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We will present the underlying connection between the geometric objects of elliptic curves, the al-
gebraic curves defined by Weierstrass equations and lattices in C, with the help of Weierstrass theory
and the Uniformaization Theorem. There will be a few black boxes when we will get too close to
algebraic geometry, especially when divisors and Riemann-Roch theorem are required. This pre-
sentation is largely based by chapter 6 of Silverman’s Arithmetic of Elliptic Curves.

1 Elliptic Curves and Weierstrass Equations

Recall the previous definitions.

Definition 1.1. A Weierstrass equation in C can be written in the form

y2 = x3 +Ax+B. (1.2)

We define the following quantities

∆ = −16(4A3 + 27B2),

j = 1728(4A)3/∆.

Then a (cubic) curve C defined by a Weierstrass equation is the locus of the above Equation (1.2)
homogenized and viewed in P2.

Lemma 1.3. a) If C and C′ are two curves defined by a Weierstrass equation, then C ≃ C′ (as algebraic
curves) if and only if their associated j value are the same i.e. j(C) = j(C′). Thus, this quantity is
called the j-invariant.

b) For any j0 ∈ C, there exists a curve defined by a Weierstrass equation whose j-invariant is j0

Proof. Brute force calculations, but worth the try. See Silverman’s Proposition III.1.4.

We consider the definition of smooth or non-singular for an algebraic curve as having at all its points,
at least one of its first partial derivative is non vanishing. We get the following result.

Lemma 1.4. Let C be a curve defined by a Weierstrass equation. Then C is smooth if and only if its associated
∆ is non zero.

Proof. Suppose∆ ̸= 0. Since we are in P2, we will first see that the curve C with {f(x, y) = y2−x3−
Ax−B = 0} is not singular at the point at infinity O = [0 : 1 : 0]. Homogenizing the equation,

F (X,Y, Z) = Y 2Z −X3 −AXZ2 −BZ3,

we wee that
∂F

∂z
(0) = 1 ̸= 0,

hence O is not a singular point.
Wlog, suppose C is singular at (0, 0), which can be done since one can check that ∆ is translation
invariant. This implies

B = f(0, 0) = 0, A =
∂f

∂x
(0, 0) = 0.

Then, the curve the equation f(x, y) = y2 − x3 = 0 has∆ = 0, contradicting. C is smooth.
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For the converse direction, we first observe that

∂f

∂x
= −2x2 −A,

∂f

∂y
= 2y.

Then C is singular if and only if there is a point (x0, y0) ∈ C such that 2y0 = −2x2
0−A = 0. Thismeans

that there is a point (x0, 0) that would be a double root of the degree 3 polynomial y20 = 0 = x3
0 +

Ax0+B, which is the case if and only if the discrimant of this polynomial= −4A3−27B2 = −∆/16
is 0. Hence, C non-singular implies ∆ ̸= 0.

We give the geometric definition of an elliptic curve.

Definition 1.5. An elliptic curve E over C (E/C) is a non-singular algebraic curve of genus 1 with
an identified point O ∈ E

Our main idea in this section is that every elliptic curve can be written as a plane cubic, and con-
versely, every smooth Weierstrass plane cubic curve is an elliptic curve.

Theorem 1.6. Let E be an elliptic curve over C

a) There exists functions x, y ∈ C(E) the function field (C(E)can be seen as rational functions on the
curve) called Weierstrass coordinates such that the map

ϕ : E −→ P2 = [x : y : 1]

gives an isomorphism of E/C onto a curve defined by a Weierestrass equation, with O 7−→ [0 : 1 : 0]
satisfied.

b) Conversely, every smooth cubic curve C given by a Weierstrass equation is an elliptic curve over C with
base point O = [0, 1, 0].

Proof. It requires a fair bit of algebraic geometry so we will black box it. The idea of b) is to use
Riemann-Roch to see that C has genus 1. See Silverman’s Proposition III.3.1.

Hence, we have the bijection of sets

{Ellipitic curves E }←̃→
{

Smooth curves C defined by
a Weierestrass equation y2 = x3 +Ax+B

}
,

where the O ∈ E point will alway correspond to the [0 : 1 : 0] point. For our sake, we will take the
right side as an equivalent definition of elliptic curves.

2 Lattices and Uniformization Theorem

We define a lattice to be Λ ⊂ C with Λ = {Zω1 ⊕ Zω2} such that ω2/ω1 ∈ H.
Let g2 = g2(Λ) and g3 = (Λ), and ℘(z) = ℘(Λ, z) the Weierestrass ℘-function.

Lemma 2.1. Let Λ a lattice. We define a curveE/C byE : y2 = 4x3− g2(Λ)− g3(Λ) ⊂ P2. Then, the map

C/Λ−̃→E,

z 7−→ [℘(z) : ℘′(z) : 1]

is an complex analytic and group isomorphism (it is actually a complex Lie group isomorphism).

Proof. We ommit it once again. We state the following facts that are used :vw
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1) The equation f(x) = 4x3 − g2x− g3 has distinct roots, thus ∆(Λ) = g32 − 27g33 ̸= 0,

2) We have relation ℘′2 = 4℘3 − g2℘− g3 (that we proved in the previous weeks),

3) The map ϕ send 0 + Λ to [0 : 1 : 0]. The idea is that using rescaling [℘(z) : ℘′(z) : 1]̃[ 1
z2 : 1

z3 :
1] = [z3 : 1 : z2], evaluated at z = 0 gives [0 : 1 : 0].

See Silverman"s Proposition VI.3.6.

Remark. The curve E : y2 = 4x3 − g2x− g3 is an ellipitic curve following fact 1) above. A change of
variable will give the standard form we had earlier.
Maps in lattices are related to maps in elliptic curves.

Lemma 2.2. Let Λ1,Λ2 lattices in C.

a) There is a bijection between

{α ∈ C : αΛ1 ⊂ Λ2}−̃→

 Holomorphic maps
φ : C/Λ1 → C/Λ2

with φ(0) = 0


α 7−→ φα, φα : z 7→ αz(modΛ2).

b) Let E1, E2 elliptic curves defined as in Lemma 2.1. Then

{Isogenies E1 → E2}−̃→

 Holomorphic maps
φ : C/Λ1 → C/Λ2

with φ(0) = 0


α 7−→ φα, φα : z 7→ αz(modΛ2).

Proof. First part was Proved by Ludovic, using covering space. Also, see Silverman’s TheoremVI.4.1
for the two parts.

It follows immediately.

Corollary 2.3. As defined as above, E1 ≃ E2 if and only if Λ1 and Λ2 are homothetic, i.e. Λ1 = αΛ2 for
some α ∈ C∗.

We know find a way to relate all elliptic curves with lattices. The following Theorem and Corollary
are called the Uniformisation theorem.

Theorem 2.4. For anyA,B ∈ C, 4A3−27B2 ̸= 0, there exists a unique lattice Λ ∈ C such that g2(Λ) = A
and g3(Λ) = B

Proof. Ludovic proved this result in his previous presentation. Also, see Proposition 1.4.3 of Dia-
mond and Shurman.

Corollary 2.5. Let E/C be an elliptic curve. Then, there exists a unique lattice up to homotethy Λ ∈ C such
that we have the isomorphism

ϕ : C/Λ−̃→E,

z 7−→ [℘(z) : ℘′(z) : 1].

Proof. Existence comes from using Theorem 2.4 on the Weierestrass equation (Equation (1.2)) cor-
responding to the elliptic curve (Theorem 1.6), then applying Lemma 2.1.
Uniqueness up to homotethy follows Corollary 2.3.
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To recap, we have showed that there is an isomorphism between the complex torus of some lattice
and some ellipitc curves EΛ, and that by the Uniformisation Theorem, that every elliptic curve is
uniquely isomorphic to such elliptic curves EΛ. We also get a correspondance between maps on
those two objects, which actually gives us an equivalence of categories. Thus,

{
Elliptic curves

}
/≃

by Theorem 1.6
←−−−−−−−→


Smooth curve defined

by Weierestrass
equations


/≃

by Theorem 2.4, and Corollary 2.5←−−−−−−−−−−−−−→
by Theorem 1.6

{
Lattices
Λ ⊂ C

}
/homothety

3 Construction of Lattices from Elliptic Curves

Our goal now is to construct a lattice from an elliptic curve, and that it will be the inverse of the map from
Theorem 1.6, phi : E −→ C/Λ.
We first define a useful object.

Definition 3.1. Let C be a smooth algebraic curve over C. Then, ΩC is the space of differentials for the curve C. It
is a C(C)-vector space (C(C) is the function field on C, “rational functions on C“), and is generated by symbols
df , for f ∈ C(C) with the properties :

1) d(x+ y) = dx+ dy, x, y ∈ C(C)
2) d(xy) = xdy + ydx, x, y ∈ C(C)
3) da, a ∈ C.

Remark. For a a non constant map of curves φ : C1 −→ C2, we get a natural map φ∗ : C(C1) −→ C(C2) which
induces a pullback on the differentials

ΩC2 −→ ΩC1

φ∗(
∑

fidxi) =
∑

φ∗(fi)d(φ
∗(xi))

Lemma 3.2. Let C be a smooth algebraic curve over C. The space of differentials over C, ΩC , is a 1-dimensional vector
space over C(C).

Proof. The idea is to look at the smooth curve (1-dimensional) in some local coordinate t at each point p. Then
any function can be written in terms of this local coordinate f(t)C(t) around p. All differentials will then be of
the form

d(f(t)) = f ′(t)dt.

See Silverman’s Proposition II.4.2.

For the curve E : y2 = x3 + Ax + B, we get the differential ω = dx
y
, which we consider to be “nice enough“,

it is regular. The space of regular differentials of a curve is finite dimensional over C. It is easier to see through
the isomorphism

C/Λ−̃→E,
z 7−→ [℘(z) : ℘′(z) : 1],

that this choice is not totally arbitrary. We pullback the diffrential

ϕ∗(
dx

y
) =

d(℘(z))

℘′(z)
=
℘′(z)

℘(z)
dz = dz.

Lemma 3.3. Let P ∈ E, and τP be the translation map from E to itself : X 7−→ P + X . Then the pullback of the
differential ω = dx

y
is τ∗Pω = ω, i.e. ω is translation invariant. Thus, this differential is called the invariant differential.

Proof. Once again it is easier to see it through the torus, as d(z+a) = dz for a ∈ C. See Silverman’s Proposition
II.5.1.
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Now, we might look at how the integral on the elliptic curve with this differential works. Let’s hypothetize a
map

E/C⇝ C

P 7−→
∫ P

O
ω.

Then, this map is not well-defined up to the H1(E,Z) = Z × Z as there are multiple paths from O to P . The
integral on non contractible paths on the torus are not well defined. However, integrating over the two closed
paths generating the homology group, α and β, makes sense. Those numbers are called the periods of E :

ω1 =

∫
α

ω and ω2 =

∫
β

ω.

Thus, any path from O to P is differ by a path homotopic to n1α+ n2β, for some integers n1, n2 ∈ Z.
To see that the integral on two homotopic paths are the same, let γ1, γ2 homotopic paths from O to P . The
concatenation γ−1

2 ◦ γ1 gives a closed region U on the torus. Then with the help of Stokes’ Theorem,∫
γ1

ω −
∫
γ2

ω =

∫
γ−1
2 ◦γ1

ω

=

∫
∂U

ω =

∫
U

dω = 0,

using dω = 0 (since ω is regular, so holomorphic).
Thus, considering the set Λ = {n1ω1 + n2ω2 : n1, n2 ∈ Z}, the following map is well defined,

F : E −→ C/Λ

P 7−→
∫ P

O
ω (modΛ).

The map F is a group homomorphism, since with translation invariant of ω,∫ P+Q

O
ω =

∫ P

O
+

∫ P+Q

P

ω =

∫ P

O
ω +

∫ Q

O
τ∗Pω =

∫ P

O
ω +

∫ Q

O
ω (modΛ).

In order to make Λ a lattice, we need to check that ω1 and ω2 are R-linearly independent.

Lemma 3.4. Let E/C an elliptic curve.
a) Let α, β be a basis for H1(E,Z). Then the periods ω1 =

∫
α
ω , and ω2 =

∫
β
ω are R-linearly independent.

b) Let Λ ⊂ C be the lattice generetad by ω1, ω2. Then

F : E −→ C/Λ

P 7−→
∫ P

O
ω (modΛ)

is an isomorphism.

Proof. a) We know it exists a lattice Λ1 such that the map

ϕ1 : C/Λ1 −→ 7E,

z 7−→ [℘(z) : ℘′(z) : 1]

is an isomorphism. Thenϕ−1
1 ◦α andϕ−1

1 ◦β forma basis forH1(C/Λ1,Z), and actuallyH1(C/Λ1,Z) ≃ Λ1

(via γ 7→
∫
γ
dz). As mentionned earlier, the differential ω = dx

y
pulls-back to ϕ∗

1(
dx
y
) = dz on C/Λ1).

Then the periods

ω1 =

∫
α

ω =

∫
ϕ−1
1 ◦α

dz and ω2 =

∫
β

ω =

∫
ϕ−1
1 ◦β

dz

form a basis forΛ1, thus areR-linearly independent. Hence, the latticeΛ1 corresponding toE is precisely
the above Λ = {n1ω1 + n2ω2 : n1, n2 ∈ Z}, and that the map from the uniformization theorem ϕ = ϕ1.
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b) From just above, we get that the map

F ◦ ϕ : C/Λ −→ C/Λ

F ◦ ϕ(z) =
∫ ℘(z),℘′(z)

0

dx

y

Since F ∗(dz) = dx
y

and ϕ∗( dx
y
) = dz, then (F ◦ ϕ)∗(dz) = dz. Using Lemma 2.2, the map C/Λ → C/Λ

has the form ψα(z) = αz, α ∈ C∗, but since ψ∗
α(dz) = αdz, we see that (F ◦ ϕ)(z) = z, the identity map.

Since ϕ is an isomorphism, F = ϕ−1 is an isomorphism as well, and the inverse map !

Corollary 3.5. The above map F is the inverse of ϕ.

Thus, we get that the set of elliptic curves, attached with a precise invariant differential (E,ω) is isomorphic to
set of lattices L (thus not up to homotethy),

{(E,ω)}←̃→L.

4 Modular Forms on Lattices

We give a quick word on modular forms. There is a definition of modular fomrs on elliptic curves, which
implies one on lattices, and this actually helps motivate how the analytic definiiton on the upper half plane is
made.
Recall. We had from a previous week,

L/C∗ ≃ SL2(Z)\H.
We get the following definition, which actually come from a more abstract one on (E,ω).

Definition 4.1. A weak modular form over C of weight k is a function from the set of lattices f : L −→ C such that
f(λΛ) = λ−kf(Λ) for all λ ∈ C∗, and all Λ ∈ L.

Using above Recall, we can redefine it in such way

f(τ) := f(Λτ ) = f(τZ⊕ Z).

Then for γ ∈ SL2(Z), we get

f(γτ) = f((γτ)Z⊕ Z) = f((cτ + d)−1((aτ + b)Z⊕ (cτ + d)Z))

= (cτ + d)−kf((aτ + b)Z⊕ (cτ + d)Z)) = (cτ + d)kf(τ).

Thus, we get the familiar analytic definition of modular forms. We will dive more in depth on such modular
forms in the following meetings.
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