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In this note, we give a brief overview of the theory of quadratic spaces following chap-
ter 2 of [BvdGHZ08] as well as chapter 0 of [KR99], culminating in the determination of
the special orthogonal groups attached to certain rational quadratic spaces of dimension
4. Throughout the text, R will denote a commutative ring and k will denote a field of
characteristic 0. The letters Q,R,C will respectively denote the fields of rational, real and
complex numbers.

1Quadratic Spaces

Definition 1.1. Let V be an R-module, a quadratic form on V is a function Q : V → R
which satisfies:

(i) For all r ∈ R and x ∈V ,
Q (r · x) = r 2 ·Q (x)

(ii) The function B :V ×V →R defined by

B (x ,y) =Q (x + y) −Q (x) −Q (y)

is a bilinear form on V .

We call the pair (V,Q ) a quadratic space over R.

Definition 1.2. Let (V,Q ) be a quadratic space over R.

(i) Two elements x ,y ∈V are orthogonal, denoted x ⊥ y if, B (x ,y) = 0. We denote by x⊥

the set of all elements of V which are orthogonal to x .

(ii) An element x ∈V is isotropic (cont.anisotropic) if Q (x) = 0 (cont. Q (x) ≠ 0)

(iii) The quadratic space (V,Q ) is said to be degenerate if there exits v ∈V such that for
all w ∈V, B (v ,w) = 0.

Throughout this paper, we will primarily consider the case where R = k is a field such
that V is a vector space. Notably, if char(k ) ≠ 2, then degeneracy of (V,Q ) implies the
existence of an isotropic vector.

Definition 1.3. Let (V,Q )and(V ′,Q ′) be quadratic spaces over R and 𝜎 : V → V ′ an
injective homomorphism of modules. We say 𝜎 is an isometry if for all v ∈V ,

Q ′ (𝜎(v )) =Q (v ).

If in addition 𝜎 is surjective, we say that the quadratic spaces (V,Q ) and (V,′Q ′) are
isometric.

Definition 1.4. We respectively define the orthogonal group and special orthogonal group of
a quadratic space (V,Q ) as the groups

OV = {𝜎 ∈ Aut(V ) | 𝜎 is an isometry}

SOV = {𝜎 ∈ OV | det(𝜎) = 1}.
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Example 1.5. For any quadratic space (V,Q ) over R containing an anisotropic element x
such that Q (x) ∈ R∗, we define the reflection along x⊥, 𝜏x :V →V as

𝜏x (y) = y −B (x ,y)Q (x)−1x

The reflection 𝜏x is an isometry ofV . Indeed as x is anisotropic, we obtain a decomposition
of V as

V = spank (x) ⊕ x⊥.
A vector y ∈V may therefore be expressed as y = yx +yx⊥ according to the previous decom-
position. We then have

Q (𝜏x (y)) =Q (𝜏x (yx ) + 𝜏x (yx⊥ )) =Q (𝜏x (yx )) +Q (𝜏x (yx⊥ ))

since the quadratic form is additive for orthogonal vectors. Then, since yx = 𝛼x for some
a ∈ k ,

Q (𝜏x (yx )) +Q (𝜏x (yx⊥ )) =Q (𝛼x −B (𝛼x ,x)Q (x)−1x) +Q (yx⊥ −B (yx⊥ ,x)Q (x)−1x)
=Q (𝛼x −𝛼2x) +Q (yx⊥ )
=Q (𝛼x) +Q (yx⊥ )
=Q (y).

The following properties follow from explicit computations:

(i) 𝜏x (x) = −x

(ii) 𝜏2 = Id

(iii) 𝜏x (y) = y ,∀y ∈ x⊥

(iv) det(𝜏x ) = −1

Reflections are in some sense the most important isometries as ifV is finitely generated
as an R-module, then the group OV is generated by reflections; the group SOV is generated
by the products of two reflections.

Example 1.6. Let p ,q be non-negative integers and consider the vector space Rp+q with
standard basis {v1,. . .vp ,. . . ,vp+q }. We denote by Rp ,q the quadratic space (Rp+q ,Qp ,q ),
where for a vector v = 𝛼1v1 + · · · +𝛼pvp + · · · +𝛼p+qvp+q ,

Qp ,q (v ) = 𝛼2
1 + · · · +𝛼

2
p −𝛼2

p+1 − · · · −𝛼2
p+q .

We denote by O (p ,q ) and SO (p ,q ) the orthogonal and special orthogonal groups of
Rp ,q

The quadratic spaces Rp ,q are of central importance due to the following theorem

Theorem 1.7. Let (V,Q ) be a finite dimensional real non-degenerate quadratic space, then V is
isometric to some unique vector space Rp ,q . We call the pair (p ,q ) the signature of V and denote it
by sigV.

Proof. Let (vi )ni=1 be a basis ofV and let Bi j := B (vi ,v j ). We call the matrix A := (Bi j )ni ,j=1 ∈
Mn (R) the Gram matrix associated to (V,Q ) and its basis. For x ∈V , a direct computation
shows that

Q (x) = xTAx .
Furthermore, as the form B is symmetric, so is the matrix A. Since every real symmetric
matrix is diagnosable over R, there exists an orthonormal basis ofV with respect to which
Q may be expressed in the form Qp ,q which completes the proof. □

Therefore, the classification of real finite dimensional quadratic spaces and their orthog-
onal groups amounts to the classification of the spaces Rp ,qand the groupsO (p ,q ),SO (p ,q ).
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2Clifford Algebras

There is a natural geometric structure on a quadratic space; one can speak of the norm of
a vector, as well as orthogonality relations between vectors. Admittedly not as natural, the
symmetries of a quadratic space also carry a geometric structure induced by the map v ↦→
𝜏v sending a vector to the reflection along its orthogonal complement. These considerations
suggest that there should be some object which "unifies" the quadratic space (V,Q ) with
its symmetry groups OV and SOV. The Clifford algebra associated to a quadratic space
is in some sense the universal construction of that object. In turn, this construction serves
as a useful tool to determine the symmetry groups of our quadratic space. We begin by
explicitly constructing the Clifford algebra of a space. Let (V,Q ) be a non-degenerate
quadratic spaces over a field k1 and consider its tensor algebra

TV =

∞⊕
m=0

V ⊗m = k ⊕V ⊕ (V ⊗V ) ⊕ (V ⊗V ⊗V ) ⊕ . . .

The tensor algebra TV is a large universal associative k -algebra containing our original
vector space. In itself, it does not carry any of the additional quadratic structure of V .
In order to restore it we first consider the ideal IV generated by all elements of the form
v ⊗ v −Q (v ) ∈TV and then the quotient

CV :=TV⧸I .

We call CV the Clifford algebra associated to the quadratic space (V,Q ). It is again quite a
large algebra but it now satisfies the following identities:

(i) v ⊗ v =Q (v ) for all v ∈V .

(ii) u ⊗ v −v ⊗ u = B (v ,u) for all u ,v ∈V. In particular, if u ⊥ v , then u ⊗ v = −v ⊗ u .

To make the notation clearer, it is customary to denote tensor products vi ⊗ v j ⊗ vk ⊗ . . .

as viv jvk · · · . The Clifford algebra admits a Z/2Z grading given by

CV =C 0
V ⊕C 1

V

where C 0
V is the algebra generated by all products of an even number of elements of V

and C 1
V is the module2 generated by all products of an odd number of elements of V ; we

respectively refer to C 0
V and C 1

V as the even and odd Clifford algebras.
We give some examples of Clifford algebras in low-dimension.

Example 2.1. Let V = R = spanℝ{v } with the quadratic form induced from Q (v ) = −1.
The tensor algebra of V is given by

TV = R ⊕ spanR{v } ⊕ (spanR{v } ⊗ spanR{v }) ⊗ . . .

After passing to the quotient by IV to obtain the Clifford algebra of V we notice the
following. If x ∈ C 0

V , it is given by a sum x =
∑
i ai · (v1v2 · · ·v2i ) where ai ∈ R and equal to

zero except for a finite set of indices. As V is one-dimensional v j = vk∀ j ,k such that

x =
∑︁
i

ai · (v1v2 · · ·v2i ) =
∑︁
i

(−1)i · ai ∈ R.

If x ∈ C 1
V , then it is given by a sum

∑
i bi · (v1v2 · · ·v2i+1). Similarly, we have

x =
∑︁
i

bi · (v1v2 · · ·v2i+1) =
∑︁
i

(−1)i · bi · v ∈ spanR{v }.

Therefore CV = R⊕ spanR{v } with the property that v2 = −1. Therefore, as an R-algebra,
CV is isomorphic to the complex numbers C.

1The same construction can be for a module over a ring R but the examples we will consider will come from
vector spaces.

2We emphasize that C 0
V is an algebra while C 1

V is simply a module. Indeed the product of 2 elements of C 1
V is

an element of C 0
V .
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Example 2.2. Let k be a field and n a positive integer. Consider the vector spaceV = kn

with the zero-quadratic form Q ≡ 0. Let {v1,. . . ,vn} be a basis ofV and consider its tensor
algebra, TV . For m > n, the vector space V ⊗m is generated by all products of the form
vi1vi2 · · ·vim . By the pigeonhole principle, we must have two indices j ,l such that vi j = vil .
Therefore, in the Clifford algebra, which satisfies the identities v2 = 0 and vu = −uv for
vectors u ,v ∈V , the elements of V ⊗m are annihilated. We then have that

CV =

n⊕
i=0

V ⊗m

subject to the relations:

(i) v2i = 0

(ii) viv j = −v jvi

The Clifford algebra associated to V is thus isomorphic to the k’th exterior power
∧k (V )

of V .

As previously mentioned, the Clifford algebraCV associated to a quadratic space (V,Q )
is a universal algebraic construction containing bothV and, as will be discussed later, some
analogue of its symmetry groups. We make precise what we mean by "universal". If A is a
unitary k -algebra and 𝜑 :V → A is a linear map such that for all v ∈V 𝜑(v )2 =Q (v )·1A, then
there exists a unique k -algebra morphism f𝜑 such that the following diagram commutes.

V CV

A
𝜑

f𝜑

There are two canonical automorphisms on CV . The first of which is given by the map
J : V → V , J (v ) = −v which we then extend linearly and multiplicatively to all of CV .
From this map we get the following characterization

C 0
V = {x ∈ CV : J (x) = x}.

The second map is an anti-involution ( )t :CV →CV generated by the function (vi1 · · ·vin )t =
(vin · · ·vi1 ) which is then extended to the whole of CV . We note that k ⊕V remains fixed
by ( )t . From this map, we can define the Clifford norm fo an element x ∈ CV to be
N (x) = x · x t ∈ CV . We emphasize that unlike the usual uses of the word "norm" in math-
ematics, the norm function we’ve defined takes values in the Clifford algebra CV and not
simply in the field k . However, as V is fixed by ( )t we have that N |V =Q , where Q is the
quadratic form on V . In this sense, we may view the norm on CV as an extension of the
quadratic form on the original vector space.
An important sub-algebra of CV is its center Z (CV ). In the case where (V,Q ) is an n-
dimensional quadratic space with orthogonal basis {v1,. . . ,vn}, if we let 𝛿 denote the ele-
ment v1 · · ·vn ∈ CV we find that the center of CV is given by [BvdGHZ08, p. 123]

Z (CV ) =
{
k if n is even,
k ⊕ k𝛿 if n is odd.

and the center of C 0
V is given by

Z (C 0
V ) =

{
k ⊕ k𝛿 if n is even,
k if n is odd.

The notions we’ve developed can be applied to the problem of determining the groups
OV and SOV associated to a quadratic space. We do so by noticing that, through the
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multiplication in the Clifford Algebra, some elements of CV act on V . We consider the
following group (under multiplication)

ΓV = {x ∈ CV | x is invertible and xV J (x)−1 =V }

These are the elements of CV which preserve the vector space V under this "twisted"
conjugation action. Since multiplication in CV is distributive, the action of an element
x ∈ ΓV is linear, giving us a representation 𝜌 : ΓV → Aut(V ). We refer to the image
𝜌x := 𝜌(x) as the vector representation of x .

Proposition 2.3. The kernel of the map 𝜌 : ΓV → Aut(V ) is the field k ∗ and the norm map
N : ΓV → k ∗ is a homomorphism of groups.

Proof. It is clear that k ∗ ∈ ker(𝜌) so we prove the opposite inclusion. Suppose that x ∈
ker(𝜌), then it may be written as a sum x = x0 + x1 where xi ∈ C iV . Since 𝜌x is the identity
on V we have that for all vectors Let v ∈V . Then:

v = xv J (x)−1 = (x0 + x1)v ( J (x0) + J (x1))−1 = (x0 + x1)v (x0 − x1)−1

which implies
(x0 + x1)v = v (x0 − x1).

and thus x0v = vx0 and x1v = −vx1. Therefore, x0 commutes with all elements of V and V
generates CV as an algebra, x0 ∈ Z (CV ) and thus x ∈ (C 0

V )
∗ ∩Z (CV ) = k ∗. Additionally, by

linearity, the identity involving x1 must hold for all its individual components of the form
𝛼i · vi1 · · ·vi j ∈ C 1

V where j is odd. If we then let x1 act on vi1 we get that

0 = vi1 · 𝛼i · vi1 · · ·vi j +𝛼i · vi1 · · ·vi j · vi1 = 𝛼i ·Q (vi1 ) · vi2 · · ·vi j + (−1) j−1𝛼i ·Q (vi1 ) · vi2 · · ·vi j .

As j − 1 is even we get that

0 = 𝛼i ·Q (vi1 ) · vi2 · · ·vi j +𝛼i ·Q (vi1 ) · vi2 · · ·vi j
As k has characteristic zero, this implies that 𝛼i = 0 and thus that x1 = 0. Therefore,
x = x0 ∈ k ∗.
We now prove that for x ∈ ΓV ,the norm N (x) ∈ k ∗ by showing that N (x) acts trivially on
V . For this, we let v ∈V and let w := 𝜌x (v ) be the image of v under the transformation 𝜌x .
We note that since w ∈V , − J (w)t =w and thus

w = xv J (x)−1 = − J (xv J (x)−1)t = (x t )−1v J (x t ).

By multiplying by x t on the left and J (x t )−1 on the right we obtain that

v = x txv J (x)−1 J (x t )−1 = N (x)v J (N (x))−1 = 𝜌N (x ) (v )

and so N (x) acts as the identity on V which implies that N (x) ∈ k ∗. □

In fact, one can say more about the vector representation of elements of ΓV .

Proposition 2.4. Let x ∈ ΓV , then the vector representation 𝜌x :V →V is an isometry of the
quadratic space (V,Q ).

Proof. Let v ∈V, x ∈ ΓV and w = 𝜌x (v ). As w ∈V , we have that Q (w) = N (w) and thus

Q (w) = N (w)
= N (xv J (x)−1)
= (xv J (x)−1)t (xv J (x)−1)
= J (x−1)t v x tx v J (x−1)
= N (x) ·Q (v ) ·N (x)−1

=Q (v )

Therefore, 𝜌x ∈ OV □
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Corollary 2.5. For all anisotropic vectors v ∈V ⊂ ΓV , the vector representation 𝜌v is the reflection
𝜏v .

Proof. We first note that J (v )−1 = −v−1 = −vQ (v )−1 and recall that for two vectors u1,u2 ∈
CV ,u1u2 = B (u1,u2) −u1u2. If we let w ∈V we have that

vw J (v )−1 = vw (−v )Q (v )−1 = −v (B (v ,w) −vw)Q (v )−1 =w −B (v ,w)Q (v )−1 = 𝜏v (w)

□

As the reflections 𝜏x generate OV , the map 𝜌 : ΓV → OV is a surjection and we have
the following exact sequence.

1 k ∗ ΓV OV 1
𝜌

Recalling that SOV is the subgroup of OV generated by pairs of reflections we define the
general spin group and spin group as the following subgroups of ΓV :

GSpinV = ΓV ∩C 0
V

SpinV = {x ∈ GSpinV | N (x) = 1}.

These two groups verify the following exact sequences

1 k ∗ GSpinV SOV 1
𝜌

1 {±1} SpinV SOV
k ∗⧸(k ∗)2

𝜌 𝜗

The map 𝜗 is known as the Spinor norm which for an element x ∈ SOV, 𝜗(x) is the Clifford
norm of its preimage in SpinV which is well defined up to a square of the field k . We note

that for k = C,k
∗
⧸(k ∗)2 = {1} and for k = R,k

∗
⧸(k ∗)2 = {±1}. Viewed as topological groups,

GSpinV is the universal covering space of SOV which itself is not simply connected. If we
let SOV

+ := ker(𝜗) ⊂ SOV be the component of SOV containing the identity, then SpinV
is the double cover of SOV.

We’ve now reduced the task of computing the special orthogonal group (up to a small
kernel) of a quadratic space (V,Q )/k to the computation of the group SpinV generated
by its Clifford algebra. In practice, If V has dimension ≤ 4, the latter can be computed
effectively as the even Clifford algebra C 0

V is at its largest, a quaternion algebra over k .

Definition 2.6. A unitary k -algebra A is said to be a quaternion algebra if it has a basis of
the form {1,x1,x2,x3} as a k -vector space and is subject to the relations

x21 ,x
2
2 , and k ∗,x1x2 = −x2x1 = x3.

A is entirely determined by the values x21 and x22 and is thus denoted by (x21 ,x
2
2)/k . For

an element x = 𝛼0 + 𝛼1x1 + 𝛼2x2 + 𝛼3x3 ∈ A, we define its conjugate to be x∗ = 𝛼0 − 𝛼1x1 −
𝛼2x2 −𝛼3x3 ∈ A.

Proposition 2.7. [BvdGHZ08, p. 133] Let (V,Q ) be a non-degenerate quadratic space of dimen-
sion 4 over k with orthogonal basis {v1,v2,v3,v4}. If we let qi =Q (vi ), then C 0

V is isomorphic to a
quaternion algebra of the form

C 0
V = (−q1q2,−q2q3)/Z (C 0

V ) = (k + k𝛿) ⊕ (k + k𝛿)v1v2 ⊕ (k + k𝛿)v2v3 ⊕ (k + k𝛿)v1v3.

Under this assignment, the anti-involution ( )t of CV corresponds to the conjuagation ( )∗ in the
quaternion algebra.
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The dimension of V being 4 also gives the following result

Proposition 2.8. If dim(V ) ≤ 4, then GSpinV = {x ∈ C 0
V | N (x) ∈ k★} and thus SpinV =

{x ∈ C 0
V | N (x) = 1}.

Proof. By definition, GSpinV ⊂ C 0
V so it is left to show that if x ∈ C 0

V such that N (x) ∈ k ∗,
then x ∈ GSpinV . First as N (x) ∈ k ∗, we have that x ·N (x)−1x t = 1 making x invertible. We
are then left to check that xV J (x)−1 = xV x−1 ⊂V . For a given v ∈V we let w := xvx−1 ∈
C 1
V . As dimV ≤ 4, we get the following characterization 3

V = {x ∈ C 1
V | x t = x}

and so we compute:

w t = (xvx−1)t = (x−1)tvx t = (x−1)tN (x)−1vN (x)x t = xvx−1 =w

since x t = N (x)x−1. Therefore x preserves V which proves the result. □

We’ve shown that for dimV = 4, C 0
V is a quaternion algebra over its center Z (C 0

V ). It is
possible and quite useful to express the vector representation of SpinV intrinsically inside
of C 0

V by identifying an isometric copy Ṽ ⊂ C 0
V of V upon which the action of SpinV is

given by the multiplication in the quaternion algebra. To construct Ṽ , we let v0 ∈V be an
anisotropic vector, q0 :=Q (v0) and consider the adjoint operator Ad(v0):C0

V → C0
V which

sends x to x𝜎 = v0xv−10 . We consider the vector space

Ṽ = {x ∈ C 0
V | x t = x𝜎}

equipped with the quadratic form

Q̃ (x) = q0 ·N (x)

Analogously to the action of SpinV onV we define the vector representation 𝛼̃ : SpinV →
Aut(Ṽ) which for g ∈ SpinV is given by

𝛼̃g (ṽ ) = g xg −𝜎 .

Under this action, we have that

Q̃ (g xg −𝜎) = q0 · (g xg −𝜎)t (g xg −𝜎) = q0 · (g −𝜎)tx t g t g xg −𝜎 = q0 ·N (g ) ·N (x) ·N (g )−1 = Q̃ (x)

such that the quadratic form Q̃ is preserved.

Proposition 2.9. (V,Q ) is isometric to (Ṽ ,Q̃ ).

Proof. See [KR99, p. 11] □

2.1Accidental isomorphisms

The theory developed throughout this paper can be applied to the following important
example. We let D ∈ Z be square-free and F =Q(

√
D) denote the field extension of degree

2 of the rational numbers. We consider the following 4-dimensional Q-vector-space

V =Q2 ⊕ F.

For an element x = (a,b ,𝜔) ∈V where a,b ∈Qand 𝜔 ∈ F we define the quadratic form

Q (x) = 𝜔𝜔̄− ab
3If V were of dimension ≥ 5 we could have an element of the form x = v1v2v3v4v5 where vi are orthogo-

nal. In that case, one can obtain xt from x by performing n2−n
2 = 10 transpositions such that v1v2v3v4v5 =

(−1)10v5v4v3v2v1 = v5v4v3v2v1.
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where 𝜔̄ is 𝜔’s Galois conjugate. One checks the vectors

v1 = (1,1,0),v2 = (1,−1,0),v3 = (0,0,1),v4 = (0,0,
√︁
D)

form an orthogonal basis ofV . Under this assignment, for v = 𝛼1v1+𝛼2v2+𝛼3v3+𝛼4v4 the
quadratic form is given by

Q (v ) = −𝛼2
1 +𝛼

2
2 +𝛼

2
3 −D𝛼2

4.

Thus, letting V (R) :=V ⊗Q R denote the extension of scalars to R, we have that V (R) is
a quadratic space of type (2,2) if D > 0 and of type (3,1) if D < 0. In order to determine
SOV, we note that since dimV = 4 the even Clifford algebra is given by

C 0
V = (−q1q2,−q2q3)/Z (C 0

V ) = (1,−1)/Z (C 0
V )

where Z (C 0
V ) =Q ⊕Qv1v2v3v4 =Q ⊕Q𝛿. We notice that 𝛿2 = q1 ·q2 ·q3 ·q4 =D and therefore

Z (C 0
V ) = Q ⊕Q

√
D � F . Therefore the even Clifford algebra C 0

V is a split quaternion
algebra over F which is isomorphic to the matrix algebra M2 (F ). An explicit isomorphism
is given by the map

1 ↦→
(
1 0
0 1

)
, v1v2 ↦→

(
1 0
0 −1

)
, v2v3 ↦→

(
0 1
−1 0

)
, v1v3 ↦→

(
0 1
1 0

)
.

By writing a general matrix M as a linear combination of the matrices above one checks
that the conjugation in M2 (F ) is given by(

a b
c d

)∗
=

(
d −b
−c a

)
and the norm by

N
(
a b
c d

)
=

(
ad − bc 0

0 ad − bc

)
=

(
det(M ) 0

0 det(M )

)
.

We can then compute the group SpinV as

SpinV = {x ∈ C 0
V | N (x) = 1}

� {M ∈M2 (F ) | N (M ) = Id}
= {M ∈M2 (F ) | det(M ) = 1}
= SL2 (F ).

We can also determine the spin group of the extension of scalars V (R) as follows:

SpinV (R) = SL2 (F ⊗Q R) =
{
SL2 (R) ×SL2 (R) if D > 0,
SL2 (C) if D < 0.

We then have the following exact sequences

1 {±1} SL2 (R) ×SL2 (R) SO(2,2) {±1}𝜌 𝜗 (1)

1 {±1} SL2 (C) SO(3,1) {±1}𝜌 𝜗 (2)

We compute the twisted vector space Ṽ by letting v0 = v1 = (1,1,0) and considering the
adjoint operator Adv0 acting on C 0

V � M2 (F ) On the basis vectors of C 0
V , the action is

given by
1𝜎 = 1, (v1v2)𝜎 = v2v1, (v2v3)𝜎 = v2v3, (v1v3)𝜎 = v3v1.
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By linearity, we find that for a general matrix M =

(
a b
c d

)
∈M2 (F ),(

a b
c d

)𝜎
=

(
d̄ −c̄
−b̄ ā

)
.

Therefore,
Ṽ = {x ∈ C 0

V | x t = x𝜎}

=

{(
a b
c d

)
∈ SL2 (F )

���� ( d −b
−c a

)
=

(
d̄ −c̄
−b̄ ā

)}
=

{(
a 𝜔

𝜔̄ b

) ���� a,b ∈Q, 𝜔 ∈ F
}

For M ∈ Ṽ , the quadratic form Q̃ is given by

Q̃ (M ) = −det(M )

and the induced bilinear form by

B̃ (M1,M2) = −Tr(M1 ·M 𝜎
2 )

In the case where D > 0 so that sigV (R) = (2,2),

Ṽ(2,2) (R) �M2 (R).

For X ∈V(2,2) (R),the action of (M ,N ) ∈ SpinV (R) = SL2 (R) × SL2 (R) is the obvious one
given by

X ↦→MXN −1.

V(2,2) (R) is trivially preserved by the action of SL2 (R) ×SL2 (R) and as the determinant is
multiplicative, the quadratic form Q̃ is also preserved.

In the case where D < 0 so that sigV (R) = (3,1),

Ṽ(3,1) (R) =
{(
a z
z̄ b

)����a,b ∈ R, z ∈ C
}

where z̄ denotes the complex conjugate of z . ForY ∈V(3,1) (R), and P ∈ SL2 (C), the action
of P onY is given by

Y ↦→ P ·Y ·P †

where P † denotes P ’s conjugate transpose. We can also describe Ṽ(3,1) (R) as the set {M ∈
M2 (C) | M † =M }. Since

(PMP †)† = PM †P † = PMP †

V(3,1) (R) is indeed preserved by the action of SL2 (C).

Altogether, we’ve computed the identity components of the groups SO(2,2) and SO(3,1)
using Clifford algebras associated with certain rational quadratic spaces of dimension 4.
A similar approach can be applied to other such spaces—for instance, those arising from
biquadratic extensions V = Q(

√
D1) ⊕Q(

√
D2), or even from the standard space Q4. In

some of these cases, however, the even Clifford algebra C 0
V may no longer be split over its

center Z (C 0
V ), and as a result, SpinV might not admit a description as a matrix group over

Z (C 0
V ). Furthermore, the center Z (C 0

V ) need not be a field extension of Q; in general, it is
an étale algebra over Q, meaning a finite product of finite field extensions. However, after
extending scalars to R, all cases devolve into the two presented above depending on the
signature of V .
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