
I and Geometry

Gordon and Breach Science Publishers



LINEAR ALGEBRA AND
GEOMETRY



ALGEBRA, LOGIC AND APPLICATIONS

A Series edited by

R. Gdbel
Universitat Gesamthochschule, Essen, FRG
A. Macintyre
The Mathematical Institute, University of Oxford, UK

Volume 1
Linear Algebra and Geometry
A. I. Kostrikin and Yu. 1. Manin

Additional volumes in preparation

Volume 2
Model Theoretic Algebra
with particular emphasis on Fields, Rings, Modules
Christian U. Jensen and Helmut Lenzing

This book is part of a series. The publisher will accept continuation orders which may be cancelled
at any time and which provide for automatic billing and shipping of each title in the series upon
publication. Please write for details.



LINEAR ALGEBRA AND
GEOMETRY

Paperback Edition

Alexei I. Kostrikin
Moscow State University, Russia

and

Yuri I. Manin
Max-Planck Institut fur Mathematik, Bonn, Germany

Translated from Second Russian Edition by
M. E. Alferieff

GORDON AND BREACH SCIENCE PUBLISHERS
Australia Canada China France Germany India Japan
Luxembourg Malaysia The Netherlands Russia Singapore

Switzerland Thailand 0 United Kingdom



Copyright © 1997 OPA (Overseas Publishers Association) Amsterdam B.V.
Published in The Netherlands under license by Gordon and Breach Science
Publishers.

All rights reserved.

No part of this book may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and recording,
or by any information storage or retrieval system, without permission in
writing from the publisher Printed in India

Amsteldijk 166
1st Floor
1079 LH Amsterdam
The Netherlands

Originally published in Russian in 1981 as Jlrraeiiean Anre6pa m
FeoMeTpHR (Lineinaya algebra i geometriya) by Moscow University Press
143uaTenvcTSO Mocxoacxoro YHHBepCHTeTa
The Second Russian Edition was published in 1986
by Nauka Publishers, Moscow 143ztaTe.nbcTBO Hayxa Mocxaa
© 1981 Moscow University Press.

British Library Cataloguing in Publication Data

Kostrikiu, A. I.
Linear algebra and geometry. - (Algebra, logic and
applications ; v. 1)
1. Algebra, Linear 2. Geometry
1. Title II. Manin, IU. I. (Iurii Ivanovich), 1937-
512.5

ISBN 90 5699 049 7



Contents

Preface

Bibliography

CHAPTER 1 Linear Spaces and Linear Mappings

1 Linear Spaces
2 Basis and Dimension
3 Linear Mappings
4 Matrices
5 Subspaces and Direct Sums
6 Quotient Spaces
7 Duality
8 The Structure of a Linear Mapping
9 The Jordan Normal Form

10 Normed Linear Spaces
11 Functions of Linear Operators
12 Complexification and Decomplexification
13 The Language of Categories
14 The Categorical Properties of Linear Spaces

CHAPTER 2 Geometry of Spaces with an Inner Product

1 On Geometry
2 Inner Products
3 Classification Theorems
4 The Orthogonalization Algorithm and Orthogonal

Polynomials
5 Euclidean Spaces

6 Unitary Spaces
7 Orthogonal and Unitary Operators
8 Self-Adjoint Operators
9 Self-Adjoint Operators in Quantum Mechanics

10 The Geometry of Quadratic Forms and the Eigenvalues of
Self-Adjoint Operators

11 Three-Dimensional Euclidean Space
12 Minkowski Space
13 Symplectic Space

vu

ix

I

92

92

94

101

109

117

127

134

138

148

156

164

173

182



vi A. I. KOSTRIKIN AND Yu. I. MANIN

14 Witt's Theorem and Witt's Group 187

15 Clifford Algebras 190

CHAPTER 3 Affine and Projective Geometry 195

1 Affine Spaces, Affine Mappings, and Affine Coordinates 195

2 Affine Groups 203

3 Affine Subspaces 207

4 Convex Polyhedra and Linear Programming 215

5 Affine Quadratic Functions and Quadrics 218

6 Projective Spaces 222

7 Projective Duality and Projective Quadrics 228

8 Projective Groups and Projections 233

9 Desargues' and Pappus' Configurations and Classical
Projective Geometry 242

10 The Kahier Metric 247
11 Algebraic Varieties and Hilbert Polynomials 249

CHAPTER 4 Multilinear Algebra 258

1 Tensor Products of Linear Spaces 258

2 Canonical Isomorphisms and Linear Mappings of Tensor
Products 263

3 The Tensor Algebra of a Linear Space 269

4 Classical Notation 271

5 Symmetric Tensors 276

6 Skew-Symmetric Tensors and the Exterior Algebra of a
Linear Space 279

7 Exterior Forms 290

8 Tensor Fields 293

9 Tensor Products in Quantum Mechanics 297

Index 303



Preface to the Paperback Edition

Courses in linear algebra and geometry are given at practically all univer-
sities and plenty of books exist which have been written on the basis of
these courses, so one should probably explain the appearance of a new one.
In this case our task is facilitated by the fact that we are discussing the
paperback edition of our textbook.

One can look at the subject matter of this course in many different ways.
For a graduate student, linear algebra is the material taught to freshmen.
For the professional algebraist, trained in the spirit of Bourbaki, linear
algebra is the theory of algebraic structures of a particular form, namely,
linear spaces and linear mappings, or, in the more modern style. the theory
of linear categories.

From a more general viewpoint, linear algebra is the careful study of
the mathematical language for expressing one of the most widespread
ideas in the natural sciences - the idea of linearity. The most important
example of this idea could quite possibly be the principle of linearity of
small increments: almost any natural process is linear in small amounts
almost everywhere. This principle lies at the foundation of all mathematical
analysis and its applications. The vector algebra of three-dimensional
physical space, which has historically become the cornerstone of linear
algebra, can actually be traced back to the same source: after Einstein, we
now know that the physical three-dimensional space is also approximately
linear only in the small neighbourhood of an observer. Fortunately, this
small neighbourhood is quite large.

Twentieth-century physics has markedly and unexpectedly expanded the
sphere of application of linear algebra, adding to the principle of linearity
of small increments the principle of superposition of state vectors. Roughly
speaking, the state space of any quantum system is a linear space over
the field of complex numbers. As a result, almost all constructions of
complex linear algebra have been transformed into a tool for formulating
the fundamental laws of nature: from the theory of linear duality, which
explains Bohr's quantum principle of complementarity, to the theory of
representations of groups, which underlies Mendeleev's table, the zoology
of elementary particles, and even the structure of space-time.

vii



viii A. I. KOSTRIKIN AND Yu. I . MANIN

The selection of the material for this course was determined by our desire
not only to present the foundations of the body of knowledge which was
essentially completed by the beginning of the twentieth century, but also
to give an idea of its applications, which are usually relegated to other
disciplines. Traditional teaching dissects the live body of mathematics
into isolated organs, whose vitality must be maintained artificially. This
particularly concerns the `critical periods' in the history of our science,
which are characterised by their attention to the logical structure and
detailed study of the foundations. During the last half-century the language
and fundamental concepts were reformulated in set-theoretic language; the
unity of mathematics came to be viewed largely in terms of the unity of its
logical principles. We wanted to reflect in this book, without ignoring the
remarkable achievements of this period, the emerging trend towards the
synthesis of mathematics as a tool for understanding the outside world.
(Unfortunately, we had to ignore the theory of the computational aspects
of linear algebra, which has now developed into an independent science.)

Based on these considerations, this book, just as in Introduction to
Algebra written by Kostrikin, includes not only the material for a course
of lectures, but also sections for independent reading, which can be used
for seminars. There is no strict division here. Nevertheless, a lecture course
should include the basic material in Sections 1-9 of Chapter 1; Sections 2-8
of Chapter 2; Sections 1, 3, 5 and 6 of Chapter 3 and Sections 1 and 3-6 of
Chapter 4. By basic material we mean not the proof of difficult theorems
(of which there are only a few in linear algebra), but rather the system of
concepts which should be mastered. Accordingly, many theorems from these
sections can be presented in a simple version or omitted entirely; due to
the lack of time, such abridgement is unavoidable. It is up to the instructor
to determine how to prevent the lectures from becoming a tedious listing
of definitions. We hope that the remaining sections of the course will be of
some help in this task.

A number of improvements set this paperback edition of our book apart
from the first one (Gordon and Breach Science Publishers, 1989). First
of all, the terminology was slightly changed in order to be closer to the
traditions of western universities. Secondly, the material of some sections
was rewritten: for example, the more elaborate section 15 of Chapter 2.
While discussing problems of linear programming in section 2 of Chapter
3 the emphasis was changed a little; in particular, we introduced a new
example illustrating an application of the theory to microeconomics. Plenty
of small corrections were also made to improve the perception of the
main theme.

We would like to express heartfelt gratitude to Gordon and Breach
Science Publishers for taking the initiative that led to the paperback edition
of this book. What is more important is that Gordon and Breach prepared
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the publication of Exercises in Algebra by Kostrikin, which is an important
addition to Linear Algebra and Geometry, and to Introduction to Algebra.
These three books constitute a single algebraic complex, and provide more
than enough background for an undergraduate course.

A.I. Kostrikin
Yu.I. Manin

1996

Bibliography

1 Kostrikin, A. I., (1982) Introduction to Algebra, Springer-Verlag,
New York-Berlin

2 Lang, S., (1971) Algebra, Addison-Wesley, Reading. MA
3 Gel'fand, I. M., (1961) Lectures on Linear Algebra, Interscience Publishers,

Inc., New York
4 Halmos, P. R., (1958) Finite-Dimensional Vector Spaces. 1). Van Nostrand

Company, Inc., New York
5 Artin, E., (1957) Geometric Algebra, Interscience Publishers, Inc., New York
6 Glazman, I. M. and Ljubich, Ju. I., (1974) Finite-Dimensional Linear Analy-

sis: A Systemic Presentation in Problems Form, MIT Press, Cambridge, MA
7 Mansfield, Ed., (1990) Managerial Economics, W. W. Norton & Company,

New York-London
8 Huppert, B., (1990) Angewandte Lineare Algebra, Walter de Gruyter,

Berlin-New York





CHAPTER1

Linear Spaces and Linear Mappings

§1. Linear Spaces

1.1. Vectors, whose starting points are located at a fixed point in space, can be
multiplied by a number and added by the parallelogram rule. This is the classical
model of the laws of addition of displacements, velocities, and forces in mechanics.
In the general definition of a vector or a linear space, the real numbers are replaced
by an arbitrary field and the simplest properties of addition and multiplication
of vectors are postulated as an axiom. No traces of the "three-dimensionality" of
physical space remain in the definition. The concept of dimensionality is introduced
and studied separately.

Analytic geometry in two- and three-dimensional space furnishes many exam-
ples of the geometric interpretation of algebraic relations between two or three
variables. However, as expressed by N. Bourbaki, "... the restriction to geometric
language, conforming to a space of only three dimensions, would be just as in-
convenient a yoke for modern mathematics as the yoke that prevented the Greeks
from extending the concept of numbers to relations between incommensurate quant-
ities ...".

1.2. Definition A set is said to be a linear (or vector) space L over a field K
if it is equipped with a binary operation L x L - L, usually denoted as addition
(11i12) -. 11 + 12, and an external binary operation K x L -. L, usually denoted as
multiplication (a, 1) - al, which satisfy the following axioms:

a) Addition of the elements of L, or vectors, transforms L into a commutative
(abelian)group. Its zero element is usually denoted by 0; the element inverse to 1 is
usually denoted by -1.

b) Multiplication of vectors by elements in the field K, or scalars, is unitary,
i.e., 11 = I for all 1, and is associative, i.e., a(bl) = (ab)l for all a, b E K and I E L.

c) Addition and multiplication satisfy the distributivity laws, i.e.

a(l1 + 12) = all + ale, (a1 + a2)I = ail + a21

for all a,a1,a2 E K and 1,11,12 E L.

1



2 A. I. KOSTRIKIN AND Yu. I. MANIN

1.3. Here are some very simple consequences of this definition.
a) 01 = a0 = 0 for all a E K and 1 E L. Indeed 01 + 01 = (0 + 0)1= 01, whence

according to the property of contraction in an abelian group, 01 = 0. Analogously,
aO + a0 = a(0 + 0) = a0, that is, a0 = 0.

b) (-1)1 = -1. Indeed, 1 + (-1)1 = It + (-1)1 = (1 + (-1))l = 01 = 0, so that
the vector (-1)1 is the inverse of 1.

c) If at = 0, then either a = 0 or 1 = 0. Indeed, if a # 0, then 0 = a-'(al) _
_ (a-la)1= 11 = 1.

d) The expression all, + ... + anln = Eaili is uniquely defined for any
a 1 i ... , an E K and 1, , ... , In E L: because of the associativity of addition in an
abelian group it is not necessary to insert parentheses indicating order for the calcu-
lation of double sums. Analogously, the expression ala2 ... and is uniquely defined.

An expression of the form E,,"_1 aili is called a linear combination of vectors
11, ... ,1,,; the scalars ai are called the coefficients of this linear combination.

The following examples of linear spaces will be encountered often in what fol-
lows.

1.4. Zero-dimensional space. This is the abelian group L = {0}, which consists
of one zero. The only possible law is multiplication by a scalar: a0 = 0 for all a E K
(verify the validity of the axioms !).

Caution: zero- dimensional spaces over different fields are different spaces: the
field K is specified in the definition of the linear space.

1.5. The basic field K as a one-dimensional coordinate space. Here
L = K; addition is addition in K and multiplication by scalars is multiplication in
K. The validity of the axioms of the linear space follows from the axioms of the
field.

More generally, for any field K and a subfield K of it, K can be interpreted
as a linear space over K. For example, the field of complex numbers C is a linear
space over the field of real numbers R, which in its turn is a linear space over the
field of rational numbers Q.

1.6. n-dimensional coordinate space. Let L = K" = K x ... x K (Cartesian
product of n > 1 factors). The elements of L can be written in the form of rows of
length n (a,, ... , an), ai E K or columns of height n. Addition and multiplication
by a scalar is defined by the formulas:

(a,,..., an) + (bi,...,bn) _ (al + b,,...,an + bn),

a(a1,...,a.) _ (aa,,...,aan).

The preceding example is obtained by setting n = 1. One-dimensional spaces over
K are called straight lines or K-lines; two-dimensional spaces are called K-planes.
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1.7. Function spaces. Let S be an arbitrary set and let F(S) be the set of
functions on S with values in K or mappings of S into K. As usual, if f : S - K
is such a function, then f (s) denotes the value off on the element s E S.

Addition and multiplication of functions by a scalar are defined pointwise:

(f +g)(s)= f(s)+g(s) for all sES,

(af)(s) = a(f(s)) for all a E K,s E S.

If S = {1,... , n}, then F(S) can be identified with Kn: the function f is asso-
ciated with the "vector" formed by all of its values (f(1),..., f(n)). The addition
and multiplication rules are consistent with respect to this identification.

Every element s E S can be associated with the important "delta function
6, centred on {s}", which is defined as b,(s) = 1 and b,(t) = 0, if t t- s. If
S = (1,... , n), then bik, the Kronecker delta, is written instead of bi(k).

If the set S is finite, then any function from F(S) can be represented uniquely
by a linear combination of delta functions: f = E,ES f (s)b,. Indeed, this equality
follows from the fact that the left side equals the right side at every point s E S.
Conversely, if f = F,ES then taking the value at the point s we obtain
f(s)=a,.

If the set S is infinite, then this result is incorrect. More precisely, it cannot be
formulated on the basis of our definitions: sums of an infinite number of vectors in
a general linear space are not defined ! Some infinite sums can be defined in linear
spaces which are equipped with the concept of a limit or a topology (see Chapter
10). Such spaces form the basic subject of functional analysis.

In the case S = {1, ... , n), the function bi is represented by the vector ei =
_ (0, ... , 0, 1, 0,... , 0) (1 at the ith place and 0 elsewhere) and the equality f =
_ E,ES f(s)b, transforms into the equality

n

(a1i...,a.) = Eaiei.

i=1

1.8. Linear conditions and linear subspaces. In analysis, primarily real-
valued functions defined over all R or on intervals (a, b) C R are studied. For most
applications, however, the space of all such functions is too large: it is useful to
study continuous or differentiable functions. After the appropriate definitions are
introduced, it is usually proved that the sum of continuous functions is continuous
and that the product of a continuous function by a scalar is continuous; the same
assertions are also proved for differentiability.

This means that the continuous or differentiable functions themselves form a
linear space.
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More generally, let L be a linear space over the field K and let M C L be a
subset of L, which is a subgroup and which transforms into itself under multiplica-
tion by a scalar. Then M together with the operations induced by the operations in
L (in other words, the restrictions of the operations defined in L to M) is called a
linear subspace of L, and the conditions which an arbitrary vector in L must satisfy
in order to belong to M are called linear conditions.

Here is an example of linear conditions in the coordinate space Kn. We fix
scalars a,,...,a, E K and define M C L:

n

(x1i...,rn) E M q > air; = 0. (1)

i=1

A combination of any number of linear conditions is also a linear condition.
In other words, the intersection of any number of linear subspaces is also a linear
subspace (check this !). We shall prove later that any subspace in K" is described
by a finite number of conditions of the form (1).

An important example of a linear condition is the following construction.

1.9. The dual linear space. Let L be a linear space over K. We shall first study
the linear space F(L) of all functions on L with values in K. We shall now say that
a function f E F(L) is linear (or, as is sometimes said, a "linear functional"), if it
satisfies the conditions

f(l1 + 12) = f(l1)+1(12), f(al) = af(l)

for all 1,11i12 E L and a E K. From here, by induction on the number of terms, we
find that

n n

f 0ili) _ aif(li).

We assert that linear functions form a linear subspace of F(L) or "the condition
of linearity is a linear condition". Indeed, if f, f1 and f2 are linear, then

(fl + 12)(11 + 12) = f1(l1 + 12) + f2(l1 + 12) _

= 11(11) + 11(12) + 12(11) + 12(12) = (11 + f2)(11) + (fl + 12)(12)

(Here the following are used successively: the rule for adding functions, the linearity
of f1 and f2, the commutativity and associativity of addition in a field, and again
the rule of addition of functions.) Analogously,

(af)(l1 + 12) = a[f (11 + 12)] = a(f (1.) + f (12)) =

= a[f (l1)) + a((12)) = (af)(l1) + (af)(12).
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Thus fl + fz and of are also linear.
The space of linear functions on a linear space L is called a dual space or the

space conjugate to L and is denoted by L.
In what follows we shall encounter many other constructions of linear spaces.

1.10. Remarks regarding notation. It is very convenient, but not entirely
consistent, to denote the zero element and addition in K and L by the same sym-
bols. All formulas of ordinary high-school algebra, which can be imagined in this
situation, are correct: refer to the examples in §1.3.

Here are two examples of cases when a different notation is preferable.
a) Let L = {z E Rix > 0). We regard L as an abelian group with respect to

multiplication and we introduce in L multiplication by a scalar from R according to
the formula (a, z) za. It is easy to verify that all conditions of Definition 1.2 are
satisfied, though in the usual notation they assume a different form: the zero vector
in L is 1; 11 = I is replaced by zl = x; a(bl) = (ab)l is replaced by the identity
(z6)a = zba; (a + b)1= al + bl is replaced by the identity za+b = zax6; etc.

b) Let L be a vector space over the field of complex numbers C. We define a new
vector space L with the same additive group L, but a different law of multiplication
by a scalar:

(a, l) i-4 al,

where a is the complex conjugate of a. From the formulas YTT = a+b and ab = ab
it follows without difficulty that L is a vector space. If in some situation L and L
must be studied at the same time, then it may be convenient to write a * I or a o I
instead of al.

1.11. Remarks regarding diagrams and graphic representations. Many
general concepts and theorems of linear algebra are conveniently illustrated by di-
agrams and pictures. We want to warn the reader immediately about the dangers
of such illustrations.

a)Low dimensionality. We live in a three-dimensional space and our dia-
grams usually portray two- or three-dimensional images. In linear algebra we work
with space of any finite number of dimensions and in functional analysis we work
with infinite-dimensional spaces. Our "low-dimensional" intuition can be greatly
developed, but it must be developed systematically.

Here is a simple example: how are we to imagine the general arrangement of
two planes in four-dimensional space ? Imagine two planes in R3 intersecting along
a straight line which splay out everywhere along this straight line except at the
origin, vanishing into the fourth dimension.

b) Real field. The physical space R3 is linear over a real field. The unfamiliar-
ity of the geometry of a linear space over K could be associated with the properties
of this field.
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For example, let K = C (a very important case for quantum mechanics). A
straight line over C is a one-dimensional coordinate space C'. We have become
accustomed to the fact that multiplication of points on the straight line R' by a
real number a represents an a-fold stretching (for a > 1), an a-'-fold compression
(for 0 < a < 1), or their combination with an inversion of the straight line (for
a < 0).

It is, however, natural to imagine multiplication by a complex number a, acting
on C', in a geometric representation of C1 in terms of R2 ("Argand plane" or the
"complex plane" - not to be confused with C2 !). The point (r, y) E R2 is then
the image of the point z = x + iy E C1 and multiplication by a 4 0 corresponds
to stretching by a factor of Jai and counterclockwise rotation by the angle arga. In
particular, for a = -1 the real "inversion" of the straight line R1 is the restriction
of the rotation of C' by 1800 to R1.

In general, it is often useful to think of an n-dimensional complex space C" as
a 2n-dimensional real space R2" (compare §12 on complexification and decomplex-
ification).

Finite fields K, in particular the field consisting of two elements F2 = 10, 1},
which is important in encoding theory, are another important example. Here finite-
dimensional coordinate spaces are finite, and it is sometimes useful to associate
discrete images with a linear geometry over K. For example, Fz is often identified
with the vertices of an n-dimensional unit cube in R" - the set of points (fl,- , En),

where e; = 0 or 1. Coordinatewise addition in F2 is a Boolean operation: I + 0 =
= 0+1 = 1; 0+0 = 1+1 = 0. The subspace consisting of points with el+...+En = 0
defines the simplest code with error detection. If it is stipulated that the points
( ( I ,- .. , cn) encode a message only if E1 + ... + En = 0, then in the case when a
signal (ej, ... , cn) with e $ 0 is received we can be sure that interference in
transmission has led to erroneous reception.

c) Physical space is Euclidean. This means that not only are addition of
vectors and multiplication by a scalar defined in this space, but the lengths of
vectors, the angles between vectors, the areas and volumes of figures, and so on
are also defined. Our diagrams carry compelling information about these "metric"
properties and we perceive them automatically, though they are in no way reflected
in the general axiomatics of linear spaces. It is impossible to imagine that one
vector is shorter than another or that a pair of vectors forms a right angle unless
the space is equipped with a special additional structure, for example, an abstract
inner product. Chapter 2 of this book is devoted to such structures.

EXERCISES

1. Do the following sets of real numbers form a linear space over Q ?
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a) the positive real numbers;
b) the negative real numbers;
c) the integers;
d) the rational numbers with a denominator < N;
e) all numbers of the form a+b r, where a and b are arbitrary rational numbers.

2. Let S be some set and let F(S) be the space of functions with values in the field
K. Which of the following conditions are linear ?

a) f vanishes at a given point in S;
b) f assumes the value 1 at a given point of S;
c) f vanishes at all points in a subset So C S;
d) f vanishes at at least one point of a subset So C S.

Below S=Rand K =R:
e) f(z)-.O asIxI - oo;
f) f(z) -. l as Ixj -' oo;
g) f has not more than a finite number of points of discontinuity.

3. Let L be the linear space of continuous real functions on the segment [-1,1].
Which of the functionals on L are linear functionals ?

a) f - f 11 f (x)dx;
b) f ' f 11 f2(x)dz;
c) f '-+ f (0) (this is the Dirac delta-function);
d) f t-+ f 11 f(x)g(x)dx, where g is a fixed continuous function on [-1,1].

4. Let L = K. Which of the following conditions on (Z1, ... , x") E L are linear :
a) E7 1 aixi = 1;a1i...,a, E K;
b) 1:71 x; = 0 (examine the following cases separately: K = R, K = C, and

K is a field with two elements or, more generally, a field whose characteristic equals
two);

c) x3 = 2x4.

5. Let K be a finite field consisting of q elements. How many elements are there in
the linear space K" ? How many solutions does the equation E 1 aixi = 0 have ?

6. Let KO° be the space of infinite sequences (a,, a2i a3, ...), ai E K, with coordi-
natewise addition and multiplication. Which of the following conditions on vectors
from K°O are linear ?

a) only a finite number of the coordinates ai differs from zero;
b) only a finite number of coordinates ai vanishes;
c) no coordinate ai is equal to 1.

Below K = R or C;
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d) Cauchy's condition: for every e > 0 there exists a number N > 0 such that
lan, - a,< efor m,n>N;

e) Hilbert's condition: the series F'
1

Ian12 converges;

f) (ai) form a bounded sequence, i.e., there exists a constant c, depending on
(ai), such that Jai < c for all i.

7. Let S be a finite set. Prove that every linear functional on F(S) is determined
uniquely by the set of elements {a, Is E S} of the field K: the scalar E,ES a, f (s)
is associated with the function f.

If n is the number of elements of S and a, = 1/n for all s, we obtain the
functional f ,-+

n
E,ES f (s) - the average arithmetic value of the function.

If K = R and a, > 0, >2,ES a, = 1, the functional E,Es a, f (a) is called the
weighted mean of the function f (with weights a,).

§2. Basis and Dimension

2.1. Definition. A set of vectors {e1i...,en) in a linear space L is said to be
a (finite)basis of L if every vector in L can be uniquely represented as a linear
combination 1 = F_', a;e;, a, E K. The coefficients a; are called the coordinates
of the vector I with respect to the basis {ei}.

2.2. Examples. a) The vectors e; = (0,...,1,...,0), 1 < i < n, in K" form a basis
of K. b) If the set S is finite, the functions b, E F(S) form a basis of F(S). Both
of these assertions were checked in §1.

If a basis consisting of n vectors is chosen in L and every vector is specified in
terms of its coordinates with respect to this basis, then addition and multiplication
by a scalar are performed coordinatewise:

n n n n n

aiei + bier = j,(a1 + bi)ei, a E aiei = aaiei.

i_1

The selection of a basis is therefore equivalent to the identification of L with the
coordinate vector space. The notation I = [ai, ... , an] or I = ad is sometimes used
instead of the equality 1 = Eni=1 aiei; in this notation the basis is not indicated
explicitly. Here [al,. .. , an] stands for the column vector

a1

(a,i...,an] _ = a

an

2.3. Definition. A space L is said to be finite-dimensional if it is either zero-
dimensional (see §1.4) or has a finite basis. Otherwise it is said to be infinite-
dimensional.
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It is convenient to regard the basis of a zero-dimensional space as an empty set
of vectors. Since all of our assertions become trivial for zero-dimensional spaces, we
shall usually restrict our attention to non-empty bases.

2.4. Theorem. In a finite-dimensional space the number of elements in the basis
does not depend on the basis.

This number is called the dimension of the space L and is denoted by dim L or
dimK L. If dim L = n, then the space L is said to be an n-dimensional space. In
the infinite-dimensional case, we write dim L = oo.

Proof. Let {e1, ... ,en} be a basis of L. We shall prove that no family of vectors
{ei , ... , em } with m > n can serve as a basis of L for the following reason: there
exists a representation of the zero vector 0 rie; such that not all xi vanish.
Hence 0 cannot be uniquely represented as a linear combination of the vectors {e; }:
the trivial representation 0 = E; `_ l 0e; always exists.

The complete assertion of the theorem already follows from here, since we can
now verify that no basis can contain more elements than any other basis.

Let ek = En 1 aikei, k = 1, ... , m. For any rk E K we have

m m n n m

2kek = E rk E aikei aikrk)ei.
k=1 k=1 i=1 i=1 k=1

Since {ei} form a basis of L, the zero vector can be represented uniquely as a
linear combination Ek=1 Oek of {ek}. The condition F_1 rket = 0 is therefore
equivalent to a system of homogeneous linear equations for xk:

m

E aikxk =0, i = 1, ... , n.
k=1

Since the number of unknowns m exceeds the number of equations n, this system
has a non-zero solution. The theorem is proved.

2.5. Remark. a) Any set of vectors can be a basis if any vector in the space can
be uniquely represented as a finite linear combination of the elements of this set.
In this sense, any linear space has a basis and the basis of an infinite-dimensional
space is always infinite. This concept, however, is not very useful. As a rule, infinite-
dimensional spaces are equipped with a topology and the possibilities of defining
infinite-dimensional linear combinations are included.

b) In general linear spaces, bases are traditionally enumerated by integers from
1 to n (sometimes from 0 to n), but this is not absolutely necessary. The basis {b,)
in F(S) is naturally enumerated by the elements of the set s E S. A basis in L can
also be viewed as simply a subset in L, whose elements are not equipped with any
indices (cf. §2.20). Enumeration or rather the order of the elements of a basis is
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important in the matrix formalism (see §4). In other problems, a different structure
on the set of indices enumerating the basis could be important. For example, if
S is a finite group, then the manner in which the indices s of the basis (b.) are
multiplied within S is important, and a random enumeration of S by integers can
only confuse the notation.

2.6. Examples. a) The dimension of Kn equals n. b) The dimension of F(S)
equals the number of elements in S, if S is finite.

Later we shall learn how to calculate the dimension of linear spaces without
constructing their bases. This is very important, because many numerical invari-
ants in mathematics are defined as a dimension (the "Betti number" in topology,
the indices of operators in the theory of differential equations); the bases of the
corresponding spaces, on the other hand, may be difficult to calculate or they may
not have any special significance. For the time being, however, we must work with
bases.

The verification of the fact that a given family of vectors {e1, ... , e } in L
forms a basis, according to the definition, consists of two parts. A study of each
part separately leads to the following concepts.

2.7. Definition. The set of all possible linear combinations of a set of vectors in
L is called the linear span of the set.

It is easy to verify that a linear span is a linear subspace of L (see §1.8). The
linear span of lei) is also referred to as the subspace spanned or generated by the
vectors lei). It can also be defined as the intersection of all linear subspaces of L
containing all ei (prove this !). The dimension of a linear span of a set of vectors
is called the rank of the set.

The first characteristic property of a basis is: its linear span coincides with all
of L.

2.8. Definition. The set of vectors lei) is said to be linearly independent if no
non-trivial linear combination of {ei} vanishes, i.e., if E 1 aiei = 0 implies that
all the ai = 0. Otherwise, it is said to be linearly dependent.

The fact that the set lei) is linearly independent indicates that the zero vector
can be represented as a unique linear combination of the elements of the set. Then
any other vector has either a unique representation or no representation. Indeed,
comparing the two representations

n n

1 = aiei = iei.

we find that
n

0 = Dai - aiei,
i=1
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whence a, = a;.
From here follows the second characteristic property of a basis: its elements

are linearly independent.

The combination of these two properties is equivalent to the first definition of
a basis.

We note also that a set of vectors is linearly independent if and only if it forms
a basis of its linear span.

The family {e1, ... , en) is obviously linearly dependent if one of the vectors e,
is the zero vector or two of the vectors e; are identical (why ?).

More generally, we have the following lemma.

2.9. Lemma. a) The set of vectors {el,...,e,,} is linearly dependent if and only
if at least one of the vectors ei is a linear combination of the others.

b) If the set {el , ... , e,,} is linearly independent and the set {el , ... , C,,,
is linearly dependent, then is a linear combination of e1, ..., en.

Proof a) If a;e; = 0 and ai # 0, then ei = E°_1 #j(-a la;)e;. Conversely,
if ei = rt#i b;e;, then ei - Ej#i b;e; = 0.

b) If ° 11 a;e; = 0 and not all a; vanish, then necessarily 0. Otherwise
we would obtain a non-trivial linear dependence between e1,...,en. Therefore,

En I1(-a-+1a;)ei. The lemma is proved.
Let E = {el, ... , be a finite set of vectors in L and let F = {e51, ... I ei,,, }

be a linearly independent subset of E. We shall say that F is maximal, if every
element in E can be expressed as a linear combination of the elements of F.

2.10. Proposition. Every linearly independent subset E' C E is contained in
some maximal linearly independent subset F C E. The linear spans of F and E
coincide with each other.

Proof. If E\E' contains a vector that cannot be represented as a linear combination
of the elements of E', then we add it to E'. According to Lemma 2.9b, the set E"
so obtained will be linearly independent. We apply the same argument to E", etc.
Since E is finite, this process will terminate on the maximal set F. Any element
of the linear span of E can evidently be expressed as a linear combination of the
vectors in the set F.

In the case E' = 0, E" must be chosen as a non-zero vector from E, if it exists;
otherwise, F is empty.

2.11. Remark. This result is also true for infinite sets E. To prove this assertion
it is necessary to apply transfinite induction or Zorn's lemma: see §2.18-§2.20.

The maximal subset is not*necessarily unique. Let E = {(1,0), (0,1), (1,1))
and E' = ((1, 0)) in K2. Then E' is contained in two maximal independent subsets
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{(1, 0), (0,1)} and {(1, 0), (1,1)}. However, the number of elements in the maximal
subset is determined uniquely; it equals the dimension of the linear span of E and
is called the rank of the set E.

The following theorem is often useful.

2.12. Theorem on the extension of a basis. Let E' = {el, ... , e,n} be a linearly
independent set of vectors in a finite-dimensional space L. Then there exists a basis
of L that contains E'.

Proof. Select any basis {e,n+l , ... , en } of Land set E
Let F denote a maximal linearly independent subset of E containing E. This is
the basis sought.

Actually, it is only necessary to verify that the linear span of F coincides with
L. But, according to Proposition 2.10, it equals the linear span of E, while the
latter equals L because E contains a basis of L.

2.13. Corollary (monotonicity of dimension). Let M be a linear subspace
of L. Then dim M < dim L and if L is finite-dimensional, then dim M = dim L
implies that M = L.

Proof. If M is infinite-dimensional, then L is also infinite-dimensional. Indeed, we
shall first show that M contains arbitrarily large independent sets of vectors. If a set
of n linearly independent vectors {e 1, ... , en } has already been found, then its linear
span M' C M cannot coincide with M, for otherwise M would be n-dimensional.
Therefore, M contains a vector en+1, that cannot be expressed as a linear com-
bination of {el, ... , e,, } and Lemma 2.9b shows that the set lei.... , en, en+l } is
linearly independent. We now assume that M is infinite-dimensional while L is
n-dimensional. Then according to the proof of Theorem 2.4, any n + 1 linear com-
binations of elements of the basis of L are linearly dependent, which contradicts the
infinite-dimensionality of M.

It remains to analyse the case when M and L are finite-dimensional. In this
case, according to Theorem 2.12, any basis of M can be extended up to the basis
of L, whence it follows that dim M < dim L.

Finally, if dim M = dim L, then any basis of M must be a basis of L. Other-
wise, its extension up to a basis in L would consist of > dim L elements, which is
impossible.

2.14. Bases and flags. One of the standard methods for studying sets S
with algebraic structures is to single out sequences of subsets So C Sl C S2 ... or
So D S1 D S2 D ... such that the transition from one subset to the next one is
simple in some sense. The general name for such sequences is filtering (increasing
and decreasing respectively). In the theory of linear spaces, a strictly increasing
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sequence of subspaces Lo C L1 C ... C L, of the space L is called a flag. (This term
is motivated by the following correspondence: flag {0 point) C {straight line} C
C {plane} corresponds to "nail", "staff", and "sheet of cloth".)

The number n is called the length of the flag Lo C L1 C ... C L,,.
The flag Lo C L1 C ... C Ln C ... is said to be maximal if Lo = (0), U Li = L

and a subspace cannot be inserted between L;, L;+I (for any i): if L; C M C L;+1,
then either L; = M or M = L;+i.

A flag of length n can be constructed for any basis (e1, ... , en ) of the space
L by setting Lo = {O) and L; = linear span of {e1,. .. , e;) (for i > 1). It will be
evident from the proof of the following theorem that this flag is maximal and that
our construction gives all maximal flags.

2.15. Theorem, The dimension of the space L equals the length of any maximal
flag of L.

Proof. Let Lo C L1 C L2 C ... be a maximal flag in L. For all i > I we select a
vector e; E L;\L;_1 and show that {el,...,e1} form a basis of the space L.

First of all, the linear span of {e1,...,e;_1} is contained in L;_1, and e; does
not lie in Li_1, whence it follows by induction on i (taking into account the fact
that e1 # 0) that {e1 i ... , e; } are linearly independent for all i.

We shall now show by induction on i that {ei, ...,e;} generate L. Assume that
this is true for i - 1 and let M be the linear span of {e 1, ... , e; } . Then L;_ 1 C M
according to the induction hypothesis and L;_1 96 M because e; 1

Li_1. The
definition of the maximality of a flag now implies that M = L.

It is now easy to complete the proof of the theorem. If Lo C L1 C ... C L. = L

is a finite maximal flag in L, then, according to what has been proved the vectors
{e1 i ... , e }, e; E L;\L;_ 1, form a basis of L so that n = dim L. If L contains
an infinite maximal flag, then this construction provides arbitrarily large linearly
independent sets of vectors in L, so that L is infinite-dimensional.

2.16. Supplement. Any flag in a finite-dimensional space L can be extended up
to the maximal flag, and its length is therefore always < dim L. Indeed, we continue
to insert intermediate subspaces into the starting flag as long as it is possible to do
so. This process cannot continue indefinitely, because the construction of systems
of vectors {e1, ... , e;), e; E L;\L;_ I for any flag gives linearly independent systems
(see the beginning of the proof of Theorem 2.15). Therefore, the length of the flag
cannot exceed dim L.

2.17. The basic principle for working with infinite-dimensional spaces:
Zorn's lemma or transfinite induction. Most theorems in finite-dimensional
linear algebra can be easily proved by making use of the existence of finite bases
and Theorem 2.12 on the extension of bases; many examples of this will occur in
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what follows. But the habit of using bases makes it difficult to make the transition
to functional analysis. We shall now describe a set-theoretical principle which, in
very many cases, eliminates the need for bases.

We recall (see §6 of Ch. 1 in "Introduction to Algebra") that a partially ordered
set is a set X together with a binary ordering relation < on X that is reflexive
(x < x), transitive (if x < y and y < z, then x < z), and antisymmetric (if x < y
and y < x, then x = y). It is entirely possible that a pair of elements x, y E X does
not satisfy x < y or y < x. If, on the other hand, for any pair either x < y or y < x,
then the set is said to be linearly ordered or a chain.

An upper bound of a subset Y in a partially ordered set X is any element x E X
such that y:5 x for all y E Y. An upper bound of a subset may not exist: if X = R
with the usual relation < and Y = Z (integers), then Y does not have an upper
bound.

The greatest element of the partially ordered set X is an element n E X such
that x < n for all x E X ; a maximal element is an element m E X for which
m < x E X implies that x = in. The greatest element is always maximal, but not
conversely.

2.18. Example. A typical example of an ordered set X is the set of all subsets
P(S) of the set S, or some part of it, ordered by the relation C. If S has more than
two elements, then P(S) is partially ordered, but it is not linearly ordered (why ?).
The element S E P(S) is maximal and is even the greatest element in P(S).

2.19. Zorn's lemma. Let X be a non-empty partially ordered set, any chain
in which has an upper bound in X. Then some chain has an upper bound that is
simultaneously the maximal element in X.

Zorn's lemma can be derived from other, intuitively more plausible, axioms
of set theory. But logically it is equivalent to the so-called axiom of choice, if the
remaining axioms are accepted. For this reason, it is convenient to add it to the
basic axioms which is, in fact, often done.

2.20. Example of the application of Zorn's lemma: existence of a basis
in infinite-dimensional linear spaces.

Let L be a linear space over the field K. We denote by X C P(L) the set of
linearly independent subsets of vectors in L, ordered by the relation C.

In other words, Y E X if any finite linear combination of vectors in Y that
equals zero has zero coefficients. Let us check the conditions of Zorn's lemma: if
S is a chain in X, then it has an upper bound in X. Indeed, let Z = Uy e$ Y.

Obviously, Y C Z for any Y E S; in addition, Z forms a linearly independent set of
vectors, because any finite set of vectors {yl, ... , y1, } from Z is contained in some
element Y E S. Actually, let yi E Yi E S; since S is a chain, one of every two



LINEAR ALGEBRA AND GEOMETRY 15

elements Y,Yi E S is a subset of the other; deleting in turn the smallest sets from
such pairs, we find that amongst the Y; there exists a greatest set; this set contains
all the yl,... , y", which are thus linearly independent.

We shall now make an application of Zorn's lemma. Here, only part of it is
required: the existence of a maximal element in X. By definition, this is a linearly
independent set of vectors Y E X such that if any vector 1 E L is added to it, then
the set Y U {1} will no longer be linearly independent. Exactly the same argument
as in Lemma 2.9b then shows that 1 is a (finite) linear combination of the elements
of Y, i.e., Y forms a basis of L.

EXERCISES

1. Let L be the space of polynomials of z of degree < n - 1 with coefficients in
the field K. Verify the following assertions.

a) form a basis of L. The coordinates of the polynomial fin this
basis are its coefficients.

b) 1, x-a, (z-a)., ... , (x -a)` forma basis of L. If char K = p > n, then the

O, f'O, L1 ,..., n-'1"coordinates of the polynomial f in this basis are: {fa a

c) Let a,,..., an E K be pairwise different elements. Let g.(z) = fl1",(x-
-aj)(a; - as)-1. The polynomials g1(z), ... , 9"(z) form a basis of L ("interpolation
basis"). The coordinates of the polynomial f in this basis are { f (al ), ... , f (a") }.

2. Let L be an n-dimensional space and let f : L -' K be a non-zero linear
functional. Prove that M = {1 E L If (1) = 0) is an (n - 1)-dimensional subspace of
L. Prove that all (n - 1)-dimensional subspaces are obtained by this method.

3. Let L be an n-dimensional space and M C L an rn-dimensional subspace. Prove
that there exist linear functionals fl, E L' such that M = 11f, (1)

= fn-m(1) = 0)-

4. Calculate the dimensions of the following spaces:

a) the space of polynomials of degree < p of n variables;
b) the space of homogeneous polynomials (forms) of degree p of n variables;
c) the space of functions in F(S), ISI < oo that vanish at all points of the

subset So C S.

5. Let K be a finite field with characteristic p. Prove that the number of elements
in this field equals p" for some n > 1. (Hint: interpret K as a linear space over a
simple subfield consisting of all "sums of ones" in K : 0, 1, 1 + 1, ...).
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6. In the infinite-dimensional case the concept of a flag is replaced by the concept
of a chain of subspaces (ordered with respect to inclusion). Using Zorn's lemma,
prove that any chain is contained in a maximal chain.

§3. Linear Mappings

3.1. Definition. Let L and M be linear spaces over a field K. The mapping
f : L - M is said to be linear if for all 1,11,12 E L and a E K we have

f(al) = af(1), All +1s) = f(11)+f(12)

A linear mapping is a homomorphism of additive groups. Indeed, f (O) _
= Of(0) = 0 and f(-l) = f((-1)l) = -f(1). Induction on n shows that

n n

f aili aif(li)

for all a,EKand Ii L.
The linear mappings f : L L are also called linear operators on L.

3.2. Examples. a) The null linear mapping f : L - M, f(l) = 0 for all 1 E L.
The identity linear mapping f : L - L, f(1) = 1 for all l E L. It is denoted by idL
or id (from the English word "identity"). Multiplication by a scalar a E K or the
homothety transformation f : L -+ L, f(1) = at for all I E L. The null operator is
obtained for a = 0 and the identity operator is obtained for a = 1.

b) The linear mappings f : L K are linear functions or functionals on L
(see §1.9). Let L be a space with the basis {e1r...,en}. For any 1 < i < n, the
mapping e' : L - K, where e'(1) is the ith coordinate of 1 in the basis {el, ... , en),
is a linear functional.

c) Let L = {x E Rix > 0) be equipped with the structure of a linear space
over R, described in §1.10a, M = R1. The mapping log : L -y M, z r- log z is R
linear.

d) Let S C T be two sets. The mapping F(T) - F(S), which associates to any
function on T its restriction to S, is linear. In particular, if S = {s}, T, f E
E F(T), then the mapping f i--. (value off at the point s) is linear.

Linear mappings with the required properties are often constructed based on
the following result.

3.3. Proposition. Let L and M be linear spaces over a field K and {II, ... ,1n} C
C L, {ml, ... , mn ) C M two sets of vectors with the same number of elements.
Then:
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a) if the linear span of {ll, ... , In } coincides with L, then there exists not more
than one linear mapping f : L -+ M, for which f (li) = mi for all i;

b) if {I1, ... , ln) are also linearly independeni,i.e., they form a basis of L, then
such a mapping exists.

Proof. Let f and f' be two mappings for which f(li) = f'(li) = mi for all i. We
shall study the mapping g = f - f', where (f - f')(1) = f(l) - f'(1). It is easy
to verify that it is linear. In addition, it transforms all li, and therefore any linear
combination of vectors li, into zero. This means that f and f coincide on every
vector in L, whence f' = f.

Now let {l1, ... , In } be a basis of L. Since every element of L can be uniquely
represented in the form E 1 aili, we can define the set-theoretical mapping
f : L -+ M by the formula

n n

f aili = aimi.
..1 i.1

It is obviously linear.
In this proof we made use of the difference between two linear mappings

L -+ M. This is a particular case of the following more general construction.

3.4. Let £(L, M) denote the set of linear mappings from L into M. For f, g E
E £(L, M) and a E K we define a f and f + g by the formulas

(af)(1) = a(f (1)), (f + 9)(1) = f (1) + 9(l)

for all l E L. Just as in § 1.9, we verify that a f and f +g are linear, so that ,C(L, M)
is a linear space.

3.5. Let f E £(L, M) and g E C(M, N). The set-theoretical composition g o f =
= g f: L N is a linear mapping. Indeed,

(9f)(li + 12) = 9[f(li +12)] = 9[f(li)+f(12)] = 9[f(11))+9[f(12)) = 9f(li)+9f(12)

and, analogously, (gf)(al) = a(g f (l)).
Obviously, idM of = f o idL = f . In addition, h(g f) _ (hg) f when both parts

are defined, so that the parentheses can be dropped; this is the general property
of associativity of set-theoretical mappings. Finally, the composition (g f) is linear
with respect to each of the arguments with the other argument held fixed: for
example, g o (afl + bf2) = a(g o fl) + b(g o f2).

3.6. Let f E C(L, M) be a bijective mapping. Then it has a set-theoretic inverse
mapping f-1 : M - L. We assert that f-1 is automatically linear. For this, we
must verify that

f-'(MI + m2) = f-'(MI) + f _'(MO, f-1(am1) = of-1(ml)
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for all m1i ms E M and a E K. Since f is bjjective, there exist uniquely defined
vectors 11, 12 E L such that mi = f(li). Writing the formulas

f (Il) + f (12) = f (11 + 12), of (11) = f (all),

applying f -1 to both sides of each formula, and replacing in the result 1i by f-1 (n4),
we obtain the required result.

Bijective linear mappings f : L -y M are called isomorphisms. The spaces L
and M are said to be isomorphic if an isomorphism exists between them.

The following theorem shows that the dimension of a space completely deter-
mines the space up to isomorphism.

3.7. Theorem. Two finite-dimensional spaces L and M over a field K are iso-
morphic if and only if they have the same dimension.

Proof. The isomorphism 1: L - M preserves all properties formulated in terms of
linear combinations. In particular, it transforms any basis of L into a basis of M, so
that the dimensions of L and M are equal. (It also follows from this argument that
a finite-dimensional space cannot be isomorphic to an infinite-dimensional space.)

Conversely, let the dimensions of L and M equal n. We select the bases
{ll, ... , l } and {m1, ... , m ) in L and M respectively. The formula

n n

f
C aili

= t aimi
tol ivl

defines a linear mapping of L into M acccording to Proposition 3.3. It is bijective
because the formula

n n

f-1 (aimi) = Eaili
i=1 i=1

defines the inverse linear mapping f'1.

3.8. Warning. Even if an isomorphism between two linear spaces L and M
exists, it is defined uniquely only in two cases:

a)L=M={O}and
b) L and M are one-dimensional, while K is a field consisting of two elements

(try to prove this !).
In all other cases there exist many (if K is infinite, then infinitely many) isomor-

phisms. In particular, there exist many isomorphisms of the space L with itself. The
results of §3.5 and §3.6 imply that they form a group with respect to set-theoretic
composition. This group is called the general (or full) linear group of the space
L. Later we shall describe it in a more explicit form as the group of non-singular
square matrices.
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It sometimes happens that an isomorphism, not depending on any arbitrary
choices (such as the choice of bases in the spaces L and M in the proof of Theorem
3.7), is defined between two linear spaces. We shall call such isomorphisms canonical
or natural isomorphisms (a precise definition of these terms can be given only in
the language of categories; see §13). Natural isomorphisms should be carefully
distinguished from "accidental" isomorphisms. We shall present two characteristic
examples which are very important for understanding this distinction.

3.9. "Accidental" isomorphism between a space and its dual. Let L be
a finite-dimensional space with the basis {e1i ... , en }. We denote by e' E L' the
linear functional

l -o e'(1),where e4 (1) is the ith coordinate of tin the basis {e;}

(do not confuse this with the ith power which is not defined in a linear space). We
assert that the functionals {el, ... , en} form a basis of L', the so-called dual basis
with respect to the basis {ei, ... , e.). An equivalent description of {e'} is as follows:
e'(ek) = 6ik (the Kronecker delta: 1 for i = k, 0 for i # k).

Actually, any linear functional f : L - K can be represented as a linear
combination of {e'):

n

f = f(e;)e'.
r.1

Indeed, the values of the left and right sides coincide on any linear combination
Lko1 akek, because e' (E4 1

akek) = ai by definition of e'.
In addition, {e;} are linearly independent: if E{ 1 aie' = 0, then for all k, 1 <

< k < n, we have ak = (E laie')(ek)=0.
Therefore, L and L' have the same dimension n and even the isomorphism

f : L - L' which transforms e; into e', is defined.
This isomorphism is not, however, canonical: generally speaking it changes if

the basis {e1i... , en } is changed. Thus if L is one-dimensional, then the set fell
is a basis of L for any non-zero vector Cl E L. Let {e1} be the basis dual to {e1},
el(el) = 1. Then the basis {a'le'} is the dual of {ael}, a E K\{0}. But the linear
mappings fl : e1 i-+ e1 and f2 : ael --. a-le1 are different, provided that a2 # 1.

3.10. Canonical isomorphism between a space and its second dual. Let

L be a linear space, L' the space of linear functions on it, and L" = (L')' the
space of linear functions on L', called the "double dual of the space L".

We shall describe the canonical mapping CL : L - L", which is independent
of any arbitrary choices. It associates to every vector 16 L a function on L', whose
value on the functional f E L" equals f (1); using a shorthand notation:

EL :1 "[f i- f(l)).
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We shall verify the following properties of CL:

a) for each 1 E L the mapping ELY) : L' -. K is linear. Indeed this means
that the expression for f (1) as a function off with fired 1 is linear with respect to
f. But this follows from the rules for adding functionals and multiplying them by
scalars (J1.7).

Therefore, CL does indeed determine the mapping of L into L", as asserted.
b) The mapping eL : L -+ L" is linear. Indeed, this means that the expression

f(1) as a function of with fixed f is linear, which is so, because f E L.
c) If L is finite-dimensional, then the mapping CL : L -+ L" is an isomorphism.

Indeed, let {e1, ... , e"} be a basis of L, {e', ... , en) the basis of the dual space L',
and {e...... e;, } the basis of L" dual to {ei, ... , n).

We shall show that EL(ei) = e;, whence it will follow that CL is an isomorphism
(in this verification, the use of the basis of L is harmless, because it did not appear
in the definition of CL !).

Actually, CL (e;) is, by definition, a functional on L', whose value at ek is equal
to ek(e,) = b:k (the Kronecker delta). But e; is exactly the same functional on L',
by definition of a dual basis.

We note that if L is infinite-dimensional, then CL : L --+ L** remains injective,
but it is no longer surjective (see Exercise 2). In functional analysis instead of
the full space L', only the subspaces of linear functionals L' which are continuous
in an appropriate topology on L and K are usually studied, and then the mapping
L -+ L" can be defined and is sometimes an isomorphism. Such (topological) spaces
are said to be reflexive. We have proved that finite-dimensional spaces (ignoring
the topology) are reflexive.

We shall now study the relationship between linear mappings and linear sub-
spaces.

3.11. Definition. Let f : L - M be a linear mapping. The set ken f = (1 E LI
f(1) = 0) C L is called the kernel off and the act Im f = {m E M131 E L, f(l) _
= m) C M is called the image of f.

It is easy to verify that the kernel of f is a linear subspace of L and that the
image of j is a linear subspace of M. We shall verify, as an example, the second
assertion. Let m1i m2 E Im f, a E K. Then there exist vectors 11,12 E L such that
f(11) = m1,f(12) = m2. Hence m1+m2 = f(11+12), amt = f(all). Therefore
m1+m2 EImf andaml EImf.

The mapping f is injective, if and only if kerf = {0}. In fact, if
f (h) = f(12), 11 $ 12, then 0 96 l1 - 12 E ker f . Conversely, if 0 $ E ker f ,
then f (l) = 0 = f (O).

3.12. Theorem. Let L be a finite-dimensional linear space and let f : L -' M be
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a linear mapping. Then ker f and Im f are finite-dimensional and

dim ker f + dim Im f = dim L.

21

Proof, The kernel of f is finite-dimensional as a consequence of §2.13. We shall
select a basis {e1,... , e,n } of ken f and extend it to the basis lei,.. ., em, em+l .... ,
.... em+n } of the space L, according to Theorem 2.12. We shall show that the
vectors f (em+1), , f (em+n) form a basis of Im f . The theorem will follow from
here.

Any vector in Imf has the form

m+n m+n

f aiei = aif(ei)
i=i i=m+l

Therefore, f (e,n+1),... , f (em+n) generate Im f .

Let _;'_m+l ai f (ei) = 0. Then f m}1 ate;) = 0. This means that

m+n

E aiei E kerf,
i=m+l

that is,
m+n m

E aiei = >ajej.
i=m+1 j=1

This is possible only if all coefficients vanish, because lei, ... , en,+n } is a basis of L.
Therefore, the vectors f (e,,,+i , ... , f (em+n) are linearly independent. The theorem
is proved.

3.13. Corollary. The following properties of f are equivalent (in the case of
finite-dimension L):

a) f is injective,

b) dim L = dim Im f .

Proof. According to the theorem, dim L = dim Im f , if and only if dim ker f = 0
that is, ker f = {0}.

EXERCISES

1. Let f : Rm - R" be a mapping, defined by differentiable functions which,
generally speaking, are non-linear and map zero into zero:

f(Z1,...,Z,n) = (..., fi(Z1i...,Z,,,),...), i = I,...,n,
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fi(0,...,0) = 0.

Associate with it the linear mapping dfo : R.' - R", called the differential of f at
the point 0, according to the formula

(dfo)(ei) _ E a. L (0)e = (L!(o),... , 8x" (0)) ,
i i

whe re lei}, {e; } are standard bases of R"' and R". Show that if the bases of the
spaces Rm and R" are changed and cfo is calculated using the same formulas in
the new bases, then the new linear mapping dfo coincides with the old one.

2. Prove that the space of polynomials Q[x] is not isomorphic to its dual. (Hint:
compare the cardinalities.)

§4. Matrices

4.1. The purpose of this section is to introduce the language of matrices and
to establish the basic relations between it and the language of linear spaces and
mappings. For further details and examples, we refer the reader to Chapters 2 and
3 of "Introduction to Algebra"; in particular, we shall make use of the theory of
determinants developed there without repeating it here. The reader should convince
himself that the exposition in these chapters transfers without any changes from
the field of real numbers to any scalar field; the only exceptions are cases where
specific properties of real numbers such as order and continuity are used.

4.2. Terminology. An in x n matrix A with elements from the set S is a set
(a;k) of elements from S which are enumerated by ordered pairs of numbers (i,k),
where 1 < i < m, 1 < k < n. The notation A = (a;k), 1 < i < m, 1 <k < n is

often used; the size need not be indicated.
For fixed i, the set (a;l,...,ain) is called the ith row of the matrix A. For fixed

k the set (alk,... , a,nk) is called the kth column of the matrix A. A 1 x n matrix is
called a row matrix and an m x 1 matrix is called a column matrix.

If m = n, then the matrix A is called a square matrix (the terminology "of
order n" instead of "of size n x n" is sometimes used),

If A is a square matrix of order n, S = K (field), and a;k = 0 for i # k, then the
matrix A is called a diagonal matrix; it is sometimes written as diag(all,...,ann).
In general, the elements (a,,) are called the elements of the main diagonal. The
elements (al,k+l;a2,k+2;...) form a diagonal standing above the main diagonal for
k > 0 and the elements (ak+1,1; ak+2,2; ... ,) for k > 0 form a diagonal standing
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below it. If S = K and aik = 0 for k < i, the matrix is called an upper triangular
matrix and if aik = 0 for k > i, it is called a lower triangular matrix. A diagonal
square matrix over K, in which all the elements along the main diagonal are iden-
tical, is called a scalar matrix. If these elements are equal to unity, the matrix is
called the unit matrix. The unit matrix of order n is denoted by En or simply E if
the order is obvious from the context.

All these terms originate from the standard notation for a matrix in the form
of a table:

all a12 ... aln

A
a21 a22 ... a2n

=

aml amt ... amn

The n x m matrix At whose (i,k) element equals aki is called the transpose of
A. (Sometimes the notation At = (aki) is ambiguous !)

4.3. Remarks. Most matrices encountered in the theory of linear spaces over
a field K have elements from the field itself. However, there are exceptions. For
example, we shall sometimes interpret an ordered basis of the space L, {e1,...,en},
as a 1 x n matrix with elements from this space. Another example are block matrices,
whose elements are also matrices: blocks of the starting matrix. A matrix A is
partitioned into blocks by partitioning the row numbers (1, ... , m] = 11 U12U...UI
and the column numbers [1, ... , n) = Ji U ... U J,, into sequential, pairwise non-
intersecting segments

A11 A12 ... A1v

Av2 ... AN
where the elements of Aap are aik, i E IQ, k E Jp. If p = v, it is possible
to define in an obvious manner block-diagonal, block upper-triangular, and block
lower-triangular matrices. This same example shows that it is not always convenient
to enumerate the columns and rows of a matrix by numbers from I to m (or n):
often only the order of the rows and columns is significant.

4.4. The matrix of a linear mapping. Let N and M be finite-dimensional
linear spaces over K with the distinguished bases {el,... , en } and {e., ... , e;,,
respectively. Consider an arbitrary linear mapping f : N . M and associate with
it an m x n matrix Af with elements from the field K as follows (note that the
dimensions of Al are the same as those of N, M in reverse order). We represent the
vectors f(ek) as linear combinations: f(ek) = E,"_1 aike;. Then by definition Af =
= (aik). In other words, the coefficients of these linear combinations are sequential
columns of the matrix A1.
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The matrix Af is called the matrix of the linear mapping f with respect to the
bases (or in the bases) {ek}, {e;}.

Proposition 3.3 implies that the linear mapping f is uniquely determined by
the images f (ek), and the latter can be taken as any set of n vectors from the space
M. Therefore this correspondence establishes a bijection between the set £(N, M)
and the set of m x n matrices with elements from K (or over K). This bjection,
however, depends on the choice of bases: see §4.8).

The matrix A f also allows us to describe a linear mapping f in terms of its
action on the coordinates. If the vector I is represented by its coordinates i =
= [xl , ... , xn] in the basis e , , } , that is, 1 = E7=1 sie; then the vector f (l)
is represented by the coordinates g= [yl,... , yn], where

n

yi=Eaikxk, M-
k=1

In other words, y' = A f i is the usual product of A f and the column vector E.
When we talk about the matrix of a linear operator A = (aik), it is always

assumed that the same basis is chosen in "two replicas" of the space N. The matrix
of a linear operator is a square matrix. The matrix of the identity operator is the
unit matrix.

According to §3.4, the set £(N, M) is, in its turn, a linear space over K. When
the elements of ,C(N, M) are matrices, this structure is described as follows.

4.5. Addition of matrices and multiplication by a scalar. Let A = (aik)
and B = (bik) be two matrices of the same size over the field K, a E K. We set

A + B = (cik), where cik = aik + bik,

aA = (aaik).

These operations define the structure of a linear space on matrices of a given size.
It is easy to verify that if A = A f and B = A. (in the same bases), then

Af+A,=Af+s, Aaf=aAf,

so that the indicated correspondence (and it is bijective) is an isomorphism. In
particular dim C(N, M) = dim M dim N, so that the space of matrices is isomorphic
to K'"n (size m x n).

The composition of linear mappings is described in terms of the multiplication
of matrices.

4.6. Multiplication of matrices. The product of an m x n' matrix A over a
field K by an n" x p matrix B over a field K is defined if and only if n' = n" = n;
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AB then has the dimensions m x p and by definition
n

AB = (cik), where Cik = Eaijbjk
j=1

It is easy to verify that (AB)' = B'A'.
It can happen that AB is defined but BA is not defined (if m 96 p), or both

matrices AB and BA are defined but have different dimensions (if m n) or are
defined and have the same dimensions (m = n = p) but are not equal. In other
words, matrix multiplication is not commutative. It is, however, associative: if the
matrices AB and BC are defined, then (AB)C and A(BC) are defined and are
equal to one another. Indeed, let A = (aij), B = (bik), and C = (cki). The reader
should check that the matrices A and BC are commensurate and that the matrices
AB and C are commensurate. Then we can calculate the (il)th element of (AB)C
from the formula

Ckl=F,(aijbjk)Ckl,
k j j,k

and the (il)th element of A(BC) from the formula

E aij (bJkckI) = Ea) (bkCki).
j,k

Since multiplication in K is associative, these elements are equal to one another.
Since we already know that multiplication of matrices defined over K is associative,
we can verify that "block multiplication"of block matrices is also associative (see
also Exercise 1).

In addition, matrix multiplication is linear with respect to each argument:

(aA + bB)C = aAC + bBC; A(bB + cC) = bAB + cAC.

A very important property of matrix multiplication is that it corresponds to the
composition of linear mappings. However, many other situations in linear algebra
are also conveniently described by matrix multiplication: this is the main reason
for the unifying role of matrix language and the somewhat independent nature of
matrix algebra within linear algebra. We shall enumerate some of these situations.

4.7. Matrix of the homposition of linear mappings. Let P, N and M be
three finite-dimensional linear spaces and let P N 1 M be two linear map-
pings. We choose the bases {e;'), {e }, and {e,,.} in P, N and M respectively and
we denote by A,, A1, and Al. the matrices of g, f, and fg in these bases. We assert
that Afy = AAA#. Indeed, let Af = (aji),A9 = (bik). Then

9(et) = bike;,
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fg(ek) _ b,kf(e;) _ b;k af;ef = (aiibik) ek.

Therefore the (jk)th element of the matrix Afg equals F; aJ;b;k, that is, Al. =
= AfA#.

According to the results of §4.4-§4.6, after a basis in L is chosen the set of
linear operators .C(L, L) can be identified with the set of square matrices Mn(K) of
order n = dim L over the field K. With this identification the structures of linear
spaces and rings in both sets are consistent with one another. Bijections, i.e., the
linear automorphisms f : L L, correspond to inverse matrices: if f o f-l = idL,
then AfAf-1 = E, so that Af-l = Af 1. We recall that the matrix A is invertible,
or non-singular, if and only if det A 96 0.

4.8. a) Action of a linear mapping on the coordinates. In the notation of §4.4, we
can represent the vectors of the spaces N and M in terms of coordinates by columns

Z1 yl

(Xn Jim

Then the action of the operator f is expressed in the language of matrix multipli-
cation by the formula

J/1 all ... aln Z1

ym aml ... amn 2n

,

or yy = AfE (cf. §4.4). It is sometimes convenient to write an analogous formula in
terms of the bases {e; }, {ek } in which it assumes the form

f(el,...,en) _ (f(el),...,f(en)) _ (e'1,...,em)AI.

Here the formalism of matrix multiplication requires that the vectors of M in the
expression on the right be multiplied by scalars from the right and not from the
left; this is harmless, and we shall simply assume that e'a = ae' for any e' E M and
a E K.

In using this notation, we shall sometimes need to verify the associativity or
linearity with respect to the arguments of "mixed" products of matrices, some of
which have elements in K while others have elements in L, for example

((e1, ... , en)A)B = (e1, ... , en)(AB)

or

(el+e...... en+a;,)A=(el,...,en)A+(ei,...,e')A
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etc. The formalism in §4.4 and §4.5 transfers automatically to these cases. The
same remark holds for the block matrices.

b) The coordinates of a vector in a new basis. Let lei} and {e; } be two bases in
the space L. Any vector I E L can be represented by its coordinates in these bases:
1 = E", xiei = Eb=1 xkek. We shall show that there exists a square matrix A of
order n, which does not depend on 1, such that x = Ax'.

Indeed, if ek = E""_1 aikei, then A = (aik):

xiei = I= E 46: = xk (asaei) _ (aix) ei.
i=1 i=1 k=1

The matrix A is called the matrix of the change of basis (from the unprimed to the
primed basis), or from the primed to the unprimed coordinates. We note that it
is invertible: the inverse matrix is the matrix corresponding to a change from the
primed to the unprimed basis.

We note that the formula x" = Al! could also have been interpreted as a formula
expressing the coordinates of the new vector f(i) in terms of the coordinates of
the vector x, where f is the linear mapping L - L, described by the matrix A in
the basis {ek}.

In physics, these two points of view are called "passive" and "active" respec-
tively. In the first case, we describe the same state of the system (the vector 1) from
the point of view of different observers (with their own coordinate systems). In the
second case, there is only one observer, while the state of the system is subjected to
transformations consisting, for example, of symmetry transformations of the space
of states of this system.

c) The matrix of a linear mapping in new bases. In the situation of §4.4, we
shall determine how the matrix Al of the linear mapping changes when we transform
from the bases {ek}, {e;} to the new bases {ek}, of the spaces N and M. Let
B be the matrix of the change from the {ek} coordinates to the {ek} and C the
matrix of the change from the {e;} coordinates to the {e;} coordinates. We assert
that the matrix Al of the mapping f in the bases {ek}, {e;} is given by

Al = C''a1B.

Indeed, in terms of the bases we have

(ek)AJ = f((ek)) = f((ek)B) = (f(ek))B = B = (e,)C-'AJ B.

We recommend that the reader perform the analogous calculations in terms of the
coordinates.

The particular case N = M, {e.} _ {e;}, {ei} = {e;), B = C is especially
important. The matrix of the linear operator f in the new basis equals

Al = B-'AJB.
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The mapping Mn(K) -, Mf(K) : A'- B-1AB is called a conjugation (by
means of the non-singular matrix B). Every conjugation is an automorphism of the
matrix algebra Mn(K):

n

B-1 (asAi) B = a:B-'AiB, ai E K;
i.1 icl

B'1(Al ...Am)B = (B-'Al B)... (B-'A mB)

(in the product on the right, the inner cofactors B-1 and B cancel in pairs, because
they are adjacent to one another).

Among the elements of Mn(K) the functions which remain unchanged when
a matrix is replaced by its conjugate play a special role because with the help of
these functions it is possible to construct invariants of linear operators: if 0 is such
a function, then setting O(f) = O(Af), we obtain a result which depends only on f
and not on the basis in which A f is written. Here are two important examples.

4.9. The determinant and the trace of a linear operator. We set

Tr f= T A1 = ail, where
iol

Al = (aik)

(the trace of the matrix A is the sum of the elements of its main diagonal);

det f = det A f.

The invariance of the determinant relative to conjugation is obvious

det(B-'AB) = (det B)'1 det A det B = det A.

To establish the invariance of the trace we shall prove a more general fact: if
A and B are matrices such that AB and BA are defined, then Tr AB = Tr BA.

Indeed,
TrAB = E Eaijbji, TrAB = E Ebjiaij.

i j j i

If now B is non-singular, then applying the fact proved above to the matrices B-IA
and B, we obtain

Tr(B-'AB) = Tr(BB-'A) = Tr A.

In $8 we shall introduce the eigenvalues of matrices and operators, symmetric
functions of which will furnish other invariant functions.

In concluding this section, we shall present the definitions, names and standard
notation for several classes of matrices over the real and complex numbers, which
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are very important in the theory of Lie groups and Lie algebras and its many ap-
plications, in particular, in physics. The first class consists of the so-called classical
groups: they are actually groups under matrix multiplication. The second class are
the Lie algebras: they form a linear space and are stable under the commutation
operation: (A, B] = AB - BA. The similarity of the notations for these classes will
be explained in §11 and in Exercise 8.

4.10. Classical groups.
a) The general linear group GL(n, K). It consists of non-singular n x n square

matrices over the field K.
b) The special linear group SL(n, K). It consists of square n x n matrices over

the field K with determinant equal to 1.
In these two cases, K can be any field. Later, we shall restrict ourselves to the

fields K = R or C, though these definitions have been extended to other fields.
c) The orthogonal group O(n, K). It consists of n x n matrices which satisfy

the condition AA' = En. Such matrices indeed form a group, because

EEEE = En, A-1(A-1)t = A-'(At)-1 = (AtA)_1 = (En)-1 = En,

and finally,
(AB)(AB)t = ABBtA* = AAt = E.

In the case that K = R or C this group is said to be real or complex, re-
spectively. The elements of the group O(n, K) are called orthogonal matrices. The
notation 0(n) is usually used instead of O(n, R)

d) The special orthogonal group SO(n, K). This group consists of orthogonal
matrices whose determinant equals unity:

SO(n, K) = O(n, K) fl SL(n, K).

The notation SO(n) is usually used instead of SO(n, R).
e) The unitary group U(n). It consists of complex n x n matrices which satisfy

the condition AA' = En, where A is a matrix whose elements are the complex
conjugates of the corresponding elements of the matrix A: if A = (ail,), then A =
= (att). Using the equality A. = , it is easy to verify that U(n) is a group, as
in the preceding example. The elements U(n) are called unitary matrices.

The matrix A' is often called the Hermitian conjugate of the matrix A; math-
ematicians usually denote it by A', whereas physicists write A+. We note that
the operation of Hermitian conjugation is defined for complex matrices of arbitrary
dimensions.

f) The special unitary group SU(n). It consists of unitary matrices whose
determinant equals unity:

SU(n) = U(n) fl SL(n, C).
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It is clear from the definitions that real unitary matrices are orthogonal
matrices:

O(n) = U(n) fl CL(n, R.), SO(n) = U(n) fl SL(n, R).

4.11. Classical Lie algebras. Any additive subgroup of square matrices M"(K)
that is closed under the commutation operation [A, B] = AB - BA is called a
(matrix) Lie algebra. (For a general definition, see Exercise 14.) The following sets
of matrices form classical Lie algebras; they usually also form linear spaces over K
(sometimes over R, though K = C). They are not groups under multiplication !

a) The algebra gl(n, K). It consists of all matrices M"(K ).
b) The algebra sl(n, K). It consists of all matrices from M"(K) with zero trace

(such matrices are sometimes referred to as "traceless"). Closure under commuta-
tion follows from the formula Tr[A, B] = 0, proved in §4.9. We note that Tr is a
linear function on spaces of square matrices and linear operators, so that sl(n, K)
is a linear space over K.

c) The algebra o(n, K). It consists of all matrices in M"(K) which satisfy
the condition A + At = 0. An equivalent condition is A = (aik), where aii = 0
(if the characteristic of K is not two) and a:k = -aki. Such matrices are called
antisymmetric or skew-symmetric matrices. We note that TrA = 0 for all A E
E o(n, K).

If At = -A and Bt = -B, then [A, B]t = [Bt, At] = [-B, -A] _ -[A, B] so
that [A, B] is skew-symmetric. Such matrices form a linear space over K.

We note in passing that the matrix A is called a symmetric matrix if At = A.
The set of such matrices is not closed under commutation, but it is closed under
anticommutation AB + BA or Jordan's operation (AB + BA)/2.

d) The algebra u(n). This algebra consists of complex n x n matrices which
satisfy the condition A+ A' = 0, or aik = -6k,. In particular, the diagonal elements
are purely imaginary. Such matrices are called Hermitian antisymmetric or anti-
Hermitian or skew-Hermitian matrices. They form a linear space over R, but not
over C.

If At = -A and B' = -B, then

[A, B]t = [Bt, A`] = [-B, -A] _ - , B ,

so that u(n) is a Lie algebra.
We note in passing that the matrix A is called a Hermitian symmetric or simply

Hermitian matrix if A = A', that is, ak; = a;k. Evidently, real Hermitian matrices
are symmetric, while anti-Hermitian matrices are antisymmetric. In particular,

o(n, R) = u(n) fl sl(n, R).

The matrix A is Hermitian if the matrix iA is anti-Hermitian and vice versa.
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e) The algebra su(n). This is u(n) n sl(n, C) - the algebra of traceless anti-
Hermitian matrices. They form an R-linear space.

In Chapter 2, while studying linear spaces equipped with Euclidean or Hermi-
tian metrics, we shall clarify the geometric meaning of operators that are represented
by matrices from the classes described above, and we shall also enlarge our list.

EXERCISES

1. Formulate precisely and prove the assertion that block matrices over a field
can be multiplied block by block, if the dimensions and numbers of blocks are
compatible:

(Aii)(B, k) _ (A1JBJk)
i

when the number of columns in the block Aid equals the number of rows in the
block Bjk and the number of block columns of the matrix A equals the number of
block rows of the matrix B.

2. Introduce the concept of an infinite matrix (with an infinite number of rows
and/or columns). Find the conditions under which two such matrices defined over
a field can be multiplied (examples: finite matrices, i.e., matrices with only a finite
number of non-zero elements; matrices in which each column and/or each row has a
finite number of non-zero elements). Find the necessary conditions for the existence
of triple products.

3. Prove that the equation XY - YX = E cannot be solved in terms of finite
square matrices X, Y over a field with a zero characteristic. (Hint: examine the
trace of both parts.) Find the solution of this equation in terms of infinite matrices.
(Hint: study the linear operators d/dx and multiplication by x on the space of all
polynomials of x and use the fact that d (x f) - x f = jr .)

4. Give an explicit description of classical groups and classical Lie algebras in
the cases n = 1 and n = 2. Construct an isomorphism of the groups U(1) and
SO(2, R).

5. The following matrices over C are called Pauli matrices:

Oro = .c1= r0 1\ = (0 -il _ (1 0 )
1 0

a2
i 0

03
0 1

(These matrices were introduced by the well-known German physicist Wolfgang
Pauli, one of the creators of quantum mechanics, in his theory of electron spin.)
Check their properties:
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a) [oa, ob] = 2iEabrcr , where {a, b, c} = { 1, 2, 3} and Eabc is the permutation

symbol
(1 2 3

\a b c

b) oaob + oboe = 26aboo (bab is the Kronecker delta).
c) The matrices io1 i io2, io3 form a basis of su(2) over R and a basis of sl(2)

over C; the matrices oo, iol, io2i i073 form a basis of u(2) over R and a basis of gl(2)
over C.

6. The following matrices over C of order 4 are called Dirac matrices (here the oa
are the Pauli matrices):

70 = ( 0

0', 0

-oo) , 71 = (-0'1 0) , 72 = a2 0 , 73 = (
0'

0'3

.3 0

(These matrices were introduced by the well-known English physicist P.A.M. Dirac,
one of the creators of quantum mechanics, in his theory of the relativistic electron
with spin.) Using the results of Exercises 1 and 5, verify their properties:

a) 7a7b + 7b7a = 29abEq, where gab = 0 for a # b and goo = 1, 911 = 922 =
=933=-1

b) By definition, 75 = i71727370 Verify that 76

c) 7.7s = -7s7a for a = 0, 1, 2, 3; 76 = E.

7. Verify the following table of dimensions of the classical Lie algebras (as linear
spaces over the corresponding fields):

gl(n, K) sl(n, K) o(n, K) u(n) su(n)

n2 n2- nn-1 n2 n2-12

8. Let A be a square matrix of order n, let c be a real variable, and let e -+ 0.
Show that the matrix U = E + cA is "unitary up to order E2 " if and only if A is
anti-Hermitian:

UUt=E+O((2)aA+A'=0.

Formulate and prove analogous assertions for other pairs of classical groups and Lie
algebras.

9. Let U = E + EA, V = E + EB, where e -+ 0. Verify that

UVU-1V-1 = E+E2[A,B]+O(E3)

(the expression on the left is called the group commutator of the elements U and V).



LINEAR ALGEBRA AND GEOMETRY 33

10. The rank rank A of a matrix over a field is the maximum number of columns
which are linearly independent. Prove that rank A, = dim im f .

Prove that a square matrix of rank I can be represented as the product of a
column by a row.

11. Let A and B be m x n and mi x n1 matrices over a field and choose a fixed
enumeration of the ordered pairs (i, j) of row indices (1 < i < m, I < j < ml)
(e.g., dictionary order). Similarly, choose a fixed enumeration of the ordered pairs
(k,1) of column indices (1 < k < n, 1 < I < nl). The tensor or Kronecker product
A 0 B is the mm, x nnl matrix with the element a,kb,, at the location a#, where
a enumerates (i, j) and ,B enumerates (k, l). Verify the following assertions:

a) A® B is linear with respect to each argument with the other argument held
fixed.

b) If m = n and ml = nl, then det(A ® B) _ (det A)'I (det B)'.

12. How many operations are required in order to multiply two large matrices?
Strassen's method, which makes it possible to reduce substantially the number of
operations if the matrices are indeed large, is explained in the following series of
assertions:

a) The multiplication of two matrices of order N by the usual method requires
N3 multiplication and N2(N - 1) additions.

b)The following multiplication formula, involving 7 multiplications (instead of
8) at the expense of 18 additions (instead of 4) holds for N = 2 (it is not assumed
that the elements commute):

( c d) (C
A

D)

((a + d)(A + D) - (b + d)(C + D) - d(A - C) - (a - b)D, (a - b)D - a(D - B)1
(d - c)A - d(A - C), (a + d)(A + D) - (a + c)(A + B) - a(D - B) - (d - c)A

c) Applying this method to matrices of order 2", partitioned into four 2"-1 x
x2"-1 blocks, show that they can be multiplied using 7" multiplication and
6(7" - 4") additions.

d) Extend matrices of order N to the nearest matrix of order 2" with zeros and
show that 0(N1012?) = O(N2 dt) operations are sufficient for multiplying them.

Can you think of something better ?

13. Let L = M"(K) be the space of square matrices of order n. Prove that for
any functional f E L' there exists a unique matrix A E M"(K) with the property

f (X) = Tr(AX )
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for all X E Hence derive the existence of the canonical isomorphism

G(L, L) [G(L, L)]'

for any finite-dimensional space L.

14. A linear space L over K together with a binary operation (commutator)
L x L - L, denoted by [, ] and satisfying the following conditions, is called a Lie
algebra over K:

a) the commutator [1, m] is linear with respect to each argument 1, m E L with
the second argument fixed;

b) [1, m] = -[m,1] for all 1, m;
c) [11, [12.13]]+[13.[11i12]]+[12, [13, 1111 = 0 (Jacobi's identity) for all 11,12,13 E L.

Verify that the classical Lie algebras described in §4.11 are. Lie algebras in the sense
of this definition.

More generally, prove that the commutator [X, Y] = XY - YX in any asso-
ciative ring satisfies Jacobi's identity.

§5. Subspaces and Direct Sums

5.1. In this section we shall study some geometric properties of the relative ar-
rangement of subspaces in a finite-dimensional space L. We shall illustrate the first
problem with a very simple example. Let L1, Li C L be two subspaces. It is natural
to assume that they are arranged in the same manner in L if there exists a linear
automorphism f : L L which transforms L1 into Li. For this, of course, it is
necessary that dim L1 = dim L'1, because f preserves all linear relations arid, there-
fore, transforms a basis of L1 into a basis of L'1. But this is also sufficient. Indeed,
we choose a basis of L1 and a basis of L. According to
Theorem 2.12, they can be extended up to the bases {e1,.. . , e,,,, e,,,+1, ... , e, } and
{e'l, ... , e;,,, e;,,+1, ... , e;, } in the space L. By Definition 3.3 there exists a linear
mapping f : L -- L which transforms e, into e; for all i. This mapping is invertible
and transforms L1 onto L.

Thus all linear subspaces with the same dimension are arranged in the same
manner in L.

Going further, it is natural to study all possible arrangements of (ordered) pairs
of the subspaces L1, L2 C L. As above, we shall say that the pairs (L1,L2) and
(Li, L2) are arranged identically if there exists a linear automorphism f : L -* L
such that f(L1) = L' and f(L2) = L'2. Once again, the equalities dim L1 = dim L,
and dim L2 = dim L2 are necessary for an arrangement to be the same. Generally
speaking, however, these conditions are no longer sufficient. Indeed, if (L1rL2)
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and (L', LZ) are identically arranged, then f maps the subspace L1 n L2 onto
L1 n L'2, and for this reason, the condition dim(L1 n L2) = dim(L, n L') is also
necessary. If dim L1 and dim L2 are fixed, but L1 and L2 are otherwise arbitrary,
then dim(L1 n L2) can assume, generally speaking, a series of values.

To determine these values, we introduce the concept of the sum of linear sub-
spaces.

5.2. Definition. Let L1 , ... , Ln C L be linear subspaces of L. The set

n n

> Li = L i + ... + Ln = {>2 li lli E Li }.
i=1 i=1

It is easy to verify that the sum is also a linear subspace and that, like the
operation of intersection of linear subspaces, this summation operation is associative
and commutative. The sum L1+...+Ln can also be defined as the smallest subspace
of L which contains all the L1.

The following theorem relates the dimension of the sum of two subspaces and
their intersection.

5.3. Theorem. If L1, L2 C L are finite-dimensional, then L1 n L2 and L1 + L2
are finite-dimensional and

dim(L1 n L2) + dim(L1 + L2) = dim L1 + dim L2.

Proof. L1 + L2 is the linear span of the union of the bases of L1 and L2 and is
therefore finite-dimensional; L1 n L2 is contained in the finite-dimensional spaces
L1 and L2.

Let m = dim Li n L2, n = dim L1, p = dim L2. Select a basis {el, ... , em}

of the space L1 n L2. According to Theorem 2.12, it can be extended up to bases
of the spaces L1 and L2. Let the extended bases be {el,... , em, em+1, ... , e;, } and

e,"}. We shall say that such a pair of bases in L1 and L2 is
concordant.

We shall now prove that the set {ei, ... , ern, e;n+1, e;,, e'm+1. ey } forms

a basis of the space L1 + L2. The assertion of the theorem follows from here:

dim(L1 + L2) = p + n - m = dim L1 + dim L2 - dim L1 n L2.

Since every vector in L1 + L2 is a sum of vectors from L1 and L2, i.e., a sum of
the linear combinations of {el, ... , em, em+1,... , e;, } and {ei, ... , em, e',,,+1, ... , ep },

the union of these sets generates L1 +L2. Therefore, we have only to verify its linear
independence.
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Assume that there exists a non-trivial linear dependence

m n p

xiei+ E E zkek=0.
i=1 j=m+1 k=m+1

Then indices j and k must necessarily exist such that yj # 0 and zk # 0, for
otherwise we would obtain a non-trivial linear dependence between the elements of
the bases of L1 or L2.

Therefore, the non-zero vector Ek=,,,+1 zkek E L2 must also lie in L1, because

it equals -( F°1_ 1 xiei + E" m+1 yj This means that it lies in L1 fl L2 and
can therefore be represented as a linear combination of the vectors {e1, ... , e'.),
comprising the basis of L1 fl L2. But this representation gives a non-trivial linear
dependence between the vectors {e1, ... , em, en,+1, ... ,e,'}, in contradiction to their
definition. The theorem is proved.

5.4. Corollary. Lei n1 < n2 < n be the dimensions of the spaces L1,L2, and L
respectively. Then the numbers i = dim L1 fl L2 and s = dim(L1 + L2) can assume
any values that satisfy the conditions 0 < i < n1i n2 < s < n and i + s = n1 + n2.

Proof. The necessity follows from the inclusions L1 fl L2 C L1, L2 C L1 + L2 C L
and from Theorem 5.3. T o prove sufficiency w e choose s = n1 + n2 - i linearly inde-

pendent vectors in L: {e1, ... , ei; a +1, .... e;,1; e;+1........ , e;2} and denote by L1
and L2 the linear spans of and {e1i...,ei;e;+1,...,en2}
respectively. As in the theorem, it is not difficult to verify that L1 fl L2 is the linear
span of {e1,...,ei}.

5.5. We can now establish that the invariants n1 = dim L1, n2 = dim L2, and
i = dim L1 fl L2 completely characterize the arrangement of pairs of subspaces
(L1, L2) in L. For the proof, we take a different pair (Li, Lz) with the same invari-
ants, construct matched pairs of bases for L1, L2 and L',LZ, and then construct
their union - the bases of L1 + L2 and Li + L'2, as in the proof of Theorem 5.3.
Finally we extend these unions up to two bases of L. The linear automorphism that
transforms the first basis into the second one establishes the fact that L1, L2 and
Li, LZ have the same arrangement.

5.6. General position. In the notation of the preceding section, we shall say that
the subspaces L1, L2 C L are in general position if their intersection has the smallest
dimension and their sum the greatest dimension permitted by the inequalities of
Corollary 5.4.

For example, two planes in three-dimensional space are in the general position
if they intersect along a straight line, while two planes in a four-dimensional space
are in the general position if they intersect at a point.
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The same concept can also be expressed by saying that L1 and L2 intersect
transversally.

The term "general position" originates from the fact that in some sense most
pairs of subspaces (L1, L2) are arranged in the general position, while other
arrangements are degenerate. This assertion can be refined by various methods.
One method is to describe the set of pairs of subspaces by some parameters and
verify that a pair is not in the general position only if these parameters satisfy
additional relations which the general parameters do not satisfy.

Another method, which is suitable for K = R and C, is to choose a basis of L,
define L1 and L2 by two systems of linear equations, and show that the coefficients
of these equations can be changed infinitesimally ("perturb L1 and L2") so that the
new pair would be in the general position.

It is also possible to study the invariants characterizing the relative arrangement
of triples, quadruples, and higher numbers of subspaces of L. The combinatorial
difficulties here grow rapidly, and in order to solve this problem a different technique
is required; in addition, beginning with quadruples, the arrangement is no longer
characterized just by discrete invariants, such as the dimensions of different sums
and intersections.

We note also that, as our "physical" intuition shows, the arrangement, say, of
a straight line relative to a plane, is characterized by the angle between them. But
as we noted in §1, the concept of angle requires the introduction of an additional
structure. In a purely linear situation, there is only the difference between a "zero"
and a "non-zero" angle.

We shall now study n-tuples of subspaces.

5.7. Definition. A space L is a direct sum of its subspaces L1,...,L,,, if every
vector I E L can be uniquely represented in the form F_", 1i, where li E Li.

When the conditions of the definition are satisfied, we write L = L1®... (D L
or L = (D"1 Li. For example, if {el,... , is a basis of L and Li = Ke; is the
linear span of ei, then L = ®

1
Li. Evidently, if L = ®

1
Li, then L = E 1 L;;

the last condition is weaker.

5.8. Theorem. Let L1, ..., L C L be subspaces of L. Then L = ®i'_1 L1, if and
only if any of the following two conditions holds:

a) F_1L;=L andL,fl(Ei#iLi)_{0}foralll<j<n.
b) F," i Li = L and dim Li = dim L (here it is assumed that L is

finite-dimensional)

Proof. a) The uniqueness of the representation of any vector I E L in the form
E'- 11; E L is equivalent to the uniqueness of such a representation for the zero
vector. Indeed, if T_i°_1 l; =

1
l;, then 0 = E 1(1; - f;), and vice versa. If
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there exists a non-trivial representation 0 = > 1 l; in which, say, Ij ,-r< 0, then
1i = - Ei#j l; E Lj n (Ei#j Li), so that condition a) does not hold. Inverting this
argument we find that the violation of the condition a) implies the non-uniqueness
of the representation of zero.

b) If ®
1
Li = L, then in all cases

n n

E Li =L and E dim L; > dim L,
i=1 i=1

because the union of the bases of Li generates L and therefore contains a basis of

L. According to Theorem 5.3 applied to Lj and Ei#j Li, we have

dim Lj n (1: Li) + dim L = dim Lj + dim (E Li).
i#j i0j

But the preceding assertion implies that the dimension of the intersection on the
left is zero. In addition, if the sum of all the Li is a direct sum, then the sum of all
the Li except Lj is also a direct sum, and we may assume by induction that

dim L Li = L dim Li.
i;dj i#j

Therefore Fi dim Li = dim L.
Conversely, if dim Li = dim L, then the union of the bases of all the Li consists

of dim L elements and generates the whole of L and is therefore a basis of L.
Indeed a non-trivial representation of zero 0 = E 1/i, li E Li, would furnish a
non-trivial linear combination of the elements of this basis which equals zero, which
is impossible.

We shall now examine the relationship between decompositions into a direct
sum and special linear projection operators.

5.9. Definition. The linear operator p : L -+ L is said to be a projection operator

if P2=PoP=P.
The direct decomposition L = ®

1
Li is naturally associated with n projec-

tion operators which are defined as follows: for any lj E Lj,

(f')Pi j = li.
j=1

Since any element 1 E L can be uniquely represented in the form E Lj,
then the mappings p; are well defined. Their linearity and the property p? = p; are
verified directly from the definition. Evidently, L; = imp;.
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Moreover, if i $ j, then p;pi = 0: the vector 1; corresponds to the representa-
tion Ii = Ef 1 l1 where 1l = 0 for i # j,

1
1 = li.

Finally, pi = id, because (E
1 p;) (>'=111) _ 1i if li E Li. Con-

versely, such a system of projection operators can be used to define a corresponding
direct decomposition.

5.10. Theorem. Let pi,.. . , p, : L -y L be a finite set of projection operators
satisfying the conditions

n

pi = id, Prpi = 0 for
i.1

i96 j.

Let L; = imp;. Then L = ®n_1 L.

Proof. Applying the operator id= E 1 p; to any vector I E L, we obtain I =
pi(1), where p;(1) E L;. Therefore L = En 1

L,. To prove that this sum is

a direct sum we shall apply the criterion a) of Theorem 5.8. Let I E Li it (1:4, L;) .

The definition of the spaces L; = imp; implies that there exist vectors I1, ... , In such

that
I = P,(1,) = EPt(li)-

0i

We apply the operator pi to this equality and make use of the fact that
pP =pi, pip;=0for i# j. We obtain

PA(li) = >P1P1(I+) = 0.
i0i

Therefore, l = 0, which completes the proof.

5.11. Direct complements. If L is a finite-dimensional space, then for any
subspace L1 C L there exists a subspace L2 C L such that L = L1®L2. Aside from
the trivial cases L1 = {0} or L1 = L, this choice is not unique. In fact, selecting the
basis {e1, ... , e,, } of L1 and extending it up to the basis {e1 .... , em) ern+l , ... , en }
of L, we can take for L2 the linear span of the vectors {e,n+1, ... ,e,}.

5.12. External direct suns. Thus far we have started from the set of subspaces
L1, ... , L1 of the same space L. Now, let L1, ... , L1 be spaces which are not
imbedded beforehand in a general space. We shall define their external direct sum
L as follows:

a) L, as a set, is L1 x ... x Ln, i.e., the elements of L are the sets (it.... In),
where l; E Li.

b) Addition and multiplication by a scalar are performed coordinate-wise:(1I I+ 1.11,...,In) _ (11 + III ...,in + In),
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a(ll,...,1.) = (all,...,al.).

It is not difficult to verify that L satisfies the axioms of a linear space. The map-
ping f; : Li - L, fi(l) = (0,... , 0,l, 0, ... , 0) (1 is in the ith location) is a lin-
ear imbedding of L; into L, and from the definitions it follows immediately that
L = ®i 1 fi(Li). Identifying L; with fi(Li), we obtain a linear space which con-
tains Li and decomposes into the direct sum of Li. This justifies the name external
direct sum. It is often convenient to denote the external direct sum by ® 1 Li.

5.13. Direct sums of linear mappings. Let L = ®,"_1 L; and M = (D", Mi,
and let f : L -y M be a linear mapping such that f (Li) C Mi. We denote by fi the
induced linear mapping Li . Mi. In this case, it is customary to write f = Q)"_1 f;.
The external direct sum of linear mappings is defined analogously. Choosing bases
of L and M that are the union of the bases of L; and M; respectively, we find that
the matrix off is the union of blocks, which are matrices representing the mappings
fi lying along the diagonals; the other locations contain zeros.

5.14. Orientation of real linear spaces. Let L be a finite-dimensional linear
space over the field of real numbers. Two ordered bases lei) and {e;} of it are
always identically arranged in the sense that there is a unique linear isomorphism
f : L -. L that maps e; into e. However, we pose a more subtle question: when is
it possible to transform the basis {ei} into the basis {e;} by a continuous motion
or deformation, i.e., to find a family ft : L -# L of linear isomorphisms, depending
continuously on the parameter t E (0, 11 such that fo =id and fl(e;) = e; for all
i ? (Only the elements of the matrix of f in some basis must vary continuously
as a function of t.) For this there is an obvious necessary condition: since the
determinant of ft is a continuous function of t and does not vanish, the sign of
det ft must coincide with that of det fo = 1, i.e., det ft > 0.

The converse is also true: if the determinant of the matrix transforming the ba-
sis lei} into {e;} is positive, then {ei} can be transformed into {e;} by a continuous
motion.

This assertion can, obviously, be formulated differently: any real matrix with a
positive determinant can be connected to a unit matrix by a continuous curve, con-
sisting of non-singular matrices (the set of real non-singular matrices with positive
determinant is connected). To transfer from the language of bases to the language
of matrices it is sufficient to work not with the pair of bases lei I, { ft(ei)} but rather
with the matrix of the change of basis from the first basis to the second.

We shall prove this assertion by dividing it into a series of steps.

a) Let A = B, ... B,,, where A and Bi are matrices with positive determinants.
If all the B1 can be connected to E by a continuous curve, then so can A.
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Indeed, let B,(t) be continuous curves in the space of non-singular matrices
such that B,(0) = Bf, B,(1) = E. Then the curve A(t) = B1(t) ... connects
A and E.

b) If A can be connected by a continuous curve to B and B can be so connected
to E, then A can be connected to E.

Indeed, if A(t) is such that A(O) = A and A(1) = B and B(t) is such that
B(O) = B and B(1) = E, then the curve

(A(2t) for 0 < t < 1/2,
t 1B(2t-1) fort/2<i<1

connects A to E. The device of changing the scale and the origin of t is used only
because we stipulated that the curves of the matrices be parametrized by numbers
t E [0, 1]. Obviously, any intermediate parametrization intervals can be used, all
required deformations can be performed successively, and the scale need be changed
only at the end. Therefore, in what follows, we shall ignore the parametrization
intervals.

c) Any non-singular square matrix A can be represented by a product of a finite
number of elementary matrices of the types F,,t, F,,t(A), F,(A), A E R. We denote
by E,t the matrix with ones at the location (s,t) and zeros elsewhere. Then by
definition,

F,,t = E-E -Egg +E,t+Et
F,,,(A).= E + AEt; F,(A) = E + (A - 1)E,,.

This result is proved in §4 of Chapter 2 in "Introduction to Algebra" as a
corollary to the theorem of §5.

d) Now, let the matrix A be represented as a product of elementary matrices.
Assuming that its determinant is positive, we shall show how to connect it to E
with the help of several successive deformations, using the results of the steps a)
and b) above.

First of all, detF,,t(A) = 1 for all A and F,,,(0) = E. By varying A in the
starting cofactors from the initial value to zero we can deform all such factors into
E, and we can therefore assume that they are absent at the outset.

The matrices F,(A) are diagonal: A stands in the location (s,s) and ones else-
where. We change A from the initial value to +1 or -1, according to the sign of
the initial value. The deformation will yield either the unit matrix or the matrix of
the linear mapping that changes one of the basis vectors into the opposite vector,
leaving the remaining basis vectors unaffected.

At this stage the result of the deformation of A will be the matrix of the
composition of two transformations: one reduces to the permutation of the vectors
of the basis (F,,, interchanges the sth and tth vectors) and the other changes the
signs of some of the vectors (the composition F,(+1) and Ft(-1)).
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Any permutation can be decomposed into a product of transpositions. The

matrix of a permutation of the basis vectors in the plane (0 / can be connected

to C O
0

1 by the curve
cost

_ r/2 > t > 0. Clearly, by distributing

the elementss of the last matrix over the locations (s, a), (s, t), (t, a), and (t, t) we
obtain the corresponding deformation in any dimension, annihilating the F,,,.

The matrix A has now been transformed into a diagonal matrix with the el-
ements ±1 standing along the diagonal; in addition, the number of -I's is even,

because the determinant of A is positive. The matrix ( -0 can be connected

to I 0 0 by the curve
(cost

: x > t > 0. The proof is completed by

collecting all -1's in pairs and performing such deformations of all pairs.
We now return to the orientation.
We shall say that the bases {e;}, {e;} are identically oriented if the determinant

of the matrix of the transformation between them is positive. It is clear that the
set of ordered bases of L is divided precisely into two classes, consisting of identi-
cally oriented bases, while the bases of different classes are oriented differently (or
oppositely).

The choice of one of these classes is called the orientation of the space L.
The orientation of a one-dimensional space corresponds to indicating the "pos-

itive direction in it", or the half-line R.j.e = {aela > 0}, where e is any vector which
determines the orientation.

In a two-dimensional space, fixing the orientation with the help of the basis
{e1,e2} can be regarded as indicating the "positive direction of rotation" of the
plane from el to e2. This agrees intuitively with the fact that the basis {e2,e1}

0 1
gives the opposite orientation (the determinant of the transition matrix

1 0
equals -1) and the opposite direction of rotation.

In the general case, the transformation from the basis {e, } to the basis {e; ),
consisting of the same vectors arranged in a different order, preserves the orientation
if the permutation is even and changes it if the permutation is odd. Reversing the
sign of one of the vectors e; reverses the orientation.

In the three-dimensional physical space the choice of a specific orientation can
be related to human physiology: asymmetry of the right and left sides. In most
people the heart is located on the left side. The thumb, the index finger and the
middle finger of the left hand, bent towards the palm, together form in a linearly
independent position an ordered basis, which determines the orientation (`left-hand
rule"). The question of whether or not there exist purely physical processes which
would distinguish the orientation of space, i.e., "non-invariant relative to mirror
reflection", was answered affirmatively about 20 years ago, to everyone's surprise, by
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an experiment which established the non-conservation of parity in weak interactions.

EXERCISES

1. Let (L1, L2, L3) be an ordered triple of pairwise distinct planes in K3. Prove
that there exist two possible types of relative arrangement of such triples, charac-
terized by the fact that dim L1 n L2 n L3 = 0 or 1. Which type should be regarded
as the general one ?

2. Prove that the triples of pairwise distinct straight lines in K3 are all identically
arranged and that this assertion is not true for quadruples.

3. Let L1 C L2 C ... C L,, be a flag in a finite-dimensional space L, m; = dim Li.
Prove that if Li C ... C L;, is a different flag, m; = dim L;, then there exists an
automorphism of L transforming the first flag into the second flag, if and only if
m; = m for any i.

4. Do the same problem for direct decompositions.

5. Prove the assertion of the fifth item in §5.6.

6. Let p : L L be a projection operator. Prove that L = kerp ® imp. Based
on this, show that in an appropriate basis of L any projection operator p can be
represented by a matrix of the form

CE,. O1

0 0 '

where r = dimimp.

7. Let L be an n-dimensional space over a finite field consisting of q elements.
a) Calculate the number of k-dimensional subspaces in L, 1 < k < n.
b) Calculate the number of pairs of subspaces L1, L2 C L with fixed dimensions

L1i L2 and L1 nL2. Verify that as q -+ oo the relative number of these pairs arranged
in the general position, amongst all pairs with given dim L1 and dim L2 approaches
one.

§6. Quotient Spaces

6.1. Let L be a linear space, M C L a linear subspace of L, and I E L a vector.
Different problems lead to the study of sets of the type

l + M = {l + rnIm E M},
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"translations" of a linear space M by a vector 1. We shall shortly verify that these
translations do not necessarily have to be linear subspaces in L; they are called
linear subvarieties. We shall start by proving the following lemma:

6.2. Lemma . 11 + M1 = 12 + M2, if and only if M1 = M2 = M and 11 - 12 E
E M. Thus any linear subvariety uniquely determines a linear subspace M, whose
translation it is. The translation vector, however, is determined only to within an
element belonging to this subspace.

Proof. First, let 11 - 12 E M. Set 11 -12 = mo. Then

It+M={11+mjmEM}, 12+M={ll+m-mojmEM}.

But when m runs through all vectors in M, m - mo also runs through all vectors
in M. Therefore, 11 + M = 12 + M.

Conversely, let 11 + M1 = 12 + M2. Set mo = l1 - 12. It is clear from the
definition that then mo + M1 = M2. Since 0 E M2, we must have mo E M1.
Hence mo + M1 = M1 according to the argument in the preceding item, so that
M1 = M2 = M. This completes the proof.

6.3. Definition. The factor (or quotient) space L/M of a linear space L is the set
of all linear subvarieties in L that are translations of M, together with the following
operations:

a) (l1 + M) + (12 + M) = (11 +12)+M, and
b) a(11 + M) = all + M for any 11,12 E L, a E K.
These operations are well defined and transform L/M into a linear space over

the field K.

6.4. Verification of the correctness of the definition. This consists of the
following steps:

a) Ifl1+M=li+M and l2+M=l2+M, then 11+12+M=1i+12+M.
Actually, Lemma 6.2 implies that 11 - ll = m1 E M and 12 - 12 = m2 E M.

Therefore, once again according to Lemma 6.2,

(11+12)+M=(1i+12)+(ml+m2)+M=(1i+112)+M,

because m1 + m2 E M.
b) Ifl1+M=1i+M, then all+M=alt+M.
Indeed, again setting 11 - li = m E M, we have all - alt = am E M, and the

application of Lemma 6.2 gives the required result.
Thus addition and multiplication by a scalar are indeed uniquely defined in

L/M. It remains to verify the axioms of a linear space. They follow immediately
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from the corresponding formulas in L. For example, one of the distributivity for-
mulas is verified thus:

a[(11+M)+(12+M)]=a((11+12)+M)=a(11+12)+M=

=all+a12+M=(all +M)+(a!2+M)=a(11+M)+a(12+M).

Here the following are used in succession: definition of addition in L/M, definition
of multiplication by a scalar in L/M, distributivity in L, and again the definition
of addition and multiplication by a scalar in L/M.

6.5. Remarks. a) It is evident from the definition that the additive group L/M
coincides with the quotient group of the additive group L over the additive group
M. In particular, the subvariety M C L is zero in L/M.

b) There exists a canonical mapping f : L -. L/M : f(1) = 1 + M. It is
surjective, and its fibres - the inverse images of the elements - are precisely the
subvarieties corresponding to these elements. Indeed, according to Lemma 6.2

f-'(to+M)={IELI1+M=to+M}={1ELI1-1oEM}=1o+M.

We note that in this chain of equalities to + M is regarded for the first time as an
element of the set L/M, while the others are regarded as subsets of L.

From §6.4 it is clear that f is a linear mapping, while Lemma 6.2 shows that
ker f = M, because 10 + M = M, if and only if to E M.

6.6. Corollary. If L is finite-dimensional, then dim L/M = dim L - dim M.

Proof. Apply Theorem 3.12 to the mapping L L/M constructed.
Many important problems in mathematics lead to situations when the spaces

M C L are infinite-dimensional, while the quotient spaces L/M are finite-dimen-
sional. In this case, Corollary 6.6 cannot be used, and the calculation of dim L/M
usually becomes a non-trivial problem. The number dim L/M is generally called
the codimension of the subspace M in L and is denoted by codim M or codimL M.

6.7. We pose the following problem. Given two mappings f : L -. M and
g : I - N, when does a mapping h : M - N exist such that g = h f ? In

diagramatic language: when can the diagram

be inserted into the commutative triangle.
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(cf. §13 on commutative diagrams). The answer for linear mappings is given by the
following result.

6.8. Proposition. For h to exist it is necessary and sufficient that ker f C ker g.
If this condition is satisfied and im f = M, then h is unique.

Proof. If h exists, then g = h f implies that g(1) = h f (1) = 0 if f (l) = 0.
Therefore, ker f C ker g.

Conversely, let ken f C kerg. We first construct h on the subspace imf C M.
The only possibility is to set h(m) = g(l), if m = f(1). It is necessary to verify that
h is determined uniquely and linearly on im f . The first property follows from the
fact that if m = NO = 1(12), then 11 - l2 E ken f C kerg, whence g(11) = 9(12).
The second property follows automatically from the linearity of f and g.

Now it is sufficient to extend the mapping h from the subspace im f C M into
the entire space M, for example, by selecting a basis in im f , extending it up to a
basis in M, and setting h equal to zero on the additional vectors.

6.9. Let g : 1 --+ M be a linear mapping. We have already defined the kernel and
the image of g. We supplement this definition by setting

(coimage of 9) coim g = L/ ker 9,

(cokernel of g) cokerg = M/img.

There exists a chain of linear mappings, which "partition g",

j M f cokerg

where all mappings, except h, are canonical insertions and factorizations, while h
is the only mapping that completes the commutative diagram

L

Il A\g
coimg img

It is unique, because kerc = kerg, and it is an isomorphism, because the inverse
mapping also exists and is defined uniquely.
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The point of uniting these spaces into pairs (with and without the prefix "co")
is explained in the theory of duality: see the next chapter and Exercise 1 there.

6.10. Fredholm's finite-dimensional alternative. Let g : L -' M be a linear
mapping. The number

ind g = dim coker g - dim ker g

is called the index of the operator g. It follows from the preceding section that if L
and M are finite-dimensional, then the index g depends only on L and M:

ind g = (dim B1- dim im g) - (dim L - dim im g) = dim M - dim L.

In particular, if dim M = dim L, for example, if g is a linear operator on L, then
ind g = 0 for any g. This implies the so-called Fredholm alternative:

either the equation g(x) = y is solvable for all y and then the equation g(x) = 0
has only zero solutions; or

this equation cannot be solved for all y and then the homogeneous equation
g(x) = 0 has non-zero solutions.

More precisely, if ind g = 0, then the dimension of the space of solutions of the
homogeneous equation equals the codimension of the spaces on the right hand sides
for which the inhomogeneous equation is solvable.

EXERCISES

1. Let M, N C L. Prove that the following mapping is a linear isomorphism:

(M+N)/N-iM/Mf1N; m+n+No--m+Mf1N.

2. Let L = M ® N. Then the canonical mapping

is an isomorphism.
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§7. Duality

7.1. In §1, we associated every linear space L with its dual space L' = £(L, K),
while in §3 we showed that if dim L < oo, then dim L' = dim L and we constructed
the canonical isomorphism CL : L - L. Here we shall continue the description of
duality, and we shall include in our analysis linear mappings, subspaces, and factor
spaces.

The term duality originated from the fact that the theory of duality clarifies
a number of properties of the "dual symmetry" of linear spaces, which are very
difficult to imagine clearly but which are absolutely fundamental. It is enough to
say that the "wave-particle" duality in quantum mechanics is adequately expressed
precisely in terms of the linear duality of infinite-dimensional linear spaces (more
precisely, the combination of linear and group duality in the Fourier analysis).

It is convenient to trace this symmetry by altering somewhat the notations
adopted in §1 and §3.

7.2. Symmetry between L and V. Let I E L and f E L'. Instead of f (l)
we shall write (f, 1) (the symbol is analogous to the inner product, but the vectors
are from different spaces !) We have thus defined the mapping L' x L K. It is
linear with respect to each of the two arguments f,1 with the other held fixed:

(fl + f2,1) = (f1,1) + (f2,1), (afi,1) = a(fi,1)

(f,11 + 12) _ (1,11)+(1,12), (f, all) = a(f,11).

In general, mappings L x M K with this property are said to be bilinear, as well
as pairings of the spaces L and M. The pairing introduced above between L and
L' is said to be canonical (see the discussion of this word in §3.8).

The mapping CL : L -- L" in §3.10, as is evident from its definition, can be
defined by the condition:

(CL (1), f) = U,1),

where the symbol denoting the pairing of L" and L' stands on the left side and the
pairing of L' and L is indicated on the right side. If dim L < oo, so that CL is an
isomorphism and we identify L" and L by means of cL, then this formula acquires
a symmetric form (1, f) _ (f,1). In other words, we can also regard L as the dual
space of V.

7.3. Symmetry between dual bases. Let {e1, ... , e" } be a basis of L and let
{e',...,e") be its dual basis in L. According to §3.9, it is defined by the formulas

0 for i9k,
(e',ek) = bik =

1 fori=k
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The symmetry (ei,ek) = (e),,e'), according to the preceding section, indicates that
the basis (ek) is dual to the basis (e') if L is regarded as the space of linear functionals
on V. Thus (e') and (ek) form a dual pair of bases, and this relation is symmetric.

Let us represent the vector 1' E L' as a linear combination E 1 bie' and the
vector I E L in the form F7=1 aie1. Then

n n b1

(1 ,1) _ a,bi(e`,e3) _ aibi = (a a.) _
i,j=1 1-1 b

n

al

_ (a`)b = (P)d= (bl,...,bn) _ (1,I*),

an

where d, 6 are column vectors of the corresponding coefficients. This formula is
completely analogous to the formula for the inner product of vectors in Euclidean
space, but here it relates vectors from different spaces.

7.4. Dual or conjugate mapping. Let f : L -. M be a linear mapping
of linear spaces. We shall now show that there exists a unique linear mapping
f' : M' -+ L' that satisfies the condition

(f'(m ), 1) = (m', f(1))

for any vectors m' E M', I E L.
a) Uniqueness of f'. Let Jr and fz be two such mappings. Then (fl (m'), l) _

_ (m', f(l)) = (fr(m'),l) for all m' E M', I E L, whence it follows that
V1 - fz)(m'),1) = 0. We fix m' and vary I. Then the element (fl - fz)(m') E L',
as a linear functional on L, assumes only zero values and hence equals zero. There-
fore fl* = f2*.

b) Existence of f'. We fix m' E M and regard the expression (m', f(l)) as a
function on L. The linearity off and the bilinearity of (, ) imply that this function
is linear. Hence it belongs to L. We denote it by f'(m'). The equalities

f*(mi +m2) = f*(m1)+f*(m2), f* (am*) = af*(m')

follow from the linearity of (m', f (1)) with respect to m'. This means that f' is a
linear mapping.

Assume that bases have been selected in L and M and dual bases in L' and
W. Let f in these bases be represented by the matrix A. We assert that f' in
the dual bases is represented by the transposed matrix A. Indeed, let B be the
matrix of f'. According to the definition and §7.3, we have, denoting the coordinate
vectors of m*, I by a6, b,

W, f (1)) = 6 t(Ab)
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(f*W), 1) = (Ba)th = (d'B')b.

It follows immediately from the associativity of multiplication of matrices and the
uniqueness of f" that A = B', i.e., B = A.

The basic properties of the conjugate mapping are summarized in the following
theorem:

7.5. Theorem. a) (f +g)" = f'+g";
b) (af)'=af'; here f,g:L - Al' andaEK;
c) (fg)" = g'f'; here L _9M f N;
d) id" = id, 0' = 0;
e) L" and M are canonically identified with L and M respectively, then

f" : L'" -+ M"' is identified with f : L - M.
Proof. If it is assumed that L and M are finite-dimensional, then it is simplest to
verify all of these asertions by representing f and g by matrices in dual bases and
using the simple properties of the transposition operation:

(aA + bB)t = aA' + bBt, (AB)t = B'A', E' = E, 0' = 0, (A')' = 0.

We leave it as an exercise to the reader to verify invariance.

7.6. Duality between subspaces of L and L. Let M C L be a linear
subspace. We denote by Ml C L' the set of functionals which vanish on M and
call it the orthogonal complement of M. In other words,

m' E 1111 q(m',m)=0for all mEM

It is easy to see that Ml is a linear space. The following assertions summarize the
basic properties of this construction (L is assumed to be finite-dimensional).

a) There exists a canonical isomorphism L'/Ml M. It is constructed as
follows: we associate with the variety 1* +M1 the restriction of the functional 1' to
M. It is independent of the choice of 1', because the restrictions of the functionals
from M1 to M are null restrictions. The linearity of this mapping is obvious. It is
surjective, because any linear functional on M extends to a functional on L.

Indeed, let {e1, ... , em } be a basis of M and let {e 1, ... , e,,,, en,+1, ... , e, } be its
extension to a basis of L. The functional f on M given by the values f (el) .... f (e"),
is extended onto L, for example, by setting f (e,,,+1 = ... = f 0.

Finally, the mapping L'/Ml -+ M' constructed above is injective. Indeed,
it has a null kernel: if the restriction of 1' to M equals zero, then /' E Ml and
1' + Ml = Ml is the zero element in L'/Ml.

b) dim M + dim Ml = dim L. Indeed, this follows from the preceding asser-
tion, Corollary 6.6, and the fact that dim L' = dim L and dim M' = dim M.
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c) Under the canonical identification of L" with L, the space (M')' coin-
cides with M.

Indeed, because (m', m) = 0 for all m' and the given m E M, it is clear that
M C (M1)1. But, in addition, according to the preceding property applied twice,

dim(M1)1 = dim L - dim M1 = dim M.

Hence, M = (M-L)-L.

d) (Ml + M2)1 = Mi n Ms ; (Mi fl M2)1 = M; + M2 L.
The proof is left as an exercise.

EXERCISES

1. Let the linear mapping g : L - M of finite-dimensional spaces be associated
with the chain of mappings constructed in §6.8. Construct the canonical isomor-
phisms

ker g' -i coker g, coim g' -+ im g, im g' - coim g, coker g' kerg.

2. Hence derive "lredholm's third theorem": in order for the equation g(x) = y
to be solvable (with respect to x with y held fixed), it is necessary and sufficient
that y be orthogonal to the kernel of the conjugate mapping g' : A!' -. V.

3. The sequence of linear spaces and mappings L f M 9 . N is said to be exact
in the term M, if im f = ker g. Check the following assertions:

a) the sequence 0 L
f Af is exact in the term L, if and only if f is an

injection.
b) The sequence M . N -. 0 is exact in the term N, if and only if g is a

surjection.

c) The sequence of finite-dimensional spaces 0 - L f Af N - 0 is exact

(in all terms) if and only if the dual sequence 0 -+ N' -- M' L' - 0 is exact.

4. We know that if the mapping f : L - M in some bases can be represented
by the matrix A, then the mapping f in the dual bases can be represented by the
matrix At. Deduce that the rank of a matrix equals the rank of the transposed
matrix, i.e., that the maximal numbers of linearly independent rows and columns
of the matrix are equal.
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§8. The Structure of a Linear Mapping

8.1. In this section we shall begin the study of the following problem: is it
possible to construct a better geometric picture of the structure of a linear mapping
f : L M? When L and M are entirely unrelated to one another, the answer
is very simple: it is given by Theorem 8.2. A much more interesting and varied
picture is obtained when M = L (this is the case considered in the next section)
and M = L' (Chapter 2). In matrix language, we are talking about putting the
matrix of f into its simplest form with the help of an appropriate basis, specially
adapted to the structure off . In the first case, the bases in L and M can be selected
independently; in the second case, we are talking about one basis in L or one basis
in L and its dual basis in L*: the lower degree of freedom of choice leads to a greater

variety of answers.
Our problem can be reformulated as follows in the language of §5. Let us

construct the exterior direct sum of spaces L ® M and associate with the mapping
f its graph I'f: the set of all vectors of the form (1, f(1)) E L ® M. It is easy to
verify that rf is a subspace of L ® M. We are interested in the invariants of the
arrangement of r f in L (D M. For the case when the bases in L and M can be
selected independently, the answer is given by the following theorem.

8.2. Theorem. Let f : L Al be a linear mapping of finite-dimensional spaces.

Then
a) there exist direct decompositions L = Lo ® L1, M = Ml ® M2 such that

ken f = Lo and f induces an isomorphism of L1 to M1.
b) There exist bases in L and M such that the matrix off in these bases has

the form (aid), where aii = 1 for 1 < i < r and ai3 = 0 for the remaining values of
i, j.

c) Let A be an m x n matrix. Then there exist non-singular square matrices B
and C with dimensions m x m and n x n and a number r < min(m, n) such that the
matrix BAC has the form described in the preceding item. The number r is unique
and equals the rank of A.

Proof. a) Set Lo = ker f and let L1 be the direct complement of Lo: this

is possible by virtue of §5.10. Next, set M1 = imf and let M2 be the direct
complement of M1. We need only verify that f determines an isomorphism of
L1 to M1. The mapping f : L1 M1 is injective, because the kernel of f, i.e.,
Lo, intersects L1 only at the origin. It is surjective because if I = to + li E L,
lo E Lo, 11 E L1, then f(1) = f(11).

b) We set r = dim L1 = dim Ml and choose a basis {el, ... , er, er+1, ... , en}
of L, where the first r vectors form a basis of L1 and the remaining vectors form
a basis of Lo. Furthermore, the vectors e; = f (ei), I < i < r form a basis of
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Ml = im f . We extend it to a basis of M with the vectors {e/r+i, .

ously,

. Obvi-

f(el,...,er;er+i,...,en) = (ell,...,e',.; 0,...,0)

_ (el,...,er; em) (
0 0)

so that the matrix of f in these bases has the required form.
c) Based on the matrix A, we construct a linear mapping f of the coordinate

spaces K" -. K'" with this matrix and then apply to it the assertion b) above. In
the new bases the matrix of f will have the required form and will be expressed
in terms of A in the form BAC, where B and C are the transition (change of
basis) matrices (see §4.8). Finally, rank A = rank BAC = rank f = dim im f . This
completes the proof.

We now proceed to the study of linear operators. We begin by introducing the
simplest class: diagonalizable operators.

We shall say that the subspace Lo C L is invariant with respect to the operator
f, if f(Lo) CL0.

8.3. Definition. The linear operator f : L - L is diagonalizable if either one of
the following two equivalent conditions holds:

a) L decomposes into a direct sum of one-dimensional invariant subspaces.

b) There exists a basis of L in which the matrix off is diagonal.
The equivalence of these conditions is easily verified. If in the basis (ei) the

matrix of f is diagonal, then f(ei) = aiei, so that the one-dimensional subspaces
spanned by e, are invariant and L decomposes into their direct sum. Conversely,
if L = ® Li is such a decomposition and e; is any non-zero vector in Li, then the
{ei} form a basis of L.

Diagonalizable operators form the simplest and, in many respects, the most
important class of operators. For example, over the field of complex numbers, as
we shall show below, any operator can be diagonalized by changing infinitesimally
its matrix so that the operator "in the general position" is diagonalizable.

To understand what can prevent an operator from being diagonalizable, we
shall introduce two definitions and prove one theorem.

8.4. Definition. a) A one-dimensional subspace Ll C L is said to be a proper
subspace for the operator f if it is invariant, i.e., f(L1) C Ll. If Ll is such a
subspace, then the effect off on it is equivalent to multiplication by a scalar A E K.
This scalar is called the eigenvalue off (on Ll).

b) The vector I E L is said to be an eigenvector off if ! 96 0 and the linear
span Kl is a proper subspace. In other words, f(1) = M for an appropriate A E K.
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According to Definition 8.3, diagonalizable operators f admit a decomposition
of L into a direct sum of its proper subspaces. We shall determine when f has at
least one proper subspace.

8.5. Definition. Let L be a finite-dimensional linear subspace. Let f : L L be
a linear operator and A its matrix in some basis. We denote by P(t) the polynomial
det(tE - A) with coefficients in the field K (det denotes the determinant) and call
it the characteristic polynomial of the operator f and of the matrix A.

8.6. Theorem. a) The characteristic polynomial of f does not depend on the
choice of basis in which its matrix is represented.

b) Any eigenvalue off is a root of P(t) and any root of P(t) lying in K is an
eigenvalue of f, corresponding to some (not necessarily the only) proper subspace
of L.

Proof. a) According to §4.8, the matrix of f in a different basis has the form
B-'AB. Therefore, using the multiplicativity of the determinant, we find

det(tE - B-1AB) = det(B-1(tE - A)B) =

= (det B)-1 det(tE - A) det B = det(tE - A).

We note that P(t) = t" - Tr f t' 1 +... + (-1)" detf (the notation of §4.9).
b) Let A E K be a root of P(t). Then the mapping A A. id - f is represented by a

singular matrix and its kernel is therefore non-trivial. Let 1 54 0 be an element from
the kernel. Then f (1) = Al so that A is an eigenvalue off and I is the corresponding
eigenvector. Conversely, if f (l) = Al, then l lies in the kernel of A id - f so that
det(A id - f) = P(A) = 0.

8.7. We now see that the operator f, in general, does not have eigenvalues and
is therefore not diagonalizable if its characteristic polynomial P(t) does not have
roots in the field K. This is entirely possible over fields that are not algebraically
closed, such as R and finite fields. For example, let the elements of the matrix

A= a b

c d
be real. Then

det(tE - A) = t2 - (a + d)t + (ad - bc),

and if (a + d)2 - 4(ad - bc) = (a - d)2 + 4bc < 0, A is not diagonalizable.
We have thus encountered here for the first time a case when the properties of

linear mappings depend significantly on the properties of the field.
In order to be able to ignore the last point as long as possible, in the next

section §9 we shall assume that the field K is algebraically closed. The reader who
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is not familiar with other algebraically closed fields (with the exception of C) may
assume everywhere that K = C. The algebraic closure of K is equivalent to either
of the following two conditions: a) any polynomial of a single variable (of degree
> 1) P(t) with coefficients in K has a root A E K; b) any such polynomial P(t) with
leading coefficient equal to unity, can be represented in the form n° 1(t - Ai)'-i,
where a, Ai E K; Ai # A, for i 96 j; this representation is unique if P(t) 0. In
this case, the number r; is called the multiplicity of the root Ai of the polynomial
P(t). The set of all roots of the characteristic polynomial is called the spectrum of
the operator f. If all multiplicities are equal to one, the spectrum off is said to be
simple.

If the field K is algebraically closed, then according to Theorem 8.6 any linear
operator f : L -+ L has a proper subspace. However, it may nevertheless happen
that it is non-diagonalizable, because the sum of all proper subspaces may happen
to be less than L, whereas for a diagonalizable operator it always equals L. Before
considering the general case, we shall examine complex 2 x 2 matrices.

8.8. Example. Let L be a two-dimensional complex space with a basis. In

this basis the operator f : L -» L is represented by the matrix A =
a b

(c d
The characteristic polynomial of f is t2 - (a + d)t + (ad - bc), and its roots are

A1,2 = -s ± Vi!=.d)2 +7c. We shall examine separately the following two cases:

a) Al # A2. Let el and e2 be the characteristic vectors corresponding to Al
and A2 respectively. They are linearly independent, because if ae1 + bee = 0, then

f(ael + bee) = aAlel + bA2e2 = 0,

whence A1(ae1+be2)-(aA1e1+bA2e2) = b(A1-A2)e2 = 0, i.e., b = 0 and analogously
a = 0. Therefore, in the basis {e 1, e2) the matrix off is diagonal.

b) Al = A2 = A. Here the operator f is diagonalizable, only if it multiplies by

A all vectors from L. Hence
(a

d) = (A
0) , i.e. a = d = A, b = c = 0. If

on the other hand, these conditions are not satisfied and only the weaker condition
(a - d)2 + 4bc = 0 holds, guaranteeing that Al = A2, then f can have only one
eigenvector and f is obviously not diagonalizable.

An example of such a matrix is (
0

A A)
. This matrix is called a Jordan block

with the dimension 2 x 2 (or rank 2) .

In §9 we shall show that these matrices are the "building bloc,." for the normal
form of a general linear operator over an algebraically closed field. We give the
following general definition:
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8.9. Definition. a) A matrix of the form

A 1 0 ... 0

Jr(A)
0 1 ... 0

0 0 0 ... A

is called an r x r Jordan block Jr(A) with the eigenvalue A.

b) A Jordan matrix is a matrix consisting of diagonal blocks Jr,(a;) with zeros
outside these blocks:

Jrl 01)
J=

0

.J"2(1\2)

c) A Jordan basis for the operator f : L -+ L is a basis of the space L in which
the matrix of f is a Jordan matrix or, as it is customarily said, has the Jordan
normal form.

d) The solution of a matrix equation of the form X-'AX = J, where A is a
square matrix, X is an unknown non-singular matrix, and J is an unknown Jordan
matrix, is called the reduction of A to Jordan normal form.

8.10. Example. Let be a linear space of complex functions of the form
ea= f (x), where A E C and f (x) runs through the polynomials of degree < n - 1.
Since (e"f (x)) = ea=(A f (x) + f'(x)), the derivative is a linear operator in
this space. We set e;+1 = ;real (recall that 0! = 1), i = 0, ... , n - 1. Obviously,

d x'-1 x`
dx (i - 1)! T

(the first term is absent for i = 0). Therefore,

A 1 0

d 0 Al
(ei,...,en)

Thus the functions (le) form a Jordan basis for the operator 37 in our space.
This example demonstrates the special role of Jordan matrices in the theory of

linear differential equations (see Exercises 1-3 in §9).

8.11. Aside from the geometric considerations examined above, in the next chapter
we shall need algebraic information about polynomial functions of operators. Let
f : L - L be a fixed operator.
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a) For any polynomial MQ a;t' = Q(t) with coefficients from the field K
the expression F," o ai f' makes sense in the ring C(L, L) of endomorphisms of the
space L; we shall denote it by Q(f).

b) We shall say that the polynomial Q(t) annihilates the operator f, if
Q(f) = 0. Non-zero polynomials that annihilate f always exist if L is finite-
dimensional. Indeed, if dim L = n, then dim C(L, L) = n2 and the operators id,
f, ... , f"2 are linearly dependent over K. This discussion shows that there exists
a polynomial of degree < n2 that annihilates f. In reality the Cayley-Hamilton
theorem, which we shall prove below, establishes the existence of an annihilating
polynomial of degree n.

c) Consider a polynomial M(t) whose leading coefficient equals 1, which ap-
proximates f, and which has the lowest possible degree. It is called the minimal
polynomial of f. Obviously, it is uniquely defined: if M1(t) and M2(t) are two such
polynomials, then M1(t) - M2(t) annihilates f and has a strictly lower degree, so
that M, (t) - M2 (t) = 0.

d) We shall show that any polynomial that annihilates f can be decomposed
into the minimal polynomials of f. Indeed, let Q(f) = 0. We decompose Q
with a remainder on M: Q(t) = X (t)M(t) + R(t), deg R(t) < deg M(t). Then
R(f) = Q(f) - X(f)M(f) = 0, so that R = 0.

8.12. Cayley-Hamilton theorem. The characteristic polynomial P(t) of an
operator f annihilates f .

Proof. We shall make use of this theorem and we shall prove it only for the case
of an algebraically closed field K though it is also true without this restriction.

We perform induction on dim L. If L is one-dimensional, then f is a multipli-
cation by a scalar A, P(t) = t - A and P(f) = 0.

Let dim L = n > 2 and suppose that the theorem is proved for spaces with
dimension n - 1. We select an eigenvalue A of the operator f and a one-dimensional
proper subspace L1 C L corresponding to A. Let {ei} be a basis of L1; we extend
it to the basis {e1, ... , en} in the space L. The matrix fin this base has the form

A(0 * `

Therefore P(t) = (t-A) det(tE-A). The operator f determines the linear mapping
f : L/L1 - L/L1, f(I + L1) = f(l) + L1. The vectors e; = ei + L1 E L/L1, i > 2
form a basis of L/L1, and the matrix off in this basis equals A. Therefore, P(t) _
= det(tE - A) is the characteristic polynomial of f and, according to the induction
hypothesis, P(f) = 0. Hence, P(f)l E L1 for any vector I E L. Therefore

P(f)l = (f - A)P(f)l = 0,
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because f - A reduces to zero any vector in L1. This completes the proof.

8.13. Examples. a) Let f = idL and dim L = n. Then the characteristic
polynomial of f is (t - 1)" and the minimal polynomial is (t - 1), so that they are
not equal for n > 1.

b) Let f be represented by the Jordan block J,(A). The characteristic polyno-
mial of f is (t - A)''. To calculate the minimal polynomial we note that
J,(A) = AE, + J,(0). Furthermore,

0 0 ... 1 0 ... 0

Jk(0)k =
0 0 ... 0 1 ... 0

0 0 ... 0 0 ... 0

where ones stand along the kth diagonal above the principal diagonal; J,(0)' = 0
for k > r. On the other hand, AE, and J,.(0) commute, so that

(Jr(A) - AEr)k = J,(0)k

for 0 < k < r-1, and since the minimal polynomial is a divisor of the characteristic
polynomial, this proves that they are equal.

EXERCISES

1. Let f : L -+ L be a diagonalizable operator with a simple spectrum.
a) Prove that any operator g : L L such that gf = fg can be represented in

the form of a polynomial of f.
b) Prove that the dimension of the space of such operators g equals dim L.
Are these assertions true if the spectrum of f is not'simple ?

2. Let f, g : L - L be linear operators in an n-dimensional space over a field with
characteristic zero. Assume that f" = 0, dim ker f = 1, and gf - fg = I. Prove
that the eigenvalues of g have the form a, a -1, a - 2,. .., a - (n -1) for some a E K.

§9. The Jordan Normal Form

The main goal of this section is to prove the following theorem on the existence and
uniqueness of the Jordan normal form for matrices and linear operators.

9.1. Theorem. Lei K be an algebraically closed field, L a finite-dimensional
linear space over K, and f : L --i. L a linear operator. Then:
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a) A Jordan basis exists for the operator f, i.e., the matrix of the operator
A in the original basis can be reduced by a change of basis X to the Jordan form
X'1AX = J.

b) The matrix J is unique, apart from a permutation of its constituent Jordan
blocks.

9.2. The proof of the theorem is divided into a series of intermediate steps.
We begin by constructing the direct composition L = ®

1
Li, where the Li are

invariant subspaces for f, which will later correspond to the set of Jordan blocks
for f with the same number A along the diagonal. In order to characterize these
subspaces in an invariant manner, we recall that

(Jr(A) - AE,)" = 0.

An operator which when raised to some power is equal to zero is said to be nilpotent.
Thus the operator f - A is nilpotent on the subspace corresponding to the block
Jr(A). The same is true for its restriction to the sum of subspaces for fixed A. This
motivates the following definition.

9.3. Definition. The vector I E L is called a root vector of the operator f,
corresponding to A E K, if there exists an r such that (f - A)'l = 0) (here f - A
denotes the operator f - A id).

All eigenvectors are evidently root vectors.

9.4. Proposition. We denote by L(A) the set of root vectors of the operator f in
L corresponding to A. Then L(A) is a linear subspace in L and L(A) # {0} if and
only if A is an eigenvalue of f.

Proof. Let (f - X)"11 = (f - A)r212 = 0. Setting r = max(rl, r2), we find that
(f - A)" (11 + 12) = 0 and (f - A)", (all) = 0. Therefore, L(A) is a linear subspace.

If A is an eigenvalue of f, then there exists an eigenvector corresponding to
A such that LA # {0}. Conversely, let I E L(A), 1 # 0. We select the smallest
value of r for which (f - A)rl = 0. Obviously, r > 1. The vector 1' = (f - A)r-' l
is an eigenvector of f with eigenvalue A : 1' 96 0 according to the choice of r and
(f - A)l' = 0, whence f (l') = Al'.

9.5. Proposition. L = ®L(Aj), where Ai runs through all the eigenvalues of
the operator f, i.e., the different roots of the characteristic polynomial of f.

Proof. Let P(t) = f'=1(t - \1)'i be the characteristic polynomial of f, Ai 96 Aj for
i # j. Set Fi(t) = P(t)(t - Ai) ri, fi = Fi(f), Li = im fi. We check the fol' wing
series of assertions.
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a) f - A;'Li = {0}, that is, L; C L(Ai). Indeed,

(f-Ai)'fi=(f-Ai)''F,(f)=P(f)=0
according to the Cayley-Hamilton theorem.

b) L = L1 + ... + L,. Indeed, since the polynomials Fi(t) in aggregate are rel-
atively prime, there exist polynomials Xi(t) such that Ei=1 Fi(t)Xi(t) = 1. There-
fore, substituting f for t, we have

Fi(f)Xi(f)=id.
i.l

Applying this identity to any vector 1 E L, we find

1= :f,(Xi)(f)I) E EL'.
i_1 i=1

c) L = L1 (D ... ® L,. Indeed, we choose 1 < i < s and verify that Lifl
n (E,; Lj) = {0). Let I be a vector from this intersection. Then

(f - Ai)'i1= 0, since I E Li;

Fi (f )I = fl(f - Aj )'j l = 0, since 1 E E Li.
j#i j0i

Since (t - A,)'i and Fi(t) are relatively prime polynomials, there exist polynomials
X(t) and Y(t) such that X(t)(t - AI)'i + Y(t) x Fi(t) = 1. Substituting here f for
t and applying the operator identity obtained to 1, we obtain X (f)(0) + Y(f)(0) _
=I=0.

d) Li = L(A,). Indeed we have already verified that Li C L(Ai). To prove
the converse we choose a vector 1 E L(Ai) and represent it in the form I = I' + l",
1' E Li, I" E ®j#i Li. There exists a number r' such that (f - Ai)''l" = 0, because
1" = I - 1' E L(Ai). In addition, Fi(f)l" = 0. Writing the identity X(t)(t - Ai)''+
+Y(t)Fi(t) = 1 and replacing t by f, we find that I" = 0, so that I = I' E Li.

9.6. Corollary. If the spectrum of an operator f is simple, then f is diagonaliz-
able.

Proof. Indeed, the number of different eigenvalues of f then equals n = deg P(t) _
= dim L. Hence, in the decomposition L = ® 1L(Ai) all spaces L(Ai) are one-
dimensional and since each of them contains an eigenvector, the operator f becomes
diagonal in a basis consisting of these vectors.

We now fix one of the eigenvalues A and prove that the restriction off to L(A)
has a Jordan basis, corresponding to this value of A. To avoid introducing a new
notation we shall assume up to the end of §9.7 that f has only one eigenvalue A and
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L = L(A). Moreover, since any Jordan basis for the operator f is simultaneously a
Jordan basis for the operator f + p, where p is any constant, we can even assume
that A = 0. Then, according to the Cayley-Hamilton theorem, the operator f is
nilpotent: P(t) = i", f" = 0. We shall now prove the following proposition.

9.7. Proposition. A nilpotent operator f on a finite-dimensional space L has
a Jordan basis; the matrix off in this basis is a combination of blocks of the form
Jr(0).

Proof. If we already have a Jordan basis in the space L, it is convenient to represent
it by a diagram D, similar to the one shown here.

In this diagram, the dots denote elements of the basis and the arrows describe the
action of f (in the general case, the action of f - A). The operator f transforms
to zero the elements in the lowest row, that is, the eigenvectors of f entering into
the basis occur in this row. Each column thus stands for a basis of the invariant
subspace, corresponding to one Jordan block, whose dimension equals the height of
this column (the number of points in it): if

f(eh) + eh-1, f(eh-1) = eh-2,..., f(el) = 0,

then
0 1 0 ... 0

f(ei.... eh) = (ei,...,eh)
0 0 1 ... 0

0 0 0 ... 0

Conversely, if we find a basis of L whose elements are transformed by f into
other elements of the basis or into zero, so that the elements of this basis together
with the action off can be described by such a diagram, then it will be the Jordan
basis for L.

We shall prove existence by induction on the dimension of L. If dim L = 1,
then the nilpotent operator f is a zero operator and any non-zero vector in L forms
its Jordan basis. Now, let dim L = n > I and assume that the existence of a
Jordan basis has already been proved for dimensions less than n. We denote by
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Lo C L the subspace of eigenvectors for f , that is, ker f . Since dim Lo > 0, we have
dim L/Lo < n, while the operator f : L L induces the operator

f : L/Lo -+ L/Lo : jQ + Lo) = f (1) + Lo.

(The correctness of the definition of f and its linearity are obvious.)
According to the induction hypothesis, f has a Jordan basis. We can assume

that it is non-empty. Otherwise L = Lo and any basis of Lo will be a Jordan basis
for /. Let us construct the diagram b for elements of the Jordan basis of J. We take
the uppermost vector ei, i = 1, ... , m in each column, and set ei = e; + Lo, ei E L.
We shall now construct the diagram D of vectors of the space L as follows. For
i = 1,. .. , m the ith column in the diagram D will consist (top to bottom) of the
vectors ei, f(ei),..., f''i-1(e;), fhi(e,), where hi is the height of the ith column in
the diagram D. Since f hi (ei) = 0, f hi (ei) E Lo and f hi+1(ei) = 0. We select a
basis of the linear span of the vectors f hz (ei ), ... , f hm (e,,,) in Lo, extend it to a
basis of Lo, and insert the additional vectors as additional columns (of unit height)
in the bottom row of the diagram D; f transforms them into zero.

Thus the diagram D consisting of vectors of the space L together with the
action of f on its elements has exactly the form required for a Jordan basis. We
have only to check that the elements of D actually form a basis of L.

We shall first show that the linear span of D equals L. Let I E L, I = 1 + Lo.
, 01 aij f' (ei ). Since Lo is invariant under f , it followsBy assumption, I = E;"_ 1 Eli; I

that
,,, hi -1

1 - E E aijf1(ei) E Lo.
i=1 j=0

But all the vectors fj(ei), j < hi - 1 lie in the rows of the diagram D, beginning
with the second from the bottom, and the subspace Lo is generated by the elements
of the first row of D by construction. Therefore I can be represented as a linear
combination of the elements of D.

It remains to verify that the elements of D are linearly independent. First
of all, the elements in the bottom row of D are linearly independent. Indeed, if
some non-trivial linear combination of them equals zero, then it must have the form
E j"_1 ai fhi(ei) = 0, because the remaining elements of the bottom row extend the
basis of the linear span of { f h1(e1), ... , f hm (e,,,)) up to a basis of Lo. But all the
hi > 1, therefore

m

f E aifh'-l(ei)) = 0,
i=1

so that
m m

F1aifhi-l(ei) E L0 and Ea5Jhi-'(6j)=0.
i=1 i=1
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It follows from the last relation that all the a; = 0, because the vectors f1i-1(e;)
comprise the bottom row of the diagram b and are part of a basis of L/Lo.

Finally, we shall show that if there exists a non-trivial linear combination of
the vectors of D equal to zero, then it is possible to obtain from it a non-trivial
linear dependence between the vectors in the bottom row of D. Indeed, consider
the top row of D, which contains the non-zero coefficients of this imagined linear
combination. Let the number of this row (counting from the bottom) be h. We
apply to this combination the operator f h- 1. Evidently, the part of this combination
corresponding to the hth row will transform into a non-trivial linear combination of
elements of the bottom row, while the remaining terms will vanish. This completes
the proof of the proposition.

Now we have only to verify the part of Theorem 9.1 that refers to uniqueness.

9.8. Let an arbitrary Jordan basis of the operator f be fixed. Any diagonal element
of the matrix f in this basis is obviously one of the eigenvalues A of this operator.
Examine the part of the basis corresponding to all of the blocks of matrices with
this value of A and denote by L,\ its linear span. Since (J,(A) - A)' = 0, we have
La C L(A), where L(A) is the root space of L. In addition, L = ® Lai by definition
of the Jordan basis and L = ® L(A;) by Proposition 9.5, where in both cases A; runs
through all eigenvalues of f once. Therefore, dim LA, = dim L(A;) and Lay = L(A, ).
Hence the sum of the dimensions of the Jordan blocks, corresponding to each A;,
is independent of the choice of Jordan basis and, moreover, the linear spans of the
corresponding subsets of the basis L)y are basis-independent. It is thus sufficient
to check the uniqueness theorem for the case L = L(A) or even for L = L(0).

We construct the diagram D corresponding to a given Jordan basis of L = L(O).
The dimensions of the Jordan blocks are the heights of its columns; if the columns in
the diagram are arranged in decreasing order, these heights are uniquely determined
if the lengths of the rows in the diagram are known, beginning with the bottom row,
in decreasing order. We shall show that the length of the bottom row equals the
dimension of Lo = ker f . Indeed, we take any eigenvector I for f and represent it as
a linear combination of the elements of D. All vectors lying above the bottom row
will appear in this linear combination with zero coefficients. Indeed, if the highest
vectors with non-zero coefficients were to lie in a row with number h > 2, then the
vector f1(I) = 0 would be a non-trivial linear combination of the elements of the
bottom row of D (cf. the end of the proof of Proposition 9.7), and this contradicts
the linear independence of the elements of D. This means that the bottom row of
D forms a basis of Lo, so that its length equals dim Lo; hence, this length is the
same for all Jordan bases. In exactly the same way, the length of the second row
does not depend on the choice of basis, so that, in the notation used in this section,
it equals the dimension of ker f in L/Lo. This completes the proof of uniqueness
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and of Theorem 9.1.

9.9. Remarks. a) Let the operator f be represented by the matrix A in some
basis. Then the problem of reducing A to Jordan form can be solved as follows.

Calculate the characteristic polynomial of A and its roots.
Calculate the dimensions of the Jordan blocks, corresponding to the roots

A. For this, it is sufficient to calculate the lengths of the rows of the corre-
sponding diagrams, that is, dimker(A - A), dimker(A - A)2 - dimker(A - A),
dimker(A - A)3 -dimker(A - A)2, ....

Construct the Jordan form J of the matrix A and solve the matrix equation
AX - X J = 0. The space of solutions of this linear system of equations will,
generally speaking, be multidimensional, and the solutions will also include singular
matrices. But according to the existence theorem, non-singular solutions necessarily
exist; any one can be chosen.

b) One of the most important applications of the Jordan form is for the cal-
culation of functions of a matrix (thus far we have considered only polynomial
functions). Assume, for example, that we must find a large power AN of the matrix
A. Since the degree of the Jordan matrix is easy to calculate (see §8.13), an efficient
method is to use the formula AN = XJNX-1, where A = XJX-1. The point is
that the matrix X is calculated once and for all and does not depend on N. The
same formula can be used to estimate the growth of the elements of the matrix AN.

c) It is easy to calculate the minimal polynomial of a matrix A in terms of the
Jordan form. Indeed, we shall restrict ourselves for simplicity to the case of a field
with zero characteristic. Then the minimal polynomial of J, (A) equals (t - A)' (see
§8.13), the minimal polynomial of the block matrix (J,y(A)) equals (t - A)'"a'('i>,
and finally the minimal polynomial of the general Jordan matrix with diagonal
elements A1,... , A (Ai i4 Ai for i $ j) equals nj=1(t - Ai )'i , where ri is the
smallest dimension of the Jordan block corresponding to Ai.

9.10. Other normal forms. In this section, we shall briefly describe other
normal forms of matrices which are useful, in particular, for algebraically open
fields.

a) Cyclic spaces and cyclic blocks. The space L is said to be cyclic with respect
to an operator f, if L contains a vector 1, also called a cyclic vector, such that
1, f (1), , f"'1(1) form a basis of L. Setting ei = f n-i(l), i = 1, ... , n = dim L,
we have

J(ei,...,en) = (el,...,en)
(:::2 0 10

ao 0 0 ... 0
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where ai E K are uniquely determined from the relation f"(l) = E u a; f'(1). The
matrix of f in this basis is called a cyclic block. Conversely, if the matrix off in the
basis (el,... , e") is a cyclic block, then the vector 1 = e,, is cyclic and e, = f"-'(e")
(induction downwards on i).

We shall show that the form of the cyclic block corresponding to f is indepen-
dent of the choice of the starting cyclic vector. For this, we shall verify that the
first column of the block consists of the coefficients of the minimal polynomial of
the operator f : M(t) = t" - E o ait`.

Indeed, M(f) = 0 because M(f)[f'(l)] = f'[M(f )I] = 0, and the vectors
f'(1) generate L. On the other hand, if N(t) is a polynomial of degree < n, then
N(f) 96 0, because otherwise, applying the operator N(f) = 0 to the cyclic vector
1, we would obtain a non-trivial linear relation between the vectors of the basis
1,f(1),..., f"-1(1).

b) Criterion for a space to be cyclic. According to the preceding analysis, if
the space L is cyclic with respect to f, then its dimension n equals the degree of
the minimal polynomial of f and, consequently, the minimal polynomial coincides
with the characteristic polynomial. The converse is also true: if the operators
id, f, ... , f"-1 are linearly independent, then there exists a vector 1 such that the
vectors 1,1(1),... , f"'1(1) are linearly independent, so that L is cyclic. We shall
not prove this assertion.

c) Any operator in an appropriate basis can be reduced to a direct sum of cyclic
blocks. The proof is analogous to the proof of the Jordan form theorem. Instead of
the factors (t - .1i)'i of the characteristic polynomial, we study the factors pi(t)'i,
where the pi(t) are irreducible (over the field K) divisors of the characteristic poly-
nomial. The uniqueness theorem is also valid here, if we restrict our attention to
the case when the minimal polynomials of all cyclic blocks are irreducible. Without
this restriction it is not true: a cyclic space can be the direct sum of two cyclic
subspaces whose minimal polynomials are relatively prime.

EXERCISES

1. Let L be the finite-dimensional space of differentiable functions of a complex
variable z with the property that if f E L, then `T E L. Prove that there exist
combinations of numbers .1 1 , ... , A, and integers rl, ... , r, > 1 such that L = ®Li,
where Li is the space of functions of the form eai*Ps(z), P.(z) being an arbitrary
polynomial of degree < r, - 1. (Hint: examine the Jordan basis for the operator
on L and calculate successively the form of the functions entering into it, beginning
with the bottom row of its diagram.)
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2. Let y(z) be a function of a complex variable x, satisfying a differential equation
of the form n-i

aiEC.
i=0

We denote by L the linear space of functions spanned by d'y/dz' for all i > 0. Prove
that it is finite-dimensional and that the operator d/dx transforms it into itself.

3. Using the results of Exercises 1 and 2, prove that y(z) can be represented in
the form E eai 'Pi(x), where Pi are polynomials. How are the numbers Ai related
to the form of the differential equation ?

4. Let J, (A) be a Jordan block on C. Prove that the matrix obtained by introduc-
ing appropriate infinitesimal displacements of its elements will be diagonalizable.
(Hint: change the elements along the diagonal, making them pairwise unequal).

5. Extend the results of Exercise 4 to arbitrary matrices on C, using the facts
that the coefficients of the characteristic polynomial are continuous functions of
the elements of the matrix and that the condition for the polynomial not to have
degenerate roots is equivalent to the condition that its discriminant does not vanish.

6. Give a precise meaning to the following assertions and prove them:
a) A general 2 x 2 matrix over C is diagonalizable.
b) A general 2 x 2 matrix with identical characteristic roots is not diagonaliz-

able.

§10. Normed Linear Spaces

In this section we shall study the special properties of linear spaces over real and
complex numbers that are associated with the possibility of defining in them the
concept of a limit and constructing the foundation of analysis. These properties
play a special role in the infinite-dimensional case, so that the material presented
is essentially an elementary introduction to functional analysis.

10.1. Definition. The pair (E, d), where E is a set and d : E x E - R is a real-
valued function, is called a metric space, if the following conditions are satisfied for
allz,y,zEE:

a) d(x, y) = d(y, z) (symmetry).
b) d(x, z) = 0; d(z, y) > 0, if x j6 y (positivity);
c) d(x, z) < d(x, y) + d(y, z) (triangle inequality).
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A function d with these properties is called a metric, and d(x, y) is the distance
between the points x and y.

10.2. Examples. a) E = R or C, d(x, y) = Ix - yl.
b) E = Rn or C", d(x, y") = ( 1 IX, - y; l2)'/2. This is the so-called natural

metric. In Chapter 2 we shall study it systematically and we shall study its exten-
sions to arbitrary basic fields in the theory of quadratic forms. Examples of other
metrics are

n

dl(x,y)=max(lx;-yf1), d2(i,y)Ixi-yiI.

i. l

c) E = C(a, b), the space of continuous functions on the interval [a,b]. Here
are three of the most important metrics:

dl(f,9) = max If(t) - 9(t)I,

b

f(t) - 9(t)Idt,d2(f,9) = Ja I

1/2

d3(f, 9) = (Lb If (t) - 9(t)I2dt I/
(Verify the axioms. The triangle inequality for d2 in example b) and d3 in example
c) will be proved in Chapter 2.)

d) E is any set, d(x, y) = 1 for x i4 y. This is one of the discrete metrics on E.
(Each metric is associated with some topology on E, and the last metric de-

scribed above induces the discrete topology.)

10.3. Balls, boundedness and completeness. In a metric space E with metric
d the sets

B(xo,r) = {x E Eld(xo,x) < r},

ff(xo,r) = {x E EId(xo,x) < r},

S(xo,r) = jr E Eld(xo,x) = r}

are called, correspondingly, an open ball, a closed ball, and a sphere with radius r
centered at the point xo. One should not associate with them intuitive represen-
tations which are too close to three-dimensional space. For example, in Example
g10.2d, all spheres of radius r $ 1 are empty.

A subset F C E is said to be bounded if it is contained in a ball (of finite
radius).

The sequence of points x1i x2, ... , xn, ... in E converges to the point a E E
if limn-,,. d(xn, a) = 0. The sequence is said to be fundamental (or a Cauchy
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sequence), if for all c > 0 there exists an N = N(c) such that d(x,n, xn) < e for
m, n > N(e).

A metric space E is said to be complete if any Cauchy sequence in it converges.
From the completeness of R and C, proved in analysis, it follows that the spaces
R" and C" with any of the metrics d, dl, and d2 in § 10.2b are complete.

10.4. Normed linear spaces. Now let L be a linear space over R or C. Metrics
on L which satisfy the following conditions play an especially important role:

a) d(11,12) = d(11 + 1,12 + 1) for any 1,11i12 E L (invariance with respect to
translation);

b) d(all,a12) = Iald(l1,12) (multiplication by a scalar a increases the distance
by a factor of IaI).

Let d be such a metric. We shall call the number d(l, 0) the norm of the vector
1 (with respect to d) and we shall denote it by 11111. The following properties of the
norm follow from the axioms of the metric (§10.2) and the conditions a) and b):

11011=0,11111>0, if 100;

1Ja1Jl=Ial11111 for all aEK, IEL;

1111 +1211 _-< 111111+111211 for all li,12 E L.

The first two properties are obvious and the third is verified as follows:

Ills + 1211 = d(ll + 12, 0) = d(11 i -12) < d(l1 i 0) + d(0, -12) = 111111 + 111211-

A linear space L equipped with a norm function 11 11 : L -+ R, satisfying the
three requirements enumerated above, is called a normed space.

Conversely, the metric can be reconstructed from the norm: setting d(11,12) _
= Jill -1211, it is easy to verify the axioms of the metric. For it, d(l, 0) = 11111.

A complete normed linear space is called a Banach space. The spaces R" and
C" with any norms corresponding to the metrics in §10.2, are Banach spaces.

The general concept of convergence of a sequence in a metric space given in
§10.3 can be specialized to the case of normed linear spaces and is called convergence
in the norm. The linear structure makes it possible to give a stronger definition
of the concept of convergence of a series than the convergence of its partial sums
in the norm. Namely, the series F,;_a I, is said to converge absolutely if the series

:-11Jl;II converges.

10.5. The norm and convexity. It is not difficult to describe all norms on
a one-dimensional space L: any two of them differ from one another by a positive
constant factor. Indeed, let l E L be a non-zero vector and 11111, 11 112 two norms. If

111111 = c111112, then IIalII1 = jai 11111, = clal 111112 = cllal112 for all a E K
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We shall call balls (spheres) with non-zero radius centred at zero with respect
to any of the norms in a one-dimensional space disks (circles). As follows from the
preceding discussion, the set of all disks and circles in L does not depend on the
choice of the starting norm. Instead of giving a norm, one can indicate its unit disk
B or unit circle S: S is reconstructed from B as the boundary of B, while B is
reconstructed from S as the set of points of the form {alll E S, lal < 11. We note
that when K = R disks are segments centred at zero, and circles are pairs of points
that are symmetric relative to zero.

To extend this description to spaces of any number of dimensions we shall
require the concept of convexity. A subset E C L is said to be convex, if for any
two vectors 11,12 E E and for any number 0 < a < 1, the vector all +(1 - a)12 lies
in E. This agrees with the usual definition of convexity in R2 and R3: together
with any two points ("tips of the vectors 11 and 12"), the set E must contain the
entire segment connecting them ("tips of the vectors all + (1 - a)12").

Let 11 11 be some norm on L. Set B = {I ELI 1111151), S = {I E LI11111=1).
The restriction of 11 11 to any linear subspace Lo C L induces a norm on Lo. From
here it follows that for any one-dimensional subspace Lo C L the set Lo fl B is a
disk in Lo, while the set Lo fl S is a circle in the sense of the definition given above.
In addition, from the triangle inequality it follows that if 11i12 E B and 0 < a < 1,
then

Ilall+(1-a)1211 :5 alI11II+(1-a)111211 < 1,

that is, all + (1 - a)12 E B, so that B is a convex set.
The converse theorem is also valid:

10.6. Theorem. Let S C L be a set satisfying the following two conditions: a)
The intersection s n Lo with any one-dimensional subspace Lo is a circle.

b) The set B = {all lal < 1, 1 E S} is convex. Then there exists on L a
unique norm 1111, for which B is the unit ball, while S is the unit sphere.

Proof. We denote by 11
11

: L - R a function which in each one-dimensional
subspace Lo is a norm with a unit sphere S f1 Lo. It is clear that such a function
exists and is unique, and it is only necessary to verify the triangle inequality for it.
Let 11, 12 E L,111111 = N1, 111211 = N2, Ni i4 0. We apply the condition of convexity

of B to the vectors Ni 11, and NZ 112 E S. We obtain

whence

II/1+1211 <-N1+N2=111111+111211

10.7. Theorem. Any two norms 1111, and 11 112 on a finite-dimensional space L
are equivalent in the sense that then exist positive constants 0 < c < c' with the
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condition

C111112:5 111111 <c111112

for all I E L. In particular, the topologies, that is concepts of convergence corre-
sponding to any two norms, coincide and all finite-dimensioal normed spaces are
Banach spaces.

Proof. Choose a basis in L and examine the natural norm 11111 = (E ,
Ix.I2)1/2

with respect to the coordinates in this basis. It is sufficient to verify that any
norm 1111, is equivalent to this norm. Its restriction to the unit sphere of the
norm 11 11 is a continuous function of the coordinates x which assumes only positive
values (continuity follows from the triangle inequality). Therefore, this function is
separated from zero by the constant c > 0 and is bounded by the constant c' > 0 by
the Bolzano-Weierstrass theorem (the unit sphere S for 11 11 is closed and bounded).

The inequalities c < 11111, < c' for all I E S, imply the inequality c11111:5 111111:5 c'1I111

for all 1 E L. Since L is complete in the topology corresponding to the norm 11 11

and the concepts of convergence for equivalent norms coincide, L is complete in any
norm.

10.8. The norm of a linear operator. Let L and M be normed linear spaces
over one and the same field R or C.

We shall study the linear mapping f : L M. It is said to be bounded, if there
exists a real number N > 0 such that the inequality IIf(I)II < N11111 holds for all
1 E L (the norm on the left - in M and the norm on the right - in L). We denote
by G' (L, M) the set of bounded linear operators. For all f E G'(L, M) we denote
by IIfII the lower bound of all N, for which the inequalities 11f(1)11 < N11111, I E L
hold.

10.9. Theorem. a) ,C' (L, M) is a normed linear space with respect to the function
I1f 11, which is called the induced norm.

b) If L is finite-dimensional, then ,C'(L, M) = ,C(L, M), that is, any linear
mapping is bounded.

Proof. a) Let f,9 E £'(L,M). If IIf(l)II < N111111 and IIg(1)II < N211111 for all 1,
then

11(f + g)(1)11!5 (N, + N2)IIIII, I1af(1)11 <_ Ia1N111111.

Therefore f + g and a f are bounded and, moreover, inserting the lower bounds, we
have

IIf + g11 <_ 11f 11 + IIfII, I1af 11= Ia111f 11.

If IIf II = 0, then for any e > 0, IIf (1)115 e11111. Hence, IIf (l)11= 0, so that f = 0.
c) On the unit sphere in L the mapping 1 '-' IIf (1)11 is a continuous function.

Since this sphere is bounded and closed, this function is bounded and, moreover,
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its upper bound is attained. Therefore, 11f (1)11 < N on the sphere, so that Of (1)II <

< NIIIIIforallIEL.
We have discovered at the same time that

IIf II = max{IIf (1)II, I belongs to the unit sphere E L}.

10.10. Examples. a) In a finite-dimensional space L, the sequence of vectors
11r ... ,1", ... converges to the vector 1, if and only if in some (and, therefore, in
any) basis the sequence of the ith coordinates of the vectors li converges to the
ith coordinate of the vector 1, that is, if f (11), . . . , f (I") ... converges for any linear
functional f E L. The last condition can be transferred to an infinite-dimensional
space by requiring that f (li) converge only for bounded functionals f. This leads,
generally speaking, to a new topology on L, called the weak topology.

b) Let L be the space of real differentiable functioi,s on [0,1] with the norm
1/2

IIfII = (fo f(t)2dt) . Then the operator of multiplication by t is bounded,

because fo t2f(t)2dt < fo f(t)2dt but the operator ai is not bounded. Indeed,

for any integer n > 0 the function n + 1 t" lies on the unit sphere, while the
norm of its derivative equals n 2

--+ oo as n -' oo.
1) n-1

10.11. Theorem. Let L f + M _9-. N be bounded linear mappings of normed
spaces. Then, their composition is bounded and

IIg o f II <_ IIgII IIf II

Proof. If 11f (1)11 <_ N11I1I1 and 11g(m)II <_ N211mll for all I E L and m E M, then

IIg o f(1)II <_ N211f(1)II <_ N2N11I1II,

whence, inserting the lower bounds, we obtain the assertion.

EXERCISES

1. Calculate the norms in R2 for which the unit balls are the following sets:
a) x2+y2<1.
b) x2 + y2 < r2.

c) The square with the vertices (fl, ±1).
d) The square with the vertices (0, ±1), (±1, 0).
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2. Let f (z) > 0 be a twice differentiable real function on [a, b] C R and let
f"(x) < 0. Show that the set {(x,y)Ia < z < b, 0 < y < f(x)) C R2 is convex.

3. Using the result of Exercise 2, prove that the set I xI P + I yI P < 1 for p > 1 in R2
is a unit ball for some norm. Calculating this norm, prove the Minkowski inequality

(ixl + y1IP + Ix2 + y2IP)1/P < (Ix1IP + Ix2IP)"P + (Iy1IP + IY2IP)IIP.

4. Generalize the results of Exercise 3 to the case R".

5. Let B be a unit ball with some norm in L and let B' be the unit ball with the
induced norm in L' = C(L, K), K = R or C. Give an explicit description of B'
and calculate B' for the norms in Exercises 1 and 3.

§11. Functions of Linear Operators.

11.1. In §S8 and 9 we defined the operators Q(f), where f : L - L is a
linear operator and Q is any polynomial with coefficients from the basic field K. If
K = R or C, the space L is normed, and the operator f is bounded, then Q(f)
can be defined for a more general class of functions Q with the help of a limiting
process.

We shall restrict our analysis to holomorphic functions Q, defined by power
series with a non-zero radius of convergence: Q(t) = E;_o ait'. We set Q(f) =
_ E ?*0 a; f', if this series of operators converges absolutely, that is, if the series

,=O a,Ilf'II converges. (In the case dim L < oo, with which we shall primarily
be concerned here, C'(L, L) = C(L, L), and the space of all operators is finite-
dimensional and a Banach space; see Theorem 10.9b).

11.2. Examples. a) Let F be a nilpotent operator. Then IIf'll = 0 for sufficiently
large i, and the series Q(f) always converges absolutely. Indeed, it equals one of its
partial sums.

b) Let1If11< 1. The series f' converges absolutely and

(id - f) E f' = (f)(id_f)=id.

Indeed,

(id - f) E f' = id - fv+l = ( fi) (id - f )
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and passage to the limit N -* oo gives the required result. In particular, if 11f 11 < 1,
then the operator id- f is invertible.

c) We define the exponential of a bounded operator f by the operator

of = eXp(f) _ E f".00 1
1

n=o n.

Since Ilf" 11 < 11f 11" and the numerical series for the exponential converges uniformly

on any bounded set, the function exp(f) is defined for any bounded operator f and
is continuous with respect to f.

For example, the Taylor series E°_o °,.; Mil(t) for 4i(t + At) can be formally
written in the form exp (At 7) 0. In order for this notation to be precisely defined,
it is, of course, necessary to choose a space of infinitely differentiable functions 0
with a norm and check the convergence in the induced norm.

A particular case: exp(aid) = e°id (a is a scalar); exp(diag(al,... , a")) _
= diag(expal,...,expa").

The basic property of the numerical exponential a°eb = e°+b, generally speak-
ing, no longer holds for exponentials of operators. There is, however, an important
particular case, when it does hold:

11.3. Theorem. If the operators f,g : L -+ L commute, that is, fg = gf, then
(exp f) (exp g) = exp(f + g).

Proof. Applying the binomial expansion and making use of the possibility of
rearranging the terms of an absolutely converging series, we obtain

f`9k =(eXpf)(exp9) _ E i f` E kl9k
= E ilk!i>0 k>0 i,k>0

e
m

= E 1 [ fig"_i =
i!(m - i)! m! [ i!(m - i)!m>0 i-0 m> >0 i=0

= E - (f + g)m = exp(f + 9).
in!

The commutativity of f and g is used when (f + g)' is expanded in the binomial
expansion.

11.4. Corollary. Let f : L - L be a bounded operator. Then the mapping
R -V (L, L) : t i-* exp(t f) is a homomorphism from the group R to the subgroup
of invertible operators .C'(L, L) with respect to multiplication.

The set of operators {exp i f It E R} is called a one-parameter subgroup of
operators.
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11.5. Spectrum. Let f be an operator in a finite-dimensional space and let Q(t)
be a power series such that Q(f) converges absolutely. It is easy to see that if Q(t)
is a polynomial, then in the Jordan basis for f the matrix Q(f) is upper triangular
and the numbers Q(A,), where A, are the eigenvalues of f, lie along its diagonal.
Applying this argument to the partial sums of Q and passing to the limit, we find
that this is also true for any series Q(t). In particular, if S(f) is the spectrum of f,
then S(Q(f)) = Q(S(f)) = {Q(A)IA E S(f)}. Furthermore, if the multiplicities of
the characteristic roots A; are taken into account, then Q(S(f)) will be the spectrum
of Q(f) with the correct multiplicities. In particular,

det(expf) =
n

flexp A; = exp
n

Ai = exp Tr f.

Changing over to the language of matrices, we note two other simple properties,
which can be proved in a similar manner:

a) Q(A') = Q(A)';
b) Q(A) = Q(A), where the overbar denotes complex conjugation; it is assumed

here that the coefficients in the series for Q are real.
Using these properties and the notation of §4, we prove the following theorem,

which concerns the theory of classical Lie groups (here K = R or C).

11.6. Theorem. The mapping exp maps gl(n, K), sl(n, K), o(n, K), u(n), and
su(n) into Gl(n, K), Sl(n, K), SO(n, K), U(n), and SU(n) respectively.

Proof. The space gl(n, K) is mapped into GL(n, K) because according to
Corollary 11.4 the matrices exp A are invertible. If Tr A = 0, then det exp A = 1,
as was proved in the preceding item. The condition A + A' = 0 implies that
(exp A)(exp A)' = 1, and the condition A + A' = 0 implies that exp A(ex = 1.
This completes the proof.

11.7. Remark. In all cases, the image of exp covers some neighbourhood of
unity in the corresponding group. For the proof, we can define the logarithm of
the operators f with the condition I1f - idii < 1 by the usual formula log f =

nd and show that f = exp(log f ).
On the whole, however, the mappings exp are not, generally speaking, surjec-

tive. For example, there does not exist a matrix A E sl(2, C) for which exp A =
1 1

0 -1 E SL(2,C). Indeed, A cannot be diagonalizable, because otherwise

exp A would be diagonalizable. Hence, all eigenvalues of A are equal, and since the
trace of A equals zero, these eigenvalues must be zero eigenvalues. But, then the

eigenvalues of exp A equal 1, whereas the eigenvalues of 1 0 -1 1 equal -1.
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§12. Complexification and Decomplexification

12.1. In §§8 and 9, we showed that the study of an algebraically closed field eluci-
dates the geometric structure of linear operators and provides a convenient canonical
form for matrices. Therefore, even when working with a real field, it is sometimes
convenient to make use of complex numbers. In this section we shall study two
basic operations: extension and restriction of the field of scalars in application to
linear spaces and linear mappings. We shall work mostly with the transformation
from R to C (complexification) and from C to R (decomplexification), and we shall
briefly discuss a more general case.

12.2. Decomplexification. Let L be a linear space over C. Let us ignore
the possibility of multiplying vectors in L by all complex numbers, and retain only
multiplication over R. Then we obviously obtain a linear space over R, which we
denote by LR; we shall call this space the decomplexification of L.

Let L and M be two linear spaces over C, and let f : L -+ M be a linear
mapping. Regarded as a mapping of LR -+ MR it obviously remains linear. We
shall denote it by fR and call it the decomplexification of f. It is clear that

idR = id, (f g)R = htgR; (af + bg)R = a fR + bgR, if a, b E R.

12.3. Theorem. a) Let {e1,...,em} be a basis of a space L over C. Then
is a basis of the space LR over R. In particular,

dire Lit = 2 dimc L.
b) Let A = B + iC be the matrix of the linear mapping f : L - M in

the bases {e1, ... , em} and en} over C, where B and C are real ma-
trices. Then the matrix of the linear mapping fR : LR - MR in the bases
el.... ,em,iel,...,iem}, fell, ...,e,,,iel,...,ie,) will be given by

Proof. a) For any element I E L we have

m m m m

1 = > akek = E(bk + ick)ek = bkek + Ck(tek),

k=1 k=1 k=1 k=1

where bk, ck are the real and imaginary parts of ak. Therefore, (ek, iek) generate
LR. If F,k l bkek+E 1 Ck(iek) = 0, where bk,ck E R, then bk+ick = 0 by virtue
of the linear independence of {el,... , ek} over C, whence it follows that bk = Ck = 0
for all k.
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b) The definition of A implies that

f(el,...,em) _ (ei,...,e;,)(B+iC),

whence, because of the linearity of f over C,

f(ie1,...,iem) = (e'1,...,e;,)(-C+iB).

Therefore,

(f(el),...,f(em),f(iel),...,f(1em)) =
B -C)(ei,...,e,,,iel,...,iem
C B '

which completes the proof.

Corollary. Let f : L -+ L be a linear operator over the finite-dimensional complex
space L. Then det fR = I det f 12.

Proof. Let f be represented by the matrix B + iC (B and C are real) in the basis
{el,... , em ). Then, applying elementary transformations (directly in block form)
first to the rows and then to the columns, we obtain

det det I B -C) = det (
B + iC -C + iB) -

fR \C B C B

= det C B
+ iC 0 ) = det(B + W) det(B - W) = det f det f = I det f 12.
C B-iCJ

12.4. Restriction of the field of scalars: general situation. It is quite
obvious how to extend the definitions of §12.2. Let K be a field, K a subfield of
it, and L a linear space over K. Ignoring multiplication of vectors by all elements
of the field K and retaining only multiplication by the elements of K we obtain
the linear space Lx over K. Analogously, the linear mapping f : L M over K
transforms into the linear mapping fx : Lx -+ Mx. One name for these operations
is restriction of the field of scalars (from K to K). Obviously idx = id, (fg)x =
= fxgx, (af + bg)x = a fx + bgx, if a, b E K. The field K itself can also be viewed
as a linear space over K. If it is finite-dimensional, then the dimensions dimK L
and dimx Lx are related by the formula

dimx Lx = dims K dimK L.

For the proof, it is sufficient to verify that if {e 1, ... , e,,) is a basis in L over K and
{bl,...,bm} is a basis of K over K, then {61eir...,61e,,;...;bmel,...,bme} form
a basis of Lx over K.
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12.5. Complex structure on a real linear space. Let L be a complex
linear space and LR its decomplexification. To restore completely multiplication
by complex numbers in LR it is sufficient to know the operator J : LR - LR for
multiplication by i : J(1) = il. This operator is obviously linear over R and satisfies
the condition J2 = -id; if it is known, then for any complex number a+bi, a, b E R,
we have

(a + bi)l = al + bJ(l).

This argument leads to the following important concept.

12.6. Definition. Let L be a real space. The assignment of a linear operator
J : L - L satisfying the condition j2 = -id, is called a complex structure on L.

The complex structure on LR described above is called canonical. This defini-
tion is justified by the following theorem.

12.7. Theorem. Let (L, J) be a real linear space with a complex structure. We
introduce on L the operation of multiplication by complex numbers from C according

to the formula
(a + bi)l = al + bJ(l).

Then L will be transformed into a complex linear space L, for which LR = L.

Proof. Both axioms of distributivity are easily verified starting from the linear-
ity of J and the formulas for adding complex numbers. We verify the axiom of
associativity for multiplication:

(a + bi)[(c + di)l] = (a + bi)[cl + dJ(1)] = a[cl + dJ(l)]+

+bJ[cl + dJ(l)] = act + adJ(l) + bcJ(l) - bdl =

_ (ac - bd)l + (ad + bc)J(l) _ [ac - bd + (ad + bc)i]l = [(a + bi)(c + di)]l.

All the remaining axioms are satisfied because L and L coincide as additive groups.

12.8. Corollary. If (L, J) is a finite-dimensional real space with a complex
structure, then dims L = 2n is even and the matrix of J in an appropriate basis
has the form

0 -EE 0

Proof. Indeed, Theorems 12.7 and 12.3a imply that dimR L = 2dimc L (the
finiteness ofL follows from the fact that any basis of L over R generates L over
C). Next, we select a basis {e 1, . , of the space L over C. The matrix of
multiplication by i in this basis equals iE,,. Therefore, Theorem 12.3b implies that
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the matrix of the operator J in the basis of the space L
has the required form.

12.9. Remarks. a) Let L be a complex space and let g : LR - LR be a real linear
mapping. We pose the following question: when does a complex linear mapping
f : L L such that g = fR exist ? Obviously for this, g must commute with the
operator J of the natural complex structure on LR, because g(il) = g(J1) = ig(l) =
= Jg(i) for all I E L This condition is also sufficient, because it automatically
implies that g is linear over C:

9((a + bi)1) = ag(l) + bg(il) = ag(l) + bgJ(I) =

= ag(I) + bJ9(l) = (a + bJ)9(I) = (a + bi)9(1)

b) Now let L be an even-dimensional real space, and let f : L -+ L be a real
linear operator. We pose the question: when does there exist a complex structure
J such that f is the decomplexification of a complex linear mapping g : L -- L,
where L is the complex space constructed with the help of J ? A partial answer
for the case dimR L = 2 is as follows: such a structure exists, if f does not have
eigenvectors in L.

Indeed, in this case f has two complex conjugate eigenvalues A ± ip,
A, p E R, p 0 0. Let J = p-1(f -Aid). According to the Cayley-Hamilton theorem,
f2 - 2A f + (A2 + p2)id = 0, whence

j2 = A-2(f 2 - 2A f + A2id) = -id.

In addition, J commutes with f. This completes the proof.

12.10. Complexification. Now we fix the real linear space L and introduce the
complex structure J, defined by the formula

J(11,12)'= (-12,11).

on the external direct sum L ® L. Obviously, JZ = -1. By the complesification of
the space L, we mean the complex space L ®L associated with this structure. We
shall denote it by Lc. Other standard notations are: C OR L or C ® L; their origin
will become clear after we become familiar with tensor products of linear spaces.
Identifying L with the subset of vectors of the form (1,0) in L ® L and using the
fact that 1(l, 0) = J(l, 0) = (0,1), we can write any vector from Lc in the form

(11,12) = (11, 0) + (0,12) = (11, 0) + i(12, 0) =11 + i12.

In other words, Lc = L ® iL, and the last sum is a direct sum over R, but not over
C!
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Any basis of L over R will be a basis of LC over C, so that dimf L = dimc LC.

Now let f : L --+ M be a linear mapping of linear spaces over R. Then the
mapping fc (or f ® C): LC -+ MC, defined by the formula

f(ll,12) = (1(11),1(12)),

is linear over R and commutes with J, because

M11, 12) = f(-12,11) = (-f(12),f(li)) = Jf(11.12)-

Therefore it is complex-linear. It is called the complexification of the mapping f.
Obviously, idc = id, (a f + bg)c = a f c + bgc; a, b E R; and (f g)c = fCgC
Regarding the pair of bases of L and M as bases of Lc and MC, respectively, we
verify that the matrix of f in the starting pair of bases equals the matrix of f C
in this "new" pair. In particular, the (complex) eigenvalues of f and f C and the
Jordan forms are the same.

We shall now see what happens when the operations of decomplexification and
complexification are combined in the two possible orders.

12.11. First complexification, then decomplexification. Let L be a real
space. We assert that there exists a natural isomorphism

(LC)R-'L®L.

Indeed, by construction LC coincides with L ® L as a real space. Analogously,
(f C)R -. f ® f (in the sense of this identification) for any real linear mapping
f : L - M.

Composition in the reverse order leads to a somewhat less obvious answer. We
introduce the following definition.

12.12. Definition. Let L be a complex space. The complex conjugate space L is
the set L with the same additive group structure, but with a new multiplication by
a scalar from C, which we temporarily denote by a * 1:

a*1=alforanyaEC, IEL.

The r are easily verified, using the fact that ab = ab, and a -+b = a + b.
Similarly, if (L, J) is a real space with a complex structure, then the operator

J also defines a complex structure, which is said to be conjugate with respect to
the initial structure. In the notation of Theorem 12.7, if L is the complex space
corresponding to (L, J), then

z
is the complex space corresponding to (L, -J).
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12.13. First decomplexification, then complexification. We can now
construct for any complex linear space L the canonical complex-linear isomorphism

To this end, we note that there are two real linear operators on (LR)c: the
operator of the canonical complex structure J(11,12) = (-12,11) and the oper-
ator of multiplication by i, corresponding to the starting complex structure of
L : i(11i12) = (ill,i12). Since J commutes with i, it is complex-linear in this
structure. Since j2 = -id, its eigenvalues equal ±i. We introduce the standard
notation for the two subspaces corresponding to these eigenvalues:

L1'0 = {(11,12) E (LR)cIJ(11,12) = i(11,12)},

L°'1 = (11, 12) E (LR)cIJ(11,12) _ -i(11,12))-

Both of the sets L1"0 and L°,1 are complex subspaces of (LR)c: they are
obviously closed under addition and multiplication by real numbers, while closure
under multiplication by J follows from the fact that J and i commute. We shall
show that L = L1,0 ® L1,1 and also that L1,0 is naturally isomorphic to L, while
L°-1 is naturally isomorphic to L.

It follows immediately from the definitions that L1"0 consists of vectors of the
form (1, -il), while L°.1 consists of vectors of the form (m, im). For given 11,12 E L

the equation (11,12) = (1, -il) + (m, im) for 1, m has a unique solution 1 = 2
m = 11-u2. Therefore, L = L1,0 ®L°,l The mappings L L1"0 : 1 -. l -il2 (, )

and L L°,1 1 -+ (1, il) are real linear isomorphisms. In addition, they are
commutative with respect to the action of i on L, L and the action of J on L',°, L°"

by definition of the operations. This completes our construction.

12.14. Semilinear mappings of complex spaces. Let L and M be complex
linear spaces. A linear mapping f : L -+ is called semilinear (or antilinear) as

a mapping f : L - M. In other words, f is a homomorphism of additive groups,
and

f(al) = af(1)

for all a E C, I E L. The special role of semilinear mappings will become clear in
Chapter 2, when we study Hermitian complex spaces.

12.15. Extension of the field of scalars: general situation. As in §12.4,
let K be a field and 1C a subfield of K. Then, for any linear space L over A it is
possible to define a linear space K ®K L or LK over K with the same dimension.
It is impossible to give a general definition of LK without introducing the language
of tensor products, but the following temporary definition is adequate for practical
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purposes: if {e1,...,e"} is a basis of L over 1C, then LK consists of all formal
linear combinations {="_1 ajeilai E K}, that is, it has the same basis over K. In
particular, ()C")K = K". The K-linear mapping fK : LK -' MK is defined from
the X -linear mapping f : L - M: if f is defined by a matrix in some bases of L
and M, then f K is defined by the same matrix.

In conclusion, we give an application of complexification.

12.16. Proposition. Let f : L L be a linear operator in a real space with
dimension > 1. Then f has an invariant subspace of dimension I or 2.

Proof. If f has a real eigenvalue, then the subspace spanned by the corresponding
eigenvector is invariant. Otherwise, all eigenvalues are complex. Choose one of
them A + iµ. It will also be an eigenvalue of f c in Lc. Choose the corresponding
eigenvector 11 + i12 in Lc, 11, 12 E L. By definition

f 9h + i12) = f (h) + if(12) = (A + iµ)(11 + i12) = (all -1i12) + i(µ11 + A12)-

Therefore, f (l1) = all - µl2, f (12) = All + .112, and the linear span of {11,12} in L
is invariant under f.

§13. The Language of Categories

13.1. Definition of a category. A category C consists of the following objects:
a) a set (or collection) Ob C, whose elements are called objects of the category;
b) a set (or collection) Mor C, whose elements are called morphisms of the

category, or arrows;
c) for every ordered pair of objects X,Y E ObC, a set Homc(X,Y) C MorC,

whose elements are called morphisms from X into Y and are denoted by X Y
or f:X-.YorX-I+Y;and,

d) for every ordered triplet of objects X, Y, Z E Ob C a mapping

Hornc(X, Y) x Homc(Y, Z) - Homc(X, Z),

which associates to the pair of morphisms (f, g) the morphism gf or go f, called
their composition or product.

These data must satisfy the following conditions:
e) Mor C is a disjoint union U Homc(X, Y) for all ordered pairs X, Y E Ob C.

In other words, for every morphism f there exist uniquely defined objects X, Y such
that f E Hom C(X, Y): X is the starting point and Y is the terminal point of the
arrow f.

f) The composition of morphisms is associative.
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g) For every object X there exists an identity morphism idx E Homc(X,X)
such that idX o f = f o idX = f whenever these compositions are defined. It is not
difficult to see that such a morphism is unique: if idX is another morphism with
the same property, then idX = idX o idX = idX.

The morphism f : X Y is called an isomorphism if there exists a morphism
g:Y, X such that gf =idX,fg=idy.

13.2. Examples. a) The category of sets Set. Its objects are sets and the
morphisms are mappings of these sets.

b) The category Cinx of linear spaces over the field K. Its objects are linear
spaces and the morphisms are linear mappings.

c) The category of groups.

d) The category of abelian groups.
The differences between sets and collections are discussed in axiomatic set the-

ory and are linked to the necessity of avoiding Russell's famous paradox. Not every
collection of objects forms in aggregate a set, because the concept "the set of all
sets not containing themselves as an element" is contradictory. In the axiomatics
of Godel-Bernays, such collections of sets are called classes. The theory of cate-
gories requires collections of objects which lie dangerously close to such paradoxical
situations. We shall, however, ignore these subtleties.

13.3. Diagrams. Since in the axiomatics of categories nothing is said about
the set-theoretical structure of the objects, we cannot in the general case work with
the "elements" of these objects. All basic general-categorical constructions and
their applications to specific categories are formalized predominantly in terms of
morphisms and their compositions. A convenient language for such formulations
is the language of diagrams. For example, instead of saying that the four objects
X, Y, U and V, the four morphisms f E Homc(X,Y), g E Homc(Y, V), h E
E Homc(X, U), and d E Homc(U, V) and in addition gf = dh are given, it is said
that the commutative square

X-/+Y

h 1 lg
U -°+V

is given. Here, "commutativity" means the equality g f = dh, which indicates that
the "two paths along the arrows" from X to V lead to the same result. More
generally, the diagram is an oriented graph, whose vertices are the objects of C and
whose edges are morphisms, for example

X-Y-+Z
1 1
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The diagram is said to be commutative if any paths along the arrows in it with
common starting and terminal points correspond to identical morphisms.

In the category of linear spaces, as well as in the category of abelian groups, a
class of diagrams called complexes is especially important. A complex is a finite or
infinite sequence of objects and arrows

...X U --+V

satisfying the following condition: the composition of any two neighbouring arrows
is a zero morphism. We note that the concept of a zero morphism is not a general-
categorical concept: it is specific to linear spaces and abelian groups and to a special
class of categories, the so-called additive categories. Often, the objects comprising
a complex and the morphisms are enumerated by some interval of integers:

... -+ X_1 f-.Xo-f0 X1 flX2 ,»...

Such a complex of linear spaces (or abelian groups) is said to be exact in the terns
Xi, if im fi_1 = ker fi (we note that in the definition of a complex the condition
fi o fi_1 = 0 merely means that im f;_1 C ker fi). A complex that is exact in all
terms is said to be exact or acyclic or an exact sequence.

Here are three very simple examples:
a) The sequence 0 -. L M is always a complex; it is exact in the term L

if and only if ker i is the image of the null spce 0. In other words, here exactness
means that i is an injection.

b) The sequence M .-i N 0 is always a complex; the fact that it is exact in
the term N means that imj = N, that is, that j is a surjection.

c) The complex 0- L M i N 0 is exact if i is an injection, j is a
surjection, and im i = ker j. Identifying L with the image of i which is a subspace
in M, we can therefore identify N with the factor space M/L, so that such "exact
triples" or short exact sequences are categorical representatives of the triples (L C
C M, M/L).

13.4. Natural constructions and functors. Constructions which can be
applied to objects of a category so that in so doing, objects of a category (a different
one or the same one) are obtained again are very important in mathematics. If these
constructions are unique (they do not depend on arbitrary choices) and universally
applicable, then it often turns out that they can also be transferred to morphisms.
The axiomatization of a number of examples led to the important concept of a
functor, which, however, is also natural from the purely categorical viewpoint.

13.5. Definition of a functor. Let C and D be categories. Two mappings
(usually denoted by F): Ob C -» Ob D and Mor C - Mor D are said to form a
functor from C into D if they satisfy the following conditions:
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a) if f E Homc(X, Y), then F(f) E HomD(F(X ), F(Y));
b) F(gf) = F(g)F(f), whenever the composition g f is defined, and F(idx) _

= idF(x) for all X E Ob C.
The functors which we have defined are often called covariant functors. Con-

travariant functors which "invert the arrows" are also defined. For them the condi-
tions a) and b) above are replaced by the following ones:

a') if f E Homc(X,Y), then F(f) E HomD(F(Y),F(X));
b') F(gf) = F(f)F(g) and F(idx) = idF(x).
This distinction can be avoided by introducing a construction which to each

category C associates a dual category C° according to the following rule: Ob C =
= ObC°, MorC = MorC°, and Homc(X,Y) = Homco(Y,X); in addition, the
composition gf of morphisms in C corresponds to the composition fg of the same
morphisms in C°, taken in reverse order. It is convenient to denote by X° and f°
objects and morphisms in C° which correspond to the objects and morphisms X
and f in C. Then, the commutative diagram in C

X /Y
9f

,

/ 9

Z

corresponds to the commutative diagram

X° Lo Yo

zo

in C°.
A (covariant) functor F : C -+ D° can be identified with the contravariant

functor F : C -+ D in the sense of the definition given above.

13.6. Examples. a) Let K be a field, Cinx the category of linear spaces over K,
and let Set be the category of sets. In §1 we explained how to form a correspondence
between any set S E Ob Set and the linear space F(S) E Ob Cinx of functions on
S with values in K. Since this is a natural construction, it should be expected that
it can be extended to a functor. Such is the case. The functor turns out to be
contravariant: it establishes a correspondence between the morphism f : S - T
and the linear mapping F(f) : F(T) F(S), most often denoted by f' and called
the pu11 back or reciprocal image, on the functions

f'(O) = O o f, where f : S - T, m : T K.
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In other words, f' (0) is a function on S, whose values are constant along the "fibres"
f'1(t) of the mapping f and are equal to 44(t) on such a fibre. A good exercise for
the reader is to verify that we have indeed constructed a functor.

b) The duality mapping Cinx - Cin c, on objects defined by the formula
L i-+ L' = ,C(L, IC) and on morphisms by the formula f r+ f is a contravariant
functor from the category Cinpc into itself. This was essentially proved in §7.

c) The operations of complexification and decomplexification, studied in §12,
define the functors CinR -+ Linc and Line --+ ,CinR respectively. This is also true
for the general constructions of extending and restricting the field of scalars, briefly
described in §12.

d) For any category C and any object X E Ob C, two functors from C into the
category of sets are defined: a covariant functor hX : C --+ Set and a contravariant
functor hx : C -. Set°.

They are defined as follows: hX (Y) = Homc(X,Y), hy(f : Y - Z) is the
mapping hX(Y) = Homc(X,Y) hx(Z) = Homc(X,Z), which associates with
the morphism X -+ Y its composition with the morphism f : Y -+ Z.

Analogously, hX (Y) = Homc(Y, X) and hX (f : Y -+ Z) is the mapping
hX (Z) = Homc(Z,X) --+ hX (Y) = Homc(Y, X ), which associates with the mor-
phism Z X its composition with the morphism f : Y -+ Z.

Verify that hX and hx are indeed functors. They are called functors represent-
ing the object X of the category.

We note that if C+ CinK, then hX and hX may be regarded as functors whose
values also lie in Cinx and not in Set.

13.7. Composition of functors. If C1 F+ C2 G+ C3 are three categories and
two functors between them, then the composition GF : C1 C3 is defined as the
set-theoretic composition of mappings on objects and morphisms. It is trivial to
verify that it is a functor.

It is possible to introduce a "category of categories", whose objects are cate-
gories while the morphisms are functors !

The next step of this high ladder of abstractions is, however, more important:
the category of functors. We shall restrict ourselves to explaining what morphisms
of functors are.

13.8. Natural transformations of natural constructions or functorial mor-
phisms. Let F, G : C D be two functors with a common starting point and a
common terminal point. A functorial morphism 0 : F G is a collection of mor-
phisms of objects O(X) : F(X) --+ G(X) in the category D, one for each object X
of the category C, with the property that for every morphism f : X -+ Y in the
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category C the square

F(X) OI G(X)

F(f) 1 IG(f)
F(Y) O(Y) G(Y)

is commutative. A functorial morphism is an isomorphism if all O(X) are isomor-
phisms.

13.9. Example. Let ** : Cinx -+ Linic be the functor of "double conjugation":
L -. L", f -+ f In §7 we constructed for every linear space L a canonical linear
mapping EL : L -. L**. It defines the functor morphism EM : Id -+ **, where Id is
the identity functor on Linx, which to every linear space associates the space itself
and to every linear mapping associates the mapping itself. Indeed, by definition,
we should verify the commutativity of all-possible squares of the form

L -L L..
f If-

M `M. M"

For finite-dimensional spaces L and M, this is asserted by Theorem 7.5. We leave
to the reader the verification of the general case.

EXERCISES

1. Let Seto be a category whose objects are sets while the morphisms are mappings
of sets f : S - T, such that for any point t E T the fibre f-1(t) is finite. Show
that the following conditions define the covariant functor Fo : Seto - ,Cin, :

a) Fo(S) = F(S): functions on S with values in K.
b) For any morphism f : S - T and function : S -+ K the function

Fo(f)(0) = f.(O) E F(T) is defined as

f.(0) (t) = E qS(s)
'Ef-1(e)

("integration along fibres").

2. Prove that the lowering of the field of scalars from K to K (see §12) defines the
functor Cinp - £inx.
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§14. The Categorical Properties of Linear Spaces

14.1. In this section we collect some assertions about categories of all linear spaces
Linx or finite-dimensional spaces Ginfx over a given field X. Most of them are a
reformulation of assertions which we have already proved in the language of cate-
gories. These assertions are chosen based on the following peculiar criterion: these
are precisely the properties of the category Ginx that are violated for the closest
categories, such as the category of modules over general rings (for example, over Z,
that is, the category of abelian groups), or even the category of infinite-dimensional
topological spaces. The detailed study of these violations for the category of mod-
ules is the basic subject of homological algebra, while in functional analysis it often
leads to a search for new definitions which would permit reconstructing the "good"
properties of Ginfx (this is the concept of nuclear topological spaces).

14.2. Theorem on the extension of mappings. a) Let P, M and N be
linear spaces. Let P be finite-dimensional and let j : M - N be a surjeciive linear
mapping. Then, any mapping g : P - N can be lifted to the mapping h : P M
such that g = jh. In other words, the diagram with the exact row

P
19

M-L- N - 0

can be inserted into the commutative diagram

P
g

N-0

I

b) Let P, L, and M be linear spaces. Let M be finite-dimensional and let
i : L -+ M be an injective mapping. Then, any mapping g : L P can be extended
to a linear mapping h : M P so that g = hi. In other words, the diagram with
the exact bottom row

P
19

M+L4--O
can be inserted into the commutative diagram

P
X19

M +. L'-0
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Proof. a) We select a basis {ei,...,en} in P and set e; = g(ei) E N. The fact
that j is surjective implies that there exist vectors e;' E M such that e;,

i = 1,... , n. Definition 3.3 implies that there exists a unique linear mapping
h : P - M such that h(ei) = e;', i = 1,. .. , n. By construction, jh(ei) = j(e;') _
= e; = g(ei). Since {e1} form a basis of P, we have jh = g.

b) We choose the basis {e'1, ... , e;n} of the space L and extend ek = i(ek), 1 <
< k < m to the basis {e1,...,e,n;e,n+i,...,en} of the space M. We set h(ei) _
= g(e;) for 1 < i < m and h(ej) = 0 for m + 1 < j < n. Such a mapping
exists according to the same Proposition 3.3. It is also possible to apply directly
Proposition 6.8. The theorem is proved.

In the category of modules the objects P, satisfying the condition a) of the
theorem (for all M, N), are said to be projective and those satisfying the condition
b) are said to be injective. We have proved that in the category of finite-dimensional
linear spaces all objects are projective and injective.

14.3. Theorem on the exactness of the functor C. Let 0 -+ L -I-+M - N
0 be an enact triple of finite-dimensional linear spaces. and let P be any finite-

dimensional space. Then C as a functor induces, separately with respect to the first
and second argument, the enact triples of linear spaces

a) 0 -+ ,C(P L) ii-+,C(P M) -j'-+G(P N) -+ 0,

b) 0 - C(L, P) . C(M, P) + ,C(N, P) - 0.

Proof. a) We recall that i1 is a composition of the variable morphism P -+ L with
i : L -+ M, ji is the composition of P -+ M with j : M -+ N. The mapping i1
is injective, because i is an injection, so that if the composition P - L -+ M is
a zero composition, then P -. L is a zero morphism. The first part of Theorem
14.2 implies that the mapping j1 is surjective: any morphism g : P --+ N can be
extended to a morphism P -+ M, whose composition with j gives the starting
morphism. The composition jail is a zero composition: it transforms the arrow
P -+ L into the arrow P --+ N, which is the composition P -+ L -` M - N, but
ji=0.

We have thus verified that the sequence a) is a complex, and it remains to
establish its exactness with respect to the central term, that is, ker j1 = im i1. We
already know that ker ji D im i1. To prove the reverse inclusion we note that if
the arrow P -+ M lies in the kernel of ji, then the composition of this arrow with
j : M - N equals zero, and therefore the image of P in M lies in the kernel of j.
But the kernel of j coincides with the image of i(L) C M by virtue of the exactness
at the starting arrow. Hence P is mapped into the subspace i(L) and therefore the
arrow P -+ M can be extended up to the arrow P - L, whose composition with i
gives the starting arrow. Hence the latter lies in the image of i1.
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b) Here the arguments are entirely analogous or, more precisely, reciprocal.
The mapping is is surjective according to the second part of Theorem 14.2. The
mapping j2 is injective because if the composition M J + N - P equals zero, then
the arrow N - P also equals zero, since j is surjective. The composition i2j2 equals
zero, because the composition L - M -L N -. P equals zero for any final arrow.
Therefore it remains to be proved that ker i2 C im j2 (the reverse inclusion has just

been proved). But if the composition I + M P equals zero, the arrow M -f . P
lies in the kernel of i2. Hence, L = kerj lies in the kernel of f. We shall define
the mapping f : N -+ P by the formula 1(n) = f(j-1(n)), where j'1(n) E M
is any inverse image of n. Nothing depends on the choice of this inverse image,
because kerj C ker f. It is easy to verify that f is linear and that j2(f) = f;
indeed, 12(f) is the composition M -I N -LP, which transforms m E M into
f j(m) = f(j'1(j(m))) = f(m). The theorem is proved.

14.4. The categorical characterization of dimension. Let G be some
algebra of groups, written additively, and let X : Ob,Cinfx -e G be an arbitrary
function, defined on finite-dimensional linear spaces and satisfying the following two
conditions:

a) if L and M are isomorphic, then X(L) = X(M) and
b) for any exact triple of spaces 0 - L - M - N - 0, x(M) = X(L) + X(N)

(such functions are called additive). The following theorem holds.

14.5. Theorem. For any additive function X we have

x(L) = dimx L X(10),

where L is an arbitrary finite-dimensional space.

Proof. We perform induction on the dimension of L. If L is one-dimensional, then
L is isomorphic to K1, so that

x(L) = X(K1) = dimx L X(101).

Assume that the theorem has been proved for all L of dimension n. If the dimension
of L equals n + 1, we select a one-dimensional subspace Lo C L and study the exact
triple

0-'Lo-'L-L/Lo-0,
where i is the embedding of Lo, while j(l) = 1 + Lo E L/Lo. By virtue of the
additivity of X and the induction hypothesis,

X(L) = X(Lo) + X(L/Lo) = X(K1) + dimx(L/Lo)X(K1) _

= X(K1) + nX(101) = (n + 1)X(Kl) = dime L X(Kl).
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The theorem is proved.
This result is the beginning of an extensive algebraic theory, which is now

being actively developed: the so-called K theory, which lies on the frontier between
topology and algebra.

EXERCISES

1. Let K : 0 d0. L1 L ...d L. 0 be complex finite-dimensional
linear spaces. The factor space H'(K) = kerdi/imdi_i is called the ith space of
homologies of this complex. The number X(K) = E.1(-1)' dimL1 is called the
Euler characteristic of the complex. Prove that

n

x(K)
=

>(-1)' dimH'(K).
i=1

2. "Snake lemma". Given the following commutative diagram of linear spaces

L d1-.M -+N 0

fl gl lh
d

with exact rows, show that there exists an exact sequence of spaces

ker f ker g - ker h -a- coker f -+ coker g - coker h,

in which all arrows except 6 are induced by dl, d2, d'1, dZ respectively, while the
connecting homomorphism 6 (also called the coboundary operator) is defined as
follows: to define b(n) for n E ker h, it is necessary to find m F_ M with n =
= d2(rn), construct g(m) E M', find 1' E L' with d'1(!') = g(m), and set b(n) =
= 1' + im f E coker f . In particular, it is necessary to check the existence of b(n)
and its independence from any arbitrariness in the intermediate choices.

di'
3. Let K :... -y Li d'-. Li+1 - ... and K' :... L ; L;+1 - ... be two
complexes. A morphism f : K - K' is a set of linear mappings fi : Li - L; such
that all squares

Li -di Li+1

fi 1 ! fi+1

Li Li+l
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are commutative. Show that the complexes and their morphisms form a category.

4. Show that the mapping K -+ H'(K) can be extended to a functor from
categories of complexes into the category of linear spaces.

5. Let 0 -+ K -_ + K' -L+ K" -+ 0 be an exact triple of complexes and their
morphisms. By definition, this means that the triples of linear spaces

0 - L; -f' L; 9' L;' 0

are exact for all i. Let H' be the corresponding space of cohomologies. Using the
snake lemma, construct the sequence of spaces of cohomologies

H'(K) - H'(K') -+ -L H'+1(K) -+ ...

and show that it is exact.



CHAPTER2

Geometry of Spaces with an Inner Product

§1. On Geometry

1.1. This part of our course and the next one are devoted to a subject which
can be called "linear geometries". It is appropriate to introduce it with a brief
discussion of the modern meaning of the words "geometry" and "geometric". For
many hundreds of years geometry was understood to mean Euclid's geometry in a
plane and in space. It still forms the foundation of the standard course in schools,
and it is convenient to follow the evolution of geometric concepts for the example
of characteristic features of this, now very specialized, geometric discipline.

1.2. "Figures". High-school geometry begins with the study of figures in a plane,
such as straight lines, angles, triangles, circles, discs, etc. A natural generalization
of this situation is to choose a space M which "envelopes the space" of our geometry
and a collection of subsets in M - the "figures" studied in this space.

1.3. "Motion". The second important component of high-school geometry is the
measurement of lengths and angles and the clarification of the relations between the
linear and angular elements of different figures. A long historical development was
required before it was recognized that these measurements are based on the existence
of a separate mathematical object - the group of motions in the Euclidean plane or
Euclidean space as a whole - and that all metric concepts can be defined in terms
of this group. For example, the distance between points is the only function of a
pair of points that is invariant with respect to the group of Euclidean motions (if
it is required to be continuous and the distance between a selected pair of points is
chosen to be the "unit of length"). F. Klein's "Erlangen program" (1872) settled the
concept of this remarkable principle, and "geometry" for a long time was considered
to be the study of spaces M equipped with a quite large symmetry group and the
properties of figures that are invariant with respect to the action of this group,
including angles, distances and volumes.

1.4. "Numbers". A discovery of equal fundamental significance (and a much
earlier one) was the Cartesian "method of coordinates" and the analytic geometry

92
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of planes and surfaces based on it. From the modern viewpoint coordinates are
functions over a space M (or over its subsets) with real, complex, or even more
general values. The specification of values of these functions fixes a point in space,
while the specification of relations between these values determines a set of points.
In this geometry the description of the set of figures in M can be replaced by a
description of the class of relations between coordinates which describe the figures
of interest. The amazing flexibility and power of Descartes' method stems from
the fact that the functions over the space can be added, multiplied, integrated,
and differentiated, and other limiting processes can be applied to them; ultimately,
all of the power of mathematical analysis can be employed. All general modern
geometric disciplines - topology, differential and complex-analytic geometry, and
algebraic geometry - start from the concept of a geometric object as a collection of
spaces Al and a collection F of (local) functions given on it as a starting definition.

1.5. "Mappings". If (Ml, Fl) and (M2, F2) are two geometric objects of the
type described above, then one can study the mappings Ml - M2 which have
the property that the inverse mapping on functions maps elements from F2 into
elements from Fl. In the most logically complete schemes such mappings include
both the symmetry groups of F. Klein and the coordinate functions themselves (as
mappings of M into R or C). Geometric objects form a category, and its morphisms
serve as a quite subtle substitute for symmetry even in those cases when there are
not many symmetries (like in general Riemannian spaces, where lengths, angles,
and volumes can be measured, but motions, generally speaking, are not enough).

1.6. Linear geometries. We can now characterize the place of linear geome-
tries in this general scheme. In a well-known sense, the words linear geometries
refer to the direct descendants of Euclidean geometry. The spaces M studied in
them are either linear spaces (this time over general fields, though R or C remain,
as before, at the centre of attention, especially in view of the numerous applica-
tions) or spaces derived from linear spaces: affine spaces ("linear spaces without
an origin of coordinates') and projective spaces ("affine spaces, supplemented with
infinitely separated points"). Symmetry groups are subgroups of the linear group
which preserve a fixed "inner product", and also their enlargement with translations
(afline groups) or factor groups over homotheties (projective groups). The functions
studied are linear or nearly linear, and sometimes quadratic. Figures are linear sub-
spaces and manifolds (generalization of neighbourhoods). One can imagine these
generalizations of Euclidean geometry as following from purely logical analysis, and
the established formalism of linear geometries does indeed exhibit a surprising or-
derliness and compactness. However, the viability of this branch of mathematics is
to a certain extent linked to its diverse applications in the natural sciences. The
concept of an inner product, which forms the basis for the entire second chapter
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of this course, can serve as a means for measuring angles in abstract Euclidean
spaces. But a mathematician who is unaware that it also measures probabilities
(in quantum mechanics), velocities (in Minkowski's space in the special theory of
relativity), and the correlation coefficients for random quantities (in the theory of
probability) not only loses a broad range of vision but also the flexibility of purely
mathematical intuition. For this reason we considered it necessary to include in
this course information about these interpretations.

2. Inner Products

2.1. Multilinear mappings. Let and M be linear spaces over a
general field K. A mapping

f : L1 x ... x L. M,

which is linear as a function of any of its arguments 1i E L; with the remaining
arguments 11 E L; , j = 1,. .. , n, j 54 i, held fixed is called a multilinear mapping
(bilinear for n = 2). In other words,

f(11,...,ii +

All, ...,li,...,ln)+ f(11,...'Ii,...,In),

f(11,...,ali,In) = af(11,...,Ii,...,In)
for i = 1, ... , n; a E 1C. In the case that M = K multilinear mappings are also
called multilinear functionals or forms.

In Chapter 1 we already encountered bilinear mappings

L (f,1) f(1), f E C(L, M), I E L.

The determinant of a square matrix is multilinear as a function of its rows and
columns. Another example:

1Cn X Kt -. 1C : (x, y' i-. E g;1z;y1 = x GJ,

where G is any n x m matrix over K , and the vectors from Kn and K'n are
represented as columns of their coordinates.

We shall study general multilinear mappings later, in the part of the book
devoted to tensor algebra. Here we shall be concerned with bilinear functions,
which are most important for applications, L x L K and also for K = C the
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functions L x L --+ C, where L is the space that is the complex conjugate of L (see
Chapter I,§12). Every such function is also called an inner product (dot product) or
metric on the space L and the pair (L, inner product) is regarded as one geometric
object. The metrics studied in this part are metrics in the sense of the definition
of § 10.1 of Chapter I in special cases only, and the reader should not confuse these
homonyms.

The inner product L x L -. C is most often viewed as a sesquilinear mapping
g : L x L -+ C: linear with respect to the first argument and semilinear with respect
to the second argument: g(all,b12) = abg(11i12).

2.2. Methods for specifying the inner product. a) Let g : L x L - K (or
L x L -+ C) be an inner product over a finite-dimensional space L. We choose a
basis {e1, ... , en } in L and define the matrix

G = (9(ei,ej)); i,7 = I,...,n.

It is called the Gram matrix of the basis with respect to g, as well as
the matrix of gin the basis {e1, ... , en }. The specification of lei) and G completely
defines g, because by virtue of the properties of bilinearity,

n n

9(i,Fj-) = 9 E(xiei)>Yiei) = > xiyj9(ei,ej) = P G17.
i=1 j=1 i,j=1

In the case of a sesquilinear form, the analogous formula assumes the form

n n

9(5, y) = 9 E(xieiYiei) =
n

E xiyj9(ei,ej) = rGy
i=1 j=1 ij=1

Conversely, if the basis {el, ... , en } is fixed and G is an arbitrary n x n matrix
over K, then the mapping (x, y) --'Gy (or x Gff in the sesquilinear case) defines
an inner product on L with the matrix C in this basis, as obvious checks show.
Thus our construction establishes a bijection between the inner prooducts (bilinear
or sesquilinear) on an n-dimensional space with a basis and n x n matrices.

We shall clarify how G changes under a change of basis. Let A be the matrix
of the transformation to the primed basis: II = AY, where i are the coordinates of
the vector in the old basis and i' are its coordinates in the new one. Then in the
bilinear case

9(i, y) = x"tGy"= (Ai)tG(AJ) = (a')tAtGAyi,

so that the Gram matrix in the printed basis equals A'GA. Analogously, in the
sesquilinear case it equals A`GA.
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In Chapter I we used matrices primarily to express linear mappings and it
is interesting to determine whether or not there exists a natural linear mapping
associated with g and corresponding to the Gram matrix G. Such a mapping does
indeed exist, and its construction provides an equivalent method for defining the
inner product.

b) Let g : L x L IC be an inner product. We associate with each vector
I E L a function g1 : L K, for which

g,(m) = g(1, m), ME L.

This function is linear with respect to m in the bilinear case and antilinear in the
sesquilinear case, that is, gl E L' or, correspondingly, 91 E L' for all 1. In addition,
the mapping

g:L - L' or L-+L':I"g,=g(l)
is linear, it is canonical with respect to g and uniquely defines g according to the
formula

9(l, m) = (9(l), m),

where the outer parentheses on the right indicate a canonical bilinear mapping
L'xL-µXorL'xL C.

Conversely, any linear mapping L L' (or L L') uniquely reconstructs
the bilinear mapping g : L x L IC (or g : L x L C) according to the same
formula

9(l, m) = (9(l), m).

The tie-up with the preceding construction is as follows: if a basis {e1i... , e }
is selected in L and g is specified by the matrix G in this basis, then g is specified by
the matrix Gt in the bases {e1, ... , en) and {e1, ... , e"} which are mutually dual.

Indeed, if g is specified by the matrix G', then the corresponding inner product
g has the following form in the dual bases:

9(x,y) = (9(x), y) = (9(x))tg (or (&F))'y) =

= (G'x)'y' (or (G'z)'y) = x Gyy (or x'Gj),

which proves the required result. Here, we made use of the remark made in §7 of
Chapter I that the canonical mapping L' X L - K in the dual basis is defined by
the formula (i, y) = Pg.

2.3. Symmetry properties of inner products. A permutation of the argu-
ments in a bilinear inner product g defines a new inner product gt:

9'(l, m) = 9(m, l)-
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In the sesquilinear case this operation also changes the position of the "linear"
and "sesquilinear" arguments; if we do not want this to happen, then it is more
convenient to study gt:

9t(1, m) = 9(m,1).

In gt the linear argument will occupy the first position, if it was in the first
position in g, while the semilinear argument will correspondingly occupy the second

position. The operation g gt or gt is easily described in the language of Gram
matrices: it corresponds to the operation G -- G` or G -- Gt, respectively (it is
assumed that g, gt and gt are written in the same basis of L). Indeed:

9t(z, y+) = g(17, x") = y tGi = (y tGx-)t = ztGtY,

9t(x, y) = 9(9,x-) = y tGZ = (i'Ci)t = ztGty'.

We shall be concerned almost exclusively with inner products that satisfy one
of the special conditions of symmetry relative to this operation:

a) gt = g. Such inner products are called symmetric, and the geometry of spaces
with a symmetric inner product is called an orthogonal geometry. Symmetric inner
products are defined by symmetric Gram matrices G.

b) gt = -g. Such inner products are called antisymmetric or symplectic, and
the corresponding geometries are called symplectic geometries. They correspond to
antisymmetric Gram matrices.

Sesquilinear case:
c) gt = g. Such inner products are called Hermitian symmetric or simply

Hermitian, and the corresponding geometries are called Hermitian geometries. They
correspond to Hermitian Gram matrices. It follows from the condition gt = g that
§(1, 1) = g(l, 1) for all I E L, that is, all values of g(l, l) are real.

Hermitian antisymmetric inner products are usually not specially studied, be-
cause the mapping g --. ig establishes a bgection between them and Hermitian
symmetric inner products:

9t = 9 q (=9)t = -ig.

The geometric properties of inner products, differing from one another by only a
factor, are practically identical. On the contrary, an orthogonal geometry differs
in many ways from a symplectic geometry: it is impossible to reduce the relations
gt = g and gt = -g into one another in this simple manner.

2.4. Orthogonality. Let (L,g) be a vector space with an inner product. The
vectors 11,12 E L are said to be orthogonal (relative to g), if 5(11,12) = 0. The
subspaces L1, L2 C L are said to be orthogonal if 5(11,12) = 0 for all 11 E L1 and
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12 E L2. The main reason that only inner products with one of the symmetry
properties mentioned in the preceding section are important is that for them the
property of orlhogonality of vectors or subspaces is symmetric relative to these vec-
tors or subspaces. Indeed: if g' = ±g or g` = g, then

g(l, m) = 0 q ±g`(I, m) = 0 q g(m, l) = 0

and analogously in the Hermitian case (with regard to the converse assertion, see
Exercise 3).

Unless otherwise stated, in what follows we shall be concerned only with or-
thogonal, symplectic, or Hermitian inner products. The first application of the
concept of orthogonality is contained in the following definition.

2.5. Definition. a) The kernel of an inner product g in a space L is the set of
all vectors I E L orthogonal to all vectors in L.

b) g is non-degenerate if the kernel of g is trivial, that is, it consists only of
zero.

Obviously, the kernel of g coincides with the kernel of the linear mapping
L - L' (or L - L') and is therefore a linear subspace of L. Therefore instead

of the non-degenerate form g one can specify the isomorphism L L' (or L').
Since the matrix of g is the transposed Gram matrix G' of a basis of L, the non-
degeneracy of g is equivalent to non-singularity of the Gram matriz (in any basis).
The fact that a non-degenerate orthogonal form g defines an isomorphism L L'
is very widely used in tensor algebra and its applications to differential geometry
and physics: it provides the basic technique for raising and lowering indices.

The rank of g is defined as the dimension of the image of g, or as the rank of
the Gram matrix G.

2.6. Problem of classification. Let (L1,91) and (L2i92) be two linear spaces
with inner products over a field X. By an isometry between them, we mean any
linear ismorphism f : L1 = L2 that preserves the values of all inner products, that
is,

91(1,1') = 92(f(1),f(l')) for all 1,1' E L1.

We shall call such spaces isometric spaces, if an isometry exists between them.
Obviously, the identity mapping is an isometry, a composition of isometries is an
isometry, and the linear mapping that is the inverse of an isometry is an isometry.
In the next section, we shall solve the problem of classification of spaces up to
isometry; we shall then study groups of isometries of a space with itself, and we
shall show that they include the classical groups described in §4 of Chapter 1.

The classical solution of the problem of classification consists in the fact that
any space with an inner product can be partitioned into a direct sum of pairwise
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orthogonal subspaces of low dimension (one in the orthogonal and Hermitian case,
one or two in the symplectic case). We shall therefore complete this section with a
direct description of such low-dimensional spaces with a metric.

2.7. One-dimensional orthogonal spaces. Let dim L = 1 and let g be an
orthogonal inner product in L. Choose any non-zero vector I E L. If g(l, I) = 0
then g = 0 so that g is degenerate and equal to zero. If g(1,1) = a 0 0, then for any
x E 1C, g(xl, xl) = ax2, so that all values of g(l,1) with non-zero vectors in L form
in the multiplicative group K' = 1C\{0} of the field IC a cosec, with respect to the
subgroup, consisting of squares: {ax21x E K'} E K`/(lC")2. This cosec completely
characterizes the non-degenerate symmetric inner product in the one-dimensional
space L: for (L1, 91) and (L2i 92) two such cosets coincide if and only if these spaces
are isometric. Indeed, if gj(11 i l1) = ax2, 92(12,12) = aye, where li E Li, then the
mapping f : 11 - y-1x12 defines an isometry of L1 with L2, which proves sufficiency.
The necessity is obvious.

Since R'/(R')2 = {fl} and C' = (C')2, we obtain the following important
particular cases of classification.

Any 1-dimensional orthogonal space over R is isometric to the 1-dimensional
coordinate space with one of three scalar products: xy, -xy, 0.

Any 1-dimensional orthogonal space over C is isometric to the 1-dimensional
coordinate space with one of two scalar products: xy, 0.

2.8. One-dimensional Hermitian spaces. Here the arguments are analogous.
The main field is C; degeneracy of the form is equivalent to its vanishing. If, on the
other hand, the form is non-degenerate, then the set of values of g(l,1) for non-zero
vectors I E L is the coset of the subgroup R. = {x E R'ix > 0) in the group C',
because g(al,al) = aag(l, l) = lal2g(l, l) and Jal2 runs through all values in R+,
when a E C. But every non-zero complex number z is uniquely represented in the
form re'm, where r E R+, while e'm lies on the unit complex circle, which we shall
denote by

Ci={zEC'IIzI=1}.

In the language of groups this defines a direct decomposition C' = R+ x C*1 and an
isomorphism C'/R+ - C*,. Thus non-degenerate sesquilinear forms are classified
by complex numbers with unit modulus. However, we have not yet completely taken
into account the Hermitian property, which implies that g(l, l) = g(1,1), that is, the
values of g(l, 1) are all real. For this reason, Hermitian forms correspond only to the
numbers ±1 in Ci, as in the orthogonal case over R. Final answer:

Any one-dimensional Hermitian space over C is isometric to a one-dimensional
coordinate space with one of three inner products: xy-, -xy, 0.
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We shall call a one-dimensional orthogonal space over R (or Hermitian space
over C) with inner products xy, -xy, 0 (or xy, -xg, 0) in an appropriate basis posi-
tive, negative, and null. Inner products of non-zero vectors with themselves in these
spaces assume only positive, only negative, or only zero values, respectively.

2.9. One-dimensional symplectic spaces. Here we encounter a new situation:

any antisymmetric form in a one-dimensional space over a field with characteristic
96 2 is identically equal to zero, in particular, it is singular ! Indeed,

g(l,l) = -9(l,1) 29(1,1) = 0,

g(al, bl) = abg(l, l) = 0.

As far as the characteristic 2 is concerned, the condition of antisymmetry g(l, m) _
= -g(m, 1) in this case is equivalent to the symmetry condition g(l, m) = g(m, 1), so
that over such fields a symplectic geometry is identical to an orthogonal geometry.
Besides, an orthogonal geometry also has its own peculiarities, and we shall usually
ignore this case.

It is therefore clear that one-dimensional symplectic spaces cannot be the build-
ing blocks for the construction of general symplectic spaces, and it is necessary to
go at least one step further.

2.10. Two-dimensional symplectic spaces. Let (L, g) be a two-dimensional
space with a skew-symmetric form g over the field K with characteristic # 2. If it
is degenerate, then it is automatically a null space. Indeed, let I i4 0 be a vector
such that g(l, m) = 0 for all m E L. We extend I to the basis {1, I') of L and take
into account the fact that g(l', l') = g(l, l) = 0 by the preceding subsection. Then,
for any a, b, a', b' E K we have

g(al + a'l', bl + b'!') = abg(l, l) + ab'g(l,1') - a'bg(l, l') + a'b'g(l',1') = 0.

Now let g be non-zero and, hence non-degenerate. Then there exists a pair of vectors
el,e2 with g(el,e2) = a 96 0 and even with a = 1: g(a-1e1,e2) = a-la = 1.

Let g(el,e2) = 1. Then the vectors el and e2 are linearly independent and
hence form a basis of L: if, say, el = aea, then g(ae2,e2) = ag(e2,e2) = 0. In the
coordinates relative to this basis the inner product g is written in the form

9(xlel + x2e2, ylel + y2e2) = xly2 - x2y1

and its Gram matrix is

G= 1

(01 0

Finally we obtain the following result:
Any two-dimensional symplectic space over a field K with characteristic # 2 is

isometric to the coordinate space K2 with the inner product x1y2 - x2y1 or zero.
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EXERCISES

1. Let L and M be finite dimensional linear spaces over the field K and let
g : L x M - K be a bilinear mapping. We shall call the set Lo = {I E LIg(l,m)
= 0 for all m E M}, the left kernel of g and the set Mo = {m E Mjg(1, m) =
= 0 for all 1 E L} the right kernel of g. Prove the following assertions:

a) dim L/Lo = dim M/Mo.
b) g induces the bilinear mapping g' : L/Lo x M/Mo - IC,g'(1+Lo, m+Mo) =

= g(l, m), for which the left and right kernels are zero.

2. Prove that any bilinear inner product g : L x L -+ K (over the field K
with characteristic j6 2) can be uniquely decomposed into a sum of symmetric and
antisymmetric inner products.

3. Let g : L x L K be a bilinear inner product such that the property of
orthogonality of a pair of vectors is symmetric: from g(11,12) = 0 it follows that
g(12,11) = 0. Prove that then g is either symmetric or antisymmetric. (Hint:
a) let 1, m, n E L. Prove that g(l, g(1, n)m - g(1, m)n) = 0. Using the symmetry of
orthogonality, deduce that g(1, n)g(m, 1) = g(n, l)g(l, m). b) Set n = 1 and deduce
that if g(l, m) $ g(m,1), then g(l,1) = 0. c) Show that g(n, n) = 0 for any vector
n E L if g is non-symmetric. To this end, choose 1, m with g(1, m) # g(m, 1)
and study separately the cases g(l, n) # g(n,1), g(1, n) = g(n,1). d) Show that if
g(n, n) = 0 for all n E L, then g is antisymmetric.)

4. Give the classification of one-dimensional orthogonal spaces over a finite field
K with characteristic 96 2, by showing that K'/(K')2 is the cyclical group of order
2. (Hint: show that the kernel of the homomorphism K' K' : x -+ x2 is of order
2, using the fact that the number of roots of any polynomial over a field does not
exceed the degree of the polynomial).

5. Let (L, g) bean n-dimensional linear space with a non-degenerate inner product.
Prove that the set of vectors {ej, ... , en } in L is linearly independent if and only if
the matrix (g(e;, es )) is non-singular.

§3. Classification Theorems.

3.1. The main goal of this section is to classify the finite-dimensional orthogonal,
Hermitian, and symplectic spaces up to isometry. Let (L, g) be such a space and
let Lo C L be a subspace of it. The restriction of g to Lo is an inner product in Lo.
We shall call Lo non-degenerate if the restriction of g to Lo is non-degenerate and
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isotropic if the restriction of g to Lo equals zero. It is significant that even if L is non-
degenerate, the restrictions of g to non-trivial subspaces can be degenerate or zero.
For example in the symplectic case, all one-dimensional subspaces are degenerate
and in an orthogonal space R2 with the product ziyi - z2yz the subspace spanned
by the vector (1,I) is degenerate.

The orthogonal complement of the subspace Lo C L is the set

Lo = {l E LIg(lo, l) = 0 for all to E Lo}

(not to be confused with the orthogonal complement to Lo, lying in L', introduced
in Chapter I ! Here we shall not make use of it). It is easy to see that Lo is a linear
subspace of L.

3.2. Proposition. Let (L, g) be finite-dimensional.
a) If the subspace Lo C L is non-degenerate, then L = Lo ® Lo L.

b) If both subspaces Lo and Lo are non-degenerate, then (Lo )1 = Lo.

Proof. a) Let g : L L' (or L') be the mapping associated with g, as in the
preceding section. We denote by 9o its restriction to Lo, 90 : Lo - L' (or L'). If Lo
is non-degenerate, then ker go = 0; otherwise Lo contains a vector that is orthogonal
to all of L and, in particular, to Lo. Therefore, dim im go = dim Lo. Hence when 1o
runs through Lo, the linear forms g(lo, ) as a function of the second argument from
L or L run through a dim Lo-dimensional space of linear forms on L or L. Since Lo
is the intersection of the kernels of these forms, dim Lo = dim L - dim Lo, that is,

dim Lo + dim Lo = dim L.

On the other hand, it follows from the non-degeneracy of Lo that Lo fl Lo = {0},
because Lo fl Lo is the kernel of the restriction of g to Lo. For this reason, the sum
L + Lo is a direct sum; but its dimension equals dim L so that Lo (D Li = L.

b) It is clear from the definitions that Lo C (Lo )1. On the other hand, if
Lo, Lo are non-degenerate, then from the preceding result

dim(Lo )1 = dim L - dim Lo = dim Lo.

This completes the proof.

3.3. Theorem. Let (L,g) be a finite-dimensional orthogonal (over a field with
characteristic 96 2) Hermitian or symplectic space. Then there exists a decomposi-
tion of L into a direct sum of pairwise orthogonal subspaces

L=Li®...0Lm,
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that are 1-dimensional in the orthogonal and Hermitian case and 1-dimensional
degenerate or 2-dimensional non-degenerate in the symplectic case.

Proof. We perform induction on the dimension of L. The case dim L = 1 is trivial:
let dim L > 2. If g is zero, there is nothing to prove. If g is non-zero, then in the
symplectic case there exists a pair of vectors 11i12 E L with g(l1,12) # 0. According
to §2.10, the subspace Lo spanned by them is non-degenerate. According to Propo-
sition 3.2, L = Lo (D Lo , and we can further decompose Lo , as formulated in the
theorem, by the induction hypothesis. This will give the required decomposition of
L.

In the orthogonal and Hermitian case we shall show that the existence of a
non-degenerate one-dimensional subspace Lo follows from the non-triviality of g.
After checking this, we shall be able to set L = Lo (D Lo and apply the previous
arguments, that is, induction on the dimension of L.

Indeed, we assume that g(1,1) = 0 for all I E L, and we shall show that then
g=0. In fact, for all11i12ELwehave

0 = 9(li + 12,11 + 12) = 011, 11) + 29(11,12) + 9(12,12) = 29(11,12)

or

0 = All + 12,11 + 12) = 9(11,11) + 2 Re9(11,12) + 9(13,12) = 2 Re9(li,12)

In the orthogonal case it follows immediately from here that 9(11,12) = 0. In the
Hermitian case, we obtain only that Reg(11i12) = 0, that is, 9(11,12) = ia, a E R.
But if a # 0, then also

0 = Reg ((ia)-111,12) = Re(ia)-19(11,12) = I

which is a contradiction.
This completes the proof.
We now proceed to the problem of uniqueness. In itself, the decomposition

into an orthogonal direct sum, whose existence is asserted in Theorem 3.3, is by no
means unique, except for the trivial cases of dimension 1 (or 2 in the symplectic
case). Over general fields, in the case of an orthogonal geometry, the collection
of invariants ai E X'/X'2, which characterizes the restriction of g to the one-
dimensional subspaces L1, is also not unique. The exact answer to the question
of the classification of orthogonal spaces depends strongly on the properties of the
main field, and for X = Q, for example, is related to subtle number-theoretic facts,
such as the quadratic law of reciprocity. In the orthogonal case, therefore, we shall
restrict our attention to the description of the result for X = R and C (for further
details see §14).
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3.4. Invariants of metric spaces. Let (L,g) be a space with an inner product.
We set n = dim L, ro = dim Lo, where Lo is the kernel of the form g. In addition,
we introduce two additional invariants, referring only to the orthogonal, for X = R,
and Hermitian geometries: r+ and r_, the number of positive and negative one-
dimensional subspaces Li in an orthogonal decomposition of L into a direct sum,
as in Theorem 3.3.

Obviously, ro < n and n = ro+r++r_ for Hermitian and orthogonal geometries
over R. The set (ro, r+, r_) is called the signature of the space. When ro = 0,
(r+, r_) or r+ - r_ are also sometimes called the signature (provided that n =
= r+ + r_ is known).

We can now formulate the uniqueness theorem.

3.5. Theorem. a) Symplectic spaces over an arbitrary field, as well as orthogonal
spaces over C are determined up to isometry by two integers n, ro, that is, the

dimensions of the space and of the kernel of the inner product.
b) Orthogonal spaces over R and Hermitian spaces over C are determined,

up to isometry, by the signature (ro, r+, r-), which does not depend on the choice
of orthogonal decomposition (this assertion is called the inertia theorem).

Proof a) Let (L, g) be a symplectic or orthogonal space over C. We shall
study its direct decomposition L = ®n 1 Li, as in Theorem 3.3, and we shall show
that ro equals the number of one-dimensional spaces in this decomposition that are
degenerate for g. Indeed, the sum of these spaces Lo coincides with the kernel of
g. Indeed, it is obvious that it is contained in this kernel, because the elements of
Lo are orthogonal both to Lo and to the remaining terms. On the other hand, if
Lo =®to_1Li and

l = F, li ,
li E Li, 3j > ro, li # 0,

i_1

then

g(l,li)=g(li,li)00

in the orthogonal case and there exists a vector li E Li with

g(l,ll)=g(li,li)00

in the symplectic case, because otherwise the kernel of the restriction of g to Li
would be non-trivial and the restriction of g to Li would be null according to
§2.10, contradicting the fact that j > to. Therefore I (kernel of g), and Lo
(kernel of g). If now (L,g) and (L',g') are two such spaces with identical n and
ro, then, after constructing their orthogonal direct decompositions L = ®i 1 Li
and L' _ ®

1
L;, for which (kernel of g)= ®;° 1 L1 and (kernel of g')= ®;° 1 L;,
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we can define the isometry of (L, g) to (L, g') as the direct sum of the isometries
® f;, f; : L; L; which exist by virtue of the results of §2.7 and §2.10.

b) Now let (L, g) and (L', g') be a pair of orthogonal spaces over R or Hermitian
spaces over C with the signatures (ro, r+, r_) and (ro, r+, r'), defined with the
help of some orthogonal decompositions L = ® L,, L' = ®L; as in Theorem 3.3.
Assume that an isometry exists between them. Then, first of all, dim L = dim L'
so that ro + r+ + r_ = ra + r+ + r'. Furthermore just as in the preceding section,
we can verify that ro equals the dimension of the kernel of g, and r'o equals the
dimension of the kernel of g', and these kernels are the sums of the null spaces L,
and L; in the corresponding decompositions. Since the isometry determines a linear
isomorphism between the kernels, we have ro = r'o and r+ + r_ = r+ + r'_

It remains to verify that r+ = r+, r_ = r ' . W e set L = Lo ®L+ ®L_ ,
L' = La ®L+ ®L'_ , where Lo, L+, L_ are the sums of the null, positive, and
negative subspaces of the starting decomposition of L, and correspondingly for L'.
We assume that r+ = dim L+ > r+ = dim L+, and we arrive at a contradiction; the
possibility r+ < r' is analysed analogously. We restrict the isometry f : L L' to
L+ C L. Each vector f (1) is uniquely represented as a sum

f(1) = f(1)0 + f(1)+ + f(1)-

where f(1)+ E L+ and so on. The mapping L+ -. L+, 1.-' f(l)+ is linear. Since
by assumption dim L+ > dim L+, there exists a non-zero vector 1 E L+ for which
f (1)+ = 0, so that

f(1)=f(1)o+f(l)-

But g(l, 1) > 0 so that 1 E L+ and L+ is the orthogonal direct sum of positive one-
dimensional spaces. Since f is an isometry, we must also have g'(f(1), f(1)) > 0.
On the other hand,

9'(f(1),f(l))=9'(f(I)o+f(l)-, f(1)o+f(1)-)=9 (f(1)-,f(1)-) <o.

This contradiction completes the proof of the fact that the signatures of isometric
spaces, calculated from any orthogonal decomposition, are identical.

Conversely, if (L, g) and (L', g') are two subspaces with identical signatures,
then it is possible to establish between subspaces, from their orthogonal decompo-
sitions L = ® L; and L' L;, a one-to-one correspondence L; «-. L;, preserving
the sign of the restriction of g to L; and of g' to L;, respectively. According to the
results of §2.7 and §2.8, the isometries f, : L; - L; exist, and their direct sum ®f;
will be an isometry between L and L'.

We shall now derive several corollaries and reformulations of Theorems 3.3 and
3.5, which underscore the different aspects of the situation.
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3.6. Bases. Let (L, g) be a space with a scalar product. The basis {el, ... , e.) of
L is called orthogonal if g(ei, e') = 0 for all i 96 j. It follows from Theorem 3.5 that
any orthogonal or Hermitian space has an orthogonal basis. Indeed, it is sufficient to
construct the decomposition L = ® Li into orthogonal one-dimensional subspaces
and then choose e; E Li, e, # 0.

An orthogonal basis {e,} is called orthonormal if g(ei,ei) = 0 or ±1 for all i.
The discussion at the end of §3.2 shows that any orthogonal space over R or C
and any Hermitian space has an orthonormal basis. Theorem 3.5 shows that the
number of elements e of the orthonormal basis with g(e,e) = 0,1 or -1 does not
depend on the basis for K = R (orthogonal case) and IC = C (Hermitian case). In
the orthogonal case over C it is always possible to make g(ei,ei) = 0 or 1, and the
number of such vectors in the basis does not depend on the basis itself. The Gram
matrix of an orthonormal basis has the form

0

-Er_
0

0

0

0

(with suitable ordering). The concept of an orthonormal basis is most often used in
the non-degenerate case, when there are no vectors ei with g(ei,ei) = 0. The next
simple, but important, formula makes it possible to write explicitly the coefficients
in the decomposition of any vector e E L with respect to an orthogonal basis (in
the non-degenerate case):

n
9(e,ei) ei.

is 9(ei,ei)

Indeed, the inner products on the left and right sides with all ei are equal, and
non-degeneracy implies that if g(e, ei) = g(e', ei) for all i, then e = e', because
e - e' lies in the kernel of the form g.

In a symplectic space an orthogonal basis can evidently exist only if g = 0.
Theorem 3.3, on the other hand, guarantees the existence of a symplectic basis
{el , e2, ... , er; er+1, ... , e2r; e2r+1, ... , en ), which is characterized by the fact that

9(ei,er+i) = -9(er+j,ei) = 1, i = 1,...,r,

while all remaining inner products of pairs of vectors equal zero. Indeed, we must
decompose L into an orthogonal direct sum of two-dimensional non-singular sub-
spaces Li, 1 < i < r, and one-dimensional singular subspaces Lj, 2r + 1 < j < n,
and choose for {ei,er+1} (1 < i < r) the basis of Li constructed in §2.10, and for
e3 (2r + 1 < j < n) any non-zero vector in Li.

The Gram matrix of a symplectic basis has the form

0 Er 0

0 10 0
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The rank of the symplectic form, according to Theorem 3.5, equals 2r. In particular,

the dimension of a non-singular symplectic space is necessarily even.
Let L be a non-singular symplectic space and {e 1, ... , er; e,+l,... , e2,. } a sym-

plectic basis of it. Set L1 equal to the linear span of {e1, ... , e,} and L2 equal the
linear span of {e,+1, ... , e2, I. Evidently the spaces L1 and L2 are isotropic, their
dimensions equal one-half the dimension of L, and L = L1 ®L2. The canonical
mapping g" : I -+ L' determines the mapping

91 : L2 -i Li; 91(!2)(/1) = 9(12,11)

This mapping is an isomorphism, because dim L2 = dim L1 = dim Li and ker 91 = 0:
the vector from ker 91 is orthogonal to L2i because L2 is isotropic, and to L1 by
definition, while L is non-degenerate.

It follows that any non-degenerate symplectic space is isometric to a space of
the form L = Li ®L1 with symplectic form

9((f,1), (f', l')) = f (P) - f'(1); f, f' E Li, 1, l' E L1.

Further details are given in §12.

3.7. Matrices. Describing inner products by their Gram matrices and trans-
forming from the accidental basis to the orthogonal or symplectic basis, we obtain,
by virtue of the results of §§2.2 and 3.6, the following facts:

a) any quadratic symmetric matrix G over the field X can be reduced to diag-
onal form via the transformation G i A°GA, where A is non-singular. If !C = R,
it is possible to achieve a situation in which only 0 and ±1 appear on the diago-
nal, and if AC = C only 0 and 1 appear on the diagonal; the numbers of 0 and ±1
(correpondingly 0 and 1) will depend only on G, and not on A.

b) Any quadratic antisymmetric matrix G over the field K with characteristic
2 can be reduced by the transformation G t At GA, where A is non-singular, to

the form
0

-Er
0

E,I 0

0 0 .

0

The number 2r equals the rank of G.
c) Any Hermitian matrix G over C can be reduced to diagonal form with the

numbers 0, ±1 on the diagonal by the transformation G ' -. A'GA, where A is
non-singular. The numbers of 0 and ±1 depend only on G.

3.8. Bilinear forms. If the vectors in the space (L,g) with a fixed basis are
written in terms of the coordinates in this basis, then the expression of g in terms
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of the coordinates is a bilinear form of 2n variables, n = dim L:

9=(x1i...,4n;yl) ...,yn)- 9ijx:yj -- xG1l,
i,j=1

where G is the Gram matrix of the basis. A substitution of the basis reduces to a
linear transformation of the variables x1, ... , xn and y1, ... , yn with the help of the
same non-singular matrix A in the bilinear case (or the matrix A for E, A for yin
the sesquilinear case). The preceding results show that depending on the symmetry
properties of the matrix G the form can be reduced by such a transformation to
one of the following forms, called canonical forms.

Orthogonal case over any field:

9(i,y) _ aixiyi;

i=1

it is possible to achieve ai = 0, ±1 over the field R and ai = 0 or 1 over the field C.
Hermitian case (sesquilinear form):

9(x,g) _ aixiUi;
ic1

ai=0or1.
Symplectic case: n = 2r + ro, in which case

r

g (x, y) _ E(xiyr }i - yixr{d)
i=1

3.9. Quadratic forms. A quadratic form q on the space Lisa mapping q : L -- K
for which there exists a bilinear form h : L x L K with the property

q(l) = h(l, l) for all I E L.

We shall show that if the characteristic of the field K is not equal to 2, then
for any quadratic form q there exists a unique symmetric bilinear form g with the
property q(l) = g(l,1), called the polarization of q.

To prove existence, we set q(l) = h(l,1), where h is the starting bilinear form,
and

9(l, m) = 2 [h(l, m) + h(m, l)].

Obviously, g is symmetric, that is, g(l, m) = g(m, l). In addition,

9(l,1) =
2

[h(l, l) + h(l, I)) = q(l).
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The bilinearity of g follows immediately from the bilinearity of h.
To prove uniqueness, we note that if q(1) = 9i(1,1) = 92(1,1), where 91,92 are

symmetric and bilinear, then the form 9 = 91 - 92 is also symmetric and bilinear,
and g(1,1) = 0 for all I E L. But according to the arguments in the proof of
Theorem 3.3, it follows that g(l, m) = 0 for all 1, m E L, which completes the proof.
We note that if q(1) = g(1,1), and g is symmetric, then

g(I, m) =
2

[q(1 + m) - q(I) - q(m)].

We have thus established that orthogonal geometries (over fields with charac-
teristic 96 2) can be interpreted as geometries of pairs (L, q), where q : L - K is a
quadratic form. In terms of coordinates, the quadratic form is written in the form

4 (x' _ aijxixj,

where the matrix (aij) is determined uniquely if it is symmetric: aq = aji. For
example,

q(xl,x2) = allxi + 2a12x1x2 + a22x2.

Classification theorems indicate that a quadratic form can be reduced by a non-
degenerate linear substitution of variables to a sum of squares with coefficients:

q(x') _ taix.
If K = R, it may be assumed that ai = 0,± 1; the numbers ro, r+, r_ of zeros, pluses
and minuses are determined uniquely and comprise the signature of the starting
quadratic form; r+ + r_ is its rank. If K = C, it may be assumed that ai = 0, 1;
the number of l's is the rank of the form; the rank is also determined uniquely.

§4. The Orthogonalization Algorithm and Orthogonal Polynomials

In this section we shall describe the classical algorithms for constructing orthogonal
bases and we shall present important examples of such bases in function spaces.

1. Reduction of a quadratic form to a sum of squares. Let

n

g(xl,...,xn) = E aijxixj, aij = aji,
i,j=1

be a quadratic form over the field K with characteristic 96 2. The following procedure
is a convenient practical method for finding a linear substitution of variables xi that
reduces q to the sum of squares (with coefficients).
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Case 1. There exists a non-zero diagonal coefficient. Renumbering the variables,
we can assume that all $ 0. Then

q(xl,...,xn) =a I I x I+ x1(2a12x2 + ...+ 2alnxn) + 9 (x2,...,zn),

where q' is a quadratic form of < n - 1 variables. Separating off the complete
square, we find

2
a12 qln

g(xl,...,xn) =all xl + -x2 + ... + -xn + q (x2,...,xn),
all all

where q" is a new quadratic form of < n - 1 variables. Setting

yl = .Ti + allt(a12x2 +... + alnxn), y2 = x2, ... , yn = xn,

we obtain in the new variables the form

allyi +q"(y2,...,yn),

and the next step of the algorithm consists in applying it to q".

Case 2. All diagonal coefficients equal zero. If, in general, q = 0, then there
is nothing to do: q = E,"_t 0 x?. Otherwise, renumbering the variables, we can
assume that a12 $ 0. Then

q(xl,...xn)

= 2al2xlx2 + x111(x3,...,xn) + x212(z3...... n) + q'(x3,...,xn),

where 11,12 are linear forms and q' is a quadratic form. We set

zl=yl+y2, x2=y1-y2, xi=yi, i>3.

In the new variables the form q becomes

2a12(y2I - yz) + q"(yl,y2,...,yn),

where q" does not contain terms with y2' y22. We can therefore apply to it the
method of separating the complete square and again reduce the problem to the
term of lowest degree. Successive application of these steps yields a form of the
type E l a; z; . The final substitution of variables will be non-degenerate, because
all the intermediate substitutions are non-degenerate.

The final substitution of variables ul = z; with ai $ 0 in the case K = R
and ui = aizi with ai 0 in the case K = C, will reduce the form to a sum of
squares with coefficients 0, ±1, or 0,1.
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4.2. The Gram-Schmidt orthogonalization algorithm. This algorithm
is very similar to the one described in the preceding section, but it is formulated
in more geometric terms. We shall examine simultaneously the orthogonal and
Hermitian case.

The space (L,g) with an orthogonal or Hermitian matrix, defined in the basis
{ei, ... , e;, } is given. Let L, be the subspace spanned by ei, ... , e i = 1,.. . , n.

The orthogonalization process, applied to the basis {e 1, ... , e, }, can be viewed as
a constructive proof of the following result.

4.3. Proposition. Suppose that in the above notation, all subspaces L1,. .. , L
are non-degenerate. Then there exists an orthogonal basis {el, ... , of the space

L such that the linear span o f {ej,... , e; } coincides with Li for all i = 1, ... , n. It
is called the result of the orthogonalization of the starting basis {ei, ... , e;,}. Each
vector e; is determined uniquely up to a non-zero scalar factor.

Proof. We construct e; by induction over i. For e1, we can take ei. If
e1,. .. , e;_1 have already been constructed, then we seek e; in the form

i-i

e; = ei - xjej, xj E K.
J.=1

Since generate Li, and and {et,...,ei_1} generate Li_1,
any such vector e; together with e1, ... , e; _ 1 will generate L1. It is therefore suf-
ficient to achieve a situation such that e1 is orthogonal to e1, ... , ei_1 or, which
is the same thing, to e1...... e;_1. These conditions mean that g(ei,ek) = 0,
k=1,...,i-1, or

i-1
k=1,...,i-1.

j=1

This is a system of i - I linear equations for i - 1 unknowns xj. Its matrix of
coefficients is the Gram matrix of the basis {ei,...,e;_1) of the space Li_1. It is
non-singular by definition, so that the xj exist and are determined uniquely. Any
non-zero vector e, orthogonal to L;_ 1 must be proportional to ei.

A simpler and immediately solvable system of equations is obtained if e; is
sought in the form

i-1
ei = e; - 1: yjej, yj E IC,

j=1

assuming that el,...,ei_1 have already been found. Since el,...,e;_1 are pairwise
orthogonal, from the condition g(ei, ej) = 0, 1 < j < i - 1, we find that

yj= ,j
g(ej,ej)
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The whole point of this proof is to write out explicitly the systems of linear
equations whose successive solution determines e;. We note that the matrices of
the coefficients of the first system are the successive diagonal minors of the Gram
matrix of the starting basis:

G, = 1 < j, k < i.

If we were not striving to construct an algorithm it would have been simpler
to argue as follows: Proposition 3.2 and the non-degeneracy of L,_1 imply that

Li=L;_1®L 1 ; dim L 1=dimL;-dimL;_1=1.

W e now take f o r e, any non-zero vector from L 1.

4.4. Remarks and corollaries. a) The Gram-Schmidt orthogonalization pro-
cess is most often used in a situation when g(1,1) > 0 for all I E L, 1 96 0, that is,
it is applied to Euclidean and unitary spaces, which we shall study in detail later.
In this case all subspaces of L are automatically non-degenerate, and any starting
basis can be orthogonalized. The form g with this property and its Gram matrices
are said to be positive definite.

b) If A = R or C, an orthogonalized basis can be constructed immediately.
To do this, after the vector e; is determined, as in the proof of the proposition, it
must be replaced here by Ig(e,,e;)I_1/2e; or g(e,,ej)-1/2e, (for orthogonal spaces
over C).

c) Any orthogonal basis of a non-degenerate space Lo C L can be extended to
an orthogonal basis of the entire space L.

Indeed, L = Lo (D Lo , and the orthogonal basis of Lo can be taken as the
extension. It can be found by the Gram-Schmidt method, if the basis of Lo is
somehow extended to a basis of L, taking care that the intermediate subspaces are
non-degenerate.

d) Let {ei, ... , en} be a basis of (L, g) and let {e1, ... , e } be its orthogonalized
form. We set a, = g(e;,e,); these are the only non-zero elements of the Gram
matrix of the basis (e,). We shall assume that g is Hermitian or g is orthogonal
over R. Then all numbers a, are real and the signature of g is determined by the
number of positive and negative numbers a,. We shall show how to reconstruct it
from the minors of the starting Gram matrix G = {g(e;,ek)}. Let G, be the ith
diagonal minor, that is, the Gram matrix of {e...... e;}. If A; is the matrix of the
transformation to the basis {e1, ... , e, } then

det(g(ek,eJ))1<ka<, = al ...a, = det(A;G,A;) = detG,(detA1)s

in the orthogonal case or

a1 ...a, = det(A;G;A;) = detG;IdetA,12
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in the Hermitian case. Therefore, it is always true that

sign a I... a; = sign det G; .

Thus, the signature of the form g is determined by the number of positive and
negative elements of the sequence

det G2 det Gn
det G1, detGj''' detGn_1

In particular, the form g (and its matrix G) is positive definite, if and only if
all minors of det Gi are positive (we recall that G is either real and symmetric or
complex and Hermitian symmetric). This result is called Sylvester's criterion.

More generally, for a non-degenerate quadratic form over any field the identity

a1 ... a; = det G;(det A;)2

shows that the starting form with a symmetric matrix G and non-singular diagonal
minors G; can be reduced by a linear transformation of variables to the form

n det G; 2

` det G yy , det Go = 1,
i_1 i-i

because the squares (det A,)2, which prevent the expression of a; directly in terms
of det G can be incorporated by cofactors into the variables. This result is called
Jacobi's theorem.

4.5. Bilinear forms in function space. We shall study the functions fl, f2
defined on the interval (a, b) of the real axis (a can be -oo and b can be oo) and
assuming real or complex values. Let G(x) be a fixed function of x E (a, b). Bilinear
forms on function spaces in analysis are often defined by expressions of the type

9(fl,f2) =
J

b

G(x)fi(z)f2(x)dx
a

or (the sesquilinear case)

b

9(f1, f2) =
J

G(x)f1(x)f2(x)dx.

Of course, G, fl and f2 must satisfy some integrability conditions; in the following
examples they will be automatically satisfied.

The function G is called the weight of the form g. The value

9(f, f) =
J

bG(x)f(z)2dz or fbG(x)If(x)l2dz
a a
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is the weighted mean-square of the function f (with weight G); if G _> 0, then
it can be viewed as some integral measure of the deviation of f from zero. The
typical problem of the approximation of the function f by linear combinations of
some given collection of functions fl,. - ., fn.... consists in searching for coefficients
al , ... , an, ... , which for fixed n minimize the weighted mean-square value of the
function

f-Eaif1.
It will later become evident that the coefficients ai are especially simply found

in the case when {fi) form an orthogonal or orthonormal system relative to the
inner product g. In this section we shall restrict ourselves to an explicit description
of several important orthogonal systems.

4.6. Trigonometric polynomials. Here G = 1, (a, b) = (0, 2xr). Trigonometric
polynomials (or Fourier polynomials) are finite linear combinations of the functions
cos nx and sin nx or finite linear combinations of the functions einr, n E Z. The
former are usually used in the theory of real-valued functions and the latter are
used in the theory of complex-valued functions. Since ein= = cos nx + i sin nx, over
C both spaces of Fourier polynomials coincide. A bilinear metric is used over R
and a sesquilinear metric is used over C. The functions {1,cosnx,sinnxIn > I}
and {ei"ran E Z} are linearly independent (over both R and C). In addition they
form an orthogonal system, as follows from the easily verifiable formulas:

10

2r 2w ( 7
cos mx cos nx dx = I sin mx sin nx dx = {

for m = n > 0,
0 0 for m 0 n,

10

2w

cos mx sin nx dx = 0

f
2w 2A form neimreinr dx =

f2r
e1 "-n)r dx = ,

0 for m n.

The systems

1

7 7r 7ra
, cos nx, sin nxln > 1 } and Aeinrln E Z

1

Z

are therefore orthonormalized. The inner products of any function f in [0,27r] with
the elements of these orthonormal systems are called the Fourier coefficients of this
function:

1
r2w

ao
27r JO f (x) dx,

A

12w11

an = (x) cos nx dx, n > 1,
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r2,.
bn =

J
f (x) sin nx dx, n > 1,

A o
for real functions f and

1 ax

an =
f(x)e-i"adx,

n E Z,
2-r o

for complex functions. If the function f is itself a Fourier polynomial, then according
to the expansion theorem of §3.6, we have

f(x)= 2=aO+ E(ancosnx+bnsinnx)

for real functions f, and

00

AX) = 1 E a Bins

2a n=-oo

for complex functions f. The sums on the right, of course, are finite in the case under
study. Infinite series with this structure are called Fourier series. The question of
their convergence in general and the convergence to the function f whose Fourier
coefficients are an and bn, in particular, is studied in one of the most important
sections of analysis.

4.7. Legendre polynomials. Here G = 1, (a,b) = (-1,1). The Legendre poly-
nomials Po(z), Pl (r), P2(x),... are obtained as the result of the orthogonalization
process applied to the basis { 1 , x, x2, ... ,) of the space of real polynomials. They
are usually normalized by the condition Pn(1) = 1. With this normalization their
explicit form is given by the following result.

4.8. Proposition. Po(z) = 1, Pn(x) = (x2 - 1)", n > 1.

Proof. Since the degree of the polynomial (x2 - 1)" equals 2n, the degree of the
polynomial r(x2 - 1)" equals n, so that P1,.. . , Pi generate the same space over
R as do 1, x, ... , x'. Therefore, in order to check the orthogonality of P;, P,, i 54 j
it is sufficient to verify that

1

xk PP(x)dx = 0 fork < n.

Integrating by parts we obtain

r1

J_1xk- (x2-1)"dx

xk dn-1I(Z2 1)"
1

1 - k j 1 k-1 d 11 (x2 - 1)" dx.
1
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The first term vanishes, because (x2 -1)" has a zero of order n at the points ±1, and
every differentiation lowers the order of the zero by one. An analogous procedure
can be applied to the second term; after k steps, we obtain an integral proportional
to

1 3;(X2 - 1)" dx =
dxn-k-1

(x2 - I)"I_1 = 0.
11

d"-k
d+-k_1 I

Then, according to Leibnitz's formula

d
"[(x-1)"(x+l)n]

/=k(k)dxk(x-l)"dx"k(x+1)".

At the point x = 1 the term corresponding to k = n is the only term that does not
vanish, so that

P"(1)= 1
(n)[dTh

( x-1)"](x+1)"I=
2"n!2"n! dx" r_1

which completes the proof.

4.9. Chebyshev polynomials. G = mss, (a, b) _ (-1,1). The polynomials
T" (x), n > 0 are the result of orthogonalization of the basis { 1, x, x2, ...}. The
explicit formulas are:

TT(x) =
(-2)" ri!

1 - x2
d" (1 - x2)"-1/2 = cos(n cost x).

(2n)! dx"

They are normalized as follows:

r1 T,"(x)T"(x) dx 10 for m n,

J-1 1-x = it/2 for mn 0,
x form=n=0.

4.10. Hermite polynomials. G = e's' , (a, b) = (-oo, oo). The polynomials
H" (x) are the result of the orthogonalization of the basis 11, x, x2,.. .}. The explicit
formulas are

H"(x) _
(-1)"e=2 d (e-=2).

They are normalized as follows:

T e_,2Hm(x)H"(x)dx= j0 form n,

0 2"nl f form = n.
The proof is left to the reader as an exercise.

EXERCISES

1. Prove that the Hermitian or orthogonal form g is positive definite, that is,
g(l, 1) > 0 for all I E L, if and only if all diagonal minors of its Gram matrix are
non-negative.

2. Prove the assertions of §§4.9 and 4.10.
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§5. Euclidean Spaces

5.1. Definition. A Euclidean space is a finite-dimensional, real, linear space L
with a symmetric positive-definite inner product.

We shall write (l, m) instead of g(l, m) and 11111 instead of (1,1)1/2; we shall call

the number 11111 the length of the vector 1.

It follows from the results proved in S§3-4 that:
a) Any Euclidean space has an orthonormal basis, all vectors of which have

unit length.
b) Therefore, it is isometric to the coordinate Euclidean space R."(n - dim L),

where
n ,,

1/2

(i,y)=>2xiyi, Ixl= xz

The key to many properties of Euclidean space is the repeatedly rediscovered
Cauchy-Bunyakovskii-Schwarz inequality:

5.2. Proposition. For any 11,12 E L we have

(11,12) <- 111,11111211.

The equality holds if and only if the vectors 11,12 are linearly independent.

Proof. If l1 = 0, the equality holds and 11, 12 are linearly independent. We shall
assume that 11 96 0. For any real number t we have

11th, +12112 = (t1, +12,il + 12)
=t21111112 + 2t(ll 12) + 1112112 > 0

by virtue of the positive-definiteness of the inner product. Therefore the discrimi-
nant of the quadratic trinomial on the right is non-positive, that is,

(11,12)2 -111,1121112112 < 0.

It equals zero if and only if this trinomial has a real root to. Then

lltolt + 12112 = 0 p 12 = -toll,

which completes the proof.

5.3. Corollary (triangle inequality). For any 11,12,13 E L

II11 +1211-5111111+111211, II11-1311 <- 1111 -1211+II12-1311.

Proof. We have

1111+12112=1111112+2(11,12)+1112112 <-111,112+2111111111211+1112112=(111,11+111211)2.
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Replacing here 11 by l1 - 12 and 12 by 12 -13, we obtain the second inequality.

5.4. Corollary. The Euclidean length of the vector 11111 is a norm on L in the
sense of Definition 10.4 of Chapter 1, and the function d(1, m) = III - mII is the
metric in the sense of Definition 10.1 of Chapter 1.

Proof. It remains to verify only that IIaIII = IaI 11111 for all a E R; but

IIaIII = (al, at) 1/2
= (a2111112)1'2 = jai 11111.

5.5. Angles and distances. Let 11,12 E L be non-zero vectors. Proposition 5.2
implies that

-1 < (11,12) < 1
111111111211 -

Therefore there exists a unique angle 0, 0 < 0 < x for which

cos4,= (11,12)
1111 11 1112 11

This angle is called the angle between the vectors 11,12. Since the inner product
is symmetric, this is an "unoriented angle", which explains also the range of its
values. In accordance with high-school geometry, the angle between orthogonal
vectors equals it/2. Euclidean geometry can be developed systematically based on
these definitions of length and angle, and it can be verified that in spaces of two
and three dimensions it coincides with the classical geometry.

For example, the multidimensional Pythagoras theorem is a trivial consequence
of the definitions. If the vectors 11, ... ,1 are pairwise orthogonal, then

The usual formula for cosines in plane geometry, applied to a triangle with
sides 11,12,13, asserts that

1113112 =
1111112+1112112-2111,11111211

cos 0,

where ¢ is the angle between 11 and 12. In the vector variant 13 = 11 -12i and this
formula transforms into the identity

1111 - 12112 = 1111112+1112112-2(11,12)

in accordance with our definition of angle.
Let U, V C L be two sets in a Euclidean space. The non-negative number

d(U,V)=inffill, -1211111EU, 12EV}
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is called the distance between them. Consider the following particular case: U = {1}
(one vector), V = Lo C L is a linear space. Proposition 3.2 implies that L = L0®Lo
and I = l0 + 10 ' where l0 E Lo, 1' E Lo . The vectors 10, 1o are orthogonal projections

of I onto L0i Lo respectively.

S.G. Proposition. The distance from I to L0 equals the length of the orthogonal
projection of I onto Lo .

Proof. Pythagoras's theorem implies that for any vector in E Lo,

III -m112=Illo+Io-m1I2=IIIo-mII2+III'oII-

because the vectors lo - m E L0 and 10' E Lo are orthogonal. Therefore,

III - _112 >- II1,112,

and the equality holds only in the case m = 10, which proves the assertion.
If an orthonormal basis { e 1, ... , e,,, } is selected in Lo, then the projection of I

onto Lo is determined by the formula

m

10 = E(l,ei)ei.
i=1

Indeed, the left and right sides have the same inner products with all ei, and there-
fore their difference lies in Lo . Finally

d(l, Lo) =I1- Z(1, e,)ei
M
i_1

is the smallest value of III - mil, when m runs through L0. Since 1110112 < 111112,
according to the same Pythagoras's theorem we have

< 111112.

i.1

5.7. Applications to function spaces. As an example, consider the space of
continuous real functions on [a, b] C R with the inner product

(f,g)=lsfgdx.

a

It is finite-dimensional, but all our inequalities will refer to a finite number of such
functions, so that in every case we shall be able to assume that we are working with



120 A. 1. KOSTRIKIN AND Yu. I. MANIN

a finite-dimensional Euclidean space: fa f 2(x) dx > C and if fQ f 2(x) dx = 0, then
f(x) __ 0.

The Cauchy-Burnyakovskii-Schwarz inequality assumes the form

C / b f (z) g(x) dx ! < f b f(x)2 dx f b g(x)2 dx.
o a a

The triangle inequality assumes the form

b
1

1/2
b

1/2

J (f + g(x))2 dx) Cf f (x)2 dx) + (J°g(x)2 dx l .

If (a, b) _ (o, 2 r) and a;, b; are the Fourier coefficients of the function f (z), as in
§4.6, then the Fourier polynomial

N

IN (X)=7=7r a0 + Dan cos nx + bn sin nx)
n=1

is the orthogonal projection of f(x) on the linear span of {1,cos nx,sin nxll <
< n < N). Therefore, the Fourier coefficients of f(x) for each N minimize the
mean-square deviation of f (z) from the Fourier polynomials of "degree" < N. The
inequality (fN 12 < If 12 assumes the form

N Zr
ao+(a?+b;) < J f(x)2dx.

Since the right side does not depend on N and a?, b? > 0, the series

00

ao + E(a: + b?)
i.1

converges for any continuous function f (x) in [0, 2r]. It can be shown that it
converges exactly to ff * f (x)2 dx.

Entirely analogous arguments are applicable to the Legendre, Chebyshev, and
Hermite polynomials. We leave them as an exercise to the reader.

5.8. Method of least squares. We shall study the system of m linear equations
for n unknowns with real coefficients

n

Ea;jxj=b;,
i=1,...,m.

j=1

Assume that this system is "overdetermined", that is, m > n and the rank of the
matrix of coefficients equals n. Then, in general, it does not have any solutions.
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But we can try to find values of the unknowns z?, ... xn, such that the total squared
deviation of the left sides from the right sides

(Eaijzq - bi)
s

1=1 j=1

assumes the smallest possible value. Then this problem has important practical
applications. For example, in geodesic work the site is partitioned into a grid of
triangles, some elements of which are measured while the others are calculated using
trigonometric formulas. Since all measurements are approximate, it is recommended
that more measurements than the number strictly necessary for calculating the
remaining elements be made. Then, for the same reason, the equations for these
elements will almost certainly be incompatible. The method of least squares permits
obtaining an "approximate solution" that is more reliable due to the large quantity
of information incorporated into the system.

We shall show that our problem can be solved using the results of §5.7. We
interpret the columns of the matrix of coefficients ei = (a11,... , amt) and columns
of free terms f = (b1 i ... , b,,,) as vectors of a coordinate Euclidean space Rm with
the standard inner product. Setting

e = xiei,
i=1

we obtain
2 2

(Eaijxj - bi) =lExiei -fl .F,
i=1 j=1 1=1

Therefore the minimum squared deviation is achieved when x°ei is the or-
thogonal projection of f on the subspace spanned by the ei. This means that the
coefficients x° must be found from a system of n equations with n unknowns

(zeiei) = (f,e1)+ j = 1,...,n,

i-1

the so-called "normal system". Its determinant is the determinant of the Gram
matrix ((ei, ej )), where

m

(ei,ej) = Eakiakj.
k=1

It differs from zero, because it was assumed that the rank of the starting system,
that is, the system of vectors (ei), equals n (see the exercise for §2.5). Therefore
the solution exists and is unique.

We now return to the subject of "measure in Euclidean space".
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5.9. n-dimensional volume. In a one-dimensional Euclidean space one can
associate with the simplest figures - segments and their finite unions - lengths
and sums of lengths. In the Euclidean plane, high-school geometry teaches us how to
measure the areas of figures such as rectangles, triangles, and, with some difficulty,
circles. The generalization of these concepts is provided by the profound general
theory of measure, whose natural place is not here. We shall restrict ourselves to a
list of the basic properties and elementary calculations, associated with the special
measure of figures in n-dimensional Euclidean space - their n-dimensional volume.

The n-dimensional volume is a function vol" which is defined on some subsets
of an n-dimensional Euclidean space L, called measurable, and which assumes non-
negative real values or oo (on bounded measurable sets - only finite values). The
collection of measurable sets is very rich. We shall simply postulate the following
list of properties of vol" and the measurability of sets entering into them, without
proving the existence of the function with these properties and without indicating
its natural domain of definition.

a) The function vol" is countably additive, that is,

00

vol" U Ui = Flvol" Ui, if Ui n ui = 0 for i # j;
(i0=01 i=1

Vol' (point)=0; Vol' (segment)=length of segment. (A segment in a one-dimensional
Euclidean space is a set of vectors of the type ill + (1 - t)12, 0 < t < 1; its length
equals ill, -121 .)

b) If U C V, then vol" U < vol" V.
c) If L = L1 ® L2 (orthogonal direct sum), dim Ll = m, dim L2 = n,

U C L1, V C L2, then for U x V = {(11,12)11 E U, 12 E V} E Ll ® L2 we
have

Volm+"(U X V) = Vol", U vol" V.

d) If f : L - L is an arbitrary linear operator, then

vol" (f (U)) = I det f I vol" U, n = dim L.

The properties a) and b) hardly need explanation. Property c) is a strong
generalization of the formula for the area of a rectangle (product of the lengths of
its sides) or the volume of a straight cylinder (product of the area of the base by
the length of the generatrix). We note that from property c) it follows that the
(m + n)-dimensional volume of a bounded set W in L, lying in the subspace L1 of
dimension m < m + n, equals zero. Indeed, then L = Ll ® Li and W = V x {0},
and finally vol"({0}) = 0 for n > 0 by virtue of b) and c).



LINEAR ALGEBRA AND GEOMETRY 123

The meaning of property d) is less obvious. It is the main contribution of
linear algebra to the theory of Euclidean volumes, and it is responsible for the
appearance of Jacobians in the formalism of multidimensional integration. It could
be explained more intuitively by remarking that the operator of stretching by a
factor of a E R along one of the vectors of the orthogonal basis must multiply the
volume by jal by virtue of the properties b) and c). But any non-zero vector can be
extended to an orthogonal basis, and therefore the diagonalizable operator f with
the eigenvalues a,,. . ., a" E R must multiply the volumes by Ial I ... (a" I = I det f1.
Finally, isometries must preserve volume and, as we shall convince ourselves later,
any operator is a composition of a diagonalizable operator and an isometry (see
Exercise 11 of §8).

Using these axioms, we shall now present a list of volumes of the simplest and
most important n-dimensional figures.

5.10. Unit cube. This is the set {tlel+...+t"e"10 < i, < 1) where lei, ...,e"}
is some orthonormal basis of L. From the axioms of §5.9a) and b) it follows imme-
diately that its volume equals unity.

A cube with side a > 0 is obtained if t; is allowed to run through the values
0 < t; < a. Since it is the image of a unit cube relative to homothety - multipli-
cation by a - its volume equals a".

5.11. Parallelepiped with sides This is the set (till +...+t1" 10 <
< t; < 1). We shall show that its volume equals I det GI where G = ((Ii, 1i)) is
the Gram matrix of the sides. Indeed, if {!1i ... 1.) are linearly dependent, then
the corresponding parallelepiped lies in a space of dimension < dimL and its n-
dimensional volume equals zero according to the remark in §5.9. At the same time,
G is singular.

Therefore it remains to analyse the case when {!1, ... , In) are linearly inde-
pendent. Let {el,... , e"} be an orthonormal basis in L, and f a linear mapping
L --+ L, transforming e; into 1;, i = 1, ... , n. If A is the matrix of this mapping in
the basis lei):

(11,...,in) = (el,...,en)A,

then the Gram matrix of {1;} equals AtA, because the Gram matrix of {e;) is the
unit matrix. Therefore,

det GI = I det(A*A)I = I det AI.

On the other hand, I det Al = I det f I and f transforms the unit cube into our
parallelepiped. According to the axiom d) of §5.9 the volume of the parallelepiped
equals I det f 1, which completes the proof.
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5.12. n-dimensional ball with radius r. This is the set of vectors

B"(r) = Ill 11111 < r},

or, in orthogonal coordinates,

((
n

1l

B"(r) = S(x1.... X.)I > xj < r2}.
ll

,=1

Since B"(r) is obtained from B"(1) by stretching by a factor of r, we have

vol" B"(r) = vole B"(1)r".

The constant vol" B"(1) = b" can be calculated only by analytic means. Partition-
ing the (n +1)-dimensional ball into n-dimensional linear submanifolds, orthogonal
to some direction, we obtain the induction formula

[21
1 n

1) dbn, n> 1.bn+1 = ( 1 - xn+

5.13. n-dimensional ellipsoid with semi-axes r1,. .. , r, . It is defined in
orthogonal coordinates by the equations

n / l2FI
ri 1 <

Since it is obtained from Bn(1) by stretching by a factor of r; along the ith semi-axis,
its volume equals burl ... rn.

5.14. A property of the n-dimensional volume. It consists in the fact that
for very large n the "volume of an n-dimensional figure is concentrated near its
surface." For example, the volume of the spherical ring between spheres of radius 1
and 1 - e equals bn[1- (1 - e)"], which, for fixed arbitrarily small e, but increasing
n approaches bn. A 20-dimensional watermelon with a radius of 20 cm. and a skin
with a thickness of I cm. is nearly two-thirds skin:

((I_)201_e_1.

This circumstance plays an important role in statistical mechanics. Consider,
for example, the simplest model of a gas in a reservoir consisting of n atoms, which
we shall assume are material points with mass 2 (in an appropriate system of units).
We represent the instantaneous state of the gas by n three-dimensional vectors
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(v'1, ... , vn) of the velocities of all molecules in the physical Euclidean space, that
is, by a point in the three n-dimensional coordinate space Ran. The square of the
lengths of the vectors in R3" has a direct physical interpretation as the energy of
the system (the sum of the kinetic energies of the atoms):

E
..1

For a macroscopic volume of gas under normal conditions n is of the order of 10=3
(Avogadro's number), so that the state of the gas is described only on a sphere of
an enormous dimension, whose radius is the square root of its energy.

Let two such reservoirs be connected so that they can exchange energy, but not
atoms, and let the sum of their energies El + E2 = E remain constant. Then the
energies El and E2 most of the time will be close to the values that maximize the
"volume of the state space" accessible to the combined system, that is, the product

volnI B(E1112) vol"2 B(Ez12)

(we replace the areas of the spheres by the volumes of the spheres, which is not
literally correct, but has practically no effect on the result). Since as El increases
and E2 decreases (El + E2 = const), the first volume increases extremely rapidly
while the second volume decreases, there is a sharp peak in the volume of this
product for some values of E1, E2 corresponding to the "most probable" state of
the combined system. Evidently this occurs where

d
logvol"1 B(E1/2) =

d
logvol"2 B(E2'2).

dEl dE2

The inverses of these quantities are (to within a proportionality factor) the temper-
atures of the reservoirs and the most probable state corresponds to the situation
when the temperatures are equal.

EXERCISES

1. Prove that the angle 0 of inclination of the straight line in the plane R2, passing
from the origin of coordinates as close as possible, in the mean-square, to m given
points (ai, bi) i = 1, ... , m, is determined by the formula

m m

tan qS _ M a,b,)/(Ea?).
i=1 i=1

(Hint: find the best "approximate solution" of the system of equations aix = bi.)
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2. Let Pn(x) be the nth order Legendre polynomial. Prove that the leading coef-

ficient of the polynomial un(x) = 2n2n',2 PP(x) equals one and that the minimum

of the integral I(u) = f 11 u(x)2 dx on the set of polynomials u(x) of degree n with
a leading coefficient equal to 1 is attained when u = u,,. (Hint: expand u with
respect to the Legendre polynomials of degree < n.)

3. Let (S, p) be a pair consisting of a finite set S and a real function p : S - R,
satisfying two conditions: M(s) > 0 for all s E S and F,,=S P(s) = 1. Consider on
the space of real functions F(S) on S (with real values in R) the linear functional
E : F(S) - R:

E(f) = E11(s)f(s)
+ES

We denote the kernel of E by F0(S).
(S, p) is called a finite probability space, the elements of F(S) are random

quantities in it, the elements of Fo(S) are normalized random quantities, and the
number E(f) is the mathematical expectation of the quantity f. Random quantities
form a ring under ordinary multiplication of functions.

Prove the following facts.
a) F(S) and Fo(S) have the structure of an orthogonal space in which the

squared length of the vector f equals E(f2). The space F(S) is Euclidean if and
only if p(s) > 0 for all s E S.

b) For any random quantities f, g E F(S) and a, b E R, we set

P(f = a) _ N(s); P(f = a; 9 = b) _ Fe(s)
f (S)=4 f(a)=a

8(+)=6

("the probabilities that f assumes the value a or f = a and g = b simultaneously").
Two random quantities are said to be independent if

P(f = a; g = b) = P(f = a)P(g = b)

for all a, b E R. Prove that if the normalized random quantities f, g E FO(S) are
independent, then they are orthogonal.

Construct an example showing that the converse is not true.
The inner product of the quantities f,g E F0(S) is called their covariation, and

the cosine of the angle between them is called the correlation coefficient.
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36. Unitary Spaces

6.1. Definition. A unitary space is a complex linear space L with a Hermitian
positive-definite inner product.

As in §5, we shall write (1, m) instead of g(l, m) and 11111 instead of (1,1)112. We
shall show below that 11111 is a norm in L in the sense of §10 of Chapter I. Unitary
spaces, which are complete with respect to this norm, are also called Hilbert spaces.
In particular, finite-dimensional unitary spaces are Hilbert spaces.

It follows from the results proved in §3 and §4 that
a) any finite-dimensional unitary space has an orthonormal basis, all vectors of

which have unit length;
b) therefore, it is isomorphic to a coordinate unitary space C" (n = dim L) with

the inner product

n

(x,y'_Exiyi, 11X11=

In

i=1 icl

1/2

A number of properties of unitary spaces are close to the properties of Eu-
clidean spaces, primarily for the following reason: if L is a finite-dimensional uni-
tary space, then its decomplexification LR has the (unique) structure of a Euclidean
space in which the norm 11111 of a vector is the same as in L. The existence is ev-
ident from the preceding item: if {e1,. .. , e, } is an orthonormal basis in L and
(e1, iel, e2, ie2, ... , en, ien} is the corresponding basis of LR, then

2 r
2 2 2x, ej I = L. Ixj I + (Im xj ) ),= E((Re xj )

j=1 j=1 j=1

and the expression on the right is the Euclidean squared norm of the vector

n n

1: Re xjej + 1: Im xj(iej)
j=1 j=1

in the orthonormal basis {e1, iej }. Uniqueness follows from §3.9.
Inner products in a unitary space L do not, however, coincide with inner prod-

ucts in the Euclidean space LR: the second assumes only real values, whereas the
first assumes complex values. In reality, a Hermitian inner product in a complex
space leads not only to an orthogonal, but also to a symplectic structure on LR
with the help of the following construction.

We temporarily return to the notation g(1, m) for a Hermitian inner product
in L and we set

a(l, m) = Re g(l, m),

b(1, m) = Im g(l, m)
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Then the following facts hold:

6.2. Proposition. a) a(l, m) is a symmetric and b(l, m) is an antisymmetric
inner product in LR; both products are invariant under multiplication by i, that is,
the canonical complex structure on La:

a(il, im) = a(l, m), b(il, im) = b(1, m);

b) a and b are related by the following relations:

a(l, m) = b(il, m), b(1, m) = -a(il, m);

c) any pair of i-invariant forms a, b in LR, antisymmetric and symmetric,
related by relations b), defines a Hermitian inner product in L according to the
formula

g(l, m) = a(l, m) + ib(l, m);

d) the form g is positive-definite if and only if the form a is positive definite.

Proof. The condition of Hermitian symmetry g(1, m) = g(m, 1) is equivalent to the
fact that

a(l, m) + ib(1, m) = a(m, 1) - ib(m, 1),

that is, symmetry of a and antisymmetry of b. The condition g(il, im) = iig(1, m) _
= g(l, m) is equivalent to i-invariance of a and b. The condition of C-linearity of
g according to the first argument indicates R -linearity and linearity relative to
multiplication by i, that is,

a(il, m) + ib(il, m) = g(il, m) = ig(l, rn) _ -b(1, m) + ia(1, m),

whence follow relations b) and assertion c). Finally, 9(l, 1) = a(l, l) by virtue of the
antisymmetry of b, whence follows d).

6.3. Corollary. In the previous notation, if g is positive-definite and u{el,... , en}
is an orthonormal basis for g, then {ej,... , en, iii, ... , ieo } is an orthonormal basis
for a and a symplectic basis for b.

Conversely, if L is a 2n-dimensional real space with a Euclidean form a and
a symplectic form b as well as with a basis {ei, .... en, en+t, ... , e2n} which is
orthonormal for a and symplectic for b, then, introducing on L a complex structure
with the help of the operator

J(ej) = en+j, 1 < j:5 n; J(ei) = -ei_n, n+ I < j:5 2n,



LINEAR ALGEBRA AND GEOMETRY 129

and an inner product g(l, m) = a(l, m) + ib(l, m), we obtain a complex space with
a positive-definite Hermitian form, for which {el,... , e,,} is an orthonormal basis
over C.

The proof is obtained by a simple verification with the help of Proposition 6.2,
which we leave to the reader.

We now turn to unitary spaces L. The complex Cauchy-Bunyakovskii-Schwarz
inequality has the following form:

6.4. Proposition. For any 11, 12 E L

1(11,12)12 < 1111 1121 11211',

and, in addition, equality holds if and only if the vectors 11i12 are proportional.

Proof. As in §5.2, for any real t we have

Itll +1212 = t21111112+2t Re(11,12)+1112112 > 0.

The case 11 = 0 is trivial. Assuming that it # 0, we deduce that

(Re(11i12))2 < 1111 1121112112

But, if (11, 12) = I(11i12)le'm, 0 E R, then Re(e''011,12) = 1(11,12)1. Therefore,

1(11,12)12 <- Ile ''11121112112 =11111121112112.

Strict equality holds here if and only if Iltoe"411+1211 = 0 for an appropriate to E It,
which completes the proof.

In exactly the same manner as in the Euclidean case, the following corollaries
are derived from here:

6.5. Corollary (triangle inequality). For any 11,12,13 E L

1111 +1211 <- II11II+111211,

1111 - 1311 5 1111-1211+1112-1311

6.6. Corollary. The unitary length of the vector 11111 is the norm in L in the
sense of Definition 10.4 of Chapter I.

(Here the property Ilalll = IaI 11111 is verified somewhat differently:

Ilalll = (a!, a!)1/2 = (ad(1,1))h12 = IaI 11111.)
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6.7. Angles. Let 11, 12 E L be non-zero vectors. Proposition 6.4 implies that

0 < 1(11,12)1 < 1.
- 111111111211

Therefore there exists a unique angle 0 < 0 < r/2, for which

cos = 1(11,12)1
1111 11111211

However, in the very important models in the natural sciences, which make use of
unitary spaces, the same quantity i 2I (more precisely, its square) is interpreted
not only as the cosine of an angle, but also as a probability. We shall briefly describe
the postulates of quantum mechanics, which include this interpretation.

6.8. State space of a quantum system. In quantum mechanics it is postulated
that physical systems such as an electron, a hydrogen atom, and so on, can be
associated (not uniquely !) with a mathematical model consisting of the following
data.

a) A unitary space 71, called the state space of the system. Such spaces, which
are studied in standard textbooks, for the most part are infinite-dimensional Hilbert
spaces, which are realized as a space of functions in models of "physical" space or
space-time. Finite-dimensional spaces 7{ arise, roughly speaking, as spaces of the
internal degrees of freedom of a system, if the system is viewed as being localized
or if its motion in physical space can in one way or another be neglected. The
two-dimensional unitary space of the "spin states" of an electron, to which we shall
return again, is such a space.

b) Rays, that is, one-dimensional complex subspaces in 7{, are called (pure)
states of the system.

All information on the state of a system at a fixed moment in time is determined
by specifying the ray L C 7{ or the non-zero vector 0 E L, which is sometimes called
the sb function, corresponding to this state, or the state vector.

The fundamental postulate that the 0 functions form a complex linear space is
called the principle of superposition, and the linear combination E,=1 a101, ai E C
describes the superposition of the states We note that since only the
rays COj and not the vectors Oj themselves have physical meaning, the coefficients
a1 cannot be assigned a uniquely defined meaning. If, however, the ', are chosen
to be normalized, I1G;I2 = 1, and linearly independent and E,=1 a, O1 is also nor-
malized, then the arbitrariness in the choice of the vectors O} in its ray reduces to
multiplications by the numbers e'mj, which are called phase factors; the same arbi-
trariness exists in the choice of the coefficients a1, which we can then make real and
non-negative, which together with the normalization condition IE,=1aji,b (= 1
makes it possible to define them uniquely.
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The strongly idealized assumptions about the connection between this scheme
and reality consist of the fact that we have physical instruments A,, ("furnaces"),
capable of preparing many samples of our system in instantaneous states ' (more
precisely, CO) for different 0 E N. In addition, there exist physical instruments
B. ("filters") into whose input systems in some state 0 are fed, and the same
systems are observed at the output in some (possibly different) state X, or nothing
is observed at all (the system "does not pass" through the filter Br).

The second basic (after the principle of superposition) postulate of quantum
mechanics is as follows:

A system prepared in the state >[i E 71 can be observed immediately after prepa-
ration in the state x E 7f with the probability

I(' x)12
= cos20, where 0 is the angle between >fi and Y

In what follows, as additional geometric concepts are introduced, we shall refine
the mathematical description of "furnaces" and "filters". Moreover, we shall explain
what will happen if a system prepared in the state ' is not immediately introduced
into the filter, but rather after some time t: it turns out that during that interval
the state 0, also the scalar product (u', X) , will change, and this change is also
accurately described in terms of linear algebra.

If 0 and X are normalized, then the probability indicated above equals 1(0, x)I2,
and the inner product (0, X) itself, which is a complex number, is called the prob-
ability amplitude (of a transition from i to X). We note that physicists, following
Dirac, usually study inner products which are antilinear with respect to the first
argument, and write our (0, X) in the form (XI5), so that the initial and final states
of the system are arranged from right to left. The symbol () is called "bracket".
Correspondingly, Dirac calls the symbol 10) a "k-et vector", and the symbol (XI the
corresponding "bra vector". From the mathematical viewpoint 10) is an element of
7i, and (01 is the corresponding element of the space of antilinear functionals 71.,
and (XI*b) is the value of X on 0.

If 0, X are orthogonal, that is, (0, x) = 0, then the system prepared in the
state tG cannot be observed (immediately after preparation) in the state x, that is,
it will not pass through the filter B. (conversely, it will pass through the filter B,y
with certainty). In all other cases, there is a non-zero probability for a transition
from 1, to X.

The elements of any orthonormalized basis form the set of basis
states of the system. Assume that we have filters B,t,1,...,Bon. By repeatedly
passing systems through them prepared in the state 10 = Eni=1 a;i0;, 0 < a; < 1
(the vector is assumed to be normalized), we observe 0j with probability a?. Thus
the coefficients in this linear combination can be measured experimentally, but in
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a fundamentally statistical test. This is one of the reasons that quantum mechan-
ical measurements require the processing of a large statistical sample. Moreover,
systems in the state > i often enter a filter with a "flux" and at the output the prob-
abilities a? are obtained in the form of intensities, something like "spectral lines";
these intensities in themselves are already the result of statistical averaging. In
what follows, we shall make more precise the connection between this scheme and
the theory of the spectra of linear operators.

6.9. Feynman rules. Let an orthonormal basis { W l , ... , Y'n} of ?t be given. For
any state vector t(i E 7{ we have

o = E(Y', Wi)oi,
i=1

whence
n

(0, X) = 1:0P,000h, X)
icl

Analogously, (t5,i0;) substituting this equation into the
preceding one, we obtain

(0, X) = E (Y', Wil)(Wil,1Pi2)('i2,X)
il,i2=1

and, in general, for any m > 1

(O,X) _ (01''00(tyil,00 ...(tyim,X)

These simple equations of linear algebra can be interpreted, according to Feynman,
as laws of the "complex theory of probability", referring to amplitudes instead of
probabilities. Namely, we shall study sequences of the type (t/i, tpi, , Oi2l ... "Pin X)
as "classical trajectories" of the system, passing successively through the states
in the parenthesis, and the number (0,Oil)(tyil , 00 ... (t/' m, x) as the probability
amplitude of the transition from +G to X along the corresponding classical trajectory.
This amplitude is the product of the transition amplitudes along successive segments
of the trajectory.

Then the formula presented above for (O, X) means that this transition ampli-
tude is the sum of the transition amplitudes from 0 to X along all possible classical
trajectories ("of equal length").

R. Feynman placed the infinite-dimensional and more refined variant of this
remark, in which the space-time (or energy-momentum) observables play the main
role, at the foundation of his semi-heuristic technique for expressing amplitudes in
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terms of "continuum integrals over classical trajectories". The space of trajectories
is an infinite-dimensional functional space, and mathematicians have still not been
able to construct a general theory in which all of the remarkable calculations of
physicists would be justified.

6.10. Distances. The distance between subsets in a unitary space L can be
defined in the same way as in a Euclidean space:

d(U, V) = inf{Il1s -1211(11 E U, 12 E V}.

The distance from the vector 1 to the subspace Lo also equals the length of
the orthogonal projection of ! on La . The proof is identical in every respect to the
Euclidean case. In particular, if {e1,...,em} is an orthonormal basis of Lo, then

m

d(1, Lo) = 111- F(1,ei)e;ll,
,-1

as in the Euclidean case, and

!I
S 111112

according to Pythagoras's theorem.

6.11. Application to function spaces. As in §§4 and 5, we can introduce the
inequalities for complex-valued functions:

I

Ie f(x)9(x)
dxl2

< fb If(x)12dxje 19(x)12 dx,
a a

11/2 \ 1/2 b 1/2(Jb1jx) +9(x)12 dx) < (j6 If(x) 12 d--) + (I. 19(x)12 dZ)

as well as for their Fourier coefficients. Studying functions in the interval [0, 2a]
and setting

2

an - 1 f f(x)e-inz dx,
27r JO

we find that in a space with the inner product fo' f (x)g(x) dx, the sum

fN(x) 1 aneinx
=72P n=-N

is the orthogonal projection of f on the space of Fourier polynomials "of degree
< N" and minimizes the mean square deviation off from this space. In particular,

E Ian 12< J,2*

f(x)J2dx,l

n=-N
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so that the series En° _,,o converges.

§7. Orthogonal and Unitary Operators

7.1. Let L be a linear space with the scalar product g. The set of all isometries
f : L - L, that is invertible linear operators with the condition

9(f (11), 1(12)) = 9(11,12)

for all 11i12 E L, evidently, forms a group. If L is a Euclidean space, such operators
are called orthogonal; if L is a Hermitian space, they are called unitary. Symplectic
isometries will be examined later.

7.2. Proposition. Let L be a finite-dimensional linear space with a symmetric or
Hermitian non-degenerate inner product ( , ). In order for the operator f : L - L
to be an isometry it is necessary and sufficient that any of the following conditions
hold:

a) (f (1), f (1)) = (1, 1) for all l E L (it is assumed here that the characteristic
of the field of scalars does not equal 2).

b) Let {el, ... , en} be a basis of L with the Gram matrix G and let A be the
matrix off in this basis. Then

A'GA = G, or A'GA=G;

c) f transforms an orthonormal basis into an orthonormal basis.
d) If the signature of the inner product equals (p, q), then the matrix off in

any orthonormal basis {el,... , ep, ep+l, ... ep+q) with (e;, e;) = +1 for i < p and
(e;, e;) _ -1 for p + 1 < i < p + q satisfies the condition

0
q) A= EqAt (Op -E

or

At
Ep 0 (Ep 0

0 -Eq
A=

0 -Eq
in the symmetric and Hermitian cases respectively.

Proof. a) In the symmetric case this assertion follows from §3.9: if f preserves the
quadratic form (1,1) = q(l), then f also preserves its polarization

(1, m) = 2 [q(1 + m) - q(1) - q(m))

In the Hermitian case we have, analogously,

Re(l, rn) =
2 [q(l + m) - q(l) - q(m)]
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and Proposition 6.2 shows that (1, m) is uniquely reconstructed from Re(1, m)
according to the formula

(1, m) = Re(1, m) - i Re(il, m)

and therefore f preserves (1, m).
b) If f is an isometry, then the Gram matrices of the bases {e,.. . , and

{ f (el ), ... , f (en )} are equal to one another. But the last Gram matrix equals ALGA

in the symmetric case and ALGA in the Hermitian case. Conversely, if f transforms
the basis {e1,.. . , e,} into {ei, ... , en) and the Gram matrices of the bases {ei} and
{e;} are equal to one another, then f is an isometry by virtue of the formulas from
§2.2 for expressing the inner product in coordinate form.

c), d) These assertions are particular cases of the preceding assertions.
It follows from Proposition 7.2 that orthogonal (or unitary) operators are op-

erators which in one (and therefore in any) orthonormal basis are specified by or-
thogonal (or unitary) matrices, that is, matrices U satisfying the relations

UUL = E. or UUL = En.

Collections of n x n matrices of this type were first introduced in §4 of Chapter 1.
They were denoted by 0(n) and U(n) respectively. Analogously, the matrices of the
isometries in the orthonormal bases with signature (p, q), satisfying the conditons of
Proposition 7.2d are denoted by 0(p, q) and U(p, q); for p, q 0 they are sometimes
called pseudo-orthogonal and pseudo-unitary, respectively. In this section we shall
be concerned only with the groups 0(n) and U(n). We shall study the Lorentz
group 0(1,3), which is fundamental for physics, in §10.

7.3. The groups U(1), 0(1), and 0(2). It follows immediately from the
definition that

U(1)={aECIjaI =1}={e'#I0ER},
0(1) = {±1} = U(1) f1 R.

Further, if U E \O(n), then UUL = E,,, whence (detU)2 = 1 and detU = ±1.

If U = l a dJ is an orthogonal matrix whose determinant equals -1, then

C a is is an orthogonal matrix (belonging to SO(2)) whose determinant equals-c d
+1. Matrices from S0(2) have the form

Wa b bec2ac+bd=0}.
Any such matrix can obviously be represented in the form

cos 0 -sin 0
sin 0 cos 0 ) 2a)m E [0 ,,,
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that is, it represents a Euclidean rotation by an angle 0. The mapping

U(1) - SO(2)
(cos 0 -sin 4\

`sin 0 cos 0

is an isomorphism. Its geometric meaning is explained by the following remark:
the decomplexification of the one-dimensional unitary space (C1, 'z12) is a two-
dimensional Euclidean space (R2, xi+xz), and the decomplexification of the unitary
transformation z * - e'mz is given by the matrix representing a rotation by an angle

0.
In §9 we shall construct the much less trivial epimorphism SU(2) SO(3)

with the kernel {±1}.

The rotations
cos oO -sin 0

by an angle b iA 0, a do not have eigenvectors
sin 0 cos 4

in R2 and are therefore not diagonalizable. By contrast, all matrices U E 0(2) with
det U = -I are diagonalizable. More precisely, the characteristic polynomial of the
matrix

(
cos 0 -sin 0
-sin o -cos Q

equals t2-1 and its roots equal ±1. It is easy to check directly that the characteristic
subspaces corresponding to these roots are orthogonal; this will be proved below
with much greater generality. Therefore, any operator from 0(2) with det U = -I
is a reflection relative to a straight line: it acts as an identity on this line and
changes the sign of vectors orthogonal to it.

With this information we can now establish the structure of general orthogonal
and unitary operators.

7.4. Theorem. a) In order for an operator f in a unitary space to be unitary
it is necessary and sufficient that f be diagonalizable in an orthonormal basis and
have its spectrum situated on the unit circle in C.

b) In order for an operator f in a Euclidean space to be orthogonal it is

necessary and sufficient that its matrir in an appropriate orthonormal basis have
the form

JA(01) \

A(4,m) 0

0 -1

-sinA(4)(cos
sin d cos b
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where the empty spaces contain zeros.

c) The eigenvectors of an orthogonal or unitary operator, corresponding to
different eigenvalues, are orthogonal.

Proof. a) The sufficiency of the assertion is obvious: if U = diag(A1 i ... An), 1A, 12 =

= 1, then UM = E,,, so that U is the matrix of a unitary operator. Conversely, let f
be a unitary operator, A an eigenvalue of it, and La the corresponding characteristic
subspace. According to Proposition 3.2, we have L = La ® L- L. The subspace L,, is
one-dimensional and f-invariant, and the restriction of f to La is a one-dimensional
unitary operator. Therefore A E U(1), that is, 1A12 = 1. If we show that the subspace
La is also f-invariant, then by induction on dimL we can deduce that L can be
decomposed into a direct sum of f-invariant, pairwise orthogonal, one-dimensional
subspaces, which will prove the required result.

Indeed, if to E La, 10 0 0 and (lo, l) = 0, then

(lo,f(1)) = (f(A-'lo),f(1)) = (A-'10,1) = A-'(lo,1) = 0,

so that f (1) E La .
b) In the orthogonal case the arguments are analogous: the sufficiency of the

conditions is checked directly and induction on dim L is then performed. The cases
dim L = 1, 2 have been analysed in the preceding section. If dim L > 3 and f has a
real eigenvalue A, then we must again set L = La ® La and argue as above (we note
that here necessarily A = ±1). Finally, if f does not have real eigenvalues, then we
must select a two-dimensional f-invariant subspace Lo C L, which exists according
to Proposition 12.16 of Chapter 1. The discussion in the preceding section implies
that in this subspace the matrix of the restriction of f in any orthonormal basis
will have the form A(O). Therefore, it remains to verify that the subspace La is
likewise f-invariant. Indeed, if (10,1) = 0 for all to E Lo, then

(la, f(1)) _ (f(f-'(lo)), f(l)) = (f-'(10),1) = 0,

because f-1(lo) E Lo for all to E Lo. This completes the proof.
c) Let f (4) = A;1;, i = 1, 2, Then

(11,12) = (1(h),f(12)) = A1)2(11,12)

Since JAd2 = 1, for Al 0 A2 we have A1.12 1. Therefore, (11,12) = 0. This
argument is applicable simultaneously to the unitary and orthogonal cases. This
completes the proof.

7.5. Corollary ("Euler's theorem"). In a three-dimensional Euclidean space,
any orthogonal mapping f which does not change the orientation (that is, an element
of the group SO(3)) is a rotation with respect to some axis.
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Proof. Since the characteristic polynomial of f is of degree 3, it necessarily has
a real root. If this is the only root, then it must equal one, because det f = 1. If
there is more than one real root, then all the roots are real, and the combinations
(1,1,1) or (1, -1, -1) are possible. In either case we have the eigenvalue 1. The
corresponding characteristic subspace is an axis of rotation, and induces an element
of SO(2), that is, a rotation by some angle, in a plane perpendicular to it.

§8. Self-Adjoint Operators

8.1. In Chapter I we saw that diagonalizable operators form the simplest and most
important class of linear operators. It turns out that in Euclidean and unitary spaces
operators with a real spectrum, that are diagonalizable in some orthonormal basis,
play a very special role. In other words, these operators realize real stretching of
the space along a system of pairwise orthogonal directions.

Let {e1, ... e } be an orthonormal basis in L and let f : L -. L be an operator,
for which f(ei) = Aiei, Ai E it, i = 1, ... , n. It is not difficult to verify that it has
the following simple property:

(1 (li),12) = (11i f(l2)) for all 11i12 E L.

Indeed,

(f( xiei),Eyjej)_ Aixiyi for

(E xiei, f (` yjej)) _ Aixiyi for

(1)

(in the unitary case the fact that Ai are real was used in the second formula). Oper-
ators with the property (1) are called self-adjoint operators, and we have established
the fact that operators with a real spectrum, that are diagonalizable in an orthonor-
mal basis, are self-adjoint. We shall soon prove the converse assertion as well, but
we shall first study the property of self-adjointness more systematically.

8.2. Adjoint operators in spaces with a bilinear form. In the first part of
this course we showed that for any linear mapping f : L M there exists a unique
linear mapping f' : M' - L' for which

(f'W), 1) = (»i %f(!)),

where m' E M', I E L and the parentheses indicate the canonical bilinear mappings
L*xL - K, M'xM -

In particular, if M = L, then the operator f : L - L corresponds to an
operator f' : L' -+ V. We shall now assume that a non-degenerate bilinear form
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g : L x L - X, determining the isomorphism y : L - L', exists on L. Then,
identifying L' with L by means of g'1, we can study f', more precisely g-1 of* og",
as an operator on L. We shall denote it as before by f' (it would be more accurate
to write, for example, f4 , but f' in the old sense will no longer be used in this
section). Evidently, the new operator f' is uniquely defined by the formula

g(f'(1), m) = g(l, f(m)).

It is called, as before, the adjoint off (with respect to the inner product g).
In the sesquilinear case g" defines an isomorphism of L to L', and not to V.

Therefore, the operator f' : L' -+ L', which is defined as P(m) = should
transfer to L with the help of this isomorphism. The transferred operator g"- to f og :
L L is linear. It should be denoted by f+, but we shall retain the more traditional
notation f'. Then, the following formula will also hold in the sesquilinear case:

g(f*(1), m) = g(l, f(m)).

The operation f i- f' is linear if g is bilinear, and antilinear if g is sesquilinear.
The operators f : L - L with the property f* f in Euclidean and finite-

dimensional unitary spaces are called self-adjoint; also symmetric in the Euclidean
case and Hermitian in the unitary case. This terminilogy is explained by the fol-
lowing simple remark.

8.3. Proposition. If the operator f : L -' L in an orthonormal basis is defined
by the matrix A, then the o, erator f' is defined in the same basis by the matrix A'
(Euclidean case) or At (unitary case).

In particular, an operator is self-adjoint if and only if its matrix in an or-
thonormal basis is symmetric or Hermitian.

Proof. Denoting the inner product in L by parentheses and vectors by-columns of
their coordinates in an orthonormal basis, we have

(f(z), y) = (Ax-)`y = (iA'jj= e4(A`y-) = (ij*())

(Euclidean case). It follows that the matrix f' equals A'. The unitary case is
analysed analogously.

8.4. Self-adjoint operators and scalar products. Let L be a space with a
symmetric or Hermitian inner product (, ). For any linear operator f : L - L we
can determine a new inner product (, )1 on L by setting

(11,12 )1 = (All), 12).
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Suppose that L is non-degenerate, so that we can use the concept of an adjoint
operator. Then

(12,11)1 = (f(12),11) = (12,f'(11)) = (f'(11),12) =

in the Euclidean case, and analogously

(12,11)1 = (f(12),11) = (12, f'(11)) = (f'(11),12) = (11,12)1

in the unitary case. Therefore, if the operator f is self-adjoint, then the new met-
ric (11i12)1 constructed according to it will be, as before, symmetric or Hermitian.
The converse is also true, as is easily verified directly or with the help of Proposi-
tion 8.3.

We have thus established a bijection between sets of self-adjoint operators on
the one hand and between symmetric inner products in a space in which one non-
degenerate inner product is given on the other. In the Euclidean and unitary cases,
after selecting an orthonormal basis, the correspondence is easily described in matrix
language: the Gram matrix ( , )1 is the transpose of the matrix of the mapping f.

We shall now prove the main theorem about self-adjoint operators, which is
parallel to Theorem 7.4 on orthogonal and unitary operators and is closely related
to it.

8.5. Theorem. a) In order that the operator f in a finite-dimensional Euclidean
or unitary space be self-adjoint it is necessary and sufficient that it be diagonalizable
in an orthonormal basis and have a real spectrum.

b) The eigenvectors of a self-adjoint operator corresponding to dif'erent eigen-

values, are orthogonal.

Proof a) We verified sufficiency at the beginning of this section. The fact that the
spectrum is real in the unitary case is easily established. Let A be an eigenvalue of
f, and let I E L be the corresponding eigenvector. Then

AY, 1) = (f(1).1) = (1,f(1)) = A(l,1),

whence A = a, because (1,1) # 0. The orthogonal case is reduced to the unitary
case by the following device: we examine the complexified space Lc and introduce
on it a sesquilinear inner product according to the formula

(11+i12,13+i14)=(11,13)+(12,4)+i(12,13)-i(11,14)-

A simple direct verification shows that Lc transforms into a unitary space and fc
transforms into an Hermitian operator on it. The spectrum of f c coincides with
the spectrum of f, because in any R.-basis of L, which is also a C-basis of Lc, f
and f c are specified by identical matrices. Therefore the spectrum of f is real.
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Further, both cases can be studied in parallel and induction on dim L can be
performed. The case dim L = 1 is trivial. For dim L > I we select an eigenvalue A
and the corresponding characteristic subspace Lo, and then set L1 = Lo . Proposi-
tion 3.2 implies that L = Lo ® L1. The subspace L1 is invariant with respect to f,
so that if to E Lo, lo # 0 and I E L1, that is, (lo,1) = 0, then

(10,1(1)) = (f(lo),1) = A(10' 1) = 0,

so that f (l) E L. By the induction hypothesis the restriction of f to L1 is diago-
nalized in the orthonormal basis of L1. Adding to it the vector to E Lo, blot = 1,
we obtain the required basis of L.

b) Let f(11) = A1l1,f(12) = A212. Then

Al (11,12) _ (1(11),12) = (11,1(12)) = A2(11,12),

whence it follows that if Al 54 A2, then (11,12) = 0.

8.6. Corollary. Any real symmetric or complex Hermitian matrix has a real
spectrum and is diagonalizable.

Proof. We construct, in terms of the matrix A, a self-adjoint operator in the
coordinate space R" or C" with a canonical Euclidean or unitary metric and apply
Theorem 8.5. Even more can be gleaned from it: a matrix X, such that X-l AX is
diagonal, exists in 0(n) or U(n), respectively.

8.7. Corollary. The mapping exp : u(n) -+ U(n) is surjective.

Proof. The Lie algebra u(n) consists of anti-Hermitian matrices (see §4 of Chap-
ter 1), and any anti-Hermitian matrix has the form iA, where A is a Hermitian
matrix. In order to solve the equation exp(iA) = U for A, where U E U(n), we
realize U as a unitary operator f in a Hermitian coordinate space C". Then, ac-
cording to Theorem 7.4, we find in C" a new orthonormal basis lei.... ten} in
which the matrix f acquires the form diag(e1 1, ... , eim" ), define in this basis the
operator g by the matrix diag(qS1i... , 0"), and denote by A the matrix of g in the
starting basis. Evidently, exp(ig) = f and exp(iA) = U.

8.8. Corollary. a) Let 91i92 be two orthogonal or Hermitian forms in a finite-
dimensional space L, and let one of them, say gl, be positive-definite. Then in the
space L there exists a basis whose Gram matrix with respect to 91 is a unit matrix,
and is diagonal and real with respect to 92-

b) Let 91,g2 be two real symmetric or complex Hermitian symmetric forms
with respect to the variables z1r ... , x"; yl,... , y", and let gl be positive-definite.
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Then, with the help of a non-singular linear substitution of variables (common to
both i and y+) these two forms can be written as

n n

g1(E,

y
_ xiE/i; 92(x,' _ Aizid/i, Ai E R,

i=I i=1

or
n n

g1(Z,1%) _ xi1/i; g2(x, yam) = A,Z l1,, ). E R.
i=1 i=1

Proof. Both formulations are obviously equivalent. To prove them we examine
(L, g1) as an orthogonal or unitary space, rewrite 91 (11, 12) as (11, 12) and represent
92(11,12) in the form (11,12)x, where f : L L is some self-adjoint operator, as was
done in §8.4. Next we find the orthonormal basis of L in which f is diagonalized.
The remark at the end of §8.4 implies that this basis will satisfy the requirements
of the corollary (more precisely, the assertion a)).

8.9. Orthogonal projection operators. Let L be a linear space over K, and
let its decomposition into the direct sum L = L1 ® L2 be given. As was demon-
strated in Chapter 1, it determines two projection operators pi : L -+ L such that
im pi = Li, idL = p1 + p2, p1p2 = p2p1 = 0, pi = pi. The eigenvalues of the
projection operators equal 0 or 1.

If L is a Euclidean or unitary space and L2 = L', then the corresponding
orthogonal projection operators are diagonalized in an orthonormal basis of L which
is the union of orthonormal bases of L1 and L2, and are therefore self-adjoint.
Conversely, any self-adjoint projection operator p is the operator of an orthogonal
projection onto a subspace. Indeed kerp and imp are spanned by the eigenvectors
of p corresponding to eigenvalues 0 and 1 respectively, so that kerp and imp are
orthogonal according to Theorem 8.5 and L = ker p (D imp.

Further, if the self-adjoint operator f is diagonalized in the orthonormal basis
lei), f(ei) = Aiei and pi is the orthogonal projection operator of L on the subspace
spanned by ei, then

n

f = Aipi (2)
i.1

This formula is called the spectral decomposition of the operator f.
It may be assumed that Ai runs through only pairwise different eigenvalues,

and pi is the operator of an orthogonal projection on the complete root subspace
L(Ai); equation (2) remains correct.

Theorem 8.5 can also be extended to (norm) bounded (and with certain compli-
cations to unbounded) self-adjoint operators in infinite-dimensional Hilbert spaces.
This extension, however, requires a highly non-trivial change in some basic con-
cepts. The main problems are associated with the structure of the spectrum: in the
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finite-dimensional case A is the eigenvalue of f, if and only the operator Aid - f
is invertible, while in the infinite case the set of points of non-invertibility of the
operator A id- f can be larger than the set of eigenvalues off : for points A0 not iso-
lated in the spectrum, there are, generally speaking, no eigenvectors. On the other
hand, it is precisely the set of points of non-invertibility of the operator aid - f that
serves as the correct extension of the spectrum in the infinite-dimensional case. This
shortage of eigenvectors requires that many formulations be modified. The main
result is an extension of equation (2) where, however, the summation is replaced by
integration.

We shall confine our attention to a description of several important principles
for examples where these difficulties do not arise.

8.10. Formally adjoint differential operators. Consider the space of real
functions on the interval [a, b] with the inner product

(f,9) =
J

f(z)9(r)dr.b

a

Suppose that the operator transforms it into itself. According to the formula for
integration by parts,

(K,g) + d= fgla = f(b)9(b) - f(a)9(a)

Therefore, if the space consists only of functions that assume identical values at the
ends of the interval, then

if-, g) = (f, - , ) ,

that is, in such a space the operator - is the adjoint of the operator d W.

Applying the formula for integration by parts several times or making use of
the formal operator relation (f o ... of,,)* = f,, o ... o f, , we find that on such spaces

o Qi (x), (3))li=fto F at(x) ;1 d ;

where the notation , oa; for the operator means that on applying it to the function
f (c), we first multiply it by a;(x) and then differentiate it i times with respect to
x. Equation (3) defines the operation of taking the (format) adjoins of differential
operators: D u.-. D. The operator D is called formally self-adjoint, if D = D. The
word "formally" here reminds us of the fact that the definition does not indicate
explicitly the space on which D is realized as a linear operator.

If the inner product is determined with the help of the weight G(z)

(f, 9)G = J G(x)f(x)9(x)dx,
+a
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then obvious calculations show that instead of D' we must study the operator
G-1 o D' o G (assuming that G does not vanish); it is precisely this operator that
is the candidate for the role of an operator adjoint to D with respect to (f, 9)G

We shall show that the orthogonal systems of functions studied in §4 consist
of the eigenfunctions of self-adjoint differential operators.

a) Real Fourier polynomials of degree < N. The operator , which is formally
self-adjoint, transforms this space into itself and is self-adjoint in it. In addition,
its eigenvalues equal zero (multiplicity 1) and -12, -22, ... , -N2 (multiplicity 2).
The corresponding eigenvectors are 1 and {cos nx,sin nz}, 1 < n < N.

b) Legendre polynomials. The operator

2 1

(x2 - 1)dx2 + 2xdx TX o [(z2 - 1)d
J

is formally self-adjoint and transforms the space of polynomials of degree < N into
itself. The obvious identity

(x2 - 1)" = 2nx(x2 -
1)n,

(x2 -

1)dxd

holds whence, according to Leibnitz's formula applied to both sides,

dn+1
d.Tl [(x2 - 1)dz(x2

d"+2 do+l
_ (z2

- 1) dx"+2
(x2 - 1)" + 2(n + 1)x dx"+1(x2 - 1)"+

+n(n + 1) _ (z2 - 1)" = 2nx
dx+1

+1(x2 - 1)" + 2n(n + 1)d (x2 - 1)".

Dividing the last equality by 2'n! and recalling the definiton of Legendre polyno-
mials we obtain:

{(x2
- 1)d + 2z d_] P"(x) = n(n + 1)P"(z).

Thus the operator (x2 - 1) + 2x in the space of polynomials of degree < N
is diagonalized in an orthogonal basis consisting of Legendre polynomials and has a
simple real spectrum. Therefore it is self-adjoint.

Of course, self-adjointness in this space could have been verified also by direct
integration by parts: a term of the type fgll 1 vanishes here due to the factor
x2 - 1 in the coefficients of the operator. Then from the results of this section
and Theorem 8.4, a different proof is obtained for the pairwise orthogonality of the
Legendre polynomials.
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We leave to the reader the verification and interpretation in terms of linear
algebra of the corresponding factors for Hermite and Chebyshev polynomials (don't
forget the weight factors G(x) !).

c) The Hermite polynomial H,, (r) _ (-1)" e='(e-=') is the eigenvector
with the eigenvalue -2n of the operator

K=d -2xd .

The function e-T2/2 H"(x) _ (-1)"e12/2 r(e_x2) is the eigenvector of the
operator

2

H a2-x2

with the eigenvalue -(2n + 1).
The first assertion is verified by direct induction on n, which we omit. To prove

the second assertion we examine the auxiliary operator

It is easy to verify that

= -2M.[H, M] = HM- MH = -2 (dx - -T)

From here it follows that if f is an eigenfunction of the operator H with eigenvalue
A, then M f is an eigenfunction of the operator H with eigenvalue A - 2:

HMf = [H,M]f +MHf = -2Mf +AMf = (A - 2)Mf.

Since H(e_='/2) = -e_x212, we obtain that M"(e'12/2) is an eigenfunction for H
with eigenvalue -(2n + 1) for all n > 0. On the other hand a direct check shows
that

es2

'2M(e a2I2f(x)) =
e=2 dx±(e-,2 f(X)),

whence it follows that e-s2/2H"(x) = (-1)"M"(e-=2/2), as required.
d) Chebyshev polynomial

Tn(x) _
((2)"n! 1- x2 "(1- 2)"-

n)! d

is the eigenvector with eigenvalue -n2 of the operator

d2 d
(1-Z2) dx2-x.
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11. Normal operators. Both unitary and self-adjoint operators in a unitary
space are a particular case of normal operators, which can be described by two
equivalent properties:

a) These are operators that are diagonalizable in an orthonormal basis.
b) These are operators that commute with their own conjugate operator.
Let us verify equivalence.
If lei) is an orthonormal basis with f(ei) = .lei, then f'(ei) = Aiei, so that

(f, f'] = 0 and b) follows from a).
To prove the converse implication we choose the eigenvalue A of the operator

f and set
LA = {l E LI if (1) = Al}.

We verify that f'(LA) C L. Indeed, if I E L, then

f(f`(I)) = f*(f(I)) = f, (M) = of*(1),

since f f' = f' f . From here it follows that the space La is f-invariant: if (1, Io) = 0
for all lo E L, then

(f(I),Io) = (l,f'(Io)) = 0.

The same argument shows that La is f'-invariant. The restrictions of f and f' to
L± evidently commute. Applying induction on the dimension of L, we can assume
that on La f is diagonalized in an orthonormal basis. Since the same is true for
LA, this completes the proof.

EXERCISES

1. Let f : L L be an operator in a unitary space. Prove that if 1(1(1), 1)1 < c1112
for all I E L and some c > 0, then

I(f(I),m)I +I(l,f(rn))I < 2clll ImI

for all 1, m E L.

2. Let f : L L be a self-adjoint operator. Prove that

I(f(l),1)I _< IfI 1112

for all I E L, where If I is the induced norm of f , and if c < If 1, then there exists a
vector I E L with

I(f(I),l)I > c1112.
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3. The self-adjoint operator f is said to be non-negative, f > 0 if (f (1)1) > 0 for
all 1. Prove that this condition is equivalent to non-negativity for all points of the
spectrum f.

4. Prove that the relation f > g : f - g > 0 is an order relation on the set of
self-adjoint operators.

5. Prove that the product of two commuting non-negative self-adjoint operators
is non-negative.

6. Prove that from each non-negative self-adjoint operator it is possible to extract
a unique non-negative square root.

7. Calculate explicitly the second-order correction to the eigenvector and eigen-
value of the operator Ho + EHl.

8. Let f be a self-adjoint operator, w E C, imw # 0. Prove that the operator

g=(f-wid)(f-wid)-l
is unitary, its spectrum does not contain unity and

f = (wg - w id) (g - id)-1.

9. Conversely, let g be a unitary operator, whose spectrum does not contain unity.
Prove that the operator

f =(wg-a, id)(g-id)''

is self-adjoint and
g= (f - wid)(f - wid)'l.

(The mappings described here, which relate the self-adjoint and unitary op-
erators, are called the Cayley transformations. In the one-dimensional case they
correspond to the mapping a -. ", which transforms the real axis into the unita-w
circle.)

10. Let f : L L be any linear operator in a unitary space. Prove that f* f is a
non-negative self-adjoint operator and that it is positive if and only if f is invertible.

11. Let f be invertible and rl = ff', rs = J/, where rl, rs are positive
self-adjoint operators. Prove that

f = rlul = u2r2,
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where u1i u2 are unitary. (These representations are called polar decompositions of
the linear operator f , where U1, u2 are respectively the right and left phase factors
off . In the one-dimensional case, a representation of non-zero complex numbers in
the form reid is obtained.)

12. Prove that the polar decompositions f = r1u1 = u2r2 are unique.

13. Prove that the polar decompositions also exist for non-invertible operators f,
but only r1 and r2 are determined uniquely, and not the unitary cofactors.

§9. Self-Adjoint Operators in Quantum Mechanics

9.1. In this section we shall continue the discussion of the basic postulates of
quantum mechanics which we started in §6.8.

Let H be the unitary state space of a quantum system. In physics, specific
states are characterized by determining ("measuring") the values of some physical
quantities, such as the energy, spin, coordinate, momentum, etc. If the unit of
measurement of each such quantity as well as the reference point ("zero") are chosen,
then the possible values are real numbers (this is essentially the measurement of
scalar quantities), and we shall always assume that this condition is satisfied.

The third (after the principle of superposition and interpretation of inner prod-
ucts as probability amplitudes) postulate of quantum mechanics consists of the
following.

With every scalar physical quantity, whose value can be measured on the states
of the system with the state space 71, there can be associated a self-adjoint operator
f 1i -+ ?{ with the following properties:

a) The spectrum off is a complete set of values of the quantity which can be
determined by measuring this quantity in different states of the system.

b) If' E ii is the eigenvecior of the operator f with eigenvalue A, then in
measuring this quantity in a state 1 the value A will be obtained with certainty.

c) More generally, by measuring the quantity f in a state r(,, 101 = 1, we
can determine the value A from the spectrum of f with a probability equal to the
square of the norm of the orthogonal projection of rb on the complete characteristic
subspace ?{(A) corresponding to A.

Since, according to Theorem 8.4, ?1 can be decomposed into an orthogonal
direct sum ®m 1 ?{(A1), Ai Al for i 96 j, we can expand' in a corresponding sum
of projections 01 E H(Ai ), i = 1, ... , m. Pythagoras's theorem

m

1=k1I2=Ei*i12
i=1
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is then interpreted as an assertion about the fact that by performing a measurement
of f on any state 0, we shall obtain with probability 1 one of the possible values of

f
Physical quantities, which we mentioned above, and the corresponding self-

adjoint operators are also called observables. The postulate about observables is
sometimes interpreted more broadly and it is assumed that any self-adjoint operator
corresponds to some physical observable.

In infinite-dimensional spaces ?l these postulates are somewhat altered. In

particular, instead of b) and c) one studies the probability that in measuring f in
the state tP the values will fall into some interval (a, b) C R. With this interval one
can also associate a subspace x(a.b) C 7{ - the image of the orthogonal projector
P(a,b) on (Da,E(a,b) 7{(A;) in the finite-dimensional case - and the probability sought

equals

IP(a,b)'I'12 = (il',P(a,b)1')

In addition, in the infinite-dimensional case it can happen that the operators of
observables are defined only on some subspace xo C 7{.

This terminology is related to the concepts introduced in §6.8 as follows. A
filter BX is a device that measures the observable corresponding to the orthogonal
projection operator on the subspace generated by X. It is assigned the value 1, if the
system passes through the filter and 0 otherwise. A furnace A,` is a combination of
a device that transforms the system, generally speaking, into different states and a
filter Bp which passes only systems which are in the state fi. The recipe given in
§6.8 for calculating probabilities, evidently, agrees with the recipe given above in
§9.lb,c.

In this example it is evident that a device which measures an observable, say
BX, in the state ,b, generally speaking changes this state: it transforms the system
into the state x with probability I(,' X)12 and "annihilates" the system with prob-
ability 1 - I( O, X)12. Hence the term "measurement" as applied to this interaction
of the system with the measurement device can lead to completely inadequate in-
tuitive notions. Classical physics is based on the assumption that measurements
can in principle be performed with as small a perturbation as desired of the sys-
tem subjected to the measurement action. The term "measurement" is nevertheless
generally used in physics texts, and we have found it necessary to introduce it here,
beginning first with the less familiar, but intuitively more convenient, "furnaces"
and "filters".

9.2. Average values and the uncertainty principle. Let f be an observable,
{A;} its spectrum, and ?l = ®. ?i(A;) the corresponding orthogonal decomposition.
As already stated, in the state ifi, j J' = 1, f assumes the value A, with probability
(ii, p;O), where p; is the orthogonal projection operator onto f(A;). Therefore, the
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average value f,p of the quantity f in the state b', obtained from many measurements,
can be calculated as

a.(+G, pi+G) = E(+G, A1pio) = (tb, f(+G))

(we repeat that I 'I = 1).
Our quantity (V,, f (X)) is written in Dirac's notation as (XIf 1,P). The part f 10)

of this symbol is the result of the action of the operator f on the ket vector I0),
while (XIf is the result of the action of the adjoint operator on the bra vector W.

We return to the average values. If the operators f and g are self-adjoint, then
the operator f g, generally speaking, is not self-adjoint:

(f9)'=9'f'=9f#f9,
if f and g do not commute. However, f, f - A(A E R) and the commutator

If, g] = 1 (f g - g f) are, as before, self-adjoint.
The average value [(f - f,.)24 of the observable (f - fie)2 in the state r/i is the

mean-square deviation of the values off from their average value, or the variance
(spread) of the values of f. We set

Af,y = [(f - f,)2] .

9.3. Proposition (Heisenberg's uncertainty principle).For any self-adjoint
operators f,g in a unitary space

1

Proof. Using the obvious formula

If -fy,9-9o)=[f,91,

the self-adjointness of the operators f and g, and the Cauchy-Bunyakovskii-Schwara
inequality, we find (fl = f - j o, 9i = g - 9,y)

I([f,91o,+I')I = I((h9l -9ifi)+G,0I = 010, fop) -(fo',9i&)I =

= J2Im(gif',fj10)I 2I(9i0,fi')I <

< 2 (fi0,ftV') (9i4',9i0) = 2,&_f Sg,.

This shows that the average spread in the values of the non-commuting ob-
servables f and g, generally speaking, cannot be made arbitrarily small at the same
time. It is also said that the non-commuting observables are not simultaneously
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measurable; this formulation should be treated with the same precautions as the
term "measurement".

The application of Heisenberg's inequality to the case of canonically conjugate
pairs of observables, which by definition satisfy the relation I[f,g] = id, plays a
special role. For them

irrespective of the state tip. We note that in finite-dimensional spaces there are no
such pairs, because Tr[f,g] = 0, Tr id = dim7l. They do exist, however, in
infinite-dimensional spaces. The classical example is

i [x' i dx] = id.

These operators appear in quantum models of physical systems, which in the
classical language are called "particles moving in a one-dimensional potential".

We shall describe these and some other observables in greater detail.

9.4. a) Coordinate observable. This is the operator of multiplication by x in
the space of complex functions on R (or some subsets of R) with the inner product
f f (x)g(x) dx. It is presumed that the quantum system is a "particle moving in a
straight line in an external field".

b) Momentum observable. This is the operator i T in analogous function
spaces. (It is usually multiplied by Planck's constant h; this refers to the choice of
the system of units, which we do not consider.)

c) The energy observable of a quantum oscillator. This is the operator

i
d27 + x2 , once again in appropriate units.

d) Observable of the projection of the spin for the system "particle with spin
1/2". This is any self-adjoint operator with the eigenvalues ± 1/2 in a 2-dimensional
unitary space. Further details concerning it will be given later.

In examples a)-c) we intentionally did not specify the unitary spaces in which
our operators act. They are substantially infinite-dimensional and are constructed
and studied by means of functional analysis. We shall have more to say about
example d) below.

9.5. Energy observable and the temporal evolution of the system. The
description of any quantum system, together with its spatial states 7l, includes the
specification of the fundamental observable H : 7l 7l, which is called the energy
observable or the Hamiltonian operator, or the Hamiltonian.

The last of the basic postulates of quantum mechanics is formulated in terms
of it.
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If at time zero the system is in a state >G and the system evolved over a time
interval t as an isolated system, in particular, measurements were not performed on
it; then at the time t it will be in a state exp(-iHt)({'), where

00

exp(-iHt) = E (-iH' "tn
:W --. H

n-0

(see § 11 of Chapter 1).
The operator exp(-iHt) = U(t) is unitary. The evolution of an isolated sys-

tem is completely determined by the one-parameter group of unitary operators
{U(t)lt E R}.

The physical unit (energy) x (time) is called the "action". Many experiments
permit determining the universal unit of action - the famous Planck's constant
h = 1.055 x 10-34 erg. sec. In our formula, it is presumed that Ht is measured in
units of h, and it is most often written in the form exp ( ) . We shall drop h in
order to simplify the notation.

We also note that because the operator a-'et is linear, it transforms rays in 9{

into rays and indeed acts on the state of the system, and not simply on the vector >i.

The law of evolution can be written in the differential form

d (e-Wfo = -W(e-'Hto'

or, setting 0(t) = e-'Xt,,b,

dt = -iH,b (-k. HO, if we refer to the units )

The last equation is called Schrodinger's equation. It was first written for the case
when the states >b are realized as functions in physical space and H is represented
by a differential operator with respect to the coordinates.

In the following discussions, as usual, we shall confine our attention primarily
to finite-dimensional state spaces 9{.

9.6. Energy spectrum and stationary states of a system. The energy
spectrum of a system is the spectrum of its Hamiltonian H. The stationary states
are the states that do not change with time. The rays corresponding to them must
be invariant with respect to the operator a"H, that is, they must be one-dimensional
characteristic subspaces of this operator. But these are the same subspaces as those
of the operator H. The eigenvalue E1 of the Hamiltonian, or the energy level of the
system, corresponds to the eigenvalue e'tEi = cost E1 + i sintE, of the evolution
operator, which varies with time.
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If H has a simple spectrum, then the space 7f is equipped with a canonical
orthonormal basis, consisting of the vectors of the stationary states (they are de-
termined to within a phase factor e'#). If the multiplicity of the energy level E
is greater than one, then this level and the corresponding states are said to be
degenerate, and the multiplicity of E is called the degree of degeneracy.

All states corresponding to the lowest level, that is, the lowest eigenvalue of
H, are called ground states of the system; the ground state is unique, if the lowest
level is not degenerate. This term is related to the idea that a quantum system
can never be regarded as completely isolated from the external world: with some
probability, it can emit or absorb some energy. Under some conditions it is much
more probable that the energy will be lost rather than absorbed, and the system will
have a tendency to "fall down" into its lowest state and will subsequently remain
there. Therefore, states other than the ground state are sometimes called excited
states.

In §9.4d we wrote down the Hamiltonian of the quantum oscillator:

1 [_ 2

2

X +x21

In §8.10c it was shown that the functions form a system of stationary
states of the harmonic oscillator with energy levels E. = n + a, n
(A more detailed analysis shows that the energy is measured here in units of hw,
where the constant w corresponds to the oscillation frequency of the corresponding
classical oscillator.) Defining in a reasonable manner the unitary space in which one
must work, it can be shown that this is a complete system of stationary states. For
n > 0 the oscillator can emit energy E - E,, = (n - m)hw and make a transition
out of the state 1, into the state gym. In application to the quantum theory of the
electromagnetic field this is referred to as "emrssion of n-rn photons with frequency
w". The inverse process will be the absorption of n - m photons; in this case the
oscillator will make a transition into a higher (excited) state. It is important that
energy can be absorbed or transferred only in integer multiples of hw.

In the ground state the oscillator has a non-zero energy *hw which, however,
cannot be transferred in any way - the oscillator does not have lower energy lev-
els. The electromagnetic field in quantum models is viewed as a superposition of
infinitely many oscillators (corresponding, in particular, to different frequencies w).
In the ground state - the vacuum - the field therefore has an infinite energy, though
from the classical viewpoint it has a zero energy - since energy cannot be taken away
from it, it cannot act on anything ! This is a very simple model of the profound
difficulties in the modern quantum theory of fields. Neither the mathematical ap-
paratus nor the physical interpretation of the quantum theory of fields has achieved
any degree of finality. This is an open and interesting science.
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9.7. The formulas of perturbation theory. Situations in which the Hamil-
tonian H of the system can be viewed as the sum Ho + cH1, where Ho is the
"unperturbed" Hamiltonian while cHl is a small correction, a "perturbation", play
an important role in the apparatus of quantum mechanics. From the physical view-
point the perturbation often corresponds to the interaction of a system with the
"external world" (for example, an external magnetic field) or the components of
the system with one another (then Ho corresponds to the idealized case of a system
consisting of free, non-interacting components). From the mathematical viewpoint
such a representation is justified when the spectral analysis of the unperturbed
Hamiltonian Ho is simpler than that of H, and it is convenient to represent the
spectral characteristics of H by power series in powers of c, whose first terms are
determined in terms of Ho. We shall confine our attention to the following most
widely used formulas and qualitative remarks about them.

a) First order corrections. Let Hoeo = Aoeo, leol = 1. We shall find an
eigenvector and eigenvalues of Ho + eH1 close to eo and Ao respectively, to within
second-order infinitesimals with respect to c, that is, we shall solve the equation

(Ho+cHl)(eo +ce1) = (Ao+cA1)(eo+eel) +o(c2).

Equating the coefficients in front of c, we obtain

(Ho - Ao)e1 = (AI - HI)eo

The unknowns here are the number AI and the vector el. They can be found
successively with the help of the following device. We examine the inner product of
both parts of the last equality by eo. On the left we obtain zero, by virtue of the
self-adjointness of H - AO:

((Ho - Ao)el,eo) = (e1,(Ho - Ao)eo) = 0.

Therefore ((AI - HI)eo, eo) = 0 and since eo is normalized

AI = (H1eo,eo)

This is the first-order correction to the eigenvalue AO: the "shift of the energy level"
cA1 equals (cH1eo, eo), that is, according to the results of §9.12 it equals the average
value of the "perturbation energy cH1 in the state co.

To determine el we must now invert the operator Ho - A0. Of course, it is
not invertible, because Ao is an eigenvalue of Ho but, the right side of the equation,
(AI - HI)eo, is orthogonal to eo. Therefore it is sufficient for Ho - A0 to be invert-
ible in the orthogonal complement to eo, which we denote as eo . This condition
(in the finite-dimensional case) is, evidently, equivalent to the condition that the
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multiplicity of the eigenvalue Ao of Ho equals 1, that is, the energy level Ao must be
non-degenerate.

If this is so, then

el = ((Ho - Ao)I.o)-'(A1 - Hi)eo,

which gives the first-order correction to the eigenvector.
W e select an orthonormal basis {CO = e(°), e(1), ... , e(n)}, in which H o is diag-

onal with eigenvalues Ao = ) , ( ° ) , A ( ' ) , . . , A(n) In the basis {e('),.. . , e(n)} of the
space eo , we have

n n

(Al - Hi)eo = D(A1 - Hl)eo,e('))e(') j:(Hleo,e('))e('),
i=1 i=1

whence
(Hteo,e(i))el

A° - A(1)
e

i=1

It is intuitively clear that this first-order correction could be a good approximation
if the perturbation energy is small compared to the distance between the level Ao
and a neighbouring level: e must compensate the denominator Ao - A(1). Physicists
usually assume that this is the case.

b) Higher order corrections. By analogy with the case analysed above we shall
show that when the eigenvalue Ao is non-degenerate, the (i + 1)st order correction
to (Ao, eo), can be found inductively under the assumption that the corrections of
orders < i have already been found. Let i > 1. We solve the equation

i+1 1+1 i+1

(Ho + eHt) E ekek)
=

:AI (Esei) + o(ci+2)
=0 1=o (j=O

for ei+l, Ai+t Equating the coefficients in front of ci+l, we obtain

(Ho - Ao)ei+l = (A1 - H;),-i + E Alei+1-t + Ai+ieo
1_2

As above, the left side is orthogonal to a°, whence

i
Ai+l = ((H1 - Ai)e1, co) - E Ai(ei+1-1, co),

1=2

t i+t
ei+t = ((Ho - Ao)I.i) [(Al - HI)ei + E A1ei+l-t

0 1=2

Thus all corrections exist and are unique.
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c) Series in perturbation theory. The formal power series in powers of e
00 Go

A,e', Eeie`,
i=o 1=o

where A; and e; are found from recurrence relations, are called perturbation series.
It can be shown that in the finite-dimensional case they converge for sufficiently
small e. In the infinite-dimensional case they can diverge; nevertheless, the first
few terms often yield predictions which are in good agreement with experiment.
Perturbation series play a very large physical role in the quantum theory of fields.
Their mathematical study leads to many interesting and important problems.

d) Multiple eigenvalues and geometry. In our previous calculations, the require-
ment that the eigenvalue Ao be non-degenerate stemmed from our desire to invert
Ho - A0 in eo and was formally expressed as the appearance of the differences
Ao - AM') in the denominators. It is also possible to obtain formulas in the general
case by appropriately altering the arguments, but we shall.confine our attention
to the analysis of the geometric effects of multiplicity. They are evident from the
typical case Ho = id: all eigenvalues equal one. A small change in Ho leads to the
following effects.

The eigenvalues become different, if this change is sufficiently general: this
effect in physics is called "splitting of levels", or "removal of degeneracy". For
example, one spectral line can be split into two or more lines either by increasing
the resolution of the instrument or by placing the system into an external field.
The mathematical model in both cases will consist of taking into account a small,
previously ignored correction to Ho (though sometimes the starting state space will
also change).

Consider now what can happen with eigenvectors. In the completely degenerate
case Ho is diagonalized in any orthonormal basis. A small change in Ho, removing
the degeneracy, corresponds to the selection of an orthonormal basis along whose
axes stretching occurs, and the coefficients of these stretchings. The coefficients
must not differ much from the starting value of A0, but the axes themselves can
be oriented in any direction. Thus the characteristic directions near a degenerate
eigenvalue now depend very strongly on the perturbation. Two arbitrarily small
perturbations of the unit operator with a simple spectrum can be diagonalized in
two fixed orthonormal bases rigidly rotated away from one another. This explains
why the differences Ao - Vl appear in the denominators.

§10. The Geometry of Quadratic Forms
and the Eigenvalues of Self-Adjoint Operators

10.1. This section is devoted to the study of the geometry of graphs of quadratic
forms q in a real linear space, that is, sets of the form x,,+1 = q(xl, ... , x,a) in W+ 1,
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and the description of some applications. One of the most important reasons that
these classical results are of great interest, even now, is that quadratic forms give
the next (after the linear) approximation to twice-differentiable functions and are
therefore the key to understanding the geometry of the "curvature"of any smooth
multidimensional surface.

In §§3 and 8 we proved general theorems on the classification of quadratic forms
with the help of any linear or only orthogonal transformations, so that here we shall
start with a clarification of the geometric consequences. We shall assume that we
are working in Euclidean space with the standard metric E,,"_1 x; . The disregard
of the Euclidean structure merely means the introduction of a rougher equivalence
relation between graphs. The plan of the geometric analysis consists in analysing
low-dimensional structures, where the form of the graph can be represented more
conveniently, and then studying multidimensional graphs in a low-dimensional sec-
tion in different directions. It is recommended that the reader draw pictures illus-
trating our text. We assume that the axis x"+i is oriented upwards, and the space
R" is arranged horizontally.

10.2. One-dimensional case. The graph of the curve x2 = Axi in R2 has three
basic forms: "a cup" (convex downwards) for A > 0, "a dome" (convex upwards)
for A < 0, and a horizontal line for A = 0. With regard to the linear classification,
admitting an arbitrary change in scale along the xl axis, these three cases exhaust
all possibilities: it may be assumed that A = ±1 or 0. In an orthogonal classification
A is an invariant: IAA determines the slope of the walls of the cup or of the dome,
which increases with IAA. The other characterization of IAA consists of the fact that
Tsf is the radius of curvature of the graph at the bottom or at the top (0, 0). Indeed,

the equation of a circle with radius R, tangent to the x3 axis at the origin, has the
s2form xi + (x2 - R)2 = R2, and near zero we have x2 -- .

10.3. Two-dimensional case. To analyse this case we use an orthonormal basis
in R2, in which q is reduced to a sum of squares with coefficients q(yl, y2) = AIy2+
+A2yz The straight lines spanned by the elements of this basis are called the prin-
cipal axes of the form q; generally speaking, they are rotated relative to the starting
axes. The numbers Al and A2 are determined uniquely, and are the eigenvalues of
the self-adjoint operator A, for which q(i) = .?AX (in the old coordinates). For
Al # A2 the axes themselves are also determined uniquely, but with Al = A2 they
can be chosen arbitrarily (provided they are orthogonal). For each coefficient Ai or
A2, there are three basic possibilities (Ai > 0, A; < 0, Ai = 0), but symmetry con-
siderations lead to four basic cases (of which only the first two are non-degenerate).

a) x3 = Alyi +A2y2, Al, A2 > 0. The graph is an elliptic paraboloid shaped like
a cup. The adjective "elliptic" refers to the fact that the projection of the horizontal
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sections AIy2 + A2y2 = c with c > 0 are ellipses with semi-axes JcA 1 oriented
along the principal axes of the form q (circles if Al = AZ). (These projections are
contour lines of the function q.) The noun "paraboloid" refers to the fact that the
sections of the graph by the vertical planes ay1 +by2 = 0 are parabolas (for Al = A2
the graph is a paraboloid of revolution).

The case Al, A2 < 0 is the same cup, but turned upside down.
b) x3 = AlyI - A2y2, A1,A2 > 0. The graph is a hyperbolic paraboloid. The

contour lines of q are hyperbolas, non-empty for all values of x3r so that the graph
passes above and below the plane x3 = 0. Sections by vertical planes are, as before,
parabolas. The contour line x3 = 0 is a "degenerate hyperbola", converging to its
asymptotes - the two straight lines v/Tty, f VT2y2 = 0. These straight lines in
R2 are called "asymptotic directions" of the form q. If q is viewed as an (indefinite)
metric in R2, then the asymptotic straight lines consist of all vectors of zero length.
The asymptotic straight lines divide R2 into four sectors. For x3 > 0 the contour
lines q = x3 lie in a pair of opposite sectors; when x3 -- +0 from above, they
"adhere to" the asymptotes and transform into them when x3 = 0; for x3 < 0,
"passing straight through", they end up in the other pair of opposite sectors. The
vertical sections of the graph by planes passing through the asymptotic straight
lines are themselves these straight lines - "straightened out parabolas".

The case Aly1 + A2y2, Al, A2 > 0, is obtained from the one analysed above by
changing the sign of x3.

c) x3 = Ayi, A > 0. Since the function does not depend on y2, the sections of
the graph by the vertical planes y2 = const have the same form: the entire graph
is swept by the parabola x3 = Ayi in the (Y1, Z3) plane as it moves along the y2
axis and is called a parabolic cylinder. The contour lines are pairs of straight lines
y1 = ±'A'; when x3 = 0 they coalesce into a single straight line; the entire
graph lies above the plane x3 = 0.

The case x3 = Ay',A < 0 is obtained by "flipping".
d) x3 = 0. This is a plane.

10.4. General case. We are now in a position to understand the geometry of
the graph q(xl,... , xn) for arbitrary values of n.

We transfer to the principal axes in R", that is, to the orthonormal basis in
which q(yl, ... , y,) = Z!', A, yi , A 1 ... Am # 0. As above, they are determined
uniquelyifm=nandA1 Al fori,4jorifm=n-1andA;96 A,forig6j.
The form q does not depend on the coordinates yn,+1,... , yn, so that the entire
graph is obtained from the graph Z71 A,yi2 in R"I by translation along the
subspace spanned by {en,+1 , ... , en }. In other words, along this subspace the graph
is "cylindrical". It is easy to verify that it is precisely the kernel of the bilinear form
that is polar with respect to q, and is trivial if and only if q is non-degenerate.
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Let q be non-degenerate, that is, m = n. It may be assumed that Al i ... , J1r >

> 0, A.+1, A.+. < 0, that is (r, s) is the signature of the form q. If the form
q is positive-definite, that is, r = n, s = 0, then the graph has the form of an n-
dimensional cup: all of its sections by vertical planes are parabolas, and all contour

lines q = c > 0 are ellipsoids with semi-axes cap 1 oriented along the principal
axes. The equation of this ellipsoid has the form

x'
)2

ial C 1
'

that is, it is obtained from the unit sphere by stretching along the orthogonal
directions. In particular, it is bounded: it lies entirely within the rectangular par-

allelepiped Ixi < c.17 1 , i = 1, ... , n. We shall verify below that the study of the
variations of the lengths of the semi-axes in different cross sections of the ellipsoid
(also ellipsoids) gives useful information on the eigenvalues of self-adjoint operators.

When r = 0 and s = n, a dome is obtained. In both cases the graph is called
an (n-dimensional) elliptic paraboloid.

The intermediate cases rs # 0 lead to multidimensional hyperbolic paraboloids
with different signatures. The key to their geometry is once again the structure of
the cone of asymptotic directions C in Rn, that is, the zero contour of the form
q(yl,...,yn) = 0.

It is called a cone because it is swept out by its generatrices: the straight line
containing a single vector in C lies wholly inside it. In order to form a picture of
the base of this cone we shall examine its intersection, for example, with the linear
manifold yn = 1:

n-1

-A;1 F,Ayi =I.
i=1

It is evident that the base is a level set of the quadratic form of the (n - 1)st variable.
The simplest case is obtained when it is positive-definite. Then this level set is an
ellipsoid, in particular, it is bounded, and our cone looks like the three-dimensional
cones studied in high school. This case corresponds to the signature (n - 1, 1) or
(1,n - 1); for n = 4 the space (R4,q) is the famous Minkowski space, which will be
studied in detail below. For other signatures C is much more complicated, because
its space"goes off to infinity". Sections of the graph of q by vertical planes passing
through the generatrices C coincide with these generatrices. For any other planes,
either "cups" or "domes" are obtained - the asymptotic directions separate these
two cases. The cone C therefore divides the space Rn\C into two parts, which are
swept out by the straight lines along which q is positive or negative, respectively.
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One of these regions is called the collection of internal folds of the cone C, the other
is the exterior region. The geometric meaning of the signature (r, s) can be roughly,
but conveniently, described by the following phrase: the graph of the form q passes
upwards along r directions and downwards along s directions.

Although we have been working with real quadratic forms, the same results
are applicable to complex Hermitian fortes. Indeed, the decomplexification of Cn is
R2n, and the decomplexification of the Hermitian form Ein= 1 a;,z;x,, aij = ai;, is
the real quadratic form. Decomplexification doubles all dimensions: in particular,
the complex signature (r, s) transforms into the real signature (2r, 2s).

We shall now briefly describe, without proof, two applications of this theory to
mechanics and topology.

10.5. Oscillations. Imagine first a ball, which rolls in the plane R2 under the
action of gravity along a channel of the form z2 = Ax?. The point (0, 0) is in all cases
one of the possible motions of the ball: the position of equilibrium. For A > 0 this
position is stable: a small initial displacement of the ball with respect to position
or velocity will cause it to oscillate around the bottom of the cup. For A < 0 it is
unstable: the ball will fall off along one of the two branches of the parabola. For
A = 0 displacements with respect to position are of no significance, but not so with
the velocity: the ball can remain at any point of the straight line z2 = 0 or move
uniformly in any direction with the initial momentum.

It turns out that the mathematical description of a large class of mechani-
cal systems near their equilibrium positions is modelled well qualitatively by the
multidimensional generalization of this picture: the motion of the ball near the
origin of coordinates along a multidimensional surface zn+1 = q(xl, ... , z1) under
the action of gravity. If q is positive-definite, any "small" motion will be close to
a superposition of small oscillations along the principal axes of the form q. Along
the null space of the form the ball can escape to infinity with constant velocity.
Along directions where q is negative the ball can fall off downwards. The presence
of both the null space and a negative component of the signature indicates that the
equilibrium position is unstable and casts doubt on the approximation of "small
oscillations". It is important, however, that when this equilibrium is stable, small
changes in the form of the cup along which the ball rolls (or, more technically, the
potential of our system) do not destroy this stability.

To understand this we return to the remark made at the beginning of the sec-
tion on the approximate distribution of any (say, thrice-differentiable) real function
f (z1, ... , zn). Near zero it has the form

n n
r

n
lf(zl,...,zn)= f(0,...,0)+a;zi+ E biixixl+o( lz,I2l
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where

ai = Of (0,..., 0), bid =
02f

8xi 8xioxj
Subtracting from f its value at zero and the linear part we find that the remainder
is quadratic, apart from higher order terms. This subtraction means that we are
studying the deviation of the graph f from the tangential hypersurface to this graph
at the origin. Denoting this tangent plane by Rn, we find that the behaviour of
f near zero is determined by a quadratic form with the matrix ( e(0, ... , 0)),
at least when this form is non-degenerate; otherwise higher order terms must be
taken into account. (For example, the graph xa = xi diverges to -oo on the left
and +oo on the right; graphs of quadratic functions do not behave in this manner.
The two-dimensional graph x3 = xi +2 is a "monkey's saddle", in one curvilinear
sector xj + xz < 0, diverging downwards - "for the tail".)

A point at which the differential df = E
1

T dxi vanishes (that is, = 0
for all i = 1, ... , n), is called a critical point of the function f (in our examples this
was the origin of coordinates). It is said to be non-degenerate, if at this point theis

s- X!

point thform

Ei j-1 Oxiix, is non-degenerate. The preceding discussion
can be summarized in one phrase: near a non-degenerate critical point the graph
of the function is arranged relative to the tangential hyperplane like the graph of its
quadratic part. It can now be shown that a small change in the function (together
with its first and second derivatives) can only slightly displace the position of a non-
degenerate critical point, but does not change the signature of the corresponding
quadratic form and therefore of the general behaviour of the graph (in the small).

It can also be shown that near a non-degenerate critical point it is possible to
make a smooth and smoothly invertible (although, generally speaking, non-linear)
substitution of coordinates yi = yi (xl , ... xn), i = I,..., n, such that in the new
coordinates f will be precisely a quadratic function:

n

f(yl,...,yn)=f(0'...,0)+ E bijyiyj.
ij=1

A rigorous exposition of the theory of small oscillations is given in the book
by V.I. Arnol'd entitled "Mathematical Methods of Classical Mechanics", Nauka,
Moscow (1974),Chapter 5.

10.6. Morse theory. Imagine in an (n+1)-dimensional Euclidean space Rn+1 an
n-dimensional, smooth, bounded hyperplane V, like an egg or a doughnut (torus) in
R3. We shall study the section of V by the hyperplane zn+1 = const. Suppose that
there exists only a finite number of values of ci,... , can, such that the hyperplanes
xn+1 = ci are tangent to V and moreover, at a single point vi E V. Near these
tangent points V can be approximated by a graph of a quadratic form xn+1 =

ci + gi(xl - x1(vi), ... , X. - xn(vi)), provided that V is in sufficiently general
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position (for example, the doughnut should not be horizontal). It turns out that
the most important topological properties of V, in particular, the so-called homotopy
type of V, are completely determined by the collection of signatures of the forms q,,
that is, an indication of how many directions along which V diverges downwards
and upwards near vi. The most remarkable thing is that although the information
about signatures of qi is purely local, the homotopy type of V reconstructed in
terms of it is a global characteristic of the form V. For example, if there are only
two critical points cl and c2 with signatures (n, 0) and (0, n), then V is topologically
structured like an n-dimensional sphere.

Details can be found in "Morse Theory" by John Milnor, Princeton University
Press,Princeton,N.J.(1963).

10.7. Self-adjjoint operators and multidimensional quadrics. Now let L
be a finite-dimensional Euclidean or unitary space, and f : L - L a self-adjoint
operator. We are interested in the properties of its spectrum. We arrange the
eigenvalues of f in decreasing order taking into account their multiplicities Al >

A2 > ... _> An and we select a corresponding orthonormal basis {e1, e2, ... , e }.
We return to the viewpoint of §8.4 according to which, a representation of f is
equivalent to a representation of a new symmetric or Hermitian form (f (11),12)
or a quadratic form qf(l) = (f(1),l) (in the unitary case it is quadratic on the
decomplexified space). In the basis {e1i... , e ) it acquires the form

n

igl(xl,...,xn) = Aix2

icl

or E AiIxi12
i=1

and thus the directions Rei (or Cei) are the principal axes of qf.
The simplest extremal property of the eigenvalues Ai is expressed by the fol-

lowing fact.

10.8. Proposition. Let S = {l E LI III = 1} be the unit sphere in the space L.
Then

Al = ,EaSx q/(1), An = min qf (1).les

Proof. Since Ixi12 > 0 and Al > ... > An, obviously,

An (ElZI2) S A,Ixil2 < Al (Ixi,2).

On the unit sphere the left side is An and the right side is Al. These values are
achieved on the vectors (0,...,0,1) and (1,0,...,0) respectively (the coordinates
are chosen in a basis {e1, ... , en } diagonalizing f).
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10.9. Corollary. Let Lk be the linear span of {el, ..., ek} and let Lk be the
linear span of Then

AL. =max{gf(l)IIESnLt}=min{gf(1)IIESnLk}.

Proof. Indeed, in obvious coordinates, the restriction of q1 to Lk has the form
E,"_k \,IX;I2 and to Lk the form Et=1 a;Iz,I2.

The following important extension of this result, in which any linear subspace
of L with codimension k - 1 is studied instead of Lk , is called the Fisher-Courant
theorem. It gives the "minimax" characterization of the eigenvalues of differential
operators.

10.10. Theorem. For any subspace L' C L with codimension k - 1, the following
inequalities hold:

Ak < max{q f(1)Il E S n L'} A,,-k+l >- min{g1(1)Il E S n L'}.

These estimates are exact for some L' (for example, Lk and respectively)
so that

Ak = minmax{gj(1)Il E S n L'}, maxmin{gf(1)Il E Sn L'}.

Proof. Since
dim L'+dimLk = (n - k + 1) + k = n + 1,

and dim(L' + Lk) < dim L = n, Theorem 5.3 of Chapter I implies that
dim(L' n Lk) > 1. Choose a vector lo E L' n L. n S. According to Corol-
lary 10.9, Ak = min{gf(l)II E S n Lk}, so that Ak < g1(lo) and, moreover,
Ak < max{gf(l)Il E S n L'}. The second inequality of the theorem is most eas-
ily obtained by applying the first inequality to the operator -f and noting that the
signs and order of the eigenvalues, in this case, are reversed.

10.11. Corollary. Let dim L/Lo = 1 and let p be the operator of the orthogonal
projection L -- Lo. We denote by Ai > AZ > ... > A'-1 the eigenvalues of the
self-adjoint operator pf : Lo -+ Lo. Then

Al>A'>AZ>AZ>...>A;,-1>An,

that is, the eigenvlaues off and pf alternate.

Proof. The restriction of the form q f to Lo coincides with qp f : (f (1),1) _ (p f (1),1)
if 1 E Lo. Therefore

Ak = max{qp f(1)Il E S n L'} = max{qf(1)Il E S n L'}
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for an appropriate subspace L' C Lo, with codimension k - 1 in La. This means
that in L it has the codimension k, whence Jlk+l < A'. Writing this inequality for
-f instead off , we obtain -Ak < -At, that is, X < ak. This completes the proof.

We leave to the reader to verify the following simple geometric interpretation of
Corollary 10.11. Assume that Al > A3 > ... > A,, > 0 and instead of the functions
qf(l) on S study the ellipsoid c : qf(1) = 1. Then its section to by the subspace
La is also an ellipsoid, the lengths of whose semi-axes alternate with the lengths of
the semi-axes of the ellipsoid e. Imagine, for example, an ellipsoid e in R$ and its
section by the plane to. The long semi-axis of to is not longer than the semi-axis
of e ("obviously"), but it is not shorter than the middle semi-axis of e. The short
semi-axis of to is not shorter than the short semi-axis of c ("obviously"), but it is
not longer than the middle semi-axis of e. The key question is: how does one obtain
a circle in a section ?

§11. Three-Dimensional Euclidean Space

11.1. The three-dimensional Euclidean space £ is the basic model of the New-
tonian and Galilean physical space. The four-dimensional Minkowski space M,
equipped with a symmetric metric with the signature (r+,r_) = (1,3) is a model
of the space-time of relativistic physics. For this reason at least, they deserve a
more careful study. They also have special properties from the mathematical view-
point, which are important for understanding the structure of the world in which
we live: the relationship between rotations in £ and quaternions and the existence
of a vector product; the geometry of vectors of zero length in M.

These special properties are conveniently expressed in terms of the relationship
of the geometries of £ and M to the geometry of the auxiliary two-dimensional uni-
tary space 11 called the spinor space. This relationship also has a profound physical
meaning, which became clear only after the appearance of quantum mechanics. We
have chosen precisely this manner of exposition.

11.2. Thus we fix a two-dimensional unitary space ?t. We denote by £ the real
linear space of self-adjoint operators in It with zero trace. Each operator f E.6 has
two real eigenvalues; they differ only in sign, because the trace, equal to their sum,
vanishes. We set

If = det f I = positive eigenvalue of f.

11.3. Proposition. E with the norm I I is a three-dimensional Euclidean space.
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Proof. In an orthonormal basis of 7L the operators f are represented by Hermitian
matrices of the form a b 1

b a
'sER,bEC,

that is, by the linear combinations

Re 6-

where o-1 i 0'2, o`3 are the Pauli matrices (see Exercise 5 in §4 of Chapter III):

al =
(0 1) _ r0

1 0
02 0=), 03= 1 0 01

Since of, 0'2, a3 are linearly independent over R, dimR 1= = 3.
We now set

(f, g) = 2 Tr'(fg)

This is a bilinear symmetric inner product, and if the eigenvalues of f equal ±A,

If I2
Tr(f2) = 1(A2 + A2) = I det f 1.

Obviously, A2 = 0 if and only if f = 0. This completes the proof.
We call a direction in t> a set of vectors of the form

R+f={afJa>0),

where f is a non-zero vector from E. In other words, a direction is a half-line in C.
The direction opposite to R+ f is R+(-f).

11.4. Proposition. There is a one-to-one correspondence between the directions
in E and decompositions of 7L into a direct sum of two orthogonal one-dimensional
subspaces 7{+®7L_. Namely, 7L+ is the characteristic subspace of ?f for the positive
eigenvalue of f corresponding to the direction R+f and L. is the same for the
negative eigenvalue.

Proof. x+ and 7{_ are orthogonal according to Theorem 7.4. Substituting a f for
f, a > 0, does not change 7{+ and 'H-. Conversely, if the orthogonal decomposition
7{ = 7{+ ®7t_ is given, then the set of operators f E C, stretching 7{ by a factor of
.A > 0 along 7{+ and by a factor -A < 0 along 7L_, forms a direction in E.

Physical interpretation. We identify E with physical space, for example, by
selecting orthogonal coordinates in E and in space. We identify 7{ with the space
of the internal states of a quantum system "particle with spin 1/2, localized near
the origin" (for example, an electron). Choosing the direction P.+ f C E, we turn
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on a magnetic field in physical space along this direction. In this field the system
will have two stationary states, which are precisely x+ and ?f_.

If the direction R+f corresponds, for example, to the upper vertical semi-axis
of the chosen coordinate system in physical space (the "z axis"), then the state
?{+ is called the state "with spin projection +1/2 along the z axis" (or "up spin"),
while W_ is correspondingly called the state "with spin projection -1/2" (or "down
spin"). This traditional terminology is a relic of prequantum ideas about the fact
that the observed spin corresponds to the classical observable "angular momentum"
- a characteristic of the internal rotation of the system and can therefore be itself
represented by a vector in E, which for this reason has a projection on the coordinate
axes in E. This is completely incorrect: the states of the system are rays in ?{, not
vectors in E. The disagreement with the classical interpretation becomes even more
evident for systems with spin s/2, s > 1, for which dim?{ = s + 1. The precise
assertion is stated in Proposition 11.4.

We have given an idealized description of the classical Stern-Gerlach (1922)
experiment. In this experiment silver ions which passed between the poles of an
electromagnet were used instead of electrons. Due to the non-homogeneity of the
magnetic field, the ions, which exist in states close to 11+ and ?{_ respectively, were
spatially separated into two beams, which made it possible to identify these states
macroscopically. The silver was evaporated in an electric furnace, and the magnetic
field between the poles played the role of a combination of two filters, separately
passing the states ?f+ and ?{_ .

We now continue the study of Euclidean space E.

11.5. Proposition. (f, g) = 0, if and only if fg + gf = 0.

Proof. We have

(f,9) =
2

Tr(fg) =
9

Tr(fg +9f) = !ir[(f +9)s - f2 - 92].

But f2 has one eigenvalue 111112, so that all squares of operators from 6 are scalars,
and therefore f g + g f is also a scalar operator, which vanishes if and only if its trace
vanishes.

11.6. Orthonorrnal bases in E. It is clear from the proof of Proposition 11.5
that the operators {e1, e2, e3} form an orthonormal basis if and only if

e1 = eZ = e3 = id; e;ej + eje; = 0, i 96 j.

In particular, if an orthonormal basis is chosen in 1, then the operators, rep-
resented in it by the Pauli matrices 0`1,0`:,0'3, form an orthonormal basis in E:

1 0
= a3 = 0O =

0
1 ; aioj +Ojo'i = 0, i i4 ).0'i = a22 ( )
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We can now explain the mathematical meaning of the Pauli matrices, proving the
converse assertion.

11.7. Proposition. For every orthonornal basis {e1,e2ie3} of the space E there
exists an orthonormal basis {hl,h2} of the space 7f with the property

Ae1 = a1, Ae2 = a2 or - 0`2, Ae3 = 0'3,

where Ae is the matrix of the operator e in the basis {hl,h2). It is determined to
within a complex factor of unit modulus.

Proof. The eigenvalues of e; are ±1. Let Ii = fl+ ® 7l_, where e3 acts on
x+ identically and on 7{_ by changing the sign. We first choose the vectors
hi E 7f+, h2 E ?{_, Ihil = Ihs1 = 1. They are determined to within factors
e'0l, e''02; the matrix of e3 in the basis {hi , h2 } is v3.

Next we have

el(hi) = ele3(hi) = -e3e1(hi),

so that el(hi) is a non-zero eigenvector of e3 with eigenvalue -1. Therefore
el(hi) = ah2. Analogously e1(h2) = Qhi. The matrix of el in the basis (h', h') is
Hermitian, and therefore a = Q. Finally, ei = id, and therefore a/3 = 1 = Ia12 =

= 1,812. Replacing {hi,h2} by {h1ih2} = {xh1',yh'2}, where IxI = IyI = 1, in order
to transform the matrix of el in the new basis into vi, we obtain

et(hi) = xei(hi) = xah2 = a'xy-'h2,

ej(h2) = yei(h',) = y Qhi = Q yx-'h1.

For this reason x and y must satisfy the additional condition xy ' = a-1; then
axy 1 = 8yx-1 = I automatically. We can set, for example x = 1 and y = a.

So in the basis {h1, h2} we have Ae3 = o,3i Ae1 = v1 i and this basis is deter-
mined to within a scalar factor of unit modulus. The same arguments as for e1

show that in such a basis Ae2 has the form C 0 , where I7I2 = 1. In addition,
7 /

the condition of orthogonality e1e2 + e2e1 = 0 gives

C1 of C1 of + C of C 0) -p,
that is, y + 7 = 0, whence y = i or y = -i. Therefore, Ae2 = 0`2 or Ae2 = -02.

11.8. Corollary. The space E is equipped with a distinguished orientation: the
orthonormal basis {e1,e2,e3} belongs to the class corresponding to this orientation
if and only if there exists an orthonormal basis {h1,h2} in?{ in which Ae, = o,,
a=1,2,3.



168 A. I. KOSTRIKIN AND Yu.I. MANIN

Proof. We must verify that if {ea} in the basis {hb} and {e;} in the basis {h'} are
represented exactly by the Pauli matrices, then the determinant of the matrix of
the transformation from {ea} to {e;} is positive, or that {ea} can be transformed
into {e,} by a continuous motion. We shall construct this motion, showing that
{hb} is transformed into {h,) by a unitary continuous motion: there exists a system
of unitary operators ft : 7{ - 71, depending on the parameter t E [0, 1], such that
fo = id, fl(hb) = hs and { ft(hl), ft(h2)} form an orthonormal basis of 7 for all t.
Then denoting by {gt(el),gt(e2),gt(e3)} the orthonormal basis of £ represented by
the Pauli matrices in the basis {ft(h1), ft(h2)}, we construct the required motion
in S.

Let {h;, h2} = {hl, h2}U. Since both bases are orthonormal, the transition
matrix U must be unitary. According to Corollary 8.7, it can be represented in the
form exp(iA), where A is a Hermitian matrix. Then for all t E A the matrix to is
Hermitian, the operator exp(itA) is unitary, and we can set

ft{hl,h2} = (hl,h2)exp(itA), 0 < t < 1.

This completes the proof.
The operators o,1/2,0'2/2,o-3/2 in 11 are called observables of the projections

of the spin on the corresponding axes in £: this terminology is explained by the
quantum mechanical interpretation in §11.5. The factor 1/2 is introduced so that
their eigenvalues would be equal to ±1/2.

11.9. Vector products. Let {el, e2, e3} be an orthonormal basis in £, belonging
to the noted orientation. The vector product in £ is determined by the classical
formula

(x1e1 + x2e2 + x3e3) x (yle1 + y2e2 + y3e3) =

_ (x2Y3 - x3Y2)et + (x3Y1 - xly3)e2 + (x1y2 - x2yi)e3.

A change in basis to another basis with the same orientation does not change the
vector product; if, on the other hand, the new basis is oppositely oriented, then the
sign of the product changes.

It is not difficult to give an invariant construction of the vector product in our
terms. We recall that anti-Hermitian operators in ?1 with zero trace form a Lie
algebra su(2) (see §4 of Part I). The space E can be identified with this Lie algebra,
dividing each operator from £ by i. Hence I £ has the structure of a Lie algebra.
We have

1 1 1
i 0a, i 0b = 2eabc = 0c,

where e123 = 1 and eabc are skew-symmetric with respect to all indices, or

[Oa,O'b] = 2teabcO'c-
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Therefore

It
3 S 3

Zac a, yb0'b = 21 E ZaQa x F r

b.l (a=1 (b=l

so that the vector product, to within a trivial factor, simply equals the commutator of
operators. This makes it possible to establish without any calculations the following
classical identities:

xxy""=-yxx;

xx(gx 7+:x(ixy')+yx(ix'=0.
There is one more method for introducing the vector product, simultaneously

relating it to the inner product and quaternions.

11.10. Quaternions. Like commutation, multiplication of operators from E,
generally speaking, takes us out of E: the Hermitian property and the condition
that the trace vanish break down at the same time. Indeed, the product of operators
from E lies in Rid + iE; in addition, the "real part" is precisely the inner product,
while the "imaginary part" is the vector product. Indeed,

Qaob = icabcQc for a $ b, {a,b,c} = 11, 2,31,

vaao= (1 0), a=1,2,3,

so that

or, as physicists write,

(i j)(E Q) = (z . li) o + 0 x Y ir, Q = (61, 02, 0'3)

It is evident from here that the real space of operators Rid + it is closed under
multiplication. Its basis consists of the following elements (in classical notation):

1 = co, i = -io-1, j = -io2i k = -ios

with the multiplication table

i2=j2=k2=-1, ij=-ji=k,

ki=-ik=j; jk=-kj=i.
In other words we obtain the division ring of quaternions in one of the tradi-

tional matrix representations (cf. "Introduction to Algebra", Ch.9,S4).
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11.11. The homomorphism SU(2) -' SO(3). We fix the orthonormal basis
{hi,h2} in 7{ and the corresponding orthonormal basis {el,e2,e3) in £, for which
A,i = oi. Any unitary operator U : 71 71 transforms {h1 i h2} into {h;, h2}.
This last basis corresponds to the basis {ei,e2,e3} and there exists an orthogo-
nal operator s(U) : E -+ E, which transforms {ei} into {e;}. By Corollary 11.8,
s(U) E SO(3), because the determinant of s(U) is positive.

Realizing E by means of matrices in the basis {h1,h2} we can represent the
action of s(U) on E by the simple formula

s(U)(A) = UAU-'

for any A E E. Indeed, this is a particular case of the general formula for changing
the matrix of operators when the basis is changed. We can now prove the following
important result.

11.12. Theorem. The mapping s, restricted to SU(2), defines a surjective
homomorphism of groups SU(2) -+ SO(3) with the kernel {±E2}.

Proof. It is evident immediately from the formula s(U) (A) = UAU-1 that
s(E) = id and s(UV) = s(U)s(V), so that s is a homomorphism of groups. Its
surjectivity is verified thus.

We choose an element g E SO(3) and let g transform the basis ((71,02,03) in
E into a new basis (0,02,03 We construct according to it the basis {h; ,h2} in
71, in which the operators o; are represented by the matrices oi. By Proposition
11.7 {hi, h2} exists, apart from the fact that the matrix 02, possibly, equals -02
and not 02. Actually, this possibility is excluded by Corollary 11.8; since g belongs
to SO(3) it preserves the orientation of E. The operator U, transforming {hl, h2}
into (h', h2}, satisfies the condition s(U) = g. It is true that it can belong only to
U(2) and not to SU(2). If det U = eiO, then a-i4'12U E SU(2). The matrix e-iml2U
transforms {h1ih2} into {e-i4'12hi,e-'4'12h2}, and this basis in 71 corresponds, as
before, to the basis {0i, o2, 03} in E. Therefore s(e'i'12U) = g also and we obtain
that s : SU(2) -+ SO(3) is surjective.

The kernel of the homomorphism s : U(2) -+ SO(3) consists only of the
scalar operators {e'Oid}: this follows from Proposition 11.7, according to which the
basis {hi, h2} is reconstructed from {e'1, e2, e3} precisely, apart from a factor of eiO.
The intersection of the group {ei# id} with SU(2) equals precisely {± id}, which
completes the proof.

The meaning of the homomorphism constructed is clarified in topology: the
group SU(2) is simply connected, that is, any closed curve in it can be contracted
by a continuous motion into a point, while for SO(3) this is not true. Thus SU(2)
is the universal covering of the group SO(3).
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We shall use the theorem proved above to clarify the structure of the group
SO(3), exploiting the fact that SU(2) has a simpler structure. Here it is appropriate
to quote R. Feynman:

"It is rather strange, because we live in three dimensions, but it is hard for
us to appreciate what happens if we turn this way and then that way. Perhaps
if we were fish or birds and had a real appreciation of what happens when we
turn somersaults in space, we could more easily appreciate such things." R.P.
Feynman, R.B. Leighton and M.Sands, The Feynman Lectures on Physics, Addison-

Wesley,New York, 1965, Vol.3,p.6-11.

11.13. Structure of SU(2). First of all, the elements of SU(2) are 2 x 2
matrices with complex elements, for which U` = U and det U = 1. From this it
follows immediately that

SU(2) _
Ra6

u) I Ia12 + Ib12 1 } .

The set of pairs ((a, b)I Ia12 + IbI2 = 1) in C2 transforms into a sphere with unit
radius in the realization of C2, that is l4:

(Re a)2 + (Ima)2 + (Re b)2 + (IM b)2 = 1.

Thus the group SU(2) is topologically arranged like the three-dimensional sphere in
four-dimensional Euclidean space.

We now write down a system of generators of the group SU(2), taking inspi-
ration from Corollary 8.7, according to which the mapping exp : u(2) - U(2) is
surjective. Direct calculation of the exponentials from the three generators of the
space su(2) gives:

1 cos i sin
1exp (2 itvi) _ (isint cost

L sin
exp (2 it12 - (csui22 cos Z) '

it/2
exp 12 ito3) = (e0 e_it/2

Any element
(a4

b) E SU(2), for which ab # 0, can be represented in the form

exp (2 i0o3) exp (I exp (2 iOO'3) _

_ cos le'4 i sin ze'
(i sin yoe' ros e-'
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where 0 < ¢ < 2a, 0 < 0 < u, -27r < r/' < 2w. For this it is sufficient to set
jai = 101, arga = Ali, argb = . (The elements of SU(2) with b =
0, evidently, have the form (2 ittio3) ; we leave it to the reader to determine the
elements for which a = 0).

The angles 0, 0, ' are called Euler angles in the group SU(2).

11.14. Structure of SO(3). We identified SU(2) topologically with the three-
dimensional sphere. The homomorphism s : SU(2) SO(3) transforms pairs of
elements ±U E SU(2) into a single point of SO(3). On the sphere they form
the ends of one of the diameters. Therefore SO(3) is topologically the result of
sewing the three-dimensional sphere at pairs of antipodal points. On the other
hand, pairs of antipodes of a sphere are in a one-to-one correspondence with straight
lines, connecting the points of the pair, in four-dimensional real space. The set of
such straight lines is called three-dimensional real projective space and is sometimes
denoted by RP3; later we shall study projective spaces in greater detail. Thus
SO(3) is topologically equivalent to RP3.

We now consider what the generators of SU(2), described in the preceding
section, are transformed into by the homomorphism s. In the standard basis
{0`1i o2, 03} of the space Ewe have

/
exp

1(2 itol) al exp `- 1
2 al,

exp

C2

itch on2exp C-2 ito1J = (cost)o2 - (sin1)a3,

exp (2 1to1 I c3 exp 1 - 2 ito1) = (sin 00'2 + (cos t)oo3.

Therefore
1 0 0

s (exp 12 1 ) = 0 cost -sin t
\\\ / 0 sin t cos t

is the rotation of a by an angle t around the axis Raj. It can be verified in an
analogous manner that s (exp (I itok)) is the rotation of E by an angle t around
an axis ok for k = 2 and 3 also. In particular, any rotation from SO(3) can be
decomposed into a product of three rotations with respect to 0`3, al, o,3 by the Euler
angles 0, 0, 0, and in addition 0 may be assumed to vary from 0 to 2w.

EXERCISES

1. Prove the following identities:

(xx9,i)=(E,E7x ),
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(i x y) x z - i x (y x z-) - (i, yji- i(y, z-).

(Hint: use the associative property of multiplication in the algebra of quaternions.)

2. In a three-dimensional Euclidean space, two axes z and z', making an angle 0,
are distinguished. A beam of electrons with spin projection +1/2 along the z axis
is introduced into a filter, which transmits only electrons with spin projection +1/2
along the z' axis. Show that the relative fraction of electrons passing through the
filter equals cos 2 ;.

§12. Minkowski Space

12.1. A Minkowski space M is a four-dimensional, real, linear space with a
non-degenerate symmetric metric with the signature (1,3) (sometimes the signature
(3,1) is used). Before undertaking the mathematical study of this space, we shall
indicate the basic principles of its physical interpretation, which form the basis for
Einstein's special theory of relativity.

a) Points. A point (or vector) in the space M is an idealization of a physical
event, localized in space and time, such as "flashes", "emission of a photon by an
atom", "collision of two elementary particles", etc. The origin of coordinates of M
must be regarded as an event occurring "here and now" for some observer; it fixes
simultaneously the origin of time and the origin of the spatial coordinates.

b) Units of measurement. In classical physics, length and time are measured
in different units. Since M is a model of space-time, the special theory of relativity
must have a method for transforming spatial units into time units and vice versa.
The method used is equivalent to the principle that "the velocity of light c is con-
stant": it consists of the fact that a selected unit of time to is associated with a
unit of length to = cto, which is the distance traversed by light over the period of
time to (for example, a "light second"). One of the units to or to is then assumed
to be chosen once and for all; after the second is fixed by the condition to = cto,
the velocity of light in these units equals 1.

c) Space-time interval. If 11, 12 E M are two points in Minkowski space, the
inner product (11-12,11 -12) is called the square of the space-time interval between
them. It can be positive, zero, or negative; in physical terms, time-, light-, or space-
like, respectively. (An explanation of these terms will be given below.) If 12 = 0,
the same terms are applied to the vector 11, depending on the sign of (11i11).

d) World lines of inertial observers. If on the straight line L C M at least
one vector is timelike, then all vectors are timelike. Such straight lines are called
the world lines of inertial observers. A good approximation to a segment of such a
line is the set of events occurring in a space ship, moving freely (with the engines
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off) far from celestial bodies (taking into account their gravitational force requires
changing the mathematical scheme for describing space-time and the use of "curved"
models of the general theory of relativity). We note that we have introduced into
the analysis thus far only world lines emanating from the origin of coordinates. An
inertial observer, who is not "here and now", moves along some translation 1 + L of
the timelike straight line L. Let 11,12 be two points on the world line of an inertial
observer. Then (11 - 12,11 -12) > 0, and the interval X11 - 121 = (11 - 12,11 - 12) 1/2
is the proper time of this observer, passing between events 11,12 and measured by
clocks moving together with him. The world line of the inertial observer is his proper
"river of time".

The physical fact that time has a direction (from past to future) is expressed
mathematically by fixing the orientation of each timelike straight line, so that the
length III of a timelike vector can be equipped with a sign distinguishing vectors
oriented into the future and into the past. We shall see below that the notion of
matching of two orientations, that is, the existence of a general direction of time
- but not of the times themselves - for two inertial observers, makes sense.

e) The physical space of an inertial observer. The linear subvariety

El =I+ L1 CM

is interpreted as a set of points of "instantaneous physical space" for an inertial
observer located at the point / of his world line L. The orthogonal complement
is taken, of course, relative to the Minkowski metric in M. It is easy to verify
that M = L ® Ll and that the structure of a three-dimensional Euclidean space is
induced in L1 (only with a negative-definite metric instead of the standard positive-
definite metric). All events corresponding to the points in L1 are interpreted by an
observer as occurring "now"; for a different observer they will not be simultaneous,
because Li 0 LZ for L1 # L2.

f) Inertial coordinate systems. Let L be an oriented timelike straight line, ea a
positively oriented vector of unit length in L, and {el,e2,e3} an orthonormal basis
of L- L: (ei, ei) = -1 for i = 1,2,3. A system of coordinates in M corresponding to
the basis {eo,... ,e3}, is called an inertial system. In it

3 3 3

xiei> Eyiei) =xoyo-xiyi
i=0 i-0 i=1

Since xo = eto, where to is the proper time, the space-time interval from the ori-

gin to the point 3o x;e; equals (c2t0 - Fl3 1 x?)
1/2

. Every inertial coordinate
system in M determines an identity between M and the coordinate Minkowski
space (R4,,0 - Eg 1 x;) . The isometrics of M (or of the coordinate space)
form the Lorentz group; the isometrics which preserve the time orientation form its
orthochronous subgroup.
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g) Light cone. The set of points I E M with (l, 1) = 0 is called the light
cone C (origin of coordinates). In any inertial coordinate system, C is given by the

equation
3

xo

For to > 0 the point on the light cone (xo, xl, x2, x3) is separated from the position
of an observer (xo, 0, 0, 0) by a spacelike interval with the square - -3_ 1 x? = _X201

that is, it is located at the distance that a quantum of light, emitted from the
origin of coordinates at the initial moment in time, traverses within a time to. (For
to < 0 the set of such points corresponds to flashes which occurred at the proper
time to and could be observed at the origin of the reference system: "arriving
radiation"). Correspondingly, the "zero straight lines", lying entirely in C, are
world lines of particles emitted from the origin of coordinates and moving with the
velocity of light, for example, photons or neutrinos. The reader can see the base of
the "arriving fold" of the light cone, looking out the window - it is the celestial
sphere.

Straight lines in M, consisting of vectors with a negative squared length, do
not have a physical interpretation. They should correspond to the world lines of
particles moving faster than light, the hypothetical "tachyons", which have not been
observed experimentally.

We now proceed to the mathematical study of M.

12.2. Realization of M as a metric space. As in §9, we fix the two-dimensional
complex space it and examine in it the set M of Hermitian symmetric inner prod-
ucts. It is a real linear space. If the basis {hi, h2} in 7{ is chosen, then the Gram
matrix of these metrics will consist of all possible 2 x 2 Hermitian matrices. We as-
sociate with the metric I E M the determinant of its Gram matrix G, which we shall
denote by det L. A transformation to the basis {hi, hZ} = {h2, h2} V will replace G
by G' = V'GV and det G' = I det V 12 det G. In particular, if V E SL(2, C), then
det G = det G'. Therefore, a calculation of det l in any of the bases of W belonging
to the same class relative to the action of SL(2, C), will lead to the same result.
Henceforth, we shall fit such a class of bases of W, and we shall calculate all deter-
minants with respect to it. Changing the class merely multiplies the determinant
by a positive scalar.

12.3. Proposition. a) M is a four-dimensional real space.
b) M has a unique symmetric metric (1, m) for which (1, 1) = det 1. Its signature

equals (1,3), so that M is a Minkowski space.

Proof. a) The space of 2 x 2 Hermitian matrices has the basis Qo = = E.:

ol, 92, 073 where o;, i > 1 are the Pauli matrices. Therefore dimM = 4.
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b) We shall show that in the matrix realization of M the function det 1 is a
quadratic form, whose polarization has the form

(l, m) = 2(TrITrm - Trlm),

which is clearly symmetric and bilinear. Indeed, if A and p are eigenvalues of 1,
then det l = Ap, Tr l = A + p, Tr l2 = A2 + p2, so that

Ap = det l = 2((A + p)2 - A2 - µ2) = 2((`n 1)2 - Tr 12) = (1,1).

It is now evident that {oo, Ql, 92, 0'3) is an orthonormal basis of M with the Gram
matrix diag(1,-1,-1,-1) so that the signature of our metric equals (1,3). This
completes the proof.

12.4. Corollary. Let L C M be a timelike straight line. Then L1 with the metric
-(I, m) is a three-dimensional Euclidean space, and M = L ® L.

Proof. The assertion M = L ® L1 follows from Proposition 3.2, because the
timelike straight lines are evidently non-degenerate. Since the signature of the
Minkowski metric is (1,3) in M and -(1,0) in L1, it must be (0,3) in L1, which
completes the proof.

We shall now study the geometric meaning of inner products. The indetermi-
nacy of the Minkowski metric leads to remarkable differences from the Euclidean
situation, which can be of important physical significance. The most striking facts
stem from the fact that the Cauchy-Bunyakovskii-Schwarz inequality for timelike
vectors is reversed.

12.5. Proposition. Let (11,11) > 0, (12,12) > 0, li E M. Then

(11,12)2 > (11,11)(12,12)

The equality holds if and only if 11i12 are linearly independent.

Proof. We first verify that the quadratic trinomial (ill + 12, tll + 12) always has
a real root to. In the matrix realization of M the condition (12,12) > 0 means
that det l2 > 0, that is, that 12 has real characteristic roots with the same sign,
say e2(+1 or - 1). Analogoulsy, let el be the sign of the eigenvalues of 11. Then
as t - -(e1e2)00 the matrix tll + l2 has eigenvalues which are approximately
proportional to the eigenvalues of 11 (because 11 + t"112 approaches 11), and their
sign will be -e2i while at t = 0 the matrix 011 + 12 = 12 has eigenvalues with sign
e2. Therefore as t varies from 0 to -(c1c2)oo the eigenvalues of ill +12 pass through
zero, and det(111 + 12) vanishes. This means that the discriminant of this trinomial
is non-negative, so that

(11,12)2 > (11,11)(12,12)
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If it equals zero, then some value of to E R is a double root, and the matrix toll + 12,
having two zero eigenvalues and being diagonalizable (it is Hermitian !), equals zero.
Therefore, 11 and 12 are linearly independent.

12.6. Corollary ("the inverse triangle inequality"). If 11,12 are timelike and
(11i12) > 0, then 11 + 12 is timelike and

Ill+121- 1111+1121

(where Ill = (1,1)1/2)
independent.

Proof.

and the equality holds if and only if 11 and l2 are linearly

111 +1212 = 11112+2(11,12)+11212 >

> 11112+211111121+11212=(1111+1121)2.

The equality holds only when (11,12) = 11111121-

We now give the physical interpretations of these facts.

12.7. "The twin paradox". We shall call timelike vectors 11, 12 with (11,12) > 0
identically time-oriented vectors. It is evident from Proposition 12.5 that for them
(11,12) > 0. Imagine two twin observers: one is inertial and moves along his world
line from the point zero to the point 11 + 12, and the other reaches the same point
from the origin, moving first inertially from zero to 11, and then from 11 to It + 12:
near zero and near 11 he turns on the engines of his space ship, so as to first fly away
from his brother and then again in order to return to him. According to Corollary
12.6, the elapsed proper time for the travelling twin will be strictly shorter than the
elapsed time for the twin who stayed at home.

12.8. The Lorentz factor. If 11 and 13 are timelike and identically time-oriented,
then Proposition 12.5 implies that

1111
I.') > 1 and we cannot interpret this quantity

as the cosine of an angle. In order to understand what it does represent, we resort
once again to the physical interpretation.

Let Ill I = 1, 1121 = 1; in particular, an inertial observer 11 has lived a unit of
proper time from the moment at which the measurement began. At the point 11,
the physical space of simultaneous events for him is 11 + (Ril)l. The world line of
the observer R12 intersects this point at the point x12, where x is obtained from the
condition

(x12-11r11)=0,

that is, x = (11,12)-1. The distance from 11 to x12 is spacelike for observer R11; this
is the distance over which R12 has moved away from him within a unit time, that
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is, the relative velocity of R12. It equals (we must take into account the fact that
the sign in the metric in (R11)1 must be changed !)

v = [-(x12 - 11, x12 - 11)]1/2 = [-(x12 - 11, X12)]1/2 =

= [-x2(12,12) + x(11,12)]1/2 = [-(11,12)-2 + 1]1/2,

whence
1

1-v
This is the famous Lorentz factor, it is often written in the form 1 indicating

71777-77'
explicitly that the velocities are measured with respect to the velocity of fight. In
particular,

X
= - 1 - v2,

(11,12)

that is, at the moment that the proper time equals one for the first observer, the
second observer is located in his physical space, when the clocks of the first observer
show l - v . This is the quantitative expression of the "time contraction" effect
for a moving observer, qualitatively described in the preceding section.

12.9. Euclidean angles. In the space (Rlo)1, where le is a timelike vector,
the geometry is Euclidean, and there the inner product has the usual meaning. Let
11 and 12 be two timelike vectors with the same orientation. We can project them
onto (Rlo)1 and calculate the cosine of the angle between the projections. We leave
it to the reader to verify that for the observer Rlo, this is the angle between the
directions at which the observers R11 and Rl2 move away from him in his physical
space. This angle does not have an absolute value; another observer Rlo will see a
different angle.

12.10. Four orientations of Minkowski space. Let {ei }, {e; }, i = 0, ... , 3,
be two orthonormal bases in M: (eo, eo) = (eo, eo) = 1, (ei, ei) = (e;, e;) _ -1
with i = 1, ... , 3. By analogy with the previous definitions we shall say that they
are identically oriented if one is transformed into the other by a continuous system
of isometrics ft : M M, 0 < t < 1, fo = id, f1(ei) = e;. There are evidently
two necessary conditions for identical orientability:

a) (eo,eo) > 0. Indeed, Proposition 12.5 implies that (eo, fi(eo))2 > 1 so that
the sign of (eo, fr(ee)) cannot change when t changes, and (eo, fo(eo)) = 1. Above,
we called to and eo with this property identically time-oriented.

b) The determinant of the mapping of the orthogonal projection Es 1 Rei
E3

1
Re;, written in the bases {ei) or {e;}, is positive.
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Indeed, the projection $ 1 R.e; F3 , Rft(e;) is non-degenerate for all t:
otherwise a spacelike vector from E3-1 Re; would be orthogonal to

s

Rft(e;) = (ft(eo))1,
..1

that is, proportional to ft(ea), which is a timelike vector, and this is impossible.
Therefore, the determinants of these projections have the same sign for all t, while
at t = 0 the determinant equals zero.

We can say that pairs of bases with the property b) are identically space-
oriented.

Conversely, if two orthonormal bases in M have the same spatial and tem-
poral orientation, then they are identically oriented, that is, they are transformed
into one another by a continuous system of isometries ft. In order to construct
it we first set a

ter+(i-t)eo ,
h( o) _ Jteo+( 1-9)eo From the condition (eo,eo) > 1 it follows

that ft(eo) is timelike and the square of the length equals one for all 0 < t < 1.
Next we choose for ft(e1,e2,e3) an orthonormal basis of ft(eo)1, obtained from a
projection of {e1ie2,e3} onto ft(eo)1 by the Gram-Schmidt orthogonalization pro-
cess; it obviously is a continuous function of t. It is clear that fl(eo) = e0', and
{ f 1(e 1), f l (e2) , f l (ex)) and {e j , ey, e3 } are identically oriented orthonormal bases of
(e0')1. They can be transformed into one another by a continuous family of purely
Euclidean rotations (e')-L, leaving eo unchanged. This completes the proof.

We denote by A the Lorentz group, that is the group of isometries of the space
JN, or 0(1,3). We denote further by A. the subgroup of A that preserves the
orientation of some orthonormal basis; by Al the subset of A that changes its spa-
tial, but not temporal orientation; by Al the subset of A that changes its temporal,
but not its spatial orientation: and, by Al the subset of A that changes its temporal
and spatial orientation. It is easy to verify that these subsets do not depend on the
choice of the starting basis. We have proved the following result:

12.11. Theorem. The Lorentz group A consists of four connected components:
A= A.UA1 UA+UA..

The identity mapping obviously lies in A. The following result is the analogue
of Theorem 11.12.

12.12. Theorem. We realize M as the space of Gram matrices of the Hermitian
metrics in 11 in the basis {h1, h2}. For any matrix V E SL(2, C) we associate with
the matrix 1 E M a new matrix

s(V)l = VII-F.

The mapping s defines a surjectire homomorphism of SL(2,C) onto A. with
kernel {±E2}.
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Proof. It is evident that s(V)l is linear with respect to I and preserves the squares
of lengths: det(V'IV) = det1. Therefore S(V) E A. Since the group SL(2,C)
is connected, any element in it can be continuously deformed into the unit ele-
ment, while remaining inside SL(2, C) - the Lorentz transformation s(V) can
be continuously deformed into an identity, so that s(V) E AT. Since s(id) =id
and s(V1V2) = s(V1)s(V2), s is a homomorphism of groups. If V'IV = I for all
1 E M, then, in particular, V'o;V = o;, where ao = E2 and o1io2,o3 are the Pauli
matrices. The condition VT = E2 means that V is unitary; then the condition
V'o;V = V'o1(V)'1 = o; indicates that V = ±E2: this was proved in §12.11.
Thus ker s = {±E2}.

It remains to establish that s is surjective. Let f : M -. M be a Lorentz trans-
formation from A+, transforming the orthonormal basis lei) into Metrics in
71, corresponding to eo and ea are definite, because the eigenvalues of both eo and
eo have the same sign, so that det eo = det eo = 1. It follows from (co, e'o) > 0 that
these metrics are simultaneously positive- or negative-definite. Indeed, we verified
above that the segment teo + (1- teo), 0 < t < 1 connecting them consists entirely
of timelike vectors. This already implies the existence of a matrix V E SL(2, C)
such that s(V) transforms eo into eo, that is, eo = V`eoV, where eo and eo are
identified with their Gram matrices. Indeed, V is the matrix of the isometry of
(71,eo) to (71,e0'); a priori, its determinant can equal -1, but this would contra-
dict the possibility of connecting V with E2 in SL(2, C) by deforming V9, where
eo = (V,)' fg(eo)Vq, and f9 is the corresponding deformation in Ai..

So, s(V) transforms eo into eo. It now remains to be shown that a Euclidean
rotation of {s(V)e1, s(V)e2, s(V)ea} into {e1',e',e3} can be realized with the help
of s(U), where U E SL(2, C) and s(U) leaves co alone. It may be assumed that
eo is represented by the matrix oo in the basis (h1ih2). Then we must choose U
to be unitary with the condition U(s(V)e1)U-' = e; for i = 1,2,3. According to
Theorem 12.11 this can be done, because the bases {s(V)e;} and {e;}, i = 1,2,3,
in (e0')1 are orthonormal and have the same orientation. The proof is complete.

12.13. Euclidean rotations and boosts. Let eo, eo be two identically time-
oriented timelike vectors of unit length and let Lo, Lo be their orthogonal comple-
ments. There exists a standard Lorentz transformation from A' that transforms eo
into 4, which in the physics literature is called a boost. When co = eo it is the iden-
tity transformation. When eo # eo, it is defined as follows. We consider the plane
(LonL') 1. It contains eo and eo. The signature of the Minkowski metric in it equals
(1,1). Therefore, there exists a pair of unit spacelike vectors e1 i e1 E (Lo n Lo )1
that are orthogonal to eo and eo respectively. The boost leaves alone all vectors
in Lo n Lo and transforms eo into eo and e1 into ec respectively. To calculate the

elements of the transformation matrix { co, e 1 } (b d) _ {eo, e; }, we note first of
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all that a = (eo,e'o) = 1 , where v is the relative velocity of inertial observers,
1-v

corresponding to eo and e'0. Then the Gram matrices of {eo, el } and {eo, e1 } are
1 0

0 _1 ,so that

a2-62=1, ac-bd=0, c'-d2=-1.

From the first equation, knowing a, we find b = ° ,. Adding here the condition10-
that the determinant of the boost ad - be equals 1, we obtain d = a and c = b.
Finally, the matrix of the boost in the basis {eo, el, e2, e3}, where {e2, e3} is an
orthonormal basis of (Lo fl L')1, has the form

11

02 !V o2
0 0

1
0 0

1-u2 1-v2
1 00 0

0 0 0 1

or, in terms of space-time coordinates,

xo + vxg vxo + xl , ,
x0 = 1 - v

, x1 =
1

, x2 = x2, x3 = x3-v
The matrix in the upper left hand corner can be written in the same form as the
matrix of "hyperbolic rotation":

Ccosh8 sinh81
si11h 0 cosh 0 '

where 0 is found from the conditions

e e e_ ee

cosh 0 =
e

2e = 1 , sink B =
e

2
- 1

v- v

If we start from two identically oriented orthonormal bases {eo, e1i e2, e3} and
{eo, e'1, e;, e3}, then the Lorentz transformation which transforms one into the other
can be represented as the product of a boost, trnasforming co into eo, followed by
a Euclidean rotation in (e')-L, which transforms the image of the basis {e1,e2,e3}
after the boost into the basis {ei, e2, e3} leaving eo alone.

12.14. Spatial and temporal reflections. Any three-dimensional subspace
L C M, in which the Minkowski metric is (anti) Euclidean (that is, the straight
line Ll is timelike), defines a Lorentz transformation which is the identity in L and
changes the sign in L. All such operators are called time reversals.

Any three-dimensional subspace L C M, in which the Minkowski metric has
the signature (1,2) (that is, the straight line Ll is spacelike) also defines a Lorentz
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transformation, which is an identity in L and changes the sign in L'. All such
operators are called spatial reflections.

If a time reversal T and a spatial reflection P are fixed, then all elements of
A+, AT, Ai will be obtained from all elements of A. by multiplication by T, P, PT
respectively.

§13. Symplectic Spaces

13.1. In this chapter we shall study finite-dimensional linear spaces L over a field
1C with characteristic i4 2, equipped with a non-degenerate skew-symmetric inner
product [ , ] : L x L -» IC; we call them symplectic spaces. We recall the properties
of symplectic spaces, which have already been established in §3.

The dimension of a symplectic space is always even. If it equals 2r, then there
exists in the space a symplectic basis lei, ... , er; er+l, ... , e2r}, that is, a basis with
a Gram matrix of the form

C-Er fir/

In particular, all symplectic spaces with the same dimension over a common field
of scalars are isometric.

A subspace L1 C L is called isotropic if the restriction of the inner product [ , ]

to it identically equals zero. All one-dimensional subspaces are isotropic.

13.2. Proposition. Let L be a symplectic space with dimension 2r and L1 C L
an isotropic subspace with dimension rl. Then r1 < r, and if r1 < r, then L1 is
contained in an isotropic subspace with the maximum possible dimension r.

Proof. Since the form [ , ] is non-degenerate, it defines an isomorphism L L',
which associates the vector 1 E L with the linear functional l' -, [1,1']. From here
it follows that for any subspace L1 C L we have dim Li = dim L - dim L1 (cf. §7
of Chapter 1). If in addition L1 is isotropic, then L1 C L, L, whence rl = dim L1 <
< dim Li = dim L - dim L1 = 2r - r1, so that r1 < r.

We now examine the restriction of the form [ , ] to L- L. In the entire space
L, the orthogonal complement to Li has the dimension dim L - dim Li = dim L1
according to the previous discussion. On the other hand, L1 lies in this orthogonal
complement and therefore coincides with it. This means that L1 is precisely the
kernel of the restriction of [ , ) to L'. But, Li has a symplectic basis in the variant
studied in §3, where degenerate spaces were permitted:

{el,...,er-rl;er-r1+1,...,e2(r-rl); e2(r-rl)+1,.. . ,e2r-rl},
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with the Gram matrix
0

-E*_rl
T_

The size of a block is "(dim Lt -dim L1) = r-r1. The vectors e2(r_r1)+1, .... e2r_r1
generate the kernel of the form on L', that is, L1; adding to them, for example,
e1,. .. , er_r1, we obtain an r-dimensional isotropic subspace containing L1.

13.3. Proposition. Let L be a symplectic space with dimension 2r, and let
L1 C L be an isotropic subspace with dimension r. Then theme exists another
isotropic subspace L2 C L with dimension r, such that L = Ll ® L2, and the inner
product induces an isomorphism L2 -- L.

Proof. We shall prove a somewhat stronger result, which is useful in applica-
tions, namely, we shall establish the existence of the subspace L2 from among the
finite number of isotropic subspaces, associated with the fixed symplectic basis
{e1,... , Cr ; er+1, , e2r} of L.

Namely, let a decomposition {1, ... , r} = IUJ into two non-intersecting subsets
be given. Then the vectors {e1, er+j Ii E I, j E J} generate an r-dimensional
isotropic subspace in L, called a coordinate subspace (with respect to the chosen
basis). Obviously, there are 2r of them. We shall show that L2 is a coordinate
subspace.

Let M,be spanned by {el,...,er} and dim(L1 nM) = s, 0 < s < r. There
exists a subset I C { 1, ... , r} consisting of r - s elements, such that L1 n M is
transverse to N, spanned by {e;Ii E I}, that is, L1 n M n N = {0}. Indeed, the set
{basis of L1 nM}U{ej, ... , e,.) generates M, so that Proposition 2.10 of Chapter I
implies that the basis of L1 n M can be extended to a basis of M with the help of
r - s vectors from {el,... , er }. The numbers of these vectors form the set I sought,
because L1 n M + N = M, so that L1 n M n N =f0}.

We now set J = { 1, ... , r) \I and show that the isotropic subspace L2 spanned
by {e;, er+i Ii E I. j E J}, is the direct complement of L1. It is sufficient to verify
that L1 n L2 = {0}. Indeed, from the proof of Proposition 13.2 it follows that
Li = L1, LZ = L2. But L1 n M is contained in Ll and N is contained in L2, so
that the sum M = L1 n M + N is orthogonal to L1 n L2. But M is isotropic and
r-dimensional, so that Ml = M and L1 n L2 C M. Therefore finally

L1nL2=(L1nM)n(L2nM)=(L1nM)nN={0}.

The linear mapping L2 -y Li associates with a vector 1 E L2 the linear form
rn 1.-. [l, m] on L1. It is an isomorphism because dim L2 = dim Li = r, and its kernel
is contained in the kernel of the form [ , ] which, by definition, is non-degenerate.
This completes the proof.
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13.4. Corollary. All pairs of mutually complementary isotropic subspaces of L
are identically arranged: if L = L1 ® L2 = L1 ® Lz, then there exists an isometry
f : L - L such that f(L1) = L'1, f(L2) = L'2 .

Proof. We select a basis {el,...,er} of L1 and its dual basis {e,+1,...,e2,.} in
L2 relative to the identity L2 -» Li described above. Obviously, {el,...,e2,.} is a
symplectic basis of L. Analogously, we construct a symplectic basis {e1 , ... , eYr }
with respect to the decomposition Li EE L'2. The linear mapping f : ei i--. e;,
i = 1, ... , 2r is clearly the required isometry.

It follows from this corollary and Propositions 13.2 and 13.3 that any isotropic
subspaces of equal dimension in L are transformed into one another by an appro-
priate isometry.

13.5. Symplectic group. The set of all isometries f : L - L of a symplectic
space forms a group. The set of matrices, representing this group in a symplectic
basis {e1i...,e2r}, is called a symplectic group and is denoted by Sp(2r,A:), if
dim L = 2r. The condition A E Sp(2r, )C) is equivalent to the fact that the Gram

-C 1
matrix of the basis {el,... , e2r}A equals I2,

0 E,
that is, A=I2,A = I2,= E, 0 I '

so that detA = ±1; we shall prove below that detA = 1 (see §13.11). Since
IZr = -Ear, this condition can also be written in the form A = -12r(Ai)_'12r.

Hence we have the following proposition.

13.6. Proposition. The characteristic polynomial of P(t) = det(tE2r - A) of a
symplectic matrix A is reciprocal, that is, P(t) = t2 P(t-1).

Proof. We have, using the fact that det A = 1,

det(tE2,. - A) = det(tE2,. + 12,(A1)-'I2,.) = det(1E2, - (At)'1) _

= det(tA' - E2r) = t2r det(t-1 E2r - A') = 12r det(t-E2r - A).

13.7. Corollary. If A = R and A is a symplectic matrix, then together with
every eigenvalue A of A there exist eigenvalues A-1, A and A-1.

Proof. Since A is non-singular, A gE 0 and P(,\'1) = A-2rP(A) = 0. Since the
coefficients of P are real, P(.1) = P(a) = 0.

Complex conjugation is a symmetry relative to the real axis, and the mapping
A a-1 is a symmetry relative to the unit circle. Therefore, the complex eigenval-
ues of A are quadruples, symmetric simultaneously relative to the real axis and the
unit circle, whereas the real eigenvalues are pairs.

13.8. Pfaffian. Let K2r be a coordinate space and A a non-singular skew-
symmetric matrix of order 2r over K. The inner product (E, g) = E lAy' in K2' is
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non-degenerate and skew-symmetric. Transforming from the starting basis to the
symplectic basis, we find that for any matrix A there exists a non-singular matrix
B such that

E
A= B` (-Er Or ) B,

whence det A = (det B)2. Thus the determinant of every skew-symmetric matrix is
an exact square. This suggests that we attempt to extract the square root of the
determinant, which would be a universal polynomial of the elements of A. This is
indeed possible.

13.9. Theorem. There exists a unique polynomial with integer coefficients
PfA of the elements of a skew-symmetric matrix A such that det A = (PJA)2 and

Pf C 0 Er 1. This polynomial is called the Pfafan and has the following
Er 0

property:

Pf(B'AB) = detB PJA

for any matrix B. (If K A 0 the coefficients of Pf are 'integers' in the sense that
they belong to a simple subfield of it, that is, they are sums of ones.)

Proof. Consider r(2r - 1) independent variables over the field K : {a,1I 1 < i <
< j < 2r}. Denote by K the field of rational functions (ratios of polynomials) of a;,
with coefficients from a simple subfield of K. We set A = (a11), where ail = -aj1
for i > j, a;; = 0, and we introduce on the coordinate space K21 a non-degenerate
skew-symmetric inner product V A17. Transforming to the symplectic basis with the
help of some matrix B, we find, as above, that det A = (det B)2. A priori, det B is
only a rational function of a1j with coefficients from Q or a simple field with a finite
characteristic. But since det A is a polynomial with integer coefficients, its square
root also must have integer coefficients (here we use the theorem on the unique
factorization of polynomials in the ring Z[a11] or Fp[ai,]). The sign of detA is,
evidently, uniquely fixed by the requirement that the value of vfJJ72, must equal
one.

The last equality is established as follows. First, BLAB and A are skew-
symmetric, so that

Pf2(B=AB) = det(B'AB) = (det B)2 det A = (det B)2Pf2A.

Therefore

Pf (B' AB) = ± det B Pf A.

To establish the sign it is sufficient to determine it in the case A = 12,, B = E21,
where it is obviously positive.
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13.10. Examples.
0 01z

= 012;
-012 0

Pf

0 012 013 014

Pf -012 0 023 024

-a13 -a23 0 a34

-a14 -024 -034 0

-012034 + 013a24 - 019023

13.11. Corollary. The determinant of any symplectic matrix equals one.

Proof. From the condition A12rA = 12r and Theorem 13.9 it follows that

which proves the required result.
We used this fact in proving Proposition 13.6.

13.12. Relationship between the orthogonal, unitary and symplectic
groups. Let R2r be a coordinate space with two inner products: a Euclidean
product (,) and a symplectic product [ , ]:

(x, y) = z1y;

[x, y1 =ztl2ry'=(x,12ry)

Since 12r = E2ri the operator 12, determines on R2r a complex structure (see §12
of Chapter I) with the complex basis {e3 + ier+j Ij = 1, ... , r}, relative to which
there exists a Hermitian inner product

(see Proposition 6.2).
In terms of these structures, we have

(1(r) = O(2r) fl Sp(2r) = GL(r, c) fl Sp(2r) = GL(r, C) fl O(2r).

The verification is left to the reader as an exercise.
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§14. Witt's Theorem and Witt's Group

1. In this section we shall present the results obtained by Witt in the theory of
finite-dimensional orthogonal spaces over arbitrary fields. They refine the classifica-
tion theorem of §3, and they can be regarded as far-reaching generalizations of the
inertia theorem and the concept of signature. We shall start with some definitions.
As usual, we assume that the characteristic of the field of scalars does not equal 2.

A hyperbolic plane is a two-dimensional space L with a non-degenerate sym-
metric inner product ( , ) containing a non-zero isotropic vector.

A hyperbolic space is a space that decomposes into a direct sum of pairwise
orthogonal hyperbolic planes.

An anisotropic space is a space that does not have (non-zero) isotropic vectors.

Anisotropic spaces L over a real field have the signature (n, 0) or (0, n), where
n = dim L. We shall now show that hyperbolic spaces are a generalization of spaces
with signature (m, m).

14.2. Lemma.\ A hyperbolic plane L always has bases {e1,e'2} with the Gram

01 I and {el,e2) with the Gram matrix (0 0)
matrix ( 10 -1
Proof. Let I E L, (1,1) = 0. If 11 E L is not proportional to 1, then (11, l) 36 0,

because L is non-degenerate. It may be assumed that (11, l) = 1. We set el = 1,
e2 = It - (ttt'Z

1. Then (e1,ei) = (e2,e2) = 0,(el,e2) = 1. We set e1 = ` `2

e2 = . Then (e1, e1) = 1, (e'2, e2) = -1, (e1', e2') = 0. The lemma is proved.

We shall call the basis {e1, e2} hyperbolic. Analogously, in a general hyperbolic

we shall call a basis whose Gram matrix consists of diagonal blocks 1
0

(space
0

1\

hyperbolic.

14.3. Lemma. Let Lo C L be an isotropic subspace in a non-degenerate or-
thogonal space L and let {e1, ... , e,,,} be a basis of Lo. Then there exist vectors
ei,...,e,, E L such that {e1,e...... em,em) form a hyperbolic basis of their linear
span.

Proof. We set L1 = (linear span of {e2..... e,,,}). Since L1 is strictly smaller
than Lo, Li is strictly larger than Lo because of the non-degeneracy of L. Let
e1 E L1 \Lo . Then (ei,ei) = 0 for i > 2 but (ei,e1) i6 0. It may be assumed that
(e1, e1) = 1 so that e1 is not proportional to e1. As in the proof of Lemma 14.2, we

set e1 = ei - (-` e1. Then {e1, e1) form a hyperbolic basis of their linear span.
Its orthogonal complement is non-degenerate and contains an isotropic subspace
spanned by {e2, ... , e.). An analogous argument can be applied to this pair, and
induction on m gives the required result.
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14.4. Witt's theorem. Let L be a non-degenerate finite-dimensional orthogonal
space and let L', L" C L be two isometric subspaces of it. Then any isometry
f' : L' L" can be extended to an isometry f : L -+ L, coinciding with f' on V.

Proof. We analyse several cases successively.
a) L' = L" and both spaces are non-degenerate. Then L = V O (L')1 and we

can set f = f' ®id(L,)l .
b) L' L",dimL' = dimL" = 1, and both spaces are non-degenerate. The

isometry f' L' - L' can be extended to the isometry f" : L' + L" -- L' + L",
setting f"(!) = f'(l) for 1 E L', and f"(l) = (f')'1(l) for l E L". If L' + L" is non-
degenerate, then f" is extended to f according to the preceding case. If L' + L"
is degenerate, then the kernel of the inner product on L' + L' is one-dimensional.
Let el generate this kernel and let e2 generate V. The orthogonal complement of
e2 (with respect to L) contains a vector ei such that the basis {el, ei } generated by
these vectors in the plane is hyperbolic. This is possible according to Lemma 14.3.
We shall show that the subspace Lo, spanned by {eI, ei, e2}, is non-degenerate, and
the isometry f' : L' -. L" is extended to the isometry f : Lo Lo. After this,
case a) can be applied.

Non-degeneracy follows from the fact that (e2, e2) 54 0, and the Gram matrix
of the vectors {el, ei, e2} has the form

0 1 0

1 0 0

0 0 (e2,e2)

To extend f' we first note that the orthogonal complement to f'(e2) in Lo is two-
dimensional, non-degenerate, and contains the isotropic vector el. Hence it is a
hyperbolic plane, like the orthogonal complement to e2 in Lo. Lemma 14.2 implies
that there exists an isometry of the second plane to the first one. Its direct sum
with f' is the extension sought.

c) dim L' = dim L" > 1 and L', L" are non-degenerate. We perform induction
on dim L. Since L' has an orthogonal basis, the decomposition L' = Lie L'2 into
an orthogonal direct sum of subspaces with non-zero dimension exists. Since f'
is an isometry, L" = Li ® L'2, where Lf' = f'(L;) and this sum is orthogonal.
By induction, the restriction of f' to Li is extended to the isometry fi : L - L.
It transforms (L'1)1 D L'2 into (Li)1 D L. Again by induction, there exists
an isometry of (Li)1 to (LL)1, which coincides on L'2 with the restriction of f'.
Extending it by the restriction of f' to Li we obtain the required result.

d) L' is degenerate. We shall reduce this last case to the case already analysed.
Let Lo C L' be the kernel of the restriction of the metric to L'. Selecting an
orthonormal basis of L', we can construct a direct decomposition L' = L, ED
where Li is non-degenerate. The orthogonal complement to L' contains in L a
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subspace Lo such that the sum Lo ®L1® Lo is a direct sum and the space Lo ®L'o
is hyperbolic, as in Lemma 14.3; in particular, Lo ® L' ® Lo is non-degenerate.
Analogously, we construct Lo ® Li ® Lo, starting from the space V. Evidently, the
isometry f' : L' - L" can be extended to the isometries of these first sums, because
all hyperbolic spaces with the same dimension are isometric. The possibility of
further extension of this isometry now follows from case c). The theorem is proved.

14.5. Corollary. Let L1, L2 be isometric non-degenerate spaces and let Li, L'2 be
isometric subspaces of them. Then their orthogonal complements (L')', (L')' are
isometric.

14.6. Corollary. Let L be a non-degenerate orthogonal space. Then any isotropic
subspace of L is contained in a maximal isotropic subspace, and for two maximal
isotropic subspaces L' and L" there exists an isometry f : L - L transforming L'
into L".

Proof. The first assertion is trivial. To prove the second assertion, we assume that
dim L' < dim V. Any linear injection f' : L' -. L" is an isometry of L' to im f'.
Therefore it can be extended to the isometry f : L - L. Then L' C f `(L") and
f-1(L") is isotropic. Since L' is maximal, dim L' = dim f-1(L") = dim V.

14.7. Corollary. For any orthogonal space L there exists an orthogonal direct
decomposition Lo ® Lh ® Ld, where Lo is isotropic, Lh is hyperbolic, and Ld is
anisotropic. For any two such decompositions there exists an isometry f : L -+ L,
transforming one of them into the other.

Proof. We take for Lo the kernel of the inner product. We decompose L into
the direct sum Lo ® L1. In L1 we take a maximal isotropic subspace and embed
it into the hyperbolic subspace with the doubled dimension of Lh, as in Lemma
14.3. For Ld we take the orthogonal complement of Lh in L1. It does not contain
isotropic vectors, because otherwise such a vector could be added to the starting
isotropic subspace, which would not be maximal. This proves the existence of the
decomposition of the required form.

Conversely, in any such decomposition Lo ® Lh ® Ld the space Lo is a kernel.
Further, a maximal isotropic subspace in Lh is simultaneously maximally isotropic
in Lh ® Ld, so that the dimension of Lh is determined uniquely. Therefore, for two
decomposition Lo ® Lh ® Ld and Lo ® Lh ® L' there exists an isometry transforming
Lo into Lo and Lh into L. It is extended by the isometry of Ld into L' according
to Witt's theorem, which completes the proof. We call Ld the anisotropic part of
the space L; it is determined up to isometry.

This corollary represents an extension of the principle of inertia to arbitrary
fields of scalars, reducing the classification of orthogonal spaces to the classification
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of anisotropic spaces or, in the language of quadratic forms, to the classification of
forms, not representing zero, for which q(l) = 0 implies that I = 0.

14.8. Witt's group. Let K be a field of scalars. We denote by W(K) the set of
classes of anisotropic orthogonal spaces over 1C (up to isometry), supplemented by
the class of the null space. We introduce on W(K) the following addition operation:
if L1i L2 are two anisotropic spaces, and [LI], [L2] are the classes in W(K), then
[L1] + [L2] is the class of anisotropic parts of L1 ® L2 (the orthogonal external
direct sum stands on the right).

It is not difficult to verify that the definition is correct. Further, this addition
operation is associative, and the class of the null space serves as the zero in W(K).
Moreover:

14.9. Theorem. a) W(K) with the addition operation introduced above is an
abelian group, called the Will group of the field K.

b) Let L. be a one-dimensional coordinate space over K with the inner product
axy, a E K\{0}. Then [La] depends only on the cosec a(K')2, and the elements of
[La] form a system of generators of the group W(K).

Proof. We have only to verify that for every element of W(K) there exists an inverse
element. Indeed, let L be an anisotropic space with a metric, which in the orthogonal
basis {e1, ... , is given by the form aixa. We denote by L the space L with
the metric - aix and we show that L ® L is hyperbolic, so that [L] -f [L] = [0]
in W(K). Indeed the metric in L ® L is given by the form F", a,(x; - y;). But
the plane with the metric a(x2 - y2) is evidently hyperbolic, because the form is
non-degenerate, and the vector (1, 1) is isotropic. The fact that [La] depends only
on a(K')2 was verified in §2.7. In addition, every n-dimensional orthogonal space
can be decomposed into a direct orthogonal sum of one-dimensional spaces of the
form La. This completes the proof.

§15. Clifford Algebras

1. An associative ring A with identity 1 = 1A is said to be an algebra over the
field K, if A contains K and K lies at the centre of A, that is, it commutes with all
elements of A. In particular, A is a IC-linear space.

Let K be a field of characteristic 0 2. Consider a finite-dimensional orthogonal
space L with the metric g. In this section we shall construct an algebra C(L) and a
/C-linear imbedding p : L -+ C(L) such that the following three properties will hold.

1) p(1)2 = g(l,1) 1, that is, the inner square of any vector I E L is realized as
its square in the sense of multiplication in C(L).
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2) dim,C(L) = 2", where n = dim L. In addition, the elements of p(L) are
multiplicative generators of an algebra C(L), that is, any element of C(L) can be
represented as a linear combination of "non-commutative" monomials of elements of

p(L)-
3) Let o : L - D be any IC-linear mapping of L into the )C-algebra D, for which

o,(l)2 = g(1,1) 1 for all I E L. Then there exists a unique homomorphism of IC
algebra r : C(L) -, D such that a = r p. In particular, C(L), being constructed, is
defined uniquely up to isomorphism.

15.2. Theorem. Algebra C(L) with above properties 1)-S) does exist (the pair
(p, C(L)) will be called the Clifford algebra of the space L).

Proof a) Choose an orthogonal basis {et,... ,e,,} of L and let g(e,,e,) = a,. By
definition, the relations

p(er)t = ai, p(ei)p(ej) = -p(ej)p(ei), _ : j

must be satisfied in C(L). The second of these relations follows from the fact
that [p(ei + e1)]2 = p(ei)2 + p(ei)p(ej) + p(ej)p(ei) + p(ej )2 = p(er)t + p(ej )2.
Decomposing the elements 11, ... , lm E L with respect to the basis (e,) and using
the fact that multiplication in L is !C-linear with respect to each of the cofactors
(this follows from the fact that K lies at the centre), we can represent any product
p(li) ... p(lm) as a linear combination of monomials relative to p(e,). Replacing
p(e,)2 by a, and p(e,)p(ej) for i > j by -p(ej)p(ei), we can put any monomial into
the form ap(e,1)... p(e,,,, ), where a E K, it < i2 < ... < i,,,. Further relations
between such expressions are not evident; there are 21 monomials p(elt) ... p(e,,,, )
(including the trivial monomial 1 for in = 0).

The plan of the proof is to make these introductory considerations more rigor-
ous, working more formally.

T o this end, f o r each subset S C { 1, ... , n) we introduce the symbol es (which
will subsequently turn out to be equal to p(elt)... p(ei, ), if S = {ii .... i,,, },

it < ... < im); we also set e, = 1 (0 is the empty subset). We denote by C(L) the
K-linear space with the basis {es}. We define multiplication in C(L) as follows. If
1<s,t<n,weset

(s, t) _ 1 for s < t,
-1 fors>t

For two subsets S, T C { 1, ... , n} we set

a(S,T) = 11 (s, t) fl ai,
IES,*ET iESnT
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where, we recall, a, = g(ei,ei). Empty products are assumed to be equal to unity.
Finally we define the product of linear combinations

>ases, >2bTCTEC(L); as,bTEK,

by the formula

(> ases)(>2 bTeT) = asbTa(ST)esVT,

where SVT = (SUT)\(SnT) is the symmetric difference of the sets S and T. All
axioms of the K-algebra are verified trivially, with the exception of associativity. It
is sufficient to prove associativity for the elements of the basis, that is, to establish
the identity

(eseT)eR = es(eTeR).

Since eseT = a(S,T)esvT, we have

(eseT)eR = a(S, T)a(SVT, R)e(svT)VR,

es(eTeR) = a(S,TVR)a(T,R)esv(TVR)

It is not difficult to verify that

(SVT)VR = SV(TVR) _

_ {(SUTUR)\[(SnT)u(SnR)U(TnR)]}u(SnTnR).

Therefore it remains to verify only that the scalar coefficients are equal. The part
a(S, T)a(SVT, R) referring to the signs has the form

11 (s,t) I (u,r).
sES,tET uESVT,rER

Letting u in the second product run first through all elements of S and then through
all elements of T (with fixed r), we introduce the cofactors (u, r)2, u E S n T, equal
to one, so that this "sign" can be written in a symmetric form with respect to S,T
and R

(s,t) ri (u, r) rj (u,r).
.ES,tET uET,rER uET,rER

The sign corresponding to a(S, TVR)a(T, R) is transformed analogously, leading to
the same result. It remains to analyse the factors that contain the inner squares of
ai. For a(S, T)a(SVT, R) they have the form

11 ai 11 aj
iESnT .iE(SVT)nR
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But (SVT) fl R = (S fl R)V(T fl R) and the intersection of S fl T with this set is
empty and (S n T) u [(S n R) V (T fl R)] consists of the elements of S U T U R that
are contained in more than one of these three sets. Therefore, our factor depends
symmetrically on S, T and R. The part of the coefficient a(S,TVR)a(T,R) that
we need is calculated analogously, leading to the same result. This completes the
proof of the associativity of the algebra C(L).

Finally we define the !-linear mapping p : L C(L) by the condition p(ei) _
= e{i}. According to the multiplication formulas, co is unity in C(L) and

f a;e, for i = j,
P(ei)P(ei) = e{i)e{}} _ _e{})e{i) for i j

Therefore, we constructed a pair (p,C(L)), which satisfies the properties 1), 2).
b) The property 3) is checked formally. Let o : L D be a-JC-linear mapping

with o.(1)2 = g(l, 1) 1. There exists a unique IC-linear mapping r : C(L) D, which
in the elements of the basis es is defined by the formula

7-(e(iI...4,1)) = o(eil)...ir(eim),

r(e0) = 1D.

Here r o p = o, because this is so on the elements of the basis of L. Finally, r is a
homomorphism of algebras. Indeed,

r(eseT) = r(a(S,T)esvT) = a(S,T)r(esvT),

and it is easy to verify that r(es)r(eT) can be put into the same form, using the
relations

v(ei)l = a,, a(ei)o(ei) = -o(e5)a(ei) for i # j.

This completes the proof.

15.3. Examples. a) Let L be the two-dimensional real plane with the metric
-(x2 + y2). The Clifford algebra C(L) has the basis (1, e1, e2, e1e2) with the
multiplication relations

2 2el = e2 ele2 = -e2e1.

It is not difficult to verify that the mapping C(L) - H : 1 1, el i, e2 j,
c1e2 -+ k defines an isomorphism of C(L) to the algebra of quaternions H.

b) Let L be a linear space with a zem metric. The algebra C(L) is generated
by the generators {el , ... , e, } with the relations

e; = 0, eiej = -ejei for i 96 j.
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It is called the exterior algebra, or a Grassmann algebra, of the linear space L. We
shall return to this algebra in Chapter 4.

c) Let L = Mc be complexified Minkowski space with the metric zo - 3 xi
relative to the orthonormal basis {e, } of M, which is simultaneously a basis of
Mc. We shall show that the Clifford algebra C(Mc) is isomorphic to the algebra
of complex 4 x 4 matrices. To this end we examine the Dirac matrices, written in
the block form

o o 0 0 o'
7o = (0 -ao , 7. _

0
, j = 1,2,3.

Using the properties of the Pauli matrices oj it is not difficult to verify that the y,
satisfy the same relations in the algebras of the matrices M4(C) as do the p(e1) in
the algebra C(Mc):

70-712
=-722

2=-73
(that is, E4); 7s7j + 7j7s = 0 for i # j. Therefore the C-linear mapping
a : Mc M4(C) induces a homomorphism of algebras r : C(Mc) 1114(C)

for which r p(e;) = y;. By direct calculation it can be shown that the mapping
r is surjective, and since both C-algebras C(Mc) and M4(C) are 16-dimensional
algebras, r is an isomorphism.



CHAPTER 3

Affine and Projective Geometry

§1. Affine Spaces, Affine Mappings, and Affine Coordinates

1.1. Definition. An affine space over a field K is a triple (A, L, +), consisting
of a linear space L over a field K, a set A whose elements are called points, and
an external binary operation A x L A : (a, I) -, a + 1, satisfying the following
axioms:

a)(a+1)+m=a+(l+m) for allaEA; l,mEL;
b)a+0=a for allaEA;
c) for any two points a, b E A there exists a unique vector I E L with the

properly b = a + I.

1.2. Example. The triple (L, L, +), where L is a linear space and + coincides
with addition in L, is an affine space. It is convenient to say that it defines the
affine structure of the linear space L. This example is typical; later we shall see
that any affine space is isomorphic to this space.

1.3. Terminology. We shall often call the pair (A, L) or even simply A an affine
space, omitting the operation +. The linear space L is said to be associated with
the affine space A. The mapping A -+ A : a F-P a + I is called a translation by the
vector 1; it is convenient to denote it by the special notation i1. We shall write a - I
instead of t_:(a) or a + (-I).

1.4. Proposition. The mapping 1 it defines an injective homomorphism of
the additive group of the space L into the group of permutations of the points of the
affine space A, that is, the effective action of L on A. This action is transitive, that
is, for any pair of points a, b E A there exists an 1 E L such that t1(a) = b.

Conversely, the specification of a transitive effective action of the additive group
of L on the set A determines on A the structure of an affine space with associated
space L.

Proof. It follows from axioms a) and b) that for any I E L and a E A the equation
t1(x) = a has the solution x = a + (-I), so that all tt are surjective. If t1(a) = ti(b),
then having found by axiom c) a vector m E L such that b = a + m, we obtain

195
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a + l = (a + m) + 1 = (a + l) + m. But a + l = (a + l) + O, and therefore from the
uniqueness condition in axiom c) it follows that m = 0, so that a = b. Therefore all
the t, are injective.

Axiom a) means that t,,, o it = tl+m and axiom b) means that to = id.t.
Therefore the mapping I -. it is a homomorphism of the additive group L into the
group of bijections of A with itself. Axioms b) and c) imply that its kernel equals
zero.

Conversely, let L x A -» A : (l, a) '-- a + I be the effective transitive action
of L on A. Axioms a) and b) are then obtained directly from the definition of the
action and axiom c) is obtained by combining the properties of effectiveness and
transitivity.

1.5. Remark. With regard to the action of groups (not necessarily abelian)
on sets, see §7.2 of Introduction to Algebra. The set on which the group acts
transitively and effectively is called the principal homogeneous space over this group.

We note that the axioms of an affine space do not explicitly include the structure
of multiplication by scalars in L. It appears only in the definition of affine mappings
and then in barycentric combinations of the points of A. But, we shall first say a
few words about the formalism.

1.6. Computational rules. It is convenient to denote the unit vector I E L for
which b = a + I by b - a. This operation of "exterior subtraction" A x A -» L
(b, a) f- b - a has the following properties.

a) (c - b) + (b - a) = c - a for all a, b, c E A; the addition on the left is addition
in L.

Indeed, let c= b + 1, b = a + m; then c= a + (1 + m), so that c - a = I + m =
=(c-b)+(b-a).

b)a-a=0 for allaEA.
c) (a+l)-(b+m)=(a-b)+(1-m) for all a,bEA, l,mE L.
Indeed, it is sufficient to verify that (b + m) + (a - b) + (I - m) = a + 1, or

b + (a - b) = a, and this is the definition of a - b.
Generally the use of the signs ± for different operations L x L -+ L, A x L -

L, A x A -. L obeys the following formal rules. The expression fat ± a2 f
± am + 11 +. .. + In for a, E A, lk E L makes sense only if m is either even and all

faj can be combined into pairs of the form a, - aa, or it is odd and all points can
be combined into such pairs except for one, which enters with the + sign. In the
first case, the entire sum lies in L and in the second case it lies in A. In addition,
it is commutative and associative. For example, a1 - a2 + I can be calculated as
(a1 - a2) + 1 or (a1 + 1) - a2 or a1 - (a2 - 1); we shall write a + 1 as well as I + a.

We shall not prove this rule in general form. Whenever it is used, the reader
will be able to separate without difficulty the required calculation into a series of
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elementary steps, each of which will reduce to the application of one of the axioms,
or the formulas a)-c) at the beginning of this subsection.

We note that the sum a + b, where a, b E A, like the expression xa, where
x E K is, generally speaking, meaningless (exception: A = L). Nevertheless, in
what follows we shall give a unique meaning, for example, to the expression 1a+ Ib
(but not to its terms !).

Intuitively, the affine space (A, L, +) must be imagined to be a linear space L
whose origin of coordinates 0 is "forgotten". Only the operation of translation by
vectors in L, summation of translations, and multiplication of the translation vector
by a scalar are retained.

1.7. Affine mappings. Let (A1i L1), (A2, L2) be two affine spaces over the
same field X. The pair (f, D f ), where f : Al - A2, D f : Ll - L2 satisfying the
following conditions:

a) D f is a linear mapping and
b) for any a1,a2EA

f(al) - f(a2) = Df(al - a2).

(both expressions lie in L2), is called an affine linear or simply an affine mapping
of the first space into the second space.

D f (or D(f)) is the linear part of the affine mapping f. Since al - a2 runs
through all vectors in L1, when al, a2 E A1, the linear part of Df is defined with
respect to f uniquely. This makes it possible to denote affine mappings simply as
f:Al - A2-

1.8. Examples. a) Any linear mapping f : L1 L2 induces an affine mapping
of the spaces (L1, L1,+) -+ (L2, L2,+). For it, Df = f .

b) Any translation tl : A -+ A is affine, and D(t1) = idL. Indeed,

ti(al) - t1(a2) = (al + 1) - (a2 + 1) = al - a2.

c) If f : Al A2 is an affine mapping and 1 E L2 then the mapping tlo f : Al
A2 is affine and D(tl c f) = D(f). Indeed,

tl o f(al) - tt o f(a2) = (f(al) + 1) - (f(a2) + 1) = f(al) - f(a2) = Df(al - a2).

d) An affine function f : A - A; is defined as an affine mapping of A into
(JCI,JCI +), where 1C1 is a one-dimensional coordinate space. Thus f assumes
values in 1C, while D f is a linear functional on L. Any constant function f is affine:
Df = 0.

1.9. Theorem. a) Affine spaces together with affine mappings form a category.
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b) A mapping that associates with an affine (A, L) a linear space L and with
an affine mapping f : (A1, L1) -. (A2, L2) the linear mapping Df : L1 -+ L2, is a
functor from the category of affine spaces into the category of linear spaces.

Proof. The validity of the general category axioms (see §13 of Chapter I) follows
from the following facts.

The identity mapping id:A - A is an affine mapping. Indeed, al - a2 =
= idL(al - a2). In particular, D(idA) = idL.

A composition of affine mappings A 11 A - A is an affine mapping.
Indeed, let a, b E A. Then f, (a) - fl (b) = Dfl(a - b) and, further

f2f1(a) - f2f1(b) = Df2lfi(a) - f, (6)] = Df2 o Df1(a - b).

We have proved the required result as well as the fact that D(f2 fl) = Df2oDf1.
Together with the formula D(idA) = idL this proves the assertion b) of the theorem.

The following important result characterizes isomorphisms in our category.

1.10. Proposition. The following three properties of affine mappings f : Al
-+ A2 are equivalent:

a) f is an isomorphism,
b) Df is an isomorphism,
c) f is a bijection in the set-theoretic sense.

Proof. According to the general categorical definition, f : Al A2 is an iso-
morphism if and only if there exists an affine mapping g : A2 -+ Al such that
gf = idA1, fg = idA2. If it does exist, then D(fg) = idL2 = D(f)D(g) and
D(gf) = idL1 = D(g)D(f), whence it follows that D(f) is an isomorphism.

We shall now show that D f is an isomorphism if and only if f is a bijection. We
fix a point al E A 1 and set a2 = f (al). Any element A; can be uniquely represented
in the form a; + l;, li E L,, i = 1,2. From the basic identity

f(a1 +11)-f(a,) = Df[(a, +11)-a1] = Df(I1)

it follows that f (al + 11) = a2 + D f (11). Therefore, f is a bijection if and only if
Df(11) as li E L1 runs through all elements of L2 once, that is, Df is a bijection.
But a linear mapping is a bijection if and only if it is invertible, that is, it is an
isomorphism.

Finally we shall show that a bijective affine mapping is an affine isomorphism.
For this, we must verify that the set-theoretic mapping inverse to f is affine. But
in the notation of the preceding item, this mapping is defined by the formula

f'1(a2+12) = al +(Df)-1(l2), 12 E L2.
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Therefore

f-1(a2 + 12) - f -'(a2 + l2) = (Df)-1(12) - (Df)-1(l2') = (Df)-1(12 - l2)

because of the linearity of (Df)-1. Thus f-1 is affine and D(f.1) = D(f)'1
Finally, we have established the implications a) b) q c) =:, a), whence follows

the proposition.
The construction of specific affine mappings is often based on the following

result.

1.11. Proposition. Let (At, L1), (A2i L2) be two affine spaces. For any pair of
points al E A1i a2 E A2 and any linear mapping g : L1 L2 there exists a unique
affine mapping f : Al -y A2 such that f(al) = a2 and Df = g.

Indeed, we set

f(al+11) =a2+g(11)

for 1l E L1. Since any point in Al can be uniquely represented in the form al +11,
this formula defines a set-theoretic mapping f : Al - A2. It is affine, f(al) = a2
and D f = g because

f(al + l1) - f(al + li) = g(ll) - 9(l') = g(li - li) =

=9((al+ll)-(al+I )].
This proves the existence of f. Conversely, if f is a mapping with the required
properties, then

f(al + 1) - f (al) = 9(l),

whence f (al + 1) = a2 + g(l) for all I E L.

1.12. An important particular case of Proposition 1.11 is obtained by applying
it to (A, L), (L, L), a E A, 0 E L and g = idL. We find that for any point a E A
there exists a unique affine isomorphism f : A - L that transforms this point into
the origin of coordinates and has the same linear part. This is the precise meaning
of the statement that an affine space is a "linear space whose origin of coordinates
is forgotten".

In particular, of lne spaces are isomorphic if and only if the associated linear
spaces are isomorphic. The latter are classified by their dimension, and we can call
the dimension of an affine space the dimension of the corresponding linear space.

1.13. Corollary. Let fl,f2 : Al -. A2 be two affine mappings. Then their linear
parts are equal if and only if f2 is the composition of fl with a translation by some
unique vector from L2.
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Proof. The sufficiency of the condition was checked in Example 1.8c. To prove
necessity we select any point a E Al and set f2 = t12(a)_11(a) o f1. Evidently,
f2(a) = f2(a) and D(f2) = D(f2). By Proposition 1.11, f2 = f2. Conversely, if
f2 = t, o fl, then l = f2(a) - f1(a); this vector is independent of a E A because f1
and f2 have the same linear parts.

1.14. Affine coordinates. a) A system of affine coordinates in an affine space
(A, L) is a pair consisting of points ao E A (origin of coordinates) and a basis
{e1, ... , en } of the associated linear space L. The coordinates of the point a E A in
this system form the vector (xl, ... , xn) E ti", uniquely defined by the condition

n
a = ao +

Ei=1
xiei.

In other words, we identify A with L with the help of a mapping which has the
same linear part and transforms ao into 0, and takes the coordinates of the image
of the point a in the basis {e1, ... , en } : this will be z 1 , . . . , xn.

Choose a system of coordinates in the spaces Al and A2 such that they identify
the spaces with IC', K" respectively. Then any affine mapping f : Al -. A2 can
be written in the form

f(x')=Bi+y,

where B is the matrix of the mapping Df in the corresponding bases of L1 and L2,
while y" are the coordinates of the vector f (a' ) - ao in the basis L2; ao is the origin0

of coordinates in Al and ao is the origin of coordinates in A2. Indeed, the mapping
xI - BEE+ g is an affine mapping, transforms a' into f (a0') and has the same linear
part as f.

b) Another variant of this definition of a coordinate system consists in replacing
the vectors {e1i...,en} by the points {ao + el,...,ao + en} in A. We set ai =
= ao + ei, i = 1, ... , n. The coordinates of the point a E A are then found from the
representation a = ao + E 1 xi (ai - ao). One is tempted to "reduce similar terms"
and to write the expression on the right in the form (1 - E 1 xi) ao + xiai.
The individual terms in this sum are meaningless ! It turns out that sums of this
form can nonetheless be studied, and they are very useful.

1.15. Proposition. Let ao,... , a, be any points in an affine space A. For any
yo, , y, E K with the condition E;_o yi = 1, we define the formal sum E;=o yiai
by an expression of the form

s s

t yiai = a + t yi(ai - a),

i=o i=o

where a is any point in A. It is asserted that the expression on the right does not
depend on a. Therefore the point Fi=o yiai is correctly defined. It is called the
barycentric combination of the points a01... , a, with coefficients yo, ... , y,.
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Proof. Replace the point a by the point a + 1, 1 E L. We obtain

a+I+Eyi(a; - a - I) =a+1: yi(ai - a),
i=o i=o

because (1 - E;=0 yi) I = 0. We used here the rules formulated in §1.6. It will be
instructive for the reader to carry out this calculation in detail.

1.16. Corollary. The system {ao; al - ao,... , an - ao), consisting of the points
ao E A and the vectors ai - ao in L, forms a system of affine coordinates in A if
and only if any point in A can be uniquely represented in the form of a barycentric
combination :io xiai, xi E X, E 0 xi = 1.

When this condition is satisfied, the system of points {a0,. .. , a } is called a
barycentric system o f coordinates in A, and the numbers X 0 ,-- . , x are the barycen-

tric coordinates of the point Ti=O xiai.

Proof. Everything follows directly from the definitions, if M0 xiai is calcu-
lated from the formula ao + E 1 xi(ai - ao). Indeed, since any point in A can be
uniquely represented in the form ao + 1, 1 E L, the system {ao, al - ao, ... , an - ao}
is an affine coordinate system in A if and only if any vector I E L can be uniquely
represented as a linear combination E,"_1 xi(ai - a0), that is, if {al - 00,. .. , an -
ao) form a basis of L. The barycentric coordinates of the point ao + 1 are re-
constructed uniquely from the coordinates x1, ... , xn of the vector I in the form

1 -ELI xi = x0,Zi...... n.

1.17. Barycentric combinations can in many ways be treated like ordinary lin-
ear combinations in a linear space. For example, terms with zero coefficients can
be dropped. A more useful remark is that a barycentric combination of several
barycentric combinations of points 00,. .. , a, is in its turn a barycentric combina-
tion of these points, whose coefficients can be calculated from the expected formal
rule:

8 8 8

ZI Eyilai +x2Eyi2ai +...+xm E3kmai = (kk) ai.
i=0 i=0 i=0 i=o k=1

Indeed,
it m m a m

L E xkyik = E xk yik = E xk = 1,
i=0 k=1 k=1 i=0 k=1

so that the latter combination is barycentric. Calculating the left and right sides of
this equality according to the rule formulated in Proposition 1.15, with the help of
the same point a E A and applying the formalism in §1.6, we easily find that they
are equal.
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Finally, under affine mappings barycentric combinations behave like linear com-
binations.

1.18. Proposition. a) Let f : Al A2 be an affine mapping, ao,... , a, E Al.
Then

f ()t(ziai) = t zif(ai),
i=O i=O

if E'=0 xi = 1.
b) Let ao,... , an define a barycentric coordinate system in A1. Then for any

points b 0 , . . . , 6" E A2 there exists a unique affine mapping f transforming ai into
bi, i = 1, ... , n.

Proof. Choosing a E A 1i we obtain

f t xiai
i=0

=f (a+xiai _a)) =f(a)+Df (xi(ai- a))

a , a

= f (a) + E xi Df (ai - a) = f (a) + > zi(f (ai) - f (a)) _ E xif (ai)
i=o i=o i=o

according to Proposition 1.15, which proves assertion a).
If a0,. .. , an form a barycentric coordinate system in A 1, then by Corollary 1.16

any point in A can be represented by a unique barycentric combination o ziai.
We then define a set-theoretic mapping f : Al A2 by the formula f (E;_o xiai) =

>t o xibi. Part a) implies that this is the only possible definition, and we have
only to check that f is an affine mapping. Indeed, calculating as in Proposition
1.15, we obtain

f E xiai)
(i="O E

Mai) E xibi - E yibi = bo + E zi(bi - bo)-
=o i=o i=o i=o

= (xi - yi)(bi - bo) = Df (ziai - Eyia)[bo+(o_bo)J
i=o i=o i=o i=o

where D f : L1 -, L2 is a linear mapping, transforming ai - ao into bi - bo for all
i = 1, ... , n. It exists, because a1 - Go,. .. , a - ao by definition form a basis of Ll.

1.19. Remark. In the affine space R" the barycentric combination Finl m ai
represents the position of the "centre of gravity" of a system of individual masses
positioned at the points ai. This explains the terminology. If ai = (0, ... ,1, ... , 0)
(the one is in the ith place), then the set of points with barycentric coordinates
X1, ... , x" , 0 < xi < 1 comprises the intersection of the linear manifold E 1 xi = 1
with the positive octant (more precisely, a "2"-tant" ). In topology this set is called
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the standard (n-1)-dimensional simplex. A one-dimensional simplex is a segment of
a straight line; a two-dimensional simplex is a triangle; a three-dimensional simplex
is a tetrahedron. In. general, the set

n n

1, 0 <xi <1
i.1 icl

is a closed simplex with vertices al , ... , an in a real affine space. They are said to
be degenerate if the vectors a2 - Cl, ... , an - a1 are linearly dependent.

§2. Affine Groups

2.1. Let A be an affine space over the field 1C. Proposition 1.10 implies that the
set of affine bijective mappings f : A - A forms a group, which we shall call the
affine group and denote it by Aff A.

Its mapping D : Aff A - GL(L), where GL(L) is the group of linear auto-
morphisms of the associated vector space, is a homormorphism. Definition 1.11
implies that it is surjective, and according to Corollary 1.13 its kernel is the group
of translations {till E L}. Proposition 1.4 implies that this group of translations is
isomorphic to the additive group of the space L. Thus Aff A is the extension of the
group GL(L) with the help of the additive group L, which is a normal subgroup in
Aff A.

This extension is a selnidirect product of GL(L) and L. To verify this we choose

any point a E A and examine the subgroup G. C Aff A, consisting of mappings that
leave a unchanged. By Definition 1.11 every element f E G. is uniquely determined
by its linear part Df, and Df can be selected arbitrarily. Therefore, D induces an
isomorphism of G, to GL(L). For any mapping f E Aff A there exists a unique
mapping f, E G. with the same linear part, and f = t, o f, for an appropriate
I E L by Corollary 1.13. Having fixed a, we shall write t, of,, as a pair (g; 1], where
g = D f = Df, E GL(L). The rules of multiplication in the group Aff A in terms of
such pairs assume the following form.

2.2. Proposition. We have

[91; 11](92;121 _ (9192; 91(12) + 11],

Proof. According to the definitions, [g; l] transforms the point a + in E A into
a + g(m) + I , whence

(91;11](92;121(a+m) = (gl;ll](a+91(rn)+lt) =
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==a+9i(92(m)+l2)+l1 =a+ 9192(M)+91(12)+11

= [9192;91(12)+li](a+m),

which proves the first formula. By means of this,the product [g;l][g-1;-g'1(1)]
can be calculated. We obtain [ids; 0], and this pair represents the identity element
of Aff A. This completes the proof of the proposition and shows that Aff A is a
semidirect product.

2.3. Now let G C GL(L) be some subgroup. The set of all elements f E Aff A
whose linear parts belong to G, obviously forms a subgroup of All A - the inverse
image of G with respect to the canonical homomorphism All A - GL(L). We shall
call it the affine extension of the group C.

The case when the linear space associated with A is equipped with an additional
structure, an inner product, and C represents the corresponding group of isometrics
is especially important. Two groups of importance in applications are constructed
in this manner: the group of motions of the affine Euclidean space C = O(n)) and
the Poincare group (Minkowski space L and the Lorentz group G). We shall study
this group of motions in greater detail.

2.4. Definition. a) An affine Euclidean space is a pair, consisting of an affine
finite-dimensional space A over the field of real numbers and a metric d (in the
sense of Definition 10.1 of Chapter 1) with the following properly: for any points
a, b E A the distance d(a, b) depends only on a - b E L and equals the length of the
vector a - b in an appropriate Euclidean metric of the space L (independent of a
and b).

b) A motion of an affine Euclidean space A is an arbitrary distance-preserving
mapping f : A A: d(f (a), f (b)) = d(a, b) for all a, b E A.

2.5. Theorem. The motions of an affine Euclidean space A form a group, which
coincides with the affine extension of the group of orthogonal isometrics O(L) of
the Euclidean space L associated with A.

Proof We first verify that any affine mapping f : A -' A with Df E O(L) is a
motion. Indeed, by definition

d(f(a),f(b)) = IIf(a) -f(b)II = IIDf(a - b)II = Ila - bit = d(a,b);

in the third equality we made use of the fact that Df E O(L).
The main problem is to prove the converse.
First of all, it is obvious that a composition of motions is a motion. Further, we

have already established that translations are motions. Let a E A be an arbitrary
fixed point and let f be a motion. We set g = t,_f(,) o f. This is a motion that
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does not displace the point a. It is sufficient to prove that it is of lne and that
Dg E O(L). We identify A with L, as in §1.12, with the help of a mapping with
the same linear part and transforming a into 0 E L. Then g will transform into the
mapping g : L -+ L with the properties g(0) = 0 and Ig(l) - g(m)I = 11- ml for all
1, m E L, and it is sufficient to establish that such a mapping lies in O(L).

We first verify that g preserves inner products. Indeed, for any 1, m E L

III' - 2(l, m) + 1m12 =11- m12 = 19(1) - 9(m)I2 =

=19(1)12 - 2(9(l),9(m)) + I9(m)I2,

whence follows the required result, because 19(1)12 = 1112, I9(m)I2 = 1m12. We now
show that g is additive: g(l + m) = g(l) + g(m). Setting I + m = n and making use
of the preceding property, we have

0=In-,-m12=InI2+1112+ImI2-2(n, 1)-2(n,m)+2(1,m)=

= I9(n)I2 + 19(1)12 + I9(m)I2 - 2(9(n), 9(l)) - 2(9(n), 9(m))+

+2(9(1),9(m)) = Ig(n) - g(1) - 9(m)12,

whence g(n) = g(1) + g(m).
Finally, we show that g(xl) = xg(l) for all x E R, I E L. Setting m = xl, we

have

0 = 1m - x112 = Im12 - 2x(m,1) + x21112 =

= I9(m)I2 - 2x(9(m), 9(1)) + =219(1)12 = I9(m) - x9(1)12.

Thus g is a linear mapping that preserves inner products, that is, g E O(L) . The
theorem is proved.

2.6. Theorem. Let f : A -+ A be a motion in a Euclidean affine space with a
linear part Df. Then there exists a vector l E L such that Df(l) = I and f = tl o g,
where g: A A is a motion with a fixed point a E A.

Proof. First we shall clarify the geometric meaning of this assertion. Identifying A
with L by means of an affine mapping with an identical linear part and which maps
a into zero, we find that f is a composition of the orthogonal transformation g and
a translation by a vector 1, which is fixed with respect to g (because Df = Dg). In
other words, this is a "screw motion" if det g = 1 or a screw motion combined with
a reflection if detg = -1. Indeed, g is completely determined by its restriction go
to 11: g = 9o ® idm, so that g is a rotation around the axis Rl (possibly with a
reflection).

We now proceed with the proof. Let L2 = ker(Df - idL), L1 = Lz . We have
L = L1 9 L2; L2 consists of Df-invariant vectors, the space L1 is invariant with
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respect to D f - idL (because D f is orthogonal), and the restriction of D f - idL to
L1 is invertible.

We first select an arbitrary point a' E A and set g' = t,._f(a,) of. Evidently,
g'(a') = a'. We set f(a') - a' = 11 + 12 where l1 EL1i 12ELi. Then f = 112otilog'
and Df (12) = 12 by definition. We shall show that g = ti, o g' has a fixed point
a = a'+ m for some m E L1. We have

ti, og'(a'+m) =g'(a'+m)+11 =a'+ Df(m)+11.

The right side equals a' + m if and only if (Df - idL)m + 11 = 0. But, as we have
already noted, in L1 the operator Df - idL is invertible and 11 E L1. Therefore,
in exists. We have obtained the required decomposition f = 112 o g and we have
completed the proof.

Motions f with the property det Df = 1 are sometimes called proper motions,
and other motions (with det Df = -1) are called improper motions. We shall
present more graphic information about the motions of affine Euclidean spaces with
dimension n < 3, contained in Theorem 2.6. In the next section the notation of this
theorem is retained.

2.7. Examples. a) n = 1. Since 0(1) = {±1}, the proper motions consist only
of translations. If f is improper, then Df = -1, and from Df(1) = 1 it follows
that I = 0. Therefore, any improper motion of a straight line has a fixed point and
consequently is a reflection relative to this point.

b) n = 2. The proper motion f with Df = id is a translation. If Df 0 id and
det D f = 1, then D f , being a rotation, does not have fixed vectors, so that once
again 1= 0 and f has a fixed point, relative to which f is a rotation.

If f is an improper motion, then Df is a reflection of the plane relative to a
straight line, and f is a combination of such a reflection and a translation along
this straight line. This means that if the improper motion of a plane has a fixed
point, then it has an entire straight line of fixed points and represents a reflection
relative to the straight line.

c) n = 3. If det D f = 1, then D f always has an eigcnvalue equal to one and a
fixed vector. Therefore, all proper motions of a three-dimensional Euclidean space
are screw motions along some axis (including translations, that is, degenerate screw
motions with zero rotation). This is the so-called Chasles' theorem.

If the motion f = tig is improper and 10 0, then the restriction of g to the
plane orthogonal to I and passing through the fixed point a is an improper motion
of this plane. Therefore, it is a reflection with respect to a straight line in this
plane. We denote by P the plane spanned by I and this straight line. Then tlg is
a combination of a reflection with respect to the plane P and a translation by a
vector I lying in P.
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Finally, if I = 0, that is, f is an improper motion and has a fixed point, then,
identifying it with zero in L and f with D f and making use of the fact that f
has a characteristic straight line Lo with an eigenvalue equal to -1, we obtain the
geometric description of f as a composition of a rotation in Lo and a reflection
with respect to Lo .

Using the polar decomposition of linear operators, we can also analyse the
geometric structure of any invertible affine transformation of a Euclidean affine
space.

2.8. Theorem. Any affine transformation of an n-dimensional Euclidean space
f can be represented in the form of a composition of three mappings: a) n dilations
(with positive coefficients) along n pairwise orthogonal arcs, passing through some
point ao E A; b) motions leaving the point ao fixed; and c) translations.

Proof. Replacing f by its composition with an appropriate translation, as in
the proof of Theorem 2.5, we can assume that f already has a fixed point ao.
Identifying A with L and ao with 0, we can decompose f = Df into a composition
of a positive-definite symmetric operator and an orthogonal operator. Reducing the
first transformation to principal axes and transferring these axes into A, we obtain
the required result.

2.9. In conclusion, we note that in this section we made extensive use of linear
varieties in A (straight lines, planes), defining them constructively as the inverse
images of linear spaces in L with different identifications of A with L, depending
on the choice of the origin of coordinates. In the next section these concepts are
studied more systematically.

S3. Affine Subspaces

3.1. Definition. Let (A, L) be some affine space. The subset B C A is called an
affine subspace in A, if it is empty or if the set

M={b1-b3ELlbn,b2EB)cL

is a linear subspace in L and t,,,(B) C B for all m E M.

3.2. Remarks. a) If the requirements of the definition are satisfied and B is not
empty, then the pair (B, M) forms an affine space, which justifies the terminology (it
is presumed that the translation of B by a vector from M is obtained by restricting
the same translation to B in all of A). Indeed, an examination of the conditions of
Definition 1.1 immediately shows that they are satisfied for (B, M). In particular,
choosing any point b E B, we obtain B = {b + mom E M}.
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b) We shall call the linear subspace M = {b1 - b2IbI,b2 E B) the orienting
subspace for the affine subspace B. The dimension of B equals the dimension of M.
Evidently, it follows from B1 C B2 that M1 C M2 and therefore, dim BI < dim B2.
Two afflne subspaces with the same dimension with a common orienting space are
said to be parallel.

3.3. Proposition. Affine subspaces with the same dimension BI, B2 C A are
parallel if and only if there exists a vector I E L, such that B2 = t1(BI). Any two
vectors with this property differ by a vector from the orienting space for B1 and B2.

Proof. If B2 = t,(BI) and M2, M1 are the orienting subspaces of B2 and BI
respectively, then

M2={a-bra,bEB2}={(a'+1)-(b'+1)Ia',b'EB1)= MI,

so that BI and B2 are parallel.
Conversely, let M be the common orienting subspace for BI and B2. Choose

the points b1 E B and b2 E B2. We have BI = (b1+IIl E M), B2 = {b2+111 E M},
whence B2 = tb2_b1(BI). Finally, it is easy to see that t, (B1) = t12(B2) if and
only if 11 -12 E M.

3.4. Corollary. Affine spaces in L (with an affine structure) are linear subvari-
eties of L in the sense of Definition 6.1 of Chapter 1, that is, translations of linear
subspaces.

3.5. Corollary. Parallel affine subspaces with the same dimension either do not
intersect or they coincide.

Proof. If b E BI fl B2, then by the above, BI = {b + mIm E M} = B2 where M is
the common orienting subspace of BI and B2-

3.6. Two affine subspaces BI and B2 with not necessarily the same dimensions
are said to be parallel if one of their orienting subspaces is contained in the other.
Slightly modifying the preceding proofs, it is easy to prove the following facts. Let
BI and B2 be parallel and let dim B1 < dim B2. Then there exists a vector4 E L
such that ti(BI) C B2 and two vectors with this property differ by an element from
MI. In addition, either B1 and B2 do not intersect or BI is contained in B2.

3.7. Proposition. Let (B1,MI), (B2,M2) be two affine subspaces in A. Then
B1 fl B2 is either empty or an affine subspace with the orienting subspace M1 fl M2.

Proof. Let B1 fl B2 be non-empty and let 6 E B1 fl B2. Then B1 = {b + 1111 E
E M1}, B2 = (b+12 11 E M2), whence BI fl B2 = (b+III E M1 f1 M2) which proves
the required result. (Corollary 3.5 evidently follows from here.)



LINEAR ALGEBRA AND GEOMETRY 209

3.8. Affine spans. Let S C A be a set of points in an affine space A. The
smallest affine subspace containing S is called the affine span of S. It exists and
coincides with the intersection of all affine subspaces containing S. We can describe
an of lne span in terms of barycentric linear combinations (Proposition 1.11).

3.9. Proposition. The aftne span of a set S equals the set of barycentric
combinations of elements from S:

n n

-1 =1

where {s1, ... , sn} C S runs through all possible finite subsets of S.

Proof. We shall first show that the barycentric combinations form an affine sub-
space in A. Indeed, we denote by M C L the linear subspace spanned by all possible
vectors s - t; s,t E S. Any two barycentric combinations of the points S can be
represented in the form En Z, S,, y; s; with the same set {sl,...,an}, by
taking the union of the two starting sets and setting the extra coefficients equal
to zero. Since i 1 x; - En 1 yi = 0, the difference of these combinations can be
represented in the form

n

E(x; - yi)(si - Si)
i=1

and therefore it lies in M. Conversely, any element from M of the form F,n 1 xi(s;-
-ti) is the difference of the points

n n n n

1xisi+ (1-xi)s, and xiti+
i=1 i=1 i=1 i=1

from S. Therefore M = {b1 - b2jb1, b2 E S}. The same argument shows that
tm(S) C S for all m E M. Therefore, S is an affine subspace with orienting space
M. It is clear that S C

Conversely, let B J S be any affine subspace, (s I, ... , sn} C S. Then for any
x1,...,xnEK,E..j =1,wehave

n n

E xisi = 81 + xi(si - s1).

i=1 iol

Since s1,...,an E B, the vector E 1 x;(s; - s1) lies in the orienting space B and
therefore the translation s1 on it lies in B. Therefore, S C B and S are indeed the
smallest affine subspaces containing S.

3.10 Proposition. Let f : Al - A2 be an afne mapping of two affine spaces and
let B1 C Al and B2 C A2 be affine subspaces. Then f(B1) C A2 and f-1(B2) C Al
are affine subspaces.



210 A. I. KOSTRIKIN AND Yu. I. MANIN

Proof. Let B1 = {b + III E M1}, where M1 is the orienting space for B1. Then
f(Bj) _ {f(b)+Df(l)Il E Mi) = {f(b)+PIP E imDf}. Therefore f(Bj) is the
affine subvariety with the orienting space im Df.

In particular, f(A1) is an affine subvariety in A2, B2 n f(A1) is an affine
subvariety, and f-'(B2) = f-1(B2 n f(A1)) by virtue of the general set-theoretic
definitions. Replacing A2 by f (A1) and 82 by B2 n f (Al), we can confine our
attention to the case when f is surjective. Let M2 be the orienting space for B2.
Then B2 = {b + mini E M2} and f-1(B2) = {b' + m'l f(b') = b, Df(m') E M2).
On the right, we need study only one value b' E f-1(b): the remaining values are
obtained from it by translations on ker Df. It follows that f-1(B2) has the form
{b' + mum E Df'1(M2)} and is therefore an affine subspace with ofienting space

3.11. Corollary. The level set of any affine function is an affine subspace.

Proof. Indeed, the level set of the affine function f : A -+ ICI consists of the inverse
images of points in ICI. But any point in an affine space is an affine subspace (with
orienting space (0)).

3.12. Proposition. Let fl, ... , f be affine functions on an affine space A. Then
the set {a E AIfl(al) = ... = fn(an) = 0) is an affine subspace of A. If A is
finite-dimensional, then any of its affine subspaces have this form.

Proof. The indicated set is a finite intersection of level sets of affine functions.
Therefore, it is affine by virtue of Corollary 3.11 and Proposition 3.7. Conversely,
let B C A be an affine subspace in the finite-dimensional affine space A, and let
M C L be the corresponding linear spaces. If B is empty, then it can be defined by
the equation f = 0, where f is a constant non-zero function on A (any such function
is obviously affine, D f = 0). Otherwise, let gl = ... = gn = 0 be a system of linear
equations on L, defining M; for g, ... , gn we can take, for example, the basis of
the subspace M1 C L. We select a point b E B and construct the affine functions
fi : A -y K1 with the conditions fi(b) = 0, Dfi = gi, i = 1,... , n. Evidently,
fi(b + 1) = gi(1). Therefore, all functions fi vanish at the points b + I E A if and
only if I E M, that is, if and only if b + I E B. This completes the proof.

3.13. By a configuration in an affine space A we mean a finite ordered system
of affine subspaces (B1, ... , Bn ) . We call two configurations (B1,. .. , Bn) and
{B...... B;,} affine-congruent if there exists an affine automorphism f E Aft A,
such that f (Bi) = B;, i = 1, ... , n. Variants of this concept are possible when f
can be chosen only from some subgroup of Aff A, for example, the group of motions,
when A is Euclidean. In the last case, we shall call the configurations metrically
congruent. Important concepts and results of affine geometry are associated with the
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search for the invariants of configurations with respect to the congruence relation.
We note that it is the affine variant of the concept "the same arrangement", which
we studied in §5 of Chapter I.

We shall prove several basic results about congruence.
Let A be an affine space with dimension n. In accordance with the results of

§§1.9-11 we call a configuration of (n + 1) points {ao,...,a,,} in A a coordinate
configuration if its affine span coincides with A.

3.14. Proposition. a) Any two coordinate configurations are congruent and are
transformed into one another by a unique mapping f E A,ffA.

b) Two coordinate configurations {ao,... , an} and {ao, ... , a', } in a Euclidean
space A are metrically congruent if and only if d(a;,a1) = d(a;,aj) for any i, j E
E 1,...,n.
Proof. a) We set ei = ai -ao, eI = a1 -ao. The systems {e;} and {e;} form a basis
in L. Let g : L L be a linear mapping transforming e; into e;. We construct an
affine mapping f : A - A with the property D f = g and f (ao) = a'. It exists by
virtue of Proposition 1.11 and lies in Aff A, because g is invertible. In addition,

f(a1) = f(ao) + g(ai - ao) = ao + e; = ao +(a' -a) =a'

for all i = 1,... , n. The same formula shows that f is unique, because Df must
transform e; into e and f(ao) = ao.

b) By virtue of what was proved above, it is sufficient to verify that f is a
motion if and only if d(a;, a,) = d(a;, aJ) for all it j. Indeed, d(a;, a1) _ Iai - a, _
_ lei - e11, where eo = ao - ao = 0, and analogously d(a;, aJ) = le; - e' 1. If f
is a motion, then Df is orthogonal and preserves the lengths of vectors, so that
the condition is necessary. Conversely, assume that it is satisfied. Then le, = Ie;I
for all i = 1,... , n and we find from the equalities lei - ejl2 = le; - e I2 that
(e;, ej) = (e;, for all i and j. Therefore the Gram matrices of the bases lei)
and {e;} are equal. But then, the mapping g, transforming lei) into {e;), is an
isometry, so that f is a motion. This completes the proof.

We shall now examine the configurations (6, B), consisting of points and an
acne subspace. In the Euclidean case we call the distance

d(b, B) = inf{Ilk l b + I E B)

the distance from b to B.

3.15. Proposition. a) The configurations (6, B) and (b', B') are affinely congru-
ent if and only if dim B = dim B' and either b f B, It' 0 B' orb E B, It' E B' at the

same time.
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b) The configurations (b, B) and (b', B') are metrically congruent if and only
if dim B = dim B' and d(b, B) = d(b', B').

Proof. a) The stated conditions are evidently necessary. Assume that they are
satisfied. We denote by M and M' the orienting subspaces of B and B' respectively
and we select a linear automorphism g : L -+ L for which g(M) = M'. If b E B
and 6' E B', then we construct an affine mapping f : A -. A with the conditions
D f = g and f (b) = Y. Evidently, f (b + 1) = 6' + g(1), so that f (B) = B'.

If b V B and 1/ B', we impose additional conditions on g. We select points
a E B, a' E B' and require that g transform the vector b - a into the vector
b' - a'. Both vectors are non-zero and lie outside M and M' respectively, so that
the standard construction, starting from the bases of L of the form {basis of M, b-a,
complement} and {basis of M', b' - a', complement}, shows that g exists. Next we
once again construct the affine mapping f : A -+ A with D f = g and f (b) = Y. We
verify that f (B) = B. Indeed, first of all, f (a) = a', because

f(a)=f(6-(6-a))=f(b)-g(b-a)=6'-(6'-a')=at.

Furthermore, f (a + 1) = f (a) + g(l) and the condition l E M is equivalent to the
condition g(l) E M' so that f (B) = B'.

b) The necessity of the condition is once again obvious. To prove sufficiency we
impose additional requirements on the selections made in the preceding discussion.
First of all, we identify A with L, and we select the origin of coordinates in B.
Then B is identified with M and 6 becomes a vector in L. Let a be the orthogonal
projection of b on M. In the linear version we already know that d(b, B) = lb - al.
Analogously, we define a point a' in M', or, in our identification, in B'. For g
we choose an isometry of L transforming M into M' and b into Y. It exists: we
extend the orthonormal bases in M and M' to orthonormal bases in L, containing
(b - a)/lb - al and (b' - a')/Ib' - a'I, respectively, and define g as an isometry
transforming the first basis into the second. Then the affine mapping f : A --+ A
with Df = g and f(b) = b' will be a motion, transforming (b, B) into (6', B').

3.16. Finally, we shall examine the configurations consisting of two subspaces
B1, B2. The complete classification of these configurations, up to affine congruence,
can be made with the help of the corresponding result for linear subspaces, proved
in §5.5 of Chapter 1. The complete metric classification is quite cumbersome: it
requires an examination of the distance between B1 and B2 and a series of angles.
We shall confine ourselves to a discussion of the only metric invariant - a distance
which, as usual, we shall define by the formula

d(Bi, B2) = inf{bbl - b21 Jbl E B1, 62 E B2}.

We shall call a pair of points b1 E B1, b2 E B2 such that the vector b1 - b2
is orthogonal to the orienting spaces B1 and B2 the common perpendicular to B1
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and B2. (It would be more accurate to call the common perpendicular the segment
{tbi + (1 - t)b210 < i < 1).)

3.17. Proposition. a) A common perpendicular to BI and B2 always erists.
The set of common perpendiculars is bijective to the orienting spaces of BI and B2.

b) The distance between BI and B2 equals the length of any common perpen-

dicular to the lbi - b21.

Proof. a) Let M1, M2 be the orienting subspaces of BI and B2 and let bi E B1, b2 E
E B2. We project the vector b, - b2 orthogonally onto MI + M2 and represent the
projection in the form m1 + m2i mi E Mi. We set bi = b' - rn1,b2 = b4 + m2.
Evidently, bi E Bi and

bl -62=bi -b2-(ml+m2)E(Mi+M2)l.

Hence, {b1ib2} is a common perpendicular to B1,B2.
Let {61,62} and {bi,bZ} be two common perpendiculars. Then bi - bi E M1,

62 - 62 E M2 and in addition,

61-b2E(M1+M2)1, bi-b2E(Mi+M2)l.

Hence the difference (bi - b'1) - (b2 - b2) lies simultaneously in MI + M2 and
(MI + M2)'1. It therefore equals zero. Hence bi - b' = b2 - b2 E MI n M2.
Conversely, if (61, b2) is a fixed common perpendicular and m E MI n M2, then
{bI + m, b2 + m) is also a common perpendicular. This completes the proof of the
first part of the assertion.

b) Let {61, b2} be a common perpendicular to BI and B2 and let bi E BI, V2 E
E B2 be any other pair of points. It is sufficient to prove that Ibi - b21 < Ib'I - 621.
Indeed,

b1 - b2 = (b1 - b2) + (bi - bl) + (b2 - b2)

But (bi -61)+02-b2) E MI+M2, and the vector bI -b2 is orthogonal to MI+M2.
Therefore by Pythagoras's theorem

Ibi -b212 = Ib1 -b212+1b -b1 +b2-b212 > 161 -6212,

which completes the proof.
In conclusion we shall establish a useful result characterizing affine subspaces.

3.18. Proposition. A subset S C A is an affine subspace if and only if together
with any two points s, t E S it contains the entire straight line passing through these
points, that is, their affine span.

Proof. The straight line passing through the points s, t E S is the set {zs+
+(1- x)tlx E K). Therefore the necessity of the condition follows from Proposition
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3.9. Conversely, assume that the condition holds. Since by virtue of the same
proposition the afilne span S consists of all possible barycentric combinations of
points in S, we must verify that such combinations E"_1 xisi lie in S. We perform
induction on n. For n = 1 and 2, the result is obvious. Let n > 2 and assume that
the result is proved for the smallest values of n. We represent 1 xis; in the form

n-2 n

s;Yl E z
i=1 y1 i=n-1 y2

where yl = m l2 xi, 112 = xn-1 + xn (we can assume that both of these sums differ
from zero, otherwise _,"_1 xis; E S by the induction assumption). Evidently,

n-2 n

> L =
xi

= y1 + y2 = 1.
i=1 i=n-1 y2

Therefore, :°_ i y1 si and E =n-1
2

si lie in S, and their barycentric combination
with coefficients yl and y2 lies in S. This completes the proof.

EXERCISES

1. We call the ith median of the system of points a1,... , an E A a segment con-
necting the point ai with the centre of gravity of the remaining points {aj/j # i}.
Prove that all medians intersect at one point - the centre of gravity of a,,. . . , an.

2. The angle between two straight lines in a Euclidean affine space A is the angle
between their orienting spaces. Prove that two configurations of two straight lines
in A are metrically congruent if and only if the angles and distances between the
straight lines are the same in both configurations.

3. The angle between a straight line and an affine subspace with dimension > 1
is defined as the angle between the orienting straight line and its projection on
the orienting subspace. Using this definition, extend the result of Exercise 2 to
configurations consisting of a straight line and a subspace.
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S4. Convex Polyhedra and Linear Programming

4.1. Formulation of the problem. The basic problem of linear programming is
stated as follows. A finite-dimensional affine space A over the field of real numbers
R and m+ 1 affine functions fl,..., fn; f : A - R are given. The problem is to
find a point (or points) a E A satisfying the conditions f1(a) > 0, ... , f,n(a) > 0, for
which the function f assumes the greatest possible value under these restrictions.

A variant in which some of the inequalities are reversed, fi(a) < 0, and/or the
problem is to find points at which f assumes the smallest possible value, can be
reduced to the preceding case by changing the sign of the corresponding functions.
The condition fi(a) = 0 is equivalent to the combined conditions fi(a) > 0 and
-fi(a) > 0. All functions fi may be assumed not to be constant.

4.2. Motivation. Consider the following mathematical model of production.
Consider an enterprise that consumes m types of different resources and produces
n types of different products. The resources and products are measured in their
own units by non-negative real numbers (we shall not consider the case when
these numbers are integers, for example, the number of automobiles; for large
volumes of production and consumption of resources the continuous model is a
good approximation).

It is natural to describe the volume of production of a given enterprise by a
production vector (x1, x2, ... , x,) E R. Consumption of resources is calculated
by the following widespread linear formula. It is considered that the consumption
of resource i(i = 1,... , n) to manufacture product j(j = 1, ... , m) is aij > 0, the
presence of resource i being restricted by a value bi. In other words,

n

fi(x1, ... , xn) = bi aijxj > 0, 1 < i < m.
i=1

which is equivalent to

n
aijxj < bi; i = 1,2,... ,m

i=1

Herewith, certainly,

(1)

xj > 0; j = 1,2,...,n (2)

i.e. the enterprise does not procure its products from third parties - for sale or as
spares. It is assumed that the system of inequalities (1), (2) is simultaneous. Any

production vector satisfying this system of inequalities is called admissible.
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Further, let the enterprise make profits Ai, from each i-th product. Then the
total profits of the enterprise shall be

n
f(xji... xn) _ irixi.

i=1

(3)

The function (3) in linear programming is called an efficiency function. The
admissible production vector providing a maximum of the efficiency function (3)
is called optimal with respect to the profits. The enterprise's interests are to make
the largest profits, i.e. to obtain an optimal production vector by correctly managing
the resources available. We see that this problem is a particular case of the problem
formulated in 4.1.

Before we proceed to a more substantial geometrical interpretation of the general
problem of linear programming, consider an example from a concrete economy.

Example (This is an adaptation of an example found in 7; see Bibliography).
Suppose that the National Water Transport Company produces two kinds of output,
motor boats and river buses (briefly: MB and RB), has four kinds of facilities, each
of which is fixed in capacity: MB assembly, RB assembly, engine assembly, and
sheet metal stamping. The problem is: How many motor boats and how many river
buses should the firm produce? The profit per MB or the profit per RB depends on
the price of a motor boat or a river bus, and the firm's fixed costs. Assume that
the price and average variable cost (some well known concepts of economics) are
constant; that is, they do not vary with output in the relevant range. Specifically,
assume that the price of a MB is $70,000, the price of a RB is $125,000, the
average variable costs of a MB are $65,500 and the average variable costs of a RB
are $120,000.

So, the firm receives $4,500 above the variable cost for each MB it produces and
$5,000 for each RB. If N,nb (corr., N,.b) is the number of MB (corr. of RB) produced
by the firm per day, we have that the firm's profits (before deducting fixed costs)
must equal

a = f (Nmb, Nrb) = 4,500 Nmb + 5, 000 Nrb. (4)

Let each MB (correspondingly, each RB) that is produced per day utilize 15 percent
of the MB assembly, 12 percent of the Engine assembly, 9 percent of the Sheet metal
capacity (corr., 17 percent of the RB assembly, 8 percent of the Engine assembly,
13 percent of the Sheet metal capacity). It is clear now that the constraints on the
decisions of the firm's managers will be as follows:
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a face of S; hence its ends are contained in T, and therefore it is contained in T1,
because T1 is a face of T.

4.5. Lemma. Let S be a polyhedron, defined by the inequalities f1 > 0,
i = 1, ... , m. Then for any i the polyhedron Si = S fl {alf; (a) = 0} is either
empty or is a face of S.

Proof. Let Si be non-empty, let al , a2 E S, and let the interior point of the segment
xal + (1 - x)a2 be contained in Si. The function f;(xal + (1 - x)a2), 0 < x < 1,
linear with respect to x, vanishes for some 0 < xo < 1 and, in addition, is non-
negative at x = 0 and x = 1. Therefore, it identically equals zero, so that the entire
segment is contained in Si.

4.6. Lemma. The non-constant affine function f on a polyhedron S = {al f;(a) >
> 0) cannot assume a maximum value at a point a E S for which all f;(a) > 0.

Proof. Since f is not constant, D f $ 0. We select in the vector space L, associated
with A , a vector I E L for which Df(l) $ 0. It may be assumed that Df(1) > 0,
changing the sign of I if necessary. If the number e > 0 is sufficiently small and

(a .a E S,then f;(a+el) > 0 for all i = 1, ... , m: it is sufficient to take e < mini fi
MT MT

Therefore, a+el E S for such e. But f(a+d) = f(a)+eDf(1) > f(a), so that f(a)
is not the maximum value of f.

We can now prove our main result.

4.7. Theorem. Assume that an affine function f is bounded above on the
polyhedron S. Then, it assumes its maximum value at all points of some face of S
that is also a polyhedron. If S is bounded, then f assumes its maximum value at
some vertex of S.

Proof. We perform induction on the dimension of A. The case dim A = 0 is
obvious. Let dim A = n and assume that for low dimensions the theorem is proved.
Let S be given by the system of inequalities fl > 0, ... , f,,, > 0. Since the set S
is closed , the function f which is bounded above assumes a maximum value on S
at some point a. If f, (a) > 0, ... , fm(a) > 0, then Lemma 4.6 implies that f can
only be a constant; in particular, it assumes its only value on all of S. Otherwise,
f; (a) = 0 for some i. This means that f assumes a maximum value at a point of the
non-empty polygon Si which is a face of S and lies in the affine space {al f;(a) = 0)
with dimension n - 1 because f; is not constant. By the induction hypothesis, the
restriction of f to Si assumes its maximum value at all points of some polyhedral
face of Si. Lemma 4.4 implies that it will be a face of S. It will be a polyhedron,
because to the inequalities defining it in Si, whose left, sides are continued onto all
of A, we must add the equality f; = 0.

Now, by induction on the dimension of the affine span of S we show that any
bounded polyhedron necessarily has a vertex. Indeed, in zero dimension this is
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obvious. Let the dimension be greater than zero. We may assume that the affine
span of S is all of A. We take any variable affine function on A. It must assume its
maximum value on S, because S is bounded and closed. Consequently, S contains
a non-empty face at all points of which this value is assumed. It is a bounded
polyhedron, whose affine span has a strictly lower dimension. By the induction
hypothesis it has a vertex which, according to Lemma 4.6, is also a vertex of S.

Finally, let S be bounded and let T be a polyhedral face of S, on which the
starting function f assumes its maximum value. Then any vertex of T, whose
existence has been proved, is the vertex of S sought.

§5. Affine Quadratic Functions and Quadrics

5.1. Definition. A quadratic function Q on an affine space (A, L) over a field K
is a mapping Q : A -+ K, for which there erists a point ao E A, a quadratic form
q : L -+ K, a linear form I : L -+ K and a constant c E K, such that

Q(a) = q(a - ao) + l(a - ao) + c

for all a E A.
The form q is called the quadratic part of Q, while 1 is the linear part of

Q relative to the point ao. Obviously, c = Q(ao). We shall first show that the
quadratic nature of Q is independent of the choice of ao. More precisely, let g be
the symmetric bilinear form on L that is the polarization of q. As usual, we shall
assume that the characteristic of IC does not equal 2.

5.2. Proposition. If Q(a) = q(a - ao) + l(a - ao) + c, then for any point a'0 E A

Q(a) = q(a - a') + 1'(a - a') + c',

where

1'(m) = 1(m) + 2g(m, a' - ao), c' = Q(a').

Thus the transition to a different point changes the linear part of Q and the constant.

Proof Indeed,

q(a - ao) = q((a - a') + (ao - ao)) _0

= q(a - a') + 2g(a - ao,a' - ao) + q(ao - ao),

l(a - ao) = 1((a - ao) + (ao - ao)) = l(a - do) + l(ao - ao),

which proves the required result.
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5.3. We shall call the point ao a central point for the quadratic function Q if the
linear part of Q relative to ao equals zero. This terminology is explained by the
remark that the point ao is central if and only if Q(a) = Q(ao - (a - ao)) for all
a; indeed, the difference between the left and right sides in the general case equals
21(a - ao) because q(a - ao) = q(-(a - ao)). Geometrically, this means that after
the identification of A with L such that ao transforms into the origin of coordinates,
the function Q becomes symmetric relative to the reflection m f- -m.

We shall call the set of central points of the function Q the centre of Q.

5.4. Theorem. a) If the quadratic part q of the function Q is non-degenerate,
then the centre of Q consists of one point.

b) If q is degenerate, then the centre of Q is either empty or it is an affine
subspace of A with dimension dim A - rk q (rk q is the rank of q) , whose orienting
subspace coincides with the kernel of q.

Proof. We begin with any point ao E A and represent Q in the form q(a - ao)+
+1(a - ao) + c. According to Proposition 5.2, the point a'0 E A will be central for
Q if and only if the condition

1(m) = -29(m, ao - ao)

holds for all in E L. When a'' runs through all points of A, the vector ao - ao runs0

through all elements of L and the linear function of m E L of the form -2g(rn, a'0 -
ao) runs through all elements of L', contained in the image of the canonical mapping

L L', associated with the form g.
If q is non-degenerate, then § is an isomorphism. In particular, for the func-

tional -1/2 E L' there exists a unique vector as - ao E L with the property
g(., a'0 - ao) _ -21(.). The point a'0 is, in this case, the only central point of Q.

If q is degenerate, then there are two possible cases. Either -1/2 is not con-
tained in the image of §, and then there are no central points, or -1/2 is contained
in the image of §. Then for any two points a', ao with the condition

9(., a'0 - ao) = g(., do' - ao) _ -210

we have ao - as E ker § and, conversely, if g(', ao - ao) z and ao E ao + ker
then

9(',a0 " - ao) _ -2l(')

Thus the centre is an affine subspace and ker§, that is, the kernel of q, is the
orienting subspace. This completes the proof.

We can now prove the theorem on the reduction of a quadratic form Q to
canonical form in an appropriate affine coordinate system {ao, a 1, ... , en },where
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{e,) is a basis of L and ao E A. We recall that the point a E A in it is represented
by the vector x,,), if a = o E'1 xici.

5.5. Theorem. Let Q be a quadratic function on the affine space A. Then there
exists an affine coordinate system in A in which Q assumes one of the following
forms.

a) If q is non-degenerate, then Q(xl, ... xn) = E
1

aix$ + c; Ai, c E K.
b) If q is degenerate and has rank r and the centre of Q is non-empty, then

Q(x1i...,xn) = E Aixj + c; i,C E K.

i=1

c) If q is degenerate and has rank r and the centre of Q is empty then

Q(x1,...,z ) _ '`ixi +xr+1
i=1

Proof. If q is non-degenerate, we choose the central point of Q as ae. Then
Q(a) = q(a - ao) + c. For e1, ... , e we select a basis of L in which q is reduced to
the sum of squares with coefficients. The same technique also leads to the goal if
the centre is non-empty.

If the centre of Q is empty, then we start with an arbitrary point ao and the
basis {el, ... , en) in which the quadratic part Q has the form Li-1 ,fix?. Let the
linear part have the form 1 = E? 1 pixi. We assert that p gt 0 for some j > r.
Indeed, otherwise I pixi, and then Q can be represented in the form

f r r
(xi

z

Dix; + E pixi + c = E ai +
'/

ei will be a central point for Q which contradictsTherefore the point ao - Li=l1A *

the assumption that the centre is empty.
But if p, > 0 for some j > r, then the system of functionals {e1, ... , er,1) in L`

is linearly independent. We can extend it up to a basis of L* and in the dual basis of
L we can obtain for Q an expression of the form i=1 aix; + xr+1 +c, where xr+1,
as a function on L, is simply 1. It is now clear that there exists a point at which Q
vanishes, for example, xl = ... = xr = 0, xr+1 = -c, xr+2 = ... = xn = 0 in this
system of coordinates. Having begun the construction at this point, we obtain the
representation of Q in the form Ei=1 aix; + xr+1.

5.6. Supplement. a) The question of the uniqueness of a canonical form reduces
to a previously solved problem about quadratic forms. If q is non-degenerate and
has the form 1 Ai x? + c in some coordinate system, then the point (0,... , 0)
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is the centre and is therefore determined uniquely, the constant c is determined
uniquely as the value of Q at the centre, and the arbitrariness in the selection of
axes and coefficients is the same as for quadratic forms. In particular, over R it
may be assumed that Ai = ±1, and the signature is a complete invariant. Over C
it may be assumed that all Ai = 1.

In the singular case with a non-empty centre, the origin of coordinates can
be placed at the centre arbitrarily, but the constant c is still determined uniquely,
because the value of Q at all points of the centre is constant: if a and ao are
contained in the centre, then l(a - ao) = 0 and q(a - ao) = 0, because a - ao is
contained in the kernel of q. The previous remarks are applicable to the quadratic
part.

Finally, in the degenerate case with an empty centre, any point at which Q van-
ishes can be chosen for the origin of coordinates; the previous remarks are applicable
to the quadratic part.

b) If A is an afliine Euclidean space, then Q is reduced to canonical form
in an orthonormal basis. The numbers are determined uniquely. The
arbitrariness in the selection of the centre is the same as in the affine case, and the
arbitrariness in the selection of axes is the same as for quadratic forms in a linear
Euclidean space.

5.7. Affine quadrics. An affine quadric is a set {a E AIQ(a) = 01, where Q is
some quadratic function on A. A glance at the canonical forms Q shows that all of
the results of §10 of Chapter 2 are applicable to the study of the types of quadrics.

Consider the problem of the uniqueness of a function Q defining a given affine
quadric over the field R. First of all, the quadric can be an affine space in A
(possibly empty): the equation E;_1 x; = 0 is equivalent to the system of equations
x1 = ... = x,. = 0. For r > 1 there exist many quadratic functions that are
not proportional to one another but which give the same quadric, for example,
i=1 Aix; = 0 for any Ai > 0. We shall show that for other quadrics the answer is
simpler.

5.8. Proposition. Let the affine quadric X, which is not an affine subspace, be
given by the equations Q1 = 0 and Q2 = 0 where Ql,Q2 are quadratic functions.
Then Q1 = AQ2 for an appropriate scalar A E R.

Proof. First, X does not reduce to one point. Proposition 3.18 implies that there
exist two points a1i a2 E X whose afIine span (straight line) is not wholly contained
in X.

Let a1, a2 E X and assume that the straight line passing through the points
a1, a2 is not wholly contained in X. We introduce in A a coordinate system

where e = a2 - al. We write the function Q1 in this coordinate
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system as a quadratic trinomial in xn:

QI(xl,...,xn) = axn + 1j(xI,...,xn_1)xn + li(x1,...,xn-1),

where 1',, 1are affine functions, that is polynomials of degree < 1 in xl, ... , x.-1.
Since the straight line through the points al = (0,..., 0) and a2 = (0,...,0,1) is
not wholly contained in X, A # 0 and 11(0)2 - 4a11(0) > 0. Dividing Ql by A, it
may be assumed that A = 1. Analogously, it may be assumed that

Q2(xl,...,xn) = xn + 12(xl,...,xn-1)xn + l2(xl,....xn_I)

and 12(0)2 - 412 "(0) > 0. We now know that QI and Q2 have the same set of real
zeros and we want to prove that Q1 = Q2.

W e fix the vectors (cl, ... , cn_ 1) E R"- l and examine the vectors

(tclI...Itcn_1),t E R.

For small absolute values of t , the discriminants of the trinomials Q1(tcl , .. .
.... tcn_ 1 , x,) and Q2(te1, ... , tcn _ 1, xn) with respect to x" remain positive, and
their real roots, corresponding to the points of intersection of the same straight line
with X, are the same. Hence li = l2 and l = lz at the points (tc1, ... , tcn _ 1).
Therefore, l', = 1'2 and l'1 X, because affine functions which are equal on an open
set are equal. Indeed, their difference vanishes in a neighbourhood of the origin of
coordinates and therefore the set of its zeros cannot be a proper linear subspace.
This completes the proof.

§6. Projective Spaces

6.1. Affine spaces are obtained from linear spaces by eliminating the origin of
coordinates. Projective spaces can be constructed from linear spaces by at least
two methods:

a) By adding points at infinity to the affine space.
b) By realizing a projective space as a set of straight lines in a linear space.
We shall choose b) as the basic definition: it shows more clearly the homogene-

ity of the projective space.

6.2. Definition. Let L be a linear space over a field 1C. The set P(L) of straight
lines (that is, one-dimensional linear subspaces) in L is called the projective space
associated with L, and the straight lines in L are themselves called points of P(L).

The number dim L -1 is the dimension of P(L), and it is denoted by dim P(L).
One- and two-dimensional projective spaces are called respectively a projective
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straight line or a projective plane. An n-dimensional projective space over a field
K is also denoted by KPn or P"(K) or simply F. The meaning of the identity
dim P(L) = dim L - 1 will now become clear.

6.3. Homogeneous coordinates. We select a basis {eo, ... , en} in the space
L. Every point p E P(L) is uniquely determined by any non-zero vector on the
corresponding straight line in L. The coordinates X 0 ,- .. , zn of this vector are called
homogeneous coordinates of the point p. They are defined up to a non-zero scalar
factor: the point (.1xo,... , .1xn) lies on the same straight line p and all points of
the straight line are obtained in this manner. Therefore, the vector of homogeneous
coordinates of the point p is traditionally denoted by (xo : x1 : ... : xn).

Thus the n-dimensional projective coordinate space P(Kn+1) is the set of orbits
of the multiplicative group K` = K\{O}, acting on the set of non-zero vectors
Kn+l \{0} according to the rule .(zo,... , xn) Az,,); (zo : z1 :...: xn )
is the symbol for the corresponding orbit.

In terms of homogeneous coordinates one can easily imagine the structure of
Pn as a set by several different methods.

a) Affine covering of P". Let

Ui ={(xo:...:xn)Ixi $ 0}, i=0,...,n.

Obviously, P" = U 0 Ui. The collection of vectors of the projective coordinates
of any point p E Ui contains a unique vector with the ith coordinate equal to 1:
(no : ... : xi :...: xn) = (xo/xi : ... : 1 :...: xn/xi). Dropping this number
one, we find that Ui is bijective to the set K", which we can interpret as an n-
dimensional linear or affine coordinate space. We note, however, that we do not yet
have any grounds for assuming that Ui has some natural linear or affine structure,
independent of the choice of coordinates. Later we shall show that it is possible
to introduce on Ui in an invariant manner only an entire class of affine structures,
which, however, are associated with canonical isomorphisms, so that the geometry
of affine configurations will be the same in all of them.

We shall call the set Ui ?` Kn the ith affine map of P" (in a given coordinate
system). The points (y1 , ... , y, ) E U; and (y1 ), ... , yn1)) E Uj with i $ j corre-
spond to the same point in P", contained in the intersection Ui fl Uj, if and only if
by inserting the number one in the ith place in the vector (yl'),... , y;, 'l) and in the
jth place in (yIj)) ... , yn)), we obtain proportional vectors.

In particular, P' = Uo U U1, Uo 25 Ui K; the point y E Uo corresponds
to the point 1/y E U1 with y 0- 0; the point y = 0 in Uo is not contained in U1,
while the point 1/y = 0 in Ui is not contained in Uo. It is natural to assume that
P1 is obtained from Uo S5 K by adding one point with the coordinate y = oo.
Generalizing this construction, we obtain the following.
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b) Cellular partition of P". Let

Vi = {(xo :...: xn)lxj = 0 for j < i, xi # 0}.

Obviously, V0 = U0 and P" = (J0 Vi, but this time all the V are pairwise disjoint.
The collection of projective coordinates of any point p E V contains a unique
representative with the number one in the ith place; dropping the number one and
the preceding zeros, we obtain a bijection of Vi with K". . Finally

P" K"UK"-'UK"r2U...UK°-K"UPn--1.

In other words, P" is obtained by adding to U° K" an (n - 1)-dimensional
projective space, infinitely far away and consisting of the points (0 : xl :...: xn);
in its turn, it is obtained from the affine subspace Vl by adding a projective space
Pn-2, infinitely far away (with respect to V1), and so on.

c) Projective spaces and spheres. In the case K = R or C, there is a convenient
method for normalizing the homogeneous coordinates in P", which does not require
the selection of a non-zero coordinate and division by it. Namely, any point in P"
can be represented by the coordinates (x° :...: xn) with the condition F,"_0 ,xi12 =
= 1, that is, by a point on the n-dimensional (with IC = R) or (2n+ 1)-dimensional
(with K = C) Euclidean sphere. The degree of the remaining non-uniqueness is as
follows: the point (.1x0 : ... : )Ixn) as before lies on the unit sphere if and only if
J,\J=1, that is,l.=f1 for IC =R,and .l=e'4, 0< l<2irforK=C.

In other words, an n-dimensional real projective space RP" is obtained from
an n-dimensional sphere S" by identifying antipodal pairs. In particular, RP' is
arranged like a circle and RP2 is arranged like a Mobius strip, to whose boundary
a circle is sewn.

Fig. I

It is more difficult to visualise CP": an entire great circle of the sphere S2"+1
consisting of the points (x0ei0,... , xneio) with variable 0, is sewn to one point of
CP". From the description of CP' in item c) above as CU{oo}, it is clear that CP'
can be represented by a two-dimensional Riemann sphere, in which oo is represented
by the North Pole, like in a stereographic projection (Fig. 3). Therefore, our new
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Fig. 2 Fig. 3

representation of CP1 in the form of a quotient space of S3 gives the remarkable
mapping S3 S2, whose fibres are circles in S. It is called the Hopf mapping.

In the exposition of this subsection we have completely ignored the linear struc-
ture, which is the basis for RPn and CPn, though we were able to see clearly the
topological properties of the spaces, primarily their compactness. (Strictly speak-
ing, no topology entered into the definition of P"; it is more convenient to introduce
it precisely with the help of mappings of spheres, agreeing that open sets in RPn
and CP" are sets whose inverse images in S" and Stn+1 are open.) Henceforth we
shall not use topology, and we shall return to the study of the linear geometry of
projective spaces. It is not, however, an exaggeration to say that the importance
of RPn and Cr is to a large extent explained by the fact that these are the only
compactifications of R" and C" that make it possible to extend the basic features
of a linear structure to infinity. Even over an abstract field K, not carrying any
topology, this "compactness" of projective spaces appears in many algebraic vari-
ants. The following is a typical example: two different straight lines in an affine
space, generally speaking, intersect at one point, but they can also be parallel. This
means that their point of intersection has receded to infinity, and it is successfully
observed by transferring to a projective plane: any two projective straight lines in
a plane intersect.

We now return to the systematic study of the geometry of Pn.

6.4. Projective subspaces. Let M C L be any linear subspace of L. Then
P(M) C P(L) because every straight line in M is at the same time a straight line
in L.

Sets of the type P(M) are called projective subspaces of P(L). Evidently,
P(M1nM2) = P(M1)nP(M2) and the same is true for the intersection of any family.
Therefore, a family of projective subspaces is closed with respect to intersections.
For this reason, the set of projective subspaces P(L), containing a given set S C
C P(L) contains a smallest set - the intersection of all such subspaces. It is called
the projective span of S and is denoted by S; it coincides with P(M), where M is
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the linear span of all straight lines corresponding to points s E S in L.
In transforming from pairs L C M to pairs P(L) C P(M) the dimensions

are reduced by one, so that the codimension dim L - dim M equals the codi-
mension dim P(L) - dim P(M). Furthermore, as we have already noted, P(M1n
nM2) = P(M1) n P(M2), and P(M1 + M2) coincides with the projective span of
P(Ml) U P(M2).

Based on these remarks, we can write the projective version of Theorem 5.3 of
Chapter 1. We note only that in accordance with Definition 6.2 the dimension of
an empty projective space must be set equal to -1: this case is entirely realistic,
because the intersection of non-empty subspaces can be empty.

6.5. Theorem. Let P1 and P2 be two finite-dimensional projective subspaces of
the projective space P. Then

dim P1 nP2+diln P=dim P1+dimP2.

6.6. Examples. a) Let P1 and P2 be two different points. Then dim P1 n P2 =
= -1, dim P1 = dim P2 = 0, whence dim PI U P2 = 1, that is, the projective span
of two points is a straight line. According to the definition of a projective span, it
is the only projective straight line passing through these points.

b) Let dim Pl + dim P2 > dim P. Then, since P < dim P, we have
P1 n P2 < 0. In other words, two projective subspaces, the sum of whose dimensions
is greater than or equal to the dimension of the enveloping space, have a non-empty
intersection. In particular, there are no "parallel" straight lines in the projective
plane: any two straight lines either intersect at one point or at two points and then
(according to item a) above) they coincide. Analogously, two projective planes in
a three-dimensional projective space necessarily intersect along a straight line or
they coincide. A projective plane and a straight line in the three-dimensional space
intersect at a point, or the straight line lies in the plane.

c) The condition P1 nP2 = 0 in the case P1 = P(M1) means that M1nM2 = {0},
that is, the sum M1 + M2 is a direct sum.

6.7. Representation of projective subspaces by equations. The linear
function f : L -' K on a linear space L does not define any function on P(L)
(except the case f = 0), because there is always a straight line in L on which this
function is not constant, and it is impossible to fix its value at the corresponding
point of P(L). But the equation f = 0 defines a linear subspace of L and therefore
a projective subspace of P(L). If L is finite-dimensional, then any subspace of L
and therefore any subspace of P(L) can be defined by the system of equations

f, = ... = °m = O.



LINEAR ALGEBRA AND GEOMETRY 227

This effect is manifested as follows in the homogeneous coordinates P": the system
of linear homogeneous equations

n

Ea;j xj =0, i= 1,...,m,
i-o

defines a projective subspace of P", consisting of points whose homogeneous coor-
dinates (xo : ... : x") satisfy this system. Multiplication of all coordinates by A
does not destroy the fact that the left sides vanish.

6.8 Affine subspaces and hyperplanes. Let M C L be a projective subspace
of codimension one. Then P(M) C P(L) has codimension one, and we shall call
such subspaces hyperplanes.

We shall now show how to introduce on the complement AM of the hyperplane
P(M) the structure of an affine space (AM, M,+). We choose in L a linear variety
M' = m'+ M, not passing through the origin of coordinates. It has a unique affine
structure: a translation by m E M into M' is induced by a translation by m in L,
that is, it consists of adding in.

On the other hand, there is a bijective correspondence between AM and M':
a point in AM is a straight line not contained in M and it intersects M' at one
point, which we associate with the starting point of AM. In this manner all points
are obtained once each. With the help of this bijective correspondence the affine
structure on M' can be transferred to AM. However, the choice of M' is not unique,
and therefore the affine structure of AM is not unique either. In order to compare
two such structures, we shall show that the set-theoretic identity mapping of AM
into itself is an affine isomorphism of these two structures.

6.9. Proposition. Let (AM, M, +') and (AM,M,+") be two affine structures on
AM, constructed with the help of the procedure described above. Then the identity
mapping of AM into itself is an acne isomorphism, whose linear part is some
homothety of M.

Proof. Let the two structures correspond to the subvarieties m'+M and m" + M.
The sets m' + M and m" + M in the one-dimensional quotient space L/M are
proportional. Therefore, it may be assumed that m" = am', a = K. Multiplication
by a in L transforms in' + M into m" + M and induces the identity mapping of
P(L) into itself and therefore of AM into itself. On the other hand, a translation
by a vector m E M in m' + M under a homothety transforms into a translation by
a vector am E M in m" + M. This completes the proof.

6.10. Corollary. The set of affine subspaces of AM together with their identity
relations as well as sets of affine mappings of AM into other affine spaces are
independent of the arbitrariness in the choice of acne structure of AM.
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This justifies the possibility of regarding the complement of any hyperplane in
a projective space simply as an affine space without further refinements.

We shall now examine the appearance of the projective space P(M) "from the
viewpoint" of an aftine space AM.

6.11. Proposition. There is a bijective correspondence between the points of
P(M) and the sets of parallel straight lines in AM. In other words, every point of
P(M) is "a path to infinity" in AM.

Proof. We identify AM with m' + M. The set of parallel straight lines in m' + M
is determined by its orienting subspace in M, that is, a point in P(M), and this
correspondence is bijective.

6.12. In fact, we can say more: every straight line l in AM uniquely determines
a straight line in P(L) containing it, namely, its projective span 1. The projective
span is obtained by adding to t one point that is contained precisely in P(M) and is
the "point at infinity" on this straight line. The entire set of parallel straight lines
in AM has a common point at infinity in P(M). Under the identification of AM
with m' + M the span of I corresponds to all straight lines of a plane in L passing
through I and its orienting subspace, and the point at infinity in t is the orienting
subspace itself.

More generally, let A C AM be any affine subspace. Then its projective span
A in P(L) has the following properties:

a) A\A C P(M): only the points at infinity are added,
b) dimA = dimA.
c) A\A is a projective space in P(M) with dimension dim A - 1. (Therefore A

is also called the projective closure of A.)
The identification of AM with m'+M reduces the verification of these properties

to the direct application of the definitions. Indeed, A consists of straight lines
contained in the linear span A C m' + M. This linear span is spanned by the
orienting subspace La of A and any vector from A. Therefore, its dimension equals
dim Lo + 1 = dimA + 1, and hence dimA = dim A. All straight lines in this linear
span intersect m' + M, that is, they correspond to points in A, with the exception
of straight lines contained in the orienting subspace Lo. The latter he in P(M) and
form a projective space with dimension dim Lo - 1 = dim A - 1.

§7. Projective Duality and Projective Quadrics

7.1. Let L be a linear space over the field K and L' its dual space of linear
functionals on L. The projective space P(L') is called the dual space of the projective
space P(L).
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Every point in P(L') is a straight line {Af) in the space of linear functionals
on L. The hyperplane f = 0 in P(L) does not depend on the choice of functional f
on this straight line and uniquely determines the entire line. Therefore, we can say
that the points of the dual projective space are hyperplanes of the starting projective
space.

If dual bases are chosen for L and L' and a corresponding system of homo-
geneous coordinates in P(L) and P(L') is also chosen, then this correspondence
acquires a simple form: a hyperplane, represented by the equation

n

E a,x, = 0
i_o

in P(L) corresponds to a point with the homogeneous coordinates (ao : ... : an)
in P(L'). The canonical isomorphism L - L" shows that the duality relationship
between two projective spaces is symmetric. More generally, translating the results
of §7 of Chapter 1 into projective language, we obtain the following duality rela-
tionship between systems of projective subspaces in P(L) and P(L') (we assume
below that L is finite-dimensional).

a) The subspace P(M) C P(L) corresponds to its dual subspace P(M1) C
C P(L'). In this case,

dimP(M) + dim P(M1) = dimP(L) - I.

b) The intersection of projective subspaces corresponds to the projective span
of their dual spaces, while the projective span corresponds to the intersection. In
particular, the incidence relation between two subspaces (that is, the inclusion of
one in the other) transfers into an incidence relation.

This makes it possible to formulate the following principle of projective duality,
which is, strictly speaking, a metamathematical principle, because it is an assertion
about the language of projective geometry.

7.2. Principle of projective duality. Suppose that we have proved a theorem
about the configurations of projective subspaces of projective spaces, whose formula-
tion involves only the properties of dimensionality, incidence, intersection, and the
selection of a projective span. Then the duality assertion, in which all terms are
replaced by their duals according to the rules of the preceding item, is also a theorem
about projective geometry.

Here is a simple example: the theorem "two different planes in a 3-dimensional
projective space intersect along one straight line" is the dual of the theorem: "one
straight line passes through any two points in a 3-dimensional projective space".
(Much more interesting theorems about projective configurations will be presented
in §9.)
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7.3. Projective duality and quadrics. If a linear space L is equipped with
the isomorphism L -+ L', then P(L') can be identified with P(L), and the duality
mapping between the projective subspaces P(L) and P(L') will become a duality
mapping between subspaces of P(L).

The specification of an isomorphism L - L' is equivalent to the specification
of a non-degenerate inner product g : L x L K. We shall examine in greater
detail the geometry of projective duality for the case when the inner product g is
symmetric. As usual, we shall assume that the characteristic of the field K is not
two. Then g is uniquely reconstructed from the quadratic form q(l) = g(l, 1).

The equation q(l) = 0 defines a quadric Qo in L. We shall also call its image
in P(L) a quadric and, in application to the duality theory, a polar quadric. We
note that Qo is a cone centred at the origin: if I E Qo , then all straight lines KI are
contained in Qo. Identifying P(L) with the points of L at infinity, we can identify
Q with the base of the cone Qo.

According to the general theory, g and q define a duality mapping of the set
of projective subspaces P(L) into itself; the hyperplane in P(L), dual to the point
p E P(L), is said to be polar to p (relative to q or Q). To explain the geometric
structure of this mapping we first introduce an equation for a polar hyperplane in
homogeneous coordinates. We can at first work in L. Let the equation of Qo have
the form

q(xo...... n) aiizizi = 0, aij = a,i
ij=O

The point (zoo,..., xo) in L with the isomorphism L -' L', associated with q,
corresponds to the linear function a=o ayzoizi of (zo, ... , E L. Therefore,
the equation of the polar hyperplane has the form

n
E ail x°xl = 0.
i j=o

In particular, if (to :...: znO) E Q, then the polar hyperplane to this point contains
the point. Moreover, in this case its equation can be rewritten in the form

n

8q,(zo,...,x,1)(xi -z1) _ -z1)=0.
f=1 ij=O

In elementary analytic geometry (over R), such an equation defines the tangential
hyperplane to Qo at its point (xo,...,xn). This motivates the following general
definition.

7.4. Definition. By the tangential hyperplane to a non-degenerate quadric
Q C P(L) at the point p E Q, one means the hyperplane polar to p relative to the
quadratic form q, specifying Q.
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Employing the general properties of projective duality we can now immediately
reconstruct the geometrically significant part of a duality mapping and obtain a
series of beautiful and not obvious geometric theorems, examples of which we shall
present. In what follows Q is a (non-degenerate) quadric in P2 or P3.

a) Let Q C P2 and let pl and P2 be two points on the quadric and p3 the point
of intersection of the tangents to Q at pi and p2. According to the general duality
principle, the point ps then corresponds to the straight line, passing through
pl and p2, that is, to the projective span of pl and p2.

We constrain the point ps to move along the straight line 1; we draw from every
point of the straight line two tangents to Q and connect pairs of tangent points.
Then, all "chords" of Q so obtained will intersect at one point r, which corresponds
to l by virtue of duality. We note once again that the proof does not require any
calculations: this follows simply from the fact that according to the general principle
of duality the projective span of the points P3ip3,p3, ... is polar to the intersection
of their dual straight lines, which are precisely the corresponding chords.

One point, however, deserves special mention. The intersecting pairs of tan-
gents to points of Q may not sweep out the entire plane. For example, for an ellipse
in RP2, as in Fig. 4 (of course, we have drawn only a piece of the afiine map in
RP2), we only obtain the exterior of the ellipse. How do we determine the straight
lines corresponding to the interior of the ellipse ? The sketch in the figure suggests
the answer: by virtue of the duality symmetry we must draw through the interior
point r a pencil of chords of Q, and then construct the points of intersection of the
tangents to Q at the opposite ends of these chords; they sweep out the straight line
1 dual to the point r.

Fig. 4

However, the description of the duality mapping thus becomes inhomogeneous.
We now have two recipes for constructing the straight line 1 polar to the point r.

1) If the point r lies outside the ellipse Q (or on it), draw two tangents from r
to Q (or one) and connect the tangent points with the straight line 1 (or take the
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tangent 1).

2) If the point r lies inside the ellipse Q, draw all straight lines through r, and
construct the points of intersection of the tangents at the two points of intersection
of straight lines through r with Q. Their geometric locus will be the straight line
dual to r.

The main point here is that the basic field R is not algebraically closed. If we
had worked in CP2 instead, both recipes could have been used, and moreover, for
all points r E CP2. The real straight line 1, lying wholly outside the real ellipse
Q nevertheless intersects it, but at two complex conjugate points, and two complex
conjugate tangents to Q at these points now intersect at a real point r inside Q. It is
nevertheless possible to draw from the real point r inside Q two complex conjugate
tangents to Q, through whose points of tangency passes a real straight line - this
is 1.

In this sense, the real projective geometry RP2 is only a piece of the geometry
CP2, and the truly simple and symmetric duality theory exists in CP2, whereas
RP2 reflects only its real part.

Classical projective geometry was largely concerned with clarifying the details
of this beautiful world of configurations, consisting of quadrics, chords, and tangents
and "invisible" complex points of tangency and intersection. Indeed, the entire
quadric may not have real points, such as xo+xi+x? = 0. Nevertheless, the visible
part of the duality appears in RP2.

b) We shall give one more illustration for the three-dimensional case. Consider
the projective non-degenerate quadric Q in a three-dimensional projective space,
and draw from the point r outside Q the tangent planes to Q. All points of tangency
then lie in one plane, and precisely in the plane dual to r. The reason is once again
the same: the intersection of the tangent planes is dual to the projective span of
the points of tangency, and if all tangent planes intersect precisely at r (this should
and can be proved in the case when Q has a sufficient number of points), then this
projective span must be two-dimensional.

The comments about complex points of tangency and intersections made in the
two-dimensional case hold in the three-dimensional case also.

A rigorous definition of the missing points of the projective space and quadrics
in the case K = R is based on the concept of complexification (see §12 of Chapter 1).

7.5. a) The complexification of the projective space P(L) over R is the projective
space P(Lc) over C. The canonical inclusion L C Lc makes it possible to associate
to every R-straight line in L its complexification - a C-straight line in Lc which
defines the inclusion P(L) C P(Lc). The points of P(Lc) are the "complex points"
of the real projective space P(L).

b) The isomorphism L -+ L', specified by the scalar product g on L, induces
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a complexified isomorphism Lc - (Lc)*. It is defined by the symmetric inner
product gC on Lc, which defines the quadric Qc and the projective duality in
P(Lc). The operation of complex conjugation, induced by the antilinear isomor-
phism Lc Lc, an identity on L C Lc, operates on Lc and P(Lc). The points
of P(L) are the points of P(Lc) that are invariant under complex conjugation;
they are called real points. More generally, the projective subspaces of P(Lc),
transforming into themselves under complex conjugation, form a bijection with the
projective subspaces of P(L). We shall call such subspaces real. Then, two map-
pings establishing one-to-one bijections can be described as follows:

(real projective subspace in P(Lc)) -(set of its real points in P(L));
(projective subspace in P(L)) (its complexification in P(Lc)).
c) The duality mapping in P(L), defined with the help of g, is obtained from the

duality mapping in P(Lc) by restricting the latter to the system of real subspaces
of P(Lc) identified with the system of subspaces of P(L), as in b).

Using the results of §12 of Chapter I, it is straightforward to verify all these
assertions, and in the real coordinate system of Lc, transferred from L, they are
entirely tautological. The only serious aspect of the situation illustrated in the
examples given above is the possibility that the real points will appear in invisible
complex configurations, such as the points of intersection, lying inside an ellipse, of
two imaginary tangents at two complex-conjugate points of this ellipse.

In the case of the basic field X differing from R, the general functor that extends
the main field (for example, up to algebraic closure of K) must be used instead of
complexification. The situation, however, is complicated somewhat by the fact that
instead of the one mapping of complex conjugation the entire Galois group must
be invoked in order to distinguish objects defined over the starting field (which are
real in the case X = R).

§8. Projective Groups and Projections

8.1. Let L and M be two linear subspaces and f : L - M a linear mapping. If
ker f = {0) then f maps any straight line from L into a uniquely determined straight
line in M and hence induces the mapping P(f) : P(L) -, P(M), called the projec-
tivization off. In particular, if f is an isomorphism, then P(f) is called a projective
isomorphism. When ker f # {0} the situation is more complicated: straight lines
contained in ker f, that is, consisting of the projective subspace P(ker f) C P(L),
are mapped into zero, which does not determine any point in P(M). Therefore, the
projectivization P(f) is determined only on the complement Uf = P(L)\P(ker f).
Both of these cases are important. But they lead in different directions, so that
we shall study them separately. The most important geometric features of this
situation are already revealed when L = M.
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8.2. The projective group. Let M = L, and let f run through the group of
linear automorphisms of the space L. The following assertions are obvious:

a) P(idL) = idp(L);

b) P(fg) = P(f)P(g).
In particular, all mappings P(f) are bijective and P(f-1) = P(f)-1. Therefore,
P(f) runs through the group of mappings of P(L) into itself, which is called the
projective group of the space P(L) and is denoted by PGL(L); the mapping P:
GL(L) -PGL(L), f - P(f) is a surjective homomorphism of groups.

Every mapping P(f) maps the projective subspaces of P(L) into projective
subspaces, preserving dimension and all incidence relations.

PGL(n) is written instead of PGL(K'+1)

8.3. Proposition. The kernel of a canonical mapping P:GL(L) -.PGL(L) con-
sists precisely of the homotheties. Therefore, PGL(L) is isomorphic to the quotient
group GL(L)/IC' where

IC' = {a idLJa E !C\{0}}.

Proof. By definition, kerP = {f E GL(L)IP(f) = idP(L)}. Every homothety
maps every straight line in L into itself. Therefore, IV C ker P. Conversely, every
element of ker P maps any straight line into itself and is therefore diagonalizable in
any basis of L. But then all of its eigenvalues must be equal. Indeed, let f(el) =
= Alei, f(e2) = A2e2, where el,e2 are linearly independent. Then the conditions
f (el + e2) = µ(e1 + e2) = Ale1 + A2e2 imply that Al = p = A2. Hence f is a
homothety, which proves the required result.

8.4. Coordinate representation of the mappings P(f ). If the linear mapping
f : L L is represented in terms of coordinates of the matrix A:

f (xo,... , xn) = A [2:0,... , xn]

(product of a matrix A by the column [So,... , z ]), then P(f) in appropriate homo-
geneous coordinates is represented by the same matrix A or any matrix proportional
to it:

P(f)(xo : ... : C (AA) [zo,... , A E K.

If we study only points with zo # 0, whose projective coordinates can be chosen in
the form (1 : yl :...: and also write the coordinates of the image of the point,
then we arrive.at linear-fractional formulas:

P(f)W Yl :...:1/n)=(I :yl :...:y'n)=
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n n

(aoo+aioYi aol + ailyi :...: aon + ainVs _
i.l icl i=1

Cl

aol+ Mxailyi ..... a0n+En
i=lainyi

aoo + F_', aioyi aoo +
ri=1

aioyi

(P(f), of course, has an analogous form on the set of points where xi i4 0, for
arbitrary i.) These expressions become meaningless when the denominator vanishes,
that is, at those points of the complement to the hyperplane xo = 0 that P(f) maps
into this hyperplane. If there are no such points, then in terms of of lne coordinates
(yl, ... yn) in P(L)\{xo = 0} we obtain an affine mapping. The following result
gives an invariant explanation of this.

8.5. Proposition. Let M C L be a subspace with codimension one, P(M) C P(L)
the corresponding hyperplane, and Am its complement with the affine structure de-
scribed in §6. We associate with any projective automorphism P(f) : P(L) P(L)
with the condition f(M) C M, its restriction to Am. We obtain an isomorphism
of a subgroup of PGL(L), mapping P(M) into itself, to Aff A. The linear part of
the restriction of P(f) to AM is proportional to the restriction off to M.

Proof. We introduce an affine structure on Am identifying Am with the linear
variety m' + M C L: every point in Am is associated with the intersection of the
corresponding straight line in L with m' + M. If f (M) C M, then the set off with
the same P(f) contains a unique mapping fo for which fo(m' + M) = m' + M. The
restrictions of all of these mappings fo form a group of affine mappings of m' + M,
since m' + M is an affine subspace of L with its affine structure, while fo : L L

is linear and therefore affine. The linear part of such an fo evidently coincides with
the restriction of fo on M. For any linear part there exists a corresponding fo, and
for a fixed linear part there exists an fo that maps any point in m' + M into any
other point. To see this, it is sufficient to choose a basis of L consisting of a basis of
M and a vector in m', and then to apply the formulas of §3. Finally, if f acts like
an identity on m'+ M and M, then P(f) = idp(L), because f maps every straight
line in L into itself. This completes the proof.

8.6. Action of the projective group on projective configurations. We

shall call a finite ordered system of projective subspaces in P(L) a projective con-
figuration. We shall say that two configurations are projectively congruent if and
only if one can be mapped into the other by a projective mapping of P(L) into
itself. Evidently, for this it is necessary and sufficient that the corresponding con-
figurations of the linear subspaces of L be identically arranged in the sense of §5
of Chapter 1. Therefore we can immediately translate the results proved there into
the projective language and obtain the following facts.
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a) The group PGL(L) acts transitively on the set of projective subspaces with
fixed dimension in P(L), that is, all such subspaces are congruent (see §5.1 of
Chapter 1).

b) The group PGL(L) acts transitively on the set of ordered pairs of projec-
tive subspaces of P(L), each member of a pair and their intersections having fixed
dimensions, that is, all such pairs are congruent (see §5.5 of Chapter 1).

c) The group PGL(L) acts transitively on the set of ordered n-tuples of pro-
jective subspaces (P1,... , P,,) with fixed dimensions dim Pi, which have the fol-
lowing property: for each i the subspace P1 does not intersect the projective span
of (P1,.. . , Pi_1, Pi+1, ... , that is, the smallest projective subspace containing
this system.

Thus let P i = P(Li), Li C L. The projective span of (Pj,... , Pi-1, Pi+1, ...
as it is easy to verify, coincides with P(L1+...+Li_1+Li+1+...+L,), and

the condition that its intersection with P(Li) is empty means that Li fl " L _
{0}. Theorem 5.8a of Chapter 1 implies that the sum L1 ®... ® L,, is a direct

sum and GL(L) acts transitively on such n-tuples of subspaces (choose a basis of L,
extending the union of the bases of all Li, and use the fact that GL(L) is transitive
on the bases of L).

As a particular case (dim Pi = 0 for all i), we have the following result: all
collections of n points in P(L) with the property that no point is contained in the
projective span of the remaining points is projectively congruent.

d) The group PGL(L) acts transitively on the set of projective flags P1 C P2 C
C ... C P,, in P(L) of fixed length n and with fixed dimensions dim Pi.

Indeed, any such flag is an image of the flag L1 C L2 C ... in L; choose a basis
of L, the first dim P, + 1 elements of which generate the subspace Li for each i, and
use once again the transitivity of the action of GL(L) on the bases.

In addition to these results, which are a direct consequence of the corresponding
theorems for linear spaces, we shall analyse an interesting new case in which a non-
trivial invariant relative to projective congruency appears for the first time: the
classical "cross ratio of a quadruple of points on a projective line". Many of the
arguments can be given in the case of arbitrary dimension, and we shall begin with
a general definition.

8.7. Definition. A system o f points P 1 ,-- . , PN in an n-dimensional projective
space P is in general position if for all m < min{N, n + 1) and all subsets S C
C { 1, ... , N) with cardinality m, the dimension of the projective span of the points
{pili E S) equals in - 1.

We shall be especially interested in the cases N = n + 1, n + 2, and n + 3.
a) n+1 points in the general position. Since no point of the system is contained

in the projective span of the remaining points (otherwise the projective span of the
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entire system would have the dimension n - 1 and not n), such configurations
have already been studied in §8.6c; in particular, the projective group on them is
transitive. We now want to call attention to the fact that a projective mapping
that maps one system of n + 1 points in general position into another is not defined
uniquely.

Indeed, if el , ... , en+1 are non-zero vectors in pa,... , pn+1 respectively, then
{e1,. .. , en+1 } is a basis of L (where P = P(L)) and the group of projective map-
pings which leave all points pi in place consists precisely of mappings of the form
P(f), where the f are diagonal in the basis {e 1 i ... , en+1 }. This remaining degree
of freedom makes it possible to prove the transitivity of the action of PGL(L) on
systems of (n + 2) points in general position.

b) n + 2 points in general position. If the points (P1, pn+2} are in general
position, then the points {pi, ... ,pn+l } are also in general position. As done in the
preceding item, we choose a basis {el.... , en+1), e; E pi. It defines a system of
homogeneous coordinates in P. Let (xl :...: xn+1) be the coordinates of the point
Pn+2 in this basis. No coordinate x; vanishes, otherwise the vector ( x 1 , . .(x1, . , xn+1)

on the straight line Pn+2 can be expressed linearly in terms of the vectors e
1 < j < n + 1, j i4 i, whence it follows that the projective span of the n + 1
points {pi li # j} would have the dimension n -1 and not n. But the mapping P(f)
with f = diag(.1i,... , An+1) (in the basis {e1, ... , en+1 }) maps (x1 : ... : xn+1)
into the point (.11x1 : ... : An+lxn+1), and leaves p1 ... ,pn+1 in place. From here
it follows that any point (x1 : ... : xn+1) (all x; i4 0) can be mapped into any other
point (y1 : ... : yn+1) (all yi 0 0) by a unique projective mapping which leaves
p1,...,pn in place.

We have thus established that all ordered systems of n + 2 points in general
position in P, where dim P = n, are congruent and moreover, they form the main
homogeneous space over the group PGL(L).

Adopting the passive rather than the active viewpoint, we can say that for any
ordered system of points { P i , .{P1, .. , pn+2} there exists a unique system of homogeneous

coordinates in P in which the coordinates of P1, . . ,Pn+2 have the form:

A =0 :0 : --- :0), P2 =(O : 1 :0 : ... : 0), - - -, Pn+1 = (0:...0:1),

Pn+2= (I: ...:1).

We can say that this system is adapted to {p1, ... , Pn+2 }.
c) n + 3 points in general position. Such configurations are no longer all con-

gruent: if {p1, ...,P,,+3} and {pl, ... , Pn+3} are given, then we can find a unique
projective mapping that maps pi into p; for all 1 < i < n + 2, but Pn+3 does or does
not fall into p;,+3, depending on the situation.

It is not difficult to describe the projective invariants of a system of n+3 points.
Choose a system of homogeneous coordinates in P, in which the first n + 2 points
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have the coordinates described in the preceding item. In it, the point Pn+3 has the
coordinates (x1 : ... : determined uniquely up to proportionality. Any pro-
jective automorphism P, applied simultaneously to the configuration {pl,... , Pn+3}
and to the system of coordinates adapted to it, maps this configuration into another
configuration and the system of coordinates into the adapted system of coordinates
of the new configuration. Therefore, the coordinates (xl :...: xn+l) of the last
point will remain unchanged.

All preceding arguments can also be transferred with obvious alterations to
the case when we have two n-dimensional projective spaces P and P', and con-
figurations {pl, ... , pN } C P and {pi,. .. , pN } C P', and we are interested in the
projective isomorphisms P P mapping the first configuration into the second.
We summarize the results of the discussion in the following theorem.

8.8. Theorem. a) Let P and P' be n-dimensional projective spaces and let
IN, ,Pn+2} C P and {p', ... ,4+2} C P' be two systems of points in the general
position. Then there exists a unique projective isomorphism P P which maps
the first configuration into the second.

b) An analogous result holds for systems of n + 3 points in general position if
and only if the coordinates of the (n + 3)rd point in the system, adapted to the first
(n + 2) points, coincide for both configurations (of course, up to a scalar factor).

8.9. The cross-ratio. Let us apply Theorem 8.8 to the case n = 1. We find, first
of all, that if ordered triples of pairwise different points are given on two projective
straight lines (this is the condition for the generality of position here), then there
exists a unique projective isomorphism of straight lines mapping one triple into
another.

Further let a quadruple of pairwise different points {pl, p2, P3, P4} C P' with
coordinates in the adapted system (1 : 0),(0 : 1),(1 : 1) and (x1 : x2) be given.

Then x2 $ 0. Let

[P2,P3,P1,P41 = -11x2

This number is called the cross-ratio of the quadruple of points {p;}. The unusual
order is explained by the desire to maintain consistency with the classical definition:
in an affine map, where P2 = 00, p3 = 0, p1 = 1, the coordinates of points in the
brackets are positioned as follows: [0, 1, oo, x], where x is the cross-ratio of this
quadruple.

The term "cross-ratio" itself originates from the following explicit formula for
calculating the invariant [x1, x2, x3, x41, where the x; E K are interpreted here-as the
coordinates of the points p; in an arbitrary affine map P1. According to the results
of §8.4, the group PGL(1) in this map is represented by linear-fractional mappings

°of the form x -. 'i+, ad - be $ 0. Such a mapping, which maps (x1, -12,-19) into
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(0, 1, oo) has the form
xl -x xl - x2
x3-x x3-x2

Substituting here x = x4i we find

77
xi -X4 x1 - x2

=[x1,x2,x3,x41 x3-x4 x3-x2

Another classical construction related to Theorem 8.8a for n = 1 describes the
representation of the symmetric group S3 of linear-fractional mappings. According
to this theorem, any permutation {pl,p2ip3}'-. {po(l),Po(2),Pc(3)) of three points
on a projective straight line is induced by a unique projective mapping of this
straight line.

In an afflne map, where {pl,p2,p3} = {0, 1,oo}, these projective mappings are
represented by linear-fractional mappings,

1 1 x-1 xz,l-x,1-x'
x 'x-1}

We shall now study projections.

8.10. Let a linear space L be represented in the form of the direct sum of two of
its subspaces with dimension > 1: L = L1 ® L2. We set P = P(L), Pi = P(L1).

As shown in §8.1, the linear projection f : L -- L2, All + 12) = 12, 11 E L1

induces the mapping

P(f) : P\P1 - P2,

which we shall call a projection from the centre of P1 to P2. In order to describe
the entire situation in purely projective terms, we note the following.

a) dim P1 + dim P2 = dim P - 1 and P1 (1 P2 = 0. Conversely, any configura-
tion (P1,P2) with these properties originates from a unique direct decomposition
L=L1ED L2-

b) If a E P2, then P(f )a = a; if a E P\(P1 U P2), then P(f)a is determined as
the point of intersection with P2 of a unique projective straight line in P, intersecting
Pl and P2 and passing through a.

Indeed, the case a E P2 is obvious. If a 96 P1 U P2, then in terms of the space L
the required result is formulated thus: through any straight line Lo C L, not lying
in L1 and L2 there passes a unique plane, intersecting L1 and L2 along straight
lines, and its intersection with L2 coincides with its projection on L2. Indeed, one
plane with this property exists: it is spanned by the projection of Lo onto L1 and
L2 respectively. The existence of two such planes would imply the existence of two
different decompositions of the non-zero vector to E Lo into a sum of two vectors
from L1 and L2 respectively, which is impossible, because L = L1 ® L2.
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Since the described projective construction of the mapping P -+ P\P1 is lifted
to a linear mapping, we immediately find that for any subspace P' C P\P1 the
restriction of the projection P -+ P, is a projective mapping, that is, it has the
form P(g), where g is some linear mapping of the corresponding vector spaces.

In the important particular case, when P1 is a point and P2 is a hyperplane, the
mapping of the projection from the centre of P1 onto P2 maps the point a into its
image in P2, visible by an observer from P1. Therefore the relationship between a
figure and its projection, in this case, is also called a perspectivity. For example, the
projection from a straight line to the straight line in P3 is intuitively less obvious
(see Figs. 5,6):

Fig. 5 Fig. 6

An important property of projections, which should be kept in mind, is the fol-
lowing: if P C P\P1, then the projection from the centre of P1 defines a projective
isomorphism of P and its image in P2. Indeed, in the language of linear spaces,
this means that the projection f : Ll ®L2 --+ L2 induces an isomorphism of M
with f (M), where M C L is any subspace with L1 fi M = {0}. This is so because
L1=kerf.

8.11. Behaviour of a projection near the centre. We shall restrict ourselves
below to the analysis of projections from the point pi = a E P and we shall try to
understand what happens to points located near the centre. In the case K = R or
C, when we can indeed talk about the proximity of points, the picture is as follows:
continuity of the projection breaks down at the point a, because points b, which
are arbitrarily close to a, but approach a "from different sides", are projected into
points p2 far away from one another. It is precisely this property of a projection
that is the basis for its applications to different questions concerning the "resolution
of singularities". If some "figure" (algebraic variety, vector field) with an unusual
structure near the point a is contained in P, then by projecting it from the point
a we can stretch the neighourhood of this point and see what happens in it in an
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enlarged scale; in addition, the magnification factor increases without bound as a
is approached.

Although these applications refer to substantially non-linear situations (be-
coming trivial in linear models), it is worth while analysing the structure of the
projection near its centre in somewhat greater detail, since this can be done within
the framework of linear geometry.

8.12. We introduce in P(L) a projective system of coordinates, in which the
centre of the projection is the point (0, ... , 0, 1), while P2 = P"-1 consists of points
(xo : xl :...: xn_1 : 0); to achieve this we must select a basis of L which is a union
of bases of L1 and L2 (since the centre is a point, dim L1 = 1).

It is not difficult to see that the point (xo :...: xn) is then projected into
(no :...: xn-1 : 0). The complement A of P2 is equipped with an affine system of
coordinates

(y0,...,Yn-1) _ (Xo/xn,...,xn-I/xn)

with the origin 0 at the centre of the projection. Consider the direct product
A x P2 = A x P"-1 and in it the graph ro of the mapping of the projection, which
we recall, is defined only on A\{0}. This graph consists of pairs of points with the
coordinates

((xo/xn, ... , xn-I/xn), (x0 :...: xn_1)),

where not all x0, ... , xn_1 equal zero at the same time. We enlarge the graph ro,
adding to it above the point 0 E A the set {0} x P"-1 C A X Pn-1,

r = ro u {0) x P"-1,

following geometric intuition, according to which for the projection from zero the
centre "is mapped into the entire space P"-1".

The set r has a number of useful properties.
a) r consists precisely of the pairs and points

((y0,...,Yn-1), (no :...: xn-1)),

that satisfy the system of algebraic equations

yixj - yixi = 0; i,,j=0,...,n-1.

Indeed, these equations mean that all minors of the matrix (no ... xn-1 ) equal
Yo ... Yn-1

zero, so that the rank of the matrix equals one (because the first row is non-zero),
and hence the second row is proportional to the first one. If the coefficient of
proportionality is not zero, then we obtain a point in ro and if it is zero, then we
obtain a point in {0} x Pn-1
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b) The mapping r -+ A : ((yo,...,yn-1),(x0 : ... : xn_1)) (Yo,...,yn-1)
is a bijection everywhere except in the fibre over the point {0}. In other words,
r is obtained from A by "sewing on" instead of one point, an entire projective
space P"-1. We say that I' is obtained from A by blowing up the points, or by a
r-process centred at the point O. The inverse image in t of each straight line in
A passing through the point 0 intersects the sewed-on projective space P"-1 also
at one point, but a unique point for each straight line. In the case IC = R,n = 2
one can imagine an affine map of the sewed-on projective space P1 as the axis of
the screw of a meat grinder r, which makes a half revolution over its infinite length
(Fig. 7).

Fig. 7

The real application of a projection to the study of a singularity at a point
O E A involves the transfer of the figure of interest from A to r and the study of
the geometry of its inverse image near the sewed-on space Pn-1. In so doing, for
example, the inverse image of an algebraic variety will be algebraic because of the
fact that I' is represented by algebraic equations.

§9. Desargues' and Pappus' Configurations
and Classical Projective Geometry

9.1. Classical synthetic projective geometry was largely concerned with the study
of families of subspaces in a projective space with an incidence relation; the prop-
erties of this relation can be placed at the foundation of the axiomatics, and we
then arrive at the modern definition of the spaces P(L) and the field of scalars K
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so that L and X will appear as derivative structures. In this construction, two con-
figurations - Desargues' and Pappus' - play an important role. We shall introduce
and study them within the framework of our definitions, and we shall then briefly
describe their role in the synthetic theory.

9.2. Desargues' configuration. Let S be a set of points in a projective
space. We denote by the symbol 3 its projective span. We shall study in three-
dimensional projective space the ordered sextuple of points (p1, p2, p3; q1, q2, q3). It
is assumed that the points are pairwise different and that 1 2 and 1 2 3 are
planes. Furthermore, let the straight lines lql, P2-q2 and p3Q3 intersect at a single
point r, different from p; and qj. In other words, the "triangles" p1p2p3 and ql g2g3
are "perspectives" and each of them is a projection of the other from the centre r, if
they lie in different planes. Then for any pair of indices {i, j} C {1, 2, 3} the straight
lines p and do not coincide, otherwise we would have p; = q;, because p; and
q; are the points of intersection of these straight lines with the straight line In

addition, the straight lines p7p and qqj he in the common plane rp; p. Therefore,
they intersect at a point which we shall denote by 8k , where {i, j, k} = {1, 2, 3}:
this is the point of intersection of the continuations of pairs of corresponding sides
of the triangles plp2p3 and glg2g3

Desargues' theorem , which we shall prove in the next section, asserts that the
three points sl, s2, 83 lie on the same straight line. The configuration, consisting
of the ten points p;, q;, sk, r and the ten straight lines connecting them, shown in
Fig. 8, is called Desargues' configuration. Each of its straight lines contains exactly
three of its points, and exactly three of its straight lines pass through each of its
points. The reader should verify that it is intrinsically symmetric (in the sense that
the group of permutations of its points and straight lines preserving the incidence
relation is transitive both on the points and on the straight lines).

Fig. 8
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9.3. Desargues' theorem. Under the conditions stated above, the points
s1, s2i s3 lie on the same straight line.

Proof. We shall analyse two cases, depending on whether or not the planes PJP2P3
and Q1 2q3 coincide.

a) P1p2p3 96 -gig-2T3 ("three-dimensional Desargues' theorem"). In this case,
the planes IP2p3 and 1g2g3 intersect along a straight line, and it is not difficult to
verify that 31, $2,83 lie on it. Indeed, the point sl, for example, lies on the straight
lines 2p3 and 443i which in their turn lie in the planes p1 2p3 and gig2qs and,
therefore, in their intersection.

b) P1p2P3 = qlq2q3 ("two-dimensional Desargues' theorem"). In this case, we
select a point r' in space not lying in the plane P1p2P3, and we connect it by straight
lines with the points r, pi, pj. The straight line pi i and hence the point r lie in the
plane 7p-,q1. We draw in it through r a straight line not passing through the points
r' and pl, and denote its intersection with the straight lines rr'pi, r'qi, by pi, q'i
respectively. The triples (p1, p2, p3) and (qi, q2, q3) now lie in different planes; oth-
erwise the common plane containing them would contain the straight lines p2p3 and

and would therefore coincide with i 2 3 but this is impossible, because pi, q1'
do not lie in this initial plane. In addition, the straight lines pig', p3g2 and pg3
pass through the point r. The three-dimensional Desargues' theorem implies that
the points pip2ngig2, 7,p3 ngig3 and P2p3ng3g3 lie on the same straight line. But
if these points are projected from r' into the plane ip2p3, then precisely the points
s3is2,s1 respectively are obtained, because r' projects (pi,p2ip3) into (pi,P2,p3)
and (qi, q2, q3) into (q1, q2, q3) and hence the sides of each of these triangles into the
corresponding sides of the starting triangles.

This completes the proof.

9.4. Pappus' configuration. We shall examine in the projective plane two
different straight lines and two triples of pairwise different points p1, P2, p3 and
qi, q2, q3 in them. For any pair of indices {i, j} C {1,2,3} we construct the point
sk = p;qj n q;pJ, where {i, j, k} = {1, 2, 3}.

9.5. Pappus' theorem. The points $1,s2i33 lie on the same straight line.

Proof. We draw a straight line through the points 83,82 and denote by $4 its
intersection with the straight line p-191. Our goal is to prove that si lies on it.

We construct two projective mappings fl, f2 i 2 3 -{ 41 2 3-
The first mapping fi will be a composition of the projection of p1p2 on

s2s3 from the point qi with the projection of T3-1-2 on 4-1T2-q3 from the point pi.
Obviously, fl(pi) = qi for all i = 1,2,3 and in addition, fi(tl) = t2 where ti =

1P2P3 n q1 2 3, t2 = n fl g2g3 (see Fig. 9.)
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Fig. 9

The second mapping f2 will be a composition of the projection of -p-low on
73-1-2 from the point 92 with the projection of sgs2 on 14243 from the point p2. This
composition transfers pl into q1i p2 into q2, and t1 into t2.

Since fl and f2 operate identically on triples (ll,p',p2) they must be the
same mapping. In particular, fl(p3) = f2(p3). But fl(p3) = q3. Hence f2(p3) =
= q3. This assertion has the following geometric interpretation: if si denotes the
intersection fl , then the straight line Nq3 passes through si. But then
s'1 = Q2 3 fl = sl. Hence sl lies 3-293-, which is what we were required to
prove.

9.6. Classical axioms of three-dimensional projective space and the pro-
jective plane. The classical three-dimensional projective space is defined as a set
whose elements are called points and which is equipped with two systems of subsets,
whose elements are called straight lines and planes, respectively. In addition, the
following axioms must hold.

T1. Two different points belong to the same straight line.
T2. Three different points not lying on the same straight line belong to the

same plane.
T3. A straight line and a plane have a common point.
T4. The intersection of two planes contains a straight line.
T6. There exist four points, not lying on the same plane, such that any three

of the points do not lie on the same straight line.
T6. Every straight line consists of not less than three points.
The classical projective plane is defined as a set whose elements are called

points, equipped with a system of subsets whose elements are called straight lines.
In addition, the following axioms must hold.

Pl. Two different points belong to the same straight line.
P2. The intersection of two straight lines is not empty.
P3. There exist three points which do not lie on the same straight line.
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P4. Every straight line consists of at least three points.
The sets P(L), where L is the linear space over the field K with dimension

4 or 3, together with the systems of projective planes and straight lines in them,
as they were introduced above, satisfy the axioms T1-T6 and P1-P4 respectively;
this follows immediately from the standard properties of linear spaces proved in
Chapter 1. However, not every classical projective space or plane is isomorphic (in
the obvious sense of the word) to one of our spaces P(L). The following fundamental
construction provides many new examples.

9.7. Linear and projective spaces over division rings. A division ring (or
a not necessarily commutative field) is an associative ring K, the set of whose non-
zero elements forms a group under multiplication (not necessarily commutative).
All fields are division rings, but the converse is not true. For example, the ring of
classical quaternions is a division ring but not a field.

The additive group L together with the binary multiplication law K x L - . L
(a, 1) i-. al is called a (left) linear space over the division ring K, if the conditions
of Definition 1.2 of Chapter 1 hold. A significant part of the theory of linear spaces
over fields can be transferred almost without any changes to linear spaces over
division rings. This refers, in particular, to the theory of dimension and basis and
the theory of subspaces, including the theorem about the dimension of intersections.
This enables the construction, based on every division ring K and linear space L
over it, of a projective space P(L) consisting of straight lines in L and the system of
its projective subspaces P(M), where M C L runs through the linear subspaces of
different dimensions. When dimK L = 4 or 3 these objects satisfy all axioms Tl-T6
and P1-P4 respectively.

9.8. Role of Desargues' theorem. It turns out, however, that there exist
classical projective spaces which are not isomorphic even to any plane of the form
P(L), where L is a three-dimensional projective space over some division ring. The
reason for this lies in the fact that in projective spaces of the form P(L) Desargues'
theorem is true, as before, while there exist non-Desarguian planes in which the
theorem is not true. We shall formulate without proof the following result.

9.9. Theorem. The following three properties of a classical projective plane are
equivalent:

a) Desargues' two-dimensional theorem holds in it.
b) It can be embedded in a classical projective space.
c) There exists a linear three-dimensional space L over some division ring K,

determined uniquely up to isomorphism, such that our plane is isomorphic to P(L).
The implication b) * a) is established by direct verification of the fact that

the proof of the three-dimensional Desargues' theorem employs only the axioms
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Tl-T6. The implication c) = b) follows from the fact that L can be embedded in
a four-dimensional linear space over the same division ring.

Finally, the implication a) c), which is the most subtle point of the proof,
is established by direct construction of the division ring in a Desarguian projective
plane. Namely, at first, with the help of the geometric construction of projections
from the centre, the concept of a projective mapping of projective straight lines in
the plane is introduced. Then it is proved that for two ordered triples of points lying
on two straight lines there exists a unique projective mapping of one straight line
into another. Finally, a straight line D with the triple of points po, pl and p2 is fixed,
the set K is defined as D\{P2} with zero po and unity pl and the laws of addition
and multiplication in K are introduced geometrically with the help of projective
transformations. In the verifications of the axioms of the division ring, substantial
use is made of Desargues' theorem, which in this context arises as Desargues' axiom
P5.

9.10. Role of Pappus' theorem. Pappus' theorem may not hold even in
Desarguian planes. Calling the corresponding assertion Pappus' axiom P6, we can
formulate the following theorem, which we shall also state without proof.

9.11. Theorem. a) If Pappus' axiom holds in a classical projective plane, then
the plane is Desarguian.

b) A Desarguian classical plane satisfies Pappus' axiom if and only if the asso-
ciated division ring is commutative, that is, this plane is isomorphic to P(L), where
L is a three-dimensional linear space over a field.

Further details and proofs which we have omitted can be found in the book
"Foundations of Projective Geometry" by R. Hartshorne (W.A. Benjamin, Inc.,
N.Y. (1967)).

§10. The Kahler Metric

10.1. If Lisa unitary linear space over C, then a special metric, called the Kiihler
metric, in honour of the mathematician E. Kiihler, who discovered its important
generalizations, can be introduced on the projective space P(L). It plays an es-
pecially important role in complex algebraic geometry and implicitly in quantum
mechanics also, because spaces such as P(L), as explained in Chapter 2, are spaces
of the states of quantum-mechanical systems.

This metric is invariant under projective transformations of P(L) that have
the form P(f ), where f is a unitary mapping of L into itself. It is introduced in
the following manner. Let pl,P2 E P(L). The points pi, p2 correspond to two great
circles on the unit sphere S C L, as shown in §6.3c. Then the Kiihler distance
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d(pl, p2) equals the distance between these circles in the Euclidean spherical metric
of S, that is, the length of the shortest arc of the great circle on S connecting two
points in the inverse images of pl and p2.

The main purpose of this section is to prove the following two formulas for

d(Pj, P2)

10.2. Theorem. a) Let 11 i 12 E L, Ill I = 1121 = 1; and let P1, P2 E P(L) be straight

lines Cl1 and C12. Then

d(P1, P2) = COs-1 1(11,12 )1,

where (11,12) is the inner product in L.
b) Let an orthonormal basis, relative to which a homogeneous coordinate system

is defined in P(L), be chosen in L. Let two close-lying points P1, P2 E P(L) be given
by their coordinates (yl,... , y + in the affine map Uo
(see §6.Sa). Then the square of the distance between them, up to a third order
infinitesimal in dyi, equals

n 2

E 1 IdyiI2 (Ei=1 yidYi
1+ En

1 jyi12 (l+F 1jyiJ2

Proof. a) In a Euclidean space the distance between two points on the unit
sphere equals the length of the arc connecting their great circle which lies between
0 and a, that is, the Euclidean angle, or the cos-' of the Euclidean inner product
of the radii. The Euclidean structure on L corresponding to the starting unitary
structure is given by the inner product Re(11,12). Since we must find the mini-
mum distance between the points on the great circles (e' 1i), (eiP12), while the
COs' is a decreasing function, we must find ¢ and ,b such that for given 11,12 the
quantity Re(eimli,e'012) assumes the maximum possible value. But it does not ex-
ceed I(11i 12)1 and for suitable 0 and 0 reaches this value: if arg(l1,12) then
(eim11i12) = 1(11i12)1. Therefore, finally

d(P1,P2) = c08-1 1(11,12)1.

b) Let

1/2 1/2

R= (1+1yi12) , R+dR= (I + jyj + dyjI2)
i=1 icl

Then the inverse images of the points (yl, ... y,,) and (yl + dyl, ... , y,, +
on S will be the points

__ Pi yn yi + dyl yn + dyn

1' R' R' ' R 12
(_IR+dR' R+dR'**'' R+dR)'
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Therefore

and

(11,12)= 1 1+yi0i+Ty0 = R2+E.oly+ay.
R(R+dR) R(R+dR)

2
n _ n _ 2

i(11,12)12 =
R4 + R En

+ yidyi) + IEi=1 yidyi I
R2(R + dR)2

Furthermore,

n

(R+ dR)2 = 1 + lyi + dyi 12 = R2 + E(yi7y-i + l idyi + I dyi I2)
i=1 icl

Therefore, up to a third-order infinitesimal in dyi,

E" 1 Idyil2 IE,n 1 yiQyi I21(11,12)12 = 1 - -R2 +
R4

+...

On the other hand, if 0 = COs' I(11i 12)1, then up to 464 for small 0 we have

(i_c+..)2=((11,12)12=(cos0)2=
1-462+..

C ompar ison of these formulas completes the proof.

§11. Algebraic Varieties and Hilbert Polynomials

11.1. Let P(L) be an n-dimensional projective space over a field K with a
fixed system of homogeneous coordinates. We have already repeatedly encountered
the projective subspaces of P(L) and quadrics, which are defined by the following
systems of equations, respectively

n

E aikxi = fi, k = 1, ... , m,
i=o

or
n

E aiixixj aij = aji.
i,j=0

More generally, we shall study an arbitrary homogeneous polynomial, or form, of
degree m > 1:

I''(Zp, ... , Zn) _ aip...in Zpi0 in... xn
io+...+in =M
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Although it does not determine functions on P(L), the set of points with homoge-
neous coordinates (xo : ... : x") for which F = 0 is determined uniquely. It is called
an algebraic hypersurface (of degree m), defined by the equation F = 0.

More generally, the set of points in P(L) satisfying the system of equations

F1 =
F2 = ... = Ft = 0,

where the F; are forms (possibly of different degree), is called an algebraic variety,
determined by this system of equations.

The study of algebraic varieties in a projective space is one of the basic goals of
algebraic geometry. Of course, the general algebraic variety is a substantially non-
linear object, so that, like in other geometric disciplines, methods of linearization
of non-linear problems play an important role in algebraic geometry.

In this section we shall introduce one such method, which dates back to Hilbert
and which gives important information about the algebraic variety V C P(L) with
minimum preliminary preparation. The idea of the method is to form a corre-
spondence between the algebraic variety V and a countable series of linear spaces
{Im(V)} and to study its dimension as a function of m. Namely, let I,,,(V) be the
space of forms of degree m that vanish on V.

We shall show that there exists a polynomial with rational coefficients Qv(m),
such that dim1,(V) = Qv(m) for all sufficiently large m. The coefficients of the
polynomial Qv are the most important invariants of V. We shall actually establish a
much more general result, but in order to formulate and prove it we must introduce
several new concepts.

11.2. Graded linear spaces. We fix once and for all the main field of scalars K.
We shall call a linear space L together with its fixed decomposition into a direct sum
of subspaces L = ®°_o L; a graded linear space over X. This sum is infinite, but
every element I E L can be represented uniquely as a finite sum I = Z'o l;, l; E Li,
in the sense that all but a finite number of l; vanish. The vector l; is called the
homogeneous component of 1 of degree i; if l E Li, then 1 is called a homogeneous
element of degree i.

Example: The ring of polynomials AW of independent variables z0,. .. , x can
be decomposed as a linear space into the direct sum ®a_'o where A.") consists
of homogeneous polynomials of degree i. We note that if the x; are interpreted as
coordinate functions on the linear space L and the elements A(") are interpreted
as polynomial functions on this space, then the linear invertible substitutions of
coordinates preserve homogeneity and degree.

Another example: I = ®m _o I,,,(V) where V is some algebraic variety. Obvi-
ously I C and 1,"(V) = AM") fl I.

More generally, a graded subspace of M of the graded space L = ®;_o L; is
a linear subspace with the following property: M = ®,_,(M fl Li). An obvious
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equivalent condition is that all homogeneous components of any element M are
themselves elements of M.

If M C L is a pair consisting of a graded space and a graded subspace of it,
then the quotient space L/M also exhibits a natural grading. Namely, consider the
natural linear mapping

00 00 00

®L;/M; -+ L/M : 1"(l; + M;) i-' E l; + M
i=O i=O (i=O

(the sums on the right are finite). It is surjective, so that any element >;__o l;, l; E L
is the image of the element +M;). It is injective, because if F";_0 l; + M =
= M, then E°_o l; E M and I E M by virtue of the homogeneity of M. Therefore
this mapping is an isomorphism, and we can define the grading of L/M by setting
(L/M); = Li/M;.

The family of graded subspaces of L is closed relative to intersections and sums,
and all standard isomorphisms of linear algebra have obvious graded versions.

11.3. Graded rings. Let A be a graded linear space over K, which is at the
same time a commutative K-algebra with unity, multiplication in which obeys the
condition

A; Aj C Ai+j.

Then A is said to be a graded ring (more precisely, a graded K-algebra). Since
KA; C A;, we have K C A0. A very important example is the ring of polynomials
A('; in them, of course, Ao") = K.

11.4. Graded ideals. An ideal I in an arbitrary commutative ring A is a subset,
forming an additive subgroup A and closed under multiplication on the elements of
A: if f E 1 and a E A, then of E I. A graded ideal in a graded ring A is an ideal
which, like the K-subspace of A, is graded, that is, I = ®m _o I,n, I,,, = I fl A,,,.
The basic example is the ideals In(V) of algebraic varieties in polynomial rings
A(n). The standard construction of ideals is as follows. Let S C A be any subset
of elements. Then the set of all finite linear combinations {E..Es ais;la; E Al is
an ideal in A generated by the set S. The set S is called a system of generators
of this ideal. If the ideal has a finite number of generators, then it is said to be
finitely generated. In the graded case it is sufficient to study sets S consisting only
of homogeneous elements; the ideals generated by them are then automatically
graded. Indeed, the homogeneous component of degree j of any linear combination
E a;s; will also be a linear combination Ea;k'l s;, where Pi) is the homogeneous
component of a; of degree k; = j - deg si (deg s; is the degree of s;). Therefore it is
contained in the ideal generated by S. If the graded ideal is finitely generated, then it
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contains a finite system of homogeneous generators: it consists of the homogeneous
components of the elements of the starting system.

To simplify the proofs the concept of a graded ideal must be generalized and
graded modules must also be studied. This is the last of the list of concepts which
we shall require.

11.5. Graded modules. A module M over a commutative ring A, or an A-
module, is an additive group equipped with the operation A X M M : (a, m) "

am, which is associative ((ab)m = a(bm) for all a, b E A, m E M) and distribu-
tive with respect to both arguments:

(a + b)m = am + bm, a(m + n) = am + an.

In addition we require that Im = m for all m E M, where 1 is unity in A.
If A is a field, then M is simply the linear space over A. We can say that the

concept of a module is the extension of the concept of a linear space to the case
when the scalars form only a ring (see "Introduction to Algebra", §3 of Chapter 9).

If A is a graded IC-algebra, then a graded A-module M is an A-module which
is a graded linear space over K, M = ®°°o M; and such that

A; M1 C M1.F j

for alli,j>0.
Examples.
a) A is a graded A-module.
b) Any graded ideal in A is a graded A-module.
If M is a graded A-module, then any graded subspace N C M closed under

multiplication on the elements of A, is itself a graded A-module and a submodule
of M. One can construct based on any system of homogeneous elements S C M
a graded submodule generated by it, consisting of all finite linear combinations
E ass;, ai E A, s; E S. If it coincides with M, then S is called a homogeneous
system of generators of M. A module which has a finite system of generators is said
to be finitely generated. If a graded module has any finite system of generators, then
it also has a finite system of homogeneous generators: the homogeneous components
of the elements of the starting system.

The study of all possible modules, and not only ideals, in our problem gives
great freedom of action . Multiplication by elements a E A in the quotient module
is introduced by the formula

a(m + N) = am + N.

In the graded case the grading on M/N is determined by the previous formula
(M/N)i = M;/N;. The verification of the correctness of this definition is trivial.
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The elements of the theory of direct sums, submodules, and quotient modules
are formally identical to the corresponding results for linear spaces.

We can now take up the proof of the basic results of this section.

11.6. Theorem. Let M be an arbitrary finitely generated module over a ring
of polynomials A(") = K[xo,... , x"] of a finite number of variables. Then any
submodule N C M is finitely generated.

Proof. We shall divide the proof into several steps. We shall use the standard
terminology: a module, each submodule of which is finitely generated, is called a
noetherian module (in honour of Emmy Noether).

a) A module M is noetherian if and only if any infinite chain of increasing
submodules M1 C M2 C ... in M stabilizes: there exists an ao such that M. = Ma}1

for all a > ao.
Indeed, let M be noetherian. Set N = U001 Mi. Let nl,... , nk be a finite

system of generators of N. For all 1 < j < k there exists i(j) such that nj E M;(3).
We set ao = max{ i(j) j = 1, ... , k}. Then Ma contains n1,. .. nk for all a > ao and
therefore M. = N.

Conversely, assume that any ascending chain of submodules in M terminates.
We shall construct a system of generators of the submodules n C M inductively:
let n1 E N be any element; if n1, . . . , n; E N have already been constructed, then
we denote by M; C N the submodule generated by them and for N 96 Mi we choose
n;+1 from N\Mi. This process terminates after a finite number of steps, otherwise
the chain Ml C ... C Mi C ... would not stabilize.

b) If the submodule N C M is noetherian and the quotient module M/N is
noetherian, then M is noetherian; the converse holds as well.

In fact, let M1 C M2 C ... be a chain of submodules of M. Let ao be such
that the chains Ml f1 N C M2 f1 N C ... and (Ml + N)/N C (M2 + N)/N C ...
stabilize when a > ao. Then the chain M1 C M2 C ... also stabilizes when a > ao.

The converse is obvious.
c) The direct sum of a finite number of noetherian modules is noetherian.
For let M = ®"o Mi, where the Mi are noetherian. We proceed by induction

on n. The case n = 1 is trivial. For n > 2, the module M contains a submod-
ule isomorphic to M" with quotient isomorphic to (Do M. Both modules are
noetherian so that M is noetherian by virtue of b).

d) The ring AW is noetherian as a module over itself. In other words, every
ideal in A(") is finitely generated.

This is the main special case of a theorem first proved by Hilbert. It is proved
by induction on n. The case n = -1, that is, A('1) = K is trivial. For any ideal I
in the field K is either {0} or the whole of K. If a E I, a 0, then b = (ba-1)a E I
for all b E K. The induction step is based on regarding A(s) as A(n-1)[x"]. Let
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I(") C A(") be an ideal. We represent each element of I(') as a polynomial in
powers of x with coefficients in A("-1). The set of all the leading coefficients of
such polynomials is an ideal 1("-1) in A(n-1). By the induction hypothesis it has a
finite number of generators We assign to each generator 4i the element
fi = Oixn' + ... in I(n), where the dots denote terms of lower powers in x _ We set
d = maxj<j<,,,{d,). The polynomials fl,..., f" generate an ideal I C I(n) in A(").

Now let f = mx°+ (lower degree terms) be any element of I("). By definition,
0 E Il"-1), so that ¢ = a14,1 + ... + a,,,0,,,. If s > d, then the polynomial
f - E ai fixs-di belongs to I(") and its degree is less than s. By acting in similar
fashion we obtain the expression f = g + h, where h E I and g is a polynomial in
I(") of degree less than d.

All the polynomials in I(") of degree < d form a submodule J of the A
module generated by the finite system 11, x,,, ... , xn-1 }. By the induction hypoth-
esis that A("'1) is noetherian and from c), we see that J is finitely generated.

We have proved that 1{") = I + J is a sum of two finitely generated modules.
Therefore the ideal I(") is finitely generated.

We can now complete the proof of the theorem without difficulty.
Let the module M over A(") have a finite number of generators ml, ... , rnk.

Then there exists a surjective homomorphism of AW modules
k

A(") ®...(D A(") , M : (fl,...,fk) - Efim1.
ktimes =1

The module A(") ® ... ® A(") is neotherian by virtue of items d) and c). Therefore,
its quotient module M is noetherian.

11.7. Corollary. Any infinite system of equations Fi = 0, i E S, where Fi are
polynomials in A("), is equivalent to some finite subsystem of itself.

Proof. Let I be the ideal, generated by all the Fi. It has a finite system of
generators {G,, }. We consider a finite subset So C S such that all G; are expressed
linearly in terms of Fi, i E So. Then the system of equations Fi = 0, i E So, is
equivalent to the starting system, that is, it has the same set of solutions.

11.8. Hilbert polynomials and Poincare series of a graded module. Now
let M be a graded finitely generated module over the ring A("). Then all the linear
spaces Mk C M are finite-dimensional over K. Indeed if {ai} is a homogeneous K-
basis of Ao")+...+Ak") and {m1 } is a finite system of generators of M, then Mk as a
linear space is generated by a finite number of elements aimj with deg ai + deg mj _
= k.

Let dk(M) = dim Mk. The formal power series in the variable t
00

Hef(t) = >dk(M)tk
k=0
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is called the Poincari series of the module M.

11.9. Theorem. a) Under the conditions of the preceding section there exists a
polynomial f (t) with integer coefficients such that

Haf(t) = f(t)
(1-t)n+1

b) Under the same conditions there exists a polynomial P(k) with rational
coefficients and a number N such that

dk(M) = P(k) for all k > N.

Proof. We first derive the second assertion from the first one. We set f(t) =
= E'o ait' and equate the coefficients of tk on the right and left sides of the
identity

Haf(t) = f(t)(1 -t)-(n+1).

We obtain, taking into account the fact that (1 - t)-(n+1) (n+k)tk:k.0 n

dk(M) =
min(k,N)

ai(n+k - i)E

i-o
n

For k > N the expression on the right is a polynomial of k with rational
coefficients.

We now prove the assertion a) by induction on n. It is convenient to set
A(-1) =)C = Ao-'); A(-') = {O} for all i > 1. The finitely generated graded
module over A(-1) is simply a finite-dimensional vector space over A represented
in the form of the direct sum Ek 1 M. Its Poincare series is the polynomialEk

o dim Mktk, so that the result is trivially true.
Now assume that it is proved for A(n-1),n > 0. We shall establish it for A(n).

Let M be a finitely generated graded module over A(n). Let

K = {mEMlxnm=0}, C=M/x,,M.

Obviously, K and xnM are graded submodules of M; therefore C also has the
structure of a graded A(")-module. But multiplication by xn annihilates both K
and C. Therefore, if we regard K and C as modules over the subring A(n-1) =
= /C[xo, , xn-1] C A(n) = K [xo, ... , xn], then any system of generators for them
over A(n) will at the same time be a system of generators over A(n-1). According
to Theorem 11.6, K is finitely generated over A(n) as a submodule of a finitely
generated module. On the other hand, C is finitely generated over A(n), because if
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ml , ... , m, generate M, then m1 + x" M, ... , m9 + x"M generate C. Therefore, K
and C are finitely generated over A("), and the induction hypothesis is applicable
to them. From the exact sequences of linear spaces over K:

0 - Km -+ Mm =n+ Mm+1 - Cm+I -p 0, m > 0,

it follows that

dim Mm+I - dim Mm = dim Cm+1 - dim Km.

Multiplying this equality by t'"+1 and summing over m from 0 to oo, we obtain

HM(i) - dim Mo - iHM(i) = HC(t) - dimCo - LHK(t),

or, according to the induction hypothesis for K and C,

(1 - t)HM(t) = dim Mo -dimCo + fc(t) - tiK(t)
(1-t)" (1-t)"'

where fc(i) and fK(t) are polynomials with integer coefficients. Obviously the
required result follows from here.

11.10. The dimension and degree of an algebraic variety. Now let V C P"
be an algebraic variety, corresponding to the ideal 1(V). We consider the Hilbert
polynomial Pv(k) of the quotient module A(n)/I(V):

Pv(k) = dimAk")/Is(V) for all k > ko.

It is not difficult to see that Ppn(k) = ("n k), so that degPpn(k) = n. There-
fore, deg Pv < n. The number d = deg Pv is called the dimension of the variety
V. W e represent the highest order coefficient in Pv(k) in the f o r m e . It can be
shown that e is an integer, which is called the degree of the variety V. The di-
mension and the degree are the most important characteristics of the "size" of the
algebraic variety. They can be defined purely geometrically: if the field K is alge-
braically closed, then the d-dimensional variety of degree e intersects a "sufficiently
general" projective space P"-d C P" of complementary dimension at precisely e
different points. We shall not prove this theorem.

In conclusion, we note that after Hilbert's discovery, the question of how the val-
ues of the Hilbert polynomial Pv(k) for those integer values of k for which Pv(k) 54
: dim lk(V) (in particular, negative k) should be interpreted remained open for
almost half a century. It was solved only in the 1950's when the cohomology theory
of coherent sheaves was developed, and it became clear that for any k, Pv(k) is an
alternating sum of the dimensions of certain spaces of cohomologies of the variety
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V. Hilbert's polynomials of any finitely generated graded modules were interpreted
in an analogous manner.

EXERCISES

1. Prove that the Hilbert polynomial of the projective space P' does not depend
on the dimension m of the projective space P°' in which P' is embedded: P" C P' -

2. Calculate the Hilbert polynomial of the module A(")/FA("), where F is a form
of degree e.



CHAPTER4

Multilinear Algebra

§1. Tensor Products of Linear Spaces

1.1. The last chapter of our book is devoted to the systematic study of the
multilinear constructions of linear algebra. The main algebraic tool is the concept
of a tensor product, which is introduced in this section and is later studied in detail.
Unfortunately, the most important applications of this formalism fall outside the
purview of linear algebra itself: differential geometry, the theory of representations
of groups, and quantum mechanics. We shall consider them only briefly in the final
sections of this book.

1.2. Construction. Consider a finite family of vector spaces L1, ... , LP over the
same field of scalars K. We recall that a mapping L1 x ... x L. - L, where L is
another space over IC, is said to be multilinear if it is linear with respect to each
argument l; E Li, i = I,.. . , p, with the other arguments held fixed.

Our first goal is to construct a universal multilinear mapping of the spaces
L1,. .. , Lp. Its image is called the tensor product of these spaces. The precise
meaning of the assertion of universality is explained below in Theorem 1.3. The
construction consists of three steps.

a) The space M. This is the set of all functions with finite support on
L1 x ... x L. with values in X, that is, set-theoretic mappings L1 x ... x Lp - K,
which vanish at all except for a finite number of points of the set L1 x ... x Lp. It
forms a linear space over IC under the usual operations of pointwise addition and
multiplication by a scalar.

A basis of it consists of the delta functions b(l1i . . . , lp), equal to 1 at the point
(ll, - - - ,1p) E L1 x ... x Lp and 0 elsewhere. Omitting the symbol 6, we may assume
that M consists of formal finite linear combinations of the families (l1i ... , lp) E
EL1x...xLp:

M = {Eat1...lp(ll,...,Ip)Iat,.. ip E K}.

We note that if the field K is infinite and at least one of the spaces L; is not
zero-dimensional, then M is an infinite-dimensional space.

258
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b) The subspace Mo. By definition, it is generated by all vectors from M of
the form

(11,...,1j,

aEK.

c) The tensor product L1 ® ... ® Lp. By definition

L1®...®L,=M/Mo,

ll®...®lp=(ll,...,lp)+MoEL1®...®Lp,

t:L1 t(ll,...,lp)=ll®...®lp.
Here M/Mo is a quotient space in the usual sense of the word. The elements of
L1 ® ... ® Lp are called tensors; 11 (9 ... ®lp are factorizable tensors. Since the
families (l1i ... , Ip) form a basis of M, the factorizable tensors 110 ... ®1p generate
the entire tensor product Ll 0 ... (& Lp, but they are by no means a basis: there
are many linear relations between them.

The basic property of tensor products is described in the following theorem:

1.3. Theorem. a) The canonical mapping

t:L1x...xLp-.L1®...(&Lp,

is multilinear.
b) The multilinear mapping t is universal in the following sense of the word:

for any linear space M over the field K and any multilinear mapping s : L1 x . .. x
xLp -+ M them exists a unique linear mapping f : L1 0 ... 0 L - M such that
s = f ot. We shall say briefly that s operates through f.

Proof. a) We must verify the following formulas:

lie ...0(1j,+1j)®...®lp=

110...®lj®...®lp+ll®...®l7 ®...®1p,

lie...®(alj)0...01p=a(ll®...0Ij®...®1p),

that is, for example, for the first formula,

(11,...,1j, +17,...,lp)+Mo = [(11,-..,11..... lp)+Mo)+

+((11,..., I,...,lp)+Mo).
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Recalling the definition of a quotient space (§§6.2 and 6.3 of Chapter 1) and the
system of generating subspaces of Mo, described in §1.2b above, we immediately
obtain these equalities from the definitions.

b) If f always exists, then the condition a = f of uniquely determines the value
off on the factorizable tensors:

f(11 0...01,) = f ot(11i...,Ip) = s(11,...,p).

Since the latter generate L1 (& ... (& Lp, the mapping f is unique.
To prove the existence off we study the linear mapping g : M - M, which

on the basis elements of M is determined by the formula

011,...,p) = 8(11....I1p),

that is,

9(Fafl...lp(11r....1p)) _ al,.1pS(11i...,1p).

It is not difficult to verify that Mo C kerg. Indeed,

a(11i...,1 +p)- s(11,...,1,
= 0

by virtue of the multilinearity of s. The fact that g annihilates the generators of
MO of the second type, associated with the multiplication of one of the components
by a scalar, is verified analogously.

From here it follows that g induces the linear mapping

f:M/Mo=Li0...0Lp-M

(see Proposition 6.8 of Chapter 1), for which

f(11 ®... (& 1p) = S(11i... ,lp).

This completes the proof.
We shall now present several immediate consequences of this theorem and the

first applications of our construction.

1.4. Let C(L1,..., Lp; M) be the set of multilinear mappings L1 x ... x Lp in M.
In Theorem 1.3 we constructed the mapping of sets

,C(L1 i ... , Lp; M) --* ,C(Li 0 ... 0 Lp; M),
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that associates with the multilinear mapping s, the linear mapping f with the
property s = f ot. But the left and right sides are linear spaces over K (as spaces of
functions with values in the vector space M: addition and multiplication by a scalar
are carried out pointwise). From the construction it is obvious that our mapping is
linear. Moreover, it is an isomorphism of linear spaces. Indeed, surjectivity follows
from the fact that for any linear mapping f : L1(& ...OLp -+ M the mappings = f of
is multilinear by virtue of the assertion of item a) of Theorem 1.3. Injectivity follows
from the fact that if s $ 0, then f o t 0 0 and therefore f # 0. Finally, we obtain
the canonical identification of the linear spaces

L(L1 i ... , Lp; M) = L(L1 0 ... 0 LP; M).

Thus the construction of the tensor product of spaces reduces the study of multi-
linear mappings to the study of linear mappings by means of the introduction of a
new operation on the category of linear spaces.

1.5. Dimension and bases. a) If at least one of the spaces L1i..., L. is a null
space, then their tensor product is a null space.

Indeed, let, for example, L1 = 0. Any multilinear mapping f : L1 x ... x Lp
M with fixed li E Li, i # j, is linear on Lj; but a unique linear mapping of a

null space is itself a null mapping. Hence, f = 0 for all values of the arguments. In
particular, the universal multilinear mapping t : L1 x ... x Lp L10 ... 0 Lp is a
null mapping. But its image generates the entire tensor product. Hence the latter
is zero-dimensional.

b) dim(L1 ®... ®Lp) = dim L1 ... dim Lp.
If at least one of the spaces is a null space, this follows from the preceding result.

Otherwise we argue as follows: the dimension of L1®... 0 Lp equals the dimension
of the dual space ,C(L10 ... ® Lp, K). In the preceding section we identified it with
the space of multilinear mappings C(L1 x ... x Lp,K). We select in the spaces
Li the bases We form a correspondence between every multilinear
mapping

f: L, x...xL.-.K
and a set of nj ... np scalars

F(e;i...,e,p)), 1<j<p.

By virtue of the property of multilinearity this set uniquely defines f :

f
\ ` x(1)e(1) x(p)e(p) = r` x. ...x(p)f (e(1) e(p))

St it ,..., ip ip &p
II ,..., SP

i,=1 ip=1 (ii...ip)
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In addition, it can be arbitrary: the right side of the last formula defines a multi-
linear mapping of the vectors (z<1>, ... , z-0)) for any values of the coefficients. This
shows that the dimension of the space of multilinear mappings L1 x ... x Lp - K
equals nl ... np = dim L1 ... dim Lp. This completes the proof.

c) The tensor basis of L1 0 ... 0 LP. The preceding arguments also enable
us to establish the fact that the tensor products {eii) ® ... ® e(P) form a basis of
the space L1 ®... ® Lp (we assume that the dimensions of all spaces L. 1 and,
for simplicity, are finite). Indeed, these tensor products generate L1 ®... 0 Lp,
because all factorizable tensors are expressed linearly in terms of them. Indeed,
their number equals exactly the dimension of L1 ® ... ® L.

1.6. Tensor products of spaces of functions. Let S1,.. . , Sp be finite sets,
and let F(S;) be the space of functions on Si with values in K. Then there exists
a canonical identity

F(S1 x ... x Sp) = F(S1) 0 ... 0 F(Sp),

which associates with the function 6(, ,...,,P) the element b,, 0...0b,p (see §1.7 of
Chapter I). Since both of these families form a basis for their spaces, this is indeed
an isomorphism. If f; E F(S1), then

lfl 0 ...0fp = (E fl(8,)b+i) ®...0 (> fp(sp)b,p)
a, ES1 apESp

transforms under this isomorphism into the function

(Si,...,sp)'-' fl(sl)...fp(sp),

that is, factorizable tensors correspond to "separate variables".
If Si = ... = SP = S, then the tensor product of functions on S corresponds

to the usual product of their values "at independent points of S".
It is precisely in this context that tensor products appear most often in func-

tional analysis and physics. However, the algebraic definition of a tensor product is
substantially different in functional analysis, because of the fact that the topology
of the spaces is taken into account; in particular, it usually must be extended over
different topologies.

1.7. Extension of the field of scalars. Let L be a linear space over the field
It, and let Lc be its complexification (see §12 of Chapter 1). Since the field C can
be regarded as a linear space over R (with the basis 1, i), we can construct a linear
space C 0 L generated by the basis over It, 10 el,... 10 e,,, i ® el,... , i 0 en,
where {el , ... , e } is a basis of L. It is obvious that the R-linear mapping

COL LC :10e1.-yej, i®e,.-+ie,
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determines an isomorphism of C ® L to Lc.
More generally, let K C K be a field and a subfield of it, and L a linear space

over X. Regarding K at first as a linear space over K, we construct the tensor
product K 0 L. Next, we introduce on it the structure of a linear space over K,
defining multiplication by a scalar a E K by the formula

a(b (&l) = ab O l; a, b E K, EEL.

To check the correctness of this definition we construct the space M, freely gener-
ated by the elements of K x L, and its subspace Mo, as in §2 so that K®L = M/Mo.
We define multiplication by scalars from K in M, setting on the basis elements

a(b,l)=(ab,1); a,bEK, IEL,

and extending this rule by K-linearity to the remaining elements of K x L. Direct
verification shows that M transforms into the K-linear space, while Mo transforms
into a subspace of it, so that M/Mo = K 0 L also becomes a linear space over K.
This is the general construction of the extension of the field of scalars mentioned in
§12.15 of Chapter 1.

An important particular case is the case when for K = X the linear space KOL
over X is canonically isomorphic to L. This isomorphism transforms a ®1 into at.

§2. Canonical Isomorphisms and Linear Mappings of Tensor Products

2.1. Tensor multiplication has some of the algebraic properties of operations
which are called multiplications in other contexts, for example, associativity. These
properties, however, are formulated in their own peculiar manner because of the
fact that tensor multiplication is an operation over objects belonging to a category.
For example, the spaces (L1 0 L2) ® L3 and L1 0 (L2 (9 L3) do not coincide, as
is obvious from a comparison of their construction: they are only related by a
canonically defined isomorphism.

In this section we shall describe a number of such "elementary" isomorphisms,
which are very useful in working with tensor products. We warn the reader, however,
that we shall have to confine ourselves only to an introduction to the theory of
canonical isomorphisms. The main question, the systematic study of which we
shall omit, is their compatibility. Let us assume, for example, that we have two
natural isomorphisms between some tensor products, constructed differently from
several "elementary" natural isomorphisms. Are these isomorphisms necessarily the
same? One can try to make a direct check in each specific case or one can attempt
to construct a general theory, which turns out to be quite cumbersome. Analogous
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problems arise in connection with natural mappings which are not isomorphisms,
for example, mappings such as symmetrization or contraction.

2.2. Assoeiativity.. Let L1,. .. , Lp be linear subspaces over X. We want to
construct canonical isomorphisms between spaces of the type (Li 0 L2)(... 0 Lp),
obtained as the result of the tensor multiplication of L1, ... , Lp in groups of differ-
ent order, established by parentheses. The most convenient method, which auto-
matically guarantees compatibility, consists in constructing for each arrangement of
parentheses the linear mapping Li 0...0Lp (Li ®L2) (...0Lp) with the help of
the universal property from Theorem 1.3b, and checking that it is an isomorphism.

We shall study in detail the construction Li ®L2 ®L3 (Li ®L2) 0 L3-, the
general case is completely analogous.

T h e m a p p i n g Li x L2 - Li 0L2 : ( 1 1 , 1 2 )-1 1®12 is bilinear. Therefore the
mapping Li x L2 x L3 -+ (Li ®L2) ® L3 : (11,12,13) - (11 (9 12) 0 13 is trilinear.
Hence it can be constructed through the unique linear mapping L1 ® L2 0 L3
- (Li ®L2) ® L3. According to the construction itself, the latter mapping trans-
forms 11®12®13 into (11®12)®13. Choosing bases of the spaces LI, L2, and L3 and
using the results of S1.5, we find that this mapping transforms a basis into another
basis, and is therefore an isomorphism.

Finally, tie product (Li®L2) (...®Lp) with any arrangement of the parentheses
can be Hall Li ®L2 ®... ®Lp, simply by omitting all parentheses; on the
elements (11®12) (... 01p) this identification operates according to the same rule.
We can therefore write (110 12) ®13 = 11®12 ®13 = 110 (12 (& 13) etc.

2.3. Commntativity. Let or be any permutation of the numbers I.... , p. We
shall determine the system of isomorphisms

f.:Ll®...®Lp L,(i)®...®Lo(p)

with the property f., = f. o f+ for any a and r. To this end, we note the mapping

Li x ... x L. -. L,(i) ®...0 L0(p) : (11>... lp)'-. l,(1) ®... ® lo(p)

is multilinear. Therefore, according to Theorem 1.3b, it is constructed through the
mapping f, : L1 0 ... 0 Lp -+ L,(i) 0 ... 0 L,(p). It operates on the products
of vectors in an obvious manner, permuting the cofactors, and an examination of
its action on the tensor product of the bases of L1,... , Lp shows that this is an
isomorphism. The property f.: = f. o f, is obvious.

We have thus determined the action of the symmetric groups SP on L10...®Lp.
In the case when all spaces L; are different, the isomorphisms f, can be used to
identify uniquely Ll ® ... ® Lp with L,(1) 0 ... 0 L,(p). In this sense, tensor
multiplication is commutative. However, it is dangerous to write this identity as an
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equality without indicating fo explicitly (as we did for associativity), if the set of
spaces L1, ... , Lp contains identical spaces.

2.4. Duality. There is a canonical isomorphism

Li0...®Lp--*(L10...0Lp)'.
T o construct it, we associate with every element (fl, ... , fp) E L; x ... x Ly, the
multilinear function fl(II) ... fp(1p) from (11i...,1p) E L1 x ... x Lp. According to
Theorem 1.3b, this mapping is constructed through the mapping Li ® ... ®L;
(the space of multilinear functions on L1 x... x Lp). The latter space, by virtue of the
construction in §1.4, is identified with thespace,C(L1®...®L,,,IC) = (L10...®Lp)'.
We have thus constructed the mapping sought. To show that it is an isomorphism
we note that the dimensions of the spaces (L1 ®... 0 Lp)' and Li 0 ... 0 L; are
the same (we confine ourselves to finite-dimensional Li). It is therefore sufficient
to verify that our mapping is surjective. But its image contains the functions
fl(11)... fp(lp), where the f1 run through some basis of L; and as in §1.5, it is not
difficult to verify that they form a basis of £(L1,. .. , Lp; )C) = (L1® ... ® Lu)'.

The identification of (L1 0 ... 0 Lp)'with Li 0 ... 0 LP with the help of the
isomorphism described is usually harmless.

2.5. Isomorphism of ,C(L, M) with L' 0 M. We consider the bilinear mapping

L' x M -,C(L,M) : (f,m)'- [I i.- f(l)m],

where f E L', I E L, m E M. The bilinearity of the expression f (1)m with respect
to f and m and its linearity with respect to I are both obvious. Repeated application
of the universality property shows that it corresponds to the linear mapping

L'®M-G(L,M).
We choose in L, M the bases {11, ... , Q, {m1, ... , mb} and in L' the dual basis
{11, ... , l°}. The element 1' ® m, of the tensor product of the bases of L' and M
transforms into a linear mapping that transforms the vector lk E L into l'(lk)mj =
= b;kmm. The b x a matrix of this linear mapping has a one at the location (ji)
and zeros elsewhere. Since these matrices form a basis of C(L, M), the mapping
constructed transforms a basis into a basis and is an isomorphism.

Let us analyse the important case L = M. Here

G(L, L) = L' ®L.

The space of endomorphisms ,C(L, L) contains a distinguished element: the identity
mapping idL. Its image in L' 0 L, as is evident from the preceding arguments,
equals

Elk®!k,
k=1
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where {lk},{lk} is a pair of dual bases in L and L. Thus the formula for this
element has the same form in all pairs of dual bases.

In addition, the space of the endomorphisms £(L, L) is equipped with a canoni-
cal linear functional - the trace: Tr :.C(L, L) -, 1C. From the preceding arguments
it follows that the trace of a mapping, with which is associated the element C 01i
equals b;i (look at the matrix), so that associated with the general element of the
tensor product L' ® L is the number

a a

a; l' 0 1, F- > a .

i,j=1 1=1

This linear functional L' ® L - IC is called a contraction. Later we shall give the
definition of a contraction in a more general context.

2.6. The isomorphism of C(L 0 M, N) with ,C(L,,C(M, N)). The space
£(L 0 M, N) is isomorphic to the space of bilinear mappings L x M N. Each
such bilinear mapping f : (1, m) - f (l, m) with the first argument I fixed is a
linear mapping M -+ N; this mapping is a linear function of 1. Thus we obtain the
canonical linear mapping

£(L (& M, N) = £(L, M; N) -+ L(L, L(M, N)).

An argument with bases of L, M, N, analogous to that given in the preceding sec-
tion, shows that it is an isomorphism (as always, the space is assumed to be finite-
dimensional).

(This identification is an important example of the general-categorical concept
of "adjoint functors, in the sense of Kan".)

2.7. The tensor product of linear mappings. Let L1,... , L. and Ml,..., M,
be two families of linear spaces, and f; : L; M1 a linear mapping. Then one can
construct the linear mapping

f1®...0fp:L1®...0LP-+MI®...®MP,

called the tensor product of the /f; and uniquely characterized by the simple property

(fl ®...®ff)(11®...(9 IP)=fl(11)(9 ...®ff(I )

for all 1; E L. Noting that the mapping

L1x...xLP M1®...®MP:(ll,...'l')' f1(l0®...®fP(10

is lnultilinear. The existence of the above tensor product can be proved by the same
standard application of Theorem 1.3b.



LINEAR ALGEBRA AND GEOMETRY 267

If all fi are isomorphisms, then fi ®... 0 fp is also an isomorphism.

2.8. Contraction and raising of indices. With the help of this construction we
can give a general definition of the contraction "with respect to pairs or several pairs
of indices". Assume that we have a tensor product Li ® ... ® L,,, and in addition
for some two indices i, j E {1,.. . , p} we have Li = L', Lj = L. The contraction
with respect to the indices i, j is the linear mapping

P

L1®...®LP - ®Lk,
k=1.

which is obtained as a composition of the following linear mappings:
a) fo , where o is a permutation of the indices {1,. .. , p} carrying i into I and

j into 2 and preserving the order of the remaining indices:

P D

fo:Lj®...0Lp_i.Li0Lj®(® Lk)=L'®L®(® L,,).
k=1 k=1
k#i,j loll,

b) The contraction of the first two factors, tensor-multiplied by the identity
mapping of the remaining factors:

L'®L®(® Lk) -sKO(® Lk).
k=1 k=1
k;ei j k#i,j

c) The identification

P P

K ®(®Lk) + L.
k=1 k=1j k#i,j

If we have several pairs of indices such that Lik = Mk ,
Ljk = Mk, then this construction can be repeated several times for all pairs suc-
cessively. The resulting linear mapping is a contraction with respect to these
pairs of indices. It depends on the pairs themselves, but not on the order in
which the contractions with respect to them are carried out. It can happen that
{1,...,p} = {ii, jl,...,ir, jr}. Then a complete contraction is obtained.

We again consider the tensor product Li 0 ... 0 L. and we shall assume that
the isomorphism g : Li . L, is given for the ith space (in applications it is most
often constructed with the help of a non-degenerate symmetric bilinear form on Li).
Then the linear mapping

id ®...0g®...®id : L1®...®Li 0...0 Lp -+
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L; ®...®Lp

is called the "lowering of the ith index", and the reverse mapping is called the
"raising of the ith index". This terminology will be explained in the next section.

Both constructions, contractions and raising/lowering of an index, are most
often used in the case Li = L or L', when an orthogonal structure is given on
L. There are a large number of linear mappings, coupling the spaces L'®p (9 Log,
which are constructed as compositions of the raising and lowering of indices and
contractions. These mappings play a large role in Riemannian geometry, where with
their help (and analytical operations of differentiation type) important differential-
geometric invariants are constructed.

2.9. Tensor multiplication as an exact functor. We fix a linear space M and
consider the mapping of the category of finite linear spaces into itself: L t- L ® M
on objects and f i- f ® idM on morphisms. From the definitions it is easy to see
that idL ' -+ idy®M and

fog .-'f og®idM = (f 0idM)o(90idM).

This mapping is therefore a functor, which is called the functor of tensor multipli-
cation on M.

We shall show that if the sequence 0 Ll J_* L -!- L2 - 0 is exact, then
the sequence

0 - Ll®M'® L®M9® L20M-.0

is also exact. This property is called the exactness of the f'uncior of tensor mul-
tiplication. Like the exactness of the functor C, it breaks down in the category of
modules, and this breakdown is an important object of study in homological algebra
(cf. the discussion in §14 of Chapter 1).

Exactness is most easily checked by choosing bases of L1, L, and L2 that are
adapted to f and g in such a way that {el, ... , ea} is a basis of L1, If (el ), ... , f (ea);
e;+1

1 I e;+b} is a basis of L, and {g(ea+1), ... , g(ea+b)) is a basis of L2. Choosing,
in addition, the basis {e....... eo } of the space M we find that the tensor products
of the bases

lei ®e'}, If (ei)0es,el0e7}, {g(4)0e7}

are adapted to f 0 idM, g ® idM in the same sense of the word.



LINEAR ALGEBRA AND GEOMETRY 269

§3. The Tensor Algebra of a Linear Space

3.1. Let L be some finite-dimensional linear space over the field K. Any element
of the tensor product

Tp (L) = LL* ®L . ®L
P q

is called a tensor of type (p, q) and rank (or valency) p + q on L. It is also called a
p-covariant and q-contravariant mixed tensor. The first two chapters of this book
were actually devoted to the study of the following tensors of low rank.

a) It is convenient to set Ta (L) = K, that is, to call scalars tensors of rank 0.
b) r, (L) = L', that is, tensors of the type (1,0) are linear functionals on L.

Tensors of the type (0,1) are simply vectors from L.
c) T11 (L) = L' ® L. In §2.5 we identified L' ® L with the space G(L, L).

Therefore tensors of the type (1,1) "are" linear operators on L.

d) T2 0(L) = L' ® L. In §2.4 we identified L' 0 L' with (L 0 L)', or with
the bilinear mappings L x L --. K. Thus tensors of the type (2,0) "are" inner
products on L. In §2.5 we identified L' (& L' with L(L", L') = G(L, L'). In this
identification the inner product on L is associated with the linear mapping L -+ L',
which corresponds to an interpretation of this inner product as a function of one of
its arguments with the second argument fixed. Thus the tensor constructions given
in Section 2 generalize the constructions of Chapter 2.

e) We present one more example: the structure tensor of a K-algebra. Here
by a K-algebra we mean the linear space L together with the bilinear operation
of multiplication L x L - L : (1, m) -+ Im, not necessarily commutative or even
associative, so that, for example, the Lie algebras fall within this definition.

According to Theorem 1.3b, multiplication can be defined just like the linear
mapping L®L L. In §2.5 the space,C(L®L, L) was identified with (L®L)'®L, or,
using in addition §2.4 and associativity, with L'®L'®L. Therefore the specification
of the structure of a K-algebra on the space L is equivalent to the specification of
a tensor of the type (2,1), called the structure tensor of this algebra.

3.2. Tensor multiplication. In accordance with §2.4, we can identify the space
Tp(L) with (LaP (9 (L')®q)' and then with the space of multilinear mappings

f:Lx.... xLxL'x
P q

Two such multilinear mappings of types (p, q) and (p', q') can be tensorially multi-
plied, yielding as a result the multilinear mapping of type (p + p', q + q'):

U0 9)(11,...,lP;lj,...,lp,;li,...,14;11 ,...,J1, =
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= f(11,...,1P);li ,...,lq)9(li,....IP,,; i ,...,lq,)

where 1, 1j' E L, E V. This definition immediately reveals the bilinearity of
tensor multiplication with respect to its arguments:

(afi + bf2) ®9 = a(fi ®g) + b(f2 ®9);

f ®(a91 + bg2) = a(f ®g1) + b(f ®92),

and also its associativity:

(f®9)®h=f®(9®h)

However, it is not commutative: f ® g, generally speaking, is not the same thing as

g®f.
If tensors are not interpreted as multilinear mappings, then tensor multiplica-

tion can be defined with the help of the permutation operations from §2.3, taking
into account associativity, as the mapping

fo L 0L 0..0®L.00 L . OL
P 9 P' 4'

--.11r1 --..-i
P+P' 9+4'

where a permutes the third group of p' indices into the location after the first
group of p indices, preserving their relative order as well as the relative order of
the remaining indices. In this variant, the bilinearity of tensor multiplication is
equally obvious, and its associativity becomes an identity between permutations,
which the reader will find it easier to find out for himself than to follow long but
banal explanations.

3.3. Tensor algebra of the space L. We set

T(L) =EE) Ty (L)
P ,9=1

(the direct sum of linear spaces). This infinite-dimensional space, together with the
operation of tensor multiplication in it, defined in the preceding section, is called a
tensor algebra of the space L.

We note that it is sometimes important to study over the field of complex
numbers an extended tensor algebra, which is a direct sum of the spaces L®P®
®L'®a ® L®P' ®L'®4'. For example, the sesquilinear form on L as a tensor is
contained in L' ® L. Because of lack of space we shall not make a systematic
study of this construction.
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§4. Classical Notation.

4.1. In classical tensor analysis the tensor formalism is described in terms of
coordinates. This description is widely used in the physics and geometry literature,
and this language must be given its due: it is compact and flexible. In this section
we shall introduce it and show how the different constructions described above are
expressed in terms of it.

4.2. Bases and coordinates. Let L be a finite-dimensional linear space. We
choose a basis {el, ... , e,,) of L and we specify the vectors in L by their coordinates
(01,... ,a") in this basis: E"_1 a'e;.

We choose in L' the dual basis {el,... , e"}, (e', ei) = bj' = 0 if i j and 1 if
i = j, and we specify vectors in L' by the coordinates (b1,...,b") bye'. The
arrangement of the indices in both cases is chosen so that pairs of identical indices,
one of which is a superscript and the other is a subscript, appear in the summation.

We construct in L'®P 0 L®9 the tensor product of the bases under study

{e'' ®...®e'P ®e,, 0...(9 e2911 <ik <n, 1 < j, <n}.

Any tensor T E Tp (L) is given in it by its coordinates Y' ; "
:

T=ET `...ye'P0ei,®...®ej5.
We note that here the summation once again extends over pairs of identical indices,
one of which is a superscript and the other a subscript. This is such a characteristic
feature of the classical formalism that the summation sign is conventionally dropped
in all cases when such summation is presupposed.

In particular, under this convention the vectors in L are written in the form
a)

.

e while the functionals are written in the form b;e'. The inner product of L'
and L, that is, the value of the functional 6ie' on the vector ajet, is written as a'b,
or bia'.

Moreover, we can simplify the notation even more by omitting the vectors e,
and e' themselves. Then the elements of L are written in the form aj, the elements
of L* are written in the form bi, and the general tensor T E 77(L) is written in the
form 7;1`.',;p . In other words, in the classical notation for the tensor T:

the coordinates or the components of T in the tensor basis L'®P 0 L®4, enu-
merated as elements of the tensor basis, are indicated explicitly; the numbers are
compound indices; the covariant part of the index is written as a sub-
script, while the contravariant part is written as a supercript;

the choice of the starting basis {el, ... , e" } of L, according to which the dual
basis {e', ... , e" } in L' and then the tensor bases in all the spaces 7p (L) are con-
structed is presupposed.
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Sometimes it is convenient to study tensors in spaces where the factors of L
and L' appear in a different order than the one which we adopted, for example,
L 0 L' instead of L' 0 L or L 0 L' 0 L ® L. This is indicated with the help of a
"block arrangement" of compound indices in the tensor coordinates. For example,
the tensor T E L ® L' can be specified by its components which are denoted by T7,
while T E L ® L' (9 L 0 L can be specified by the components T;,)1;,;,.

4.3. Some important tensors. These include the following:

a) The metric tensor g;j. According to our notation, it ties in T2 (L), and by
virtue of §3.1d it can represent the inner product on L. Its value on the pair of
vectors a', by equals E g;ia' b' or simply g;, a'bi . Thus the components of the metric
tensor are the elements of the Gram matrix of the starting basis of L relative to the
corresponding inner product.

b) The matrix A'. This is an element of Ti (L), that is, by virtue of §3.1c, a
linear mapping of L into itself. It transforms the vector aJ into the vector with the
ith coordinate or simply A')ai. The tensor of rank p + q can be thought of
as a "p + q-dimensional matrix", and the standard matrices can be thought of as
two-dimensional matrices,

c) The Kronecker tensor This is an element of T1 1(L), representing the
identity mapping of L into itself.

d) The structure tensor of an algebra. According to §3.1e, it lies in T2 (L)
and is therefore written in terms of components in the form -y !j. It defines bilinear
multiplication in L according to the formula

ka*V.

The complete notation is as follows:

( a'ei) d et) = E(F k ibrek.
k to

4.4. Transformation of the components of a tensor under a change of
basis in L. Let A be the matrix describing the change of basis in L: ek = A' e;;
let B) be the matrix of the transformation from the basis {ek}, dual to {ek}, to the
basis {e"} dual to {ek}. It is easy to verify that B = (A`)-'. This matrix is said
to be contragradient to A.

The coordinates a'' in the basis of a vector initially defined in terms of
the coordinates a' in the basis {e;} will be BLak.

Analogously, the coordinates b; in the basis {e"} of the functional (or "covec-
tor"), initially defined by the coordinates b; in the basis {e'}, will be Atbk.
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To find the coordinates T't "'jf in the tensor basis of the tensor initiallyprimed Y

defined by the coordinates Tai: °p , it is now sufficient to note that they transform
just like the coordinates of the tensor product of q-vectors and p-covectors, that is

T,rjt...jq - Alt AIPBjt j97Jtt...k'it...ip - it ... tp kt ... kq It lp

One should not forget that on the right side summation over repeated indices is
presumed.

In the classical exposition this formula is used as a basis for the definition of
tensors.

Namely, a tensor on an n-dimensional space of type (p, q) is a mapping T which
associates with each basis of L a family of nP+9 components - the scalars TO ' p,

and in addition the correspondence is such that under a transformation of the basis
by means of the matrix A the components of the tensor transform according to the
formulas written out above.

4.5. Tensor constructions in terms of coordinates.
a) Linear combinations of tensors of the same type. Here the formulas are

obvious:

(aT +
bT')jt...jg = '-I4

+
bet...jq

it...ip tt ..ip it...ip

b) Tensor multiplication. According to Definition 3.2

(T0T,)jt...jgji...j'g,
it...ipit.A. , it...ip ti...ip,

In particular, a factorizable tensor has the components Ti, ... TjpTjt ... Tj9 .
c) Permutations. Let o be a permutation of 1,,. . , p, r a permutation of

1,... , q, and fo,, : TI (L) -+ T, 9(L) the linear mapping corresponding to these
permutations, as in §2.3. Then for any T E Tp (L) we have

f l .ip to_t(t)...io (P)

d) Contraction. Let a E {1, ... , p}, b E {1, ... , q}. As in §2.8, there exists
a mapping Tp (L) -+ y--'(L) which "annihilates" the ath L' factor and the bth L
factor with the help of the contraction mapping L' 0 L -+ X, which is the standard
inner product of vectors and functionals: (bi) ® (a1) -a biai . Therefore, denoting by
T' the tensor T contracted over a pair of indices (ath subscript and bth superscript),
we obtain:

jt...jb-Jb+J...jq - J. -jb-tkjb+t...jq
it...ia-tia+t...ip - it...ia_tkta+t...ip

(summation over k on the right side). Iterating this construction, we obtain a
definition of contraction over several pairs of indices.
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We have already verified that many formulas in tensor algebra are written in
terms of tensor multiplication and subsequent contraction with respect to one or
several pairs of indices. We repeat them here for emphasis:

gilaib1is the contraction of ((gi,) 0 (ak) (& (b')).

The inner product

bia' is the contraction of ((bi) 0 (ai )).

The coordinates of a tensor in a new basis or, from the "active viewpoint", the
image of the tensor under a linear transformation of the base space:

711St 9 is the contraction of ((A 0 ...® A) ®(B ®... ® B) 0 T).tt ... op

Multiplication in algebra:

ai bi is the contraction of ((structural tensor ® (a') ®

One more example - matrix multiplication:

(AJBL) is the contraction of (A' 0 Bk).

We remind the reader once again that in order to define the contraction completely
the indices with respect to which it is carried out must be specified; in the examples
presented above this is either obvious or it is obvious from the complete formulas
presented previously.

In general, we can say that the operation of contraction in the classical language
of tensor algebra plays the same unifying role as does the operation of matrix
multiplication in the language of linear algebra. In §4 of Chapter 1 we underscored
the fact that different types of set-theoretic operations are described in a unified
manner with the help of matrix multiplication. This remark is even more pertinent
to tensor algebra and contraction, combined with tensor multiplication.

e) Raising and lowering of indices. According to Definition 2.8c, the raising
of the ath index and the lowering of the bth index are the linear transformations

Tp (L) - TP+i (L), Tp (L) - V+i (L),

induced by some isomorphisms g : L' - L or g-1 : L -. L the ath L' factor in
the product L'®p 0 L®9 must be replaced by an L factor or, correspondingly, the
bth L factor must be replaced by V.

In accordance with the conventions stated at the end of §4.2 the components
of the tensors obtained must be written in the form

Tit ... ia_t
tat.o+t ...ip

it...iq , Tt.t...tpit...ib-ti.bib+t...iq .
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If it is agreed that the mapping raising (lowering) an index is followed by a permu-
tation mapping, which shifts the new L factor to the right and the L' factor to the
left until it adjoins the old factors, then the previous notation for the components
can be retained.

As we already pointed out, the isomorphisms g : L' -y L and g-1 : L -+ L`
originate in applications most often from the symmetric, non-degenerate, bilinear
form gij on L. Since it is itself a tensor, the operation of raising and lowering indices
can be applied to it also. We shall describe this formalism in greater detail.

The form gij forms a correspondence between the vector a` and the linear
functional

0 i- >gija'b'.

The coordinates of this functional in a dual basis in L' are gija' (summation over
i) or, in view of the symmetry, gij aj . In other words, the lowering of the (single)
upper index of the tensor a1 with the help of the metric tensor gij yields the tensor

ai = 9ijai

From here we obtain immediately the general formula for lowering any number
of indices in a factorizable tensor and then, by linearity, in any tensor:

Tit ...io, 9Jii; . . . gjrjr'Ti1 $pji-Jr'jr+% j9

In particular, we can employ it to calculate the tensor gij, obtained from gij
by raising the indices. Indeed

9ij = 9ik9j19k7

We interpret the right side here as a formula for the (i,j)th element of the matrix
obtained by multiplying the matrix (gik) by the matrix (E, gitgk1) Since the
matrix (gik) also appears on the left side, obviously

9ji9k'=bkl

that is, the matrix (gk1) is the inverse of the matrix (gij) (symmetry taken into
account). This calculation shows that g, is the Kronecker tensor.

Hence the general formula for raising indices has the form

Tl...ib4+i...ip)i...fq g'p'p'I'il...ip it ... j4

If we want to lower (or raise) other sets of indices, the formulas can be modified
in an obvious manner.
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§5. Symmetric Tensors

5.1. Let L be a fixed linear space and To (L) = L®q, q > 1. In §2.3 we showed
that with every permutation o from the group S. of permutations of the numbers
1,. .. , q we can associate a linear transformation f, : To (L) -+ To (L), that operates
on factorizable tensors according to the formula

fo(11 ®... (9 1q) = lo(1) ®... 0 1o(q).

We call the tensor T E T 09(L) symmetric, if f,(T) = T for all o E Sq. Obviously,
symmetric tensors form a linear subspace in To (L). It is convenient to regard all
scalars as symmetric tensors. With the identification of §3.1d, the symmetric tensors
from T0 1(L*) correspond to symmetric bilinear forms on L.

We denote by S9(L) the subspace of symmetric tensors in To (L). We now con-
struct the projection operator S : T(L) -+7 (L), whose image is Sq(L), assuming
that the characterisitic of the base field vanishes or at least is not a factor of q!.
It is called the symmetrization mapping. In classical notation, V'1 is written
instead of S(T).

5.2. Proposition. Let

S = 1 E ff
q. oESq

Then S2 = S and imS = Sq(L).

Proof. Obviously, the result of symmetrization of any tensor is symmetric, so
that im S C Sq(L). Conversely, on symmetric tensors symmetrization is an identity
operation, so that if T E Sq(L), then T = S(T). This shows at the same time that
imS = Sq(L) and S2 = S.

5.3. Let {e1, ... , e" } be a basis of the space L. Then the factorizable tensors
e;, 0 ... ® e;q form a basis of To (L), and their symmetrizations S(e;, ®... ® eiq )
generate Sq(L). We introduce the notation

S(ei, ®... 0 erq) = ei, ... eiq.

The formal product e;1 ... e,9 does not change under a permutation of the indices,
and we can choose the notation ei' ... ea" as the canonical notation for such sym-
metric tensors, where ai _> 0, al +...+a" = q; here the number a1 shows how many
times the vector e, appears in e;, ®... ® e;q.

5.4. Proposition. The tensors e71 ... en" E Sq(L), a1 +... + an = q, form a
basis of the space S9(L), which can thus be identified with the space of homogeneous
polynomials of degree q of the elements of the basis of L.
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Proof. We need only verify that the tensors ei` ...can.. a ;n are linearly independent in
V0 (L). If

a, anCal...anel ...en =
then

S Ca,...an e,OCI®... ®en . ®en = 0.
al an

Collecting all similar terms on the left side, it is easy to verify that the coefficients
in front of the elements of the tensor basis of the space To (L) are scalars ca,...a,,,
multiplied by integers consisting of products of prime numbers < q. Since the
characteristic of X is, by definition, greater than q!, it follows from the fact that
these coefficients vanish that all the cal.,.an vanish.

C-11
5.5. Corollary. dim S4 (L)

n + q= J

5.6. Let S(L) = ®9 1 S9(L). The definition of §5.4 implies that S(L) can be
identified with the space of all polynomials of the elements of the basis of L. On
this space there exists a structure of an algebra in which multiplication is the stan-
dard multiplication of polynomials. It is not clear immediately, however, whether
or not this multiplication depends on the choice of the starting basis. For this
reason we introduce it invariantly. Since all the S9(L) will have to be considered
simultaneously in what follows, we assume that the characteristic of K equals zero.

5.7. Proposition. We introduce on the space S(L) bilinear multiplication ac-
cording to the formula

TiT2 = S(T1 ®T2), f E S°(L), g E S°(L).

It transforms S(L) into a commutative, associative algebra over the field K. In the
representation of symmetric tensors in the form of polynomials of the elements of
the basis of L this multiplication is the same as the multiplication of polynomials.

Proof. We first verify that for any tensors Ti E To (L), T2 E To (L), the formula

S(S(Tj) ®T2) = S(Tj 0 S(T2)) = S(Tj ®T2)

holds. Indeed

whence

S(T1) ®T2 = 1 fo (Ti) ®T2 ,p 'ESP

S(S(T1)(9 T2)= li S(fa(TO)®T2)P!
oESP
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But S(fo (Ti) (9 T2) = S(T1 0 T2) for any a E Sp. This is obvious for factorizable
tensors T1 and T2, and follows for other tensors by virtue of linearity. Therefore the
sum on the right side consists of p! terms S(T1 0 T2), so that

S(S(T1) ® T2) = S(T, (9 T2).

The second equality is established analogously.
From here it is easy to derive the fact that on symmetric tensors the operation

(TI, T2) - S(T1 ® TT) = Ti T2 is associative. Indeed

(Ti T2)T3 = S(S(T1 ®T2) ®T3) = S(T1 ®T2 (9 T3)

and analogously

Ti (T2 T3) = S(Ti 0 S(T2 ®T3)) = S(T1 ®T2 ®T3).

In addition, it is commutative: the formula S(T1 0 TZ) = S(T2 0 Ti) is obvious for
factorizable tensors and follows for other tensors by virtue of linearity.

It follows from these assertions that

(of ... e,n)(,b, enn) = eii tba nn+bn
eI n

which completes the proof.

5.8. The algebra S(L) constructed above is called the symmetric algebra of L.
The elements of the algebra S(L') can be regarded as polynomial functions

on the space L with values in the field IC: we associate with an element f E L',
the element itself as a functional on L, and with the product of elements in S(L')
and their linear combination we associate the product and linear combination of
the corresponding functions. It is not entirely obvious that the different elements of
S(L') are distinguished also as functions on L. We leave the question to the reader
as an exercise. For symmetric algebras over finite fields, which we shall introduce
below, this is no longer the case: for example, the function xp -z vanishes identically
in the field IC of p elements.

5.9. Second definition of a symmetric algebra. In the definition which we
adopted for a symmetric algebra with the help of the operator S, it is necessary to
divide by factorials. This is impossible to do over fields with a finite characteristic
and in the theory of modules over rings, where the formalism of tensor algebra also
exists and is very useful. We shall therefore briefly describe a different definition of
a symmetric algebra of the space L, in which it is realized not as a subspace, but
rather as a quotient space of T0(L) = ®p 0To (L).
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To this end, we study the two-sided ideal I in the tensor algebra gen-

erated by all elements of the form

T - f, (T), T E To (L), a E Sp, p = 1, 2, 3, .. .

It consists of all possible sums of such tensors, multiplied tensorially on the left
and right by any elements from To(L). It is easy to see that I = IP, where
IP = I fl 7,(L), that is, this ideal is graded.

We set

S(L) = To(L)/I
I

as a quotient space. The same argument as that used in §11 of Chapter 3 shows
that

00

S(L) = ®SP(L), .P(L) = To (L)IIP.
P=O

Since I is an ideal, multiplication in S(L) can be introduced according to the formula

(Tl +I)(T2+1) -Ti ®T2+I.

It is bilinear and associative, since this is true for tensor multiplication. In addition,
it is commutative, because if Tt and T2 are factorizable, then T2(9 Tl = f, (T1®T2)
for an appropriate permutation a and hence Tl ® T2 - T2 ® Ti E 1. Thus S(L) is
a commutative, associative K -algebra. It can be shown that the natural mapping
L -+ S(L) : 1 r- 1+I is an embedding and that the elements of S(L) can be uniquely
represented in terms of any basis of the space L as polynomials of this basis. The
elements of SP(L) correspond to homogeneous polynomials of degree p.

If the characteristic of X equals zero, the composition mapping

S(L) - Ta(L) S(L)

is a grade-preserving isomorphism of algebras. Since S(L) exists in more general
situations, for algebraic purposes it is convenient to introduce the symmetric algebra
precisely in this manner.

§6, Skew-Symmetric Tensors and the Exterior Algebra of a Linear Space

6.1. In the same situation as in §5.1, we shall call a tensor T E To (L) skew-
symmetric (or antisymmetric) if f,(T) = e(e-)T, where e(a) is the sign of the per-
matatlon or, for all a E So. Obviously, skew-symmetric tensors form a linear sub-
space in 70 (L). It is convenient to regard all scalars as being skew-symmetric and
symmetric tensors simultaneously. With the identification of §3.Id, skew-symmetric
tensors from To (L') correspond to symplectic bilinear forms on L.
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We denote by Aq(L) the subspace of skew-symmetric tensors in T (L). By
analogy with §5, we construct a linear projection operator A: 70 (L) -. 70 (L),
whose image is Aq(L). As in §5, we assume for the time being that the charac-
teristic of the field of scalars is not a factor of q!. The projector A will be called
antisymmetrization or alternation. In classical notation 74'1...1g1 is written instead
of A(T).

6.2. Proposition. Let

A = li c(o)fo : T (L) - 70 (L).
q oESq

Then A2 = A and imA = Aq(L).

Proof. We first verify that the result of alternation of any tensor is skew-symmetric.
Indeed, since f, and c(o) are multiplicative with respect to o and c(o)2 = 1 , we
have

fo(AT) = fo qt
c(r)fr(T) =

li
c(r)for(T) _

rESq q! rESq

= c(o) 1 e(or)for(T) = c(o)AT.
q. rESq

Further, A is a projection operator because

A2 = j 2 L2 E(or)for = 1 L c(p)fv = A.
,,rESq PESq

Indeed, any element p E Sq can be represented in precisely q! ways in the form of the
product or: we choose an arbitrary o, and we find r from the equality r = a-1 p.

From here, as in Proposition 5.1, it follows that imA = Aq(L).

6.3. Let {e1, ... , e } be a basis of the space L. Then the factorizable tensors
e;, forma basis of 70 (L) and their antisymmetrizations A(ei, 0 ... O eiq )

generate Aq(L). We introduce the notation

A(ei, ®... 0 eiq) = ei, A... A eiq

(the symbol A denotes "exterior multiplication").
We now note that unlike the symmetric case, the transposition of any two

vectors in e;, A ... A eiq changes the sign of this product, because this tensor is
antisymmetric. This implies two results: a) e;, A ... A e;q = 0, if i, = ib for some
a and b, provided that char K 0 2.



LINEAR ALGEBRA AND GEOMETRY 281

b) The space Aq(L) is generated by tensors of the form ei, A ... A eiq, where
1 < i, < i, < ... < it < n. From here, in particular, it follows immediately that
Am(L)=0 for rn > n = dimL.

The next result parallels Proposition 5.4.

6.4. Proposition. The tensors ei, A ... A eiq E Aq(L) for q < n, 1 < i, < i, <
... < iq < n form a basis of the space Aq(L).

Proof. We need only verify that these tensors are linearly independent in To (L).
If

then

E ci, ...iq ei, A ... A eiq = 0,

A(j:ei, ...iq ei, ®... (9 eip) = D.

But since the indices are all different and they are arranged in increasing
order, as a result of the permutation of the indices we obtain in the sum on the left
a linear combination of different elements of the tensor basis To (L) with coefficients

of the form f a ci,...iq . This sum can vanish only if all the vanish.

6.5. Corollary. dim A(L) _ (4), dim @'=0 Al (L) = 2n.

6.6. Let A(L) _ ®q _o A9(L). By analogy with the symmetric case we introduce
on the space of antisymmetric tensors the operation of exterior multiplication, and
we show that it transforms A(L) into an associative algebra, called the exterior
algebra, or the Grossmann algebra, of the space L.

6.7. Proposition. The bilinear operation

T1AT2=A(T1®T2); Ti EA'(L), T2EAM(L),

on A(L) is associative, T1 AT2 V LP+9(L) and T2AT1 = (-1)PQTl AT2 (this property
is sometimes called skew-commutativity).

In particular, the subspace A+(L) = ®4"_121 A2q(L) is a central subalgebra of
A(L).

Proof. By analogy with the symmetric case we first verify that for all Ti E
E To (L), T2 E To (L) the formulas

A(A(T1) (D T2) = A(T1(D A(T2)) = A(T1 (& T2)

hold. Indeed,

A(Ti)®TZ= i e(I)f o(Tt)®Tz,
p' ,ESP
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whence

A(A(Ti) ®T2) _ e(a)A(fo(Ti) ®T2).
oESp

Consider the embedding Sp Sp+Q, o where

o(i) for1<i<p,
o() i for i > p.

Obviously, f,(T1) ®T2 = fa(Tj (& T2), and in addition A and fa commute, so
that

Afa(TI (9 T2) = faA(Ti ®T2) = e(&)A(T1 (9 T2) = c(a)A(T1 ®T2).

Therefore

A(A(Ti) (9 T2) =
1

E e2(o)A(T1 (D T2) = A(T1 (9 T2)
p oESp

The second equality is proved analogously. Now the associativity of exterior multi-
plication can be checked just as in the symmetric case:

(Ti A T2) A T3 = A(A(T1 0 T2) 0 T3) = A(Ti (9 T2 0 T3),

T1 A (T2 A T3) = A(Ti ® A(T2 (D T3)) = A(T1 ® T2 ® T3).

The equality A(T1 0 T2) = (-1)P°A(T2 ®Tl) with T1 E To (L), T2 E To (L) follows
from the fact that T2 ® T1 = f, (Tl (& T2), where o is a permutation consisting of a
product of pq transpositions: the cofactors in T2 must be transposed one at a time
to the left of T1, exchanging them with the left neighbours from Ti.

6.8. Second definition of an exterior algebra. As in the symmetric case,
our definition of an exterior algebra has the drawback that it requires division
by factorials. A second definition, which does not have this drawback and which
realizes A(L) as a quotient space rather than a subspace of To(L), is constructed
by complete analogy with the symmetric case.

Consider the two-sided ideal J in the algebra T0(L), generated by all elements
of the form

T - r(o) f,(T), T E T T (L), oESp, p = 1, 2, 3 ...

It is very easy to verify that J = ®y o JP, where JP = J n To (L), that is, this is a
graded ideal. Let A(L) = T0(L)/J as a quotient space. Then

00

A(L) = ®Ap(L), AP(L) = To (L)/J9.
P=O
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Since J is an ideal, multiplication can be introduced in A(L) according to the
formula

(Ti+J)A(T2+J)=Ti®T2+J.

It is bilinear and associative, since this is true for tensor multiplication. Moreover,
it is skew-commutative, because for Ti E 1'(L), and T2 E 1(L) we have Ti 0 T2-
-(-1)PST2 0 Ti E J.

It is not difficult to verify that the algebra constructed in this manner is iso-
morphic to the Clifford algebra of the space L with zero inner product, introduced
in §15 of Chapter 2. Indeed, the mapping o : L A(L), a(1) = 1 + J satisfies
the condition a(I)2 = a(I) A a(1) = 0 for all 1, because a(l) A o(I) = -a(l) A o(I).
Hence, according to Theorem 15.2 of Chapter 2, there exists a unique homomor-
phism of IC-algebras C(L) -+ A(L), such that a coincides with the composition
L -° +C(L) - A(L), where p is the canonical mapping. Since L generates To(L)
as an algebra, a(L) generates A(L), so that C(L) -+ A(L) is surjective. We know
that dimC(L) = 2n. Therefore to check the fact that this is an isomorphism it is
sufficient to verify that dim A = 2n. This can be done by establishing the fact that a
basis of AS(L) is formed by elements of the form e;, A...Acif, 1 < i, < ... < is < n,
where { e 1 , . .. , en) is a basis of L. We omit this verification.

As in the symmetric case, if the characteristic of IC equals zero, the composite
mapping

A(L) - To(L) -+ A(L)

is also an isomorphism of grade-preserving algebras.
Since A(L) is defined in more general situations, for algebraic purposes the

exterior algebra is introduced precisely by this method. In application to differential
geometry or analysis, where IC = R or C our starting definition can be used.

6.9. Exterior multiplication and determinants. Let L be an n-dimensional
space. According to Corollary 6.5, the space An(L) is one-dimensional: it is the
maximum non-zero exterior power of L.

According to §2.7, any endomorphism f : L - L induces endomorphisms of
tensor powers

f p = f0.f :To(L)
P

It is easy to verify that f OP commutes with the alternation operator A and therefore
transforms AP(L) into AP(L). It is natural to denote the restriction of f®P to AP(L)
by f^P. In particular, for p = n the mapping f^P : A^(L) - An(L) must be a
multiplication by a scalar d(f), because AI(L) is one-dimensional.

6.10. Theorem. In the notation used above, d(f) = det f .
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Proof. We choose a basis e1, ... , en of the space L and write f as a matrix in this
basis:

f(et) _ a'f
io1

The exterior product el A ... A en is a basis of A'(L), and the number d(f) is found
from the equality

f ^n(el A... A en) = d(f)el A ... A en.

But

f^n(e1A...Aen)=A(f(el)®...®f(en))=f(el)A...Af(en)=

E ail e;, I A ... A
(

a;; e;n f .(1,=1 / in=1 /
According to the multiplication table in an exterior algebra,

ai'e, Aa'' e,3 A...Aa`,^e;n =

_ c(o')al' ... ai e1 A... A en, if {ii, ..-,in} = { 1, ... , n},
0 otherwise,

where o is the permutation transferring ik into k, 1 < k < n. Therefore the full
sum of the coefficients e(o)ail ... a;' coincides with the standard formula for the
determinant which completes the proof.

6.11. Corollary. The vectors ei, ... , e;, E L are linearly dependent, if and only
ife'A...Ae;,=0.

Indeed, let f : L - L be an endomorphism, transferring e; into e;, where
{el, ... , en} is a basis of L. Then the linear dependence of {e;} is equivalent to the
fact that det f = 0, that is, e'1 A ... A en = 0.

6.12. Factorizable vectors. The elements T E AP(L) are called p-vectors. We
shall call a p-vector of T factorizable, if there exist vectors e1, ... , ep E L, such that
T = e1 A ... A ey. For any p-vector of T we call the set

AnnT= (cELleAT=0}

its annihilator. Obviously, Ann T is a subspace of L.

6.13. Theorem. Let T1,T2 be factorizable p- and q-vectors respectively, and let
Ll and L2 be their annihilators. Then

a) L1 D L2 if and only if T2 is a factor of Tl, that is T1 = T AT2 for some
T E AP-'(L).
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b) L1 fl L2 = {0} if and only if Ti AT2 # 0.
c) If L1 fl L2 = {0}, then Li + L2 = Ann(T1 A T2).

Proof. a) If x AT2 = 0, then x A (T AT2) = ±T A (x AT2) = 0, so that the fact
that T2 is a factor of T1 implies that L2 C L1.

To prove the converse, we calculate the annihilator of the p-vector el A ... A ep.

If e1, ... , ep are linearly dependent, then one of the vectors ei, for example, e1i can
be expressed as a linear combination of the remaining vectors, and then

P

elA...AeP= Ea1e; Ae2A...Aen=0.
(i=2

We shall assume that el A... A ep differs from zero and then show that Ann(e1 A
... A ep) coincides with the linear span of the vectors el .... ep. It is clear that this
linear span is contained in the annihilator, because

ei A (el A ... A ep) =

=±(ei Aei)A(elA...Aei_jAei+lA...Aep)=0.

We extend the linearly independent system of vectors {ej,...,ep} to a basis
{e1, ... , ep, ep+1, ... , e, } of the space L and we shall show that if E1 a'ei E
E Ann(ej A... A ep), then a' = 0 for i > p. Indeed

n n

A(elA...Aep)_ a'eiAe2A...Aep,(aiei)E E
i=1 i=p+1

and the (p + 1)-vectors ei A e1 A ... A ep, p + 1 < i < n, are linearly independent.
Now let L1 D L2, T1 = e1 A ... A ep, T2 < e1 A ... A e'y. Since the linear span

of {ei,...,ep} contains the linear span of {ei,...,e'' } we can select in the former a
basis of the form e', el+1,... , ep) and express ej as a linear combination in
terms of this basis. For T1 we obtain the expression ae1 A ... A e9 A eq}1 A ... A e'p,
where a is the determinant of the transformation from the primed basis to the
unprimed basis. Therefore T2 is a factor of T1.

b), c). If (e1 A...Aep)A(ei A...AeQ) 4 0, then the vectors {ej, ... , ep, e;, ... , eq }

are linearly independent. Therefore, the linear spans of {el,... , ep} and
that is, the annihilators of T1 and T2 intersect only at zero. This argument is obvi-
ously reversible. The characterization of the annihilator of a factorizable p-vector,
given in the preceding section, proves the last assertion of the theorem.

6.14. Corollary. Consider the mapping
Ann: (factorizable non-zero p-vectors to within a scalar factor)

- (p-dimensional subspaces of L).
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It is bnjective.

Proof. It is obvious that if two non-zero factorizable vectors are proportional,
then they have the same annihilators. Therefore the mapping described above is
correctly defined. Any p-dimensional subspace L1 C L lies in the image of the
mapping, because if {e1,.. . , ep} is a basis of L1, then L1 = Ann(e, A ... A ep).
Finally, Theorem 6.13a implies that this mapping is injective: if Ann Ti = Ann T2,
then T1 = T AT2 and T is an O-vector, that is a scalar.

6.15. Grassmann varieties. The Grassmann variety, or a Grassinannian
Gr(p, L) is the set of all p-dimensional linear subspaces of the space L. In the
case p = I the projective space P(L), which we have studied in detail, is obtained.
Corollary 6.14 enables us to realize Gr(p, L) for any p as a subset of the projective
space P(AP(L)).

Indeed the mapping inverse to Ann gives the embedding

Ann-1 : Gr(p,L) -* P(AP(L)).

We shall write it out in a more explicit form. We select a basis
L, and we consider the linear span of the p vectors

n

ajei; j = 1,...,p.
icl

{ei,...,en} of

The (p) p-vectors lei, A... A eipIl < it < ... < ip < n} form a basis of AP(L).
The mapping Ann-1 establishes a correspondence between our linear span and the
straight line in AP(L) generated by the p-vector

n n

E i(aes)A...A L(arei)
ii=1 ip=1

The homogeneous coordinates of the corresponding point in P(AP(L)) are coeffi-

cients of the expansion of this p-vector in terms of {ei1 A ... A eip }:

A
nn

/ \ (aei) =
ail...ip8i1 A...Aeip.

j=1 j=1 1<i,<...<ip<n

Exactly the same calculation as that performed in the proof of Theorem 6.10 shows
that A"---'P equals the minor of the matrix (aJ) , formed by the rows with the
numbers i1, ... , ip. At least one of these minors differs from zero precisely when the
rank of the matrix (a,() has the highest possible value p, that is, when the linear
span of our p vectors is indeed p-dimensional.
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The vector (...: 0'1 --'P :...) is called the vector of the Grassmann coordinates
of the p-dimensional subspace spanned by

n

ajei,
i.1

It is clear from this construction that in order to characterize the image of
Gr(p, L) in P(AP(L)) we must have a criterion for factorizability of p-vectors. For
this reason, we shall now study this problem.

6.16. Theorem. a) A non-zero p-vectorT is factorizable if and only if dim Ann T =
= p; for other non-zero p-vectors, dim Ann T < p.

b) Select a basis {e1, ... , en } of the space L and represent any p-vector T by
the coefficients of its expansion in the basis lei, A...Aei, l1 < it < i2 < ... < iP < n}
of AP(L):

T =>2T''...ipei, A...Aei,.

Then there exists a system of polynomial equations for V, ---'P with integer coef-
cients, depending only on n and p, such that the faciorizability of T is equivalent to
the fact that IT" ---'P} is a solution of this system.

Proof. We know that dim Ann T = p for factorizable p-vectors from the proof of
Theorem 6.10.

Let dim Ann T = r and AnnT be generated by the vectors e1,.. . , e,.. We
extend them to a basis {e1, ... , en} of L and set

T=1:Ti1...iPei, A...Aeip.

The condition ei A T = 0 for all i = 1, ... , r means that T'' 1P = 0, if {1, ... , r}

{i1, ... , ip). It follows immediately from here that if T 0, then r < p and that
el A ... A er is a factor of T. Therefore for r = p, the p-vector T is proportional to
el A ... A e,, and is therefore factorizable.

b) Using this criterion we can now write the condition for factorizability of T
as the requirement that the following linear system of equations for the unknowns
xl, ... , xn E K have a p-dimensional space of solutions

n
(xiei) ATi1.."Pei, A...AeiP)=0.

-1

It contains n unknowns and (P+1) equations. Its matrix consists of integral lin-
ear combinations of The rank of this matrix is always > n - p, because
dimAnnT < p. Therefore the condition of factorizability is equivalent to the fact
that the rank must be < n-p, that is, all its minors of order (n-p+1) must vanish.
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This is the system of equations for the Grassmann coordinates of the factorizable
tensor sought above.

We shall present some examples and particular cases.

6.17. Proposition. Any (n - 1)-vector T is factorizable.

Proof. Obviously x A T = f (x)el A ... A e,,, where f (x) is a linear function on

L; l e i ,- .. , e } is a fixed basis of L. Hence, dim Ann T = dim ker f > n - 1. But
if T # 0, then f 54 0 so that dim ker f = n - 1. Theorem 6.16a implies that T is
factorizable.

In terms of the Grassmann varieties this means that there exists a bijection

(hyperplane in L) -. P(A°-1L).

But the hyperplanes in L are the points P(L'). Therefore

P(L* ^. P(An-1(L))

(canonical isomorphism). We shall generalize this result below.

6.18. Proposition. The non-zero biveetorT E A2(L) is factorizable if and only
ifTAT=0.
Proof. Necessity is obvious. To prove sufficiency we perform induction on n,
starting with the trivial case n = 2. Let {e1, ... , be a basis of L. Factoring
T into e; A e1 , we can put T into the form T = A Ti + T2, where T1 and T2 can

be decomposed into e, and e.; A e 1 < i, j < n. The condition TAT = 0 implies
that

T2AT2+2en+1ATiAT2=0,

because (en+1 A TI) A (en+1 A Ti) = 0 and T2 lies at the centre of A(L). But T2AT2
cannot contain terms with so that

T2AT2=en+1AT1AT2=0.

Since T2 AT2 = 0, by the induction hypothesis T2 is factorizable. Since T1 AT2 does
not contain terms with en+1, we have T1 A T2 = 0. Hence T1 is contained in the
two-dimensional annihilator of T2, and T2 = T1 AT1. Therefore

T = AT1 +TI AT1 = +Tl) A T1,

which completes the proof.
This result once again gives information about Grassmann varieties, but this

time about Gr(2, L):
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6.19. Corollary. The canonical mapping Gr(2, L) -. P(A2(L)) identifies for
n > 3 the Grassmannian of planes in L with the intersection of quadrics in P(A2(L)).

Proof. Planes in L correspond to directly factorizable 2-vectors of A2(L). The con-
dition of factorizability of the 2-vector Et, <i, e;, Ae1, according to Proposition

6.18, has the form

( E T''t'e;, Aei,) A ( > tj'j'ej, Aej2) = 0,
r. <i2 it <j2

that is
T`'s, Tjtjae(i1,i2,j1,j2) = 0,

where each sum on the left side corresponds to one quadruple of indices 1 < k1 <
< k2 < k3 < k4 < n and e(i1i i2, j1i j2) is the sign of the permutation of the set
{i1, i2i j1i j2} = {k1, k2i k3, k4}, arranging this quadruple in increasing order.

In particular, for n = 4 we obtain one equation:

T12T.34 - T13T24 + T14T.23 = 0.

In other words, Gr(2, JC4) is a four-dimensional quadric in P(A2(A 4)) = p(10). It
is called the Plucker quadric.

6.20. Exterior multiplication and duality. Let dim L = n. According to
Corollary 6.5 and the well-known symmetry of binomial coefficients

dim AP (L) _
(n'

n I = dim A"-p(L)
p

\n-p`/

for all I < p:5 n. This suggests that there should exist between AP(L) and A"-P(L)
either a canonical isomorphism or a canonical duality. Except for a slight detail,
the second assertion is correct.

Consider the operation of exterior multiplication

AP(L) x A"-P(L) - A"(L) : (TI,T2) - T1 A T2.

Since it is bilinear, it defines the linear mapping

AP(L) ,C(A"-PL, A"L) ?° (A"-P(L))' ®A"L

(the latter is an isomorphism - a particular case of the one described in §2.5). The
kernel of this mapping is a null kernel. Indeed, let {e1, ... e.} be a basis of L. We
set T1 A T2 = (T1,T2)el A. .. A e", where T1 E AP(L), T2 E A"-P(L). Obviously,
(T1,T2) is a bilinear inner product of AP(L) and A"-P(L). We construct in AP(L)
and A"-P(L) bases of factorizable p-vectors and (n - p)-vectors {e,, A ... A eip },
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{ell A... A 1 < it < ... < ip < n, 1 < it < ... < jn_p < n. We
identify AP(L) and An-P(L) with the help of the linear mapping that associates
with the p-vector ei, A ... A eip the (n - p)-vector e A ... A ein_p, for which
{it.... ,ip, jt,..., jn_p} = {1,...,n}. Then (T1,T2) will be an inner product on
AP(L) with a diagonal Gram matrix of the form diag(±l,... , fl). It is non-
degenerate; in particular, its left kernel equals zero.

So we have constructed the canonical isomorphisms

AP(L) - (An-P(L))* ®A"(L)

For p = n - 1 we obtain An-t(L) , L* ® An(L), which explains the isomorphism
P(An'1(L)) -+ P(L*) in §18: the tensor product of V with the one-dimensional
space A"(L) "does not change" the set of straight lines.

In the next section we shall continue the study of the relationship between
exterior multiplication and duality, introducing into the analysis the exterior algebra
A(L*).

§7. Exterior Forms

7.1. Let L be a finite-dimensional linear space over a field IC, and let L' be its
dual.

The elements of the pth exterior power AP(L*) are called exterior p-forms on
the space L. In particular, exterior 1-forms are simply linear functionals on L. For
arbitrary p, two variants of this result can be established.

7.2. Theorem. The space AP(L*) zs canonically isomorphic to
a) (AP(L))', that is the space of linear functionals on p-vectors;
b) the space of skew-symmetric p-linear mappings F : L x ... x L --r K, that

P
is, mappings with the property

F(1,(t),... , lo(p)) = e(o)F(li,... , lp)

for all

Proof. According to our definition

AP(L*)cL*®...®L'=To(L').

In §2.4 we identified To (L*) with the space of all p-linear functions on L*. In this
identification the exterior forms become skew-symmetric p-linear mappings of L.
Indeed, it is sufficient to verify this for factorizable forms. For them we have

(ft A...Aff)(11,...,lp) = A(f1 ®...(9 fp)(11,...,lP)
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1
_ p E(T)ff(1)(11)... fr(P)(1P).

P' rESp

Therefore

(fl A ... A fP)(10(1),...,1o(P)) =
1

S
E(T)ff(1)(10(1))... fT(P)(1°(P)) =P rESp

1

_ E E(TU)fr0(1)(10(1))... fro(P)(1o(p))
P' rESp

= E(or)(fl A ... A fp)(11, ... , !p).

We have thus constructed the linear embedding AP(L') --.(skew-symmetric p-linear
forms on L). To verify that it is an isomorphism it is sufficient to establish that the
dimension of the right side equals

dim AP(L*) =
\ P /

But if a basis {e1 i ... e } of L is chosen, any skew-symmetric p-linear form F on
L is uniquely determined by its values F(e;, , ... , eip), 1 < i1 < ... < ip < n, and
they can be arbitrary. Therefore the dimension of the space of such forms equals
(p). This proves assertion b) of the theorem.

To prove assertion a) we identify L' ®... ® L' with (L ®... ® L)` , once again

P P
with the help of the construction used in §2.4, and we restrict each element of AP(L*)
(as a linear function on L®...®L) to the subspace of p-vectors of AP(L). We obtain
the linear mapping AP(L`) -* (AP(L))'. Since the dimensions of the spaces on the
left and right sides are equal, it is sufficient to verify that it is surjective. The space
of linear functionals on AP(L) is generated by functionals of the form F61, where

I = {i1i ..., ip} C {1, ... , n}, 6J(e1, A ... A e;p) = 1,

61(ej1 A...Ae,p)=U,

if { j1 i ... , j,) I. We assert that this functional is the image of a p-form
e'' A ... A e'P E AP(L'), where, as usual {e'} indicates the basis which is the
dual of the basis {e; }. Indeed, the value of e'' A ... A e'P by A ... A e,p equals

A(e'' ®... ®e'P)(A(e11 ®... 0 e1p )) =

2
E(QT)a'°(1)(elr(1))...e'O(P)(e1r(P)).

(P) o,rESp
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Only the terms for which =0(1) = j,ill, ..., i,(P) = jTlyl, on the right side differ
from zero, so that the entire sum vanishes if {i1,...,ip} # {j1i..., jp}. If, however,
these sets coincide, then the entire sum equals

1 2_ 1

(p!)2 o
ESP

Pi,

when {ij,... , ip } = { jl, ... , jp } are in increasing order. Therefore e'' A ... A e'P as
a functional on AP(L) equals v bl, which completes the proof.

7.3. Remarks. a) Our method for identifying AP(L') with AP(L))' corresponds
to the bilinear mapping

AP(L') x AP(L) - K,

which can be represented on arbitrary pairs of factorizable vectors in the form

(f1A...AfP,11A...AIp)= lidet(f'(li)),
P

f' E L', 1j E L. Indeed, both sides are multilinear and skew-symmetric separately
in f' and 1j; in addition, they coincide for

(f...... fP) = (e'1,...,e'P), (11.... ,P) = (ej1,.... ejp),

as was verified in the preceding proof.
The factor i'T in this scalar product is sometimes omitted.
b) One of the identifications established in the theorem is sometimes adopted

as the definition of an exterior power. For example, AP(L) is often introduced, espe-
cially in differential geometry, as the space of skew-symmetric p-linear functionals
on V. The generality of this construction falls between that of the first and second
definitions of the exterior power in §6; it is suitable for linear spaces over fields with
finite characteristic as well as free modules over commutative rings. But for general
modules, the extra dualization presents a difficulty, and the second definition is
preferable.

A result analogous to Theorem 7.2 also holds for symmetric powers, and our
preceding remark is pertinent to them also. In particular, SP(L) can be defined as
the space of symmetric p-linear functionals on L' for spaces over arbitrary fields
and free modules over commutative rings. In the most general case, however, the
correct definition of SP(L) is the definition given in §5.9.

7.4. The inner product. The bilinear mapping

L x AP(L') --+ AP-'(L') : (1, F) i-- i(I)F,
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is called an inner product. It is defined as follows. Interpret F E A9(L') as a
skew-symmetric p-linear form on L, and i(l)F analogously. Then by definition

i(l)F(11,... ,lp-1) = F(l,11, ..,lp-1)

Obviously, the right side is (p - 1)-linear and skew-symmetric as a function of
11 i ... , lp_1, and it is also bilinear as a function of F and I, so that the definition is
correct. For p = 0 it is convenient to set i(l)F = 0 . The notation U F is also used
instead of i(l)F.

§8. Tensor Fields

8.1. In this section we shall briefly describe the typical differential-geometric
situations in which tensor algebra is used.

We consider some region U C R' in a real coordinate space and the ring C of
infinitely differentiable functions with real values on U. In particular, the coordinate
functions z' belong to C, i = 1, ... , n.

8.2. Definition. Any linear mapping X. : C R satisfying the condition

Xaf = 0, if f is constant in some neighbourhood of a,

and

Xa(f9) = Xaf . 9(a) + f(a) . Xa9

is called a tangent vector X. to U at the point a E U.
If X., Y. are tangent vectors at the point a, then any real linear combination

of these vectors is also a tangent vector at this point:

(cXa + dYa)(f9) = cXa(f9) + dYa(fg) =

= CXaf g(a) + cf(a)Xa9 + dYaf g(a) + df(a)Ya9 =

= (cXa + dYa)f g(a) + f(a)(cXa + dYa)g

Therefore the tangent vectors form a linear space, which is denoted by T. and
is called the tangent space to U at the point a. The value of Xaf is called the
derivative of the function f along the direction of the vector Xa. It can be shown
that the space T. is n-dimensional.

8.3. Definition. A set of tangent vectors X = {Xa E TaIa E U} such that for
any function f E C the function on U

ar+Xaf
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also belongs to C is called a vector field in the region U.

We denote this function by X f . Obviously, a tangent field determines a linear
mapping X : C -* C, which is a zero mapping on the constant functions and such
that X (f g) = X f - g + f X g for all f, 9 E C. Such mappings are called derivations
of the ring C into itself.

Conversely, with every derivation X : C - C and point a E U there is asso-
ciated a tangent vector X,: Xa f = (Xf)(a). This establishes a bijection between
the vector fields on U and derivations of the ring C.

The sum of the vector fields X +Y, defined by the formula (X +Y) f = X f +Y f
for all f E C is a vector field. The product f X, defined by the formula (f X )g =
= f(Xg), where X is a vector field and f,g E C is a vector field. In particular, any
linear combination of vector fields Ein 1 f'Xi, f` E C is a vector field.

8.4. Example. Let es, , i = 1,... , n be the classical partial differentiation
operators. They are all vector fields on U. The following fundamental result, which
we shall present without proof, is true.

8.5. Theorem. Any vector field X in a connected region U C R" can be uniquely
represented in the form E° 1 fi em , where x1, ... , x" are the coordinate functions
on R".

8.6. In algebraic language this means that the set of all vector fields T in a
connected region U is a free module of rank n over the commutative associative
ring C of infinitely differentiable functions on U.

Free modules of finite rank over commutative rings form a category, whose
properties are very close to those of the category of finite-dimensional spaces over a
field. For them, in particular, the complete theory of duality and all constructions
of tensor algebra from this part of the course are valid.

Another variant, which does not require the transfer of tensor algebra to rings
and modules, but is instead predicated on the development of some geometric tech-
nique, consists of studying every vector field X as a collection of vectors (X, Ia E U),
contained in a family of finite-dimensional spaces {T,). Then all required opera-
tions of tensor algebra can be constructed "pointwise", by defining, for example,
XOYas{X,®Y0JaEU}.

Both variants of the construction of the tensor algebra are completely equiva-
lent; in the definitions presented below, we shall start from the first variant.

8.7. We denote by T' the C-module of C-linear mappings

T' = Lc(TC).
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It consists of mappings w : S C with the property
m fiX) = m

f'w(Xj)

for all X; E T and f' E C. Addition and multiplication by elements are performed
by means of the standard formulas. The C-module T' is often denoted by S21 or
01(U) and is called the module of (differential) 1-forms in the region U.

Every function f E C determines an element df E DI according to the formula

(df)(X) = Xf, XET.

It is called the differential of the function f. In particular, we can construct the dif-
ferentials of the coordinate functions dx1,... , dx" E SZ1. The following proposition
follows easily from Theorem 8.4.

8.8. Proposition. Any 1-form w E (V can be uniquely represented as a linear
combination _1 f;dx'.

8.9. The elements of the tensor product of C-modules T' ® ... ®T' ®T®. .. ®7'
p q

are called tensor fields of type (p, q), or p-covariant and q-covariant tensor fields in
the region U. In differential geometry, by the way, the word "field" is often omitted
and tensor fields are simply called tensors.

It follows from Theorem 8.5 and Proposition 8.8 that any tensor of the type
(p, q) is uniquely determined by its components 7;1' : v according to the formula

T74t..'.pdx't®...®dx'a® al ®...®
9x;

q8x
where ik and 7, independently assume values from 1 to n. In the classical notation,
all symbols on the right side are omitted except for the components

v
, and

this symbol serves as the notation for the tensor. We emphasize once again that
here 7;1 ,j are not numbers, but rather real infinitely differentiable functions on U.

8.10. Transformation of coordinates. The first contribution of analysis
to the study of tensor fields is the possibility of performing non-linear transfor-
mations of coordinate functions in U: from x1, ... , x" to y1, .. , y" , where y' =
= y'(x1, ,x") are infinitely differentiable functions such that the inverse func-
tions xi = xi(y...... y") are defined and infinitely differentiable. The point is that
the components of the vector fields and 1-forms in this case still transform linearly
according to the classical formulas, only with coefficients which vary from point to
point: according to the rule for differentiating a composite function we have

a Syk a
8xj 8x' 8yk
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(summation over k is implied on the right side), and also

dxl =

a
k dyk

(same convention). Therefore the tensor To `:: a in the new coordinates has the
components

./

t't 8 P a s8 y ,x x;...jq _ ay;3 ... a ; Ox $I P
y

(same convention with summation on the right side).
All algebraic constructions and language conventions of §4 can now be trans-

ferred to tensor fields.
We shall conclude this section with some examples of tensor fields which play

an especially important role in geometry and physics.

8.11. The metric tensor. This tensor, denoted by g;j, or in a more complete
notation, by E; j=1 g;j dx' 0 dxj, is assumed to be symmetric and non-degenerate
at all points a E U, that is, det(g;j(a)) 0 0. It determines an orthogonal structure
in every tangent space T., and the pairs (U,g;j) (and also the generalizations to
the case of manifolds consisting of several regions U "sewn together") form the
basic object of study in Riemannian geometry, while in the case n = 4 and metrics
with the signature (1,3) they are the basic object of study in the general theory of
relativity.

The metric is used to measure the lengths of differentiable curves

{x'(t),... ,x"(t){to < t < t1},

the length being defined by the formula

j g`'(xk(t)) cat 8t di,
0

and also for raising and lowering the indices of tensor fields.

8.12. Exterior forms and volume forms. The elements of AP(S21), that is,
skew-symmetric tensors of the type (p,0), are called exterior p-forms in U, while
the exterior n-forms are called volume forms. This terminology is explained by the
possibility of defining the "curvilinear integrals"

JV
A... A dx"

over any measurable subregion of U. In the case f = 1, this integral is the Euclidean
volume of the region V, whose properties we described in §5 of Chapter 2.
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For p < n it is possible to define the integral of any form w E AP(01) over
"p-dimensional differentiable hypersurfaces". All modules of exterior forms are
related by the remarkable "exterior differential" operators dP : AP -. AP+1, which
in terms of coordinates are defined by the formula

dP (F, fi,...i dx'1 A...Adx'P) _ 1: of d--'P+' Adx'' A...Adx'P.

These operators satisfy the condition dP+l o dP = 0 and appear in the formulation
of the generalized Stokes theorem, which relates the integral over a p-dimensional
hypersurface with the boundary 8V:

p-1 = WP-1J P J VP

The exterior 2-forms w2 , satisfying the condition dwz = 0, play a special role.
The apparatus of Hamiltonian mechanics is formulated in an invariant manner in
terms of these forms.

§9. Tensor Products in Quantum Mechanics

9.1. Unification of systems. The role of tensor products in quantum mechanics
is explained by the following fundamental proposition, which continues the series of
postulates formulated in §6.8 and §§9.1-9.6 of Chapter 2.

Let ?f 1, ... , xn be the state spaces of several quantum systems. Then the state
space of the system obtained by unifying them is a subspace ?i C 7{1 0 .. .0 7{,,.

Strictly speaking, in the infinite-dimensional case the tensor product on the
right side should be replaced by the completed tensor product of Hilbert spaces,
but we shall disregard this refinement, and work, as usual, with finite-dimensional
methods.

The subspace of 7110 ... 0 Tin which corresponds to the unified system must
be determined on the basis of further rules, which we shall consider below. Here,
however, we consider the case ?i = x1 = x1 ®... ® Nn and we attempt to explain
how the first postulate of quantum mechanics - the principle of superposition -
already leads to completely non-classical couplings between systems. To this end,
let us clarify the possible states of the unified system. Let t/ ii E ?ii be some states
of the subsystems. Then the factorizable tensor {b1(D... 0 V)n is one of the possible
states of the unified system, and we can assume that it corresponds to the case
when each of the subsystems is in its state tbi. But such factorizable states by no
means exhaust all vectors in 7i1®... 071,,: arbitrary linear combinations of them
are admissible. When the unified system is in one of the non-factorizable states, the
idea of subsystems becomes meaningless, because they and their states cannot be
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uniquely distinguished. In other words, in most cases subsystems correspond only
"virtually" to the unified system.

It is important to emphasize that this result in no way employs the idea of
interaction of the subsystems in the classical sense of the word, presuming the ex-
change of energy between them. Einstein, Rosen and Podolsky proposed a thought
experiment in which two subsystems of a unified system are spatially far apart from
one another after the system decays and the act of observing one subsystem trans-
fers the other one into a definite state, even though the classical interaction between
the two subsystems requires a finite time. This consequence of the postulates of
superposition and of the tensor product sharply contradicts the classical intuition.
Nevertheless their adoption led to an enormous number of theoretical schemes which
correctly explain reality, so that they must be trusted and a new intuition must be
developed.

We note in passing that the description of interaction requires the introduction
of the Hamiltonian of the unified system. In the simplest case it has the "free" form

Hl ®id0...0 id+id®H2 ®...®id+...+id®...®H,,,

where H; : fit; fi is the Hamiltonian of the ith system and id are identity
mappings. In this case it is said that the systems do not interact. By way of some
explanation of this we remark that if a unified system has such a Hamiltonian and
is initially in the factorizable state 01®...®t,b,,, then at any time t it will be in the
factorizable state a-it", (,Pl) (9 ... ® e-10H" (tyn), that is, its subsystems will evolve
independently of one another. In the general case, the Hamiltonian is a sum of the
free part and an operator which corresponds to the interaction.

9.2. Indistinguishability. There exist two fundamental cases when the state
space of a unified system does not coincide with the complete space xl ®...Vin- In
both cases the systems being unified are identical or indistinguishable, for example,
they are elementary particles of one type; in particular, lu = ... = f{n = ?L.

a) Bosons. By definition, a system with the state space Il is called a boson
if the state space generated by the unification of n systems is the nth symmetric
power S'(f).

According to experiment, photons and alpha particles (helium nuclei) are
bosons.

b) Fermions. By definition a system with a state space 1{ is called a fermion
if the state space generated by the unification of n such systems is the nth exterior
product An(?{).

According to experiment, electrons, protons, and neutrons are fennions.

9.3. Occupation numbers and the Pauli principle. Let {4b1i ... , On} be a
basis of the state of a boson or fermion system. Then physicists write the elements
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of the symmetrized (or antisymmetrized) tensor basis of S"(?t) (or A"(?t)) in the
form

!a1i...,am)

at am

In both cases a1 +...+am = n. However, for bosons the numbers ai can assume any
non-negative integral values, while for fermions they can only assume the values 0 or
1; otherwise the corresponding antisymmetrizations equal zero and do not determine
a quantum state.

The numbers ai are called the "occupation numbers" of the corresponding state.
It is understood that in the state la1.... am) of the unified system ai, subsystems
are in the state ,. Since, however, the unified system cannot, in general, be in a
state described by the factorizable tensor 01 (& ... ®11)m, in either the fermion or
boson case, except for the case when all ipi are the same (for bosons), this means
that even in the basis states jai, .. . , am) one cannot say "which" of the subsystems
is, for example, in the state Oi. The systems are indistinguishable.

The condition ai = 0 or 1 in the fermion case is interpreted to mean that
two subsystems cannot be in the same state. This is the famous Pauli exclusion
principle.

When the number n is very large, many physically important assertions about
the spaces S"(?t) and An(7i) are made in terms of probabilities, for example, in
terms of the number of the states Iai, ... , an) under one or another set of conditions
relative to the occupation numbers. For this reason it is often said that bosons and
fermions obey different statistics - Bose-Einstein or Fermi statistics, respectively.

9.4. The case of variable numbers of particles. In the course of the evolution
of a quantum system its constituent "elementary subsystems" or particles can be
created or annihilated. To describe such effects, in the boson and fermion case,
respectively, subspaces of the states ®t-1 S'(?-t) (more precisely, the completion of
this space) or ®i°__o A'(1 ), that is, the fully symmetric or exterior algebra of the
one-particle space 1, are used.

The operator multiplying vectors in S"(?t) (and, correspondingly, in A"(?t))
by n (n = 0, 1, 2, 3, ...), is called the particle number operator. Its kernel - the
subspace C = S°(7t) or A°(?{) - is called the vacuum state: there are no particles
in it.

The special particle creation and annihilation operators also play an absolutely
fundamental role. The operator a-(r/io) annihilating a boson in the state Oo E ?t
operates on the state S(01 ®... ®0n) according to the formula

a (0o)S(1Gl ®... ®+bn) = n _+1 11 F, (0o, 00(1)) 0 ?Ga(2) ®... 0 ?Pv(n),

S(Ibi ®...®tbl®...® bm®...®Y'm) ill S"(70,
" am1

in A"(?t).

oESn
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where (r(o, rfi,tll) is the inner product in W. The operator a+(r/io) creating a boson
in the state r/,o E 11 is defined as the adjoint of the operator a-(ryo) in the sense of
Hermitian geometry. Analogous formulas can be written down for the fermion case.
The role of these standard operators of tensor algebra is explained by the fact that
important observables, primarily Hamiltonians, can be formulated conveniently in
terms of them.

EXERCISES

In the following series of exercises, we set out the basic facts of the theory of
tensor rank, which is important for estimates of computational complexity. The
foundations of this theory were laid by F. Strassen.

1. Let be finite-dimensional linear spaces over the field IC,

t E L1 ® ... 0 L,,, t i4 0. By the rank rank t of the tensor t we mean the smallest
number r such that for suitable vectors 1') E L;, j = 1, ... , r,

r
t 117)®...®tnj)

j=1

It is clear that when n = I we have rank t = 1 for any t 36 0.
Let t E Li ® L2 = £(L 1, L2) (see §2.5). Prove that

rank t = dim imt, t : L1 - L2.

Hence derive the following facts:
a) for n = 2, rank t remains invariant under an extension of the basic field;
b) for n = 2, the set {tI rank t < r} is defined by a finite system of equations

Pj,r(t'' 'n) = 0, where the Pj,r are polynomials in the coordinates.
Neither of these facts remains true for the case n = 3, which is of fundamental

interest in the theory of computational complexity; see Exercises 4-9 below.

2. Let L = ®;a=1 Caij be the space of complex 2 x 2 matrices. Prove that

2

rank aij 0 ajk ®ak; = 7.
i,j,k=1

(Hint: use Exercise 12 of §4 in Chapter 1. The same hint applies to the next
exercise.)
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3. Prove that

a;1 0 afk 0 aki < cNlog. 7

for a suitable constant c. (Here L = ®N =1 Ca;,; the tensor we are concerned with
is Tf A ®A (& A, where A = (a13) is the general N x N matrix.)

4. Let L be a finite-dimensional !C-algebra, where L ®K L --p L : a ® b F-. ab
is its law of multiplication. This law of multiplication is regarded as a tensor t E
E L'®L'®L. (Its coordinates are the structure constants of the algebra.) Calculate
rank t for the case K = R, L = C.

5. Using the notation of the previous exercise, let L = ti", with the coordinatewise
multiplication:

(a,__ a

Calculate rank t.

6. Using the results of Exercises 4 and 5, verify that the rank of the tensor of
the structure constants of the algebra C over R is lowered when the basic field is
extended to C.

(Hint: C OR C is isomorphic to C2 as a C-algebra.)

7. Let L = Cel ® Ce2. Prove that the tensor

t=e10el®el+el®e2®e2+e20el®e2

has rank 3.

8. Prove that the tensor t of the preceding exercise is the limit of a sequence of
tensors of rank 2.

(Hint:

t + Eel ® e2 0 e2 =
E
[el ® el ® (-e2 + Cel) + (el + Eel) ® (Cl + Eel) 0 e2].)

9. Deduce from Exercises 7 and 8 that the set of tensors of rank < 2 in L 0 L 0 L
is not given by a system of equations of the form

Pi(ittt2t]) = 0,

where the P3 are polynomials.
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10. By the limiting rank brk(t) of the tensor t we mean the smallest s such that
t can be expressed as the limit of a sequence of tensors of rank < s. Prove that for
a general 3 x 3 matrix A,

brk(Tr A ®A ®A) < 21.

11. What is the value of

rank(TrA®A®A), brk(TiA®A(& A),

where A is a general N x N matrix ? (At the time of writing these lines, the answer
is not known even for N = 3.)

12. Let L be an n-dimensional linear space over the field K, and M C AZ(L) an
arbitrary subspace. Suppose that there exists w E L with 0# v A w E M for each
v E L, v 0. Prove that a basis e1, ... , e can be chosen in L such that

M + A2(Li) = A2(L), i < i < n,

where L; _ ®j;,i Aej.
For the case /C = Fp (the field of p elements), an extremely complicated com-

binatorial proof of this result is known (M.R. Vaughan-Lee, J. Algebra, 1974,32,
278-285), which admits a group-theoretic interpretation.

It would be good to find a more direct approach.
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