
1 Overview

The topic of the course is complex multiplication, a beautiful theory developed
in the 19–th century with many arithmetic applications. This theory tells us
something about the values of certain modular functions at certain points.

Definition 1. A modular function is a holomorphic function f : H → C satisfying
that

f
� az + b

cz + d

�
= f (z) for all

�
a b
c d

�
∈ Γ and z ∈ C,

where
• H is the Poincaré upper half-plane { z ∈ C : Im(z) > 0 }, and
• Γ is a congruence subgroup of SL2(Z).

Remark. We will only use the following congruence subgroups:

Γ0(N) =
� �

a b
c d

�
≡

�∗ ∗
0 ∗

�
mod N

�
,

Γ1(N) =
� �

a b
c d

�
≡

�
1 ∗
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�
mod N

�
,

Γ(N) =
� �

a b
c d

�
≡

�
1 0
0 1

�
mod N

�
.

Also, sometimes we consider modular functions having values in P1(C) (i.e., with
poles) or even in E(C) for some elliptic curve E.

Example 2. The following are examples of modular functions:
(1) The j–invariant j : SL2(Z)\H → C is an analytic isomorphism and generates

the ring of modular functions on SL2(Z)\H.
(2) The λ–function λ : Γ(2)\H → C \ { 0, 1 } is an analytic isomorphism related

to j by

j = 256
(λ2 − λ + 1)3

λ2(λ − 1)2 .

It also satisfies the equations

λ = 16
η(z/2)8 η(2z)16

η(z)24 and 1 − λ =
η(z/2)16 η(2z)8

η(z)24 ,

where

η(z) = q1/24 ∏
n≥1

(1 − qn) if q = e2πiz (Dedekind eta function).
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(The q–expansion of η(z) together with the previous formulae for λ and
1 − λ show that, indeed, λ does not take the values 0 or 1.)

(3) The Siegel units: we have a modular function UN : Γ0(N)\H → C× given by

UN =
Δ(Nz)
Δ(z)

, where Δ(z) = η(z)24.

(4) Modular parametrizations: every elliptic curve E/Q of conductor N admits
a non-constant analytic map ΦE : Γ0(N)\H → E(C) (modularity theorem).

1.1 The main theorem

Definition 3. A CM point of H is a point τ ∈ H which satisfies a quadratic equation
over Q, so that τ = a + b

√
d for some a, b, d ∈ Q with d < 0 and b > 0.

Theorem 4. Let τ ∈ H ∩ Q(
√

d) (for some d < 0) and let f be a modular function. If
the q–expansion of f has coefficients in Q, then f (τ) is algebraic and is defined over an
abelian extension of Q(

√
d).

This theorem suggests that we might be able to generate almost all abelian
extensions of a quadratic imaginary fields (i.e., explicit class fields) from the values
of modular functions.

Example 5. The CM values of j(z) are called singular moduli. Consider a quadratic
imaginary field K with D = disc(K), D < 0, and class number h(K) = 1. Then the
CM point

τD =
D +

√
D

2
satisfies that j(τD) ∈ Z.

Table 1 shows all these singular moduli. One can observe several patterns: all
the numbers in the second column are perfect cubes and have many small prime
factors but not all (no 7 or 13); in contrast the numbers in the third column are
almost perfect squares (except for a factor of D) and includes the prime 7 but no 5.
This kind of patterns were explained by the work of Gross and Zagier.

Writing
(j(τD), j(τD)− 1728) = (x3, Dy2),

we obtain an integral solution to the equation

x3 − Dy2 = 1728.
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D j(τD) j(τD)− 1728

−3 0 −2633

−4 2633 0

−7 −3353 −367

−8 2653 2772

−11 −215 −267211

−19 −21533 −263619

−43 −2183353 −26387243

−67 −2153353113 −26367231267

−163 −2183353233293 −2636721121921272163

Table 1: Singular moduli for quadratic imaginary fields with class number 1.

These kind of numbers seem to contradict the ABC conjecture. Of course this is
not really the case because we only have a finite number of quadratic imaginary
fields with class number 1.

Example 6. In the spirit of the last observation in the previous example, Granville
and Stark proved that a strong version of the ABC conjecture implies that h(D)

grows asymptotically like �
|D|

log(|D|)
as D → −∞. In particular, the Dirichlet L–function L(χD, s) has no Siegel zeros.

1.2 More applications

Let D be a negative discriminant as before. We have the following associated data:
(1) a quadratic order OD = Z[(D +

√
D)/2];

(2) the class group Cl(D) = Pic(OD), and
(3) a ring class field HD such that, if K = Q(

√
D),

Gal(HD/K) = Cl(D)

by class field theory. Furthermore, if we write D = D0c2, where D0 is a
fundamental discriminant (square-free) and c is the conductor of the order,
then HD is unramified outside c.

Proposition 7. If f is a modular function for some group Γ with rational q–expansion,
then f (τD) is defined over an abelian extension L of HD satisfying that
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(1) L is unramified outside the level N of Γ and
(2) [L : HD] ≤ [SL2(Z) : Γ].

Proposition 8. In the situation of proposition 7, if f (H) is contained in V(C) for an
algebraic variety V (such as A1, A1 \ { 1 } or an elliptic curve E), then

f (τD) ∈ V(OL[N−1]).

Example 9.
(1) j(τD) ∈ OL.
(2) λ(τD) is a solution to

(x2 − x + 1)3 − 2−8 j(τD)x2(x − 1)2 = 0

and so λ(τD) ∈ OL[1/2]×. Exercise: 1 − λ(τD) ∈ OL[1/2]×. The pair
(λ(τD), 1 − λ(τD)) is then a solution to the 2–unit equation in L.

(3) UN(τD) ∈ OL[1/N]× (and often even UN(τD) ∈ O×
L ). These units are called

elliptic units. There is an interesting analogy summarized in table 2.

Q K (imaginary quadratic)

Circular units 1 − ζN Elliptic units UN(τD)

Class number formula:
L�(χ, 1) ↔ log(1 − ζN)

for an even Dirichlet character χ

Kronecker limit formula:
L�(ψ, 1) ↔ log(UN(τD))

for a finite-order Hecke character ψ

Work of Thaine, Rubin
(Iwasawa main conjecture)

Work of Coates–Wiles, Rubin
(Iwasawa main conjecture)

Table 2: Analogy between the theory over Q and over K.

Theorem 10 (Coates–Wiles, Rubin). Let A/Q be an elliptic curve with CM. If the
Hasse–Weil L–function of A satisfies that L(A, 1) �= 0, then A(Q) < ∞ (Coates–Wiles)
and X(A/Q) < ∞ (Rubin).

Remarkably, CM theory has applications towards the proof of the BSD con-
jecture for general elliptic curves (not just those with CM). Consider an elliptic
curve E/Q and a modular parametrization ΦE : Γ0(N)/H → E(C). Choosing an
appropriate D, we get ΦE(τD) ∈ E(HD). Define

PD = ∑
disc(τ)=D

ΦE(τ) ∈ E(K).
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Theorem 11 (Gross–Zagier). In the situation above and if D is perfect square modulo
N, then

L�(E, 1) ∼ htNT(PD).

In particular, PD has infinite order precisely when L�(E, 1) �= 0.

Theorem 12 (Kolyvagin). If PD has infinite order, then E(K) is generated by PD and
X(E/K) < ∞.

Corollary 13. If ords=1(L(E, s)) ≤ 1, then

rank(E(Q)) = ords=1(L(E, s)) and X(E/Q) < ∞.

These are essentially the best known results towards a proof of the BSD conjec-
ture, and they would not be available without the theory of complex multiplication.
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