Overview of Faltings Proof

Goal. Present work of Lawrence-Venkatesh $\{$ Faltuggs
Thin If x smooth (prog. or affine) curve over a number field and $X(x)<0$, Then $\# x\left(\theta_{k s}\right)<\infty$, where $X(X)=2-2 g-\# S, S$: finch set of places.

First reduction is to go from points on cures to curves Themselves.

Idea A cure a more truefuble, if its points parametrize some geometric object. Eg, The work of Mazus on modular cures $X_{1}(N)$.

Easy Thu. If $N>36$ is prime, Then Y. $(N)(\mathbb{K}[1 / N])$ as empty. \quad there we consider the affine curve lie., we do hot have cuspidal points.

Proof. Let $l=5$, a point $x \in Y_{1}(N)(\mathbb{T}[1 / N])$ gives an elliptic curve $E w / j(E) \in \mathbb{Z}[1 / N]$, hem E has potentially good reduction over \mathbb{F}_{5} and obtains good redvetian one $\mathbb{F}_{5^{2}}$. Sine torsion will inject The tease bound fineskes The arguement II

Rene (1) Conte replace $\mathbb{T}[1 / N]$ w/ $\mathbb{T}(s)$.
(2) Could replace $\mathbb{T}[1 / N]$ by $\mathcal{O}_{k, s}$ and $N>36$ by $N \gg 0$.

Mazus classified The retroncal points on $X_{1}(N)$, Wheen is much harder dee to excsteve of cusp.

Another natural farnily of curves are given ty Fermat curves

$$
\left\{x^{N}+y^{N}=z^{N}\right\}_{N}
$$

Wiles. Observed The et Mazur \Longrightarrow Fermat

$$
\begin{aligned}
& \underbrace{x(2) x x_{0}(p)} \longrightarrow y^{2}=x(x-1)(x-\lambda) \quad \lambda=x^{p}\left(y^{p}\right.
\end{aligned}
$$

Mazes says no non-cuspedel pouts.

Kodaim-Parshin Trek. Here is some notation.

$$
M_{j}\left(\theta_{k, s}\right):=\left\{\begin{array}{c}
\text { smooth cures of genet } g\} / \cong \\
\text { over } \theta_{k, \delta}
\end{array}\right\}
$$

$h_{f}\left(Q_{u, s}\right)=\left\{\begin{array}{c}\text { Abelian vuncties of } \operatorname{dem} \\ \text { over } \theta_{k} s\end{array}\right\} / \cong$
$I_{f}\left(Q_{k, s}\right):\left\{\begin{array}{l}\text { Isogeny clusses of ab var of } \\ \text { dimg over } Q_{k, s}\end{array} \subseteq\right.$
Cong (Shafisench)
$\mu_{g}\left(\theta_{k, s}\right), h_{g}\left(\theta_{k s}\right), I_{y}\left(\theta_{k s}\right)$ are fuict.
Thm (Kodaira-Passhen)
Shatareveh ang for curet \Rightarrow Mordell
sketch. Given $x \in X(K) \longrightarrow Y_{x} \in \mu_{g}\left(\theta_{k^{\prime}, s}\right)$ /"

* We will sie this construction

Summay of Faltingi strategy ex explicity next time

$$
\begin{aligned}
x(k) & \longrightarrow \mu_{g}\left(\theta_{k^{\prime}, s}\right) \text { [Frik-ti-one by De Franchect] } \\
& \longrightarrow \mathcal{A g}^{\prime}\left(\theta_{k^{\prime}, s^{\prime}}\right) \text { [Finite-to-one ty Torelli] }
\end{aligned}
$$

$\longrightarrow I_{g}\left(\theta_{k}, s^{\prime}\right)$ [Finik-t-one by Tate conji] * A key ingredcent in Faltings
$\longrightarrow \operatorname{ReP}_{G_{k}, s^{\prime}}\left(2 g^{\prime}\right)$ [Assoceate rufle Tafe mod].
Isom classes of $2 g$-dinil rational Galas repn of $G_{k i}$; s^{\prime}.

The image of $I_{g^{\prime}}\left(Q_{k, s^{\prime}}\right)$ in $R_{e p_{G k i, s}}$ correspond to seme-scmple repren wheel are finite by a lemur of Fattinge.

Moreover, we have finiteness of $X(k)$ as all of the above maps are finite-to-one and The image of $I_{j}\left(\theta_{k}, s\right)$ in Rep $_{a_{k!, s^{\prime}}}$ is finite. II

Overview of Lawrence - Venkatsh Mcthod.
$\frac{\text { Setup. }}{W} X \longrightarrow Y$ sm,ppoj fanily over \#fle K w / Y sm. k-vas.
SPD This exterats to family $\pi: x \rightarrow y$ over The ring 10 of $\delta-\operatorname{int}$. of k w S : finite set of places (contring all Ach ones).

For $y \in Y(k)$, call $X y:=$ fiber oner y. we want to bound $Y(0)$ usury that if $y \in Y(k)$ extenels to $y(\theta)$, Then $x y$ admets a $s m$. proper model (O.
Pick prince p that Φ unrumful in k and not below any $v \in \delta$.
let $G_{k}:=G_{l l}(\bar{k} / k)$, ace wnte:

$$
P_{y}: G_{k} \longrightarrow \operatorname{Auf}\left(H_{e k}^{*}\left(x_{y} x_{k} \bar{k}, Q_{p}\right)\right) .
$$

Lemene (Faltinges
As y vanes through $y(\theta)$, there are only finitely many possiblities for the seni-simplification
of the G_{k} - rep n P_{y}.
"Proof." This is a consequence of Hermite-Minkowski"
Now, let Y : prog. k-cure Then The finctenss of $Y(k)=Y(\theta)$ follows from dedveing:
(1) The repp Pf a senc-simple for all but finitely many $y \in Y(k)$, and
(2) The map $Y(K) \longrightarrow\left\{\right.$ Iso. class of $\left.P_{y} \mid G_{k r}\right\}$ has finite fetes.
For the tine being, lets focces on (2). By p-adic Hodge theory, we have a fully faithful embedding:

$$
\left\{\begin{array}{c}
\text { crystalline reps } \\
\text { of } G_{k v}
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { Filtered } \phi_{1} \text {-module } \\
\text { over } k_{r}
\end{array}\right\}
$$

For suitable chou of v, the repp. $P_{y} \mid G_{k v}=$: $P_{y, v}$ will be crystalline.

The above map 9 defined as follows:
$\rho y, v \longmapsto(H$ (\quad) Fl φ) semi-linear

de Thar cohomology I Hodge filtration antomouph. Cl σ The Fwbences from crystalline of $x y$ inside of $H_{d k}(X y, k r)$ cothomolopg

To prove (2), it suffice to show that the map:

$$
Y\left(k_{v}\right) \longrightarrow\left\{\begin{array}{c}
\text { Filtered } \phi \text {-modules } \\
\text { over } k v
\end{array}\right\}(k k)
$$

has finite fibers.

If we Thus of $H_{d k}\left(X_{y}\left(k_{v}\right)\right.$ at The fiber of the relative de sham cohomology vector bundle over y, Then we see thess bundle cones equipped w/ a connection, The Gauss-Manin connection, which allow us to identify nearby fibers.

Fix $y_{0} \in Y\left(k_{r}\right)$, The GM connectection gives us an identification: $H_{d R}\left(X_{y}, k_{v}\right) \cong H_{d R}\left(X_{y_{0}}, k_{v}\right)$ for all $y \in \Omega \subset Y\left(K_{v}\right)$, a small p-adic disk.

1. The identification respects Frobenius but not necessarily Hodge filtrations

The variation of the Hodge filtration is described by The p-adc pernod map:

$$
\text { PER100: : } \Omega \longrightarrow\left(\begin{array}{rl}
& \longrightarrow\left(k_{r}\right) \\
y & \longrightarrow\left(H^{\prime} H_{d R}\left(x_{y}, k_{r}\right)\right. \text { transported } \\
\text { to } H_{d k}\left(x_{y_{0}}, k_{v}\right)
\end{array}\right)
$$

Where F: flag variety parametusing certain chains of subspaces of $H_{d k}\left(X_{y_{0},}, k_{r}\right)=: H$
Two points $y, y^{\prime} \in \Omega$ have the same image under (k) when

$$
\left(H, P_{E R} 10 D_{V}(y), \varphi\right) \cong\left(H, P_{E R}\left(O D_{r}\left(y^{\prime}\right), \varphi\right)\right.
$$

which is equivalent to the existence of an element g in The centixilizer $Z(\varphi) \subset G L(H)$ such that PERIOD. $\left(y^{\prime}\right) \in g\left(P E R I O D_{r}(y)\right)$

Therefore, me have That The fiber of $(*)$ over (H, PERIOD. $(y), \varphi)$ a contained in!
$\operatorname{Perlodir~}^{-1}\left(\operatorname{Perlod}_{r}(\Omega) \cap Z(Q) \cdot \operatorname{Perciod}_{r}(y)\right)$.
Recall That we want to show finiteness of fibers so we want to dedue The intersection on The night
is finite.
Suppose That:

- Z(ce)-PERIODr (y) is a proper subvanety, and
- Perlodr (e) is zanski dense.

Then The intersection amounts to The zeros of a non-zero k_{r}-analytic fen on Ω, and Therefore must be finite!

Lets now briefly discuss The cheeking of Zanski density. The main point is that it suffices to cheek The Zanski density of the complex analytic pend mapping

$$
\widetilde{Y(\mathbb{C})} \longrightarrow \mathbb{C} \text {-pts of flag vanety }
$$

Why? The p-adic and complex penod maps satisfy The same differential eqn. coming from the GM conn and kevel are given by The same power series.

The zanski density of the complex pend mapping can be venfied via topological
methods (I.e, a difficult monodvomy computation).
Now let's furn our attention to the centralizer issue. We need to ensure that the centralizer of The crystalline Frobencus φ acting on the cohomology of $x y a$ not to large. ie, we need to know that

$$
Z(\varphi) \cdot P_{E R I O D_{r}(y)}^{千 \mathcal{J}\left(K_{v}\right)}
$$

$E x, K_{r}=\mathbb{Q}_{p}$ Then φ is \mathbb{Q}_{p}-linear map, anal we need to show if $\overline{4}$ not just scalar!

Nope that φ can have too large centralizer in simpl est setting. Namely, of we consider $Y=\mathbb{P}^{\prime}-\{0,1, \infty\}$, and let $x \longrightarrow y$ be The Legendre family, so That $x_{t}: y^{2}=x(x-1)(x-t)$. Now the map (t) does not have finite fibers over the points $t \in Z_{p}$ such that $t(\bmod p) \equiv 0,1$.

To fix This, note That Froberuss \bar{s} a $\operatorname{sem} i$ linear opestor over an unrumufuel ext Lw/ dp aud the semi-lineanty gives a non-trinal bound on the size of the centralizer, wheel gets tetter as $\left[L_{w}: Q_{p}\right]$ gets langer.

For The S-unct example, instead of looking at the Legendre family, we rel to consider the foonilg w/ fibers

$$
X_{t}=\sum_{z^{2^{k}}=t}\left\{y^{2}=x(x-1)(x-t)\right\}
$$

The map $t \longmapsto\left[p_{t}\right]$ will have finite fibers, at least on residue desks where $\bar{E} \neq \square$.
Thesis in the importance of eulangeng the field k.
To conclvale, let's mention the higher dimensional LV results.

Setup. $\pi: X \longrightarrow Y$ sm. proper move $/ \pi\left[\delta^{-1}\right]$ whose fibers are geom. conn. of relative dimension d.
Pseudo-Thm Suppose that The monodromy rep of Y a large. Then, $Y\left(T_{1}\left[\delta^{-1}\right]\right)$ is not Zanski dense Furthermore, if The monodromy rep of any subrenetg $Y^{\prime} \subset Y$ also has large image, Then $Y\left(\pi_{1}\left[\delta^{\prime} \xi\right) \propto\right.$ finite.
\longrightarrow See Thy 10.1 of $L V$ for detaches While The reification of the large monodromy a very diffenct, The authors male Thess pseudo tho preeese fer the set of hyperswrface.

Thy (LV)
3 pos. Integer n_{0} and $d_{0}(n)$ satisfying:
If $n \geqslant n_{0}$ and $d \geqslant d_{0}(n)$ and if $x \rightarrow Y$ denotes The universal family of hypersurfacha in \mathbb{P}^{n} of degree d, Thee $Y\left(\mathbb{T}\left[s^{-1}\right]\right)$ is not zanski duse in' Y far any finite set of princes δ.
"The set of hypersurfaese of dey d in $1 p^{n} w /$ good red away from S are contoured in a purer zanski closed subset of The moduli spae of typ."
Rok. The classical Bombien-Lang conjecture posits. That if a ranety is of general type Lie, The kodajire dimensean of $x \underline{=}$ dim x), Then The set of rat l points u not Zanski denis in X. A vanaut (due to Lang) states that if The vanefy X has ample cotangent bundle, then the set of rational points a finite Note That The first cony. implies The second as having ample cotangent bundle implies. That every subvanefy σ of gen cal type. Therefore, This psende-thm and These conjectures seem to suggest a relationship b/w
Lange Monodromy
Representation \rightarrow Being of geneal tyre

For (1) above, we will show That a generic local Galois rep cannot come from a global repn That is not simple, and then utilize the zanski density of the p-adic penod map.

