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Given a group G acting transitively on a set S , a common strategy for understanding
both objects is to fix an element x ∈ S and examine the quotient G⧸Stab(x). Under this

identification, S is isomorphic, as a G -set, to the quotient G⧸Stab(x), effectively equipping
S with a homogeneous structure. Moreover, if S carries additional structure—such as
that of a topological space or a differentiable manifold—we can often transfer this struc-
ture to the quotient G⧸Stab(x). Beginning with a rational quadratic space V , the groups
G = O(p ,q ) or SO(p ,q ) of the extension of scalars V (R) already come with a topology
induced from the one on Mp+q (R). If K is a maximal compact subgroup, then the result-

ing quotient, 𝔇 =G⧸K has the structure of a symmetric space- a specific class of differential
manifold-. The specific case where (p ,q ) = (2,n) has been extensively studied as the as-
sociated symmetric spaces admit complex structures and may therefore be considered as
"algebraic" objects when compactified; for example, the hyperbolic upper half-plane H

corresponds to the symmetric space associated to the group SO(2,1).
In our case we will consider, the group SO(3,1) from the previous example whose asso-
ciated symmetric space can be realized as the 3-dimensional hyperbolic upper-half space.
We begin by presenting H3 and then the isomorphism between it and SO(3,1).

1The Upper-half Space

We denote by H3 the set {z +v j | z ∈ C,v ∈ R>0} where j is a formal symbol. Viewing H3
as the subset of R3 consisting of all triples of (i , j ,k ) with positive k coordinate naturally
makes it into a differentiable manifold. We denote by 𝜕H3 the boundary of the upper half-
space given by the plane k = 0 in R3.Letting, z = x + i y , we equip H3 with the hyperbolic
metric induced from the line element

ds 2 =
dx2 +dy2 +dv2

v2
. (1)

Under this assignment, we can define the geodesic between two points P,Q ∈ H3 as the
unique path 𝛾(t ) : [0,1] → H3 such that the integral∫ 1

0

√︁
x ′ (t )2 + y ′ (t )2 +v ′ (t )2

v ′ (t )2
dt

is minimized. If P andQ have the same z coordinate, such a geodesic is given by a Euclidean
straight line passing vertically through both points and going to infinity. Otherwise, it is
given by a Euclidean semi-circle intersecting 𝜕H3 orthogonally and passing through both
points. Similarly, hyperplanes in H3 are either given by Eucledian 2-dimensional planes
perpendicular to the boundary or Euclidean hemispheres also intersecting the boundary
orthogonally.
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Figure 1: Visualization of the upper half-space H3 with boundary 𝜕H3 depicted in grey.
The two possible types of hyperplanes are depicted in red. The blue curve shows the
geodesic path between the points H and F .

The group SL2 (C) = of 2×2 complex matrices with determinant one acts isometrically

on H3. For x = z + j ∈ H3 and g =
(
a b
c d

)
∈ SL2 (C) we have

g ∗ x = (az + b) (c̄ z + d̄ ) + ac̄v2
|cz +d |2 + |c |2v2

+ v
|cz +d |2 + |c |2v2

j . [EGM98] (2)

Another way to write the action of SL2 (C) on the upper-half space is provided by the
natural inclusion of H3 into the quaternion algebra H(−1,−1)/R by the assignment

z + jv = x + i y + jv ↦−→ x + i y + jv + 0k .

We note that this map is not an embedding, as H3 has no internal group structure; more-
over the image of H3 in H(−1,−1) is not closed under multiplication. However, for the
image P of x in H(−1,−1)/R, we may write the action of g ∈ SL2 (C) as

g ∗P = (aP + b) (cP +D)−1.

inside the quaternion algebra.1 Using this formula, it one checks that the identity matrix
I and −I perform the same transformation on H3; we thus let G := PSL2 (C) ↷ H3.

Proposition 1.1. The group G acts transitively on H3.

Proof. Let x = z + jv ∈ H3. We consider the matrix

gx =
©­­«
√
v

z
√
v

0
1
√
v

ª®®¬ ∈G .

Applying gx to the point j = (0,0,1) ∈ H3 we get that

g ∗ j = (a j + b) (c j +d )−1 = (
√
v j + z

√
v
) ( 1
√
v
)−1 = z + jv .

Therefore, for another point y ∈ H3, the transformation g −1x gy ∈G maps x to y making the
action of G on H3 transitive. □

1We write (aP + b ) (cP +D )−1 instead of aP +B
cP +D to emphasize that the multiplication in H(−1,−1) is non-

commutative.
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Proposition 1.2. The stabilizer of the point j ∈ H3 in G is the projective special unitary group
PSU(2,C).

Proof. For g =

(
a b
c d

)
∈ Stab( j ), we compute the product of g with its hermitian adjoint

g † which gives (
a b
c d

) (
a c
b d

)
=

(
aa + bb ac + bd
ca +db cc +dd

)
=

(
aa + bb ac + bd

¯ac + bd cc +dd

)
As g stabilizes j , (2) implies that ac̄ + bd̄ = 0 and |c |2 + |d |2 = 1 so that the above matrix

has the form
(
aā + bb̄ 0

0 1

)
. Since g ∈G , det(g ) = 1 which implies that aā +bb̄ = 1 and thus

g g † = I so that g is unitary. On the other hand, an arbitrary matrix in SU2 (C) may be

given in the form M =

(
a −b̄
b ā

)
where |a |2 + |b |2 = 1 so that the action on j is given by

ab̄ − b̄a
|a |2 + |b |2

+ 1
|a |2 + |b |2

j =
1

det(M ) j = j .

Thus M ∈ Stab( j ) which proves the claim. □

Thus we identify H3 with the quotient PSL2 (C)⧸PSU2 (C) by sending a point x = z +v j
to the class of the matrix gx sending j to x .

2The Negative Grassmanian

In this section, we establish the isomorphism between the symmetric space attached to
the group SO(3,1) and the upper-half space H3 presented in the previous section. We first
recall the example which gave rise to this situation.

We let D < 0 be a square-free integer and considered the four dimensional rational
vector space

V =Q ⊕Q ⊕ F

where F = Q(
√
D) is the quadratic imaginary extension. For x = (a,b ,𝜔) ∈ V , we con-

sidered the quadratic form Q (x) = 𝜔𝜔̄ − ab . Under this assignment, the extension of
scalars V (R) = V ⊗Q R was a real quadratic space of type (3,1). Using the Clifford al-
gebra associated toV we determined the Spin groups of our space asSpinV = SL2 (F ) and
SpinV (R) = SL2 (C); the latter satisfying the exact sequence

1 {±1} SL2 (C) SO(3,1) {±1}𝜌 𝜗 (3)

We identified V and V (R) with the isometric vector spaces

V �
{(
a w
𝜔̄ b

)
| a,b ∈Q, 𝜔 ∈ F

}
V (R) �

{(
a w
𝜔̄ b

)
| a,b ∈ R, 𝜔 ∈ C

}
where the quadratic form of an element X was given by −det(X ); the induced bilinear
form was given by (X ,Y ) = −Tr(X ·Y𝜎) where(

a b
c d

)𝜎
=

(
d̄ −c̄
−b̄ ā

)
.

This identification allowed us to express the action of P ∈ SL2 (C) on X ∈V as X ↦→ PXP †

where P † is P ’s Hermitian adjoint.
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To realize the symmetric space attached toV , we consider the negative Grassmanian which
consists of all maximum negative definite subspaces of V (R). Since our space is of type
(3,1) this is the set:

Gr− (V ) =
{
l ⊂V (R) | diml = 1, Q l < 0

}
.

As elements of SOV preserves the form on individual vectors and map subspaces to sub-
spaces, the group naturally acts on Gr− (V ); moreover this action is transitive. For all lines
l ∈ Gr− (V ) We can pick a basis element zl allowing us to fix an orientation on Gr- (V).
We say that an element g ∈ SO(3,1) is orientation preserving if for all l ∈ Gr− (V ), g ∗ zl = zp
for some p ∈ Gr- (V) and denote by SO(3,1)+ the subgroup of orientation preserving ele-
ments. This group also acts transitively on Gr− (V ) and is in fact isomorphic to the identity
component ker𝜗 of SO(3,1) from (3), hence the notation. We will not elaborate much
on this but it is a well-known result that for an n-dimensional real vector space W , all
Grassmanians of the form

Grk (W ) = {w ⊂W | dimw = k }

are smooth projective varieties of dimension (n − k )k in ℙn (R)(see [Sha13, p. 42]); more
importantly they are real differentiable manifolds of the same dimension. In our case
Gr−1 (V ) is an open subset of Gr1 (V ) which makes the negative Grassmanian into differen-
tiable manifold.
The stabilizer in SO(3,1)+ of a fixed line l0 is isomorphic to the group SO(3) ×SO(1)+ �
SO(3). Indeed, since l0 is negative definite,V can be decomposed asV = l0 ⊕ l⊥0 such that
l⊥0 is quadratic space of type (3,0). An isometry ofV fixing l0 is then given by an isometry
of l0 and an isometry of l⊥0 and thus an element of SO(3)+ × SO(1)+ � SO(3). There-

fore, we identify Gr− (V ) with the quotient SO(3,1)+⧸SO(3). We will take for granted that
SO(3) is a maximal compact subgroup of SO(3,1)+, allowing us to realize the symmetric
space of our group as the negative Grassmannian Gr− (V ).
From (3) have the following chain of isomorphisms

Gr− (V ) � SO(3,1)+⧸SO(3) �
PSL2 (C)⧸K

where K is some undetermined subgroup of PSL2 (C) corresponding to the image of
the stabilizer of a fixed line. To determine K , we consider the one-dimensional sub-
space spanR (I ) ∈ Gr− (V ) generated by the identity matrix and compute its stabilizer
in PSL2 (C). By definition, an element P ∈ PSL2 (C) fixes I if and only if P I P † = I ⇐⇒
PP † = I . Therefore P fixes I if and only if P is unitary and thus K = Stab(spanR (I )) =
PSU2 (C). Combining this result with previous ones we get

Gr− (V ) � SO(3,1)+⧸SO(3) �
PSL2 (C)⧸PSU2 (C) �H3

which gives the identification between the symmetric space attached to SO(3,1) and the
hyperbolic upper-half plane. H3.
Explicitly, this isomorphism is given by mapping mapping a point p = z + jv ∈ H3 to
the class of the matrix gp in PSL2 (C)⧸PSU2 (C) defined in proposition 1.1. The class

of gp is then sent to the class of gpI g
†
p = gp g

†
p in SO(3,1)+⧸SO(3) which corresponds

to some line lp ∈ Gr-1 (V ). Under this assignment, the matrix gp g
†
p is sent to the vector(

v + |z |2
v

z
v

z̄
v

1
v

)
∈ spanR (lp ) which corresponds to the oriented basis element of lp of norm

one. While we will not prove this statement, at each step, the maps between spaces are
diffeomorphisms.

This completes the identification of the symmetric space 𝔇 = SO(3,1)+⧸SO(3)+ with
the hyperbolic upper half-space H3. This example illustrates a special case of a more

4



general result about orthogonal groups of signature (n,1) or (1,n): their associated sym-

metric spaces SO(n,1)+⧸SO(n) can be identified with higher-dimensional analogs of the
hyperbolic upper half-spaces

Hn = {(x1,. . . ,xn−1,t ) | xi ∈ R, t ∈ R>0}. [Liv16]

. In general, one can associate symmetric spaces to a broader class of Lie groups such as
the groups O(p ,q ), the pseudo-unitary groups U(p ,q ) or the sympletic groups Sp(n : R).
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