continuous
on dD. Is the conclusion of the theorem still valid? If not, what parts of the
conclusion remain true?

3. Let D = {z:|z]| < 1}, T = oD = {z:|z| =

(2) Show fhat if g: D™ —-=Cis a r‘nnhnnnne function and g

\&) VU VY LiaQu s AD & wuUlIliliuuv Uiiviiivii i

— C 1<
s/ AT

7

™~

defined by g,(2) = g(rz) then g,(z) — g(z) uniformly for zin T as r — 1—.
(b) If f:T— C is a continuous function define f:D~ — C by f(2) = f(2)
for z in T and

n

I)

-~
—

s rr inmn 7N
Jlre | Jle)rv—
J

1
T 2n
(So Ref and Imf are harmonic in D). Define f;: T—C by f:(z)=f~(rz).
Show that for each r <1 there is a sequence { p,(z,z)} of polynomials in z
nd z such that p,(z,z)—f.(z) uniformly for z in 7. (Hint: Use Definition

1)

l\..) Q.)
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If f: T—C i1s a continuous

- 22 i3 Q 2 1LV

(c) Weierstrass annroximation theorem for T
z)} of polynomials in z and z suc

TEWR O SOS Spop s WARRIIIGSIVAS WANES 3§33

functlon then there is a sequence { p,,(z z

that p,(z,z)—f(z) uniformly for z in 7.
(d) Suppose g:[0,1]—>C is a continuous function such that g(0)=g(1).

Use part (c) to show that there is a sequence { p, } of polynomials such that

=

P, (1)—g(1) uni fo_rmly for t 1n [O, I],
() Weierstrass approximation theorem for [0,1). If £:[0,1]>C is a

continuous function then there is a sequence {p,} of polynomials such
that p,(1)—>g(¢) uniformly for ¢ in [0,1]. (Hint: Apply part (d) to the

function g(H)+(1—-10)g(l)+ tg(O) )

(fY Show that if the funct the

part (e) is real valued then

pOl_'yuOuualS can n with real fficien

4. Let G be a simply connected region and let I' be its closure in C,;
0,G = I'—G. Suppose there is a homeomorphism ¢ of I' onto D™ (D
= {z:|z| < 1}) such that ¢ is analytic on G

(a) Show that ¢(G) = D and ¢(¢,G) =
(b) Show that if /:9,G— R is a continuous function then there is a
continuous function u: P — R such that u(z) = f(z) for z in 0,,G and u is

harmonic in G.

(c) Suppose that the function f in part (b) is not assumed to be con-
tinuous at co. Show that there is a continuous function u: G~ — R such that
u(z) = f(2) for z in oG and u is harmonic in G (see Exercise 2).

L 232 URJS AL IIVINIV 2 e

5. Let G be an open set, ae G, and G, = G— {a}. Suppose that u is a har-
monic function on G, such that lim u(z) exists and is equal to 4. Show that
zZ—a

if U:G — R is defined by U(z) = u(z) for z # a and U(a) = A then U is
harmonic on G.

6. Let f:{z:Re z = 0} > R be a bounded continuous function and define
u:{z:Rez>0} —>Rhy
v 9]
1 xf(it)
ux+iy) = — | 9——5 dt
| x*+(y—1)
— &
Show that u is a bounded harmonic function on the right half plane such that

for ¢ in R, f(ic) = lim u(z).

7. Let D={z:|z|<1} and suppose f: ID—R is continuous except for a
jump discontinuity at z=1. Define u: D—>R by (2.5). Show that u is
harmonic. Let v be a harmonic conjugate of u. What can you say about

S P PRy DR U, Y A e e st ~a -a .-A.g o e
the behavior of v(r) as r—1—? What about v(re”) as r—1— and §-0?

e ¥
nic ana

§3. Subharmo

In order to solve the Dirichlet Problem generalizations of harmonic
functions are introduced. According to Theorem 2.11, a function is harmonic
exactly when it has the MVP. With this in mind, the choice of terminology in
the next definition becomes appnroporiate.

sEETE O OTrrT T
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@ is a subharmonic function if whenever B(a;r) < G,

¢(a) < 1 rzp(a+re'0) do.

o)
LT

e,

@ is a superharmonic function if whenever B(a; r) < G,

1 ,
o(a) > E;J‘ p(a+re'?) db.
0

<«
o
w
£

o
]

is subharmonic. Because of this, only the results on subharmonic functions
will be given and it will be left to the reader to state the analogous result for
superharmomc functlons. Nevertheless, we will often quote results on

only that ¢ is upper semi-continuous. However this would make it necessary
to use the Lebesgue Integral in the definition instead of the Riemann Integral.
So it is assumed that ¢ is continuous when ¢ is subharmonic even though

there are certam technical advantages that accrue if only upper semi-

bk o
w
M
[70]
7]
- £
-
[=
o
[

Clearly every harmonic function is subharmonic as well as superharmonic.
In fact, according to Theorem 2.11, u is harmonic iff « is both subharmonic
and superharmonic. If ¢, and ¢, are subharmonic then so is a,p; +a,p,
ifay, a; = 0.

It is interesting to see which of the results on harmonic functions also
hold for subharmonic functions. One of the most important of these is the
Maximum Principle.

a

3.2 Maximum Principle (Third Version). Let G be a region and let ¢:G — R
be a subharmonic function. If there is a point a in G with p(a) > ¢(z) for all z

in G then ¢ is a constant function.

The proof is the same as the proof of the first version of the Maximum
Principle. (Notice that only the Minimum Principle holds for superharmonic
functions.)

The second version of the Maximum Principle can also be extended, but
here both subharmonic and superharmonic functions must be used.

3.3 Maximum Principle (Fourth Version). Let G be a region and let ¢ and i
E [ vai  on G such that ¢ is subharmonic and  is

-~

be real valued functions defined on
superharmonic. If for each point a in 0,G

lim sup ¢(z) < lim inf ¢(2),

z—a z—a
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t

Again, the proof is identical to that of Theorem 1.7 and will not be
repeated here.

Notice that we have not excluded the possibility that a subharmonic
function may assume a minimum value. Indeed, this does happen. For

example, ¢(x, y) = x*+ y is a subharmonic function and it assumes a

minimum at the origin. This failure of the Minimum Principle is due to the
art that if 12 ac tha VD than ecn Aneec — 12 hawavar if ~ 1ic enhharmAanin
14AWL LilAl 11 4 11iA0 Llliiv 1vi vV 1 L1livil OV \JIULVO “hy llU"UV\tl, i1 \f/ 10 ouviiailliiviuv

then —¢ is never subharmonic unless it is harmonic.

When we say that a function satisfies the Maximum Principle, we refer
to the third version. That is, we suppose that it does not assume a maximum
value in G unless it is constant.

3.4 Theorem. Let G be a region and ¢:G — R a continuous function. Then o is
subharmonic iff for every region G, contained in G and every harmonic function
u, on G,, p—u, satisfies the Maximum Principle on G,.

Proof. Suppose that ¢ is subharmonic and G, and u, are as in the statement
of the theorem. Then ¢—u, is clearly subharmonic and must satisfy the
Maximum Principle.

Now suppose ¢ is continuous and has the stated property; let B(a, r) < G.
According to Theorem 2.4 there is a continuous function u: B(a, r) >R
which is harmonic in B(a; r) and u(z) = ¢(z) for |z—a| = r. By hypothesis,
@ —u satisfies the Maximum Principle. But (p—u)(z) = 0 for |z—a| = r. So
@ < uand

n
~

o(a) < u(a) = — | u(a+re®) db

Therefore ¢ is subharmonic. |}

3.5 Corollary. Let G be a region and ¢ : G— R a continuous function; then ¢
is subharmonic iff for every bounded region G, such thax G;” < G and for
every continuous function u,: G, >R that is harmonic in G, and satisfies

(p(z)s u,(z) for z on BGl,q)(z)S u(z) for z in G,.

3.6 Corollary. Let G be a region and ¢, and @, subharmonic functions on

e 3 ) oy fon (7Y o {3 gk = in 3 thon o ic a subbarmonic
G; if o(z) = max (2, ®22j; for each z in G then ¢ is a subharmonic
junctzon.

C)..
——
[¢]
-
N
[
G
¢
=Y
(¢]
Q
[
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ri‘uu_/ Let G Uy be a 1651uu sucn tnat Ul < G an
function on Gy which is harmonic on G, with ¢(z) < u,(z) for all z in 0G;.
Then both <p1(z) and ¢,(z) < u,(z) on 0G,. From Corollary 3.5 we get that
uy(2) fo all z in G,. So ¢(z) < u,(z) for z in G,, and,

1‘\
N
<5}
=]
Q-
h/
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\,orouary. Let ¢ De a subhnarmonic jfunction on a region G and let
Let

¢’ be the function defined on G by:

(1) ?(2) = ¢(z) if ze G—B(a; r);

(i) @’ is the continuous function on B(a; r) which is harmonic in B(a; r)
and agrees with ¢(z) for |z—a| =

Then @' is subharmonic.

The proof is left to the reader.

As was mentioned at the beginning of this section, one of the purposes
in studying subharmonic functions is that they enter into the solution of the
Dirichlet Problem. Indeed, the fourth version of the Maximum Principle
gives an insight into how this occurs. If G is a region and u:G™ — R is a
continuous function (G~ = the closure in C_) which is harmonic in G, then
@(z) < u(z) for all z in G and for all subharmonic functions ¢ which satisfy

lim sup ¢(z) < u(a) for all a in 0,,G. Since u is itself such a subharmonic

zZ—a

function we arrive at the trivial result that

3.8 u(z) = sup {e(z):¢ is subharmonic and lim sup ¢(z) < u(a)forallain 0,G}.
Although this is a trivial statement, it is nevertheless a beacon that points
the way to a solution of the Dirichlet Problem. Equation (3.8) says that if
f:9,G—Ris a continuous function and if f can be extended to a function

u that 1s harmonic on G, then u# can be obtained from a set of sub-
l’\n"mf\ I\ FI “f\"l’\“ﬂ “f"\‘/\h nro r"ar11\nr‘ f‘f\]ﬂ]‘l ” farmn I\F fko 'ﬂ\r\i‘v\flnﬂt
11Al 111VU1 11V LIVILLID 11IVITI Al © \UC111IC\ DUlCl-y 111 LWCL 111D VUl L1iV UUuuual_y

values f This leads to the following definition.

3.9 Definition. If G is a region and f:0,,G — R is a continuous function then
the Perron Family, Z(f, G), consists of all subharmonic functions ¢:G — R
such that

for all a in 0,G.

Since f is continuous, there is a constant M such that | f(a)| < M for all
a m UOO(J. DO [ne constant IUIICUOH -M IS 1r1 J'\], U) dﬂ(l UlC I’CI'I'Ofl ramny
1s never empty.

If u:G~ - R is a continuous function which is harmonic in G and
f = u|o,,G then (3.8) becomes

3.10 u(z) = sup {p(2):p € Z(f, G)}

-
>~
..C)"

-
- -
o
a
-
o

1 1

is, provided the Dirichlet Problem can be solved. In order to show
(3.10) is a solution two questions must be answered affirmatively.

(a) Is u harmonic in G?
(b) Does lim u(z) = f(a) for each a in ¢,G?

zZ—a
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The first question can always be answered “Yes” and this is shown in
the next theorem. The second question sometimes has a negative answer and
an example will be given which demonstrates this. However, it is possible to
1mpose geometrical restrlctlons on G Wthh guarantee that the answer to

3.11 Theorem. Let G be a region and f:0,G — R a continuous function; then
u(z) = sup {@(2):p € 2(f, G)} defines a harmonic function u on G.

Proof. Let | f(a)| < M for all a e 2,G. The proof begins by noting that

~

3.12 ¢(z) < M for all z in G, ¢ in Z(f, G)

This follows because, by definition, lim sup ¢(z) < M whenever ¢ € Z(f, G);
so (3.12) is a direct consequence of the Maximum Principle.

Fix a in G and let B(a; r) < G. Then u(a) = sup {p(a):p € Z(f, G)};
so there is a sequence {g,} in Z(f, G) such that u(a) = lim ¢,(a). Let
&, = max {p;,...,p,}; by Corollary 3.6 &, is subharmonic. Let ®, be the
subharmonic function on G such that ®,(z) = ®,(z) for z in G— B(a; r) and
®; is harmonic on B(a; r) (Corollary 3.7). It is Ieft to the reader to verify the
following statements:

3.13 o < D,
3.14 Pn <O, < O

Trn n n
3.15 D! e Z(f,G).

vaalse

3.16 u(a) = lim ®,(a).

Moreover, statement (3.12) gives that ®, < M for all n; so using (3.13),
Harnack’ Theorem implies that there is a harmonic function U on B(a; r)

such that U(z) = lim ®/(z) uniformly for z in any proper subdisk of B(a; r). It
f“llows from (3.15) and (3.16) that U < u and U(a) = u(a), respectively.
T . nso. AN 11, . (1 1 A o e sen OB L N\ o~ al g
Now let z, € B(a; r) and let {i,} be a sequence in Z(f, G) such that

u(zo) = lim §,(zo).
Let x, = max {g,, ¥,}, X, = max {x;, . .., x.}» and let X, be the sub-
harmonic function which agrees wit off B(a; r) and is harmonic in

D“
St

B(a; r). As above, this leads to a harmonic function U, on B(a; r) such that
\ 7 \ T .4 A - v PR a1 AN - v/ Ynem e
Uy <u and Uy(zy) = u(zg). But &, < X, so that &, < X,. nence

U< U, <u and U(a) = Uy(a) = u(a). Therefore U—-U, is a negative

harmonic function on B(a; r) and (U—U,)(a) = 0. By the Maximum
Principle, U = U,; so U(zy) = u(z,). Since z, was arbitrary, u = U in
B(a; r). That is, u is harmonic on every disk contained in G. [l

nd 1
U 1

C a ICEiIvIl all Y

at
ce g

Q

N ﬂ:D ]—\o
0 7 U\ UV



268 Harmonic Functions

function. The harmonic function u obtained in the pI'CCC(llI’lg theorem is

called the Perron Function associated with f.
The next step in solving the Dirichlet Problem is to prove that for each
point a in 0,G lim u(z) exists and equals f(a). As was mentioned earlier, this

Z—a
does not always hold. The following example illustrates this phenomenon.
Let G = {z:0 < |z] <1}, T = {z:]z] = 1}; so ¢G = T U {0}. Define

f:0G—->Rbyf(z) =0ifzeTand f(0) = 1. For 0 < e < 1 let u(z) = (log
|z|]) (log €)~!; then w, is harmonic in G, u(z) > 0 for z in G, u(z) = O for
zin T, and u (z) =1 if |z| = e. Suppose that ve Z(f, G); since |f| <

lo(z)] < 1for all zin G. If R, = {z: e < |z| < 1} then lim sup v(z) < u(a)

z—a

for all a in R_; by the Maximum Principle, v(z) < u/(z) for all z in R.. Since
e was arbitrary this gives that for each z in G, v(z) < lim u/(z) = 0. Hence

e—=0
the Perron function associated with f is the identically zero function, and
the Dmchlet Problem cannot be solved for the punctured disk. (Another
e 2.5 and the Maximum Principle.)

' L. QLIS 222 2 223RAp0AN. )
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xercises

1. Which of the following functions are subharmonic? superharmonic?
harmonic? neither subharmonic nor superharmonic? (a) ¢(x, y) = x2+y?;
(b) o(x, ) = x*—y?*; (€) (x, y) = x*+y; (d) @(x, y) = x*~y; (€) ¢(x, y)
= x+%; (f) (x, y) = x—y%.

2. Let QUhhar((‘\ and leerhar(F\ denote, respective 1 the sets of sub-

harmonic and superharmonic functlons on G.
(a) Show that Subhar(G) and Superhar(G) are closed subsets of C(G; R).
(b) Does a version of Harnack’s Theorem hold for subharmonic and
superharmonic functions?

3. If G is a region and if f:0,G — R is a continuous function let u; be the
erron Function "ssoc.ated with f. This defines a map 7:C(2,,G; R)y—Har(G)

(a) T is linear (i.e., T(a,fi+a,f5) = a, T(f) +a,T(f))).
(b) T is positive (i.e., if f(a) > 0 for all a in 0_G then T(f)(z) = 0 for all

(c) T is continuous. Moreover, if {f,} is a sequence in C(2,G; R) such
at f, > f umformiy t (f, T(f) uniformly on G.

hen 7(f,)) — T
can be solved for G then T is one-one. Is the

4. In the hypothesrs of Theorem 3.11, suppose only that f is a bounded
function on 0,,G; prove that the conclusion remains valid. (This is useful if

14 e

G i1s an unbounded region and g is a bounded continuous function on 0G.
If we define f:9,G — R by f(z) = g(z) for z in oG and f(o0) = 0 then the
conclusion of Theorem 3.11 remains valid. Of course there is no reason to

expect that the harmonic function will have predlctable behavnor near oo —

have assigned any value to f{c0). However, the

a1 L . AN
with nope or success.)
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5. Let G be a region and f:9,G — R a continuous function. Define U(f, G)
to be the family of all superharmonic functions ¢ on G such that lim inf

zZ—a
#(z) = fla). If v:G —R is defined by v(z) = inf {Y(z):¥ e U(f, G)}, prove
that v is harmonic on G. If u is the Perron Function associated with f, show
that u(z) < 17(7\ Prove that lim 11(7\ = f(n\ for all g in 2_G iff 11{7\ = 11(7\

vialsv

z—a
for all z. Can you give a condition in terms of # and v which is necessary and
sufficient that lim u(z) = f{(a) for an individual point @ in ¢ ,G?

zZ—a
6. Show that the requirement that G, is bounded in Corollary 3.5 is
necessary
7. If f: G- is analytic and ¢:f8—R is subh

1arn
subharmonic if f is one-one. What happens if f'(z)#

0 fo

e o Py D,
OIll SIl
ra 1

§4. The Dirichlet Problem

4.1 Definition. A region G is called a Dirichlet Region if the Dirichlet Problem
can be solved for G. That is, G is a Dirichlet Region if for each continuous
function f: ¢, G — R there is a continuous function #: G~ — R such that u is
harmonic in G and u(z) = f(z) for all z in 0_G.

We have already seen that a disk is a Dirichlet Region, but the
punctured disk is not. In this section, we will see conditions that are

sufficient for a region to be a Dirichlet Region. The first step in this

direction is to suppose that there are functions which can be used to
restrict the behavior of the Perron | unctions near the bound ry.

;1) fo
4.2 Definition. Let G be a region and let ae 0_,G. A barrier for G at a is a
family {,:r > 0} of functions such that:

(a) Y, is defined and superharmonic on G (a;r) with 0<y, (2)<1;
\ / r \ 377 Tr\—7 7
l (N —_ N
\U} 11m (,Jr\ } — VU,
zZ—a
(¢) lim ¢, (z) = 1 forwin G N {w:|w—a| = r}.
Z7w
The following observation is useful: if i, is defined by letting ¥, = ¢, on
G(a; r) and §,(z) = 1 for z in G— B(a; r), then , is superharmonic. (Verify!)

So the functions ¥ ‘“approach” the function which is one everywhere but
z = a, where it is zero. The second-observation which must be made is that
if G is a Dirichlet Region then there is a barrier for G at each point of 9,G.
In fact, if aed,G (a # ©) and f(z) = |z—a|(1+|z—a])7! for z # ©
with f(oc0) = 1, then f is continuous on ¢,G; so there is a continuous
function u:G~ — R such that « is harmonic on G and u(z) = f(z) for z in
0,G. In particular, u(a) = 0 and a is the only zero of u in G~ (Why?)
Let ¢, = inf {u(z):|z—a| = r, ze G} = min {w(z):|z—a| =r, zeG"} > 0.

1
Define ¢,:G(a; r) - R by ¢,(2) = — min {u(z), ¢, }. It is left to the reader to

r

check that {¢,} is a barrier.
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1€ next resuit provides a cor

4.3 Theorem. Let G be a region and let a € 0,,G such that there is a barrier for
G ata If f:0,G — R is continuous and u is the Perron Function associated

with f then
lim u(z) = f(a)

Proof. Let {§,:r > 0} be a barrier for G at a and for convenience assume
a # 00; also assume that f(a) = 0 (otherwise consider the function f—f(a)).
Let € > 0 and choose & > O such that |f(w)| < ¢ whenever we d,G and
|lw—a| < 28; let ¥ = ;. Let :G — R be defined by Y(2) = ¥(2) for Z in
G(a; &) and Y(z) =1 for z in G— B(a 8). Then ¢ is superharmonic. If
|f(w)] < M for all win G, then — M —e is subharmonic.

4.4 Claim. — Mj—e is in Z(f, G). )
If we 0,G—B(a; d) then lim sup [—My(z)—e] = —M—e < f(w). Because

zZow

¥(z) = 0, it follows that lim sup [— My(z)—e] < —e for all w in 8_.G. In
particular, if w e 9,G N B(a: 8) then lim sup [— Mi(z)—¢] < —e < f(w) by
the choice of 8. This substantiates Claimzz.a. Hence

4.5 —My(2)—e < u(z)

lim inf [My(z)+€] > lim sup ¢(z2)

zZw zZow

for all ¢ in Z(f, G) and w in 0,G. By the fourth version of the Maximum
Principle, ¢(z) < My(z)+ € for ¢ in Z(f, G) and z in G. Hence

il N < AL\ 1 oo
u\é} - IYIW\A)TE,

or, combining this with (4.5),

4.6 —My(z2)—e < u(z) < M(z)+e
for all z in G. But lim(z) = lim {(z) = 0; since € was arbitrary, (4.6) gives

L1 lal
Iim u(z) = 0 = f(a).
z—a
This compietes the proof. |
Notice that the purpose of the barrier was to construct the function
which “squeezed” u down to zero.

18

.71 Corollary. A region G is a Dirichlet Region iff
ach pozm of 0,,G.

The above corollary is not the solution to the problem of characterizing
Dirichlet Regions. True, it gives a necessary and sufficient condition that a

region be a Dirichlet Region and this condition is formally weaker than the

o

definition. However, there are aesthetic and practical difficulties with Corol-
" ~rlder 10 ~ A e Al ~an w LA\ . e~ pRp. crmeac o
lary 4.7. One difficulty is that the condition in (4.7) is not easily verified
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Another difficulty is that it is essentially the same type

1di A
definition; both hypothesize the existence of functlons w1th prescribed
boundary behavior.

What is desired? Both tradition and aesthetics dictate that we strive for
a topological-geometric condition on G which is necessary and sufficient
a

that G be a Dirichlet Region. Such conditions are usually easy to verify for
givan racginn and tha aanivalancra Af a canmatris nranarty and an analutina
a sl\'\.«ll l\aslUll, allu tiiv »quxvatvuuu vl a SUUIIINLIIU lJlUlJ\.rl Ly aiiu all alialytiv

one is the type of beauty after which most mathematicians strive. At the
present time no such equivalence is known and we must be content with

sufficient conditions.

4 QR Yomma T ot (G ho 1 rooion in ©C and lot S bho a rlocod ronnortod e1itheot nf

o A4 EERARAGR e AT L \J UG W1 ‘46'1‘,"' EIF o/ WWItUA UL AT UL W LiiIVOUOLCW LU vuuvoc e VJ

~ ol 4l 4 e O 1 QO ~ A ¢ £ 2o tho rrmwinanont nf & — C

Co, such that © € S and S0 0,G = {a}. If G, is the component of Co—S
Is

Proof. Let G, G4, . . . be the components of C_— S with G = G,; note that
each G, is a region in C. If z€ ¢,G, then G, U {z} is connected (Exercise
I1.2.1). Since G, is a component it follows that 9_,G, < S. By Lemma

11.2.6 G,V S (= G, U S)is connected and, consequently, so is U G,V S)
= C_,—G,. In virtue of Theorem VIII 3.2(c), G, is simply connected [ ]

4.9 Theorem. Let G be a region in C and suppose that a € 0,,G such that the
component of C — G which contains a does not reduce to a point. Then G has a

[

Proof. Let S be the component of C_ — G such that a € S. By considering an
appropriate Mobius transformation if necessary, we may assume that a = 0
and oo e S. Let G, be the component of C_—S which contains G. The

preceding lemma gives that G, is simply connected; since 0 ¢ G, there is a
branch 7 of lncr z defined on F In particular 7 is defined on G. For r > 0,

aisiswas U Mwiliiwes o A pRa NAwiAliAwNs NSiXx

let £,(z) = /(z/r) = {(z)—log r for z in G(O; r). So —Z(G(0; r)) is a subset

of the right half plane. Now let C, = G N {z:|z| = r}; then C, is the union

of at most a countable number of pairwise disjoint open arcs y, in {z:|z|=r}.
t —Z.(y) = (in, i) = {it:a, < t < B,} for k > 1. Hence

and these intervals are pairwise disjoint. Furthermore, the length of y, is

HB, — ) <O
Pk ™ %k/>5 S
o0
4.10 L (Bk—'ak\) < 277'.
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i he right half piane and 0 < A, (z) < = for Re z > 0 (see

Bk
X
4.11 h y) =
k(x+ly) Jx2+(y_t)2
X

k=1 x2+(y—1)?
~ o
[*¢]
Since each #, > 0, Harnack’s Theorem gives that 4 = ) A, is harmonic in
- . e e e = P L=1
the right half plane. Hence *

is harmonic in G(0; r). It will be shown that {i,} is a barrier at a
Fiv » ~ 0N than lIim al_/(\1 — Lan Qo it eunfRcee tn chaw that
A 1A T ~ V’ Liiwil l’l::‘l’ AN l (/r\‘rlj T AJ,. MV AL OulLLIvAYY (9 VJ D11V VY L1113t
h(z) -0 as Re z— + oo. Using (4.11) and (4.10) it follows that for x > 0,
[>o]
h(x+iy) = Z h(x+iy)
k=1
w P o
-S| L dt
é‘li 1+(y—1/x)?

A
o4 |
[\
=
-
T

< —

So, indeed, lim A(x+iy) = O uniformly in y; this gives that lim ¢,(z) = 0.
X+ ©

z-0
To prove that lim ¢,(z) = 1 for w in G with |w| = r, it is sufficient to
prove that =
4.12 lim h(z) = = if ¢4 < ¢ < B for some k
z—*ic

So fix k > 1 and fix ¢ in («, B;). The following will be proved.

4.13 Claim. There are numbers « and B such that « < o < B, < B and if

N NI
NI .
\-f/

— oy,
—ify
—1iB
)

N

2ol )
W<)

lll
Uﬁl

u(z) = Im log (
s
\\

\\-—/
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then x > 0 and o, < y < B, implies 0 < A(x+iy)—h(x+iy) < u(x+iy)
+v(x+1iy).

Once 4.13 is established, Equation 4.12 is proved as follows. From Exercise
I11.3.19,

sp if x+iy —ic, ¢ < B, < B, then v(x+iy) — 0.
Similarly u(x+iy) - 0 as x+iy — ic, with « < o4 < c.
Hence, Claim 4.13 yields

4.14 lim [A(z) —hy(2)] = O.

But
h,(x+iy) = arctan (y ;ak> —arctan (y — Bk),
x

so lim A, (z) = =; this combined with (4.14) implies Equation (4.12).

z=ic
It remains to substantiate Claim 4.13; we argue geometrically. Recall
(Exercise 111.3.19) that h (z) is the angle in the ficure. Consider all the

viiie e Vidv  QRAimAV  RAL VAAV aip N S AR A NS WA

intervals (ix;, i) lymg above (ix, iB,) and translate them downward along
the imaginary axis, keeping them above (ix,, if,) until their endpoints
coincide and such that one of the endpoints coincides with iff,. Since

Y (B;—«;) < 2m there is a number 8 < (8, +2w) such that each of the trans-

lated nﬂprvalc lies in (iB,.iR). Now if z = x+iv. x > 0 and o, < v < B,

lub\t\l ALdALWA ¥V WALV AANW T AALR \’Fk, V’. A N\ YVYY AL ot Cad 1) 'J ’ v AV CHAANG k T~ J T~ Vk’
iB; \

i | —
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then the angle 4 ;(z) increases as the interval (i, i8;) is translated downward.
Hence o, < Im z < B, implies
4.15 Z (2) < ),

J

where v is as in the statement of the claim and the sum is over all j such that
> B,. By performing a similar upward translation of the intervals (ix;,
iB;) with B; < «,, there is a number « < (¢,—27) such that the translates

lie in the interval (ix, ia). So if u is as in the claim and o, < Im z < B,,

4.16 Yhiz) < u(z)
J
vhara tha givrm 1 Avar all F unth Q < A RNy camhinine (A 18 and (A 14 tha
WIICIC LLIC DUlll 1D VVvVLl ail j vitll IJj = Kp.e O VCUILLLUVLLIIE \"r. 1 J)] allu \"r,1V) L1V
. .1 ——

4.17 Corollary. Let G be a region such that no component of C,— G reduces
to a point; then G is a Dirichlet Region.
4.18 Corollary. A simply connected region is a Dirichlet Region.
Proof. If G # C the result is clear since
If G = C then the result is trivial. [|i}

Theorem 4.9 has no converse as the following example illustrates. Let

no ~nlir AlmAa AnsmmaAm it

L
oo—u 1ad> VUllly oo CUILIPUILICILL.

5
@)

1 >ry >r,>...with r, > 0; for each n let y, be a proper closed arc of

the circle |z| = r, with length ¥(y,). Put G = B(0; )—[{ {yn} Y {0}] and
o n=1

suppose that lim V(y,)/r, = 2m. So C,,—G = {0} U {J {y,} U {z:|z] = |
n=1

According to Theorem 4.9 there is a barrier at each point of 0,G = G with
the possible exception of zero. We will show that there is also a barrier at zero.

m

Tl < 5 > 5 arnd €m0~ 3 ot D DNV T e L Lo sk

iir,_>r>ryana it m > i, 1I<t D, D\U, )= Vjs- LEL 1, OC UK
j=n

continunone function on B~ which i harmonic on with h () = 1 for

WAUILILILILIUVU WU A VlAwiiAVvV i AV E VY um VY ALRAWAA A\J AALRL LIERANJAX AW Nsi1 um ¥V iLii l;m\ul S ANJA

m
z| = r and h,(z) = O for zin | J {y;}. Then {h,,} is a decreasing sequence of
Jj=n
positive harmonic functions on G(0; r); by Harnack’s Theorem {A,,} con-
verges to a harmonic function on G(0; r) which is also positive (Why?)
Since lim 4(z) = 1 for lwl r, we need only show that lim 4(z) = 0. Let k,,

111V 111LL Ten\&« ) AN/A ACA L xaxxx i Aswr

zow z—0
be the harmonic function on B(0; r,) which is 0 on {y,,} and 1 on {z:|z|
= r,,} — {y,.} (this does not have continuous boundary values, only piecewise
continuous boundary values which are sufficient—see Exercise 2.2). Then

0 <h < k,on B(O;r,) and

o

k. (0) = - J k(rne'’) dd
0

L V)

=57

m J
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Viy,)
Since —™ _» 2m, k,(0) — O; it follows that A(z) — 0 as z — 0. Thus, G has

m

a barrier at zero.

Exercises

1. Let G = B(0; 1) and find a barrier for G at each point of the boundary.
2. Let G = C—(o0, 0] and construct a barrier for each point of ¢_G.

3. Let G be a region and a a point in 9,G such that there is a harmonic
function u:G — R with lim %(z) = 0 and lim inf u(z)} > O for all w in 4G,

z—a FAnd 4

w # a. Show that there is a barrier for G at a.

4. This exercise asks for an easier proof of a special case of Theorem 4.9.
Let G be a bounded region and let a € 6G such that there is a point » with
[a, bl " G~ = {a}. Show that G has a barrier at a. (Hint: Consider the

transformation (z—a)(z—5)"'.)

§5. Green’s Function

In this section Green’s Function is introduced and its existence is dis-
cussed. Green’s Function plays a vital role in differential equations and other
fields of analysis..
5.1 Definition. Let G be a region in the plane and let ae G. A Greern’s
Function of G with singularity at a is a function g,:G — R with the
properties:

(a) g, is harmonic in G— {a};
(b) G(z) = gz)+log |z—a| is harmonic in a disk about a;

SaN

(c) lim g,(z) = O for each win 0_,G.
Z—=w

For a given region G and a point a in G, g, need not exist. However, if it
exists, it is unique. In fact if A, has the same properties, then, from (b),
h,— g, is harmonic in G. But (c) implies that lim [A,(z) —g,(z)] = O for every

jow

win 0,G; so h, = g, by virtue of the Maximum Principle.

A second observation is that a Green’s Function is positive. In fact, g, is
harmonic in G— {a} and lim g(z) = + oo since ga(z)+log |z—a| is harmonic

z=a

at z = a. By the Maximum Pr1nc1 le, g.(z

wit
fact, suppose g, is the Green’s Function with smgularlty at zero and put

g = —go; 80 g(z) < 0 for all z. We will show g must be a constant function,

which is a contradiction. To do this, it is sufficient to show that if 0 # z,
4—72iﬂ then a/7\<of7\ If ¢« >0 then there is a 8 > 0 such that

llllll — 8S\~1/° WUwil \-ll“\-
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lg(z2)—g(z)| < € if |z;—z| < &; so g(z) < g(z)+e€ if |z—z,| <. Let
r > |z,—z,| > 8, then

hz) = £E0 < 1o
(3

logl -
“\r/)
is harmonic in C— {z,}. It is left to the reader to check that g(z) < A,(z)
for z on the boundary of the annulus 4 = {z:8 < |z—2z,| < r}. By the Maxi-
mum Principle, g(z) < h,(z) for z in A; in particular, A,(z,) > g(z,). Letting

» v N wa got
14 Ll e 4 A ™ 5UL

lro

g(z;) < lim A(z;) = gz, +e;
r—+ o
since € was arbitrary, g(z,) < g(z,) and g must be a constant function.
When do Green’s Functions exist?

8.2 Theorem. If G is a bounded Dirichlet Reogion then for each a in G there is
S.& 1neorem. If (15 a bounaea Diricniet Keglo en jor eacn a in G tnere 1S
e M ennsid o Dessamntimsn mie £ sisstle adamarl vedtss rméd
a Green's runction on G wiin singutarity at a

Proof. Define f:0G — R by f(z) = log |z—a|, and let u:G~ — R be the
unique continuous function which is harmonic on G and such that u(z)=f(z)
for z in 0G. Then g (z) = u(z)—log |z—a| is easily seen to be the Green’s
Function. |

This section will close with one last result which says that Green’s

Functione are conformal invariantge
E S VAALAWLAN ALY WAA W WA /A AAGAA ALL YV LAL ALAALALIe

3

5.3 Theorem. Let G and Q be regions such that there is a one-one analytic
Sfunction f of G onto Q; let ae G and o« = f(a). If g, and y, are the Green’s
Functions for G and Q with singularities a and « respectively, then

8.2) = v(f(2)).
Proof. Let ¢:G — R be defined by ¢ = y, of. To show that ¢ = g, it is
sufficient to show that ¢ has the properties of the Green’s Function with

singularity at z = a. Clearly ¢ is harmonic in G— {a}. If we dG then
lim ¢(z) = O will follow if it can be shown that lim ¢(z,) = 0 for any sequence

zZw

{z,} in G with z, - w. But {f(z,)} is a sequence in Q and so there is a sub-
sequence {z,, } such that f(z,,) — w in Q7 (closure in C_). So y,(f(z,)) — 0.
Since this happens for any convergent subsequence of {f(z,)} it follows that
lim ¢(z,) = lim y,(f(z,)) = 0. Hence lim ¢(z) = 0 for every w in 2,G.

zZw
Z7W

Finally, taking the power series expansion of f about z = a,

f(2) = a+ A, (z—a)+ Ay,(z—a)* +. . .;
or

f@)—a =(z—a) A4, +A4,z—a)+...].
Hence

L= 2a 4
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where h(z) = log |4, + A,(z—a)+. . .| is harmonic near z = a since 4; # 0.
Suppose that y,(w) = A(w)—log|w—«| where A is a harmonic function
on Q. Using (5.4)

#(2) = A(f(2)~log|f(z)
[A(f(2) — h(z)] ~log|z—a.

R

Since A o f—h is harmonic near z = a, ¢(z)+log |z—a| is harmonic near

z=a. |}

Exercises

1. (a) Let G be a simply connected region, let a€ G, and let f/:G — D = {z:
|z| < 1} be a one-one analytic function such that f(G) = D and f(a) = 0.
Show that the Green’s Function on G with singularity at a is g,(z) = —log
£ N

(b) Find the Green’s Functions for each of the following regions:
()G =C—(00,0];(i1) G = {z:Rez > 0}; (1)) G = {z:0 < Imz < 2n}.
2. Let g, be the Green’s Function on a region G with singularity at z = a.
Prove that if ¢ is a positive superharmonic function on G— {a} with lim inf

[4(z)+1log |z—a]] > — oo, then g,(2) < ¥(z) for z # a.
3. This exercise gives a proof of the Riemann Mapping Theorem where it is
assumed that if G is a simply connected region, G # C, then: (i) C_—G is
connected, (ii) every harmonic function on G has a harmonic conjugate,
(iii) if @ ¢ G then a branch of log(z—a) can be defined.

(a) Let G be a bounded simply connected region and let a € G; prove that
there is a Green’s Function g, on G with singularity at a. Let u(z) = g,(2)

+log|lz—a| and let v be the harmonic conjugate of u. If ¢ = u+iv let
f(?\ = o’“(7 n\p @(2) for a real number . (Qn f'm analvtic in ("\ Prove that

J\~) AAiii U wa AQ QKAL) i 2

| f(z)l = exp (—g,(2)) and that lim |f(2)| = 1 for each w in oG (Compare this

FAmd 14
with Exercise 1). Prove that for 0 < r < 1, C, = {z:|f(2)| = r} consists of
a finite number of simple closed curves in G (see Exercise VI.1.3). Let G,

be a component of {z:|f(z)] < r} and apply Rouché’s Theorem to get that
f(z) = 0 and f(z)—w, = 0, |wo| < r, have the same number of solutions in
G,. Prove that fis one-one on G,. From here conclude that f(G) = D = {z:
|z] < 1} and f"(a) > O, for a suitable choice of «.

(b) Let G be a simply connected region with G # C, but assume that G
is unbounded and 0, oo € 8_,G. Let £ be a branch of log z on G, a € G, and
« = /(a). Show that £ is one-one on G and #(z) # «+2=i for any z in G.
Prove that ¢(z) = [/(z) —a—2=i]! is a conformal map of G onto a bounded
simply connected region in the plane. (Show that £ omits all values in a
neighborhood of «+ 2xi.)

(c¢) Combine parts (a) and (b) to prove the Riemann Mapping Theorem.

4. (a) Let G be a region such that éG = y is a simple continuously differen-
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Green’s Function on G with singularity at a, show that

)
R (z, @) ds
on

[ f(2)

b4

h(a) =

og

where — is

the derivative of g in the direction of the outward normal to y and

on
ds indicates that the integral is with respect to arc length. (Note: these con-

1

Fag

Y

N

1

A

int: Apply Green’s formula
ff[uAv—vAu] dxdy = J‘[

TY®

so as to merit presentation.) (

ds

]
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To begin this chapter, let us recall the Weierstrass Factorization Theorem
£ amtisnn Trrmntinmoe IVIT & 1A T 4t £ lha an antiea £ nnf A writhh A pan~ ~F
1U]1 CIILIIT JUHCuIuviD \Vll. J.l"l‘). L.CLl J UG adll Cl1t11CT 1 UlIviivil Willl a 4C10U U1}
multiplicity m > 0 at z = 0; let {a,} the zeros of f, a, # 0, arranged so that

a zero of multiplicity k is repeated in this sequence k times. Also assume
that |a,| < |a,| < ....If {p,} is a sequence of integers such that

0.1 V) < ©
£\ |a,|/

for every r > 0O then

o0
0.2 P(z) = H1 E, (z]a,)
":
converges uniformly on compact subsets of the plane, where
o J | r ’ Wi W
z?2 zP
0.3 (2)=(1-z)exp|z + - + + —
2 p
forp > 1 and
Eyz) =1~z
Consequently
0.4 f(2) = 2" e P(2)

where g is an entire function. An interesting line of investigation begins if we
de LIIC L{UCbLlUllb VV lldl. plUpCI lle Ulj can UC ucu‘uceu ll g d.IlU 1' are dbbLIIllCU
to have certain “nice” properties? Can restrictions be imposed on f which
will imply that g and P have particular properties? The plan that will be
adopted in answering these questions is to assume that g and P have certain
characteristics, deduce the implied properties of f, and then try to prove the
converse Ol lﬂlb n“n‘pucauon

How to begin? Clearly the first restriction on g in this program is to
suppose that it is a polynomial. It is equally clear that such an assumption
must impose a growth condition on e?®. A convenient assumption on P is
that all the integers p, are equal. From equation (0.1), we see that this is to

assume that there is an integer p > 1 such that
[e o]
2 la,| ™7 < oo;
n=1
that is, it is an assumption on the growth rate of the zeros of f. In the first
279
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Tamons [Rppa | ) P o~ asamam PR

this cnapter Jensen’s Formula is deduced. Jensen’s Formula says
that there is a relation between the growth rate of the zeros of f and the
growth of M(r) = sup {|f(re'®)|: 0 < 8 < 2=} as r increases. In succeeding
sections we study the growth of th € zeros of f and the growth of M (r) Finally,

§1. Jensen’s Formula

If fis analytic in an open set containing B(0; r) and f doesn’t vanish in
B(O: r) then log | fl is harmonic there 1

A\ g 1 ) CiiVii AVUE i1 iiwiwe AL ’ 4 I i iV a1 v

(X. 1.4); that is

1 .
1.1 log [f(0)] = - [log | f(re*®)| db.

g U4 J
0

Suppose f has exactly one zero a = re'® on the circle |z| = r. If g(z) = f(2)
(z—a)~! then (1.1) can be applied to g to obtain

1 )
log [g(0)] = — | [log | fre®)|—log [re— re™[] d8
2 J
0

Since log |g(0)] = log |f(0)|—log r, it will follow that (1.1) remains valid
where f has a single zero on |z| = r, if it can be shown that

2n

log |re'®—re'*| db = logr;

Y|~

|
;

alternately, if it can be shown that

But this follows from the fact that

2n

Jf log (sin? 26) df = — 4 log 2
o

(Exercise V. 2.2(h)). So (1.1) remains valid if f has a single zero on |z| =
by induction, (1.1) is valid as long as f has no zeros in B(0; r).

The next step is to examine what happens if f has zeros inside B(0; r).
In this case, log | f(z)| is no longer harmonic so that the MVP is not present.

A ) T 4 r

nsen’s Formula. Let f be an analytic function on a region containing

14 7
Les J
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B(0; r) and suppose that ay, .. .,a, are the zeros of f in B(0; r) repeated
according to multiplicity. if f(0) # O then

2n
n
r 1 .
log|/(0) = — > log( ) + 5 | log |f(re")| ab.
= lakl 2m
k=1 J
(V]
Proof. If |b| < 1 then the map (z—»b) (1—bz)~! takes the disk B(0; 1) onto
A /ANE g 1oy P\ 7\ <) Y
itself and maps the boundary onto itself. Hence
r’(z—a,)
r’—a.z

is analytic in an open set containing E(O; r), has no zeros in B(0; r), and

| F(AN! — | £ for |- — r. So (1 1) ann
£ \<~/] S\« *¥* <} Fo WV \(1e2) SpYY
2n
1
log |F(0)| = f log | f(re”®)| db.
0
However

F(0) = £(0) H (— a—)

so that Jensen’s Formula results. |}
If the same methods are used but the MVP is replaced by Corollary X. 2.9,

nn ‘f{’r\l {‘on I‘\D NIn or 7 £ . I < l’ < n
iv v Vi & T Ugy X = IV = The

1.3 Poisson-Jensen Formula. Let f be analytic in a region which contains
B(; ryand let a,,...,a, be the zeros of f in B(0; r) repeated according to
multiplicity. If |z| < r and f(z) # O then

2n
n _ .

NN <., |[rP=az| 1 [ _ (re®+z\. . ..
log |f(2)| = — Z_ log l%..l-_n \I + P I Re‘ 0. } log |f(re™”)| atb.
k= I’\‘ uk}l LT[(.), \’C ‘/

Exercises
1 Tn the hunnthacic af Tencen’e Farmnla dna noat cinnnonce that {0 £ 0
Ao 411 Cilw ll]t}vbll\aolo /i NAS2 SIS (VD 5 OGS ) A Vi ‘.llulu, A\ 1V 4 AAUL OuleVO\J Liia L J \V} T Ve
QL .. 4L 4 C L 4 N Ot 1t al .
OIIOW tldl 11 7 11dSs 4 ZCTO dl 2 = U Ol IMullplcity m# tici
n 2n
f™(0) r 1
log ’——r— + mlogr = — z log{ — | + > log | f(re'®)| db.
I m! I =1 \lakl/ L7
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2. Let f be an entire function, M(r) = sup {|f(re'®)|: 0 < 6 < 2=}, n(r) =
the number of zeros of fin B(0; r) counted according to multiplicity. Suppose
that f(0) = 1 and show that n(r) log 2 < log M(2r).

3. InJensen’s Formula do not suppose that fis analytic in a region containing
B(0; r) but only that f is meromorphic with no pole at z = 0. Evaluate

L[ .
—flog | f(re'?)| db.
27

0

4. (a) Using the notation of Exercise 2

t n
[ = e ()
v ! k=1 lakl
where a,, ..., a, are the zeros of f in B(0; r).

(h) T et fhp mprnmnrnh1n without a nole at z = 0 and let »( ) be the

U Ak & J Uw ALAWA NS AAAN/ L Lilw YVibtidiVw L vV AliNe AWl Il Viliw
J

number of zeros of f in B(0; r) minus the number of poles (each counted
according to multiplicity). Evaluate

5. Let D = B(0; 1) and suppose that f: D — C is an analytic function which
is bounded.

(a) If {a,} are the non-zero zeros of fin D counted according to multi-
plicity, prove that (1 —|a,|) < oo. (Hint: Use Proposition VII. 5.4).

(b) If f has a zero at z = 0 of multiplicity m > 0, prove that f(z) =

z™B(z) exp (—g(2)) where B is a Blaschke Product (Exerc1se VII. 5.4) and g
is an analytic function on D with Reg (2) > —log M (M = sup {|f(2)|:

|z| < I}.

§2. The genus and order of an entire function

2.1 Definition. Let f/ be an entire function with zeros {a,, a,, ...}, repeated
according to multiplicity and arranged such that |a,| < |a,| < ... . Then
[ 1s of finite rank if there is an integer p such that

-~ -~ $1 ! | 4 1

2.2 D, la, 0.

If p is the smallest intege uch that this occurs, then f'is said 7o be of rank p;
Fiinrtinan with Anls n 14 ﬂ--mkna AL pawv~Aacs oo swawml. N A iimntine 1o ~F

a iunction wu.u Ullly 1O ITUHIIUCL VUl 010D 11iad 1 allN U. A 1UIICLIVIL DD VUl

infinite rank if it is not of finite rank.
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From equation (0.1) it is seen that if f has finite rank p then the canonical

product P in (0.4) can be taken to be

[0 o]

1
Notice that if fis of finite rank and p is any integer larger than the rank
nf £ than D) I rnmn;ﬂo valid QA thara ic o carnnd rananical neradnest 9 2D
vl J Liivil \L l-} AV1iIQlilo YaQllu. UV Lliviv 10 A JOvLWUlLlIWU vallviilval leUu\.«t \L J}
and this shows that the factorization (0.4) of fis not unique. However, if the

product P is defined by (2.3) where p is the rank of f then the factorization
(0.4) is unique except that g may be replaced by g+ 2=mi for any integer m.

2.4 Definition. Let f/ be an entire function of rank p with zeros {a,, a,,...}.
Then the product defined in (2.3) is said to be in standard form for f. If f is
understood then it will be said to be in standard form.

2.5 Definition. An entire function f has finite genus if f has finite rank and if
f(2) = 2" 2D P(2),
where P 1s in standard form, and g is a polynomial. If p is the rank of f
and q is the degree of the polynomial g, then p = max (p, q) is called the
genus of f.
Notice that the genus of fis a well defined integer because once P is in

standard form, then g is uniquely determined up to adding a multiple of 2#i.
In particular, the degree of g is determined.

Y £ Thonram pt £ ho an omntivo famnrtinn nf conue Ensy panr nnoitino nuumhor
aate U lllCUlCul l-aCle e wii CILtLICJWIlLLlUIL UJ 65/&“0 f-b 4 V5 cuLiIi PUOLLLUC rnuirrsvcst
« there is a number ry such that for |z| > rg
pt1
| /)] < exp («fz[*"7)
Proof. Since f is an entire function of genus u

"
n=1
where g is a polynomial of degree <u. Notice that if |z] < 4 then
2.7 log |[E,(z)] = Re {log (1-2z)+z+...+2"/u}
( 1 1 3
=Red— —— 1 — —_ 2§
| wp+l p+2 )

IA
~

1 2| }
nt+1
+...
| {u+l +,u+2

7

< [T A+ L)
Al lut+1l
2z
Also
|Ef2)| < (1+]z]) exp (2] +. . . +|z[*/w),
so that
log |E () < log (1 +1zD4+ 1214+ +1zI#/ .
VO [~p\“J] — YO \* P F o F e LI bl B ad
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log |E,(2)|

|u+l

lim =0

zZ= 00 IZ
So if A > 0O then there is a number R > 0 such that
2.8 log |[E(2)] < Alz]*™Y, |z] > R.

But on {z: } < |z] < R} the function |z|~®*"V log |E,(z)| is continuous
except at z = + 1, where it tends to —co. Hence there is a constant B > 0
such that

2.9 log |[E,(z)] < Blz*"',1 < |z]| < R.
Combining (2.7), (2.8), and (2.9) gives that
2.10 log |E,(2)] < M|z|**!
for all z in C, where M = max {2 A, B}.
Since Y |a,|"**? < oo, an integer N can be chosen so that
>, -
la,|~®*D < i
n=N+1 aM
But, using (2.10)
211 {‘ lo-iE/Z/a\l <1'V1’ %‘ Iilu+l<frzlg+1
o L B |Ly\c/dy)| = L 'nl —AII
n=N+1 n=N+1 171 '

Now notice that in the derivation of (2.8), 4 could be chosen as small as
desired by taking R sufficiently large. So choose r, > 0 such that

5 1 £\ & +1
log |[E(2)] < — [z|*7}, for |z] > r,.
n 4}
If r, = max {|a,|ry, |ay| res ..., |ay| ry} then

|z|#* 1 for |z] > r,.

2 log |E,(z/a,)| <

n=1

-h-lﬂ

4 9N

Combining this with (2.11) gives that
2.12 log |P(z)| = z log |E,(z/a,)| < §|z|ﬂ+1
n=1

for |z| > r,. Since g is a polynomial of degree <u,

mlog |z|+]g(2)] _

v 7]

So there is an r3 > 0 such that m log |z|+|g(2)| < % « |z|**1. Together with
(2.12) this yields
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for iZi > ro = max {r,, r3}. By taking the exponential o
desired inequality is obtained. i
The preceding theorem says that by restricting the rate of growth of the

1. al

£ 1L~e PR [ L
I DOl SI1ACS, LIIC

zeros of the entire function f(z) = z™ exp g(z)P(z) and by requiring that g
be a pnr"nomml fhen the growth of M(r) = max { f(w‘o“ 0 <8 <2x)is
nnnnn PR b RN R . .

2.13 Definition. An entire function f is of finite order if there is a positive
constant a and an r, > 0 such that | f(z)| < exp (|z|*) for |z| > r,. If fis not
of finite order then f is of infinite order.

If fis of finite order then the number A = inf {a: |f(z)| < exp (|z|*) for

!_l Qnmmpnﬂv larapl is called the order of f.

illwiwiiL 10 Wwililwed lilw ues vy g

Notice that if | f(z)| < exp (|z|*) for |z| > r, > 1 and b > a then |f(2)| <
exp (|z|®). The next proposition is an immediate consequence of this obser-
vation.

2.14 Proposition. Letr [ be an entire function of finite order A. If € > 0 then
|f(2)| < exp (|z|**°) for all z with |z| sufficiently large; and a z can be found,
with |z| as large as desired, such that |f(z)| = exp (|z|*79).

Although the definition of order seems a priori weaker than the con-
clusion of Theorem 2.6, they are, in fact, equivalent. The reader is asked to
show this for himself in Exercise 3.

So it is desirable to know if every function of finite order has finite genus
(a converse of Theorem 2.6). That this is in fact the case is a result of
Hadamard’s Factorization Theorem, proved in the next section.

The proof of the next proposition is left to the reader.

2.15 Proposition. Let f be an entire function of order A and let M (r) = max

I/‘/..\I IS Y A
UJ2)|: |4| Iy, tnen

log log M (r)

,i.oo log r
Consider the function f(z) = exp (e®); then |f(z)| = exp (Re €*) = exp
(¢" cos ) if z = re'’. Hence M(r) = exp (¢) and
log log M (r) r

logr
o

thus, fis of infinite order. On the other hand if g(z) = exp (z"), n > 1, then
|g(2)] = exp (Re z") = exp (r* cos mb). Hence M(r) = exp (r") and so

log log M(r)

ogr

og

= n,

;-_

thus g is of order n. For further examples see Exercise 7.
Using this terminology, Theorem 2.6 can be rephrased as follows

If fis an entire function of finite genus u then f is of finite order

2.16 Coarollaryv. If fi e fu 1 0f fini /
J J J J J J d [o Mt bbb dl il reJ

2

AN
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Exercises

1. Let f(z) = > c,z" be an entire function of finite genus u; prove that

lim ¢ (n)V/®+D = 0,

n—coo
(Hint: Use Cauchy’s Estimate.)
o] Taot £ oand £ hao antira fFrinarinng ~Af Anit Avrdare ) and ) vnnﬂnnfi:raltr
pan LCLJI aliu J2 UL V1LV 1UlIVLIVi1D VUl i UiUuL1Do l\l alu 1\2 ICDPCULIVCI

S
A = max ()\1, ,) if A} # A, and give an example which shows that A < max
0

3. Suppose f is an entire function and A4, B, « are positive constants such
thhat thawa 10 o wratl 'f{n\' <~ ave A!,-'Ia 1. D\ £~ Inl ~ - Clh~vwr thhnt f-n n¥f
uldl wici€ iS a 7o Witih |j\ZJ| = CXPp \A|Z| T o) 10T |Z] > Fg. ON0W uidt j iS O1

finite order <a.
4. Prove that if f is an entire function of order A then f” also has order A.
5. Let f(z) = ) c,z" be an entire function and define the number « by

o = 11 Ini

(a) Show that if f has finite order then « > 0. (Hint: If the order of fis A

and B > X show that |¢,| < r™" exp (+F) for sufficiently large r, and find the
maximum value of this expression.)

(b) Suppose that 0 < « < oo and show that for any € > 0, € < «, there

is an integer p such that |c, I”" < n~ @9 for n > p. Conclude that for
|z| = r > 1 there is a constant A such that

(c) Let p be as in part (b) and let N be the largest integer <(2r)'/*79.
Take r sufficiently large so that N > p and show that

0 n N n
r , ]
z ("l“_‘> < land z (n““) < Bexp (20" logr)

n log

lf(2)| < Ar? + (

3
1]
>
5
e
X
Il
N
+
-
7
\,

ollowine functions: (9\ gin z° {b) co

AVERAAWSCANSAAT » CiLii &9\ N

S Z:
S <L,

»
G

r
(c) cosh \‘/z; (d) Y. n~*z" where a > 0. (Hint: For part (d) use Exercise 6.)

8. Let f; and f, be
has finite order A

e entire functions of finite order A, A,; show that f = f] f;,
< max (Al’ A2)

7. DE S€auence O non-zero compliex numpbpers., Let o = 1nt {a
9. Let {a,} be a sequence of non-zero complex numb Let p f {a
\"1h 1728 - Al tha nitmhar » ic rallad tha ovmamont AF AN DRI NS ~F A4
£ [“4ni N W, b uiiivel po1o vallvd Ltiav CAporiciit Uf COrcergerice Ul Uy, .
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mard Factorization Theorem 287

(a) If fis an entire function of rank p then the exponent of convergence
p of the non-zero zeros of fsatisfies: p < p < p+1.
(b) If p'= the exponent of convergence of {a,} then for every ¢ > 0,

Y la,| "¢t < o and Y |a,|T*79 = oco.

1 1UCl N aliu Iul’ uz, e s o f UL LIIV ] 1=

A\ T ab £ hn nes Asbrsn Frrismntimnn ~

. () L€  of an entirc iunciion o i
zero zeros of f counted according to muitiplicity. If p is the exponent of
convergence of {a,} prove that p < A. (Hint: See the proof of (3.5) in the

next section.)
(d) Let P(z) = [] E,(z/a,) be a canonical product of rank p, and let p
n=1

be the exponent of convergence of {a,}. Prove that the order of P is p.
(Hint: If A is the order of P, p < A; assume that |a,| < |a,] < ... and fix z,
|z| > 1. Choose N such that |a,| <2 |z|ifn < Nand |g,| > 2 |z|ifn > N
+ 1. Treating the cases p < p+1 and p = p+1 separately, use (2.7) to show
that for some € > 0.

/

% logi {i-\
S T \a

T

A lz|Pte,
4 [z|P*e.

Prove that for |z] > 1, log |E,(z)] < B |z|P where B is a constant independent
of z. Use this to prove that

<. |. {2\
2, 10g|E, | — ) < Clz””
=1 L \%/]

for some constant C independent of z.)
10. Find the order of the following entire functions:

@ f@) = [] (-d"), 0<|d <1
(b) f(2) = T (1-2)

1\ nt)
©) () = [T}

83. Hadamard Factorization Theorem

In this section the converse of Corollary 2.16 is proved; that is each
function of finite order has finite genus. Since a function of finite genus can
be factored in a particularly pleasing way this gives a factorization theorem.

3.1 Lemma. Let f be a non-constant entire function of order A with f(0) = 1,

and let {a,, a,, ...} be the zeros of f counted according to multiplicity and
arranged so that |a;| < |ay| < ... . If an integer p > A—1 then

PIral_ < 1
d—[m] =P 2 @2y

forz #ay,a,,....
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n 2 = i9
re—a.z 1 re”+z
k
log | f(z lo + — [ Re( )lo re'®)| do
g /@) gl —|t 5o —o— | log | f(re")]
& rz—a)| 27 \re'" —z
0
for |z| < r. Using Exercise 1 and Leibniz’s rule for differentiating under an

Using
integral sign this gives

for |z < rand z # a, ..., a, Differentiating p times yields:
&[] — -
32— = —p! D (@=2) " 4p! D> A=)
dz* | f(z)
k=1 k=1
2n
N .
_IL(n.J_I\'_ V90i0(1ol0 _ NP2 100 | £f1+oiN] JB
\Vllll 1}0277 , T & \ UL ~) IVEIJ\IC }I UV,

Now as r — o0, n(r) — oo so that the result will follow if it can be shown that
the last two summands in (3.2) tend to zero as r — co.

To see that the second sum converges to zero let r > 2|z|; then |q,] < r
oives 1r2—g.z| > 1,2 SO that (Igl r2—g.z1" 1\1’+1 < (2/1\P*!1 Hence the
o I VK=l — 2 \I I(I 1* ot ol - \*/*'J ¢ AAVIIVY  uwalv
cnrnnd crimmmand iec daminatad ke 1226 79/, \D+1 'D..o It te am EOCU AAROAMIIEM A
OCALUIIU duUlilllialliu 1d uuvl ll nawca Uy } L/I} DUt It 1> all Cdby UUllbchCllDC
of Jensen’s Formuia (see Exercise 1 .2) that log 2 n(r) < log M(r). Since f is

of order A, for any € > 0 and r sufficiently large

log2n(r)r ®*D < log [M(r)]r ®*tD

< r

But p+1 > A so that ¢ may be chosen with (A+¢)—(p+1) < 0. Hence
n(r) 2/r)P*! — 0 as r — co; that is, the second summand in (3.2) converges
to zero.

To show that th

= i vy
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2n
1 .
3.3 (p+1)1 2772~ ®* D | [log M(r)—log | /(re")] db.
w

0

But according to Jensen’s Formulia,

2n
1 .
- f log |f(re'®)| d6 > 0
2m

0

since f(0) = 1. Also log M(r) < r**¢ for sufficiently large r so that (3.3) is
dominated by

(P+ 1); 2p+ 3r).+e—(p+ 1)

As before, € can be chosen so that rF**¢~®*D 5 0 as r — 0. |

Note that the preceding lemma implicitly assumes that f has infinitely
many zeros. However, if / has only a finite number of zeros then the sum in
Lemma 3.1 becomes a finite sum and the lemma remains valid.

3.4 Hadamard’s Factorization Theorem. If f is an entire function of finite
order A then f has finite genus n < A.

Proof. Let p be the largest integer less than or equal to A;sop < A < p+1.
The first step in the proof is to show that f has finite rank and that the rank
is not larger than p. So let {a,, a,, ...} be the zeros of f counted according

to multiplicity and arranged such that |a,| < |a,| < ... . It must be shown
that

[e 0}
3.5 Y a, @D < 0,

n=1

There is no loss in generality in assuming that f(0) = 1. Indeed, if f has
a zero at the origin of multiplicity m and M (r) = max {|f(2)|: |z| = r} then
foranye > 0and |z] = r

log |f(2)z™"| < log [M(r)r™™]

<r*t“—mlogr

IA

LA+ 2¢
r

if r is sufficiently large. So f(z)z™™ is an entire function of order A with no
zero at the origin. Since multiplication by a scalar does not affect the order,
the assumption that f(0) = 1 is justified.

Let n(r) = the number of zeros of fin B(0; r). It follows (Exercise 1.2)
that [log 2] n(r) < log M(r). Since f has order A, log M(r) < r***¢ for any
e > 0 so that lim n(r)r~**9 = 0. Hence n(r) < r**¢ for sufficiently large r.

a,] < ..., k < n(la) < |g|** for all k larger than some

=(p+1) _ 1.—(p+1/i+e)
> K
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~L a1 1) Ll

for £ > k. So if € is chosen with A+e < p+1 (recall that A < p+1) then
Y la| "V is dominated by a convergent series; (3.5) now follows.

Let f(z) = P(z) exp (g(z)) where P is a canonical product in standard
form. Hence for z # q,

j‘!,‘(z) — ”,/Z\ 1 'P,.(Z)
f 77T PGE)
Using Lemma 3.1 gives that
p ’
—p! ? a,—z)"P+D = g+ (5) 4 |—P (Z)]

" dz?| P(2) |

HI
[

However it is easy to show that

dP [ P'(2) o Cpt1
@[P(z)] = —p! > (a,=2)®*D

n=1

for z # a,, a,,....Hence g?*D = 0 and g must be a polynomial of degree
<p.Sothegenusof f<p < A

As an application of Hadamard’s Theorem a special case of Picard’s
Theorem can be proved. This theorem is proved in full generality in the next
chapter.

3.6 Theorem. Let f be an entire function of finite order, then f assumes each
complex number with one possible exception.

Proof. Suppose there are complex numbers « and 8, « # B, such that f(z) # «
and f(z) # Bforallzin C. So f—« is an entire function that never vanishes;
hence there is an entire function g such that f(z) —« = exp g(z). Since f has
finite order, so does f—a; by Hadamard’s Theorem g must be a polynomial.
But exp g(z) never assumes the value 8—a« and this means that g(z) never
assumes the value log (B—«), a contradiction to the Fundamental Theorem
of Algebra. |}

One might ask how many times f assumes a given value «. If g is a
polynomial of degree » > 1, then every « is assumed exactly » times. How-
ever [ = e assumes each value (with the exception of zero) an infinite number
times. Since the order of e? is n (see Exercise 2.5) the next result lends some
confusion to this problem; the confusion will be alleviated in the next chapter.

b Yo Blls o NP . £ Lo T 0N aad s Yt 4
Jd./ 11neorem. Lel J e an emzre jul’lLllU"l j Jl e Oruder n wriere n Ly notr arn

integer; then f has infinitely many zeros.

Proof. Suppose f has only a finite number of zeros {a,, a,, . .., a,} counted
according to multiplicity. Then f(z) = e*“(z—a,)...(z—a,) for an entire
function g. By Hadamard’s Theorem, g is a polynomial of degree <A. But

it 1q aagy tn goa that fand 29 havua tha garma ardar Qinca tha Ardor AF 59 :1¢c th
it 10 \.ao_y LU oo Lllat‘/ alla © 11aA vy L1IV oAdllluv UlilLl . Jl1IVAG LIV ViuLvL Vi © 10 1 lU

~ A Y —

degree of g, A must be an integer. This completes the proof. |l
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3 8 Cgre!!ar‘r If £ie an ontiro functinn nf ordoer and ic nnt an infooor thon £
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assumes each complex value an infinite number of times

Proof. If o € f(C), apply the preceding theorem to f—«. |l

Exercises

H L1 - __-,_'-.. ~ and suppose VR
. LCL J DC an d y lL lIl a ICgion u dI Supposc tidt

et fis not 1 / ZETO.
Let Go = G—{z: f(z) = 0} and define h: G, — R by h(z) = log |f(2)|.

Sy

oh oh
Show that — — i — = r on G,.
ox ay f
2 Ref r to Exercise 2.8 and show that if A; # A, then A = max (4, A,).
3. (a) Let f and g be entire functions of finite order A and suppose that

f(a,) = g(a,) for a sequence {a,} such that Y |a,|"**"V = co. Show that
f=g¢

(b) Use Exercise 2.9 to show that if f, g and {a,} are as in part (a) with
Y |a,|~#*9 = oo for some € > 0 then f = g.

(c) Find all entire functions f of finite order such that f(log n) = n.

(d) Give an example of an entire function with zeros {log 2, log 3, ...}



Chapter XII

The Range of an Analytic Function

In this chapter the range of an analytic function is investigated. A generic
problem of this type is the following: Let .# be a family of analytic functions
on a region G which satisfy some property P. What can be said about f(G)
for each fin # ? Are the sets f(G) uniformly big in some sense? Does there
exist a ball B(a; r) such that f(G) > B(a; r) for each fin & ? Needless to say,
the answers to such questions depend on the property P that is used to
define Z#.

In fact there are a few theorems of this type that have already been
encountered. For example, the Casorati-Weierstrass Theorem says that if

= {z: 0 < |z—a| < r} and & is the set of analytic functions on G with

an essential singularity at z = a, then for each §, 0 < 8 < r, and each fin
% f(ann (a: 0; 8)) is dense i ﬂ:(v 1 71\ Recall (Exercise V. 1.13) that if fis

(3% J \QRiiii (g Uy Vg RO u\.«lxu v ANw G\ A Ay LR AAJ

entire and f(1/z) has a pole at z = 0, then fisa polynomlal. So if fis not a
polynomial then f(1/z) has an essential singularity at z = 0. So as a corollary
to the Casorati-Weierstrass Theorem, f(C) is dense in C for each entire
function (if f is a polynomial then f(C) =

,
e Great Pie
A 57 1w L 4 1w
T

ix

! hlS chanter will culminate 1in t ard henrem that enho
ul.ll.vx vV 111 VL1111V 1k L1l ~J AL N3 1 1ivUiviil liiaav owuv
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has an essential singularity at z = a then f(ann (a; 0; 8)) is equal to the
entlre plane with possibly one point deleted. Moreover, f assumes each of

the values in this punctured disk an infinite number of times. (See Exercise
V. 1.10.) As above, this yields that f'((]“\ is also the whole plane, with one

£r100 b3~ TL: 1, s +1
L1

nn.Lln mieat An A,«l ...L ‘ PR SINDN N~y ag
1 11 CIILILI© 1uu\,uuu llllb lb KilOWii as
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Littie Picard Theorem. However, this
pendently.

Before these theorems o
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IS necessary to obtain
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—which results are of
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§1. Bloch’s Theorem

To fit the result referred to in the title of this section into the general

questions posed in the introduction, let D = B(O. 1) and let & be the family
D~ such that f(m =0

O 1YIrMNnyre t\ 10N [{n\ —
ner way. ocausc j (v) =

f analvtic on a re

QLG ) 2% [ §

of all functions
0) = 1. H.
# 0, f i1s not constant and SO f(D) is open. That is, f(D) must contain a
disk of positive radius. As a consequence of Bloch’s Theorem, there is a

positive constant B such that f(G) contains a disk of radius B for each fin %

nd
jgles

—
*s

292
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1.1 Lemma. Let f be analytic in D = {z: < 1 and suppose that f(0) = 0,

Izl <
f©0) = 1,and|f(z)| < M forall zin D. Then M > 1 and f(D) = B(0; 1/6M).

Proof. Let 0 < r <1 and f(2) = z+a222+. .. ; according to Cauchy’s
Estimate |a,| < M/r"forn > 1.So 1 = |a| < M. If |z| = (4M)" ! then

@ =l = 3 e
> (4M)™ ! — i M@AM)™"
=2

= @M) ' —(16M—4)"!

> (6M)7!

\-/

since M > 1.

Suppose |w| < (6M)!; it will be shown that g(z) = f(z)—w has a zero.
In fact, for |z| = @M)7', [f(2)—g()| = |w| < (6M)~! < |f(2)|. So, by
Rouché’s Theorem, f and g have the same number of zeros in B(0; 1/4M).
Since f(0) = 0, g(z,) = O for some z,; hence f(D) > B(0; 1/6M). K

1.2 Lemma. Suppose g is analytic on B(0; R), g(0) = 0, |g'(0)] = » > 0, and
lg(2)| < M for all z, then

¢(BO; R)) > B (o; RZ“Z)

’ -1 . ] —
Proof. Let f(z) = [Rg (0)]7 'g(Rz) for |z| < 1; then fis analytlc on D=
~o | o - £\ £\ 1 anAdAl LN - AAI.. D FAaseall e N A e Al o
{4. iz} < 1;,_/ W) = U,_/ W) = 1,ana |j(Z)| < M[ui 10T all Z in D. nu,uuuug

to the preceding lemma, f(D) © B(0; nR/6M). If this is translated in terms
of the original function g, the lemma is proved. |}

1.3 Lemma. Let f be an analytic function on the disk B(a; r) such that
|f'(2)—=f"(a)| < |f'(a)| for all z in B(a;r), z # a; then f is one-one.

Proof. Suppose z, and z, are points in B(a; r) and z, # z,. If v is the line
segment [z,, z,] then an application of the triangle inequality yields

CARCA U @) d|

> |[r@d| - |[1r@-rae|

b4

1.4 Bloch’s Theorem. Let f be an analytic function on a region containing the
closure of the disk D = {z: |z| < 1} and satisfying f(0) = 0, f'(0) = 1. Then
there is a disk S < D on which f is one-one and such that f(S) contains a disk
of radius 1/72.
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Proof. Let K(r) = max {|f'(2)|: |z| = r} and let h(r) = (1=r)K(r). It is
easy to see that A: [0, 1] - R is continuous, #(0) = 1, A(1) = 0. Let ry, =
sup {r: h(r) = 1}; then h(ry) =1, ro < 1, and A(r) < 1 if r > ro (Why?).
Let a be chosen with |a| = r, and |f'(a)| = K(ro); then

1.5 AU = (1 —» )1
aews IJ \*/| 4 ’ .

Now if |z—a| < }(1=r¢) = po, |z| < 3 (1+ro); since ro < } (1+r), the
definition of r, gives

1.6 I/ @] < KG(A+ro))
= h3(1+ro) [1=3(1+ro)]”
< [1=3(1+ry)]™"
= 1/po

1

for [z—a| < po. Combining (1.5) and (1.6) gives
@@ < 1f@)] + £ @)
< 3/2po.
According to Schwarz’s Lemma, this implies that
3|z—d|
205

If'@)—-f(@)] <

vm#@wi—vwl

Po

By Lemma is one-one on S.
It remains tG show thaLJ\S) contains a disk of radius 1/72 For this
define g: B(0; 3po) - C by g(z) = f(z+a)—f(a) then g(0) = 0, [g'(0)] =
|f (@) = (2po) 1. If z e B(0; 1p,) then the line segment y = [a, z+a] lies

in S < B(a; py). So by (1.6)
lg(2)| = Uf’(w) dw!

1
<~ _ |lal
= ILI
Po
< 1.
“nr\lvinn Temma 19 oivec that
yt’l]llle At/ ALL1ALAACA A ok EI'VO Li1qa L
g(B(0; $po)) = B(0; o)
where
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17 Coavallavwey T ot £ L, 2 mealistfn £i0antlnte sin 2 oo fos: anztafat.- BIN. DY
1./ LOTOunary. Let j oe an anarytic junction on a region containing bV, Nj,
£( R(O ) I- of ] ! | £ (O]

Proof. Apply Bloch’s theorem to the function g(z) = [f(Rz) — f(0)l/Rf’ (0)
(the result is trivial if f'(0) = 0, so it may be assumed that f'(0) # 0).

1.8 Definition. Let # be the set of all functions f analytic on a region con-
taininge the closure of the disk D = !7 l»| <« 11 and satisfving f(ﬂ\

CCRILLillgm ULilv WiIVUULW VILW  \BLUAW 1<} ~ O LioR y ik l JA\V) —

f'(0) = 1. For each fin & let B(f) be the supremum of all numbers r such
that there is a disk S in D on which fis one-one and such that f(S) contains

a disk of radius r. ( So B(f) = —) . Bloch’s constant is the number B defined

\ 72)
b
oYy
B =mt\p(f).feH;
: , 1 ) :
According to Bloch’s Theorem, B > Tk If one considers the function
f(z) = z then clearly B < 1. However, better estimates than these are
known. In fact, it is known that .43 < B < 47, Although the exact value
of B remains unknown, it has been conjectured that
1 11
=)' =
B 3 12
B 2T /1
(I+y3*1 -
\%/
A related constant is defined as follows
1.9 Definition. Let & be as in Definition 1.8. For each fin & define A(f) =
sup {r: f(D) contains a disk of radius r}. Landaw’s constant L is defined by

Clearly L > B and it is easy to see that L < 1. Again the exact value of
L is unknown but it can be proved that .50 < L < .56. In particular, L > B.

1.10 Proposition. If f is analytic on a region containing the closure of the disk
D = {a:|z] < 1} and f(0) = O, f'(0) = 1; then f(D) contains a disk of radius
L.

Proof. The proof will be accomplished by showing that f(D) contains a disk
1
of radius A = A(f). For each n there is a point «, in f(D) such that B (a,,; J\———)

c f‘(n\ an,, ;frmc f(l) \ nd this last set is com
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st ~ 3mn FIDTY and 4o ecnnhoamtian~a § . ~L ‘-L "
L& 111 J 4L/ ) allu a dDUuvdlLyuulive & f sucn Lila nyx

a
that we may assume that « = lim «,. If |w—a| < A, choose n, such that
|w—a| < A—=1/n,. There is an integer n, > n, such that

—> a. ll. lb cadsy to see

I|<)_,

1
<A ——
ho
1
< A — -
n

if n > n,. That is w € B(,; A—1/n) < f(D). Since w was arbitrary it follows
that B(a; A) < f(D). R

1.11 Corollary. Let f be analytic on a region that contains B(0;R); then
f(R(n W rontaine o 1C nf radilc I 4 ﬂ\l
JAL Vs N Jj LGS e ol Uy ratias 4| J \V)| &

Exercises

1. Examine the proof of Bloch’s Theorem to prove that L > 1/24.
2. Suppose that in the statement of Bloch’s Theorem it is only assumed that
f is analytic on D. What conclusion can be drawn? (Hint: Consider the

functions f(z) = s 'f(sz), 0 < s < 1.) Do the same for Proposition 1.10.

§2. The Little Picard Theorem
The principal result of this section generalizes Theorem XI. 3.6. However,
before proceeding, a lemma is necessary.

2.1 Lemma. Let G be a simply connected region and suppose that f is an
analytic fun('tmn on G that does not assume the values 0 or 1. Then there is

’\
k

for zin G.

Proof. Since f never vanishes there is a branch £ of log f(z) defined on G;

t iq of TLet F(2) = (Qni N—1 /0. if F(a) = n for some integer n
Lt 10 C —'_[ j 92 8 \L} \Lllt} l/\é} \u) — It 1VU1 DVUIILIV lllLCSCI 14

f(a) = exp (Z=in) = 1, which cannot happen. Hence F does not assume any
integer values. Since F cannot assume the values O and 1, it is possible to
define

H(z) = VF(E) - VF@)-1.
Now H(z) # 0 for any z so that it is possible to define a branch of g of
Al ~n 7 Wance ~nchfMN1 1 10,290 ,— 29\ 11 1(,9 1 o~ N2 _
Vi1 vl UJ. L1VIINVG UUDII\LS}'T' 1 — 'j\c T C }T 1 — 2\¢ T¢C ) -
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1
I(H+1/H)? = 2F = — /. But this gives f = ¢ = exp [mi+mi cosh (2g)] =

Tl

—exp [#i cosh (22)]. R
Suppose f and g are as in the lemma nisa posmve 1nteger and m is any
int (CECr. If there is a puuu ain G wi g( ) = T 1ug \\/rl-t-\/rl—l)-t-z lmn',
then 2 cosn[zg(a)J = e“g(“}+e'2-"( = ™ (Jn+n—1)* +e " (Jn+
Jr—D* = )"’[(\/n+\/n—1)‘+(\/n Jr=1% = (=D)"22n-1)]; or
cosh [2¢g(a)] = (—— 1)™(2n—1). Therefore f(a) = —exp [(—1)"(2n—1)=i] and,
since (2n— 1) must be odd, f(a) = 1. Hence g cannot assume any of the values

{+log Wn+vn—D+dimmn>1,m=0, +1,...}.

These points form the vertices of a grid of rectangles in the plane. The height
of an arbitrary rectangle is

Izlmﬂ’—'fl(m-i-l)ﬂl =1ir < \/3

rectangle <2. This gives the tollowmg

ae.

2.2 Lemma. Let G, f, and g be as in Lemma 2.1. Then g(G) contains no disk
of radius 1.

2.3 Little Picard Theorem. If f is an entire function that omits iwo values
then f is a constant.

Proof. If f(z) # a and f(z) # b for all z then (f—a) (b—a)~' omits the
values 0 and 1. So assume that f(z) # 0 and f(z) # 1 for all z. According to

Lemma 2.2, this gives an entire function g such that g(C) contains no disk
of radius 1. Moreover, if fis not a constant function then g is not constant

v

SO there 1S 4 noint 2 with o' ) £ 0 Rv concidering of » L 7 \ if nececcarvy

yullll. l-o YYiiil 6 \Li 0} . u.’ \ivll\)lu\tlllls 6\‘1 1 AOI a4 1z UU\JDO“LJ’
24 am P 1 - _ri ) . P o PR | S 1 11
It IIlad L0 voroliary 1.11,

y be supposed that g'(0) # 0. But accordmg

g(B(0; R)) contains a disk of radius LR|g '(0)|. If R is chosen sufficiently large
this gives that g(C) does contain a disk of radius 1—a contradiction. So f
must be constant. Il

Dwvamnicona
1LACI LIDCB

1. Show that if fis a meromorphic function on C such thatC _ —f(C) has
at least three points then f is a constant. (Hint: What if oo ¢ f(C)?)

2. For each integer n 2 | determine all meromorphic functions f and g on
C such that f"+g"=1.

§3. Schottky’s Theorem

Let f be a function defined on a simply connected region containing the
disk B(O 1) and suppose that f never assumes the values 0 and 1. Let us
nnnnnnnn thn sesm~nnf AL T fnsrasann DN 1 I /P ia Ny lewnm~nlh AFf 1A £ 1at
t:)\auuuc tIic prool Ul LCIlllla 4.1. 11 v 15 ally UlallLll Ul 1Ug J 1LL
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F=_—1¢,

2xi

H = NVF—-<F-1,

g = a branch of log H.
There are two places in this scheme wnere we are allowed a certain amount
of latitude: namelv. in picking the functions 7 and o which are hr
o1 1atituae; namely, in picKing tne i functions Z and g wnicn arc branches of

log f and log H, respectively. For the proof of Schottky’s Theorem below
specify these branches by requiring

3.1 0 < Im 40) < 2,
3.2 0 < Im g(0) < 2.
2 Qchattlhviec Thoanrem For onch v and 1K We v an and N < R <1 h ere i IS

e MIVEIURIINRY O R IIVUIVILNEe £ U CU Lll- W wiiu H V ~ u N W i UV — =y L (1944

a constant C(a,f) such that if f is an analytic function on some simply
connected region containing B(0; 1) that omits the values 0 and 1, and such

that | f(0)| < «; then |f(2)| < C(a,B) for |z| < B.
Proof. It is only necessary to prove this theorem for 2 < « < oo. The proof
1s accomplished by looking at two cases.

Case 1. Suppose ¥ < |f(0)| < «. Recalling the functions F, H, and g in
Lemma 2.1 (and rediscussed at the beginning of this section), (3.1) gives

1
[FO)] = - llog| f(0)] +i Im £(0)]

1
< —1 i;
=5 og a+

1
Let Co(x) = 7 log x+1. Also
T

3.

S
e
F\
T
-~
o
~—’
I+

[FO)-1] < |
= exp (% log | f(0)]) +exp (} log |F(0)—-1])

= [O)|* + [FO)—1[*

< Co(@)* +[Cola)+ 1]

Let C,(2) = Co(2)* +[Cole) +1]%. Now if |H(0)] > 1 then (3.2) and (3.4) give

8(0)| = llog| H(0) |+ im g(0)
< log IH(O)]+21T
< log C,(a) + 2.

If |[H(0)| < 1 then in a similar fashion.
1g(0)] < —log [H(0)] + 2
/ 1 \
= log( + 27
|H(0)]

= log [WF©) + NFO)—1] + 2=

P PR AN AN, |
< 1og Ci(a)+2m.




[
[/}
-
Pt
=
Q
L ]
[¢]
=
N
N4
\0

Let C,(o) = log C,(«)+27.
If |a| < 1 then Corollary 1.11 implies that g(B(a; 1—|al)) contains a disk
of radius
35 L(1-al) |g'(a)l.

On the other hand, Lemma 2.2 says that g(B(0; 1)) contains no disk of
radius 1. Hence, the expression (3.5) must be less than 1; that is,

3.6 lg’(@)| < [L(1—|a])]"" for |a| < 1.
If |a] < 1, let y be the line segment [0, a]; then

< |
= |

IA
N

< Cy(«)+|a| max {|g’'(2)|: z €[0, a]}
Using (3.6) this gives

g@)| < C5(e) + 77—
L(i —|a])

If Cs(x, B) = Cp(x)+B[L(1—B)]~! then this gives

lg@)| < Ci(«, B)
if |z| < B. Consequently if [z] < B

@] = lexp [ cosh 2g(2)]

< exp [=|cosh 2g(2)|]

< exp [me?!9)]]
exp [re?eP);
define C («, B) = exp {m exp [2C;(«, B)]}.
Case 2. Suppose 0 < [f(0)| < 3. In this case (1 —f) satisfies the conditions

of Case 1 so that |1 —f(2)] < C,(2, B) if |z] < B. Hence |f(2)] < 1+ C4(2, B).
If we define

IA

Y DN emaw (0 N 10 (Y O

C(e, B) = max {Cule, p), 1 +C4(2, )5,
the theorem is nroved. IR
- AAWN/A WALAL AV tl‘lv ASA = X ) -

3.7 Corollary. Let f be analytic on a simply connected region containing
B(0; R) and suppose that f omits the values 0 and 1. If C(«, B) is the constant
obtained in Schottky’s Theorem and |f(0)| < « then |f(z)| < C(«, B) for
lz| < BR.

D Ant Aancidae LA £y s~m £ DS\ 1 Ha
17 U_/ \.«UllblUCl Ll € 1un UllJ \i\<), IAI 1. N

What Schottky’s Tneorem (and the Coroiiary that follows it) says is that
a certain family of functions is uniformly bounded on proper subdisks of
B(0; 1). By Montel’s Theorem, it follows that this family is normal. It is

this observ ,af ion which will be of use in proving the Great Picard Theorem

AdiNwa A O sz LAV ARG AVGISS
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[ ] "‘l Y e/ —a
S4. 1ne ureai Picard Theorem

The main tool used in the proof of Picard’s Theorem is the following
result.

v Thanram If &

normal in C(G,C,)

Proof. Fix a point z, in G and define the families ¥ and 5 by

G = (fe F:|fo)| < 1

# = {feF:|fG0) > 1);
s0 F = G U . It will be shown that ¢ is normal in H(G) and that S is
normal in C(G, C,) (that oo is a limit of a sequence in J# is easily seen by
considering constant functions). To show that ¢ is normal in H(G), Montel’s
Theorem is invoked; that is, it is sufficient to show that ¥ is locally bounded.

If a 1s any point in G let y be a curve in Gfromzytoa;let Dy, D,,..., D,

be disks in G with centers z,, z,,...,2, = a on {y} and such that z, _,
d z, are in D, i nl) for 1 < k < n. Also assume that I) < G for

11 Lk 42 S e 120U Qo olliliL Liial

a

0 < k < n. We now apply Schottky’s Theorem to D,. It fo]lows that there

is a constant C, such that |f(z)| < C, for z in Dy and fin 9. (If D, =

B(zo; r) and R > r is such that B(z,; R) < G then, according to Corollary
3.7, |f(2)] < €1, B)for zin D, and fin ¥ whenever 8 is chosen with r < BR).

In particular |f(z,)] < C, so that Schottky’s Theorem gives that ¥ is

............. 1 slvlo
nfn t n ant.

nmnifarmly hanindad oy o ~AAn inino wa hava that @ ;e
Uiliiviiial UVUuliuuL\u Uy a Lullola ll \./1 Ull Ul wuUll uu.uus, VWL llavwe Lllal < 10
uniformly bounded on D,. Since a was arbitrary, this gives that ¥ is locally

bounded. By Montel’s Theorem, ¢ is normal in H (G).
Now consider J# = { fe F: |f(zo)] = 1}. If fe S then 1/f is analytic

on G because f never vanishes. Also 1/f never vanishes and never assumes
tha valiia 1 TMAranuar (1IN (» )] ~ 1 Ur\nna :‘& 1/ £~ W] — @ and
Lilv vaiuv 1, 111VIVUYVYLlL \I/J ] \< }I = 1. L1VIIVC 70 — /) J = f — < allu

Ey/74 ' S Tl Y724

S is normal in H(G). So if {f,} is a sequence in JZ there is a subsequence
{f..} and an analytic function 4 on G such that {l/f, } converges in H(G)
to h. According to Corollary VII. 2.6 (Corollary to Hurwitz’s Theorem),

either h = 0 or h never vanishes. If A :

4.2 Great Picard Theorem. Suppose an analytic function f has an essential
singularity at z = a. Then in each neighborhood of a f assumes each complex
number, with one possible exception, an infinite number of times.

1. sl L

P‘r‘ooj For the sake of buupuuty Suppose tnat y nas an essential bmgmdrlty

at z = 0. Suppose that there is an R such that there are two numbers not in

{f(2): 0 < |z| < R}; we will obtain a contradiction. Again, we may suppose

that f(z) # 0 and f(z) # 1 for 0 < |z] < R. Let G = B(0; R)— {0} and

deﬁnef,, G—~C byf(z) = f(z/n) So eachf is analytic and nof,, assumes
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Let {f, } be a subsequence of {f,} such that f, — ¢ uniformly on {z:
|z| = 1R}, where ¢ is either analytic on G or ¢ = co. If ¢ is analytic, let
M=max {e@)]: |zl = 4R}; then |f(z/n)] = |f(@)| < |£,@) -9 +
lp(z)| < 2M for n, sufficiently large and |z| = $R. Thus |f(2)] < 2M for
|z| = R/2n, and for sufficiently large n,. According to the Maximum Modulus
Principie, f is uniformly bounded on concentric annuli about zero. This
gives that f is bounded by 2M on a deleted neighborhood of zero and, so,
z = 0 must be a removable singularity. Therefore ¢ cannot be analytic and
must be identically infinite.

It is left to the reader to show that if ¢ = oo then f must have a pole at
Zero.

So at most one complex number is never assumed. If there is a complex
number w which is assumed only a finite number of times then by taking a
sufficiently small disk, we again arrive at a punctured disk in which f fails to
assume two values. |}

An alternate phrasing of this theorem is the following.

4.3 Corollary. If f has an isolated singularity at z=a and if there are two
complex numbers that are not assumed infinitely often by f then z = a is either

a pole or a removable singularity.

In the preceding chapter it was shown that an entire function of order
A, where A is not an integer, assumes each value infinitely often (Corollary
XI1.3.8). Functions of the form e2, for g a polynomial, assume each value
infinitely often, although there is one excepted value—namely, zero. The
Great Picard Theorem yields a general result along these lines (although
an exceptional value i1s possible), so that the following result is not
comparable with Corollary XI.3.8).

4.4 Corollary. If f is an entire function that is not a polynomial then f
assumes every complex number, with one exception, an infinite number of

Proof. Consider the function g(z)=f(1/z). Since f is not a polynomial, g
has an essential singularity at z=0 (Exercise V.1.13). The result now
follows from the Great Picard Theorem. |

Notice that Corollary 4.4 is an improvement of the Littie Picard Theorem.

Dw ot
LACIUIDO

1. Let f be analytic in G= B(0; R)— {0} and discuss all possible values of
the integral

1 r //\
- | L,

2mi lf(Z) a
where y is the circle |z| = r < R and a is any complex number. If it is

assumed that this integral takes on certain values for certain numbers a,
does this imply anything about the nature of the singularity at z = 0?

~

2. Show that if f is a one-one entire function then f(z)=az+ b for some
constants a and b, a#0.






Appendix A

Calculus for Complex Valued Functions
on an Interval

In this Appendix we would like to indicate a few results for functions
defined on an interval, but whose values are in C rather than R. If f: [a, b]
— C i5 a given function then one can easily study its calculus type properties
by considering the real valued functions Re f and Im f. For example, the
fact that for a complex number z = x+iy

max (|x]
easily allows us to show that f'is continuous iff Re f and Im f are continuous.
However we sometimes wish to have a property defined and explored directly
in terms of f without resorting to the real and imaginary parts of f. This is
the case with the derivative of f.

A.1 Definition. A function f: [a, b] — C is differentiable at a point x in (a, b)
if the limit

o SR =)

h—-0 h

exists and is finite. The value of this limit is denoted by f’(x). For the points
x = a or b we modify this definition by taking right or left sided limits. If f
is differentiable at each point of [a, b] then we say that f is a differentiable
function and we obtain a new function f': [a, b] — C which is called the

derivative of f.
The next Proposition has a trivial proof which we leave to the reader.

A.2 Proposition. A function f [a, b] — C is differentiable iff Re f and Im f are
differentiable. Also, f'(x) = (Re f)'(x) + i(Im f)'(x) for all x in [a, b).

Of course it makes no sense to talk of the derivative of a complex valued
function being positive; accordingly, the geometrical significance of the
derivative of a real valued function has no analogue for complex valued
functions. However the reader is invited to play a game by assuming that
Re f'and Im f have positive or negative derivatives, and then interpret these

conditions for f.
One fact remains true for derivatives and this is the consequence of a

vanishing derivative.

A.3 Proposition. If a function [ [a, b] — C is differentiable and f'(x) = 0 for
all x then f is a constant.

303
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e 17

Proof. If f'(x) = 0 for all x then (Re f)'(x) = (Im f)'(x) = 0 for all x. It
follows that Re f and Im f are constant and, hence, so is f.

One important theorem about the derivative of a real valued function
which is not true for comp]ex valued functions is the Mean Value Theorem.
In fact, if f'(x\ = x2+ix3 it is easy to show that

JB)=f@) = f'(c) (b—a)

for some point ¢ in [a,b] only when a=b.
One of the principal applications of the Mean Value Theorem for

nnnnnnnnnnnnnnnnnnnnnn
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preceding paragraph one might well doubt the validity of the Chain Rule
for complex valued functions. The Chain Rule tells us how to calculate the
derivative of the composition of two differentiable functions; this leads to
two different situations. First suppose that f:[a,b]—>C is differentiable
and let g:[c,d]—[a,b] also be differentiable. Then f(g(z))=Ref(g(?))+
iImf(g(?)); from here the Chain Rule follows by applying the Chain Rule
from Calculus. In the second case the result still holds. Let G be an open
subset of C such that f([a,b]) =G and suppose h:G—C is analytic. We
wish to show that h°f is differentiable and calculate (h°f)’. Since the proof
of this Chain Rule follows the line of argument used to prove the Chain
Rule for the composition of two analytic functions (Proposition 111.2.4) we
will not repeat it here. We summarize this discussion in the following.

A.4 Proposition. Let f: [a, b] > C be a differentiable function.

(@) If g: [c, d] —[a, b] is differentiable then fo g is differentiable and
(fo8) () = f(g(D)g' ).

(b) If G is an open subset of C containing f([a, b]) and h: G — C is an
analytic function then h o f is differentiable and (ho f)'(x) = h'(f(x))f'(x).

To discuss integral calculus for complex valued functions we adopt a
somewhat different approach. We define the integral in terms of the real and
imaginary parts of the function.

Feidinm T LT LT O Mo 0 ~nntinmiinae
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of f over [a, b] by
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ff(x) dx = beef(x)dx-i-ifImf(x)dx.

If the reader wishes to see a direct development of the integral he need
only work through Section IV. 2 of the text with y(¢) = ¢ for all . However,
thioc hawdls;, cnnse~a st lala
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]

1 .
Besides the additivity of the integral the only resuit which interests us is
the Fundamental Theorem of Calculus.

Recall that if F: [a, b] — C is a function and f = F’ then F is called a

primitive of f

srrsl/C A
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A.6 Fundamental Theorem of Calculus. A continuous function f: [a, b] — C
has a primitive and any two primitives differ by a constant. If F is any primitive

of f then

Proof. If g and h are primitives of Re fand Im fthen F = g+ihis a primitive
of f. The result now easily follows.






Appendix B

Suggestions for Further Study

___ 1 WeeLE* . _____B° __0% WNT_.4__
and Bibiiograpnicai Notes

GENERAL

The theory of analytic functions of one complex variable i1s a vast one.
The books by Ahlfors [1], Caratheodory [9], Fuchs [17], Heins [24], Hille
[26], Rudin [41], Saks and Zygmund [42], Sansone and Gerretsen [43], and
Veech [46] treat some topics not covered in this book. In addition they
contain material which further develops some of the topics discussed here.
We have not touched upon the theory of functions of several complex
variables. The book by Narasimhan [37] contains an elementary introduc-

tion to functions of several complex variables. Also Cartan [10] contains an
introduction to the subiect. The book hv Whittaker and Watson [47]

AZAVA NSNsvew VAN AL Sl v a AA% [P AVANESS v 222G AND A2 LI

contains some very classical analysis and several bibliographical com-
ments. Finally the two volume work by Polya and Szegd [39] should be
looked at by every student. These books contain problems on analysis with
the solutions in the back.

CHAPTER IiI

§1. A more thorough treatment of power series and infinite series in
general can be seen in the book by Knopp [28]

§2 Tha al tn dafin frimtinn C
(for example, Ahlfors [1]) define a function to be analyuc if it has a
derivative at every point in an open subset of the plane. Other books (for
example, Cartan [10]) define a function to be analytic in an open subset of
the plane if at every point of this open set the function has a power series

avmanginn Thic lattar annrnarh ha Ana advantaoa 1n that it tha
UA}JGLIDIUII 11110 l1ailivil al}yl vawvlil uaa vliiv a V all tasb 111 Lllal- IL lD L1

standard way of defining a function to be analytic in several variables.
In many ways the study of analytic function theory can be considered
as the study of the logarithm function. This will become more evident in
the remainder of the book.
§3. More information concerning Mobius transformations can be ob-
tained from the book by Caratheodory [9].

CHAPTER IV

§3. See the paper by Burdick and Lesley [8] for more on uniqueness
theorems.

(7N
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§4 and §5. Cauchy’s Theorem first appeared in the treatise [11]. How-
ever Cauchy’s original statement was far different from the one that
appears in this book. Cauchy proved his theorem under the assumption
that the function f is differentiable and that the derivative is continuous on
and inside a simple closed smooth curve. Goursat [20, 21] removed the
assumption that f" is continuous but retained the assumption that the curve
over which the integral is to be taken is a simple closed smooth curve.
Pringsheim [40] introduced the method of proof that is used by many
today. He first proved the theorem for triangles (the method used to prove
Goursat’s Theorem in §8) and then approximated the contours by poly-
gons. The role of the winding number in Cauchy’s theorem and the

extension to a system of curves such that the sum of the winding numbers
with respect to every pnint outside of the reginn of ana]vtinity 1S zero

A2 O ULRLOAREL L RALN Al VI QLRI ) NN Lwi Ny

seems to have first been observed by Artin [4]. The proof of Theorem
IV.5.4 is due to Dixon [13].

-

APTERV

C V
For more examples of the use of residues to calculate integrals see the
books by Lindelof [31] and Mitrinovic [35]. An interesting paper is the one
by Boas and Friedman [7].
§3. The reference for Glicksberg’s statement of Rouché’s Theorem is
[18].

CHAPTER VI

The original paper of Phragmen and Lindelof [38] is still worth reading.
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problems in complex analysis.

§4. There 1s a wealth of material on conformed mappings. Caratheodory
[9] has some additional information. Also the books by Bergman [5],
Goluzin {19], and Sansone and Gerretsen, vol. II [43] have extensive
treatments. It is also possible to use Hilbert space techniques to construct
conformal maps. See Bergman [5] and the second volume of Hille [26].

§7. For more information on the gamma function look at the book of
Artin [3]. Also the paper [30] contains more information about the gamma
function. An interesting survey article is one by Davis [12].

§8. The book by Edwards [16] gives a complete exposition of the
Reimann zeta hypothesis from an historical point of view. This book
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examines Riemann’s original paper point by point and fully explicates his
results. There is a result of Beurling (see the book by Donoghue [14]) that
gives an equivalent formulation of the Riemann zeta hypothesis in terms of
functional analysis.

CHAPTER VIII

The reference to Grabiner’s treatment of Runge’s Theorem is [22].
There are several other proofs of Runge’s Theorem. One proof is by “pole
pushing”; this was used 1in the earlier edition of this book and also appears
in [42]. A proof using functional analysis appears in Rudin’s book [41].

CHAPTER IX

§3. An interestin
§6. The book b

thenrv Af Riemann
UitV y Ul faaliliiaiiil

§7. An excellent

o w k< ‘UQ

Further results on harmonic functions can be found in Helms [25]. This
area of harmonic functions has been extended to functions of more than
two varlables In addition the Dirichlet problem can be formulated and

CHAPTER XII

The book by Hayman [23] contains many generalizations of the theo-
rems presented in this chapter. Also the paper by MacGregor [32] contains
many applications and additional results. This paper also contains an
interesting bibliography.

There are essentially two ways of proving Picard’s Theorem. The
elementary approach used in this chapter is based on the treatment found
in Landau’s book [29]. The other treatment uses the modular function and
can be found in [1] or [46],
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