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PREFACE TO THE SECOND EDITION

In the years since publication of the first edition of Basic Algebra, many readers

have reacted to the book by sending comments, suggestions, and corrections.

People especially approved of the inclusion of some linear algebra before any

group theory, and they liked the ideas of proceeding from the particular to the

general and of giving examples of computational techniques right from the start.

They appreciated the overall comprehensive nature of the book, associating this

feature with the large number of problems that develop so many sidelights and

applications of the theory.

Along with the general comments and specific suggestions were corrections,

and there were enough corrections, perhaps a hundred in all, so that a second

edition now seems to be in order. Many of the corrections were of minor matters,

yet readers should not have to cope with errors along with new material. Fortu-

nately no results in the first edition needed to be deleted or seriously modified,

and additional results and problems could be included without renumbering.

For the first edition, the author granted a publishing license to Birkhäuser

Boston that was limited to print media, leaving the question of electronic publi-

cation unresolved. The main change with the second edition is that the question

of electronic publication has now been resolved, and a PDFfile, called the “digital

secondedition,” is beingmade freely available to everyoneworldwide for personal

use. This file may be downloaded from the author’s own Web page and from

elsewhere.

Themain changes to the text of the first edition ofBasic Algebra are as follows:

• The corrections sent by readers and by reviewers have been made. The most

significant such correction was a revision to the proof of Zorn’s Lemma, the

earlier proof having had a gap.

• A number of problems have been added at the ends of the chapters, most of

them with partial or full solutions added to the section of Hints at the back of

the book. Of particular note are problems on the following topics:

(a) (Chapter II) the relationship in two and three dimensions between deter-

minants and areas or volumes,

(b) (Chapters V and IX) further aspects of canonical forms for matrices and

linear mappings,

(c) (Chapter VIII) amplification of uses of the Fundamental Theorem of

Finitely Generated Modules over principal ideal domains,

xi



xii Preface to the Second Edition

(d) (Chapter IX) the interplay of extension of scalars and Galois theory,

(e) (Chapter IX) properties and examples of ordered fields and real closed

fields.

• Some revisions have been made to the chapter on field theory (Chapter IX).

It was originally expected, and it continues to be expected, that a reader who

wants a fuller treatment of fields will look also at the chapter on infinite

field extensions in Advanced Algebra. However, the original placement of the

break between volumes left some possible confusion about the role of “normal

extensions” in field theory, and that matter has now been resolved.

• Characteristic polynomials initially have a variable � as a reminder of how
they arise from eigenvalues. But it soon becomes important to think of them

as abstract polynomials, not as polynomial functions. The indeterminate

had been left as � throughout most of the book in the original edition, and
some confusion resulted. The indeterminate is now called X rather than �
from Chapter V on, and characteristic polynomials have been treated

unambiguously thereafter as abstract polynomials.

• Occasional paragraphs have been added that point ahead to material in

Advanced Algebra.

The preface to the first edition mentioned three themes that recur throughout

and blend together at times: the analogy between integers and polynomials in

one variable over a field, the interplay between linear algebra and group theory,

and the relationship between number theory and geometry. A fourth is the gentle

mention of notions in category theory to tie together phenomena that occur in

different areas of algebra; an example of such a notion is “universal mapping

property.” Readers will benefit from looking for these and other such themes,

since recognizing them helps one get a view of the whole subject at once.

It was Benjamin Levitt, Birkhäuser mathematics editor in New York, who

encouraged the writing of a second edition, who made a number of suggestions

about pursuing it, and who passed along comments from several anonymous

referees about the strengths and weaknesses of the book. I am especially grateful

to those readerswhohave sentme comments over the years. Many corrections and

suggestions were kindly pointed out to the author by Skip Garibaldi of Emory

University and Ario Contact of Shiraz, Iran. The long correction concerning

Zorn’s Lemma resulted from a discussion with Qiu Ruyue. The typesetting was

done by the program Textures using AMS-TEX, and the figures were drawn with

Mathematica.

Just as with the first edition, I invite corrections and other comments from

readers. For as long as I am able, I plan to point to a list of known corrections

from my own Web page, www.math.stonybrook.edu/⇥aknapp.
A. W. KNAPP

January 2016



PREFACE TO THE FIRST EDITION

Basic Algebra and its companion volume Advanced Algebra systematically de-

velop concepts and tools in algebra that are vital to every mathematician, whether

pure or applied, aspiring or established. These two books together aim to give the

reader a global view of algebra, its use, and its role in mathematics as a whole.

The idea is to explain what the youngmathematician needs to know about algebra

in order to communicate well with colleagues in all branches of mathematics.

The books are written as textbooks, and their primary audience is students who

are learning the material for the first time and who are planning a career in which

they will use advanced mathematics professionally. Much of the material in the

books, particularly in Basic Algebra but also in some of the chapters of Advanced

Algebra, corresponds to normal course work. The books include further topics

that may be skipped in required courses but that the professional mathematician

will ultimately want to learn by self-study. The test of each topic for inclusion is

whether it is something that a plenary lecturer at a broad international or national

meeting is likely to take as known by the audience.

The key topics and features of Basic Algebra are as follows:

• Linear algebra and group theory build on each other throughout the book.

A small amount of linear algebra is introduced first, as the topic likely to be

better known by the reader ahead of time, and then a little group theory is

introduced, with linear algebra providing important examples.

• Chapters on linear algebra develop notions related to vector spaces, the

theory of linear transformations, bilinear forms, classical linear groups, and

multilinear algebra.

• Chapters on modern algebra treat groups, rings, fields, modules, and Galois

groups, including many uses of Galois groups and methods of computation.

• Three prominent themes recur throughout and blend together at times: the

analogy between integers and polynomials in one variable over a field, the in-

terplay between linear algebra and group theory, and the relationship between

number theory and geometry.

• The development proceeds from the particular to the general, often introducing

examples well before a theory that incorporates them.

• More than 400 problems at the ends of chapters illuminate aspects of the

text, develop related topics, and point to additional applications. A separate
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xiv Preface to the First Edition

90-page section “Hints for Solutions of Problems” at the end of the book gives

detailed hints for most of the problems, complete solutions for many.

• Applications such as the fast Fourier transform, the theory of linear error-

correcting codes, the use of Jordan canonical form in solving linear systems

of ordinarydifferential equations, andconstructionsof interest inmathematical

physics arise naturally in sequences of problems at the ends of chapters and

illustrate the power of the theory for use in science and engineering.

Basic Algebra endeavors to show some of the interconnections between

different areas of mathematics, beyond those listed above. Here are examples:

Systems of orthogonal functions make an appearance with inner-product spaces.

Covering spaces naturally play a role in the examination of subgroups of free

groups. Cohomology of groups arises from considering group extensions. Use

of the power-series expansionof the exponential function combineswith algebraic

numbers to prove that � is transcendental. Harmonic analysis on a cyclic group
explains the mysterious method of Lagrange resolvents in the theory of Galois

groups.

Algebra plays a singular role in mathematics by having been developed so

extensively at such an early date. Indeed, the major discoveries of algebra even

from the days of Hilbert are well beyond the knowledge of most nonalgebraists

today. Correspondingly most of the subject matter of the present book is at

least 100 years old. What has changed over the intervening years concerning

algebra books at this level is not so much the mathematics as the point of

view toward the subject matter and the relative emphasis on and generality of

various topics. For example, in the 1920s Emmy Noether introduced vector

spaces and linear mappings to reinterpret coordinate spaces and matrices, and

she defined the ingredients of what was then called “modern algebra”—the

axiomatically defined rings, fields, and modules, and their homomorphisms. The

introduction of categories and functors in the 1940s shifted the emphasis even

more toward the homomorphisms and away from the objects themselves. The

creation of homological algebra in the 1950s gave a unity to algebraic topics

cutting across many fields of mathematics. Category theory underwent a period

of great expansion in the 1950s and 1960s, followed by a contraction and a return

more to a supporting role. The emphasis in topics shifted. Linear algebra had

earlier been viewed as a separate subject, with many applications, while group

theory and the other topics had been viewed as having few applications. Coding

theory, cryptography, and advances in physics and chemistry have changed all

that, and now linear algebra and group theory together permeatemathematics and

its applications. The other subjects build on them, and they too have extensive

applications in science and engineering, as well as in the rest of mathematics.

Basic Algebra presents its subject matter in a forward-looking way that takes

this evolution into account. It is suitable as a text in a two-semester advanced
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undergraduate or first-year graduate sequence in algebra. Depending on the grad-

uate school, it may be appropriate to include also some material from Advanced

Algebra. Briefly the topics in Basic Algebra are linear algebra and group theory,

rings, fields, and modules. A full list of the topics in Advanced Algebra appears

on page x; of these, the Wedderburn theory of semisimple algebras, homological

algebra, and foundational material for algebraic geometry are the ones that most

commonly appear in syllabi of first-year graduate courses.

A chart on page xix tells the dependence among chapters and can help with

preparing a syllabus. Chapters I–VII treat linear algebra and group theory at

various levels, except that three sections of Chapter IV and one of Chapter V

introduce rings and fields, polynomials, categories and functors, and determinants

over commutative ringswith identity. ChapterVIII concerns rings, with emphasis

on unique factorization; Chapter IX concerns field extensions and Galois theory,

with emphasis on applications of Galois theory; and Chapter X concernsmodules

and constructions with modules.

For a graduate-level sequence the syllabus is likely to include all of Chapters

I–V and parts of Chapters VIII and IX, at a minimum. Depending on the

knowledge of the students ahead of time, it may be possible to skim much of

the first three chapters and some of the beginning of the fourth; then time may

allow for some of Chapters VI and VII, or additional material from Chapters VIII

and IX, or some of the topics in Advanced Algebra. For many of the topics in

Advanced Algebra, parts of Chapter X of Basic Algebra are prerequisite.

For an advanced undergraduate sequence the first semester can include Chap-

ters I through III except Section II.9, plus the first six sections of Chapter IV and

as much as reasonable from Chapter V; the notion of category does not appear

in this material. The second semester will involve categories very gently; the

course will perhaps treat the remainder of Chapter IV, the first five or six sections

of Chapter VIII, and at least Sections 1–3 and 5 of Chapter IX.

More detailed information about how the book can be used with courses can

be deduced by using the chart on page xix in conjunction with the section “Guide

for the Reader” on pages xxi–xxiv. In my own graduate teaching, I have built one

course around Chapters I–III, Sections 1–6 of Chapter IV, all of Chapter V, and

about half of Chapter VI. A second course dealt with the remainder of Chapter

IV, a little of Chapter VII, Sections 1–6 of Chapter VIII, and Sections 1–11 of

Chapter IX.

The problems at the ends of chapters are intended to play a more important

role than is normal for problems in a mathematics book. Almost all problems

are solved in the section of hints at the end of the book. This being so, some

blocks of problems form additional topics that could have been included in the

text but were not; these blocks may either be regarded as optional topics, or they

may be treated as challenges for the reader. The optional topics of this kind
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usually either carry out further development of the theory or introduce significant

applications. For example one block of problems at the end of Chapter VII

carries the theory of representations of finite groups a little further by developing

the Poisson summation formula and the fast Fourier transform. For a second

example blocks of problems at the ends of Chapters IV, VII, and IX introduce

linear error-correcting codes as an application of the theory in those chapters.

Not all problems are of this kind, of course. Some of the problems are

really pure or applied theorems, some are examples showing the degree to which

hypotheses can be stretched, and a few are just exercises. The reader gets no

indication which problems are of which type, nor of which ones are relatively

easy. Each problem can be solved with tools developed up to that point in the

book, plus any additional prerequisites that are noted.

Beyond a standard one-variable calculus course, the most important prereq-

uisite for using Basic Algebra is that the reader already know what a proof is,

how to read a proof, and how to write a proof. This knowledge typically is

obtained from honors calculus courses, or from a course in linear algebra, or

from a first junior–senior course in real variables. In addition, it is assumed that

the reader is comfortable with a small amount of linear algebra, including matrix

computations, row reduction ofmatrices, solutions of systems of linear equations,

and the associated geometry. Some prior exposure to groups is helpful but not

really necessary.

The theorems, propositions, lemmas, and corollaries within each chapter are

indexed by a single number stream. Figures have their own number stream, and

one can find the page reference for each figure from the table on pages xvii–xviii.

Labels on displayed lines occur only within proofs and examples, and they are

local to the particular proof or example in progress. Some readers like to skim

or skip proofs on first reading; to facilitate this procedure, each occurrence of the

word “PROOF” or “PROOF” is matched by an occurrence at the right margin of the

symbol � to mark the end of that proof.

I am grateful to Ann Kostant and Steven Krantz for encouraging this project

and for making many suggestions about pursuing it. I am especially indebted to

an anonymous referee, who made detailed comments about many aspects of a

preliminary version of the book, and to David Kramer, who did the copyediting.

The typesetting was by AMS-TEX, and the figures were drawn withMathematica.

I invite corrections and other comments from readers. I plan to maintain a list

of known corrections on my own Web page.

A. W. KNAPP

August 2006
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DEPENDENCE AMONG CHAPTERS

Below is a chart of the main lines of dependence of chapters on prior chapters.

The dashed lines indicate helpful motivation but no logical dependence. Apart

from that, particular examplesmaymake use of information from earlier chapters

that is not indicated by the chart.

I, II
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IV.7–IV.11 V

VII VI VIII.1–VIII.6

X IX.1–IX.13 VIII.7–VIII.11

IX.14–IX.17
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STANDARD NOTATION

See the Index of Notation, pp. 717–719, for symbols defined starting on page 1.

Item Meaning

#S or |S| number of elements in S

⇤ empty set

{x ⌦ E | P} the set of x in E such that P holds

Ec complement of the set E

E ✏ F, E ⇣ F, E � F union, intersection, difference of sets⌃
� E�,

⌥
� E� union, intersection of the sets E�

E ⇧ F, E ⌃ F E is contained in F , E contains F

E � F, E ⇥ F E properly contained in F , properly contains F

E ⇤ F, �s⌦S Xs products of sets

(a1, . . . , an), {a1, . . . , an} ordered n-tuple, unordered n-tuple

f : E  F, x � f (x) function, effect of function

f ⌅ g or f g, f
⇤⇤
E

composition of g followed by f , restriction to E

f ( · , y) the function x � f (x, y)
f (E), f �1(E) direct and inverse image of a set

⇥i j Kronecker delta: 1 if i = j , 0 if i ↵= j�
n

k

⇥
binomial coefficient

n positive, n negative n > 0, n < 0

Z, Q, R, C integers, rationals, reals, complex numbers

max (and similarly min) maximum of a finite subset of a totally ordered set⌅
or

⇧
sum or product, possibly with a limit operation

countable finite or in one-one correspondence with Z
[x] greatest integer ⌥ x if x is real

Re z, Im z real and imaginary parts of complex z

z̄ complex conjugate of z

|z| absolute value of z

1 multiplicative identity

1 or I identity matrix or operator

1X identity function on X

Qn , Rn , Cn spaces of column vectors

diag(a1, . . . , an) diagonal matrix
�= is isomorphic to, is equivalent to

xx



GUIDE FOR THE READER

This section is intended to help the reader find out what parts of each chapter are

most important and how the chapters are interrelated. Further information of this

kind is contained in the abstracts that begin each of the chapters.

The book pays attention to at least three recurring themes in algebra, allowing

a person to see how these themes arise in increasingly sophisticated ways. These

are the analogy between integers and polynomials in one indeterminate over a

field, the interplay between linear algebra and group theory, and the relationship

between number theory and geometry. Keeping track of how these themes evolve

will help the reader understand the mathematics better and anticipate where it is

headed.

InChapter I the analogybetween integers andpolynomials inone indeterminate

over the rationals, reals, or complex numbers appears already in the first three

sections. The main results of these sections are theorems about unique factoriza-

tion in each of the two settings. The relevant parts of the underlying structures for

the two settings are the same, and unique factorization can therefore be proved in

both settings by the same argument. Many readers will already know this unique

factorization, but it is worth examining the parallel structure and proof at least

quickly before turning to the chapters that follow.

Beforeproceedingvery far into thebook, it isworth lookingalso at the appendix

to see whether all its topics are familiar. Readers will find Section A1 useful

at least for its summary of set-theoretic notation and for its emphasis on the

distinction between range and image for a function. This distinction is usually

unimportant in analysis but becomes increasingly important as one studies more

advanced topics in algebra. Readers who have not specifically learned about

equivalence relations and partial orderings can learn about them from Sections

A2 and A5. Sections A3 and A4 concern the real and complex numbers; the

emphasis is on notation and the Intermediate Value Theorem, which plays a role

in proving the Fundamental Theorem of Algebra. Zorn’s Lemma and cardinality

in Sections A5 and A6 are usually unnecessary in an undergraduate course. They

arise most importantly in Sections II.9 and IX.4, which are normally omitted in

an undergraduate course, and in Proposition 8.8, which is invoked only in the last

few sections of Chapter VIII.

The remainder of this section is an overview of individual chapters and pairs

of chapters.

xxi
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Chapter I is in threeparts. Thefirst part, asmentionedabove, establishesunique

factorization for the integers and for polynomials in one indeterminate over the

rationals, reals, or complex numbers. The second part defines permutations and

shows that they have signs such that the sign of any composition is the product of

the signs; this result is essential for defining general determinants in Section II.7.

The third part will likely be a review for all readers. It establishes notation for row

reduction of matrices and for operations on matrices, and it uses row reduction

to show that a one-sided inverse for a square matrix is a two-sided inverse.

Chapters II–III treat the fundamentals of linear algebra. Whereas the matrix

computations in Chapter I were concrete, Chapters II–III are relatively abstract.

Much of thismaterial is likely to be a review for graduate students. The geometric

interpretation of vectors spaces, subspaces, and linearmappings is not included in

the chapter, being taken as known previously. The fundamental idea that a newly

constructed object might be characterized by a “universal mapping property”

appears for the first time in Chapter II, and it appears more and more frequently

throughout the book. One aspect of this idea is that it is sometimes not so

important what certain constructed objects are, but what they do. A related idea

being emphasized is that themappings associatedwith a newly constructed object

are likely to be as important as the object, if not more so; at the least, one needs to

stop and find what those mappings are. Section II.9 uses Zorn’s Lemma and can

be deferred until Chapter IX if one wants. Chapter III discusses special features

of real and complex vector spaces endowed with inner products. The main result

is the Spectral Theorem in Section 3. Many of the problems at the end of the

chapter make contact with real analysis. The subject of linear algebra continues

in Chapter V.

Chapter IV is the primary chapter on group theory and may be viewed as in

three parts. Sections 1–6 form the first part, which is essential for all later chapters

in the book. Sections 1–3 introduce groups and some associated constructions,

along with a number of examples. Many of the examples will be seen to be

related to specific or general vector spaces, and thus the theme of the interplay

between group theory and linear algebra is appearing concretely for the first time.

In practice, many examples of groups arise in the context of group actions, and

abstract group actions are defined in Section 6. Of particular interest are group

representations, which are group actions on a vector space by linear mappings.

Sections 4–5 are a digression to define rings, fields, and ring homomorphisms,

and to extend the theories concerning polynomials and vector spaces as presented

in Chapters I–II. The immediate purpose of the digression is to make prime fields,

their associated multiplicative groups, and the notion of characteristic available

for the remainder of the chapter. The definition of vector space is extended

to allow scalars from any field. The definition of polynomial is extended to

allow coefficients from any commutative ring with identity, rather than just the
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rationals or reals or complex numbers, and to allow more than one indeterminate.

Universal mapping properties for polynomial rings are proved. Sections 7–10

form the second part of the chapter and are a continuation of group theory. The

main result is the Fundamental Theorem of Finitely Generated Abelian Groups,

which is in Section 9. Section 11 forms the third part of the chapter. This section

is a gentle introduction to categories and functors, which are useful for working

with parallel structures in different settings within algebra. As S. Mac Lane says

in his book, “Category theory asks of every type of Mathematical object: ‘What

are the morphisms?’; it suggests that these morphisms should be described at the

same time as the objects. . . . This emphasis on (homo)morphisms is largely due to
EmmyNoether, who emphasized the use of homomorphismsof groups and rings.”

The simplest parallel structure reflected in categories is that of an isomorphism.

The section also discusses general notions of product and coproduct functors.

Examples of products are direct products in linear algebra and in group theory.

Examples of coproducts are direct sums in linear algebra and in abelian group

theory, as well as disjoint unions in set theory. The theory in this section helps in

unifying the mathematics that is to come in Chapters VI–VIII and X. The subject

of group theory in continued in Chapter VII, which assumes knowledge of the

material on category theory.

ChaptersV andVI continue the development of linear algebra. ChapterVI uses

categories, but Chapter V does not. Most of Chapter V concerns the analysis of a

linear transformation carrying a finite-dimensional vector space over a field into

itself. The questions are to find invariants of such transformations and to classify

the transformations up to similarity. Section 2 at the start extends the theory of

determinants so that the matrices are allowed to have entries in a commutative

ring with identity; this extension is necessary in order to be able to work easily

with characteristic polynomials. The extension of this theory is carried out by

an important principle known as the “permanence of identities.” Chapter VI

largely concerns bilinear forms and tensor products, again in the context that the

coefficients are from a field. This material is necessary in many applications to

geometry and physics, but it is not needed in Chapters VII–IX. Many objects in

the chapter are constructed in such a way that they are uniquely determined by

a universal mapping property. Problems 18–22 at the end of the chapter discuss

universal mapping properties in the general context of category theory, and they

show that a uniqueness theorem is automatic in all cases.

ChapterVII continues the developmentof group theory,makinguseof category

theory. It is in two parts. Sections 1–3 concern free groups and the topic of

generators and relations; they are essential for abstract descriptions of groups

and for work in topology involving fundamental groups. Section 3 constructs a

notion of free product and shows that it is the coproduct functor for the category

of groups. Sections 4–6 continue the theme of the interplay of group theory and
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linear algebra. Section 4 analyzes group representations of a finite group when

the underlying field is the complex numbers, and Section 5 applies this theory

to obtain a conclusion about the structure of finite groups. Section 6 studies

extensions of groups and uses them to motivate the subject of cohomology of

groups.

Chapter VIII introduces modules, giving many examples in Section 1, and

then goes on to discuss questions of unique factorization in integral domains.

Section 6 obtains a generalization for principal ideal domains of the Fundamental

Theorem of Finitely Generated Abelian Groups, once again illustrating the first

theme—similarities between the integers and certain polynomial rings. Section 7

introduces the third theme, the relationship between number theory and geometry,

as a more sophisticated version of the first theme. The section compares a certain

polynomial ring in two variables with a certain ring of algebraic integers that

extends the ordinary integers. Unique factorization of elements fails for both, but

the geometric setting has a more geometrically meaningful factorization in terms

of ideals that is evidently unique. This kind of unique factorization turns out to

work for the ring of algebraic integers aswell. Sections 8–11 expand the examples

in Section 7 into a theory of unique factorization of ideals in any integrally closed

Noetherian domain whose nonzero prime ideals are all maximal.

Chapter IX analyzes algebraic extensions of fields. The first 13 sections

make use only of Sections 1–6 in Chapter VIII. Sections 1–5 of Chapter IX

give the foundational theory, which is sufficient to exhibit all the finite fields and

to prove that certain classically proposed constructions in Euclidean geometry

are impossible. Sections 6–8 introduce Galois theory, but Theorem 9.28 and

its three corollaries may be skipped if Sections 14–17 are to be omitted. Sec-

tions 9–11 give a first round of applications of Galois theory: Gauss’s theorem

about which regular n-gons are in principle constructible with straightedge and

compass, the Fundamental Theorem of Algebra, and the Abel–Galois theorem

that solvability of a polynomial equation with rational coefficients in terms of

radicals implies solvability of the Galois group. Sections 12–13 give a second

round of applications: Gauss’s method in principle for actually constructing the

constructible regular n-gons and a converse to theAbel–Galois theorem. Sections

14–17make use of Sections 7–11 ofChapterVIII, proving that� is transcendental
and obtaining two methods for computing Galois groups.

Chapter X is a relatively short chapter developing further tools for dealing

with modules over a ring with identity. The main construction is that of the

tensor product over a ring of a unital right module and a unital left module, the

result being an abelian group. The chapter makes use of material from Chapters

VI and VIII, but not from Chapter IX.
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CHAPTER I

Preliminaries about the Integers, Polynomials,

and Matrices

Abstract. This chapter is mostly a review, discussing unique factorization of positive integers,

unique factorization of polynomials whose coefficients are rational or real or complex, signs of

permutations, and matrix algebra.

Sections 1–2 concern unique factorization of positive integers. Section 1 proves the division

and Euclidean algorithms, used to compute greatest common divisors. Section 2 establishes unique

factorization as a consequence and gives several number-theoretic consequences, including the

Chinese Remainder Theorem and the evaluation of the Euler ⌥ function.

Section 3 develops unique factorization of rational and real and complex polynomials in one inde-

terminate completely analogously, and it derives the complete factorization of complex polynomials

from the Fundamental Theorem of Algebra. The proof of the fundamental theorem is postponed to

Chapter IX.

Section 4 discusses permutations of a finite set, establishing the decomposition of each permu-

tation as a disjoint product of cycles. The sign of a permutation is introduced, and it is proved that

the sign of a product is the product of the signs.

Sections 5–6 concern matrix algebra. Section 5 reviews row reduction and its role in the solution

of simultaneous linear equations. Section 6 defines the arithmetic operations of addition, scalar

multiplication, and multiplication of matrices. The process of matrix inversion is related to the

method of row reduction, and it is shown that a square matrix with a one-sided inverse automatically

has a two-sided inverse that is computable via row reduction.

1. Division and Euclidean Algorithms

The first three sections give a careful proof of unique factorization for integers

and for polynomials with rational or real or complex coefficients, and they give

an indication of some first consequences of this factorization. For the moment

let us restrict attention to the set Z of integers. We take addition, subtraction,

and multiplication within Z as established, as well as the properties of the usual
ordering in Z.
A factor of an integer n is a nonzero integer k such that n = kl for some

integer l. In this case we say also that k divides n, that k is a divisor of n, and

that n is amultiple of k. We write k | n for this relationship. If n is nonzero, any
product formula n = kl1 · · · lr is a factorization of n. A unit in Z is a divisor

1
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of 1, hence is either +1 or �1. The factorization n = kl of n �= 0 is called

nontrivial if neither k nor l is a unit. An integer p > 1 is said to be prime if it

has no nontrivial factorization p = kl.

The statement of unique factorization for positive integers, whichwill be given

precisely in Section 2, says roughly that each positive integer is the product of

primes and that this decomposition is unique apart from the order of the factors.1

Existencewill followby an easy induction. The difficulty is in the uniqueness. We

shall prove uniqueness by a sequence of steps based on the “Euclidean algorithm,”

which we discuss in a moment. In turn, the Euclidean algorithm relies on the

following.

Proposition 1.1 (division algorithm). If a and b are integers with b �= 0, then

there exist unique integers q and r such that a = bq + r and 0  r < |b|.
PROOF. Possibly replacing q by�q, we may assume that b > 0. The integers

n with bn  a are bounded above by |a|, and there exists such an n, namely
n = �|a|. Therefore there is a largest such integer, say n = q. Set r =
a � bq. Then 0  r and a = bq + r . If r ⌦ b, then r � b ⌦ 0 says that

a = b(q + 1) + (r � b) ⌦ b(q + 1). The inequality q + 1 > q contradicts the

maximality of q, and we conclude that r < b. This proves existence.

For uniqueness when b > 0, suppose a = bq1 + r1 = bq2 + r2. Subtracting,

we obtain b(q1 � q2) = r2 � r1 with |r2 � r1| < b, and this is a contradiction

unless r2 � r1 = 0. �

Let a and b be integers not both 0. The greatest common divisor of a and

b is the largest integer d > 0 such that d | a and d | b. Let us see existence.
The integer 1 divides a and b. If b, for example, is nonzero, then any such d

has |d|  |b|, and hence the greatest common divisor indeed exists. We write
d = GCD(a, b).
Let us suppose that b �= 0. The Euclidean algorithm consists of iterated ap-

plication of the division algorithm (Proposition 1.1) to a and b until the remainder

term r disappears:

a = bq1 + r1, 0  r1 < b,

b = r1q2 + r2, 0  r2 < r1,

r1 = r2q3 + r3, 0  r3 < r2,

...

rn�2 = rn�1qn + rn, 0  rn < rn�1 (with rn �= 0, say),

rn�1 = rnqn+1.

1It is to be understood that the prime factorization of 1 is as the empty product.
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The process must stop with some remainder term rn+1 equal to 0 in this way since
b > r1 > r2 > · · · ⌦ 0. The last nonzero remainder term, namely rn above, will
be of interest to us.

EXAMPLE. For a = 13 and b = 5, the steps read

13 = 5 · 2+ 3,

5 = 3 · 1+ 2,

3 = 2 · 1+ 1 ,

2 = 1 · 2.

The last nonzero remainder term is written with a box around it.

Proposition 1.2. Let a and b be integers with b �= 0, and let d = GCD(a, b).
Then

(a) the number rn in the Euclidean algorithm is exactly d,

(b) any divisor d � of both a and b necessarily divides d,
(c) there exist integers x and y such that ax + by = d.

REMARK. Proposition 1.2c is sometimes called Bezout’s identity.

EXAMPLE, CONTINUED. We rewrite the steps of the Euclidean algorithm, as

applied in the above example with a = 13 and b = 5, so as to yield successive

substitutions:

13 = 5 · 2+ 3, 3 = 13� 5 · 2,
5 = 3 · 1+ 2, 2 = 5� 3 · 1 = 5� (13� 5 · 2) · 1 = 5 · 3� 13 · 1,

3 = 2 · 1+ 1 , 1 = 3� 2 · 1 = (13� 5 · 2)� (5 · 3� 13 · 1) · 1
= 13 · 2� 5 · 5.

Thus we see that 1 = 13x + 5y with x = 2 and y = �5. This shows for the
example that the number rn works in place of d in Proposition 1.2c, and the rest

of the proof of the proposition for this example is quite easy. Let us now adjust

this computation to obtain a complete proof of the proposition in general.

PROOF OF PROPOSITION 1.2. Put r0 = b and r�1 = a, so that

rk�2 = rk�1qk + rk for 1  k  n. (⌅)

The argument proceeds in three steps.
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Step 1. We show that rn is a divisor of both a and b. In fact, from rn�1 =
rnqn+1, we have rn | rn�1. Let k  n, and assume inductively that rn divides

rk�1, . . . , rn�1, rn . Then (⌅) shows that rn divides rk�2. Induction allows us to
conclude that rn divides r�1, r0, . . . , rn�1. In particular, rn divides a and b.
Step 2. We prove that ax + by = rn for suitable integers x and y. In fact,

we show by induction on k for k  n that there exist integers x and y with

ax + by = rk . For k = �1 and k = 0, this conclusion is trivial. If k ⌦ 1 is given
and if the result is known for k � 2 and k � 1, then we have

ax2 + by2 = rk�2,

ax1 + by1 = rk�1
(⌅⌅)

for suitable integers x2, y2, x1, y1. We multiply the second of the equalities of
(⌅⌅) by qk , subtract, and substitute into (⌅). The result is

rk = rk�2 � rk�1qk = a(x2 � qkx1) + b(y2 � qk y1),

and the induction is complete. Thus ax + by = rn for suitable x and y.

Step 3. Finally we deduce (a), (b), and (c). Step 1 shows that rn divides a and

b. If d � > 0 divides both a and b, the result of Step 2 shows that d � | rn . Thus
d �  rn , and rn is the greatest common divisor. This is the conclusion of (a); (b)

follows from (a) since d � | rn , and (c) follows from (a) and Step 2. �

Corollary 1.3. Within Z, if c is a nonzero integer that divides a product mn
and if GCD(c,m) = 1, then c divides n.

PROOF. Proposition 1.2c produces integers x and y with cx + my = 1.

Multiplying by n, we obtain cnx + mny = n. Since c divides mn and divides

itself, c divides both terms on the left side. Therefore it divides the right side,

which is n. �

Corollary 1.4. Within Z, if a and b are nonzero integers with GCD(a, b) = 1

and if both of them divide the integer m, then ab divides m.

PROOF. Proposition 1.2c produces integers x and y with ax + by = 1.

Multiplying by m, we obtain amx + bmy = m, which we rewrite in integers

as ab(m/b)x + ab(m/a)y = m. Since ab divides each term on the left side, it

divides the right side, which is m. �

2. Unique Factorization of Integers

We come now to the theorem asserting unique factorization for the integers. The

precise statement is as follows.
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Theorem 1.5 (Fundamental Theorem of Arithmetic). Each positive integer

n can be written as a product of primes, n = p1 p2 · · · pr , with the integer 1
being written as an empty product. This factorization is unique in the following

sense: if n = q1q2 · · · qs is another such factorization, then r = s and, after some

reordering of the factors, qj = pj for 1  j  r .

The main step is the following lemma, which relies on Corollary 1.3.

Lemma 1.6. Within Z, if p is a prime and p divides a product ab, then p
divides a or p divides b.

REMARK. Lemma 1.6 is sometimes known as Euclid’s Lemma.

PROOF. Suppose that p does not divide a. Since p is prime, GCD(a, p) = 1.

Taking m = a, n = b, and c = p in Corollary 1.3, we see that p divides b. �

PROOF OF EXISTENCE IN THEOREM 1.5. We induct on n, the case n = 1 being

handled by an empty product expansion. If the result holds for k = 1 through

k = n � 1, there are two cases: n is prime and n is not prime. If n is prime, then
n = n is the desired factorization. Otherwise we can write n = ab nontrivially

with a > 1 and b > 1. Then a  n � 1 and b  n � 1, so that a and b have
factorizations into primes by the inductive hypothesis. Putting them together

yields a factorization into primes for n = ab. �
PROOF OF UNIQUENESS IN THEOREM 1.5. Suppose that n = p1 p2 · · · pr =

q1q2 · · · qs with all factors prime and with r  s. We prove the uniqueness by

induction on r , the case r = 0 being trivial and the case r = 1 following from

the definition of “prime.” Inductively from Lemma 1.6 we have pr | qk for some
k. Since qk is prime, pr = qk . Thus we can cancel and obtain p1 p2 · · · pr�1 =
q1q2 · · · qk · · · qs , the hat indicating an omitted factor. By induction the factors
on the two sides here are the same except for order. Thus the same conclusion

is valid when comparing the two sides of the equality p1 p2 · · · pr = q1q2 · · · qs .
The induction is complete, and the desired uniqueness follows. �

In the product expansion of Theorem 1.5, it is customary to group factors that

are equal, thus writing the positive integer n as n = p
k1
1 · · · pkrr with the primes

pj distinct and with the integers kj all⌦ 0. This kind of decomposition is unique
up to order if all factors p

kj
j with kj = 0 are dropped, and we call it a prime

factorization of n.

Corollary 1.7. If n = p
k1
1 · · · pkrr is a prime factorization of a positive integer

n, then the positive divisors d of n are exactly all products d = p
l1
1 · · · plrr with

0  lj  kj for all j .
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REMARK. A general divisor of n within Z is the product of a unit ±1 and a
positive divisor.

PROOF. Certainly any such product divides n. Conversely if d divides n, write

n = dx for some positive integer x . Apply Theorem 1.5 to d and to x , form the

resulting prime factorizations, and multiply them together. Then we see from the

uniqueness for the prime factorization of n that the only primes that can occur in

the expansions of d and x are p1, . . . , pr and that the sum of the exponents of pj
in the expansions of d and x is kj . The result follows. �

If we want to compare prime factorizations for two positive integers, we can

insert 0th powers of primes as necessary and thereby assume that the same primes

appear in both expansions. Using this device, we obtain a formula for greatest

common divisors.

Corollary 1.8. If two positive integers a and b have expansions as products

of powers of r distinct primes given by a = p
k1
1 · · · pkrr and b = p

l1
1 · · · plrr , then

GCD(a, b) = p
min(k1,l1)
1 · · · pmin(kr ,lr )r .

PROOF. Let d � be the right side of the displayed equation. It is plain that d �

is positive and that d � divides a and b. On the other hand, two applications of
Corollary 1.7 show that the greatest common divisor of a and b is a number d

of the form p
m1
1 · · · pmr

r with the property that mj  kj and mj  lj for all j .

Therefore mj  min(kj , lj ) for all j , and d  d �. Since any positive divisor of
both a and b is  d, we have d �  d. Thus d � = d. �

In special cases Corollary 1.8 provides a useful way to compute GCD(a, b),
but the Euclidean algorithm is usually a more efficient procedure. Nevertheless,

Corollary 1.8 remains a handy tool for theoretical purposes. Here is an example:

Two nonzero integers a and b are said to be relatively prime if GCD(a, b) = 1.

It is immediate fromCorollary 1.8 that two nonzero integers a and b are relatively

prime if and only if there is no prime p that divides both a and b.

Corollary 1.9 (Chinese Remainder Theorem). Let a and b be positive rela-

tively prime integers. To each pair (r, s) of integerswith 0  r < a and 0  s < b

corresponds a unique integer n such that 0  n < ab, a divides n � r , and b

divides n� s. Moreover, every integer n with 0  n < ab arises from some such

pair (r, s).

REMARK. In notation for congruences thatwe introduce formally inChapter IV,

the result says that if GCD(a, b) = 1, then the congruences n � r mod a and

n � s mod b have one and only one simultaneous solution n with 0  n < ab.
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PROOF. Let us see that n exists as asserted. Since a and b are relatively

prime, Proposition 1.2c produces integers x � and y� such that ax � � by� = 1.

Multiplying by s � r , we obtain ax � by = s � r for suitable integers x and y.

Put t = ax + r = by + s, and write by the division algorithm (Proposition 1.1)

t = abq + n for some integer q and for some integer n with 0  n < ab. Then

n�r = t�abq�r = ax�abq is divisible by a, and similarly n� s is divisible
by b.

Suppose that n and n� both have the asserted properties. Then a divides

n � n� = (n � r)� (n� � r), and b divides n � n� = (n � s)� (n� � s). Since
a and b are relatively prime, Corollary 1.4 shows that ab divides n � n�. But
|n � n�| < ab, and the only integer N with |N | < ab that is divisible by ab is

N = 0. Thus n � n� = 0 and n = n�. This proves uniqueness.
Finally the argument just given defines a one-one function from a set of ab

pairs (r, s) to a set of ab elements n. Its image must therefore be all such integers
n. This proves the corollary. �

If n is a positive integer, we define ⌥(n) to be the number of integers k with
0  k < n such that k and n are relatively prime. The function ⌥ is called the
Euler ⌥ function.

Corollary 1.10. Let N > 1 be an integer, and let N = p
k1
1 · · · pkrr be a prime

factorization of N . Then

⌥(N ) =
r◆

j=1
p
kj�1
j (pj � 1).

REMARK. The conclusion is valid also for N = 1 if we interpret the right side

of the formula to be the empty product.

PROOF. For positive integers a and b, let us check that

⌥(ab) = ⌥(a)⌥(b) if GCD(a, b) = 1. (⌅)

In view of Corollary 1.9, it is enough to prove that the mapping (r, s) ✏↵ n given

in that corollary has the property that GCD(r, a) = GCD(s, b) = 1 if and only if

GCD(n, ab) = 1.

To see this property, suppose that n satisfies 0  n < ab andGCD(n, ab) > 1.

Choose a prime p dividing both n and ab. By Lemma1.6, p divides a or p divides

b. By symmetrywemayassume that p dividesa. If (r, s) is the pair corresponding
to n under Corollary 1.9, then the corollary says that a divides n � r . Since p

divides a, p divides n � r . Since p divides n, p divides r . Thus GCD(r, a) > 1.

Conversely suppose that (r, s) is a pair with 0  r < a and 0  s < b such

that GCD(r, a) = GCD(s, b) = 1 is false. Without loss of generality, we may
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assume that GCD(r, a) > 1. Choose a prime p dividing both r and a. If n is the

integer with 0  n < ab that corresponds to (r, s) under Corollary 1.9, then the
corollary says that a divides n � r . Since p divides a, p divides n � r . Since p

divides r , p divides n. Thus GCD(n, ab) > 1. This completes the proof of (⌅).
For a power pk of a prime p with k > 0, the integers n with 0  n < pk

such that GCD(n, pk) > 1 are the multiples of p, namely 0, p, 2p, . . . , pk � p.

There are pk�1 of them. Thus the number of integers n with 0  n < pk such

that GCD(n, pk) = 1 is pk � pk�1 = pk�1(p � 1). In other words,

⌥(pk) = pk�1(p � 1) if p is prime and k ⌦ 1. (⌅⌅)

To prove the corollary, we induct on r , the case r = 1 being handled by (⌅⌅). If
the formula of the corollary is valid for r � 1, then (⌅) allows us to combine that
result with the formula for ⌥(pkr ) given in (⌅⌅) to obtain the formula for ⌥(N ).

�

Weconclude this section by extending the notion of greatest commondivisor to

apply to more than two integers. If a1, . . . , at are integers not all 0, their greatest
common divisor is the largest integer d > 0 that divides all of a1, . . . , at . This
exists, and we write d = GCD(a1, . . . , at) for it. It is immediate that d equals the
greatest common divisor of the nonzero members of the set {a1, . . . , at}. Thus,
in deriving properties of greatest common divisors, we may assume that all the

integers are nonzero.

Corollary 1.11. Let a1, . . . , at be positive integers, and let d be their greatest
common divisor. Then

(a) if for each j with 1  j  t , aj = p
k1, j
1 · · · pkr, jr is an expansion of aj as

a product of powers of r distinct primes p1, . . . , pr , it follows that

d = p
min1 j t {k1, j }
1 · · · pmin1 j t {kr, j }r ,

(b) any divisor d � of all of a1, . . . , at necessarily divides d,
(c) d = GCD

�
GCD(a1, . . . , at�1), at

⇥
if t > 1,

(d) there exist integers x1, . . . , xt such that a1x1 + · · · + at xt = d.

PROOF. Part (a) is proved in the sameway asCorollary1.8 except thatCorollary

1.7 is to be applied r times rather than just twice. Further application of Corollary

1.7 shows that any positive divisor d � of a1, . . . , at is of the form d � = p
m1
1 · · · pmr

r

with m1  k1, j for all j , . . . , and with mr  kr, j for all j . Therefore m1  
min1 j r {k1, j }, . . . , and mr  min1 j r {kr, j }, and it follows that d � divides
d. This proves (b). Conclusion (c) follows by using the formula in (a), and (d)

follows by combining (c), Proposition 1.2c, and induction. �
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3. Unique Factorization of Polynomials

This section establishes unique factorization for ordinary rational, real, and com-

plex polynomials. We write Q for the set of rational numbers, R for the set of

real numbers, and C for the set of complex numbers, each with its arithmetic

operations. The rational numbers are constructed from the integers by a process

reviewed in Section A3 of the appendix, the real numbers are defined from the

rational numbers by a process reviewed in that same section, and the complex

numbers are defined from the real numbers by a process reviewed in Section A4

of the appendix. Sections A3 and A4 of the appendix mention special properties

of R and C beyond those of the arithmetic operations, but we shall not make

serious use of these special properties here until nearly the end of the section—

after unique factorization of polynomials has been established. Let F denote any
of Q, R, or C. The members of F are called scalars.
We work with ordinary polynomials with coefficients in F. Informally these

are expressions P(X) = anX
n+· · ·+a1X+a0 withan, . . . , a1, a0 inF. Although

it is tempting to think of P(X) as a function with independent variable X , it is
better to identify P with the sequence (a0, a1, . . . , an, 0, 0, . . . ) of coefficients,
using expressions P(X) = anX

n + · · · + a1X + a0 only for conciseness and for

motivation of the definitions of various operations.

The precise definition therefore is that a polynomial in one indeterminate

with coefficients in F is an infinite sequence of members of F such that all terms
of the sequence are 0 from somepoint on. The indexing of the sequence is to begin

with 0. We may refer to a polynomial P as P(X) if we want to emphasize that
the indeterminate is called X . Addition, subtraction, and scalar multiplication

are defined in coordinate-by-coordinate fashion:

(a0, a1, . . . , an, 0, 0, . . . ) + (b0,b1, . . . , bn, 0, 0, . . . )

= (a0 + b0, a1 + b1, . . . , an + bn, 0, 0, . . . ),

(a0, a1, . . . , an, 0, 0, . . . )� (b0,b1, . . . , bn, 0, 0, . . . )

= (a0 � b0, a1 � b1, . . . , an � bn, 0, 0, . . . ),

c(a0, a1, . . . , an, 0, 0, . . . ) = (ca0, ca1, . . . , can, 0, 0, . . . ).

Polynomial multiplication is defined so as to match multiplication of expressions

anX
n + · · · + a1X + a0 if the product is expanded out, powers of X are added,

and then terms containing like powers of X are collected:

(a0, a1, . . . , 0, 0, . . . )(b0, b1, . . . , 0, 0, . . . ) = (c0, c1, . . . , 0, 0, . . . ),

where cN =
⇣N

k=0 akbN�k . We take it as known that the usual associative,
commutative, and distributive laws are then valid. The set of all polynomials in

the indeterminate X is denoted by F[X].
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The polynomial with all entries 0 is denoted by 0 and is called the zero

polynomial. For all polynomials P = (a0, . . . , an, 0, . . . ) other than 0, the
degree of P , denoted by deg P , is defined to be the largest index n such that

an �= 0. The constant polynomials are by definition the zero polynomial and the

polynomials of degree 0. If P and Q are nonzero polynomials, then

P + Q = 0 or deg(P + Q)  max(deg P, deg Q),

deg(cP) = deg P,

deg(PQ) = deg P + deg Q.

In the formula for deg(P + Q), equality holds if deg P �= deg Q. Implicit in the

formula for deg(PQ) is the fact that PQ cannot be 0 unless P = 0 or Q = 0. A

cancellation law for multiplication is an immediate consequence:

PR = QR with R �= 0 implies P = Q.

In fact, PR = QR implies (P � Q)R = 0; since R �= 0, P � Q must be 0.

If P = (a0, . . . , an, 0, . . . ) is a polynomial and r is in F, we can evaluate P
at r , obtaining as a result the number P(r) = anr

n + · · · + a1r + a0. Taking into

account all values of r , we obtain a mapping P ✏↵ P( · ) of F[X] into the set of
functions from F into F. Because of the way that the arithmetic operations on
polynomials have been defined, we have

(P + Q)(r) = P(r) + Q(r),

(P � Q)(r) = P(r)� Q(r),

(cP)(r) = cP(r),

(PQ)(r) = P(r)Q(r).

In other words, the mapping P ✏↵ P( · ) respects the arithmetic operations. We
say that r is a root of P if P(r) = 0.

Now we turn to the question of unique factorization. The definitions and the

proof are completely analogous to those for the integers. A factor of a polynomial

A is a nonzero polynomial B such that A = BQ for some polynomial Q. In

this case we say also that B divides A, that B is a divisor of A, and that A is a

multiple of B. We write B | A for this relationship. If A is nonzero, any product
formula A = BQ1 · · · Qr is a factorization of A. A unit inF[X] is a divisor of 1,
hence is any polynomial of degree 0; such a polynomial is a constant polynomial

A(X) = c with c equal to a nonzero scalar. The factorization A = BQ of

A �= 0 is called nontrivial if neither B nor Q is a unit. A prime P in F[X] is a
nonzero polynomial that is not a unit and has no nontrivial factorization P = BQ.

Observe that the product of a prime and a unit is always a prime.
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Proposition 1.12 (division algorithm). If A and B are polynomials in F[X]
and if B not the 0 polynomial, then there exist unique polynomials Q and R in

F[X] such that
(a) A = BQ + R and

(b) either R is the 0 polynomial or deg R < deg B.

REMARK. This result codifies the usual method of dividing polynomials in

high-school algebra. That method writes A/B = Q+ R/B, and then one obtains
the above result by multiplying by B. The polynomial Q is the quotient in the

division, and R is the remainder.

PROOF OF UNIQUENESS. If A = BQ + R = BQ1 + R1, then B(Q � Q1) =
R1�R. Without loss of generality, R1�R is not the 0 polynomial since otherwise
Q � Q1 = 0 also. Then

deg B + deg(Q � Q1) = deg(R1 � R)  max(deg R, deg R1) < deg B,

and we have a contradiction. �
PROOF OF EXISTENCE. If A = 0 or deg A < deg B, we take Q = 0 and

R = A, and we are done. Otherwise we induct on deg A. Assume the result

for degree  n � 1, and let deg A = n. Write A = anX
n + A1 with A1 = 0

or deg A1 < deg A. Let B = bk X
k + B1 with B1 = 0 or deg B1 < deg B. Put

Q1 = anb
�1
k Xn�k . Then

A � BQ1 = anX
n + A1 � anX

n � anb
�1
k Xn�k B1 = A1 � anb

�1
k Xn�k B1

with the right side equal to 0 or of degree < deg A. Then the right side, by

induction, is of the form BQ2 + R, and A = B(Q1 + Q2) + R is the required

decomposition. �

Corollary 1.13 (Factor Theorem). If r is in F and if P is a polynomial in
F[X], then X � r divides P if and only if P(r) = 0.

PROOF. If P = (X � r)Q, then P(r) = (r � r)Q(r) = 0. Conversely let

P(r) = 0. Taking B(X) = X � r in the division algorithm (Proposition 1.12),

we obtain P = (X � r)Q + R with R = 0 or deg R < deg(X � r) = 1.

Thus R is a constant polynomial, possibly 0. In any case we have 0 = P(r) =
(r � r)Q(r) + R(r), and thus R(r) = 0. Since R is constant, we must have

R = 0, and then P = (X � r)Q. �

Corollary 1.14. If P is a nonzero polynomial with coefficients in F and if
deg P = n, then P has at most n distinct roots.
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REMARKS. Since there are infinitely many scalars in any of Q and R and

C, the corollary implies that the function from F to F associated to P , namely
r ✏↵ P(r), cannot be identically 0 if P �= 0. Starting in Chapter IV, we shall

allow other F’s besides Q and R and C, and then this implication can fail. For
example, when F is the two-element “field” F = {0, 1} with 1+ 1 = 0 and with

otherwise the expected addition and multiplication, then P(X) = X2 + X is not

the zero polynomial but P(r) = 0 for r = 0 and r = 1. It is thus important to

distinguish polynomials in one indeterminate from their associated functions of

one variable.

PROOF. Let r1, . . . , rn+1 be distinct roots of P(X). By the Factor Theorem
(Corollary 1.13), X � r1 is a factor of P(X). We prove inductively on k that
the product (X � r1)(X � r2) · · · (X � rk) is a factor of P(X). Assume that this
assertion holds for k, so that P(X) = (X � r1) · · · (X � rk)Q(X) and

0 = P(rk+1) = (rk+1 � r1) · · · (rk+1 � rk)Q(rk+1).

Since the rj ’s are distinct, we must have Q(rk+1) = 0. By the Factor Theorem,

we can write Q(X) = (X � rk+1)R(X) for some polynomial R(X). Substitution
gives P(X) = (X�r1) · · · (X�rk)(X�rk+1)R(X), and (X�r1) · · · (X�rk+1)
is exhibited as a factor of P(X). This completes the induction. Consequently

P(X) = (X � r1) · · · (X � rn+1)S(X)

for some polynomial S(X). Comparing the degrees of the two sides, we find that
deg S = �1, and we have a contradiction. �

We can use the division algorithm in the same way as with the integers in

Sections 1–2 to obtain unique factorization. Within the set of integers, we defined

greatest common divisors so as to be positive, but their negatives would have

worked equally well. That flexibility persists with polynomials; the essential

feature of any greatest common divisor of polynomials is shared by any product

of that polynomial by a unit. A greatest common divisor of polynomials A and

B with B �= 0 is any polynomial D of maximum degree such that D divides A

and D divides B. We shall see that D is indeed unique up to multiplication by a

nonzero scalar.2

2For some purposes it is helpful to isolate one particular greatest common divisor by taking the

coefficient of the highest power of X to be 1.
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TheEuclidean algorithm is the iterative process thatmakes use of the division

algorithm in the form

A = BQ1 + R1, R1 = 0 or deg R1 < deg B,

B = R1Q2 + R2, R2 = 0 or deg R2 < deg R1,

R1 = R2Q3 + R3, R3 = 0 or deg R3 < deg R2,

...

Rn�2 = Rn�1Qn + Rn, Rn = 0 or deg Rn < deg Rn�1,

Rn�1 = RnQn+1.

In the above computation the integer n is defined by the conditions that Rn �= 0

and that Rn+1 = 0. Such an n must exist since deg B > deg R1 > · · · ⌦ 0. We
can now obtain an analog for F[X] of the result for Z given as Proposition 1.2.

Proposition 1.15. Let A and B be polynomials in F[X] with B �= 0, and let

R1, . . . , Rn be the remainders generated by the Euclidean algorithmwhen applied
to A and B. Then

(a) Rn is a greatest common divisor of A and B,

(b) any D1 that divides both A and B necessarily divides Rn ,

(c) the greatest common divisor of A and B is unique up to multiplication

by a nonzero scalar,

(d) any greatest common divisor D has the property that there exist polyno-

mials P and Q with AP + BQ = D.

PROOF. Conclusions (a) and (b) are proved in the same way that parts (a) and

(b) of Proposition 1.2 are proved, and conclusion (d) is proved with D = Rn in

the same way that Proposition 1.2c is proved.

If D is a greatest common divisor of A and B, it follows from (a) and (b) that

D divides Rn and that deg D = deg Rn . This proves (c). �

Using Proposition 1.15, we can prove analogs for F[X] of the two corollaries
of Proposition 1.2. But let us instead skip directly to what is needed to obtain an

analog for F[X] of unique factorization as in Theorem 1.5.

Lemma 1.16. If A and B are nonzero polynomials with coefficients in F and
if P is a prime polynomial such that P divides AB, then P divides A or P divides

B.

PROOF. If P does not divide A, then 1 is a greatest common divisor of A and

P , and Proposition 1.15d produces polynomials S and T such that AS+ PT = 1.

Multiplication by B gives ABS + PT B = B. Then P divides ABS because it

divides AB, and P divides PT B because it divides P . Hence P divides B. �
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Theorem1.17 (unique factorization). EverymemberofF[X] of degree⌦ 1 is a
product of primes. This factorization is unique up to order and up tomultiplication

of each prime factor by a unit, i.e., by a nonzero scalar.

PROOF. The existence follows in the same way as the existence in Theorem

1.5; induction on the integers is to be replaced by induction on the degree. The

uniqueness follows from Lemma 1.16 in the same way that the uniqueness in

Theorem 1.5 follows from Lemma 1.6. �

We turn to a consideration of properties of polynomials that take into account

special features of R and C. If F is R, then X2 + 1 is prime. The reason is that

a nontrivial factorization of X2 + 1 would have to involve two first-degree real

polynomials and then r2+1would have to be 0 for some real r , namely for r equal
to the root of either of the first-degree polynomials. On the other hand, X2 + 1

is not prime when F = C since X2 + 1 = (X + i)(X � i). The Fundamental
Theorem of Algebra, stated below, implies that every prime polynomial overC is
of degree 1. It is possible to prove the Fundamental Theorem of Algebra within

complex analysis as a consequence of Liouville’s Theorem or within real analysis

as a consequence of theHeine–Borel Theoremand other facts about compactness.

This text gives a proof of the Fundamental Theorem of Algebra in Chapter IX

using modern algebra, specifically Sylow theory as in Chapter IV and Galois

theory as in Chapter IX. One further fact is needed; this fact uses elementary

calculus and is proved below as Proposition 1.20.

Theorem 1.18 (Fundamental Theorem of Algebra). Any polynomial in C[X]
with degree ⌦ 1 has at least one root.

Corollary 1.19. Let P be a nonzero polynomial of degree n in C[X],
and let r1, . . . , rk be the distinct roots. Then there exist unique integers mj > 0

for 1  j  k such that P(X) is a scalar multiple of
⌘k

j=1 (X � rj )
mj . The

numbers mj have
⇣k

j=1mj = n.

PROOF. We may assume that deg P > 0. We apply unique factorization

(Theorem 1.17) to P(X). It follows from the Fundamental Theorem of Algebra
(Theorem 1.18) and the Factor Theorem (Corollary 1.13) that each prime polyno-

mial with coefficients in C has degree 1. Thus the unique factorization of P(X)
has to be of the form c

⌘n
l=1(X � zl) for some c �= 0 and for some complex

numbers zl that are unique up to order. The zl’s are roots, and every root is a zl by

the Factor Theorem. Grouping like factors proves the desired factorization and

its uniqueness. The numbers mj have
⇣k

j=1mj = n by a count of degrees. �

The integersmj in the corollary are called themultiplicities of the roots of the

polynomial P(X).
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We conclude this section by proving the result from calculus that will enter

the proof of the Fundamental Theorem of Algebra in Chapter IX.

Proposition 1.20. Any polynomial in R[X] with odd degree has at least one
root.

PROOF. Without loss of generality, we may take the leading coefficient to

be 1. Thus let the polynomial be P(X) = X2n+1 + a2n X
2n + · · · + a1X + a0 =

X2n+1 + R(X). Since limx↵±� P(x)/x2n+1 = 1, there is some positive r0 such

that P(�r0) < 0 and P(r0) > 0. By the Intermediate Value Theorem, given in

Section A3 of the appendix, P(r) = 0 for some r with �r0  r  r0. �

4. Permutations and Their Signs

Let S be a finite nonempty set of n elements. A permutation of S is a one-one

function from S onto S. The elements might be listed as a1, a2, . . . , an , but it
will simplify the notation to view them simply as 1, 2, . . . , n. We use ordinary
function notation for describing the effect of permutations. Thus the value of a

permutation ⌅ at j is ⌅ ( j), and the composition of ⇧ followed by ⌅ is ⌅ ⌃ ⇧ or
simply ⌅⇧ , with (⌅⇧ )( j) = ⌅ (⇧ ( j)). Composition is automatically associative,
i.e., (⇤⌅ )⇧ = ⇤(⌅⇧ ), because the effect of both sides on j , when we expand

things out, is ⇤(⌅ (⇧ ( j))). The composition of two permutations is also called
their product.

The identity permutation will be denoted by 1. Any permutation ⌅ , being
a one-one onto function, has a well-defined inverse permutation ⌅�1 with the
property that ⌅⌅�1 = ⌅�1⌅ = 1. One way of describing concisely the effect

of a permutation is to list its domain values and to put the corresponding range

values beneath them. Thus ⌅ =
⇧
1 2 3 4 5

4 3 5 1 2

⌃
is the permutation of {1, 2, 3, 4, 5}

with ⌅ (1) = 4, ⌅ (2) = 3, ⌅ (3) = 5, ⌅ (4) = 1, and ⌅ (5) = 2. The inverse

permutation is obtained by interchanging the two rows to obtain

⇧
4 3 5 1 2

1 2 3 4 5

⌃
and

then adjusting the entries in the rows so that the first row is in the usual order:

⌅�1 =
⇧
1 2 3 4 5

4 5 2 1 3

⌃
.

If 2  k  n, a k-cycle is a permutation ⌅ that fixes each element in some
subset of n� k elements and moves the remaining elements c1, . . . , ck according
to ⌅ (c1) = c2, ⌅ (c2) = c3, . . . , ⌅ (ck�1) = ck , ⌅ (ck) = c1. Such a cycle may be

denoted by (c1 c2 · · · ck�1 ck) to stress its structure. For example take n = 5;

then ⌅ = (2 3 5) is the 3-cycle given in our earlier notation by

⇧
1 2 3 4 5

1 3 5 4 2

⌃
.
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The cycle (2 3 5) is the same as the cycle (3 5 2) and the cycle (5 2 3). It is
sometimes helpful to speak of the identity permutation 1 as the unique 1-cycle.

A system of cycles is said to be disjoint if the sets that each of them moves

are disjoint in pairs. Thus (2 3 5) and (1 4) are disjoint, but (2 3 5) and (1 3)
are not. Any two disjoint cycles ⌅ and ⇧ commute in the sense that ⌅⇧ = ⇧⌅ .

Proposition 1.21. Any permutation ⌅ of {1, 2, . . . , n} is a product of disjoint
cycles. The individual cycles in the decomposition are unique in the sense of

being determined by ⌅ .

EXAMPLE.

⇧
1 2 3 4 5

4 3 5 1 2

⌃
= (2 3 5)(1 4).

PROOF. Let us prove existence. Working with {1, 2, . . . , n}, we show that any
⌅ is the disjoint product of cycles in such a way that no cycle moves an element
j unless ⌅ moves j . We do so for all ⌅ simultaneously by induction downward
on the number of elements fixed by ⌅ . The starting case of the induction is that
⌅ fixes all n elements. Then ⌅ is the identity, and we are regarding the identity
as a 1-cycle.

For the inductive step suppose ⌅ fixes the elements in a subset T of r el-

ements of {1, 2, . . . , n} with r < n. Let j be an element not in T , so that

⌅ ( j) �= j . Choose k as small as possible so that some element is repeated

among j, ⌅ ( j), ⌅ 2( j), . . . , ⌅ k( j). This condition means that ⌅ l( j) = ⌅ k( j) for
some l with 0  l < k. Then ⌅ k�l( j) = j , and we obtain a contradiction to

the minimality of k unless k � l = k, i.e., l = 0. In other words, we have

⌅ k( j) = j . We may thus form the k-cycle � = ( j ⌅ ( j) ⌅ 2( j) ⌅ k�1( j)). The
permutation ��1⌅ then fixes the r + k elements of T U , where U is the set of

elements j, ⌅ ( j), ⌅ 2( j), . . . , ⌅ k�1( j). By the inductive hypothesis, ��1⌅ is the
product ⇧1 · · · ⇧p of disjoint cycles that move only elements not in T U . Since
� moves only the elements inU , � is disjoint from each of ⇧1, . . . , ⇧p. Therefore
⌅ = � ⇧1 · · · ⇧p provides the required decomposition of ⌅ .
For uniqueness we observe from the proof of existence that each element

j generates a k-cycle Cj for some k ⌦ 1 depending on j . If we have two

decompositions as in the proposition, then the cycle within each decomposition

that contains j must be Cj . Hence the cycles in the two decompositions must

match. �

A 2-cycle is often called a transposition. The proposition allows us to see

quickly that any permutation is a product of transpositions.

Corollary 1.22. Any k-cycle ⌅ permuting {1, 2, . . . , n} is a product of k � 1
transpositions if k > 1. Therefore any permutation ⌅ of {1, 2, . . . , n} is a product
of transpositions.
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PROOF. For the first statement, we observe that (c1 c2 · · · ck�1 ck) =
(c1 ck)(c1 ck�1) · · · (c1 c3)(c1 c2). The second statement follows by combining
this fact with Proposition 1.21. �

Our final tasks for this section are to attach a sign to each permutation and to

examine the properties of these signs. We begin with the special case that our

underlying set S is {1, . . . , n}. If ⌅ is a permutation of {1, . . . , n}, consider the
numerical products

◆

1 j<k n
|⌅ (k)� ⌅ ( j)| and

◆

1 j<k n
(⌅ (k)� ⌅ ( j)).

If (r, s) is any pair of integers with 1  r < s  n, then the expression s � r

appears once and only once as a factor in the first product. Therefore the first

product is independent of ⌅ and equals
⌘
1 j<k n (k � j). Meanwhile, each

factor of the second product is ±1 times the corresponding factor of the first
product. Therefore we have

◆

1 j<k n
(⌅ (k)� ⌅ ( j)) = (sgn ⌅ )

◆

1 j<k n
(k � j),

where sgn ⌅ is +1 or �1, depending on ⌅ . This sign is called the sign of the
permutation ⌅ .

Lemma1.23. Let⌅ be apermutationof {1, . . . , n}, let (a b)be a transposition,
and form the product ⌅ (a b). Then sgn

�
⌅ (a b)

⇥
= � sgn ⌅ .

PROOF. For the pairs ( j, k) with j < k, we are to compare ⌅ (k)� ⌅ ( j) with
⌅ (a b)(k) � ⌅ (a b)( j). There are five cases. Without loss of generality, we
may assume that a < b.

Case 1. If neither j nor k equals a or b, then ⌅ (a b)(k) � ⌅ (a b)( j) =
⌅ (k) � ⌅ ( j). Thus such pairs ( j, k) make the same contribution to the product
for ⌅ (a b) as to the product for ⌅ , and they can be ignored.
Case 2. If one of j and k equals one of a and b while the other does not, there

are three situations of interest. For eachwe compare the contributions of two such

pairs together. The first situation is that of pairs (a, t) and (t, b) with a < t < b.

These together contribute the factors (⌅ (t) � ⌅ (a)) and (⌅ (b) � ⌅ (t)) to the
product for ⌅ , and they contribute the factors (⌅ (t) � ⌅ (b)) and (⌅ (a) � ⌅ (t))
to the product for ⌅ (a b). Since

(⌅ (t)� ⌅ (a))(⌅ (b)� ⌅ (t)) = (⌅ (t)� ⌅ (b))(⌅ (a)� ⌅ (t)),

the pairs together make the same contribution to the product for ⌅ (a b) as to the
product for ⌅ , and they can be ignored.
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Case 3. Continuingwithmatters as in Case 2, we next consider pairs (a, t) and
(b, t) with a < b < t . These together contribute the factors (⌅ (t) � ⌅ (a)) and
(⌅ (t)� ⌅ (b)) to the product for ⌅ , and they contribute the factors (⌅ (t)� ⌅ (b))
and (⌅ (t)� ⌅ (a)) to the product for ⌅ (a b). Since

(⌅ (t)� ⌅ (a))(⌅ (t)� ⌅ (b)) = (⌅ (t)� ⌅ (b))(⌅ (t)� ⌅ (a)),

the pairs together make the same contribution to the product for ⌅ (a b) as to the
product for ⌅ , and they can be ignored.
Case 4. Still with matters as in Case 2, we consider pairs (t, a) and (t, b) with

t < a < b. Arguing as in Case 3, we are led to an equality

(⌅ (a)� ⌅ (t))(⌅ (b)� ⌅ (t)) = (⌅ (b)� ⌅ (t))(⌅ (a)� ⌅ (t)),

and these pairs can be ignored.

Case 5. Finally we consider the pair (a, b) itself. It contributes ⌅ (b)� ⌅ (a)
to the product for ⌅ , and it contributes ⌅ (a) � ⌅ (b) to the product for ⌅ (a b).
These are negatives of one another, and we get a net contribution of one minus

sign in comparing our two product formulas. The lemma follows. �

Proposition 1.24. The signs of permutations of {1, 2, . . . , n} have the follow-
ing properties:

(a) sgn 1 = +1,
(b) sgn ⌅ = (�1)k if ⌅ can be written as the product of k transpositions,
(c) sgn(⌅⇧ ) = (sgn ⌅ )(sgn ⇧ ),
(d) sgn(⌅�1) = sgn ⌅ .

PROOF. Conclusion (a) is immediate from the definition. For (b), let ⌅ =
⇧1 · · · ⇧k with each ⇧j equal to a transposition. We apply Lemma 1.23 recursively,
using (a) at the end:

sgn(⇧1 · · · ⇧k) = (�1) sgn(⇧1 · · · ⇧k�1) = (�1)2 sgn(⇧1 · · · ⇧k�2)
= · · · = (�1)k�1 sgn ⇧1 = (�1)k sgn 1 = (�1)k .

For (c), Corollary1.22 shows that any permutation is the product of transpositions.

If ⌅ is the product of k transpositions and ⇧ is the product of l transpositions, then
⌅⇧ is manifestly the product of k + l transpositions. Thus (c) follows from (b).

Finally (d) follows from (c) and (a) by taking ⇧ = ⌅�1. �

Our discussion of signs has so far attached signs only to permutations of

S = {1, 2, . . . , n}. If we are given some other set S� of n elements and we want to
adapt our discussion of signs so that it applies to permutations of S�, we need
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to identify S with S�, say by a one-one onto function ⌥ : S ↵ S�. If ⌅ is a

permutationof S�, then⌥�1⌅⌥ is a permutationof S, andwe can define sgn⌥(⌅ ) =
sgn(⌥�1⌅⌥). The question is whether this definition is independent of ⌥.

Fortunately the answer is yes, and the proof is easy. Suppose that ⌃ : S↵ S�

is a second one-one onto function, so that sgn⌃(⌅ ) = sgn(⌃�1⌅⌃). Then

⌥�1⌃ = ⇧ is a permutation of {1, 2, . . . , n}, and (c) and (d) in Proposition 1.24
give

sgn⌃(⌅ ) = sgn(⌃�1⌅⌃) = sgn(⌃�1⌥⌥�1⌅⌥⌥�1⌃)

= sgn(⇧�1) sgn(⌥�1⌅⌥) sgn(⇧ ) = sgn(⇧ ) sgn⌥(⌅ ) sgn(⇧ ) = sgn⌥(⌅ ).

Consequently the definition of signs of permutations of {1, 2, . . . , n} can be
carried over to give a definition of signs of permutations of any finite nonempty set

of n elements, and the resulting signs are independent of the way we enumerate

the set. The conclusions of Proposition 1.24 are valid for this extended definition

of signs of permutations.

5. Row Reduction

This section and the next review row reduction and matrix algebra for rational,

real, and complex matrices. As in Section 3 let F denote Q or R or C. The
members of F are called scalars.
The term “row reduction” refers to the main part of the algorithm used for

solving simultaneous systems of algebraic linear equations with coefficients in

F. Such a system is of the form

a11x1 + a12x2 + · · · + a1nxn = b1,

...

ak1x1 + ak2x2 + · · · + aknxn = bk,

where the ai j and bi are known scalars and the xj are the unknowns, or variables.

The algorithm makes repeated use of three operations on the equations, each of

whichpreserves the set of solutions (x1, . . . , xn)because its inverse is an operation
of the same kind:

(i) interchange two equations,

(ii) multiply an equation by a nonzero scalar,

(iii) replace an equation by the sumof it and amultiple of some other equation.
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The repeated writing of the variables in carrying out these steps is tedious and

unnecessary, since the steps affect only the known coefficients. Instead, we can

simply work with an array of the form

⌦

�
a11

ak1

a12

ak2

· · ·
. . .

· · ·

a1n

akn

b1
...
bk

↵

� .

The individual scalars appearing in the array are called entries. The above

operations on equations correspond exactly to operations on the rows3 of the

array, and they become

(i) interchange two rows,

(ii) multiply a row by a nonzero scalar,

(iii) replace a row by the sum of it and a multiple of some other row.

Any operation of these types is called an elementary row operation. The vertical

line in the array is handy from one point of view in that it separates the left sides

of the equations from the right sides; if we have more than one set of right sides,

we can include all of them to the right of the vertical line and thereby solve all

the systems at the same time. But from another point of view, the vertical line is

unnecessary since it does not affect which operation we perform at a particular

time. Let us therefore drop it, abbreviating the system as

� a11

ak1

a12

ak2

· · ·
. . .

· · ·

a1n

akn

b1
...
bk

 
.

The main step in solving the system is to apply the three operations in succes-

sion to the array to reduce it to a particularly simple form. An array with k rows

and m columns4 is in reduced row-echelon form if it meets several conditions:

• Each member of the first l of the rows, for some l with 0  l  k, has at

least one nonzero entry, and the other rows have all entries 0.

• Each of the nonzero rows has 1 as its first nonzero entry; let us say that

the i th nonzero row has this 1 in its j (i)th entry.
• The integers j (i) are to be strictly increasing as a function of i , and the
only entry in the j (i)th column that is nonzero is to be the one in the i th

row.

Proposition 1.25. Any array with k rows and m columns can be transformed

into reduced row-echelon form by a succession of steps of types (i), (ii), (iii).

3 “Rows” are understood to be horizontal, while “columns” are vertical.
4In the above displayed matrix, the array has m = n + 1 columns.
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In fact, the transformation in the proposition is carried out by an algorithm

known as the method of row reduction of the array. Let us begin with an

example, indicating the particular operation at each stage by a label over an arrow

✏↵. To keep the example from being unwieldy, we consolidate steps of type (iii)

into a single step when the “other row” is the same.

EXAMPLE. In this example, k = m = 4. Row reduction gives
⌦

��

0 0 2 7

1 �1 1 1

�1 1 �4 5

�2 2 �5 4

↵

✏�
(i)✏↵

⌦

��

1 �1 1 1

0 0 2 7

�1 1 �4 5

�2 2 �5 4

↵

✏�
(iii)✏↵

⌦

��

1 �1 1 1

0 0 2 7

0 0 �3 6

0 0 �3 6

↵

✏�

(ii)✏↵

⌦

��

1 �1 1 1

0 0 1 7
2

0 0 �3 6

0 0 �3 6

↵

✏�
(iii)✏↵

⌦

���

1 �1 0 � 5
2

0 0 1 7
2

0 0 0 33
2

0 0 0 33
2

↵

✏✏�
(ii)✏↵

⌦

��

1 �1 0 � 5
2

0 0 1 7
2

0 0 0 1

0 0 0 33
2

↵

✏�

(iii)✏↵

⌦

��

1 �1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

↵

✏� .

The final matrix here is in reduced row-echelon form. In the notation of the

definition, the number of nonzero rows in the reduced row-echelon form is l = 3,

and the integers j (i) are j (1) = 1, j (2) = 3, and j (3) = 4.

The example makes clear what the algorithm is that proves Proposition 1.25.

We find the first nonzero column, apply an interchange (an operation of type (i))

if necessary to make the first entry in the column nonzero, multiply by a nonzero

scalar to make the first entry 1 (an operation of type (ii)), and apply operations of

type (iii) to eliminate the other nonzero entries in the column. Then we look for

the next column with a nonzero entry in entries 2 and later, interchange to get the

nonzero entry into entry 2 of the column, multiply to make the entry 1, and apply

operations of type (iii) to eliminate the other entries in the column. Continuing

in this way, we arrive at reduced row-echelon form.

In the general case, as soon as our array, which containsboth sides of our system

of equations, has been transformed into reduced row-echelon form, we can read

off exactly what the solutions are. It will be handy to distinguish two kinds of

variables among x1, . . . , xn without including any added variables xn+1, . . . , xm
in either of the classes. The corner variables are those xj ’s for which j is n and

is some j (i) in the definition of “reduced row-echelon form,” and the other xj ’s
with j  n will be called independent variables. Let us describe the last steps

of the solution technique in the setting of an example. We restore the vertical line

that separated the data on the two sides of the equations.
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EXAMPLE. We consider what might happen to a certain system of 4 equations

in 4 unknowns. Putting the data in place for the right side makes the array have 4

rows and 5 columns. We transform the array into reduced row-echelon form and

suppose that it comes out to be

⌦

��

1

0

0

0

�1
0

0

0

0

1

0

0

0

0

1

0

1

2

3

1 or 0

↵

✏� .

If the lower right entry is 1, there are no solutions. In fact, the last row corresponds

to an equation 0 = 1, which announces a contradiction. More generally, if any

row of 0’s to the left of the vertical line is equal to something nonzero, there are

no solutions. In other words, there are no solutions to a system if the reduced

row-echelon form of the entire array has more nonzero rows than the reduced

row-echelon form of the part of the array to the left of the vertical line.

On the other hand, if the lower right entry is 0, then there are solutions. To see

this, we restore the reduced array to a system of equations:

x1 � x2 = 1,

x3 = 2,

x4 = 3;

we move the independent variables (namely x2 here) to the right side to obtain

x1 = 1+ x2,

x3 = 2,

x4 = 3;

and we collect everything in a tidy fashion as

⌦

��

x1
x2
x3
x4

↵

✏� =

⌦

��

1

0

2

3

↵

✏�+ x2

⌦

��

1

1

0

0

↵

✏� .

The independent variables are allowed to take on arbitrary values, and we have

succeeded in giving a formula for the solution that corresponds to an arbitrary set

of values for the independent variables.

The method in the above example works completely generally. We obtain

solutions whenever each row of 0’s to the left of the vertical line is matched by

a 0 on the right side, and we obtain no solutions otherwise. In the case that we are
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solving several systems with the same left sides, solutions exist for each of the

systems if the reduced row-echelon form of the entire array has the same number

of nonzero rows as the reduced row-echelon form of the part of the array to the

left of the vertical line.

Let us record some observations about themethod for solving systems of linear

equations and then some observations about the method of row reduction itself.

Proposition 1.26. In the solution process for a system of k linear equations in

n variables with the vertical line in place,

(a) the sum of the number of corner variables and the number of independent

variables is n,

(b) the number of corner variables equals the number of nonzero rows on the

left side of the vertical line and hence is  k,

(c) when solutions exist, they are of the form

column + independent

variable
⇤ column + · · · + independent

variable
⇤ column

in such a way that each independent variable xj is a free parameter in F,
the column multiplying xj has a 1 in its j

th entry, and the other columns

have a 0 in that entry,

(d) a homogeneous system, i.e., one with all right sides equal to 0, has

a nonzero solution if the number k of equations is < the number n of

variables,

(e) the solutions of an inhomogeneous system, i.e., one in which the right

sides are not necessarily all 0, are all given by the sumof any one particular

solution and an arbitrary solution of the corresponding homogeneous

system.

PROOF. Conclusions (a), (b), and (c) follow immediately by inspection of

the solution method. For (d), we observe that no contradictory equation can

arise when the right sides are 0 and, in addition, that there must be at least one

independent variable by (a) since (b) shows that the number of corner variables

is  k < n. Conclusion (e) is apparent from (c), since the first column in the

solution written in (c) is a column of 0’s in the homogeneous case. �

Proposition 1.27. For an array with k rows and n columns in reduced row-

echelon form,

(a) the sum of the number of corner variables and the number of independent

variables is n,

(b) the number of corner variables equals the number of nonzero rows and

hence is  k,
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(c) when k = n, either the array is of the form

⌦

�����

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
. . .

0 0 0 · · · 1

↵

✏✏✏✏�

or else it has a row of 0’s.

PROOF. Conclusions (a) and (b) are immediate by inspection. In (c), failure of

the reduced row-echelon form to be as indicated forces there to be some noncorner

variable, so that the number of corner variables is < n. By (b), the number of

nonzero rows is < n, and hence there is a row of 0’s. �

One final comment: For the special case of n equations in n variables, some

readers may be familiar with a formula known as “Cramer’s rule” for using

determinants to solve the systemwhen the determinant of the array of coefficients

on the left side of the vertical line is nonzero. Determinants, including their

evaluation, and Cramer’s rule will be discussed in Chapter II. The point to make

for current purposes is that the use of Cramer’s rule for computation is, for n

large, normally a more lengthy process than the method of row reduction. In fact,

Problem 13 at the end of this chapter shows that the number of steps for solving

the system via row reduction is at most a certain multiple of n3. On the other

hand, the typical number of steps for solving the system by rote application of

Cramer’s rule is approximately a multiple of n4.

6. Matrix Operations

A rectangular array of scalars (i.e., members of F) with k rows and n columns
is called a k-by-n matrix. More precisely a k-by-n matrix over F is a function
from {1, . . . , k}⇤ {1, . . . , n} to F. The expression “k-by-n” is called the size of
the matrix. The value of the function at the ordered pair (i, j) is often indicated
with subscript notation, such as ai j , rather than with the usual function notation

a(i, j). It is called the (i, j)th entry. Two matrices are equal if they are the
same function on ordered pairs; this means that they have the same size and their

corresponding entries are equal. A matrix is called square if its number of rows

equals its number of columns. A square matrix with all entries 0 for i �= j is

called diagonal, and the entries with i = j are the diagonal entries.

As the reader likely already knows, it is customary to write matrices in rectan-

gular patterns. By convention the first index always tells the number of the row

and the second index tells the number of the column. Thus a typical 2-by-3matrix
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is

⇧
a11 a12 a13
a21 a22 a23

⌃
. In the indication of the size of thematrix, here 2-by-3, the 2

refers to the number of rows and the 3 refers to the number of columns.

An n-dimensional row vector is a 1-by-n matrix, while a k-dimensional

column vector is a k-by-1 matrix. The set of all k-dimensional column vectors

is denoted by Fk . The set Fk is to be regarded as the space of all ordinary garden-
varietyvectors. For economyof space, booksoftenwrite suchvectorshorizontally

with entries separated by commas, for example as (c1, c2, c3), and it is extremely
important to treat such vectors as column vectors, not as row vectors, in order

to get matrix operations and the effect of linear transformations to correspond

nicely.5 Thus in this book, (c1, c2, c3) is to be regarded as a space-saving way of

writing the column vector

�
c1
c2
c3

 
.

If a matrix is denoted by some letter like A, its (i, j)th entry will typically be
denoted by Ai j . In the reverse direction, sometimes a matrix is assembled from

its individual entries, which may be expressions depending on i and j . If some

such expression ai j is given for each pair (i, j), then we denote the corresponding
matrix by [ai j ] i=1,...,k

j=1,...,n
, or simply by [ai j ] if there is no possibility of confusion.

Various operations are defined on matrices. Specifically let Mkn(F) be the
set of k-by-n matrices with entries in F, so that Mk1(F) is the same thing as Fk .
Addition of matrices is defined whenever two matrices have the same size, and it

is defined entry by entry; thus if A and B are inMkn(F), then A+B is themember

of Mkn(F) with (A + B)i j = Ai j + Bi j . Scalar multiplication on matrices is

defined entry by entry as well; thus if A is in Mkn(F) and c is in F, then cA is
the member of Mkn(F) with (cA)i j = cAi j . The matrix (�1)A is denoted by
�A. The k-by-n matrix with 0 in each entry is called a zero matrix. Ordinarily
it is denoted simply by 0; if some confusion is possible in a particular situation,

more precise notation will be introduced at the time. With these operations the

set Mkn(F) has the following properties:

(i) the operation of addition satisfies

(a) A + (B + C) = (A + B) + C for all A, B,C in Mkn(F) (associative
law),

(b) A + 0 = 0+ A = A for all A in Mkn(F),
(c) A + (�A) = (�A) + A = 0 for all A in Mkn(F),
(d) A + B = B + A for all A and B in Mkn(F) (commutative law);

5The alternatives are unpleasant. Either one is forced to write certain functions in the unnatural

notation x ✏↵ (x)f , or the correspondence is forced to involve transpose operations on frequent
occasions. Unhappily, books following either of these alternative conventions may be found.
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(ii) the operation of scalar multiplication satisfies

(a) (cd)A = c(d A) for all A in Mkn(F) and all scalars c and d,
(b) 1A = A for all A in Mkn(F) and for the scalar 1;

(iii) the two operations are related by the distributive laws

(a) c(A + B) = cA + cB for all A and B in Mkn(F) and for all scalars c,
(b) (c + d)A = cA + d A for all A in Mkn(F) and all scalars c and d.

Since addition and scalar multiplication are defined entry by entry, all of these

identities follow from the corresponding identities for members of F.
Multiplication of matrices is defined in such a way that the kind of system

of linear equations discussed in the previous section can be written as a matrix

equation in the form AX = B, where

A =

⌦

�
a11 · · · a1n

. . .

ak1 · · · akn

↵

� , X =

⌦

�
x1
...
xn

↵

� , and B =

⌦

�
b1
...
bk

↵

� .

More precisely if A is a k-by-m matrix and B is an m-by-n matrix, then the

product C = AB is the k-by-n matrix defined by

Ci j =
m✓

l=1
Ail Bl j .

The (i, j)th entry of C is therefore the product of the i th row of A and the j th

column of B.

Let us emphasize that the condition for a product AB to be defined is that

the number of columns of A should equal the number of rows of B. With this

definition the systemof equationsmentionedabove is indeedof the form AX = B.

Proposition 1.28. Matrix multiplication has the properties that

(a) it is associative in the sense that (AB)C = A(BC), provided that the
sizes match correctly, i.e., A is in Mkm(F), B is in Mmn(F), and C is in
Mnp(F),

(b) it is distributive over addition in the sense that A(B + C) = AB + AC

and (B + C)D = BD + CD if the sizes match correctly.

REMARK. Matrix multiplication is not necessarily commutative, even for

square matrices. For example,
⇤
1 0

0 0

⌅ ⇤
0 1

0 0

⌅
=
⇤
0 1

0 0

⌅
, while

⇤
0 1

0 0

⌅ ⇤
1 0

0 0

⌅
=

⇤
0 0

0 0

⌅
.
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PROOF. For (a), we have

((AB)C)i j =
⇣n

t=1 (AB)i tCt j =
⇣n

t=1
⇣m

s=1 Ais BstCt j

(A(BC))i j =
⇣m

s=1 Ais(BC)s j =
⇣m

s=1
⇣n

t=1 Ais BstCt j ,and

and these are equal. For the first identity in (b), we have

(A(B + C))i j =
⇣

l Ail(B + C)l j =
⇣

l Ail(Bl j + Cl j )

=
⇣

l Ail Bl j +
⇣

l AilCl j = (AB)i j + (AC)i j ,

and the second identity is proved similarly. �

We have already defined the zero matrix 0 of a given size to be the matrix

having 0 in each entry. Thismatrix has the property that 0A = 0 and B0 = 0 if the

sizes match properly. The n-by-n identity matrix, denoted by I or sometimes 1,

is defined to be the matrix with Ii j = ⇥i j , where ⇥i j is the Kronecker delta
defined by

⇥i j =
⌥
1 if i = j,

0 if i �= j.

In other words, the identity matrix is the square matrix of the form

I =

⌦

���

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1

↵

✏✏� .

It has the property that I A = A and BI = I whenever the sizes match properly.

Let A be an n-by-n matrix. We say that A is invertible and has the n-by-n

matrix B as inverse if AB = BA = I . If B and C are n-by-n matrices with

AB = I and CA = I , then associativity of multiplication (Proposition 1.28a)

implies that B = I B = (CA)B = C(AB) = C I = C . Hence an inverse for A

is unique if it exists. We write A�1 for this inverse if it exists. Inverses of n-by-n
matrices have the property that if A and D are invertible, then AD is invertible

and (AD)�1 = D�1A�1; moreover, if A is invertible, then A�1 is invertible and
its inverse is A.

The method of row reduction in the previous section suggests a way of com-

puting the inverse of a matrix. Suppose that A is a square matrix to be inverted

and we are seeking its inverse B. Then AB = I . Examining the definition of

matrix multiplication, we see that this matrix equation means that the product of

A and the first column of B equals the first column of I , the product of A and the

second column of B equals the second column of I , and so on. We can thus think
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of a column of B as the unknowns in a system of linear equations, the known

right sides being the entries of the column of the identity matrix. As the column

index varies, the left sides of these equations do not change, since they are always

given by A. So we can attempt to solve all of the systems (one for each column)

simultaneously. For example, to attempt to invert A =
⇧
1 2 3

4 5 6

7 8 10

⌃
, we set up

⌦

�
1

4

7

2

5

8

3

6

10

1

0

0

0

1

0

0

0

1

↵

� .

Imagine doing the row reduction. We can hope that the result will be of the form

⌦

�
1

0

0

0

1

0

0

0

1

-

-

-

-

-

-

-

-

-

↵

� ,

with the identity matrix on the left side of the vertical line. If this is indeed the

result, then the computation shows that the matrix on the right side of the vertical

line is the only possibility for A�1. But does A�1 in fact exist?
Actually, another question arises as well. According to Proposition 1.27c, the

other possibility in applying row reduction is that the left side has a row of 0’s.

In this case, can we deduce that A�1 does not exist? Or, to put it another way,
can we be sure that some row of the reduced row-echelon form has all 0’s on the

left side of the vertical line and something nonzero on the right side?

All of the answers to these questions are yes, and we prove them in a mo-

ment. First we need to see that elementary row operations are given by matrix

multiplications.

Proposition 1.29. Each elementary row operation is given by left multiplica-

tionby an invertiblematrix. The inversematrix is thematrixof another elementary

row operation.

REMARK. The square matrices giving these left multiplications are called

elementary matrices.

PROOF. For the interchange of rows i and j , the part of the elementary matrix

in the rows and columns with i or j as index is

i j

i

j

⇧
0 1

1 0

⌃
,

and otherwise the matrix is the identity. This matrix is its own inverse.
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For themultiplicationof the i th rowby a nonzero scalar c, thematrix is diagonal

with c in the i th diagonal entry andwith 1 in all other diagonal entries. The inverse

matrix is of this form with c�1 in place of c.
For the replacement of the i th row by the sum of the i th row and the product

of a times the j th row, the part of the elementary matrix in the rows and columns

with i or j as index is
i j

i

j

⇧
1 a

0 1

⌃
,

and otherwise the matrix is the identity. The inverse of this matrix is the same

except that a is replaced by �a. �

Theorem 1.30. The following conditions on an n-by-n square matrix A are

equivalent:

(a) the reduced row-echelon form of A is the identity,

(b) A is the product of elementary matrices,

(c) A has an inverse,

(d) the system of equations AX = 0 with X =
� x1

...
xn

 
has only the solution

X = 0.

PROOF. If (a) holds, choose a sequence of elementary row operations that

reduce A to the identity, and let E1, . . . , Er be the corresponding elementary
matrices given by Proposition 1.29. Then we have Er · · · E1A = I , and hence

A = E�11 · · · E�1r . The proposition says that each E�1j is an elementary matrix,

and thus (b) holds.

If (b) holds, then (c) holds because the elementary matrices are invertible and

the product of invertible matrices is invertible.

If (c) holds and if AX = 0, then X = I X = (A�1A)X = A�1(AX) =
A�10 = 0. Hence (d) holds.

If (d) holds, then the number of independent variables in the row reduction of

A is 0. Proposition 1.26a shows that the number of corner variables is n, and

parts (b) and (c) of Proposition 1.27 show that the reduced row-echelon form of

A is I . Thus (a) holds. �

Corollary 1.31. If the solution procedure for finding the inverse of a square

matrix A leads from (A | I ) to (I | X), then A is invertible and its inverse is X .
Conversely if the solution procedure leads to (R | Y ) and R has a row of 0’s, then
A is not invertible.

REMARK. Proposition 1.27c shows that this corollary addresses the only

possible outcomes of the solution procedure.
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PROOF. We apply the equivalence of (a) and (c) in Theorem 1.30 to settle the

existence or nonexistence of A�1. In the case that A�1 exists, we know that the
solution procedure has to yield the inverse. �

Corollary 1.32. Let A be a square matrix. If B is a square matrix such that

BA = I , then A is invertible and B is its inverse. If C is a square matrix such

that AC = I , then A is invertible with inverse C .

PROOF. Suppose BA = I . Let X be a column vector with AX = 0. Then

X = I X = (BA)X = B(AX) = B0 = 0. Since (d) implies (c) in Theorem

1.30, A is invertible.

Suppose AC = I . Applying the result of the previous paragraph to C , we

conclude that C is invertible with inverse A. Therefore A is invertible with

inverse C . �

7. Problems

1. What is the greatest common divisor of 9894 and 11058?

2. (a) Find integers x and y such that 11x + 7y = 1.

(b) How are all pairs (x, y) of integers satisfying 11x + 7y = 1 related to the

pair you found in (a)?

3. Let {an}n⌦1 be a sequence of positive integers, and let d be the largest integer
dividing all an . Prove that d is the greatest common divisor of finitely many of

the an .

4. Determine the integers n for which there exist integers x and y such that n divides

x + y � 2 and 2x � 3y � 3.
5. Let P(X) and Q(X) be the polynomials P(X) = X4 + X3 + 2X2 + X + 1 and

Q(X) = X5 + 2X3 + X in R[X].
(a) Find a greatest common divisor D(X) of P(X) and Q(X).

(b) Find polynomials A and B such that AP + BQ = D.

6. Let P(X) and Q(X) be polynomials in R[X]. Prove that if D(X) is a greatest

common divisor of P(X) and Q(X) inC[X], then there exists a nonzero complex
number c such that cD(X) is in R[X].

7. (a) Let P(X) be in R[X], and regard it as in C[X]. Applying the Fundamental
Theorem of Algebra and its corollary to P , prove that if zj is a root of P ,

then so is z̄ j , and zj and z̄ j have the same multiplicity.

(b) Deduce that any prime polynomial in R[X] has degree at most 2.
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8. (a) Suppose that a polynomial A(X) of degree > 0 in Q[X] has integer coef-
ficients and leading coefficient 1. Show that if p/q is a root of A(X) with

p and q integers such that GCD(p, q) = 1, then p/q is an integer n and n

divides the constant term of A(X).

(b) Deduce that X2 � 2 and X3 + X2 + 1 are prime in Q[X].

9. Reduce the fraction 8645/10465 to lowest terms.

10. Howmanydifferent patterns are there of disjoint cycle structures for permutations

of {1, 2, 3, 4}? Give examples of each, telling how many permutations there are
of each kind and what the signs are of each.

11. Prove for n ⌦ 2 that the number of permutations of {1, . . . , n} with sign �1
equals the number with sign +1.

12. Find all solutions X of the system AX = B when A =
⇧
1 2 3

4 5 6

7 8 9

⌃
and B is given

by

(a) B =
⇧
0

0

0

⌃
, (b) B =

⇧
5

3

2

⌃
, (c) B =

⇧
3

2

1

⌃
.

13. Suppose that a single step in the row reduction process means a single arithmetic

operation or a single interchange of two entries. Prove that there exists a constant

C such that any squarematrix can be transformed into reduced row-echelon form

in  Cn3 steps, the matrix being of size n-by-n.

14. Compute A + B and AB if A =
⇤
2 3

4 5

⌅
and B =

⇤
�4 8
�1 3

⌅
.

15. Prove that if A and B are square matrices with AB = BA, then (A + B)n is

given by the Binomial Theorem: (A + B)n =
⇣n

k=0
�
n
k

⇥
An�k Bk , where

�
n
k

⇥
is

the binomial coefficient n!/((n � k)!k!).

16. Find a formula for the nth power of

⇧
1 1 0

0 1 1

0 0 1

⌃
, n being a positive integer.

17. Let D be an n-by-n diagonal matrix with diagonal entries d1, . . . , dn , and let A

be an n-by-nmatrix. Compute AD and DA, and give a condition for the equality

AD = DA to hold.

18. Fix n, and let Ei j denote the n-by-n matrix that is 1 in the (i, j)th entry and

is 0 elsewhere. Compute the product Ekl Epq , expressing the result in terms of

matrices Ei j and instances of the Kronecker delta.

19. Verify that ifad�bc �= 0, then
⇤
a b

c d

⌅�1
= (ad�bc)�1

⇤
d �b
�c a

⌅
and that the sys-

tem
⇤
a b

c d

⌅ ⇤
x

y

⌅
=
⇤
p

q

⌅
has the unique solution

⇤
x

y

⌅
= (ad � bc)�1

⇤
dp�bq
aq�cp

⌅
.



32 I. Preliminaries about the Integers, Polynomials, and Matrices

20. Which of the following matrices A is invertible? For the invertible ones, find

A�1.

(a) A =
⇧
1 2 3

4 5 6

7 8 9

⌃
, (b) A =

⇧
1 2 3

4 5 6

7 8 10

⌃
, (c) A =

⇧
7 4 1

6 4 1

4 3 1

⌃
.

21. Can a square matrix with a row of 0’s be invertible? Why or why not?

22. Prove that if the product AB of two n-by-n matrices is invertible, then A and B

are invertible.

23. Let A be a square matrix such that Ak = 0 for some positive integer n. Prove

that I + A is invertible.

24. Give an example of a set S and functions f : S ↵ S and g : S ↵ S such that

the composition g ⌃ f is the identity function but neither f nor g has an inverse
function.

25. Give an example of two matrices, A of size 1-by-2 and B of size 2-by-1, such

that AB = I , I being the 1-by-1 identity matrix. Verify that BA is not the 2-by-2

identity matrix. Give a proof for these sizes that BA can never be the identity

matrix.

Problems 26–29 concern least common multiples. Let a and b be positive integers.

A commonmultiple of a and b is an integer N such that a and b both divide N . The

least commonmultiple of a and b is the smallest positive commonmultiple of a and

b. It is denoted by LCM(a, b).

26. Prove that a and b have a least common multiple.

27. If a has a prime factorization given by a = p
k1
1 · · · pkrr , prove that any positive

multiple M of a has a prime factorization given by a = p
m1
1 · · · pmr

r q
n1
1 · · · qnss ,

where q1, . . . , qs are primes not in the list p1, . . . , pr , where mj ⌦ kj for all j ,

and where nj ⌦ 0 for all j .
28. (a) Prove that if a = p

k1
1 · · · pkrr and b = p

l1
1 · · · plrr are expansions of a and b

as products of powers of r distinct primes p1, . . . , pr , then LCM(a, b) =
p
max(k1,l1)
1 · · · pmax(kr ,lr )r .

(b) Prove that if N is any common multiple of a and b, then LCM(a, b) divides

N .

(c) Deduce that ab = GCD(a, b) LCM(a, b).

29. If a1, . . . , at are positive integers, define their least common multiple to be the

smallest positive integer M such that each aj divides M . Give a formula for this

M in terms of expansions of a1, . . . , at as products of powers of distinct primes.



CHAPTER II

Vector Spaces over Q, R, and C

Abstract. This chapter introduces vector spaces and linear maps between them, and it goes on

to develop certain constructions of new vector spaces out of old, as well as various properties of

determinants.

Sections 1–2 define vector spaces, spanning, linear independence, bases, and dimension. The

sections make use of row reduction to establish dimension formulas for certain vector spaces

associated with matrices. They conclude by stressing methods of calculation that have quietly

been developed in proofs.

Section 3 relatesmatrices and linearmaps to each other, first in the case that the linearmap carries

column vectors to column vectors and then in the general finite-dimensional case. Techniques are

developed for working with the matrix of a linear map relative to specified bases and for changing

bases. The section concludes with a discussion of isomorphisms of vector spaces.

Sections 4–6 take up constructions of new vector spaces out of old ones, together with corre-

sponding constructions for linear maps. The four constructions of vector spaces in these sections

are those of the dual of a vector space, the quotient of two vector spaces, and the direct sum and

direct product of two or more vector spaces.

Section 7 introduces determinants of square matrices, together with their calculation and prop-

erties. Some of the results that are established are expansion in cofactors, Cramer’s rule, and the

value of the determinant of a Vandermonde matrix. It is shown that the determinant function is well

defined on any linear map from a finite-dimensional vector space to itself.

Section 8 introduces eigenvectors and eigenvalues for matrices, along with their computation.

Also, in this section the characteristic polynomial and the trace of a square matrix are defined, and

all these notions are reinterpreted in terms of linear maps.

Section 9 proves the existence of bases for infinite-dimensional vector spaces and discusses the

extent to which the material of the first eight sections extends from the finite-dimensional case to be

valid in the infinite-dimensional case.

1. Spanning, Linear Independence, and Bases

This chapter develops a theory of rational, real, and complex vector spaces. Many

readers will already be familiar with some aspects of this theory, particularly in

the case of the vector spaces Qn , Rn , and Cn of column vectors, where the tools

developed from row reduction allow one to introduce geometric notions and to

view geometrically the set of solutions to a set of linear equations. Thus we shall

33
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be brief about many of these matters, concentrating on the algebraic aspects of

the theory. Let F denote any of Q, R, or C. Members of F are called scalars.1
A vector space over F is a set V with two operations, addition carrying V ⇤V

into V and scalar multiplication carrying F ⇤ V into V , with the following

properties:

(i) the operation of addition, written +, satisfies
(a) v1 + (v2 + v3) = (v1 + v2) + v3 for all v1, v2, v3 in V (associative law),

(b) there exists an element 0 in V with v + 0 = 0+ v = v for all v in V ,
(c) to each v in V corresponds an element �v in V such that v + (�v) =

(�v) + v = 0,

(d) v1 + v2 = v2 + v1 for all v1 and v2 in V (commutative law);

(ii) the operation of scalar multiplication, written without a sign, satisfies

(a) a(bv) = (ab)v for all v in V and all scalars a and b,
(b) 1v = v for all v in V and for the scalar 1;

(iii) the two operations are related by the distributive laws

(a) a(v1 + v2) = av1 + av2 for all v1 and v2 in V and for all scalars a,
(b) (a + b)v = av + bv for all v in V and all scalars a and b.

It is immediate from these properties that

• 0 is unique (since 0⌘ = 0⌘ + 0 = 0),

• �v is unique (since (�v)⌘ = (�v)⌘ + 0 = (�v)⌘ + (v + (�v)) =
((�v)⌘ + v) + (�v) = 0+ (�v) = (�v)),

• 0v = 0 (since 0v = (0+ 0)v = 0v + 0v),
• (�1)v = �v (since 0 = 0v = (1+(�1))v = 1v+(�1)v = v+(�1)v),
• a0 = 0 (since a0 = a(0+ 0) = a0+ a0).

Members of V are called vectors.

EXAMPLES.

(1) V = Mkn(F), the space of all k-by-n matrices. The above properties of a
vector space over F were already observed in Section I.6. The vector space Fk of
all k-dimensional column vectors is the special case n = 1, and the vector space

F of scalars is the special case k = n = 1.

(2) Let S be any nonempty set, and let V be the set of all functions from S into

F. Define operations by ( f + g)(s) = f (s) + g(s) and (c f )(s) = c( f (s)). The
operations on the right sides of these equations are those in F, and the properties
of a vector space follow from the fact that they hold in F at each s.

1All the material of this chapter will ultimately be seen to work when F is replaced by any “field.”
This point will not be important for us at this stage, and we postpone considering it further until

Chapter IV.
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(3) More generally than in Example 2, let S be any nonempty set, let U be a

vector space over F, and let V be the set of all functions from S into U . Define

the operations as in Example 2, but interpret the operations on the right sides of

the defining equations as those inU . Then the properties of a vector space follow

from the fact that they hold in U at each s.

(4) Let V be any vector space over C, and restrict scalar multiplication to an
operation R⇤ V ✏ V . Then V becomes a vector space over R. In particular, C
is a vector space over R.
(5) Let V = F[X] be the set of all polynomials in one indeterminate with

coefficients in F, and define addition and scalar multiplication as in Section I.3.
Then V is a vector space.

(6) Let V be any vector space over F, and letU be any nonempty subset closed
under addition and scalar multiplication. ThenU is a vector space over F. Such a
subsetU is called a vector subspace of V ; sometimes one says simply subspace

if the context is unambiguous.2

(7) Let V be any vector space over F, and let U = {v�} be any subset of
V . A finite linear combination of the members of U is any vector of the form

c�1v�1 + · · · + c�nv�n with each c�j in F, each v�j in U , and n � 0. The linear
span of U is the set of all finite linear combinations of members of U . It is a

vector subspace of V and is denoted by span{v�}. By convention, span � = 0.

(8) Many vector subspaces arise in the context of some branch of mathematics

after some additional structure is imposed. For example let V be the vector

space of all functions from R3 into R, an instance of Example 2. The subset
U of continuous members of V is a vector subspace; the closure under addition

and scalar multiplication comes down to knowing that addition is a continuous

function from R3 ⇤ R3 into R3 and that scalar multiplication from R ⇤ R3
into R3 is continuous as well. Another example is the subset of twice continu-
ously differentiable members f of V satisfying the partial differential equation
�2 f

�x21
+ �2 f

�x22
+ �2 f

�x23
+ f = 0 on R3.

The associative and commutative laws in the definition of “vector space” imply

certain more complicated formulas of which the stated laws are special cases.

With associativity of addition, if n vectors v1, . . . , vn are given, then any way of
inserting parentheses into the expression v1+v2+· · ·+vn leads to the same result,
and a similar conclusion applies to the associativity-like formula a(bv) = (ab)v
for scalar multiplication. In the presence of associativity, the commutative law

for addition implies that v1 + v2 + · · · + vn = v� (1) + v� (2) + · · · + v� (n) for any

2The word “subspace” arises also in the context of metric spaces and more general topological

spaces, and the metric-topological notion of subspace is distinct from the vector notion of subspace.
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permutation of {1, . . . , n}. All these facts are proved by inductive arguments, and
the details are addressed in Problems 2–3 at the end of the chapter.

Let V be a vector space over F. A subset {v�} of V spans V or is a spanning
set for V if the linear span of {v�}, in the sense of Example 7 above, is all of V .
A subset {v�} is linearly independent if whenever a finite linear combination
c�1v�1 + · · · + c�nv�n equals the 0 vector, then all the coefficients must be 0:

c�1 = · · · = c�n = 0. By subtraction we see that in this case any equality of two

finite linear combinations

c�1v�1 + · · · + c�nv�n = d�1v�1 + · · · + d�nv�n

implies that the respective coefficients are equal: c�j = d�j for 1 ↵ j ↵ n.

A subset {v�} is a basis if it spans V and is linearly independent. In this case
each member of V has one and only one expansion as a finite linear combination

of the members of {v�}.

EXAMPLE. In Fn , the vectors

e1 =

⇣

��◆

1

0

0
...
0

⌘

�� , e2 =

⇣

��◆

0

1

0
...
0

⌘

�� , e3 =

⇣

��◆

0

0

1
...
0

⌘

�� , . . . , en =

⇣

��◆

0

0

0
...
1

⌘

��

form a basis of Fn called the standard basis of Fn .

Proposition 2.1. Let V be a vector space over F.
(a) If {v�} is a linearly independent subset of V that is maximal with respect to

the property of being linearly independent (i.e., has the property of being strictly

contained in no linearly independent set), then {v�} is a basis of V .
(b) If {v�} is a spanning set for V that is minimal with respect to the property

of spanning (i.e., has the property of strictly containing no spanning set), then

{v�} is a basis of V .
PROOF. For (a), let v be given. We are to show that v is in the span of {v�}.

Without loss of generality, we may assume that v is not in the set {v�} itself.
By the assumed maximality, {v�} ⇠ {v} is not linearly independent, and hence
cv + c�1v�1 + · · · + c�nv�n = 0 for some scalars c, c�1, . . . , c�n not all 0. Here

c = 0 since {v�} is linearly independent. Then v = �c�1c�1v�1�· · ·�c�1c�nv�n ,

and v is exhibited as in the linear span of {v�}.
For (b), suppose that c�1v�1 +· · ·+c�nv�n = 0 with c�1, . . . , c�n not all 0. Say

c�1 = 0. Thenwe can solve for v�1 and see that v�1 is a finite linear combination of

v�2, . . . , v�n . Substitution shows that any finite linear combination of the v�’s is a

finite linear combination of the v�’s other than v�1 , and we obtain a contradiction

to the assumed minimality of the spanning set. �
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Proposition 2.2. Let V be a vector space over F. If V has a finite spanning
set {v1, . . . , vm}, then any linearly independent set in V has ↵ m elements.

PROOF. It is enough to show that no subset of m + 1 vectors can be linearly

independent. Arguing by contradiction, suppose that {u1, . . . , un} is a linearly
independent set with n = m + 1. Write

u1 = c11v1 + c21v2 + · · · + cm1vm,

...

un = c1nv1 + c2nv2 + · · · + cmnvm .

The system of linear equations

c11x1 + · · · + c1nxn = 0,

...

cm1x1 + · · · + cmnxn = 0,

is a homogeneous systemof linear equationswithmore unknowns than equations,

and Proposition 1.26d shows that it has a nonzero solution (x1, . . . , xn). Then
we have

x1u1 + · · · + xnun = c11x1v1 + c21x1v2 + · · · + cm1x1vm

+ + +
· · · · · · · · ·
+ + +

c1nxnv1 + c2nxnv2 + · · · + cmnxnvm

= 0,

in contradiction to the assumed linear independence of {u1, . . . , un}. �

Corollary 2.3. If the vector space V has a finite spanning set {v1, . . . , vm},
then

(a) {v1, . . . , vm} has a subset that is a basis,
(b) any linearly independent set in V can be extended to a basis,

(c) V has a basis,

(d) any two bases have the same finite number of elements, necessarily↵ m.

REMARKS. In this case we say that V is finite-dimensional, and the number

of elements in a basis is called the dimension of V , written dim V . If V has no

finite spanning set, we say that V is infinite-dimensional. A suitable analog of

the conclusion in Corollary 2.3 is valid in the infinite-dimensional case, but the

proof is more complicated. We take up the infinite-dimensional case in Section 9.
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PROOF. By discarding elements of the set {v1, . . . , vm} one at a time if nec-
essary and by applying Proposition 2.1b, we obtain (a). For (b), we see from

Proposition 2.2 that the given linearly independent set has ↵ m elements. If we

adjoin elements to it one at a time so as to obtain larger linearly independent sets,

Proposition 2.2 shows that there must be a stage at which we can proceed no

further without violating linear independence. Proposition 2.1a then says that we

have a basis. For (c), we observe that (a) has already produced a basis. Any two

bases have the same number of elements, by two applications of Proposition 2.2,

and this proves (d). �

EXAMPLES. The vector space Mkn(F) of k-by-n matrices has dimension kn.
The vector space of all polynomials in one indeterminate is infinite-dimensional

because the subspace consisting of 0 and of all polynomials of degree ↵ n has

dimension n + 1.

Corollary 2.4. If V is a finite-dimensional vector space with dim V = n, then

any spanning set of n elements is a basis of V , and any linearly independent set

of n elements is a basis of V . Consequently any n-dimensional vector subspace

U of V coincides with V .

PROOF. These conclusions are immediate from parts (a) and (b) of Corollary

2.3 if we take part (d) into account. �

Corollary 2.5. If V is a finite-dimensional vector space and U is a vector

subspace of V , then U is finite-dimensional, and dimU ↵ dim V .

PROOF. Let {v1, . . . , vm} be a basis of V . According to Proposition 2.2, any
linearly independent set in U has ↵ m elements, being linearly independent in

V . We can thus choose a maximal linearly independent subset of U with ↵ m

elements, and Proposition 2.1a shows that the result is a basis of U . �

2. Vector Spaces Defined by Matrices

Let A be a member of Mkn(F), thus a k-by-n matrix. The row space of A is the
linear span of the rows of A, regarded as a vector subspace of the vector space of

all n-dimensional row vectors. The column space of A is the linear span of the

columns, regarded as a vector subspace of k-dimensional column vectors. The

null space of A is the vector subspace of n-dimensional column vectors v for
which Av = 0, where Av is the matrix product. The fact that this last space
is a vector subspace follows from the properties A(v1 + v2) = Av1 + Av2 and
A(cv) = c(Av) of matrix multiplication.



2. Vector Spaces Defined by Matrices 39

We can use matrix multiplication to view the matrix A as defining a function

v �✏ Av of Fn to Fk . This function satisfies the properties just listed,

A(v1 + v2) = Av1 + Av2 and A(cv) = c(Av),

and we shall consider further functions with these two properties starting in the

next section. In terms of this function, the null space of A is the set in the domain

Fn mapped to 0. Because of these same properties and because the product Aej
of A and the j th standard basis vector ej in Fn is the j th column of A, the column
space of A is the image of the function v �✏ Av as a subset of the range Fk .

Theorem 2.6. If A is in Mkn(F), then

dim(column space(A)) + dim(null space(A)) = #(columns of A) = n.

PROOF. Corollary 2.5 says that the null space is finite-dimensional, being a

vector subspace of Fn , and Corollary 2.3c shows that the null space has a basis,
say {v1, . . . , vr }. By Corollary 2.3b we can adjoin vectors vr+1, . . . , vn so that
{v1, . . . , vn} is a basis of Fn . If v is in Fn , we can expand v in terms of this basis
as v = c1v1 + · · · + cnvn . Application of A gives

Av= A(c1v1 + · · · + cnvn)=c1Av1 + · · · + cr Avr + cr+1Avr+1 + · · · + cn Avn

=cr+1Avr+1 + · · · + cn Avn.

Therefore the vectors Avr+1, . . . , Avn span the column space.
Let us see that they form a basis for the column space. Thus suppose that

cr+1Avr+1 + · · · + cn Avn = 0. Then A(cr+1vr+1 + · · · + cnvn) = 0, and

cr+1vr+1+· · ·+ cnvn is in the null space. Since {v1, . . . , vr } is a basis of the null
space, we have

cr+1vr+1 + · · · + cnvn = a1v1 + · · · + arvr

for suitable scalars a1, . . . , ar . Therefore

(�a1)v1 + · · · + (�ar )vr + cr+1vr+1 + · · · + cnvn = 0.

Since v1, . . . , vn are linearly independent, all the cj are 0. We conclude that
Avr+1, . . . , Avn are linearly independent and therefore form a basis of the column
space.

As a result, we have established in the identity r + (n � r) = n that n � r

can be interpreted as dim(column space(A)) and that r can be interpreted as
dim(null space(A)). The theorem follows. �
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Proposition 2.7. If A is in Mkn(F), then each elementary row operation on A
preserves the row space of A.

PROOF. Let the rows of A be r1, . . . , rk . Their span is unchanged if we
interchange two of them or multiply one of them by a nonzero scalar. If we

replace the row ri by ri + crj with j = i , then the span is unchanged since

airi + ajrj = ai (ri + crj ) + (aj � aic)rj

shows that any finite linear combination of the old rows is a finite linear combi-

nation of the new rows and since

bi (ri + crj ) + bjrj = biri + (bic + bj )rj

shows the reverse. �

Theorem 2.8. If A in Mkn(F) has reduced row-echelon form R, then

dim(row space(A)) = dim(row space(R))

= #(nonzero rows of R) = #(corner variables of R)

and

dim(null space(A)) = dim(null space(R)) = #(independent variables of R).

PROOF. The first equality in the first conclusion is immediate from Proposition

2.7, and the last equality of that conclusion is known from the method of row

reduction. To see the middle equality, we need to see that the nonzero rows of R

are linearly independent. Let these rows be r1, . . . , rt . For each i with 1 ↵ i ↵ t ,

the index of the first nonzero entry of ri was denoted by j (i) in Section I.5. That
entry has to be 1, and the other rows have to be 0 in that entry, by definition of

reduced row-echelon form. If a finite linear combination c1r1 + · · · + ctrt is 0,

then inspection of the j (i)th entry yields the equality ci = 0, and thuswe conclude

that all the coefficients are 0. This proves the desired linear independence.

The first equality in the second conclusion is by the solution procedure for ho-

mogeneous systems of equations in Section I.5; the set of solutions is unchanged

by each row operation. To see the second equality, we recall that the form of the

solution is as a finite linear combination of specific vectors, the coefficients being

the independent variables. What the second equality is asserting is that these

vectors form a basis of the space of solutions. We are thus to prove that they are

linearly independent. Let the independent variables be certain xj ’s, and let the

corresponding vectors be vj ’s. Then we know that the vector vj has j
th entry 1

and that all the other vectors have j th entry 0. If a finite linear combination of the

vectors is 0, then examination of the j th entry shows that the j th coefficient is 0.

The result follows. �
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Corollary 2.9. If A is in Mkn(F), then

dim(row space(A)) + dim(null space(A)) = #(columns of A) = n.

PROOF. We add the two formulas in Theorem 2.8 and see that

dim(row space(A)) + dim(null space(A))

equals the sum #(corner variables of R) + #(independent variables of R). Since
all variables are corner variables or independent variables, this sum is n, and the

result follows. �

Corollary 2.10. If A is in Mkn(F), then

dim(row space(A)) = dim(column space(A)).

REMARK. The common value of the dimension of the row space of A and the

dimension of the column space of A is called the rank of A. Some authors use

the separate terms “row rank” and “column rank” for the two sides, and then the

result is that these integers are equal.

PROOF. This follows by comparing Theorem 2.6 and Corollary 2.9. �

Although the above resultsmay seem to have an abstract sound at first, methods

of calculation for all the objects in question have quietly been carried along in

the proofs, with everything rooted in the method of row reduction. All the proofs

have in effect already been given that these methods of calculation do what they

are supposed to do. If A is in Mkn(F), the transpose of A, denoted by At , is the
member of Mnk(F) with entries (At)i j = Aji . In particular, the transpose of a

row vector is a column vector, and vice versa.

METHODS OF CALCULATION.

(1) Basis of the row space of A. Row reduce A, and use the nonzero rows of

the reduced row-echelon form.

(2) Basis of the column space of A. Transpose A, compute a basis of the row

space of At by Method 1, and transpose the resulting row vectors into column

vectors.

(3) Basis of the null space of A. Use the solution procedure for Av = 0 given

in Section I.5. The set of solutions is given as all finite linear combinations of

certain column vectors, the coefficients being the independent variables. The

column vectors that are obtained form a basis of the null space.

(4) Basis of the linear span of the column vectors v1, . . . , vn . Arrange the
columns into a matrix A. Then the linear span is the column space of A, and a

basis can be determined by Method 2.
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(5) Extension of a linearly independent set {v1, . . . , vr } of column vectors in
Fn to a basis ofFn . Arrange the columns into amatrix, transpose, and row reduce.
Adjoin additional row vectors, one for each independent variable, as follows: if

xj is an independent variable, then the row vector corresponding to xj is to be 1

in the j th entry and 0 elsewhere. Transpose these additional row vectors so that

they become column vectors, and these are vectors that may be adjoined to obtain

a basis.

(6) Shrinking of a set {v1, . . . , vr } of column vectors to a subset that is a
basis for the linear span of {v1, . . . , vr }. For each i with 0 ↵ i ↵ r , compute

di = dim(span{v1, . . . , vr }). Retain vi for i � 0 if di�1 < di , and discard vi
otherwise.

3. Linear Maps

In this section we discuss linear maps, first in the setting of functions from Fn to
Fk and then in the setting of functions between two vector spaces overF. Much of
the discussion will center on making computations for such functions by means

of matrices.

We have seen that any k-by-n matrix A defines a function L : Fn to Fk by
L(v) = Av and that this function satisfies

L(u + v) = L(u) + L(v),

L(cv) = cL(v),

for all u and v in Fn and all scalars c. A function L : Fn ✏ Fk satisfying these
two conditions is said to be linear, or F linear if the scalars need emphasizing.
Traditional names for such functions are linear maps, linear mappings, and

linear transformations.3 Thus matrices yield linear maps. Here is a converse.

Proposition 2.11. If L : Fn ✏ Fk is a linear map, then there exists a unique
k-by-n matrix A such that L(v) = Av for all v in Fn .
REMARK. The proof will show how to obtain the matrix A.

PROOF. For 1 ↵ j ↵ n, let ej be the j
th standard basis vector of Fn , having 1 in

its j th entry and 0’s elsewhere, and let the j th column of A be the k-dimensional

column vector L(ej ). If v is the column vector (c1, c2, . . . , cn), then

L(v) = L
�⇡n

j=1 cj ej
⇥

=
⇡n

j=1 L(cj ej )

=
⇡n

j=1 cj L(ej ) =
⇡n

j=1 cj ( j
th column of A).

3The term linear function is particularly appropriate when the emphasis is on the fact that a

certain function is linear. The term linear operator is used also, particularly when the context has

something to do with analysis.
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If L(v)i denotes the i
th entry of the column vector L(v), this equality says that

L(v)i =
⇡n

j=1 cj Ai j .

The right side is the i th entry of Av, and hence L(v) = Av. This proves existence.
For uniqueness we observe from the formula L(ej ) = Aej that the j

th column of

A has to be L(ej ) for each j , and therefore A is unique. �

In the special case of linearmaps fromFn toFk , the proof shows that two linear
maps that agree on the members of the standard basis are equal on all vectors.

We shall give a generalization of this fact as Proposition 2.13 below.

EXAMPLE 1. Let L : R2 ✏ R2 be rotation about the origin counterclockwise
through the angle ⇧ . Taking L to be defined geometrically, one finds from the

parallelogram rule for addition of vectors that L is linear. Computation shows

that L
⌃
1

0

⌥
=
⌃
cos ⇧

sin ⇧

⌥
and that L

⌃
0

1

⌥
=
⌃
� sin ⇧
cos ⇧

⌥
. Applying Proposition 2.11

and the prescription for forming thematrix A given in the proof of the proposition,

we see that L(v) =
⌃
cos ⇧ � sin ⇧
sin ⇧ cos ⇧

⌥
v for all v in R2.

We can add two linear maps L : Fn ✏ Fk and M : Fn ✏ Fk by adding their
values at corresponding points: (L + M)(v) = L(v) + M(v). In addition, we
can multiply a linear map by a scalar by multiplying its values. Then L + M

and cL are linear, and it follows that the set of linear maps from Fn to Fk is a
vector subspace of the vector space of all functions from Fn to Fk , hence is itself
a vector space. The customary notation for this vector space is HomF(Fn, Fk);
the symbol Hom refers to the validity of the rule L(u + v) = L(u) + L(v), and
the subscript F refers to the validity of the additional rule L(cv) = cL(v) for all
c in F.
If L corresponds to the matrix A and M corresponds to the matrix B, then

L + M corresponds to A + B and cL corresponds to cA. The next proposition

shows that composition of linear maps corresponds to multiplication of matrices.

Proposition 2.12. Let L : Fn ✏ Fm be the linear map corresponding to an
m-by-n matrix A, and let M : Fm ✏ Fk be the linear map corresponding to a
k-by-m matrix B. Then the composite function M ⌥ L : Fn ✏ Fk is linear, and
it corresponds to the k-by-n matrix BA.

PROOF. The function M ⌥ L satisfies (M ⌥ L)(u + v) = M(L(u + v)) =
M(Lu + Lv) = M(Lu) + M(Lv) = (M ⌥ L)(u) + (M ⌥ L)(v), and similarly it
satisfies (M ⌥ L)(cv) = c(M ⌥ L)(v). Therefore it is linear. The correspondence
of linear maps to matrices and the associativity of matrix multiplication together

give (M ⌥ L)(v) = M(L(v)) = (B)(Lv) = B(Av) = (BA)v, and therefore
M ⌥ L corresponds to BA. �
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Now let us enlarge the setting for our discussion, treating arbitrary linear maps

L : U ✏ V between vector spaces over F. We say that L : U ✏ V is linear, or

F linear, if
L(u + v) = L(u) + L(v),

L(cv) = cL(v),

for all u and v in U and all scalars c. As with the special case that U = Fn and
V = Fk , linear functions are called linear maps, linear mappings, and linear
transformations. The set of all linear maps L : U ✏ V is a vector space over F
and is denoted by HomF(U, V ). The following result is fundamental in working
with linear maps.

Proposition 2.13. Let U and V be vector spaces over F, and let � be a basis
of U . Then to each function � : � ✏ V corresponds one and only one linear

map L : U ✏ V whose restriction to � has L
⇧⇧
�

= �.

REMARK. We refer to L as the linear extension of �.

PROOF. Suppose that � : � ✏ V is given. Since � is a basis of U , each

element of U has a unique expansion as a finite linear combination of members

of �. Say that u = c�1u�1 + · · · + c�r u�r . Then the requirement of linearity

on L forces L(u) = L(c�1u�1 + · · · + c�r u�r ) = c�1L(u�1) + · · · + c�r L(u�r ),
and therefore L is uniquely determined. For existence, define L by this formula.

Expanding u and v in this way, we readily see that L(u + v) = L(u) + L(v) and
L(cu) = cL(u). Therefore � has a linear extension. �

The definition of linearity and the proposition just proved make sense even if

U and V are infinite-dimensional, but our objective for now will be to understand

linear maps in terms of matrices. Thus, until further notice at a point later in this

section, we shall assume thatU and V are finite-dimensional. Remarks about the

infinite-dimensional case appear in Section 9.

Since U and V are arbitrary finite-dimensional vector spaces, we no longer

have standard bases at hand, and thus we have no immediate way to associate a

matrix to a linear map L : U ✏ V . What we therefore do is fix arbitrary bases

of U and V and work with them. It will be important to have an enumeration of

each of these bases, and we therefore let

� = (u1, . . . , un)

� = (v1, . . . , vk)and

be ordered bases ofU and V , respectively.4 If a member u ofU may be expanded

4The notation (u1, . . . , un) for an ordered basis, with each uj equal to a vector, is not to be
confused with the condensed notation (c1, . . . , cn) for a single column vector, with each cj equal to
a scalar.
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in terms of � as u = c1u1 + · · · + cnun , we write

�
u

�

 
=

⇣

◆
c1
...
cn

⌘

 ,

calling this the column vector expressing u in the ordered basis �. Using our

linear map L : U ✏ V , let us define a k-by-n matrix

�
L

��

 
by requiring that

the

j th column of

�
L

��

 
be

�
L(uj )
�

 
.

The positions in which the ordered bases � and � are listed in the notation is
important here; the range basis is to the left of the domain basis.5

EXAMPLE 2. Let V be the space of all complex-valued solutions on R of the

differential equation y⌘⌘(t) = y(t). Then V is a vector subspace of functions,

hence is a vector space in its own right. It is known that V is 2-dimensional with

solutions c1e
t + c2e

�t . If y(t) is a solution, then differentiation of the equation
shows that y⌘(t) is another solution. In otherwords, the derivative operatord/dt is
a linearmap from V to itself. One ordered basis of V is� = (et , e�t), and another
is� = (cosh t, sinh t), where cosh t = 1

2
(et + e�t) and sinh t = 1

2
(et � e�t). To

find

�
d/dt
��

 
, we need to express (d/dt)(et) and (d/dt)(e�t) in terms of cosh t

and sinh t . We have
�

(d/dt)(et)
�

 
=
�
et

�

 
=
�
cosh t + sinh t

�

 
=
�
1

1

 

�
(d/dt)(e�t)

�

 
=
�
�e�t
�

 
=
�
� cosh t + sinh t

�

 
=
�
�1
1

 
.and

Therefore

�
d/dt
��

 
=
�
1 �1
1 1

 
.

Theorem 2.14. If L : U ✏ V is a linear map between finite-dimensional

vector spaces over F and if � and � are ordered bases of U and V , respectively,

then �
L(u)
�

 
=
�

L

��

 �
u

�

 

for all u in U .

5This order occurs in a number of analogous situations in mathematics and has the effect of

keeping the notation reasonably consistent with the notation for composition of functions.
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PROOF. The two sides of the identity in question are linear in u, and Proposition

2.13 shows that it is enough to prove the identity for the members u of some

ordered basis of U . We choose � as this ordered basis. For the basis vector

u equal to the j th member uj of �, use of the definition shows that

�
uj
�

 
is

the column vector ej that is 1 in the j
th entry and is 0 elsewhere. The product�

L

��

 
ej is the j

th column of

�
L

��

 
, which was defined to be

�
L(uj )
�

 
. Thus

the identity in question is valid for uj , and the theorem follows. �

If we take into account Proposition 2.13, saying that linear maps on U arise

uniquely from arbitrary functions on a basis of U , then Theorem 2.14 supplies

a one-one correspondence of linear maps L from U to V with matrices A of

the appropriate size, once we fix ordered bases in the domain and range. The

correspondence is L ⇣
�

L

��

 
.

As in the special case with linear maps between spaces of column vectors,

this correspondence respects addition and scalar multiplication. Theorem 2.14

implies that under this correspondence, the image of L corresponds to the column

space of A. It implies also that the vector subspace of the domainU with L(u) =
0, which is called the kernel of L and is sometimes denoted by ker L , corresponds

to the null space of A. The kernel of L has the important property that

the linear map L is one-one if and only if ker L = 0.

Another important property comes from this association of kernel with null space

and of image with column space. Namely, we apply Theorem 2.6, and we obtain

the following corollary.

Corollary 2.15. If L : U ✏ V is a linear map between finite-dimensional

vector spaces over F, then

dim(domain(L)) = dim(kernel(L)) + dim(image(L)).

The next result says that composition corresponds to matrix multiplication

under the correspondence of Theorem 2.14.

Theorem 2.16. Let L : U ✏ V and M : V ✏ W be linear maps between

finite-dimensional vector spaces, and let �, �, and ⇡ be ordered bases of U ,

V , and W . Then the composition ML is linear, and the corresponding matrix is

given by �
ML

⇡�

 
=
�
M

⇡�

 �
L

��

 
.
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PROOF. If u is in U , three applications of Theorem 2.14 and one application

of associativity of matrix multiplication give

�
ML

⇡�

 �
u

�

 
=
�
ML(u)

⇡

 
=
�
M

⇡�

 �
L(u)
�

 

=
�
M

⇡�

 ⌦�
L

��

 �
u

�

 ↵
=
⌦�

M

⇡�

 �
L

��

 ↵�
u

�

 
.

Taking u to be the j th member of �, we see from this equation that the j th column

of

�
ML

⇡�

 
equals the j th column of

�
M

⇡�

 �
L

��

 
. Since j is arbitrary, the

theorem follows. �

A computational device that appears at first to be only of theoretical interest

and then, when combined with other things, becomes of practical interest, is to

change one of the ordered bases in computing thematrix of a linearmap. A handy

device for this purpose is a change-of-basis matrix

�
I

��

 
since Theorem 2.16

gives

�
L

��

 
=
�

I

��

 �
L

��

 
.

EXAMPLE 2, CONTINUED. Let L be d/dt as a linear map carrying the space of
solutions of y⌘⌘(t) = y(t) to itself, with � = (et , e�t) and � = (cosh t, sinh t)

as before. Then

�
d/dt
��

 
=
�
1 0

0 �1

 
. Since et = cosh t + sinh t and e�t =

cosh t � sinh t ,
�

I

��

 
=
�
1 1

1 �1

 
by inspection. The product is

�
L

��

 
=

�
I

��

 �
d/dt
��

 
=
�
1 �1
1 1

 
, a result we found before with a little more effort

by computing matters directly.

Often in practical applications the domain and the range are the same vector

space, the domain’s ordered basis equals the range’s ordered basis, and the matrix

of a linear map is known in this ordered basis. The problem is to determine the

matrix when the ordered basis is changed in both domain and range—changed in

such a way that the ordered bases in the domain and range are the same. This time

we use two change-of-basis matrices

�
I

��

 
and

�
I

��

 
, but these are related.

Since

�
I

��

 �
I

��

 
=
�

I

��

 
= I , the two matrices are the inverses of one
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another. Thus, except for matrix algebra, the problem is to compute just one of�
I

��

 
and

�
I

��

 
.

Normally one of these two matrices can be written down by inspection. For

example, if we are working with a linear map from a space of column vectors

to itself, one ordered basis of interest is the standard ordered basis �. Another
ordered basis � might be determined by special features of the linear map. In

this case the members of � are given as column vectors, hence are expressed in

terms of �. Thus

�
I

��

 
can be written by inspection. We shall encounter this

situation later in this chapter when we use “eigenvectors” in order to understand

linear maps better. Here is an example, but without eigenvectors.

EXAMPLE 1, CONTINUED. We saw that rotation L counterclockwise about

the origin in R2 is given in the standard ordered basis � =
⌃ ⌃

1

0

⌥
,
⌃
0

1

⌥ ⌥
by

�
L

��

 
=
⌃
cos ⇧ � sin ⇧
sin ⇧ cos ⇧

⌥
. Let us compute thematrixof L in theorderedbasis� =

⌃ ⌃
1

0

⌥
,
⌃
1

1

⌥ ⌥
. The easy change-of-basis matrix to form is

�
I

��

 
=
�
1 1

0 1

 
.

Hence

�
L

��

 
=
�

I

��

 �
L

��

 �
I

��

 
=
�
1 1

0 1

 �1�
cos ⇧ � sin ⇧
sin ⇧ cos ⇧

 �
1 1

0 1

 
,

and the problem is reduced to one of matrix algebra.

Our computations have proved the following proposition, which, as we shall

see later, motivates much of Chapter V. The matrix C in the statement of the

proposition is

�
I

��

 
.

Proposition 2.17. Let L : V ✏ V be a linear map on a finite-dimensional

vector space, and let A be thematrix of L relative to an ordered basis� (in domain
and range). Then the matrix of L in any other ordered basis � is of the form

C�1AC for some invertible matrix C depending on �.

REMARK. If A is a squarematrix, any squarematrix of the formC�1AC is said
to be similar to A. It is immediate that “is similar to” is an equivalence relation.

Now let us return to the setting in which our vector spaces are allowed to be

infinite-dimensional. Two vector spaces U and V are said to be isomorphic if

there is a one-one linear map ofU onto V . In this case, the linear map in question

is called an isomorphism, and one often writes U �= V .
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Here is a finite-dimensional example: If U is n-dimensional with an ordered

basis � and V is k-dimensional with an ordered basis �, then HomF(U, V ) is
isomorphic to Mnk(F) by the linear map that carries a member L of HomF(U, V )

to the k-by-n matrix

�
L

��

 
.

The relation “is isomorphic to” is an equivalence relation. In fact, it is reflexive

since the identity map exhibits U as isomorphic to itself. It is transitive since

Theorem 2.16 shows that the composition ML of two linear maps L : U ✏ V

and M : V ✏ W is linear and since the composition of one-one onto functions

is one-one onto. To see that it is symmetric, we need to observe that the inverse

function L�1 of a one-one onto linear map L : U ✏ V is linear. To see this

linearity, we observe that L
�
L�1(v1)+L�1(v2)

⇥
= L(L�1(v1))+L(L�1(v2)) =

v1 + v2 = I (v1 + v2) = L
�
L�1(v1 + v2)

⇥
. Since L is one-one,

L�1(v1) + L�1(v2) = L�1(v1 + v2).

Similarly the facts that L(L�1(cv)) = cv = cL(L�1v) = L(c(L�1(v))) and that
L is one-one imply that

L�1(cv) = c(L�1(v)),

and hence L�1 is linear. Thus “is isomorphic to” is indeed an equivalence relation.
The vector spaces over F are partitioned, according to the basic result about

equivalence relations in Section A2 of the appendix, into equivalence classes.

Each member of an equivalence class is isomorphic to all other members of that

class and to no member of any other class.

An isomorphism preserves all the vector-space structure of a vector space.

Spanning sets are mapped to spanning sets, linearly independent sets are mapped

to linearly independent sets, vector subspaces are mapped to vector subspaces,

dimensions of subspaces are preserved, and so on. In otherwords, for all purposes

of abstract vector-space theory, isomorphic vector spaces may be regarded as the

same. Let us give a condition for isomorphism that might at first seem to trivialize

all vector-space theory, reducing it to a count of dimensions, but then let us return

to say why this result is not to be considered as so important.

Proposition 2.18. Two finite-dimensional vector spaces overF are isomorphic
if and only if they have the same dimension.

PROOF. If a vector space U is isomorphic to a vector space V , then the

isomorphism carries any basis of U to a basis of V , and henceU and V have the

same dimension. Conversely if they have the same dimension, let (u1, . . . , un)
be an ordered basis of U , and let (v1, . . . , vn) be an ordered basis of V . Define
�(uj ) = vj for 1 ↵ j ↵ n, and let L : U ✏ V be the linear extension of �
given by Proposition 2.13. Then L is linear, one-one, and onto, and hence U is

isomorphic to V . �
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The proposition does notmean that one should necessarily be eager tomake the

identificationof twovector spaces that are isomorphic. An important distinction is

the one between “isomorphic” and “isomorphic via a canonically constructed lin-

ear map.” The isomorphism of linear maps with matrices given by L �✏
�

L

��

 

is canonical since no choices are involved once � and � have been specified.

This is a useful isomorphism because we can track matters down and use the

isomorphism to make computations. On the other hand, it is not very useful to

say merely that HomF(U, V ) and Mkn(F) are isomorphic because they have the
same dimension.

What tends to happen in practice is that vector spaces in applications come

equipped with additional structure—some rigid geometry, or a multiplication

operation, or something else. A general vector-space isomorphism has little

chance of having any connection to the additional structure and thereby of being

very helpful. On the other hand, a concrete isomorphism that is built by taking

this additional structure into account may indeed be useful.

In the next section we shall encounter an example of an additional structure

that involves neither a rigid geometry nor a multiplication operation. We shall

introduce the “dual” V ⌘ of a vector space V , and we shall see that V and V ⌘ have
the same dimension if V is finite-dimensional. But no particular isomorphism

of V with V ⌘ is singled out as better than other ones, and it is wise not to try
to identify these spaces. By contrast, the double dual V ⌘⌘ of V , which too will
be constructed in the next section, will be seen to be isomorphic to V in the

finite-dimensional case via a linear map ⌃ : V ✏ V ⌘⌘ that we define explicitly.
The function ⌃ is an example of a canonical isomorphism that we might want to
exploit.

4. Dual Spaces

Let V be a vector space over F. A linear functional on V is a linear map from
V into F. The space of all such linear maps, as we saw in Section 3, is a vector
space. We denote it by V ⌘ and call it the dual space of V .
The development of Section 3 tells us right away how to compute the dual

space of the space of column vectors Fn . If� is the standard ordered basis of Fn
and if 1 denotes the basis of F consisting of the scalar 1, then we can associate to
a linear functional v⌘ on Fn its matrix

�
v⌘

1�

 
= ( v⌘(e1) v⌘(e2) · · · v⌘(en) ) ,

which is an n-dimensional row vector. The operation of v⌘ on a column vector
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v =
� x1

...
xn

✏
is given by Theorem 2.14. Namely, v⌘(v) is a multiple of the scalar 1,

and the theorem tells us how to compute this multiple:

�
v⌘(v)
1

 
=
�

v⌘

1�

 ⇣

◆
x1
...
xn

⌘

 = ( v⌘(e1) v⌘(e2) · · · v⌘(en) )

⇣

◆
x1
...
xn

⌘

 .

Thus the space of all linear functionals on Fn may be identified with the space of
all n-dimensional row vectors, and the effect of the row vector on a column vector

is given by matrix multiplication. Since the standard ordered basis of Fn and the
basis 1 of F are singled out as special, this identification is actually canonical,
and it is thus customary to make this identification without further comment.

For a more general vector space V , no natural way of writing down elements

of V ⌘ comes to mind. Indeed, if a concrete V is given, it can help considerably
in understanding V to have an identification of V ⌘ that does not involve choices.
For example, in real analysis one proves in a suitable infinite-dimensional setting

that a (continuous) linear functional on the space of integrable functions is given

by integration with a bounded function, and that fact simplifies the handling of

the space of integrable functions.

In any event, the canonical identification of linear functionals that we found

for Fn does not work once we pass to a more general finite-dimensional vector
space V . To make such an identification in the absence of additional structure,

we first fix an ordered basis (v1, . . . , vn) of V . If we do so, then V
⌘ is indeed

identified with the space of n-dimensional row vectors. The members of V ⌘ that
correspond to the standard basis of row vectors, i.e., the row vectors that are 1

in one entry and are 0 elsewhere, are of special interest. These are the linear

functionals v⌘i such that
v⌘i (vj ) = ⇤i j ,

where ⇤i j is the Kronecker delta. Since these standard row vectors form a basis of
the space of row vectors, (v⌘1, . . . , v

⌘
n) is an ordered basis of V

⌘. If the members
of the ordered basis (v1, . . . , vn) are permuted in some way, the members of
(v⌘1, . . . , v

⌘
n) are permuted in the same way. Thus the basis {v⌘1, . . . , v⌘n} depends

only on the basis {v1, . . . , vn}, not on the enumeration.6 The basis {v⌘1, . . . , v⌘n}
is called the dual basis of V relative to {v1, . . . , vn}. A consequence of this

discussion is the following result.

Proposition 2.19. If V is a finite-dimensional vector space with dual V ⌘, then
V ⌘ is finite-dimensional with dim V ⌘ = dim V .

6Although the enumeration is not important, more structure is present here than simply an

association of an unordered basis of V ⌘ to an unordered basis of V . Each member of {v⌘1, . . . , v⌘n} is
matched to a particular member of {v1, . . . , vn}, namely the one on which it takes the value 1.
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Linear functionals play an important role in working with a vector space. To

understand this role, it is helpful to think somewhat geometrically. Imagine the

problem of describing a vector subspace of a given vector space. One way of

describing it is from the inside, so to speak, by giving a spanning set. In this

case we end up by describing the subspace in terms of parameters, the parameters

being the scalar coefficients when we say that the subspace is the set of all finite

linear combinations of members of the spanning set. Another way of describing

the subspace is from the outside, cutting it down by conditions imposed on its

elements. These conditions tend to be linear equations, saying that certain linear

maps on the elements of the subspace give 0. Typically the subspace is then

described as the intersection of the kernels of some set of linear maps. Frequently

these linearmapswill be scalar-valued, and thenwe are in a situation of describing

the subspace by a set of linear functionals.

We know that every vector subspace of a finite-dimensional vector space V

can be described from the inside in this way; we merely give all its members. A

statementwithmore content is thatwe can describe itwith finitelymanymembers;

we can do so because we know that every vector subspace of V has a basis.

For linear functionals really to be useful, we would like to know a correspond-

ing fact about describing subspaces from the outside—that every vector subspace

U of a finite-dimensional V can be described as the intersection of the kernels of

a finite set of linear functionals. To do so is easy. We take a basis of the vector

subspace U , say {v1, . . . , vr }, extend it to a basis of V by adjoining vectors

vr+1, . . . , vn , and form the dual basis {v⌘1, . . . , v⌘n} of V ⌘. The subspaceU is then
described as the set of all vectors v in V such that v⌘j (v) = 0 for r + 1 ↵ j ↵ n.

The following proposition expresses this fact in ways that are independent of the

choice of a basis. It uses the terminology annihilator ofU , denoted by Ann(U),
for the vector subspace of all members v⌘ of V ⌘ with v⌘(u) = 0 for all u in U .

Proposition 2.20. Let V be a finite-dimensional vector space, and let U be a

vector subspace of V . Then

(a) dimU + dimAnn(U) = dim V ,

(b) every linear functional on U extends to a linear functional on V ,

(c) whenever v0 is a member of V that is not in U , there exists a linear

functional on V that is 0 on U and is 1 on v0.

PROOF. We retain the notation above, writing {v1, . . . , vr } for a basis of U ,
vr+1, . . . , vn for vectors that are adjoined to form a basis of V , and {v⌘1, . . . , v⌘n}
for the dual basis of V ⌘. For (a), we check that {v⌘r+1, . . . , v⌘n} is a basis ofAnn(U).
It is enough to see that they span Ann(U). These linear functionals are 0 on every
member of the basis {v1, . . . , vr } of U and hence are in Ann(U). On the other
hand, if v⌘ is a member of Ann(U), we can certainly write v⌘ = c1v

⌘
1+· · ·+ cnv

⌘
n
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for some scalars c1, . . . , cn . Since v⌘ is 0 on U , we must have v⌘(vi ) = 0 for

i ↵ r . Since v⌘(vi ) = ci , we obtain ci = 0 for i ↵ r . Therefore v⌘ is a linear
combination of v⌘r+1, . . . , v

⌘
n , and (a) is proved.

For (b), let us observe that the restrictions v⌘1
⇧⇧
U
, . . . , v⌘r

⇧⇧
U
form the dual basis

ofU ⌘ relative to the basis {v1, . . . , vr } ofU . If u⌘ is inU ⌘, we can therefore write
u⌘ = c1v

⌘
1

⇧⇧
U
+· · ·+crv⌘r

⇧⇧
U
for some scalars c1, . . . , cr . Thenv⌘ = c1v

⌘
1+· · ·+crv⌘r

is the required extension of u⌘ to all of V .
For (c), we use a special choice of basis of V in the argument above. Namely,

we still take {v1, . . . , vr } to be a basis of U , and then we let vr+1 = v0. Finally
we adjoin vr+2, . . . , vn to obtain a basis {v1, . . . , vn} of V . Then v⌘r+1 has the
required property. �

If L : U ✏ V is a linear map between finite-dimensional vector spaces, then

the formula

(Lt(v⌘))(u) = v⌘(L(u)) for u ◆ U and v⌘ ◆ V ⌘

defines a linear map Lt : V ⌘ ✏ U ⌘. The linear map Lt is called the contragre-
dient of L . The matrix of the contragredient of L is the transpose of the matrix

of L in the following sense.7

Proposition 2.21. Let L : U ✏ V be a linear map between finite-dimensional

vector spaces, let Lt : V ⌘ ✏ U ⌘ be its contragredient, let � and � be respective

ordered bases of U and V , and let �⌘ and �⌘ be their dual ordered bases. Then
�

Lt

�⌘�⌘

 
=
�

L

��

 
.

PROOF. Let � = (u1, . . . , un), � = (v1, . . . , vk), �
⌘ = (u⌘1, . . . , u

⌘
n), and

�⌘ = (v⌘1, . . . , v
⌘
k). Write B and A for the respective matrices in the formula

in question. The equations L(uj ) =
⇡k

i ⌘=1 Ai ⌘ jvi ⌘ and L
t(v⌘i ) =

⇡n
j ⌘=1 Bj ⌘i u

⌘
j ⌘

imply that

v⌘i (L(uj )) = v⌘i
�⇡k

i ⌘=1 Ai ⌘ jvi ⌘
⇥

= Ai j

Lt(v⌘i )(uj ) =
⇡n

j ⌘=1 Bj ⌘i u
⌘
j ⌘(uj ) = Bji .and

Therefore Bji = Lt(v⌘i )(uj ) = v⌘i (L(uj )) = Ai j , as required. �
7A general principle is involved in the definition of contragredient once we have a definition of

dual vector space, and we shall see further examples of this principle in the next two sections and in

later chapters: whenever a new systematic construction appears for the objects under study, it is well

to look for a corresponding construction with the functions relating these new objects. In language

to be introduced near the end of Chapter IV, the context for the construction will be a “category,” and

the principle says that it is well to see whether the construction is that of a “functor” on the category.



54 II. Vector Spaces over Q, R, and C

With V finite-dimensional, now consider V ⌘⌘ = (V ⌘)⌘, the double dual. In the
case that V = Fn , we saw that V ⌘ could be viewed as the space of row vectors,
and it is reasonable to expect V ⌘⌘ to involve a second transpose and again be the
space of column vectors. If so, then V gets identified with V ⌘⌘. In fact, this is true
in all cases, and we argue as follows. If v is in V , we can define a member ⌃(v)
of V ⌘⌘ by

⌃(v)(v⌘) = v⌘(v) for v ◆ V and v⌘ ◆ V ⌘.

This definition makes sense whether or not V is finite-dimensional. The function

⌃ is a linear map from V into V ⌘⌘ called the canonical map of V into V ⌘⌘. It is
independent of any choice of basis.

Proposition 2.22. If V is any finite-dimensional vector space over F, then the
canonical map ⌃ : V ✏ V ⌘⌘ is one-one onto.

REMARKS. In the infinite-dimensional case the canonical map is one-one but

it is not onto. The proof that it is one-one uses the fact that V has a basis, but

we have deferred the proof of this fact about infinite-dimensional vector spaces

to Section 9. Problem 14 at the end of the chapter will give an example of an

infinite-dimensional V for which ⌃ does not carry V onto V ⌘⌘. When combined
with the first corollary in Section A6 of the appendix, this example shows that ⌃
never carries V onto V ⌘⌘ in the infinite-dimensional case.

PROOF. We saw in Section 3 that a linear map ⌃ is one-one if and only if
ker ⌃ = 0. Thus suppose ⌃(v) = 0. Then 0 = ⌃(v)(v⌘) = v⌘(v) for all v⌘. Arguing
by contradiction, suppose v = 0. Then we can extend {v} to a basis of V , and the
linear functional v⌘ that is 1 on v and is 0 on the other members of the basis will
have v⌘(v) = 0, contradiction. We conclude that ⌃ is one-one. By Proposition
2.19 we have

dim V = dim V ⌘ = dim V ⌘⌘. (⌅)

Since ⌃ is one-one, it carries any basis of V to a linearly independent set in V ⌘⌘.
This linearly independent set has to be a basis, by Corollary 2.4 and the dimension

formula (⌅). �

5. Quotients of Vector Spaces

This section constructs a vector space V/U out of a vector space V and a vector

subspace U . We begin with the example illustrated in Figure 2.1. In the vector

space V = R2, let U be a line through the origin. The lines parallel to U are

of the form v + U = {v + u | u ◆ U}, and we make the set of these lines
into a vector space by defining (v1 + U) + (v2 + U) = (v1 + v2) + U and
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c(v + U) = cv + U . The figure suggests that if we were to take any other line

W through the origin, then W would meet all the lines v +U , and the notion of

addition of lines v + U would correspond exactly to addition in W . Indeed we

can successfully make such a correspondence, but the advantage of introducing

the vector space of all lines v +U is that it is canonical, independent of the kind

of choice we have to make in selectingW . One example of the utility of having a

canonical construction is the ease with which we obtain correspondence of linear

maps stated in Proposition 2.25 below. Other examples will appear later.

U

FIGURE 2.1. The vector space of lines v +U in R2
parallel to a given line U through the origin.

Proposition 2.23. Let V be a vector space over F, and let U be a vector

subspace. The relation defined by saying that v1 � v2 if v1 � v2 is in U is an

equivalence relation, and the equivalence classes are all sets of the form v + U

with v ◆ V . The set of equivalence classes V/U is a vector space under the

definitions

(v1 +U) + (v2 +U) = (v1 + v2) +U,

c(v +U) = cv +U,

and the function q(v) = v +U is linear from V onto V/U with kernel U .

REMARKS. We say that V/U is the quotient space of V byU . The linear map
q(v) = v +U is called the quotient map of V onto V/U .

PROOF. The properties of an equivalence relation are established as follows:

v1 � v1 because 0 is in U,
v1 � v2 implies v2 � v1 because U is closed under negatives,

v1 � v2 and v2 � v3
together imply v1 � v3 because U is closed under addition.

Thus we have equivalence classes. The class of v1 consists of all vectors v2 such
that v2� v1 is inU , hence consists of all vectors in v1+U . Thus the equivalence

classes are indeed the sets v +U .
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Let us check that addition and scalar multiplication, as given in the statement

of the proposition, are well defined. For addition let v1 � w1 and v2 � w2.

Then v1 � w1 and v2 � w2 are in U . Since U is a vector subspace, the sum

(v1�w1)+ (v2�w2) = (v1+v2)� (w1+w2) is inU . Thus v1+v2 � w1+w2,

and addition is well defined. For scalar multiplication let v � w, and let a scalar
c be given. Then v � w is in U , and c(v � w) = cv � cw is in U since U is a

vector subspace. Hence cv � cw, and scalar multiplication is well defined.
The vector-space properties of V/U are consequences of the properties for V .

To illustrate, consider associativity of addition. The argument in this case is that

((v1 +U) + (v2 +U)) + (v3 +U) = ((v1 + v2) +U) + (v3 +U)

= ((v1 + v2) + v3) +U = (v1 + (v2 + v3)) +U

= (v1 +U) + ((v2 + v3) +U) = (v1 +U) + ((v2 +U) + (v3 +U)).

Finally the quotient map q : V ✏ V/U given by q(v) = v + U is certainly

linear. Its kernel is {v | v +U = 0+U}, and this equals {v | v ◆ U}, as asserted.
The map q is onto V/U since v +U = q(v). �

Corollary 2.24. If V is a vector space over F andU is a vector subspace, then
(a) dim V = dimU + dim(V/U),
(b) the subspace U is the kernel of some linear map defined on V .

REMARK. The first conclusion is valid even when all the spaces are not finite-

dimensional. For current purposes it is sufficient to regard dim V as +✓ if V is

infinite-dimensional; the sum of +✓ and any dimension as +✓.
PROOF. Let q be the quotient map. The linear map q meets the conditions of

(b). For (a), take a basis of U and extend to a basis of V . Then the images under

q of the additional vectors form a basis of V/U . �

Quotients of vector spaces allow for the factorization of certain linear maps,

as indicated in Proposition 2.25 and Figure 2.2.

Proposition 2.25. Let L : V ✏ W be a linear map between vector

spaces over F, let U0 = ker L , let U be a vector subspace of V contained in

U0, and let q : V ✏ V/U be the quotient map. Then there exists a linear

map L : V/U ✏ W such that L = Lq. It has the same image as L , and

ker L = {u0 +U | u0 ◆ U0}.

V
L���✏ W

q

✓✓$

V/U

L

FIGURE 2.2. Factorization of linear maps via a quotient of vector spaces.
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REMARK. One says that L factors through V/U or descends to V/U .

PROOF. The definition of L has to be L(v +U) = L(v). This forces Lq = L ,

and L will have to be linear. What needs proof is that L is well defined. Thus

suppose v1 � v2. We are to prove that L(v1 + U) = L(v2 + U), i.e., that
L(v1) = L(v2). Now v1 � v2 is in U  U0, and hence L(v1 � v2) = 0. Then

L(v1) = L(v1 � v2) + L(v2) = L(v2), as required. This proves that L is well

defined, and the conclusions about the image and the kernel of L are immediate

from the definition. �

Corollary 2.26. Let L : V ✏ W be a linear map between vector spaces over

F, and suppose that L is onto W and has kernel U . Then V/U is canonically

isomorphic to W .

PROOF. Take U = U0 in Proposition 2.25, and form L : V/U ✏ W with

L = Lq. The proposition shows that L is ontoW and has trivial kernel, i.e., the 0

element of V/U . Having trivial kernel, L is one-one. �

Theorem 2.27 (First Isomorphism Theorem). Let L : V ✏ W be a linear

map between vector spaces over F, and suppose that L is onto W and has kernel

U . Then the map S �✏ L(S) gives a one-one correspondence between

(a) the vector subspaces S of V containing U and

(b) the vector subspaces of W .

REMARK. As in Section A1 of the appendix, we write L(S) and L�1(T ) to
indicate the direct and inverse images of S and T , respectively.

PROOF. The passage from (a) to (b) is by direct image under L , and the passage

from (b) to (a) will be by inverse image under L�1. Certainly the direct image
of a vector subspace as in (a) is a vector subspace as in (b). We are to show that

the inverse image of a vector subspace as in (b) is a vector subspace as in (a) and

that these two procedures invert one another.

For any vector subspace T ofW , L�1(T ) is a vector subspace of V . In fact, if
v1 and v2 are in L

�1(T ), we can write L(v1) = t1 and L(v2) = t2 with t1 and t2
in T . Then the equations L(v1 + v2) = t1 + t2 and L(cv1) = cL(v1) = ct1 show

that v1 + v2 and cv1 are in L
�1(T ).

Moreover, the vector subspace L�1(T ) contains L�1(0) = U . Therefore the

inverse image under L of a vector subspace as in (b) is a vector subspace as in

(a). Since L is a function, we have L(L�1(T )) = T . Thus passing from (b) to

(a) and back recovers the vector subspace of W .

If S is a vector subspace of V containing U , we still need to see that S =
L�1(L(S)). Certainly S  L�1(L(S)). In the reverse direction let v be in
L�1(L(S)). Then L(v) is in L(S), i.e., L(v) = L(s) for some s in S. Since L
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is linear, L(v � s) = 0. Thus v � s is in ker L = U , which is contained in S

by assumption. Then s and v � s are in S, and hence v is in S. We conclude
that L�1(L(S))  S, and thus passing from (a) to (b) and then back recovers the

vector subspace of V containing U . �

If V is a vector space and V1 and V2 are vector subspaces, then we write

V1 + V2 for the set V1 + V2 of all sums v1 + v2 with v1 ◆ V1 and v2 ◆ V2. This
is again a vector subspace of V and is called the sum of V1 and V2. If we have

vector subspaces V1, . . . , Vn , we abbreviate ((· · · (V1 + V2) + V3) + · · · + Vn) as
V1 + · · · + Vn .

Theorem 2.28 (Second Isomorphism Theorem). Let M and N be vector

subspaces of a vector space V over F. Then the map n + (M ⇡ N ) �✏ n + M is

a well-defined canonical vector-space isomorphism

N/(M ⇡ N ) �= (M + N )/M.

PROOF. The function L(n+(M⇡N )) = n+M is well defined sinceM⇡N  
M , and L is linear. The domain of L is {n+ (M ⇡ N ) | n ◆ N }, and the kernel is
the subset of this where n lies in M as well as N . For this to happen, n must be in

M ⇡ N , and thus the kernel is the 0 element of N/(M ⇡ N ). Hence L is one-one.
To see that L is onto (M+N )/M , let (m+n)+M be given. Then n+(M⇡N )

maps to n + M , which equals (m + n) + M . Hence L is onto. �

Corollary 2.29. Let M and N be finite-dimensional vector subspaces of a

vector space V over F. Then

dim(M + N ) + dim(M ⇡ N ) = dimM + dim N .

PROOF. Theorem 2.28 and two applications of Corollary 2.24a yield

dim(M + N )� dimM = dim((M + N )/M)

= dim(N/(M ⇡ N )) = dim N � dim(M ⇡ N ),

and the result follows. �

6. Direct Sums and Direct Products of Vector Spaces

In this section we introduce the direct sum and direct product of two or more

vector spaces over F. When there are only finitely many such subspaces, these
constructions come to the same thing, and we call it “direct sum.” We begin with

the case that two vector spaces are given.



6. Direct Sums and Direct Products of Vector Spaces 59

We define two kinds of direct sums. The external direct sum of two vector

spaces V1 and V2 over F, written V1 ⌃ V2, is a vector space obtained as follows.

The underlying set is the set-theoretic product, i.e., the set V1 ⇤ V2 of ordered

pairs (v1, v2) with v1 ◆ V1 and v2 ◆ V2. The operations of addition and scalar

multiplication are defined coordinate by coordinate:

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2),

c(v1, v2) = (cv1, cv2),

and it is immediate that V1⌃V2 satisfies the defining properties of a vector space.
If {ai } is a basis of V1 and {bj } is a basis of V2, then it follows from the formula

(v1, v2) = (v1, 0) + (0, v2) that {(ai , 0)} ⇠ {(0, bj )} is a basis of V1 ⌃ V2. Con-

sequently if V1 and V2 are finite-dimensional, then V1 ⌃ V2 is finite-dimensional

with

dim(V1 ⌃ V2) = dim V1 + dim V2.

Associated to the construction of the external direct sum of two vector spaces

are four linear maps of interest:

two “projections,” p1 : V1 ⌃ V2✏ V1 with p1(v1, v2) = v1,

p2 : V1 ⌃ V2✏ V2 with p2(v1, v2) = v2,

two “injections,” i1 : V1✏ V1 ⌃ V2 with i1(v1) = (v1, 0),

i2 : V2✏ V1 ⌃ V2 with i2(v2) = (0, v2).

These have the properties that

pr is =
�
I on Vs if r = s,

0 on Vs if r = s,

i1 p1 + i2 p2 = I on V1 ⌃ V2.

The second notion of direct sum captures the idea of recognizing a situation as

canonically isomorphic to an external direct sum. This is based on the following

proposition.

Proposition 2.30. Let V be a vector space over F, and let V1 and V2 be vector
subspaces of V . Then the following conditions are equivalent:

(a) every member v of V decomposes uniquely as v = v1 + v2 with v1 ◆ V1
and v2 ◆ V2,

(b) V1 + V2 = V and V1 ⇡ V2 = 0,

(c) the function from the external direct sumV1⌃V2 toV given by (v1, v2) �✏
v1 + v2 is an isomorphism of vector spaces.
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REMARKS.

(1) If V is a vector space with vector subspaces V1 and V2 satisfying the

equivalent conditions of Proposition 2.30, then we say that V is the internal

direct sum of V1 and V2. It is customary to write V = V1 ⌃ V2 in this case even

thoughwhat we have is a canonical isomorphism of the two sides, not an equality.

(2) The dimension formula

dim(V1 ⌃ V2) = dim V1 + dim V2

for an internal direct sum follows, on the one hand, from the corresponding

formula for external direct sums; it follows, on the other hand, by using (b) and

Corollary 2.29.

(3) In the proposition it is possible to establish a fourth equivalent condition as

follows: there exist linear maps p1 : V ✏ V , p2 : V ✏ V , i1 : image p1 ✏ V ,

and i2 : image p2✏ V such that

• pr is ps equals pr if r = s and equals 0 if r = s,

• i1 p1 + i2 p2 = I , and

• V1 = image i1 p1 and V2 = image i2 p2.

PROOF. If (a) holds, then the existence of the decomposition v = v1 + v2
shows that V1+V2 = V . If v is in V1⇡V2, then 0 = v+ (�v) is a decomposition
of the kind in (a), and the uniqueness forces v = 0. Therefore V1 ⇡ V2 = 0. This

proves (b).

The function in (c) is certainly linear. If (b) holds and v is given in V , then
the identity V1 + V2 = V allows us to decompose v as v = v1 + v2. This
proves that the linear map in (c) is onto. To see that it is one-one, suppose that

v1+ v2 = 0. Then v1 = �v2 shows that v1 is in V1⇡V2. By (b), this intersection
is 0. Therefore v1 = v2 = 0, and the linear map in (c) is one-one.

If (c) holds, then the fact that the linearmap in (c) is onto V proves the existence

of the decomposition in (a). For uniqueness, suppose that v1 + v2 = u1 + u2
with u1 and v1 in V1 and with u2 and v2 in V2. Then (u1, u2) and (v1, v2) have
the same image under the linear map in (c). Since the function in (c) is assumed

one-one, we conclude that (u1, u2) = (v1, v2). This proves the uniqueness of the
decomposition in (a). �

If V = V1 ⌃ V2 is a direct sum, then we can use the above projections and

injections to pass back and forth between linear maps with V1 and V2 as domain

or range and linear maps with V as domain or range. This passage back and forth

is called the universal mapping property of V1⌃V2 and will be seen later in this
section to characterize V1 ⌃ V2 up to canonical isomorphism. Let us be specific

about how this property works.
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To arrange for V to be the range, suppose that U is a vector space over F and
that L1 : U ✏ V1 and L2 : U ✏ V2 are linear maps. Then we can define a linear

map L : U ✏ V by L = i1L1 + i2L2, i.e., by

L(u) = (i1L1 + i2L2)(u) = (L1(u), L2(u)),

and we can recover L1 and L2 from L by L1 = p1L and L2 = p2L .

To arrange for V to be the domain, suppose that W is a vector space over F
and that M1 : V1 ✏ W and M2 : V2 ✏ W are linear maps. Then we can define

a linear map M : V ✏ W by M = M1 p1 + M2 p2, i.e., by

M(v1, v2) = M1(v1) + M2(v2),

and we can recover M1 and M2 from M by M1 = Mi1 and M2 = Mi2.

The notion of direct sum readily extends to the direct sum of n vector spaces

over F. The external direct sum V1 ⌃ · · · ⌃ Vn is the set of ordered pairs

(v1, . . . , vn)with each vj in Vj andwith addition and scalarmultiplication defined
coordinate by coordinate. In the finite-dimensional case we have

dim(V1 ⌃ · · ·⌃ Vn) = dim V1 + · · · + dim Vn.

If V1, . . . , Vn are given as vector subspaces of a vector space V , then we say
that V is the internal direct sum of V1, . . . , Vn if the equivalent conditions of
Proposition 2.31 below are satisfied. In this case we write V = V1 ⌃ · · · ⌃ Vn
even though once again we really have a canonical isomorphism rather than an

equality.

Proposition 2.31. Let V be a vector space over F, and let V1, . . . , Vn be vector
subspaces of V . Then the following conditions are equivalent:

(a) every member v of V decomposes uniquely as v = v1 + · · · + vn with
vj ◆ Vj for 1 ↵ j ↵ n,

(b) V1+· · ·+Vn = V and also Vj ⇡ (V1+· · ·+Vj�1+Vj+1+· · ·+Vn) = 0

for each j with 1 ↵ j ↵ n,

(c) the function from the external direct sum V1 ⌃ · · · ⌃ Vn to V given by

(v1, . . . , vn) �✏ v1 + · · · + vn is an isomorphism of vector spaces.

Proposition 2.31 is proved in the same way as Proposition 2.30, and the

expected analog of Remark 3 with that proposition is valid as well. Notice

that the second condition in (b) is stronger than the condition that Vi ⇡Vj = 0 for

all i = j . Figure 2.3 illustrates how the condition Vi ⇡ Vj = 0 for all i = j can

be satisfied even though (b) is not satisfied and even though the vector subspaces

do not therefore form a direct sum.
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FIGURE 2.3. Three 1-dimensional vector subspaces of R2
such that each pair has intersection 0.

If V = V1⌃ · · ·⌃Vn is a direct sum, thenwe can define projections p1, . . . , pn
and injections i1, . . . , in in the expectedway, andweagain get a universalmapping
property. That is, we can pass back and forth between linearmapswithV1, . . . , Vn
as domain or range and linear maps with V as domain or range. The argument

given above for n = 2 is easily adjusted to handle general n, and we omit the

details.

To generalize the above notions to infinitely many vector spaces, there are two

quite different ways of proceeding. Let us treat first the external constructions.

Let a nonempty collectionof vector spacesV� overFbe given, one for each� ◆ A.

The external direct sum
⌫

�◆A V� is the set of all tuples {v�} in the Cartesian
product��◆AV� with all but finitely many v� equal to 0 and with addition and

scalar multiplication defined coordinate by coordinate. For this construction we

obtain a basis as the union of embedded bases of the constituent spaces. The

external direct product
⇢

�◆A V� is the set of all tuples {v�} in ��◆AV�,

again with addition and scalar multiplication defined coordinate by coordinate.

When there are only finitely many factors V1, . . . , Vn , the external direct product,
which manifestly coincides with the external direct sum, is sometimes denoted

by V1 ⇤ · · ·⇤ Vn . For the external direct product when there are infinitely many

factors, there is no evident way to obtain a basis of the product from bases of the

constituents.

The projections and injections that we defined in the case of finitely many

vector spaces are still meaningful here. The universal mapping property is still

valid as well, but it splinters into one form for direct sums and another form for

direct products. The formulas given above for using linear maps with the V�’s

as domain or range to define linear maps with the direct sum or direct product

as domain or range may involve sums with infinitely many nonzero terms, and

they are not directly usable. Instead, the formulas that continue to make sense

are the ones for recovering linear maps with the V�’s as domain or range from

linear maps with the direct sum or direct product as domain or range. These turn

out to determine the formulas uniquely for the linear maps with the direct sum

or direct product as domain or range. In other words, the appropriate universal

mapping property uniquely determines the direct sum or direct product up to an
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isomorphism that respects the relevant projections and injections.

Let us see to the details. We denote typicalmembers of
⇢

�◆A V� and
⌫

�◆A V�

by {v�}�◆A, with the understanding that only finitely many v� can be nonzero in

the case of the direct sum. The formulas are

p⇥ :
�

�◆A
V� ✏ V⇥ with p⇥

�
{v�}�◆A

⇥
= v⇥,

i⇥ : V⇥ ✏
⇠

�◆A
V� with i⇥(v⇥) = {w�}�◆A and w� =

�
v⇥ if � = ⇥,

0 if � = ⇥.

IfU is a vector space over F and if a linear map L⇥ : U ✏ V⇥ is given for each

⇥ ◆ A, we can obtain a linear map L : U ✏
⇢

�◆A V� that satisfies p⇥L = L⇥

for all ⇥. The definition that makes perfectly good sense is

L(u) = {L(u)�}�◆A = {L�(u)}�◆A.

What does not make sense is to try to express the right side in terms of the

injections i�; we cannot write the right side as
⇡

�◆A i�(L�(u)) because infinitely
many terms might be nonzero.

IfW is a vector space and a linear map M⇥ : V⇥ ✏ W is given for each ⇥, we
can obtain a linear map M :

⌫
�◆A V� ✏ W that satisfies Mi⇥ = M⇥ for all ⇥;

the definition that makes perfectly good sense is

M
�
{v�}�◆A

⇥
=
⌧

�◆A
M�(v�).

The right side is meaningful since only finitely many v� can be nonzero. It can

be misleading to write the formula as M =
⇡

�◆A M� p� because infinitely many

of the linear maps M� p� can be nonzero functions.

In any event, wehave a universalmappingproperty in both cases—for the direct

product with the projections in place and for the direct sum with the injections

in place. Let us see that these universal mapping properties characterize direct

products and direct sums up to an isomorphism respecting the projections and

injections, and that they allowus to define and recognize “internal” direct products

and direct sums.

A direct product of a set of vector spaces V� over F for � ◆ A consists of

a vector space V and a system of linear maps p� : V ✏ V� with the following

universalmapping property: wheneverU is a vector space and {L�} is a system
of linear maps L� : U ✏ V�, then there exists a unique linear map L : U ✏ V

such that p�L = L� for all �. See Figure 2.4. The external direct product
establishes existence of a direct product, and Proposition 2.32 below establishes

its uniqueness up to an isomorphism of the V ’s that respects the p�’s. A direct

product is said to be internal if each V� is a vector subspace of V and if for each

�, the restriction p�
⇧⇧
V�
is the identity map on V�. Because of the uniqueness, this
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definition of internal direct product is consistent with the earlier one when there

are only finitely V�’s.

V�
L����� U

p�

#✓✓

V

L

FIGURE 2.4. Universal mapping property of a direct product of vector spaces.

Proposition 2.32. Let A be a nonempty set of vector spaces over F, and let
V� be the vector space corresponding to the member � of A. If (V, {p�}) and
(V ⌅, {p⌅�}) are two direct products of the V�’s, then the linear maps p� : V ✏ V�

and p⌅� : V
⌅ ✏ V� are onto V�, there exists a unique linear map L : V

⌅ ✏ V

such that p⌅� = p�L for all � ◆ A, and L is invertible.

PROOF. In Figure 2.4 let U = V ⌅ and L� = p⌅�. If L : V
⌅ ✏ V is the linear

map produced by the fact that V is a direct product, then we have p�L = p⌅� for
all �. Reversing the roles of V and V ⌅, we obtain a linear map L⌅ : V ✏ V ⌅

with p⌅�L
⌅ = p� for all �. Therefore p�(LL

⌅) = (p�L)L⌅ = p⌅�L
⌅ = p�.

In Figure 2.4 we next let U = V and L� = p� for all �. Then the identity
1V on V has the same property p�1V = p� relative to all p� that LL

⌅ has, and
the uniqueness says that LL⌅ = 1V . Reversing the roles of V and V

⌅, we obtain
L⌅L = 1V ⌅ . Therefore L is invertible.

For uniqueness suppose that ✏ : V ⌅ ✏ V is another linear map with p⌅� =
p�✏ for all � ◆ A. Then the argument of the previous paragraph shows that

L⌅✏ = 1V ⌅ . Applying L on the left gives ✏ = (LL⌅)✏ = L(L⌅✏) = L1V ⌅ =
L . Thus ✏ = L .

Finally we have to show that the �th map of a direct product is onto V�. It

is enough to show that p⌅� is onto V�. Taking V as the external direct product⇢
�◆A V� with p� equal to the coordinate mapping, form the invertible linear map

L⌅ : V ✏ V ⌅ that has just been proved to exist. This satisfies p� = p⌅�L
⌅ for all

� ◆ A. Since p� is onto V�, p
⌅
� must be onto V�. �

A direct sum of a set of vector spaces V� over F for � ◆ A consists of a vector

space V and a system of linear maps i� : V� ✏ V with the following universal

mapping property: wheneverW is a vector space and {M�} is a system of linear
maps M� : V� ✏ W , then there exists a unique linear map M : V ✏ W such

that Mi� = M� for all �. See Figure 2.5. The external direct sum establishes
existence of a direct sum, and Proposition 2.33 below establishes its uniqueness

up to isomorphism of the V ’s that respects the i�’s. A direct sum is said to be

internal if each V� is a vector subspace of V and if for each �, the map i� is the
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inclusion map of V� into V . Because of the uniqueness, this definition of internal

direct sum is consistent with the earlier one when there are only finitely V�’s.

V�
M����✏ W

i�

✓✓$

V

M

FIGURE 2.5. Universal mapping property of a direct sum of vector spaces.

Proposition 2.33. Let A be a nonempty set of vector spaces over F, and let
V� be the vector space corresponding to the member � of A. If (V, {i�}) and
(V ⌅, {i⌅�}) are two direct sums of the V�’s, then the linear maps i� : V� ✏ V and

i⌅� : V� ✏ V ⌅ are one-one, there exists a unique linear map M : V ✏ V ⌅ such
that i⌅� = Mi� for all � ◆ A, and M is invertible.

PROOF. In Figure 2.5 let W = V ⌅ and M� = i⌅�. If M : V ✏ V ⌅ is the linear
map produced by the fact that V is a direct sum, then we have Mi� = i⌅� for all
�. Reversing the roles of V and V ⌅, we obtain a linear map M⌅ : V ⌅ ✏ V with

M⌅i⌅� = i� for all �. Therefore (M⌅M)i� = M⌅i⌅� = i�.

In Figure 2.5 we next let W = V and M� = i� for all �. Then the identity 1V
on V has the same property 1V i� = i� relative to all i� that M

⌅M has, and the

uniqueness says that M⌅M = 1V . Reversing the roles of V and V
⌅, we obtain

MM⌅ = 1V ⌅ . Therefore M is invertible.

For uniqueness suppose that✏ : V ✏ V ⌅ is another linear mapwith i⌅� = ✏i�
for all � ◆ A. Then the argument of the previous paragraph shows that M⌅✏ =
1V . Applying M on the left gives ✏ = (MM⌅)✏ = M(M⌅✏) = M1V = M .

Thus ✏ = M .

Finally we have to show that the �th map of a direct sum is one-one on V�. It

is enough to show that i⌅� is one-one on V�. Taking V as the external direct sum⌫
s◆S V� with i� equal to the embedding mapping, form the invertible linear map

M⌅ : V ⌅ ✏ V that has just been proved to exist. This satisfies i� = M⌅i⌅� for all
� ◆ A. Since i� is one-one, i

⌅
� must be one-one. �

7. Determinants

A “determinant” is a certain scalar attached initially to any square matrix and

ultimately to any linear map from a finite-dimensional vector space into itself.
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The definition is presumably known from high-school algebra in the case of

2-by-2 and 3-by-3 matrices:

det

�
a b

c d

 
= ad � bc,

det

�
a b c

d e f

g h i

✏
= aei + bf g + cdh � a f h � bdi � ceg.

For n-by-n square matrices the determinant function will have the following

important properties:

(i) det(AB) = det A det B,

(ii) det I = 1,

(iii) det A = 0 if and only if A has no inverse.

Once we have constructed the determinant function with these properties, we

can then extend the function to be defined on all linear maps L : V ✏ V with V

finite-dimensional. To do so, we let � be any ordered basis of V , and we define

det L = det

�
L

��

 
. If � is another ordered basis, then

det

�
L

��

 
= det

�
I

��

 
det

�
L

��

 
det

�
I

��

 
,

and this equals det

�
L

��

 
by (i) since

�
I

��

 
and

�
I

��

 
are inverses of each

other and since their determinants, by (i) and (ii), are reciprocals. Hence the

definition of det L is independent of the choice of ordered basis, and determinant

is well defined on the linear map L : V ✏ V . It is then immediate that the

determinant function on linear maps from V into V satisfies (i), (ii), and (iii)

above.

Thus it is enough to establish the determinant function on n-by-n matrices.

Setting matters up in a useful way involves at least one subtle step, but much of

this step has fortunately already been carried out in the discussion of signs of

permutations in Section I.4. To proceed, we view det on n-by-n matrices over

F as a function of the n rows of the matrix, rather than the matrix itself. We
write V for the vector space M1n(F) of all n-dimensional row vectors. A function
f : V ⇤ · · ·⇤ V ✏ F defined on ordered k-tuples of members of V is called a
k-multilinear functional or k-linear functional if it depends linearly on each of

the k vector variables when the other k � 1 vector variables are held fixed. For
example,

f (( a b ) , ( c d )) = ac + b(c + d) + 1
2
ad
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is a 2-linear functional on M12(F) ⇤ M12(F). A little more generally and more
suggestively,

g(( a b ) , ( c d )) = �1 ( a b ) �2 ( c d ) + �3 ( a b ) �4 ( c d )

is a 2-linear functional on M12(F) ⇤ M12(F) whenever �1, . . . , �4 are linear
functionals on M12(F).
Let {v1, . . . , vn} be a basis of V . Then a k-multilinear functional as above

is determined by its value on all k-tuples of basis vectors (vi1, . . . , vik ). (Here
i1, . . . , ik are integers between 1 and n.) The reason is that we can fix all but
the first variable and expand out the expression by linearity so that only a basis

vector remains in each term for the first variable; for each resulting term we can

fix all but the second variable and expand out the expression by linearity; and so

on. Conversely if we specify arbitrary scalars for the values on each such k-tuple,

then we can define a k-multilinear functional assuming those values on the tuples

of basis vectors.

A k-multilinear functional f on k-tuples fromM1n(F) is said to be alternating
if f is 0 whenever two of the variables are equal.

EXAMPLE. For k = 2 and n = 2, we use
⇤
v1 = ( 1 0 ) , v2 = ( 0 1 )

⌅
as ba-

sis. Thena2-linearmultilinear functional f is determinedby f (v1, v1), f (v1, v2),
f (v2, v1), and f (v2, v2). If f is alternating, then f (v1, v1) = f (v2, v2) = 0.

But also f (v1 + v2, v1 + v2) = 0, and expansion via 2-multilinearity gives

f (v1, v1) + f (v1, v2) + f (v2, v1) + f (v2, v2) = 0.

We have already seen that the first and last terms on the left side are 0, and thus

f (v2, v1) = � f (v1, v2). Therefore f is completely determined by f (v1, v2).

The principle involved in the computation within the example is valid more

generally: whenever a multilinear functional f is alternating and two of its

arguments are interchanged, then the value of f is multiplied by �1. In fact,
let us suppress all variables except for the i th and the j th. Then we have

0 = f (v + w, v + w) = f (v + w, v) + f (v + w,w)

= f (v, v) + f (w, v) + f (v,w) + f (w,w) = f (w, v) + f (v,w).

Theorem 2.34. For M1n(F), the vector space of alternating n-multilinear
functionals has dimension 1, and a nonzero such functional has nonzero value on

(et1, . . . , e
t
n), where {e1, . . . , en} is the standard basis of Fn . Let f0 be the unique

such alternating n-multilinear functional taking the value 1 on (et1, . . . , e
t
n). If a

function det : Mnn(F)✏ F is defined by

det A = f0(A1· , . . . , An·)
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when A has rows A1· , . . . , An· , then det has the properties that

(a) det(AB) = det A det B,

(b) det I = 1,

(c) det A = 0 if and only if A has no inverse,

(d) det A =
⇡

� (sgn � )A1� (1)A2� (2) · · · An� (n), the sum being taken over all

permutations � of {1, . . . , n}.

PROOF OF UNIQUENESS. Let f be an alternating n-multilinear functional, and

let {u1, . . . , un} be the basis of the space of row vectors defined by ui = eti . Since

f is multilinear, f is determined by its values on all n-tuples (uk1, . . . , ukn ).
Since f is alternating, f (uk1, . . . , ukn ) = 0 unless the uki are distinct, i.e.,

unless (uk1, . . . , ukn ) is of the form (u� (1), . . . , u� (n)) for some permutation
� . We have seen that the value of f on an n-tuple of rows is multiplied

by �1 if two of the rows are interchanged. Corollary 1.22 and Proposition
1.24b consequently together imply that the value of f on an n-tuple is multi-

plied by sgn � if the members of the n-tuple are permuted by � . Therefore
f (u� (1), . . . , u� (n)) = (sgn � ) f (u1, . . . , un), and f is completely determined

by its value on (u1, . . . , un). We conclude that the vector space of alternating
n-multilinear functionals has dimension at most 1. �
PROOF OF EXISTENCE. Define det A, and therefore also f0, by (d). Each term

in this definition is the product of n linear functionals, the kth linear functional

being applied to the kth argument of f0, and f0 is consequently n-multilinear.

To see that f0 is alternating, suppose that the i
th and j th rows are equal with

i = j . If  is the transposition of i and j , then A1� (1)A2� (2) · · · An� (n) =
A1� (1)A2� (2) · · · An� (n), and Lemma 1.23 hence shows that

(sgn � )A1� (1)A2� (2) · · · An� (n) + (sgn � )A1� (1)A2� (2) · · · An� (n) = 0.

Thus if we compute the sum in (d) by grouping pairs of terms, the one for � and
the one for� if sgn � = +1, we see that thewhole sum is 0. Thus f0 is alternating.
Finally when A is the identity matrix I , we see that A1� (1)A2� (2) · · · An� (n) = 0

unless � is the identity permutation, and then the product is 1. Since sgn 1 = +1,
det I = +1. We conclude that the vector space of alternating n-multilinear
functionals has dimension exactly 1. �
PROOF OF PROPERTIES OF det. Fix an n-by-n matrix B. Since f0 is alternating

n-multilinear, so is (v1, . . . , vn) �✏ f0(v1B, . . . , vn B). The vector space of
alternating n-multilinear functionals has been proved to be of dimension 1, and

therefore f0(v1B, . . . , vn B) = c(B) f0(v1, . . . , vn) for some scalar c(B). In the
notation with det, this equation reads det(AB) = c(B) det A. Putting A = I , we

obtain det B = c(B) det I . Thus c(B) = det B, and (a) follows. We have already

proved (b), and (d) was the definition of det A. We are left with (c). If A�1
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exists, then (a) and (b) give det(A�1) det A = det I = 1, and hence det A = 0.

If A�1 does not exist, then Theorem 1.30 and Proposition 1.27c show that the

reduced row-echelon form R of A has a row of 0’s. We combine Proposition 1.29,

conclusion (a), the invertibility of elementarymatrices, and the fact that invertible

matrices have nonzero determinant, and we see that det A is the product of det R

and a nonzero scalar. Since det is linear as a function of each row and since R

has a row of 0’s, det R = 0. Therefore det A = 0. This completes the proof of

the theorem. �

The fast procedure for evaluating determinants is to use row reduction, keeping

track of what happens. The effect of each kind of row operation on a determinant

and the reasons the function det behaves in this way are as follows:

(i) Interchange two rows. This operation multiplies the determinant by �1
because of the alternating property.

(ii) Multiply a row by a nonzero scalar c. This operation multiplies the

determinant by c because of the linearity of determinant as a function of

that row.

(iii) Replace the i th row by the sum of it and a multiple of the j th row with

j = i . This operation leaves the determinant unchanged. In fact, the

matrix whose i th row is replaced by the j th row has determinant 0 by the

alternating property, and the rest follows by linearity in the i th row.

As with row reduction the number of steps required to compute a determinant

this way is ↵ Cn3 in the n-by-n case.

A certain savings of computation is possible as compared with full-fledged

row reduction. Namely, we have only to arrange for the reduced matrix to be 0

below the main diagonal, and then the determinant of the reduced matrix will

be the product of the diagonal entries, by inspection of the formula in Theorem

2.34d.

EXAMPLE. For the matrix

�
1 2 3

4 5 6

7 8 10

✏
, we have

det

�
1 2 3

4 5 6

7 8 10

✏
(iii)= det

�
1 2 3

0 �3 �6
0 �6 �11

✏

(ii)= �3 det
�
1 2 3

0 1 2

0 �6 �11

✏
(iii)= �3 det

�
1 2 3

0 1 2

0 0 1

✏
= �3.

We conclude this section with a number of formulas for determinants.
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Proposition 2.35. If A is an n-by-n square matrix, then det At = det A.

PROOF. Corollary 2.9 says that the row space and the column space of A have

the same dimension, and A is invertible if and only if the row space has dimension

n. Thus A is invertible if and only if At is invertible, and Theorem 2.34c thus

shows that det A = 0 if and only if det At = 0. Now suppose that det A and det At

are nonzero. Thenwe canwrite A = E1 · · · Er with each Ej an elementarymatrix
of one of the three types. Theorem 2.34a shows that det A =

⇢r
j=1 det Ej and

det At =
⇢r

j=1 det E
t
j , and hence it is enough to prove that det Ej = det Et

j for

each j . For Ej of either of the first two types, Ej = Et
j and there is nothing to

prove. For Ej of the third type, we have det Ej = det Et
j = 1. The result follows.

�

Proposition 2.36 (expansion in cofactors). Let A be an n-by-n matrix, and let
�Ai j be the square matrix of size n� 1 obtained by deleting the i th row and the j th
column. Then

(a) for any j , det A =
⇡n

i=1 (�1)i+ j Ai j det�Ai j , i.e., det Amay be calculated
by “expansion in cofactors” about the j th column,

(b) for any i , det A =
⇡n

j=1 (�1)i+ j Ai j det�Ai j , i.e., det Amay be calculated
by “expansion in cofactors” about the i th row.

REMARKS. If this formula is iterated, we obtain a procedure for evaluating a

determinant in aboutCn! steps. This procedure amounts to using the formula for

det A in Theorem 2.34d and is ordinarily not of practical use. However, it is of

theoretical use, and Corollary 2.37 will provide a simple example of a theoretical

application.

PROOF. It is enough to prove (a) since (b) then follows by combining (a) and

Proposition 2.35. In (a), the right side is 1 when A = I , and it is enough by

Theorem 2.34 to prove that the right side is alternating and n-multilinear. Each

term on the right side is n-multilinear, and hence so is the whole expression. To

see that the right side is alternating, suppose that the kth and l th rows are equal

with k < l. The kth and l th rows are both present in �Ai j if i is not equal to k or l,
and thus each det�Ai j is 0 for i not equal to k or l. We are left with showing that

(�1)k+ j Ak j det Akj + (�1)l+ j Al j det�Al j = 0.

The two matrices Akj and �Al j have the same rows but in a different order. The
order is

1, . . . , k � 1, k + 1, . . . , l � 1, l, l + 1, . . . , n in the case of Akj ,
1, . . . , k � 1, k, k + 1, . . . , l � 1, l + 1, . . . , n in the case of �Al j .
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We can transform the first matrix into the second by transposing the index for

row l to the left one step at a time until it gets to the kth position. The number of

steps is l � k � 1, and therefore det�Al j = (�1)l�k�1 det Akj . Consequently

(�1)k+ j Ak j det Akj + (�1)l+ j Al j det�Al j
=
�
(�1)k+ jAk j + (�1)2l�k�1+ j Al j

⇥
det Akj .

The right side is 0 since Akj = Al j , and the proof is complete. �

Corollary 2.37 (Vandermonde matrix and determinant). If r1, . . . , rn are
scalars, then

det

⇣

����◆

1 1 · · · 1

r1 r2 · · · rn
r21 r22 · · · r2n
...

...
. . .

...
rn�11 rn�12 · · · rn�1n

⌘

����
=
�

j>i

(rj � ri ).

PROOF. We show that the determinant is

=
�

j>1

(rj � r1) det

⇣

��◆

1 · · · 1

r2 · · · rn
...

. . .
...

rn�22 · · · rn�2n

⌘

�� ,

and then the result follows by induction. In the given matrix, replace the nth row

by the sum of it and �r1 times the (n � 1)st row, then the (n � 1)st row by the
sum of it and �r1 times the (n � 2)nd row, and so on. The resulting determinant
is

det

⇣

����◆

1 1 · · · 1

0 r2 � r1 · · · rn � r1
...

...
. . .

...
0 rn�22 � r1r

n�3
2 · · · rn�2n � r1r

n�3
n

0 rn�12 � r1r
n�2
2 · · · rn�1n � r1r

n�2
n

⌘

����

= det

⇣

��◆

r2 � r1 · · · rn � r1
...

. . .
...

rn�22 � r1r
n�3
2 · · · rn�2n � r1r

n�3
n

rn�12 � r1r
n�2
2 · · · rn�1n � r1r

n�2
n

⌘

��
by Proposition 2.36a

applied with j = 1
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= (r2 � r1) · · · (rn � r1) det

⇣

��◆

1 · · · 1

r2 · · · rn
...

. . .
...

rn�22 · · · rn�2n

⌘

�� ,

the last step following by multilinearity of the determinant in the columns (as a

consequence of Proposition 2.35 and multilinearity in the rows). �

The classical adjointof the squarematrix A, denotedby Aadj, is thematrixwith

entries A
adj

i j = (�1)i+ j det�Aji with �Akl defined as in the statement of Proposition
2.36: �Akl is the matrix A with the kth row and l th column deleted.

In the 2-by-2 case, we have

�
a b

c d

 adj
=
�

d �b
�c a

 
. Thus we have

AAadj = AadjA = (det A)I in the 2-by-2 case. Cramer’s rule for solving simul-
taneous linear equations results from the n-by-n generalization of this formula.

Proposition 2.38 (Cramer’s rule). If A is an n-by-n matrix, then AAadj =
AadjA = (det A)I , and thus det A = 0 implies A�1 = (det A)�1Aadj. Conse-
quently if det A = 0, then the unique solution of the simultaneous system Ax = b

of n equations in n unknowns, in which x =

⇣

◆
x1
...
xn

⌘

 and b =

⇣

◆
b1
...
bn

⌘

, has

xj = det Bj

det A

with Bj equal to the n-by-n matrix obtained from A by replacing the j th column

of A by b.

REMARKS. If we think of the calculation of the determinant of an n-by-nmatrix

as requiring about n3 steps, then application of Cramer’s rule, at least if done in

an unthinking fashion, suggests that solving an invertible system requires about

n3(n+1) steps, i.e., n+1 determinants are involved in the explicit solution. Use
of row reduction directly to solve the system ismore efficient than proceeding this

way. Thus Cramer’s rule is more important for its theoretical applications than it

is for making computations. One simple theoretical application is the observation

that each entry of the inverse of a matrix is the quotient of a polynomial function

of the entries divided by the determinant.

PROOF. The (i, j)th entry of AadjA is

(AadjA)i j =
n⌧

k=1
A
adj

ik Ak j =
n⌧

k=1
(�1)i+k(det �Aki )Akj .
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If i = j , then expansion in cofactors about the j th column (Proposition 2.36a)

identifies the right side as det A. If i = j , consider the matrix B obtained from A

by replacing the i th column of A by the j th column. Then the i th and j th columns

of B are equal, and hence det B = 0. Expanding det B in cofactors about the i th

column (Proposition 2.36a), we obtain

0 = det B =
n⌧

k=1
(�1)i+k(det�Bki )Bki =

n⌧

k=1
(�1)i+k(det �Aki )Akj .

Thus AAadj = (det A)I . A similar argument proves that AadjA = (det A)I .

For the application to Ax = b, we multiply both sides on the left by Aadj and

obtain (det A)x = Aadjb. Hence

(det A)xj =
n⌧

i=1
(Aadj)j i bi =

n⌧

i=1
(�1)i+ j bi det�Ai j ,

and the right side equals det Bj by expansion in cofactors of det Bj about the j
th

column (Proposition 2.36a). �

8. Eigenvectors and Characteristic Polynomials

A vector v = 0 in Fn is an eigenvector of the n-by-n matrix A if Av = ⌥v
for some scalar ⌥. We call ⌥ the eigenvalue associated with v. When ⌥ is an
eigenvalue, the vector space of all v with Av = ⌥v, i.e., the set consisting of the
eigenvectors and the 0 vector, is called the eigenspace for ⌥.

If we think of A as giving a linear map L from Fn to itself, an eigenvector takes
on geometric significance as a vectormapped to amultiple of itself by L . Another

geometric way of viewing matters is that the eigenvector yields a 1-dimensional

subspace U = Fv that is invariant, or stable, under L in the sense of satisfying
L(U)  U .

Proposition 2.39. An n-by-n matrix A has an eigenvector with eigenvalue ⌥
if and only if det(⌥I � A) = 0. In this case the eigenspace for ⌥ is the kernel of
⌥I � A.

PROOF. We have Av = ⌥v if and only if (⌥I � A)v = 0, if and only if v is in
ker(⌥I � A). This kernel is nonzero if and only if det(⌥I � A) = 0. �
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With A fixed, the expression det(⌥I � A) is a polynomial in ⌥ of degree n
and is called the characteristic polynomial8 of A. To see that it is at least a

polynomial function of ⌥, let us expand det(⌥I � A) as

det

⇣

��◆

⌥� A11 �A12 · · · �A1n
�A21 ⌥� A22 · · · �A2n

...
...

. . .
...

�An1 �An2 · · · ⌥� Ann

⌘

��

=
⌧

�

(sgn � )term1,� (1) · · · termn,� (n) .

The term for the permutation � = 1 has � (k) = k for every k and gives⇢n
j=1 (⌥ � Aj j ). All other � ’s have � (k) = k for at most n � 2 values of k,

and ⌥ therefore occurs at most n � 2 times. Thus the above expression is

=
n�

j=1
(⌥� Aj j ) +

!
other terms with powers

of ⌥ at most n � 2
"

= ⌥n �
⌃ n⌧

j=1
Aj j

⌥
⌥n�1 +

!
termswith powers of

⌥ from n � 2 to 1
"

+ (�1)n det A.

The constant term is (�1)n det A as indicated because it is the value of the poly-
nomial at ⌥ = 0, which is det(�A). In any event, we now see that characteristic
polynomials are polynomial functions. Starting in Chapter V, we shall treat them

as polynomials in one indeterminate in the sense9 of Section I.3; for now, we are

calling the indeterminate ⌥, but later as our point of view evolves, we shall start
calling it X . The negative of the coefficient of ⌥n�1 is the trace of A, denoted
by Tr A. Thus Tr A =

⇡n
j=1 Aj j . Trace is a linear functional on the vector space

Mnn(F) of n-by-n matrices.

EXAMPLE 1. For A =
�

4 1

�2 1

 
, the characteristic polynomial is

det(⌥I � A) = det

�
⌥� 4 �1
2 ⌥� 1

 

= (⌥� 4)(⌥� 1) + 2 = ⌥2 � 5⌥ + 6 = (⌥� 2)(⌥� 3).

8Some authors call det(A � ⌥I ) the characteristic polynomial. This is the same polynomial as
det(⌥I � A) if n is even and is the negative of it if n is odd. The choice made here has the slight
advantage of always having leading coefficient 1, which is a handy property in some situations.

9In Chapter V we will allow determinants of matrices whose entries are from any “commutative

ring with identity,” C[⌥] being an example. Then we can think of det(⌥I � A) directly as involving
an indeterminate ⌥ and not initially as a function of a scalar ⌥.
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The roots, and hence the eigenvalues, are ⌥ = 2 and ⌥ = 3. The eigenvectors for

⌥ = 2 are computed by solving (2I � A)v = 0. The method of row reduction

gives

�
2� 4
2

�1
2� 1

0

0

 
=
�
�2
2

�1
1

0

0

 
�✏
�
1

0

1
2

0

0

0

 
.

Thus we have x1 + 1
2
x2 = 0 and x1 = � 1

2
x2. So the eigenvectors for ⌥ = 2

are the nonzero vectors of the form

�
x1
x2

 
= x2

�
� 1
2

1

 
. Similarly we find

the eigenvectors for ⌥ = 3 by starting from (3I � A)v = 0 and solving. The

result is that the eigenvectors for ⌥ = 3 are the nonzero vectors of the form�
x1
x2

 
= x2

�
�1
1

 
. For this example, there is a basis of eigenvectors.

Corollary 2.40. An n-by-n matrix A has at most n eigenvalues.

PROOF. Since det(⌥I � A) is a polynomial of degree n, this follows from
Proposition 2.39 and Corollary 1.14. �

It will later be of interest that certain matrices A have a basis of eigenvectors.

Such a basis exists for A as in Example 1 but not in general. One thing that

can prevent a matrix from having a basis of eigenvectors is the failure of the

characteristic polynomial to factor into first-degree factors. Thus, for example,

A =
�

0 1

�1 0

 
has characteristic polynomial ⌥2 + 1, which does not factor

into first-degree factors when F = R. Even when we do have a factorization
into first-degree factors, we can still fail to have a basis of eigenvectors, as the

following example shows.

EXAMPLE 2. For A =
�
1 �1
0 1

 
, the characteristic polynomial is given

by det(⌥I � A) = det

�
⌥� 1 1

0 ⌥� 1

 
= (⌥ � 1)2. When we solve for

eigenvectors, we get

�
0

0

1

0

0

0

 
, and x2 = 0. Thus

�
x1
x2

 
= x1

�
1

0

 
,

and we do not have a basis of eigenvectors.

What happens is that the presence of a factor (⌥ � c)k in the characteristic
polynomial ensures the existence of an r-parameter family of eigenvectors for

eigenvalue c, with 1 ↵ r ↵ k, but not necessarily with r = k. Example 2 shows

that r can be strictly less than k. For purposes of deciding whether there is a basis
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of eigenvectors, the positive result is that the different roots of the characteristic

polynomial do not interferewith each other; this is a consequence of the following

proposition.

Proposition 2.41. If A is an n-by-n matrix, then eigenvectors for distinct

eigenvalues are linearly independent.

REMARK. It follows that if the characteristic polynomial of A has n distinct

eigenvalues, then it has a basis of eigenvectors.

PROOF. Let Av1 = ⌥1v1, . . . , Avk = ⌥kvk with ⌥1, . . . , ⌥k distinct, and
suppose that

c1v1 + · · · + ckvk = 0.

Applying A repeatedly gives

c1⌥1v1 + · · · + ck⌥kvk = 0,

c1⌥
2
1v1 + · · · + ck⌥

2
kvk = 0,

...

c1⌥
k�1
1 v1 + · · · + ck⌥

k�1
k vk = 0.

If the j th entry of vi is denoted by v
( j)
i , this system of vector equations says that

⇣

��◆

1 · · · 1

⌥1 · · · ⌥k
...

. . .
...

⌥k�11 · · · ⌥k�1k

⌘

��

⇣

◆
c1v

( j)
1
...

ckv
( j)
k

⌘

 =

⇣

◆
0
...
0

⌘

 for 1 ↵ j ↵ n.

The square matrix on the left side is a Vandermonde matrix, which is invertible

by Corollary 2.37 since ⌥1, . . . , ⌥k are distinct. Therefore civ
( j)
i = 0 for all i

and j . Each vi is nonzero in some entry v
( j)
i with j perhaps depending on i , and

hence ci = 0. Since all the coefficients ci have to be 0, v1, . . . , vk are linearly
independent. �

The theory of eigenvectors and eigenvalues for square matrices allows us to

develop a corresponding theory for linear maps L : V ✏ V , where V is an

n-dimensional vector space over F. If L is such a function, a vector v = 0

in V is an eigenvector of L if L(v) = ⌥v for some scalar ⌥. We call ⌥ the
eigenvalue. When ⌥ is an eigenvalue, the vector space of all v with L(v) = ⌥v
is called the eigenspace for ⌥ under L . We can compute the eigenvalues and
eigenvectors of L by working in any ordered basis � of V . The equation L(v) =
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⌥v becomes

�
L

��

 �
v
�

 
= ⌥

�
v
�

 
and is satisfied if and only if the column

vector

�
v
�

 
is an eigenvector of the matrix A =

�
L

��

 
with eigenvalue ⌥.

Applying Proposition 2.39 and remembering that determinants are well defined

on linear maps L : V ✏ V , we see that L has an eigenvector with eigenvalue ⌥
if and only if det(⌥I � L) = 0 and that in this case the eigenspace is the kernel

of ⌥I � L .

What happens if we make these computations in a different ordered basis �?

We know from Proposition 2.17 that the matrices A =
�

L

��

 
and B =

�
L

��

 

are similar, related by B = C�1AC , where C =
�

I

��

 
. Computing with

A leads to u =
�

v
�

 
as eigenvector for the eigenvalue ⌥. The corresponding

result for B is that B(C�1u) = C�1ACC�1u = C�1Au = ⌥C�1u. Thus

C�1u =
�

I

��

 �
v
�

 
=
�

v
�

 
is an eigenvector of B with eigenvalue ⌥, just

as it should be.

These considerations about eigenvalues suggest some facts about similar ma-

trices that we can observe more directly without first passing from matrices to

linearmaps: One is that similarmatrices have the same characteristic polynomial.

To see this, suppose that B = C�1AC ; then

det(⌥I � B) = det(⌥I � C�1AC) = det(C�1(⌥I � A)C)

= (detC�1) det(⌥I � A)(detC�1)

= (detC�1)(detC�1) det(⌥I � A) = det(⌥I � A).

A second fact is that similar matrices have the same trace. In fact, the trace is

the negative of the coefficient of ⌥n�1 in the characteristic polynomial, and the
characteristic polynomials are the same.

Because of these considerations we are free in the future to speak of the char-

acteristic polynomial, the eigenvalues, and the trace of a linear map from a finite-

dimensional vector space to itself, as well as the determinant, and these notions

do not depend on any choice of ordered basis. We can speak unambiguously also

of the eigenvectors of such a linear map. For this notion the realization of the

eigenvectors in an ordered basis as column vectors depends on the ordered basis,

the dependence being given by the formulas two paragraphs before the present

one.

One final remark is in order. When the scalars are taken to be the complex

numbers C, the Fundamental Theorem of Algebra (Theorem 1.18) is applicable:
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every polynomial of degree � 1 has at least one root. When applied to the char-
acteristic polynomial of a square matrix or a linear map from a finite-dimensional

vector space to itself, this theorem tells us that the matrix or linear map always

has at least one eigenvalue, hence an eigenvector. We shall make serious use of

this fact in Chapter III.

9. Bases in the Infinite-Dimensional Case

So far in this chapter, the use of bases has been limited largely to vector spaces

having a finite spanning set. In this case we know from Corollary 2.3 that the

finite spanning set has a subset that is a basis, any linearly independent set can be

extended to a basis, and any two bases have the same finite number of elements.

We called such spaces finite-dimensional and defined the dimension of the vector

space to be the number of elements in a basis.

The first objective in this section is to prove analogs of these results in the

infinite-dimensional case. We shall make use of Zorn’s Lemma as in Section A5

of the appendix, as well as the notion of cardinality discussed in Section A6 of the

appendix. Once these analogs are in place, we shall examine the various results

that we proved about finite-dimensional spaces to see the extent to which they

remain valid for infinite-dimensional spaces.

Theorem 2.42. If V is any vector space over F, then
(a) any spanning set in V has a subset that is a basis,

(b) any linearly independent set in V can be extended to a basis,

(c) V has a basis,

(d) any two bases have the same cardinality.

REMARKS. The common cardinality mentioned in (d) is called the dimension

of the vector space V . In many applications it is enough to use +✓ in place of

each infinite cardinal in dimension formulas. This was the attitude conveyed in

the remark with Corollary 2.24.

PROOF. For (b), let E be the given linearly independent set, and let S be the
collection of all linearly independent subsets of V that contain E . Partially order

S by inclusion upward. The set S is nonempty because E is in S. Let T be a
chain in S, and let A be the union of the members of T . We show that A is in
S, and then A is certainly an upper bound of T . Because of its definition, A
contains E , and we are to prove that A is linearly independent. For A to fail to

be linearly independent would mean that there are vectors v1, . . . , vn in A with
c1v1 + · · · + cnvn = 0 for some system of scalars not all 0. Let vj be in the
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member Aj of the chain T . Since A1  A2 or A2  A1, v1 and v2 are both in
A1 or both in A2. To keep the notation neutral, say they are both in A

⌘
2. Since

A⌘2  A3 or A3  A⌘2, all of v1, v2, v3 are in A
⌘
2 or they are all in A3. Say they

are all in A⌘3. Continuing in this way, we arrive at one of the sets A1, . . . , An ,
say A⌘n , such that all of v1, . . . , vn are all in A

⌘
n . The members of A

⌘
n are linearly

independent by assumption, and we obtain the contradiction c1 = · · · = cn = 0.

We conclude that A is linearly independent. Thus the chain T has an upper bound
in S. By Zorn’s Lemma, S has a maximal element, say M . By Proposition 2.1a,

M is a basis of V containing E .

For (a), let E be the given spanning set, and let S be the collection of all
linearly independent subsets of V that are contained in E . Partially order S by
inclusion upward. The set S is nonempty because � is in S. Let T be a chain in
S, and let A be the union of the members of T . We show that A is in S, and then
A is certainly an upper bound of T . Because of its definition, A is contained in
E , and the same argument as in the previous paragraph shows that A is linearly

independent. Thus the chain T has an upper bound in S. By Zorn’s Lemma, S
has a maximal element, say M . Proposition 2.1a is not applicable, but its proof is

easily adjusted to apply here to show that M spans V and hence is a basis: Given

v in V , we are to prove that v lies is the linear span of M . First suppose that v
is in E . If v is in M , there is nothing to prove. Since M ⇠ {v} is contained in
E , the assumed maximality implies that M ⇠ {v} is not linearly independent, and
hence cv + c1v1 + · · · + cnvn = 0 for some scalars c, c1, . . . , cn not all 0 and
for some vectors v1, . . . , vn in M . The scalar c cannot be 0 since M is linearly

independent. Thus v = �c�1c1v1 � · · · � c�1cnvn , and v is exhibited as in the
linear span of M . Consequently every member of E lies in the linear span of M .

Now suppose that v is not in E . Since every member of V lies in the linear span
of E , every member of V lies in the linear span of M .

Conclusion (c) follows from (a) by taking the spanning set to beV ; alternatively

it follows from (b) by taking the linearly independent set to be �.
For (d), let A = {v�} and B = {w⇥} be two bases of V . Each member a of A

can be written as a = c1w⇥1 + · · · + cnw⇥n uniquely with the scalars c1, . . . , cn
nonzero and with eachw⇥j in B. Let Ba be the finite subset {w⇥1, . . . , w⇥n }. Then
we have associated to each member of A a finite subset Ba of B. Let us see that�

a◆A Ba = B. If b is in B, then the linear span of B � {b} is not all of V . Thus
some v in V is not in this span. Expand v in terms of A as v = d1v�1+· · ·+dmv�m

with all dj = 0. Since v is not in the linear span of B � {b}, some a0 = v�j0
with 1 ↵ j0 ↵ m is not in this linear span. Then b is in Ba0 , and we conclude

that B =
�

a◆A Ba . By the corollary near the end of Section A6 of the appendix,
card B ↵ card A. Reversing the roles of A and B, we obtain card A ↵ card B.

By the Schroeder–Bernstein Theorem, A and B have the same cardinality. This

proves (d). �
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Now let us go through the results of the chapter and see how many of them

extend to the infinite-dimensional case and why. It is possible but not very useful

in the infinite-dimensional case to associate an infinite “matrix” to a linear map

when bases or ordered bases are specified for the domain and range. Because this

association is not very useful, we shall not attempt to extend any of the results

concerning matrices. The facts concerning extensions of results just dealing with

dimensions and linear maps are as follows:

COROLLARY 2.5. If V is any vector space and U is a vector subspace, then

dimU ↵ dim V .

In fact, take a basis of U and extend it to a basis of V ; a basis of U is then

exhibited as a subset of a basis of V , and the conclusion about cardinal-number

dimensions follows.

PROPOSITION 2.13. Let U and V be vector spaces over F, and let � be a basis
of U . Then to each function � : � ✏ V corresponds one and only one linear

map L : U ✏ V such that L
⇧⇧
�

= �.

In fact, the proof given in Section 3 is valid with no assumption about finite

dimensionality.

COROLLARY 2.15. If L : U ✏ V is a linear map between vector spaces over

F, then
dim(domain(L)) = dim(kernel(L)) + dim(image(L)).

In fact, this formula remains valid, but the earlier proof via matrices has to be

replaced. Instead, take a basis {v� | � ◆ A} of the kernel and extend it to a basis
{v� | � ◆ S} of the domain. It is routine to check that {L(v�) | � ◆ S � A} is a
basis of the image of L .

THEOREM 2.16 (part). The composition of two linear maps is linear.

In fact, the proof in Section 3 remains valid with no assumption about finite

dimensionality.

PROPOSITION 2.18. Two vector spaces over F are isomorphic if and only if
they have the same cardinal-number dimension.

In fact, this result follows from Proposition 2.13 just as it did in the finite-

dimensional case; the only changes that are needed in the argument in Section 3

are small adjustments of the notation. Of course, one must not overinterpret this

result on the basis of the remark with Theorem 2.42: two vector spaces with

dimension+✓ need not be isomorphic. Despite the apparent definitive sound of

Proposition 2.18, one must not attach too much significance to it; vector spaces

that arise in practice tend to have some additional structure, and an isomorphism

basedmerely on equality of dimensions need not preserve the additional structure.
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PROPOSITION 2.19. If V is a vector space and V ⌘ is its dual, then dim V ↵
dim V ⌘. (In the infinite-dimensional case we do not have equality.)

In fact, take a basis {v�} of V . If for each � we define v⌘�(v⇥) = ⇤�⇥ and use
Proposition 2.13 to form the linear extension v⌘�, then the set {v⌘�} is a linearly
independent subset of V ⌘ that is in one-one correspondence with the basis of V .
Extending {v⌘�} to a basis of V ⌘, we obtain the result.

PROPOSITION 2.20. Let V be a vector space, and letU be a vector subspace of

V . Then

(b) every linear functional on U extends to a linear functional on V ,

(c) whenever v0 is a member of V that is not in U , there exists a linear

functional on V that is 0 on U and is 1 on v0.

Conclusion (a) of the original Proposition 2.20, which concerns annihilators, does

not extend to the infinite-dimensional case.

To prove (b) without the finite dimensionality, let u⌘ be a given linear functional
onU , let {u�} be a basis ofU , and let {v⇥} be a subset of V such that {u�}⇠ {v⇥}
is a basis of V . Define v⌘(u�) = u⌘(u�) for each � and v⌘(v⇥) = 0 for each ⇥.
Using Proposition 2.13, let v⌘ be the linear extension to a linear functional on V .
Then v⌘ has the required properties.
To prove (c) without the finite dimensionality, we take a basis {u�} of U and

extend {u�}⇠ {v0} to a basis of V . Define v⌘ to equal 0 on each u�, to equal 1 on

v0, and to equal 0 on the remaining members of the basis of V . Then the linear
extension of v⌘ to V is the required linear functional.

PROPOSITION 2.22. If V is any vector space over F, then the canonical map
⌃ : V ✏ V ⌘⌘ is one-one. The canonical map is not onto V ⌘⌘ if V is infinite-

dimensional.

The proof that it is one-one given in Section 4 is applicable in the infinite-

dimensional case sincewe know fromTheorem2.42 that any linearly independent

subset of V can be extended to a basis. For the second conclusion when V has a

countably infinite basis, see Problem 31 at the end of the chapter.

PROPOSITION 2.23 THROUGH COROLLARY 2.29. For these results about quo-

tients, the only place that finite dimensionality played a role was in the dimension

formulas, Corollaries 2.24 and 2.29. We restate these two results separately.

COROLLARY 2.24. If V is a vector space over F and U is a vector subspace,

then

(a) dim V = dimU + dim(V/U),
(b) the subspace U is the kernel of some linear map defined on V .
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The proof in Section 5 requires no changes: Let q be the quotient map. The

linear map q meets the conditions of (b). For (a), take a basis ofU and extend to

a basis of V . Then the images under q of the additional vectors form a basis of

V/U .

COROLLARY 2.29. Let M and N be vector subspaces of a vector space V over

F. Then
dim(M + N ) + dim(M ⇡ N ) = dimM + dim N .

In fact, Corollary 2.24a gives us dim(M+ N ) = dim((M+ N )/M)+dimM .

Substituting dim((M + N )/M) = dim(N/(M ⇡ N )) from Theorem 2.28 and

adding dim(M ⇡ N ) to both sides, we obtain dim(M + N ) + dim(M ⇡ N ) =
dim(M ⇡ N ) + dim(N/(M ⇡ N )) + dimM . The first two terms on the right side

add to dim N by Corollary 2.24a, and the result follows.

PROPOSITIONS 2.30 THROUGH 2.33. These results about direct products and

direct sums did not assume any finite dimensionality.

The determinants of Sections 7–8 have no infinite-dimensional generalization,

and Proposition 2.41 is the only result in those two sections with a valid infinite-

dimensional analog. The valid analog in the infinite-dimensional case is that

eigenvectors for distinct eigenvalues under a linear map are linearly independent.

The proof given for Proposition 2.41 in Section 8 adapts to handle this analog,

provided we interpret components v
( j)
i of a vector vi as the coefficients needed

to expand vi in a basis of the underlying vector space.

10. Problems

1. Determine bases of the following subsets of R3:
(a) the plane 3x � 2y + 5z = 0,

(b) the line

�
x = 2t
y = �t
z = 4t

�
, where �✓ < t <✓.

2. This problem shows that the associativity law in the definition of “vector space”

implies certain more complicated formulas of which the stated law is a special

case. Let v1, . . . , vn be vectors in a vector space V . The only vector-space

properties that are to be used in this problem are associativity of addition and the

existence of the 0 element.

(a) Define v(k) inductively upward by v(0) = 0 and v(k) = v(k�1) + vk , and

define v(l) inductively downward by v(n+1) = 0 and v(l) = vl + v(l+1).
Prove that v(k) + v(k+1) is always the same element for 0 ↵ k ↵ n.

(b) Prove that the same element of V results from any way of inserting paren-

theses in the sum v1 + · · · + vn so that each step requires the addition of

only two members of V .
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3. This problem shows that the commutative and associative laws in the definition

of “vector space” together imply certainmore complicated formulas of which the

stated commutative law is a special case. Let v1, . . . , vn be vectors in a vector

space V . The only vector-space properties that are to be used in this problem are

commutativity of addition and the properties in the previous problem. Because

of the previous problem, v1 + · · · + vn is a well-defined element of V , and it is

not necessary to insert any parentheses in it. Prove that v1 + v2 + · · · + vn =
v� (1) + v� (2) + · · · + v� (n) for each permutation � of {1, . . . , n}.

4. For the matrix A =
�
1 2 �1
2 4 6

0 0 �8

 
, find

(a) a basis for the row space,

(b) a basis for the column space, and

(c) the rank of the matrix.

5. Let A be an n-by-n matrix of rank one. Prove that there exists an n-dimensional

column vector c and an n-dimensional row vector r such that A = cr .

6. Let A be a k-by-n matrix, and let R be a reduced row-echelon form of A.

(a) Prove for each r that the rows of R whose first r entries are 0 form a basis

for the vector subspace of all members of the row space of A whose first r

entries are 0.

(b) Prove that the reduced row-echelon form of A is unique in the sense that any

two sequences of steps of row reduction lead to the same reduced form.

7. Let E be an finite set of N points, let V be the N -dimensional vector space of

all real-valued functions on E , and let n be an integer with 0 < n ↵ N . Suppose

that U is an n-dimensional subspace of V . Prove that there exists a subset D of

n points in E such that the vector space of restrictions to D of the members of

U has dimension n.

8. A linear map L : R2 ✏ R2 is given in the standard ordered basis by the matrix⌃
�6 �12
6 11

⌥
. Find the matrix of L in the ordered basis

!⌃
3

�2

⌥
,
⌃
�4
3

⌥"
.

9. Let V be the real vector space of all polynomials in x of degree ↵ 2, and let

L : V ✏ V be the linear map I � D2, where I is the identity and D is the

differentiation operator d/dx . Prove that L is invertible.

10. Let A be in Mkm(C) and B be in Mmn(C). Prove that

rank(AB) ↵ max(rank A, rank B).

11. Let A be in Mkn(C) with k > n. Prove that there exists no B in Mnk(C) with

AB = I .

12. Let A be in Mkn(C) and B be in Mnk(C). Give an example with k = n to show

that rank(AB) need not equal rank(BA).
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13. With the differential equation y⌘⌘(t) = y(t) in Example 2 of Section 3, two

examples of linear functionals on the vector space of solutions are given by

�1(y) = y(0) and �2(y) = y⌘(0). Find a basis of the space of solutions such that
{�1, �2} is the dual basis.

14. Suppose that a vector space V has a countably infinite basis. Prove that the dual

V ⌘ has an uncountable linearly independent set.

15. (a) Give an example of a vector space and three vector subspaces L , M , and N

such that L ⇡ (M + N ) = (L ⇡ M) + (L ⇡ N ).

(b) Show that inclusion always holds in one direction in (a).

(c) Show that equality always holds in (a) if L ⌦ M .

16. Construct three vector subspaces M , N1, and N2 of a vector space V such that

M ⌃ N1 = M ⌃ N2 = V but N1 = N2. What is the geometric picture

corresponding to this situation?

17. Suppose that x , y, u, and v are vectors inR4; letM and N be the vector subspaces

ofR4 spanned by {x, y} and {u, v}, respectively. In which of the following cases
is it true that R4 = M ⌃ N?

(a) x = (1, 1, 0, 0), y = (1, 0, 1, 0), u = (0, 1, 0, 1), v = (0, 0, 1, 1);

(b) x = (�1, 1, 1, 0), y = (0, 1,�1, 1), u = (1, 0, 0, 0), v = (0, 0, 0, 1);

(c) x = (1, 0, 0, 1), y = (0, 1, 1, 0), u = (1, 0, 1, 0), v = (0, 1, 0, 1).

18. Section 6 gave definitions and properties of projections and injections associated

with the direct sum of two vector spaces. Write down corresponding definitions

and properties for projections and injections in the case of the direct sum of n

vector spaces, n being an integer > 2.

19. Let T : Rn ✏ Rn be a linear map with ker T ⇡ image T = 0.

(a) Prove that Rn = ker T ⌃ image T .
(b) Prove that the condition ker T ⇡ image T = 0 is satisfied if T 2 = T .

20. If V1 and V2 are two vector spaces over F, prove that (V1 ⌃ V2)
⌘ is canonically

isomorphic to V ⌘1 ⌃ V ⌘2.

21. Suppose that M is a vector subspace of a vector space V and that q : V ✏ V/M

is the quotient map. Corresponding to each linear functional y on V/M is a

linear functional z on V given by z = yq. Why is the correspondence y �✏ z an

isomorphism between (V/M)⌘ and AnnM?

22. Let M be a vector subspace of the vector space V , and let q : V ✏ V/M be the

quotient map. Suppose that N is a vector subspace of V . Prove that V = M⌃N

if and only if the restriction of q to N is an isomorphism of N onto V/M .

23. For a square matrix A of integers, prove that the inverse has integer entries if and

only if det A = ±1.
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24. Let A be in Mkn(C), and let r = rank A. Prove that r is the largest integer

such that there exist r row indices i1, . . . , ir and r column indices j1, . . . , jr
for which the r-by-r matrix formed from these rows and columns of A has

nonzero determinant. (Educational note: This problem characterizes the subset

of matrices of rank ↵ r � 1 as the set in which all determinants of r-by-r

submatrices are zero.)

25. Suppose that a linear combination of functions t �✏ ect with c real vanishes for

every integer t � 0. Prove that it vanishes for every real t .

26. Find all eigenvalues and eigenvectors of A =
⌃

0 1

�6 5

⌥
.

27. Let A andC be n-by-nmatriceswithC invertible. Bymaking a direct calculation

with the entries, prove that Tr(C�1AC) = Tr A.

28. Find the characteristicpolynomialof then-by-nmatrix

⇣

�����◆

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

...
0 0 0 0 ··· 0 1

a0 a1 a2 a3 ··· an�2 an�1

⌘

�����
.

29. Let A and B be in Mnn(C).

(a) Prove under the assumption that A is invertible that det(⌥I � AB) =
det(⌥I � BA).

(b) By working with A + ⌅ I and letting ⌅ tend to 0, show that the assumption

in (a) that A is invertible can be dropped.

30. In proving Theorem 2.42a, it is tempting to argue by considering all spanning

subsets of the given set, ordering them by inclusion downward, and seeking a

minimal element by Zorn’s Lemma. Give an example of a chain in this ordering

that has no lower bound, thereby showing that this line of argument cannot work.

Problems 31–34 concern annihilators. Let V be a vector space, let M and N be vector

subspaces, and let ⌃ : V ✏ V ⌘⌘ be the canonical map.

31. If V has an infinite basis, how can we conclude that ⌃ does not carry V onto V ⌘⌘?

32. Prove that Ann(M + N ) = AnnM ⇡ Ann N .

33. Prove that Ann(M ⇡ N ) = AnnM + Ann N .

34. (a) Prove that ⌃(M)  Ann(AnnM).

(b) Prove that equality holds in (a) if V is finite-dimensional.

(c) Give an infinite-dimensional example in which equality fails in (a).
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Problems 35–39 concern operations by blocks within matrices.

35. Let A be a k-by-m matrix of the form A = ( A1 A2 ), where A1 has size

k-by-m1, A2 has size k-by-m2, and m1 + m2 = m. Let B by an m⌘-by-n matrix

of the form B =
�
B1
B2

 
, where B1 has size m

⌘
1-by-n, B2 has size m

⌘
2-by-n, and

m⌘1 + m⌘2 = m⌘.
(a) If m1 = m⌘1 and m2 = m⌘2, prove that AB = A1B1 + A2B2.

(b) If k = n, prove that BA =
�
B1A1 B1A2
B2A2 B2A2

 
.

(c) Deduce a general rule for block multiplication of matrices that are in 2-by-2

block form.

36. Let A be in Mkk(C), B be in Mkn(C), and D be in Mnn(C). Prove that

det

�
A B

0 D

 
= det A det D.

37. Let A, B, C , and D be in Mnn(C). Suppose that A is invertible and that AC =

CA. Prove that det

�
A B

C D

 
= det(AD � CB).

38. Let A be in Mkn(C) and B be in Mnk(C) with k ↵ n. Let Ik be the k-by-

k identity, and let In be the n-by-n identity. Using Problem 29, prove that

det(⌥In � BA) = ⌥n�k det(⌥Ik � AB).

39. Prove the following block-form generalization of the expansion-in-cofactors

formula. For each subset S of {1, . . . , n}, let Sc be the complementary subset
within {1, . . . , n}, and let sgn(S, Sc) be the sign of the permutation that carries
(1, . . . , n) to the members of S in order, followed by the members of Sc in order.

Fix k with 1 ↵ k ↵ n � 1, and let the subset S have |S| = k. For an n-by-n

matrix A, define A(S) to be the square matrix of size k obtained by using the

rows of A indexed by 1, . . . , k and the columns indexed by the members of S.

Let �A(S) be the square matrix of size k � 1 obtained by using the rows of A
indexed by k + 1, . . . , n and the columns indexed by the members of Sc. Prove

that

det A =
⌧

S {1,...,n},
|S|=k

sgn(S, Sc) det A(S) det �A(S).

Problems 40–44 compute the determinants of certain matrices known as Cartan

matrices. These have geometric significance in the theory of Lie groups.
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40. Let An be the n-by-n matrix

⇣

�����◆

2 �1 0 0 ··· 0 0

�1 2 �1 0 ··· 0 0

0 �1 2 �1 ··· 0 0

0 0 �1 2 ··· 0 0

...
0 0 0 0 ··· 2 �1
0 0 0 0 ··· �1 2

⌘

�����
. Using expansion in

cofactors about the last row, prove that det An = 2 det An�1 � det An�2 for
n � 3.

41. Computing det A1 and det A2 directly and using the recursion in Problem 40,

prove that det An = n + 1 for n � 1.
42. Let Cn for n � 2 be the matrix An except that the (1, 2)th entry is changed from

�1 to �2.
(a) Expanding in cofactors about the last row, prove that the argument of Prob-

lem 40 is still applicable when n � 4 and a recursion formula for detCn
results with the same coefficients.

(b) Computing detC2 and detC3 directly and using the recursion equation in

(a), prove that detCn = 2 for n � 2.
43. Let Dn for n � 3 be the matrix An except that the upper left 3-by-3 piece is

changed from

�
2 �1 0

�1 2 �1
0 �1 2

 
to

�
2 0 �1
0 2 �1
�1 �1 2

 
.

(a) Expanding in cofactors about the last row, prove that the argument of Prob-

lem 40 is still applicable when n � 5 and a recursion formula for det Dn
results with the same coefficients.

(b) Show that D3 can be transformed into A3 by suitable interchanges of rows

and interchanges of columns, and conclude that det D3 = det A3 = 4.

(c) Computing det D4 directly and using (b) and the recursion equation in (a),

prove that det Dn = 4 for n � 3.
44. Let En for n � 4 be the matrix An except that the upper left 4-by-4 piece is

changed from

⇣

◆
2 �1 0 0

�1 2 �1 0

0 �1 2 �1
0 0 �1 2

⌘

 to

⇣

◆
2 �1 0 0

�1 2 0 �1
0 0 2 �1
0 �1 �1 2

⌘

.

(a) Expanding in cofactors about the last row, prove that the argument of Prob-

lem 40 is still applicable when n � 6 and a recursion formula for det En
results with the same coefficients.

(b) Show that E4 can be transformed into A4 by suitable interchanges of rows

and interchanges of columns, and conclude that det E4 = det A4 = 5.

(c) Show that E5 can be transformed into D5 by suitable interchanges of rows

and interchanges of columns, and conclude that det E5 = det D5 = 4.

(d) Using (b) and (c) and the recursion equation in (a), prove that det En = 9�n
for n � 4.
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Problems 45–48 relate determinants to areas and volumes. They begin by showing

how a computation of an area in R2 leads to a determinant, they then show how

knowledge of the answer and of the method of row reduction illuminate the result,

and finally they indicate how the result extends toR3. If u and v are vectors inR2, let
us say that the parallelogram determined by u and v is the parallelogramwith vertices

0, u, v, and u+v. If u, v, andw are inR3, the parallelepiped determined by u, v, and
w is the parallelepiped with vertices 0, u, v, w, u + v, u + w, v + w, and u + v + w.

45. The area of a trapezoid is the product of the average of the two parallel sides by

the distance between the parallel sides. Compute the area of the parallelogram

determined by u =
⌃
a

c

⌥
and v =

⌃
b

d

⌥
in the diagram below as the area of a

large rectangle minus the area of two trapezoids minus the area of two triangles,

recognizing the answer as det
⌃
a b

c d

⌥
except for a minus sign. To what extent is

the answer dependent on the picture?

c

d

a b

FIGURE 2.6. Area of a parallelogram as a difference of areas.

46. What is the geometric effect on the parallelogram of replacing the matrix
⌃
a b

c d

⌥

by the matrix
⌃
a b

c d

⌥ ⌃
1 s

0 1

⌥
, i.e., of right-multiplying

⌃
a b

c d

⌥
by
⌃
1 s

0 1

⌥
? What

does this change do to the area? What algebraic operation does this change

correspond to?

47. Answer the same questions as in Problem 46 for right multiplication by the

matrices
⌃
1 0

t 1

⌥
,
⌃
0 1

1 0

⌥
,
⌃
q 0

0 1

⌥
for a nonzero number q, and

⌃
1 0

0 r

⌥
for a nonzero

number r .

48. Explain on the basis of Problems 45–47 why if three column vectors u, v, andw

in R3 are assembled into a 3-by-3 matrix A and A is invertible, then the volume
of the parallelepiped determined by u, v, and w has to be | det A|.



CHAPTER III

Inner-Product Spaces

Abstract. This chapter investigates the effects of adding the additional structure of an inner product

to a finite-dimensional real or complex vector space.

Section 1 concerns the effect on the vector space itself, defining inner products and their cor-

responding norms and giving a number of examples and formulas for the computation of norms.

Vector-space bases that are orthonormal play a special role.

Section 2 concerns the effect on linear maps. The inner product makes itself felt partly through

the notion of the adjoint of a linear map. The section pays special attention to linear maps that are

self-adjoint, i.e., are equal to their own adjoints, and to those that are unitary, i.e., preserve norms of

vectors.

Section 3 proves the Spectral Theorem for self-adjoint linear maps on finite-dimensional inner-

product spaces. The theorem says in part that any self-adjoint linear map has an orthonormal basis

of eigenvectors. The Spectral Theorem has several important consequences, one of which is the

existence of a unique positive semidefinite square root for any positive semidefinite linear map. The

section concludes with the polar decomposition, showing that any linear map factors as the product

of a unitary linear map and a positive semidefinite one.

1. Inner Products and Orthonormal Sets

In this chapter we examine the effect of adding further geometric structure to

the structure of a real or complex vector space as defined in Chapter II. To be

a little more specific in the cases of R2 and R3, the development of Chapter II
amounted to working with points, lines, planes, coordinates, and parallelism, but

nothing further. In the present chapter, by comparison, we shall take advantage

of additional structure that captures the notions of distances and angles.

We take F to be R or C, continuing to call its members the scalars. We
do not allow F to be Q in this chapter; the main results will make essential

use of additional facts about R and C beyond those of addition, subtraction,

multiplication, and division. The relevant additional facts are summarized in

Sections A3 and A4 of the appendix.1

1The theory of Chapter II will be observed in Chapter IV to extend to any “field” F in place of Q
or R or C, but the theory of the present chapter is limited to R and C, as well as some other special
fields that we shall not try to isolate.

89
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Many of the results thatwe obtainwill be limited to the finite-dimensional case.

The theory of inner-product spaces that we develop has an infinite-dimensional

generalization, but useful results for the generalization make use of a hypothesis

of “completeness” for an inner-product space that we are not in a position to

verify in examples.2

Let V be a vector space over F. An inner product on V is a function from

V ⇤ V into F, which we here denote by ( · , · ), with the following properties:
(i) the function u ✏↵ (u, v) of V into F is linear,
(ii) the function v ✏↵ (u, v) of V into F is conjugate linear in the sense

that it satisfies (u, v1 + v2) = (u, v1) + (u, v2) for v1 and v2 in V and

(u, cv) = c̄(u, v) for v in V and c in F,
(iii) (u, v) = (v, u) for u and v in V ,
(iv) (v, v) ⌦ 0 for all v in V ,
(v) (v, v) = 0 only if v = 0 in V .

The overbars in (ii) and (iii) indicate complex conjugation. Property (ii) reduces

when F = R to the fact that v ✏↵ (u, v) is linear. Properties (i) and (ii) together
are summarized by saying that ( · , · ) is bilinear if F = R or sesquilinear if

F = C. Property (iii) is summarized when F = R by saying that ( · , · ) is
symmetric, or when F = C by saying that ( · , · ) is Hermitian symmetric.
An inner-product space, for purposes of this book, is a vector space over R

or C with an inner product in the above sense.3,4

EXAMPLES.

(1) V = Rn with ( · , · ) as the dot product, i.e., with (x, y) = yt x =

x1y1 + · · · + xn yn if x =
 x1

...
xn

⌦
and y =

 y1

...
yn

⌦
. The traditional notation for the

dot product is x · y.
(2) V = Cn with ( · , · ) defined by (x, y) = ȳt x = x1 ȳ1 + · · · + xn ȳn if

x =
 x1

...
xn

⌦
and y =

 y1

...
yn

⌦
. Here ȳ denotes the entry-by-entry complex conjugate

of y. The sesquilinear expression ( · , · ) is different from the complex bilinear
dot product x · y = x1y1 + · · · + xn yn .

2A careful study in the infinite-dimensional case is normally made only after the development

of a considerable number of topics in real analysis.
3When the scalars are complex, many books emphasize the presence of complex scalars by

referring to the inner product as a “Hermitian inner product.” This book does not need to distinguish

the complex case very often and therefore will not use the modifier “Hermitian” with the term “inner

product.”
4Some authors, particularly in connection with mathematical physics, reverse the roles of the

two variables, defining inner products to be conjugate linear in the first variable and linear in the

second variable.
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(3)V equal to the vector space of all complex-valuedpolynomialswith ( f, g)=� 1
0
f (x)g(x) dx .

Let V be an inner-product space. If v is in V , define ⇢v⇢ =
�

(v, v), calling
⇢ · ⇢ the norm associated with the inner product. The norm of v is understood to
be the nonnegative square root of the nonnegative real number (v, v) and is well
defined as a consequence of (iv). In the case ofRn , ⇢x⇢ is the Euclidean distance✏
x21 + · · · + x2n from the origin to the column vector x = (x1, . . . , xn). In this

interpretation the dot product of two nonzero vectors in Rn is shown in analytic

geometry to be given by x · y = ⇢x⇢⇢y⇢ cos ⌅ , where ⌅ is the angle between the
vectors x and y.

Direct expansion of norms squared of sums of vectors using bilinearity or

sesquilinearity leads to certain formulas of particular interest. The formula that

we shall use most frequently is

⇢u + v⇢2 = ⇢u⇢2 + 2Re(u, v) + ⇢v⇢2,

which generalizes fromR2 a version of the law of cosines in trigonometry relating
the lengths of the three sides of a triangle when one of the angles is known. With

the additional hypothesis that (u, v) = 0, this formula generalizes from R2 the
Pythagorean Theorem

⇢u + v⇢2 = ⇢u⇢2 + ⇢v⇢2.

Another such formula is the parallelogram law

⇢u + v⇢2 + ⇢u � v⇢2 = 2⇢u⇢2 + 2⇢v⇢2 for all u and v in V,

which is proved by computing ⇢u + v⇢2 and ⇢u � v⇢2 by the law of cosines and
adding the results. The name “parallelogram law” is explained by the geometric

interpretation in the case of the dot product forR2 and is illustrated in Figure 3.1.
That figure uses the familiar interpretation of vectors inR2 as arrows, two arrows
being identified if they are translates of one another; thus the arrow from v to u
represents the vector u � v.
The parallelogram law is closely related to a formula for recovering the inner

product from the norm, namely

(u, v) = 1

4

�

k

i k ⇢u + i kv⇢2,

where the sum extends for k � {0, 2} if the scalars are real and extends for
k � {0, 1, 2, 3} if the scalars are complex. This formula goes under the name
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polarization. To prove it, we expand ⇢u + i kv⇢2 = ⇢u⇢2 + 2Re(u, i kv) + ⇢v⇢2
= ⇢u⇢2 + 2Re

�
(�i)k(u, v)

⇥
+ ⇢v⇢2. Multiplying by i k and summing on k

shows that
↵

k i
k ⇢u + i kv⇢2 = 2

↵
k i

k Re
�
(�i)k(u, v)

⇥
. If k is even, then

i k Re((�i)k z) = Re z for any complex z, while if k is odd, then i k Re((�i)k z) =
i Im z. So 2

↵
k i

k Re((�i)k z) = 4z, and
↵

k i
k ⇢u+i kv⇢2 = 4(u, v), as asserted.

u + v
v

u � v

u

0

FIGURE 3.1. Geometric interpretation of the parallelogram law: the sum

of the squared lengths of the four sides of a parallelogram

equals the sum of the squared lengths of the diagonals.

Proposition 3.1 (Schwarz inequality). In any inner-product space V ,

|(u, v)|  ⇢u⇢⇢v⇢ for all u and v in V .

REMARK. The proof is written so as to use properties (i) through (iv) in the

definition of inner product but not (v), a situation often encounteredwith integrals.

PROOF. Possibly replacing u by ei⌅u for some real ⌅ , we may assume that
(u, v) is real. In the case that ⇢v⇢ �= 0, the law of cosines gives

⇤⇤u � ⇢v⇢�2(u, v)v
⇤⇤2 = ⇢u⇢2 � 2⇢v⇢�2|(u, v)|2 + ⇢v⇢�4|(u, v)|2⇢v⇢2.

The left side is ⌦ 0, and the right side simplifies to ⇢u⇢2 � ⇢v⇢�2|(u, v)|2. Thus
the inequality follows in this case.

In the case that ⇢v⇢ = 0, it is enough to prove that (u, v) = 0 for all u. If c is

a scalar, then we have

⇢u + cv⇢2 = ⇢u⇢2 + 2Re
�
c(u, v)

⇥
+ |c|2⇢v⇢2 = ⇢u⇢2 + 2Re

�
c(u, v)

⇥
.

The left side is ⌦ 0 as c varies, but the right side is < 0 for a suitable choice of c

unless (u, v) = 0. This completes the proof. �

Proposition 3.2. In any inner-product space V , the norm satisfies

(a) ⇢v⇢ ⌦ 0 for all v in V , with equality if and only if v = 0,

(b) ⇢cv⇢ = |c|⇢v⇢ for all v in V and all scalars c,
(c) ⇢u + v⇢  ⇢u⇢+ ⇢v⇢ for all u and v in V .
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PROOF. Conclusion (a) is immediate from properties (iv) and (v) of an inner

product, and (b) follows since ⇢cv⇢2 = (cv, cv) = cc̄(v, v) = |c|2⇢v⇢2. Finally
we use the law of cosines and the Schwarz inequality (Proposition 3.1) to write

⇢u+v⇢2 = ⇢u⇢2+2Re(u, v)+⇢v⇢2  ⇢u⇢2+2⇢u⇢⇢v⇢+⇢v⇢2 = (⇢u⇢+⇢v⇢)2.
Taking the square root of both sides yields (c). �

Two vectors u and v in V are said to be orthogonal if (u, v) = 0, and one

sometimes writes u ⇣ v in this case. The notation is a reminder of the interpre-
tation in the case of dot product—that dot product 0 means that the cosine of the

angle between the two vectors is 0 and the vectors are therefore perpendicular.

An orthogonal set in V is a set of vectors such that each pair is orthogonal.

The nonzero members of an orthogonal set are linearly independent. In fact, if

{v1, . . . , vk} is an orthogonal set of nonzero vectors and some linear combination
has c1v1 + · · · + ckvk = 0, then the inner product of this relation with vj gives

0 = (c1v1 + · · · + ckvk, vj ) = cj⇢vj⇢2, and we see that cj = 0 for each j .

A unit vector in V is a vector u with ⇢u⇢ = 1. If v is any nonzero vector,
then v/⇢v⇢ is a unit vector. An orthonormal set in V is an orthogonal set of

unit vectors. Under the assumption that V is finite-dimensional, an orthonormal

basis of V is an orthonormal set that is a vector-space basis.5

EXAMPLES.

(1) In Rn or Cn , the standard basis {e1, . . . , en} is an orthonormal set.
(2) Let V be the complex inner-product space of all complex finite linear

combinations, for n from �N to +N , of the functions x ✏↵ einx on the closed

interval [�⌃,⌃], the inner product being ( f, g) = 1
2⌃

� ⌃
�⌃ f (x)g(x) dx . With

respect to this inner product, the functions einx form an orthonormal set.

A simple but important exercise in an inner-product space is to resolve a vector

into the sum of a multiple of a given unit vector and a vector orthogonal to the

given unit vector. This exercise is solved as follows: If v is given and u is a unit
vector, then v decomposes as

v = (v, u)u +
�
v � (v, u)u

⇥
.

Here (v, u)u is a multiple of u, and the two components are orthogonal since�
u, v � (v, u)u

⇥
= (u, v) � (v, u)(u, u) = (u, v) � (u, v) = 0. This decom-

position is unique since if v = v1 + v2 with v1 = cu and (v2, u) = 0, then the

inner product of v = v1+v2 with u yields (v, u) = (cu, u)+ (v2, u) = c. Hence

5In the infinite-dimensional theory the term “orthonormal basis” is used for an orthonormal set

that spans V when limits of finite sums are allowed, in addition to finite sums themselves; when V

is infinite-dimensional, an orthonormal basis is never large enough to be a vector-space basis.
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c must be (v, u), v1 must be (v, u)u, and v2 must be v � (v, u)u. Figure 3.2
illustrates the decomposition, and Proposition 3.3 generalizes it by replacing the

multiples of a single unit vector by the span of a finite orthonormal set.

v

v � (v, u)u

(v, u)u

u

0

FIGURE 3.2. Resolution of v into a component (v, u)u parallel
to a unit vector u and a component orthogonal to u.

Proposition 3.3. Let V be an inner-product space. If {u1, . . . , uk} is an or-
thonormal set in V and if v is given in V , then there exists a unique decomposition

v = c1u1 + · · · + ckuk + v⇣

with v⇣ orthogonal to uj for 1  j  k. In this decomposition cj = (v, uj ).

REMARK. The proof illustrates a technique that arises often in mathematics.

We seek to prove an existence–uniqueness theorem, and we begin by making

calculations toward uniqueness that narrow down the possibilities. We are led to

some formulas or conditions, andwe use these to define the object in question and

thereby prove existence. Although it may not be so clear except in retrospect, this

was the technique that lay behind proving the equivalence of various conditions

for the invertibility of a square matrix in Section I.6. The technique occurred

again in defining and working with determinants in Section II.7.

PROOF OF UNIQUENESS. Taking the inner product of both sides with uj , we

obtain (v, uj ) = (c1u1+· · ·+ ckuk +v⇣, uj ) = cj for each j . Then cj = (v, uj )

is forced, and v⇣ must be given by v � (v, u1)u1 � · · ·� (v, uk)uk . �
PROOF OF EXISTENCE. Putting cj = (v, uj ), we need check only that the

difference v�(v, u1)u1�· · ·�(v, uk)uk is orthogonal to each uj with 1  j  k.

Direct calculation gives

�
v �

↵
i (v, ui )ui , uj

⇥
= (v, uj )�

↵
i ((v, ui )ui , uj ) = (v, uj )� (v, uj ) = 0,

and the proof is complete. �

Corollary 3.4 (Bessel’s inequality). Let V be an inner-product space. If

{u1, . . . , uk} is an orthonormal set in V and if v is given in V , then
↵k

j=1 |(v, uj )|2
 ⇢v⇢2 with equality if and only if v is in span{u1, . . . , uk}.
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PROOF. Using Proposition 3.3, write v =
↵k

j=1 (v, uj )uj + v⇣ with v⇣

orthogonal to u1, . . . , uk . Then

⇢v⇢2 =
�↵k

i=1 (v, ui )ui + v⇣,
↵k

j=1 (v, uj )uj + v⇣
⇥

=
↵

i, j (v, ui )(v, uj )(ui , uj ) +
�↵

i (v, ui )ui , v
⇣⇥

+
�
v⇣,

↵
j (v, uj )uj

⇥
+ ⇢v⇣⇢2

=
↵

i, j (v, ui )(v, uj )⇤i j + 0+ 0+ ⇢v⇣⇢2

=
↵k

j=1 |(v, uj )|2 + ⇢v⇣⇢2.

From Proposition 3.3 we know that v is in span{u1, . . . , uk} if and only if v⇣ = 0,

and the corollary follows. �

We shall now impose the condition of finite dimensionality in order to obtain

suitable kinds of orthonormal sets. The argument will enable us to give a basis-

free interpretation of Proposition 3.3 and Corollary 3.4, and we shall obtain

equivalent conditions for the vector v⇣ in Proposition 3.3 and Corollary 3.4 to
be 0 for every v.
If an ordered set of k linearly independent vectors in the inner-product space

V is given, the above proposition suggests a way of adjusting the set so that it

becomes orthonormal. Let us write the formulas here and carry out the verifi-

cation via Proposition 3.3 in the proof of Proposition 3.5 below. The method

of adjusting the set so as to make it orthonormal is called the Gram–Schmidt

orthogonalization process. The given linearly independent set is denoted by

{v1, . . . , vk}, and we define

u1 = v1

⇢v1⇢
,

u�2 = v2 � (v2, u1)u1,

u2 = u�2
⇢u�2⇢

,

u�3 = v3 � (v3, u1)u1 � (v3, u2)u2,

u3 = u�3
⇢u�3⇢

,

...

u�k = vk � (vk, u1)u1 � · · ·� (vk, uk�1)uk�1,

uk =
u�k
⇢u�k⇢

.
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Proposition 3.5. If {v1, . . . , vk} is a linearly independent set in an inner-
product space V , then the Gram–Schmidt orthogonalization process replaces

{v1, . . . , vk} by an orthonormal set {u1, . . . , uk} such that span{v1, . . . , vj } =
span{u1, . . . , uj } for all j .
PROOF. We argue by induction on j . The base case is j = 1, and the result

is evident in this case. Assume inductively that u1, . . . , uj�1 are well defined
and orthonormal and that span{v1, . . . , vj�1} = span{u1, . . . , uj�1}. Proposition
3.3 shows that u�j is orthogonal to u1, . . . , uj�1. If u

�
j = 0, then vj has to be

in span{u1, . . . , uj�1} = span{v1, . . . , vj�1}, and we have a contradiction to the
assumed linear independence of {v1, . . . , vk}. Thus u�j �= 0, and {u1, . . . , uj } is a
well-definedorthonormal set. This setmust be linearly independent, and hence its

linear span is a j-dimensional vector subspace of the linear span of {v1, . . . , vj }.
By Corollary 2.4, the two linear spans coincide. This completes the induction

and the proof. �

Corollary 3.6. If V is a finite-dimensional inner-product space, then any

orthonormal set in a vector subspace S of V can be extended to an orthonormal

basis of S.

PROOF. Extend the given orthonormal set to a basis of S by Corollary 2.3b.

Then apply the Gram–Schmidt orthogonalization process. The given vectors do

not get changed by the process, as we see from the formulas for the vectors u�j
and uj , and hence the result is an extension of the given orthonormal set to an

orthonormal basis. �

Corollary 3.7. If S is a vector subspace of a finite-dimensional inner-product

space V , then S has an orthonormal basis.

PROOF. This is the special case of Corollary 3.6 inwhich the given orthonormal

set is empty. �

The set of all vectors orthogonal to a subset M of the inner-product space V

is denoted by M⇣. In symbols,

M⇣ = {u � V | (u, v) = 0 for all v � M}.

We see by inspection that M⇣ is a vector subspace. Moreover, M  M⇣ = 0

since any u in M M⇣ must have (u, u) = 0. The interest in the vector subspace

M⇣ comes from the following proposition.

Theorem 3.8 (Projection Theorem). If S is a vector subspace of the finite-

dimensional inner-product space V , then every v in V decomposes uniquely as
v = v1 + v2 with v1 in S and v2 in S

⇣. In other words, V = S ⌃ S⇣.
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REMARKS. Because of this proposition, S⇣ is often called the orthogonal
complement of the vector subspace S.

PROOF. Uniqueness follows from the fact that S  S⇣ = 0. For existence,

use of Corollaries 3.7 and 3.6 produces an orthonormal basis {u1, . . . , ur } of S
and extends it to an orthonormal basis {u1, . . . , un} of V . The vectors uj for
j > r are orthogonal to each ui with i  r and hence are in S⇣. If v is given
in S, we can write v =

↵n
j=1 uj as v = v1 + v2 with v1 =

↵r
i=1(v, ui )ui and

v2 =
↵n

j=r+1(v, uj )uj , and this decomposition for all v shows that V = S+ S⇣.
�

Corollary 3.9. If S is a vector subspace of the finite-dimensional inner-product

space V , then

(a) dim V = dim S + dim S⇣,
(b) S⇣⇣ = S.

PROOF. Conclusion (a) is immediate from the direct-sum decomposition V =
S ⌃ S⇣ of Theorem 3.8. For (b), the definition of orthogonal complement gives
S � S⇣⇣. On the other hand, application of (a) twice shows that S and S⇣⇣ have
the same finite dimension. By Corollary 2.4, S⇣⇣ = S. �

Section II.6 introduced “projection” mappings in the setting of any direct sum

of two vector spaces, and we shall use those mappings in connection with the

decompositionV = S⌃S⇣ of Theorem3.8. Wemake one adjustment inworking
with the projections, changing their ranges from the image, namely S or S⇣, to
the larger space V . In effect, a linear map p1 or p2 as in Section II.6 will be

replaced by i1 p1 or i2 p2.

Specifically let E : V ↵ V be the linear map that is the identity on S and is 0

on S⇣. Then E is called the orthogonal projection of V on S. The linear map
I � E is the identity on S⇣ and is 0 on S. Since S = S⇣⇣, I � E is the orthogonal

projection of V on S⇣. It is the linear map that picks out the S⇣ component
relative to the direct-sum decomposition V = S⇣ ⌃ S⇣⇣. Proposition 3.3 and
Corollary 3.4 can be restated in terms of orthogonal projections.

Corollary 3.10. Let V be a finite-dimensional inner-product space, let S be a

vector subspace of V , let {u1, . . . , uk} be an orthonormal basis of S, and let E be
the orthogonal projection of V on S. If v is in V , then

E(v) =
k�

j=1
(v, uj )uj

⇢E(v)⇢2 =
k�

j=1
|(v, uj )|2.and
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The vector v⇣ in the expansion v =
↵k

j=1 (v, uj )uj + v⇣ of Proposition 3.3 is
equal to (I � E)v, and the equality of norms

⇢v⇢2 =
k�

j=1
|(v, uj )|2 + ⇢v⇣⇢2

has the interpretations that

⇢v⇢2 = ⇢E(v)⇢2 + ⇢(I � E)v⇢2

and that equality holds in Bessel’s inequality if and only if E(v) = v.

PROOF. Write v =
↵k

j=1 (v, uj )uj + v⇣ as in Proposition 3.3. Then each uj
is in S, and the vector v⇣, being orthogonal to each member of a basis of S, is in
S⇣. This proves the formula for E(v), and the formula for ⇢E(v)⇢2 follows by
applying Corollary 3.4 to v � v⇣.
Reassembling v, we now have v = E(v) + v⇣, and hence v⇣ = v � E(v) =

(I � E)v. Finally the decomposition v = E(v) + (I � E)(v) is into orthogonal
terms, and the Pythagorean Theorem shows that ⇢v⇢2 = ⇢E(v)⇢2+⇢(I �E)v⇢2.

�

Theorem 3.11 (Parseval’s equality). If V is a finite-dimensional inner-product

space, then the following conditions on an orthonormal set {u1, . . . , um} are
equivalent:

(a) {u1, . . . , um} is a vector-space basis of V , hence an orthonormal basis,
(b) the only vector orthogonal to all of u1, . . . , um is 0,
(c) v =

↵m
j=1 (v, uj )uj for all v in V ,

(d) ⇢v⇢2 =
↵m

j=1 |(v, uj )|2 for all v in V ,
(e) (v,w) =

↵m
j=1 (v, uj )(w, uj ) for all v and w in V .

PROOF. Let S = span{u1, . . . , um}, and let E be the orthogonal projection of
V on S. If (a) holds, then S = V and S⇣ = 0. Thus (b) holds.

If (b) holds, then S⇣ = 0 and E is the identity. Thus (c) holds by Corollary

3.10.

If (c) holds, then Corollary 3.4 shows that (d) holds.

If (d) holds, we use polarization to prove (e). Let k be in {0, 2} if F = R, or in
{0, 1, 2, 3} if F = C. Conclusion (d) gives us

⇢v+ i kw⇢2 =
m�

j=1
|(v+ i kw, uj )|2 = ⇢v⇢2+

m�

j=1
2Re

�
(v, uj )i k(w, uj )

⇥
+⇢w⇢2.

Multiplying by i k and summing over k, we obtain

4(v,w) = 2

m�

j=1

�

k

i k Re
�
(�i)k(v, uj )(w, uj )

⇥
.
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In the proof of polarization, we saw that 2
↵

k i
k Re((�i)k z) = 4z. Hence

4(v,w) = 4
↵m

j=1 (v, uj )(w, uj ). This proves (e).
If (e) holds, we take w = v in (e) and apply Corollary 3.10 to see that

⇢E(v)⇢2 = ⇢v⇢2 for all v. Then ⇢(I � E)v⇢2 = 0 for all v, and E(v) = v
for all v. Hence S = V , and {u1, . . . , um} is a basis. This proves (a). �

Theorem 3.12 (Riesz Representation Theorem). If ✓ is a linear functional on
the finite-dimensional inner-product space V , then there exists a unique v in V
with ✓(u) = (u, v) for all u in V .

PROOF. Uniqueness is immediate by subtracting two such expressions, since if

(u, v) = 0 for all u, then the special case u = v gives (v, v) = 0 and v = 0. Let

us prove existence. If ✓ = 0, take v = 0. Otherwise let S = ker ✓. Corollary 2.15
shows that dim S = dim V � 1, and Corollary 3.9a then shows that dim S⇣ = 1.

Let w be a nonzero vector in S⇣. This vector w must have ✓(w) �= 0 since

S  S⇣ = 0, and we let v be the member of S⇣ given by

v = ✓(w)

⇢w⇢2
w.

For any u in V , we have ✓
�
u � ✓(u)

✓(w)
w
⇥

= 0, and hence u � ✓(u)
✓(w)

w is in S. Since

v is in S⇣, u � ✓(u)
✓(w)

w is orthogonal to v. Thus

(u, v) =
⌅ ✓(u)
✓(w)

w, v
⇧

=
⌅ ✓(u)
✓(w)

w,
✓(w)

⇢w⇢2
w
⇧

= ✓(u)
✓(w)

✓(w)

⇢w⇢2
⇢w⇢2

= ✓(u).

This proves existence. �

2. Adjoints

Throughout this section, V will denote a finite-dimensional inner-product space

with inner product ( · , · ) and with scalars from F, with F equal to R or C. We
shall study aspects of linear maps L : V ↵ V related to the inner product on V .

The starting point is to associate to any such L another linear map L⌅ : V ↵ V

known as the “adjoint” of V , and then to investigate some of its properties.

A tool in this investigation will be the scalar-valued function on V ⇤ V given

by (u, v) ✏↵ (L(u), v), which captures the information in any matrix of L
without requiring the choice of an ordered basis. This function determines L

uniquely because an equality (L(u), v) = (L �(u), v) for all u and v implies
(L(u) � L �(u), v) = 0 for all u and v, in particular for v = L(u) � L �(u); thus
⇢L(u)� L �(u)⇢2 = 0 and L(u) = L �(u) for all u.
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Proposition 3.13. Let L : V ↵ V be a linear map on the finite-dimensional

inner-product space V . For each u in V , there exists a unique vector L⌅(u) in V
such that

(L(v), u) = (v, L⌅(u)) for all v in V .

As u varies, this formula defines L⌅ as a linear map from V to V .

REMARK. The linear map L⌅ : V ↵ V is called the adjoint of L .

PROOF. The function v ✏↵ (L(v), u) is a linear functional on V , and Theorem
3.12 shows that it is given by the inner product with a unique vector of V . Thus

we define L⌅(u) to be the unique vector of V with (L(v), u) = (v, L⌅(u)) for all
v in V .
If c is a scalar, then the uniqueness and the computation (v, L⌅(cu)) =

(L(v), cu) = c̄(L(v), u) = c̄(v, L⌅(u)) = (v, cL⌅(u)) yield L⌅(cu) = cL⌅(u).
Similarly the uniqueness and the computation

(v, L⌅(u1 + u2)) = (L(v), u1 + u2) = (L(v), u1) + (L(v), u2)

= (v, L⌅(u1)) + (v, L⌅(u2)) = (v, L⌅(u1) + L⌅(u2))

yield L⌅(u1 + u2) = L⌅(u1) + L⌅(u2). Therefore L
⌅ is linear. �

The passage L ✏↵ L⌅ to the adjoint is a function fromHomF(V, V ) to itself that
is conjugate linear, and it reverses the order of multiplication: (L1L2)

⌅ = L⌅2L
⌅
1.

Since the formula (L(v), u) = (v, L⌅(u)) in the proposition is equivalent to the
formula (u, L(v)) = (L⌅(u), v), we see that L⌅⌅ = L .

All of the results in Section II.3 concerning the association ofmatrices to linear

maps are applicable here, but our interest now will be in what happens when the

bases we use are orthonormal. Recall from Section II.3 that if  = (u1, . . . , un)

and ⌦ = (v1, . . . , vn) are any ordered bases of V , then the matrix A =
⌃

L

⌦ 

⌥

associated to the linear map L : V ↵ V has Ai j =
⌃
L(uj )
⌦

⌥

i

.

Lemma 3.14. If L : V ↵ V is a linear map on the finite-dimensional inner-

product space V and if  = (u1, . . . , un) and ⌦ = (v1, . . . , vn) are ordered

orthonormal bases of V , then the the matrix A =
⌃

L

⌦ 

⌥
has Ai j = (L(uj ), vi ).

PROOF. Applying Theorem 3.11c, we have

Ai j =
⌃
L(uj )
⌦

⌥

i

=
⌃↵

i � (L(uj ), vi �)vi �

⌦

⌥

i

=
�

i �
(L(uj ), vi �)

⌃
vi �

⌦

⌥

i

=
�

i �
(L(uj ), vi �)⇤i i � = (L(uj ), vi ). �
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Proposition 3.15. If L : V ↵ V is a linear map on the finite-dimensional

inner-product space V and if = (u1, . . . , un) and⌦ = (v1, . . . , vn) are ordered

orthonormal bases of V , then the matrices A =
⌃

L

⌦ 

⌥
and A⌅ =

⌃
L⌅

 ⌦

⌥
of L

and its adjoint are related by A⌅i j = Aji .

PROOF. Lemma 3.14 and the definition of L⌅ give A⌅i j = (L⌅(vj ), ui ) =
(vj , L(ui )) = (L(ui ), vj ) = Aji . �

Accordingly, we define A⌅ = A t for any square matrix A, sometimes calling

A⌅ the adjoint6 of A.
A linear map L : V ↵ V is called self-adjoint if L⌅ = L . Correspondingly a

square matrix A is self-adjoint if A⌅ = A. It is more common, however, to say

that a matrix with A⌅ = A is symmetric if F = R or Hermitian7 if F = C. A
real Hermitian matrix is symmetric, and the term “Hermitian” is thus applicable

also when F = R.
Any Hermitian matrix A arises from a self-adjoint linear map L . Namely,

we take V to be Fn with the usual inner product, and we let  and ⌦ each be

the standard ordered basis ↵ = (e1, . . . , en). This basis is orthonormal, and we
define L by thematrix product L(v) = Av for any column vector v. We know that⌃

L

↵↵

⌥
= A. Since A⌅ = A, we conclude from Proposition 3.15 that L⌅ = L .

Thus we are free to deduce properties of Hermitian matrices from properties of

self-adjoint linear maps.

Self-adjoint linear maps will be of special interest to us. Nontrivial examples

of self-adjoint linear maps, constructed without simply writing down Hermitian

matrices, may be produced by the following proposition.

Proposition 3.16. If V is a finite-dimensional inner-product space and S is a

vector subspace of V , then the orthogonal projection E : V ↵ V of V on S is

self-adjoint.

PROOF. Letv = v1+v2 andu = u1+u2 be the decompositionsof twomembers
of V according to V = S ⌃ S⇣. Then we have (v, E⌅(u)) = (E(v), u) =
(v1, u1 + u2) = (v1, u1) = (v, u1) = (v, E(u)), and the proposition follows by
the uniqueness in Proposition 3.13. �

6The name “adjoint” happens to coincide with the name for a different notion that arose in

connection with Cramer’s rule in Section II.7. The two notions never seem to arise at the same time,

and thus no confusion need occur.
7The term “Hermitian” is used also for a class of linear maps in the infinite-dimensional case,

but care is needed because the terms “Hermitian” and “self-adjoint” mean different things in the

infinite-dimensional case.
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To understand Proposition 3.16 in terms of matrices, take an ordered or-

thonormal basis (u1, . . . , ur ) of S, and extend it to an ordered orthonormal basis
 = (u1, . . . , un) of V . Then

E(uj ) =
�
uj for j  r,

0 for j > r,

and hence

⌃
E(uj )
 

⌥
equals the j th standard basis vector ej if j  r and equals 0 if

j > r . Consequently thematrix

⌃
E

  

⌥
is diagonal with 1’s in the first r diagonal

entries and 0’s elsewhere. This matrix is equal to its conjugate transpose, as it

must be according to Propositions 3.15 and 3.16.

Proposition 3.17. If V is a finite-dimensional inner-product space and

L : V ↵ V is a self-adjoint linear map, then (L(v), v) is in R for every v
in V , and consequently every eigenvalue of L is in R. Conversely if F = C and

if L : V ↵ V is a linear map such that (L(v), v) is in R for every v in V , then L
is self-adjoint.

REMARK. The hypothesis F = C is essential in the converse. In fact, the 90⌥

rotation L of R2 whose matrix in the standard basis is
⌅

0 1

�1 0

⇧
is not self-adjoint

but does have L(v) · v = 0 for every v in R2.

PROOF. If L = L⌅, then (L(v), v) = (v, L⌅(v)) = (v, L(v)) = (L(v), v),
and hence (L(v), v) is real-valued. If v is an eigenvector with eigenvalue ⇧, then

substitution of L(v) = ⇧v into (L(v), v) = (L(v), v) gives ⇧⇢v⇢2 = ⇧̄⇢v⇢2.
Since v �= 0, ⇧ must be real.
For the converse we begin with the special case that (L(w),w) = 0 for all w.

For 0  k  3, we then have

(�i)k(L(u), v)+i k(L(v), u) = (L(u+i kv), u+i kv)�(L(u), u)�(L(v), v) = 0.

Taking k = 0 gives (L(u), v) + (L(v), u) = 0, while taking k = 1 gives

(L(u), v) � (L(v), u) = 0. Hence (L(u), v) = 0 for all u and v. Since the
function (u, v) ✏↵ L(u, v) determines L , we obtain L = 0.

In the general case, (L(v), v) real-valued implies that (L(v), v) = (L⌅(v), v)
for all v. Therefore ((L � L⌅)(v), v) = 0 for all v, and the special case shows
that L � L⌅ = 0. This completes the proof. �

We conclude this section by examining one further class of linear maps having

a special relationship with their adjoints.
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Proposition 3.18. If V is a finite-dimensional inner-product space, then the

following conditions on a linear map L : V ↵ V are equivalent:

(a) L⌅L = I ,

(b) L carries some orthonormal basis of V to an orthonormal basis,

(c) L carries each orthonormal basis of V to an orthonormal basis,

(d) (L(u), L(v)) = (u, v) for all u and v in V ,
(e) ⇢L(v)⇢ = ⇢v⇢ for all v in V .

REMARK. A linear map satisfying these equivalent conditions is said to be

orthogonal if F = R and unitary if F = C.
PROOF. We prove that (a), (d), and (e) are equivalent and that (b), (c), and (d)

are equivalent.

If (a) holds and u and v are given in V , then (L(u), L(v)) = (L⌅L(u), v) =
(I (u), v) = (u, v), and (d) holds. If (d) holds, then setting u = v shows that (e)
holds. If (e) holds, we use polarization twice to write

(L(u), L(v)) =
↵

k
1
4
i k⇢L(u) + i k L(v)⇢2 =

↵
k
1
4
i k⇢L(u + i kv)⇢2

=
↵

k
1
4
i k⇢u + i kv⇢2 = (u, v).

Then ((L⌅L � I )(u), v) = 0 for all u and v, and we conclude that (a) holds.
Since (b) is a special case of (c) and (c) is a special case of (d), proving that (b)

implies (d) will prove that (b), (c), and (d) are equivalent. Thus let {u1, . . . , un}
be an orthonormal basis of V such that {L(u1), . . . , L(un)} is an orthonormal
basis, and let u and v be given. Then

(L(u), L(v)) =
�
L
�↵

i (u, ui )ui
⇥
, L

�↵
j (v, uj )uj

⇥⇥

=
↵

i, j (u, ui )(v, uj )(L(ui ), L(uj ))

=
↵

i, j (u, ui )(v, uj )⇤i j =
↵

i (u, ui )(v, ui ) = (u, v),

the last equality following from Parseval’s equality (Theorem 3.11). �

As with self-adjointness, we use the geometrically meaningful definition for

linear maps to obtain a definition for matrices: a square matrix A with A⌅A = I

is said to be orthogonal if F = R and unitary if F = C. The condition is that
A is invertible and its inverse equals its adjoint. In terms of individual entries,

the condition is that
↵

k A
⌅
ik Ak j = ⇤i j , hence that

↵
k Aki Akj = ⇤i j . This is the

condition that the columns of A form an orthonormal basis relative to the usual

inner product on Rn or Cn . A real unitary matrix is orthogonal.

If A is an orthogonal or unitary matrix, we can construct a corresponding

orthogonal or unitary linear map on Rn or Cn relative to the standard ordered



104 III. Inner-Product Spaces

basis ↵. Namely, we define L(v) = Av, and Proposition 3.15 shows that L is
orthogonal or unitary: L⌅L(v) = A⌅Av = Iv = v. Proposition 3.19 below
gives a converse.

Let us notice that anorthogonalor unitarymatrix A necessarilyhas | det A| = 1.

In fact, the formula A⌅ = (A)t implies that det A⌅ = det A. Then

1 = det I = det A⌅A = det A⌅ det A = det A det A = | det A|2.

An orthogonal matrix thus has determinant ±1, while we conclude for a unitary
matrix only that the determinant is a complex number of absolute value 1.

EXAMPLES.

(1) The 2-by-2 orthogonal matrices of determinant +1 are all matrices of the
form

⌅
cos ⌅ sin ⌅

� sin ⌅ cos ⌅

⇧
. The 2-by-2 orthogonal matrices of determinant �1 are the

product of
⌅
1 0

0 �1

⇧
and the 2-by-2 orthogonal matrices of determinant+1.

(2) The 2-by-2 unitary matrices of determinant+1 are all matrices of the form⌅
� ⇥

�⇥̄ �̄

⇧
with |�|2+|⇥|2 = 1; thesemay be regarded as parametrizing the points of

the unit sphere S3 ofR4. The 2-by-2 unitary matrices of arbitrary determinant are
the products of all matrices

⌅
1 0

0 ei⌅

⇧
and the 2-by-2 unitarymatrices of determinant

+1.

Proposition 3.19. If V is a finite-dimensional inner-product space, if  =
(u1, . . . , un) and ⌦ = (v1, . . . , vn) are ordered orthonormal bases of V , and if
L : V ↵ V is a linear map that is orthogonal if F = R and unitary if F = C,

then the matrix A =
⌃

L

⌦ 

⌥
is orthogonal or unitary.

PROOF. Proposition 3.15 and Theorem 2.16 give A⌅A =
⌃
L⌅

 ⌦

⌥⌃
L

⌦ 

⌥
=

⌃
I

⌦⌦

⌥
, and the right side is the identity matrix, as required. �

One consequence of Proposition 3.19 is that anymatrix

⌃
I

⌦ 

⌥
relative to two

ordered orthonormal bases is orthogonal or unitary, since the identity function

I : V ↵ V is certainly orthogonal or unitary. Thus a change from writing the

matrix of a linear map L in one ordered orthonormal basis  to writing the matrix
of L in another ordered orthonormal basis ⌦ is implemented by the formula⌃

L

  

⌥
= C�1

⌃
L

⌦⌦

⌥
C , where C is the orthogonal or unitary matrix

⌃
I

⌦ 

⌥
.
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Another consequence of Proposition 3.19 is that the matrix

⌃
L

  

⌥
of an

orthogonal or unitary linear map L in an ordered orthonormal basis  is an

orthogonal or unitary matrix. We have defined det L to be the determinant of⌃
L

  

⌥
relative to any  , and we conclude that | det L| = 1.

3. Spectral Theorem

In this sectionwe deal with the geometric structure of certain kinds of linear maps

from finite-dimensional inner-product spaces into themselves. We shall see that

linear maps that are self-adjoint or unitary, among other possible conditions, have

bases of eigenvectors in the sense of Section II.8. Moreover, such a basis may

be taken to be orthonormal. When an ordered basis of eigenvectors is used for

expressing the linear map as a matrix, the result is that the matrix is diagonal.

Thus these linear maps have an especially uncomplicated structure. In terms of

matrices, the result is that a Hermitian or unitary matrix A is similar to a diagonal

matrix D, and the matrix C with D = C�1AC may be taken to be unitary. We
begin with a lemma.

Lemma 3.20. If L : V ↵ V is a self-adjoint linear map on an inner-

product space V , then v ✏↵ (L(v), v) is real-valued, every eigenvalue of L is
real, eigenvectors under L for distinct eigenvalues are orthogonal, and every

vector subspace S of V with L(S) � S has L(S⇣) � S⇣.

PROOF. The first two conclusions are contained in Proposition 3.17. If v1 and
v2 are eigenvectors of L with distinct real eigenvalues ⇧1 and ⇧2, then

(⇧1 � ⇧2)(v1, v2) = (⇧1v1, v2)� (v1, ⇧2v2) = (L(v1), v2)� (v1, L(v2)) = 0.

Since ⇧1 �= ⇧2, we must have (v1, v2) = 0. If S is a vector subspace with

L(S) � S, then also L(S⇣) � S⇣ because s � S and s⇣ � S⇣ together imply

0 = (L(s), s⇣) = (s, L(s⇣)). �

Theorem 3.21 (Spectral Theorem). Let L : V ↵ V be a self-adjoint linear

map on an inner-product space V . Then V has an orthonormal basis of eigenvec-

tors of L . In addition, for each scalar ⇧, let

V⇧ = {v � V | L(v) = ⇧v},

so that V⇧ when nonzero is the eigenspace of L for the eigenvalue ⇧. Then the
eigenvalues of L are all real, the vector subspaces V⇧ are mutually orthogonal,
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and any orthonormal basis of V of eigenvectors of L is the union of orthonormal

bases of the V⇧’s. Correspondingly if A is any Hermitian n-by-n matrix, then

there exists a unitary matrix C such that C�1AC is diagonal with real entries. If
the matrix A has real entries, then C may be taken to be an orthogonal matrix.

PROOF. Lemma 3.20 shows that the eigenvalues of L are all real and that the

vector subspaces V⇧ are mutually orthogonal.

To proceed further, we first assume that F = C. Applying the Fundamental
Theorem of Algebra (Theorem 1.18) to the characteristic polynomial of L , we see

that L has at least one eigenvalue, say ⇧1. Then L(V⇧1) � V⇧1 , and Lemma 3.20

shows that L((V⇧1)
⇣) � (V⇧1)

⇣. The vector subspace (V⇧1)
⇣ is an inner-product

space, and the claim is that L
⇤⇤
(V⇧1 )

⇣ is self-adjoint. In fact, if v1 and v2 are in

(V⇧1)
⇣, then

�
(L
⇤⇤
(V⇧1 )

⇣)
⌅(v1), v2

⇥
=
�
v1, L

⇤⇤
(V⇧1 )

⇣(v2)
⇥

= (v1, L(v2))

= (L(v1), v2) =
�
L
⇤⇤
(V⇧1 )

⇣(v1), v2
⇥
,

and the claim is proved. Since ⇧1 is an eigenvalue of L , dim(V⇧1)
⇣ < dim V .

Therefore we can now set up an induction that ultimately exhibits V as an orthog-

onal direct sum V = V⇧1 ⌃ · · ·⌃ V⇧k . If v is an eigenvector of L with eigenvalue
⇧�, then either ⇧� = ⇧j for some j in this decomposition, in which case v is in
V⇧j , or ⇧

� is not equal to any ⇧j , in which case v, by the lemma, is orthogonal
to all vectors in V⇧1 ⌃ · · · ⌃ V⇧k , hence to all vectors in V ; being orthogonal to

all vectors in V , v must be 0. Choosing an orthonormal basis for each V⇧j and
taking their union provides an orthonormal basis of eigenvectors and completes

the proof for L when F = C.
Next assume that A is a Hermitian n-by-n matrix. We define a linear map

L : Cn ↵ Cn by L(v) = Av, and we know from Proposition 3.15 that L is self-
adjoint. The case just proved shows that L has an ordered orthonormal basis  
of eigenvectors, all the eigenvalues being real. If↵ denotes the standard ordered

basis of Cn , then D =
⌃

L

  

⌥
is diagonal with real entries and is equal to

⌃
I

 ↵

⌥⌃
L

↵↵

⌥⌃
I

↵ 

⌥
= C�1AC,

whereC =
⌃

L

↵ 

⌥
. ThematrixC is unitary by Proposition 3.19, and the formula

D = C�1AC shows that A is as asserted.
Now let us return to L and suppose that F = R. The idea is to use the

same argument as above in the case that F = C, but we need a substitute for



3. Spectral Theorem 107

the use of the Fundamental Theorem of Algebra. Fixing any orthonormal basis

of V , let A be the matrix of L . Then A is Hermitian with real entries. The

previous paragraph shows that any Hermitian matrix, whether or not real, has

a characteristic polynomial that splits as a product
�m

j=1 (⇧ � rj )
mj with all rj

real. Consequently L has this property as well. Thus any self-adjoint L when

F = R has an eigenvalue. Returning to the argument for L above when F = C,
we readily see that it now applies when F = R.
Finally if A is a Hermitian matrix with real entries, then we can define a self-

adjoint linear map L : Rn ↵ Rn by L(v) = Av, obtain an orthonormal basis
of eigenvectors for L , and argue as above to obtain D = C�1AC , where D is

diagonal and C is unitary. The matrix C has columns that are eigenvectors in Rn

of the associated L , and these have real entries. Thus C is orthogonal. �

An important application of the Spectral Theorem is to the formation of a

square root for any “positive semidefinite” linear map. We say that a linear map

L : V ↵ V on a finite-dimensional inner-product space is positive semidefinite

if L⌅ = L and (L(v), v) ⌦ 0 for all v in V . If F = C, then the condition L⌅ = L

is redundant, according to Proposition 3.17, but that fact will not be important

for us. Similarly an n-by-n matrix A is positive semidefinite if A⌅ = A and

x̄ t Ax ⌦ 0 for all column vectors x . An example of a positive semidefinite n-by-n
matrix is any matrix A = B⌅B, where B is an arbitrary k-by-n matrix. In fact, if
x is in Fn , then x̄ t B⌅Bx = (Bx)t(Bx), and the right side is ⌦ 0, being a sum of
absolute values squared.

Corollary 3.22. Let L : V ↵ V be a positive semidefinite linear map on a

finite-dimensional inner-product space, and let A be an n-by-n Hermitian matrix.

Then

(a) L or A is positive semidefinite if and only if all of its eigenvalues are⌦ 0.
(b) whenever L or A is positive semidefinite, L or A is invertible if and only

if (L(v), v) > 0 for all v �= 0 or x̄ t Ax > 0 for all x �= 0.

(c) whenever L or A is positive semidefinite, L or A has a unique positive

semidefinite square root.

REMARKS. A positive semidefinite linear map or matrix satisfying the condi-

tion in (b) is said to be positive definite, and the content of (b) is that a positive

semidefinite linear map or matrix is positive definite if and only if it is invertible.

PROOF. We apply the Spectral Theorem (Theorem 3.21). For each conclusion

the result for a matrix A is a special case of the result for the linear map L , and

it is enough to treat only L . In (a), let (u1, . . . , un) be an ordered basis of eigen-
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vectors with respective eigenvalues ⇧1, . . . , ⇧n , not necessarily distinct. Then
(L(uj ), uj ) = ⇧j shows the necessity of having ⇧j ⌦ 0, while the computation

(L(v), v) =
�
L
�↵

i (v, ui )ui
⇥
,
↵

j (v, uj )uj
⇥

=
�↵

i ⇧i (v, ui )ui ,
↵

j (v, uj )uj
⇥

=
↵

i ⇧i |(v, ui )|2

shows the sufficiency.

In (b), if L fails to be invertible, then 0 is an eigenvalue for some eigenvector

v �= 0, and v has (L(v), v) = 0. Conversely if L is invertible, then all the

eigenvalues ⇧i are > 0 by (a), and the computation in (a) yields

(L(v), v) =
�

i

⇧i |(v, ui )|2 ⌦
�
min
j
⇧j
⇥�

i

|(v, ui )|2 =
�
min
j
⇧j
⇥
⇢v⇢2,

the last step following from Parseval’s equality (Theorem 3.11).

For existence in (c), the Spectral Theorem says that there exists an ordered

orthonormal basis  = (u1, . . . , un) of eigenvectors of L , say with respective
eigenvalues ⇧1, . . . , ⇧n . The eigenvalues are all ⌦ 0 by (a). The linear extension
of the function P with P(uj ) = ⇧

1/2
j u j is given by

P(v) =
n�

j=1
⇧
1/2
j (v, uj )uj ,

and it has

P2(v) =
↵

j ⇧j (v, uj )uj =
↵

j (v, uj )L(uj ) = L
�↵

j (v, uj )uj
⇥

= L(v).

Thus P2 = L . Relative to  , we have
⌃
P

  

⌥

i j

=
�
(P(uj ), u1)u1 + · · · + (P(uj ), un)un

⇥
i
= (P(uj ), ui ) = ⇧

1/2
j ⇤i j ,

and this is a Hermitian matrix; Proposition 3.15 therefore shows that P⌅ = P .

Finally

(P(v), v) =
�↵

i ⇧
1/2
i (v, ui )ui ,

↵
j (v, uj )uj

⇥
= ⇧

1/2
i |(v, ui )|2 ⌦ 0,

and thus P is positive semidefinite. This proves existence.

For uniqueness in (c), let P satisfy P⌅ = P and P2 = L , and suppose P is

positive semidefinite. Choose an orthonormal basis of eigenvectors u1, . . . , un
of P , say with eigenvalues c1, . . . , cn , all ⌦ 0. Then L(uj ) = P2(uj ) = c2j u j ,

and we see that u1, . . . , un form an orthonormal basis of eigenvectors of L with
eigenvalues c2j . On the space where L acts as the scalar ⇧i , P must therefore act

as the scalar ⇧
1/2
i . We conclude that P is unique. �
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The technique of proof of (c) allows one, more generally, to define f (L) for
any function f : R ↵ C whenever L is self-adjoint. Actually, the function f

needs to be defined only on the set of eigenvalues of L for the definition to make

sense.

At the end of this section, we shall use the existence of the square root in (c) to

obtain the so-called “polar decomposition” of square matrices. But before doing

that, let us mine three additional easy consequences of the Spectral Theorem.

The first deals with several self-adjoint linear maps rather than one, and the other

two apply that conclusion to deal with single linear maps that are not necessarily

self-adjoint.

Corollary 3.23. Let V be a finite-dimensional inner-product space, and let

L1, . . . , Lm be self-adjoint linearmaps fromV toV that commute in the sense that

Li L j = L j Li for all i and j . Then V has an orthonormal basis of simultaneous

eigenvectors of L1, . . . , Lm . In addition, for each m-tuple of scalars ⇧1, . . . , ⇧m ,
let

V⇧1,...,⇧m = {v � V | L j (v) = ⇧jv for 1  j  m}

consist of 0 and the simultaneous eigenvectors of L1, . . . , Lm corresponding to
⇧1, . . . , ⇧m . Then all the eigenvalues ⇧j are real, the vector subspaces V⇧1,...,⇧m
are mutually orthogonal, and any orthonormal basis of V of simultaneous eigen-

vectors of L1, . . . , Lm is the union of orthonormal bases of the V⇧1,...,⇧m ’s. Corre-
spondingly if A1, . . . , Am are commuting Hermitian n-by-n matrices, then there
exists a unitary matrixC such that C�1AjC is diagonal with real entries for all j .
If all the matrices Aj have real entries, then C may be taken to be an orthogonal

matrix.

PROOF. This follows by iterating the Spectral Theorem (Theorem 3.21). In

fact, let {V⇧1} be the system of vector subspaces produced by the theorem for L1.
For each j , the commutativity of the linear maps Li forces

L1(Li (v)) = Li (L1(v)) = Li (⇧1v) = ⇧1Li (v) for v � V⇧1,

and thus Li (V⇧1) � V⇧1 . The restrictions of L1, . . . , Lm to V⇧1 are self-adjoint
and commute. Let {V⇧1,⇧2} be the system of vector subspaces produced by the
Spectral Theorem for L2

⇤⇤
V⇧1
. Each of these, by the commutativity, is carried

into itself by L3, . . . , Lm , and the restrictions of L3, . . . , Lm to V⇧1,⇧2 form a

commuting family of self-adjoint linear maps. Continuing in this way, we arrive

at the decomposition asserted by the corollary for L1, . . . , Lm . The assertion of
the corollary about commuting Hermitian matrices is a special case, in the same

way that the assertions in Theorem 3.21 about matrices were special cases of the

assertions about linear maps. �
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A linear map L : V ↵ V , not necessarily self-adjoint, is said to be normal if

L commutes with its adjoint: LL⌅ = L⌅L .

Corollary 3.24. Suppose that F = C, and let L : V ↵ V be a normal linear

map on the finite-dimensional inner-product space V . Then V has an orthonormal

basis of eigenvectors of L . In addition, for each complex scalar ⇧, let

V⇧ = {v � V | L(v) = ⇧v},

so that V⇧ when nonzero is the eigenspace of L for the eigenvalue ⇧. Then the
vector subspaces V⇧ are mutually orthogonal, and any orthonormal basis of V of

eigenvectors of L is the union of orthonormal bases of the V⇧’s. Correspondingly

if A is any n-by-n complex matrix such that AA⌅ = A⌅A, then there exists a
unitary matrix C such that C�1AC is diagonal.

REMARK. The corollary fails if F = R: for the linear map L : R2 ↵ R2

with L(v) = Av and A =
⌅

0 1

�1 0

⇧
, L⌅ = L�1 commutes with L , but L has no

eigenvectors in R2 since the characteristic polynomial ⇧2 + 1 has no first-degree
factors with real coefficients.

PROOF. The point is that L =
�
1
2
(L+L⌅)

⇥
+ i
�
1
2i

(L�L⌅)
⇥
and that 1

2
(L+L⌅)

and 1
2i

(L � L⌅) are self-adjoint. If L commutes with L⌅, then T1 = 1
2
(L + L⌅)

and T2 = 1
2i

(L � L⌅) commute with each other. We apply Corollary 3.23 to
the commuting self-adjoint linear maps T1 and T2. The vector subspace V�,⇥
produced by Corollary 3.23 coincides with the vector subspace V�+i⇥ defined in
the present corollary, and the result for L follows. The result for matrices is a

special case. �

Corollary 3.25. Suppose that F = C, and let L : V ↵ V be a unitary linear

map on the finite-dimensional inner-product space V . Then V has an orthonormal

basis of eigenvectors of L . In addition, for each complex scalar ⇧, let

V⇧ = {v � V | L(v) = ⇧v},

so that V⇧ when nonzero is the eigenspace of L for the eigenvalue ⇧. Then the
eigenvalues of L all have absolute value 1, the vector subspaces V⇧ are mutually

orthogonal, and any orthonormal basis of V of eigenvectors of L is the union

of orthonormal bases of the V⇧’s. Correspondingly if A is any n-by-n unitary

matrix, then there exists a unitary matrix C such that C�1AC is diagonal; the

diagonal entries of C�1AC all have absolute value 1.

PROOF. This is a special case of Corollary 3.24 since a unitary linear map L

has LL⌅ = I = L⌅L . The eigenvalues all have absolute value 1 as a consequence
of Proposition 3.18e. �
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Now we come to the polar decomposition of linear maps and of matrices.

When F = C, this is a generalization of the polar decomposition z = ei⌅r of

complex numbers. WhenF = R, it generalizes the decomposition x = (sgn x)|x |
of real numbers.

Theorem 3.26 (polar decomposition). If L : V ↵ V is a linear map on a

finite-dimensional inner-product space, then L decomposes as L = UP , where

P is positive semidefinite and U is orthogonal if F = R and unitary if F = C.
The linear map P is unique, and U is unique if L is invertible. Correspondingly

any n-by-n matrix A decomposes as A = UP , where P is a positive semidefinite

matrix and U is an orthogonal matrix if F = R and a unitary matrix if F = C.
The matrix P is unique, and U is unique if A is invertible.

REMARKS. As we have already seen in other situations, the motivation for the

proof comes from the uniqueness.

PROOF OF UNIQUENESS. Let L = UP = U �P �. Then L⌅L = P2 = P �2. The
linear map L⌅L is positive semidefinite since its adjoint is (L⌅L)⌅ = L⌅L⌅⌅ =
L⌅L and since (L⌅L(v), v) = (L(v), L(v)) ⌦ 0. Therefore Corollary 3.22c

shows that L⌅L has a unique positive semidefinite square root. Hence P = P �.
If L is invertible, then P is invertible and L = UP implies thatU = LP�1. The
same argument applies in the case of matrices. �
PROOF OF EXISTENCE. If L is given, then we have just seen that L⌅L is

positive semidefinite. Let P be its unique positive semidefinite square root. The

proof is clearer when L is invertible, and we consider that case first. Then we

can set U = LP�1. Since U⌅ = (P�1)⌅L⌅ = P�1L⌅, we find that U⌅U =
P�1L⌅LP�1 = P�1P2P�1 = I , and we conclude that U is unitary.

When L is not necessarily invertible, we argue a little differently with the

positive semidefinite square root P of L⌅L . The kernel K of P is the 0 eigenspace
of P , and the Spectral Theorem (Theorem 3.21) shows that the image of P is the

sum of all the other eigenspaces and is just K⇣. Since K K⇣ = 0, P is one-one

from K⇣ onto itself. Thus P(v) ✏↵ L(v) is a one-one linear map from K⇣ into
V . Call this function U , so that U(P(v)) = L(v). For any v1 and v2 in V , we
have

(L(v1), L(v2)) = (L⌅L(v1), v2) = (P2(v1), v2) = (P(v1), P(v2)), (⌅)

and hence U : K⇣ ↵ V preserves inner products. Let {u1, . . . , uk} be an
orthonormal basis of K⇣, and let {uk+1, . . . , un} be an orthonormal basis of
K . Since U preserves inner products and is linear, {U(u1), . . . ,U(uk)} is an
orthonormal basis of U(K⇣). Extend {U(u1), . . . ,U(uk)} to an orthonormal
basis of V by adjoining vectors vk+1, . . . , vn , define U(uj ) = vj for k + 1  
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j  n, and write U also for the linear extension to all of V . Since U carries one

orthonormal basis {u1, . . . , un} of V to another, U is unitary. We have UP = L

on K⇣, and equation (⌅)with v1 = v2 shows that ker L = ker P = K . Therefore

UP = L everywhere. �

4. Problems

1. Let V = Mnn(C), and define an inner product on V by ⌫A, B⇠ = Tr(B⌅A). The

norm ⇢ · ⇢HS obtained from this inner product is called the Hilbert–Schmidt

norm of the matrix in question.

(a) Prove that ⇢A⇢2HS =
↵

i, j |Ai j |2 for A in V .
(b) Let Ei j be the matrix that is 1 in the (i, j)th entry and is 0 elsewhere. Prove

that the set of all Ei j is an orthonormal basis of V .

(c) Interpret (a) in the light of (b).

(d) Prove that the Hilbert–Schmidt norm is given on any matrix A in V by

⇢A⇢2HS =
↵

j ⇢Auj⇢2 =
↵

i, j |v⌅i Auj |2,

where {u1, . . . , un} and {v1, . . . , vn} are any orthonormal bases of Cn and

v⌅ refers to the conjugate transpose of any member v of Cn .

(e) Let W be the vector subspace of all diagonal matrices in V . Describe

explicitly the orthogonal complement W⇣, and find its dimension.

2. Let Vn be the inner-product space over R of all polynomials on [0, 1] of degree

 n with real coefficients. (The 0 polynomial is to be included.) The Riesz

Representation Theorem says that there is a unique polynomial pn such that

f
�
1
2

⇥
=
� 1
0
f (x)pn(x) dx for all f in Vn . Set up a system of linear equations

whose solution tells what pn is.

3. Let V be a finite-dimensional inner-product space, and suppose that L and M

are self-adjoint linear maps from V to V . Show that LM is self-adjoint if and

only if LM = ML .

4. Let V be a finite-dimensional inner-product space. If L : V ↵ V is a linear map

with adjoint L⌅, prove that ker L = (image L⌅)⇣.

5. Find all 2-by-2 Hermitianmatrices Awith characteristic polynomial ⇧2+4⇧+6.
6. Let V1 and V2 be finite-dimensional inner-product spaces over the same F, the

inner products being ( · , · )1 and ( · , · )2.
(a) Using the case when V1 = V2 as a model, define the adjoint of a linear

map L : V1 ↵ V2, proving its existence. The adjoint is to be a linear map

L⌅ : V2 ↵ V1.
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(b) If is an orthonormal basis of V1 and⌦ is an orthonormal basis of V2, prove

that the matrices of L and L⌅ in these bases are conjugate transposes of one
another.

7. Suppose that a finite-dimensional inner-product space V is a direct sum V =
S⌃ T of vector subspaces. Let E : V ↵ V be the linear map that is the identity

on S and is 0 on T .

(a) Prove that V = S⇣ ⌃ T⇣.
(b) Prove that E⌅ : V ↵ V is the linear map that is the identity on T⇣ and is 0

on S⇣.

8. (Iwasawadecomposition) Let g be an invertible n-by-n complexmatrix. Apply

the Gram–Schmidt orthogonalization process to the basis {ge1, . . . , gen}, where
{e1, . . . , en} is the standard basis, and let the resulting orthonormal basis be
{v1, . . . , vn}. Define an invertible n-by-n matrix k such that k�1vj = ej for

1  j  n. Prove that k�1g is upper triangular with positive diagonal entries,
and conclude that g = k(k�1g) exhibits g as the product of a unitary matrix and
an upper triangular matrix whose diagonal entries are positive.

9. Let A be an n-by-n positive definite matrix.

(a) Prove that det A > 0.

(b) Prove for any subset of integers 1  i1 < i2 < · · · < ik  n that the

submatrix of A built from rows and columns indexed by (i1, . . . , ik) is

positive definite.

10. Prove that if A is a positive definite n-by-n matrix, then there exists an n-by-n

upper-triangular matrix B with positive diagonal entries such that A = B⌅B.

11. The most general 2-by-2 Hermitian matrix is of the form A =
⌅
a b

b̄ d

⇧
with a and

d real and with b complex. Find a diagonal matrix D and a unitary matrix U

such that D = U�1AU .

12. In the previous problem,

(a) what conditions on A make A positive definite?

(b) when A is positive definite, how can its positive definite square root be

computed explicitly?

13. Prove that if an n-by-n real symmetric matrix A has vt Av = 0 for all v in Rn ,

then A = 0.

14. Let L : Cn ↵ Cn be a self-adjoint linear map. Show for each x � Cn that there

is some y � Cn such that (I � L)2(y) = (I � L)(x).

15. In the polar decomposition L = UP , prove that if P and U commute, then L is

normal.

16. Let V be an n-dimensional inner-product space over R. What is the largest pos-
sible dimension of a commuting family of self-adjoint linear maps L : V ↵ V ?
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17. Let v1, . . . , vn be an ordered list of vectors in an inner-product space. The

associated Gram matrix is the Hermitian matrix of inner products given

by G(v1, . . . , vn) = [(vi , vj )], and detG(v1, . . . , vn) is called its Gram

determinant.

(a) If c1, . . . , cn are in C, let c =
 c1

...
cn

⌦
. Prove that ctG(v1, . . . , vn)c̄ =

⇢c1v1 + · · · + cnvn⇢2, and conclude that G(v1, . . . , vn) is positive semi-

definite.

(b) Prove that detG(v1, . . . , vn) ⌦ 0 with equality if and only if v1, . . . , vn are
linearly dependent. (This generalizes the Schwarz inequality.)

(c) Under what circumstances does equality hold in the Schwarz inequality?

Problems 18–23 introduce the Legendre polynomials and establish some of their

elementaryproperties, including their orthogonalityunder the inner product ⌫P, Q⇠ =� 1
�1 P(x)Q(x) dx . They form the simplest family of classical orthogonal polynomi-

als. They are uniquely determined by the conditions that the nth one Pn , for n ⌦ 0,
is of degree n, they are orthogonal under ⌫ · , · ⇠, and they are normalized so that
Pn(1) = 1. But these conditions are a little hard to work with initially, and instead

we adopt the recursive definition P0(x) = 1, P1(x) = x , and

(n + 1)Pn+1(x) = (2n + 1)x Pn(x)� nPn�1(x) for n ⌦ 1.

18. (a) Prove that Pn(x)has degreen, that Pn(�x) = (�1)n Pn(x), and that Pn(1) =
1. In particular, Pn is an even function if n is even and is an odd function if

n is odd.

(b) Let c(n) be the constant term of Pn if n is even and the coefficient of x if n

is odd, so that c(0) = c(1) = 1. Prove that c(n) = � n�1
n
c(n�2) for n ⌦ 2.

19. This part establishes a useful concrete formula for Pn(x). Let D = d/dx and

X = x2�1, writing X � = 2x , X �� = 2, and X ��� = 0 for the derivatives. Twoparts

of this problemmake use of theLeibniz rule Dn( f g) =
↵n

k=0
�
n
k

⇥
(Dn�k f )(Dkg)

for higher-order derivatives of a product.

(a) Verify that D2(Xn+1) = (2n+ 1)D(XnX �)� n(2n+ 1)X ��Xn � 4n2Xn�1.
(b) By applying Dn�1 to the result of (a) and rearranging terms, show that

Dn+1(Xn+1) = (2n + 1)X �Dn(Xn)� 4n2Dn�1(Xn�1).
(c) Put Rn(x) = (2nn!)�1Dn(Xn) for n ⌦ 0. Show that R0(x) = 1, R1(x) = x ,

and (n + 1)Rn+1(x) = (2n + 1)x Rn(x)� nRn�1(x) for n ⌦ 1.
(d) (Rodrigues’s formula) Conclude that 2nn!Pn(x) =

�
d
dx

⇥n
[(x2 � 1)n].

20. Using Rodrigues’s formula and iterated integration by parts, prove that
� 1
�1 Pm(x)Pn(x) dx = 0 for m < n.

Conclude that {P0, P1, . . . , Pn} is an orthogonal basis of the inner-product space
of polynomials on [�1, 1] of degree  n with inner product ⌫ · , · ⇠.
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21. Arguing as in the previous problemand taking for granted that
� 1
�1 (1�x2)n dx =

2(2nn!)2

(2n+1)! , prove that ⌫Pn, Pn⇠ =
�
n + 1

2

⇥�1
.

22. This problem shows that Pn(x) satisfies a certain second-order differential equa-

tion. Let D = d/dx . The first two parts of this problem use the Leibniz rule

quoted in Problem 19. Let X = x2 � 1 and Kn = 2nn!, so that Rodrigues’s

formula says that KnPn = Dn(Xn).

(a) Expand Dn+1[(D(Xn))X] by the Leibniz rule.

(b) Observe that (D(Xn))X = nXnX �, and expand Dn+1[(nXn)X �] by the
Leibniz rule.

(c) Equating the results of the previous two parts, conclude that y = Pn(x)

satisfies the differential equation (1� x2)y�� � 2xy� + n(n + 1)y = 0.

23. Let Pn(x) =
↵n

k=0 ckx
k . Using the differential equation, show that the coeffi-

cients ck satisfy k(k � 1)ck = [(k � 2)(k � 1) � n(n + 1)]ck�2 for k ⌦ 2 and
that ck = 0 unless n � k is even.

Problems 24–28 concern the complex conjugate of an inner-product space over C.
For any finite-dimensional inner-product space V , the Riesz Representation Theorem

identifies the dual V � with V , saying that each member of V � is given by taking the
inner product with some member of V . When the scalars are real, this identification

is linear; thus the Riesz theorem uses the inner product to construct a canonical

isomorphism of V onto V �. When the scalars are complex, the identification is
conjugate linear, and we do not get an isomorphism of V with V �. The complex
conjugate of V provides a substitute result.

24. Let V be a finite-dimensional vector space overC. Define a new complex vector
space V as follows: The elements of V are the elements of V , and the definition

of addition is unchanged. However, there is a change in the definition of scalar

multiplication, in that if v is in V , then the product cv in V is to equal the product

c̄v in V . Verify that V is indeed a complex vector space.

25. If V is a complex vector space and L : V ↵ V is a linearmap, define L : V ↵ V

to be the same function as L . Prove that L is linear.

26. Suppose that the complex vector space V is actually a finite-dimensional inner-

product space, with inner product ( · , · )V . Define (u, v)
V

= (v, u)V . Verify

that V is an inner-product space.

27. With V as in the previous problem, show that the Riesz Representation Theorem

uses the inner product to set up a canonical isomorphism of V � with V .

28. With V and V as in the two previous problems, let L : V ↵ V be linear, so

that (L)⌅ : V ↵ V is linear. Under the identification of the previous problem

of V with V �, show that (L)⌅ corresponds to the contragredient Lt as defined in
Section II.4.
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Problems 29–32 use inner-product spaces to obtain a decomposition of polynomials

in several variables. A real-valued polynomial function p in x1, . . . , xn is said to be

homogeneous of degree N if every monomial in p has total degree N . Let VN be

the space of real-valued polynomials in x1, . . . , xn homogeneous of degree N . For

any homogeneous polynomial p, we define a differential operator ⌘(p)with constant

coefficients by requiring that ⌘( · ) be linear in ( · ) and that

⌘(x
k1
1 · · · xknn ) = ⌘k1+···+kn

⌘x
k1
1 · · · ⌘xknn

.

For example, if |x |2 stands for x21 + · · · + x2n , then ⌘(|x |2) = ⌦ = ⌘2

⌘x2
1

+ · · · + ⌘2

⌘x2n
.

If p and q are in the same VN , then ⌘(q)p is a constant polynomial, and we define

⌫p, q⇠ to be that constant. Then ⌫ · , · ⇠ is bilinear.
29. (a) Prove that ⌫ · , · ⇠ satisfies ⌫p, q⇠ = ⌫q, p⇠.

(b) Prove that ⌫xk11 · · · xknn , x
l1
1 · · · xlnn ⇠ is positive if (k1, . . . , kn) = (l1, . . . , ln)

and is 0 otherwise.

(c) Deduce that ⌫ · , · ⇠ is an inner product on VN .
30. Call p � VN harmonic if ⌘(|x |2)p = 0, and let HN be the vector subspace of

harmonic polynomials. Prove that the orthogonal complement of |x |2VN�2 in
VN relative to ⌫ · , · ⇠ is HN .

31. Deduce from Problem 30 that each p � VN decomposes uniquely as

p = hN + |x |2hN�2 + |x |4hN�4 + · · ·

with hN , hN�2, hN�4, . . . homogeneous harmonic of the indicated degrees.

32. For n = 2, describe a computational procedure for decomposing the element

x41 + x42 of V4 as in Problem 31.

Problems 33–34 concern products of n-by-n positive semidefinite matrices. They

make use of Problem26 inChapter II, which says that det(⇧I�CD) = det(⇧I�DC).

33. Let A and B be positive semidefinite. Using the positive definite square root of

B, prove that every eigenvalue of AB is ⌦ 0.
34. Let A, B, and C be positive semidefinite, and suppose that ABC is Hermit-

ian. Under the assumption that C is invertible, introduce the positive definite

square root P of C . By considering P�1ABCP�1, prove that ABC is positive
semidefinite.



CHAPTER IV

Groups and Group Actions

Abstract. This chapter develops the basics of group theory, with particular attention to the role of

group actions of various kinds. The emphasis is on groups in Sections 1–3 and on group actions

starting in Section 6. In between is a two-section digression that introduces rings, fields, vector

spaces over general fields, and polynomial rings over commutative rings with identity.

Section 1 introduces groups and a number of examples, and it establishes some easy results.

Most of the examples arise either from number-theoretic settings or from geometric situations in

which some auxiliary space plays a role. The direct product of two groups is discussed briefly so

that it can be used in a table of some groups of low order.

Section2 defines coset spaces, normal subgroups, homomorphisms, quotient groups, andquotient

mappings. Lagrange’s Theorem is a simple but key result. Another simple but key result is the

construction of a homomorphismwith domain a quotient group G/H when a given homomorphism

is trivial on H . The section concludes with two standard isomorphism theorems.

Section 3 introduces general direct products of groups and direct sums of abelian groups, together

with their concrete “external” versions and their universal mapping properties.

Sections 4–5 are a digression to define rings, fields, and ring homomorphisms, and to extend the

theories concerning polynomials and vector spaces as presented in Chapters I–II. The immediate

purpose of the digression is to make prime fields and the notion of characteristic available for the

remainder of the chapter. The definitions of polynomials are extended to allow coefficients from any

commutative ring with identity and to allow more than one indeterminate, and universal mapping

properties for polynomial rings are proved.

Sections 6–7 introduce group actions. Section 6 gives some geometric examples beyond those

in Section 1, it establishes a counting formula concerning orbits and isotropy subgroups, and it

develops some structure theory of groups by examining specific group actions on the group and its

coset spaces. Section 7 uses a group action by automorphisms to define the semidirect product of

two groups. This construction, in combination with results from Sections 5–6, allows one to form

several new finite groups of interest.

Section 8 defines simple groups, proves that alternating groups on five or more letters are simple,

and then establishes the Jordan–Hölder Theorem concerning the consecutive quotients that arise

from composition series.

Section 9 deals with finitely generated abelian groups. It is proved that “rank” is well defined

for any finitely generated free abelian group, that a subgroup of a free abelian group of finite rank is

always free abelian, and that any finitely generated abelian group is the direct sum of cyclic groups.

Section 10 returns to structure theory for finite groups. It begins with the Sylow Theorems,

which produce subgroups of prime-power order, and it gives two sample applications. One of these

classifies the groups of order pq, where p and q are distinct primes, and the other provides the

information necessary to classify the groups of order 12.

Section 11 introduces the language of “categories” and “functors.” The notion of category is a

precise version of what is sometimes called a “context” at points in the book before this section,

117
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and some of the “constructions” in the book are examples of “functors.” The section treats in this

language the notions of “product” and “coproduct,” which are abstractions of “direct product” and

“direct sum.”

1. Groups and Subgroups

Linear algebra and group theory are two foundational subjects for all of algebra,

indeed for much of mathematics. Chapters II and III have introduced the basics

of linear algebra, and the present chapter introduces the basics of group theory. In

this section we give the definition and notation for groups and provide examples

that fit with the historical development of the notion of group. Many readers will

already be familiar with some group theory, and therefore we can be brief at the

start.

A group is a nonempty set G with an operation G ⇤ G ⇣ G satisfying the

three properties (i), (ii), and (iii) below. In the absence of any other information

the operation is usually calledmultiplication and is written (a, b) �⇣ ab with no

symbol to indicate the multiplication. The defining properties of a group are

(i) (ab)c = a(bc) for all a, b, c in G (associative law),
(ii) there exists an element 1 in G such that a1 = 1a = a for all a in G

(existence of identity),

(iii) for each a in G, there exists an element a�1 in G with aa�1 = a�1a = 1

(existence of inverses).

It is immediate from these properties that

• 1 is unique (since 1⌘ = 1⌘1 = 1),

• a�1 is unique (since (a�1)⌘=(a�1)⌘1=(a�1)⌘(a(a�1))=((a�1)⌘a)(a�1)
= 1(a�1) = (a�1)),

• the existence of a left inverse for each element implies the existence of a

right inverse for each element (since ba = 1 and cb = 1 together imply

c = c(ba) = (cb)a = a and hence also ab = cb = 1),

• 1 is its own inverse (since 11 = 1),

• ax = ay implies x = y, and xa = ya implies x = y (cancellation laws)

(since x = 1x = (a�1a)x = a�1(ax) = a�1(ay) = (a�1a)y = 1y = y

and since a similar argument proves the second implication).

Problem 2 at the end of Chapter II shows that the associative law extends to

products of any finite number of elements of G as follows: parentheses can

be inserted in any fashion in such a product, and the value of the product is

unchanged; hence any expression a1a2 · · · an in G is well defined without the use
of parentheses.

The group whose only element is the identity 1 will be denoted by {1}. It is
called the trivial group.
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We come to other examples in a moment. First wemake threemore definitions

and offer some comments. A subgroup H of a group G is a subset containing

the identity that is closed under multiplication and inverses. Then H itself is a

group because the associativity in G implies associativity in H . The intersection

of any nonempty collection of subgroups of G is again a subgroup.

An isomorphism of a group G1 with a group G2 is a function � : G1 ⇣ G2
that is one-one onto and satisfies �(ab) = �(a)�(b) for all a and b in G1. It is
immediate that

• �(1) = 1 (by taking a = b = 1),

• �(a�1) = �(a)�1 (by taking b = a�1),
• ��1 : G2 ⇣ G1 satisfies �

�1(cd) = ��1(c)��1(d) (by taking c = �(a)
and d = �(b) on the right side and then observing that �

�
��1(c)��1(d)

⇥

= �(ab) = �(a)�(b) = cd = �(��1(cd))).

The first and second of these properties show that an isomorphism respects all the

structure of a group, not just products. The third property shows that the inverse

of an isomorphism is an isomorphism, hence that the relation “is isomorphic to” is

symmetric. Since the identity isomorphism exhibits this relation as reflexive and

since the use of compositions shows that it is transitive, we see that “is isomorphic

to” is an equivalence relation. Common notation for an isomorphism between

G1 and G2 is G1 �= G2; because of the symmetry, one can say that G1 and G2
are isomorphic.

An abelian group is a group G with the additional property

(iv) ab = ba for all a and b in G (commutative law).

In an abelian group the operation is sometimes, but by no means always, called

addition insteadof “multiplication.” Addition is typicallywritten (a, b) �⇣ a+b,
and then the identity is usually denoted by 0 and the inverse of a is denoted by�a,
the negative of a. Depending on circumstances, the trivial abelian group may

be denoted by {0} or 0. Problem 3 at the end of Chapter II shows for an abelian
group G with its operation written additively that n-fold sums of elements of G

can be written in any order: a1 + a2 + · · · + an = a⌦ (1) + a⌦ (2) + · · · + a⌦ (n) for

each permutation ⌦ of {1, . . . , n}.

Historically the original examples of groups arose from two distinct sources,

and it took a while for the above definition of group to be distilled out as the

essence of the matter.

One of the two sources involved number systems and vectors. Here are

examples.

EXAMPLES.

(1) Additive groups of familiar number systems. The systems in question are

the integers Z, the rational numbers Q, the real numbers R, and the complex
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numbers C. In each case the set with its usual operation of addition forms an
abelian group. The group properties of Z under addition are taken as known in
advance in this book, as mentioned in Section A3 of the appendix, and the group

properties of Q, R, and C under addition are sketched in Sections A3 and A4 of
the appendix as part of the development of these number systems.

(2) Multiplicative groups connected with familiar number systems. In the

cases of Q, R, and C, the nonzero elements form a group under multiplication.
These groups are denoted by Q⇤, R⇤, and C⇤. Again the properties of a group
for each of them are properties that are sketched during the development of each

of these number systems in Sections A3 and A4 of the appendix. With Z, the
nonzero integers do not form a group under multiplication, because only the two

units, i.e., the divisors+1 and�1 of 1, have inverses. The units do form a group,
however, under multiplication, and the group of units is denoted by Z⇤.
(3) Vector spaces under addition. Spaces such as Qn and Rn and Cn provide

us with further examples of abelian groups. In fact, the defining properties of

addition in a vector space are exactly the defining properties of an abelian group.

Thus every vector space provides us with an example of an abelian group if we

simply ignore the scalar multiplication.

(4) Integers modulo m, under addition. Another example related to number

systems is the additive group of integers modulo a positive integer m. Let us say

that an integer n1 is congruent modulo m to an integer n2 if m divides n1 � n2.

One writes n1  n2 or n1  n2 mod m or n1 = n2 mod m for this relation.1 It

is an equivalence relation, and we can write [n] for the equivalence class of n

when it is helpful to do so. The division algorithm (Proposition 1.1) tells us that

each equivalence class has one and only one member between 0 andm�1. Thus
there are exactly m equivalence classes, and we know a representative of each.

The set of classes will be denoted by2 Z/mZ. The point is that Z/mZ inherits
an abelian-group structure from the abelian-group structure of Z. Namely, we
attempt to define

[a]+ [b] = [a + b].

To see that this formula actually defines an operation on Z/mZ, we need to
check that the result is meaningful if the representatives of the classes [a] and

[b] are changed. Thus let [a] = [a⌘] and [b] = [b⌘]. Then m divides a � a⌘ and
b � b⌘, and m must divide the sum (a � a⌘) + (b � b⌘) = (a + b) � (a⌘ + b⌘);
consequently [a+ b] = [a⌘ + b⌘], and addition is well defined. The same kind of

1This notationwas anticipated in a remark explaining the classical formof theChineseRemainder

Theorem (Corollary 1.9).
2The notation Z/(m) is an allowable alternative. Some authors, particularly in topology, write

Zm for this set, but the notation Zm can cause confusion since Zp is the standard notation for the

“p-adic integers” when p is prime. These are defined in Chapter VI of Advanced Algebra.
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argument shows that the associativity and commutativity of addition in Z imply
associativity and commutativity in Z/mZ. The identity element is [0], and group
inverses (negatives) are given by �[a] = [�a]. Therefore Z/mZ is an abelian
group under addition, and it has m elements. If x and y are members of Z/mZ,
their sum is often denoted by x + y mod m.

The other source of early examples of groups historically has the members of

the group operating as transformations of some auxiliary space. Before abstract-

ing matters, let us consider some concrete examples, ignoring some of the details

of verifying the defining properties of a group.

EXAMPLES, CONTINUED.

(5) Permutations. A permutation of a nonempty finite set E of n elements is a

one-one function from E onto itself. Permutationswere introduced in Section I.4.

The product of two permutations is just the composition, defined by (⌦↵ )(x) =
⌦ (↵ (x)) for x in E , with the symbol ⌥ for composition dropped. The resulting
operation makes the set of permutations of E into a group: we already observed

in Section I.4 that composition is associative, and it is plain that the identity

permutation may be taken as the group identity and that the inverse function to

a permutation is the group inverse. The group is called the symmetric group

on the n letters of E . It has n! members for n � 1. The notation Sn is often

used for this group, especially when E = {1, . . . , n}. Signs ±1 were defined
for permutations in Section I.4, and we say that a permutation is even or odd

according as its sign is +1 or �1. The sign of a product is the product of the
signs, according to Proposition 1.24, and it follows that the even permutations

form a subgroup of Sn . This subgroup is called the alternating group on n

letters and is denoted by An . It has
1
2
(n!) members if n � 2.

(6) Symmetries of a regular polygon. Imagine a regular polygon inR2 centered
at the origin. The plane-geometry rotations and reflections about the origin that

carry the polygon to itself form a group. If the number of sides of the polygon

is n, then the group always contains the rotations through all multiples of the

angle 2�/n. The rotations themselves form an n-element subgroup of the group
of all symmetries. To consider what reflections give symmetries, we distinguish

the cases n odd and n even. When n is odd, the reflection in the line that passes

through any vertex and bisects the opposite side carries the polygon to itself, and

no other reflections have this property. Thus the group of symmetries contains n

reflections. When n is even, the reflection in the line passing through any vertex

and the opposite vertex carries the polygon to itself, and so does the reflection in

the line that bisects a side and also the opposite side. There are n/2 reflections of
each kind, and hence the group of symmetries again contains n reflections. The

group of symmetries thus has 2n elements in all cases. It is called the dihedral
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group Dn . The group Dn is isomorphic to a certain subgroup of the permutation

group Sn . Namely, we number the vertices of the polygon, and we associate to

each member of Dn the permutation that moves the vertices the way the member

of Dn does.

(7) General linear group. With F equal to Q or R or C, consider any n-
dimensional vector space V over F. One possibility is V = Fn , but we do not
insist on this choice. Among all one-one functions carrying V onto itself, let

G consist of the linear ones. The composition of two linear maps is linear, and

the inverse of an invertible function is linear if the given function is linear. The

result is a group known as the general linear group GL(V ). When V = Fn ,
we know from Chapter II that we can identify linear maps from Fn to itself with
matrices in Mnn(F) and that composition corresponds to matrix multiplication.
It follows that the set of all invertible matrices in Mnn(F) is a group, which is
denoted byGL(n, F), and that this group is isomorphic toGL(Fn). The set SL(V )
or SL(n, F) of all members of GL(V ) or GL(n, F) of determinant 1 is a group
since the determinant of a product is the product of the determinants; it is called

the special linear group. The dihedral group Dn is isomorphic to a subgroup of

GL(2, R) since each rotation and reflection of R2 that fixes the origin is given by
the operation of a 2-by-2 matrix.

(8) Orthogonal and unitary groups. If V is a finite-dimensional inner-product

space over R or C, Chapter III referred to the linear maps carrying the space
to itself and preserving lengths of vectors as orthogonal in the real case and

unitary in the complex case. Such linear maps are invertible. The condition of

preserving lengths of vectors is maintained under composition and inverses, and

it follows that the orthogonal or unitary linear maps form a subgroup O(V ) or
U(V ) of the general linear group GL(V ). One writes O(n) for O(Rn) and U(n)
for U(Cn). The subgroup of members of O(V ) or O(n) of determinant 1 is called
the rotation group SO(V ) or SO(n). The subgroup of members of U(V ) or U(n)
of determinant 1 is called the special unitary group SU(V ) or SU(n).

Before coming to Example 9, let us establish a closure property under the

arithmetic operations for certain subsets ofC. We are going to use the theories of
polynomials as in Chapter I and of vector spaces as in Chapter II with the rationals

Q as the scalars. Fix a complex number ⇧ , and form the result of evaluating at ⇧
every polynomial in one indeterminate with coefficients in Q. The resulting set
of complex numbers comes by substituting ⇧ for X in the members ofQ[X], and
we denote this subset of C by Q[⇧].
Suppose that ⇧ has the property that the set {1, ⇧, ⇧2, . . . , ⇧n} is linearly de-

pendent over Q for some integer n � 1, i.e., has the property that F0(⇧) = 0 for

some nonzero member F0 ofQ[X] of degree � n. For example, if ⇧ =
�
2, then

the set {1,
�
2, (
�
2)2} is linearly dependent since 2� (

�
2)2 = 0; if ⇧ = e2� i/5,
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then {1, ⇧, ⇧2, ⇧3, ⇧4, ⇧5} is linearly dependent since 1� ⇧5 = 0, or alternatively

since 1+ ⇧ + ⇧2 + ⇧3 + ⇧4 = 0.

Returning to the general ⇧ , we lose no generality if we assume that the polyno-
mial F0 has degree exactly n. If we divide the equation F0(⇧) = 0 by the leading

coefficient, we obtain an equality ⇧n = G0(⇧), where G0 is the zero polynomial
or is a nonzero polynomial of degree at most n� 1. Then ⇧n+m = ⇧mG0(⇧), and
we see inductively that every power ⇧r with r � n is a linear combination of the

members of the set {1, ⇧, ⇧2, . . . , ⇧n�1}. This set is therefore a spanning set for
the vector spaceQ[⇧], andwe find thatQ[⇧] is finite-dimensional, with dimension
at most n. Since every positive integer power of ⇧ lies in Q[⇧] and since these
powers are closed under multiplication, the vector space Q[⇧] is closed under
multiplication. More striking is that Q[⇧] is closed under division, as is asserted
in the following proposition.

Proposition 4.1. Let ⇧ be inC, and suppose for some integer n � 1 that the set
{1, ⇧, ⇧2, . . . , ⇧n} is linearly dependent over Q. Then the finite-dimensional ra-
tional vector spaceQ[⇧] is closed under taking reciprocals (of nonzero elements),
as well as multiplication, and hence is closed under division.

REMARKS. Under the hypotheses of Proposition 4.1, Q[⇧] is called an
algebraic number field,3 or simply a number field, and ⇧ is called an algebraic
number. The relevant properties of C that are used in proving the proposition

are that C is closed under the usual arithmetic operations, that these satisfy the

usual properties, and that Q is a subset of C. The deeper closure properties of C
that are developed in Sections A3 and A4 of the appendix play no role.

PROOF. We have seen thatQ[⇧] is closed undermultiplication. If x is a nonzero
member of Q[⇧], then all positive powers of x must be in Q[⇧], and the fact that
dimQ[⇧] � n forces {1, x, x2, . . . , xn} to be linearly dependent. Therefore there
are integers j and kwith0 � j < k � n such that cj x

j+cj+1x j+1+· · ·+ckxk = 0

for some rational numbers cj , . . . , ck with ck = 0. Since x is assumed nonzero,

we can discard unnecessary terms and arrange that cj = 0. Then

1 = x(�c�1j cj+1 � c�1j cj+2x � c�1j ck x
k� j�1),

and the reciprocal of x has been exhibited as in Q[⇧]. �

EXAMPLES, CONTINUED.

(9) Galois’s notion of automorphisms of number fields. Let ⇧ be a complex
number as in Proposition 4.1. The subject of Galois theory, whose details will

3The definition of “algebraic number field” that is given later in the book is ostensibly more

general, but the Theorem of the Primitive Element in Chapter IX will show that it amounts to the

same thing as this.
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be discussed in Chapter IX and whose full utility will be glimpsed only later,

works in an important special case with the “automorphisms” ofQ[⇧] that fixQ.
The automorphisms are the one-one functions from Q[⇧] onto itself that respect
addition and multiplication and carry every element of Q to itself. The identity

is such a function, the composition of two such functions is again one, and the

inverse of such a function is again one. Therefore the automorphisms of Q[⇧]
form a group under composition. We call this group Gal(Q[⇧]/Q). Let us see
that it is finite. In fact, if ⌦ is in Gal(Q[⇧]/Q), then ⌦ is determined by its effect
on ⇧ , since we must have ⌦ (F(⇧)) = F(⌦ (⇧)) for every F in Q[X]. We know
that there is some nonzero polynomial F0(X) such that F0(⇧) = 0. Applying ⌦
to this equality, we see that F0(⌦ (⇧)) = 0. Therefore ⌦ (⇧) has to be a root of
F0. Viewing F0 as inC[X], we can apply Corollary 1.14 and see that F0 has only
finitely many complex roots. Therefore there are only finitely many possibilities

for ⌦ , and the group Gal(Q[⇧]/Q) has to be finite. Galois theory shows that
this group gives considerable insight into the structure of Q[⇧]. For example it
allows one to derive the Fundamental Theorem of Algebra (Theorem 1.18) just

from algebra and the Intermediate Value Theorem (Section A3 of the appendix);

it allows one to show the impossibility of certain constructions in plane geometry

by straightedge and compass; and it allows one to show that a quintic polynomial

with rational coefficients need not have a root that is expressible in terms of

rational numbers, arithmetic operations, and the extraction of square roots, cube

roots, and so on. We return to these matters in Chapter IX.

Examples 5–9, which all involve auxiliary spaces, fit the pattern that the

members of the group are invertible transformations of the auxiliary space and the

group operation is composition. This notion will be abstracted in Section 6 and

will lead to the notion of a “group action.” For now, let us see why we obtained

groups in each case. If X is any nonempty set, then the set of invertible functions

f : X ⇣ X forms a group under composition, composition being defined by

( f g)(x) = f (g(x)) with the usual symbol ⌥ dropped. The associative law is just
a matter of unwinding this definition:

(( f g)h)(x) = ( f g)(h(x)) = f (g(h(x))) = f ((gh)(x)) = ( f (gh))(x).

The identity function is the identity of the group, and inverse functions provide

the inverse elements in the group.

For our examples, the set X was E in Example 5, R2 in Example 6, V or Fn
in Example 7, V or Qn or Rn or Cn in Example 8, and Q[⇧] in Example 9. All
that was needed in each case was to know that our set G of invertible functions

from X to itself formed a subgroup of the set of all invertible functions from X

to itself. In other words, we had only to check that G contained the identity and

was closed under composition and inversion. Associativity was automatic for G

because it was valid for the group of all invertible functions from X to itself.
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Actually, any group can be realized in the fashion of Examples 5–9. This is

the content of the next proposition.

Proposition 4.2 (Cayley’s Theorem). Any group G is isomorphic to a sub-

group of invertible functions on a set X . The set X can be taken to be G itself.

In particular any finite group with n elements is isomorphic to a subgroup of the

symmetric groupSn .

PROOF. Define X = G, put fa(x) = ax for a in G, and let G ⌘ = { fa | a ◆ G}.
To see that G ⌘ is a group, we need G ⌘ to contain the identity and to be closed
under composition and inverses. Since f1 is the identity, the identity is indeed

in G ⌘. Since fab(x) = (ab)x = a(bx) = fa(bx) = fa( fb(x)) = ( fa fb)(x),
G ⌘ is closed under composition. The formula fa fa�1 = f1 = fa�1 fa then shows

that fa�1 = ( fa)
�1 and that G ⌘ is closed under inverses. Thus G ⌘ is a group.

Define � : G ⇣ G ⌘ by �(a) = fa . Certainly � is onto G
⌘, and it is one-

one because �(a) = �(b) implies fa = fb, fa(1) = fb(1), and a = b. Also,

�(ab) = fab = fa fb = �(a)�(b), and hence � is an isomorphism.
In the case that G is finite with n elements, G is exhibited as isomorphic

to a subgroup of the group of permutations of the members of G. Hence it is

isomorphic to a subgroup ofSn . �

It took the better part of a century for mathematicians to sort out that two

distinct notions are involved here—that of a group, as defined above, and that

of a group action, as will be defined in Section 6. In sorting out these matters,

mathematicians realized that it is wise to study the abstract group first and then

to study the group in the context of its possible group actions. This does not at all

mean ignoring group actions until after the study of groups is complete; indeed,

we shall see in Sections 6, 7, and 10 that group actions provide useful tools for

the study of abstract groups.

We turn to a discussion of two general group-theoretic notions—cyclic group

and the direct product of two or more groups. The second of these notions will

be discussed only briefly now; more detail will come in Section 3.

If a is an element of a group, we define an for integers n > 0 inductively

by a1 = a and an = an�1a. Then we can put a0 = 1 and a�n = (a�1)n

for n > 0. A little checking, which we omit, shows that the ordinary rules of

exponents apply: am+n = aman and amn = (am)n for all integers m and n. If the
underlying group is abelian and additive notation is being used, these formulas

read (m + n)a = ma + na and (mn)a = n(ma).
A cyclic group is a group with an element a such that every element is a power

of a. The element a is called a generator of the group, and the group is said to

be generated by a.
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Proposition 4.3. Each cyclic group G is isomorphic either to the additive

groupZ of integers or to the additive groupZ/mZ of integers modulom for some
positive integer m.

PROOF. If all an are distinct, then the rule am+n = aman implies that the

function n �⇣ an is an isomorphism of Z with G. On the other hand, if ak = al

with k > l, then ak�l = 1 and there exists a positive integer n such that an = 1.

Let m be the least positive integer with am = 1. For any integers q and r , we

have aqm+r = (am)qar = ar . Thus the function � : Z/mZ ⇣ G given by

�([n]) = an is well defined, is onto G, and carries sums in Z/mZ to products in
G. If 0 � l < k < m, then ak = al since otherwise ak�l would be 1. Hence � is
one-one, and we conclude that � : Z/mZ ⇣ G is an isomorphism. �

Let us denote abstract cyclic groups by C✓ and Cm , the subscript indicating

the number of elements. Finite cyclic groups arise in guises other than as Z/mZ.
For example the set of all elements e2� ik/m in C, with multiplication as opera-
tion, forms a group isomorphic to Cm . So does the set of all rotation matrices⌥
cos 2�k/m � sin 2�k/m
sin 2�k/m cos 2�k/m

�
with matrix multiplication as operation.

Proposition 4.4. Any subgroup of a cyclic group is cyclic.

REMARK. The proof of Proposition 4.4 exhibits a one-one correspondence

between the subgroups of Z/mZ and the positive integers k dividing m.
PROOF. Let G be a cyclic group with generator a, and let H be a subgroup.

We may assume that H = {1}. Then there exists a positive integer n such that
an is in H , and we let k be the smallest such positive integer. If n is any integer

such that an is in H , then Proposition 1.2 produces integers x and y such that

xk + yn = d, where d = GCD(k, n). The equation ad = (ak)x(an)y exhibits
ad as in H , and the minimality of k forces d � k. Since GCD(k, n) � k, we

conclude that d = k. Hence k divides n. Consequently H consists of the powers

of ak and is cyclic. �

A notion of the direct product of two groups is definable in the same way as

was done with vector spaces in Section II.6, except that a little care is needed in

saying how this construction interacts with mappings. As with the corresponding

construction for vector spaces, one candefine an explicit “external” direct product,

and one can recognize a given group as an “internal” direct product, i.e., as

isomorphic to an external direct product. We postpone a fuller discussion of direct

product, as well as all comments about direct sums and mappings associated with

direct sums and direct products, to Section 3.

The external direct product G1 ⇤ G2 of two groups G1 and G2 is a group

whose underlying set is the set-theoretic product of G1 and G2 and whose group
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law is (g1, g2)(g
⌘
1, g

⌘
2) = (g1g

⌘
1, g2g

⌘
2). The identity is (1, 1), and the formula for

inverses is (g1, g2)
�1 = (g�11 , g�12 ). The two subgroups G1 ⇤ {1} and {1}⇤ G2

of G1 ⇤ G2 commute with each other.

A group G is the internal direct product of two subgroups G1 and G2 if the

function from the external direct productG1⇤G2 toG given by (g1, g2) �⇣ g1g2
is an isomorphism of groups. The literal analog of Proposition 2.30, which gave

three equivalent definitions of internal direct product4 of vector spaces, fails here.

It is not sufficient that G1 and G2 be two subgroups such that G1 ⇢G2 = {1} and
every element in G decomposes as a product g1g2 with g1 ◆ G1 and g2 ◆ G2.

For example, with G = S3, the two subgroups

G1 = {1, (1 2)} and G2 = {1, (1 2 3), (1 3 2)}

have these properties, but G is not isomorphic to G1 ⇤ G2 because the elements

of G1 do not commute with the elements of G2.

Proposition 4.5. If G is a group and G1 and G2 are subgroups, then the

following conditions are equivalent:

(a) G is the internal direct product of G1 and G2,

(b) every element in G decomposes uniquely as a product g1g2 with g1 ◆ G1
and g2 ◆ G2, and every member of G1 commutes with every member of
G2,

(c) G1 ⇢ G2 = {1}, every element in G decomposes as a product g1g2 with
g1 ◆ G1 and g2 ◆ G2, and every member of G1 commutes with every

member of G2.

PROOF. We have seen that (a) implies (b). If (b) holds and g is in G1 ⇢ G2,
then the formula 1 = gg�1 and the uniqueness of the decomposition of 1 as a
product together imply that g = 1. Hence (c) holds.

If (c) holds, define � : G1 ⇤ G2 ⇣ G by �(g1, g2) = g1g2. This map is

certainly onto G. To see that it is one-one, suppose that �(g1, g2) = �(g⌘1, g
⌘
2).

Then g1g2 = g⌘1g
⌘
2 and hence g

⌘
1
�1g1 = g⌘2g

�1
2 . Since G1 ⇢ G2 = {1}, g⌘1�1g1 =

g⌘2g
�1
2 = 1. Thus (g1, g2) = (g⌘1, g

⌘
2), and � is one-one. Finally the fact that

elements of G1 commute with elements of G2 implies that �((g1, g2)(g
⌘
1, g

⌘
2)) =

�(g1g
⌘
1, g2g

⌘
2) = g1g

⌘
1g2g

⌘
2 = g1g2g

⌘
1g
⌘
2 = �(g1, g2)�(g⌘1, g

⌘
2). Therefore � is an

isomorphism, and (a) holds. �

Here are two examples of internal direct products of groups. In each let

R+ be the multiplicative group of positive real numbers. The first example is

4The direct sum and direct product of two vector spaces were defined to be the same thing in

Chapter II.
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R⇤ �= C2⇤R+withC2 providing the sign. The second example isC⇤ �= S1⇤R+,
where S1 is the multiplicative group of complex numbers of absolute value 1; the

isomorphism here is given by the polar-coordinate mapping (ei⇧ , r) �⇣ ei⇧r .

We conclude this section by giving an example of a group that falls outside

the pattern of the examples above and by summarizing what groups we have

identified with � 15 elements.

EXAMPLES, CONTINUED.

(10) Groups associated with the quaternions. The set H of quaternions is an

object like R or C in that it has both an addition/subtraction and a multiplica-

tion/division, but H is unlike R and C in that multiplication is not commutative.
We give two constructions. In one we start from R4 with the standard basis
vectors written as 1, i, j,k. The multiplication table for these basis vectors is

11 = 1, 1i = i, 1j = j, 1k = k,
i1 = i, ii = �1, ij = k, ik = �j,
j1 = j, ji = �k, jj = �1, jk = i,
k1 = k, ki = j, kj = �i, kk = �1,

and the multiplication is extended to general elements by the usual distributive

laws. The multiplicative identity is 1, and multiplicative inverses of nonzero

elements are given by

(a1+ bi+ cj+ k)�1 = s�1a1� s�1bi� s�1cj� s�1dk

with s =
�
a2 + b2 + c2 + d2. Since ij = k while ji = �k, multiplication is not

commutative. What takes work to see is that multiplication is associative. To see

this, we give another construction, using M22(C). Within M22(C), take

1 =
⌥
1 0

0 1

�
, i =

⌥
i 0

0 �i

�
, j =

⌥
0 �1
1 0

�
, k =

⌥
0 �i
�i 0

�
,

and define H to be the linear span, with real coefficients, of these matrices. The

operations are the usual matrix addition and multiplication. Then multiplication

is associative, and we readily verify the multiplication table for 1, i, j,k. A little
computation verifies also the formula for multiplicative inverses. The set H⇤

of nonzero elements forms a group under multiplication, and it is isomorphic to

R+ ⇤ SU(2), where

SU(2) =
�⌥

� ⇥

�⇥̄ �̄

� ⇧⇧⇧ |�|2 + |⇥|2 = 1
⌧

is the 2-by-2 special unitary group defined in Example 8. Of interest for our

current purposes is the 8-element subgroup ±1,±i,±j,±k, which is called the
quaternion group and will be denoted by H8.
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The order of a finite group is the number of elements in the group. Let us list

some of the groups we have discussed that have order at most 15:

1 C1 9 C9, C3 ⇤ C3
2 C2 10 C10, D5
3 C3 11 C11
4 C4, C2 ⇤ C2 12 C12, C6 ⇤ C2, D6, A4
5 C5 13 C13
6 C6, D3 14 C14, D7
7 C7 15 C15
8 C8, C4 ⇤ C2, C2 ⇤ C2 ⇤ C2, D4, H8

No twogroups in the above table are isomorphic, as one readily checksbycounting

elementsof each “order” in the senseof the next section. We shall see inSection10

and in the problems at the end of the chapter that the above table is complete

through order 15 except for one group of order 12. Some groups that we have

discussed have been omitted from the above table because of isomorphisms with

the groups above. For example, S2
�= C2, A3 �= C3, C3 ⇤ C2 �= C6, S3

�= D3,

C5 ⇤ C2 �= C10, C4 ⇤ C3 �= C12, D3 ⇤ C2 �= D6, C7 ⇤ C2 �= C14, and

C5 ⇤ C3 �= C15.

2. Quotient Spaces and Homomorphisms

Let G be a group, and let H be a subgroup. For purposes of this paragraph, say

that g1 in G is equivalent to g2 in G if g1 = g2h for some h in H . The relation

“equivalent” is an equivalence relation: it is reflexive because 1 is in H , it is

symmetric since H is closed under inverses, and it is transitive since H is closed

under products. The equivalence classes are called left cosets of H in G. The

left coset containing an element g of G is the set gH = {gh | h ◆ H}.

EXAMPLES.

(1) When G = Z and H = mZ, the left cosets are the sets r + mZ, i.e., the
sets {x ◆ Z | x  r mod m} for the various values of r .
(2) When G = S3 and H = {(1), (1 3)}, there are three left cosets: H ,

(1 2)H = {(1 2), (1 3 2)}, and (2 3)H = {(2 3), (1 2 3)}.

Similarly one can define the right cosets Hg of H inG. WhenG is nonabelian,

these need not coincide with the left cosets; in Example 2 above with G = S3

and H = {(1), (1 3)}, the right coset H(1 2) = {(1 2), (1 2 3)} is not a left
coset.
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Lemma 4.6. If H is a subgroup of the group G, then any two left cosets of H

in G have the same cardinality, namely card H .

REMARKS. We shall be especially interested in the case that card H is finite,

and then we write |H | = card H for the number of elements in H .

PROOF. If g1H and g2H are given, then the map g �⇣ g2g
�1
1 g is one-one on

G and carries g1H onto g2H . Hence g1H and g2H have the same cardinality.

Taking g1 = 1, we see that this common cardinality is card H . �

We write G/H for the set {gH} of all left cosets of H in G, calling it the

quotient space or left-coset space of G by H . The set {Hg} of right cosets is
denoted by H\G.

Theorem 4.7 (Lagrange’s Theorem). If G is a finite group, then |G| =
|G/H | |H |. Consequently the order of any subgroup of G divides the order

of G.

REMARK. Using the formula in Theorem 4.7 three times yields the conclusion

that if H and K are subgroups of a finite group G with K ⌦ H , then |G/K | =
|G/H | |H/K |.
PROOF. Lemma 4.6 shows that each left coset has |H | elements. The left

cosets are disjoint and exhaust G, and there are |G/H | left cosets. Thus G has

|G/H | |H | elements. �

If a is an element of a groupG, then we have seen that the powers an of a form

a cyclic subgroup of G that is isomorphic either to Z or to some group Z/mZ
for a positive integer m. We say that a has finite order m when the cyclic group

is isomorphic to Z/mZ. Otherwise a has infinite order. In the finite-order case
the order of a is thus the least positive integer n such that an = 1.

Corollary 4.8. If G is a finite group, then each element a ofG has finite order,

and the order of a divides the order of G.

PROOF. The order of a equals |H | if H = {an | n ◆ Z}, and Corollary 4.8 is
thus a special case of Theorem 4.7. �

Corollary 4.9. If p is a prime, then the only group of order p, up to isomor-

phism, is the cyclic group Cp, and it has no subgroups other than {1} and Cp

itself.

PROOF. Suppose that G is a finite group of order p and that H = {1} is a
subgroup of G. Let a = 1 be in H , and let P = {an | n ◆ Z}. Since a = 1,

Corollary 4.8 shows that the order of a is an integer > 1 that divides p. Since p

is prime, the order of a must equal p. Then |P| = p. Since P ⌦ H ⌦ G and

|G| = p, we must have P = G. �
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Let G1 and G2 be groups. We say that � : G1 ⇣ G2 is a homomorphism

if �(ab) = �(a)�(b) for all a and b in G. In other words, � is to respect
products, but it is not assumed that � is one-one or onto. Any homomorphism �
automatically respects the identity and inverses, in the sense that

• �(1) = 1 (since �(1) = �(11) = �(1)�(1)),
• �(a�1) = �(a)�1 (since 1 = �(1) = �(aa�1) = �(a)�(a�1) and
similarly 1 = �(a�1)�(a)).

EXAMPLES. The following functions are homomorphisms: any isomorphism,

the function � : Z ⇣ Z/mZ given by �(k) = k mod m, the function � : Sn ⇣
{±1} given by �(⌦ ) = sgn ⌦ , the function � : Z ⇣ G given for fixed a in G by

�(n) = an , and the function � : GL(n, F)⇣ F⇤ given by �(A) = det A.

The image of a homomorphism� : G1⇣ G2 is just the image of� considered
as a function. It is denoted by image� = �(G1) and is necessarily a subgroup of

G2 since if �(g1) = g2 and �(g⌘1) = g⌘2, then �(g1g
⌘
1) = g2g

⌘
2 and �(g�11 ) = g�12 .

The kernel of a homomorphism � : G1 ⇣ G2 is the set ker� = ��1({1}) =
{x ◆ G1 | �(x) = 1}. This is a subgroup since if �(x) = 1 and �(y) = 1, then

�(xy) = �(x)�(y) = 1 and �(x�1) = �(x)�1 = 1.

The homomorphism � : G1⇣ G2 is one-one if and only if ker� is the trivial
group {1}. The necessity follows since 1 is already in ker�, and the sufficiency
follows since �(x) = �(y) implies that �(xy�1) = 1 and therefore that xy�1 is
in ker�.

The kernel H of a homomorphism � : G1 ⇣ G2 has the additional property

of being a normal subgroup of G1 in the sense that ghg
�1 is in H whenever g

is in G1 and h is in H , i.e., gHg
�1 = H . In fact, if h is in ker� and g is in G1,

then �(ghg�1) = �(g)�(h)�(g)�1 = �(g)�(g)�1 = 1 shows that ghg�1 is in
ker�.

EXAMPLES.

(1) Any subgroup H of an abelian groupG is normal since ghg�1 = gg�1h =
h. The alternating subgroup An of the symmetric group Sn is normal since An

is the kernel of the homomorphism ⌦ �⇣ sgn ⌦ .

(2) The subgroup H = {1, (1 3)} ofS3 is not normal since (1 2)H(1 2)�1 =
{1, (2 3)}.
(3) If a subgroup H of a group G has just two left cosets, then H is normal

even if G is an infinite group. In fact, suppose G = H ⇡ g0H whenever g0 is not
in H . Taking inverses of all elements of G, we see that G = H ⇡ Hg1 whenever
g1 is not in H . If g in G is given, then either g is in H and gHg�1 = H , or g is

not in H and gH = Hg, so that gHg�1 = H in this case as well.
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Let H be a subgroup of G. Let us look for the circumstances under which

G/H inherits a multiplication from G. The natural definition is

(g1H)(g2H)
?= g1g2H,

but we have to check that this definition makes sense. The question is whether

we get the same left coset as product if we change the representatives of g1H and

g2H from g1 and g2 to g1h1 and g2h2. Since our prospective definition makes

(g1h1H)(g2h2H) = g1h1g2h2H , the question is whether g1h1g2h2H equals

g1g2H . That is, we ask whether g1h1g2h2 = g1g2h for some h in H . If this

equality holds, then h1g2h2 = g2h, and hence g
�1
2 h2g2 equals hh

�1
2 , which is

an element of H . Conversely if every expression g�12 h2g2 is in H , then we can

go backwards and see that g1h1g2h2 = g1g2h for some h in H , hence see that

G/H indeed inherits a multiplication from G. Thus a necessary and sufficient

condition for G/H to inherit a multiplication from G is that the subgroup H is

normal. According to the next proposition, the multiplication inherited by G/H
when this condition is satisfied makes G/H into a group.

Proposition 4.10. If H is a normal subgroup of a groupG, thenG/H becomes
a group under the inherited multiplication (g1H)(g2H) = (g1g2)H , and the
function q : G ⇣ G/H given by q(g) = gH is a homomorphism of G onto

G/H with kernel H . Consequently every normal subgroup of G is the kernel of

some homomorphism.

REMARKS. When H is normal, the groupG/H is called aquotient groupofG,
and the homomorphism q : G ⇣ G/H is called the quotient homomorphism.5

In the special case that G = Z and H = mZ, the construction reduces to the
construction of the additive group of integers modulo m and accounts for using

the notation Z/mZ for that group.

PROOF. The coset 1H is the identity, and (gH)�1 = g�1H . Also, the com-
putation (g1Hg2H)g3H = g1g2g3H = g1H(g2Hg3H) proves associativity.
Certainly q is onto G/H . It is a homomorphism since q(g1g2) = g1g2H =
g1Hg2H = q(g1)q(g2). �

In analogy with what was shown for vector spaces in Proposition 2.25, quo-

tients in the context of groups allow for the factorization of certain homomor-

phisms of groups. The appropriate result is stated as Proposition 4.11 and is

pictured in Figure 4.1. We can continue from there along the lines of Section II.5.

5Some authors call G/H a “factor group.” A “factor set,” however, is something different.
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Proposition 4.11. Let � : G1⇣ G2 be a homomorphism between groups, let

H0 = ker�, let H be a normal subgroup of G1 contained in H0, and define

q : G1 ⇣ G1/H to be the quotient homomorphism. Then there exists a

homomorphism � : G1/H ⇣ G2 such that � = � ⌥ q, i.e, �(g1H) = �(g1). It
has the same image as �, and ker� = {h0H | h0 ◆ H0}.

G1
����⇣ G2

q

⌘⌘�

G1/H

�

FIGURE 4.1. Factorization of homomorphisms of groups via the quotient

of a group by a normal subgroup.

REMARK. One says that � factors through G1/H or descends to G1/H . See
Figure 4.1.

PROOF. We will have � ⌥ q = � if and only if � satisfies �(g1H) = �(g1).
What needs proof is that � is well defined. Thus suppose that g1 and g

⌘
1 are in the

same left coset, so that g⌘1 = g1h with h in H . Then �(g⌘1) = �(g1)�(h) = �(g1)
since H ⌦ ker�, and � is therefore well defined.
The computation �(g1Hg2H) = �(g1g2H) = �(g1g2) = �(g1)�(g2) =

�(g1H)�(g2H) shows that � is a homomorphism. Since image� = image�, �
is onto image�. Finally ker� consists of all g1H such that �(g1H) = 1. Since

�(g1H) = �(g1), the condition that g1 is to satisfy is that g1 be in ker� = H0.

Hence ker� = {h0H | h0 ◆ H0}, as asserted. �

Corollary 4.12. Let � : G1 ⇣ G2 be a homomorphism between groups, and

suppose that � is onto G2 and has kernel H . Then � exhibits the group G1/H as

canonically isomorphic to G2.

PROOF. Take H = H0 in Proposition 4.11, and form � : G1/H ⇣ G2 with

� = � ⌥ q. The proposition shows that � is onto G2 and has trivial kernel, i.e.,
the identity element of G1/H . Having trivial kernel, � is one-one. �

Theorem 4.13 (First Isomorphism Theorem). Let � : G1 ⇣ G2 be a

homomorphism between groups, and suppose that � is onto G2 and has kernel
K . Then the map H1 �⇣ �(H1) gives a one-one correspondence between

(a) the subgroups H1 of G1 containing K and

(b) the subgroups of G2.

Under this correspondence normal subgroups correspond to normal subgroups.

If H1 is normal inG1, then gH1 �⇣ �(g)�(H1) is an isomorphism ofG1/H1 onto
G2/�(H1).
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REMARK. In the special case of the last statement that � : G1 ⇣ G2 is a

quotient map q : G ⇣ G/K and H is a normal subgroup of G containing K , the
last statement of the theorem asserts the isomorphism

G/H �= (G/K )
⌃
(H/K ).

PROOF. The passage from (a) to (b) is by direct image under �, and the passage
from (b) to (a) will be by inverse image under ��1. Certainly the direct image of
a subgroup as in (a) is a subgroup as in (b). To prove the one-one correspondence,

we are to show that the inverse image of a subgroup as in (b) is a subgroup as in

(a) and that these two constructions invert one another.

For any subgroup H2 of G2, �
�1(H2) is a subgroup of G1. In fact, if g1 and

g⌘1 are in �
�1(H2), we can write �(g1) = h2 and �(g⌘1) = h⌘2 with h2 and h

⌘
2 in

H2. Then the equations �(g1g
⌘
1) = h2h

⌘
2 and �(g�11 ) = �(g1)

�1 = h�12 show

that g1g
⌘
1 and g

�1
1 are in ��1(H2).

Moreover, the subgroup ��1(H2) contains �
�1({1}) = K . Therefore the

inverse image under � of a subgroup as in (b) is a subgroup as in (a). Since � is
a function, we have �(��1(H2)) = H2. Thus passing from (b) to (a) and back

recovers the subgroup of G2.

If H1 is a subgroup of G1 containing K , we still need to see that H1 =
��1(�(H1)). Certainly H1 ⌦ ��1(�(H1)). For the reverse inclusion let g1 be
in ��1(�(H1)). Then �(g1) is in �(H1), i.e., �(g1) = �(h1) for some h1 in H1.

Since � is a homomorphism, �(g1h
�1
1 ) = 1. Thus g1h

�1
1 is in ker� = K , which

is contained in H1 by assumption. Then h1 and g1h
�1
1 are in H1, and hence their

product (g1h
�1
1 )h1 = g1 is in H1. We conclude that �

�1(�(H1)) ⌦ H1, and thus

passing from (a) to (b) and then back recovers the subgroup of G1 containing K .

Next let us show that normal subgroups correspond to normal subgroups. If H2
is normal inG2, let H1 be the subgroup�

�1(H2) ofG1. For h1 in H1 and g1 inG1,
we can write �(h1) = h2 with h2 in H2, and then �(g1h1g

�1
1 ) = �(g1)h2�(g1)

�1

is in �(g1)H2�(g1)
�1 = H2. Hence g1h1g

�1
1 is in ��1(H2) = H1. In the reverse

direction let H1 be normal in G1, and let g2 be in G2. Since � is onto G2, we can

write g2 = �(g1) for some g1 inG1. Then g2�(H1)g
�1
2 = �(g1)�(H1)�(g1)

�1 =
�(g1H1g

�1
1 ) = �(H1). Thus �(H1) is normal.

For the final statement let H2 = �(H1). We have just proved that this image
is normal, and hence G2/H2 is a group. The mapping ◆ : G1 ⇣ G2/H2 given
by ◆(g1) = �(g1)H2 is the composition of two homomorphisms and hence is a
homomorphism. Its kernel is

{g1 ◆ G1 | �(g1) ◆ H2} = {g1 ◆ G1 | �(g1) ◆ �(H1)} = ��1(�(H1)),

and this equals H1 by the first conclusion of the theorem. Applying Corollary

4.12 to ◆, we obtain the required isomorphism◆ : G1/H1⇣ G2/�(H1). �
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Theorem 4.14 (Second Isomorphism Theorem). Let H1 and H2 be subgroups

of a groupG with H2 normal inG. Then H1⇢H2 is a normal subgroup of H1, the
set H1H2 of products is a subgroup of G with H2 as a normal subgroup, and the

map h1(H1 ⇢ H2) �⇣ h1H2 is a well-defined canonical isomorphism of groups

H1/(H1 ⇢ H2) �= (H1H2)/H2.

PROOF. The set H1⇢H2 is a subgroup, being the intersection of two subgroups.
For h1 in H1, we have h1(H1⇢H2)h�11 ⌦ h1H1h

�1
1 ⌦ H1 since H1 is a subgroup

and h1(H1 ⇢ H2)h
�1
1 ⌦ h1H2h

�1
1 ⌦ H2 since H2 is normal in G. Therefore

h1(H1 ⇢ H2)h
�1
1 ⌦ H1 ⇢ H2, and H1 ⇢ H2 is normal in H1.

The set H1H2 of products is a subgroup since h1h2h
⌘
1h
⌘
2 = h1h

⌘
1(h

⌘
1
�1h2h

⌘
1)h

⌘
2

and since (h1h2)
�1 = h�11 (h1h

�1
2 h�11 ), and H2 is normal in H1H2 since H2 is

normal in G.

The function �(h1(H1 ⇢ H2)) = h1H2 is well defined since H1 ⇢ H2 ⌦ H2,

and � respects products. The domain of � is {h1(H1 ⇢ H2) | h1 ◆ H1}, and the
kernel is the subset of this such that h1 lies in H2 as well as H1. For this to happen,

h1 must be in H1 ⇢ H2, and thus the kernel is the identity coset of H1/(H1 ⇢ H2).
Hence � is one-one.

To see that � is onto (H1H2)/H2, let h1h2H2 be given. Then h1(H1 ⇢ H2)
maps to h1H2, which equals h1h2H2. Hence � is onto. �

3. Direct Products and Direct Sums

We return to the matter of direct products and direct sums of groups, direct

products having been discussed briefly in Section 1. In a footnote in Section II.4

wementioned a general principle in algebra that “whenever a new systematic con-

struction appears for the objects under study, it is well to look for a corresponding

construction with the functions relating these new objects.” This principle will

be made more precise in Section 11 of the present chapter with the aid of the

language of “categories” and “functors.”

Another principle thatwill be relevant for us is that constructions in one context

in algebra often recur, sometimes in slightly different guise, in other contexts. One

example of the operation of this principle occurs with quotients. The construction

and properties of the quotient of a vector space by a vector subspace, as in Section

II.5, is analogous in this sense to the construction and properties of the quotient of

a group by a normal subgroup, as in Section 2 in the present chapter. The need for

the subgroup to be normal is an example of what is meant by “slightly different

guise.” Anyway, this principle too will be made more precise in Section 11 of

the present chapter using the language of categories and functors.
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Let us proceed with an awareness of both these principles in connection with

direct products and direct sums of groups, looking for analogies with what hap-

pened for vector spaces and expecting our work to involve constructions with

homomorphisms as well as with groups.

The external direct product G1 ⇤ G2 was defined as a group in Section 1 to

be the set-theoretic product with coordinate-by-coordinate multiplication. There

are four homomorphisms of interest connected with G1 ⇤ G2, namely

i1 : G1⇣ G1 ⇤ G2 given by i1(g1) = (g1, 1),

i2 : G2⇣ G1 ⇤ G2 given by i2(g2) = (1, g2),

p1 : G1 ⇤ G2⇣ G1 given by p1(g1, g2) = g1,

p2 : G1 ⇤ G2⇣ G2 given by p2(g1, g2) = g2.

Recall from the discussion before Proposition 4.5 that Proposition 2.30 for the

direct product of two vector spaces does not translate directly into an analog for

the direct product of groups; instead that proposition is replaced by Proposition

4.5, which involves some condition of commutativity.

Warned by this anomaly, let us work with mappings rather than with groups

and subgroups, and let us use mappings in formulating a definition of the direct

product of groups. As with the direct product of two vector spaces, the mappings

to use are p1 and p2 but not i1 and i2. The way in which p1 and p2 enter is

through the effect of the direct product on homomorphisms. If �1 : H ⇣ G1
and �2 : H ⇣ G2 are two homomorphisms, then h �⇣ (�1(h),�2(h)) is the
corresponding homomorphism of H intoG1⇤G2. In order to state matters fully,
let us give the definition with an arbitrary number of factors.

Let S be an arbitrary nonempty set of groups, and let Gs be the group cor-

responding to the member s of S. The external direct product of the Gs’s

consists of a group
�

s◆S Gs and a system of group homomorphisms. The

group as a set is �s◆SGs , whose elements are arbitrary functions from S to⌫
s◆S Gs such that the value of the function at s is in Gs , and the group law is�

{gs}s◆S
⇥�

{g⌘s}s◆S
⇥

= {gsg⌘s}s◆S . The group homomorphisms are the coordinate
mappings ps0 :

�
s◆S Gs ⇣ Gs0 with ps0

�
{gs}s◆S

⇥
= gs0 . The individual groups

Gs are called the factors, and a direct product of n groups may be written as

G1⇤· · ·⇤Gn insteadofwith the symbol
�
. The group

�
s◆S Gs has theuniversal

mapping property described in Proposition 4.15 and pictured in Figure 4.2.

Proposition 4.15 (universal mapping property of external direct product). Let

{Gs | s ◆ S} be a nonempty set of groups, and let
�

s◆S Gs be the external direct

product, the associated group homomorphisms being the coordinate mappings

ps0 :
�

s◆S Gs ⇣ Gs0 . If H is any group and {�s | s ◆ S} is a system of group
homomorphisms �s : H ⇣ Gs , then there exists a unique group homomorphism

� : H ⇣
�

s◆S Gs such that ps0 ⌥ � = �s0 for all s0 ◆ S.
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Gs0

�s0✏��� H

ps0

�⌘⌘
�

s◆S Gs

�

FIGURE 4.2. Universal mapping property of an external direct product of groups.

PROOF. Existence of� is proved by taking�(h) = {�s(h)}s◆S . Then ps0(�(h))

= ps0
�
{�s(h)}s◆S

⇥
= �s0(h) as required. For uniqueness let �

⌘ : H ⇣
�

s◆S Gs

be a homomorphism with ps0 ⌥ �⌘ = �s0 for all s0 ◆ S. For each h in H , we can

write �⌘(h) = {�⌘(h)s}s◆S . For s0 in S, we then have �s0(h) = (ps0 ⌥ �⌘)(h) =
ps0(�

⌘(h)) = �⌘(h)s0 , and we conclude that �
⌘ = �. �

Now we give an abstract definition of direct product that allows for the possi-

bility that the direct product is “internal” in the sense that the various factors are

identified as subgroups of a given group. The definition is by means of the above

universal mapping property and will be seen to characterize the direct product up

to canonical isomorphism. Let S be an arbitrary nonempty set of groups, and let

Gs be the group corresponding to the member s of S. A direct product of the

Gs’s consists of a group G and a system of group homomorphisms ps : G ⇣ Gs

for s ◆ S with the following universal mapping property: whenever H is a

group and {�s | s ◆ S} is a system of group homomorphisms �s : H ⇣ Gs , then

there exists a unique group homomorphism � : H ⇣ G such that ps ⌥ � = �s
for all s ◆ S. Proposition 4.15 proves existence of a direct product, and the next

proposition addresses uniqueness. A direct product is internal if each Gs is a

subgroup of G and each restriction ps
⇧⇧
Gs
is the identity map.

Gs

�s✏��� H

ps

�⌘⌘

G

�

FIGURE 4.3. Universal mapping property of a direct product of groups.

Proposition 4.16. Let S be a nonempty set of groups, and let Gs be the group

corresponding to the member s of S. If (G, {ps}) and (G ⌘, {p⌘s}) are two direct
products, then the homomorphisms ps : G ⇣ Gs and p

⌘
s : G

⌘ ⇣ Gs are onto

Gs , there exists a unique homomorphism◆ : G ⌘ ⇣ G such that p⌘s = ps ⌥◆ for
all s ◆ S, and ◆ is an isomorphism.

PROOF. In Figure 4.3 let H = G ⌘ and �s = p⌘s . If ◆ : G ⌘ ⇣ G is the

homomorphism produced by the fact that G is a direct product, then we have
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ps⌥◆ = p⌘s for all s. Reversing the roles ofG andG
⌘, we obtain a homomorphism

◆⌘ : G ⇣ G ⌘ with p⌘s ⌥◆⌘ = ps for all s. Therefore ps ⌥(◆⌥◆⌘) = p⌘s ⌥◆⌘ = ps .

In Figure 4.3 we next let H = G and �s = ps for all s. Then the identity 1G
onG has the same property ps ⌥1G = ps relative to all ps that◆⌥◆⌘ has, and the
uniqueness says that ◆ ⌥◆⌘ = 1G . Reversing the roles of G and G ⌘, we obtain
◆⌘ ⌥◆ = 1G ⌘ . Therefore◆ is an isomorphism.

For uniqueness suppose that  : G ⌘ ⇣ G is another homomorphism with

p⌘s = ps ⌥  for all s ◆ S. Then the argument of the previous paragraph shows

that◆⌘⌥ = 1G ⌘ . Applying◆on the left gives = (◆⌥◆⌘)⌥ = ◆⌥(◆⌘⌥) =
◆ ⌥ 1G ⌘ = ◆. Thus  = ◆.
Finally we have to show that the sth mapping of a direct product is onto

Gs . It is enough to show that p
⌘
s is onto Gs . Taking G as the external direct

product
�

s◆S Gs with ps equal to the coordinatemapping, form the isomorphism

◆⌘ : G ⇣ G ⌘ that has just been proved to exist. This satisfies ps = p⌘s ⌥◆⌘ for
all s ◆ S. Since ps is onto Gs , p

⌘
s must be onto Gs . �

Let us turn to direct sums. Part of what we seek is a definition that allows

for an abstract characterization of direct sums in the spirit of Proposition 4.16.

In particular, the interaction with homomorphisms is to be central to the dis-

cussion. In the case of two factors, we use i1 and i2 rather than p1 and p2. If

�1 : G1⇣ H and �2 : G2⇣ H are two homomorphisms, then the correspond-

ing homomorphism � of G1 ⌃G2 to H is to satisfy �1 = � ⌥ i1 and �2 = � ⌥ i2.
With G1⌃G2 defined, as expected, to be the same group as G1⇤G2, we are led

to the formula

�(g1, g2) = �(g1, 1)�(1, g2) = �1(g1)�2(g2).

The images of commuting elements under a homomorphism have to commute,

and hence H had better be abelian. Then in order to have an analog of Proposition

4.16, we will want to specialize H at some point to G1 ⌃ G2, and therefore G1
and G2 had better be abelian. With these observations in place, we are ready for

the general definition.

Let S be an arbitrary nonempty set of abelian groups, and let Gs be the group

corresponding to the member s of S. We shall use additive notation for the group

operation in each Gs . The external direct sum of the Gs’s consists of an abelian

group


s◆S Gs and a system of group homomorphisms is for s ◆ S. The group is
the subgroup of

�
s◆S Gs of all elements that are equal to 0 in all but finitely many

coordinates. The group homomorphisms are the mappings is0 : Gs0 ⇣


s◆S Gs

carrying a member gs0 of Gs0 to the element that is gs0 in coordinate s0 and is 0

at all other coordinates. The individual groups are called the summands, and

a direct sum of n abelian groups may be written as G1 ⌃ · · · ⌃ Gn . The group
s◆S Gs has the universalmapping property described in Proposition 4.17 and

pictured in Figure 4.4.
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Proposition 4.17 (universal mapping property of external direct sum). Let

{Gs | s ◆ S} be a nonempty set of abelian groups, and let


s◆S Gs be the

external direct sum, the associated group homomorphisms being the embedding

mappings is0 : Gs0 ⇣


s◆S Gs . If H is any abelian group and {�s | s ◆ S} is a
system of group homomorphisms �s : Gs ⇣ H , then there exists a unique group

homomorphism � :


s◆S Gs ⇣ H such that � ⌥ is0 = �s0 for all s0 ◆ S.

Gs0

�s���⇣ H

is0

⌘⌘�


s◆S Gs

�

FIGURE 4.4. Universal mapping property of an external direct sum

of abelian groups.

PROOF. Existence of � is proved by taking �
�
{gs}s◆S

⇥
=
�

s �s(gs). The sum
on the right side is meaningful since the element {gs}s◆S of the direct sum has

only finitely many nonzero coordinates. Since H is abelian, the computation

�
�
{gs}s◆S

⇥
+ �

�
{g⌘s}s◆S

⇥
=
�

s �s(gs) +
�

s �s(g
⌘
s)

=
�

s (�s(gs) + �s(g
⌘
s)) =

�
s �s(gs + g⌘s)

= �
�
{gs + g⌘s}s◆S

⇥
= �

�
{gs}s◆S + {g⌘s}s◆S

⇥

shows that � is a homomorphism. If gs0 is given and {gs}s◆S denotes the el-
ement that is gs0 in the s0

th coordinate and is 0 elsewhere, then �(is0(gs0)) =
�
�
{gs}s◆S

⇥
=
�

s �s(gs), and the right side equals �s0(gs0) since gs = 0 for all

other s’s. Thus � ⌥ is0 = �s0 .

For uniqueness let �⌘ :


s◆S Gs ⇣ H be a homomorphismwith �⌘ ⌥ is0 = �s0
for all s0 ◆ S. Then the value of �⌘ is determined at all elements of


s◆S Gs that

are 0 in all but one coordinate. Since the most general member of


s◆S Gs is a

finite sum of such elements, �⌘ is determined on all of


s◆S Gs . �

Now we give an abstract definition of direct sum that allows for the possibility

that the direct sum is “internal” in the sense that the various constituents are

identified as subgroups of a given group. Again the definition is by means of a

universal mapping property and will be seen to characterize the direct sum up to

canonical isomorphism. Let S be an arbitrary nonempty set of abelian groups,

and let Gs be the group corresponding to the member s of S. A direct sum of

the Gs’s consists of an abelian group G and a system of group homomorphisms

is : Gs ⇣ G for s ◆ S with the following universal mapping property: when-
ever H is an abelian group and {�s | s ◆ S} is a system of group homomorphisms
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�s : Gs ⇣ H , then there exists a unique group homomorphism � : G ⇣ H

such that � ⌥ is = �s for all s ◆ S. Proposition 4.17 proves existence of a direct

sum, and the next proposition addresses uniqueness. A direct sum is internal if

each Gs is a subgroup of G and each mapping is is the inclusion mapping.

Gs

�s���⇣ H

is

⌘⌘�

G

�

FIGURE 4.5. Universal mapping property of a direct sum of abelian groups.

Proposition 4.18. Let S be a nonempty set of abelian groups, and let Gs be

the group corresponding to the member s of S. If (G, {is}) and (G ⌘, {i ⌘s}) are
two direct sums, then the homomorphisms is : Gs ⇣ G and i ⌘s : Gs ⇣ G ⌘ are
one-one, there exists a unique homomorphism◆ : G ⇣ G ⌘ such that i ⌘s = ◆ ⌥ is
for all s ◆ S, and ◆ is an isomorphism.

PROOF. In Figure 4.5 let H = G ⌘ and �s = i ⌘s . If ◆ : G ⇣ G ⌘ is the
homomorphism produced by the fact that G is a direct sum, then we have ◆ ⌥ is
= i ⌘s for all s. Reversing the roles of G and G ⌘, we obtain a homomorphism
◆⌘ : G ⌘ ⇣ G with ◆⌘ ⌥ i ⌘s = is for all s. Therefore (◆⌘ ⌥◆) ⌥ is = ◆⌘ ⌥ i ⌘s = is .

In Figure 4.5 we next let H = G and �s = is for all s. Then the identity 1G
on G has the same property 1G ⌥ is = is relative to all is that◆

⌘ ⌥◆ has, and the
uniqueness says that ◆⌘ ⌥◆ = 1G . Reversing the roles of G and G ⌘, we obtain
◆ ⌥◆⌘ = 1G ⌘ . Therefore◆ is an isomorphism.

For uniqueness suppose that  : G ⇣ G ⌘ is another homomorphism with

i ⌘s =  ⌥ is for all s ◆ S. Then the argument of the previous paragraph shows that
◆⌘ ⌥ = 1G . Applying◆ on the left gives = (◆ ⌥◆⌘) ⌥ = ◆ ⌥ (◆⌘ ⌥) =
◆ ⌥ 1G = ◆. Thus  = ◆.

Finally we have to show that the sth mapping of a direct sum is one-one on

Gs . It is enough to show that i
⌘
s is one-one on Gs . Taking G as the external direct

sum


s◆S Gs with is equal to the embedding mapping, form the isomorphism

◆⌘ : G ⌘ ⇣ G that has just been proved to exist. This satisfies is = ◆⌘ ⌥ i ⌘s for all
s ◆ S. Since is is one-one, i ⌘s must be one-one. �

EXAMPLE. The groupQ⇤ is the direct sum of copies of Z, one for each prime,
plus one copy of Z/2Z. If p is a prime, the mapping ip : Z ⇣ Q⇤ is given
by ip(n) = pn . The remaining coordinate gives the sign. The isomorphism

results from unique factorization, only finitely many primes being involved for

any particular nonzero rational number.
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4. Rings and Fields

In this section we begin a two-section digression in order to develop some more

number theory beyond what is in Chapter I and to make some definitions as new

notions arise. In later sections of the present chapter, some of this material will

yield further examples of concrete groups and tools for working with them.

We begin with the additive group Z/mZ of integers modulo a positive integer
m. We continue to write [a] for the equivalence class of the integer a when it is

helpful to do so. Our interest will be in the multiplication structure that Z/mZ
inherits from multiplication in Z. Namely, we attempt to define

[a][b] = [ab].

To see that this formula is meaningful in Z/mZ, we need to check that the same
equivalence class results on the right side if the representatives of [a] and [b]

are changed. Thus let [a] = [a⌘] and [b] = [b⌘]. Then m divides a � a⌘ and
b � b⌘ and must divide the sum of products (a � a⌘)b + a⌘(b � b⌘) = ab � a⌘b⌘.
Consequently [ab] = [a⌘b⌘], and multiplication is well defined. If x and y are in
Z/mZ, their product is often denoted by xy mod m.
The same kind of argument as just given shows that the associativity of multi-

plication in Z and the distributive laws imply corresponding facts about Z/mZ.
The result is that Z/mZ is a “commutative ring with identity” in the sense of the
following definitions.

A ring is a set R with two operations R ⇤ R ⇣ R, usually called addition

andmultiplication and often denoted by (a, b) �⇣ a + b and (a, b) �⇣ ab, such

that

(i) R is an abelian group under addition,

(ii) multiplication is associative in the sense that a(bc) = (ab)c for all a, b, c
in R,

(iii) the two distributive laws

a(b + c) = (ab) + (ac) and (b + c)a = (ba) + (ca)

hold for all a, b, c in R.

The additive identity is denoted by 0, and the additive inverse of a is denoted by

�a. A sum a+(�b) is often abbreviated a�b. By convention when parentheses
are absent, multiplications are to be carried out before additions and subtractions.

Thus the distributive laws may be rewritten as

a(b + c) = ab + ac and (b + c)a = ba + ca.

A ring R is called a commutative ring if multiplication satisfies the commutative

law

(iv) ab = ba for all a and b in R.
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A ring R is called a ring with identity6 if there exists an element 1 such that

1a = a1 = a for all a in R. It is immediate from the definitions that

• 0a = 0 and a0 = 0 in any ring (since, in the case of the first formula,

0 = 0a � 0a = (0+ 0)a � 0a = 0a + 0a � 0a = 0a),

• the multiplicative identity is unique in a ring with identity (since 1⌘ =
1⌘1 = 1),

• (�1)a = �a = a(�1) in any ring with identity (partly since 0 = 0a =
(1+ (�1))a = 1a + (�1)a = a + (�1)a).

In a ring with identity, it will be convenient not to insist that the identity be

different from the zero element 0. If 1 and 0 do happen to coincide in R, then it

readily follows that 0 is the only element of R, and R is said to be the zero ring.

The set Z of integers is a basic example of a commutative ring with identity.
Returning to Z/mZ, suppose now that m is a prime p. If [a] is in Z/pZ with a
in {1, 2, . . . , p� 1}, then GCD(a, p) = 1 and Proposition 1.2 produces integers

r and s with ar + ps = 1. Modulo p, this equation reads [a][r] = [1]. In other

words, [r] is a multiplicative inverse of [a]. The result is that Z/pZ, when p is a
prime, is a “field” in the sense of the following definition.

A field F is a commutative ring with identity such that F = 0 and such that

(v) to each a = 0 in F corresponds an element a�1 in F such that aa�1 = 1.

In other words, F⇤ = F� {0} is an abelian group under multiplication. Inverses
are necessarily unique as a consequence of one of the properties of groups.

When p is prime, we shall write Fp for the field Z/pZ. Its multiplicative
group F⇤p has order p� 1, and Lagrange’s Theorem (Corollary 4.8) immediately
implies that ap�1  1 mod p whenever a and p are relatively prime. This result
is known as Fermat’s Little Theorem.7

For general m, certain members of Z/mZ have multiplicative inverses. The
product of two such elements is again one, and the inverse of one is again one.

Thus, even though Z/mZ need not be a field, the subset (Z/mZ)⇤ of members
of Z/mZ with multiplicative inverses is a group. The same argument as when m
is prime shows that the class of a has an inverse if and only if GCD(a,m) = 1.

The number of such classes was defined in Chapter I in terms of the Euler �
function as �(m), and a formula for �(m) was obtained in Corollary 1.10. The

6Some authors, particularly when discussing only algebra, find it convenient to incorporate the

existence of an identity into the definition of a ring. However, in real analysis some important natural

rings do not have an identity, and the theory is made more complicated by forcing an identity into

the picture. For example the space of integrable functions on R forms a very natural ring, with

convolution as multiplication, and there is no identity; forcing an identity into the picture in such

a way that the space remains stable under translations makes the space large and unwieldy. The

distinction betweenworkingwith rings andworkingwith ringswith identitywill be discussed further

in Section 11.
7As opposed to Fermat’s Last Theorem, which lies deeper.
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conclusion is that (Z/mZ)⇤ is an abelian group of order �(m). Application of
Lagrange’s Theorem yields Euler’s generalization of Fermat’s Little Theorem,

namely that a�(m)  1 mod m for every positive integer m and every integer a

relatively prime to m.

More generally, in any ring R with identity, a unit is defined to be any element

a such that there exists an element a�1 with aa�1 = a�1a = 1. The element a�1

is unique if it exists8 and is called themultiplicative inverse of a. The units of R

form a group denoted by R⇤. For example the group Z⇤ consists of+1 and�1,
and the zero ring R has R⇤ = {0}. If R is a nonzero ring, then 0 is not in R⇤.
Here are some further examples of fields.

EXAMPLES OF FIELDS.

(1) Q, R, and C. These are all fields.
(2) Q[⇧]. This was introduced between Examples 8 and 9 of Section 1. It

is assumed that ⇧ is a complex number and that there exists an integer n > 0

such that the complex numbers 1, ⇧, ⇧2, . . . , ⇧n are linearly dependent over Q.
The set Q[⇧] is defined to be the linear span over Q of all powers 1, ⇧, ⇧2, . . . of
⇧ , which is the same as the linear span of the finite set 1, ⇧, ⇧2, . . . , ⇧n�1. The
set Q[⇧] was shown in Proposition 4.1 to be a subset of C that is closed under

the arithmetic operations, including the passage to reciprocals in the case of the

nonzero elements. It is therefore a field.

(3) A field of 4 elements. LetF4 = {0, 1, ⇧, ⇧+1}, where ⇧ is some symbol not
standing for 0 or 1. Define addition in F4 and multiplication in F⇤4 by requiring
that a + 0 = 0+ a = a for all a, that

1+ 1 = 0, 1+ ⇧ = (⇧ + 1), 1+ (⇧ + 1) = ⇧,

⇧ + 1 = (⇧ + 1), ⇧ + ⇧ = 0, ⇧ + (⇧ + 1) = 1,

(⇧ + 1) + 1 = ⇧, (⇧ + 1) + ⇧ = 1, (⇧ + 1) + (⇧ + 1) = 0,

and that

11 = 1, 1⇧ = ⇧, 1(⇧ + 1) = (⇧ + 1),

⇧1 = ⇧, ⇧⇧ = (⇧ + 1), ⇧(⇧ + 1) = 1,

(⇧ + 1)1 = (⇧ + 1), (⇧ + 1)⇧ = 1, (⇧ + 1)(⇧ + 1) = ⇧ .

The result is a field. With this direct approach a certain amount of checking is

necessary to verify all the properties of a field. We shall return to this matter in

Chapter IX when we consider finite fields more generally, and we shall then have

a way of constructing F4 that avoids tedious checking.
8In fact, if b and c exist with ab = ca = 1, then a is a unit with a�1 = b = c because

b = 1b = (ca)b = c(ab) = c1 = c.
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In analogy with the theory of groups, we define a subring of a ring to be a

nonempty subset that is closed under addition, negation, and multiplication. The

set 2Z of even integers is a subring of the ringZ of integers. A subfield of a field is
a subset containing 0 and 1 that is closed under addition, negation, multiplication,

and multiplicative inverses for its nonzero elements. The set Q of rationals is a

subfield of the field R of reals.
Intermediate between rings and fields are two kinds of objects—integral do-

mains and division rings—that arise frequently enough to merit their own names.

The setting for the first is a commutative ring R. A nonzero element a of

R is called a zero divisor if there is some nonzero b in R with ab = 0. For

example the element 2 in the ring Z/6Z is a zero divisor because 2 · 3 = 0.

An integral domain is a nonzero commutative ring with identity having no zero

divisors. Fields have no zero divisors since if a and b are nonzero, then ab = 0

would force b = 1b = (a�1a)b = a�1(ab) = a�10 = 0 and would give a

contradiction; therefore every field is an integral domain. The ring of integers

Z is another example of an integral domain, and the polynomial rings Q[X] and
R[X] and C[X] introduced in Section I.3 are further examples. A cancellation
law for multiplication holds in any integral domain:

ab = ac with a = 0 implies b = c.

In fact, ab = ac implies a(b � c) = 0; since a = 0, b � c must be 0.

The other object with its own name is a division ring, which is a nonzero ring

with identity such that every nonzero element is a unit. The commutative division

rings are the fields, and we have encountered only one noncommutative division

ring so far. That is the set H of quaternions, which was introduced in Section 1.

Division rings that are not fields will play only a minor role in this book but are

of great interest in Chapters II and III of Advanced Algebra.

Let us turn to mappings. A function � : R ⇣ R⌘ between two rings is an
isomorphism of rings if � is one-one onto and satisfies �(a+ b) = �(a) + �(b)
and �(ab) = �(a)�(b) for all a and b in R. In other words, � is to be an
isomorphism of the additive groups and to satisfy �(ab) = �(a)�(b). Such a
mapping carries the identity, if any, in R to the identity of R⌘. The relation “is
isomorphic to” is an equivalence relation. Common notation for an isomorphism

of rings is R �= R⌘; because of the symmetry, one can say that R and R⌘ are
isomorphic.

A function � : R ⇣ R⌘ between two rings is a homomorphism of rings if �
satisfies �(a + b) = �(a) + �(b) and �(ab) = �(a)�(b) for all a and b in R.
In other words, � is to be a homomorphism of the additive groups and to satisfy
�(ab) = �(a)�(b).

EXAMPLES OF HOMOMORPHISMS OF RINGS.

(1) The mapping � : Z ⇣ Z/mZ given by �(k) = k mod m.
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(2) The evaluation mapping � : R[X]⇣ R given by P(X) �⇣ P(r) for some
fixed r in R.
(3)Mappingswith the direct productZ⇤Z. The additive groupZ⇤Z becomes

a commutative ring with identity under coordinate-by-coordinate multiplication,

namely (a, a⌘) + (b, b⌘) = (a + b, a⌘ + b⌘). The identity is (1, 1). Projection
(a, a⌘) �⇣ a to the first coordinate is a homomorphism of rings Z⇤ Z ⇣ Z that
carries identity to identity. Inclusion a �⇣ (a, 0) of Z into the first coordinate is
a homomorphism of rings Z ⇣ Z⇤ Z that does not carry identity to identity.9

Proposition 4.19. If R is a ring with identity 1R , then there exists a unique

homomorphism of rings �1 : Z ⇣ R such that �(1) = 1R .

PROOF. The formulas for manipulating exponents of an element in a group,

when translated into the additive notation for addition in R, say that n �⇣ nr

satisfies (m + n)r = mr + nr and (mn)r = m(nr) for all r in R and all

integers m and n. The first of these formulas implies, for any r in R, that

�r (n) = nr is a homomorphism between the additive groups of Z and R, and

it is certainly uniquely determined by its value for n = 1. The distributive

laws imply that �r (r
⌘) = r ⌘r is another homomorphism of additive groups.

Hence �r ⌥ �r ⌘ and �r ⌘r are homomorphisms between the additive groups of
Z and R. Since (�r ⌥ �r ⌘)(1) = �r (r

⌘) = r ⌘r = �r ⌘r (1), we must have
(�r ⌥ �r ⌘)(m) = �r ⌘r (m) for all integers m. Thus (mr ⌘)r = m(r ⌘r) for all
m. Putting r = n1R and r

⌘ = 1R proves the fourth equality of the computation

�1(mn) = (mn)1R = m(n1R)

= m(1R(n1R)) = (m1R)(n1R) = �1(m)�1(n),

and shows that �1 is in fact a homomorphism of rings. �

The image of a homomorphism � : R ⇣ R⌘ of rings is a subring of R⌘, as is
easily checked. The kernel turns out to be more than just of subring of R. If a

is in the kernel and b is any element of R, then �(ab) = �(a)�(b) = 0�(b) = 0

and similarly �(ba) = 0. Thus the kernel of a ring homomorphism is closed

under products of members of the kernel with arbitrary members of R. Adapting

a definition to this circumstance, one says that an ideal I of R (or two-sided

ideal in case of ambiguity) is an additive subgroup such that ab and ba are in I

whenever a is in I and b is in R. Briefly then, the kernel of a homomorphism of

rings is an ideal.

Conversely suppose that I is an ideal in a ring R. Since I is certainly an

additive subgroup of an abelian group, we can form the additive quotient group

9Sometimes authors who build the existence of an identity into the definition of “ring” insist as

a matter of definition that homomorphisms of rings carry identity to identity. Such authors would

then exclude this particular mapping from consideration as a homomorphism.
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R/I . It is customary to write the individual cosets in additive notation, thus as
r + I . In analogy with Proposition 4.10, we have the following result for the

present context.

Proposition 4.20. If I is an ideal in a ring R, then a well-defined operation

of multiplication is obtained within the additive group R/I by the definition
(r1+ I )(r2+ I ) = r1r2+ I , and R/I becomes a ring. If R has an identity 1, then
1 + I is an identity in R/I . With these definitions the function q : R ⇣ R/I
given by q(r) = r + I is a ring homomorphism of R onto R/I with kernel I .
Consequently every ideal of R is the kernel of some homomorphism of rings.

REMARKS. When I is an ideal, the ring R/I is called a quotient ring10 of R,
and the homomorphism q : R ⇣ R/I is called the quotient homomorphism.
In the special case that R = Z and I = mZ, the construction of R/I reduces to
the construction of Z/mZ as a ring at the beginning of this section.
PROOF. If we change the representatives of the cosets from r1 and r2 to r1+ i1

and r2+ i2 with i1 and i2 in I , then (r1+ i1)(r2+ i2) = r1r2+ (i1r2+ r1i2+ i1i2)
is in r1r2+ I by the closure properties of I . Hence multiplication is well defined.

The associativity of this multiplication follows from the associativity of mul-

tiplication in R because

�
(r1 + I )(r2 + I )

⇥
(r3 + I ) = (r1r2 + I )(r3 + I ) = (r1r2)r3 + I = r1(r2r3) + I

= (r1 + I )(r2r3 + I ) = (r1 + I )
�
(r2 + I )(r3 + I )

⇥
.

Similarly the computation

(r1 + I )
�
(r2 + I ) + (r3 + I )

⇥
= r1(r2 + r3) + I = (r1r2 + r1r3) + I

= (r1 + I )(r2 + I ) + (r1 + I )(r3 + I )

yields one distributive law, and the other distributive law is proved in the same

way. If R has an identity 1, then (1 + I )(r + I ) = 1r + I = r + I and

(r + I )(1+ I ) = r1+ I = r + I show that 1+ I is an identity in R/I .
Finally we know that the quotient map q : R ⇣ R/I is a homomorphism of

additive groups, and the computation q(r1r2) = r1r2 + I = (r1 + I )(r2 + I ) =
q(r1)q(r2) shows that q is a homomorphism of rings. �

EXAMPLES OF IDEALS.

(1) The ideals in the ring Z coincide with the additive subgroups and are the
sets mZ; the reason each mZ is an ideal is that if a and b are integers and m

divides a, then m divides ab.

10Quotient rings are known also as “factor rings.” A “ring of quotients,” however, is something

different.
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(2) The ideals in a field F are 0 and F itself, no others; in fact, if a = 0 is in

an ideal and b is in F, then the equality b = (ba�1)a shows that b is in the ideal
and that the ideal therefore contains all elements of F.
(3) If R isQ[X] orR[X] orC[X], then every ideal I is of the form I = R f (X)

for some polynomial f (X). In fact, we can take f (X) = 0 if I = 0. If I = 0,

let f (X) be a nonzero member of I of lowest possible degree. If A(X) is in I ,
then Proposition 1.12 shows that A(X) = f (X)B(X)+C(X)with C(X) = 0 or

degC < deg f . The equalityC(X) = A(X)� f (X)B(X) shows that C(X) is in
I , and theminimality of deg f implies thatC(X) = 0. Thus A(X) = f (X)B(X).

(4) In a ring R with identity 1, an ideal I is a proper subset of R if and only if 1

is not in I . In fact, I is certainly a proper subset if 1 is not in I . In the converse

direction if 1 is in I , then every element r = r1, for r in R, lies in I . Hence

I = R, and I is not a proper subset.

In analogy with what was shown for vector spaces in Proposition 2.25 and

for groups in Proposition 4.11, quotients in the context of rings allow for the

factorization of certain homomorphisms of rings. The appropriate result is stated

as Proposition 4.21 and is pictured in Figure 4.6.

Proposition 4.21. Let � : R1 ⇣ R2 be a homomorphism of rings, let I0 =
ker�, let I be an ideal of R1 contained in I0, and letq : R1⇣ R1/I be the quotient
homomorphism. Then there exists a homomorphism of rings � : R1/I ⇣ R2
such that � = � ⌥ q, i.e., �(r1 + I ) = �(r1). It has the same image as �, and
ker� = {r + I | r ◆ I0}.

R1
����⇣ R2

q

⌘⌘�

R1/I

�

FIGURE 4.6. Factorization of homomorphisms of rings via the quotient

of a ring by an ideal.

REMARK. One says that � factors through R1/I or descends to R1/I .

PROOF. Proposition 4.11 shows that � descends to a homomorphism � of
the additive group of R1/I into the additive group of R2 and that all the other
conclusions hold except possibly for the fact that � respects multiplication. To
see that � respects multiplication, we just compute that �((r + I )(r ⌘ + I )) =
�(rr ⌘ + I ) = �(rr ⌘) = �(r)�(r ⌘) = �(r + I )�(r ⌘ + I ). �
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An example of special interest occurs when � is a homomorphism of rings

� : Z ⇣ R and the ideal mZ of Z is contained in the kernel of �. Then the
proposition says that � descends to a homomorphism of rings � : Z/mZ ⇣ R.

We shall make use of this result shortly. But first let us state a different special

case as a corollary.

Corollary 4.22. Let � : R1⇣ R2 be a homomorphism of rings, and suppose

that � is onto R2 and has kernel I . Then � exhibits the ring R1/I as canonically
isomorphic to R2.

PROOF. Take I = I0 in Proposition 4.21, and form � : R1/I ⇣ R2 with

� = � ⌥ q. The proposition shows that � is onto R2 and has trivial kernel, i.e.,
the identity element of R1/I . Having trivial kernel, � is one-one. �

Proposition 4.23. Any field F contains a subfield isomorphic to the rationals
Q or to some field Fp with p prime.

REMARKS. The subfield in the proposition is called the prime field of F. The
characteristic of F is defined to be 0 if the prime field is isomorphic toQ and to

be p if the prime field is isomorphic to Fp.

PROOF. Proposition 4.19 produces a homomorphism of rings �1 : Z ⇣ F
with �1(1) = 1. The kernel of �1 is an ideal, necessarily of the form mZ with
m an integer � 0, and the image of �1 is a commutative subring with identity in
F. Let �1 : Z/mZ ⇣ F be the descended homomorphism given by Proposition
4.21. The integerm cannot factor nontrivially, say as m = rs, because otherwise

�1(r) and �1(s) would be nonzero members of F with �1(r)�1(s) = �1(rs) =
�1(0) = 0, in contradiction to the fact that a field has no zero divisors.

Thus m is prime or m is 0. If m is a prime p, then Z/pZ is a field, and the
image of �1 is the required subfield of F. Thus suppose that m = 0. Then �1
is one-one, and F contains a subring with identity isomorphic to Z. Define a
function ◆1 : Q ⇣ F by saying that if k and l are integers with l = 0, then

◆1(kl
�1) = �1(k)�1(l)

�1. This is well defined because �1(l) = 0 and because

k1l
�1
1 = k2l

�1
2 implies k1l2 = k2l1 and hence �1(k1)�1(l2) = �1(k2)�1(l1) and

�1(k1)�1(l1)
�1 = �1(k2)�1(l2)

�1. We readily check that◆1 is a homomorphism

with kernel 0. Then F contains the subfield◆1(Q) isomorphic to Q. �

5. Polynomials and Vector Spaces

In this section we complete the digression begun in Section 4. We shall be using

the elementary notions of rings and fields established in Section 4 in order to
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work with (i) polynomials over any commutative ring with identity and (ii) vector

spaces over arbitrary fields.

It is an important observation that a good deal of what has been proved so

far in this book concerning polynomials when F is Q or R or C remains valid

when F is any field. Specifically all the results in Section I.3 through Theorem
1.17 on the topic of polynomials in one indeterminate remain valid as long as the

coefficients are from a field. The theory breaks down somewhat when one tries to

extend it by allowing coefficients that are not in a field or by allowing more than

one indeterminate. Because of this circumstance and because we have not yet

announced a universal mapping property for polynomial rings and because we

have not yet addressed the several-variable case, we shall briefly review matters

now while extending the reach of the theory that we have.

Let R be a nonzero commutative ringwith identity, so that 1 = 0. Apolynomial

in one indeterminate is to be an expression P(X) = anX
n+· · ·+a2X2+a1X+a0

in which X is a symbol, not a variable. Nevertheless, the usual kinds of ma-

nipulations with polynomials are to be valid. This description lacks precision

because X has not really been defined adequately. To make a precise definition,

we remove X from the formalism and simply define the polynomial to be the

tuple (a0, a1, . . . , an, 0, 0, . . . ) of its coefficients. Thus a polynomial in one
indeterminate with coefficients in R is an infinite sequence of members of R

such that all terms of the sequence are 0 from some point on. The indexing of the

sequence is to begin with 0, and X is to refer to the polynomial (0, 1, 0, 0, . . . ).
We may refer to a polynomial P as P(X) if we want to emphasize that the
indeterminate is called X . Addition and negation of polynomials are defined in

coordinate-by-coordinate fashion by

(a0, a1, . . . , an, 0, 0, . . . ) + (b0,b1, . . . , bn, 0, 0, . . . )

= (a0 + b0, a1 + b1, . . . , an + bn, 0, 0, . . . ),

�(a0, a1, . . . , an, 0, 0, . . . ) = (�a0,�a1, . . . ,�an, 0, 0, . . . ),

and the set R[X] of polynomials is then an abelian group isomorphic to the direct

sum of infinitely many copies of the additive group of R. As in Section I.3, Xn

is to be the polynomial whose coefficients are 1 in the nth position, with n � 0,
and 0 in all other positions. Polynomial multiplication is then defined so as to

match multiplication of expressions anX
n + · · · + a1X + a0 if the product is

expanded out, powers of X are added, and the terms containing like powers of X

are collected. Thus the precise definition is that

(a0, a1, . . . , 0, 0, . . . )(b0, b1, . . . , 0, 0, . . . ) = (c0, c1, . . . , 0, 0, . . . ),

where cN =
�N

k=0 akbN�k . It is a simple matter to check that this multiplication
makes R[X] into a commutative ring.



150 IV. Groups and Group Actions

The polynomial with all entries 0 is denoted by 0 and is called the zero

polynomial. For all polynomials P = (a0, . . . , an, 0, . . . ) other than 0, the
degree of P , denoted by deg P , is defined to be the largest index n such that

an = 0. In this case, an is called the leading coefficient, and anX
n is called the

leading term; if an = 1, the polynomial is called monic. The usual convention

with the 0 polynomial is either to leave its degree undefined or to say that the

degree is�✓; let us follow the latter approach in this section in order not to have
to separate certain formulas into cases.

There is a natural one-one homomorphism of rings ⌃ : R ⇣ R[X] given by

⌃(c) = (c, 0, 0, . . . ) for c in R. This sends the identity of R to the identity of
R[X]. Thus we can identify R with the constant polynomials, i.e., those of

degree � 0.
If P and Q are nonzero polynomials, then

deg(P + Q) � max(deg P, deg Q).

In this formula equality holds if deg P = deg Q. In the case of multiplication, let

P and Q have respective leading terms amX
m and bnX

n . All the coefficients of

PQ are 0 beyond the (m+n)th, and the (m+n)th is ambn . This in principle could
be 0 but is nonzero if R is an integral domain. Thus P and Q nonzero implies

deg(PQ)

↵ � deg P + deg Q for general R,

= deg P + deg Q if R is an integral domain.

It follows in particular that R[X] is an integral domain if R is.

Normally we shall write out specific polynomials using the informal notation

with powers of X , using the more precise notation with tuples only when some

ambiguity might otherwise result.

In the special case that R is a field, Section I.3 introduced the notion of

evaluation of a polynomial P(X) at a point r in the field, thus providing amapping
P(X) �⇣ P(r) from R[X] to R for each r in R. We listed a number of properties

of this mapping, and they can be summarized in our present language by the

statement that the mapping is a homomorphism of rings. Evaluation is a special

case of a more sweeping property of polynomials given in the next proposition

as a universal mapping property of R[X].

Proposition 4.24. Let R be a nonzero commutative ring with identity, and

let ⌃ : R ⇣ R[X] be the identification of R with constant polynomials. If T is

any commutative ring with identity, if � : R ⇣ T is a homomorphism of rings

sending 1 into 1, and if t is in T , then there exists a unique homomorphism of

rings ◆ : R[X]⇣ T carrying identity to identity such that ◆(⌃(r)) = �(r) for
all r ◆ R and ◆(X) = t .
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REMARKS. The mapping ◆ is called the substitution homomorphism ex-

tending � and substituting t for X , and the mapping is written P(X) �⇣ P�(t).
The notation means that � is to be applied to the coefficients of P and then X is
to be replaced by t . A diagram of this homomorphism as a universal mapping

property appears in Figure 4.7. In the special case that T = R and � is the
identity,◆ reduces to evaluation at t , and the mapping is written P(X) �⇣ P(t),
just as in Section I.3.

R
����⇣ T

⌃

⌘⌘�

R[X]

◆

FIGURE 4.7. Substitution homomorphism for polynomials in one indeterminate.

PROOF. Define ◆(a0, a1, . . . , an, 0, . . . ) = �(a0) + �(a1)t + · · · + �(an)t
n .

It is immediate that ◆ is a homomorphism of rings sending the identity ⌃(1) =
(1, 0, 0, . . . ) of R[X] to the identity �(1) of T . If r is in R, then ◆(⌃(r)) =
◆(r, 0, 0, . . . ) = �(r). Also, ◆(X) = ◆(0, 1, 0, 0, . . . ) = t . This proves

existence. Uniqueness follows since ⌃(R) and X generate R[X] and since a

homomorphism defined on R[X] is therefore determined by its values on ⌃(R)
and X . �

The formulationof the propositionwith the general� : R⇣ T , rather than just

the identitymapping on R, allows several kinds of applications besides the routine

evaluation mapping. An example of one kind occurs when R = C, T = C[X],
and � : C ⇣ C[X] is the composition of complex conjugation on C followed

by the identification of complex numbers with constant polynomials inC[X]; the
proposition then says that complex conjugation of the coefficients of a member

of C[X] is a ring homomorphism. This observation simplifies the solution of
Problem 7 in Chapter I. Similarly one can set up matters so that the proposition

shows the passage fromZ[X] to (Z/mZ)[X] by reduction of coefficients modulo
m to be a ring homomorphism.

Still a third kindof application is to take T in the proposition to be a ringwith the

same kind of universalmapping property that R[X] has, and the consequence is an

abstract characterization of R[X]. We carry out the details below as Proposition

4.25. This result will be applied later in this section to the several-indeterminate

case to show that introducing several indeterminates at once yields the same ring,

up to canonical isomorphism, as introducing them one at a time.

Proposition 4.25. Let R and S be nonzero commutative rings with identity,

let X ⌘ be an element of S, and suppose that ⌃⌘ : R ⇣ S is a one-one ring
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homomorphism of R into S carrying 1 to 1. Suppose further that (S, ⌃⌘, X ⌘)
has the following property: whenever T is a commutative ring with identity,

� : R⇣ T is a homomorphism of rings sending 1 into 1, and t is in T , then there

exists a unique homomorphism ◆⌘ : S ⇣ T carrying identity to identity such

that ◆⌘(⌃⌘(r)) = �(r) for all r ◆ R and ◆⌘(X ⌘) = t . Then there exists a unique

homomorphism of rings  : R[X] ⇣ S such that  ⌥ ⌃ = ⌃⌘ and (X) = X ⌘,
and  is an isomorphism.

REMARK. A somewhat weaker conclusion than in the proposition is that any

triple (S, ⌃⌘, X ⌘) having the same universal mapping property as (R[X], ⌃, X) is
isomorphic to (S, ⌃⌘, X ⌘), the isomorphism being unique.

PROOF. In the universal mapping property for S, take T = R[X], � = ⌃, and
t = X . The hypothesis gives us a ring homomorphism ◆⌘ : S ⇣ R[X] with

◆⌘(1) = 1, ◆⌘ ⌥ ⌃⌘ = ⌃, and ◆⌘(X ⌘) = X . Next apply Proposition 4.24 with

T = S, � = ⌃⌘, and t = X ⌘. We obtain a ring homomorphism ◆ : R[X] ⇣ S

with◆(1) = 1,◆⌥ ⌃ = ⌃⌘, and◆(X) = X ⌘. Then◆⌘ ⌥◆ is a ring homomorphism
from R[X] to itself carrying 1 to 1, fixing X , and having ◆⌘ ⌥◆

⇧⇧
⌃(R)

= ⌃. From

the uniqueness in Proposition 4.24 when T = R[X], � = ⌃, and t = X , we see

that◆⌘ ⌥◆ is the identity on R[X]. Reversing the roles of◆ and◆⌘ and applying
the uniqueness in the universal mapping property for S, we see that◆ ⌥◆⌘ is the
identity on S. Therefore◆ may be taken as the isomorphism in the statement

of the proposition. This proves existence for , and uniqueness follows since
⌃(R) and X together generate R[X] and since  is a homomorphism. �

If P is a polynomial over R in one indeterminate and r is in R, then r is a

root of P if P(r) = 0. We know as a consequence of Corollary 1.14 that for

any prime p, any polynomial in Fp[X] of degree n � 1 has at most n roots. This
result does not extend to Z/mZ for all positive integers m: when m = 8, the

polynomial X2 � 1 has 4 roots, namely 1, 3, 5, 7. This result about Fp[X] has

the following consequence.

Proposition 4.26. If F is a field, then any finite subgroup of the multiplicative
group F⇤ is cyclic.

PROOF. Let C be a subgroup of F⇤ of finite order n. Lagrange’s Theorem
(Corollary 4.8) shows that the order of each element of C divides n. With h

defined as the maximum order of an element of C , it is enough to show that

h = n. Let a be an element of order h. The polynomial Xh � 1 has at most h
roots by Corollary 1.14, and a is one of them, by definition of “order.” If h < n,

then it follows that some member b of C is not a root of Xh � 1. The order h⌘
of b is then a divisor of n but cannot be a divisor of h since otherwise we would

have bh = (bh
⌘
)h/h

⌘ = 1h/h
⌘ = 1. Consequently there exists a prime p such that
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some power pr of p divides h⌘ but not h. Let s < r be the exact power of p

dividing h, and write h = mps , so that GCD(m, pr ) = 1 and a⌘ = ap
s

has order

m. Put q = h⌘/pr , so that b⌘ = bq has order pr . The proof will be completed

by showing that c = a⌘b⌘ has order mpr = hpr�s > h, in contradiction to the

maximality of h.

Let t be the order of c. On the one hand, from cmp
r = (a⌘)mp

r

(b⌘)mp
r =

ahp
r+s
bmp

rq = ahp
r+s
bmh

⌘ = (ah)p
r+s

(bh
⌘
)m = 1, we see that t divides mpr . On

the other hand, 1 = ct says that (a⌘)t = (b⌘)�t . Raising both sides to the pr

power gives 1 = ((b⌘)p
r

)�t = (a⌘)tp
r

, and hence m divides tpr ; by Corollary

1.3, m divides t . Raising both sides of (a⌘)t = (b⌘)�t to the mth power gives
1 = ((a⌘)m)t = (b⌘)�tm , and hence pr divides tm; by Corollary 1.3, pr divides
t . Applying Corollary 1.4, we conclude that mpr divides t . Therefore t = mpr ,

and the proof is complete. �

Corollary 4.27. The multiplicative group of a finite field is cyclic.

PROOF. This is a special case of Proposition 4.26. �

A finite field F can have a nonzero polynomial that is 0 at every element of F.
Indeed, every element of Fp is a root of X

p � X , as a consequence of Fermat’s

Little Theorem. It is for this reason that it is unwise to confuse a polynomial in

an indeterminate with a “polynomial function.”

Let us make the notion of a polynomial function of one variable rigorous. If

P(X) is a polynomial with coefficients in the commutative ring R with identity,
then Proposition 4.24 gives us an evaluation homomorphism P �⇣ P(r) for each
r in R. The function r �⇣ P(r) from R into R is the polynomial function

associated to the polynomial P . This function is a member of the commutative

ring of all R-valued functions on R, and the mapping P �⇣
�
r �⇣ P(r)

⇥
is

a homomorphism of rings. What we know from Corollary 1.14 is that this

homomorphism is one-one if R is an infinite field. A negative result is that

if R is a finite commutative ring with identity, then
�

r◆R (X � r) is a polynomial
that maps to the 0 function, and hence the homomorphism is not one-one. Amore

general positive result than the one above for infinite fields is the following.

Proposition 4.28.

(a) If R is a nonzero commutative ring with identity and P(X) is a member of
R[X] with a root r , then P(X) = (X � r)Q(X) for some Q(X) in R[X].

(b) If R is an integral domain, then a nonzero member of R[X] of degree n

has at most n roots.

(c) If R is an infinite integral domain, then the ring homomorphism of R[X]

to the ring of polynomial functions from R to R, given by evaluation, is one-one.
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PROOF. For (a), we proceed by induction on the degree of P , the base case of

the induction being degree� 0. If the conclusion has been proved for degree< n

with n � 1, let the leading term of P be anXn . Then P(X) = an(X�r)n+ A(X)
withdeg A < n. Evaluationat r gives, byvirtueofProposition4.24, 0 = 0+A(r).
By the inductive hypothesis, A(X) = (X�r)B(X). Then P(X) = (X�r)Q(X)
with Q(X) = an(X � r)n�1 + B(X), and the induction is complete.
For (b), let P(X) have degree n with at least n + 1 distinct roots r1, . . . , rn+1.

Part (a) shows that P(X) = (X � r1)P1(X) with deg P1 = n � 1. Also, 0 =
P(r2) = (r2 � r1)P1(r2). Since r2 � r1 = 0 and since R has no zero divisors,

P1(r2) = 0. Part (a) then shows that P1(X) = (X � r2)P2(X), and substitution
gives P(X) = (X � r1)(X � r2)P2(X). Continuing in this way, we obtain
P(X) = (X � r1) · · · (X � rn)Pn(X) with deg Pn = 0. Since P = 0, Pn = 0.

So Pn is a nonzero constant polynomial Pn(X) = c = 0. Evaluating at rn+1, we
obtain 0 = (rn+1� r1) · · · (rn+1� rn)c with each factor nonzero, in contradiction
to the fact that R is an integral domain.

For (c), a polynomial in thekernel of the ringhomomorphismhas everymember

of R as a root. If R is infinite, (b) shows that such a polynomial is necessarily

the zero polynomial. Thus the kernel is 0, and the ring homomorphism has to be

one-one. �

Let us turn our attention to polynomials in several indeterminates. Fix the

nonzero commutative ring R with identity, and let n be a positive integer. Infor-

mally a polynomial over R in n indeterminates is to be a finite sum
⇡

j1�0,..., jn�0
rj1,..., jn X

j1
1 · · · X jn

n

with each rj1,..., jn in R. To make matters precise, we work just with the system of

coefficients, just as in the case of one indeterminate.

Let J be the set of integers� 0, and let Jn be the set of n-tuples of elements of
J . A member of Jn may be written as j = ( j1, . . . , jn). Addition of members of
Jn is defined coordinate by coordinate. Thus j + j ⌘ = ( j1 + j ⌘1, . . . , jn + j ⌘n) if
j = ( j1, . . . , jn) and j

⌘ = ( j ⌘1, . . . , j
⌘
n). A polynomial in n indeterminateswith

coefficients in R is a function f : Jn ⇣ R such that f ( j) = 0 for only finitely

many j ◆ Jn . Temporarily let us write S for the set of all such polynomials for a

particular n. If f and g are two such polynomials, their sum h and product k are

the polynomials defined by

h( j) = f ( j) + g( j),

k(i) =
�

j+ j ⌘=i
f ( j)g( j ⌘).

Under these definitions, S is a commutative ring.
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Define a mapping ⌃ : R⇣ S by

⌃(r)( j) =
↵
r if j = (0, . . . , 0),

0 otherwise.

Then ⌃ is a one-one homomorphism of rings, ⌃(0) is the zero element of S and is
called simply 0, and ⌃(1) is a multiplicative identity for S. The polynomials in
the image of ⌃ are called the constant polynomials.
For 1 � k � n, let ek be the member of J

n that is 1 in the kth place and is 0

elsewhere. Define Xk to be the polynomial that assigns 1 to ek and assigns 0 to all

other members of Jn . We say that Xk is an indeterminate. If j = ( j1, . . . , jn)
is in Jn , define X j to be the product

X j = X
j1
1 · · · X jn

n .

If r is in R, we allow ourselves to abbreviate ⌃(r)X j as r X j , and any such polyno-

mial is called amonomial. Themonomial r X j is the polynomial that assigns r to

j and assigns 0 to all other members of Jn . Then it follows immediately from the

definitions that each polynomial has a unique expansion as a finite sum of nonzero

monomials. Thus the most general member of S is of the form
�

j◆Jn rj X
j with

only finitely many nonzero terms. This is called themonomial expansion of the

given polynomial.

We may now write R[X1, . . . , Xn] for S. A polynomial
�

j◆Jn rj X
j may

be conveniently abbreviated as P or as P(X) or as P(X1, . . . , Xn) when its
monomial expansion is either understood or irrelevant.

The degree of the 0 polynomial is defined for this section to be �✓, and the
degree of any monomial r X j with r = 0 is defined to be the integer

| j | = j1 + · · · + jn if j = ( j1, . . . , jn).

Finally the degree of any nonzero polynomial P , denoted by deg P , is defined to

be the maximum of the degrees of the terms in its monomial expansion. If all the

nonzero monomials in the monomial expansion of a polynomial P have the same

degree d, then P is said to be homogeneous of degree d. Under these definitions

the 0 polynomial has degree �✓ but is homogeneous of every degree. If P and

Q are homogeneous polynomials of degrees d and d ⌘, then PQ is homogeneous
of degree dd ⌘ (and possibly equal to the 0 polynomial).
In any event, by grouping terms in the monomial expansion of a polynomial

according to their degree, we see that every polynomial is uniquely the sum

of nonzero homogeneous polynomials of distinct degrees. Let us call this the

homogeneous-polynomial expansion of the given polynomial. Let us expand

two suchnonzeropolynomials P andQ in this fashion,writing P = Pd1+· · ·+Pdk
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and Q = Qd ⌘1
+ · · · + Qd ⌘l

with d1 < · · · < dk and d
⌘
1 < · · · < d ⌘l . Then we see

directly that
deg(P + Q) � max(deg P, deg Q),

deg(PQ) � deg P + deg Q.

In the formula for deg(P + Q), the term that is potentially of largest degree is
Pdk + Qd ⌘l

, and it is of degree max(deg P, deg Q) if deg P = deg Q. In the

formula for deg(PQ), the term that is potentially of largest degree is Pdk Qd ⌘l
. It

is homogeneous of degree dk + d ⌘l , but it could be 0. Some proof is required that
it is not 0 if R is an integral domain, as follows.

Proposition 4.29. If R is an integral domain, then R[X1, . . . , Xn] is an integral
domain.

PROOF. Let P and Q be nonzero homogeneous polynomials with deg P = d

and deg Q = d ⌘. We are to prove that PQ = 0. We introduce an ordering on the

set of all members j of Jn , saying j = ( j1, . . . , jn) > j ⌘ = ( j ⌘1, . . . , j
⌘
n) if there

is some k such that ji = j ⌘i for i < k and jk > j ⌘k . In the monomial expansion
of P as P(X) =

�
| j |=d aj X

j , let i be the largest n-tuple j in the ordering such

that aj = 0. Similarly with Q(X) =
�

| j ⌘|=d ⌘ bj ⌘X
j ⌘ , let i ⌘ be the largest n-tuple

j ⌘ in the ordering such that bj ⌘ = 0. Then

P(X)Q(X) = aibi ⌘X
i+i ⌘ +

⇡

j, j ⌘ with
( j, j ⌘)=(i,i ⌘)

ajbj ⌘X
j+ j ⌘,

and all terms in the sum
�

j, j ⌘ on the right side have j + j ⌘ < i + i ⌘. Thus

aibi ⌘X
i+i ⌘ is the only term in the monomial expansion of P(X)Q(X) involving

the monomial Xi+i ⌘ . Since R is an integral domain and ai and bi ⌘ are nonzero,
aibi ⌘ is nonzero. Thus P(X)Q(X) is nonzero. �

Proposition 4.30. Let R be a nonzero commutative ring with identity, let

R[X1, . . . , Xn] be the ring of polynomials in n indeterminates, and define

⌃ : R⇣ R[X1, . . . , Xn] to be the identification of R with constant polynomials.
If T is any commutative ring with identity, if � : R ⇣ T is a homomorphism

of rings sending 1 into 1, and if t1, . . . , tn are in T , then there exists a unique
homomorphism ◆ : R[X1, . . . , Xn]⇣ T carrying identity to identity such that

◆(⌃(r)) = �(r) for all r ◆ R and ◆(Xj ) = tj for 1 � j � n.

REMARKS. The mapping ◆ is called the substitution homomorphism ex-

tending � and substituting tj for Xj for 1 � j � n, and the mapping is written

P(X1, . . . , Xn) �⇣ P�(t1, . . . , tn). The notation means that � is to be applied
to each coefficient of P and then X1, . . . , Xn are to be replaced by t1, . . . , tn .
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A diagram of this homomorphism as a universal mapping property appears

in Figure 4.8. In the special case that T = R ⇤ · · · ⇤ R (cf. Example 3 of

homomorphisms in Section 4) and � is the identity, ◆ reduces to evaluation at

(t1, . . . , tn), and the mapping is written P(X1, . . . , Xn) �⇣ P(t1, . . . , tn).

R
����⇣ T

⌃

⌘⌘�

R[X1, . . . , Xn]

◆

FIGURE 4.8. Substitution homomorphism for polynomials in n indeterminates.

PROOF. If P(X1, . . . , Xn) =
�

j1�0,..., jn�0 aj1,..., jn X
j1
1 · · · X jn

n is the monomial

expansion of a member P of R[X1, . . . , Xn], then◆(P) is defined to be the cor-

responding finite sum
�

j1�0,..., jn�0 aj1,..., jn t
j1
1 · · · t jnn . Existence readily follows,

and uniqueness follows since ⌃(R) and X1, . . . , Xn generate R[X1, . . . , Xn] and
since ◆ is a homomorphism. �

Corollary 4.31. If R is a nonzero commutative ring with identity, then

R[X1, . . . , Xn�1][Xn] is isomorphic as a ring to R[X1, . . . , Xn].

REMARK. The proof will show that the isomorphism is the expected one.

PROOF. In the notation with n-tuples and Jn , any (n � 1)-tuple may be iden-
tified with an n-tuple by adjoining 0 as its nth coordinate, and in this way, every

monomial in R[X1, . . . , Xn�1] can be regarded as a monomial in R[X1, . . . , Xn].
The extension of thismapping to sums gives us a one-one homomorphismof rings

⌃⌘ : R[X1, . . . , Xn�1]⇣ R[X1, . . . , Xn]. We are going to use Proposition 4.25
to prove the isomorphism of rings R[X1, . . . , Xn�1][Xn] �= R[X1, . . . , Xn]. In
the notation of that proposition, the role of R is played by R[X1, . . . , Xn�1],
we take S = R[X1, . . . , Xn], and we have constructed ⌃

⌘. We are to show that
(S, ⌃⌘, Xn) satisfies a certain universal mapping property. Thus suppose that T is a
commutative ringwith identity, that t is in T , and that�⌘ : R[X1, . . . , Xn�1]⇣ T

is a homomorphism of rings carrying identity to identity.

We shall apply Proposition 4.30 in order to obtain the desired homomorphism

◆⌘ : S ⇣ T . Let ⌃n�1 : R ⇣ R[X1, . . . , Xn�1] be the identification of R
with constant polynomials in R[X1, . . . , Xn�1], and let ⌃n = ⌃⌘ ⌥ ⌃n�1 be the
identification of R with constant polynomials in S. Define � : R ⇣ T by

� = �⌘⌥⌃n�1, and take tn = t and tj = �⌘(Xj ) for 1 � j � n�1. ThenProposition
4.30 produces a homomorphism of rings ◆⌘ : S⇣ T with ◆⌘(⌃n(r)) = �(r) for
r ◆ R,◆⌘(⌃⌘(Xj )) = �⌘(Xj ) for 1 � j � n� 1, and◆⌘(Xn) = tn . The equations

◆⌘(⌃⌘(⌃n�1(r))) = ◆⌘(⌃n(r)) = �(r) = �⌘(⌃n�1(r))

◆⌘(⌃⌘(Xj )) = �⌘(Xj )and



158 IV. Groups and Group Actions

show that ◆⌘ ⌥ ⌃⌘ = �⌘ on R[X1, . . . , Xn]. Also, ◆
⌘(Xn) = tn = t . Thus the

mapping◆⌘ sought byProposition4.25 exists. It is unique since R[X1, . . . , Xn�1]
and Xn together generate S. The conclusion from Proposition 4.25 is that S is

isomorphic to R[X1, . . . , Xn�1][Xn] via the expected isomorphism of rings. �

We conclude the discussion of polynomials in several variables by making the

notion of a polynomial function of several variables rigorous. If P(X1, . . . , Xn)
is a polynomial in n indeterminates with coefficients in the commutative ring

R with identity, then Proposition 4.30 gives us an evaluation homomorphism

P �⇣ P(r1, . . . , rn) for each n-tuple (r1, . . . , rn) of members of R. The function
(r1, . . . , rn) �⇣ P(r1, . . . , rn) from R ⇤ · · · ⇤ R into R is the polynomial

function associated to the polynomial P . This function is a member of the

commutative ring of all R-valued functions on R ⇤ · · · ⇤ R, and the mapping

P �⇣
�
(r1, . . . , rn) �⇣ P(r1, . . . , rn)

⇥
is a homomorphism of rings.

Corollary 4.32. If R is an infinite integral domain, then the ring homomor-

phism of R[X1, . . . , Xn] to polynomial functions from R ⇤ · · ·⇤ R to R, given

by evaluation, is one-one.

REMARK. This result extends Proposition 4.28 to several indeterminates.

PROOF. We proceed by induction on n, the case n = 1 being handled by

Proposition 4.28. Assume the result for n � 1 indeterminates. If P = 0 is in

R[X1, . . . , Xn], Corollary 4.31 allows us to write

P(X1, . . . , Xn) =
k⇡

i=1
Pi (X1, . . . , Xn�1)X

i
n

for some k, with each Pi in R[X1, . . . , Xn�1] and with Pk(X1, . . . , Xn�1) = 0.

By the inductive hypothesis, Pk(r1, . . . , rn�1) is nonzero for some elements
r1, . . . , rn�1 of R. So the polynomial

�k
i=0 Pi (r1, . . . , rn�1)X

i
n in R[Xn] is not

the 0 polynomial, and Proposition 4.28 shows that it is not 0 when evaluated at

some rn . Then P(r1, . . . , rn) = 0. �

It is possible also to introduce polynomial rings in infinitely many variables.

These will play roles only as counterexamples in this book, and thus we shall not

stop to treat them in detail.

We complete this section with some remarks about vector spaces. The defini-

tion of a vector space over a general field F remains the same as in Section II.1,
where F is assumed to beQ orR orC. We shall make great use of the fact that all
the results in Chapter II concerning vector spaces remain valid when Q or R or
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C is replaced by a general field F. The proofs need no adjustments, and it is not
necessary to write out the details. For the moment we make only the following

application of vector spaces over general fields, but the extended theory of vector

spaces will play an important role in most of the remaining chapters of this book.

Proposition 4.33. If F is a finite field, then the number of elements in F is a
power of a prime.

REMARK. We return to this matter in Chapter IX, showing at that time that for

each prime power pn > 1, there is one and only one field with pn elements, up

to isomorphism.

PROOF. The characteristic ofF cannot be 0 sinceF is finite, and hence it is some
prime p. Denote the prime field of F by Fp. By restricting the multiplication

so that it is defined only on Fp ⇤ F, we make F into a vector space over Fp,

necessarily finite-dimensional. Proposition 2.18 shows that F is isomorphic as a
vector space to the space (Fp)

n of n-dimensional column vectors for some n, and

hence F must have pn elements. �

6. Group Actions and Examples

Let X be a nonempty set, let F(X) be the group of invertible functions from X

onto itself, the group operation being composition, and letG be a group. A group

action of G on X is a homomorphism of G into F(X). When X = {1, . . . , n},
the group F(X) is just the symmetric group Sn . Thus Examples 5–9 of groups

in Section 1 are all in fact subgroups of various groups F(X) and are therefore
examples of group actions. Thus every group of permutations of {1, . . . , n}, every
dihedral group acting on R2, and every general linear group or subgroup acting
on a finite-dimensional vector space over Q or R or C or an arbitrary field F
provides an example. So do the orthogonal and unitary groups acting on Rn and

Cn , as well as the automorphism group of any number field.

We saw an indication in Section 1 that many early examples of groups arose in

this way. One source of examples that is of some importance and was not listed in

Section 1 occurs in the geometry of R2. The translations in R2, together with the
rotations about arbitrary points of R2 and the reflections about arbitrary lines in
R2, form a group G of rigid motions of the plane.11 This group G is a subgroup
of F(R2), and thus G acts on R2. More generally, whenever a nonempty set X
has a notion of distance, the set of isometries of X , i.e., the distance-preserving

members of F(X), forms a subgroup of F(X), and thus the group of isometries
of X acts on X .

11One can show that G is the full group of rigid motions of R2, but this fact will not concern us.
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At any rate a group action ↵ of G on X , being a homomorphism of G into

F(X), is of the form g �⇣ ↵g, where ↵g is in F(X) and ↵g1g2 = ↵g1↵g2 . There is
an equivalent way of formulating matters that does not so obviously involve the

notion of a homomorphism. Namely, we write ↵g(x) = gx . In this notation the

group action becomes a function G ⇤ X ⇣ X with (g, x) �⇣ gx such that

(i) (g1g2)x = g1(g2x) for all g1 and g2 in G and for all x in X (from the fact
that ↵g1g2 = ↵g1↵g2 ),

(ii) 1x = x for all x in X (from the fact that ↵1 = 1).

Conversely if G ⇤ X ⇣ X satisfies (i) and (ii), then the formulas x = 1x =
(gg�1)x = g(g�1x) and x = 1x = (g�1g)x = g�1(gx) show that the function
x �⇣ gx from X to itself is invertible with inverse x �⇣ g�1x . Consequently
the definition ↵g(x) = gx makes g �⇣ ↵g a function from G into F(X), and (i)
shows that ↵ is a homomorphism. Thus (i) and (ii) indeed give us an equivalent
formulation of the notion of a group action. Both formulations are useful.

Quite often the homomorphism G ⇣ F(X) of a group action is one-one, and
then G can be regarded as a subgroup of F(X). Here is an important geometric
example in which the homomorphism is not one-one.

EXAMPLE. Linear fractional transformations. Let X = C ⇡ {✓}, a set that
becomes the Riemann sphere in complex analysis. The group G = GL(2, C)
acts on X by the linear fractional transformations

 
a b

c d

⌦
(z) = az + b

cz + d
,

the understanding being that the image of ✓ is ac�1 and the image of �dc�1
is✓, just as if we were to pass to a limit in each case. Property (ii) of a group
action is clear. To verify (i), we simply calculate that

 
a⌘ b⌘

c⌘ d ⌘

⌦  
a b

c d

⌦
(z)

⌦
=
a⌘
�
az+b
cz+d

⇥
+ b⌘

c⌘
�
az+b
cz+d

⇥
+ d ⌘

= (a⌘a + b⌘c)z + (a⌘b + b⌘d)

(c⌘a + d ⌘c)z + (c⌘b + d ⌘d)

=
  

a⌘ b⌘

c⌘ d ⌘

⌦ 
a b

c d

⌦⌦
(z),

and indeed we have a group action. Let SL(2, R) be the subgroup of real matrices
in GL(2, C) of determinant 1, and let Y be the subset of X where Im z > 0, not
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including✓. The members of SL(2, R) carry the subset Y into itself, as we see
from the computation

Im
az + b

cz + d
= Im

(az + b)(cz̄ + d)

|cz + d|2
= Im

adz + bcz̄

|cz + d|2

= (ad � bc) Im z

|cz + d|2
= Im z

|cz + d|2
.

Since the effect of a matrix g�1 is to invert the effect of g, and since both g and
g�1 carry Y to itself, we conclude that SL(2, R) acts on Y = {z ◆ C | Im z > 0}
by linear fractional transformations. In similar fashion one can verify that the

subgroup12 of GL(2, C)

↵ 
� ⇥
⇥̄ �̄

⌦ ⇧⇧⇧⇧ � ◆ C, ⇥ ◆ C, |�|2 � |⇥|2 = 1

�

acts on {z ◆ C | |z| < 1} by linear fractional transformations.

One group action can yield many others. For example, from an action of G on

X , we can construct an action on the space of all complex-valued functions on

X . The definition is (g f )(x) = f (g�1x), the use of the inverse being necessary
in order to verify property (i) of a group action:

((g1g2) f )(x) = f ((g1g2)
�1x) = f ((g�12 g�11 )x)

= f (g�12 (g�11 x)) = (g2 f )(g
�1
1 x) = (g1(g2 f ))(x).

There is nothing special about the complex numbers as range for the functions

here. We can allow any set as range, and we can even allow G to act on the range,

as well as on the domain.13 If G acts on X and Y , then the set of functions from

X to Y inherits a group action under the definition

(g f )(x) = g( f (g�1x)),

as is easily checked. In other words, we are to use g�1 where the domain enters
the formula and we are to use g where the range enters the formula.

If V is a vector space over a field F, a representation of G on V is a group

action of G on V by linear functions. Specifically for each g ◆ G, ↵g is to be a

12This subgroup is commonly called SU(1, 1) for reasons that are not relevant to the current
discussion.

13When C was used as range in the previous display, the group action of G on C was understood
to be trivial in the sense that gz = z for every g in G and z in C.
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member of the group of linear maps from V into itself. Usually one writes ↵ (g)
instead of ↵g in representation theory, and thus the condition is that ↵ (g) is to be
linear for each g ◆ G and we are to have ↵ (1) = 1 and ↵ (g1g2) = ↵ (g1)↵ (g2) for
all g1 and g2. There are interesting examples both when V is finite-dimensional

and when V is infinite-dimensional.14

EXAMPLES OF REPRESENTATIONS.

(1) If m � 1, then the additive group Z/mZ acts linearly on R2 by

↵ (k) =
 
cos 2�k

m
� sin 2�k

m

sin 2�k
m

cos 2�k
m

⌦
, k ◆ {0, 1, 2, . . . ,m � 1}.

Each ↵ (k) is a rotationmatrix about the origin through an angle that is amultiple of
2�/m. These transformations ofR2 form a subgroup of the group of symmetries
of a regular k-gon centered at the origin in R2.
(2) The dihedral group D3 acts linearly on R2 with

↵ (1)=
⌥
1 0

0 1

�
, ↵ (2 3)=

⌥
1 0

0 �1

�
, ↵ (1 2) =

 
� 1
2

�
3
2

�
3
2

1
2

⌦
, ↵ (1 3) =

 
� 1
2
�
�
3
2

�
�
3
2

1
2

⌦
,

↵ (1 2 3) =
 
� 1
2
�
�
3
2

�
3
2
� 1
2

⌦
, ↵ (1 3 2) =

 
� 1
2

�
3
2

�
�
3
2
� 1
2

⌦
.

Each of these matrices carries into itself the equilateral triangle with center at the

origin and one vertex at (1, 0). To obtain these matrices, we number the vertices
#1, #2, #3 counterclockwise with the vertex at (1, 0) as #1.

(3) The symmetric group Sn acts linearly on Rn by permuting the indices

of standard basis vectors. For example, with n = 3, we have (1 3)e1 = e3,

(1 3)e2 = e2, etc. The matrices may be computed by the techniques of Section

II.3. With n = 3, we obtain, for example,

(1 3) �⇣
 
0 0 1

0 1 0

1 0 0

⌦
and (1 2 3) �⇣

 
0 0 1

1 0 0

0 1 0

⌦
.

(4) If G acts on a set X , then the corresponding action (g f )(x) = f (g�1x) on
complex-valued functions is a representation on the vector space of all complex-

valued functions on X . This vector space is infinite-dimensional if X is an infinite

set. The linearityof the actionon functions follows from thedefinitionsof addition

14In some settings a continuity assumption may be added to the definition of a representation, or

the field F may be restricted in some way. We impose no such assumption here at this time.
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and scalar multiplication of functions. In fact, let functions f1 and f2 be given,

and let c be a scalar. Then

(g( f1 + f2))(x) = ( f1 + f2)(g
�1x) = f1(g

�1x) + f2(g
�1x)

= (g f1)(x) + (g f2)(x) = (g f1 + g f2)(x)

and

(g(c f1))(x) = (c f1)(g
�1x) = c( f1(g

�1x)) = c((g f1)(x)) = (c(g f1))(x).

One more important class of group actions consists of those that are closely

related to the structure of the group itself. Two simple ones are the action of G

on itself by left translations (g1, g2) �⇣ g1g2 and the action of G on itself by

right translations (g1, g2) �⇣ g2g
�1
1 . More useful is the action of G on a quotient

spaceG/H , where H is a subgroup. This action is given by (g1, g2H) �⇣ g1g2H .

There are still others, and some of them are particularly handy in analyzing finite

groups. We give some applications in the present section and the next, and we

postpone others to Section 10. Before describing some of these actions in detail,

let us make some general definitions and establish two easy results.

Let G⇤ X ⇣ X be a group action. If p is in X , then Gp = {g ◆ G | gp = p}
is a subgroup of G called the isotropy subgroup at p or stabilizer of G at p.

This is not always a normal subgroup; however, the subgroup
⇠

p◆G Gp that fixes

all points of X is the kernel of the homomorphismG ⇣ F(X) defining the group
action, and such a kernel has to be normal.

Let p and q be in X . We say that p is equivalent to q for the purposes of

this paragraph if p = gq for some g ◆ G. The result is an equivalence relation:
it is reflexive since p = 1p, it is symmetric since p = gq implies g�1 p = q,

and it is transitive since p = gq and q = g⌘r together imply p = (gg⌘)r . The
equivalence classes are called orbits of the group action. The orbit of a point p

in X is Gp = {gp | g ◆ G}. If Y = Gp is an orbit,15 or more generally if Y is

any subset of X carried to itself by every element of G, then G ⇤ Y ⇣ Y is a

group action. In fact, each function y �⇣ gy is invertible on Y with y �⇣ g�1y
as the inverse function, and properties (i) and (ii) of a group action follow from

the same properties for X .

A group action G ⇤ X ⇣ X is said to be transitive if there is just one orbit,

hence if X = Gp for each p in X . It is simply transitive if it is transitive and if

for each p and q in X , there is just one element g of G with gp = q.

15Although the notation Gp for the isotropy subgroup and Gp for the orbit are quite distinct in

print, it is easy to confuse the two in handwritten mathematics. Some readers may therefore prefer

a different notation for one of them. The notation ZG(p) for the isotropy subgroup is one that is in
common use; its use is consistent with the notation for the “centralizer” of an element in a group,

which will be defined shortly. Another possibility, used by many mathematicians, is to write G · p
for the orbit.
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Proposition 4.34. Let G ⇤ X ⇣ X be a group action, let p be in X , and let

H be the isotropy subgroup at p. Then the map G ⇣ Gp given by g �⇣ gp

descends to a well-defined map G/H ⇣ Gp that is one-one from G/H onto the

orbit Gp and respects the group actions.

REMARK. In other words, a group action of G on a single orbit is always

isomorphic as a group action to the action of G on some quotient space G/H .

PROOF. Let � : G ⇣ Gp be defined by �(g) = gp. For h in H = Gp,

�(gh) = (gh)p = g(hp) = gp = �(g) shows that � descends to a well-defined
function � : G/H ⇣ Gp, and � is certainly onto Gp. If �(g1H) = �(g2H),

then g1 p = �(g1 p) = �(g2 p) = g2 p, and hence g
�1
2 g1 p = p, g�12 g1 is in H ,

g1 is in g2H , and g1H = g2H . Thus � is one-one.

Respecting the group actionmeans that �(gg⌘H) = g�(g⌘H), and this identity
holds since g�(g⌘H) = g�(g⌘) = g(g⌘ p) = (gg⌘)p = �(gg⌘) = �(gg⌘H). �

A simple consequence is the following important counting formula in the

case of a group action by a finite group.

Corollary 4.35. Let G be a finite group, let G ⇤ X ⇣ X be a group action,

let p be in X , and Gp be the isotropy group at p, and let Gp be the orbit of p.

Then |G| = |Gp| |Gp|.

PROOF. Proposition 4.34 shows that the action ofG on someG/Gp is the most

general group action on a single orbit, Gp being the isotropy subgroup. Thus the

corollary follows from Lagrange’s Theorem (Theorem 4.7) with H = Gp and

G/H = Gp. �

We turn to applications of group actions to the structure of groups. If H is a

subgroup of a group G, the index of H in G is the number of elements in G/H ,
finite or infinite. The first application notes a situation in which a subgroup of a

finite group is automatically normal.

Proposition 4.36. Let G be a finite group, and let p be the smallest prime

dividing the order of G. If H is a subgroup of G of index p, then H is normal.

REMARKS. The most important case is p = 2: any subgroup of index 2 is

automatically normal, and this conclusion is valid even if G is infinite, as was

already pointed out in Example 3 of Section 2. If G is finite and if 2 divides the

order of G, there need not, however, be any subgroup of index 2; for example,

the alternating group A4 has order 12, and Problem 11 at the end of the chapter
shows that A4 has no subgroup of order 6.
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PROOF. Let X = G/H , and restrict the group action G⇤ X ⇣ X to an action

H⇤ X ⇣ X . The subset {1H} is a single orbit under H , and the remaining p�1
members of G/H form a union of orbits. Corollary 4.35 shows that the number

of elements in an orbit has to be a divisor of |H |, and the smallest divisor of |H |
other than 1 is � p since the smallest divisor of |G| other than 1 equals p and
since |H | divides |G|. Hence any orbit of H containing more than one element

has at least p elements. Since only p � 1 elements are left under consideration,
each orbit under H contains only one element. Therefore hgH = gH for all h

in H and g in G. Then g�1hg is in H , and we conclude that H is normal. �

IfG is a group, the center ZG ofG is the set of all elements x such that gx = xg

for all g inG. The center ofG is a subgroup (since gx = xg and gy = yg together

imply g(xy) = xgy = (xy)g and xg�1 = g�1(gx)g�1 = g�1(xg)g�1 = g�1x),
and every subgroup of the center is normal since x ◆ ZG and g ◆ G together

imply gxg�1 = x . Here are examples: the center of a group G is G itself if and

only if G is abelian, the center of the quaternion group H8 is {±1}, and the center
of any symmetric groupSn with n � 3 is {1}.
If x is in G, the centralizer of x in G, denoted by ZG(x), is the set of all g

such that gx = xg. This is a subgroup of G, and it equals G itself if and only if

x is in the center of G. For example the centralizer of i in H8 is the 4-element

subgroup {±1,±i}.
Having made these definitions, we introduce a new group action of G on G,

namely (g, x) �⇣ gxg�1. The orbits are called the conjugacy classes of G. If x
and y are two elements of G, we say that x is conjugate to y if x and y are in

the same conjugacy class. In other words, x is conjugate to y if there is some g

in G with gxg�1 = y. The result is an equivalence relation. Let us write C⇢(x)
for the conjugacy class of x . We can easily compute the isotropy subgroup Gx

at x under this action; it consists of all g ◆ G such that gxg�1 = x and hence is

exactly the centralizer ZG(x) of x in G. In particular, C⇢(x) = {x} if and only
if x is in the center ZG . Applying Corollary 4.35, we immediately obtain the

following result.

Proposition 4.37. If G is a finite group, then |G| = |C⇢(x)| |ZG(x)| for all x
in G.

Thus |C⇢(x)| is always a divisor of |G|, and it equals 1 if and only if x is in the
center ZG . Let us apply these considerations to groups whose order is a power

of a prime.

Corollary 4.38. If G is a finite group whose order is a positive power of a

prime, then the center ZG is not {1}.
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PROOF. Let |G| = pn with p prime and with n > 0. The conjugacy classes of

G exhaust G, and thus the sum of all |C⇢(x)|’s equals |G|. Since |C⇢(x)| = 1

if and only if x is in ZG , the sum of |ZG | and all the |C⇢(x)|’s that are not 1 is
equal to |G|. All the terms |C⇢(x)| that are not 1 are positive powers of p, by
Proposition 4.37, and so is |G|. Therefore p divides |ZG |. �

Corollary 4.39. If G is a finite group of order p2 with p prime, then G is

abelian.

PROOF. From Corollary 4.38 we see that either |ZG | = p2, in which case G is

abelian, or |ZG | = p. We show that the latter is impossible. If fact, if x is not in

ZG , then ZG(x) is a subgroup of G that contains ZG and the element x . It must
then have order p2 and be all of G. Hence every element of G commutes with x ,

and x is in ZG , contradiction. �

Corollary 4.40. If G is a finite group whose order is a positive power pn of

a prime p, then there exist normal subgroups Gk of G for 0 � k � n such that

|Gk | = pk for all k � n and such that Gk � Gk+1 for all k < n.

PROOF. We proceed by induction on n. The base case of the induction is

n = 1 and is handled by Corollary 4.9. Assume inductively that the result

holds for n, and let G have order pn+1. Corollary 4.38 shows that ZG = {1}.
Any element = 1 in ZG must have order a power of p, and some power of

it must therefore have order p. Thus let a be an element of ZG of order p,

and let H be the subgroup consisting of the powers of a. Then H is normal

and has order p. Let G ⌘ = G/H be the quotient group, and let � : G ⇣ G ⌘

be the quotient homomorphism. The group G ⌘ has order pn , and the inductive
hypothesis shows that G ⌘ has normal subgroups G ⌘k for 0 � k � n such that

|G ⌘k | = pk for k � n and G ⌘k ⌦ G ⌘k+1 for k � n � 1. For 1 � k � n + 1, define

Gk = ��1(G ⌘k�1), and let G0 = {1}. The First Isomorphism Theorem (Theorem
4.13) shows that each Gk for k � 1 is a normal subgroup of G containing H and

that �(Gk) = G ⌘k�1. Then �
⇧⇧
Gk
is a homomorphism of Gk onto G

⌘
k�1 with kernel

H , and hence |Gk | = |G ⌘k�1| |H | = pk�1 p = pk . Therefore the Gk’s will serve

as the required subgroups of G. �

It is not always so easy to determine the conjugacy classes in a particular group.

For example, in GL(n, C) the question of conjugacy is the question whether
two matrices are similar in the sense of Section II.3; this will be one of the

main problems addressed in Chapter V. By contrast, the problem of conjugacy in

symmetric groups has a simple answer. Recall that every permutation is uniquely

the product of disjoint cycles. The cycle structure of a permutation consists of

the number of cycles of each length in this decomposition.
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Lemma 4.41. Let ⌦ and ↵ be members of the symmetric group Sn . If ⌦
is expressed as the product of disjoint cycles, then ↵⌦↵�1 has the same cycle
structure as ⌦ , and the expression for ↵⌦↵�1 as the product of disjoint cycles is
obtained from that for ⌦ by substituting ↵ (k) for k throughout.

REMARK. For example, if ⌦ = (a b)(c d e), then ↵⌦↵�1 decomposes as�
↵ (a) ↵ (b)

⇥�
↵ (c) ↵ (d) ↵ (e)

⇥
.

PROOF. Because the conjugate of a product equals the product of the conju-

gates, it is enough to handle a cycle ⇤ = (a1 a2 · · · ar ) appearing in ⌦ . The
corresponding cycle ⇤ ⌘ = ↵⇤ ↵�1 is asserted to be ⇤ ⌘ = (↵ (a1) ↵ (a2) · · · ↵ (ar )).
Application of ↵�1 to ↵ (aj ) yields aj , application of ⌦ to this yields aj+1 if j < r

and a1 if j = r , and application of ↵ to the result yields ↵ (aj+1) or ↵ (a1). For
each of the symbols b not in the list {a1, . . . , ar }, ↵⇤ ↵�1(↵ (b)) = ↵ (b) since
⇤ (b) = b. Thus ↵⇤ ↵�1 = ⇤ ⌘, as asserted. �

Proposition 4.42. Let H be a subgroup of a symmetric group Sn . If C⇢(x)
denotes a conjugacy class in H , then all members of C⇢(x) have the same cycle
structure. Conversely if H = Sn , then the conjugacy class of a permutation ⌦
consists of all members ofSn having the same cycle structure as ⌦ .

PROOF. The first conclusion is immediate from Lemma 4.41. For the second

conclusion, let⌦ and⌦ ⌘ have the same cycle structure, and let ↵ be the permutation
that moves, for each k, the kth symbol appearing in the disjoint-cycle expansion

of ⌦ into the kth symbol in the corresponding expansion of ⌦ ⌘. Define ↵ on
the remaining symbols in any fashion at all. Application of the lemma shows

that ↵⌦↵�1 = ⌦ ⌘. Thus any two permutations with the same cycle structure are
conjugate. �

7. Semidirect Products

One more application of group actions to the structure theory of groups will

be to the construction of “semidirect products” of groups. If H is a group,

then an isomorphism of H with itself is called an automorphism. The set of

automorphisms of H is a group under composition, and we denote it by Aut H .

We are going to be interested in “group actions by automorphisms,” i.e., group

actions of a group G on a space X when X is itself a group and the action by each

member of G is an automorphism of the group structure of X ; the group action

is therefore a homomorphism of the form ↵ : G ⇣ Aut X .

EXAMPLE 1. In R2, we can identify the additive group of the underlying
vector space with the group of translations ⇢v(w) = v + w; the identification
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associates a translation ⇢ with the member ⇢(0) of R2. Let H be the group of

translations. The rotations about the origin in R2, namely the linear maps with
matrices

⌥
cos ⇧ sin ⇧

� sin ⇧ cos ⇧

�
, form a group G = SO(2) that acts on R2, hence acts on

the set H of translations. The linearity of the rotations says that the action of

G = SO(2) on the translations is by automorphisms of H , i.e., that each rotation,
in its effect on G, is in Aut H . Out of these data—the two groups G and H and a

homomorphism of G into Aut H—we will construct below what amounts to the

group of all rotations (about any point) and translations of R2. The construction
is that of a “semidirect product.”

EXAMPLE 2. Take any groupG, and let G act on X = G by conjugation. Each

conjugation x �⇣ gxg�1 is an automorphism of G, and thus the action of G on

itself by conjugation is an action by automorphisms.

Let G and H be groups. Suppose that a group action ↵ : G ⇣ F(H) is given
withG acting on H by automorphisms. That is, suppose that eachmap h �⇣ ↵g(h)
is an automorphismof H . We define a groupG⇤↵ H whose underlying set will be

the Cartesian product G⇤ H . The motivation for the definition of multiplication

comes from Example 2, in which ↵g(h) = ghg�1. We want to write a product
g1h1g2h2 in the form g⌘h⌘, and we can do so using the formula

g1h1g2h2 = g1g2(g
�1
2 h1g2)h2 =

�
g1g2

⇥�
(↵g�12

(h1))h2
⇥
.

Similarly the formula for inverses is motivated by the formula

(gh)�1 = h�1g�1 = g�1(gh�1g�1) = g�1↵g(h
�1).

Proposition 4.43. Let G and H be groups, and let ↵ be a group action of G on
H by automorphisms. Then the set-theoretic product G ⇤ H becomes a group

G ⇤↵ H under the definitions

(g1, h1)(g2, h2) = (g1g2, (↵g�12
(h1))h2)

(g, h)�1 = (g�1, ↵g(h
�1)).and

The mappings i1 : G ⇣ G ⇤↵ H and i2 : H ⇣ G ⇤↵ H given by i1(g) = (g, 1)
and i2(h) = (1, h) are one-one homomorphisms, and p1 : G ⇤↵ H ⇣ G given

by p1(g, h) = g is a homomorphism onto G. The images G ⌘ = i1(G) and H ⌘ =
i2(H) are subgroups ofG⇤↵ H with H

⌘ normal such thatG ⌘⇢H ⌘ = {1}, such that
every element ofG⇤↵ H is the product of an element ofG

⌘ and an element of H ⌘,
and such that conjugation of G ⌘ on H ⌘ is given by i1(g)i2(h)i1(g)

�1 = i2(↵g(h)).
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REMARK. The group G ⇤↵ H is called the external semidirect product16 of

G and H with respect to ↵ .

PROOF. For associativity we compute directly that�
(g1, h1)(g2, h2)

⇥
(g3, h3) = (g1g2g3, ↵g�13

(↵g�12
(h1)h2)h3)

(g1, h1)
�
(g2, h2)(g3, h3)

⇥
= (g1g2g3, ↵g�13 g�12

(h1)↵g�13
(h2)h3).and

Since

↵g�13
(↵g�12

(h1)h2) = (↵g�13
↵g�12

(h1))↵g�13
(h2) = ↵g�13 g�12

(h1)↵g�13
(h2),

we have a match. It is immediate that (1, 1) is a two-sided identity. Since
(g, h)(g�1, ↵g(h

�1)) = (1, ↵g(h)↵g(h
�1)) = (1, ↵g(hh

�1)) = (1, ↵g(1)) =
(1, 1) and (g�1, ↵g(h

�1))(g, h) = (1, ↵g�1(↵g(h
�1))h) = (1, ↵1(h

�1)h) = (1, 1),

(g�1, ↵g(h
�1)) is indeed a two-sided inverse of (g, h). It is immediate from the

definition of multiplication that i1, i2, and p1 are homomorphisms, that i1 and i2
are one-one, that p1 is onto, thatG

⌘⇢H ⌘ = {1}, and thatG⇤↵ H = G ⌘H ⌘. Since i1
and i2 are homomorphisms,G

⌘ and H ⌘ are subgroups. Since H ⌘ is the kernel of p1,
H ⌘ is normal. Finally the definition of multiplication gives i1(g)i2(h)i1(g)

�1 =
(g, h)(g, 1)�1 = (g, h)(g�1, 1) = (1, (↵g(h))1) = i2(↵g(h)), and the proof is
complete. �

Proposition 4.44. Let S be a group, letG and H be subgroups with H normal,

and suppose that G ⇢ H = {1} and that every element of S is the product of an
element of G and an element of H . For each g ◆ G, define an automorphism ↵g
of H by ↵g(h) = ghg�1. Then ↵ is a group action of G on H by automorphisms,
and the mapping G ⇤↵ H ⇣ S given by (g, h) �⇣ gh is an isomorphism of

groups.

REMARKS. In this case we call S an internal semidirect product of G and

H with respect to ↵ . We shall not attempt to write down a universal mapping
property that characterizes internal semidirect products.

PROOF. Since ↵g1g2(h) = g1g2hg
�1
2 g�11 = g1↵g2(h)g

�1
1 = ↵g1↵g2(h) and since

each ↵g is an automorphism of H , ↵ is an action by automorphisms. Proposition
4.43 therefore shows that G ⇤↵ H is a well-defined group. The function � from
G⇤↵ H to S given by �(g, h) = gh is a homomorphismby the same computation

that motivated the definition of multiplication in a semidirect product, and � is
onto S since every element of S lies in the set GH of products. If gh = 1, then

g = h�1 exhibits g as in G ⇢ H = {1}. Hence g = 1 and h = 1. Therefore � is
one-one and must be an isomorphism. �

16The notation⇧ is used by some authors in place of⇤↵ . The normal subgroup goes on the open

side of the⇧ and on the side of the subscript ↵ in ⇤↵ .
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EXAMPLE 1. Dihedral groups Dn . We show that Dn is the internal semidirect

product of a 2-element group and the rotation subgroup. Let H be the group

of rotations about the origin through multiples of the angle 2�/n. This group
is cyclic of order n, and it is normal in Dn because it is of index 2. If s is any

of the reflections in Dn , then G = {1, s} is a subgroup of Dn of order 2 with

G ⇢ H = {1}. Counting the elements, we see that every element of Dn is of the

form rk or srk , in other words that the set of products GH is all of Dn . Thus

Proposition 4.44 shows that Dn is an (internal) semidirect product of G and H

with respect to some ↵ : G ⇣ Aut H . To understand the homomorphism ↵ , let us
write the members of H as the powers of r , where r is rotation counterclockwise

about the origin through the angle 2�/n. For the reflection s (or indeed for any
reflection in Dn), a look at the geometry shows that sr

ks�1 = r�k for all k. In
other words, the automorphism ↵ (1) leaves each element of H fixed while ↵ (s)
sends each k mod n to �k mod n. The map that sends each element of a cyclic
group to its group inverse is indeed an automorphism of the cyclic group, and

thus ↵ is indeed a homomorphism of G into Aut H .

EXAMPLE 2. Construction of a nonabelian group of order 21. Let H = C7,

writtenmultiplicativelywith generatora, and letG = C3, writtenmultiplicatively

with generator b. To arrange for G to act on H by automorphisms, we make use

of a nontrivial automorphism of H of order 3. Such a mapping is ak �⇣ a2k . In

fact, there is no doubt that this mapping is an automorphism, and we have to see

that it has order 3. The effect of applying it twice is ak �⇣ a4k , and the effect

of applying it three times is ak �⇣ a8k . But a8k = ak since a7 = 1, and thus

the mapping ak �⇣ a2k indeed has order 3. We send bn into the nth power of

this automorphism, and the result is a homomorphism ↵ : G ⇣ Aut H . The

semidirect product G ⇤↵ H is certainly a group of order 3 ⇤ 7 = 21. To see

that it is nonabelian, we observe from the group law in Proposition 4.43 that

ab = b↵b�1(a) = ba4. Thus ab = ba, and G ⇤↵ H is nonabelian.

It is instructive to generalize the construction in Example 2 a little bit. To do

so, we need a lemma.

Lemma 4.45. If p is a prime, then the automorphisms of the additive group

of the field Fp are the multiplications by the members of the multiplicative group

F⇤p , and consequently AutCp is isomorphic to a cyclic group Cp�1.

PROOF. Let us write AutFp for the automorphism group of the additive group

of Fp. Each function �a : Fp ⇣ Fp given by �a(n) = na, taken modulo

p, is in AutFp as a consequence of the distributive law. We define a function

◆ : AutFp ⇣ F⇤p by ◆(�) = �(1) for � ◆ AutFp. Again by the distributive

law �(n) = n�(1) for every integer n. Thus if �1 and �2 are in AutFp, then
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◆(�1 ⌥ �2) = (�1 ⌥ �2)(1) = �1(�2(1)) = �2(1)�1(1), and consequently ◆ is a

homomorphism. If a member � of AutFp has ◆(�) = 1 in F⇤p , then �(1) = 1

and therefore �(n) = n�(1) = n for all n. Therefore � is the identity in AutFp.

We conclude that ◆ is one-one. If a is given in F⇤p , then ◆(�a) = �a(1) = a,

and hence ◆ is onto F⇤p . Therefore ◆ is an isomorphism of AutFp and F⇤p . By
Corollary 4.27, ◆ exhibits AutFp as isomorphic to the cyclic group Cp�1. �

Proposition 4.46. If p and q are primes with p < q such that p divides q�1,
then there exists a nonabelian group of order pq.

REMARKS. For p = 2, the divisibility condition is automatic, and the proof

will yield the dihedral group Dq . For p = 3 and q = 7, the condition is that 3

divides 7� 1, and the constructed group will be the group in Example 2 above.

PROOF. LetG = Cpwithgeneratora, and letH = Cq . Lemma4.45 shows that

AutCq �= Cq�1. Let b be a generator of AutCq . Since p divides q � 1, b(q�1)/p

has order p. Then the map ak �⇣ bk(q�1)/p is a well-defined homomorphism
↵ of G into Aut H , and it determines a semidirect product S = G ⇤↵ H , by

Proposition 4.43. The order of S is pq, and the multiplication is nonabelian since

for h ◆ H , we have (a, 1)(1, h) = (a, h) and (1, h)(a, 1) = (a, ↵a�1(h)) =
(a, b�(q�1)/p(h)), but b�(q�1)/p is not the identity automorphism of H because

it has order p. �

8. Simple Groups and Composition Series

A group G = {1} is said to be simple if its only normal subgroups are {1} and G.
Among abelian groups the simple ones are the cyclic groups of prime order.

Indeed, a cyclic group Cp of prime order has no nontrivial subgroups at all, by

Corollary 4.9. Conversely if G is abelian and simple, let a = 1 be in G. Then

{an} is a cyclic subgroup and is normal since G is abelian. Thus {an} is all of G,
and G is cyclic. The group Z is not simple, having the nontrivial subgroup 2Z,
and the group Z/(rs)Z with r > 1 and s > 1 is not simple, having the multiples

of r as a nontrivial subgroup. Thus G has to be cyclic of prime order.

The interest is in nonabelian simple groups. We shall establish that the alter-

nating groups An are simple for n � 5, and some other simple groups will be

considered in Problems 55–62 at the end of the chapter.

Theorem 4.47. The alternating group An is simple if n � 5.

PROOF. Let K = {1} be a normal subgroup of An . Choose ⌦ in K with ⌦ = 1

such that⌦ (i) = i for themaximumpossible number of integers i with 1 � i � n.
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The main step is to show that ⌦ is a 3-cycle. Arguing by contradiction, suppose
that ⌦ is not a 3-cycle. Then there are two cases.
The first case is that the decomposition of ⌦ as the product of disjoint cycles

contains a k-cycle for some k � 3. Without loss of generality, we may take the
cycle in question to be ⇤ = (1 2 3 · · · ), and then ⌦ = ⇤ = (1 2 3 · · · ) 
with  equal to a product of disjoint cycles not containing the symbols appearing
in ⇤ . Being even and not being a 3-cycle, ⌦ moves at least two other symbols
besides the three listed ones, say 4 and 5. Put ↵ = (3 4 5). Lemma 4.41 shows
that ⌦ ⌘ = ↵⌦↵�1 = ⇤ ⌘ ⌘ = (1 2 4 · · · ) ⌘ with  ⌘ not containing any of the
symbols appearing in ⇤ ⌘. Thus ⌦ ⌘⌦�1 moves 3 into 4 and cannot be the identity.
But ⌦ ⌘⌦�1 is in K and fixes all symbols other than 1, 2, 3, 4, 5 that are fixed by
⌦ . In addition, ⌦ ⌘⌦�1 fixes 2, and none of 1, 2, 3, 4, 5 is fixed by ⌦ . Thus ⌦ ⌘⌦�1

is a member of K other than the identity that fixes fewer symbols than ⌦ , and we
have arrived at a contradiction.

The second case is that ⌦ is a product ⌦ = (1 2)(3 4) · · · of disjoint
transpositions. There must be at least two factors since ⌦ is even. Put ↵ =
(1 2)(4 5), the symbol 5 existing since the groupAn in question has n � 5. Then
⌦ ⌘ = (1 2)(3 5) · · · . Since ⌦ ⌘⌦�1 carries 4 into 5, ⌦ ⌘⌦�1 is a member of K other
than the identity. It fixes all symbols other than 1, 2, 3, 4, 5 that are fixed by ⌦ ,
and in addition it fixes 1 and 2. Thus ⌦ ⌘⌦�1 fixes more symbols than ⌦ does, and
again we have arrived at a contradiction.

We conclude that K contains a 3-cycle, say (1 2 3). If i, j, k, l,m are five

arbitrary symbols, thenwe can construct a permutation ↵ with ↵ (1) = i , ↵ (2) = j ,

↵ (3) = k, ↵ (4) = l, and ↵ (5) = m. If ↵ is odd, we replace ↵ by ↵ (l m), and the
result is even. Thus we may assume that ↵ is in An and has ↵ (1) = i , ↵ (2) = j ,

and ↵ (3) = k. Lemma 4.41 shows that ↵⌦↵�1 = (i j k). Since K is normal,

we conclude that K contains all 3-cycles.

To complete the proof, we show for n � 3 that every element ofAn is a product

of 3-cycles. If ⌦ is in An , we use Corollary 1.22 to decompose ⌦ as a product of
transpositions. Since ⌦ is even, we can group these in pairs. If the members of a
pair of transpositions are not disjoint, then their product is a 3-cycle. If they are

disjoint, then the identity (1 2)(3 4) = (1 2 3)(2 3 4) shows that their product
is a product of 3-cycles. This completes the proof. �

Let G be a group. A descending sequence

Gn ↵ Gn�1 ↵ · · · ↵ G1 ↵ G0

of subgroups of G with Gn = G, G0 = {1}, and each Gk�1 normal in Gk is

called a normal series for G. The normal series is called a composition series if

each inclusion Gk ↵ Gk�1 is proper and if each consecutive quotient Gk/Gk�1
is simple.
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EXAMPLES.

(1) Let G be a cyclic group of order N . A normal series for G consists of

certain subgroups ofG, all necessarily cyclic by Proposition 4.4. Their respective

orders Nn, Nn�1, . . . , N1, N0 have Nn = N , N0 = 1, and Nk�1 | Nk for all k.
The series is a composition series if and only if each quotient Nk/Nk�1 is prime.
In this case the primes that occur are exactly the prime divisors of N , and a

prime p occurs r times if pr is the exact power of p that divides N . Thus the

consecutive quotients from a composition series of this G, up to isomorphisms,

are independent of the particular composition series—though they may arise in a

different order.

(2) For G = Z, a normal series is of the form

Z ↵ m1Z ↵ m1m2Z ↵ m1m2m3Z ↵ · · · ↵ 0.

The group G = Z has no composition series.
(3) For the symmetric group G = S4, let C2 ⇤ C2 refer to the 4-element

subgroup {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. The series

S4 ↵ A4 ↵ C2 ⇤ C2 ↵ {1, (1 2)(3 4)} ↵ {1}

is a composition series, the consecutive quotients being C2, C3, C2, C2. Each

term in the composition series except for {1, (1 2)(3 4)} is actually normal in
the whole groupG, but there is no way to choose the 2-element subgroup to make

it normal in G. The other two possible choices of 2-element subgroup, which

lead to different composition series but with isomorphic consecutive quotients,

are obtained by replacing {1, (1 2)(3 4)} by {1, (1 3)(2 4)} and again by
{1, (1 4)(2 3)}.
(4) For the symmetric group G = S5, the series

S5 ↵ A5 ↵ {1}

is a composition series, the consecutive quotients being C2 and A5.

(5) Let G be a finite group of order pn with p prime. Corollary 4.40 produces

a composition series, and this time all the subgroups are normal in G. The

successive normal subgroups have orders pk for k = n, n � 1, . . . , 0, and each
consecutive quotient is isomorphic to Cp.

Historically the Jordan–Hölder Theorem addressed composition series for

groups, showing that the consecutive quotients, up to isomorphisms, are indepen-

dent of the particular composition series. They can then consistently be called the

composition factors of the group. Finding the composition factors of a particular
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group may be regarded as a step toward understanding the structure of the group.

A generalization of the Jordan–Hölder Theorem due to Zassenhaus and Schreier

applies to normal series in situations in which composition series might not exist,

such as Example 2 above. We prove the Zassenhaus–Schreier Theorem, and the

Jordan–Hölder Theorem is then a special case.

Two normal series

Gm ↵ Gm�1 ↵ · · · ↵ G1 ↵ G0

Hn ↵ Hn�1 ↵ · · · ↵ H1 ↵ H0and

for the same group G are said to be equivalent normal series if m = n and the

order of the consecutive quotients Gm/Gm�1, Gm�1/Gm�2, . . . , G1/G0 may be
rearranged so that they are respectively isomorphic to Hm/Hm�1, Hm�1/Hm�2,
. . . , H1/H0. One normal series is said to be a refinement of another if the
subgroups appearing in the second normal series all appear as subgroups in the

first normal series.

Lemma 4.48 (Zassenhaus). Let G1, G2, G
⌘
1, and G

⌘
2 be subgroups of a group

G with G ⌘1 ⌦ G1 and G
⌘
2 ⌦ G2, G

⌘
1 normal in G1, and G

⌘
2 normal in G2. Then

(G1⇢G ⌘2)G ⌘1 is normal in (G1⇢G2)G ⌘1, (G ⌘1⇢G2)G ⌘2 is normal in (G1⇢G2)G ⌘2,
and

((G1 ⇢ G2)G ⌘1)/((G1 ⇢ G ⌘2)G ⌘1) �= ((G1 ⇢ G2)G ⌘2)/((G ⌘1 ⇢ G2)G ⌘2).

PROOF. Let us check that (G1 ⇢ G ⌘2)G ⌘1 is normal in (G1 ⇢ G2)G ⌘1. Handling
conjugation by members of G1 ⇢ G2 is straightforward: If g is in G1 ⇢ G2,

then g(G1 ⇢ G ⌘2)g
�1 = G1 ⇢ G ⌘2 since g is in G1 and gG

⌘
2g
�1 = G ⌘2. Also,

gG ⌘1g
�1 = G ⌘1 since g is in G1. Hence g(G1 ⇢ G ⌘2)G ⌘1g�1 = (G1 ⇢ G ⌘2)G ⌘1.

Handling conjugation by members of G ⌘1 requires a little trick: Let g be in G
⌘
1

and let hg⌘ be in (G1 ⇢ G ⌘2)G ⌘1. Then g(hg⌘)g�1 = h(h�1gh)g⌘g�1. The left
factor h is in G1 ⇢ G ⌘2. The remaining factors are in G ⌘1; for g⌘ and g�1, this is
a matter of definition, and for h�1gh, it follows because h is in G1 and g is in
G ⌘1. Thus g(G1 ⇢ G ⌘2)G ⌘1g�1 = (G1 ⇢ G ⌘2)G ⌘1, and (G1 ⇢ G ⌘2)G ⌘1 is normal in
(G1 ⇢ G2)G ⌘1. The other assertion about normal subgroups holds by symmetry
in the indexes 1 and 2.

By the Second Isomorphism Theorem (Theorem 4.14),

(G1 ⇢ G2)/(((G1 ⇢ G ⌘2)G ⌘1) ⇢ (G1 ⇢ G2))
�= ((G1 ⇢ G2)(G1 ⇢ G ⌘2)G ⌘1)/((G1 ⇢ G ⌘2)G ⌘1)
= ((G1 ⇢ G2)G ⌘1)/((G1 ⇢ G ⌘2)G ⌘1).

(⌅)
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Since we have

((G1 ⇢ G ⌘2)G ⌘1) ⇢ (G1 ⇢ G2) = ((G1 ⇢ G ⌘2)G ⌘1) ⇢ G2 = (G1 ⇢ G ⌘2)(G ⌘1 ⇢ G2),

we can rewrite the conclusion of (⌅) as

(G1 ⇢ G2)/((G1 ⇢ G ⌘2)(G ⌘1 ⇢ G2)) �= ((G1 ⇢ G2)G ⌘1)/((G1 ⇢ G ⌘2)G ⌘1). (⌅⌅)

The left side of (⌅⌅) is symmetric under interchange of the indices 1 and 2. Hence
so is the right side, and the lemma follows. �

Theorem 4.49 (Schreier). Any two normal series of a groupG have equivalent

refinements.

PROOF. Let the two normal series be

Gm ↵ Gm�1 ↵ · · · ↵ G1 ↵ G0,

Hn ↵ Hn�1 ↵ · · · ↵ H1 ↵ H0,
(⌅)

and define
Gi j = (Gi ⇢ Hj )Gi+1 for 0 � j � n,

Hji = (Gi ⇢ Hj )Hj+1 for 0 � i � m.
(⌅⌅)

Then we obtain respective refinements of the two normal series (⌅) given by

G = G00 ↵ G01 ↵ · · · ↵ G0n

↵ G10 ↵ G11 ↵ · · · ↵ G1n · · · ↵ Gm�1,n = {1},

G = H00 ↵ H01 ↵ · · · ↵ H0m

↵ H10 ↵ H11 ↵ · · · ↵ H1m · · · ↵ Hn�1,m = {1}.

(†)

The containments Gin ↵ Gi+1,0 and Hjm ↵ Hj+1,0 are equalities in (†), and
the only nonzero consecutive quotients are therefore of the form Gi j/Gi, j+1 and
Hji/Hj,i+1. For these we have

Gi j/Gi, j+1 = ((Gi ⇢ Hj )Gi+1)/((Gi ⇢ Hj+1)Gi+1) by (⌅⌅)
�= ((Gi ⇢ Hj )Hj+1)/((Gi+1 ⇢ Hj )Hj+1) by Lemma 4.48

= Hji/Hj,i+1 by (⌅⌅),

and thus the refinements (†) are equivalent. �
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Corollary 4.50 (Jordan–Hölder Theorem). Any two composition series of a

group G are equivalent as normal series.

PROOF. Let two composition series be given. Theorem 4.49 says that we

can insert terms in each so that the refined series have the same length and are

equivalent. Since the given series are composition series, the only way to insert

a new term is by repeating some term, and the repetition results in a consecutive

quotient of {1}. Because of Theorem 4.49 we know that the quotients {1} from
the two refined series must match. Thus the number of terms added to each series

is the same. Also, the quotients that are not {1} must match in pairs. Thus the
given composition series are equivalent. �

9. Structure of Finitely Generated Abelian Groups

A set of generators for a group G is a set such that each element of G is a finite

product of generators and their inverses. (A generator and its inverse are allowed

to occur multiple times in a product.)

In this section we shall study abelian groups having a finite set of generators.

Such groups are said to be finitely generated abelian groups, and our goal is

to classify them up to isomorphism. We use additive notation for all our abelian

groups in this section. We begin by introducing an analog Zn for the integers Z
of the vector space Rn for the reals R, and along with it a generalization.
A free abelian group is any abelian group isomorphic to a direct sum, finite or

infinite, of copies of the additive groupZ of integers. The external direct sum of n
copies of Z will be denoted by Zn . Let us use Proposition 4.17 to see that we can

recognize groups isomorphic to free abelian groups by means of the following

condition: an abelian group G is isomorphic to a free abelian group if and only if

it has a Z basis, i.e., a subset that generatesG and is such that no nontrivial linear
combination, with integer coefficients, of the members of the subset is equal to

the 0 element of the group. It will be helpful to use terminology adapted from the

theory of vector spaces for this latter condition—that the subset is to be linearly

independent over Z.
Let us give the proof that the condition is necessary and sufficient for G to be

free abelian. In one direction if G is an external direct sum of copies of Z, then
the members ofG that are 1 in one coordinate and are 0 elsewhere form aZ basis.
Conversely if {gs}s◆S is a Z basis, let Gs0 be the subgroup of multiples of gs0 , and

let �s0 be the inclusion homomorphism of Gs0 into G. Proposition 4.17 produces

a unique group homomorphism � :


s◆S Gs ⇣ G such that � ⌥ is0 = �s0 for
all s0 ◆ S. The spanning condition for the Z basis says that � is onto G, and the
linear independence condition for the Z basis says that � has 0 kernel.
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The similarity between vector-space bases and Z bases suggests further com-
parison of vector spaces and abelian groups. With vector spaces over a field, every

vector space has a basis over the field. However, it is exceptional for an abelian

group to have a Z basis. Two examples that hint at the difficulty are the additive
group Z/mZ with m > 1 and the additive group Q. The group Z/mZ has no

nonempty linearly independent set, while the groupQ has a linearly independent

set of one element, no spanning set of one element, and no linearly independent

set of more than one element. Here are two positive examples.

EXAMPLES.

(1) The additive group of all points in Rn whose coordinates are integers. The

standard basis of Rn is a Z basis.
(2) The additive group of all points (x, y) inR2 with x and y both in Z or both

in Z + 1
2
. The set

⇤
(1, 0),

�
1
2
, 1
2

⇥⌅
is a Z basis.

Next we take a small step that eliminates technical complications from the

discussion, proving that any subgroup of a finitely generated abelian group is

finitely generated.

Lemma 4.51. Let � : G ⇣ H be a homomorphism of abelian groups. If

ker� and image� are finitely generated, then G is finitely generated.

PROOF. Let {x1, . . . , xm} and {y1, . . . , yn}be respective finite sets of generators
for ker� and image�. For 1 � j � n, choose x ⌘j in G with �(x ⌘j ) = yj .

We shall prove that {x1, . . . , xm, x ⌘1, . . . , x
⌘
n} is a set of generators for G. Thus

let x be in G. Since �(x) is in image�, there exist integers a1, . . . , an with
�(x) = a1y1 + · · · + an yn . The element x

⌘ = a1x
⌘
1 + · · · + anx

⌘
n of G has

�(x ⌘) = a1y1 + · · · + an yn = �(x). Therefore �(x � x ⌘) = 0, and there exist

integers b1, . . . , bm with x � x ⌘ = b1x1 + · · · + bmxm . Hence

x = b1x1 + · · · + bmxm + x ⌘ = b1x1 + · · · + bmxm + a1x
⌘
1 + · · · + anx

⌘
n. �

Proposition4.52. Any subgroupof afinitelygeneratedabeliangroup is finitely

generated.

PROOF. LetG be finitely generatedwith a set {g1, . . . , gn} of n generators, and
define Gk = Zg1 + · · · + Zgk for 1 � k � n. If H is any subgroup of G, define

Hk = H ⇢ Gk for 1 � k � n. We shall prove by induction on k that every Hk

is finitely generated, and then the case k = n gives the proposition. For k = 1,

G1 = Zg1 is a cyclic group, and any subgroup of it is cyclic by Proposition 4.4
and hence is finitely generated.

Assume inductively that every subgroupofGk is known tobefinitelygenerated.

Let q : Gk+1 ⇣ Gk+1/Gk be the quotient homomorphism, and let � = q
⇧⇧
Hk+1

,
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mapping Hk+1 into Gk+1/Gk . Then ker� = Hk+1 ⇢Gk is a subgroup of Gk and

is finitely generated by the inductive hypothesis. Also, image� is a subgroup of
Gk+1/Gk , which is a cyclic groupwith generator equal to the coset of gk+1. Since
a subgroup of a cyclic group is cyclic, image� is finitely generated. Applying
Lemma 4.51 to �, we see that Hk+1 is finitely generated. This completes the
induction and the proof. �

A free abelian group has finite rank if it has a finite Z basis, hence if it is

isomorphic to Zn for some n. The first theorem is that the integer n is determined

by the group.

Theorem 4.53. The number of Z summands in a free abelian group of finite
rank is independent of the direct-sum decomposition of the group.

We define this number to be the rank of the free abelian group. Actually,

“rank” is a well-defined cardinal in the infinite-rank case as well, because the rank

coincides in that case with the cardinality of the group. In any event, Theorem

4.53 follows immediately by two applications of the following lemma.

Lemma 4.54. IfG is a free abelian group with a finiteZ basis x1, . . . , xn , then
any linearly independent subset of G has � n elements.

PROOF. Let {y1, . . . , ym} be a linearly independent set inG. Since {x1, . . . , xn}
is a Z basis, we can define an m-by-n matrix C of integers by yi =

�n
j=1 Ci j xj .

As a matrix in Mmn(Q), C has rank � n. Consequently if m > n, then the rows

are linearly dependent over Q, and we can find rational numbers q1, . . . , qm not
all 0 such that

�m
i=1 qiCi j = 0 for all j . Multiplying by a suitable integer to clear

fractions, we obtain integers k1, . . . , km not all 0 such that
�m

i=1 kiCi j = 0 for

all j . Then we have

m�
i=1

ki yi =
m�
i=1

ki
n�
j=1

Ci j xj =
n�
j=1

� m�
i=1

kiCi j
⇥
xj =

n�
j=1
0xj = 0,

in contradiction to the linear independence of {y1, . . . , ym} over Z. Therefore
m � n. �

Now we come to the two main results of this section. The first is a special

case of the second by Proposition 4.52 and Lemma 4.54. The two will be proved

together, and it may help to regard the proof of the first as a part of the proof of

the second.

Theorem 4.55. A subgroup H of a free abelian group G of finite rank n is

free abelian of rank � n.

REMARK. This result persists in the case of infinite rank, but we do not need

the more general result and will not give a proof.
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Theorem4.56 (Fundamental Theoremof FinitelyGeneratedAbelianGroups).

Every finitely generated abelian group is a finite direct sum of cyclic groups. The

cyclic groups may be taken to be copies of Z and various Cpk with p prime, and

in this case the cyclic groups are unique up to order and to isomorphism.

REMARKS. The main conclusion of the theorem is the decomposition of each

finitely generated abelian group into the direct sum of cyclic groups. An alterna-

tive decomposition of the given group that forces uniqueness is as the direct sum

of copies ofZ and finite cyclic groupsCd1, . . . ,Cdr such that d1 | d2, d2 | d3, . . . ,
dr�1 | dr . A proof of the additional statement appears in the problems at the end
of Chapter VIII. The integers d1, . . . , dr are sometimes called the elementary
divisors of the group.

Let us establish the setting for the proof of Theorem 4.56. Let G be the given

group, and say that it has a set of n generators. Proposition 4.17 produces a

homomorphism � : Zn ⇣ G that carries the standard generators x1, . . . , xn of
Zn to the generators of G, and � is onto G. Let H be the kernel of �. As a
subgroup of Zn , H is finitely generated, by Proposition 4.52. Let y1, . . . , ym
be generators. Theorem 4.55 predicts that H is in fact free abelian, hence that

{y1, . . . , ym} could be taken to be linearly independent over Z with m � n, but

we do not assume that knowledge in the proof of Theorem 4.56.

The motivation for the main part of the proof of Theorem 4.56 comes from

the elementary theory of vector spaces, particularly from the method of using a

basis for a finite-dimensional vector space to find a basis of a vector subspace

when we know a finite spanning set for the vector subspace. Thus let V be a

finite-dimensional vector space over R, with basis {xj }nj=1, and let U be a vector

subspace with spanning set {yi }mi=1. To produce a vector-space basis for U , we
imagine expanding the yi ’s as linear combinations of x1, . . . , xn . We can think
symbolically of this expansion as expressing each yi as the product of a row

vector of real numbers times the formal “column vector”

� x1
...
xn

�
. The entries of

this column vector are vectors, but there is no problem in working with it since

this is all just a matter of notation anyway. Then the formal column vector

� y1

...
ym

�

ofm members ofU equals the product of anm-by-n matrix of real numbers times

the formal column vector

� x1
...
xn

�
. We know from Chapter II that the procedure for

finding a basis of U is to row reduce this matrix of real numbers. The nonzero

rows of the result determine a basis of the span of them vectors we have used, and

this basis is related tidily to the given basis for V . We can compare the two bases
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to understand the relationship between U and V . To prove Theorem 4.56, we

would like to use the same procedure, but we have to work with an integer matrix

and avoid division. This means that only two of the three usual row operations are

fully available for the row reduction; division of a row by an integer is allowable

only when the integer is ±1. A partial substitute for division comes by using the
steps of the Euclidean algorithm via the division algorithm (Proposition 1.1), but

even that is not enough. For example, if the m-by-n matrix is

 
2 1 1

0 0 3

⌦
, no

further row reduction is possible with integer operations. However, the equations

tell us that H is the subgroup of Z3 generated by (2, 1, 1) and (0, 0, 3), and it is
not at all clear how to write Z3/H as a direct sum of cyclic groups.

The row operations have the effect of changing the set of generators of H

while maintaining the fact that they generate H . What is needed is to allow also

column reduction with integer operations. Steps of this kind have the effect of

changing the Z basis of Zn . When steps of this kind are allowed, we can produce

new generators of H and a new basis of Zn so that the two can be compared.

With the example above, suitable column operations are

 
2 1 1

0 0 3

⌦
�⇣

 
1 2 1

0 0 3

⌦
�⇣

 
1 0 0

0 0 3

⌦
�⇣

 
1 0 0

0 3 0

⌦
.

The equations with the new generators say that y⌘1 = x ⌘1 and y
⌘
2 = 3x ⌘2. Thus H is

the subgroup Z⌃ 3Z⌃ 0Z, nicely aligned with Z3 = Z⌃ Z⌃ Z. The quotient
is (Z/Z)⌃ (Z/3Z)⌃ (Z/0Z) �= C3 ⌃ Z.
The proof of Theorem 4.56 will make use of an algorithm that uses row and

column operations involving only allowable divisions and that converts thematrix

C of coefficients so that its nonzero entries are the diagonal entries Cii for

1 � i � r and no other entries. The algorithm in principle can be very slow, and

it may be helpful to see what it does in an ordinary example.

EXAMPLE. Suppose that the relationship between generators y1, y2, y3 of H
and the standard Z basis {x1, x2} of Z2 is

�
y1
y2
y3

�
= C

 
x1
x2

⌦
, where C =

�
3 5

7 13

5 9

�
.

In row reduction in vector-space theory, we would start by dividing the first row

of C by 3, but division by 3 is not available in the present context. Our target for

the upper-left entry is GCD(3, 7, 5) = 1, and we use the division algorithm one

step at a time to get there. To begin with, it says that 7 = 2 · 3 + 1 and hence

7� 2 · 3 = 1. The first step of row reduction is then to replace the second row by
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the difference of it and 2 times the first row. The result can be achieved by left

multiplication by
�

1 0 0

�2 1 0

0 0 1

�
and is

�
3 5

1 3

5 9

�
.

We write this step as

�
3 5

7 13

5 9

�
|
left by

⇤

⇧
1 0 0

�2 1 0
0 0 1

⌅

⌃

����������⇣
�
3 5

1 3

5 9

�
.

The entry 1 in the first column is our target for this stage since GCD(3, 7, 5) = 1.

The next step interchanges two rows to move the 1 to the upper left entry, and the

subsequent step uses the 1 to eliminate the other entries of the first column:

�
3 5

1 3

5 9

�
|
left by

⇤

⇧
0 1 0

1 0 0

0 0 1

⌅

⌃

���������⇣
�
1 3

3 5

5 9

�
|
left by

⇤

⇧
1 0 0

�3 1 0
�5 0 1

⌅

⌃

����������⇣
�
1 3

0 �4
0 �6

�
.

The algorithm next seeks to eliminate the off-diagonal entry 3 in the first row.

This is done by a column operation:

�
1 3

0 �4
0 �6

�
|
right by

�
1 �3
0 1

⇥

���������⇣
�
1 0

0 �4
0 �6

�
.

With two further row operations we are done:

�
1 0

0 �4
0 �6

�
|
left by

⇤

⇧
1 0 0

0 1 �1
0 0 1

⌅

⌃

����������⇣
�
1 0

0 2

0 �6

�
|
left by

⇤

⇧
1 0 0

0 1 0

0 3 1

⌅

⌃

���������⇣
�
1 0

0 2

0 0

�
.

Our steps are summarized by the fact that the matrix A with

A =
�
1 0 0

0 1 0

0 3 1

��
1 0 0

0 1 �1
0 0 1

��
1 0 0

�3 1 0

�5 0 1

��
0 1 0

1 0 0

0 0 1

��
1 0 0

�2 1 0

0 0 1

�

has AC

 
1 �3
0 1

⌦
=
�
1 0

0 2

0 0

�

and by the fact that the integer matrices to the left and right ofC have determinant

±1. The determinant condition ensures that A�1 and
⌥
1 �3
0 1

��1
have integer

entries, according to Cramer’s rule (Proposition 2.38).
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Lemma 4.57. IfC is anm-by-n matrix of integers, then there exist anm-by-m

matrix A of integers with determinant ±1 and an n-by-n matrix B of integers
with determinant±1 such that for some r � 0, the nonzero entries of D = ACB

are exactly the diagonal entries D11, D22, . . . , Drr .

PROOF. Given C , choose (i, j) with |Ci j | = 0 but |Ci j | as small as possible.
(If C = 0, the algorithm terminates.) Possibly by interchanging two rows and/or

then two columns (a left multiplication with determinant �1 and then a right
multiplication with determinant�1), we may assume that (i, j) = (1, 1). By the
division algorithm write, for each i ,

Ci1 = qiC11 + ri with 0 � ri < |C11|,

and replace the i th row by the difference of the i th row and qi times the first row (a

left multiplication). If some ri is not 0, the result will leave a nonzero entry in the

first column that is< |C11| in absolute value. Permute the least such ri = 0 to the

upper left and repeat the process. Since the least absolute value is going down,

this process at some point terminates with all ri equal to 0. The first column then

has a nonzero diagonal entry and is otherwise 0.

Now consider C1 j and apply the division algorithm and column operations

in similar fashion in order to process the first row. If we get a smaller nonzero

remainder, permute the smallest one to the first column. Repeat this process until

the first row is 0 except for entry C11. Continue alternately with row and column

operations in this fashion until both C1 j = 0 for j > 1 and Ci1 = 0 for i > 1.

Repeat the algorithm for the (m � 1)-by-(n � 1) matrix consisting of rows 2
through m and columns 2 through n, and continue inductively. The algorithm

terminates when either the reduced-in-size matrix is empty or is all 0. At this

point the original matrix has been converted into the desired “diagonal form.” �

Lemma 4.58. Let G1, . . . ,Gn be abelian groups, and for 1 � j � n, let Hj

be a subgroup of Gj . Then

(G1 ⌃ · · ·⌃ Gn)/(H1 ⌃ · · ·⌃ Hn) �= (G1/H1)⌃ · · ·⌃ (Gn/Hn).

PROOF. Let � : G1 ⌃ · · · ⌃ Gn ⇣ (G1/H1) ⌃ · · · ⌃ (Gn/Hn) be the
homomorphism defined by �(g1, . . . , gn) = (g1H1, . . . , gnHn). The mapping
� is onto (G1/H1) ⌃ · · · ⌃ (Gn/Hn), and the kernel is H1 ⌃ · · · ⌃ Hn . Then

Corollary 4.12 shows that � descends to the required isomorphism. �

PROOF OF THEOREM 4.55 ANDMAIN CONCLUSION OF THEOREM 4.56. GivenG

with n generators, we set up matters as indicated immediately after the statement

of Theorem 4.56, writing � y1

...
ym

�
= C

� x1
...
xn

�
,
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where x1, . . . , xn are the standard generators of Zn , y1, . . . , ym are the generators
of the kernel of the homomorphism fromZn ontoG, andC is a matrix of integers.

Applying Lemma 4.57, let A and B be square integer matrices of determinant±1
such that D = ACB is diagonal as in the statement of the lemma. Define

� z1
...
zm

�
= A

� y1

...
ym

�
and

� u1
...
un

�
= B�1

� x1
...
xn

�
.

Substitution gives
� z1

...
zm

�
= A

� y1

...
ym

�
= (ACB)B�1

� x1
...
xn

�
= ACB

� u1
...
un

�
.

If (c1 · · · cn) and (d1 · · · dn) = (c1 · · · cn)B
�1 are row vectors, then the

formula

c1u1 + · · · + cnun = (c1 · · · cn)

✏

✓
u1
...
un

⇣

◆ = (d1 · · · dn)

✏

✓
x1
...
xn

⇣

◆

= d1x1 + · · · + dnxn (⌅)

shows that {u1, . . . , un} generates the same subset of Zn as {x1, . . . , xn}. Since
(c1 · · · cn) is nonzero if and only if (d1 · · · dn) is nonzero, the formula (⌅) shows
also that the linear independence of {x1, . . . , xn} implies that of {u1, . . . , un}.
Hence {u1, . . . , un} is a Z basis of Zn . Similarly {y1, . . . , ym} and {z1, . . . , zm}
generate the same subgroup H of Zn . Therefore we can compare H and Zn

using {z1, . . . , zm} and {u1, . . . , un}. Since D is diagonal, the equations relating
{z1, . . . , zm} and {u1, . . . , un} are zj = Dj juj for j � min(m, n) and zj = 0 for

min(m, n) < j � m. If q = min(m, n), then we see that

H =
m�
i=1

Zzi =
q�
i=1

DiiZui +
m�

i=q+1
Zzi =

q�
i=1

DiiZui .

Since the set {u1, . . . , uq} is linearly independent over Z, this sum exhibits H as

given by

H = D11Z⌃ · · ·⌃ DqqZ
with D11u1, . . . , Dqquq as a Z basis. Consequently H has been exhibited as free
abelian of rank � q � n. This proves Theorem 4.55. Applying Lemma 4.58 to

the quotient Zn/H and letting D11, . . . , Drr be the nonzero diagonal entries of

D, we see that H has rank r , and we obtain an expansion of G in terms of cyclic

groups as

G = CD11 ⌃ · · ·⌃ CDrr ⌃ Zn�r .

This proves the main conclusion of Theorem 4.56. �
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PROOFOF THEDECOMPOSITIONWITHCYCLICGROUPSOF PRIME-POWERORDER.

It is enough to prove that if m =
�N

j=1 p
kj
j with the pj equal to distinct primes,

then Z/mZ �= (Z/pk11 Z) ⌃ · · · ⌃ (Z/p
kN
N Z). This is a variant of the Chinese

Remainder Theorem (Corollary 1.9). For the proof let

� : Z ⇣ (Z/pk11 Z)⌃ · · ·⌃ (Z/p
kN
N Z)

be the homomorphism given by �(s) =
�
s mod p

k1
1 , . . . , s mod p

kN
N

⇥
for s ◆ Z.

Since �(m) = (0, . . . , 0), � descends to a homomorphism

� : Z/mZ ⇣ (Z/pk11 Z)⌃ · · ·⌃ (Z/p
kN
N Z).

The map � is one-one because if �(s) = 0, then p
kj
j divides s for all j . Since

the p
kj
j are relatively prime in pairs, their productm divides s. Sincem divides s,

s  0 mod m. The map � is onto since it is one-one and since the finite sets

Z/mZ and (Z/pk11 Z)⌃ · · ·⌃ (Z/p
kN
N Z) both have m elements. �

PROOF OF UNIQUENESS OF THE DECOMPOSITION. Write G = Zs ⌃ T , where

T = (Z/pl11 Z)⌃ · · ·⌃ (Z/plMM Z)

and the pj ’s are not necessarily distinct. The subgroup T is the subgroup of

elements of finite order in G, and it is well defined independently of the decom-

position of G as the direct sum of cyclic groups. The quotient G/T �= Zs is

free abelian of finite rank, and its rank s is well defined by Theorem 4.53. Thus

the number s of factors of Z in the decomposition of G is uniquely determined,
and we need only consider uniqueness of the decomposition of the finite abelian

group T .

For p prime the elements of T of order pa for some a are those in the sum of

the groups Z/p
lj
j Z for which pj = p, and we are reduced to considering a group

H = Z/pl1Z⌃ · · ·⌃ Z/plM ⌘Z
with p fixed and l1 � · · · � lM ⌘ . The set of p j powers of elements of H

is a subgroup of H and is given by Z/plt� jZ ⌃ · · · ⌃ Z/plM ⌘� jZ if lt is the

first index � j , while the set of p j+1 powers of elements of H is given by

Z/plt ⌘� j�1Z⌃ · · ·⌃Z/plM ⌘� jZ if lt ⌘ is the first index� j+1. Therefore Lemma
4.58 gives

p j H/p j+1H�=(Z/plt ⌘� j�1Z)/(Z/plt ⌘� jZ)⌃· · ·⌃(Z/plM ⌘� j�1Z)/(Z/plM ⌘� jZ).

Each term of p j H/p j+1H has order p, and thus

|p j H/p j+1H | = p|{i | li> j}|.

Hence H determines the integers l1, . . . , lM ⌘ , and uniqueness is proved. �
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10. Sylow Theorems

This section continues the use of group actions to obtain results concerning

structure theory for abstract groups. We shall prove the three Sylow Theorems,

which are a starting point for investigations of the structure of finite groups that

are deeper than those in Sections 6 and 7. We state the three theorems as the parts

of Theorem 4.59.

Theorem 4.59 (SylowTheorems). LetG be a finite group of order pmr , where

p is prime and p does not divide r . Then

(a) G contains a subgroup of order pm , and any subgroup of G of order pl

with 0 � l < m is contained in a subgroup of order pm ,

(b) any two subgroups of order pm in G are conjugate in G, i.e., any two

such subgroups P1 and P2 have P2 = aP1a
�1 for some a ◆ G,

(c) the number of subgroups of order pm is of the form pk+1 and divides r .

REMARK. A subgroup of order pm as in the theorem is called a Sylow

p-subgroup of G. A consequence of (a) when m � 1 is that G has a subgroup

of order p; this special case is sometimes called Cauchy’s Theorem in group

theory.

Before coming to the proof, let us carefully give two simple applications

to structure theory. The applications combine Theorem 4.59, some results of

Sections 6 and 7, and Problems 35–38 and 45–48 at the end of the chapter.

Proposition 4.60. If p and q are primes with p < q, then there exists a

nonabelian group of order pq if and only if p divides q � 1, and in this case the
nonabelian group is unique up to isomorphism. It may be taken to be a semidirect

product of the cyclic groups Cp and Cq with Cq normal.

REMARK. It follows from Theorem 4.56 that the only abelian group of order

pq, up to isomorphism, is Cp ⇤ Cq �= Cpq . If p = 2 in the proposition, then q

is odd and p divides q � 1; the proposition yields the dihedral group Dq . For

p > 2, the divisibility conditionmay ormay not hold: For pq = 15, the condition

does not hold, and hence every group of order 15 is cyclic. For pq = 21, the

condition does hold, and there exists a nonabelian group of order 21; this group

was constructed explicitly in Example 2 in Section 7.

PROOF. Existence of a nonabelian group of order pq, together with the

semidirect-product structure, is established by Proposition 4.46 if p divides q�1.
Let us see uniqueness and the necessity of the condition that p divide q � 1.
If G has order pq, Theorem 4.59a shows that G has a Sylow p-subgroup Hp

and a Sylow q-subgroup Hq . Corollary 4.9 shows that these two groups are cyclic.
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The conjugates of Hq are Sylow q-subgroups, and Theorem 4.59c shows that the

number of such conjugates is of the form kq + 1 and divides p. Since p < q,

k = 0. Therefore Hq is normal. (Alternatively, one can apply Proposition 4.36

to see that Hq is normal.)

Each element of G is uniquely a product ab with a in Hp and b in Hq . For the

uniqueness, if a1b1 = a2b2, then a
�1
2 a1 = b2b

�1
1 is an element of Hp ⇢ Hq . Its

order must divide both p and q and hence must be 1. Thus the pq products ab

with a in Hp and b in Hq are all different. Since the number of them equals the

order of G, every member of G is such a product. By Proposition 4.44, G is a

semidirect product of Hp and Hq .

If the action of Hp on Hq is nontrivial, then Problem37 at the end of the chapter

shows that p divides q � 1, and Problem 38 shows that the group is unique up
to isomorphism. On the other hand, if the action is trivial, then G is certainly

abelian. �

Proposition 4.61. If G is a group of order 12, then G contains a subgroup

H of order 3 and a subgroup K of order 4, and at least one of them is normal.

Consequently there are exactly five groups of order 12, up to isomorphism—two

abelian and three nonabelian.

REMARK. The second statement follows from the first, as a consequence of

Problems 45–48 at the end of the chapter. Those problems show how to construct

the groups.

PROOF. Theorem 4.59a shows that H may be taken to be a Sylow 3-subgroup

and K may be taken to be a Sylow 2-subgroup. We have to prove that either H

or K is normal.

Suppose that H is not normal. Theorem 4.59c shows that the number of

Sylow 3-subgroups is of the form 3k + 1 and divides 4. The subgroup H , not

being normal, fails to equal one of its conjugates, which will be another Sylow

3-subgroup; hencek > 0. Thereforek = 1, and there are fourSylow3-subgroups.

The intersection of any two such subgroups is a subgroup of both and must be

trivial since 3 is prime. Thus the set-theoretic union of the Sylow 3-subgroups

accounts for 4 · 2 + 1 elements. None of these elements apart from the identity

lies in K , and thus K contributes 3 further elements, for a total of 12. Thus

every element of G lies in K or a conjugate of H . Consequently K equals every

conjugate of K , and K is normal. �

Let us see where we are with classifying finite groups of certain orders, up to

isomorphism. A group of order p is cyclic by Corollary 4.9, and a group of order

p2 is abelian by Corollary 4.39. Groups of order pq are settled by Proposition

4.60. Thus for p and q prime, we know the structure of all groups of order p,
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p2, and pq. Problems 39–44 at the end of the chapter tell us the structure of the

groups of order 8, and Proposition 4.61 and Problems 45–48 tell us the structure

of the groups of order 12. In particular, the table at the end of Section 1, which

gives examples of nonisomorphic groups of order at most 15, is complete except

for the one group of order 12 that is discussed in Problem 48.

Problems 30–34 and 49–54 at the end of the chapter go in the direction of

classifying finite groups of certain other orders.

Now we return to Theorem 4.59. The proof of the theorem makes use of the

theory of group actions as in Section 6. In fact, the proof of existence of Sylow

p-subgroups is just an elaboration of the argument used to prove Corollary 4.38,

saying that a group of prime-power order has a nontrivial center. The relevant

action for the existence part of the proof is the one (g, x) �⇣ gxg�1 given by
conjugation of the elements of the group, the orbit of x being the conjugacy class

C⇢(x). Proposition 4.37 shows that |G| = |C⇢(x)||ZG(x)|, where ZG(x) is the
centralizer of x . Since the disjoint union of the conjugacy classes is all of |G|,
we have

|G| = |ZG | +
⇡

representatives xj
of each conjugacy class

with |C⇢(x)|=1

|G|/|ZG(xj )|,

a formula sometimes called the class equation of G.

PROOF OF EXISTENCE OF SYLOW p-SUBGROUPS IN THEOREM 4.59a. We induct

on |G|, the base case being |G| = 1. Suppose that existence holds for groups of

order < |G|. Without loss of generality suppose that m > 0, so that p divides

|G|.
First suppose that p does not divide |ZG |. Referring to the class equation

of G, we see that p must fail to divide some integer |G|/|ZG(xj )| for which
|ZG(xj )| < |G|. Since pm is the exact power of p dividing |G|, we conclude that
pm divides this |ZG(xj )| and pm+1 does not. Since |ZG(xj )| < |G|, the inductive
hypothesis shows that ZG(xj ) has a subgroup of order p

m , and this is a Sylow

p-subgroup of G.

Now suppose that p divides |ZG |. The group ZG is finitely generated abelian,
hence is a direct sum of cyclic groups by Theorem 4.56. Thus ZG contains an

element c of order p. The cyclic group C generated by c then has order p. Being

a subgroup of ZG , C is normal in G. The group G/C has order pm�1r , and
the inductive hypothesis implies that G/C has a subgroup H of order pm�1. If
� : G ⇣ G/C denotes the quotient map, then ��1(H) is a subgroup of G of

order |H || ker�| = pm�1 p = pm . �

For the remaining parts of Theorem 4.59, we make use of a different group

action. If⇣ denotes the set of all subgroups ofG, thenG acts on⇣ by conjugation:
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(g, H) �⇣ gHg�1. The orbit of a subgroup of H consists of all subgroups

conjugate to H in G, and the isotropy subgroup at the point H in ⇣ is

{g ◆ G | gHg�1 = H}.

This is a subgroup N (H) of G known as the normalizer of H in G. It has the

properties that N (H) ↵ H and that H is a normal subgroup of N (H). The
counting formula of Corollary 4.35 gives

⇧⇧{gHg�1 | g ◆ G}
⇧⇧ = |G/N (H)|.

Meanwhile, application of Lagrange’s Theorem (Theorem 4.7) to the three quo-

tients G/H , G/N (H), and N (H)/H shows that

|G/H | = |G/N (H)||N (H)/H |,

with all three factors being integers.

Now assume as in the statement of Theorem 4.59 that |G| = pmr with p prime

and p not dividing r . In this setting we have the following lemma.

Lemma 4.62. If P is a Sylow p-subgroup of G and if H is a subgroup of the

normalizer N (P) whose order is a power of p, then H ⌦ P .

PROOF. Since H ⌦ N (P) and P is normal in N (P), the set HP of products is
a group, by the same argument as used for HpHq in the proof of Proposition 4.60.

Then HP/P �= H/(H ⇢ P) by the Second Isomorphism Theorem (Theorem

4.14), and hence |HP/P| is some power pk of p. By Lagrange’s Theorem
(Theorem 4.7), |HP| = pm+k with k � 0. Since no subgroup of G can have

order pl with l > m, we must have k = 0. Thus HP = P and H ⌦ P . �

PROOFOF THEREMAINDEROFTHEOREM4.59. Within the set⇣ of all subgroups
of G, let⌘ be the set of all subgroups of G of order pm . We have seen that⌘ is

not empty. Since the conjugate of a subgroup has the same order as the subgroup,

⌘ is the union of orbits in ⇣ under conjugation by G. Thus we can restrict the
group action by conjugation from G ⇤ ⇣⇣ ⇣ to G ⇤⌘⇣ ⌘.

Let P and P ⌘ be members of ⌘, and let ✓ and ✓⌘ be the G orbits of P and

P ⌘ under conjugation. Suppose that ✓ and ✓⌘ are distinct orbits of G. Let us
restrict the group action by conjugation from G ⇤⌘⇣ ⌘ to P ⇤⌘⇣ ⌘. The
G orbits ✓ and ✓⌘ then break into P orbits, and the counting formula Corollary
4.35 says for each orbit that

pm = |P| = #{subgroups in a P orbit}⇤
⇧⇧isotropy subgroup within P

⇧⇧.
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Hence the number of subgroups in a P orbit is of the form pl for some l � 0.
Suppose that l = 0. Then the P orbit is some singleton set {P ⌘⌘}, and the

corresponding isotropy subgroup within P is all of P:

P = {p ◆ P | pP ⌘⌘ p�1 = P ⌘⌘} ⌦ N (P ⌘⌘).

Lemma 4.62 shows that P ⌦ P ⌘⌘, and therefore P = P ⌘⌘. Thus l = 0 only for the

P orbit {P}. In other words, the number of elements in any P orbit other than
{P} is divisible by p. Consequently |✓|  1 mod p while |✓⌘|  0 mod p, the
latter because ✓ and ✓⌘ are assumed distinct. But this conclusion is asymmetric
in the G orbits ✓ and ✓⌘, and we conclude that ✓ and ✓⌘ must coincide. Hence
there is only oneG orbit in⌘, and it has kp+1 members for some k. This proves
parts (b) and (c) except for the fact that kp + 1 divides r .

For this divisibility let us apply the counting formula Corollary 4.35 to the

orbit ✓ of G. The formula gives |G| = |✓| |isotropy subgroup|, and hence |✓|
divides |G| = pmr . Since |✓| = kp + 1, we have GCD(|✓|, p) = 1 and also

GCD(|✓|, pm) = 1. By Corollary 1.3, kp + 1 divides r .

Finally we prove that any subgroup H of G of order pl lies in some Sylow

p-subgroup. Let ✓ = ⌘ again be the G orbit in ⇣ of subgroups of order pm ,
and restrict the action by conjugation from G ⇤✓ ⇣ ✓ to H ⇤✓ ⇣ ✓. Each
H orbit in ✓ must have pa elements for some a, by one more application of the

counting formula Corollary 4.35. Since |✓|  1 mod p, some H orbit has one

element, say the H orbit of P . Then the isotropy subgroup of H at the point P

is all of H , and H ⌦ N (P). By Lemma 4.62, H ⌦ P . This completes the proof

of Theorem 4.59. �

11. Categories and Functors

Themathematics thus far in the book has taken place in several different contexts,

andwe have seen that the same notions sometimes recur inmore than one context,

possibly with variations. For example we have worked with vector spaces, inner-

product spaces, groups, rings, and fields, andwe have seen that each of these areas

has its own definition of isomorphism. In addition, the notion of direct product

or direct sum has arisen in more than one of these contexts, and there are other

similarities. In this section we introduce some terminology to make the notion

of “context” precise and to provide a setting for discussing similarities between

different contexts.

A category C consists of three things:
• a class of objects, denoted by Obj(C ),
• for any two objects A and B in the category, a set Morph(A, B) of
morphisms,
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• for any three objects A, B, and C in the category, a law of composition

for morphisms, i.e., a function carryingMorph(A, B)⇤Morph(B,C) into
Morph(A,C), with the image of ( f, g) under composition written as g f ,

and these are to satisfy certain properties that we list in a moment. When more

than one category is under discussion, we may use notation like MorphC(A, B)
to distinguish between the categories.

We are to think initially of the objects as the sets we are studying with a par-

ticular kind of structure on them; the morphisms are then the functions from one

object to another that respect this additional structure, and the law of composition

is just composition of functions. Indeed, the defining conditions that are imposed

on general categories are arranged to be obvious for this special kind of category,

and this setting accounts for the order in which we write the composition of two

morphisms. But the definition of a general category is not so restrictive, and it is

important not to restrict the definition in this way.

The properties that are to be satisfied to have a category are as follows:

(i) the sets Morph(A1, B1) and Morph(A2, B2) are disjoint unless A1 =
A2 and B1 = B2 (because two functions are declared to be different

unless their domains match and their ranges match, as is underscored in

Section A1 of the appendix),

(ii) the law of composition satisfies the associativity property h(g f ) = (hg) f
for f ◆ Morph(A, B), g ◆ Morph(B,C), and h ◆ Morph(C, D),

(iii) for each object A, there is an identitymorphism 1A inMorph(A, A) such
that f 1A = f and 1Ag = g for f ◆ Morph(A, B) and g ◆ Morph(C, A).

A subcategorySof a categoryCbydefinition is a categorywithObj(S ) ⌦ Obj(C )
and MorphS(A, B) ⌦ MorphC(A, B) whenever A and B are in Obj(S ), and it
is assumed that the laws of composition in S and C are consistent when both are
defined.

Here are several examples in which the morphisms are functions and the law

of composition is ordinary composition of functions. They are usually identified

in practice just by naming their objects, since the morphisms are understood to

be all functions from one object to another respecting the additional structure on

the objects.

EXAMPLES OF CATEGORIES.

(1) The category of all sets. An object A is a set, and a morphism in the set

Morph(A, B) is a function from A into B.

(2) The category of all vector spaces over a field F. The morphisms are linear
maps.

(3) The category of all groups. The morphisms are group homomorphisms.
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(4) The category of all abelian groups. The morphisms again are group

homomorphisms. This is a subcategory of the previous example.

(5) The category of all rings. The morphisms are all ring homomorphisms.

The kernel and the image of a morphism are necessarily objects of the category.

(6) The category of all rings with identity. The morphisms are all ring homo-

morphisms carrying identity to identity. This is a subcategory of the previous

example. The image of a morphism is necessarily an object of the category, but

the kernel of a morphism is usually not in the category.

(7) The category of all fields. The morphisms are as in Example 6, and the

result is a subcategory of Example 6. In this case any morphism is necessarily

one-one and carries inverses to inverses.

(8) The category of all group actions by a particular group G. If G acts on X

and on Y , then a morphism from the one space to the other is a G equivariant

mapping from X to Y , i.e., a function � : X ⇣ Y such that �(gx) = g�(x) for
all x in X .

(9) The category of all representationsby a particular groupG on a vector space

over a particular field F. The morphisms are the linear G equivariant functions.
This is a subcategory of the previous example.

Readers who are familiar with point-set topology will recognize that one can

impose topologies on everything in the above examples, insisting that the func-

tions be continuous, and again we obtain examples of categories. For example the

category of all topological spaces consists of objects that are topological spaces

and morphisms that are continuous functions. The category of all continuous

group actions by a particular topological group has objects that are group actions

G⇤X ⇣ X that are continuous functions, and the morphisms are the equivariant

functions that are continuous.

Readers who are familiar with manifolds will recognize that another example

is the category of all smooth manifolds, which consists of objects that are smooth

manifolds and morphisms that are smooth functions.

The morphisms in a category need not be functions in the usual sense. An

important example is the “opposite category” C opp to a category C, which is a
handy technical device and is discussed in Problems 78–80 at the end of the

chapter.

In all of the above examples of categories, the class of objects fails to be a set.

This behavior is typical. However, it does not cause problems in practice because

in any particular argument involving categories, we can restrict to a subcategory

for which the objects do form a set.17

17For the interested reader, a book that pays closer attention to the inherent set-theoretic difficul-

ties in the theory is Mac Lane’s Categories for the Working Mathematician.
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IfC is a category, amorphism� ◆ Morph(A, B) is said to be an isomorphism if
there exists a morphism� ◆ Morph(B, A) such that �� = 1A and �� = 1B . In

this case we say that A is isomorphic to B in the category C. Let us check that the
morphism� is unique if it exists. In fact, if� ⌘ is a member of Morph(B, A)with
� ⌘� = 1A and ��

⌘ = 1B , then � = 1A� = (� ⌘�)� = � ⌘(��) = � ⌘1B = � ⌘.
We can therefore call � the inverse to �.
The relation “is isomorphic to” is an equivalence relation.18 In fact, the relation

is symmetric by definition, and it is reflexive because 1A ◆ Morph(A, A) has 1A
as inverse. For transitivity let �1 ◆ Morph(A, B) and �2 ◆ Morph(B,C) be iso-
morphisms, with respective inverses�1 ◆ Morph(B, A) and�2 ◆ Morph(C, B).
Then �2�1 is in Morph(A,C), and �1�2 is in Morph(C, A). Calculation gives
(�1�2)(�2�1) = �1(�2(�2�1)) = �1((�2�2)�1) = �1(1B�1) = �1�1 = 1A,

and similarly (�2�1)(�1�2) = 1C . Therefore �2�1 ◆ Morph(A,C) is an isomor-
phism, and “is isomorphic to” is an equivalence relation. When A is isomorphic

to B, it is permissible to say that A and B are isomorphic.

The next step is to abstract a frequent kind of construction that we have

used with our categories. If C and D are two categories, a covariant functor

F : C⇣ D associates to each object A in Obj(C ) an object F(A) in Obj(D) and
to each pair of objects A and B and morphism f in MorphC(A, B) a morphism
F( f ) in MorphD(F(A), F(B)) such that

(i) F(g f ) = F(g)F( f ) for f ◆ MorphC(A, B) and g ◆ MorphC(B,C),
(ii) F(1A) = 1F(A) for A in Obj(C ).

EXAMPLES OF COVARIANT FUNCTORS.

(1) Inclusion of a subcategory into a category is a covariant functor.

(2) Let C be the category of all sets. If F carries each set X to the set 2X of
all subsets of X , then F is a covariant functor as soon as its effect on functions

between sets, i.e., its effect on morphisms, is defined in an appropriate way.

Namely, if f : X ⇣ Y is a function, then F( f ) is to be a function from
F(X) = 2X to F(Y ) = 2Y . That is, we need a definition of F( f )(A) as a subset
of Y whenever A is a subset of X . A natural way of making such a definition is

to put F( f )(A) = f (A), and then F is indeed a covariant functor.

(3) Let C be any of Examples 2 through 6 of categories above, and let D be

the category of all sets, as in Example 1 of categories. If F carries an object A in

C (i.e., a vector space, group, ring, etc.) into its underlying set and carries each
morphism into its underlying function between two sets, then F is a covariant

functor and furnishes an example of what is called a forgetful functor.

18Technically one considers relations only when they are defined on sets, and the class of objects

in a category is typically not a set. However, just as with vector spaces, groups, and so on, we can

restrict attention in any particular situation to a subcategory for which the objects do form a set, and

then there is no difficulty.
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(4) Let C be the category of all vector spaces over a field F, let U be a

vector space over F, and let F : C ⇣ C be defined on a vector space to
be the vector space of linear maps F(V ) = HomF(U, V ). The set of mor-
phisms MorphC(V1, V2) is HomF(V1, V2). If f is in MorphC(V1, V2), then F( f )
is to be in MorphC

�
HomF(U, V1),HomF(U, V2)

⇥
, and the definition is that

F( f )(L) = f ⌥ L for L ◆ HomF(U, V1). Then F is a covariant functor:

to check that F(g f ) = F(g)F( f ) when g is in MorphC(V2, V3), we write
F(g f )(L) = g f ⌥ L = g ⌥ f L = g ⌥ F( f ) = F(g)F( f ).

(5) Let C be the category of all groups, let D be the category of all sets, let G
be a group, and let F : C ⇣ D be the functor defined as follows. For a group

H , F(H) is the set of all group homomorphisms from G into H . The set of

morphisms MorphC(H1, H2) is the set of group homomorphisms from H1 into

H2. If f is in MorphC(H1, H2), then F( f ) is to be a function with domain the set
of homomorphisms from G into H1 and with range the set of homomorphisms

from G into H2. Let F( f )(�) = � ⌥ f . Then F is a covariant functor.
(6) Let C be the category of all sets, and let D be the category of all abelian

groups. To a set S, associate the free abelian group F(S) with S as Z basis.

If f : S ⇣ S⌘ is a function, then the universal mapping property of external
direct sums of abelian groups (Proposition 4.17) yields a corresponding group

homomorphism from F(S) to F(S⌘), and we define this group homomorphism
to be F( f ). Then F is a covariant functor.

(7) Let C be the category of all finite sets, fix a commutative ring R with

identity, and let D be the category of all commutative rings with identity. To

a finite set S, associate the commutative ring F(S) = R[{Xs | s ◆ S}]. If
f : S ⇣ S⌘ is a function, then the properties of substitution homomorphisms
give us a corresponding homomorphism of rings with identity carrying F(S) to
F(S⌘), and the result is a covariant functor.

There is a second kind of functor of interest to us. If C andD are two categories,
a contravariant functor F : C ⇣ D associates to each object A in Obj(C ) an
object F(A) in Obj(D) and to each pair of objects A and B and morphism f in

MorphC(A, B) a morphism F( f ) in MorphD(F(B), F(A)) such that

(i) F(g f ) = F( f )F(g) for f ◆ MorphC(A, B) and g ◆ MorphD(B,C),
(ii) F(1A) = 1F(A) for A in Obj(C ).

EXAMPLES OF CONTRAVARIANT FUNCTORS.

(1) Let C be the category of all vector spaces over a field F, let W be a

vector space over F, and let F : C ⇣ C be defined on a vector space to be
the vector space of linear maps F(V ) = HomF(V,W ). The set of morphisms
MorphC(V1, V2) is HomF(V1, V2). If f is inMorphC(V1, V2), then F( f ) is to be in
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MorphC
�
HomF(V2,W ),HomF(V1,W )

⇥
, and the definition is that F( f )(L) =

L ⌥ f for L ◆ HomF(V2,W ). Then F is a contravariant functor: to check

that F(g f ) = F( f )F(g) when g is in MorphC(V2, V3), we write F(g f )(L) =
L ⌥ g f = Lg ⌥ f = F( f )(Lg) = F( f )F(g)(L).

(2) Let C be the category of all vector spaces over a field F, define F of a
vector space V to be the dual vector space V ⌘, and define F of a linear mapping
f between two vector spaces V and W to be the contragredient f t carrying W ⌘

into V ⌘, defined by f t(w⌘)(v) = w⌘( f (v)). This is the special case of Example 1
of contravariant functors in which W = F. Hence F is a contravariant functor.
(3) Let C be the category of all groups, let D be the category of all sets, let G

be a group, and let F : C ⇣ D be the functor defined as follows. For a group

H , F(H) is the set of all group homomorphisms from H into G. The set of

morphisms MorphC(H1, H2) is the set of group homomorphisms from H1 into

H2. If f is in MorphC(H1, H2), then F( f ) is to be a function with domain the set
of homomorphisms from H2 into G and with range the set of homomorphisms

from H1 into G. The definition is F( f )(�) = � ⌥ f . Then F is a contravariant
functor.

It is an important observation about functors that the composition of two

functors is a functor. This is immediate from the definition. If the two functors

are both covariant or both contravariant, then the composition is covariant. If

one of them is covariant and the other is contravariant, then the composition is

contravariant.

A
����⇣ B

⇥

⌘⌘�
⌘⌘�⇤

C ���⇣
⌅

D

FIGURE 4.9. A square diagram. The square commutes if ⇤� = ⌅⇥.

In the subject of category theory, a great deal of information is conveyed by

“commutative diagrams” of objects and morphisms. By a diagram is meant a

directed graph, usually but not necessarily planar, in which the vertices represent

some relevant objects in a category and the arrows from one vertex to another

represent morphisms of interest between pairs of these objects. Often the vertices

and arrows are labeled, but in fact labels on the vertices can be deduced from the

labels on the arrows since any morphism determines its “domain” and “range”

as a consequence of defining property (i) of categories. A diagram is said to be

commutative if for each pair of vertices A and B and each directed path from

A to B, the compositions of the morphisms along each path are the same. For
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example a square as in Figure 4.9 is commutative if ⇤� = ⌅⇥. The triangular
diagrams in Figures 4.1 through 4.8 are all commutative.

F(A)
F(�)���⇣ F(B)

F(⇥)

⌘⌘�
⌘⌘�F(⇤ )

F(C) ���⇣
F(⌅)

F(D)

and

G(A)
G(�)✏��� G(B)

G(⇥)

�⌘⌘
�⌘⌘G(⇤ )

G(C) ✏���
G(⌅)

G(D)

FIGURE 4.10. Diagrams obtained by applying a covariant functor F

and a contravariant functor G to the diagram in Figure 4.9.

Functors can be applied to diagrams, yielding new diagrams. For example,

suppose that Figure 4.9 is a diagram in the category C, that F : C ⇣ D is a

covariant functor, and that G : C ⇣ D is a contravariant functor. Then we

can apply F and G to the diagram in Figure 4.9, obtaining the two diagrams in

the category D that are pictured in Figure 4.10. If the diagram in Figure 4.9 is

commutative, then so are the diagrams in Figure 4.10, as a consequence of the

effect of functors on compositions of morphisms.

The subject of category theory seeks to analyze functors that make sense for

all categories, or at least all categories satisfying some additional properties.

The most important investigation of this kind is concerned with homology and

cohomology, aswell as their ramifications, for “abelian categories,” which include

several important examples affecting algebra, topology, and several complex

variables. The topic in question is called “homological algebra” and is discussed

further in Advanced Algebra, particularly in Chapter IV.

There are a number of other functors that are investigated in category theory,

and we mention four:

• products, including direct products,

• coproducts, including direct sums,

• direct limits, also called inductive limits,

• inverse limits, also called projective limits.

We discuss general products and coproducts in the present section, omitting a

general discussion of direct limits and inverse limits. Inverse limits will arise in

Section VII.6 of Advanced Algebra for one category in connection with Galois

groups, but we shall handle that one situation on its own without attempting a

generalization. An attempt in the 1960s to recast asmuchmathematics as possible

in terms of category theory is now regarded by many mathematicians as having

been overdone, and it seemswiser to cast bodies of mathematics in the framework

of category theory onlywhen doing so can be justified by the amount of time saved

by eliminating redundant arguments.
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When a category C and a nonempty set S are given, we can define a category
CS . The objects of CS are functions on S with the property that the value of the
function at each s in S is in Obj(C ), two such functions being regarded as the
same if they consist of the same ordered pairs.19 Let us refer to such a function

as an S-tuple of members of Obj(C ), denoting it by an expression like {Xs}s◆S .
A morphism in MorphCS

�
{Xs}s◆S, {Ys}s◆S

⇥
is an S-tuple { fs}s◆S of morphisms

of C such that fs lies in MorphC(Xs,Ys) for all s, and the law of composition of
such morphisms takes place coordinate by coordinate.

Let {Xs}s◆S be an object in CS . A product of {Xs}s◆S is a pair (X, {ps}s◆S)
such that X is in Obj(C ) and each ps is in MorphC(X, Xs) with the following
universal mapping property: whenever A in Obj(C ) is given and a morphism
�s ◆ MorphC(A, Xs) is given for each s, then there exists a unique morphism
� ◆ MorphC(A, X) such that ps� = �s for all s. The relevant diagram is pictured
in Figure 4.11.

Xs
�s✏��� A

ps

�⌘⌘

X

�

FIGURE 4.11. Universal mapping property of a product in a category.

EXAMPLES OF PRODUCTS.

(1) Products exist in the category of vector spaces over a field F. If vector
spaces Vs indexed by a nonempty set S are given, then their product exists in the

category, and an example is their external direct product
�

s◆S Vs , according to
Figure 2.4 and the discussion around it.

(2) Products exist in the category of all groups. If groups Gs indexed by a

nonempty set S are given, then their product exists in the category, and an example

is their external direct product
�

s◆S Gs , according to Figure 4.2 and Proposition

4.15. If the groups Gs are abelian, then
�

s◆S Gs is abelian, and it follows that

products exist in the category of all abelian groups.

(3) Products exist in the category of all sets. If sets Xs indexed by a nonempty

set S are given, then their product exists in the category, and an example is their

Cartesian product�s◆S Xs , as one easily checks.

(4) Products exist in the category of all rings and in the category of all ringswith

identity. If objects Rs in the category indexed by a nonempty set S are given, then

19In other words, the range of such a function is considered as irrelevant. We might think of the

range as Obj(C) except for the fact that a function is supposed to have a set as range and Obj(C) need
not be a set.
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their product may be taken as an abelian group to be the external direct product�
s◆S Rs , with multiplication defined coordinate by coordinate, and the group

homomorphisms ps are easily checked to be morphisms in the category.

A product of objects in a category need not exist in the category. An artificial

examplemay be formed as follows: Let C be a categorywith one objectG, namely
a group of order 2, and let Morph(G,G) = {0, 1G}, the law of composition being
the usual composition. Let S be a 2-element set, and let the corresponding objects

be X1 = G and X2 = G. The claim is that the product X1⇤X2 does not exist in C.
In fact, take A = G. There are four S-tuples of morphisms (�1,�2) meeting the
conditions of the definition. Yet the only possibility for the product is X = G, and

then there are only two possible �’s in Morph(A, X). Hence we cannot account
for all possible S-tuples of morphisms, and the product cannot exist.

The thing that category theory addresses is the uniqueness. A product is

always unique up to canonical isomorphism, according to Proposition 4.63. We

proved uniqueness for products in the special cases of Examples 1 and 2 above

in Propositions 2.32 and 4.16.

Proposition 4.63. Let C be a category, and let S be a nonempty set. If {Xs}s◆S
is an object in CS and if (X, {ps}) and (X ⌘, {p⌘s}) are two products, then there
exists a unique morphism ◆ : X ⌘ ⇣ X such that p⌘s = ps ⌥◆ for all s ◆ S, and

◆ is an isomorphism.

REMARK. There is no assertion that ps is onto Xs . In fact, “onto” has no

meaning for a general category.

PROOF. In Figure 4.11 let A = X ⌘ and �s = p⌘s . If ◆ ◆ Morph(X ⌘, X)
is the morphism produced by the fact that X is a direct product, then we have

ps◆ = p⌘s for all s. Reversing the roles of X and X
⌘, we obtain a morphism

◆⌘ ◆ Morph(X, X ⌘)with p⌘s◆
⌘ = ps for all s. Therefore ps(◆◆

⌘) = (ps◆)◆⌘ =
p⌘s◆

⌘ = ps .

In Figure 4.11 we next let A = X and �s = ps for all s. Then the identity 1X
in Morph(X, X) has the same property ps1X = ps relative to all ps that◆◆

⌘ has,
and the uniqueness in the statement of the universalmapping property implies that

◆◆⌘ = 1X . Reversing the roles of X and X
⌘, we obtain ◆⌘◆ = 1X ⌘ . Therefore

◆ is an isomorphism.

For uniqueness suppose that  ◆ Morph(X ⌘, X) is another morphism with

p⌘s = ps for all s ◆ S. Then the argument of the previous paragraph shows that
◆⌘ = 1X ⌘ . Consequently = 1X = (◆◆⌘) = ◆(◆⌘) = ◆1X ⌘ = ◆, and
 = ◆. �

If products always exist in a particular category, they are not unique, only

unique up to canonical isomorphism. Such a product is commonly denoted by
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�
s◆S Xs , even though it is not uniquely defined. It is customary to treat the

product over S as a covariant functor F : CS ⇣ C, the effect of the functor on
objects being given by F({Xs}s◆S) =

�
s◆S Xs . For a well-defined functor we

have to fix a choice of product for each object under consideration20 in Obj(CS).
For the effect of F on morphisms, we argue with the universal mapping property.

Thus let {Xs}s◆S and {Ys}s◆S be objects in CS , let fs be in MorphC(Xs,Ys) for all
s, and let the products in question be

��
s◆S Xs, {ps}s◆S

⇥
and

��
s◆S Ys, {qs}s◆S

⇥
.

Then fs0 ps0 is in MorphC
��

s◆S Xs,Ys0
⇥
for each s0, and the universal mapping

property gives us f in MorphC
��

s◆S Xs,
�

s◆S Ys
⇥
such that qs f = fs ps for all

s. We define this f to be F({ fs}s◆S), and we readily check that F is a functor.
We turn to coproducts, which include direct sums. Let {Xs}s◆S be an object in

CS . A coproduct of {Xs}s◆S is a pair (X, {is}s◆S) such that X is in Obj(C ) and
each is is in MorphC(Xs, X) with the following universal mapping property:
whenever A in Obj(C ) is given and a morphism �s ◆ MorphC(Xs, A) is given
for each s, then there exists a unique morphism � ◆ MorphC(X, A) such that
�is = �s for all s. The relevant diagram is pictured in Figure 4.12.

Xs
�s���⇣ A

is

⌘⌘�

X

�

FIGURE 4.12. Universal mapping property of a coproduct in a category.

EXAMPLES OF COPRODUCTS.

(1) Coproducts exist in the category of vector spaces over a field F. If vector
spaces Vs indexed by a nonempty set S are given, then their coproduct exists in

the category, and an example is their external direct sum


s◆S Vs , according to
Figure 2.5 and the discussion around it.

(2) Coproducts exist in the category of all abelian groups. If abelian groupsGs

indexed by a nonempty set S are given, then their coproduct exists in the category,

and an example is their external direct sum


s◆S Gs , according to Figure 4.4 and

Proposition 4.17.

(3)Coproducts exist in the categoryof all sets. If sets Xs indexedbyanonempty

set S are given, then their coproduct exists in the category, and an example is their

disjoint union
⌫

s◆S {(xs, s) | xs ◆ Xs}. The verification appears as Problem 74
at the end of the chapter.

20Since Obj(CS) need not be a set, it is best to be wary of applying the Axiom of Choice when
the indexing of sets is given by Obj(CS). Instead, one makes the choice only for all objects in some
set of objects large enough for a particular application.
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(4) Coproducts exist in the category of all groups. Suppose that groups Gs

indexed by a nonempty set S are given. It will be shown in Chapter VII that

the coproduct is the “free product” *s◆SGs that is defined in that chapter. In the

special case that each Gs is the group Z of integers, the free product coincides
with the free group on S. Therefore, even if all the groups Gs are abelian, their

coproduct need not be a subgroup of the direct product and need not even be

abelian. In particular it need not coincide with the direct sum.

A coproduct of objects in a category need not exist in the category. Problem 76

at the end of the chapter offers an example that the reader is invited to check.

Proposition 4.64. Let C be a category, and let S be a nonempty set. If {Xs}s◆S
is an object in CS and if (X, {is}) and (X ⌘, {i ⌘s}) are two coproducts, then there
exists a unique morphism◆ : X ⇣ X ⌘ such that i ⌘s = ◆ ⌥ is for all s ◆ S, and◆
is an isomorphism.

REMARKS. There is no assertion that is is one-one. In fact, “one-one” has

no meaning for a general category. This proposition may be derived quickly

from Proposition 4.63 by a certain duality argument that is discussed in Problems

78–80 at the end of the chapter. Here we give a direct argument without taking

advantage of duality.

PROOF. In Figure 4.12 let A = X ⌘ and �s = i ⌘s . If ◆ ◆ Morph(X, X ⌘) is the
morphism produced by the fact that X is a coproduct, then we have◆ is = i ⌘s for
all s. Reversing the roles of X and X ⌘, we obtain a morphism◆⌘ ◆ Morph(X ⌘, X)
with ◆⌘i ⌘s = is for all s. Therefore (◆⌘◆)is = ◆⌘i ⌘s = is .

In Figure 4.12 we next let A = X and �s = is for all s. Then the identity 1X
in Morph(X, X) has the same property 1X is = is relative to all is that ◆

⌘◆ has,

and the uniqueness says that ◆⌘◆ = 1X . Reversing the roles of X and X
⌘, we

obtain ◆◆⌘ = 1X ⌘ . Therefore◆ is an isomorphism.

For uniqueness suppose that  ◆ Morph(X, X ⌘) is another morphism with

i ⌘s =  is for all s ◆ S. Then the argument of the previous paragraph shows that

◆⌘ = 1X . Consequently  = 1X ⌘ = (◆◆⌘) = ◆(◆⌘) = ◆1X = ◆, and
 = ◆. �
If coproducts always exist in a particular category, they are not unique, only

unique up to canonical isomorphism. Such a coproduct is commonly denoted by⇢
s◆S Xs , even though it is not uniquely defined. As with product, it is customary

to treat the coproduct over S as a covariant functor F : CS ⇣ C, the effect of the
functor on objects being given by F({Xs}s◆S) =

⇢
s◆S Xs . For a well-defined

functor we have to fix a choice of coproduct for each object under consideration

in Obj(CS). For the effect of F on morphisms, we argue with the universal

mapping property. Thus let {Xs}s◆S and {Ys}s◆S be objects in CS , let fs be in
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MorphC(Xs,Ys) for all s, and let the coproducts in question be
�⇢

s◆S Xs, {is}s◆S
⇥

and
�⇢

s◆S Ys, { js}s◆S
⇥
. Then js0 fs0 is in MorphC

�
Xs0,

⇢
s◆S Ys

⇥
for each s0, and

the universal mapping property gives us f in MorphC
�⇢

s◆S Xs,
⇢

s◆S Ys
⇥
such

that f is = js fs for all s. We define this f to be F({ fs}s◆S), and we readily check
that F is a functor.

Universal mapping properties occur in other contexts than for products and

coproducts. We have already seen them in connection with homomorphisms on

free abelian groups and with substitution homomorphisms on polynomial rings,

and more such properties will occur in the development of tensor products in

Chapter VI. A general framework for discussing universal mapping properties

appears in the problems at the end of Chapter VI.

12. Problems

1. LetG be a group in which all elements other than the identity have order 2. Prove

that G is abelian.

2. The dihedral group D4 of order 8 can be viewed as a subgroup of the symmetric

group S4 of order 8. Find 8 explicit permutations in S4 forming a subgroup

isomorphic to D4.

2A. Let g be an element of finite order ord(g) in a group G. Prove that

(a) g�1 has the same order as g.
(b) gk = 1 if and only if ord(g) divides k.

(c) for each r ◆ Z, the order of gr is ord(g)/GCD(ord(g), r).

3. Suppose G is a finite group, H is a subgroup, and a ◆ G is an element with al

in H for some integer l with GCD(l, |G|) = 1. Prove that a is in H .

4. Let G be a group, and define a new group G ⌘ to have the same underlying set as
G but to have multiplication given by a ⌥ b = ba. Prove that G ⌘ is a group and
that it is isomorphic to G.

5. Prove that if G is an abelian group and n is an integer, then a �⇣ an is a

homomorphism of G. Give an example of a nonabelian group for which a �⇣ a2

is not a homomorphism.

6. Suppose that G is a group and that H and K are normal subgroups of G with

H ⇢ K = {1}. Verify that the set HK of products is a subgroup and that this

subgroup is isomorphic as a group to the external direct product H ⇤ K .

7. Take as known that 8191 is prime, so that F8191 is a field. Without carrying
through the computations and without advocating trial and error, describe what

steps you would carry out to solve for x mod 8191 such that 1234x  1 mod

8191.
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8. (Wilson’s Theorem) Let p be an odd prime. Starting from the fact that

1, . . . , p � 1 are roots of the polynomial X p�1 � 1  0 mod p in Fp, prove

that (p � 1)!  �1 mod p.

9. Classify, up to isomorphism, all groups of order p2 if p is a prime.

10. This problem concerns conjugacy classes in a group G.

(a) Prove that all elements of a conjugacy class have the same order.

(b) Prove that if ab is in a conjugacy class, so is ba.

11. (a) Find explicitly all the conjugacy classes in the alternating group A4.

(b) For each conjugacy class in A4, find the centralizer of one element in the

class.

(c) Prove that A4 has no subgroup isomorphic to C6 orS3.

12. Prove that the alternating group A5 has no subgroup of order 30.

13. Let G be a nonabelian group of order pn , where p is prime. Prove that any

subgroup of order pn�1 is normal.

14. Let G be a finite group, and let H be a normal subgroup. If |H | = p and p is

the smallest prime dividing |G|, prove that H is contained in the center of G.

15. Let G be a group. An automorphism of G of the form x �⇣ gxg�1 is called an
inner automorphism. Prove that the set of inner automorphisms is a normal

subgroup of the group AutG of all automorphisms and is isomorphic to G/ZG .

16. (a) Prove that AutCm is isomorphic to (Z/mZ)⇤.
(b) Find a value of m for which AutCm is not cyclic.

17. Fix n � 2. In the symmetric groupSn , for each integer k with 1 � k � n/2, let

Ck be the set of elements inSn that are products of k disjoint transpositions.

(a) Prove that if ↵ is an automorphism ofSn , then ↵ (C1) = Ck for some k.

(b) Prove that |Ck | =
 
n

2k

⌦
(2k)!

2kk!
.

(c) Prove that |Ck | = |C1| unless k = 1 or n = 6. (Educational note: From this,

it follows that ↵ (C1) = C1 except possibly when n = 6. One can deduce

as a consequence that every automorphism of Sn is inner except possibly

when n = 6.)

18. Give an example: G is a group with a normal subgroup N , N has a subgroup M

that is normal in N , yet M is not normal in G.

19. Show that the cyclic group Crs is isomorphic to Cr ⇤ Cs if and only if

GCD(r, s) = 1.

20. How many abelian groups, up to isomorphism, are there of order 27?
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21. Let G be the free abelian group with Z basis {x1, x2, x3}. Let H be the subgroup
of G generated by {u1, u2, u3}, where

u1 = 3x1 + 2x2 + 5x3,

u2 = x2 + 3x3,

u3 = x2 + 5x3.

Express G/H as a direct sum of cyclic groups.

22. Let {e1, e2, e3, e4} be the standard basis of R4. Let G be the additive subgroup

of R4 generated by the four elements
e1, e1 + e2,

1
2
(e1 + e2 + e3 + e4),

1
2
(e1 + e2 + e3 � e4),

and let H be the subgroup of G generated by the four elements

e1 � e2, e2 � e3, e3 � e4, e3 + e4.

Identify the abelian group G/H as a direct sum of cyclic groups.

23. Let G be the free abelian group with Z basis {x1, . . . , xn}, and let H be the

subgroup generated by {u1, . . . , um}, where
� u1

...
um

�
= C

� x1
...
xn

�
for an m-by-n

matrixC of integers. Prove that the number of summandsZ in the decomposition
of G/H into cyclic groups is equal to the rank of the matrix C when C is

considered as in Mmn(Q).

24. Prove that every abelian group is the homomorphic image of a free abelian group.

25. Let G be a group, and let H and K be subgroups.

(a) For x and y in G, prove that xH ⇢ yK is empty or is a coset of H ⇢ K .
(b) Deduce from (a) that if H and K have finite index in G, then so does H ⇢K .

26. LetG be a free abelian group of finite rank n, and let H be a free abelian subgroup

of rank n. Prove that H has finite index in G.

27. Let G = S4 be the symmetric group on four letters.

(a) Find a Sylow 2-subgroup of G. How many Sylow 2-subgroups are there,

and why?

(b) Find a Sylow 3-subgroup of G. How many Sylow 3-subgroups are there,

and why?

28. Let H be a subgroup of a group G. Prove or disprove that the normalizer N (H)

of H in G is a normal subgroup of G.

29. How many elements of order 7 are there in a simple group of order 168?

30. Let G be a group of order pq2, where p and q are primes with p < q. Let Sp
and Sq be Sylow subgroups for the primes p and q. Prove that G is a semidirect

product of Sp and Sq with Sq normal.
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31. Suppose that G is a finite group and that H is a subgroup whose index in G is

a prime p. By considering the action of G on the set of subgroups conjugate

to H and considering the possibilities for the normalizer N (H), determine the

possibilities for the number of subgroups conjugate to H .

32. Let G be a group of order 24, let H be a subgroup of order 8, and assume that H

is not normal.

(a) Using the Sylow Theorems, explain why H has exactly 3 conjugates in G,

counting H itself as one.

(b) Show how to use the conjugates in (a) to define a homomorphism of G into

the symmetric groupS3 on three letters.

(c) Use the homomorphism of (b) to conclude that G is not simple.

33. LetG be a group of order 36. Arguing in the style of the previous problem, show

that there is a nontrivial homomorphism of G into the symmetric groupS4.

34. Let G be a group of order 2pq, where p and q are primes with 2 < p < q.

(a) Prove that if q + 1 = 2p, then a Sylow q-subgroup is normal.

(b) Suppose that q + 1 = 2p, let H be a Sylow p-subgroup, and let K be a

Sylow q-subgroup. Prove that at least one of H and K is normal, that the

set HK of products is a subgroup, and that the subgroup HK is cyclic of

index 2 in G.

Problems 35–38 concern the detection of isomorphisms among semidirect products.

For the first two of the problems, let H and K be groups, and let �1 : H ⇣ Aut K

and �2 : H ⇣ Aut K be homomorphisms.

35. Suppose that�2 = �1⌥� for someautomorphism� of H . Define� : H⇤�2K ⇣
H ⇤�1 K by �(h, k) = (�(h), k). Prove that � is an isomorphism.

36. Suppose that �2 = � ⌥ �1 for some inner automorphism � of Aut K in the sense

of Problem 15, i.e., � : Aut K ⇣ Aut K is to be given by �(x) = axa�1 with a
in Aut K . Define � : H ⇤�1 K ⇣ H ⇤�2 K by �(h, k) = (h, a(k)). Prove that

� is an isomorphism.

37. Suppose that p and q are primes and that the cyclic group Cp acts on Cq by

automorphisms with a nontrivial action. Prove that p divides q � 1.
38. Suppose that p and q are primes such that p divides q � 1. Let ↵1 and ↵2

be nontrivial homomorphisms from Cp to AutCq . Prove that Cp ⇤↵1 Cq
�=

Cp ⇤↵2 Cq , and conclude that there is only one nonabelian semidirect product

Cp ⇤↵ Cq up to isomorphism.

Problems 39–44 discuss properties of groups of order 8, obtaining a classification of

these groups up to isomorphism.

39. Prove that the five groups C8, C4⇤C2, C2⇤C2⇤C2, D4, and H8 are mutually

nonisomorphic and that the first three exhaust the abelian groups of order 8, apart

from isomorphisms.
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40. (a) Find a composition series for the 8-element dihedral group D4.

(b) Find a composition series for the 8-element quaternion group H8.

41. (a) Prove that every subgroup of the quaternion group H8 is normal.

(b) Identify the conjugacy classes in H8.

(c) Compute the order of Aut H8.

42. Suppose that G is a nonabelian group of order 8. Prove that G has an element of

order 4 but no element of order 8.

43. Let G be a nonabelian group of order 8, and let K be the copy of C4 generated

by some element of order 4. If G has some element of order 2 that is not in K ,

prove that G �= D4.

44. Let G be a nonabelian group of order 8, and let K be the copy of C4 generated

by some element of order 4. If G has no element of order 2 that is not in K ,

prove that G �= H8.

Problems 45–48 classify groups of order 12, making use of Proposition 4.61, Prob-

lem 15, and Problems 35–38. Let G be a group of order 12, let H be a Sylow

3-subgroup, and let K be a Sylow 2-subgroup. Proposition 4.61 says that at least one

of H and K is normal. Consequently there are three cases, and these are addressed

by the first three of the problems.

45. Verify that there are only two possibilities forG up to isomorphism ifG is abelian.

46. Suppose that K is normal, so that G �= H ⇤↵ K . Prove that either

(i) ↵ is trivial or

(ii) ↵ is nontrivial and K �= C2 ⇤ C2,

and deduce that G is abelian if (i) holds and that G �= A4 if (ii) holds.

47. Suppose that H is normal, so thatG = K ⇤↵ H . Prove that one of the conditions

(i) ↵ is trivial,

(ii) K �= C2 ⇤ C2 and ↵ is nontrivial,

(iii) K �= C4 and ↵ is nontrivial

holds, and deduce that G is abelian if (i) holds, that G �= D6 if (ii) holds, and

that G is nonabelian and is not isomorphic to A4 or D6 if (iii) holds.

48. In the setting of the previous problem, prove that there is one and only one group,

up to isomorphism, satisfying condition (iii), and find the order of each of its

elements.

Problems 49–52 assume that p and q are primes with p < q. The problems go in the

direction of classifying finite groups of order p2q.

49. If G is a group of order p2q, prove that either p2q = 12 or a Sylow q-subgroup

is normal.

50. If p2 divides q�1, exhibit three nonabelian groups of order p2q that aremutually
nonisomorphic.
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51. If p divides q � 1 but p2 does not divide q � 1, exhibit two nonabelian groups
of order p2q that are not isomorphic.

52. If p does not divide q � 1, prove that any group of order p2q is abelian.

Problems 53–54 concern nonabelian groups of order 27.

53. (a) Show that multiplication by the elements 1, 4, 7 mod 9 defines a nontrivial

action of Z/3Z on Z/9Z by automorphisms.
(b) Show from (a) that there exists a nonabelian group of order 27.

(c) Show that the group in (b) is generated by elements a and b that satisfy

a9 = b3 = b�1aba�4 = 1.

54. Show that any nonabelian group of order 27 having a subgroup H isomorphic to

C9 and an element of order 3 not lying in H is isomorphic to the group constructed

in the previous problem.

Problems 55–62 give a construction of infinitely many simple groups, some of them

finite and some infinite. Let F be a field. For n � 2, let SL(n, F) be the special linear

group for the space Fn of n-dimensional column vectors. The center Z of SL(n, F)

consists of the scalar multiples of the identity, the scalar being an nth root of 1. Let

PSL(n, F) = SL(n, F)/Z . It is known that PSL(n, F) is simple except for PSL(2, F2)
and PSL(2, F3). These problems will show that PSL(2, F) is simple if |F| > 5 and

F is not of characteristic 2. Most of the argument will consider SL(2, F), and the

passage to PSL will occur only at the very end. In Problems 56–61, G denotes a

normal subgroup of SL(2, F) that is not contained in the center Z , and it is to be

proved that G = SL(2, F).

55. Suppose that F is a finite field with q elements.
(a) By considering the possibilities for the first column of a matrix and then

considering the possibilities for the second column when the first column is

fixed, compute |GL(2, F)| as a function of q.
(b) By using the determinant homomorphism, compute |SL(2, F)| in terms of

|GL(2, F)|.
(c) Taking into account that F does not have characteristic 2, prove that

|PSL(2, F)| = 1
2
|SL(2, F)|.

(d) Show for a suitable finite field F with more than 5 elements that PSL(2, F)

has order 168.

56. Let M be a member of G that is not in Z . Since M is not scalar, there exists a

column vector u with Mu not a multiple of u. Define v = Mu, so that (u, v) is

an ordered basis of F2. By rewriting all matrices with the ordered basis (u, v),

show that there is no loss in generality in assuming that G contains a matrix

A =
⌥
0 �1
1 c

�
if it is ultimately shown that G = SL(2, F).
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57. Let a be a member of the multiplicative group F⇤ to be chosen shortly, and let
B be the member

⌥
ca a�1

�a 0

�
of SL(2, F). Prove that

(a) B�1A�1BA is upper triangular and is in G,
(b) B�1A�1BA has unequal diagonal entries if a4 = 1,

(c) the condition in (b) can be satisfied for a suitable choice of a under the

assumption that |F| > 5.

58. Suppose that C =
� x y

0 x�1
⇥
is a member of G for some x = ±1 and some y.

Taking D =
⌥
1 1

0 1

�
and forming CDC�1D�1, show that G contains a matrix

E =
⌥
1 ⌥

0 1

�
with ⌥ = 0.

59. By conjugating E by
⌥
� 0

0 ��1

�
, show that the set of ⌥ in F such that

⌥
1 ⌥

0 1

�
is in

G is closed under multiplication by squares and under addition and subtraction.

60. Using the identity x = 1
4
(x + 1)2 � 1

4
(x � 1)2, deduce from Problems 56–59

that G contains all matrices
⌥
1 ⌥

0 1

�
with ⌥ ◆ F.

61. Show that
⌥
1 ⌥

0 1

�
is conjugate to

⌥
1 0

�⌥ 1

�
, and show that the set of all matrices

⌥
1 ⌥

0 1

�
and

⌥
1 0

⌥⌘ 1

�
generates SL(2, F). Conclude that G = SL(2, F).

62. Using the First Isomorphism Theorem, conclude that the only normal subgroup

of PSL(2, F) other than {1} is PSL(2, F) itself.

Problems 63–73 briefly introduce the theory of error-correcting codes. Let F be the
finite field Z/2Z. The vector space Fn over F will be called Hamming space, and
its members are regarded as “words” (potential messages consisting of 0’s and 1’s).

The weight wt(c) of a word c is the number of nonzero entries in c. The Hamming

distance d(a, b) between words a = (a1, . . . , an) and b = (b1, . . . , bn) is the weight

of a � b, i.e., the number of indices i with 1 � i � n and ai = bi . A code is a

nonempty subset C of Fn , and the minimal distance ⌅(C) of a code is the smallest

value of d(a, b) for a and b in C with a = b. By convention if |C| = 1, take

⌅(C) = n + 1. One imagines that members of C , which are called code words, are

allowable messages, i.e., words that can be stored and retrieved, or transmitted and

received. A code with minimal distance ⌅ can then detect up to ⌅ � 1 errors in a
word ostensibly from C that has been retrieved from storage or has been received

in a transmission. The code can correct up to (⌅ � 1)/2 errors because no word of
Fn can be at distance � (⌅ � 1)/2 from more than one word in C , by Problem 63
below. The interest is in linear codes, those for which C is a vector subspace. It

is desirable that each message have a high percentage of content and a relatively

low percentage of further information used for error correction; thus a fundamental

theoretical problem for linear codes is to find the maximum dimension of a linear

code if n and a lower bound on the minimal distance for the code are given. As a

practical matter, information is likely to be processed in packets of a standard length,
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such as some power of 2. In many situations packets can be reprocessed if they have

been found to have errors. The initial interest is therefore in codes that can recognize

and possibly correct a small number of errors. The problems in this set are continued

at the ends of Chapters VII and IX.

63. Prove that the Hamming distance satisfies d(a, b) � d(a, c) + d(c, b), and

conclude that if a word w in Fn is at distance � (D � 1)/2 from two distinct

members of the linear code C , then ⌅(C) < D.

64. Explain why the minimal distance ⌅(C) of a linear code C = {0} is given by the
minimal weight of the nonzero words in C .

65. Fix n � 2. List ⌅(C) and dimC for the following elementary linear codes:

(a) C = 0.

(b) C = Fn .
(c) (Repetition code) C = {0, (1, 1, . . . , 1)}.
(d) (Parity-check code) C = {c ◆ Fn | wt(c) is even}. (Educational note: To

use this code, one sends the message in the first n � 1 bits and adjusts the
last bit so that the word is in C . If there is at most one error in the word, this

parity bit will tell when there is an error, but it will not tell where the error

occurs.)

66. One way to get a sense of what members of a linear code C in Fn have small
weight starts by making a basis for the code into the row vectors of a matrix and

row reducing the matrix.

(a) Taking into account the distinctionbetweencorner variables and independent

variables in the process of row reduction, show that every basis vector of C

has weight at most the sum of 1 and the number of independent variables.

Conclude that dimC + ⌅(C) � n + 1.

(b) Give an example of a linear code with ⌅(C) = 2 for which equality holds.

(c) Examining the argument for (a) more closely, show that 2 � dimC � n� 2
implies dimC + ⌅(C) � n.

67. LetC be a linear code with a basis consisting of the rows of

 
1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

⌦
. Show

that ⌅(C) = 3. Educational note: Thus for n = 6 and ⌅(C) = 3, we always have

dimC � 3, and equality is possible.
68. (Hamming codes) The Hamming code C7 of order 7 is a certain linear code

having dimC7 = 4 that will be seen to have ⌅(C7) = 3. The code words of a

basis, with their commas removed, may be taken as

1110000, 1001100, 0101010, 1101001.

The basis may be described as follows. Bits 1, 2, 4 are used as checks. The

remaining bits are used to form the standard basis of F4. What is put in bits
1, 2, 4 is the binary representation of the position of the nonzero entry in
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positions 3, 5, 6, 7. When all 16 members of C7 are listed in the order dictated

by the bits in positions 3, 5, 6, 7, the resulting list is

Decimal value Code word Decimal value Code word

in 3, 5, 6, 7 in 3, 5, 6, 7

0 0000000 8 1110000

1 1101001 9 0011001

2 0101010 10 1011010

3 1000011 11 0110011

4 1001100 12 0111100

5 0100101 13 1010101

6 1100110 14 0010110

7 0001111 15 1111111

For the general members of C7, not just the basis vectors, the check bits in

positions 1, 2, 4 may be described as follows: the bit in position 1 is a parity

bit for the positions among 3, 5, 6, 7 having a 1 in their binary expansions, the

bit in position 2 is a parity bit for the positions among 3, 5, 6, 7 having a 2 in

their binary expansions, and the bit in position 4 is a parity bit for the positions

among 3, 5, 6, 7 having a 4 in their binary expansions. The Hamming code C8
of order 8 is obtained from C7 by adjoining a parity bit in position 8.

(a) Prove that ⌅(C7) = 3. (Educational note: Thus for n = 7 and ⌅(C) = 3, we

always have dimC � 4, and equality is possible.)
(b) Prove that ⌅(C8) = 4.

(c) Describe how to form a generalization that replaces n = 8 by n = 2r with

r � 3. The Hamming codes that are obtained will be called C2r�1 and C2r .
(d) Prove that dimC2r�1 = dimC2r = 2r�r�1, ⌅(C2r�1) = 3, and ⌅(C2r ) =

4.

69. The matrix H =
 
1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

⌦
, when multiplied by any column vector c in

the Hamming code C7, performs the three parity checks done by bits 1, 2, 4 and

described in the previous problem. Therefore such a c must have Hc = 0.

(a) Prove that the condition works in the reverse direction as well—that Hc = 0

only if c is in C7.

(b) Deduce that if a received word r is not in C7 and if r is assumed to match

some word of C7 except in the i
th position, then Hr matches the i th column

of H and this fact determines the integer i . (Educational note: Thus there is

a simple procedure for testing whether a received word is a code word and

for deciding, in the case that it is not a code word, what unique bit to change

to convert it into a code word.)

70. Let r � 4. Prove for 2r�1 � n � 2r � 1 that any linear code C in Fn with
⌅(C) � 3 has dimC � n � r . Observe that equality holds for C = C2r�1.
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71. The weight enumerator polynomial of a linear code C is the polynomial

WC (X,Y ) in Z[X,Y ] given by WC (X,Y ) =
�n

k=0 Nk(C)Xn�kY k , where
Nk(C) is the number of words of weight k in C .

(a) Compute WC (X,Y ) for the following linear codes C : the 0 code, the code

Fn , the repetition code, the parity code, the code inProblem67, theHamming
code C7, and the Hamming code C8.

(b) Why is the coefficient of Xn in WC (X,Y ) necessarily equal to 1?

(c) Show that WC (X,Y ) =
�

c◆C X
n�wt(c)Ywt(c).

72. (Cyclic redundancy codes) Cyclic redundancy codes treat blocks of data as

coefficients of polynomials in F[X]. With the size n of data blocks fixed, one
fixes a monic generating polynomialG(X) = 1+a1X+· · ·+ag�1Xg�1+ Xg

with a nonzero constant term and with degree g suitably less than n. Data to

be transmitted are provided as members (b0, b1, . . . , bn�g�1) of Fn�g and are
converted into polynomials B(X) = b0 + b1X + · · · + bn�g�1Xn�g�1. Then
the n-tuple of coefficients of G(X)B(X) is transmitted. To decode a polynomial

P(X) that is received, one writes P(X) = G(X)Q(X) + R(X) via the division

algorithm. If R(X) = 0, it is assumed that P(X) is a code word. Otherwise

R(X) is definitely not a code word. Thus the code C amounts to the system

of coefficients of all polynomials G(X)B(X) with B(X) = 0 or deg B(X) �
n � g � 1. A basis of C is obtained by letting B(X) run through the monomials

1, X, . . . , Xn�g�1, and therefore dimC = n�g. TakeG(X) = 1+X+X2+X4

and n � 8. Prove that ⌅(C) = 2.

73. (CRC-8) The cyclic redundancy code C bearing the name CRC-8 has G(X) =
1 + X + X2 + X8. Prove that if 8 � n � 19, then ⌅(C) = 4. (Educational

note: It will follow from the theory of finite fields in Chapter IX, together with

the problems on coding theory at the end of that chapter, that n = 255 plays a

special role for this code, and ⌅(C) = 4 in that case.)

Problems 74–77 concern categories and functors. Problem 75 assumes knowledge of

point-set topology.

74. Let C be the category of all sets, the morphisms being the functions between sets.
Verify that the disjoint union of sets is a coproduct.

75. Let C be the category of all topological spaces, the morphisms being the contin-
uous functions. Let S be a nonempty set, and let Xs be a topological space for

each s in S.

(a) Show that the Cartesian product of the spaces Xs , with the product topology,

is a product of the Xs’s.

(b) Show that the disjoint union of the spaces Xs , topologized so that a set E is

open if and only if its intersection with each Xs is open, is a coproduct of

the Xs’s.
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76. Taking a cue from the example of a category in which products need not exist,

exhibit a category in which coproducts need not exist.

77. Let C be a category having just one object, say X , and suppose that everymember
of Morph(X, X) is an isomorphism. Prove that Morph(X, X) is a group under

the law of composition for the category. Can every group be realized in this way,

up to isomorphism?

Problems 78–80 introduce a notion of duality in category theory and use it to derive

Proposition 4.64 from Proposition 4.63. If C is a category, then the opposite category
C opp is defined to have Obj(C opp) = Obj(C) andMorphC opp(A, B) = MorphC(B, A).

If ⌥ denotes the law of composition in C, then the law of composition ⌥opp in C opp is
defined by g ⌥opp f = f ⌥ g for f ◆ MorphC opp(A, B) and g ◆ MorphC opp(B,C).

78. Verify that C opp is indeed a category, that (C opp)opp = C, and that to pass from
a diagram involving objects and morphisms in C to a corresponding diagram
involving the same objects and morphisms considered as in C opp, one leaves all
the vertices and labels alone and reverses the directions of all the arrows. Verify

also that the diagram of C commutes if and only if the diagram in C opp commutes.
79. Let C be the category of all sets, the morphisms in MorphC(A, B) being all

functions from A to B. Show that the morphisms in MorphC opp(A, B) cannot

necessarily all be regarded as functions from A to B.

80. Suppose that S is a nonempty set and that {Xs}s◆S is an object in C.
(a) Prove that if (X, {ps}s◆S) is a product of {Xs}s◆S in C, then (X, {ps}s◆S) is

a coproduct of {Xs}s◆S in C opp, and that if (X, {ps}s◆S) is a coproduct of
{Xs}s◆S in C, then (X, {ps}s◆S) is a product of {Xs}s◆S in C opp.

(b) Show that Proposition 4.64 for C follows from the validity of Proposition

4.63 for C opp.



CHAPTER V

Theory of a Single Linear Transformation

Abstract. This goal of this chapter is to find finitely many canonical representatives of each

similarity class of square matrices with entries in a field and correspondingly of each isomorphism

class of linear maps from a finite-dimensional vector space to itself.

Section 1 frames the problem in more detail. Section 2 develops the theory of determinants over

a commutative ring with identity in order to be able to work easily with characteristic polynomials

det(X I � A). The discussion is built around the principle of “permanence of identities,” which

allows for passage from certain identities with integer coefficients to identities with coefficients in

the ring in question.

Section 3 introduces the minimal polynomial of a square matrix or linear map. The Cayley–

Hamilton Theorem establishes that such a matrix satisfies its characteristic equation, and it follows

that the minimal polynomial divides the characteristic polynomial. It is proved that a matrix is

similar to a diagonal matrix if and only if its minimal polynomial is the product of distinct factors

of degree 1. In combination with the fact that two diagonal matrices are similar if and only if their

diagonal entries are permutations of one another, this result solves the canonical-form problem for

matrices whose minimal polynomial is the product of distinct factors of degree 1.

Section 4 introduces general projection operators from a vector space to itself and relates them to

vector-space direct-sum decompositions with finitely many summands. The summands of a direct-

sum decomposition are invariant under a linear map if and only if the linear map commutes with

each of the projections associated to the direct-sum decomposition.

Section 5 concerns the Primary Decomposition Theorem, whose subject is the operation of

a linear map L : V  V with V finite-dimensional. The statement is that if L has minimal

polynomial P1(X)l1 · · · Pk(X)lk with the Pj (X) distinct monic prime, then V has a unique direct-

sum decomposition in which the respective summands are the kernels of the linear maps Pj (L)lj ,

and moreover the minimal polynomial of the restriction of L to the j th summand is Pj (X)lj .

Sections 6–7 concern Jordan canonical form. For the case that the prime factors of the minimal

polynomial of a square matrix all have degree 1, the main theorem gives a canonical form under

similarity, saying that a given matrix is similar to one in “Jordan form” and that the Jordan form

is completely determined up to permutation of the constituent blocks. The theorem applies to all

square matrices if the field is algebraically closed, as is the case for C. The theorem is stated and
proved in Section 6, and Section 7 shows how to make computations in two different ways.

1. Introduction

This chapterwill workwith vector spaces over a commonfield of “scalars,” which

will be called K. As was observed near the end of Section IV.5, all the results

211
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concerning vector spaces in Chapter II remain valid when the scalars are taken

fromK rather than justQ orR orC. The ring of polynomials in one indeterminate
X over K will be denoted by K[X].
For the field C of complex numbers, every nonconstant polynomial in C[X]

has a root, according to the Fundamental Theorem of Algebra (Theorem 1.18).

Because of this fact some results in this chapter will take an especially simple

form when K = C, and this simple form will persist for any field with this

same property. Accordingly, we make a definition. Let us say that a field K is

algebraically closed if every nonconstant polynomial in K[X] has a root. We
shall work hard in Chapter IX to obtain examples of algebraically closed fields

beyond K = C, but let us mention now what a few of them are.

EXAMPLES.

(1) The subset of C of all roots of polynomials with rational coefficients is an
algebraically closed field.

(2) For each prime p, we have seen that any finite field of characteristic p has

pn elements for some n. It turns out that there is one and only one field of pn

elements, up to isomorphism, for each n. If we align them suitably for fixed p

and take their union on n, then the result is an algebraically closed field.

(3) IfK is any field, then there exists an algebraically closed field havingK as

a subfield. We shall prove this existence in Chapter IX by means of Zermelo’s

Well-Ordering Theorem (which appears in Section A5 of the appendix).

The general problem to be addressed in this chapter is to find “canonical forms”

for linear maps from finite-dimensional vector spaces to themselves, special ways

of realizing the linear maps that bring out some of their properties. Let us phrase

a specific problem of this kind completely in terms of linear algebra at first. Then

we can rephrase it in terms of a combination of linear algebra and group theory,

and we shall see how it fits into a more general context.

In terms of matrices, the specific problem is to find a way of deciding whether

two square matrices represent the same linear map in different bases. We know

from Proposition 2.17 that if L : V  V is linear on the finite-dimensional

vector space V and if A is the matrix of L relative to a particular ordered basis in

domain and range, then the matrix B of L in another ordered basis is of the form

B = C�1AC for some invertible matrix C , i.e., A and B are similar.1 Thus one
kind of solution to the problem would be to specify one representative of each

similarity class of square matrices. But this is not a convenient kind of answer

to look for; in fact, the matrices A =
⌃
1 0

0 2

⌥
and B =

⌃
2 0

0 1

⌥
are similar via

1A square matrix A with a two-sided inverse is sometimes said to be nonsingular. A square

matrix with no inverse is then said to be singular.
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C =
⌃
0 1

1 0

⌥
, but there is no particular reason to prefer one of A or B to the other.

Thus a “canonical form” for detecting similarity will allow more than one repre-

sentative of each similarity class (but typically only finitely many such represen-

tatives), and a supplementary statement will tell us when two such are similar.

So far, the best information thatwe have about solving this problemconcerning

square matrices comes from Section II.8. In that section the discussion of eigen-

values gave us some necessary conditions for similarity, but we did not obtain a

useful necessary and sufficient condition.

In terms of linear maps, what we seek for a linear L : V  V is to use the

geometry of L to construct an ordered basis of V such that L acts in a particularly

simple way on that ordered basis. Ideally the description of how L acts on the

ordered basis is to be detailed enough so that the matrix of L in that ordered basis

is completely determined by the description, even though the ordered basis may

not be determined by it. For example, if L were to have a basis of eigenvectors,

then the description could be that “L has an ordered basis of eigenvectors with

eigenvalues x1, . . . , xn .” In any ordered basis with this property, the matrix of L
would then be diagonal with diagonal entries x1, . . . , xn .
Suppose then that we have this kind of detailed description of how a linear

map L acts on some ordered basis. To what extent is L completely determined?

The answer is that L is determined up to an isomorphism of the underlying vector

space. In fact, suppose that L and M are linear maps from V to itself such that�
L

��

 
= A =

�
M

  

 
for some ordered bases � and  . Then

�
L

��

 
= A =

�
M

  

 
=
�

I

 �

 �
M

��

 �
I

� 

 

=
�

S

��

 �1 �
M

��

 �
S

��

 
=
�
S�1MS

��

 
,

where S : V  V is the invertible linear map defined by

�
S

��

 
=
�

I

� 

 
.

Hence L = S�1MS and SL = MS. In other words, if we think of having

two copies of V , one called V1 and the other called V2, that are isomorphic via

S : V1  V2, then the effect of M in V2 corresponds under S to the effect of L

in V1. In this sense, L is determined up to an isomorphism of V .

Thus we are looking for a geometric description that determines linear maps

up to isomorphism. Two linear maps L and M that are related in this way have

L = S�1MS for some invertible linearmap S. Passing tomatrices with respect to

some basis, we see that the matrices of L and M are to be similar. Consequently

our two problems, one to characterize similarity for matrices and the other to

characterize isomorphism for linear maps, come to the same thing.
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These two problems have an interpretation in terms of group theory. In the

case of n-by-n matrices, the group GL(n, K) of invertible matrices acts on the set
of all square matrices of size n by conjugation via (g, x) � gxg�1; the similarity
classes are exactly the orbits of this group action, and the canonical form is to

single out finitely many representatives from each orbit. In the case of linear

maps, the group GL(V ) of invertible linear maps on the finite-dimensional vector
space V acts by conjugation on the set of all linear maps from V into itself; the

isomorphism classes of linear maps on V are the orbits, and the canonical form

is to single out finitely many representatives from each orbit.

The above problem, whether for matrices or for linear maps, does not have a

unique acceptable solution. Nevertheless, the text of this chapter will ultimately

concentrate on one such solution, known as the “Jordan canonical form.”

Now that we have brought group theory into the statement of the problem, we

can put matters in a more general context: The situation is that some “important”

groupG acts in an importantwayon an “interesting”vector spaceofmatrices. The

canonical-formproblem for this situation is to single out finitelymany represen-

tatives of each orbit and give a way of deciding, in terms of these representatives,

whether two of the given matrices lie in the same orbit. We shall not pursue the

more general problem in the text at this time. However, Problem 1 at the end of

the chapter addresses one version beyond the one concerning similarity: to find

a canonical form for the action of GL(m, K) ⇤ GL(n, K) on m-by-n matrices
by ((g, h), x) = gxh�1. Some other groups that are important in this sense,
besides products of general linear groups, are introduced in Chapter VI, and a

problem at the end of Chapter VI reinterprets two theorems of that chapter as

further canonical-form theorems under the action of a general linear group.

Let us return to the canonical-form problems for similarity of matrices and

isomorphism of linear maps. The basic tool in studying these problems is the

characteristic polynomial of a matrix or a linear map, as in Chapter II. However,

we subtly used a special feature ofQ and R and C in working with characteristic
polynomials in Chapter II: we passed back and forth between the characteristic

polynomial det(⇥I � A) as a polynomial in one indeterminate (defined by its
expression after expanding it out) and as a polynomial function of ⇥, defined for
each value of ⇥ in Q or R or C, one value at a time. This passage was legitimate
because the homomorphism of the ring of polynomials in one indeterminate over

a field to the ring of polynomial functions is one-one when the field is infinite,

by Proposition 4.28c or Corollary 1.14. Some care is required, however, in

working with general fields, and we begin by supplying the necessary details for

justifying manipulations with determinants in a more general setting than earlier.

The end result will be that the characteristic polynomial is a polynomial in one

indeterminate, and we shall henceforth call that indeterminate X , rather than ⇥,
so as to emphasize this point of view.
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2. Determinants over Commutative Rings with Identity

Throughout this section let R be a commutative ring with identity. The main case

of interest for us at this time will be that R = K[X] is the polynomial ring in one
indeterminate X over a field K.
The set of n-by-n matrices with entries in R is an abelian group under entry-

by-entry addition, and matrix multiplication makes it into a ring with identity.

Following tradition, we shall usually write Mn(R) rather than Mnn(R) for this
ring. In this section we shall define a determinant function det : Mn(R) R and

establish some of its properties. For the case that R is a field, some of our earlier

proofs concerning determinants used vector-space concepts—bases, dimensions,

and so forth—and these are not available for general R. Yet most of the properties

of determinants remain valid for general R because of a phenomenon known as

permanence of identities. We shall not try to state a general theorem about

this principle but instead will be content to observe a pattern in how the relevant

identities are proved.

If A is in Mn(R), we define its determinant to be

det A =
�

⌅�Sn

(sgn ⌅ )A1⌅ (1)A2⌅ (2) · · · An⌅ (n),

in effect converting into a definition the formula obtained in Theorem 2.34dwhen

R is a field.

A sample of the kind of identity we have in mind is the formula

det(AB) = det A det B for A and B in Mn(R).

The key is that this formula says that two polynomials in 2n2 variables, with

integer coefficients, are equal whenever arbitrary members of R are substituted

for the variables. Thus let us introduce 2n2 indeterminates X11, X12, . . . , Xnn
and Y11,Y12, . . . ,Ynn to correspond to these variables. Forming the commutative
ring S = Z[X11, X12, . . . , Xnn,Y11,Y12, . . . ,Ynn], we assemble the matrices
X = [Xi j ], Y = [Yi j ], and XY =

⇤
k XikYk j

⌅
in Mn(S). Consider the two

members of S given by

det X detY

=
� 
⌅�Sn

(sgn ⌅ )X1⌅ (1)X2⌅ (2) · · · Xn⌅ (n)

⇥� 
⌅�Sn

(sgn ⌅ )Y1⌅ (1)Y2⌅ (2) · · ·Yn⌅ (n)

⇥

and det(XY ) =

⌅�Sn

(sgn ⌅ )(XY )1⌅ (1)(XY )2⌅ (2) · · · (XY )n⌅ (n),
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where (XY )i j =


k XikYk j . If we fix arbitrary elements x11, x12, . . . , xnn and
y11, y12, . . . , ynn of Z, then Proposition 4.30 gives us a unique substitution ho-
momorphism � : S  Z such that �(1) = 1, �(Xi j ) = xi j , and �(Yi j ) = yi j
for all i and j . Writing x = [xi j ] and y = [yi j ] and using that matrices with

integer entries have det(xy) = det x det y because Z is a subset of the fieldQ, we
see that�(det(XY )) = �(det X detY ) for each choice of x and y. Since Z is an
infinite integral domain and since x and y are arbitrary, Corollary 4.32 allows us

to deduce that

det(XY ) = det X detY

as an equality in S.

Nowwe pass from an identity in S to an identity in R. Let 1R be the identity in

R. Proposition 4.19 gives us a unique homomorphism of rings ⇧1 : Z  R

such that ⇧1(1) = 1R . If we fix arbitrary elements A11, A12, . . . , Ann and
B11, B12, . . . , Bnn of R, then Proposition 4.30 gives us a unique substitution
homomorphism ↵ : S  R such that ↵(1) = ⇧1(1) = 1R , ↵(Xi j ) = Ai j
for all i and j , and ↵(Yi j ) = Bi j for all i and j . Applying ↵ to the equality

det(XY ) = det X detY , we obtain the identity we sought, namely

det(AB) = det A det B for A and B in Mn(R).

Proposition 5.1. If R is a commutative ring with identity, then the determinant

function det : Mn(R) R has the following properties:

(a) det(AB) = det A det B,

(b) det I = 1,

(c) det At = det A,

(d) detC = det A+ det B if A, B, and C match in all rows but the j th and if
the j th row of C is the sum of the j th rows of A and B,

(e) det B = r det A if A and B match in all rows but the j th and if the j th row

of B is equal entry by entry to r times the j th row of A for some r in R,

(f) det A = 0 if A has two equal rows,

(g) det
⌃
A B

0 D

⌥
= det A det D if A is in Mk(R), D is in Ml(R), and k+ l = n.

REMARKS. Properties (d), (e), and (f) imply that usual steps in manipulating

determinants by row reduction continue to be valid.

PROOF. Part (a) was proved above, and parts (c) through (f) may be proved

in the same way from the corresponding facts about integer matrices in Section

II.7. Part (b) is immediate from the definition.

For (g), we first prove the result when the entries are in Q, and then we argue
in the same way as with (a) above. When the entries are in Q, row reduction
of D allows us to reduce to the case either that D has a row of 0’s or that D
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is the identity. If D has a row of 0’s, then det
⌃
A B

0 D

⌥
and det A det D are both

0 and hence are equal. If D is the identity, then further row reduction shows

that det
⌃
A B

0 I

⌥
= det

⌃
A 0

0 I

⌥
, and the right side equals det A = det A det I , as

required. �

Proposition 5.2 (expansion in cofactors). Let R be a commutative ring with

identity, let A be in Mn(R), and let ⇠Ai j be the member of Mn�1(R) obtained by

deleting the i th row and the j th column from A. Then

(a) for any j , det A =
n

i=1 (�1)i+ j Ai j det⇠Ai j , i.e., det Amay be calculated
by “expansion in cofactors” about the j th column,

(b) for any i , det A =
n

j=1 (�1)i+ j Ai j det⇠Ai j , i.e., det Amay be calculated
by “expansion in cofactors” about the i th row.

PROOF. This may be derived in the same way from Proposition 2.36 by using

the principle of permanence of identities. �

Corollary 5.3 (Vandermonde matrix and determinant). If r1, . . . , rn lie in a
commutative ring R with identity, then

det

�

✓✓✓✓⇣

1 1 · · · 1

r1 r2 · · · rn
r21 r22 · · · r2n
...

...
. . .

...
rn�11 rn�12 · · · rn�1n

✏

◆◆◆◆⌘
=
⌫

j>i

(rj � ri ).

PROOF. The derivation of this fromProposition 5.2 is the same as the derivation

of Corollary 2.37 from Proposition 2.35. �

Proposition 5.4 (Cramer’s rule). Let R be a commutative ring with identity,

let A be in Mn(R), and define Aadj in Mn(R) to be the classical adjoint of A,

namely the matrix with entries A
adj

i j = (�1)i+ j det⇠Aji , where ⇠Akl defined as in
the statement of Proposition 5.2. Then AAadj = AadjA = (det A)I .

PROOF. This may be derived from Proposition 2.38 in the same way as for

Propositions 5.1 and 5.2 using the principle of permanence of identities. �

Corollary 5.5. Let R be a commutative ring with identity, and let A be

in Mn(R). If det A is a unit in R, then A has a two-sided inverse in Mn(R).
Conversely if A has a one-sided inverse in Mn(R), then det A is a unit in R.

REMARK. If R is a field, then A and any associated linear map are often called

nonsingular if invertible, singular otherwise. When R is not a field, terminology

varies for what to call a noninvertible matrix whose determinant is not 0.
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PROOF. If det A is a unit in R, let r be its multiplicative inverse. Then

Proposition 5.4 shows that r Aadj is a two-sided inverse of A. Conversely if A

has, say, a left inverse B, then BA = I implies (det B)(det A) = det I = 1, and

det B is an inverse for det A. A similar argument applies if A has a right inverse.

�

3. Characteristic and Minimal Polynomials

Again let K be a field. If A is in Mn(K), the characteristic polynomial of A is
defined to be the member of the ring K[X] of polynomials in one indeterminate
X given by F(X) = det(X I � A). The material of Section 2 shows that F(X)
is well defined, being the determinant of a member of Mn(K[X]). It is apparent
from the definition of determinant in Section 2 that F(X) is a monic polynomial
of degree n with coefficient �Tr A = �

n
j=1 Aj j for X

n�1. Evaluating F(X)

at 0, we see that the constant term is (�1)n det A.
Since the determinant of a product in Mn(K[X]) is the product of the de-

terminants (Proposition 5.1a) and since C�1(X I � A)C = X I � C�1AC , we
have

det(X I � C�1AC) = (detC)�1 det(X I � A)(detC) = det(X I � A).

Thus similar matrices have equal characteristic polynomials. If V is an n-

dimensional vector space over K and L : V  V is linear, then the matrices of

L in any two ordered bases of V (the domain basis being assumed equal to the

range basis) are similar, and their characteristic polynomials are the same. Conse-

quently we can define the characteristic polynomial of L to be the characteristic

polynomial of any matrix of L .

The development of characteristic polynomials has thus be redone in a way

that is valid over any fieldKwithout making use of the ring homomorphism from
polynomials in one indeterminate over K to polynomial functions from K into

itself. The discussion in Section II.8 of eigenvectors and eigenvalues formembers

A of Mn(K) and for linear maps L : V  V with V finite-dimensional over K
is now meaningful, and there is no need to repeat it.

In particular, the eigenvalues of A and L are exactly the roots of their charac-

teristic polynomial, no matter what K is. If K is algebraically closed, then the

characteristic polynomial has a root, and consequently A and L each have at least

one eigenvalue.

If L : V  V is linear and V is finite-dimensional, then a vector subspace

U of V is said to be invariant under L if L(U) ⌃ U . In this case L
⇧⇧
U
is a

well-defined linear map from U to itself. Since L(U) ⌃ U , Proposition 2.25

shows that L : V  V factors through V/U as a linear map L : V/U  V/U .
We shall use this construction, the existence of eigenvalues in the algebraically

closed case, and an induction to prove the following.
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Proposition 5.6. If K is an algebraically closed field, if V is a finite-

dimensional vector space over K, and if L : V  V is linear, then V has

an ordered basis in which the matrix of L is upper triangular. Consequently any

member of Mn(K) is similar to an upper triangular matrix.

REMARKS. For an upper triangular matrix A =

�

⇣
c1 ⌅

...
0 cn

✏

⌘ in Mn(K), the

characteristic polynomial is
�n

j=1 (X � cj ) because the only nonzero term in the
definition of det(X I � A) is the one corresponding to the identity permutation.
Triangular form is not yet the canonical formwe seek for a square matrix because

a particular square matrix may be similar to infinitely many matrices in triangular

form.

PROOF. We proceed by induction on n = dim V , with the base case n = 1

being clear. Suppose that the result holds for all linear maps from spaces of

dimension < n to themselves. Given L : V  V with dim V = n, let v1 be
an eigenvector of L . This exists by the remarks before the proposition since K
is algebraically closed. Let U be the vector subspace Kv1. Then L(U) ⌃ U ,

and Proposition 2.25 shows that L : V  V factors through V/U as a linear

map L : V/U  V/U . Since dim V/U = n � 1, the inductive hypothesis
produces an ordered basis (v̄2, . . . , v̄n) of V/U such that the matrix of L is upper

triangular in this basis. This condition means that L(v̄j ) =
 j

i=2 ci j v̄i for j � 2.
Select coset representatives v2, . . . , vn of v̄2, . . . , v̄n so that v̄j = vj + U for

j � 2. Then L(vj + U) =
 j

i=2 ci j (vi + U) for j � 2, and hence L(vj )

lies in the coset
 j

i=2 ci jvi + U for j � 2. For each j � 1, we then have

L(vj ) =
 j

i=2 ci jvi + c1 jv1 for some scalar c1 j , and we see that (v1, . . . , vn) is
the required ordered basis. �

Let us return to the situation in whichK is any field. For a matrix A in Mn(K)
and a polynomial P in K[X], it is meaningful to form P(A). We can do so by
two equivalent methods, both useful. The concrete way of forming P(A) is as
P(A) = cn A

n + · · · + c1A + c0 I if P(X) = cn X
n + · · · + c1X + c0. The

abstract way is to form the subring T of Mn(K) generated by KI and A. This

subring is commutative. We let ⇧ : K  T be given by ⇧(c) = cI . Then the

universal mapping property ofK[X] given in Proposition 4.24 produces a unique
ring homomorphism ↵ : K[X]  T such that ↵(c) = cI for all c � K and

↵(X) = A. The value of P(A) is the element↵(P) of T .
For A in Mn(K), let us study all polynomials P such that P(A) = 0. For any

polynomial P and any invertible matrix C , we have

P(C�1AC) = C�1P(A)C
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because if P(X) = cn X
n + · · · + c1X + c0, then

P(C�1AC) = cn(C
�1AC)n + · · · + c1C

�1AC + c0 I

= C�1(cn A
n + · · · + c1A + c0 I )C.

Consequently if P(A) = 0, then P(C�1AC) = 0, and the set of matrices with

P(A) = 0 is closed under similarity. We shall make use of this observation a

little later in this section.

Proposition 5.7. If A is in Mn(K), then there exists a nonzero polynomial P
in K[X] such that P(A) = 0.

PROOF. The K vector space Mn(K) has dimension n2. Therefore the n2 + 1

matrices I, A, A2, . . . , An
2

are linearly dependent, and we have

c0 + c1A + c2A
2 + · · · + cn2 A

n2 = 0

for some set of scalars not all 0. Then P(A) = 0 for the polynomial P(X) =
c0+ c1X + c2X

2+· · ·+ cn2X
n2 ; this P is not the 0 polynomial since at least one

of the coefficients is not 0. �
ALTERNATIVE PROOF IF K IS ALGEBRAICALLY CLOSED. Since the set of poly-

nomials P with P(A) = 0 depends only on the similarity class of A, Proposition

5.6 shows that there is no loss of generality in assuming that A is upper triangular,

say of the form

�

⇣
⇥1 ⌅

...
0 ⇥n

✏

⌘. Then A � ⇥j I is upper triangular with 0 in the j th

diagonal entry, and
�n

j=1 (A � ⇥j I ) is upper triangular with 0 in all diagonal
entries. Therefore

��n
j=1 (A � ⇥j I )

⇥n = 0. �

With A fixed, we continue to consider the set of all polynomials P(X) such
that P(A) = 0. Let us think of P(A) as being computed by the abstract proce-
dure described above, namely as the image of A under the ring homomorphism

↵ : K[X] T such that ↵(c) = cI for all c � K and ↵(X) = A, where T is

the commutative subring of Mn(K) generated by KI and A. Then the set of all

polynomials P(X) with P(A) = 0 is the kernel of the ring homomorphism ↵.
This set is therefore an ideal, and Proposition 5.7 shows that the ideal is nonzero.

We shall apply the following proposition to this ideal.

Proposition 5.8. If I is a nonzero ideal in K[X], then there exists a unique
monic polynomial of lowest degree in I , and every member of I is the product

of this particular polynomial by some other polynomial.
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PROOF. Let B(X) be a nonzero member of I of lowest possible degree;
adjusting B by a scalar factor, we may assume that B is monic. If A is in I ,

then Proposition 1.12 produces polynomials Q and R such that A = BQ + R

and either R = 0 or deg R < deg B. Since I is an ideal, BQ is in I and hence

R = A � BQ is in I . From minimality of the degree of B, we conclude that

R = 0. Hence A = BQ, and A is exhibited as the product of B and some other

polynomial Q. If B1 is a secondmonic polynomial of lowest degree in I , then we

can take A = B1 to see that B1 = QB. Since deg B1 = deg B, we conclude that

deg Q = 0. Thus Q is a constant polynomial. Comparing the leading coefficients

of B and B1, we see that Q(X) = 1. �

With A fixed in Mn(K), let us apply Proposition 5.8 to the ideal of all polyno-
mials P inK[X] with P(A) = 0. The unique monic polynomial of lowest degree

in this ideal is called the minimal polynomial of A. Let us try to identify this

minimal polynomial.

Theorem 5.9 (Cayley–Hamilton Theorem). If A is in Mn(K) and if F(X) =
det(X I � A) is its characteristic polynomial, then F(A) = 0.

PROOF. Let T be the commutative subring of Mn(K) generated by KI and A,

and define a member B(X) of the ring T [X] by B(X) = X I � A. The (i, j)th

entry of B(X) is Bi j (X) = �i j X � Ai j , and F(X) = det B(X).

Let C(X) = B(X)adj denote the classical adjoint of B(X) as a member of
T [X]; the form of C(X) is given in the statement of Cramer’s rule (Proposition
5.4), and that proposition says that

B(X)C(X) = (det B(X))I = F(X)I.

The equality in the (i, j)th entry is the equality �i j F(X) =


j Bik(X)Ckj (X) of

members ofK[X]. Application of the substitution homomorphism X � A gives

�i j F(A) =

k

Bik(A)Ckj (A) =

k

(�ik A � Aik I )Ckj (A).

Multiplying on the right by the i th standard basis vector ei and summing on i , we

obtain the equality of vectors

F(A)ej =

i


k

(�ik Aei � Aikei )Ckj (A) =

k

Ckj (A)
�

i

(�ik Aei � Aikei )
⇥

since Ckj (A) is a scalar. But


i (�ik Aei � Aikei ) = Aek �


i Aikei = 0 for all

k, and therefore F(A)ej = 0. Since j is arbitrary, F(A) = 0. �
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Corollary 5.10. If A is in Mn(K), then the minimal polynomial of A divides
the characteristic polynomial of A.

PROOF. Theorem 5.9 shows that the characteristic polynomial of A lies in

the ideal of all polynomials vanishing on A. Then the corollary follows from

Proposition 5.8. �

For our matrix A in Mn(K), let F(X) be the characteristic polynomial, and let
M(X) be the minimal polynomial. By unique factorization (Theorem 1.17), the
monic polynomial F(X) has a factorization into powers of distinct prime monic
polynomials of the form

F(X) = P1(X)k1 · · · Pr (X)kr ,

and this factorization is unique up to the order of the factors. Since M(X) is a
monic polynomial dividing F(X), we must have

M(X) = P1(X)l1 · · · Pr (X)lr

with l1 ⌥ k1, . . . , lr ⌥ kr , by the same argument that deduced Corollary 1.7 from
unique factorization in the ring of integers. We shall see shortly that kj > 0

implies lj > 0 if Pj (X) is of degree 1, i.e., if Pj (X) is of the form X�⇥0; in other
words, if ⇥0 is an eigenvalue of A, then X � ⇥0 divides its minimal polynomial.
We return to this point in a moment. Problem 31 at the end of the chapter will

address the same question when Pj (X) has degree > 1.

EXAMPLES.

(1) In the 2-by-2 case,
⌃
c 0

0 c

⌥
has minimal polynomial M(X) = X � c, and

⌃
c 1

0 c

⌥
has M(X) = (X � c)2. Both matrices have characteristic polynomial

F(X) = (X � c)2.
(2) The k-by-k matrix �

✓✓⇣

c 1 0 ··· 0 0
0 c 1 ··· 0 0

...

0 0 0 ··· c 1
0 0 0 ··· 0 c

✏

◆◆⌘

with c in every diagonal entry, with 1 in every entry just above the diagonal, and

with 0 elsewhere has minimal polynomial M(X) = (X � c)k and characteristic
polynomial F(X) = (X � c)k .
(3) If a matrix A is made up exclusively of several blocks of the type in

Example 2 with the same c in each case, the i th block being of size ki , then the

minimal polynomial is M(X) = (X � c)maxi ki , and the characteristic polynomial
is F(X) = (X � c)

�
i ki .
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(4) If A is made up exclusively of several blocks as in Example 3 but with c

different for each block, then the minimal and characteristic polynomials for A

are obtained by multiplying the minimal and characteristic polynomials obtained

from Example 3 for the various c’s.

To proceed further, let us change our point of view, working with linear

maps L : V  V , where V is a finite-dimensional vector space over K. We
have already defined the characteristic polynomial of L to be the characteristic

polynomial of the matrix of L in any ordered basis; this is well defined because

similar matrices have the same characteristic polynomial. In analogous fashion

we can define theminimal polynomial of L to be the minimal polynomial of the

matrix of L in any ordered basis; this is well defined since, as we have seen, the

set of polynomials P in one indeterminate with P(A) = 0 is the same as the set

with P(C�1AC) = 0 if C is invertible.

Another way of approaching the matter of the minimal polynomial of L is to

define P(L) for any polynomial P in one indeterminate. As with matrices, we
can define P(L) either concretely by substituting L for X in the expression for
P(X), or we can define P(L) abstractly by appealing to the universal mapping
property in Proposition 4.24. For the latter we work with the subring T ⌦ of linear
maps from V to itself generated by KI and L . This subring is commutative. We

let ⇧ : K T ⌦ be given by ⇧(c) = cI , and we use Proposition 4.24 to obtain the

unique ring homomorphism ↵ : K[X] T ⌦ such that ↵(c) = cI for all c � K
and ↵(X) = L . Then P(L) is the element ↵(P) of T ⌦. Once P(L) is defined,
we observe that the set of polynomials P(X) such that P(L) = 0 is a nonzero

ideal inK[X]; Proposition 5.8 yields a uniquemonic polynomial of lowest degree
in this ideal, and that is the minimal polynomial of L .

Linear maps enable us to make convenient use of invariant subspaces. Recall

from earlier in the section that a vector subspace U of V is said to be invariant

under the linear map L : V  V if L(U) ⌃ U ; in this case we obtain associated
linear maps L

⇧⇧
U
: U  U and L : V/U  V/U . Relationships among

the characteristic polynomials and minimal polynomials of these linear maps are

given in the next two propositions.

Proposition 5.11. Let V be a finite-dimensional vector space over K, let
L : V  V be linear, letU be a proper nonzero invariant subspace under L , and

let L : V/U  V/U be the induced linear map on V/U . Then the characteristic

polynomials of L , L
⇧⇧
U
, and L are related by

det(X I � L) = det
�
X I � L

⇧⇧
U

⇥
det(X I � L).

PROOF. Let �U = (v1, . . . , vk) be an ordered basis of U , and extend �U to
an ordered basis � = (v1, . . . , vn) of V . Then � = (vk+1 + U, . . . , vn + U)
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is an ordered basis of V/U . Since U is invariant under L , the matrix of L in

the ordered basis � is of the form
⌃
A B

0 D

⌥
, where A is the matrix of L

⇧⇧
U
in the

ordered basis �U and D is the matrix of L in the ordered basis �. Passing to the
characteristic polynomials and applying Proposition 5.1g, we obtain the desired

conclusion. �

Proposition 5.12. Let V be a finite-dimensional vector space over K, let
L : V  V be linear, letU be a proper nonzero invariant subspace under L , and

let L : V/U  V/U be the induced linear map on V/U . Then the minimal

polynomials of L
⇧⇧
U
and L divide the minimal polynomial of L .

PROOF. Let N (X) be the minimal polynomial of L
⇧⇧
U
. Then N (X) is the

unique monic polynomial of lowest degree in the ideal of all polynomials P(X)
such that P(L)u = 0 for all u in U . The minimal polynomial M(X) of L has
this property because M(X)v = 0 for all v in V . Therefore M(X) is in the ideal
and is the product of N (X) and some other polynomial.

Among linearmaps S from V into V carryingU into itself, the function S � S

sending S to the linear map S induced on V/U is a homomorphism of rings. It

follows that if P(X) is a polynomial with P(L) = 0, then P(L) = 0. Taking

P(X) to be the minimal polynomial of L , we see that the minimal polynomial of

L is in the ideal of polynomials vanishing on L . Therefore it is the product of the

minimal polynomial of L and some other polynomial. �

Let us come back to the unproved assertion before the examples—that kj > 0

implies lj > 0 if Pr (X) has degree 1. We prove the linear-function version of
this statement as a corollary of Proposition 5.12.

Corollary 5.13. If L : V  V is linear on a finite-dimensional vector

space over K and if a first-degree polynomial X � ⇥0 divides the characteristic
polynomial of L , then X � ⇥0 divides the minimal polynomial of L .
PROOF. If X�⇥0 divides the characteristic polynomial, then⇥0 is an eigenvalue

of L , say with v as an eigenvector. Then U = Kv is an invariant subspace under
L , and the characteristic and minimal polynomials of L

⇧⇧
U
are both X � ⇥0. By

Proposition 5.12, X � ⇥0 divides the minimal polynomial of L . �

Theorem 5.14. If L : V  V is linear on a finite-dimensional vector space

over K, then L has a basis of eigenvectors if and only if the minimal polynomial
M(X) of L is the product of distinct factors of degree 1; in this case, M(X) equals
(X � ⇥1) · · · (X � ⇥k), where ⇥1, . . . , ⇥k are the distinct eigenvalues of L . Con-
sequently a matrix A in Mn(K) is similar to a diagonal matrix if and only if its
minimal polynomial is the product of distinct factors of degree 1.
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PROOF. The easy direction is that v1, . . . , vn are the members of a basis
of eigenvectors for L with respective eigenvalues µ1, . . . , µn . In this case, let

⇥1, . . . , ⇥k be the distinct members of the set of eigenvalues, with µi = ⇥j (i) for
some function j : {1, . . . , n} {1, . . . , k}. Then (L � ⇥j I )(v) = 0 for v equal
to any vi with j (i) = j . Since the linear maps L � ⇥j I commute as j varies,�k

j=1 (L�⇥j I )(v) = 0 forv equal to eachofv1, . . . , vn , hence for allv. Therefore

the minimal polynomial M(X) of L divides
�k

j=1 (X � ⇥j ). On the other hand,
Corollary 5.13 shows that the degM(X) � k. Hence M(X) =

�k
j=1 (X � ⇥j ).

Conversely suppose that M(X) =
�k

j=1 (X � ⇥j ) with the ⇥j distinct. If S1
is the linear map S1 =

�k
j=2 (L � ⇥j I ), then the formula for M(X) shows that

(L�⇥1 I )S1(v) = 0 for all v in V , and hence image S1 is a vector subspace of the
eigenspace of L for the eigenvalue ⇥1. If v is in ker S1 ◆ image S1, we then have
0 = S1(v) =

�k
j=2 (L � ⇥j I )(v) =

�k
j=2 (⇥1 � ⇥j )v. Since ⇥1 is distinct from

⇥2, . . . , ⇥k , we conclude that v = 0, hence that ker S1 ◆ image S1 = 0. Since

dimker S1 + dim image S1 = dim V , Corollary 2.29 therefore gives

dim V = dimker S1 + dim image S1

= dim(ker S1 + image S1) + dim(ker S1 ◆ image S1)
= dim(ker S1 + image S1).

Hence V = ker S1 + image S1. Since ker S1 ◆ image S1 = 0, we conclude that

V = ker S1 ⇧ image S1.
Actually, the same calculation of S1(v) as above shows that image S1 is the

full eigenspace of L for the eigenvalue ⇥1. In fact, if L(v) = ⇥1v, then S1(v) =�k
j=2 (⇥1�⇥j )v, and hence v equals the image under S1 of

��k
j=2 (⇥1�⇥j )

⇥�1
v.

Next, since L commutes with S1, ker S1 is an invariant subspace under L , and

⇥1 is not an eigenvalue of L
⇧⇧
ker S1

. Thus X � ⇥1 does not divide the minimal
polynomial of L

⇧⇧
ker S1

. On the other hand, S1 vanishes on the eigenspaces of

L for eigenvalues ⇥2, . . . , ⇥k , and Corollary 5.13 shows for j � 2 that X � ⇥j
divides the minimal polynomial of L

⇧⇧
ker S1

. Taking Proposition 5.12 into account,

we conclude that L
⇧⇧
ker S1

has minimal polynomial
�k

j=2 (X � ⇥j ). We have
succeeded in splitting off the eigenspace of L under ⇥1 as a direct summand and
reducing the proposition to the case of k � 1 eigenvalues. Thus induction shows
that V is the direct sum of its eigenspaces for the eigenvalues ⇥2, . . . , ⇥k , and L
thus has a basis of eigenvectors. �

Theorem5.14 comes close to solving the canonical-formproblemfor similarity

in the case of one kind of square matrices: if the minimal polynomial of A is the

product of distinct factors of degree 1, then A is similar to a diagonal matrix. To
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complete the solution for this case, all we have to do is to say when two diagonal

matrices are similar to each other; this step is handled by the following easy

proposition.

Proposition 5.15. Two diagonal matrices A and A⌦ in Mn(K) with respective
diagonal entries d1, . . . , dn and d

⌦
1, . . . , d

⌦
n are similar if and only if there is a

permutation ⌅ inSn such that d
⌦
j = d⌅ ( j) for all j .

PROOF. The respective characteristic polynomials are
�n

j=1 (X � dj ) and�n
j=1 (X � d ⌦j ). If A and A⌦ are similar, then the characteristic polynomials are

equal, and unique factorization (Theorem 1.17) shows that the factors X � d ⌦j
match the factors X � dj up to order. Conversely if there is a permutation ⌅ in
Sn such that d

⌦
j = d⌅ ( j) for all j , then the matrixC whose j

th column is e⌅ ( j) has

the property that A⌦ = C�1AC . �

Toproceed furtherwith obtaining canonical forms formatrices under similarity

and for linear maps under isomorphism, we shall use linear maps in ways that

we have not used them before. In particular, it will be convenient to be able to

recognize direct-sum decompositions from properties of linear maps. We take up

this matter in the next section.

4. Projection Operators

In this section we shall see how to recognize direct-sum decompositions of a

vector space V from the associated projection operators, and we shall relate these

operators to invariant subspaces under a linear map L : V  V .

If V = U1 ⇧U2, then the function E1 defined by E1(u1 + u2) = u1 when u1
is in U1 and u2 is in U2 is linear, satisfies E

2
1 = E1, and has image E1 = U1 and

ker E1 = U2. We call E1 the projection of V on U1 alongU2. A decomposition

of V as the direct sum of two vector spaces, when the first of the two spaces is

singled out, therefore determines a projection operator uniquely. A converse is

as follows.

Proposition 5.16. If V is a vector space and E1 : V  V is a linear map such

that E21 = E1, then there exists a direct-sum decomposition V = U1 ⇧U2 such
that E1 is the projection of V on U1 alongU2. In this case, (I � E1)

2 = I � E1,

and I � E1 is the projection of V on U2 along U1.

PROOF. DefineU1 = image E1 andU2 = ker E1. If v is in image E1 ◆ ker E1,
then E1(v) = 0 since v is in ker E1 and v = E1(w) for some w in V since
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v is in image E1. Then 0 = E1(v) = E21(w) = E1(w) = v, and therefore
image E1 ◆ ker E1 = 0.

If v � V is given , write v = E1(v)+ (I � E1)(v). Then E1(v) is in image E1,
and the computation E1(I � E1)(v) = (E1� E21)(v) = (E1� E1)(v) = 0 shows

that (I � E1)(v) = 0. Consequently V = image E1 + ker E1, and we conclude

that V = image E1 ⇧ ker E1.
Hence V = U1 ⇧ U2, where U1 = image E1 and U2 = ker E1. In this

notation, E1 is 0 on U2. If v is in U1, then v = E1(w) for some w, and we have
v = E1(w) = E21(w) = E1(E1(w)) = E1(v). Thus E1 is the identity on U1 and
is the projection as asserted.

For (I � E1)2, we have (I � E1)2 = I �2E1+ E21 = I �2E1+ E1 = I � E1,
and I � E1 is a projection. It is 1 on U2 and is 0 on U1, hence is the projection

of V on U2 along U1. �

Let us generalize these considerations to the situation that V is the direct sum

of r vector subspaces. The following facts about the situation in Proposition 5.16,

with the definition E2 = I � E1, are relevant to formulating the generalization:

(i) E1 and E2 have E
2
1 = E1 and E

2
2 = E2,

(ii) E1E2 = E2E1 = 0,

(iii) E1 + E2 = I .

Suppose that V = U1 ⇧ · · · ⇧ Ur . Define Ej (u1 + · · · + ur ) = uj . Then Ej
is linear from V to itself with E2j = Ej , and Proposition 5.16 shows that Ej is

the projection of V on Uj along the direct sum of the remainingUi ’s. The linear

maps E1, . . . , Er then satisfy

(i⌦) E2j = Ej for 1 ⌥ j ⌥ r ,
(ii⌦) Ej Ei = 0 if i �= j ,

(iii⌦) E1 + · · · + Er = I .

A converse is as follows.

Proposition 5.17. If V is a vector space and Ej : V  V for 1 ⌥ j ⌥ r are
linear maps such that

(a) Ej Ei = 0 if i �= j , and

(b) E1 + · · · + Er = I ,

then E2j = Ej for 1 ⌥ j ⌥ r and the vector subspaces Uj = image Ej have the

properties that V = U1⇧ · · ·⇧Ur and that Ej is the projection of V onUj along

the direct sum of all Ui but Uj .

PROOF. Multiplying (b) through by Ej on the left and applying (a) to each

term on the left side except the j th, we obtain E2j = Ej . Therefore, for each j ,

Ej is a projection on Uj along some vector subspace depending on j .
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If v is in V , then (b) gives v = E1(v) + · · · + Er (v) and shows that V =
U1 + · · · + Ur . Suppose that v is in the intersection of Uj with the sum of the

other Ui ’s. Write v =


i �= j ui with ui = Ei (wi ) in Ui . Applying Ej and using

the fact that v is in Uj , we obtain v = Ej (v) =


i �= j Ej Ei (wi ). Every term of
the right side is 0 by (a), and hence v = 0. Thus V = U1 ⇧ · · ·⇧Ur .

Since Ej Ei = 0 for i �= j , Ej is 0 on eachUi for i �= j . Therefore the sum of

all Ui except Uj is contained in the kernel of Ej . Since the image and kernel of

Ej intersect in 0, the sum of allUi exceptUj is exactly equal to the kernel of Ej .

This completes the proof. �

Proposition 5.18. Suppose that a vector space V is a direct sum V =
U1 ⇧ · · · ⇧ Ur of vector subspaces, that E1, . . . , Er are the corresponding pro-
jections, and that L : V  V is linear. Then all the subspaces Uj are invariant

under L if and only if LEj = Ej L for all j .

PROOF. If L(Uj ) ⌃ Uj for all j , then i �= j implies Ei L(Uj ) ⌃ Ei (Uj ) = 0

and LEi (Uj ) = L(0) = 0. Also, v � Uj implies Ej L(v) = L(v) = LEj (v).
Hence Ei L = Ei L for all i .

Conversely if Ej L = LEj and if v is in Uj , then Ej L(v) = LEj (v) = L(v)
shows that L(v) is in Uj . Therefore L(Uj ) ⌃ Uj for all j . �

5. Primary Decomposition

For the case that theminimal polynomial of a linearmap L : V  V is the product

of distinct factors of degree 1, Theorem 5.14 showed that V is a direct sum of its

eigenspaces. The proof used elementary vector-space techniques from Chapter

II but did not take full advantage of the machinery developed in the present

chapter for passing back and forth between polynomials in one indeterminate

and the values of polynomials on L . Let us therefore rework the proof of that

proposition, taking into account the discussion of projections in Section 4.

We seek an eigenspace decomposition V = V⇥1 ⇧ · · · ⇧ V⇥k relative to L .

Proposition 5.17 suggests looking for the corresponding decomposition of the

identity operator as a sum of projections: I = E1 + · · · + Ek . According to that

proposition, we obtain a direct-sum decomposition as soon as we obtain this kind

of sum of linear maps such that Ei Ej = 0 for i �= j . The Ej ’s will automatically

be projections.

The proof of Theorem 5.14 showed that S1 =
�k

j=2 (L�⇥j I ) has image equal
to the kernel of L � ⇥1 I , i.e., equal to the eigenspace for eigenvalue ⇥1. If v

is in this eigenspace, then S1(v) =
�k

j=2 (⇥1 � ⇥j )v. Hence E1 = c1S1, where

c�11 =
�k

j=2 (⇥1 � ⇥j ). The linear map S1 equals Q1(L), where Q1(X) =
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�k
j=2 (X � ⇥j ). Thus E1 = c1Q1(L). Similar remarks apply to the other

eigenspaces, and therefore the required decomposition of the identity operator

has to be of the form I = c1Q1(L) + · · · + ckQk(L) with c1, . . . , ck equal to
certain scalars.

ThepolynomialsQ1(X), . . . , Ql(X) are at hand from the start, each containing
all but one factor of the minimal polynomial. Moreover, i �= j implies that

Qi (L)Qj (L) =
⌃ k⌫

l=1
(L � ⇥l I )

⌥⌃ ⌫

l �=i, j
(L � ⇥l I )

⌥
.

The first factor on the right side is the value of the minimal polynomial of L with

L substituted for X . Hence the right side is 0, and we see that our linear maps

E1, . . . , Ek have Ei Ej = 0 for i �= j .

As soon as we allow nonconstant coefficients in place of the cj ’s in the above

argument, we obtain a generalization of Theorem 5.14 to the situation that the

minimal polynomial of L is arbitrary. The prime factors of the minimal polyno-

mial need not even be of degree 1. Hence the theorem applies to all L’s even if

K is not algebraically closed.

Theorem 5.19 (Primary Decomposition Theorem). Let L : V  V be linear

on a finite-dimensional vector space overK, and let M(X) = P1(X)l1 · · · Pk(X)lk

be the unique factorization of theminimal polynomialM(X) of L into the product
of powers of distinct monic prime polynomials Pj (X). DefineUj = ker(Pj (L)lj )
for 1 ⌥ j ⌥ k. Then

(a) V = U1 ⇧ · · ·⇧Uk ,

(b) the projection Ej of V on Uj along the sum of the other Ui ’s is of the

form Tj (L) for some polynomial Tj ,
(c) each vector subspace Uj is invariant under L ,

(d) any linear map from V to itself that commutes with L carries each Uj

into itself,

(e) any vector subspace W invariant under L has the property that

W = (W ◆U1)⇧ · · ·⇧ (W ◆Uk),

(f) the minimal polynomial of L j = L
⇧⇧
Uj
is Pj (X)lj .

REMARKS. The decomposition in (a) is called the primary decomposition of

V under L , and the vector subspaces Uj are called the primary subspaces of V

under L .

PROOF. For 1 ⌥ j ⌥ k, define Qj (X) = M(X)/Pj (X)lj . The ideal in
K[X] generated by Q1(X), . . . , Qk(X) consists of all products of a single monic
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polynomial D(X) by arbitrary polynomials, according to Proposition 5.8, and
D(X) has to divide each Qj (X). Since Qj (X) =

�
i �= j Pi (X)li , D(X) cannot

be divisible by any Pj (X), and consequently D(X) = 1. Thus there exist

polynomials R1(X), . . . , Rk(X) such that

1 = Q1(X)R1(X) + · · · + Qk(X)Rk(X).

Define Ej = Qj (L)Rj (L), so that E1 + · · · + Ek = I . If i �= j , then

Qi (X)Qj (X) = M(X)
�

r �=i, j Pr (X)lr . Since M(L) = 0, we see that Ei Ej = 0.

Proposition 5.17 says that each Ej is a projection. Also, it says that if Uj

denotes image Ej , then V = U1⇧ · · ·⇧Uk , and Ej is the projection onUj along

the sum of the other Ui ’s. With this definition of the Uj ’s (rather than the one in

the statement of the theorem), we have therefore shown that (a) and (b) hold.

Let us see that conclusions (c), (d), and (e) follow from (b). Conclusion

(c) holds by Proposition 5.18 since L commutes with Tj (L) whenever Tj is a
polynomial. For (d), if J : V  V is a linear map commuting with L , then

J commutes with each Ej since (b) shows that each Ej is of the form Tj (L).
From Proposition 5.18 we conclude that each Uj is invariant under J . For (e),

the subspace W certainly contains (W ◆U1)⇧ · · ·⇧ (W ◆Uk). For the reverse
containment suppose w is in W . Since Ej is of the form Tj (L) and since W
is invariant under L , Ej (w) is in W . But also Ej (w) is in Uj . Therefore the

expansion w =


j Ej (w) exhibits w as the sum of members of the spaces

W ◆Uj .

Next let us prove that Uj , as we have defined it, is given also by the definition

in the statement of the theorem. In other words, let us prove that

image Ej = ker(Pj (L)lj ). (⌅)

We need a preliminary fact. The polynomial Pj (X)lj has the property that

M(X) = Pj (X)lj Qj (X). Hence Pj (L)lj Qj (L) = M(L) = 0. Multiplying

by Rj (L), we obtain

Pj (L)lj Ej = 0. (⌅⌅)
Now suppose that v is in image Ej . Then Pj (L)lj (v) = Pj (L)lj Ej (v) = 0

by (⌅⌅), and hence image Ej ⌃ ker(Pj (L)lj ). For the reverse inclusion, let v be

in ker(Pj (L)lj ). For i �= j , Qi (X)Ri (X) =
��

r �=i, j Pr (X)lr
⇥
Ri (X)Pj (X)lj and

hence

Ei (v) =
��

r �=i, j Pr (L)lr
⇥
Ri (L)Pj (L)lj (v) = 0.

Writing v = E1(v) + · · · + Ek(v), we see that v = Ej (v). Thus ker(Pj (L)lj ) ⌃
image Ej . Therefore (⌅) holds, and Uj is as in the statement of the theorem.

Finally let us prove (f). Let Mj (X) be the minimal polynomial of L j = L
⇧⇧
Uj
.

From (⌅⌅) we see that Pj (L j )lj = 0. Hence Mj (X) divides Pj (X)lj . For the
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reverse divisibility we have Mj (L j ) = 0. Then certainly Mj (L j )Qj (L j )Rj (L j ),
which equals Mj (L)Ej on Uj , is 0 on Uj . Consider Mj (L)Ej on Ui = image Ei
when i �= j . Since Ej Ei = 0, Mj (L)Ej equals 0 on all Ui other than Uj . We

conclude thatMj (L)Ej equals 0 on V , i.e.,Mj (L)Qj (L)Rj (L) = 0. SinceM(X)
is the minimal polynomial of L , M(X) divides

Mj (X)Qj (X)Rj (X) = Mj (X)
�
1�


i �= j

Qi (X)Ri (X)
⇥
, (†)

and the factor Pj (X)lj of M(X) must divide the right side of (†). On that right

side, Pj (X)lj divides each Qi (X) with i �= j . Since Pj (X) does not divide 1,
Pj (X) does not divide the factor 1�


i �= j Qi (X)Ri (X). Since Pj (X) is prime,

Pj (X)lj and 1�


i �= j Qi (X)Ri (X) are relatively prime. We know that Pj (X)lj

divides the product of Mj (X) and 1 �


i �= j Qi (X)Ri (X), and consequently

Pj (X)lj divides Mj (X). This proves the reverse divisibility and completes the
proof of (f). �

6. Jordan Canonical Form

Nowwecan return to the canonical-formproblem for similarity of squarematrices

and isomorphism of linear maps from a finite-dimensional vector space to itself.

The answer obtained in this section will solve the problem completely if K
is algebraically closed but only partially if K fails to be algebraically closed.

Problems 32–40 at the end of the chapter extend the content of this section to give

a complete answer for general K.
The present theorem ismost easily stated in terms ofmatrices. A squarematrix

is called a Jordan block if it is of the form

�

✓✓✓✓✓✓✓✓⇣

c 1 0 0 · · · 0 0

c 1 0 · · · 0 0

c 1 · · · 0 0
. . .

. . .
...

...
c 1 0

c 1

c

✏

◆◆◆◆◆◆◆◆⌘

,

of some size and for some c inK, as in Example 2 of Section 3, with 0 everywhere
below the diagonal. A squarematrix is in Jordan form, or Jordan normal form,

if it is block diagonal and each block is a Jordan block. One can insist on grouping

the blocks for which the constant c is the same and arranging the blocks for given

c in some order, but these refinements are inessential.
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Theorem 5.20 (Jordan canonical form).

(a) If the field K is algebraically closed, then every square matrix over K is

similar to a matrix in Jordan form, and two matrices in Jordan form are similar

to each other if and only if their Jordan blocks can be permuted so as to match

exactly.

(b) For a general field K, a square matrix A is similar to a matrix in Jordan
form if and only if each prime factor of its minimal polynomial has degree 1.

Two matrices in Jordan form are similar to each other if and only if their Jordan

blocks can be permuted so as to match exactly.

The first step in proving existence of a matrix in Jordan form similar to a

given matrix is to use the Primary Decomposition Theorem (Theorem 5.19). We

think of the matrix A as operating on the space Kn of column vectors in the

usual way. The primary subspaces are uniquely defined vector subspaces of Kn ,

and we introduce an ordered basis, yet to be specified in full detail, within each

primary subspace. The union of these ordered bases gives an ordered basis of

Kn , and we change from the standard basis to this one. The result is that the

given matrix has been conjugated so that its appearance is block diagonal, each

block havingminimal polynomial equal to a power of a prime polynomial and the

prime polynomials all being different. Let us call these blocks primary blocks.

The effect of Theorem 5.19 has been to reduce matters to a consideration of each

primary block separately. The hypothesis either that K is algebraically closed

or, more generally, that the prime divisors of the minimal polynomial all have

degree 1 means that the minimal polynomial of the primary block under study

may be taken to be (X � c)l for some c in K and some integer l � 1. In terms
of Jordan form, we have isolated, for each c in K, what will turn out to be the
subspace of Kn corresponding to Jordan blocks with c in every diagonal entry.

Let us write B for a primary block with minimal polynomial (X � c)l . We
certainly have (B � cI )l = 0, and it follows that the matrix N = B � cI has

Nl = 0. A matrix N with Nl = 0 for some integer l � 0 is said to be nilpotent.
To prove the existence part of Theorem 5.20, it is enough to prove the following

theorem.

Theorem 5.21. For any field K, each nilpotent matrix N in Mn(K) is similar
to a matrix in Jordan form.

The proof of Theorem 5.21 and of the uniqueness statements in Theorem

5.20 will occupy the remainder of this section. It is implicit in Theorem 5.21

that a nilpotent matrix in Mn(K) has 0 as a root of its characteristic polynomial
with multiplicity n, in particular that the only prime polynomials dividing the

characteristic polynomial are the ones dividing the minimal polynomial. We
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proved such a fact about divisibility earlier for general square matrices when the

prime factor has degree 1, but we did not give a proof for general degree. We

pause for a moment to give a direct proof in the nilpotent case.

Lemma 5.22. If N is a nilpotent matrix in Mn(K ), then N has characteristic
polynomial Xn and satisfies Nn = 0.

PROOF. If Nl = 0, then

(X I�N )(Xl�1 I+Xl�2N+· · ·+X2Nl�3+XNl�2+Nl�1) = Xl I�Nl = Xl I.

Taking determinants and using Proposition 5.1 in the ring R = K[X], we obtain

det(X I � N ) det(other factor) = det(Xl I ) = Xln.

Thus det(X I �N ) divides Xln . By unique factorization inK[X], det(X I �N ) is
a constant times a power of X . Thenwemust have det(X I�N ) = Xn . Applying

the Cayley–Hamilton Theorem (Theorem 5.9), we obtain Nn = 0. �

Let us now prove the uniqueness statements in Theorem 5.20; this step will in

fact help orient us for the proof of Theorem 5.21. In (b), one thing we are to prove

is that if A is similar to a matrix in Jordan form, then every prime polynomial

dividing the minimal polynomial has degree 1. Since characteristic and minimal

polynomials are unchanged under similarity, we may assume that A is itself in

Jordan form. The characteristic and minimal polynomials of A are computed in

the four examples of Section 3. Since the minimal polynomial is the product of

polynomials of degree 1, the only primes dividing it have degree 1.

In both (a) and (b) of Theorem 5.20, we are to prove that the Jordan form

is unique up to permutation of the Jordan blocks. The matrix A determines

its characteristic polynomial, which determines the roots of the characteristic

polynomial, which are the diagonal entries of the Jordan form. Thus the sizes

of the primary blocks within the Jordan form are determined by A. Within each

primary block, we need to see that the sizes of the various Jordan blocks are

completely determined.

Thus we may assume that N is nilpotent and that C�1NC = J is in Jordan

form with 0’s on the diagonal. Although we shall make statements that apply

in all cases, the reader may be helped by referring to the particular matrix J in

Figure 5.1 and its powers in Figure 5.2.
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J =

�

✓✓✓✓✓✓✓✓✓⇣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0
0 1 0

0 0 1

0 0 0
0 1

0 0
0 1

0 0
0

✏

◆◆◆◆◆◆◆◆◆⌘

.

FIGURE 5.1. Example of a nilpotent matrix in Jordan form.

Each block of the Jordan form J contributes 1 to the dimension of the kernel

(or null space really) of J via the first column of the block, and hence

dim(ker J ) = #{Jordan blocks in J }.

In Figure 5.1 this number is 5.

J 2 =

�

✓✓✓✓✓✓✓✓✓⇣

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0
0 0 1

0 0 0

0 0 0
0 0

0 0
0 0

0 0
0

✏

◆◆◆◆◆◆◆◆◆⌘

and J 3 =

�

✓✓✓✓✓✓✓✓✓⇣

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0

0 0 0

0 0 0
0 0

0 0
0 0

0 0
0

✏

◆◆◆◆◆◆◆◆◆⌘

FIGURE 5.2. Powers of the nilpotent matrix in Figure 5.1.

When J is squared, the 1’s in J move up and to the right one more step beyond

the diagonal except that blocks of size 2 become 0. When J is cubed, the 1’s in

J move up and to the right one further step except that blocks of size 3 become 0.

Each time J is raised to a new power one higher than before, each block that

is nonzero in the old power contributes an additional 1 to the dimension of the

kernel. Thus we have

dim(ker J 2)� dim(ker J ) = #{Jordan blocks of size � 2}

dim(ker J 3)� dim(ker J 2) = #{Jordan blocks of size � 3};and

in the general case,

dim(ker J k)� dim(ker J k�1) = #{Jordan blocks of size � k} for k � 1.
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Lemma 5.22 says that J k = 0 when k is� the size of J , and the differences need
not be computed beyond that point.

For Figure 5.2 the values by inspection are dim(ker J 2) = 9 and dim(ker J 3) =
11; also J 4 = 0 and hence dim(ker J 4) = 12. The numbers of Jordan blocks

of size � k for k = 1, 2, 3, 4 are 5, 4, 2, 1, and these numbers indeed match the
differences 5� 0, 9� 5, 11� 9, 12� 11, as predicted by the above formula.
Since C�1NC = J , we have C�1NkC = J k and NkC = C Jk . The matrix

C is invertible, and therefore dim(ker J k) = dim(kerC Jk) = dim(ker NkC) =
dim(ker Nk). Hence

dim(ker Nk)� dim(ker Nk�1) = #{Jordan blocks of size � k} for k � 1,

and the number of Jordan blocks of each size is uniquely determined by properties

of N . This completes the proof of all the uniqueness statements in Theorem 5.20.

Now let us turn to the proof of Theorem 5.21, first giving the idea. The

argument involves a great many choices, and it may be helpful to understand it in

the context of Figures 5.1 and 5.2. Let⌦ = (e1, . . . , e12) be the standard ordered
basis of K12. The matrix J , when operating by multiplication on the left, moves

basis vectors to other basis vectors or to 0. Namely,

Je1 = 0, Je2 = e1, Je3 = e2, Je4 = e3,

Je5 = 0, Je6 = e5, Je7 = e6,

Je8 = 0, Je9 = e8,

Je10 = 0, Je11 = e10,

Je12 = 0,

with each line describing what happens for a single Jordan block. Let us think

of the given nilpotent matrix N as equal to

�
L

⌦⌦

 
for some linear map L . We

want to find a new ordered basis � = (v1, . . . , v12) in which the matrix of L is

J . In the expression C�1NC = J , the matrix C equals

�
I

⌦�

 
, and its columns

are expressions for v1, . . . , v12 in the basis ⌦, i.e., Cei = vi . For each index i ,
we have Jei = Jei�1 or Jei = 0. The formula NC = C J , when applied to ei ,

therefore says that

Nvi = NCei = C Jei =
⌦
Cei�1 = vi�1 if Jei = ei�1,

0 if Jei = 0.

Thus we are looking for an ordered basis such that N sends each member of the

basis either into the previous member or into 0. The procedure in this example
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will be to pick out v4 as a vector not annihilated by N
3, obtain v3, v2, v1, from

it by successively applying N , pick out v7 as a vector not annihilated by N
2 and

independentofwhat has been found, obtainv6, v5 from it by successively applying
N , and so on. It is necessary to check that the appropriate linear independence

can be maintained, and that step will be what the proof is really about.

The proof of Theorem 5.21 will now be given in the general case. The core of

the argument concerns linear maps and appears as three lemmas. Afterward the

results of the lemmas will be interpreted in terms of matrices. For all the lemmas

let V be an n-dimensional vector space over K, and let N : V  V be linear

with Nn = 0. Define Kj = ker N j , so that

0 = K0 ⌃ K1 ⌃ K2 ⌃ · · · ⌃ Kn = V .

Lemma 5.23. Suppose j � 1 and suppose Sj is any vector subspace of V such
that Kj+1 = Kj ⇧ Sj . Then N is one-one from Sj into Kj and N (Sj )◆Kj�1 = 0.

PROOF. Since N (ker N j+1) ⌃ ker N j , we obtain N (Sj ) ⌃ Kj ; thus N indeed

sends Sj into Kj . To see that N is one-one from Sj into Kj , suppose that s is a

member of Sj with N (s) = 0. Then s is in K1. Since j � 1, K1 ⌃ Kj . Thus s

is in Kj . Since Kj ◆ Sj = 0, s is 0. Hence N is one-one from Sj into Kj . To see

that N (Sj ) ◆ Kj�1 = 0, suppose s is a member of Sj with N (s) in Kj�1. Then
0 = N j�1(N (s)) = N j (s) shows that s is in Kj . Since Kj ◆ Sj = 0, s equals 0.

�

Lemma 5.24. Define Un = Wn = 0. For 0 ⌥ j ⌥ n � 1, there exist vector
subspaces Uj and Wj of Kj+1 such that

Kj+1 = Kj ⇧Uj ⇧Wj ,

Uj = N (Uj+1 ⇧Wj+1),

N : Uj+1 ⇧Wj+1 Uj is one-one.and

PROOF. Define Un�1 = N (Un ⇧Wn) = 0, and let Wn�1 be a vector subspace
such that V = Kn = Kn�1 ⇧ Wn�1. Put Sn�1 = Un�1 ⇧ Wn�1. Proceeding
inductively downward, suppose that Un,Un�1, . . . ,Uj+1,Wn,Wn�1, . . . ,Wj+1
have been defined so that Uk = N (Uk+1 ⇧ Wk+1), N : Uk+1 ⇧ Wk+1  Uk is

one-one, and Kk+1 = Kk ⇧ Uk ⇧ Wk whenever k satisfies j < k ⌥ n � 1. We
put Sk = Uk ⇧ Wk for these values of k, and then Sk satisfies the hypothesis of

Lemma 5.23 whenever k satisfies j < k ⌥ n � 1. We now construct Uj and Wj .

We put Uj = N (Sj+1). Since Sj+1 satisfies the hypothesis of Lemma 5.23, we
see that Uj ⌃ Kj+1, N is one-one from Sj+1 into Uj , and Uj ◆ Kj = 0. Thus

we can find a vector subspaceWj with Kj+1 = Kj ⇧Uj ⇧Wj , and the inductive

construction is complete. �
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Lemma 5.25. The vector subspaces of Lemma 5.24 satisfy

V = U0 ⇧W0 ⇧U1 ⇧W1 ⇧ · · ·⇧Un�1 ⇧Wn�1.

PROOF. Iterated use of Lemma 5.24 gives

V = Kn = Kn�1 ⇧ (Un�1 ⇧Wn�1)

= Kn�2 ⇧ (Un�2 ⇧Wn�2)⇧ (Un�1 ⇧Wn�1)

= · · · = K0 ⇧ (U0 ⇧W0)⇧ · · ·⇧ (Un�1 ⇧Wn�1)

= (U0 ⇧W0)⇧ · · ·⇧ (Un�1 ⇧Wn�1),

the last step holding since K0 = 0, K0 being the kernel of the identity function.

�

PROOF OF THEOREM 5.21. We regard N as acting on V = Kn bymultiplication

on the left, and we describe an ordered basis in which the matrix of N is in Jordan

form. For 0 ⌥ j ⌥ n � 1, form a basis of the vector subspace Wj of Lemma

5.24, and let v( j) be a typical member of this basis. Each v( j) will be used as the

last basis vector corresponding to a Jordan block of size j + 1. The full ordered

basis for that Jordan block will therefore be N jv( j), N j�1v( j), . . . , Nv( j), v( j).

The theorem will be proved if we show that the union of these sets as j and v( j)

vary is a basis of Kn and that N j+1v( j) = 0 for all j and v( j).

From the first conclusion of Lemma 5.24 we see for j � 0 that Wj ⌃ Kj+1,
and hence N j+1(Wj ) = 0. Therefore N j+1v( j) = 0 for all j and v( j).

Let us prove by induction downward on j that a basis ofUj⇧Wj consists of all

v( j) and all Nkv( j+k) for k > 0. The base case of the induction is j = n� 1, and
the statement holds in that case sinceUn�1 = 0 and since the vectors v(n�1) form
a basis ofWn�1. The inductive hypothesis is that all v

( j+1) and all Nkv( j+1+k) for
k > 0 together form a basis of Uj+1 ⇧ Wj+1. The second and third conclusions
of Lemma 5.24 together show that all Nv( j+1) and all Nk+1v( j+1+k) for k > 0

together form a basis of Uj . In other words, all N
kv( j+k) with k > 0 together

form a basis of Uj . The vectors v( j) by construction form a basis of Wj , and

Uj ◆Wj = 0. Therefore the union of these separate bases is a basis forUj ⇧Wj ,

and the induction is complete.

Taking the union of the bases of Uj ⇧Wj for all j and applying Lemma 5.25,

we see that we have a basis of V = Kn . This shows that the desired set is a basis

of Kn and completes the proof of Theorem 5.21. �
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7. Computations with Jordan Form

Let us illustrate the computation of Jordan form and the change-of-basis matrix

with a few examples. We are given a matrix A and we seek J and C with

J = C�1AC . We regard A as the matrix of some linear L in the standard ordered
basis⌦, and we regard J as the matrix of L in some other ordered basis �. Then

C =
�

I

⌦�

 
, and so the columns ofC give the members of � written as ordinary

column vectors (in the standard ordered basis).

EXAMPLE 1. This example will be a nilpotent matrix, and we shall compute J

and C merely by interpreting the proof of Theorem 5.21 in concrete terms. Let

A =
��1 1 0

�1 1 0

�1 1 0

�
.

The first step is to compute the characteristic polynomial, which is

det(X I � A) = det

�
X+1 �1 0

1 X�1 0
1 �1 X

 
= X det

⌃
X+1 �1
1 X�1

⌥
= X3.

Then A3 = 0 by the Cayley–Hamilton Theorem (Theorem 5.9), and A is indeed

nilpotent. The diagonal entries of J are thus all 0, and we have to compute the

sizes of the various Jordan blocks. To do so, we compute the dimension of the

kernel of each power of A. The dimension of the kernel of a matrix equals the

number of independent variables when we solve AX = 0 by row reduction. With

the first power of A, the variable x1 is dependent, and x2 and x3 are independent.

Also, A2 = 0. Thus

dim(ker A0) = 0, dim(ker A) = 2, and dim(ker A2) = 3.

Hence

#{Jordan blocks of size � 1} = dim(ker A)� dim(ker A0) = 2� 0 = 2,

#{Jordan blocks of size � 2} = dim(ker A2)� dim(ker A) = 3� 2 = 1.

From these equalities we see that one Jordan block has size 2 and the other has

size 1. Thus

J =
�
0 1

0 0
0

 
.
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Wewant to set up vector subspaces as inLemma5.24 so that Kj+1 = Kj⇧Uj⇧Wj

and Uj = A(Uj+1 ⇧Wj+1) for 0 ⌥ j ⌥ 2. Since K3 = K2, the equations begin

with K2 = · · · and are

K2 = K1 ⇧ 0⇧W1, U0 = A(0⇧W1), K1 = K0 ⇧U0 ⇧W0.

Here K2 = K3 and K1 is the subspace of all X =
�
x1

x2

x3

 
such that AX = 0.

The space W1 is to satisfy K2 = K1 ⇧W1, and we see that W1 is 1-dimensional.

Let {v(1)} be a basis of the 1-dimensional vector subspace W1. Then U0 is

1-dimensionalwith basis {Av(1)}. The subspace K1 is 2-dimensional and contains
U0. The spaceW0 is to satisfyK1 = U0⇧W0, andwe see thatW0 is 1-dimensional.

Let {v(0)} be a basis ofW0. Then the respective columns of C may be taken to be

Av(1), v(1), v(0).

Let us compute these vectors.

If we extend a basis of K1 to a basis of K2, then W1 may be taken to be the

linear span of the added vector. To obtain a basis of K1, we compute that the

reduced row-echelon form of A is

�
1 �1 0
0 0 0

0 0 0

 
, and the resulting system consists of

the single equation x1 � x2 = 0. Thus x1 = x2, and

�
x1

x2

x3

 
= x2

�
1

1

0

 
+ x3

�
0

0

1

 
.

The coefficients of x2 and x3 on the right side form a basis of K1, and we are to

choose a vector that is not a linear combination of these. Thus we can take v(1) =�
1

0

0

 
as the basis vector ofW1. ThenU0 = A(W1) has Av(1) = A

�
1

0

0

 
=
��1
�1
�1

 

as a basis, and the basis of W0 may be taken as any vector in K1 but not U0. We

can take this basis to consist of v(0) =
�
0

0

1

 
.

Lining up our three basis vectors as the columns of C gives us C =
��1 1 0
�1 0 0
�1 0 1

 
.

Computation gives C�1 =
�
0 �1 0
1 �1 0
0 �1 1

 
, and we readily check that C�1AC = J .

EXAMPLE 2. We continue with A and J as in Example 1, but we compute the

columns of C without directly following the proof of Theorem 5.21. The method

starts from the fact that each Jordan block corresponds to a 1-dimensional space

of eigenvectors, and then we backtrack to find vectors corresponding to the other
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columns. For this particular A, we know that the three columns of C are to be of

the form v1 = Av(1), v2 = v(1), and v3 = v(0). The vectors v1 and v3 together
span the 0 eigenspace of A. We find all the 0 eigenvectors, writing them as a

two-parameter family. This eigenspace is just K1 = ker A, and we found in

Example 1 that K1 =
⌦�

x2

x2

x3

 ↵
. One of these vectors is to be v1, and it has to

equal Av2. Thus we solve Av2 =
�
x2

x2

x3

 
. Applying the solution procedure yields

�
1

0

0

�1
0

0

0

0

0

�x2
0

x3�x2

�
.

This system has no solutions unless x3 � x2 = 0. If we take x2 = x3 = �1, then
we obtain the same first two columns of C as in Example 1, and any vector in K1

independent of

��1
�1
�1

 
may be taken as the third column.

EXAMPLE 3. Let

A =
�

2 1 0

�1 4 0

�1 2 2

�
.

Direct calculation shows that the characteristic polynomial is det(X I � A) =
X3� 8X2 + 21X � 18 = (X � 2)(X � 3)2. The possibilities for J are therefore

�
3 0 0

0 3 0

0 0 2

 
and

�
3 1 0

0 3 0

0 0 2

 
;

the first one will be correct if the dimension of the eigenspace for the eigenvalue 3

is 2, and the second one will be correct if that dimension is 1.

The third column of C corresponds to an eigenvector for the eigenvalue 2,

hence to a nonzero solution of (A � 2I )v = 0. The solutions are v = k

�
0

0

1

 
,

and we can therefore use

�
0

0

1

 
.

For the first two columns ofC , we have to find ker(A�3I ) no matter which of
the methods we use, the one in Example 1 or the one in Example 2. Solving the

system of equations, we obtain all vectors in the space

⌦
z

�
1

1

1

 ↵
. The dimension

of the space is 1, and the second possibility for the Jordan form is the correct one.

Following the method of Example 1 to find the columns of C means that we

pick a basis of this kernel and extend it to a basis of ker(A � 3I )2. A basis of



8. Problems 241

ker(A� 3I ) consists of the vector
�
1

1

1

 
. The matrix (A� 3I )2 is

�
0 0 0

0 0 0

0 �1 1

 
, and

the solution procedure leads to the formula

�
a

b

c

 
= a

�
1

0

0

 
+ c

�
0

1

1

 

for its kernel. The vector

�
1

1

1

 
arises from a = 1 and c = 1. We are to make an

independent choice, say a = 1 and c = 0. Then the second basis vector to use is�
1

0

0

 
. This becomes the second column of C , and the first column then has to be

(A � 3I )
�
1

0

0

 
=
��1
�1
�1

 
. The result is that C =

��1 1 0
�1 0 0
�1 0 1

 
.

Following the method of Example 2 for this example means that we retain the

entire kernel of A � 3I , namely all vectors v1 = z

�
1

1

1

 
, as candidates for the

first column of C . The second column is to satisfy (A � 3I )v2 = v1. Solving

leads to v2 = z

��1
0

0

 
+ c

�
1

1

1

 
. In contrast to Example 2, there is no potential

contradictory equation. So we choose z and then c. If we take z = 1 and

c = 0, we find that the first two columns of C are to be

�
1

1

1

 
and

��1
0

0

 
. Then

C =
�
1 �1 0
1 0 0

1 0 1

 
.

For any example in which we can factor the characteristic polynomial exactly,

either of the two methods used above will work. The first method appears

complicated but uses numbers throughout; it tends to be more efficient with

large examples involving high-degree minimal polynomials. The second method

appears direct but requires solving equations with symbolic variables; it tends to

be more efficient for relatively simple examples.

8. Problems

In Problems 1–25 all vector spaces are assumed finite-dimensional, and all linear

transformations are assumed defined from such spaces into themselves. Unless

information is given to the contrary, the underlying field K is assumed arbitrary.

1. Let Mmn(C) be the vector space of m-by-n complex matrices. The group

GL(m, C)⇤ GL(n, C) acts on Mmn(C) by ((g, h), x) � gxh�1, where gxh�1

denotes a matrix product. Do the following:
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(a) Verify that this is indeed a group action.

(b) Prove that two members of Mmn(C) lie in the same orbit if and only if they

have the same rank.

(c) For each possible rank, give an example of a member of Mmn(C) with that

rank.

2. Prove that a member of Mn(K) is invertible if and only if the constant term of its

minimal polynomial is different from 0.

3. Suppose that L : V  V is a linear map with minimal polynomial M(X) =
P1(X)l1 · · · Pk(X)lk and that V = U ⇧ W with U and W both invariant under

L . Let P1(X)r1 · · · Pk(X)rk and P1(X)s1 · · · Pk(X)sk be the respective minimal

polynomials of L
⇧⇧
U
and L

⇧⇧
W
. Prove that lj = max(rj , sj ) for 1 ⌥ j ⌥ k.

4. (a) If A and B are in Mn(K), if P(X) is a polynomial such that P(AB) = 0,

and if Q(X) = X P(X), prove that Q(BA) = 0.

(b) What can be inferred from (a) about the relationship between the minimal

polynomials of AB and of BA?

5. (a) Suppose that D and D⌦ are in Mn(K), are similar to diagonal matrices, and

have DD⌦ = D⌦D. Prove that there is a matrix C such that C�1DC and

C�1D⌦C are both diagonal.
(b) Give an example of two nilpotent matrices N and N ⌦ in Mn(K)with NN ⌦ =

N ⌦N such that there is noC withC�1NC andC�1N ⌦C both in Jordan form.

6. (a) Prove that the matrix of a projection is similar to a diagonal matrix. What

are the eigenvalues?

(b) Give a necessary and sufficient condition for two projections involving the

same V to be given by similar matrices.

7. Let E : V  V and F : V  V be projections. Prove that E and F have

(a) the same image if and only if EF = F and FE = E ,

(b) the same kernel if and only if EF = E and FE = F .

8. Let E : V  V and F : V  V be projections. Prove that EF is a projection

if EF = FE . Prove or disprove a converse.

9. An involution on V is a linear map U : V  V such that U2 = I . Show

that the equationU = 2E � 1 establishes a one-one correspondence between all
projections E and all involutions U .

9A. Explain how the proof of the converse half of Theorem 5.14 greatly simplifies

once the Primary Decomposition Theorem (Theorem 5.19) is available.
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10. Let L : V  V be linear. Prove that there exist vector subspacesU andW of V

such that

(i) V = U ⇧W ,

(ii) L(U) ⌃ U and L(W ) ⌃ W ,

(iii) L is nilpotent on U ,

(iv) L is nonsingular on W .

11. Prove that the vector subspaces U and W in the previous problem are uniquely

characterized by (i) through (iv).

12. (Special case of Jordan–Chevalley decomposition) Let L : V  V be a

linear map, and suppose that its minimal polynomial is of the form M(X) =�k
j=1 (X�⇥j )lj with the ⇥j distinct. Let V = U1⇧· · ·⇧Uk be the corresponding

primary decomposition of V , and define D : V  V by D = ⇥1E1+· · ·+⇥k Ek ,
where E1, . . . , Ek are the projections associatedwith the primary decomposition.

Finally put N = L � D. Prove that

(a) L = D + N ,

(b) D has a basis of eigenvectors,

(c) N is nilpotent, i.e., has N dim V = 0,

(d) DN = ND.

(e) D and N are given by unique polynomials in L such that each of the

polynomials is equal to 0 or has degree less than the degree of M(X),

(f) the minimal polynomial of D is
�k

j=1 (X � ⇥j ),
(g) the minimal polynomial of N is Xmax lj .

13. (Special case of Jordan–Chevalley decomposition, continued) In the previous

problem with L given, prove that a decomposition L = D + N is uniquely

determined by properties (a) through (d). Avoid using (e) in the argument.

14. (a) Let N ⌦ be a nilpotent square matrix of size n⌦. Prove for arbitrary c � K that

the characteristic polynomial of N ⌦ + cI is (X � c)n⌦ , and deduce that the
only eigenvalue of N ⌦ + cI is c.

(b) Let L = D+N be the decomposition in Problems 12 and 13 of a squarema-

trix L of size n. Prove that L and D have the same characteristic polynomial.

15. For the complex matrix A =
⌃
�5 9
�4 7

⌥
, find a Jordan-form matrix J and an

invertible matrix C such that J = C�1AC .

16. For the complex matrix A =
�

4 1 �1
�8 �2 2

8 2 �2

 
, find a Jordan-form matrix J and an

invertible matrix C such that J = C�1AC .
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17. For the upper triangular matrix

A =

�

✓✓✓✓⇣

2 0 0 1 1 0 0

2 0 0 0 1 1

2 0 1 0 0

2 0 1 2

2 1 1

2 1

3

✏

◆◆◆◆⌘
,

find a Jordan-form matrix J and an invertible matrix C such that J = C�1AC .

18. (a) For M3(C), prove that any two matrices with the same minimal polynomial

and the same characteristic polynomial must be similar.

(b) Is the same thing true for M4(C)?

19. Suppose that K has characteristic 0 and that J is a Jordan block with nonzero

eigenvalue and with size > 1. Prove that there is no n � 1 such that Jn is

diagonal.

20. Classify up to similarity all members A of Mn(C) with An = I .

21. How many similarity classes are there of 3-by-3 matrices A with entries in C
such that A3 = A? Explain.

22. Let n � 2, and let N be a member of Mn(K) with Nn = 0 but Nn�1 �= 0. Prove

that there is no n-by-n matrix A with A2 = N .

23. For a Jordan block J , prove that J t is similar to J .

24. Prove that if A is in Mn(C), then At is similar to A.

25. Let N be the 2-by-2 matrix
⌃
0 1

0 0

⌥
, and let A and B be the 4-by-4 matrices

A =
⌃
N 0

0 N

⌥
and B =

⌃
N N

0 N

⌥
. Prove that A and B are similar.

Problems 26–31 concern cyclic vectors. Fix a linear map L : V  V from a finite-

dimensional vector space V to itself. For v in V , let P(v) denote the set of all vectors

Q(L)(v) in V for Q(X) in K[X]; P(v) is a vector subspace and is invariant under

L . If U is an invariant subspace of V , we say that U is a cyclic subspace if there is

some v in U such that P(v) = U ; in this case, v is said to be a cyclic vector for U ,

and U is called the cyclic subspace generated by v. For v in V , let Iv be the ideal

of all polynomials Q(X) inK[X] with Q(L)v = 0. Themonic generator of v is the

unique monic polynomial Mv(X) such that Mv(X) divides every member of Iv .

26. For v � V , explain why Iv is nonzero and why Mv(X) therefore exists.

27. For v � V , prove that
(a) the degree of the monic generator Mv(X) equals the dimension of the cyclic

subspace P(v),

(b) the vectors v, L(v), L2(v), . . . , LdegMv�1(v) form a vector-space basis of

P(v),
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(c) the minimal and characteristic polynomials of L
⇧⇧
P(v)

are both equal to

Mv(X).

28. Suppose that Mv(X) = c0+ c1X +· · ·+ cd�1Xd�1+ Xd . Prove that the matrix

of L
⇧⇧
P(v)

in a suitable ordered basis is

�

✓✓✓✓✓✓⇣

�cd�1 1 0 ···
�cd�2 0 1
�cd�3 0 0

...
...

...
...

�c2 0 0 ··· 0 1 0

�c1 0 0 ··· 0 0 1

�c0 0 0 ··· 0 0

✏

◆◆◆◆◆◆⌘
.

29. Suppose that v is in V , that Mv(X) is a power of a prime polynomial P(X),

and that Q(X) is a nonzero polynomial with deg Q(X) < deg P(X). Prove that

P(Q(L)(v)) = P(v).

30. Let P(X) be a prime polynomial.

(a) Prove by induction on dim V that if the minimal polynomial of L is P(X),

then the characteristic polynomial of L is a power of P(X).

(b) Prove by induction on l that if the minimal polynomial of L is P(X)l , then

the characteristic polynomial of L is a power of P(X).

(c) Conclude that if the minimal polynomial of L is a power of P(X), then

deg P(X) divides dim V .

31. Prove that every prime factor of the characteristic polynomial of L divides the

minimal polynomial of L .

Problems 32–40 continue the study of cyclic vectors begun in Problems 26–31, using

the same notation. The goal is to obtain a canonical-form theorem like Theorem 5.20

for L but with no assumption on K or P(X), namely that each primary subspace for

L is the direct sum of cyclic subspaces and the resulting decomposition is unique

up to isomorphism. This result and the Fundamental Theorem of Finitely Generated

Abelian Groups (Theorem 4.56) will be seen in Chapter VIII to be special cases of

a single more general theorem. Still another canonical form for matrices and linear

maps is an analog of the result with elementary divisors mentioned in the remarks

with Theorem4.56 and is valid here; it is called rational canonical form, but we shall

not pursue it until the problems at the end of Chapter VIII. The proof in Problems

32–40 uses ideas similar to those used for Theorem 5.21 except that the hypothesis

will now be that the minimal polynomial of L is P(X)l with P(X) prime, rather than

just Xl . Define Kj = ker(P(L) j ) for j � 0, so that K0 = 0, Kj ⌃ Kj+1 for all j ,
Kl = V , and each Kj is an invariant subspace under L . Define d = deg P(X).

32. Suppose j � 1, and suppose Sj is any vector subspace of V such that Kj+1 =
Kj ⇧ Sj . Prove that P(L) is one-one from Sj into Kj and P(L)(Sj )◆ Kj�1 = 0.
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33. DefineUl = Wl = 0. For 0 ⌥ j ⌥ l � 1, prove that there exist vector subspaces
Uj and Wj of Kj+1 such that

Kj+1 = Kj ⇧Uj ⇧Wj ,

Uj = P(L)(Uj+1 ⇧Wj+1),

P(L) : Uj+1 ⇧Wj+1 Uj is one-one.

34. Prove that the vector subspaces of the previous problem satisfy

V = U0 ⇧W0 ⇧U1 ⇧W1 ⇧ · · ·⇧Ul�1 ⇧Wl�1.

35. For v �= 0 in Wj , prove that the set of all L
r P(L)s(v) with 0 ⌥ r ⌥ d � 1 and

0 ⌥ s ⌥ j is a vector-space basis of P(v).

36. Going back over the construction in Problem 33, prove that each Wj can be

chosen to have a basis consisting of vectors Lr (v
( j)
i ) for 1 ⌥ i ⌥ (dimWj )/d

and 0 ⌥ r ⌥ d � 1.
37. Let the index i used in the previous problem with j be denoted by i j for 1 ⌥

i j ⌥ (dimWj )/d. Prove that a vector-space basis of Uj ⇧ Wj consists of all

Lr P(L)k(v
( j+k)
i j+k

) for 0 ⌥ r ⌥ d � 1, k � 0, 1 ⌥ i j+k ⌥ (dimWj+k)/d.

38. Prove that V is the direct sum of cyclic subspaces under L . Prove specifically

that each v
( j)
i j
generates a cyclic subspace and that the sum of all these vector

subspaces, with 0 ⌥ j ⌥ l and 1 ⌥ i j ⌥ (dimWj )/d, is a direct sum and

equals V .

39. In the decomposition of the previous problem, each cyclic subspace generated

by some v
( j)
i j
has minimal polynomial P(X) j+1. Prove that

#

⌦
direct summands with minimal polynomial

P(X)k for some k � j + 1

↵
= (dim Kj+1 � dim Kj )/d.

40. Prove that the formula of the previous problem persists for any decomposition

of V as the direct sum of cyclic subspaces, and conclude from Problem 28 that

the decomposition into cyclic subspaces is unique up to isomorphism.

Problems 41–46 concern systems of ordinary differential equations with constant

coefficients. The underlying field is taken to be C, and differential calculus is used.
For A in Mn(C) and t in R, define et A =

↵
k=0

tk Ak

k!
. Take for granted that the

series defining et A converges entry by entry, that the series may be differentiated term

by term to yield d
dt

(et A) = Aet A = et A A, and that esA+t B = esAet B if A and B

commute.

41. Calculate et A for A equal to

(a)
⌃

0 1

�1 0

⌥
,
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(b)
⌃
0 1

1 0

⌥
,

(c) the diagonal matrix with diagonal entries d1, . . . , dn .

42. (a) Calculate et J when J is a nilpotent n-by-n Jordan block.

(b) Use (a) to calculate et J when J is a general n-by-n Jordan block.

43. Let y1, . . . , yn be unknown functions fromR toC, and let y be the vector-valued
function formed by arranging y1, . . . , yn in a column. Suppose that A is in

Mn(C). Prove for each vector v � Cn that y(t) = et Av is a solution of the

system of differential equations
dy
dt

= Ay(t).

44. With notation as in the previous problem and with v fixed in Cn , use e�t A y(t)
to show, for each open interval of t’s containing 0, that the only solution of
dy
dt

= Ay(t) on that interval such that y(0) = v is y(t) = et Av.

45. For C invertible, prove that etC
�1AC = C�1et AC , and deduce a relationship

between solutions of
dy
dt

= Ay(t) and solutions of dy
dt

= (C�1AC)y(t).

46. Let A =
�

2 1 0

�1 4 0
�1 2 2

 
. Taking into account Example 3 in Section 7 and Problems

42 through 45 above, find all solutions for t in (�1, 1) to the system dy
dt

= Ay(t)

such that y(0) =
�
1

2

3

 
.



CHAPTER VI

Multilinear Algebra

Abstract. This chapter studies, in the setting of vector spaces over a field, the basics concerning

multilinear functions, tensor products, spaces of linear functions, and algebras related to tensor

products.

Sections 1–5 concern special properties of bilinear forms, all vector spaces being assumed to be

finite-dimensional. Section 1 associates a matrix to each bilinear form in the presence of an ordered

basis, and the section shows the effect on the matrix of changing the ordered basis. It then addresses

the extent to which the notion of “orthogonal complement” in the theory of inner-product spaces

applies to nondegenerate bilinear forms. Sections 2–3 treat symmetric and alternating bilinear forms,

producing bases for which the matrix of such a form is particularly simple. Section 4 treats a related

subject, Hermitian forms when the field is the complex numbers. Section 5 discusses the groups that

leave some particular bilinear and Hermitian forms invariant.

Section 6 introduces the tensor product of two vector spaces, working with it in a way that does

not depend on a choice of basis. The tensor product has a universal mapping property—that bilinear

functions on the product of the two vector spaces extend uniquely to linear functions on the tensor

product. The tensor product turns out to be a vector space whose dual is the vector space of all

bilinear forms. One particular application is that tensor products provide a basis-independent way

of extending scalars for a vector space from a field to a larger field. The section includes a number

of results about the vector space of linear mappings from one vector space to another that go hand

in hand with results about tensor products. These have convenient formulations in the language of

category theory as “natural isomorphisms.”

Section 7 begins with the tensor product of three and then n vector spaces, carefully considering

the universal mapping property and the question of associativity. The section defines an algebra

over a field as a vector space with a bilinear multiplication, not necessarily associative. If E is a

vector space, the tensor algebra T (E) of E is the direct sum over n ↵ 0 of the n-fold tensor product
of E with itself. This is an associative algebra with a universal mapping property relative to any

linear mapping of E into an associative algebra A with identity: the linear map extends to an algebra

homomorphism of T (E) into A carrying 1 into 1.

Sections 8–9 define the symmetric and exterior algebras of a vector space E . The symmetric al-

gebra S(E) is a quotient of T (E)with the following universal mapping property: any linearmapping

of E into a commutative associative algebra A with identity extends to an algebra homomorphism

of S(E) into A carrying 1 into 1. The symmetric algebra is commutative. Similarly the exterior

algebra
⇤

(E) is a quotient of T (E) with this universal mapping property: any linear mapping l of

E into an associative algebra A with identity such that l(v)2 = 0 for all v ⇣ E extends to an algebra
homomorphism of

⇤
(E) into A carrying 1 into 1.

The problems at the end of the chapter introduce some other algebras that are of importance

in applications, and the problems relate some of these algebras to tensor, symmetric, and exterior

algebras. Among the objects studied are Lie algebras, universal enveloping algebras, Clifford

algebras, Weyl algebras, Jordan algebras, and the division algebra of octonions.

248
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1. Bilinear Forms and Matrices

This chapterwill workwith vector spaces over a commonfield of “scalars,” which

will be called K. In Section 6 a field containing K as a subfield will briefly play

a role, and that will be called L.
If V is a vector space overK, a bilinear form on V is a function from V ⇤ V

into K that is linear in each variable when the other variable is held fixed.

EXAMPLES.

(1) For generalK, take V = Kn . Anymatrix A inMn(K) determines a bilinear
form by the rule ⌧v,w� = vt Aw.

(2) For K = R, let V be an inner-product space, in the sense of Chapter III,
with inner product ( · , · ). Then ( · , · ) is a bilinear form on V .

Multilinear functionals on a vector space of row vectors, also called k-linear

functionals or k-multilinear functionals, were defined in the course of working

with determinants in Section II.7, and that definition transparently extends to

general vector spaces. A bilinear form on a general vector space is then just a

2-linear functional. From the point of view of definitions, the words “functional”

and “form” are interchangeable here, but the word “form” is more common in

the bilinear case because of a certain homogeneity that it suggests and that comes

closer to the surface in Corollary 6.12 and in Section 7.

For the remainder of this section, all vector spaces will be finite-dimensional.

Bilinear forms, i.e., 2-linear functionals, are of special interest relative to k-

linear functionals for general k because of their relationships with matrices and

linear mappings. To begin with, each bilinear form, in the presence of an ordered

basis, is given by a matrix. In more detail let V be a finite-dimensional vector

space, and let ⌧ · , · � be a bilinear form on V . If an ordered basis� = (v1, . . . , vn)
of V is specified, then the bilinear form determines the matrix B with entries

Bi j = ⌧vi , vj �. Conversely we can recover the bilinear form from B as follows:

Write v =
�

i aivi and w =
�

j bjvj . Then

⌧v,w� =
⇤�

i aivi ,
�

j bjvj
⌅
=
�

i, j ai ⌧vi , vj �bj .

In other words, ⌧v,w� = at Bb, where a =
�

v
�

 
and b =

�
w
�

 
in the notation

of Section II.3. Therefore

⌧v,w� =
�

v
�

 t
B

�
w
�

 
.
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Consequently we see that all bilinear forms on a finite-dimensional vector space

reduce to Example 1 above—once we choose an ordered basis.

Let us examine the effect of a change of ordered basis. Suppose that � =
(v1, . . . , vm) and � = (w1, . . . , wn), and let B and C be the matrices of the

bilinear form in these two ordered bases: Bi j = ⌧vi , vj � and Ci j = ⌧wi , wj �. Let

the two bases be related by wj =
�

i ai jvi , i.e., let [ai j ] =
�

I

��

 
. Then we

have

Ci j = ⌧wi , wj � =
⇤�
k

akivk,
�
l

al jvl
⌅
=
�
k,l

akial j ⌧vk, vl� =
�
k,l

aki Bklal j .

Translating this formula into matrix form, we obtain the following proposition.

Proposition 6.1. Let ⌧ · , · � be a bilinear form on a finite-dimensional vector
space V , let � and � be ordered bases of V , and let B and C be the respective

matrices of ⌧ · , · � relative to � and �. Then

C =
�

I

��

 t
B

�
I

��

 
.

The qualitative conclusion about the matrices may be a little unexpected. It

is not that they are similar but that they are related by C = St BS for some

nonsingular square matrix S. In particular, B and C need not have the same

determinant.

Guided by the circle of ideas around the Riesz Representation Theorem for

inner products (Theorem 3.12), let us examine what happens when we fix one

of the variables of a bilinear form and work with the resulting linear map. Thus

again let ⌧ · , · � be a bilinear form on V . For fixed u in V , v ✓� ⌧u, v� is a linear
functional on V , thus amember of the dual spaceV � of V . If wewrite L(u) for this
linear functional, then L is a function from V to V � satisfying L(u)(v) = ⌧u, v�.
The formula for L shows that L is in fact a linear function. We define the left

radical, lrad, of ⌧ · , · � to be the kernel of L; thus

lrad
�
⌧ · , · �

⇥
= {u ⇣ V | ⌧u, v� = 0 for all v ⇣ V }.

Similarly we let R : V � V � be the linear map R(v)(u) = ⌧u, v�, and we define
the right radical, rrad, of ⌧ · , · � to be the kernel of R; thus

rrad
�
⌧ · , · �

⇥
= {v ⇣ V | ⌧u, v� = 0 for all u ⇣ V }.

EXAMPLE 1, CONTINUED. The vector space V is the spaceKn of n-dimensional

column vectors, the dual V � is the space of n-dimensional row vectors, A is
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an n-by-n matrix with entries in K, and ⌧ · , · � is given by ⌧u, v� = ut Av =
L(u)(v) = R(v)(u) for u and v in Kn . Explicit formulas for L and R are

given by

L(u) = ut A = (Atu)t

R(v) = (Av)t .and

Thus

lrad
�
⌧ · , · �

⇥
= ker L = null space(At),

rrad
�
⌧ · , · �

⇥
= ker R = null space(A).

Since A is square and since the row rank and column rank of A are equal, the

dimensions of the null spaces of A and At are equal. Hence

dim lrad
�
⌧ · , · �

⇥
= dim rrad

�
⌧ · , · �

⇥
.

This equality of dimensions for the case ofKn extends to general V , as is noted

in the next proposition.

Proposition 6.2. If ⌧ · , · � is any bilinear form on a finite-dimensional vector
space V , then

dim lrad
�
⌧ · , · �

⇥
= dim rrad

�
⌧ · , · �

⇥
.

PROOF. We saw above that computationswith bilinear forms of V reduce, once

we choose an ordered basis for V , to computationswithmatrices, rowvectors, and

column vectors. Thus the argument just given in the continuation of Example 1

is completely general, and the proposition is proved. �

A bilinear form ⌧ · , · � is said to be nondegenerate if its left radical is 0. In
view of the Proposition 6.2, it is equivalent to require that the right radical be 0.

When the radicals are 0, the associated linear maps L and R from V to V � are
one-one. Since dim V = dim V �, it follows that L and R are onto V �. Thus a
nondegenerate bilinear form on V sets up two canonical isomorphisms of V with

its dual V �.
For definiteness let us work with the linear mapping L : V � V � given by

L(u)(v) = ⌧u, v�. If U  V is a vector subspace, define

U◆ = {u ⇣ V | ⌧u, v� = 0 for all v ⇣ U}.

It is apparent from the definitions that

U ⇠U◆ = lrad
�
⌧ · , · �

⇥⇧⇧
U⇤U .
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In contrast to the special case that K = R and the bilinear form is an inner

product, U ⇠U◆ may be nonzero even if ⌧ · , · � is nondegenerate. For example
let V = R2, define ⌫ ⌃

x1

x2

⌥
,
⌃
y1

y2

⌥ ⇠
= x1y1 � x2y2,

and suppose that U is the 1-dimensional vector subspace U =
!⌃

x1

x1

⌥"
. The

matrixof the bilinear form in the standardorderedbasis is
⌃
1 0

0 �1

⌥
; since thematrix

is nonsingular, the bilinear form is nondegenerate. Direct calculation shows that

U◆ =
!⌃

y1

y1

⌥"
= U , so thatU⇠U◆ ⌘= 0. Nevertheless, in thenondegenerate case

the dimensions of U and U◆ behave as if U◆ were an orthogonal complement.
The precise result is as follows.

Proposition 6.3. If ⌧ · , · � is a nondegenerate bilinear form on the finite-

dimensional vector space V and if U is a vector subspace of V , then

dim V = dimU + dimU◆.

PROOF. Define � : V � U � by �(v)(u) = ⌧v, u� for v ⇣ V and u ⇣ U . The
definition of U◆ shows that ker � = U◆. To see that image � = U �, choose a
vector subspaceU1 of V with V = U ⌃U1, let u� be inU �, and define v� in V � by

v� =
⌦
u� on U,

0 on U1.

Since ⌧ · , · � is nondegenerate, the linear mapping L : V � V � is onto V �. Thus
we can choose v ⇣ V with L(v) = v�. Then

�(v)(u) = ⌧v, u� = L(v)(u) = v�(u) = u�(u)

for all u in U , and hence �(v) = u�. Therefore image � = U �, and we conclude
that

dim V = dim(ker �) + dim(image �) = dimU◆ + dimU � = dimU◆ + dimU.

�

Corollary 6.4. If ⌧ · , · � is a nondegenerate bilinear form on the finite-

dimensional vector space V and ifU is a vector subspace of V , then V = U⌃U◆
if and only if ⌧ · , · �

⇧⇧
U⇤U is nondegenerate.

PROOF. Corollary 2.29 and Proposition 6.3 together give

dim(U +U◆) + dim(U ⇠U◆) = dimU + dimU◆ = dim V .

Thus U + U◆ = V if and only if U ⇠ U◆ = 0, if and only if ⌧ · , · �
⇧⇧
U⇤U is

nondegenerate. The result therefore follows from Proposition 2.30. �
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2. Symmetric Bilinear Forms

We continue with the setting in whichK is a field and all vector spaces of interest

are defined over K and are finite-dimensional.

A bilinear form ⌧ · , · � on V is said to be symmetric if ⌧u, v� = ⌧v, u� for
all u and v in V , skew-symmetric if ⌧u, v� = �⌧v, u� for all u and v in V , and
alternating if ⌧u, u� = 0 for all u in V .

“Alternating” always implies “skew-symmetric.” In fact, if ⌧ · , · � is alternat-
ing, then 0 = ⌧u+v, u+v� = ⌧u, u�+ ⌧u, v�+ ⌧v, u�+ ⌧v, v� = ⌧u, v�+ ⌧v, u�;
thus ⌧ · , · � is skew-symmetric. If K has characteristic different from 2, then the

converse is valid: “skew-symmetric” implies “alternating.” In fact, if ⌧ · , · � is
skew-symmetric, then ⌧u, u� = �⌧u, u� and hence 2⌧u, u� = 0; thus ⌧u, u� = 0,

and ⌧ · , · � is alternating.
Let us examine further the effect of the characteristic ofK. If, on the one hand,

K has characteristic different from 2, the most general bilinear form ⌧ · , · � is the
sum of the symmetric form ⌧ · , · �s and the alternating form ⌧ · , · �a given by

⌧u, v�s = 1
2
(⌧u, v�+ ⌧v, u�),

⌧u, v�a = 1
2
(⌧u, v� � ⌧v, u�).

In this sense the symmetric and alternating bilinear forms are the extreme cases

among all bilinear forms, and we shall study the two cases separately.

If, on the other hand,K has characteristic 2, then “alternating” implies “skew-

symmetric” but not conversely. “Alternating” is a serious restriction, and we

shall be able to deal with it. However, “symmetric” and “skew-symmetric” are

equivalent since 1 = �1, and thus neither condition is much of a restriction; we
shall not attempt to say anything insightful in these cases.

In this section we study symmetric bilinear forms, obtaining results when K
has characteristic different from 2. From the symmetry it is apparent that the

left and right radicals of a symmetric bilinear form are the same, and we call

this vector subspace the radical of the form. By way of an example, here is a

continuation of Example 1 from the previous section.

EXAMPLE. Let V = Kn , let A be a symmetric n-by-n matrix (i.e., one with

At = A), and let ⌧u, v� = ut Av. The computation ⌧v, u� = vt Au = (vt Au)t =
ut Atv = ut Av = ⌧u, v� shows that the bilinear form ⌧ · , · � is symmetric; the
second equality vt Au = (vthAu)t holds since vt Au is a 1-by-1 matrix.

Again the example is completely general. In fact, if � = (v1, . . . , vn) is an
ordered basis of a vector space V and if ⌧ · , · � is a given symmetric bilinear form
on V , then the matrix of the form has entries Ai j = ⌧vi , vj �, and these evidently
satisfy Ai j = Aji . So A is a symmetricmatrix, and computationswith the bilinear

form are reduced to those used in the example.
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Theorem 6.5 (Principal Axis Theorem). Suppose that K has characteristic

different from 2.

(a) If ⌧ · , · � is a symmetric bilinear form on a finite-dimensional vector space
V , then there exists an ordered basis of V inwhich thematrix of ⌧ · , · � is diagonal.
(b) If A is an n-by-n symmetric matrix, then there exists a nonsingular n-by-n

matrix M such that Mt AM is diagonal.

REMARKS. Because computations with general symmetric bilinear forms

reduce to computations in the special case of a symmetric matrix and because

Proposition 6.1 tells the effect of a change of ordered basis, (a) and (b) amount

to the same result; nevertheless, we give two proofs of Theorem 6.5—a proof via

matrices and a proof via linear maps. A hint of the validity of the theorem comes

from the case that K = R. For the field R when the bilinear form is an inner

product, the Spectral Theorem (Theorem 3.21) says that there is an orthonormal

basis of eigenvectors and hence that (a) holds. When K = R, the same theorem
says that there exists an orthogonal matrix M with M�1AM diagonal; since any

orthogonal matrix M satisfies M�1 = Mt , the Spectral Theorem is saying that

(b) holds.

PROOF VIA MATRICES. If A is an n-by-n symmetric matrix, we seek a non-

singular M with Mt AM diagonal. We induct on the size of A, the base case of

the induction being n = 1, where there is nothing to prove. Assume the result to

be known for size n � 1, and write the given n-by-n matrix A in block form as
A =

⌃
a b

bt d

⌥
with d of size 1-by-1. If d ⌘= 0, let x be the column vector �d�1b.

Then ⌃
I x

0 1

⌥ ⌃
a b

bt d

⌥ ⌃
I 0

xt 1

⌥
=
⌃
⌅ 0
0 d

⌥
,

and the induction goes through. If d = 0, we argue in a different way. We may

assume that b ⌘= 0 since otherwise the result is immediate by induction. Say

bi ⌘= 0 with 1 ⌦ i ⌦ n � 1. Let y be an (n � 1)-dimensional row vector with i th
entry a member � of K to be specified and with other entries 0. Then

⌃
I 0

y 1

⌥ ⌃
a b

bt 0

⌥ ⌃
I yt

0 1

⌥
=
⌃ ⌅ ⌅
⌅ yayt+bt yt+yb

⌥
=
⌃ ⌅ ⌅
⌅ �2aii+2�bi

⌥
.

SinceK has characteristic different from 2, 2bi is not 0; thus there is some value

of � for which �2aii + 2�bi ⌘= 0. Then we are reduced to the case d ⌘= 0, which

we have already handled, and the induction goes through. �
PROOF VIA LINEAR MAPS. We may assume that the given symmetric bilinear

form is not identically 0, since otherwise any basis will do. Let the radical of

the form be denoted by rad = rad
�
⌧ · , · �

⇥
. Choose a vector subspace S of V

such that V = rad⌃S, and put [ · , · ] = ⌧ · , · �
⇧⇧
S⇤S . Then [ · , · ] is a symmetric
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bilinear form on S, and it is nondegenerate. In fact, [u, · ] = 0 means ⌧u, v� = 0

for all v ⇣ S; since ⌧u, v� = 0 for v in rad anyway, ⌧u, v� = 0 for all v ⇣ V , u is
in rad as well as S, and u = 0.

Since ⌧ · , · � is not identically 0, the subspace S is not 0. Thus the nondegen-
erate symmetric bilinear form [ · , · ] on S is not 0. Since

[u, v] = 1
2

�
[u + v, u + v]� [u, u]� [v, v]

⇥
,

it follows that [v, v] ⌘= 0 for some v in S. Put U1 = Kv. Then [ · , · ]
⇧⇧
U1⇤U1

is nondegenerate, and Corollary 6.4 implies that S = U1 ⌃ U◆1 . Applying the
converse direction of the same corollary to U◆1 , we see that [ · , · ]

⇧⇧
U◆1 ⇤U◆1

is

nondegenerate. Repeating this construction with U◆ and iterating, we obtain

V = rad⌃U1 ⌃ · · ·⌃Uk

with ⌧Ui ,Uj � = 0 for i ⌘= j and with dimUi = 1 for all i . This completes the

proof. �

Theorem 6.5 fails in characteristic 2. Problem 2 at the end of the chapter

illustrates the failure.

Let us examine thematrix version of Theorem 6.5more closely whenK isC or
R. The theorem says that if A is n-by-n symmetric, thenwe can find a nonsingular
M with B = Mt AM diagonal. Taking D diagonal and forming C = Dt BD,

we see that we can adjust the diagonal entries of B by arbitrary nonzero squares.

Over C, we can therefore arrange that C is of the form diag(1, . . . , 1, 0, . . . , 0).
The number of 1’s equals the rank, and this has to be the same as the rank of the

given matrix A. The form is nondegenerate if and only if there are no 0’s. Thus

we understand everything about the diagonal form.

Over R, matters are more subtle. We can arrange that C is of the form

diag(±1, . . . ,±1, 0, . . . , 0), the various signs ostensibly not being correlated.
Replacing C by PtCP with P a permutation matrix, we may assume that our

diagonal matrix is of the form diag(+1, . . . ,+1,�1, . . . ,�1, 0, . . . , 0). The
number of +1’s and �1’s together is again the rank of A, and the form is

nondegenerate if and only if there are no 0’s. Butwhat about the separate numbers

of +1’s and �1’s? The triple given by

(p,m, z) =
�
#(+1)’s, #(�1)’s, #(0)’s

⇥

is called the signature of A whenK = R. A similar notion can be defined in the
case of a symmetric bilinear form over R.

Theorem 6.6 (Sylvester’s Law). The signature of an n-by-n symmetric matrix

over R is well defined.
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PROOF. The integer p + m is the rank, which does not change under a trans-

formation A ✓� Mt AM if M is nonsingular. Thus we may take z as known. Let

(p�,m�, z) and (p,m, z) be two signatures for a symmetricmatrix A, with p� ⌦ p.

Define the corresponding symmetric bilinear form on Rn by ⌧u, v� = ut Av. Let
(v�1, . . . , v

�
n) and (v1, . . . , vn) be ordered bases of Rn diagonalizing the bilinear

form and exhibiting the resulting signature, i.e., having ⌧v�i , v�j � = ⌧vi , vj � = 0

for i ⌘= j and having

⌧v�j , v�j � =

✏
⌘

⇣

+1 for 1 ⌦ j ⌦ p�,

�1 for p� + 1 ⌦ j ⌦ n � z,

0 for n � z + 1 ⌦ j ⌦ n,

⌧vj , vj � =

✏
⌘

⇣

+1 for 1 ⌦ j ⌦ p,

�1 for p + 1 ⌦ j ⌦ n � z,

0 for n � z + 1 ⌦ j ⌦ n.

We shall prove that {v1, . . . , vp, v�p�+1, . . . , v�n} is linearly independent, and then
we must have p� ↵ p. Reversing the roles of p and p�, we see that p� = p and

m� = m, and the theorem is proved. Thus suppose we have a linear dependence:

a1v1 + · · · + apvp = bp�+1v
�
p�+1 + · · · + bnv

�
n.

Let v be the common value of the two sides of this equation. Then

⌧v, v� = ⌧a1v1 + · · · + apvp, a1v1 + · · · + apvp� =
p�

j=1
a2j ↵ 0

⌧v, v� = ⌧bp�+1v�p�+1 + · · · + bnv
�
n, bp�+1v

�
p�+1 + · · · + bnv

�
n� = �

n�z�

j=p�+1
b2j ⌦ 0.

and

We conclude that ⌧v, v� = 0,
�p

j=1 a
2
j = 0, and a1 = · · · = ap = 0. Thus v = 0

and bp�+1v
�
p�+1 + · · · + bnv

�
n = 0. Since {v�p�+1, . . . , v�n} is linearly independent,

we obtain also bp�+1 = · · · = bn = 0. Therefore {v1, . . . , vp, v�p�+1, . . . , v�n} is a
linearly independent set, and the proof is complete. �

3. Alternating Bilinear Forms

We continue with the setting in whichK is a field and all vector spaces of interest

are defined over K and are finite-dimensional.
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In this section we study alternating bilinear forms, imposing no restriction on

the characteristic ofK. From the skew symmetry of any alternating bilinear form
it is apparent that the left and right radicals of such a form are the same, and we

call this vector subspace the radical of the form. First let us consider examples

given in terms of matrices. Temporarily let us separate matters according to the

characteristic.

EXAMPLE 1 OF SECTION 1 WITH K OF CHARACTERISTIC ⌘= 2. Let V =
Kn , let A be a skew-symmetric n-by-n matrix (i.e., one with At = �A), and
let ⌧u, v� = ut Av. The computation ⌧v, u� = vt Au = (vt Au)t = ut Atv =
�ut Av = �⌧u, v� shows that the bilinear form ⌧ · , · � is skew-symmetric, hence
alternating.

EXAMPLE 1 OF SECTION 1 WITH K OF CHARACTERISTIC = 2. Let V = Kn , let

A be an n-by-n matrix, and define ⌧u, v� = ut Av. We suppose that A is skew-
symmetric; it is the same to assume that A is symmetric since the characteristic

is 2. In order to have ⌧ei , ei � = 0 for each standard basis vector, we shall

assume that Aii = 0 for all i . If u is a column vector with entries u1, . . . , un , then
⌧u, u� = ut Au =

�
i, j ui Ai j u j =

�
i ⌘= j ui Ai j u j =

�
i< j (Ai juiuj +Ajiuiuj ) =�

i< j 2Ai juiuj = 0. Hence the bilinear form ⌧ · , · � is alternating.

Again the examples are completely general. In fact, if � = (v1, . . . , vn) is
an ordered basis of a vector space V and if ⌧ · , · � is a given alternating bilinear
form, then the matrix of the form has entries Ai j = ⌧vi , vj � that evidently satisfy
Ai j = �Aji and Aii = 0. So A is a skew-symmetric matrix with 0’s on the

diagonal, and computations with the bilinear form are reduced to those used in

the examples. To keep the terminology parallel, let us say that a square matrix is

alternating if it is skew-symmetric and has 0’s on the diagonal.

Theorem 6.7.

(a) If ⌧ · , · � is an alternating bilinear form on a finite-dimensional vector space
V , then there exists an ordered basis of V in which the matrix of ⌧ · , · � has the
form �

������������◆

0 1

�1 0

0 1

�1 0

. . .
0 1

�1 0
0

...
0

�

������������

.
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If ⌧ · , · � is nondegenerate, then dim V is even.

(b) If A is an n-by-n alternating matrix, then there exists a nonsingular n-by-n

matrix M such that Mt AM is as in (a).

PROOF. It is enough to prove (a). Let rad be the radical of the given form ⌧ · , · �,
and choose a vector subspace S of V with V = rad⌃S. The restriction of ⌧ · , · �
to S is then alternating and nondegenerate. We may now proceed by induction

on dim V under the assumption that ⌧ · , · � is nondegenerate. For dim V = 1, the

form is degenerate. For dim V = 2, we can find u and v with ⌧u, v� ⌘= 0, and we

can normalize one of the vectors to make ⌧u, v� = 1. Then (u, v) is the required
ordered basis.

Assuming the result in the nondegenerate case for dimension< n, suppose that

dim V = n. Again choose u and v with ⌧u, v� = 1, and define U = Ku ⌃ Kv.

Then ⌧ · , · �
⇧⇧
U⇤U has matrix

⌃
0 1

�1 0

⌥
and is nondegenerate. By Corollary 6.4,

V = U ⌃ U◆, and an application of the converse of the corollary shows that
⌧ · , · �

⇧⇧
U◆⇤U◆ is nondegenerate. The induction hypothesis applies toU

◆, and we
obtain the desired matrix for the given form. �

4. Hermitian Forms

In this section the field will beC, and V will be a finite-dimensional vector space
over C.
A sesquilinear form ⌧ · , · � on V is a function from V ⇤V intoC that is linear

in the first variable and conjugate linear in the second.1 Sesquilinear forms do

not make sense for general fields because of the absence of a universal analog of

complex conjugation, and we shall consequently work only with the field C in

this section.2

A sesquilinear form ⌧ · , · � is Hermitian if ⌧u, v� = ⌧v, u� for all u and v in

V . The form is skew-Hermitian if instead ⌧u, v� = �⌧v, u� for all u and v in
V . Hermitian and skew-Hermitian forms are the extreme types of sesquilinear

forms since any sesquilinear form ⌧ · , · � is the sum of a Hermitian form ⌧ · , · �h
and a skew-Hermitian form ⌧ · , · �sh given by

⌧u, v�h = 1
2
(⌧u, v�+ ⌧v, u�),

⌧u, v�sh = 1
2
(⌧u, v� � ⌧v, u�).

1Some authors, particularly in mathematical physics, reverse the roles of the two variables and

assume the conjugate linearity in the first variable instead of the second.
2Sesquilinear forms make sense in number fields like Q

� 
2

⇥
that have an automorphism of

order 2 (see Section IV.1), but sesquilinear forms in this kind of setting will not concern us here.
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In addition, any skew-Hermitian form becomes a Hermitian form simply by

multiplying by i . Specifically if ⌧ · , · �sh is skew-Hermitian, then i⌧ · , · �sh is
sesquilinear and Hermitian, as is readily checked. Consequently the study of

skew-Hermitian forms immediately reduces to the study of Hermitian forms.

EXAMPLE. Let V = Cn , and let A be a Hermitian matrix, i.e., one with

A⌅ = A, where A⌅ is the conjugate transpose of A. Then it is a simple matter to
check that ⌧u, v� = v⌅Au defines a Hermitian form on Cn .

Again the example with a matrix is completely general. In fact, let ⌧ · , · � be a
Hermitian form on V , let � = (v1, . . . , vn) be an ordered basis of V , and define
Ai j = ⌧vi , vj �. Then A is a Hermitian matrix, and ⌧u, v� = ut Av̄, where v̄ is the
entry-by-entry complex conjugate of v.
If� = (w1, . . . , wn) is a second ordered basis, then the formula for changing

basis may be derived as follows: Write wj =
�

i ci jvi , so that [ci j ] is the matrix�
I

��

 
. If Bi j = ⌧wi , wj �, then Bi j = ⌧wi , wj � =

�
kl cki ⌧vk, vl�c̄l j , and hence

B =
�

I

��

 t
A

�
I

��

 
.

Thus two Hermitian matrices A and B represent the same Hermitian form in

different bases if and only if B = M⌅AM for some nonsingular matrix M .

Proposition 6.8.

(a) If ⌧ · , · � is a Hermitian form on a finite-dimensional vector space V over
C, then there exists an ordered basis of V in which thematrix of ⌧ · , · � is diagonal
with real entries.

(b) If A is an n-by-n Hermitian matrix, then there exists a nonsingular n-by-n

matrix M such that M⌅AM is diagonal.

PROOF. The above considerations show that (a) and (b) are reformulations

of the same result. Hence it is enough to prove (b). By the Spectral Theorem

(Theorem 3.21), there exists a unitary matrix U such that U�1AU is diagonal

with real entries. Since U is unitary, U�1 = U⌅. Thus we can take M = U to

prove (b). �

Just as with symmetric bilinear forms over R, we can do a little better than
Proposition 6.8 indicates. If B is Hermitian and diagonal with diagonal entries

bi , and if D is diagonal with positive entries di , then C = D⌅BD is diago-

nal with diagonal entries d2i bi . Choosing D suitably and then replacing C by

PtCP for a suitable permutation matrix P , we may assume that PtCP is of the
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form diag(+1, . . . ,+1,�1, . . . ,�1, 0, . . . , 0). The number of +1’s and �1’s
together is the rank of A, and the form is nondegenerate if and only if there are

no 0’s. The triple given by

(p,m, z) =
�
#(+1)’s, #(�1)’s, #(0)’s

⇥

is again called the signature of A. A similar notion can be defined in the case of

a Hermitian form, as opposed to a Hermitian matrix.

Theorem 6.9 (Sylvester’s Law). The signature of an n-by-n Hermitian matrix

is well defined.

The proof is the same as for Theorem 6.6 except for adjustments in notation.

5. Groups Leaving a Bilinear Form Invariant

Although it is not logically necessary to do so, we digress in this section to intro-

duce some important groups that are defined by means of bilinear or Hermitian

forms. These groups arise in many areas of mathematics, both pure and applied,

and their detailed structure constitutes a topic in the fields of Lie groups, algebraic

groups, and finite groups that is beyond the scope of this book. Thus the best

place to define them seems to be now.

We limit our comments on applications to just these: When the underlying

field in the definition of these groups is R orC, the group is quite often a “simple
Lie group,” one of the basic building blocks of the theory of the continuous groups

that so often arise in topology, geometry, differential equations, andmathematical

physics. When the underlying field is a number field in the sense of Example 9

of Section IV.1, the group quite often plays a role in algebraic number theory.

When the underlying field is a finite field, the group is often closely related to a

finite simple group; an example of this relationship occurred in Problems 55–62

at the end of Chapter IV, where it was shown that the group PSL(2, K), built in
an easy way from the general linear group GL(2, K), is simple if the field K has

more than 5 elements. More general examples of finite simple groups produced

by analogous constructions are said to be of “Lie type.” A celebrated theorem

of the late twentieth century classified the finite simple groups—establishing that

the only such groups are the cyclic groups of prime order, the alternating groups

on 5 or more letters, the simple groups of Lie type, and 26 so-called sporadic

simple groups.

If ⌧ · , · � is a bilinear form on an n-dimensional vector space V over a fieldK,
a nonsingular linear map g : V � V is said to leave the bilinear form invariant

if

⌧g(u), g(v)� = ⌧u, v�
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for all u and v in V . Fix an ordered basis� of V , let A be thematrix of the bilinear

form in this basis, let g� =
�

g

��

 
be the member of GL(n, K) corresponding

to g, and abbreviate

�
w
�

 
as w� for any w in V . To translate the invariance

condition into one concerning matrices, we use the formula ⌧u, v� = u�t Av�, the
corresponding formula for ⌧g(u), g(v)�, and the formula g(w)� = g�(w�) from
Theorem 2.14. Then we obtain u�t g�t Ag�v� = u�t Av�. Taking u to be the i th

member of the ordered basis � and v to be the j th member, we obtain equality of
the (i, j)th entry of the two matrices g�t Ag� and A. Thus the matrix form of the
invariance condition is that a nonsingular matrix g� satisfy

g�t Ag� = A.

We know that changing the ordered basis� amounts to replacing A byMt AM for

some nonsingular matrix M . If g� satisfies the invariance condition g�t Ag� = A

relative to A, then M�1g�M satisfies

(M�1g�M)t(Mt AM)(M�1g�M) = Mt AM.

Thus we are led to a conjugate subgroup within GL(n, K). A conjugate subgroup
is not something substantially new, and thus we might as well make a convenient

choice of basis so that A looks particularly special.

The interesting cases are that the given bilinear form is symmetric or alter-

nating, hence that the matrix A is symmetric or alternating. Let us restrict our

attention to them. The left and right radicals coincide in these cases, and the first

thing to do is to take the two-sided radical into account. Returning to the original

bilinear form, we write V = rad⌃S, where rad is the radical and S is some
vector subspace of S, and we choose an ordered basis (v1, . . . , vp, vp+1, . . . , vn)
such that v1, . . . , vp are in S and vp+1, . . . , vn are in rad. Then ⌧vi , vj � = 0 if

i > p or j > p, and consequently A has its only nonzero entries in the upper

left p-by-p block. The same argument as in the proofs of Theorems 6.5 and

6.7 shows that the restriction of the bilinear form to S is nondegenerate, and

consequently the upper left p-by-p block of A is nonsingular. Changing notation

slightly, suppose that g is an n-by-nmatrix written in block form as g =
⌃
g11 g12

g21 g22

⌥

with g11 of size p-by-p, suppose that
⌃
A 0

0 0

⌥
is another matrix written in the same

block form, suppose that the p-by-p matrix A is nonsingular, and suppose that

gt
⌃
A 0

0 0

⌥
g =

⌃
A 0

0 0

⌥
. Making a brief computation, we find that necessary and

sufficient conditions on g are that g11 be nonsingular and have g
t
11Ag11 = A,

that g12 = 0, that g22 be arbitrary nonsingular, and that g21 be arbitrary. In other
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words, the only interesting condition gt11Ag11 = A is a reflection of what happens

in the nonsingular case.

Consequently the interesting cases are that the given bilinear form is non-

degenerate, as well as either symmetric or alternating. If A is symmetric and

nonsingular, then the group of all nonsingular matrices g such that gt Ag = A is

called the orthogonal group relative to A. If A is alternating and nonsingular,

then the group of all nonsingular matrices g such that gt Ag = A is called the

symplectic group relative to A.

For the symplectic case it is customary to invoke Theorem 6.7 and take A to

be

J =

�

�������◆

0 1

�1 0

0 1

�1 0

. . .
0 1

�1 0

�

�������

,

except possibly for a permutation of the rows and columns and possibly for

a multiplication by �1. Two conflicting notations are in common use for the
symplectic group, namely Sp(n, K) and Sp( 1

2
n, K), and one always has to check

a particular author’s definitions.

For the orthogonal case the notation is less standardized. Theorem 6.5 says

that we may take A to be diagonal except when K has characteristic 2. But the

theorem does not tell us exactly which A’s are representative of the same bilinear

form. When K = C, we know that we can take A to be the identity matrix I .
The group is known as the complex orthogonal group and is denoted by O(n, C).
WhenK = R, we can take A to be diagonal with diagonal entries±1. Sylvester’s
Law (Theorem 6.6) says that the form determines the number of +1’s and the
number of �1’s. The groups are called indefinite orthogonal groups and are
denoted by O(p, q), where p is the number of+1’s and q is the number of�1’s.
When q = 0, we obtain the ordinary orthogonal group of matrices relative to an

inner product.

A similar analysis applies to Hermitian forms. The field is now C, the invari-
ance condition with the form is still ⌧g(u), g(v)� = ⌧u, v�, and the corresponding
condition with matrices is gt Aḡ = A. The interesting case is that the Hermitian

form is nondegenerate. Proposition 6.8 and Sylvester’s Law (Theorem 6.9)

together show that we may take A to be diagonal with diagonal entries ±1 and
that the Hermitian form determines the number of+1’s and the number of�1’s.
The groups are the indefinite unitary groups and are denoted by U(p, q), where
p is the number of +1’s and q is the number of �1’s. When q = 0, we obtain

the ordinary unitary group of matrices relative to an inner product.
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6. Tensor Product of Two Vector Spaces

If E is a vector space over K, then the set of all bilinear forms on E is a vector
space under addition and scalar multiplication of the values, i.e., it is a vector

subspace of the set of all functions from E⇤E intoK. In this sectionwe introduce
a vector space called the “tensor product” of E with itself, whose dual, even if E

is infinite-dimensional, is canonically isomorphic to this vector space of bilinear

forms.

Matterswill be clearer ifwework initiallywith somethingslightlymoregeneral

than bilinear forms on a single vector space E . Thus fix a field K, and let E and
F be vector spaces overK. A function from E ⇤ F into a vector spaceU overK
is said to be bilinear if it is linear in each of the two variables when the other one

is held fixed. Such a space of bilinear functions is a vector space over K under

addition and scalar multiplication of the values. The bilinear functions are called

bilinear formswhen the range spaceU isK itself. More generally, if E1, . . . , Ek
are vector spaces overK, a function from E1⇤ · · ·⇤ Ek into a vector space over

K is said to be k-linear or k-multilinear if it is linear in each of its k variables

when the other k � 1 variables are held fixed. Again the word “form” is used in
the scalar-valued case, and all of these spaces of multilinear functions are vector

spaces over K.
In this section we shall introduce the tensor product of two vector spaces E

and F overK, ultimately denoting it by E ⌥K F . The dual of this tensor product

will be canonically isomorphic to the vector space of bilinear forms on E ⇤ F .

More generally the space of linear functions from the tensor product into a vector

space U will be canonically isomorphic to the vector space of bilinear functions

on E ⇤ F with values in U .

Following the habit encouraged by Chapter IV, we want to arrange that tensor

product is a functor. If V denotes the category of vector spaces over K and if

V ⇤ V denotes the category described in Section IV.11 as V S for a two-element

set S, then tensor product is to be a functor from V ⇤ V into V. Hence we will
want to examine the effect of tensor products on morphisms, i.e., on linear maps.

As in similar constructions in Chapter IV, the effect of tensor product on linear

maps is captured by defining the tensor product by means of a universal mapping

property. The appropriate universal mapping property rephrases the statement

above that the space of linear functions from the tensor product into any vector

space U is canonically isomorphic to the vector space of bilinear functions on

E ⇤ F with values in U .

If E and F are vector spaces over K, a tensor product of E and F is a pair
(V, ⇥) consisting of a vector space V over K together with a bilinear function

⇥ : E⇤ F � V , with the following universal mapping property: whenever b is

a bilinearmappingof E⇤F into a vector spaceU overK, then there exists a unique
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linear mapping B of V intoU such that the diagram in Figure 6.1 commutes, i.e.,

such that B⇥ = b holds in the diagram. When ⇥ is understood, one frequently
refers to V itself as the tensor product. The linear mapping B : V � U is called

the linear extension of b to the tensor product.

E ⇤ F
b���� U

⇥

✓✓#

V

B

FIGURE 6.1. Universal mapping property of a tensor product.

Theorem 6.10. If E and F are vector spaces over K, then a tensor product
of E and F exists and is unique up to canonical isomorphism in this sense: if

(V1, ⇥1) and (V2, ⇥2) are tensor products, then there exists a unique linear mapping
B : V2 � V1 with B⇥2 = ⇥1, and B is an isomorphism. Any tensor product is
spanned linearly by the image of E ⇤ F in it.

REMARKS. As usual, uniqueness will follow readily from the universal map-

ping property. What is really needed is a proof of existence. This will be carried

out by an explicit construction. Later, in Chapter X, we shall reintroduce tensor

products, taking the basic construction to be that of the tensor product of two

abelian groups, and then the tensor product of two vector spaces will in effect

be obtained in a slightly different way. However, the exact construction does not

matter, only the existence; the uniqueness allows us to match the results of any

two constructions.

E ⇤ F
⇥2���� V2

⇥1

✓✓#

V1

and

E ⇤ F
⇥1���� V1

⇥2

✓✓#

V2

B2 B1

FIGURE 6.2. Diagrams for uniqueness of a tensor product.

PROOF OF UNIQUENESS. Let (V1, ⇥1) and (V2, ⇥2) be tensor products. Set up
the diagrams in Figure 6.2, and use the universal mapping property to obtain

linear maps B2 : V1 � V2 and B1 : V2 � V1 extending ⇥2 and ⇥1. Then
B1B2 : V1 � V1 has B1B2⇥1 = B1⇥2 = ⇥1, and 1V1 : V1 � V1 has (1V1)⇥1 = ⇥1.
By the assumed uniqueness within the universal mapping property, B1B2 = 1V1
on V1. Similarly B2B1 = 1V2 on V2. Then B1 : V2 � V1 gives the canonical

isomorphism. Because of the isomorphism the image of E ⇤ F will span an

arbitrary tensor product if it spans some particular tensor product. �
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PROOF OF EXISTENCE. Let V1 =
⇡

(e, f ) K(e, f ), the direct sum being taken

over all ordered pairs (e, f ) with e ⇣ E and f ⇣ F . Then V1 is a vector space

overKwith a basis consisting of all ordered pairs (e, f ). We think of all identities
that the elements of V1 must satisfy to be a tensor product, writing each as some

expression set equal to 0, and then we assemble those expressions into a vector

subspace to factor out from V1. Namely, let V0 be the vector subspace of V1
generated by all elements of any of the kinds

(e1 + e2, f )� (e1, f )� (e2, f ),

(ce, f )� c(e, f ),

(e, f1 + f2)� (e, f1)� (e, f2),

(e, c f )� c(e, f ),

the understanding being that c is in K, the elements e, e1, e2 are in E , and the
elements f, f1, f2 are in F . Define V = V1/V0, and define ⇥ : E ⇤ F � V1/V0
by ⇥(e, f ) = (e, f ) + V0. We shall prove that (V, ⇥) is a tensor product of E and
F . The definitions show that the image of ⇥ spans V linearly.
Let b : E ⇤ F � U be given as in Figure 6.1. To see that a linear extension

B exists and is unique, define B1 on V1 by

B1
� �
(finite)

ci (ei , fi )
⇥

=
�
(finite)

cib(ei , fi ).

The bilinearity of b shows that B1 maps V0 to 0. By Proposition 2.25, B1 descends

to a linearmap B : V1/V0� U , andwe have B⇥ = b. Hence B exists as required.

To check uniqueness of B, we observe again that the cosets (e, f )+V0 within

V1/V0 span V ; since commutativity of the diagram in Figure 6.1 forces

B((e, f ) + V0) = B(⇥(e, f )) = b(e, f ),

B is unique. This completes the proof. �

A tensor product of E and F is denoted by (E ⌥K F, ⇥), with the bilinear map
⇥ given by ⇥(e, f ) = e ⌥ f ; the map ⇥ is frequently dropped from the notation
when there is no chance of ambiguity. The tensor product that was constructed

in the proof of existence in Theorem 6.10 is not given any special notation to

distinguish it from any other tensor product. The elements e ⌥ f span E ⌥K F ,

as was noted in the statement of the theorem. Elements of the form e ⌥ f are

sometimes called pure tensors.

Not every element need be a pure tensor, but every element in E ⌥K F is a

finite sum of pure tensors. We shall see in Proposition 6.14 that if {ui } is a basis
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of E and {vj } is a basis of F , then the pure tensors ui⌥vj form a basis of E⌥K F .
In particular the dimension of the tensor product is the product of the dimensions

of the factors. We could have defined the tensor product in this way—by taking

bases and declaring that ui⌥vj is to be a basis of the desired space. The difficulty
is that we would be forever wedded to our choice of those particular bases, or

we would constantly have to prove that our definitions are independent of bases.

The definition by means of Theorem 6.10 avoids this difficulty.

To make tensor product (E, F) ✓� E⌥K F into a functor, we have to describe
the effect on linear mappings. To aid in that discussion, let us reintroduce some

notation first used in Chapter II: if U and V are vector spaces over K, then
HomK(U, V ) is defined to be the vector space of K linear maps from U to V .

Corollary 6.11. If E , F , and V are vector spaces overK, then the vector space
HomK(E ⌥K F, V ) is canonically isomorphic (via restriction to pure tensors) to
the vector space of all V -valued bilinear functions on E ⇤ F .

PROOF. Restriction is a linear mapping from HomK(E ⌥K F, V ) to the vector
space of all V -valued bilinear functions on E ⇤ F , and it is one-one since the

image of E ⇤ F in E ⌥K F spans E ⌥K F . It is onto since any bilinear function

from E ⇤ F to V has a linear extension to E ⌥K F , by Theorem 6.10. �

Corollary 6.12. If E and F are vector spaces overK, then the vector space of
all bilinear forms on E ⇤ F is canonically isomorphic to (E ⌥K F)�, the dual of
the vector space E ⌥K F .

PROOF. This is the special case of Corollary 6.11 in which V = K. �

Corollary 6.13. If E , F , and V are vector spaces over K, then there is a
canonical K linear isomorphism� of left side to right side in

HomK(E ⌥K F, V ) �= HomK(E, HomK(F, V ))

such that

�( )(e)( f ) =  (e⌥ f )

for all  ⇣ HomK(E ⌥K F, V ), e ⇣ E , and f ⇣ F .
REMARK. This result is just a restatement of Corollary 6.11, but let us prove it

anyway, writing the proof in the language of the statement.

PROOF. The map � is well defined and K linear, and it carries the left side to

the right side. For⌥ in the right side, define✏(⌥)(e, f ) = ⌥(e)( f ). Then✏(⌥)
is a bilinear map from E ⇤ F into V , and we let  ✏(⌥) be the linear extension
from E ⌥K F into V given in Theorem 6.10. Then  ✏ is a two-sided inverse to

�, and the corollary follows. �
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Let us now make (E, F) ✓� E ⌥K F into a covariant functor. If (E1, F1) and
(E2, F2) are objects in V⇤ V, i.e., if they are two ordered pairs of vector spaces,
then a morphism from the first to the second is a pair (L ,M) of linear maps of the
form L : E1 � E2 and M : F1 � F2. To (L ,M), we are to associate a linear
map from E1⌥K F1 into E2⌥K F2; this linear mapwill be denoted by L⌥M . We
use Corollary 6.11 to define L⌥M as themember of HomK(E1⌥K F1, E2⌥K F2)
that corresponds under restriction to the bilinear map (e1, f1) ✓� L(e1)⌥M( f1)
of E1 ⇤ F1 into E2 ⌥K F2. In terms of pure tensors, the map L ⌥ M satisfies

(L ⌥ M)(e1 ⌥ f1) = L(e1)⌥ M( f1),

and this formula completely determines L ⌥ M because of the uniqueness of

linear extensions of bilinear maps.

To check that this definition of the effect of tensor product on pairs of linear

maps makes (E, F) ✓� E ⌥K F into a covariant functor, we have to check the

effect on the identity map and the effect on composition. For the effect on the

identity map (1E1, 1F1) when E1 = E2 and F1 = F2, we see from the above

displayed formula that (1E1 ⌥ 1F1)(e1 ⌥ f1) = 1E1(e1)⌥ 1F1( f1) = e1 ⌥ f1 =
1E1⌥KF1(e1⌥ f1). Since elements of the form e1⌥ f1 span E1⌥K F1, we conclude
that 1E1 ⌥ 1F1 = 1E1⌥KF1 .

For the effect on composition, let (L1,M1) : (E1, F1) � (E2, F2) and
(L2,M2) : (E2, F2)� (E3, F3) be given. Then we have

(L2 ⌥ M2)(L1 ⌥ M1)(e1 ⌥ f1) = (L2 ⌥ M2)(L1(e1)⌥ M1( f1))

= (L2L1)(e1)⌥ (M2M1)( f1) = (L2L1 ⌥ M2M1)(e1 ⌥ f1).

Since elements of the form e1 ⌥ f1 span E1 ⌥K F1, we conclude that

(L2 ⌥ M2)(L1 ⌥ M1) = L2L1 ⌥ M2M1.

Therefore (E, F) ✓� E ⌥K F is a covariant functor.

In particular, E ✓� E ⌥K F and F ✓� E ⌥K F are covariant functors from V
into itself. For these two functors from V into itself, the effect on linear mappings
is especially nice, namely that

L1 ✓� L1 ⌥ M1

⌦
is K linear from HomK(E1, E2)
into HomK(E1⌥K F1, E2⌥K F2),

M1 ✓� L1 ⌥ M1

⌦
is K linear from HomK(F1, F2)
into HomK(E1⌥K F1, E2⌥K F2).

To prove the first of these assertions, for example, we observe that the sum of the

linear extensions of

(e1, f1) ✓� L1(e1)⌥ M1( f1) and (e1, f1) ✓� L �1(e1)⌥ M1( f1)
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is a linear extension of (e1, f1) ✓� (L1+L �1)(e1)⌥M1( f1), and the uniqueness in
the universalmappingproperty implies that (L1+L �1)⌥M1 = L1⌥M1+L �1⌥M1.

Similar remarks apply to multiplication by scalars.

Let us mention some identities satisfied by ⌥K. There is a canonical isomor-
phism

E ⌥K F �= F ⌥K E

given by taking the linear extension of (e, f ) ✓� f ⌥ e as the map from left to

right. The linear extension of ( f, e) ✓� e⌥ f gives a two-sided inverse. Category

theory has a way of capturing the idea that this isomorphism is systematic, rather

than randomly dependent on E and F . The two sides of the above isomorphism

may be regarded as the values of the covariant functors (E, F) ✓� E ⌥K F and

(E, F) ✓� F ⌥K E . The notion in category theory capturing “systematic” is

called “naturality.” It makes precise the fact that the system of isomorphisms

respects linear maps, as well as the vector spaces. Here is the general definition.

Its usefulness will be examined later in this section.

Let C and D be two categories, and let � : C � D and ✏ : C � D
be covariant functors. Suppose that for each X in Obj(C ), a morphism TX
in MorphD(�(X),✏(X)) is given. Then the system {TX } is called a natural
transformation of � into ✏ if for each pair of objects X1 and X2 in C and each
h in MorphC(X1, X2), the diagram in Figure 6.3 commutes. If furthermore each

TX is an isomorphism, then it is immediate that the system {T�1X } is a natural
transformation of ✏ into �, and we say that {TX } is a natural isomorphism.

�(X1)
�(h)���� �(X2)

TX1

✓✓#
✓✓#TX2

✏(X1)
✏(h)���� ✏(X2)

FIGURE 6.3. Commutative diagram of a natural transformation {TX }.

If� and✏ are contravariant functors, then the system {TX } is called a natural
transformation of � into ✏ if the diagram obtained from Figure 6.3 by revers-

ing the horizontal arrows commutes. The system is a natural isomorphism if

furthermore each Tx is an isomorphism.

In the case we are studying, we have C = V⇤ V and D = V. Objects X in C
are pairs (E, F) of vector spaces, and � and ✏ are the covariant functors with

�(E, F) = E⌥K F and✏(E, F) = F⌥K E . The mapping T(E,F) : E⌥K F �
F ⌥K E is uniquely determined by the condition that T(E,F)(e ⌥ f ) = f ⌥ e

for all e ⇣ E and f ⇣ F . A morphism of pairs from (E1, F1) to (E2, F2) is of
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the form h = (L ,M) with L ⇣ HomK(E1, E2) and M ⇣ HomK(F1, F2). Our
constructions above show that

�(L ,M) = L ⌥ M ⇣ HomK(E1 ⌥K F1, E2 ⌥K F2)

✏(L ,M) = M ⌥ L ⇣ HomK(F1 ⌥K E1, F2 ⌥K E2).and

In Figure 6.3 the two routes from top left to bottom right in the diagram have

T(E2,F2)�(L ,M)(e1 ⌥ f1) = T(E2,F2)(L ⌥ M)(e1 ⌥ f1)

= T(E2,F2)(L(e1)⌥ M( f1)) = M( f1)⌥ L(e1)

and

✏(L ,M)T(E1,F1)(e1 ⌥ f1) = ✏(L ,M)( f1 ⌥ e1)

= (M ⌥ L)( f1 ⌥ e1) = M( f1)⌥ L(e1).

The results are equal, and therefore the diagram commutes. Consequently the

isomorphism

E ⌥K F �= F ⌥K E

is natural in the pair (E, F).
Another canonical isomorphism of interest is

E ⌥K K �= E .

Here the map from left to right is the linear extension of (e, c) ✓� ce, while

the map from right to left is e ✓� e ⌥ 1. In view of the previous canonical

isomorphism, we haveK⌥K E �= E also. Each of these isomorphisms is natural

in E .

Next let us consider how ⌥K interacts with direct sums. The result is that
tensor product distributes over direct sums, even infinite direct sums:

E ⌥K
�⇢

s⇣S
Fs
⇥ �=

⇢

s⇣S
(E ⌥K Fs).

Themap from left to right is the linear extensionof thebilinearmap (e, { fs}s⇣S) ✓�
{e ⌥ fs}s⇣S . For the definition of the inverse, the constructions of Section II.6
show that we have only to define the map on each E ⌥K Fs , where it is the linear

extension of (e, fs) ✓� e ⌥ {is( fs))}s⇣S; here is0 : Fs0 �
⇡

s Fs is the one-one

linear map carrying the sth0 vector space into the direct sum. Once again it is

possible to prove that the isomorphism is natural; we omit the details.

It follows from the displayed isomorphism and the isomorphism E⌥K K �= E

that if {xi } is a basis of E and {yj } is a basis of F , then {xi ⌥ yj } is a basis of
E ⌥K F . This proves the following result.
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Proposition 6.14. If E and F are vector spaces over K, then

dim(E ⌥K F) = (dim E)(dim F).

If {yj } is a basis of F , then the most general member of E ⌥K F is of the form�
j ej ⌥ yj with all ej in E .

We turn to a consideration of HomK from the point of view of functors. In

the examples in Section IV.11, we saw that V ✓� HomK(U, V ) is a covariant
functor from V to itself and that U ✓� HomK(U, V ) is a contravariant functor
from V to itself. If we are not squeamish about mixing the two types—covariant
and contravariant—then we can consider (U, V ) ✓� HomK(U, V ) as a functor3

from V⇤V to V. At any rate if L is in HomK(U1,U2) and M is in HomK(V1, V2),
then Hom(L ,M) carries HomK(U2, V1) into HomK(U1, V2) and is given by

Hom(L ,M)(h) = MhL for h ⇣ HomK(U2, V1).

It is evident that the result is K linear as a function of h, and hence

Hom(L ,M) is in HomK
�
HomK(U2, V1),HomK(U1, V2)

⇥
.

When we look for analogs for the functor HomK of the identity E ⌥K K �= E

for the functor ⌥K, we are led to two identities. One is just the definition of the
dual of a vector space:

HomK(U, K) = U �.

The other is the natural isomorphism

HomK(K, V ) �= V .

In the proof of the latter identity, themapping from left to right is given by sending

a linear h : K� V to h(1), and themapping from right to left is given by sending
v in V to h with h(c) = cv.

Next let us consider how HomK interacts with direct sums and direct products.
The constructionHomK(U, V ) distributes over finite direct sums in each variable,
but the situation with infinite direct sums or direct products is more subtle. Valid

identities are

HomK
�⇢

s⇣S
Us, V

⇥ �=
�

s⇣S
HomK(Us, V )

HomK
�
U,
�

s⇣S
Vs
⇥ �=

�

s⇣S
HomK(U, Vs),and

3Readers who care about this point can regard U as in the category V opp defined in Problems
78–80 at the end of Chapter IV. Then (U, V ) ✓� HomK(U, V ) is a covariant functor from V opp ⇤ V
into V.
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and these are natural isomorphisms. Proofs of these identities for all S and

counterexamples related to them when S is infinite appear in Problems 7–8 at the

end of the chapter.

We have already checked that the isomorphism E⌥K F �= F⌥K E is natural in
(E, F), andwe have asserted naturality in some other situations inwhich it is easy
to check. The next proposition asserts naturality for the identity of Corollary 6.13,

which combines⌥K and HomK in a nontrivial way. After the proof of the result,
we shall digress for a moment to indicate the usefulness of natural isomorphisms.

Proposition 6.15. Let E , F , V , E1, F1, and V1 be vector spaces over K, and
let LE1 : E1 � E , LF1 : F1 � F , and LV : V � V1 be K linear maps. Then

the isomorphism� of Corollary 6.13 is natural in the sense that the diagram

HomK(E ⌥K F, V )
����� HomK(E, HomK(F, V ))

Hom(LE1⌥LF1 , LV )

✓✓#
✓✓#Hom(LE1 ,Hom(LF1 ,LV ))

HomK(E1 ⌥K F1, V1)
����� HomK(E1, HomK(F1, V1))

commutes.

REMARKS. Observe that the first two linear maps LE1 and LF1 go in the

opposite direction to the two vertical maps, while LV goes in the same direction

as the vertical maps. This is a reflection of the fact that both sides of the identity

in Corollary 6.13 are contravariant in the first two variables and covariant in the

third variable.

PROOF. For  in HomK(E ⌥K F, V ), e1 in E1, and f1 in F1, we have

(Hom(LE1,Hom(LF1,LV )) ��)( )(e1)( f1)

= (Hom(LF1, LV ) ��( ) � LE1)(e1)( f1)
= (Hom(LF1, LV ) � (�( ) � LE1))(e1)( f1)
= LV (�( )(LE1(e1))(LF1( f1)))

= LV ( (LE1(e1)⌥ LF1( f1)))

= (LV �  � (LE1 ⌥ LF1))(e1 ⌥ f1)

= (Hom(LE1 ⌥ LF1, LV )( ))(e1 ⌥ f1)

= �(Hom(LE1 ⌥ LF1, LV ) �  )(e1)( f1).

This proves the proposition. �
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Let us now discuss naturality in a wider context. In a general category D, if
we have two objects U and U � such that Morph(U, V ) and Morph(U �, V ) have
the same cardinality for each object V , then we cannot really say anything about

the relationship betweenU andU �. But under a hypothesis that the isomorphism
of sets has a certain naturality to it, then, according to Proposition 6.16 below,

U and U � are isomorphic objects. Thus naturality of a system of weak-looking
set-theoretic isomorphisms can lead to a much stronger-looking isomorphism.

Corollary 6.17 goes on to make a corresponding assertion about functors. The

assertion about functors in the corollary is a helpful tool for establishing natural

isomorphisms of functors, and an example appears below in Proposition 6.20�.

Proposition 6.16. LetD be a category, and suppose thatU andU � are objects
in D with the following property: to each object V in D corresponds a one-one
onto function

TV : Morph(U, V )� Morph(U �, V )

with the system {TV } natural inV in the sense thatwhenever⇧ is inMorph(V, V �),
then the diagram

Morph(U, V )
TV���� Morph(U �, V )

left-by-⇧

✓✓#
✓✓#left-by-⇧

Morph(U, V �)
TV ����� Morph(U �, V �)

commutes. Then U is isomorphic to U � as an object in D, an isomorphism from
U to U � being the member T�1U � (1U �) of Morph(U,U �).

REMARKS.

(1) Another way of formulating this result is as follows: LetD be any category,
let S be the category of sets, and letU andU � be objects inD. Define a covariant
functor HU : D � S by HU (V ) = MorphD(U, V ) and HU (⇧ ) = left-by-⇧
for ⇧ ⇣ MorphD(V, V �), and define HU � similarly. If HU and HU � are naturally
isomorphic functors, then U and U � are isomorphic objects in D.
(2) A similar result is valid when HU and HU � are contravariant functors,

HU being defined by HU (V ) = HomD(V,U) and HU (⇧ ) = right-by-⇧ for

⇧ ⇣ MorphD(V, V �). The result in this case follows immediately by applying
Proposition 6.16 to the opposite categoryD opp ofD as defined in Problems 78–80
at the end of Chapter IV.

PROOF. Let  be the element T�1U � (1U �) of Morph(U,U �), and let ⌥ be the

element TU (1U ) ofMorph(U �,U). To prove the proposition, it is enough to show
that  ⌥ = 1U � and ⌥ = 1U .
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For ⇧ in Morph(V, V �), form the commutative diagram in the statement of the
proposition. The commutativity says that

⇧TV (h) = TV �(⇧h) for h ⇣ Morph(U, V ). (⌅)

Taking V = U , V � = U �, ⇧ =  , and h = 1U in (⌅) proves the second equality
of the chain

 ⌥ =  TU (1U ) = TU �( 1U ) = TU �( ) = 1U � .

Taking V = U �, V � = U , ⇧ = ⌥ , and h =  in (⌅) proves the first equality of
the chain

TU (⌥ ) = ⌥TU �( ) = ⌥1U � = ⌥ = TU (1U );
Applying T�1U , we obtain ⌥ = 1U , as required. �

Corollary 6.17. Let C and D be categories, and let F : C � D and

G : C� D be covariant functors. Suppose that to each pair of objects (A, V ) in
C⇤D corresponds a one-one onto function

TA,V : Morph(F(A), V )� Morph(G(A), V )

with the system {TA,V } natural in (A, V ). Then the functors F andG are naturally
isomorphic.

REMARKS. A similar result is valid if TA,V carries Morph(V, F(A)) to
Morph(V,G(A)) and/or if F andG are contravariant. To handle these situations,
we apply the corollary to the opposite categoriesD opp and/or C opp, as defined in
Problems 78–80 at the end of Chapter IV, instead of to the categoriesD and/or C.

PROOF. By Proposition 6.16 and the hypotheses, the member T�1A,G(A)(1G(A))

of MorphD(F(A),G(A)) is an isomorphism. We are to prove that the system
{TA,G(A)} is natural in A. If ⇧ in MorphC(A, A�) is given, then the naturality of
TA,V in the V variable implies that the diagram

MorphD(F(A),G(A))
TA,G(A)���� MorphD(G(A),G(A))

left-by-G(⇧ )

✓✓#
✓✓#left-by-G(⇧ )

MorphD(F(A),G(A�))
TA,G(A�)����� MorphD(G(A),G(A�))

commutes. Evaluating at T�1A,G(A)(1G(A)) ⇣ MorphD(F(A),G(A)) the two equal

compositions in the diagram, we obtain

G(⇧ ) = G(⇧ )1G(A) = TA,G(A�)

�
G(⇧ )T�1A,G(A)(1G(A))

⇥
. (⌅)
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With ⇧ as above, the naturality of TA,V in the A variable implies that the diagram

MorphD(F(A�),G(A�))
TA�,G(A�)����� MorphD(G(A�),G(A�))

right-by-F(⇧ )

✓✓#
✓✓#right-by-G(⇧ )

MorphD(F(A),G(A�))
TA,G(A�)����� MorphD(G(A),G(A�))

commutes. Evaluating at T�1A�,G(A�)(1G(A�)) ⇣ MorphD(F(A�),G(A�)) the two
equal compositions in the diagram, we obtain

G(⇧ ) = 1G(A�)G(⇧ ) = TA,G(A�)

�
T�1A�,G(A�)(1G(A�))F(⇧ )

⇥
. (⌅⌅)

Equations (⌅) and (⌅⌅), together with the fact that TA,G(A�) is invertible, say that

G(⇧ )T�1A,G(A)(1G(A)) = T�1A�,G(A�)(1G(A�))F(⇧ ).

In other words, the isomorphism  TA ⇣ MorphD(F(A),G(A)) given by  TA =
T�1A,G(A)(1G(A)) makes the diagram

F(A)
�TA���� G(A)

F(⇧ )

✓✓#
✓✓#G(⇧ )

F(A�)
�TA����� G(A�)

commute. Thus F is naturally isomorphic to G. �

Tensor product provides a device for converting a real vector space canonically

into a complex vector space, so that a basis overR in the original space becomes a
basis overC in the new space. If E is the given real vector space, then the complex
vector space, called the complexification of E , is the space EC = E ⌥R C with
multiplication by a complex number c in EC defined to be 1⌥ (z ✓� cz).

This construction works more generally when we have any inclusion of fields

K  L. In this situation,L becomes a vector space overK if scalar multiplication
K⇤L� L is defined as the restriction of the multiplication L⇤L� L within
L. For any vector space E overK, we define EL = E ⌥K L, initially as a vector
space over K. For c ⇣ L, we then define

(multiplication by c in E ⌥K L) = 1⌥ (multiplication by c in L).
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The above identities concerning tensor products of linear maps allow one easily

to prove the following identities:

c1(c2v) = (c1c2)v,

c(u + v) = cu + cv,

(c1 + c2)v = c1v + c2v,

1v = v.

Together these identities say that EL = E ⌥K L, with its vector-space addition
and the above definition of multiplication by scalars in L, is a vector space over
L. The further identity

c(e⌥ 1) = ce⌥ 1 if c is in K and e is in E

shows that its scalar multiplication is consistent with scalar multiplication in E

when the scalars are in K and E is identified with the subset E ⌥ 1 of EL.
Let us say that the pair (EL, ⇥), where ⇥ : E � EL is the mapping e ✓� e⌥ 1,

is obtained by extension of scalars. This construction is characterized by a

universal mapping property as follows.

Proposition 6.18. Let K  L be an inclusion of fields, and let E be a vector
space over K.
(a) If (EL, ⇥) is formed by extension of scalars, then (EL, ⇥) has the following

universalmapping property: wheneverU is a vector space overL and : E � U

is a K linear map, there exists a unique L linear map � : EL � U such that

�⇥ =  .

(b) Suppose that (V, j) is any pair in which V is a vector space over L and
j : E � V is a K linear function such that the following universal mapping

property holds: whenever U is a vector space over L and  : E � U is a K
linear map, there exists a unique L linear map � : V � U such that �j =  .
Then there exists a unique isomorphism✏ : EL � V ofL vector spaces such that
✏ ⇥ = j .

PROOF. In (a), for the uniqueness of�, wemust have�(e⌥c) = c�(e⌥1) =
c(�⇥)(e) = c (e). Hence � is determined by  on pure tensors in E ⌥K L and
therefore everywhere.

For existence let� : E ⌥K L� U be theK linear extension of theK bilinear

function of E ⇤ L into U given by

(e, c) ✓� c (e) for e ⇣ E and c ⇣ L.
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In the L vector space E ⌥K L, multiplication by a member c0 of L is defined to
be 1⌥ (multiplication by c0). On a pure tensor e⌥ c, we therefore have

�(c0(e⌥ c)) = �(e⌥ c0c) = (c0c) (e) = c0(c (e)) = c0(�(e⌥ c)).

Since E ⌥K L is generated by pure tensors,� is L linear. By the construction of
�,  (e) = �(e⌥ 1) = (�⇥)(e). Thus � has the required properties.
In (b), let (V, j) have the same universal mapping property as (EL, ⇥). We

apply the universal mapping property of (EL, ⇥) to the K linear map j : E � V

to obtain an L linear � : EL � V with �⇥ = j , and we apply the universal

mapping property of (V, j) to theK linear map ⇥ : E � EL to obtain an L linear
�� : V � EL with �� j = ⇥. From (���) ⇥ = �� j = ⇥ and 1EL ⇥ = ⇥, the
uniqueness in the universal mapping property for (EL, ⇥) implies ��� = 1EL .

Arguing similarly, we obtain ��� = 1V . Thus � is an isomorphism with the

required properties.

If ✏ : EL � V is another isomorphism with ✏ ⇥ = j , then the argument just

given shows that ��✏ = 1EL and ✏�� = 1V . Hence ✏ = (��)�1 = �, and ✏
is unique. �

Tomake E ✓� EL into a covariant functor from vector spaces overK to vector
spaces overL, wemust examine the effect on linear maps. The tool is Proposition
6.18a. Thus let E and F be two vector spaces over K, and let M : E � F be

a K linear map between them. We extend scalars for E and F . The proposition

applies to the composition E � F � FL and shows that the composition
extends uniquely to an L linear map from EL to FL. A quick look at the proof
shows that thisL linear map is M⌥1. Actually, we can see directly that M⌥1 is
indeed linear overL and not just overK: we just use our identity for compositions
of tensor products to write

(M ⌥ 1)(I ⌥ (multiplication by c)) = M ⌥ (multiplication by c)

= (I ⌥ (multiplication by c))(M ⌥ 1).

In any event, the explicit form of the extended linear map as M ⌥ 1 shows

immediately that the identity linearmap goes to the identity and that compositions

go to compositions. Thus E ✓� EL is a covariant functor.
In the special case that the vector spaces are Kn and Km , extension of scalars

has a particularly simple interpretation. The new spaces may be viewed as Ln

and Lm . Thus column vectors with entries in K get replaced by column vectors

with entries in L. What happens with linear mappings is even more transparent.
A linear map M : E � F is given by an m-by-n matrix A with entries inK, and
the linear map M ⌥ 1 : EL � FL is the one given by the same matrix A. Now
the entries of A are to be regarded as members of the larger field L. Viewed this



7. Tensor Algebra 277

way, extension of scalars might look as if it is dependent on choices of bases, but

the tensor-product formalism shows that it is not.

A related notion to extension of scalars is that of restriction of scalars. Again

with an inclusion K  L of fields, a vector space E over the larger field L
becomes a vector space EK over the smaller field K by ignoring unnecessary

scalar multiplications. Although this notion is related to extension of scalars, it

is not inverse to it. For example, if the two fields areR andC and if we start with
an n-dimensional vector space E over R, then EC is a complex vector space of
dimension n and (EC)R is a real vector space of dimension 2n. We thus do not
get back to the original space E .

7. Tensor Algebra

Just as polynomial rings are often used in the construction of more general

commutative rings, so “tensor algebras” are often used in the construction of

more general rings that may not be commutative. In this section we construct the

“tensor algebra” of a vector space as a direct sum of iterated tensor products of

the vector space with itself, and we establish its properties. We shall proceedwith

care, in order to provide a complete proof of the associativity of themultiplication.

Let A, B, andC be vector spaces over a fieldK. A triple tensor product V =
A⌥K B ⌥K C is a vector space over K with a 3-linear map ⇥ : A⇤ B ⇤C � V

having the following universal mapping property: whenever t is a 3-linear map-

ping of A⇤B⇤C into a vector spaceU overK, then there exists a linearmapping
T of V into U such that the diagram in Figure 6.4 commutes.

A ⇤ B ⇤ C
t���� U

⇥

✓✓#

V = A⌥K B ⌥K C

T

FIGURE 6.4. Commutative diagram of a triple tensor product.

The usual argument with universal mapping properties shows that there is at

most one triple tensor product up to a well-determined isomorphism, and one can

give an explicit construction of it that is similar to the one for ordinary tensor

products E ⌥K F . We shall not need that particular proof of existence since

Proposition 6.19a below will give us an alternative argument. Once we have that

statement, we shall use the uniqueness of triple tensor products to establish in

Proposition 6.19b an associativity formula for ordinary iterated tensor products.
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A shorter proof of Proposition 6.19b, which avoids Proposition 6.19a and uses

naturality, will be given after the proof of Proposition 6.20.

Proposition 6.19. If K is a field and A, B,C are vector spaces over K, then
(a) (A⌥K B)⌥K C and A⌥K (B ⌥K C) are triple tensor products.
(b) there exists a unique K isomorphism� from left to right in

(A⌥K B)⌥K C �= A⌥K (B ⌥K C)

such that�((a⌥ b)⌥ c) = a⌥ (b⌥ c) for all a ⇣ A, b ⇣ B, and c ⇣ C .

PROOF. In (a), consider (A ⌥K B) ⌥K C . Let t : A ⇤ B ⇤ C � U be

3-linear. For c ⇣ C , define tc : A ⇤ B � U by tc(a, b) = t (a, b, c). Then tc
is bilinear and hence extends to a linear Tc : A ⌥K B � U . Since t is 3-linear,

tc1+c2 = tc1 +tc2 and txc = xtc for scalar x ; thus uniqueness of the linear extension

forces Tc1+c2 = Tc1 + Tc2 and Txc = xTc. Consequently

t � : (A⌥K B)⇤ C � U

given by t �(d, c) = Tc(d) is bilinear and therefore extends to a linear

T : (A⌥K B)⌥KC � U . This T proves existence of the linear extension of the

given t . Uniqueness is trivial, since the elements (a⌥b)⌥c span (A⌥K B)⌥KC .
So (A⌥K B)⌥KC is a triple tensor product. In a similar fashion, A⌥K (B⌥KC)
is a triple tensor product.

For (b), set up the diagram of the universal mapping property for a triple tensor

product, using V = (A ⌥K B) ⌥K C , U = A ⌥K (B ⌥K C), and t (a, b, c) =
a ⌥ (b ⌥ c). We have just seen in (a) that V is a triple tensor product with

⇥(a, b, c) = (a⌥b)⌥c. Thus there exists a linear T : V � U with T ⇥(a, b, c) =
t (a, b, c). This equation means that T ((a⌥b)⌥c) = a⌥ (b⌥c). Interchanging
the roles of (A⌥K B)⌥K C and A⌥K (B ⌥K C), we obtain a two-sided inverse
for T . Thus T will serve as � in (b), and existence is proved. Uniqueness is

trivial, since the elements (a ⌥ b)⌥ c span (A⌥K B)⌥K C . �

When there is no danger of confusion, Proposition 6.19 allows us to write a

triple tensor product without parentheses as A⌥K B ⌥K C . The same argument
as in Corollaries 6.11 and 6.12 shows that the vector space of 3-linear forms on

A⇤B⇤C is canonically isomorphic to the dual of the vector space A⌥K B⌥KC .
Just as with Corollary 6.13 and Proposition 6.15, the result of Proposition 6.19

can be improved by saying that the isomorphism is natural in the variables A, B,

and C , as follows.
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Proposition 6.20. Let A, B, C , A1, B1, and C1 be vector spaces over a field

K, and let LA : A � A1, LB : B � B1, and LC : C � C1 be linear maps.

Then the isomorphism � of Proposition 6.19b is natural in the triple (A, B,C)
in the sense that the diagram

(A⌥K B)⌥K C
����� A⌥K (B ⌥K C)

(LA⌥LB)⌥LC
✓✓#

✓✓#LA⌥(LB⌥LC )

(A1 ⌥K B1)⌥K C1
����� A1 ⌥K (B1 ⌥K C1)

commutes.

PROOF. We have

((LA ⌥ (LB ⌥ LC)) ��)((a ⌥ b)⌥ c)

= (LA ⌥ (LB ⌥ LC))(a ⌥ (b⌥ c))

= LAa ⌥ (LB ⌥ LC)(b⌥ c)

= LAa ⌥ (LBb⌥ LCc)

= �((LAa ⌥ LBb)⌥ LCc)

= �((LA ⌥ LB)(a ⌥ b)⌥ LCc)

= (� � ((LA ⌥ LB)⌥ LC))((a ⌥ b)⌥ c),

and the proposition follows. �

The treatment of Propositions 6.19 and 6.20 can be shortened if we are willing

to bypass the notion of a triple tensor product and use what was proved about

naturality in the previous section. The result and the proof are as follows.

Proposition 6.20�. Let A, B, and C be vector spaces over a field K. Then
there is an isomorphism� : (A⌥K B)⌥K C � A⌥K (B ⌥K C) that is natural
in the triple (A, B,C) and satisfies�(a ⌥ (b⌥ c)) = a ⌥ (b⌥ c).

PROOF. Writing �= for “naturally isomorphic in all variables” and applying

Proposition 6.15 and other natural isomorphisms of the previous section repeat-

edly, we have

HomK
�
(A⌥K B)⌥K C, V

⇥ �= HomK
�
A⌥K B, HomK(C, V )

⇥

�= HomK
�
B, HomK(A,HomK(C, V ))

⇥

�= HomK
�
B, HomK(A⌥K C, V )

⇥

�= HomK
�
B, HomK(C ⌥K A, V )

⇥

�= HomK
�
(C ⌥K B)⌥K A, V

⇥
by symmetry

�= HomK
�
A⌥K (C ⌥K B), V

⇥

�= HomK
�
A⌥K (B ⌥K C), V

⇥
.
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Then the existenceof the natural isomorphismfollows fromCorollary6.17. Using

the explicit formula for the isomorphism in Proposition 6.16 and tracking matters

down, we see that �(a ⌥ (b⌥ c)) = a ⌥ (b⌥ c). �

There is no difficulty in generalizing matters to n-fold tensor products by

induction. An n-fold tensor product is to be universal for n-multilinear maps.

Again it is unique up to canonical isomorphism, as one proves by an argument

that runs along familiar lines. A direct construction of an n-fold tensor product

is possible in the style of the proof for ordinary tensor products, but such a

construction will not be needed. Instead, we can form an n-fold tensor product

as the (n � 1)-fold tensor product of the first n � 1 spaces, tensored with the nth
space. Proposition 6.19b allows us to regroup parentheses (inductively) in any

fashion we choose, and the same argument as in Corollaries 6.11 and 6.12 yields

the following proposition.

Proposition 6.21. If E1, . . . , En , and V are vector spaces over K, then the
vector space HomK(E1⌥K · · ·⌥K En, V ) is canonically isomorphic (via restric-
tion to pure tensors) to the vector space of all V -valued n-multilinear functions

on E1 ⇤ · · · ⇤ En . In particular the vector space of all n-multilinear forms on

E1 ⇤ · · ·⇤ En is canonically isomorphic to (E1 ⌥K · · ·⌥K En)
�.

Iterated application of Proposition 6.20 shows that we get also a well-defined

notion of a linear map L1 ⌥ · · ·⌥ Ln , the tensor product of n linear maps. Thus

(E1, . . . , En) ✓� E1⌥K · · ·⌥K En is a functor. There is no need to write out the

details.

We turn to the question of defining a multiplication operation on tensors. IfK
is a field, an algebra4 over K is a vector space V over K with a multiplication

or product operation V ⇤ V � V that is K bilinear. The additive part of the K
bilinearity means that the product operation satisfies the distributive laws

a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c in V,

and the scalar-multiplication part of the K bilinearity means that

(ka)b = k(ab) = a(kb) for all k in K and a, b in V .

Within the text of the book, we shall work mostly just with associative

algebras, i.e., those algebras satisfying the usual associative law

a(bc) = (ab)c for all a, b, c in V .

4Some authors use the term “algebra” to mean what we shall call an “associative algebra.”
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An associative algebra is therefore a ring and a vector space, the scalar multipli-

cation and the ring multiplication being linked by the requirement that (ka)b =
k(ab) = a(kb) for all scalars k. Some commutative examples of associative alge-
bras overK are any fieldL containingK, the polynomial algebraK[X1, . . . , Xn],
and the algebra of allK-valued functions on a nonempty set S. Two noncommu-
tative examples of associative algebras overK are thematrix algebraMn(K), with
matrix multiplication as its product, and HomK(V, V ) for any vector space V ,
with composition as its product. The division ringH of quaternions (Example 10

in Section IV.1) is another example of a noncommutative associative algebra

over R.
Despite our emphasis on algebras that are associative, certain kinds of nonasso-

ciative algebras are of great importance in applications, and consequently several

problems at the end of the chapter make use of nonassociative algebras. A

nonassociative algebra is determined by its vector-space structure and the mul-

tiplication table for the members of a K basis. There is no restriction on the

multiplication table; all multiplication tables define algebras. Perhaps the best-

known nonassociative algebra is the 3-dimensional algebra overR determined by
vector product in R3. A basis is {i, j,k}, the multiplication operation is denoted
by ⇤, and the multiplication table is

i⇤ i = 0, i⇤ j = k, i⇤ k = �j,
j⇤ i = �k, j⇤ j = 0, j⇤ k = i,
k⇤ i = j, k⇤ j = �i, k⇤ k = 0.

Since i ⇤ (i ⇤ k) = i ⇤ (�j) = �k and (i ⇤ i) ⇤ k = 0, vector product is not

associative. The vector-product algebra is a special case of a Lie algebra; Lie

algebras are defined in Problems 31–35 at the end of the chapter.

Tensor algebras, which we shall now construct, will be associative algebras.

Fix a vector space E over K, and for integers n ↵ 1, let T n(E) be the n-fold
tensor product of E with itself. In the case n = 0, we let T 0(E) be the field K.
Define, initially as a vector space, T (E) to be the direct sum

T (E) =
✏⇢

n=0
T n(E).

The elements that lie in one or another T n(E) are called homogeneous. We
define a bilinear multiplication on homogeneous elements

Tm(E)⇤ T n(E)� Tm+n(E)

to be the restriction of the canonical isomorphism

Tm(E)⌥K T n(E)� Tm+n(E)



282 VI. Multilinear Algebra

resulting from iterating Proposition 6.19b. This multiplication, denoted by ⌥, is
associative, as far as it goes, because the restriction of the K isomorphism

T l(E)⌥K (Tm(E)⌥K T n(E))� (T l(E)⌥K Tm(E))⌥K T n(E)

to T l(E)⇤ (Tm(E)⇤ T n(E)) factors through the map

T l(E)⇤ (Tm(E)⇤ T n(E))� (T l(E)⇤ Tm(E))⇤ T n(E)

given by (r, (s, t)) ✓� ((r, s), t).
This much tells how to multiply homogeneous elements in T (E). Since each

element t in T (E) has a unique expansion as a finite sum t =
�n

k=0 tk with

tk ⇣ T k(E), we can define the product of this t and the element t � =
�n�

k=0 t
�
k to

be the element t⌥ t � =
�n+n�

l=0
�

k+k�=l (tk⌥ t �k); the expression
�

k+k�=l (tk⌥ t �k)
is the component of the product in T l(E).
Multiplication is thereby well defined in T (E), and it satisfies the distributive

laws and is associative. Thus T (E) becomes an associative algebra with a
(two-sided) identity, namely the element 1 in T 0(E). In the presence of the
identification ⇥ : E � T 1(E), T (E) is known as the tensor algebra of E . The
pair (T (E), ⇥) has the universal mapping property given in Proposition 6.22
and pictured in Figure 6.5.

E
l���� A

⇥

✓✓#

T (E)

L

FIGURE 6.5. University mapping property of a tensor algebra.

Proposition 6.22. The pair (T (E), ⇥) has the following universal mapping
property: whenever l : E � A is a linear map from E into an associative alge-

bra with identity, then there exists a unique associative algebra homomorphism

L : T (E)� A with L(1) = 1 such that the diagram in Figure 6.5 commutes.

PROOF. Uniqueness is clear, since E and 1 generate T (E) as an algebra. For
existence we define L(n) on T n(E) to be the linear extension of the n-multilinear
map

(v1, v2, . . . , vn) ✓� l(v1)l(v2) · · · l(vn),
and we let L =

⇡
L(n) in obvious notation. Let u1 ⌥ · · ·⌥ um be in T

m(E) and
v1 ⌥ · · ·⌥ vn be in T

n(E). Then we have

L(m)(u1 ⌥ · · ·⌥ um) = l(u1) · · · l(um),

L(n)(v1 ⌥ · · ·⌥ vn) = l(v1) · · · l(vn),
L(m+n)(u1 ⌥ · · ·⌥ um ⌥ v1 ⌥ · · ·⌥ vn) = l(u1) · · · l(um)l(v1) · · · l(vn).
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Hence

L(m)(u1⌥ · · ·⌥um)L(n)(v1⌥ · · ·⌥vn) = L(m+n)(u1⌥ · · ·⌥um⌥v1⌥ · · ·⌥vn).

Taking linear combinations, we see that L is a homomorphism. �

Proposition 6.22 allows us tomake E ✓� T (E) into a functor from the category
of vector spaces overK to the category of associative algebras with identity over

K. To carry out the construction, we suppose that  : E � F is a linear map

between two vector spaces over K. If i : E � T (E) and j : F � T (F) are the
inclusion maps, then j is a linear map from E into T (F), and Proposition 6.22
produces a unique algebra homomorphism � : T (E) � T (F) carrying 1 to 1
and satisfying �i = j . Then the tensor-product functor is defined to carry the
linear map  to the homomorphism� of associative algebras with identity.

For the situation in which R is a commutative ring with identity, Section

IV.5 introduced the ring R[X1, . . . , Xn] of polynomials in n commuting inde-
terminates with coefficients in R. This ring was characterized by a universal

mapping property saying that if a ring homomorphism of R into a commutative

ring with identity were given and if n elements t1, . . . , tn were given, then the
ring homomorphism of R could be extended uniquely to a ring homomorphism

of R[X1, . . . , Xn] carrying Xj into tj for each j .

Proposition 6.22 yields a noncommutative version of this result, except that the

ring of coefficients is assumed this time to be a fieldK. To arrange for X1, . . . , Xn
to be noncommuting indeterminates, we form a vector space with {X1, . . . , Xn}
as a basis. Thus we let E =

⇡n
j=1 KXj . If t1, . . . , tn are arbitrary elements of an

associative algebra A with identity, then the formulas l(Xj ) = tj for 1 ⌦ j ⌦ n

define a linear map l : E � A. The associative-algebra homomorphism

L : T (E) � A produced by the proposition extends the inclusion of K into

the subfield K1 of A and carries each Xj to tj .

8. Symmetric Algebra

We continue to allow K to be an arbitrary field. Let E be a vector space over

K, and let T (E) be the tensor algebra. We begin by defining the symmetric
algebra S(E). This is to be a version of T (E) in which the elements, which are
called symmetric tensors, commute with one another. It will not be canonically

an algebra of polynomials, as we shall see presently, and thus we make no use of

polynomial rings in the construction.

Just as the vector space of n-multilinear forms E⇤· · ·⇤E � K is canonically
the dual of T n(E), so the vector space of symmetric n-multilinear forms will be



284 VI. Multilinear Algebra

canonically the dual of Sn(E). Here “symmetric” means that f (x1, . . . , xn) =
f (x⌃ (1), . . . , x⌃ (n)) for every permutation ⌃ in the symmetric groupSn .

Since tensor algebras are supposed to be universal devices for constructing

associative algebras over K, whether commutative or not, we seek to form S(E)
as a quotient of T (E). If q is the quotient homomorphism, we want to have
q(u ⌥ v) = q(v ⌥ u) in S(E) whenever u and v are in ⇥(E) = T 1(E). Hence
every element u⌥ v� v⌥ u is to be in the kernel of the homomorphism. On the
other hand, we do not want to impose any unnecessary conditions on our quotient,

and so we factor out only what the elements u⌥ v� v⌥ u force us to factor out.

Thus we define the symmetric algebra by

S(E) = T (E)/I,

I =
↵
two-sided ideal generated by all

u ⌥ v � v ⌥ u with u and v
in T 1(E)

�
.where

Then S(E) is an associative algebra with identity.
Let us see that the fact that the generators of the ideal I are homogeneous

elements (all being in T 2(E)) implies that

I =
✏⇢

n=0
(I ⇠ T n(E)).

In fact, each I ⇠ T n(E) is contained in I , and hence I contains the right side.
On the other hand, if x is any element of I , then x is a sum of terms of the form

a⌥ (u⌥ v� v⌥ u)⌥ b, and we may assume that each a and b is homogeneous.
Any individual term a ⌥ (u ⌥ v � v ⌥ u) ⌥ b is in some I ⇠ T n(E), and x is
exhibited as a sum of members of the various intersections I ⇠ T n(E).
An ideal with the property I =

⇡✏
n=0 (I ⇠T n(E)) is said to be homogeneous.

Since I is homogeneous,

S(E) =
✏⇢

n=0
T n(E)/(I ⇠ T n(E)).

We write Sn(E) for the nth summand on the right side, so that

S(E) =
✏⇢

n=0
Sn(E).

Since I ⇠T 1(E) = 0, the map of E � T 1(E)� S1(E) into first-order elements
is one-one onto. The product operation in S(E) is written without a product sign,
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the image in Sn(E) of v1⌥ · · ·⌥ vn in T
n(E) being written as v1 · · · vn . If a is in

Sm(E) and b is in Sn(E), then ab is in Sm+n(E). Moreover, Sn(E) is generated
by elements v1 · · · vn with all vj in S

1(E) �= E , since T n(E) is generated by
corresponding elements v1 ⌥ · · · ⌥ vn . The defining relations for S(E) make
vivj = vjvi for vi and vj in S

1(E), and it follows that the associative algebra
S(E) is commutative. �

Proposition 6.23. Let E be a vector space over the field K.
(a) Let ⇥ be the n-multilinear function ⇥(v1, . . . , vn) = v1 · · · vn of E⇤ · · ·⇤ E

into Sn(E). Then (Sn(E), ⇥) has the following universal mapping property:
whenever l is any symmetric n-multilinear map of E ⇤ · · · ⇤ E into a vector

space U , then there exists a unique linear map L : Sn(E) � U such that the

diagram

E ⇤ · · ·⇤ E
l���� U

⇥

✓✓#

Sn(E)

L

commutes.

(b) Let ⇥ be the one-one linear function that embeds E as S1(E)  S(E).
Then (S(E), ⇥) has the following universal mapping property: whenever l is
any linear map of E into a commutative associative algebra A with identity, then

there exists a unique algebra homomorphism L : S(E)� A with L(1) = 1 such

that the diagram

E
l���� A

⇥

✓✓#

S(E)

L

commutes.

PROOF. In both cases uniqueness is trivial. For existence we use the universal

mapping properties of T n(E) and T (E) to produce  L on T n(E) or T (E). If we

can show that  L annihilates the appropriate subspace so as to descend to Sn(E)
or S(E), then the resulting map can be taken as L , and we are done. For (a), we

have  L : T n(E) � U , and we are to show that  L(T n(E) ⇠ I ) = 0, where I is

generated by all u ⌥ v � v ⌥ u with u and v in T 1(E). A member of T n(E) ⇠ I
is thus of the form

�
ai ⌥ (ui ⌥ vi � vi ⌥ ui ) ⌥ bi with each term in T

n(E).
Each term here is a sum of pure tensors

x1⌥ · · ·⌥xr⌥ui⌥vi⌥ y1⌥ · · ·⌥ ys�x1⌥ · · ·⌥xr⌥vi⌥ui⌥ y1⌥ · · ·⌥ ys (⌅)
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with r + 2+ s = n. Since l by assumption takes equal values on

x1 ⇤ · · ·⇤ xr ⇤ ui ⇤ vi ⇤ y1 ⇤ · · ·⇤ ys

x1 ⇤ · · ·⇤ xr ⇤ vi ⇤ ui ⇤ y1 ⇤ · · ·⇤ ys,and

 L vanishes on (⌅), and it follows that  L(T n(E) ⇠ I ) = 0.

For (b) we are to show that  L : T (E) � A vanishes on I . Since ker L
is an ideal, it is enough to check that  L vanishes on the generators of I . But
 L(u⌥v�v⌥u) = l(u)l(v)� l(v)l(u) = 0 by the commutativity of A, and thus

L(I ) = 0. �

Corollary 6.24. If E and F are vector spaces over the field K, then the
vector space HomK(Sn(E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector space of all F-valued symmetric n-multilinear functions on

E ⇤ · · ·⇤ E .

PROOF. Restriction is linear and one-one. It is onto by Proposition 6.23a. �

Corollary 6.25. If E is a vector space over the fieldK, then the dual (Sn(E))�

of Sn(E) is canonically isomorphic (via restriction to pure tensors) to the vector
space of symmetric n-multilinear forms on E ⇤ · · ·⇤ E .

PROOF. This is a special case of Corollary 6.24. �

If  : E � F is a linear map between vector spaces, then we can use

Proposition 6.23b to define a corresponding homomorphism� : S(E)� S(F)
of associative algebras with identity. In this way, we can make E ✓� S(E) into a
functor from the category of vector spaces overK to the category of commutative
associative algebras with identity over K. The details appear in Problem 14 at
the end of the chapter.

Next we shall identify a basis for Sn(E) as a vector space. The union of such
bases as n varies will then be a basis of S(E). Let {ui }i⇣A be a basis of E , possibly
infinite. As noted in Section A5 of the appendix, a simple ordering on the index

set A is a partial ordering in which every pair of elements is comparable and in

which a ⌦ b and b ⌦ a together imply a = b.

Proposition 6.26. Let E be a vector space over the field K, let {ui }i⇣A be a
basis of E , and suppose that a simple ordering has been imposed on the index set

A. Then the set of all monomials u
j1
i1

· · · u jkik with i1 < · · · < ik and
�

m jm = n

is a basis of Sn(E).
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REMARK. In particular if E is finite-dimensional with (u1, . . . , uN ) as an

ordered basis, then the monomials u
j1
1 · · · u jNN of total degree n form a basis of

Sn(E).

PROOF. Since S(E) is commutative and since n-fold products of elements ⇥(ui )
in T 1(E) span T n(E), the indicated set ofmonomials spans Sn(E). Let us see that
the set is linearly independent. Take any finite subset F  A of indices. The map�

i⇣A ciui ✓�
�

i⇣F ci Xi of E into the polynomial algebra K[{Xi }i⇣F ] is linear
into a commutative algebrawith identity. Its extensionvia Proposition6.23bmaps

all monomials in the ui for i ⇣ F into distinct monomials in K[{Xi }i⇣F ], which
are necessarily linearly independent. Hence any finite subset of the monomials in

the statement of the proposition is linearly independent, and the whole set must

be linearly independent. Therefore our spanning set is a basis. �

The proof of Proposition 6.26 shows that S(E) may be identified with poly-
nomials in indeterminates identified with members of E once a basis has been

chosen, but this identification depends on the choice of basis. Indeed, if we think

of E as specified in advance, then the isomorphismwas set up by mapping the set

{Xi }i⇣A to the specified basis of E , and the result certainly depended onwhat basis
was used. Nevertheless, if E is finite-dimensional, there is still an isomorphism

that is independent of basis; it is between S(E �), where E � is the dual of E , and
a natural basis-free notion of “polynomials” on E . We return to this point after

one application of Proposition 6.26.

Corollary 6.27. Let E be a finite-dimensional vector space over K of dimen-

sion N . Then

(a) dim Sn(E) =
�
n + N � 1
N � 1

 
for 0 ⌦ n <✏,

(b) Sn(E �) is canonically isomorphic to Sn(E)� in such a way that

( f1 · · · fn)(w1 · · ·wn) =
�

⌃⇣Sn

n�

j=1
f j (w⌃ ( j))),

for any f1, . . . , fn in E � and any w1, . . . , wn in E , provided K has

characteristic 0; hereSn is the symmetric group on n letters.

PROOF. For (a), a basis has been described in Proposition 6.26. To see its

cardinality, we recognize that picking out N � 1 objects from n+ N � 1 to label
as dividers is a way of assigning exponents to the uj ’s in an ordered basis; thus

the cardinality of the indicated basis is

�
n + N � 1
N � 1

 
.
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For (b), let f1, . . . , fn be in E
� and w1, . . . , wn be in E , and define

l f1,..., fn (w1, . . . , wn) =
�

⌃⇣Sn

n�

j=1
f j (w⌃ ( j))).

Then l f1,..., fn is symmetric n-multilinear from E ⇤ · · · ⇤ E into K and extends

by Proposition 6.23a to a linear L f1,..., fn : S
n(E) � K. Thus l( f1, . . . , fn) =

L f1,..., fn defines a symmetric n-multilinear map of E
� ⇤ · · ·⇤ E � into Sn(E)�. Its

linear extension L maps Sn(E �) into Sn(E)�.
To complete the proof, we shall show that L carries basis to basis. Let

u1, . . . , uN be an ordered basis of E , and let u
�
1, . . . , u

�
N be the dual basis. Part

(a) shows that the elements (u�1)
j1 · · · (u�N ) jN with

�
m jm = n form a basis of

Sn(E �) and that the elements (u1)
k1 · · · (uN )kN with

�
m km = n form a basis of

Sn(E). We show that L of the basis of Sn(E �) is the dual basis of the basis of
Sn(E), except for positive-integer factors. Thus let all of f1, . . . , f j1 be u

�
1, let

all of f j1+1, . . . , f j1+ j2 be u
�
2, and so on. Similarly let all of w1, . . . , wk1 be u1,

let all of wk1+1, . . . , wk1+k2 be u2, and so on. Then

L((u�1)
j1 · · · (u�N ) jN )((u1)

k1 · · · (uN )kN ) = L( f1 · · · fn)(w1 · · ·wn)

= l( f1, . . . , fn)(w1 · · ·wn)

=
�

⌃⇣Sn

n�

i=1
fi (w⌃ (i))).

For given ⌃ , the product on the right side is 0 unless, for each index i , an inequality
jm�1 + 1 ⌦ i ⌦ jm implies that km�1 + 1 ⌦ ⌃ (i) ⌦ km . In this case the product

is 1; so the right side counts the number of such ⌃ ’s. For given ⌃ , obtaining a
nonzero product forces km = jm for all m. And when km = jm for all m, the

choice ⌃ = 1 does lead to product 1. Hence the members of L of the basis are

positive-integer multiples of the members of the dual basis, as asserted. �

Let us return to the question of introducing a basis-free notion of polynomials

on the vector space E under the assumption that E is finite-dimensional. We take

a cue from Corollary 4.32, which tells us that the evaluation homomorphism

carrying K[X1, . . . , Xn] to the algebra of K-valued polynomial functions of
(t1, . . . , tn) is one-one if K is an infinite field. We regard the latter as the algebra

of polynomial functions on Kn , and we check what happens when we identify

the vector space E with Kn by fixing a basis. Let � = {x1, . . . , xn} be a basis of
E , and let �� = {x �1, . . . , x �n} be the dual basis of E �. If e = t1x1 + · · · + tnxn is

the expansion of a member of E in terms of �, then we have x �j (e) = tj . Thus the

polynomial functions tj are given by the members of the dual basis. The vector
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space of all homogeneous first-degree polynomial functions is the set of linear

combinations of the tj ’s, and these are given by arbitrary linear functionals on E .

Thus the vector space of homogeneous first-degree polynomial functions on E is

just the dual space E �, and this conclusion does not depend on the choice of basis.
The algebra of all polynomial functions on E is then the algebra of all K-valued
functions on E generated by E � and the constant functions.
This discussion tells us unambiguously what polynomial functions on E are

to be, and we want to backtrack to handle abstract polynomials on E . Although

the evaluation homomorphism fromK[X1, . . . , Xn] to the algebra of polynomial
functions on Kn may fail to be one-one if K is a finite field, its restriction to

homogeneous first-degree polynomials is one-one. Thus, whatever we might

mean by the vector space of homogeneous first-degree polynomials on E , the

evaluation mapping should exhibit this space as isomorphic to E �.
Armed with these clues, we define the polynomial algebra P(E) on E to be

the symmetric algebra S(E �) if E is finite-dimensional. We need an evaluation
mapping for each point e of E , and we obtain this from the universal mapping

property of symmetric algebras (Proposition 6.23b): With e fixed, we have a

linear map l from the vector space E � to the commutative associative algebra
K given with l(e�) = e�(e). The universal mapping property gives us a unique
algebra homomorphism L : S(E �) � K that extends l and carries 1 to 1. The

algebra homomorphism L is then a multiplicative linear functional on P(E) =
S(E �) that carries 1 to 1 and agrees with evaluation at e on homogeneous first-
degree polynomials. We write this homomorphism as p ✓� p(e), and we define
Pn(E) = Sn(E �); this is the vector spaceof homogeneousnth-degree polynomials
on E . A confirmation that P(E) is indeed to be regarded as the algebra of abstract
polynomials on E comes from the following.

Proposition 6.28. If E is a finite-dimensional vector space over the field

K, then the system of evaluation homomorphisms P(E) � K on polynomials

given by p ✓� {p(e)}e⇣E is an algebra homomorphism of P(E) onto the algebra
of K-valued polynomial functions on E that carries the identity to the constant
function 1, and it is one-one if K is an infinite field.

PROOF. Certainly p ✓� {p(e)}e⇣E is an algebra homomorphism of P(E) into
the algebra of K-valued polynomial functions on E , and it carries the identity to
the constant function 1. We have seen that the image of P1(E) is exactly E �, and
hence the image of P(E) is the algebra of K-valued functions on E generated
by E � and the constants. This is exactly the algebra of all K-valued polynomial
functions, and hence the mapping is onto.

Suppose that K is infinite. The restriction of p ✓� {p(e)}e⇣E to the finite-
dimensional subspace Pn(E) of P(E)maps into the finite-dimensional subspace
of all polynomial functions on E homogeneous of degree n, and this restriction
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must therefore be onto. We can read off the dimension of the space of all

polynomial functions on E homogeneous of degree n from Corollary 4.32 and

Corollary 6.27a. This dimension matches the dimension of Pn(E), according to
Corollary 6.27a. Since the mapping is onto and the finite dimensions match, the

restricted mapping is one-one. Hence p ✓� {p(e)}e⇣E is one-one. �

Wehave defined the symmetric algebra S(E) as a quotient of the tensor algebra
T (E). Now let us suppose that K has characteristic 0. With this hypothesis we

shall be able to identify an explicit vector subspace of T (E) that maps one-one
onto S(E) during the passage to the quotient. This subspaceof T (E) can therefore
be viewed as a version of S(E) for some purposes.

We define an n-multilinear function from E ⇤ · · ·⇤ E into T n(E) by

(v1, . . . , vn) ✓�
1

n!

�

⌃⇣Sn

v⌃ (1) ⌥ · · ·⌥ v⌃ (n),

and let ⇧ : T n(E)� T n(E) be its linear extension. We call ⇧ the symmetrizer
operator. The image of ⇧ in T (E) is denoted by Sn(E), and the members of this
subspace are called symmetrized tensors.

Proposition 6.29. Let the field K have characteristic 0, and let E be a vector

space over K. Then the symmetrizer operator ⇧ satisfies ⇧ 2 = ⇧ . The kernel of
⇧ on T n(E) is exactly T n(E) ⇠ I , and therefore

T n(E) =  Sn(E)⌃ (T n(E) ⇠ I ).

REMARK. In view of this corollary, the quotient map T n(E)� Sn(E) carries
 Sn(E) one-one onto Sn(E). Thus  Sn(E) can be viewed as a copy of Sn(E)
embedded as a direct summand of T n(E).

PROOF. We have

⇧ 2(v1 ⌥ · · ·⌥ vn) = 1

(n!)2

�

⌅,⌃⇣Sn

v⌅⌃ (1) ⌥ · · ·⌥ v⌅⌃ (n)

= 1

(n!)2

�

⌅⇣Sn

�

�⇣Sn,
(�=⌅⌃ )

v�(1) ⌥ · · ·⌥ v�(n)

= 1

n!

�

⌅⇣Sn

⇧ (v1 ⌥ · · ·⌥ vn)

= ⇧ (v1 ⌥ · · ·⌥ vn).
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Hence ⇧ 2 = ⇧ . Thus ⇧ fixes any member of image⇧ , and it follows that
image⇧ ⇠ ker ⇧ = 0. Consequently T n(E) is the direct sum of image⇧ and
ker ⇧ . We are left with identifying ker ⇧ as T n(E) ⇠ I .
The subspace T n(E) ⇠ I is spanned by elements

x1 ⌥ · · ·⌥ xr ⌥ u ⌥ v⌥ y1 ⌥ · · ·⌥ ys � x1 ⌥ · · ·⌥ xr ⌥ v⌥ u ⌥ y1 ⌥ · · ·⌥ ys

with r + 2+ s = n, and the symmetrizer ⇧ certainly vanishes on such elements.
Hence T n(E) ⇠ I  ker ⇧ . Suppose that the inclusion is strict, say with t in
ker ⇧ but t not in T n(E) ⇠ I . Let q be the quotient map T n(E) � Sn(E).
The kernel of q is T n(E) ⇠ I , and thus q(t) ⌘= 0. From Proposition 6.26 the

T (E) monomials in basis elements from E with increasing indices map onto a

basis of S(E). Since K has characteristic 0, the symmetrized versions of these

monomials map to nonzero multiples of the images of the initial monomials.

Consequently q carries  Sn(E) = image⇧ onto Sn(E). Thus choose t � ⇣  Sn(E)
with q(t �) = q(t). Then t � � t is in ker q = T n(E)⇠ I  ker ⇧ . Since ⇧ (t) = 0,

we see that ⇧ (t �) = 0. Consequently t � is in ker ⇧ ⇠ image⇧ = 0, and we obtain

t � = 0 and q(t) = q(t �) = 0, contradiction. �

9. Exterior Algebra

We turn to a discussion of the exterior algebra. Let K be an arbitrary field, and

let E be a vector space over K. The construction, results, and proofs for the
exterior algebra

�
(E) are similar to those for the symmetric algebra S(E). The

elements of
�

(E) are to be all the alternating tensors (= skew-symmetric if K
has characteristic ⌘= 2), and so we want to force v ⌥ v = 0. Thus we define the

exterior algebra by

�
(E) = T (E)/I �,

I � =
�
two-sided ideal generated by all

v ⌥ v with v in T 1(E)

 
.where

Then
�

(E) is an associative algebra with identity.
It is clear that I � is homogeneous: I � =

⇡✏
n=0 (I � ⇠ T n(E)). Thus we can

write �
(E) =

⇡✏
n=0 T

n(E)/(I � ⇠ T n(E)).

We write
�n(E) for the nth summand on the right side, so that

�
(E) =

⇡✏
n=0

�n(E).
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Since I � ⇠ T 1(E) = 0, the map of E into first-order elements
�1(E) is one-one

onto. The product operation in
�

(E) is denoted by⇡ rather than⌥, the image in�n(E) of v1⌥ · · · vn in T n(E) being denoted by v1 ⇡ · · ·⇡ vn . If a is in
�m(E)

and b is in
�n(E), then a ⇡ b is in

�m+n(E). Moreover,
�n(E) is generated

by elements v1 ⇡ · · · ⇡ vn with all vj in
�1(E) �= E , since T n(E) is generated

by corresponding elements v1⌥ · · ·⌥ vn . The defining relations for
�

(E)make

vi ⇡ vj = �vj ⇡ vi for vi and vj in
�1(E), and it follows that

a ⇡ b = (�1)mnb ⇡ a for a ⇣
�m(E) and b ⇣

�n(E).

Proposition 6.30. Let E be a vector space over the field K.
(a)Let ⇥be then-multilinear function ⇥(v1, . . . , vn) = v1⇡· · ·⇡vn of E⇤· · ·⇤E

into
�n(E). Then (

�n(E), ⇥) has the following universal mapping property:
whenever l is any alternating n-multilinearmap of E⇤ · · ·⇤E into a vector space
U , then there exists a unique linear map L :

�n(E)� U such that the diagram

E ⇤ · · ·⇤ E
l���� U

⇥

✓✓#
�n(E)

L

commutes.

(b) Let ⇥ be the function that embeds E as
�1(E)  

�
(E). Then (

�
(E), ⇥)

has the following universal mapping property: whenever l is any linear map of

E into an associative algebra A with identity such that l(v)2 = 0 for all v ⇣ E ,

then there exists a unique algebra homomorphism L :
�

(E)� Awith L(1) = 1

such that the diagram

E
l���� A

⇥

✓✓#
�

(E)

L

commutes.

PROOF. The proof is completely analogous to the proof of Proposition 6.23.�

Corollary 6.31. If E and F are vector spaces over the field K, then the
vector space HomK(

�n(E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector space of all F-valued alternating n-multilinear functions on

E ⇤ · · ·⇤ E .

PROOF. Restriction is linear and one-one. It is onto by Proposition 6.30a. �
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Corollary 6.32. If E is a vector space over the fieldK, then the dual (
�n(E))�

of
�n(E) is canonically isomorphic (via restriction to pure tensors) to the vector

space of alternating n-multilinear forms on E ⇤ · · ·⇤ E .

PROOF. This is a special case of Corollary 6.31. �

If  : E � F is a linear map between vector spaces, then we can use

Proposition 6.30b to define a corresponding homomorphism� :
�

(E)�
�

(F)
of associative algebras with identity. In this way, we can make E ✓�

�
(E) into a

functor from the category of vector spaces overK to the category of commutative
associative algebras with identity over K. We omit the details, which are similar
to those for symmetric tensors.

Next we shall identify a basis for
�n(E) as a vector space. The union of such

bases as n varies will then be a basis of
�

(E).

Proposition 6.33. Let E be a vector space over the field K, let {ui }i⇣A be a
basis of E , and suppose that a simple ordering has been imposed on the index set

A. Then the set of all monomials ui1 ⇡ · · · ⇡ uin with i1 < · · · < in is a basis of�n(E).

PROOF. Since multiplication in
�

(E) satisfies a ⇡ b = (�1)mnb ⇡ a for

a ⇣
�m(E) and b ⇣

�n(E) and since monomials span T n(E), the indicated set
spans

�n(E). Let us see that the set is linearly independent. For i ⇣ A, let u�i be
the member of E � with u�i (uj ) equal to 1 for j = i and equal to 0 for j ⌘= i . Fix

r1 < · · · < rn , and define

l(w1, . . . , wn) = det{u�ri (wj )} for w1, . . . , wn in E .

Then l is alternating n-multilinear from E ⇤ · · · ⇤ E into K and extends by

Proposition 6.30a to L :
�n(E)� K. If k1 < · · · < kn , then

L(uk1 ⇡ · · · ⇡ ukn ) = l(uk1, . . . , ukn ) = det{u�ri (ukj )},

and the right side is 0 unless r1 = k1, . . . , rn = kn , in which case it is 1. This

proves that the ur1 ⇡ · · · ⇡ urn are linearly independent in
�n(E). �

Corollary 6.34. Let E be a finite-dimensional vector space over K of dimen-

sion N . Then

(a) dim
�n(E) =

�
N

n

 
for 0 ⌦ n ⌦ N and = 0 for n > N ,

(b)
�n(E �) is canonically isomorphic to

�n(E)� by

( f1 ⇡ · · · ⇡ fn)(w1, . . . , wn) = det{ fi (wj )}.
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PROOF. Part (a) is an immediate consequence of Proposition 6.33, and (b) is

proved in the sameway as Corollary 6.27b, using Proposition 6.30a as a tool. The

“positive-integer multiples” that arise in the proof of Corollary 6.27b are all 1 in

the current proof, and hence no restriction on the characteristic ofK is needed.�

Now let us suppose that K has characteristic 0. We define an n-multilinear

function from E ⇤ · · ·⇤ E into T n(E) by

(v1, . . . , vn) ✓�
1

n!

�

⌃⇣Sn

(sgn ⌃ )v⌃ (1) ⌥ · · ·⌥ v⌃ (n),

and let ⇧ � : T n(E) � T n(E) be its linear extension. We call ⇧ � the antisym-

metrizer operator. The image of ⇧ � in T (E) is denoted by  
�n

(E), and the
members of this subspace are called antisymmetrized tensors.

Proposition 6.35. Let the field K have characteristic 0, and let E be a vector

space over K. Then the antisymmetrizer operator ⇧ � satisfies ⇧ �2 = ⇧ �. The
kernel of ⇧ � on T n(E) is exactly T n(E) ⇠ I �, and therefore

T n(E) =  �n
(E)⌃ (T n(E) ⇠ I �).

REMARK. In view of this corollary, the quotient map T n(E)�
�n(E) carries

 �n
(E) one-one onto

�n(E). Thus  
�n

(E) can be viewed as a copy of
�n(E)

embedded as a direct summand of T n(E).

PROOF. We have

⇧ �2(v1 ⌥ · · ·⌥ vn) = 1

(n!)2

�

⌅,⌃⇣Sn

(sgn⌅⌃ )v⌅⌃ (1) ⌥ · · ·⌥ v⌅⌃ (n)

= 1

(n!)2

�

⌅⇣Sn

�

�⇣Sn,
(�=⌅⌃ )

(sgn�)v�(1) ⌥ · · ·⌥ v�(n)

= 1

n!

�

⌅⇣Sn

⇧ �(v1 ⌥ · · ·⌥ vn)

= ⇧ �(v1 ⌥ · · ·⌥ vn).

Hence ⇧ �2 = ⇧ �. Consequently T n(E) is the direct sum of image⇧ � and ker ⇧ �,
and we are left with identifying ker ⇧ � as T n(E) ⇠ I �.
The subspace T n(E) ⇠ I � is spanned by elements

x1 ⌥ · · ·⌥ xr ⌥ v ⌥ v ⌥ y1 ⌥ · · ·⌥ ys
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withr+2+s = n, and the antisymmetrizer⇧ � certainlyvanisheson suchelements.
Hence T n(E) ⇠ I �  ker ⇧ �. Suppose that the inclusion is strict, say with t in
ker ⇧ � but t not in T n(E)⇠ I �. Let q be the quotient map T n(E)�

�n(E). The
kernel of q is T n(E) ⇠ I �, and thus q(t) ⌘= 0. From Proposition 6.33 the T (E)
monomials with strictly increasing indices map onto a basis of

�
(E). Since K

has characteristic 0, the antisymmetrized versions of these monomials map to

nonzero multiples of the images of the initial monomials. Consequently q carries
 �n

(E) = image⇧ � onto
�n(E). Thus choose t � ⇣  

�n
(E) with q(t �) = q(t).

Then t � � t is in ker q = T n(E) ⇠ I �  ker ⇧ �. Since ⇧ �(t) = 0, we see that

⇧ �(t �) = 0. Consequently t � is in ker ⇧ � ⇠ image⇧ � = 0, and we obtain t � = 0

and q(t) = q(t �) = 0, contradiction. �

10. Problems

1. Let V be a vector space over a fieldK, and let ⌧ · , · � be a nondegenerate bilinear
form on V .

(a) Prove that every member v� of V is of the form v�(w) = ⌧v,w� for one and
only one member v of V .

(b) Suppose that ( · , · ) is another bilinear form on V . Prove that there is some
linear function L : V � V such that (v,w) = ⌧L(v),w� for all v and w

in V .

2. The matrix A =
⌃
0 1

1 0

⌥
with entries in F2 is symmetric. Prove that there is no

nonsingular M with Mt AM diagonal.

3. This problem shows that one possible generalization of Sylvester’s Law to other

fields is not valid. Over the field F3, show that there is a nonsingular matrix
M such that

⌃
�1 0

0 �1

⌥
= Mt

⌃
1 0

0 1

⌥
M . Conclude that the number of squares in

K⇤ among the diagonal entries of the diagonal form in Theorem 6.5 is not an
invariant of the symmetric matrix.

4. Let V be a complex n-dimensional vector space, let ( · , · ) be aHermitian formon
V , let VR be the 2n-dimensional real vector space obtained from V by restricting

scalar multiplication to real scalars, and define ⌧ · , · � = Im( · , · ). Prove that
(a) ⌧ · , · � is an alternating bilinear form on VR,
(b) ⌧J (v1), J (v2)� = ⌧v1, v2� for all v1 and v2 if J : VR � VR is what

multiplication by i becomes when viewed as a linear map from VR to itself,
(c) ⌧ · , · � is nondegenerate on VR if and only if ( · , · ) is nondegenerate on V .

5. Let W be a 2n-dimensional real vector space, and let ⌧ · , · � be a nondegenerate
alternating bilinear form on W . Suppose that J : W � W is a linear map such
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that J 2 = �I and ⌧J (w1), J (w2)� = ⌧w1, w2� for all w1 and w2 in W . Prove

that W equals VR for some n-dimensional complex vector space V possessing a
Hermitian form whose imaginary part is ⌧ · , · �.

6. This problem sharpens the result of Theorem 6.7 in the nondegenerate case. Let

⌧ · , · � be a nondegenerate alternating bilinear form on a 2n-dimensional vector
space V over K. A vector subspace S of V is called an isotropic subspace if

⌧u, v� = 0 for all u and v in S. Prove that

(a) any isotropic subspace of V that is maximal under inclusion has dimension

n,

(b) for any maximal isotropic subspace S1, there exists a second maximal

isotropic subspace S2 such that S1 ⇠ S2 = 0.

(c) if S1 and S2 are maximal isotropic subspaces of V such that S1 ⇠ S2 = 0,

then the linear map S2� S�1 given by s2 ✓� ⌧ · , s2�
⇧⇧
S1
is an isomorphism of

S2 onto the dual space S
�
1.

(d) if S1 and S2 are maximal isotropic subspaces of V such that S1 ⇠ S2 = 0,

then there exist bases {p1, . . . , pn} of S1 and {q1, . . . , qn} of S2 such that
⌧pi , pj � = ⌧qi , qj � = 0 and ⌧pi , qj � = �i j for all i and j . (The resulting

basis {p1, . . . , pn, q1, . . . , qn} of V is called aWeyl basis of V .)
7. Let S be a nonempty set, and letK be a field. For s in S, letUs and Vs be vector

spaces over K, and let U and V be two further vector spaces over K.
(a) Prove that HomK

�⇡
s⇣S Us, V

⇥ �=
⌧

s⇣S HomK(Us, V ).

(b) Prove that HomK
�
U,
⌧

s⇣S Vs
⇥ �=

⌧
s⇣S HomK(U, Vs).

(c) Give examples to show that neither isomorphism in (a) and (b) need remain

valid if all three direct products are changed to direct sums.

8. This problem continues Problem 1 at the end of Chapter V, which established

a canonical-form theorem for an action of GL(m, K) ⇤ GL(n, K) on m-by-

n matrices. For the present problem, the group GL(n, K) acts on Mn(K) by

(g, x) ✓� gxgt .

(a) Verify that this is indeed a group action and that the vector subspaces Ann(K)

of alternating matrices and Snn(K) of symmetric matrices are mapped into

themselves under the group action.

(b) Prove that two members of Ann(K) lie in the same orbit if and only if they

have the same rank, and that the rank must be even. For each even rank⌦ n,

find an example of a member of Ann(K) with that rank.

(c) Prove that two members of Snn(C) lie in the same orbit if and only if they

have the same rank, and for each rank ⌦ n, find an example of a member of

Snn(C) with that rank.

9. Let U and V be vector spaces over K, and let U � be the dual of U . The bilinear
map (u�, v) ✓� u�( · )v of U � ⇤ V into HomK(U, V ) extends to a linear map

TUV : U
� ⌥K V � HomK(U, V ). Do the following:
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(a) Prove that TUV is one-one.

(b) Prove that TUV is onto HomK(U, V ) if U is finite-dimensional.

(c) Give an example for which TUV is not onto HomK(U, V ).

(d) Let C be the category of all vector spaces over K, and let � and ✏ be the

functors from C⇤C into Cwhose effects on objects are�(U, V ) = U � ⌥KV
and ✏(U, V ) = HomK(U, V ). Prove that the system {TUV } is a natural
transformation of � into ✏.

(e) In view of (c), can the system {TUV } be a natural isomorphism?
10. Let K  L be an inclusion of fields, and let VK and VL be the categories of

vector spaces overK and L. Section 6 of the text defined extension of scalars as
a covariant functor�(E) = E ⌥K L. Another definition of extension of scalars
is ✏(E) = HomK(L, E) with (l )(l �) =  (ll �). Verify that ✏(E) is a vector

space over L and that ✏ is a functor.

11. A linear map L : E � F between finite-dimensional complex vector spaces

becomes a linear map LR : ER � FR when we restrict attention to real scalars.
Explain how to express a matrix for LR in terms of a matrix for L .

12. (Kronecker product of matrices) Let L : E1 � E2 and M : F1 � F2 be

linear maps between finite-dimensional vector spaces over K, let �1 and �2 be
ordered bases of E1 and E2, and let �1 and �2 be ordered bases of F1 and F2.

Define matrices A and B by A =
⌃

L

�2�1

⌥
and B =

⌃
M

�2�1

⌥
. Use �1, �2, �1,

and �2 to define ordered bases ⇡1 and ⇡2 of E1 ⌥K F1 and E2 ⌥K F2, and

describe how the matrix C =
⌃
L⌥M
⇡2⇡1

⌥
is related to A and B.

13. LetK be a field, and let E be the vector spaceKX⌃KY . Prove that the subalgebra
of T (E) generated by 1, Y , and X2 + XY + Y 2 is isomorphic as an algebra with

identity to T (F) for some vector space F .

Problems 14–17 concern the functors E ✓� T (E), E ✓� S(E), and E ✓�
�
E

defined for vector spaces over a field K.
14. If  : E � F is a linear map between vector spaces overK, Section 8 of the text

indicated how to define a corresponding homomorphism � : S(E) � S(F) of

associative algebras with identity over K, using Proposition 6.23b.
(a) Fill in the details of this application of Proposition 6.23b.

(b) Establish the appropriate conditions on mappings that complete the proof

that E ✓� S(E) is a functor.

(c) Verify that � carries Sn(E) linearly into Sn(F) for all integers n ↵ 0.
15. Suppose that a linear map  : E � E is given. Let � : S(E) � S(E) and

 � : T (E)� T (E) be the associated algebra homomorphisms of S(E) into itself

and of T (E) into itself, and let q : T (E)� S(E) be the quotient homomorphism

appearing in the definition of S(E). These mappings are related by the equation

�q(x) = q �(x) for x in T (E). Proposition 6.29 shows for each n ↵ 0 that
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T n(E) =  Sn(E)⌃ (T n(E) ⇠ I ), where Sn(E) is the image of T n(E) under the

symmetrizer mapping. The remark with the proposition observes that q carries
 Sn(E) one-one onto Sn(E). Prove that  � carries  Sn(E) into itself and that
 �
⇧⇧ Sn(E)

matches�
⇧⇧
Sn(E)

in the sense that q �(x) = �q(x) for all x in  Sn(E).

16. With E finite-dimensional let  : E � E be a linear mapping, and define

� :
�
E �

�
E to be the corresponding algebra homomorphism of

�
E

sending 1 into 1. This carries each
�n

E into itself. Prove that � acts as

multiplication by the scalar det on the 1-dimensional space
�dim E (E).

17. Suppose that G is a group, that the vector space E over K is finite-dimensional,

and that : G � GL(E) is a representationofG on E . The functors E ✓� T (E),

E ✓� S(E), and E ✓�
�
E yield, for each  (g), algebra homomorphisms of

T (E) into itself, S(E) into itself, and
�
E into itself.

(a) Show that as g varies, the result in each case is a representation of G.

(b) Suppose that E = Kn . Give a formula for the representation of G on a

member of P(Kn) = S((Kn)�).

Problems 18–22 concern universal mapping properties. Let A and V be two cat-

egories, and let F : A � V be a covariant functor. (In practice, F tends to be a
relatively simple functor, such as one that simply ignores some of the structure of

A.) Let E be in Obj(V ). A pair (S, ⇥) with S in Obj(A) and ⇥ in MorphV(E,F(S))

is said to have the universal mapping property relative to E and F if the following
condition is satisfied: whenever A is in Obj(A) and a member l of MorphV(E,F(A))

is given, there exists a unique member L of MorphA(S, A) such that F(L) ⇥ = l.

18. (a) By suitably specializing A, V, F, etc., show that the universal mapping

property of the symmetric algebra of a vector space overK is an instance of

what has been described.

(b) How should the answer to (a) be adjusted so as to account for the universal

mapping property of the exterior algebra of a vector space over K?
(c) How should the answer to (a) be adjusted so as to account for the universal

mapping property of the coproduct of {Xj }j⇣J in a category C, the universal
mapping property being as in Figure 4.12? (Educational note: For the

productof {Xj }j⇣J inC, the abovedescriptiondoesnot applydirectlybecause
the morphisms go the wrongway. Instead, one applies the above description

to the opposite categories Aopp and V opp, defined as in Problems 78–80 at
the end of Chapter IV.)

19. If (S, ⇥) and (S�, ⇥�) are two pairs that each have the universal mapping property
relative to E and F, prove that S and S� are canonically isomorphic as objects
inA. More specifically prove that there exists a unique L in MorphA(S, S�) such
thatF(L)⇥ = ⇥� and that L is an isomorphismwhose inverse L � inMorphA(S�, S)
has F(L �)⇥� = ⇥.
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20. Suppose that the pair (S, ⇥) has the universal mapping property relative to E

and F. Let S be the category of sets, and define functors F : A � S and
G : A � S by F(A) = MorphA(S, A), F( ) equals composition on the left

by  for  ⇣ MorphA(A, A�), G(A) = MorphV(E,F(A)), and G( ) equals

composition on the left byF( ). Let TA : MorphA(S, A)� MorphV(E,F(A))

be the one-one onto map given by the universal mapping property. Show that the

system {TA} is a natural isomorphism of F into G.
21. Suppose that (S�, ⇥) is a secondpair having theuniversalmappingproperty relative

to E and F. Define F � : A � S by F �(A) = MorphA(S�, A). Combining the

previous problem and Proposition 6.16, obtain a second proof (besides the one

in Problem 19) that S and S� are canonically isomorphic.

22. Suppose that for each E in Obj(V ), there is some pair (S, ⇥) with the universal

mapping property relative to E and F. Fix such a pair (S, ⇥) for each E , calling
it (S(E), ⇥E ). Making an appropriate construction for morphisms and carrying

out the appropriate verifications, prove that E ✓� S(E) is a functor.

Problems23–28 introduce thePfaffianof a (2n)-by-(2n) alternatingmatrix X = [xi j ]

with entries in a field K. This is the polynomial in the entries of X with integer

coefficients given by

Pfaff(X) =
�

some ⌃ ’s
inS2n

(sgn ⌃ )
n�

k=1
x⌃ (2k�1),⌃ (2k),

where the sum is taken over those permutations ⌃ such that ⌃ (2k � 1) < ⌃ (2k) for

1 ⌦ k ⌦ n and such that ⌃ (1) < ⌃ (3) < · · · < ⌃ (2n � 1). It will be seen that det X
is the square of this polynomial. Examples of Pfaffians are

Pfaff
⌃

0 x

�x 0

⌥
= x and Pfaff

�

◆
0 a b c

�a 0 d e

�b �d 0 f

�c �e � f 0

�

 = a f � be + cd.

The problems in this set will be continued at the end of Chapter VIII.

23. For the matrix J in Section 5, show that Pfaff(J ) = 1.

24. In the expansion det X =
�

⇧⇣S2n
(sgn ⇧ )

⌧2n
l=1 xl,⇧ (l), prove that the value of

the right side with X as above is not changed if the sum is extended only over

those ⇧ ’s whose expansion in terms of disjoint cycles involves only cycles of

even length (and in particular no cycles of length 1).

25. Define ⇧ ⇣ S2n to be “good” if its expansion in terms of disjoint cycles involves

only cycles of even length. If ⇧ is good, show that there uniquely exist two

disjoint subsets A and B of n elements each in {1, . . . , 2n} such that A contains
the smallest-numbered index in each cycle and such that ⇧ maps each set onto

the other.
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26. In the notation of the previous problem with ⇧ good, let y(⇧ ) be the product

of the monomials xab such that a is in A and b = ⇧ (a). For each factor xi j of

y(⇧ ) with i > j , replace the factor by �xji . In the resulting product, arrange
the factors in order so that their first subscripts are increasing, and denote this

expression by sxi1i2xi3i4 · · · xi2n�1i2n , where s is a sign. Let ⌃ be the permutation
that carries each r to ir , and define s(⌃ ) to be the sign s. Similarly let z(⇧ )

be the product of the monomials xba such that b is in B and a = ⇧ (b). For

each factor xi j of z(⇧ ) with i > j , replace the factor by �xji . In the resulting
product, arrange the factors in order so that their first subscripts are increasing,

and denote this expression by s�xj1 j2xj3 j4 · · · xj2n�1 j2n , where s� is a sign. Let ⌃ �
be the permutation that carries each r to jr , and define s

�(⌃ �) to be the sign s�.
Prove, apart from signs, that the ⇧ th term in the expansion of det X matches the

product of the ⌃ th term of Pfaff(X) and the ⌃ �th term of Pfaff(X).

27. In the previous problem, take the signs s(⌃ ) and s�(⌃ �) into account and show
that the signs of ⇧ , ⌃ , and ⌃ � work out so that the ⇧ th term in the expansion of
det X is the product of the ⌃ th and ⌃ �th terms of Pfaff(X).

28. Show that every term of the product of Pfaff(X)with itself is accounted for once

and only once by the construction in the previous three problems, and conclude

that the alternating matrix X has det X = (Pfaff(X))2.

Problems 29–30 concern filtrations and gradings. A vector space V over K is said

to be filtered when an increasing sequence of subspaces V0  V1  V2  · · · is
specified with union V . In this case we put V�1 = 0 by convention. The space V is

graded if a sequence of subspaces V 0, V 1, V 2, . . . is specified such that

V =
✏⇢

n=0
V n.

WhenV is graded, there is a naturalfiltrationofV givenbyVn =
⇡n

k=0 V
k . Examples

of graded vector spaces are any tensor algebra V = T (E), symmetric algebra S(E),

exterior algebra
�

(E), and polynomial algebra P(E), the nth subspace of the grading

consisting of those elements that are homogeneous of degree n. Any polynomial

algebra K[X1, . . . , Xn] is another example of a graded vector space, the grading
being by total degree.

29. When V is a filtered vector space as in (A.34), the associated graded vector

space is gr V =
⇡✏

n=0 Vn/Vn�1. Let V and V
# be two filtered vector spaces,

and let  be a linear map between them such that  (Vn)  V #n for all n. Since

the restriction of  to Vn carries Vn�1 into V #n�1, this restriction induces a linear

map grn  : (Vn/Vn�1) � (V #n /V #n�1). The direct sum of these linear maps

is then a linear map gr  : gr V � gr V # called the associated graded map

for  . Prove that if gr  is a vector-space isomorphism, then  is a vector-space

isomorphism.
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30. Let A be an associative algebra over K with identity. If A has a filtration

A0, A1, . . . of vector subspaces with 1 ⇣ A0 such that Am An  Am+n for
all m and n, then one says that A is a filtered associative algebra; similarly

if A is graded as A =
⇡✏

n=0 A
n in such a way that Am An  Am+n for all m

and n, then one says that A is a graded associative algebra. If A is a filtered

associative algebra with identity, prove that the graded vector space gr A acquires

a multiplication in a natural way, making it into a graded associative algebra with

identity.

Problems 31–35 concern Lie algebras and their universal enveloping algebras. If K
is a field, a Lie algebra g over K is a nonassociative algebra whose product, called

the Lie bracket and written [x, y], is alternating as a function of the pair (x, y) and

satisfies the Jacobi identity [x, [y, z]]+ [y, [z, x]]+ [z, [x, y]] = 0 for all x, y, z in

g. The universal enveloping algebra U(g) of g is the quotient T (g)/I ��, where I ��

is the two-sided ideal generated by all elements x ⌥ y � y ⌥ x � [x, y] with x and
y in T 1(g). The grading for T (g) makes U(g) into a filtered associate algebra with

identity. The product of x and y in U(g) is written xy.

31. If A is an associative algebra over K, prove that A becomes a Lie algebra if the
Lie bracket is defined by [x, y] = xy � yx . In particular, observe that Mn(K)

becomes a Lie algebra in this way.

32. Fix a matrix A ⇣ Mn(K), and let g be the vector subspace of all members x of

Mn(K) with xt A + Ax = 0.

(a) Prove that g is closed under the bracket operation of the previous problem

and is therefore a Lie subalgebra of Mn(K).

(b) Deduce as a special case of (a) that the vector space of all skew-symmetric

matrices in Mn(K) is a Lie subalgebra of Mn(K).

33. Let g be a Lie algebra over K, and let ⇥ be the linear map obtained as the
composition of g � T 1(g) and the passage to the quotient U(g). Prove that

(U(g), ⇥) has the following universal mapping property: whenever l is any linear

map of g into an associative algebra A with identity satisfying the condition of
being a Lie algebra homomorphism, namely l[x, y] = l(x)l(y) � l(y)l(x) for

all x and y in g, then there exists a unique associative algebra homomorphism
L : U(g)� A with L(1) = 1 such that L � ⇥ = l.

34. Let g be a Lie algebra overK, let {ui }i⇣A be a vector-space basis of g, and suppose
that a simple ordering has been imposed on the index set A. Prove that the set of

all monomials u
j1
i1

· · · u jkik with i1 < · · · < ik and
�

m jm arbitrary is a spanning

set for U(g).

35. For a Lie algebra g overK, the Poincaré–Birkhoff–Witt Theorem says that the
spanning set forU(g) in the previous problem is actually a basis. Assuming this

theorem, prove that grU(g) is isomorphic as a graded algebra to S(g).

Problems 36–40 introduce Clifford algebras. Let K be a field of characteristic ⌘= 2,
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let E be a finite-dimensional vector space over K, and let ⌧ · , · � be a symmetric
bilinear form on E . The Clifford algebra Cliff(E, ⌧ · , · �) is the quotient T (E)/I ��,
where I �� is the two-sided ideal generated by all elements5 v ⌥ v + ⌧v, v� with v in

E . The grading for T (E) makes Cliff(E, ⌧ · , · �) into a filtered associative algebra
with identity. Products in Cliff(E, ⌧ · , · �) are written as ab with no special symbol.
36. Let ⇥ be the composition of the inclusion E  T 1(E) and the passage to the

quotient modulo I ��. Prove that (Cliff(E, ⌧ · , · �), ⇥) has the following universal
mapping property: whenever l is any linear map of E into an associative algebra

A with identity such that l(v)2 = �⌧v, v�1 for all v ⇣ E , then there exists a

unique algebra homomorphism L : Cliff(E, ⌧ · , · �) � A with L(1) = 1 and

such that L � ⇥ = l.

37. Let {u1, . . . , un} be a basis of E . Prove that the 2n elements of Cliff(E, ⌧ · , · �)
given by ui1ui2 · · · uik with i1 < · · · < ik form a spanning set of Cliff(E, ⌧ · , · �).

38. Using the Principal Axis Theorem, fix a basis {e1, . . . , en} of E such that

⌧ei , ej � = di�i j for all j . Introduce an algebra C over K of dimension 2n with

generators e1, . . . , en and with a basis parametrized by subsets of {1, . . . , n} and
given by all elements

ei1ei2 · · · eik with i1 < i2 < · · · < ik,

with the multiplication that is implicit in the rules

e2i = �di and ei ej = �ej ei if i ⌘= j,

namely, to multiply two monomials ei1ei2 · · · eik and ej1ej2 · · · ejl , put them end
to end, replace any occurrence of two ek’s by the scalar �dk , and then permute
the remaining ek’s until their indices are in increasing order, introducing a minus

sign each time two distinct ek’s are interchanged. Prove that the algebra C is

associative.

39. Prove that the associative algebra C of the previous problem is isomorphic as an

algebra to Cliff(E, ⌧ · , · �).
40. Prove that gr Cliff(E, ⌧ · , · �) is isomorphic as a graded algebra to

�
(E).

Problems 41–48 introduce finite-dimensional Heisenberg Lie algebras and the corre-

spondingWeyl algebras. They make use of Problems 31–35 concerning Lie algebras

and universal enveloping algebras. Let V be a finite-dimensional vector space over

the field K, and let ⌧ · , · � be a nondegenerate alternating bilinear form on V ⇤ V .

Write 2n for the dimension of V . Introduce an indeterminate X0. The Heisenberg

Lie algebra H(V ) on V is a Lie algebra whose underlying vector space isKX0⌃ V

andwhose Lie bracket is given by [(cX0, u), (dX0, v)] = ⌧u, v�X0. LetU(H(V )) be

its universal enveloping algebra. TheWeyl algebraW (V ) on V is the quotient of the

tensor algebra T (V ) by the two-sided ideal generated by all u⌥ v� v⌥ u � ⌧u, v�1
with u and v in V ; as such, it is a filtered associative algebra.

5Some authors factor out the elements v ⌥ v � ⌧v, v� instead. There is no generally accepted
convention.
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41. Verify when the field is K = R that an example of a 2n-dimensional V with its

nondegenerate alternatingbilinear form ⌧ · , · � isV = Cn with ⌧u, v� = Im(u, v),

where ( · , · ) is the usual inner product on Cn . For this V , exhibit a Lie-algebra

isomorphism of H(V ) with the Lie algebra of all complex (n + 1)-by-(n + 1)

matrices of the form

�
0 z̄t ir

0 0 z

0 0 0

 
with z ⇣ Cn and r ⇣ R.

42. In thegeneral situationshow that the linearmap ⇥(cX0, v) = c1+v is aLie algebra

homomorphism of H(V ) into W (V ) and that its extension to an associative

algebra homomorphism ⇥ : U(H(V )) � W (V ) is onto and has kernel equal to

the two-sided ideal in U(H(V )) generated by X0 � 1.

43. Prove that W (V ) has the following universal mapping property: whenever

 : H(V ) � A is a Lie algebra homomorphism of H(V ) into an associative

algebra Awith identity such that (X0) = 1, then there exists a unique associative

algebra homomorphism  of W (V ) into A such that  =   � ⇥.

44. Letv1, . . . , v2n be anyvector spacebasis ofV . Prove that the elementsv
k1
1 · · · vk2n2n

with integer exponents ↵ 0 span W (V ).

45. For K = R, let S be the vector space of all real-valued functions P(x)e�⇤ |x |2 ,
where P(x) is a polynomial in n real variables. Show that S is mapped into itself
by the linear operators �/�xi and mj = (multiplication by xj ).

46. WithK = R, let {p1, . . . , pn, q1, . . . , qn} be aWeyl basis ofV in the terminology
of Problem 6. In the notation of Problem 45, let  : V � HomR(S,S ) be the

linear map given by  (pi ) = �/�xi and  (qj ) = mj . Use Problem 43 to extend

 to an algebra homomorphism   : W (V ) � HomR(S,S ) with   (1) = 1,

and use Problem 42 to obtain a representation of H(V ) on S. Prove that this
representation of H(V ) is irreducible in the sense that there is no proper nonzero

vector subspace carried to itself by all members of   (H(V )).

47. In Problem 46 with K = R, prove that the associative algebra homomorphism
  : W (V ) � HomR(S,S ) is one-one. Conclude for K = R that the elements

v
k1
1 · · · vk2n2n of Problem 44 form a vector-space basis of W (V ).

48. For K = R, prove that grW (V ) is isomorphic as a graded algebra to S(V ).

Problems 49–51 deal with Jordan algebras. LetK be a field of characteristic ⌘= 2. An

algebra J overK with multiplication a · b is called a Jordan algebra if the identities
a ·b = b ·a and a2 ·(b ·a) = (a2 ·b) ·a are always satisfied; here a2 is an abbreviation
for a · a.

49. Let A be an associative algebra, and define a · b = 1
2
(ab + ba). Prove that A

becomes a Jordan algebra under this new multiplication.
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50. In the situation of the previous problem, suppose that a ✓� at is a one-one linear

mapping of A onto itself such that (ab)t = btat for all a and b. (For example,

a ✓� at could be the transpose mapping if A = Mn(K).) Prove that the vector

subspace of all a with at = a is carried to itself by the Jordan product a · b and
hence is a Jordan algebra.

51. Let V be a finite-dimensional vector space overK, and let ⌧ · , · � be a symmetric
bilinear form on V . Define A = K1 ⌃ V as a vector space, and define a

multiplication in A by (c1, x) · (d1, y) =
�
(cd + ⌧x, y�)1, cy+ dx

⇥
. Prove that

A is a Jordan algebra under this definition of multiplication.

Problems 52–56 deal with the algebra O of real octonions, sometimes known as

the Cayley numbers. This is a certain 8-dimensional nonassociative algebra with

identity over R with an inner product such that �ab� = �a��b� for all a and b and
such that the left and right multiplications by any element a ⌘= 0 are always invertible.

52. Let A be an algebra overR. Let [a, b] = ab�ba and [a, b, c] = (ab)c�a(bc).
(a) The 3-multilinear function (a, b, c) ✓� [a, b, c] from A⇤A⇤A to A is called

the associator in A. Observe that it is 0 if and only if A is associative. Show

that it is alternating if and only if A always satisfies the limited associativity

laws

(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa).

In this case, A is said to be alternative.

(b) Show that A is alternative if the first and third of the limited associativity

laws in (a) are always satisfied.

53. (Cayley–Dickson construction) Suppose that A is an algebra over R with a

two-sided identity 1, and suppose that there is an R linear function ⌅ from A to

itself (called “conjugation”) such that 1⌅ = 1, a⌅⌅ = a, and (ab)⌅ = b⌅a⌅ for all
a and b in A. Define an algebra B overR to have the underlying real vector-space
structure of A⌃ A and to have multiplication and conjugation given by

(a, b)(c, d) = (ac � db⌅, a⌅d + cb) and (a, b)⌅ = (a⌅,�b).

(a) Prove that (1, 0) is a two-sided identity in B and that the operation ⌅ in B
satisfies the required properties of a conjugation.

(b) Prove that if a⌅ = a for all a ⇣ A, then A is commutative.

(c) Prove that if a⌅ = a for all a ⇣ A, then B is commutative.

(d) Prove that if A is commutative and associative, then B is associative.

(e) Verify the following outcomes of the above construction A� B:

(i) A = R yields B = C,
(ii) A = C yields B = H, the algebra of quaternions.
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54. Suppose that A is an algebra over R with an identity and a conjugation as in the
previous problem. Say that A is nicely normed if

(i) a + a⌅ is always of the form r1 with r real and

(ii) aa⌅ always equals a⌅a and for a ⌘= 0, is of the form r1 with r real and

positive.

(a) Prove that if A is nicely normed, then so is the algebra B of the previous

problem.

(b) Prove that if A is nicely normed, then (a, b) = 1
2
(ab⌅ + ba⌅) is an inner

product on A with norm �a� = (aa⌅)1/2 = (a⌅a)1/2.
(c) Prove that if A is associative and nicely normed, then the algebra B of the

previous problem is alternative.

55. Starting from the real algebra A = H, apply the construction of Problem 53,

and let the resulting 8-dimensional real algebra be denoted by O, the algebra of
octonions.

(a) Prove that O is an alternative algebra and is nicely normed.

(b) Prove that (xx⌅)y = x(x⌅y) and x(yy⌅) = (xy)y⌅ within O.
(c) Prove that �ab�2a = �a�2�b�2a within O.
(d) Conclude from (c) that the operations of left and right multiplication by any

a ⌘= 0 within O are invertible.

(e) Show that the inverse operators are left and right multiplication by �a��2a⌅.
(f) Denote the usual basis vectors ofH by 1, i, j,k. Write down amultiplication

table for the eight basis vectors of O given by (x, 0) and (0, y) as x and y

run through the basis vectors of H.
56. What prevents the construction of Problem 53, when applied with A = O, from

yielding a 16-dimensional algebra B in which �ab�2 = �a�2�b�2 and therefore
in which the operations of left and right multiplication by any a ⌘= 0 within B

are invertible?



CHAPTER VII

Advanced Group Theory

Abstract. This chapter continues the development of group theory begun in Chapter IV, the main

topics being the use of generators and relations, representation theory for finite groups, and group

extensions. Representation theory uses linear algebra and inner-product spaces in an essential way,

and a structure-theory theorem for finite groups is obtained as a consequence. Group extensions

introduce the subject of cohomology of groups.

Sections 1–3 concern generators and relations. The context for generators and relations is that of

a free group on the set of generators, and the relations indicate passage to a quotient of this free group

by a normal subgroup. Section 1 constructs free groups in terms of words built from an alphabet

and shows that free groups are characterized by a certain universal mapping property. This universal

mapping property implies that any group may be defined by generators and relations. Computations

with free groups are aided by the fact that two reduced words yield the same element of a free group

if and only if the reduced words are identical. Section 2 obtains the Nielsen–Schreier Theorem that

subgroups of free groups are free. Section 3 enlarges the construction of free groups to the notion

of the free product of an arbitrary set of groups. Free product is what coproduct is for the category

of groups; free groups themselves may be regarded as free products of copies of the integers.

Sections 4–5 introduce representation theory for finite groups and give an example of an important

application whose statement lies outside representation theory. Section 4 contains various results

giving an analysis of the space C(G, C) of all complex-valued functions on a finite group G. In this

analysis those functions that are constant on conjugacy classes are shown to be linear combinations

of the characters of the irreducible representations. Section 5 proves Burnside’s Theorem as an

application of this theory—that any finite group of order paqb with p and q prime andwith a+b > 1

has a nontrivial normal subgroup.

Section 6 introduces cohomology of groups in connection with group extensions. If N is to be

a normal subgroup of G and Q is to be isomorphic to G/N , the first question is to parametrize the

possibilities for G up to isomorphism. A second question is to parametrize the possibilities for G if

G is to be a semidirect product of N and Q.

1. Free Groups

This section and the next two introduce some group-theoretic notions that in

principle apply to all groups but in practice are used with countable groups, often

countably infinite groups that are nonabelian. The material is especially useful in

applications in topology, particularly in connection with fundamental groups and

covering spaces. But the formal development here will be completely algebraic,

not making use of any definitions or theorems from topology.
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In the case of abelian groups, every abelian group G is a quotient of a suitable

free abelian group, i.e., a suitable direct sum of copies of the additive group Z
of integers.1 Recall the discussion of Section IV.9: We introduce a copy Zg of

Z for each g in G, define �G =
�

g⌘G Zg, let ig : Zg � �G be the standard

embedding, and let ✓g : Zg � G be the group homomorphismwritten additively

as ✓g(n) = ng. The universal mapping property of direct sums that was stated

as Proposition 4.17 produces a unique group homomorphism ✓ : �G � G such

that ✓ ⌥ ig = ✓g for all g, and ✓ is the required homomorphism of a free abelian
group onto G.

The goal in this section is to carry out an analogous construction for groups that

are not necessarily abelian. The constructed groups, to be called “free groups,”

are to be rather concrete, and the family of all of them is to have the property that

every group is the quotient of some member of the family.

If S is any set, we construct a “free group F(S) on the set S.” Let us speak
of S as a set of “symbols” or as the members of an “alphabet,” possibly infinite,

with which we are working. If S is empty, the group F(S) is taken to be the
one-element trivial group, and we shall therefore now assume that S is not empty.

If a is a symbol in S, we introduce a new symbol a�1 corresponding to it, and we
let S�1 denote the set of all such symbols a�1 for a ⌘ S. Define S✏ = S ⇡ S�1.
A word is a finite string of symbols from S✏, i.e., an ordered n-tuple for some
n of members of S✏ with repetitions allowed. Words that are n-tuples are said
to have length n. The empty word, with length 0, will be denoted by 1. Other

words are usually written with the symbols juxtaposed and all commas omitted,

as in abca�1cb�1. The set of words will be denoted by W (S✏). We introduce a
multiplicationW (S✏)⇤W (S✏) � W (S✏) bywriting end-to-end the words that are
to be multiplied: (abca�1, cb�1) ◆� abca�1cb�1. The length of a product is the
sum of the lengths of the factors. It is plain that this multiplication is associative

and that 1 is a two-sided identity. It is not a group operation, however, since most

elements of W (S✏) do not have inverses: multiplication never decreases length,
and thus the only way that 1 can be a product of two elements is as the product

11. To obtain a group from W (S✏), we shall introduce an equivalence relation in
W (S✏).
Two words are said to be equivalent if one of the words can be obtained

from the other by a finite succession of insertions and deletions of expressions

aa�1 or a�1a within the word; here a is assumed to be an element of S. It will be
convenient to refer to the pairs aa�1 and a�1a together; thereforewhen b = a�1 is
in S�1, let us define b�1 = (a�1)�1 to be a. Then two words are equivalent if one
of the words can be obtained from the other by a finite succession of insertions

and deletions of expressions of the form bb�1 with b in S✏. This definition is

1Direct sum here is what coproduct, in the sense of Section IV.11, amounts to in the category of

all abelian groups.
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arranged so that “equivalent” is an equivalence relation. We write x � y if x and

y are words that are equivalent. The underlying set for the free group F(S) will
be taken to be the set of equivalence classes of members of W (S✏).

Theorem 7.1. If S is a set and W (S✏) is the corresponding set of words built
from S✏ = S ⇡ S�1, then the product operation defined on W (S✏) descends in a
well-defined fashion to the set F(S) of equivalence classes of members ofW (S✏),
and F(S) thereby becomes a group. Define ⌥ : S � F(S) to be the composition
of the inclusion into words of length one followed by passage to equivalence

classes. Then the pair (F(S), ⌥) has the following universal mapping property:
whenever G is a group and ✓ : S � G is a function, then there exists a unique

group homomorphism�✓ : F(S) � G such that ✓ = �✓ ⌥ ⌥.

REMARK. The group F(S) is called the free group on S. Figure 7.1 illustrates
its universal mapping property. The brief form in words of the property is that

any function from S into a group G extends uniquely to a group homomorphism

of F(S) into G. This universal mapping property actually characterizes F(S), as
will be seen in Proposition 7.2.

S
✓���� G

⌥

��!

F(S)

⇥✓

FIGURE 7.1. Universal mapping property of a free group.

PROOF. Let us denote equivalence classes by brackets. We want to define

multiplication in F(S) by [w1][w2] = [w1w2]. To see that this formula makes

sense in F(S), let x1, x2, and y be words, and let b be in S
✏. Define x = x1x2 and

x ✏ = x1bb
�1x2, so that x

✏ � x . Then it is evident that x ✏y � xy and yx ✏ � yx .

Iteration of this kind of relationship shows that w✏
1 � w1 and w✏

2 � w2 implies

w✏
1w

✏
2 � w1w2, and hence multiplication of equivalence classes is well defined.

Since multiplication in W (S✏) is associative, we have [w1]([w2][w3]) =
[w1][w2w3] = [w1(w2w3)] = [(w1w2)w3] = [w1w2][w3] = ([w1][w2])[w3].

Thus multiplication is associative in F(S). The class [1] of the empty word 1 is a

two-sided identity. If b1, . . . , bn are in S
✏, then b�1n · · · b�12 b�11 b1b2 · · · bn is equiv-

alent to 1, and so is b1b2 · · · bnb�1n · · · b�12 b�11 . Consequently [b
�1
n · · · b�12 b�11 ] is

a two-sided inverse of [b1b2 · · · bn], and F(S) is a group.

Nowweaddress theuniversalmappingproperty, first proving the statedunique-

ness of the homomorphism. Every member of F(S) is the product of classes [b]
with b in S✏. In turn, if b is of the form a�1 with a in S, then [b] = [a]�1. Hence
F(S) is generated by all classes [a] with a in S, i.e., by ⌥(S). Any homomorphism
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of a group is determined by its values on the members of a generating set, and

uniqueness therefore follows from the formula �✓([a]) = �✓(⌥(a)) = ✓(a).

For existence we begin by defining a function� : W (S✏) � G such that

�(a) = ✓(a) for a in S,

�(a�1) = ✓(a)�1 for a�1 in S�1,

�(w1w2) = �(w1)�(w2) for w1 and w2 in W (S✏).

Weuse the formulas�(a) = ✓(a) for a in S and�(a�1) = ✓(a)�1 for a�1 in S�1

as a definition of�(b) for b in S✏. Any member ofW (S✏) can be written uniquely
as b1 · · · bn with each bj in S✏, and we set �(b1 · · · bn) = �(b1) · · ·�(bn). (If
n = 0, the understanding is that �(1) = 1.) Then � has the required properties.

Let us show that w✏ � w implies �(w✏) = �(w). If b1, . . . , bn are in S
✏ and

b is in S✏, then the question is whether

�(b1 · · · bkbb�1bk+1 · · · bn)
?= �(b1 · · · bkbk+1 · · · bn).

If g and g✏ denote the elements�(b1) · · ·�(bk) and�(bk+1) · · ·�(bn) ofG, then
the two sides of the queried formula are

g�(b)�(b�1)g✏ and gg✏.

Thus the question is whether�(b)�(b�1) always equals 1 in G. If b = a is in S,

this equals✓(a)✓(a)�1 = 1, while if b = a�1 is in S�1, it equals✓(a)�1✓(a) = 1.

We conclude that w✏ � w implies�(w✏) = �(w).

Wemay therefore define�✓([w]) = �(w) for [w] in F(S). Since�✓([w][w✏]) =
�✓([ww✏]) = �(ww✏) = �(w)�(w✏) = �✓([w])�✓([w✏]), �✓ is a homomorphism
of F(S) into G. For a in S, we have �✓([a]) = �(a) = ✓(a). In other words,
�✓(⌥(a)) = ✓(a). This completes the proof of existence. �

Proposition 7.2. Let S be a set, F be a group, and ⌥✏ : S � F be a func-

tion. Suppose that the pair (F, ⌥✏) has the following universal mapping property:
whenever G is a group and ✓ : S � G is a function, then there exists a unique

group homomorphism �✓ : F � G such that ✓ = �✓ ⌥ ⌥✏. Then there exists a
unique group homomorphism � : F(S) � F such that ⌥✏ = � ⌥ ⌥, and it is a
group isomorphism.

REMARKS. Chapter VI is not a prerequisite for the present chapter. However,

readers who have been through Chapter VI will recognize that Proposition 7.2 is

a special case of Problem 19 at the end of that chapter.
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PROOF. We apply the universal mapping property of (F(S), ⌥), as stated in
Theorem 7.1, to the group G = F and the function ✓ = ⌥✏, obtaining a group
homomorphism � : F(S) � F such that ⌥✏ = � ⌥ ⌥. Then we apply the given
universal mapping property of (F, ⌥✏) to the group G = F(S) and the function
✓ = ⌥, obtaining a group homomorphism⌫ : F � F(S) such that ⌥ = ⌫ ⌥ ⌥✏.
The group homomorphism ⌫ ⌥ � : F(S) � F(S) has the property that

(⌫⌥�)⌥⌥ = ⌫⌥(�⌥⌥) = ⌫⌥⌥✏ = ⌥, and the identity 1F(S) has this same property.

By the uniqueness of the group homomorphism in Theorem 7.1, ⌫ ⌥� = 1F(S).

Similarly the group homomorphism � ⌥ ⌫ : F � F has the property that

(� ⌥ ⌫) ⌥ ⌥✏ = ⌥✏, and the identity 1F has this same property. By the uniqueness
of the group homomorphism in the assumed universal mapping property of F ,

� ⌥ ⌫ = 1F .

Therefore � is a group isomorphism. We know that ⌥(S) generates F(S). If
�✏ : F(S) � F is another group isomorphism with ⌥✏ = �✏ ⌥ ⌥, then �✏ and �
agree on ⌥(S) and therefore have to agree everywhere. Hence � is unique. �

Proposition 7.2 raises the question of recognizing candidates for the set T =
⌥✏(S) in a given group F so as to be in a position to exhibit F as isomorphic to the
free group F(S). Certainly T has to generate F . But there is also an independence
condition. The idea is that if we form words from the members of T , then two

words are to lead to equal members of F only if they can be transformed into one

another by the same rules that are allowed with free groups.

What this problem amounts to in the case that F = F(S) is that we want a
decision procedure for telling whether two given words are equivalent. This is

the so-calledword problem for the free group. If we think about the matter for a

moment, not much is instantly obvious. If a1 and a2 are two members of S and if

they are considered as words of length 1, are they equivalent? Equivalence allows

for inserting pairs bb�1 with b in S✏, as well as deleting them. Might it be possible
to do some complicated iterated insertion and deletion of pairs to transform a1
into a2? Although the negative answer can be readily justified in this situation by

a parity argument, it can be justified even more easily by the universal mapping

property: there exist groups G with more than one element; we can map a1 to

one element of G and a2 to another element of G, extend to a homomorphism

�✓ : F(S) � G, see that �✓(⌥(a1)) ✓= �✓(⌥(a2)), and conclude that ⌥(a1) ✓= ⌥(a2).
But what about the corresponding problem for two more-complicated words in a

free group? Fortunately there is a decision procedure for the word problem in a

free group. It involves the notion of “reduced” words. A word in W (S✏) is said
to be reduced if it contains no consecutive pair bb�1 with b in S✏.

Proposition 7.3 (solution of the word problem for free groups). Let S be a set,

let S✏ = S ⇡ S�1, and let W (S✏) be the corresponding set of words. Then each
word in W (S✏) is equivalent to one and only one reduced word.
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REMARK. To test whether two words are equivalent, the proposition says to

delete pairs bb�1 with b ⌘ S✏ as much as possible from each given word, and to
check whether the resulting reduced words are identical.

PROOF. Removal of a pair bb�1 with b ⌘ S✏ decreases the length of a word
by 2, and the length has to remain↵ 0. Thus the process of successively removing

such pairs has to stop after finitely many steps, and the result is a reduced word.

This proves that each equivalence class contains a reduced word.

For uniqueness we shall associate to each word a finite sequence of reduced

words such that the last member of the sequence is unchanged when we insert

or delete within the given word any expression bb�1 with b ⌘ S✏. Specifically if
w = b1 · · · bn , with each bi in S✏, is a given word, we associate tow the sequence
of words x0, x1, . . . , xn defined inductively by

x0 = 1,

x1 = b1,

xi =
�
xi�1bi if i ↵ 2 and xi�1 does not end in b

�1
i ,

yi�2 if i ↵ 2 and xi�1 = yi�2b
�1
i ,

(⌅)

and we define r(w) = xn . Let us see, by induction on i ↵ 0, that xi is reduced.

The base cases i = 0 and i = 1 are clear from the definition. Suppose that i ↵ 2

and that x0, . . . , xi�1 are reduced. If xi�1 = yi�2b
�1
i for some yi�2, then xi�1

reduced forces yi�2 to be reduced, and hence xi = yi�2 is reduced. If xi�1 does
not end in b�1i , then the last two symbols of xi = xi�1bi do not cancel, and no
earlier pair can cancel since xi�1 is assumed reduced; hence xi is reduced. This
completes the induction and shows that xi is reduced for 0 ⌦ i ⌦ n.

If the word w = b1 · · · bn is reduced, then each xi for i ↵ 2 is determined by

the first of the two choices in (⌅), and hence xi = b1 · · · bi for all i . Consequently
r(w) = w if w is reduced. If we can prove for a general word b1 · · · bn that

r(b1 · · · bn) = r(b1 · · · bkbb�1bk+1 · · · bn), (⌅⌅)

then it follows that everywordw✏ equivalent to awordw has r(w✏) = r(w). Since
r(w) = w for w reduced, there can be only one reduced word in an equivalence

class.

To prove (⌅⌅), let x0, . . . , xn be the finite sequence associated with b1 · · · bn ,
and let x ✏0, . . . , x

✏
n+2 be the sequence associated with b1 · · · bkbb�1bk+1 · · · bn .

Certainly xi = x ✏i for i ⌦ k. Let us compute x ✏k+1 and x
✏
k+2. From (⌅) we see that

x ✏k+1 =
�
xkb if xk does not end in b

�1,

y if xk = yb�1.
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In the first of these cases, x ✏k+1 ends in b, and (⌅) says therefore that x ✏k+2 = xk .

In the second of the cases, the fact that xk is reduced implies that y does not end

in b; hence (⌅) says that x ✏k+2 = yb�1 = xk . In other words, x
✏
k+2 = xk in both

cases. Since the inductive definition of any xi depends only on xi�1, and similarly
for x ✏i , we see that x

✏
k+2+i = xk+i for 0 ⌦ i ⌦ n � k. Therefore x ✏n+2 = xn , and

(⌅⌅) follows. This proves the proposition. �

Let us return to the problem of recognizing candidates for the set T = ⌥✏(S)
in a given group F so that the subgroup generated by T is a free group. Using

the universal mapping property for the free group F(T ), we form the group

homomorphism of F(T ) into F that extends the identity mapping on T . We want
this homomorphism to be one-one, i.e., to have the property that the only way a

word in F built from the members of T can equal the identity is if it comes from

the identity. Because of Proposition 7.3 the only reducedword in F(T ) that yields
the identity is the empty word. Thus the condition that the homomorphism be

one-one is that the only image in F of a reduced word in F(T ) that can equal the
identity is the image of the empty word. Making this condition into a definition,

we say that a subset S = {gt | t ⌘ T } of F not containing 1 is free if no nonempty
product h1h2 · · · hm in which each hi or h�1i is in S and each hi+1 is different

from h�1i can be the identity. A free set in F that generates F is called a free

basis for F .

EXAMPLE. Within the free group F({x, y}) on two generators x and y, consider
the subgroup generated by u = x2, v = y2, and w = xy. The claim is that

the subset {u, v,w} is free, so that the subgroup generated by u, v, and w is

isomorphic to a free group F({u, v,w}) on three generators. We are to check that
no nonempty reduced word in u, v,w, u�1, v�1, w�1 can reduce to the empty
word after substitution in terms of x and y. We induct on the length of the u, v,w
word, the base case being length 0. Suppose that v = y2 occurs somewhere

in our reduced u, v,w word that collapses to the empty word after substitution.

Consider what is needed for the left-hand factor of y in the y2 to cancel. The

cancellation must result from the presence of some y�1. Suppose that this y�1

occurs to the left of y2. Since passing to a reduced word need involve only

deletions and not insertions of pairs, everything between y�1 and y2 must cancel.
If the y�1 has resulted from w�1 = y�1x�1, then the number of x, y symbols
between y�1 and y2 is odd, and an odd number of factors can never cancel. So
the y�1 must arise from the right-hand y�1 in a factor v�1 = y�2. The symbols
between y�2 and y2 come from some reduced u, v,w word, and induction shows
that this word must be trivial. Then y�2 and y2 are adjacent, contradiction. Thus
the left factor of y2 must cancel because of some y�1 on the right of y2. If the y�1

is part of w�1 = y�1x�1 or is the left y�1 in v�1 = y�2, then the number of x, y
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symbols between the left y and the y�1 is odd, and we cannot get cancellation. So
the y�1 must be the right-hand y�1 in a factor y�2. Then we have an expression
y(y · · · y�1)y�1 in which the symbols in parentheses cancel. The symbols · · ·
must cancel also; since these represent some reduced u, v,w word, induction

shows that · · · is empty. We conclude that y2 and y�2 are adjacent, contradiction.
Thus our reduced u, v,w word contains no factor v. Similarly examination of the
right-hand factor x in an occurrence of x2 shows that our reduced u, v,w word

contains no factor u. It must therefore be a product of factors w or a product of

factors w�1. Substitution of w = xy leads directly without any cancellation to

an x, y reduced word, and we conclude that the u, v,w word is empty. Thus the

subset {u, v,w} is free.

IfG is anygroup, the commutatorsubgroupG ✏ ofG is the subgroupgenerated
by all elements xyx�1y�1 with x ⌘ G and y ⌘ G.

Proposition 7.4. If G is a group, then the commutator subgroup is normal,

and G/G ✏ is abelian. If ✓ : G � H is any homomorphism of G into an abelian

group H , then ker✓  G ✏.

PROOF. The computation

axyx�1y�1a�1 = (axa�1)(aya�1)(axa�1)�1(aya�1)�1

shows that G ✏ is normal. If ⇣ : G � G/G ✏ is the quotient homomorphism, then
⇣(x)⇣(y) = xyG ✏ = xy(y�1x�1yx)G ✏ = yxG ✏ = ⇣(y)⇣(x), and therefore
G/G ✏ is abelian. Finally if ✓ : G � H is a homomorphism of G into an abelian

group H , then the computation ✓(xyx�1y�1) = ✓(x)✓(y)✓(x)�1✓(y)�1 =
✓(x)✓(x)�1✓(y)✓(y)�1 = 1 shows that G ✏ � ker✓. �

Corollary 7.5. If F is the free group on a set S and if F ✏ is the commutator
subgroup of F , then F/F ✏ is isomorphic to the free abelian group

�
s⌘S Zs .

PROOF. Let H =
�

s⌘S Zs , and let ✓ : S � H be the functionwith ✓(s) = 1s ,

i.e., ✓(s) is to be themember of H that is 1 in the sth coordinate and is 0 elsewhere.
Application of the universal mapping property of F as given in Theorem 7.1

yields a group homomorphism �✓ : F � H such that �✓ ⌥ ⌥ = ✓. Since the
elements ✓(s), with s in S, generate H , �✓ carries F onto H . Since H is abelian,

Proposition 7.4 shows that ker�✓  F ✏. Proposition 4.11 shows that �✓ descends
to a homomorphism�✓0 : F/F ✏ � H , and �✓0 has to be onto H .
To complete the proof, we show that �✓0 is one-one. Let x be a member of F .

Since the products of the elements ⌥(s) and their inverses generate F and since

F/F ✏ is abelian, we can write xF ✏ = s
j1
i1

· · · s jnin F
✏, where si1 occurs a total of

j1 times in x , . . . , and sin occurs a total of jn times in x ; it is understood that
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an occurrence of s�1i1 is to contribute �1 toward j1. Then we have �✓0(xF ✏) =
j1✓(si1)+· · ·+ jn✓(sin ). If�✓0(xF ✏) = 0, we obtain j1✓(si1)+· · ·+ jn✓(sin ) = 0,

and then j1 = · · · = jn = 0 since the elements ✓(si1), . . . ,✓(sin ) are members
of a Z basis of H . Hence xF ✏ = F ✏, x is in F ✏, and �✓0 is one-one. �

Corollary 7.6. If F1 and F2 are isomorphic free groups on sets S1 and S2,

respectively, then S1 and S2 have the same cardinality.

PROOF. Corollary 7.5 shows that an isomorphism of F1 with F2 induces an

isomorphism of the free abelian groups
�

s⌘S1 Zs1 and
�

s⌘S2 Zs2 . The rank of a

free abelian group is a well-defined cardinal, and the result follows—almost.

We did not completely prove this fact about the rank of a free abelian group

in Section IV.9. Theorem 4.53 did prove, however, that rank is well defined for

finitely generated free abelian groups. Thus the corollary follows if S1 and S2 are

finite. If S1 or S2 is uncountable, then the cardinality of the corresponding free

abelian group matches the cardinality of its Z basis; hence the corollary follows
if S1 or S2 is uncountable. The only remaining case to eliminate is that one of

S1 and S2, say the first of them, has a countably infinite Z basis and the other

has finite rank n. The first of the groups then has a linearly independent set of

n + 1 elements, and Lemma 4.54 shows that the span of these elements cannot

be isomorphic to a subgroup of a free abelian group of rank n. This completes

the proof in all cases. �

Because of Corollary 7.6, it is meaningful to speak of the rank of a free group;

it is the cardinality of any free basis. We shall see in the next section that any

subgroup of a free group is free. In contrast to the abelian case, however, the rank

may actually increase in passing from a free group to one of its subgroups: the

example earlier in this section exhibited a free group of rank 3 as a subgroup of

a free group of rank 2.

We turn to a way of describing general groups, particularly groups that are at

most countable. The method uses “generators,” which we already understand,

and “relations,” which are defined in terms of free groups. Let S be a set, let

R be a subset of F(S), and let N (R) be the smallest normal subgroup of F(S)
containing R. The group G = F(S)/N (R) is sometimes written as G = �S; R�
or as

G = �elements of S; elements of R�,

with the elements of S and R listed rather than grouped as a set. Either of these

expressions is called a presentation of G. The set S is a set of generators, and

the set R is the corresponding set of relations. The following result implicit in

the universal mapping property of Theorem 7.1 shows the scope of this definition.
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Proposition 7.7. Each group G is the homomorphic image of a free group.

PROOF. Let S be a set of generators for G; for example, S can be taken to

be G itself. Let ✓ : S � G be the inclusion of the set of generators into G,

and let �✓ : F(S) � G be the group homomorphism of Theorem 7.1 such that

�✓(⌥(s)) = ✓(s) for all s in S. The image of �✓ is a subgroup of G that contains

the generating set S and is therefore equal to all of G. Thus �✓ is the required
homomorphism. �

If G is any group and �✓ : F(S) � G is the homomorphism given in Propo-

sition 7.7, then the subgroup R = ker�✓ has the property that G �= �S; R�.
Consequently every group can be given by generators and relations.

For example the proof of the proposition shows that one possibility is to take

S = G and R equal to the set of all members of the multiplication table, but with

the multiplication table entry ss ✏ = s ✏✏ rewritten as the left side ss ✏(s ✏✏)�1 of an
equation ss ✏(s ✏✏)�1 = 1 specifying a combination of generators that maps to 1.

This is of course not a very practical example. Generators and relations are most

usefulwhen S and R are fairly small. One says thatG isfinitelygenerated if S can

be chosen to be finite, finitely presented if both S and R can be chosen to be

finite.

A frequently used device in working with generators and relations is the

following simple proposition.

Proposition 7.8. LetG = �S; R� be a group given by generators and relations,
let G ✏ be a second group, let ✓ be a one-one function ✓ from S onto a set of

generators for G ✏, and let � : F(S) � G ✏ be the extension of ✓ to a group
homomorphism. If �(r) = 1 for every member r of R, then � descends to a

homomorphism of G onto G ✏. In particular, if G = �S; R� and G ✏ = �S; R✏�
are groups given by generators and relations with R � R✏, then the natural
homomorphism of F(S) onto G ✏ descends to a homomorphism of G onto G ✏.

PROOF. The proposition follows immediately from the universal mapping

property in Theorem 7.1 in combination with Proposition 4.11. �

Now let us consider someexamplesof groupsgivenbygenerators and relations.

The case of one generator is something we already understand: the group has to

be cyclic. A presentation of Z is as �a; �, and a presentation of Cn is as �a; an�.
But other presentations are possible with one generator, such as �a; a6, a9� for
C3. Here is an example with two generators.



316 VII. Advanced Group Theory

EXAMPLE. Let us prove that Dn
�=
⇧
x, y; xn, y2, (xy)2

⌃
, where Dn is the

dihedral group of order 2n. Concretely let us work with Dn as the group of 2-by-2

real matrices generated by
⌦
cos 2↵/n � sin 2↵/n

sin 2↵/n cos 2↵/n

↵
and
⌦
1 0

0 �1

↵
. The generated group

indeed has order 2n. If we identify

x with
⌦
cos 2↵/n � sin 2↵/n

sin 2↵/n cos 2↵/n

↵
and y with

⌦
1 0

0 �1

↵
,

then y2 = 1, and the formula

⌦
cos 2↵/n � sin 2↵/n

sin 2↵/n cos 2↵/n

↵k
=
⌦
cos 2↵k/n � sin 2↵k/n
sin 2↵k/n cos 2↵k/n

↵

shows that xn = 1. In addition, xy =
⌦
cos 2↵/n sin 2↵/n

sin 2↵/n � cos 2↵/n

↵
, and the square of

this is the identity. By Proposition 7.8, Dn is a homomorphic image of �Dn =⇧
x, y; xn, y2, (xy)2

⌃
. To complete the identification, it is enough to show that the

order of �Dn is ⌦ 2n because the homomorphism of �Dn onto Dn must then be

one-one. In
⇧
x, y; xn, y2, (xy)2

⌃
, we compute that y�1 = y and that x(yx)y = 1

implies yx = x�1y�1 = x�1y. Induction then yields yxk = x�k y for k > 0.

Multiplying left and right by y gives yx�k = xk y for k > 0. So yxl = x�l y for
every integer l. This means that every element is of the form xm or xm y, and we

may take 0 ⌦ m ⌦ n � 1. Hence there are at most 2n elements.

Without trying to be too precise, let us mention that the word problem for

finitely presented groups is to give an algorithm for deciding whether two words

represent the same element of the group. It is known that there is no such

algorithm applicable to all finitely presented groups. Of course, there can be

such an algorithm for certain special classes of presentations. For example, if

there are no relations in the presentation, then the group is a free group, and

Proposition 7.3 gives a solution in this case. There tends to be a solution for a

class of groups if the groups all correspond rather concretely to some geometric

situation, such as a tiling of Euclidean space or some other space. The example

above with Dn is of this kind.

By way of a concrete class of examples, one can identify any doubly generated

group of the form
⇧
x, y; xa, yb, (xy)c

⌃
if a, b, c are integers > 1, and one can

describe what words represent what elements in these groups. These groups all

correspond to tilings in 2 dimensions. In fact, let ⇤ = a�1+b�1+c�1. If ⇤ > 1,

the tiling is of the Riemann sphere, and the group is finite. If ⇤ = 1, the tiling is

of the Euclidean plane R2, and the group is infinite. If ⇤ < 1, the tiling is of the

hyperbolic plane, and the group is infinite. In all cases one starts from a triangle in

the appropriate geometry with angles ↵/a, ↵/b, and ↵/c, and a basic tile consists
of the double of this triangle obtained by reflecting the triangle about any of its
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sides. The group elements x , y, and xy are rotations, suitably oriented, about the

vertices of the triangle through respective angles 2↵/a, 2↵/b, and 2↵/c. Further
information about the cases ⇤ > 1 and ⇤ = 1 is obtained in Problems 37–46 at

the end of the chapter.

We conclude with one further example of a presentation whose group we can

readily identify concretely.

Proposition 7.9. Let S be a set, and let R = {sts�1t�1 | s ⌘ S, t ⌘ S}. Then
the smallest normal subgroup of the free group F(S) containing R is the com-
mutator subgroup F(S)✏, and therefore �S; R� is isomorphic to the free abelian
group

�
s⌘S Zs .

PROOF. The members of R are in F(S)✏, the product of two members of F(S)✏

is in F(S)✏, and any conjugate of a member of F(S)✏ is in F(S)✏. Therefore
the smallest normal subgroup N (R) containing R has N (R) � F(S)✏. Let

✓ : F(S) � F(S)/N (R) be the quotient homomorphism. Elements of the
quotient F(S)/N (R)may be expressed as words in the elements ✓(s) and ✓(s)�1

for s in S, and the factors commute because of the definition of R. Therefore

F(S)/N (R) is abelian. By Proposition 7.4, N (R)  F(S)✏. Therefore N (R) =
F(S)✏. This proves the first conclusion, and the second conclusion follows from
Corollary 7.5. �

2. Subgroups of Free Groups

The main result of this section is that any subgroup of a free group is a free group.

An example in the previous section shows that the rank can actually increase in

the process of passing to the subgroup.

The proof of the main result is ostensibly subtle but is relatively easy to under-

stand in topological terms. Although we shall give the topological interpretation,

we shall not pursue it further, and the proof that we give may be regarded as a

translation of the topological proof into the language of algebra, combined with

some steps of beautification.

For purposes of the topological argument, let us think of the given free group

for the moment as finitely generated, and let us suppose that the subgroup has

finite index. A free group on n symbols is the fundamental group of a bouquet

of n circles, all joined at a single point, which we take as the base point. By the

theory of covering spaces, any subgroup of index k is the fundamental group of

some k-sheeted covering space of the bouquet of circles. This covering space is

a 1-dimensional simplicial complex, and one can prove with standard tools that

the fundamental group of any 1-dimensional simplicial complex is a free group.

The theorem follows.
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If the special hypotheses are dropped that the given free group is finitely

generated and the subgroup has finite index, then the same proof is applicable as

long as one allows a suitable generalization of the notion of simplicial complex.

Thus the topological argument is completely general.

The theorem then is as follows.

Theorem 7.10 (Nielsen–Schreier Theorem). Every subgroup of a free group

is a free group.

REMARKS. The algebraic proof will occupy the remainder of the section but

will occasionally be interrupted by comments about the example in the previous

section.

Let the given free group be F , let the subgroup be H , and form the right cosets

Hg in F . Let C be a set of representatives for these cosets, with 1 chosen as

the representative of the identity coset; we shall impose further conditions on C

shortly.

EXAMPLE, CONTINUED. For the example in the previous section, we were

given a free group F with two generators x, y, and the subgroup H is taken to

have generators x2, xy, y2. In fact, one readily checks that H is the subgroup

formed from all words of even length, and we shall think of it that way. The set

C of coset representatives may be taken to be {1, x} in this case. The argument
we gave that H is free has points of contact with the proof we give of Theorem

7.10 but is not an exact special case of it. One point of contact is that within

each generator of H that we identify, there is some particular factor that does

not cancel when that generator appears in a word representing a member of the

subgroup.

We define a function � : F � C by taking �(x) to be the coset representative
of the member x of F . This function has the property that �(hx) = �(x) for all
h in H and x in F . Also, x ◆� x�(x)�1 is a function from F to H , and it is the

identity function on H . The first lemma shows that a relatively small subset of

the elements x�(x)�1 is a set of generators of H .

Lemma 7.11. Let S be the set of generators of F , and let S✏ = S ⇡ S�1.
Every element of H is a product of elements of the form gb�(gb)�1 with g in
C and b in S✏. Furthermore the element g✏ = �(gb) of C has the properties

that g = �(g✏b�1) and that gb�1�(gb�1)�1 is of the form
�
g✏b�(g✏b)�1

⇥�1
.

Consequently the elements ga�(ga)�1 with g in C and a in S form a set of

generators of H .
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EXAMPLE, CONTINUED. In the example, we are taking C = {1, x} and S =
{x, y}. The elements gb�(gb)�1 obtainedwith g=1 and b equal to x, y, x�1, y�1
are 1, yx�1, x�1x�1, and y�1x�1. The elements gb�(gb)�1 obtained with g = x

and b equal to x, y, x�1, y�1 are xx , xy, 1, and xy�1. The lemma says that 1,
yx�1, xx , and xy form a set of generators of H and that the elements x�1x�1,
y�1x�1, 1, and xy�1 are inverses of these generators in some order.

REMARK. The lemma needs no hypothesis that F is free. A nontrivial ap-

plication of the lemma with F not free appears in Problem 43 at the end of the

chapter.

PROOF. Any h in F can be written as a product h = b1 · · · bn with each bj in
S✏. Define r0 = 1 and rk = �(b1 · · · bk) for 1 ⌦ k ⌦ n. Then

hr�1n = (r0b1r
�1
1 )(r1b2r

�1
2 ) · · · (rn�1bnr�1n ). (⌅)

Since

rk = �(b1 · · · bk) = �(b1 · · · bk�1bk) = �(�(b1 · · · bk�1)bk) = �(rk�1bk),

we have rk�1bkr
�1
k = gb�(gb)�1 with g = rk�1 and b = bk . Thus (⌅) exhibits

hr�1n as a product of elements as in the first conclusion of the lemma. Since

rn = �(b1 · · · bn) = �(h), rn = 1 if h is in H . Therefore in this case, h itself is

a product of elements as in the statement of that conclusion, and that conclusion

is now proved.

For the other conclusion, let gb�1�(gb�1)�1 be given, and put g✏ = �(gb�1),
so that gb�1g✏�1 = h is in H . This equation implies that g✏b = h�1g. Hence
�(g✏b) = �(h�1g) = �(g) = g, and it follows that gb�1�(gb�1)�1 = gb�1g✏�1

= (g✏bg�1)�1 =
�
g✏b�(g✏b)�1

⇥�1
. This proves the lemma. �

Lemma 7.12. With F free it is possible to choose the set C of coset represen-

tatives in such a way that all of its members have expansions in terms of S✏ as
g = b1 · · · bn in which

(a) g = b1b2 · · · bn is a reduced word as written,
(b) b1b2 · · · bn�1 is also a member of C .
REMARKS. It is understood from the case of n = 1 in (b) that 1 is the

representative of the identity coset. When C is chosen as in this lemma, C is

said to be a Schreier set. In the example, C = {1, x} is a Schreier set. So is
C = {1, y}, and hence the selection of a Schreier set may involve a choice.
PROOF. If S✏ is finite or countably infinite, we enumerate it. In the uncountable

case (which is of less practical interest), we introduce a well ordering in S✏ by
means of Zermelo’s Well-Ordering Theorem as in Section A5 of the appendix.
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The ordering of S✏ will be used to define a lexicographic ordering of the set of
all reduced words in the members of S✏. If

x = b1 · · · bm and y = b✏1 · · · b✏n (⌅)

are reduced words with m ⌦ n, we say that x < y if any of the following hold:

(i) m < n,

(ii) m = n and b1 < b✏1,
(iii) m = n, and for some k < m, b1 = b✏1, . . . , bk = b✏k , and bk+1 < b✏k+1.

With this definition the set of reduced words is well ordered, and hence any

nonempty subset of reduced words has a least element.

Let us observe that if x, y, z are reduced words with x < y and if yz is reduced

as written, then xz < yz after xz has been reduced. In fact, let us assume that x

and y are as in (⌅) and that the length of z is r . The assumption is that yz has
length n + r , and the length of xz is at most m + r . If m < n, then certainly

xz < yz. Ifm = n and xz fails to be reduced, then the length of xz is less than the

length of yz, and xz < yz. If m = n and xz is reduced, then the first inequality

bk < b✏k with x and y shows that xz < yz.

To define the set C of coset representatives, let the representative of Hg be

the least member of the set Hg, each element being written as a reduced word.

Since the length of the empty word is 0, the representative of the identity coset

H is 1 under this definition. Thus all we have to check is that an initial segment

of a member of C is again in C .

Suppose that b1 · · · bn is inC , so that b1 · · · bn is the least element of Hb1 · · · bn .
Denote the least element of Hb1 · · · bn�1 by g. If g = b1 · · · bn�1, we are done.
Otherwise g < b1 · · · bn�1, and then the fact that b1 · · · bn is reduced implies
that gbn < b1 · · · bn . But gbn is in Hb1 · · · bn , and this inequality contradicts
the minimality of b1 · · · bn in that coset. Thus we conclude that g = b1 · · · bn�1.
This proves the lemma. �

For the remainder of the proof of Theorem 7.10, we assume, as we may by

Lemma 7.12, that the set C of coset representatives is a Schreier set. Typical

elements of S will be denoted by a, and typical elements of S✏ = S ⇡ S�1 will be
denoted by b. Let us write u for a typical element ga�(ga)�1 with g in C , and let
us write v for a typical element gb�(gb)�1 with g in C . The elements u generate
H by Lemma 7.11, and each element v is either an element u or the inverse of an
element u, according to the lemma. We shall prove that the elements u not equal

to 1 are distinct and form a free basis of H .

First we prove that each of the elements v = gb�(gb)�1 either is reduced as
written or is equal to 1. Put g✏ = �(gb), so that v = gbg✏�1. Since g and g✏ are in
the Schreier setC , they are reduced as written, and hence so are g and g✏�1. Thus
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the only possible cancellation in v occurs because the last factor of g is b�1 or the
last factor of g✏ is b. If the last factor of g is b�1, then gb is an initial segment of
g and hence is in the Schreier set C ; thus �(gb) = gb and v = gb�(gb)�1 = 1.

Similarly if the last factor of g✏ is b, then g✏b�1 is an initial segment of g✏ and
hence is in the Schreier set C ; thus �(g✏b�1) = g✏b�1, and Lemma 7.11 gives

v�1 =
�
gb�(gb)�1

⇥�1 = g✏b�1�(g✏b�1)�1 = 1. Thus v = gb�(gb)�1 either is
reduced as written or is equal to 1.

Next let us see that the elements v other than 1 are distinct. Suppose that
v = gb�(gb)�1 = g✏b✏�(g✏b✏)�1 is different from 1. Remembering that each of
these expressions is reduced as written, we see that if g is shorter than g✏, then gb
is an initial segment of g✏. Since C is a Schreier set, gb is in C and �(gb) = gb;

thus v = gb�(gb)�1 equals 1, contradiction. Similarly g✏ cannot be shorter than
g. So g and g✏ must have the same length l. In this case the first l + 1 factors

must match in the two equal reduced words, and we conclude that g = g✏ and
b = b✏. This proves the uniqueness.

We know that each v is either some u or some u✏�1, and this uniqueness shows
that it cannot be both unless v = 1. Therefore the nontrivial u’s are distinct, and

the nontrivial v’s consist of the u’s and their inverses, each appearing once.

Since an element v not equal to 1 therefore determines its g and b, let us refer
to the factor b of v = gb�(gb)�1 as the significant factor of v. This is the part
that will not cancel out when we pass from a product of v’s to its reduced form.

Specifically suppose that we have v = gb�(gb)�1 and v̄ = ḡb̄�(ḡb̄)�1, that
neither of these is 1, and that v̄ ✓= v�1. Put g✏ = �(gb) and ḡ✏ = �(ḡb̄). The
claim is that the cancellation in forming vv̄ = gbg✏�1ḡb̄ḡ✏�1 does not extend
to either of the significant factors b and b̄. If it does, then one of three things

happens:

(i) the b in bg✏�1 gets canceled because the last factor of g✏ is b, in which
case g✏b�1 is an initial segment of g✏, g✏b�1 = �(g✏b�1) = g, and

v = gbg✏�1 = 1, or

(ii) the b̄ in ḡb̄ gets canceled because the last factor of ḡ is b̄�1, in which case
ḡb̄ is an initial segment of ḡ, ḡb̄ = �(ḡb̄) = ḡ✏, and v̄ = ḡb̄ḡ✏�1 = 1, or

(iii) g✏�1ḡ = 1 and bb̄ = 1, in which case ḡ = g✏, b̄ = b�1, and the middle
conclusion of Lemma 7.11 allows us to conclude that v̄ = v�1.

All three of these possibilities have been ruled out by our assumptions, and

therefore neither of the significant factors in vv̄ cancels.

As a consequence of this noncancellation, we can see that in any product

v1 · · · vm of v’s in which no vk is 1 and no vk+1 equals v
�1
k , none of the significant

factors cancel. In fact, the previous paragraph shows that the significant factors

of v1 and v2 survive in forming v1v2, the significant factors of v2 and v3 survive
in right multiplying by v3, and so on. Since the nontrivial u’s are distinct and
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the nontrivial v’s consist of the u’s and their inverses, each appearing once, we
conclude that the set of nontrivial u’s is a free subset of F . Lemma 7.11 says that

the u’s generate H , and therefore the set of nontrivial u’s is a free basis of H .

3. Free Products

The free abelian group on an index set S, as constructed in Section IV.9, has a

universal mapping property that allows arbitrary functions from S into any target

abelian group to be extended to homomorphisms of the free abelian group into

the target group. The construction of free groups in Section 1 was arranged to

adapt the construction so that the target group in the universal mapping property

could be any group, abelian or nonabelian.

In this section we make a similar adaptation of the construction of a direct sum

of abelian groups so that the result is applicable in a context of arbitrary groups.

Proposition 4.17 gave the universal mapping property of the external direct sum�
s⌘S Gs of a set of abelian groups with associated embedding homomorphisms

is0 : Gs0 �
�

s⌘S Gs . The statement is that if H is any abelian group and

{✓s | s ⌘ S} is a system of group homomorphisms ✓s : Gs � H , then there

exists a unique group homomorphism ✓ :
�

s⌘S Gs � H such that ✓ ⌥ is0 = ✓s0
for all s0 ⌘ S. Example 2 of coproducts in Section IV.11 shows that direct sum

is therefore the coproduct functor in the category of all abelian groups.

This universal mapping property of
�

s⌘S Gs fails when H is a nonabelian

group such as the symmetric groupS3. In fact,S3 has an element of order 2 and

an element of order 3 and hence admits nontrivial homomorphisms✓2 : C2 � S3

and ✓3 : C3 � S3. But there is no homomorphism ✓ : C2 ⌃ C3 � S3 such

that ✓ ⌥ i2 = ✓2 and ✓ ⌥ i3 = ✓3 because the image of ✓ has to be abelian but the
images of ✓2 and ✓3 do not commute. Consequently direct sum cannot extend to
a coproduct functor in the category of all groups.

Instead, the appropriate group constructed from C2 and C3 for this kind of

universal mapping property is the “free product” of C2 and C3, denoted by

C2 ⌅ C3. In this section we construct the free product of any set of groups,
finite or infinite. Also, we establish its universal mapping property and identify

it in terms of generators and relations. The prototype of a free product is the free

group F(S), which equals a free product of copies of Z indexed by S. A free

product is always an infinite group if at least two of the factors are not 1-element

groups.

An important applicationof free products occurs in the theory of the fundamen-

tal group in topology: if X is a topological space for which the theory of covering

spaces is applicable, and if A and B are open subsets of X with X = A⇡ B such

that A ⇢ B is nonempty, connected, and simply connected, then the fundamental
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group of X is the free product of the fundamental group of A and the fundamental

group of B. This result, together with a generalization that no longer requires

A ⇢ B to be simply connected, is known as the Van Kampen Theorem.

Let S be a nonempty set of groups Gs for s in S. The set S is allowed to be

infinite, but in practice it often has just two elements. We shall describe the group

defined to be the free product G = *s⌘S Gs . We start from the set W ({Gs}) of
all words built from the groups Gs . This consists of all finite sequences g1 · · · gn
with each gi in some Gs depending on i . The length of a word is the number of

factors in it. The empty word is denoted by 1. We multiply two words by writing

them end to end, and the resulting operation of multiplication is associative. A

word is said to be equivalent to a second word if the first can be obtained from

the second by a finite sequence of steps of the following kinds and their inverses:

(i) drop a factor for which gi is the identity element of the group in which it

lies,

(ii) collapse two factors gi gi+1 to a single one g
⌅
i if gi and gi+1 lie in the same

Gs and their product in that group is g
⌅
i .

The result is an equivalence relation, and the set of equivalence classes is the

underlying set of *s⌘S Gs .

Theorem 7.13. If S is a nonempty set of groups Gs and W ({Gs}) is the set
of all words from the groups Gs , then the product operation defined on W ({Gs})
descends in a well-defined fashion to the set *s⌘S Gs of equivalence classes of

members of W ({Gs}), and *s⌘S Gs thereby becomes a group. For each s0 in

S, define is0 : Gs0 � *s⌘S Gs to be the group homomorphism obtained as the

composition of the inclusion of Gs0 into words of length 1 followed by passage

to equivalence classes. Then the pair
�
*s⌘S Gs, {is}

⇥
has the following universal

mapping property: whenever H is a group and {✓s | s ⌘ S} is a system of group
homomorphisms ✓s : Gs � H , then there exists a unique group homomorphism

✓ : *s⌘SGs � H such that ✓ ⌥ is0 = ✓s0 for all s0 ⌘ S.

Gs0

✓s���� H

is0

��!

*s⌘SGs

✓

FIGURE 7.2. Universal mapping property of a free product.

REMARKS. The group *s⌘SGs is called the free product of the groups Gs .

Figure 7.2 illustrates its universal mapping property. This universal mapping

property actually characterizes*s⌘SGs , as will be seen in Proposition 7.14. One
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often writesG1 ⌅ · · ·⌅Gn when the set S is finite; the order of listing the groups is

immaterial. The proof of Theorem 7.13 is rather similar to the proof of Theorem

7.1, and we shall skip some details.

PROOF. Let us write� for the equivalence relation on words, and let us denote
equivalence classes by brackets. We want to define multiplication in *s⌘SGs by

[w1][w2] = [w1w2]. To see that this formula makes sense in *s⌘SGs , let x , x
✏,

and y bewords inW ({Gs}), and suppose that x and x ✏ differ by only one operation
of type (i) or type (ii) as above. Then x � x ✏, and it is evident that x ✏y � xy and

yx ✏ � yx . Iteration of this kind of relationship shows thatw✏
1 � w1 andw✏

2 � w2

implies w✏
1w

✏
2 � w1w2, and hence multiplication is well defined.

The associativity of multiplication in W ({Gs}) implies that multiplication in

*s⌘SGs is associative, and [1] is a two-sided identity. We readily check that if

g = g1 · · · gn is a word, then the word g�1 = g�1n · · · g�11 has the property that

[g�1] is a two-sided inverse to [g]. Therefore *s⌘SGs is a group.

The uniqueness of the homomorphism ✓ in the universal mapping property
is no problem since all words are products of words of length 1 and since the

subgroups is0(Gs0) together generate *s⌘SGs .

For existence of ✓, we begin by defining a function � : W ({Gs}) � H such

that

�(gs) = ✓s(gs) for gs in Gs when viewed as a word of length 1,

�(w1w2) = �(w1)�(w2) for w1 and w2 in W ({Gs}).

We take the formulas �(gs) = ✓(gs) for gs in Gs as a definition of � on words

of length 1. Any member of W ({Gs}) can be written uniquely as g1 · · · gn with
each gi in Gsi , and we set �(g1 · · · gn) = �(g1) · · ·�(gn). (If n = 0, the

understanding is that �(1) = 1.) Then � has the required properties.

Let us show that w✏ � w implies�(w✏) = �(w). The questions are whether

(i) if g1, . . . , gn are in various Gs’s with gi equal to the identity 1si of Gsi ,

then

�(g1 · · · gi�11si gi+1 · · · gn)
?= �(g1 · · · gi�1gi+1 · · · gn),

(ii) if g1, . . . , gn are in various Gs’s with Gsi = Gsi+1 and if gi gi+1 = g⌅i in
Gsi , then

�(g1 · · · gi�1gi gi+1gi+2 · · · gn)
?= �(g1 · · · gi�1g⌅i gi+2 · · · gn).
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In the case of (i), the question comes down to whether a certain h�(1si )h
✏ in H

equals hh✏, and this is true because �(1si ) = ✓si (1si ) is the identity of H . In
the case of (ii), the question comes down to whether h�(gi )�(gi+1)h

✏ equals
h�(g⌅i )h

✏ if Gsi = Gsi+1 and gi gi+1 = g⌅i in Gsi , and this is true because

�(gi )�(gi+1) = ✓si (gi )✓si (gi+1) = ✓si (gi gi+1) = ✓si (g
⌅
i ) = �(g⌅i ). We

conclude that w✏ � w implies�(w✏) = �(w).
We may therefore define ✓([w]) = �(w) for [w] in F({Gs}), and ✓ is a

homomorphism of F({Gs}) into H as a consequence of the property�(w1w2) =
�(w1)�(w2) of � on W ({Gs}). For gs in Gs , we have ✓([gs]) = �(gs) =
✓s(gs), i.e., ✓(i(gs)) = ✓s(gs). This completes the proof of existence. �

Proposition 7.14. Let S be a nonempty set of groups Gs . Suppose that G
✏ is

a group and that i ✏s : Gs � G ✏ for s ⌘ S is a system of group homomorphisms

with the following universal mapping property: whenever H is a group and

{✓s | s ⌘ S} is a system of group homomorphisms ✓s : Gs � H , then there

exists a unique group homomorphism ✓ : G ✏ � H such that ✓ ⌥ i ✏s = ✓s for all
s ⌘ S. Then there exists a unique group homomorphism � : *s⌘SGs � G ✏

such that i ✏s = � ⌥ is for all s ⌘ S. Moreover,� is a group isomorphism, and the

homomorphisms i ✏s : Gs � G ✏ are one-one.

REMARKS. As was true with Proposition 7.2, readers who have been through

Chapter VI will recognize that Proposition 7.14 is a special case of Problem 19

at the end of that chapter.

PROOF. Put G = *s⌘SGs . In the universal mapping property of Theorem

7.13, let H = G ✏ and ✓s = i ✏s , and let � : G � G ✏ be the homomorphism ✓
produced by that theorem. Then � satisfies � ⌥ is = i ✏s for all s. Reversing the
roles of G and G ✏, we obtain a homomorphism �✏ : G ✏ � G with �✏ ⌥ i ✏s = is
for all s. Therefore (�✏ ⌥ �) ⌥ is = �✏ ⌥ i ✏s = is .

Comparing �✏ ⌥ � with the identity 1G and applying the uniqueness in the

universal mapping property for G, we see that �✏ ⌥ � = 1G . Similarly the

uniqueness in the universal mapping property of G ✏ gives� ⌥�✏ = 1G ✏ . Thus�
is a group isomorphism. It is uniquely determined by the given properties since

the various subgroups is(Gs) generate G. Since i
✏
s = � ⌥ is and since � and is

are one-one, i ✏s is one-one. �
As was the case for free groups, we want a decision procedure for telling

whether two given words in W ({Gs}) are equivalent. This is the so-called word
problem for the free product. Solving it allows us to use free products concretely,

just as Proposition 7.3 allowed us to use free groups concretely. A word in

W ({Gs})) is said to be reduced if it
(i) contains no factor for which gi is the identity element of the group Gs in

which it lies,
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(ii) contains no two consecutive factors gi and gi+1 taken from the same

group Gs .

Proposition 7.15. (solution of the word problem for free products). If S is a

nonempty set of groups Gs and W ({Gs}) is the set of all words from the groups
Gs , then each word in W ({Gs}) is equivalent to one and only one reduced word.
EXAMPLE. Consider the free productC2⌅C2 of two cyclic groups, onewith x as

generator and the other with y as generator. Words consist of a finite sequence of

factors of x , y, the identity of the first factor, and the identity of the second factor.

A word is reduced if no factor is an identity and if no two x’s are adjacent and no

two y’s are adjacent. Thus the reduced words consist of finite sequences whose

terms are alternately x and y. Those of length⌦ 3 are 1, x, y, xy, yx, xyx, yxy,
and in general there are two of each length > 0. The proposition tells us that all

these reduced words give distinct members of C2 ⌅C2. In particular, the group is
infinite.

REMARK. More generally, to test whether two words are equivalent, the

proposition says to eliminate factors of the identity and multiply consecutive

factors in each word when they come from the same group, and repeat these steps

until it is no longer possible to do either of these operations on either word. Then

each of the given words has been replaced by a reduced word, and the two given

words are equivalent if and only if the two reduced words are identical. Problems

37–46 at the end of the chapter concernC2⌅C3, and some of these problemsmake
use of the result of this proposition—that distinct reduced words are inequivalent.

PROOF OF PROPOSITION 7.15. Both operations—eliminating factors of the

identity and multiplying consecutive factors in each word when they come from

the same group—reduce the length of a word. Since the length has to remain

↵ 0, the process of successively carrying out these two operations as much as

possible has to stop after finitely many steps, and the result is a reduced word.

This proves that each equivalence class of words contains a reduced word.

For uniqueness of the reduced word in an equivalence class, we proceed

somewhat as with Proposition 7.3, associating to each word a finite sequence

of reduced words such that the last member of the sequence is unchanged when

we apply an operation to the word that preserves equivalence. However, there are

considerably more details to check this time.

If w = g1 · · · gn is a given word with each gi in Gsi , then we associate to w
the sequence of reduced words x0, x1, . . . , xn defined inductively by

x0 = 1,

x1 =
�
g1 if g1 is not the identity of Gs1,

1 if g1 is the identity of Gs1,
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and the following formula for i ↵ 2 if xi�1 is of the reduced form h1 · · · hk with
hj in Gtj :

xi =

⌘
◆

✓

h1 · · · hkgi if Gsi ✓= Gtk and gi is not the identity 1Gsi
of Gsi ,

h1 · · · hk if gi is the identity 1Gsi
of Gsi ,

h1 · · · hk�1 if Gtk = Gsi with hkgi = 1Gsi
,

h1 · · · hk�1g⌅i if Gtk = Gsi with hkgi = g⌅i ✓= 1Gsi
.

Put r(w) = xn . We check inductively for i ↵ 0 that each xi is reduced. In fact, xi
for i ↵ 2 begins in every case with h1 · · · hk�1, which is assumed reduced. The
only possible reduction for xi thus comes from factors that are adjoined or from

interference with hk�1, and all possibilities are addressed in the above choices.
Thus r(w) = xn is necessarily reduced for each word w.
If g1 · · · gn is reduced as given, then xi is determined by the first possible choice

h1 · · · hkgi every time, and hence xi = g1 · · · gi for all i . Therefore we obtain
r(w) = w if w is reduced.

Now consider the equivalent words

w = g1 · · · gj gj+1 · · · gn and w✏ = g1 · · · gj1Gs
gj+1 · · · gn.

Form x0, . . . , xn for w and x ✏0, . . . , x
✏
n+1 for w✏. Then we have x ✏j = xj ; let

h1 · · · hk be a reduced form of x ✏j . The formula for x
✏
j+1 is governed by the

second choice in the display, and x ✏j+1 = h1 · · · hk = xj . Then x
✏
j+i+1 = xj+i for

1 ⌦ i ⌦ n � j as well. Hence x ✏n+1 = xn , and r(w
✏) = r(w).

Next suppose that g⌅j = gj gj+1 in Gsj , and consider the equivalent words

w = g1 · · · gj�1g⌅j gj+2 · · · gn and w✏ = g1 · · · gj�1gj gj+1gj+2 · · · gn.

As above, form x0, . . . , xn for w and x ✏0, . . . , x
✏
n+1 for w

✏. Then we have xj�1 =
x ✏j�1, and we let h1 · · · hk be a reduced form of xj�1. There are cases, subcases,
and subsubcases.

First assume Gtk ✓= Gsj . Then xj equals h1 · · · hkg⌅j or h1 · · · hk in the two
subcases g⌅j ✓= 1Gsj

and g⌅j = 1Gsj
. In the first subcase, we have g⌅j ✓= 1Gsj

and

xj = h1 · · · hkg⌅j . Then x ✏j equals h1 · · · hkgj or h1 · · · hk in the two subsubcases
gj ✓= 1Gsj

and gj = 1Gsj
. In the first subsubcase, x ✏j+1 = h1 · · · hkg⌅j = xj

whether or not gj+1 = 1Gsj
. In the second subsubcase, g⌅j = gj gj+1 cannot be

1Gsj
, and therefore x ✏j+1 = h1 · · · hkg⌅j = xj .

In the second subcase of the case Gtk ✓= Gsj , we have g
⌅
j = 1Gsj

and xj =
xj�1 = h1 · · · hk . Then x ✏j equals h1 · · · hkgj or h1 · · · hk in the two subsubcases
gj ✓= 1Gsj

and gj = 1Gsj
. In both subsubcases, x ✏j+1 = h1 · · · hk , so that x ✏j+1 =

xj .



328 VII. Advanced Group Theory

Now assume Gtk = Gsj . Then xj equals h1 · · · hk�1h⌅k or h1 · · · hk�1 in the
two subcases hkg

⌅
j = h⌅k ✓= 1Gsj

and hkg
⌅
j = 1Gsj

. In the first subcase, we

have hkg
⌅
j = h⌅k ✓= 1Gsj

and xj = h1 · · · hk�1h⌅k . Then x ✏j equals h1 · · · hk�1h✏k or
h1 · · · hk�1 in the two subsubcases hkgj = h✏k ✓= 1Gsj

and hkgj = 1Gsj
. In the first

subsubcase, h✏kgj+1 = hkgj gj+1 = hkg
⌅
j = h⌅k implies x

✏
j+1 = h1 · · · hk�1h⌅k =

xj . In the second subsubcase, we know that h
⌅
k cannot be 1Gsi

and hence that

gj+1 = hkgj gj+1 = hkg
⌅
j = h⌅k cannot be 1Gsj

; thus x ✏j+1 = h1 · · · hk�1h⌅k = xj .

In the second subcase of the case Gtk = Gsj , we have hkg
⌅
j = 1Gsj

and xj =
h1 · · · hk�1. Then x ✏j equals h1 · · · hk�1h⌅k ✏ or h1 · · · hk�1 in the two subsubcases
hkgj = h⌅k

✏ ✓= 1Gsj
and hkgj = 1Gsj

. In the first subsubcase, gj+1 cannot be

1Gsj
but h⌅k

✏gj+1 = hkgj gj+1 = hkg
⌅
j = 1Gsj

; hence x ✏j+1 = h1 · · · hk�1 = xj .

In the second subsubcase, x ✏j = h1 · · · hk�1 and gj+1 = 1Gsj
, so that x ✏j+1 =

h1 · · · hk�1 = xj .

We conclude that x ✏j+1 = xj in all cases. Hence x
✏
j+i+1 = xj+i for 0 ⌦ i ⌦

n � j , x ✏n+1 = xn , and r(w
✏) = r(w). Consequently the only reduced word that

is equivalent to w is r(w). �

Proposition 7.16. Let S be a nonempty set of groups Gs , and suppose that

�Ss; Rs� is a presentation of Gs , the sets Ss being understood to be disjoint for

s ⌘ S. Then
⇧⇢

s⌘S Ss;
⇢

s⌘S Rs
⌃
is a presentation of the free product *s⌘SGs .

REMARK. One effect of this proposition is to make Proposition 7.8 available

as a tool for use with free products. Using Proposition 7.8 may be easier than

appealing to the universal mapping property in Theorem 7.13.

PROOF. Put S =
⇢

s⌘S Ss and R =
⇢

s⌘S Rs , and define G to be a group given
by generators and relations as G = �S; R�. Consider the function from Ss into

the quotient group G = F(S)/N (R) given by carrying x in Ss into the word
x in S and then passing to F(S) and its quotient G. Because of the universal
mapping property of free groups, this function extends to a group homomorphism
�is : F(Ss) � G. If r is a reduced word relative to Ss representing a member

of Rs , then r is carried by�is into a member of the larger set R and then into
the identity of G. Since ker�is is normal in F(Ss), ker�is contains the smallest
normal subgroup N (Rs) in F(Ss) that contains Rs . Proposition 4.11 shows that
�is descends to a group homomorphism is : Gs � G.

We shall prove that G and the system {is} have the universal mapping property
of Proposition 7.14 that characterizes a free product. Then it will follow from

that proposition that G �=*s⌘SGs , and the proof will be complete.

Thus let H be a group, and let {✓s | s ⌘ S} be a system of group homo-

morphisms ✓s : Gs � H . We are to produce a homomorphism � : G � H

such that � ⌥ is = ✓s for all s, and we are to prove that such a homomorphism
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is unique. Let qs : F(Ss) � Gs be the quotient homomorphism, and define

�✓s : F(Ss) � H by �✓s = ✓s ⌥ qs . Now define �� : S � H as follows: if

x is in S, then x is in a set Ss for a unique s and thereby defines a member

of F(Ss) for that unique s; ��(x) is taken to be �✓s(x). The universal mapping
property of the free group F(S) allows us to extend�� to a group homomorphism,
which we continue to call ��, of F(S) into H . Let r be a nontrivial relation in
R � F(S). Then r , by hypothesis of disjointness for the sets Ss , lies in a unique
Rs . Hence ��(r) = �✓s(r) = ✓s(qs(r)) = ✓s(1s) = 1H . Consequently the kernel

of �� contains the smallest normal subgroup N (R) of F(S) containing R, and ��
descends to a homomorphism� : G � H . This � satisfies

� ⌥ is ⌥ qs = � ⌥�is = ��
⌥⌥
F(Ss)

= �✓s = ✓s ⌥ qs .
Since the quotient homomorphism qs is onto Gs , we obtain � ⌥ is = ✓s , and
existence of the homomorphism� is established.

For uniqueness, we observe that the identities � ⌥ is = ✓s imply that � is

uniquely determined on the subgroup of G generated by the images of all is .

Since qs is onto Gs , this subgroup is the same as the subgroup generated by the

images of all�is . This subgroup contains the image in G of every generator of

F(S) and hence is all of G. Thus � is uniquely determined. �

4. Group Representations

Group representations were defined in Section IV.6 as group actions on vector

spaces by invertible linear functions. The underlying field of the vector space

will be taken to be C in this section and the next, and the theory will then be

especially tidy. The subject of group representations is one that uses a mix of

linear algebra and group theory to reveal hidden structure within group actions. It

has broad applications to algebra and analysis, but we shall be most interested in

an application to finite groups known as Burnside’s Theorem that will be proved

in the next section.

Let us beginwith the abelian case, takingG for themoment to be a finite abelian

group. Amultiplicative character of G is a homomorphism ✏ : G � S1 � C⇤

of G into the multiplicative group of complex numbers of absolute value 1. The

multiplicative characters form an abelian group ⌧G under pointwisemultiplication
of their complex values: (✏✏ ✏)(g) = ✏(g)✏ ✏(g). The identity of ⌧G is the

multiplicative character that is identically 1 on G, and the inverse of ✏ is the

complex conjugate of ✏ .
The notion of multiplicative character adapts to the case of a finite group the

familiar exponential functions x ◆� einx on the line, which can be regarded as

multiplicative characters of the additive group R/2↵Z of real numbers modulo
2↵ . These functions have long been used to resolve a periodic function of
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time into its component frequencies: The device is the Fourier series of the

function f . If f is periodic of period 2↵ , then the Fourier coefficients of f
are cn = 1

2↵

⇡ ↵

�↵ f (x)e�inx dx , and the Fourier series of f is the infinite series⌫⇣
n=�⇣ cne

inx . A portion of the subject of Fourier series looks for senses in

which f (x) is actually equal to the sum of its Fourier series. This is the problem
of Fourier inversion.

A similar problem can be formulated when R/2↵Z is replaced by the finite
abelian group G. The exponential functions are replaced by the multiplicative

characters. One can form an analog of Fourier coefficients for the vector space

C(G, C) of complex-valued functions2 defined on G, and then one can form the
analog of the Fourier series of the function. The problem of Fourier inversion

becomes one of linear algebra, once we take into account the known structure of

all finite abelian groups (Theorem 4.56). The result is as follows.

Theorem7.17 (Fourier inversion formula for finite abelian groups). LetG be a

finite abelian group, and introduce an inner product on the complex vector space

C(G, C) of all functions from G to C by the formula

�F, F ✏� =
�

g⌘G
F(g)F ✏(g),

the corresponding norm being  F = �F, F�1/2. Then themembers of ⌧G form an
orthogonal basis of C(G, C), each ✏ in ⌧G satisfying  ✏ 2 = |G|. Consequently
|⌧G| = |G|, and any function F : G � C is given by the “sum of its Fourier

series”:

F(g) = 1

|G|
�

✏⌘�G

⌦�

h⌘G
F(h)✏(h)

↵
✏(g).

REMARKS. This theorem is one of the ingredients in the proof in Chapter I of

Advanced Algebra of Dirichlet’s theorem that if a and b are positive relatively

prime integers, then there are infinitely many primes of the form an + b. In

applications to engineering, the ordinary Fourier transform on the line is often

approximated, for computational purposes, by a Fourier series on a large cyclic

group, and then Theorem 7.17 is applicable. Such a Fourier series can be com-

puted with unexpected efficiency using a special grouping of terms; this device

2The notation C(G, C) is to be suggestive of what happens for G = S1 and for G = R1, where
one works in part with the space of continuous complex-valued functions vanishing off a bounded

set. In any event, pointwise multiplication makes C(G, C) into a commutative ring. Later in the
section we introduce a second multiplication, called “convolution,” that makes C(G, C) into a ring
in a different way. In Chapter VIII we shall introduce the “complex group algebra” CG of G. The
vector space C(G, C) is the dual vector space of CG. However, C(G, C) and CG are canonically

isomorphic because they have distinguished bases, and the isomorphism respects the multiplication

structures—convolution in C(G, C) and the group-algebra multiplication in CG.
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is called the fast Fourier transform and is described in Problems 29–31 at the

end of the chapter.

PROOF. For orthogonality let ✏ and ✏ ✏ be distinct members of ⌧G, and put
✏ ✏✏ = ✏✏ ✏ = ✏✏ ✏�1. Choose g0 in G with ✏ ✏✏(g0) ✓= 1. Then

✏ ✏✏(g0)
�⌫

g⌘G ✏ ✏✏(g)
⇥

=
⌫

g⌘G ✏ ✏✏(g0g) =
⌫

g⌘G ✏ ✏✏(g),

[1� ✏ ✏✏(g0)]
⌫

g⌘G ✏ ✏✏(g) = 0so that

⌫
g⌘G ✏ ✏✏(g) = 0.and therefore

�✏,✏ ✏� =
⌫

g⌘G ✏(g)✏ ✏(g) =
⌫

g⌘G ✏ ✏✏(g) = 0.Consequently

The orthogonality implies that the members of ⌧G are linearly independent,

and we obtain |⌧G| ⌦ dimC(G, C) = |G|. Certainly  ✏ 2 =
⌫

g⌘G |✏(g)|2 =⌫
g⌘G 1 = |G|.
To see that the members of ⌧G are a basis of C(G, C), we write G as a direct

sum of cyclic groups, by Theorem4.56. A summandZ/mZ has at leastm distinct
multiplicative characters, given by j mod m ◆� e2↵ i jr/m for 0 ⌦ r ⌦ m � 1, and
these characters extend to G as 1 on the other direct summands of G. Taking

products of such multiplicative characters from the different summands of G,

we see that |⌧G| ↵ |G|. Therefore |⌧G| = |G|, and ⌧G is an orthogonal basis by

Corollary 2.4. The formula for F(g) in the statement of the theorem follows by
applying Theorem 3.11c. �

Now suppose that the finite group G is not necessarily abelian. Since S1 is

abelian, Proposition 7.4 shows that ✏ takes the value 1 on every member of the
commutator subgroupG ✏ of G. Consequently there is no way that the multiplica-
tive characters can form a basis for the vector space C(G, C) of complex-valued
functions on G. The above analysis thus breaks down, and some adjustment is

needed in order to extend the theory.

The remedy is to use representations, as defined in Section IV.6, on complex

vector spaces of dimension> 1. We shall assume in the text that the vector space

is finite-dimensional. The sense in which representations extend the theory of

multiplicative characters is that any multiplicative character ✏ gives a represen-
tation R on the 1-dimensional vector space C by R(g)(z) = ✏(g)z for g in G
and z in C. Conversely any 1-dimensional representation gives a multiplicative
character: if R is the representation on the 1-dimensional vector space V and if

v0 ✓= 0 is in V , then ✏(g) is the scalar such that R(g)v0 = ✏(g)v0. It is enough
to observe that the only elements of finite order in the multiplicative group C⇤

are certain members of the circle S1, and then it follows that ✏ takes values in S1.
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In the higher-dimensional case, the analog of the multiplicative character ✏
in passing to a 1-dimensional representation R is a “matrix representation.” A

matrix representation of G is a function g ◆� [�(g)i j ] from G into invertible

square matrices of some given size such that �(g1g2)i j =
⌫n

k=1 �(g1)ik�(g2)k j .
If a representation R acts on the finite-dimensional complex vector space V , then

the choice of an ordered basis � for V leads to a matrix representation by the

formula

[�(g)i j ] =
�
R(g)
��

�
.

Conversely if a matrix representation g ◆� [�(g)i j ] and an ordered basis � of V
are given, then the same formula may be used to obtain a representation R of G

on V .

In contrast to the 1-dimensional case, thematrices that occur with amatrix rep-

resentation of dimension > 1 need not be unitary. The correspondence between

unitary linear maps and unitary matrices was discussed in Chapter III. When

the finite-dimensional vector space V has an inner product, a linear map was

defined to be unitary if it satisfies the equivalent conditions of Proposition 3.18.

A complex square matrix A was defined to be unitary if A⌅A = I . The matrix

of a unitary linear map relative to an ordered orthonormal basis is unitary, and

conversely when a unitary matrix and an ordered orthonormal basis are given, the

associated linear map is unitary. We can thus speak of unitary representations

and unitary matrix representations.

Some examples of representations appear in Section IV.6. One further pair

of examples will be of interest to us. With the finite group G fixed but not

necessarily abelian, we continue to let C(G, C) be the complex vector space of
all functions f : G � C. We define two representations of G on C(G, C): the
left regular representation � given by (�(g) f )(x) = f (g�1x) and the right
regular representation r given by (r(g) f )(x) = f (xg). The reason for the
presence of an inverse in one case and not the other was discussed in Section

IV.6. Relative to the inner product

( f1, f2) =
�

x⌘G
f1(x) f2(x),

both � and r are unitary. The argument for � is that

(�(g) f1,�(g) f2) =
�

x⌘G
(�(g) f1)(x)(�(g) f2)(x) =

�

x⌘G
f1(g

�1x) f2(g�1x)

under y=g�1x=
�

y⌘G
f1(y) f2(y) = ( f1, f2),

and the argument for r is completely analogous.
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It will be convenient to abbreviate “representation R on V ” as “representa-

tion (R, V ).” Let (R, V ) be a representation of the finite group G on a finite-

dimensional complex vector space. An invariant subspace U of V is a vector

subspace such that R(g)U � U for all g in G. The representation is irreducible

if V ✓= 0 and if V has no invariant subspaces other than 0 and V .

Two representations (R1, V1) and (R2, V2) on finite-dimensional complex vec-
tor spaces are equivalent if there exists a linear invertible function A : V1 � V2
such that AR1(g) = R2(g)A for all g in G. In the terminology of Section
IV.11, “equivalent” is the notion of “is isomorphic to” in the category of all

finite-dimensional representations of G.

In more detail a morphism from (R1, V1) to (R2, V2) in this category is an
intertwining operator, namely a linear map A : V1 � V2 such that AR1(g) =
R2(g)A for all g in G. The condition for this equality to hold is that the diagram
in Figure 7.3 commute.

V1
A���� V2

R1(g)

��!
��!R2(g)

V1
A���� V2

FIGURE 7.3. An intertwining operator for two representations, i.e., a morphism

in the category of finite-dimensional representations of G.

An example of a pair of representations that are equivalent is the left and right

regular representations ofG onC(G, C): in fact, if we define (A f )(x) = f (x�1),
then

(�(g)A f )(x) = (A f )(g�1x) = f (x�1g) = (r(g) f )(x�1) = (Ar(g) f )(x).

Proposition 7.18 (Schur’s Lemma). If (R1, V1) and (R2, V2) are irreducible
representations of the finite groupG on finite-dimensional complex vector spaces

and if A : V1 � V2 is an intertwining operator, then A is invertible (and hence

exhibits R1 and R2 as equivalent) or else A = 0. If (R1, V1) = (R2, V2) and
A : V1 � V2 is an intertwining operator, then A is scalar.

REMARK. The conclusion that A is scalar makes essential use of the fact that

the underlying field is C.

PROOF. The equality R2(g)Av1 = AR1(g)v1 shows that ker A and image A
are invariant subspaces. By the assumed irreducibility, ker A equals 0 or V1, and

image A equals 0 or V2. The first statement follows. When (R1, V1) = (R2, V2),
the identity I : V1 � V2 is an intertwining operator. If � is an eigenvalue of A,
then A��I is another intertwining operator. Since A��I is not invertible when
� is an eigenvalue of A, A � �I must be 0. �
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Corollary 7.19. Every irreducible finite-dimensional representation of a finite

abelian group G is 1-dimensional.

PROOF. If (R, V ) is given, then the linear map A = R(g) satisfies AR(x) =
R(gx) = R(xg) = R(x)A for all x in G. By Schur’s Lemma (Proposition 7.18),
A = R(g) is scalar. Since g is arbitrary, every vector subspace of V is invariant.
Irreducibility therefore implies that V is 1-dimensional. �

Let R be a representation of the finite group G on the finite-dimensional

complex vector space V , let ( · , · )0 be any inner product on V , and define

(v1, v2) =
�

x⌘G
(R(x)v1, R(x)v2)0.

Then we have

(R(g)v1, R(g)v2) =
⌫
x⌘G

(R(x)R(g)v1, R(x)R(g)v2)0

=
⌫
x⌘G

(R(xg)v1, R(xg)v2)0

=
⌫
y⌘G

(R(y)v1, R(y)v2)0 by the change y = xg

= (v1, v2).

With respect to the inner product ( · , · ), the representation (R, V ) is therefore
unitary. In other words, we are always free to introduce an inner product to

make a given finite-dimensional representation unitary. The significance of this

construction is noted in the following proposition.

Proposition 7.20. If (R, V ) is a finite-dimensional representation of the finite
group G and if an inner product is introduced in V that makes the representation

unitary, then the orthogonal complement of an invariant subspace is invariant.

PROOF. Let U be an invariant subspace. If u is in U and u is in U, then
(R(g)u, u) = (R(g)�1R(g)u, R(g)�1u) = (u, R(g)�1u) = 0. Thus u in
U implies R(g)u is in U. �

Corollary 7.21. Any finite-dimensional representation of the finite group G

is a direct sum of irreducible representations.

REMARK. That is, we can find a system of invariant subspaces such that the

action of G is irreducible on each of these subspaces and such that the whole

vector space is the direct sum of these subspaces.
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PROOF. This is immediate by induction on the dimension. For dimension 0,

the representation is the empty direct sum of irreducible representations. If the

decomposition is known for dimension < n and if U is an invariant subspace

under R of smallest possible dimension ↵ 1, then U is irreducible under R, and

Proposition 7.20 says that the subspace U, which satisfies V = U ⌃ U, is
invariant. It is therefore enough to decompose U, and induction achieves such
a decomposition. �

Proposition 7.22 (Schur orthogonality). For finite-dimensional representa-

tions of a finite group G in which inner products have been introduced to make

the representations unitary,

(a) if (R1, V1) and (R2, V2) are inequivalent and irreducible, then

�

x⌘G
(R1(x)v1, v

✏
1)(R2(x)v2, v

✏
2) = 0 for all v1, v

✏
1 ⌘ V1 and v2, v

✏
2 ⌘ V2.

(b) if (R, V ) is irreducible, then

�

x⌘G
(R(x)v1, v

✏
1)(R(x)v2, v

✏
2) = |G|(v1, v2)(v✏1, v✏2)

dim V
for v1, v2, v

✏
1, v

✏
2 ⌘ V .

REMARKS. If G is abelian, then V1 and V2 in (a) are 1-dimensional, and the

conclusion of (a) reduces to the statement that the multiplicative characters are

orthogonal. Conclusion (b) in this case reduces to a trivial statement.

PROOF. For (a), let l : V2 � V1 be any linear map, and form the linear map

L =
⌫
x⌘G

R1(x)l R2(x
�1).

Multiplying on the left by R1(g) and on the right by R2(g
�1) and changing vari-

ables in the sum, we obtain R1(g)LR2(g
�1) = L , so that R1(g)L = LR2(g) for

all g ⌘ G. By Schur’s Lemma (Proposition 7.18) and the assumed irreducibility

and inequivalence, L = 0. Thus (Lv✏2, v
✏
1) = 0. For the particular choice of l as

l(w2) = (w2, v2)v1, we have

0 = (Lv✏2, v
✏
1) =

⌫
x⌘G

(R1(x)l R2(x
�1)v✏2, v

✏
1)

=
⌫
x⌘G

�
R1(x)(R2(x

�1)v✏2, v2)v1, v
✏
1

⇥
=
⌫
x⌘G

(R1(x)v1, v
✏
1)(R2(x

�1)v✏2, v2),

and (a) results since (R2(x
�1)v✏2, v2) = (R2(x)v2, v

✏
2).

For (b), we proceed in the same way, starting from l : V � V , and we obtain

L = �I from Schur’s Lemma. Taking the trace of both sides, we find that
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� dim V = Tr L = |G|Tr l.

Therefore � = |G|(Tr l)
 
dim V . Since L = �I ,

(Lv✏2, v
✏
1) = |G|Tr l

dim V
(v✏1, v

✏
2).

Again we make the particular choice of l as l(w2) = (w2, v2)v1. Since Tr l =
(v1, v2), we obtain

(v1, v2)(v
✏
1, v

✏
2)

dim V
= Tr l

dim V
(v✏1, v

✏
2) = |G|�1(Lv✏2, v

✏
1)

= |G|�1
⌫
x⌘G

(R(x)l R(x�1)v✏2, v
✏
1)

= |G|�1
⌫
x⌘G

�
R(x)(R(x�1)v✏2, v2)v1, v

✏
1

⇥

= |G|�1
⌫
x⌘G

(R(x)v1, v
✏
1)(R(x�1)v✏2, v2),

and (b) results since (R(x�1)v✏2, v2) = (R(x)v2, v
✏
2). �

Let us interpret Proposition 7.22 as a statement about the left and right regular

representations� and r ofG on the inner-product spaceC(G, C), the inner product

being � f, f ✏� =
⌫

g⌘G f (g) f ✏(g). Let R be an irreducible representation of G
on the finite-dimensional vector space V , and introduce an inner product to make

it unitary. A member of C(G, C) of the form g ◆� (R(g)v, v✏) is called amatrix
coefficient of R. Let v1, . . . , vn be an orthonormal basis of V . The matrix
representation of G that corresponds to R and this choice of orthonormal basis

has �(g)i j = (R(g)vj , vi ), and hence the entries of [�(g)i j ], as functions on G,
provide examples of matrix coefficients. These particular matrix coefficients are

orthogonal, according to Proposition 7.22b, with

�

g⌘G
|�(g)i j |2 =

�

g⌘G
(R(g)vj , vi )(R(g)vj , vi ) = |G|(vj , vj )(vi , vi )

dim V
= |G|
dim V

.

Thus the functions
 

|G|�1 dim V �(x)i j form an orthonormal basis of an

n2-dimensional subspace VR ofC(G, C), where n = dim V . The vector subspace

VR has the following properties:

(i) Allmatrix coefficientsof R are inVR , as is seenbyexpandingv =
⌫

j cjvj

and v✏ =
⌫

i divi and obtaining (R(g)v, v✏) =
⌫

i, j cj d̄i (R(g)vj , vi ) =⌫
i, j cj d̄i�(g)i j .
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(ii) VR is invariant under � and r because

�(g)(R( · )v, v✏)(x) = (R(g�1x)v, v✏) = (R(x)v, R(g)v✏),

r(g)(R( · )v, v✏)(x) = (R(xg)v, v✏) = (R(x)R(g)v, v✏).

(iii) Any representation R✏ equivalent to R has VR✏ = VR .

Let us see how VR decomposes into irreducible subspaces under r . The com-

putationwith r in (ii) above shows, for each i , that the vector space of all functions

x ◆� (R(x)v, vi ) for v ⌘ V is invariant under r . This is the linear span of the

matrix coefficients obtained from the i th row of [�(x)i j ]. Define a linear map A
from V into this vector space by Av = (R( · )v, vi ). It is evident that A is one-one
onto, and moreover AR(g)v = (R( · )R(g)v, vi ) = r(g)(R( · )v, vi ) = r(g)Av.
Thus A exhibits this space, with r as representation, as equivalent to (R, V ). The
space VR is the direct sum of these spaces on i , and the summands are orthogonal,

according to Proposition 7.22b. Thus VR decomposes under r as the direct sum

of dim V irreducible subspaces, each one equivalent to (R, V ).
One can make a similar analysis with �, using columns in place of rows.

However, this analysis is a little more subtle since VR , acted upon by �, is the
direct sum of dim V copies of the “contragredient” of (R, V ), rather than (R, V )
itself. The details are left to Problems 32–36 at the end of the chapter.

As R varies over inequivalent representations, these vector spaces VR are

orthogonal, according to Proposition 7.22a. The claim is that their direct sum is

the space C(G, C) of all functions on G. We argue by contradiction. The sum is
invariant under r , and if it is not all ofC(G, C), then we can find a nonzero vector
subspaceU = { f ( · )} of C(G, C) orthogonal to all the spaces VR such that U is

invariant and irreducible under r . Let u1, . . . , um be an orthonormal basis of U .
Then each function x ◆� (r(x)uj , ui ) is orthogonal to U by construction, i.e.,

0 =
�

x⌘G
(r(x)uj , ui ) f (x) for all f in U .

Applying the Riesz Representation Theorem (Theorem 3.12), choose a member

e of U such that f (1) = ( f, e) for all f in U . By definition of r(x) and e, we
find that

u(x) = (r(x)u)(1) = (r(x)u, e)

for all u in U . Substitution and use once more of Proposition 7.22b gives

0 =
�

x⌘G
(r(x)uj , ui )(r(x)u, e) = |G|(uj , u)(ui , e)

dimU

for all i and j . Since we can take u = uj = u1 and since i is arbitrary, this

equation forces e = 0 and gives a contradiction. We conclude that the sum of all

the spaces VR is all of C(G, C). Let us state the result as a theorem.



338 VII. Advanced Group Theory

Theorem 7.23. For the finite group G, let {(R�,U�)} be a complete set of
inequivalent irreducible finite-dimensional representations of G, and let VR�

be

the linear span of the matrix coefficients of R�. Then

(a) the spaces VR�
are mutually orthogonal and are invariant under the left

and right regular representations � and r ,
(b) the representation (r, VR�

) is equivalent to the direct sumof dimU� copies

of (R�,U�),
(c) the direct sum of the spaces VR�

is the space C(G, C) of all complex-
valued functions on G.

Moreover,

(d) the number of R�’s is finite,

(e) dim VR�
= (dimU�)2,

(f) any irreducible subspace of (r,C(G, C)) that is equivalent to (R�,U�) is
contained in VR�

.

Corollary 7.24. Let {(R�,U�)} be a complete set of inequivalent irreducible
finite-dimensional representations of the finite group G, and let d� = dimU�. In

each U�, introduce an inner product making (R�,U�) unitary. For each �, let⇤
u

(�)
1 , . . . , u

(�)
d�

⌅
be an orthonormal basis of U�. Then the functions in C(G, C)

given by
 

|G|�1d�

�
R�(x)v

(�)
j , v

(�)
i

⇥
form an orthonormal basis of C(G, C).

Consequently every f in C(G, C) satisfies

f (x) = 1

|G|
�

�

d�

�

i, j

⌦�

y⌘G
f (y)

�
R�(y)v

(�)
j , v

(�)
i

⇥ ↵�
R�(x)v

(�)
j , v

(�)
i

⇥

and �

x⌘G
| f (x)|2 = 1

|G|
�

�

d�

�

i, j

⌥⌥⌥
�

y⌘G
f (y)

�
R�(y)v

(�)
j , v

(�)
i

⇥⌥⌥⌥
2

.

REMARKS. The first displayed formula is the Fourier inversion formula

for an arbitrary finite group G and generalizes Theorem 7.17, which gives the

result in the abelian case; in the abelian case all the dimensions d� equal 1, and the

functions
�
R�(x)v

(�)
j , v

(�)
i

⇥
are just themultiplicative characters ofG. The second

displayed formula is known as the Plancherel formula, a result incorporating

the conclusion about norms in Parseval’s equality (Theorem 3.11d).

PROOF. This follows form (a), (c), and (e) in Theorem 7.23, together with

Theorem 3.11 and the remarks made before the statement of Theorem 7.23. �

Corollary 7.25. Let {(R�,U�)} be a complete set of inequivalent irreducible
finite-dimensional representations of the finite group G, and let d� = dimU�.

Then
⌫

� d
2
� = |G|.
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PROOF. This follows by counting the number of members listed in the

orthonormal basis of C(G, C) given in Corollary 7.24. �

We shall make use of a second multiplication on the vector space C(G, C)
besides the pointwise multiplication that itself makes C(G, C) into a ring. The
new multiplication is called convolution and is defined by

( f1 ⌅ f2)(x) =
�

y⌘G
f1(y) f2(y

�1x) =
�

y⌘G
f1(xy

�1) f2(y),

the two expressions on the right being equal by a change of variables. The first of

the expressions on the right equals the value of the function
⌫

y⌘G f1(y)�(y) f2 at
x and shows that the convolution is an average of the left translates of f2 weighted

by f1. Convolution is associative because

( f1 ⌅ ( f2 ⌅ f3))(x) =
�

y

f1(y)( f2 ⌅ f3)(y
�1x) =

�

y,z

f1(y) f2(y
�1xz�1) f3(z)

=
�

z

( f1 ⌅ f2)(xz
�1) f3(z) = (( f1 ⌅ f2) ⌅ f3)(x),

and one readily checks that C(G, C) becomes a ring when convolution is used as
the multiplication.

For any finite-dimensional representation (R, V ) and any v in V , let us define
R( f )v =

⌫
x⌘G f (x)R(x)v. Convolution has the property that

R( f1 ⌅ f2) = R( f1)R( f2)

because

R( f1 ⌅ f2)v =
⌫

x( f1 ⌅ f2)(x)R(x)v =
⌫

x,y f1(xy
�1) f2(y)R(x)v

=
⌫

x,y f1(x) f2(y)R(xy)v =
⌫

x f1(x)R(x)
�⌫

y f2(y)R(y)v
⇥

=
⌫

x f1(x)R(x)R( f2)v = R( f1)R( f2)v.

We shall combine the notion of convolution with the notion of a “character.” If

(R, V ) is a finite-dimensional representation of G, then the character of (R, V )
is the function ✏R given by

✏R(x) = Tr R(x),

with Tr denoting the trace. Equivalent representations have the same character

since Tr(AR(x)A�1) = Tr R(x) if A is invertible. Characters have the additional
properties that

(i) ✏R(gxg
�1) = ✏R(x) because Tr R(gxg�1) = Tr(R(g)R(x)R(g)�1) =

Tr R(x),
(ii) ✏R1⌃···⌃Rn = ✏R1

+ · · · + ✏Rn
since the trace of a block-diagonal matrix

is the sum of the traces of the blocks.
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The character of a 1-dimensional representation is the associated multiplicative

character. Here is an example of a character for a representation on a space of

dimension more than 1; its values are not all in S1.

EXAMPLE. The dihedral group Dn with 2n elements, defined in Section IV.1,

is isomorphic to the matrix group generated by

x =
⌦
cos 2↵/n � sin 2↵/n

sin 2↵/n cos 2↵/n

↵
and y =

⌦
1 0

0 �1

↵
.

The map carrying each matrix of the group to itself is a representation of Dn on

C2. The value of the character of this representation is 2 cos 2↵k/n on xk for
0 ⌦ k ⌦ n � 1, and the value of the character is 0 on y and on the remaining

n � 1 elements of the group.

Computationswith characters are sometimesaidedby theuse of inner products.

If an inner product is imposed on a finite-dimensional complex vector space V

and if {vi } is an orthonormal basis, then the trace of a linear A : V � V is given

by Tr A =
⌫

i (Avi , vi ). If R is a representation on V , we consequently have
✏R(x) =

⌫
i (R(x)vi , vi ).

Proposition 7.26. Let R, R1, and R2 be irreducible finite-dimensional repre-

sentations of a finite group G. Then their characters satisfy

(a)
⌫

x⌘G |✏R(x)|2 = |G|,
(b)

⌫
x⌘G ✏R1

(x)✏R2
(x) = 0 if R1 and R2 are inequivalent.

PROOF. These follow from Schur orthogonality (Proposition 7.22): For (a),

let R act on the vector space V , let d = dim V , introduce an inner product with

respect to which R is unitary, and let {vi } be an orthonormal basis of V . Then
Proposition 7.22b gives

⌫
x |✏R(x)|2 =

⌫
x

�⌫
i (R(x)vi , vi )

⇥�⌫
j (R(x)vj , vj )

⇥

=
⌫

i, j

⌫
x(R(x)vi , vi )(R(x)vj , vj )

=
⌫

i, j |G|d�1⌅i j⌅i j =
⌫

i |G|d�1 = |G|.

Part (b) is proved in the same fashion, using Proposition 7.22a. �

Let us now bring together the notions of convolution and character. A class

function on G is a function f in C(G, C) with f (gxg�1) = f (x) for all g and
x in G. That is, class functions are the ones that are constant on each conjugacy

class of the group. Every character is an example of a class function. The class
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functions form a vector subspace of C(G, C), and the dimension of this vector
subspace equals the number of conjugacy classes inG. Class functions are closed

under convolution because if f1 and f2 are class functions, then

( f1 ⌅ f2)(gxg
�1) =

⌫
y f1(gxg

�1y�1) f2(y) =
⌫

y f1(xg
�1y�1g) f2(g

�1yg)

=
⌫

z f1(xz
�1) f2(z) = ( f1 ⌅ f2)(x).

On an abelian group every member of C(G, C) is a class function.

Theorem 7.27 (Fourier inversion formula for class functions). For the finite

group G, let {(R�,U�)} be a complete set of inequivalent irreducible finite-
dimensional representations of G. If f is a class function on G, then

f (x) = 1

|G|
�

�

⌦�

y⌘G
f (y)✏R�

(y)
↵
✏R�

(x).

REMARK. This result may be regarded as a second way (besides the one in

Corollary 7.24) of generalizing Theorem 7.17 to the nonabelian case.

PROOF. Using the result and notation of Corollary 7.24, we have

f (x) = |G|�1
⌫
�
d�

⌫
i, j

⌦ ⌫
y⌘G

f (y)(R�(y)v
(�)
i , v

(�)
j )
↵
(R�(x)v

(�)
i , v

(�)
j ).

Replace f (y) by f (gyg�1) since f is a class function, and then change variables
and sum over g in G to see that |G| f (x) is equal to

|G|�1
⌫
�
d�

⌫
i, j

⌦⌫
g,y

f (y)(R�(y)R�(g)v
(�)
i , R�(g)v

(�)
j )
↵
(R�(x)v

(�)
i , v

(�)
j ).

Within this expression we have

⌫
g

(R�(y)R�(g)v
(�)
i , R�(g)v

(�)
j )

=
⌫
g,k

�
R�(y)(R�(g)v

(�)
i , v

(�)
k )v

(�)
k , R�(g)v

(�)
j

⇥

=
⌫
g,k

(R�(g)v
(�)
i , v

(�)
k )(R�(g)v

(�)
j , R�(y)v

(�)
k )

= |G|
d�

⌫
k

(v
(�)
j , v

(�)
i )(R�(y)v

(�)
k , v

(�)
k ) by Schur orthogonality

= |G|
d�

(v
(�)
j , v

(�)
i )✏R�

(y)

= |G|
d�

⌅i j ✏R�
(y).

Substituting, we obtain the formula of the theorem. �
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Corollary 7.28. If G is a finite group, then the number of irreducible finite-

dimensional representations of G, up to equivalence, equals the number of con-

jugacy classes of G.

PROOF. Theorem 7.27 shows that the irreducible characters span the vector

space of class functions. Proposition 7.26b shows that the irreducible characters

are orthogonal andhence are linearly independent. Thus the numberof irreducible

characters equals the dimension of the space of class functions, which equals the

number of conjugacy classes. �

EXAMPLE. The above information already gives us considerable control over

finding a complete set of inequivalent irreducible finite-dimensional representa-

tions of elementary groups. We know that the number of such representations

equals the number of conjugacy classes and that the sum of the squares of their

dimensions equals |G|. For the symmetric groupS3 of order 6, for example, the

conjugacy classes are given by the cycle structures of the possible permutations,

namely the cycle structures of (1), (1 2), and (1 2 3). Hence there are three
inequivalent irreducible representations. The sum of the squares of the three

dimensions is to be 6; thus we have two of dimension 1 and one of dimension 2.

The multiplicative characters 1 and sgn are the two of dimension 1, and the one

of dimension 2 can be taken to be the 2-dimensional representation of D3 whose

character was computed in the example preceding Proposition 7.26.

One final constraint on the dimensions of the irreducible representations of a

finite group G is as follows.

Proposition 7.29. If G is a finite group and (R, V ) is an irreducible finite-
dimensional representation of G, then dim V divides |G|.

For example, if |G| = p2 with p prime, then it follows from Propositions

7.29 and 7.25 that every irreducible finite-dimensional representation of G has

dimension 1, and one can easily conclude from this fact that G is abelian. (See

Problem 14 at the end of the chapter.) Thus we recover as an immediate conse-

quence the conclusion of Corollary 4.39 that groups of order p2 are abelian.

The proof of Proposition 7.29 is surprisingly subtle. We shall obtain the

theorem as a consequence of Theorem 7.31 below, a theorem that will be used

also in the proof of Burnside’s Theorem in the next section. Theorem 7.31 gives a

little taste of the usefulness of algebraic number theory, and we shall see more of

this usefulness in Chapter IX. The application to Burnside’s Theoremwill use the

Fundamental Theorem of Galois Theory, whose proof is deferred to Chapter IX.

An algebraic integer is any complex number that is a root of a monic poly-

nomial with coefficients in Z. For example,
!
2 and 1

2
(1 + i

!
3) are algebraic
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integers because they are roots of X2 � 2 and X2 � X + 1, respectively. Any

root of unity is an algebraic integer, being a root of some polynomial Xn � 1.

The set of algebraic integers will be denoted in this chapter byO. Before stating
Theorem 7.31, let us establish two elementary facts about O.

Lemma 7.30. The set O of algebraic integers is a ring, and O ⇢ Q = Z.
PROOF. Suppose that x and y are complex numbers satisfying the polynomial

equations xm+am�1x
m�1+· · ·+a1x+a0 = 0and yn+bn�1yn�1+· · ·+b1y+b0 =

0, each with integer coefficients. Form the subset of C given by

M =
m�1⌫
k=0

n�1⌫
l=0

Zxk yl .

This is a finitely generated subgroup of the abelian group C under addition. It

satisfies

xM =
m⌫
k=1

n�1⌫
l=0

Zxk yl � M +
n�1⌫
l=0

Zyl xm

= M +
n�1⌫
l=0

Zyl(�am�1x
m�1 � · · · � a1x � a0) � M,

and similarly yM � M . Hence (x ± y)M � M and xy � M .

To prove that O is a ring, it is enough to show that if N is a nonzero finitely

generated subgroup of the abelian group C under addition and if z is a complex

number with zN � N , then z is an algebraic integer. By Theorem 4.56, N is a

direct sum of cyclic groups. Since every nonzero member of C has infinite order
additively, these cyclic groups must be copies of Z. So N is free abelian. Let

z1, . . . , zn be a Z basis of N . Here n > 0. Since zN � N , we can find unique

integers ci j such that

zzi =
n⌫
j=1

ci j zj for 1 ⌦ i ⌦ n.

This equation says that the matrix C = [ci j ] has

✏ z1
...
zn

⇣
as an eigenvector with

eigenvalue z. Therefore the matrix z I � C is singular, and det(z I � C) = 0.

Since det(z I�C) is a monic polynomial expression in z with integer coefficients,
z is an algebraic integer.

To see thatO⇢Q = Z, let p and q be relatively prime integers with q > 0, and

suppose that p/q is a root of Xn +an�1X
n�1+· · ·+a1X +a0 with an�1, . . . , a0

in Z. Substituting p/q for X , setting the expression equal to 0, and clearing
fractions, we obtain pn + an�1 p

n�1q + · · · + a1 pq
n�1 + a0q

n = 0. Since q

divides every term here after the first, we conclude that q divides pn . Since

GCD(p, q) = 1, we conclude that q = 1. Thus p/q is in Z. �
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Lemma 7.30 allows us to see that if G is a finite group and ✏ is the irreducible
character corresponding to an irreducible finite-dimensional representation R,

then ✏(x) is an algebraic integer for each x in G. In fact, the subgroup H of G

generated by x is cyclic and is in particular abelian. Corollary 7.21 says that R
⌥⌥
H

is the direct sum of irreducible representations of H , and Corollary 7.19 says that

each such irreducible representation is 1-dimensional. Thus in a suitable basis,

R
⌥⌥
H
is diagonal. The diagonal entries must be roots of unity (in fact, N th roots

of unity if x has order N ), and ✏(x) is thus a sum of roots of unity. By Lemma
7.30, ✏(x) is an algebraic integer.

Theorem 7.31. Let G be a finite group, (R, V ) be an irreducible finite-
dimensional representation of G, ✏ be the character of R, and C be a conjugacy
class in G. Denote by ✏(C) the constant value of ✏ on the conjugacy class C .
Then |C|✏(C)

 
dim V is an algebraic integer.

PROOF. If f is any class function on G, then R( f ) commutes with each R(x)
for x in G because R( f ) =

⌫
y f (y)R(y) yields

R(x)R( f )R(x)�1 =
⌫
y

f (y)R(x)R(y)R(x)�1 =
⌫
y

f (y)R(xyx�1)

=
⌫
z

f (x�1zx)R(z) =
⌫
z

f (z)R(z) = R( f ).

By Schur’s Lemma (Proposition 7.18), R( f ) is scalar. If C is a conjugacy class,
then the function IC that is 1 onC and is 0 elsewhere is a class function, and hence

R(IC) is a scalar �C . As C varies, the functions IC form a vector-space basis of
the space of class functions. The formula (IC ⌅ IC ✏)(x) =

⌫
y IC(y)IC ✏(y�1x)

shows that IC ⌅ IC ✏ is integer-valued, and we have seen that the convolution of

two class functions is a class function. Therefore IC ⌅ IC ✏ =
⌫

C ✏✏ nCC ✏C ✏✏ IC ✏✏ for

suitable integers nCC ✏C ✏✏ . Application of R gives �C�C ✏ =
⌫

C ✏✏ nCC ✏C ✏✏�C ✏✏ . If we

fix C and let A be the square matrix with entries AC ✏C ✏✏ = nCC ✏C ✏✏ , we obtain

�C�C ✏ =
�

C ✏✏
AC ✏C ✏✏�C ✏✏ .

This equation says that the matrix A has the column vector with entries �C ✏✏ as

an eigenvector with eigenvalue �C . Therefore the matrix �C I � A is singular,

and det(�C I � A) = 0. Since det(�C I � A) is a monic polynomial expression
in �C with integer coefficients, �C is an algebraic integer. Taking the trace of the
equation R(IC) = �C I , we obtain

⌫
x⌘C ✏(x) = �C dim V . Since ✏(x) = ✏(C)

for x in C , the result is that |C|✏(C)/ dim V = �C . Since �C is an algebraic
integer, |C|✏(C)/ dim V is an algebraic integer. �
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PROOF THAT THEOREM 7.31 IMPLIES PROPOSITION 7.29. Proposition 7.26a

gives

|G|
dim V

=
⌫

x⌘G |✏(x)|2

dim V
=
⌫

C

⌫
x⌘C |✏(x)|2

dim V
=
�

C

⌦ |C|✏(C)

dim V

↵
✏(C).

Each term in parentheses on the right side is an algebraic integer, according to

Theorem 7.31, and therefore Lemma 7.30 shows that |G|/ dim V is an algebraic

integer. Since |G|/ dim V is inQ, Lemma 7.30 shows that |G|/ dim V is in Z.�

5. Burnside’s Theorem

The theorem of this section is as follows.

Theorem 7.32 (Burnside’s Theorem). IfG is a finite group of order paqb with

p and q prime and with a + b > 1, then G has a nontrivial normal subgroup.

The argument will use the result Theorem 7.31 from algebraic number the-

ory, and also it will make use of a special case of the Fundamental Theorem

of Galois Theory, whose proof is deferred to Chapter IX. That special case is

the following statement, whose context was anticipated in Section IV.1, where

groups of automorphisms of certain fields were discussed briefly. Since the set

{1, e2↵ i/n, e2·2↵ i/n, e3·2↵ i/n, . . . } is linearly dependent overQ, Proposition 4.1 in
that section implies that the subringQ[e2↵ i/n] ofC generated byQ and e2↵ i/n is a
subfield and is a finite-dimensional vector space overQ. According to Example 9
of that section, the group � = Gal(Q[e2↵ i/n]/Q) of automorphisms ofQ[e2↵ i/n]
fixing every element of Q is a finite group.

Proposition7.33 (special case of the FundamentalTheoremofGaloisTheory).

Let n > 0 be an integer, and put K = Q[e2↵ i/n]. Let � be the finite group of

field automorphisms of K fixing every element of Q. Then the only members ⇥
of K such that � (⇥) = ⇥ for every � in � are the members of Q.

Lemma 7.34. Let G be a finite group, (R, V ) be an irreducible finite-
dimensional representation of G, ✏ be the character of R, and C be a conjugacy
class in G. If GCD(|C|, dim V ) = 1 and if x is in C , then either R(x) is scalar
or ✏(x) = 0.

PROOF. Define ✏(C) to be the constant value of ✏ on C , and put � =
✏(x)/ dim V = ✏(C)/ dim V . Since GCD(|C|, dim V ) = 1, we can choose

integers m and n with m|C| + n dim V = 1. Multiplication by � yields

m|C|✏(C)

dim V
+ n✏(C) = �.
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Theorem 7.31 shows that the coefficients
|C|✏(C)
dim V

and ✏(C) of m and n on the

left side are algebraic integers, and therefore � is an algebraic integer. As we
observed toward the end of the previous section, ✏(x) = ✏(C) is the sum of

dim V roots of unity. Since � = ✏(C)/ dim V , we see that |�| ⌦ 1 with equality

only if all the roots of unity are equal, in which case R(x) is scalar. In view of
the hypothesis, we may assume that |�| < 1. We shall show that � = 0.

Let K = Q[e2↵ i/|G|] be the smallest subfield of C containing Q and the

complex number e2↵ i/|G|, and let � be the group of field automorphisms of K

that fix every element of Q. We know that K is finite-dimensional over Q and

that � is a finite group, and Proposition 7.33 shows that the only members of K
fixed by every element of � are the members of Q.
Our element x of G has x |G| = 1. Thus every root of unity contributing

to ✏(x) is a |G|th root of unity and is in K . Therefore the algebraic integer �
is in K . If � is in �, each of the |G|th roots of unity is mapped by � to some
complex number x satisfying x |G| = 1, and hence themember � (�) of K satisfies
|� (�)| ⌦ 1. Also, � (�) is an algebraic integer, as we see by applying � to the
monic equation with integer coefficients satisfied by �, and we are assuming that
|�| < 1. Consequently ⇥ =

⇠
�⌘� � (�) is an algebraic integer and has absolute

value < 1. A change of variables in the product shows that ⇥ is fixed by every
member of �, and we see from the previous paragraph that ⇥ is inQ. By Lemma
7.30, ⇥ is in Z. Being of absolute value less than 1, it is 0. Thus � = 0, and

✏(x) = 0. �

Lemma 7.35. Let G be a finite group, and let C be a conjugacy class in G

such that |C| = pk for some prime p and some integer k > 0. Then there exists

an irreducible finite-dimensional representation R ✓= 1 of G with R(x) scalar for
every x in C . Consequently G is not simple.

PROOF. The conjugacy class C cannot be {1} because |{1}| ✓= pk with k > 0.

Let ✏reg be the character of the right regular representation r of G on C(G, C). If
Ig denotes the function that is 1 at g and is 0 elsewhere, then the functions Ig form

an orthonormal basis of C(G, C), and therefore ✏reg(x) =
⌫

g⌘G (r(x)Ig, Ig) =⌫
g⌘G (Igx�1, Ig). Every term on the right side is 0 if x ✓= 1, and thus Theorem

7.23 gives

0 = ✏reg(x) = 1+
�

✏ ✓=1
d✏✏(x) for x ⌘ C, (⌅)

the sum being taken over all irreducible characters other than 1, with d✏ being

the dimension of an irreducible representation corresponding to ✏ . Let R✏ be an

irreducible representation with character ✏ . Any ✏ such that p does not divide
d✏ has GCD(|C|, d✏ ) = 1 since |C| is assumed to be a power of p. Arguing by
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contradiction, we may assume that no such ✏ has R✏ (x) scalar, and then Lemma
7.34 says that ✏(x) = 0 for all such ✏ . Hence (⌅) simplifies to

0 = 1+
�

✏ ✓=1, p divides d✏

d✏✏(x) for x ⌘ C. (⌅⌅)

Since ✏(x) is an algebraic integer, Lemma 7.30 shows that this equation is of the
form 1 + p⇥ = 0, where ⇥ is an algebraic integer. Then ⇥ = �1/p shows that
�1/p is an algebraic integer. Since �1/p is in Q, Lemma 7.30 shows that it
must be in Z, and we have arrived at a contradiction. Thus there must have been
some ✏ with R✏ (x) scalar for x in C .
The set of g in G for which this R✏ has R✏ (g) scalar is a normal subgroup of

G that contains x and cannot therefore be {1}. Assume by way of contradiction
that G is simple. Then R✏ (g) is scalar for all g in G. Since R✏ is irreducible,

R✏ is 1-dimensional. Then the commutator subgroup G
✏ of G is contained in the

kernel of R✏ . Since R✏ ✓= 1, G ✏ is not all of G. Since G ✏ is normal, G ✏ = {1},
and we conclude that G is abelian. But the given G has a conjugacy class with

more than one element, and we have arrived at a contradiction. �

PROOF OF THEOREM 7.32. Corollary 4.38 shows that a group of prime-power

order has a center different from {1}, and we may therefore assume that p ✓= q,

a > 0, and b > 0. Let H be a Sylow q-subgroup. Applying Corollary 4.38,

let x be a member of the center ZH of H other than 1. The centralizer ZG({x})
is a subgroup containing H , and it therefore has order pa

✏
qb. If a✏ = a, then

x is in the center of G, and the powers of x form the desired proper normal

subgroup of G. Thus a✏ < a. By Proposition 4.37 the conjugacy classC of x has

|G|/pa✏qb = pa�a
✏
elements with a � a✏ > 0. By Lemma 7.35, G is not simple.

�

6. Extensions of Groups

In Section IV.8 we examined composition series for finite groups. For a given

finite group, a composition series consists of a decreasing sequence of subgroups

starting with the whole group and ending with {1}, each normal in the next larger
one, such that the successive quotient groups are simple. The Jordan–Hölder

Theorem (Corollary 4.50) assured us that the set of successive quotients, up to

isomorphism, is independent of the choice of composition series. This theorem

raises the question of reconstructing the whole group from data of this kind.

Consider a single step of the process. If we know the normal subgroup and the

simple quotient that it yields at a certain stage, what are the possibilities for the

next-larger subgroup? We study this question and some of its ramifications in

this section, dropping any hypotheses that are not helpful in the analysis. Here is

an example that we shall carry along.
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EXAMPLE. Suppose that the normal subgroup is the cyclic group C4 and that

the quotient is the cyclic group C2. The whole group has to be of order 8, and

the classification of groups of order 8 done in Problems 39–44 at the end of

Chapter IV tells us that there are four different possibilities for the whole group:

the abelian groups C4 ⇤ C2 and C8, the dihedral group D4, and the quaternion

group H8.

Let us establish a framework for the general problem. We start with a group E ,

a normal subgroup N , and the quotient G = E/N . We seek data that determine
the group law in E in terms of N and G. For each member u of G, fix a coset

representative ū in E such that ūN = u. Since N is normal, the element ū of E

yields an automorphism ( · )u of N defined by xu = ūxū�1. In addition, the fact
that G is a group says that any two of our representatives ū and v̄ have

ūv̄ = a(u, v)uv for some unique a(u, v) in N .

The set of all elements a(u, v) for this choice of coset representatives is called a
factor set, and E is called a group extension of N by the group3 G.

The automorphisms and the factor set constructed above have to satisfy two

compatibility conditions, as follows:

(i) (xv)u = a(u, v)xuva(u, v)�1 because (xu)v = ū(xv)ū�1 = ūv̄x v̄�1ū�1

= (a(u, v)uv)x(a(u, v)uv)�1 = a(u, v)xuva(u, v)�1,
(ii) a(v,w)ua(u, vw) = a(u, v)a(uv,w) because (ūv̄)w̄ = a(u, v)uvw̄

= a(u, v)a(uv,w)uvw and ū(v̄w̄) = ūa(v,w)vw = a(v,w)uūvw =
a(v,w)ua(u, vw)uvw.

Then the multiplication law in E is given in terms of the automorphisms and the

factor set by the formula

(iii) (xū)(yv̄) = xyua(u, v)uv by the computation (xū)(yv̄) = xyuūv̄ =
xyua(u, v)uv.

Conversely, according to the proposition below, such data determine a group E

with a normal subgroup isomorphic to N and a quotient E/N isomorphic to G.

Proposition 7.36 (Schreier). Let two groups N and G be given, along with

a family of automorphisms x ◆� xu of N parametrized by u in G, as well as a

function a : G ⇤ G � N such that

(a) (xv)u = a(u, v)xuva(u, v)�1 for all u and v in G,
(b) a(v,w)ua(u, vw) = a(u, v)a(uv,w) for all u, v,w in G.

Then the set N ⇤ G becomes a group E under the multiplication

(c) (x, u)(y, v) = (xyua(u, v), uv),

3Warning: Some authors say “group extension of G by N .”
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and this group has a normal subgroup isomorphic to N with quotient group

isomorphic to G. More particularly, the identity of E is (a(1, 1)�1, 1), the map
x ◆� (xa(1, 1)�1, 1) of N into E is a one-one homomorphism that exhibits N as a
normal subgroup of E , and the map (x, u) ◆� u of E onto G is a homomorphism

that exhibits G as isomorphic to E/N .

PROOF. Reverting to the earlier notation, let us write xū in place of (x, u) for
elements of E . Associativity of multiplication follows from the computation

(xūyv̄)(zw̄) =
�
xyua(u, v)uv

⇥
zw̄ by (c)

= xyua(u, v)zuva(uv,w)uvw by (c)

= xyua(u, v)zuva(u, v)�1a(u, v)a(uv,w)uvw

= xyua(u, v)zuva(u, v)�1a(v,w)ua(u, vw)uvw by (b)

= x
�
yzva(v,w)

⇥u
a(u, vw)uvw by (a)

= (xū)
�
yzva(v,w)vw

⇥
by (c)

= (xū)(yv̄zw̄) by (c).

The identity is to be 1̄a(1, 1)�1. Before checking this assertion, we prove three
preliminary identities. Setting u = v = 1 in (a) and replacing x1 by x gives4

x1 = a(1, 1)xa(1, 1)�1 for all x ⌘ N . (⌅)

Setting v = w = 1 in (b) gives a(1, 1)ua(u, 1) = a(u, 1)a(u, 1) and hence

a(1, 1)u = a(u, 1) for all u ⌘ G. (†)

Meanwhile, setting u = v = 1 in (b) gives a(1, w)1a(1, w) = a(1, 1)a(1, w)
and hence a(1, w)1 = a(1, 1) for all w ⌘ G. The left side a(1, w)1 of this last
equality is equal to a(1, 1)a(1, w)a(1, 1)�1 by (⌅); canceling a(1, 1) yields

a(1, w) = a(1, 1) for all w ⌘ G. (††)

Using these identities, we check that a(1, 1)�11̄ is a two-sided identity bymaking
the computations

(xū)(a(1, 1)�11̄) = x(a(1, 1)�1)ua(u, 1)ū by (c)

= x(a(1, 1)�1)ua(1, 1)uū by (†)

= xū

4The effect of the automorphism x ◆� x1 is not necessarily trivial since the coset representative

1̄ of 1 is not assumed to be the identity. Thus we must distinguish between x1 and x .
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and

(a(1, 1)�11̄)(yv̄) = a(1, 1)�1y1a(1, v)v̄ by (c)

= ya(1, 1)�1a(1, v)v̄ by (⌅)
= yv̄ by (††).

Let us check that a left inverse for xū is a(1, 1)�1a(u�1, u)�1(xu
�1

)�1u�1.
In fact,

�
a(1, 1)�1a(u�1, u)�1(xu

�1
)�1u�1

⇥
(xū)

= a(1, 1)�1a(u�1, u)�1(xu
�1

)�1xu
�1
a(u�1, u)1̄ by (c)

= a(1, 1)�11̄,

as required. Thus multiplication is associative, there is a two-sided identity, and

every element has a left inverse. It follows that E is a group.

The map xū ◆� u of E into G is a homomorphism by (c), and it is certainly

onto G. Its kernel is evidently the subgroup of all elements xa(1, 1)�11̄ in E .
Since

�
xa(1, 1)�11̄

⇥�
ya(1, 1)�11̄

⇥
= xa(1, 1)�1(ya(1, 1)�1)1a(1, 1)1̄ by (c)

= xa(1, 1)�1a(1, 1)(ya(1, 1)�1)1̄ by (⌅)
= xya(1, 1)�11̄,

the one-one map x ◆� xa(1, 1)�11̄ of N onto the kernel respects the group

structures and is therefore an isomorphism. In other words, the embedded version

of N is the kernel. Being a kernel, it is a normal subgroup. �

EXAMPLE, CONTINUED. Let N = C4 = {1, r, r2, r3} and G = C2 = {1, u0}
with u20 = 1. The group N has two automorphisms, the nontrivial one fixing 1

and r2 while interchanging r and r3. The automorphism of N from 1 ⌘ G has to

be trivial, while the automorphism of N from u0 ⌘ G can be trivial or nontrivial.

In fact,

the automorphism is

�
trivial for E = C4 ⇤ C2 and E = C8,

nontrivial for E = D4 and E = H8.

In each case the automorphism does not depend on the choice of coset represen-

tatives. The factor sets do depend on the choice of representatives, however. Let

us fix 1̄ as the identity of E and make a particular choice of u0 for each E . Then



6. Extensions of Groups 351

the definition of factor set shows that a(1, 1) = a(u0, 1) = a(1, u0) = 1, and

the only part of the factor set yet to be determined is a(u0, u0). Let us consider
matters group by group. ForC4⇤C2, we can take u0 to be the generator of theC2
factor; this has square 1, and hence a(u0, u0) = 1. For C8 = {1 ⌃, ⌃2, . . . , ⌃7},
let us think of N as embedded in E with r = ⌃2. The element u0 can be any odd
power of ⌃ ; if we take u0 = ⌃ , then (u0)

2 = ⌃2 = r , and hence a(u0, u0) = r .

For E = D4, the example following Proposition 7.8 shows that we may view the

elements as the rotations1, r, r2, r3 and the reflections s, rs, r2s, r3s for particular
choices of r and s. We can take u0 to be any of the reflections, and then (u0)

2 = 1

and a(u0, u0) = 1. Finally for E = H8 = {±1,±i,±j,±k}, let us say that N
is embedded as {±1,±i}. Then u0 can be any of the four elements ±j and ±k.
Each of these has square �1, and hence a(u0, u0) = �1. For the choices we
have made, we therefore have

a(u0, u0) =

⌘
◆

✓

1 for E = C4 ⇤ C2 and E = D4,

r for E = C8,

�1 for E = H8.

The formula of Proposition 7.36a reduces to (xv)u = xuv since N is abelian, and

it is certainly satisfied. The formula for Proposition 7.36b is a(v,w)ua(u, vw) =
a(u, v)a(uv,w). This is satisfied for E = C4⇤C2 and E = D4 since a( · , · ) is
identically 1. For the other two cases the values of a( · , · ) lie in the 2-element
subgroupof N that is fixed by the nontrivial automorphism, and hence a(v,w)u =
a(v,w) in every case. The formula to be checked reduces to a(v,w)a(1, 1) =
a(1, 1)a(v,w) by (††) if u = 1, to a(1, 1)a(u, w) = a(1, 1)a(u, w) by (†) and
(††) if v = 1, and to a(1, 1)a(u, v) = a(u, v)a(1, 1) by (†) if w = 1. Thus all

that needs checking is the case that u = v = w = u0, and then the formula in

question reduces to a(u0, u0)a(1, 1) = a(u0, u0)a(1, 1) by (†) and (††).

Let us examine for a particular extension the dependence of the automorphisms

and factor set on the choice of coset representatives. Returning to our original

construction, suppose that we change the coset representatives of the members

of G, associating a member �u to u ⌘ G in place of ū. We then obtain a new

automorphism of N corresponding to u, and we write it as x ◆� xu
⌅ = �ux�u�1

instead of x ◆� xu = ūxū�1. To quantify matters, we observe that�u lies in the
same coset of N as does ū. Thus�u = �(u)ū for some function � : G � N , and

the function � can be absolutely arbitrary. In terms of this function �, the two
automorphisms are related by

xu
⌅ =�ux�u�1 = �(u)ūxū�1�(u)�1 = �(u)xu�(u)�1.

If the factor set for the system {�u} of coset representatives is denoted by
{b(u, v)}, then we have b(u, v)�(uv)uv = b(u, v)�uv = �u�v = �(u)ū�(v)v̄ =
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�(u)�(v)ua(u, v)uv. Equating coefficients of uv, we obtain

b(u, v) = �(u)�(v)ua(u, v)�(uv)�1.

Accordingly we say that a group extension of N by G determined by automor-

phisms x ◆� xu and a factor set a(u, v) is equivalent, or isomorphic, to a group
extension of N by G determined by automorphisms x ◆� xu

⌅
and a factor set

b(u, v) if there is a function � : G � N such that

xu
⌅ = �(u)xu�(u)�1 and b(u, v) = �(u)�(v)ua(u, v)�(uv)�1

for all u and v in G. It is immediate that equivalence of group extensions is an
equivalence relation.

Proposition 7.37. Suppose that E1 and E2 are group extensions of N by G

with respective inclusions i1 : N � E1 and i2 : N � E2 and with respective

quotient homomorphisms✓1 : E1 � G and ✓2 : E2 � G. If there exists a group

isomorphism� : E1 � E2 such that the two squares in Figure 7.4 commute, then

the two group extensions are equivalent. Conversely if the two group extensions

are equivalent, then there exists a group isomorphism� : E1 � E2 such that the

two squares in Figure 7.4 commute.

N
i1���� E1

✓1���� G
��� �

��!
���

N
i2���� E2

✓2���� G

FIGURE 7.4. Equivalent group extensions.

REMARKS. The commutativity of the squares is important. Just because two

group extensions of N by G are isomorphic as groups does not imply that they

are equivalent group extensions. An example is given in Problem 19 at the end

of the chapter.

PROOF. For the direct part, suppose that� exists. For each u in G, select ū in

E1 with ✓1(ū) = u. Then we can form the extension data {x ◆� xu} and {a(u, v)}
for E1 relative to the normal subgroup i1(N ) and the system {ū | u ⌘ G} of coset
representatives. When reinterpreted in terms of N , E1, and G, these data become

{i�11 (x) ◆� i�11 (xu)} and {i�11 (a(u, v))}.
Application of � to the coset i1(N )ū yields i2(N )�(ū) since � i1 = i2, and

�(ū) is a member of E2 with ✓2(�(ū)) = ✓1(ū) = u. Setting �u = �(ū), we
see that �(i1(N )ū) is the coset i2(N )�u of i2(N ) in E2. Thus we can determine
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extension data for E2 relative to i2(N ) and the system {�u | u ⌘ G}, and we can
transform them by i�12 to obtain data relative to N , E2, and G.

The claim is that the data relative to N , E2, and G match those for N , E1, and

G. The automorphisms of N from E2 are the maps i
�1
2 (x ✏) ◆� i�12 (x ✏u

⌅
), where

x ✏u
⌅ = �ux ✏�u�1. From i2 = � i1 and the fact that each of these maps is one-one,

we obtain i�12 = i�11 ��1 on i2(N ). Substitution shows that the automorphisms
of N from E2 are

i�11 (��1(x ✏)) ◆� i�11 (��1(x ✏u
⌅
)) = i�11 (��1(�ux ✏�u�1))

= i�11 (ū��1(x ✏)ū�1) = i�11 ((��1(x ✏))u).

If we set x ✏ = �(x) with x in i1(N ), then the automorphisms of N from E2 take

the form i�11 (x) ◆� i�11 (xu). Thus they match the automorphisms of N from E1.

In the case of the factor sets, we have ūv̄ = a(u, v)uv. Application of� gives

�u�v = �(a(u, v))�uv. Thus the factor set for E2 relative to N is {i�12 �(a(u, v))}.
Since i�12 � = i�11 , this matches the factor set for E1 relative to N .
We turn to the converse part. Suppose that the multiplication law in E1 is

(i1(x)ū)(i1(y)v̄) = i1(x)i1(y)
ui1(a(u, v))uv for x and y in N , and that the

multiplication law in E2 is (i2(x)�u)(i2(y)�v) = i2(x)i2(y)
u⌅ i2(b(u, v))�uv. Here ū

and v̄ are preimagesofu andv under✓1, and�u and�v are preimagesofu andv under

✓2. Define automorphisms of N by xu = i�11 (i1(x)
u) and xu

⌅ = i�12 (i2(x)
u⌅).

We can then rewrite the multiplication laws as

(i1(x)ū)(i1(y)v̄) = i1(xy
ua(u, v))uv

(i2(x)�u)(i2(y)�v) = i2(xy
u⌅b(u, v))�uv.and

The assumption that E1 is equivalent to E2 as an extension of N by G means that

there exists a function � : G � N such that

xu
⌅ = �(u)xu�(u)�1 and b(u, v) = �(u)�(v)ua(u, v)�(uv)�1

for all u and v in G. Define � : E1 � E2 by

�(i1(x)ū) = i2(x�(u)�1)�u.

Certainly� is one-one onto. It remains to check that� is a group homomorphism
and that the squares commute in Figure 7.4.

To check that � : E1 � E2 is a group homomorphism, we compare

�(i1(x)ūi1(y)v̄) = �(i1(xy
ua(u, v))uv = i2(xy

ua(u, v)�(uv)�1)�uv
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with the product

�(i1(x)ū)�(i1(y)v̄) = i2(x�(u)�1)�ui2(y�(v)�1)�v

= i2(x�(u)�1(y�(v)�1)u
⌅
b(u, v))�uv.

Since

�(u)�1(y�(v)�1)u
⌅
b(u, v) = �(u)�1(y�(v)�1)u

⌅
�(u)�(v)ua(u, v)�(uv)�1

= (y�(v)�1)u�(v)ua(u, v)�(uv)�1

= yua(u, v)�(uv)�1,

these expressions are equal, and� is a group homomorphism. Thus� is a group

isomorphism.

Now we check the commutativity of the squares. The computation

✓2�(i1(x)ū) = ✓2(i2(x�(u)�1)�u) = u = ✓1(i1(x)ū)

shows that the right-hand square commutes.

For the left-hand squarewe use the fact recorded in the statement of Proposition

7.36 that i1(a(1, 1)
�1)1̄ is the identity of E1 and i2(b(1, 1)

�1)�1 is the identity of
E2. Therefore � i1(x) = �(i1(xa(1, 1)

�1)1̄) = i2(xa(1, 1)
�1�(1)�1)�1. Since

i2(x) = xb(1, 1)�1�1, the left-hand square commutes if b(1, 1) = �(1)a(1, 1).
This formula follows from (⌅) in the proof of Proposition 7.36 by the computation

b(1, 1) = �(1)�(1)1a(1, 1)�(1)�1 = �(1)a(1, 1)�(1)�(1)�1 = �(1)a(1, 1),

and thus the left-hand square indeed commutes. �

For the remainder of this section, let us assume that N is abelian. In this

case Proposition 7.36a reduces to the identity (xv)u = xuv for all u and v in
G independently of the choice of representatives, just as it does in the example

we studied with N = C4 and G = C2. In the terminology of Section IV.7, G

acts on N by automorphisms.5 Suppose we fix such an action � : G � Aut N

by automorphisms and consider all extensions of N by G built from � . In our
example we are thus to consider E equal to C4 ⇤ C2 or C8, which are built with

the trivial � , or else E equal to D4 or H8, which are built with the nontrivial � (in
which the nontrivial element of G acts by the nontrivial automorphism of N ).

Since N is abelian, let us switch to additive notation for N and to ordinary

function notation for � (w), rewriting the formula of Proposition 7.36b as

� (u)a(v,w) + a(u, vw) = a(u, v) + a(uv,w).

5The formula (xv)u = xuv correctly corresponds to a group action with the group on the left as

in Section IV.7.
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This condition is preserved under addition of factor sets as long as � does not
change, it is satisfied by the 0 factor set, and the negative of a factor set is again

a factor set. Therefore the factor sets for this � form an abelian group.
Two factor sets for this � are equivalent (in the sense of yielding equivalent

group extensions) if and only if their difference is equivalent to 0, and a(u, v) is
equivalent to 0 if and only if

a(u, v) = �(uv) � �(u) � � (u)�(v)

for some function � : G � N . The set of factor sets for this � that are equivalent
to 0 is thus a subgroup,6 and we arrive at the following result.

Proposition 7.38. Let G and N be groups with N abelian, and suppose that

� : G � Aut N is a homomorphism. Then the set of equivalence classes of

group extensions of N by G corresponding to the action � : G � Aut N is

parametrized by the quotient of the abelian group of factor sets by the subgroup

of factor sets equivalent to 0.

The extension E corresponding to the 0 factor set is of special interest. In

this case the multiplication law for the coset representatives is ūv̄ = uv since
the member a(u, v) = 0 of N is to be interpreted multiplicatively in this product

formula. Consequently the map u ◆� ū of G into E is a group homomorphism,

necessarily one-one, and we can regard G as a subgroup of E . Proposition 4.44

allows us to conclude that E is the semidirect productG⇤� N . Themultiplication

law for general elements of E , with multiplicative notation used for N , is

(xū)(yv̄) = x(� (u)y)uv.

It is possible also to describe explicitly the extension one obtains from the

sum of two factor sets corresponding to the same � , but we leave this matter
to Problems 20–23 at the end of the chapter. The operation on extensions that

corresponds to addition of factor sets in this way is called Baer multiplication.

What we saw in the previous paragraph says that the group identity under Baer

multiplication is the semidirect product.

The two conditions, the compatibility conditionon a factor set given inProposi-

tion 7.36b and the conditionwith� in it for equivalence to 0, are of a combinatorial
type that occurs in many contexts in mathematics and is captured by the ideas

of “homology” and “cohomology.” For the current situation the notion is that of

cohomology of groups, and we shall define it now. The subject of homological

6One can legitimately ask whether an arbitrary � : G � N leads to a factor set under the

definition a(u, v) = �(uv) � � (v)�(u) � �(v), and one easily checks that the answer is yes.
Alternatively, one can refer to the case n = 2 in the upcoming Proposition 7.39.
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algebra, which is developed inChapter IVofAdvancedAlgebra, puts cohomology

of groups in a wider context and explains some of its mystery.

We fix an abelian group N , a group G, and a group action � of G on N

by automorphisms. It is customary to suppress � in the notation for the group
action, and we shall follow that convention. For integers n ↵ 0, one begins with

the abelian group Cn(G, N ) of n-cochains of G with coefficients in N . This is

defined by

Cn(G, N ) =
�
N if n = 0,
⇤
f :
⇠n

k=1 G � N
⌅

if n > 0.

Inwords,Cn(G, N ) is the set of all functions into N from the n-fold direct product
of G with itself. The coboundary map ⌅n : C

n(G, N ) � Cn+1(G, N ) is the
homomorphism of abelian groups defined by

(⌅0 f )(g1) = g1 f � f

and by

(⌅n f )(g1, . . . , gn+1) = g1( f (g2, . . . , gn+1))

+
n⌫
i=1

(�1)i f (g1, . . . , gi�1, gi gi+1, gi+2, . . . , gn+1)

+ (�1)n+1 f (g1, . . . , gn)
for n > 0. We postpone to the end of this section the proof of the following result.

Proposition 7.39. ⌅n⌅n�1 = 0 for all n ↵ 1.

It follows from Proposition 7.39 that image ⌅n�1 � ker ⌅n for all n ↵ 1. Thus

if we define abelian groups by

Zn(G, N ) = ker ⌅n,

Bn(G, N ) =
�
0 for n = 0,

image ⌅n�1 for n > 0,

then Bn(G, N ) � Zn(G, N ) for all n, and it makes sense to define the abelian
groups

Hn(G, N ) = Zn(G, N )/Bn(G, N ) for n ↵ 0.

The elements of Zn(G, N ) are called n-cocycles, the elements of Bn(G, N ) are
called n-coboundaries, and Hn(G, N ) is called the nth cohomology group of G
with coefficients in N .

EXAMPLES IN LOW DEGREE.

DEGREE 0. Here (⌅0 f )(u) = u f � f with f in N and u in G. The cocycle

condition is that this is 0 for all u. Thus f is to be fixed by G. We say that an f
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fixed by G is an invariant of the group action. The space of invariants is denoted

by NG . By convention above, we are taking B0(G, N ) = 0. Thus

H0(G, N ) = NG .

DEGREE 1. Here (⌅1 f )(u, v) = u( f (v)) � f (uv) + f (u) with f a function

from G to N . The cocycle condition is that

f (uv) = f (u) + u( f (v)) for all u, v ⌘ G.

A function f satisfying this condition is called a crossed homomorphism of G

into N . A coboundary is a function f : G � N of the form f (u) = (⌅0x)(u) =
ux � x for some x ⌘ N . Then H1(G, N ) is the quotient of the group of crossed
homomorphisms by this subgroup. In the special case that the action ofG on N is

trivial, the crossed homomorphisms reduce to ordinary homomorphismsofG into

N , and every coboundary is 0. Thus H1(G, N ) is the group of homomorphisms
of G into N if G acts trivially on N .

DEGREE 2. Here f is a function from G ⇤ G into N , and

(⌅2 f )(u, v,w) = u( f (v,w)) � f (uv,w) + f (u, vw) � f (u, v).

The cocycle condition is that

u( f (v,w)) + f (u, vw) = f (uv,w) + f (u, v) for all u, v,w ⌘ G.

This is the same as the condition that { f (u, v)} be a factor set for extensions of
N by G relative to the given action of G on N by automorphisms. A coboundary

is a function f : G ⇤ G � N of the form

f (u, v) = (⌅0�)(u, v) = u(�(v)) � �(uv) + �(u) for some � : G � N .

This is the same as the condition that {� f (u, v)} be a factor set equivalent to 0.
Thus we can restate Proposition 7.38 as follows.

Proposition 7.40. Let G and N be groups with N abelian, and suppose that

� : G � Aut N is a homomorphism. Then the set of equivalence classes of

group extensions of N by G corresponding to the action � : G � Aut N is

parametrized by H2(G, N ).

Since group extensions have such a nice interpretation in terms of cohomology

groups H2, it is reasonable to look for a nice interpretation for H1 aswell. Indeed,

H1 has an interpretation in terms of uniqueness up to inner isomorphisms for

semidirect-product decompositions. We continue with the abelian group N , a

groupG, and a group action � ofG on N by automorphisms. A semidirect product
E = G⇤� N is an allowable extension. Since G embeds as a subgroup of E , we

are given a one-one group homomorphism u ◆� ū of G into E . The construction

at the beginning of this section works with the set ū of coset representatives, and

they have ūv̄ = uv.
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Suppose that the semidirect product can be formed by a second one-one group

homomorphism u ◆� �u of G into E . If we write �u = �(u)ū for a function
� : G � N , then we know from earlier in the section that the extensions formed

from {ū} and from {�u} are equivalent. Because G maps homomorphically into E
for both systems, the factor sets are 0 in both cases. Consequently the function �
must satisfy

�(uv) � �(u) � � (u)�(v) = 0.

This is exactly the condition that � : G � N be a 1-cocyle. Thus the group

Z1(G, N ) parametrizes all ways that we can embed G as a complementary

subgroup to N in the semidirect product E = G ⇤� N .

A relatively trivial way to construct a one-one group homomorphism u ◆� �u
from u ◆� ū is to form, in the usual multiplicative notation, �u = x�10 ūx0 for

some x0 ⌘ N . Then�u = x�10 ūx01̄ = x�10 (� (u)(x0))ū, and the additive notation
for �(u) has �(u) = � (u)(x0) � x0. Referring to our earlier computations in

degree 1, we see that � is in the group B1(G, N ) of coboundaries.
The conclusion is that H1(G, N ) parametrizes all ways, modulo relatively

trivial ways, that we can embed G as a complementary subgroup to N in the

semidirect product E = G ⇤� N .

As promised, we now return to the proof of Proposition 7.39.

PROOF OF PROPOSITION 7.39. For n = 1, we have

(⌅1⌅0 f )(u, v) = u((⌅0 f )(v)) � (⌅0 f )(uv) + (⌅0 f )(u)

= u(v f � f ) � (uv f � f ) + (u f � f ) = 0.

For n > 1, we begin with

(⌅n⌅n�1 f )(g1, . . . , gn+1) = g1((⌅n�1 f )(g2, . . . , gn+1))

+
n⌫
i=1

(�1)i (⌅n�1 f )(g1, . . . , gi gi+1, . . . , gn+1)

+ (�1)n+1(⌅n�1 f )(g1, . . . , gn)

= I+ II+ III.

Here

I = g1g2( f (g3, . . . , gn+1)) +
n⌫
i=2

(�1)i�1g1( f (g2, . . . , gi gi+1, . . . , gn+1))

+ (�1)ng1( f (g2, . . . , gn)) = IA+ IB+ IC,

II = �(⌅n�1 f )(g1g2, g3, . . . , gn)+
n⌫
i=2

(�1)i (⌅n�1 f )(g1, . . . , gi gi+1, . . . , gn+1)

= IIA+ IIB,
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III = (�1)n+1g1( f (g2, . . . , gn)) + (�1)n+1(�1) f (g1g2, g3, . . . , gn)

+ (�1)n+1
n�1⌫
i=2

(�1)i f (g1, . . . , gi gi+1, . . . , gn)

+ (�1)n+1(�1)n f (g1, . . . , gn�1)

= IIIA+ IIIB+ IIIC+ IIID.

Terms IIA and IIB decompose further as

IIA = �g1g2( f (g3, . . . , gn+1)) + f (g1g2g3, g4, . . . , gn+1)

�
n⌫
i=3

(�1)i+1 f (g1g2, . . . , gi gi+1, . . . , gn+1) � (�1)n f (g1g2, g3, . . . , gn)

= IIAa+ IIAb+ IIAc+ IIAd,

IIB =
n⌫
i=2

(�1)i g1( f (g2, . . . , gi gi+1, . . . , gn+1))

+ (�1)2(�1) f (g1g2g3, g4, . . . , gn+1)

+
n⌫
i=3

(�1)i (�1) f (g1g2, . . . , gi gi+1, . . . , gn+1)

+
n⌫
i=2

(�1)i
i�2⌫
j=2

(�1) j f (g1, . . . , gj gj+1, . . . , gi gi+1, . . . , gn+1)

+
n⌫
i=3

(�1)i (�1)i�1 f (g1, . . . , gi�1gi gi+1, . . . , gn+1)

+
n�1⌫
i=2

(�1)i (�1)i f (g1, . . . , gi gi+1gi+2, . . . , gn+1)

+
n�2⌫
i=2

(�1)i
n⌫

j=i+2
(�1) j�1 f (g1, . . . , gi gi+1, . . . , gj gj+1, . . . , gn+1)

+
n�1⌫
i=2

(�1)i (�1)n f (g1, . . . , gi gi+1, . . . , gn)

+ (�1)n(�1)n f (g1, . . . , gn�1)

= IIBa+ IIBb+ IIBc+ IIBd+ IIBe+ IIBf+ IIBg+ IIBh+ IIBi.

Inspection shows that we have cancellation between term IA and term IIAa, term

IB and term IIBa, term IC and term IIIA, term IIAb and term IIBb, term IIAc and

term IIBc, term IIAd and term IIIB, term IIBd and term IIBg, term IIBe and term

IIBf, term IIBh and term IIIC, and term IIBi and term IIID. All the terms cancel,

and we conclude that ⌅n⌅n�1 f = 0. �
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7. Problems

1. Using Burnside’s Theorem and Problem 34 at the end of Chapter IV, show that

60 is the smallest possible order of a nonabelian simple group.

2. A commutator in a group is any element of the form xyx�1y�1.
(a) Prove that the inverse of a commutator is a commutator.

(b) Prove that any conjugate of a commutator is a commutator.

3. Let a and b be elements of a group G. Prove that the subgroup generated by a

and b is the same as the subgroup generated by bab2 and bab3.

4. A subgroup H of a group G is said to be characteristic if it is carried into itself

by every automorphism of G.

(a) Prove that characteristic implies normal.

(b) Prove that the center ZG of G is a characteristic subgroup.

(c) Prove that the commutator subgroup G ✏ of G is a characteristic subgroup.

5. In the terminology of the previous problem, which subgroups of the quaternion

subgroup H8 are characteristic?

6. Is every finite group finitely presented? Why or why not?

7. Let G = SL(2, R), and let G ✏ be the commutator subgroup.

(a) Prove that every element
⌦
1 t

0 1

↵
is in G ✏.

(b) Prove that G ✏ = G.

(c) Prove that
⌦
�1 0

0 �1

↵
is not a commutator even though it is in G ✏.

8. Problem 53 at the end of Chapter IV produced a group G of order 27 generated

by two elements a and b satisfying a9 = b3 = b�1aba�4 = 1. Prove that G is

given by generators and relations as

G =
⇧
a, b; a9, b3, b�1aba�4

⌃
.

9. Let Gn be given by generators and a single relation as

Gn =
⇧
x1, y1, . . . , xn, yn; x1y1x�11 y�11 · · · xn ynx�1n y�1n

⌃
.

Prove thatGn/G
✏
n is free abelian of rank 2n, and conclude that the groupsGn are

mutually nonisomorphic as n varies. (Educational note related to topology: The

group Gn may be shown to be the fundamental group of a compact orientable

2-dimensional manifold without boundary and with n handles.)

10. Prove that a free group of finite rank n cannot be generated by fewer than n

elements.
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11. Let F be the free group on generators a, b, c, and let H be the subgroup generated

by all words of length 2.

(a) Find coset representatives g such that G is the disjoint union of the cosets

Hg.

(b) Find a free basis of H .

12. For the free group on generators x and y, prove that the elements y, xyx�1,
x2yx�2, x3yx�3, . . . , constitute a free basis of the subgroup that they generate.
Conclude that a free group of rank 2 has a free subgroup of infinite rank.

13. Let G = C2 ⌅C2. Prove that the only quotient groups of G, up to isomorphism,
are G itself, {1}, C2, C2 ⇤ C2, and the dihedral groups Dn for n ↵ 3.

14. Prove that if every irreducible finite-dimensional representation of a finite group

G is 1-dimensional, then G is abelian.

15. Let G be a finitely generated group, and let H be a subgroup of finite index.

Prove that H is finitely generated.

16. Let N be an abelian group, let G be a group, let � be an action of G on N by

automorphisms, and let n > 0 be an integer.

(a) Prove that if every element of N has finite order dividing an integer m, then

every member of Hn(G, N ) has finite order dividing m.

(b) Suppose thatG is finite and that f is an n-cocycle. Define an (n�1)-cochain
F by

F(g1, . . . , gn�1) =
⌫
g⌘G

f (g1, . . . , gn�1, g).

By summing the cocycle condition for f over the last variable, express

|G| f (g1, . . . , gn) in terms of F , and deduce that |G| f is a coboundary.
Conclude that every member of Hn(G, N ) has order dividing |G|.

17. Let G be a finite group. Suppose that G has a normal abelian subgroup N , and

suppose that GCD(|N |, |G/N |) = 1. Prove that there exists a subgroup H of G

such that G is the semidirect product of H and N .

18. Let N be the cyclic groupC2, and let G be an arbitrary group of order 4. Identify

up to equivalence all group extensions of N by G.

19. Let N = C2, and let E =
�⇣

n=1 (C2 ⌃ C4). Regard E as an extension of N in

two ways—first by embedding N as one of the summands C2 of E and then by

embedding N as a subgroup of one of the summands C4 of E . Show that the

quotient groups E/N in the two cases are isomorphic, that E/N acts trivially on

N in both cases, and that the two group extensions are not equivalent.

Problems 20–23 concern Baer multiplication of extensions. Let N be an abelian

group, let G be a group, let � be an action of G on N by automorphisms, and let

E1 and E2 be two extensions of N by G relative to � . Write ✓1 : E1 � G and

✓2 : E2 � G for the quotient mappings. Let (E, E ✏) denote the subgroup of all
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members (e1, e2) of E1 ⇤ E2 for which ✓1(e1) = ✓2(e2). Writing the operation in

N multiplicatively, let Q = {(x, x�1) ⌘ E1 ⇤ E2 | x ⌘ N }. The Baer product of E1
and E2 is defined to be the quotient (E1, E2)/Q. A typical coset of the Baer product

will be denoted by (e1, e2)Q.

20. Prove that the homomorphism x ◆� (x, 1)Q is one-one from N into (E1, E2)/Q,

that the homomorphism ✓ : (E1, E2) � G defined by ✓(e1, e2) = ✓1(e1) has

image G and descends to the quotient (E1, E2)/Q, and that the kernel of the

descended ✓ is the embedded copy of N . (Therefore (E1, E2)/Q is an extension

of N by G, evidently relative to � .)

21. For each u ⌘ G, select ū ⌘ E1 and �u ⌘ E2 with ✓1(ū) = u = ✓2(�u), and
define a(u, v) and b(u, v) for u and v in G by (xū)(yv̄) = a(u, v)uv and

(x�u)(y�v) = b(u, v)�b(u, v). Show that (ū,�u)Q has ✓((ū,�u)Q) = u and that the

associated 2-cocyle for (E1, E2)/Q is a(u, v)b(u, v) if the group operation in N

is written multiplicatively.

22. Prove that Baermultiplication descends to awell-definedmultiplication of equiv-

alence classes of extensions of N by G relative to � , in the following sense:

Suppose that E1 and E
✏
1 are equivalent extensions and that E2 and E

✏
2 are equiv-

alent extensions. Let (E1, E2)/Q and (E ✏
1, E

✏
2)/Q

✏ be the Baer products. Then
(E1, E2)/Q is equivalent to (E ✏

1, E
✏
2)/Q

✏. Conclude that if Baer multiplication
is imposed on equivalence classes of extensions of N by G relative to � , then the

correspondence stated in Proposition 7.40 of equivalence classes to members of

H2(G, N ) is a group isomorphism.

Problems 23–24 derive the Poisson summation formula for finite abelian groups. IfG

is afinite abeliangroupand⌧G is its groupofmultiplicative characters, then theFourier
coefficient at ✏ ⌘ ⌧G of a function f in C(G, C) is ⌧f (✏) =

⌫
g⌘G f (g)✏(g). The

Fourier inversion formula in Theorem7.17 says that f (g) = |G|�1
⌫

✏⌘⌧G ⌧f (✏)✏(g).

23. LetG be a finite abelian group, let H be a subgroup, and letG/H be the quotient

group. If t is in G, write
.
t for the coset of t in G/H . Let f be in C(G, C)

and define F(
.
t) =

⌫
h⌘H f (t + h) as a function on G/H . Suppose that ✏ is a

member of ⌧G that is identically 1 on H , so that ✏ descends to a member
.
✏ of

⌥G/H . Prove that ⌧f (✏) = ⌧F(
.
✏).

24. (Poisson summation formula) With f and F as in the previous problem, apply

the Fourier inversion formula for G/H to the function F , and derive the formula

�

h⌘H
f (t + h) = 1

|G/H |
�

⌘⌘⌧G, ⌘|H=1

⌧f (⌘)⌘(t).

(Educational note: This formula is often applied with t = 0, in which case it

reduces to
⌫

h⌘H f (h) = 1
|G/H |

⌫
⌘⌘⌧G, ⌘|H=1

⌧f (⌘).)
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Problems25–28continue the introduction to error-correctingcodesbegun inProblems

63–73 at the end of Chapter IV, combining those results with the Poisson summation

formula in the problems above and with notions from Section VI.1. Let F be the field
Z/2Z, and form the Hamming space Fn . Define a nondegenerate bilinear form on Fn
by (a, c) =

⌫n
i=1 ai ci for a and c in Fn . Recall from Chapter IV that a linear code

C is a vector subspace of Fn . For such a C , let C as in Section VI.1 be the set of all
a ⌘ Fn such that (a, c) = 0 for all c ⌘ C ; the linear code C is called the dual code.
A linear code is self dual if C = C .

25. (a) Show that the codes 0 and Fn are dual to each other.
(b) Show that the repetition code and the parity-check code are dual to each

other.

(c) Show that the Hamming code of order 8 is self dual.

(d) Show that any self-dual linear code C has dimC = n/2, and conclude that

the Hamming code of order 2r with r > 3 is not self dual.

(e) Show that any member c of a self-dual linear code C has even weight.

(f) Show that if a linear code C has C � C and if every member c of C has

even weight, then c ◆� 1
2
wt(c) mod 2 is a group homomorphism of C into

Z/2Z. Here wt(c) denotes the weight of c.

26. Regard Fn as an additive group G to which the Fourier inversion formula of

Section 4 can be applied.

(a) Show that one can map ⌧G to Fn by ✏ ◆� a✏ with ✏(c) = (�1)(a✏ ,c) and

that the result is a group isomorphism. (Therefore if f is in C(Fn, C), we

can henceforth regard ⌧f as a function on Fn .)
(b) Show under the identification in (a) that if f is in C(Fn, C), then ⌧f (a) =⌫

c⌘Fn f (c)(�1)(a,c) for a in Fn .
(c) Suppose that the function f ⌘ C(Fn, C) is of the special form f (c) =⇠n

i=1 fi (ci ) whenever c = (c1, . . . , cn). Here each fi is a function on

the 2-element group F. Prove that ⌧f (a) =
⇠n

i=1 ⌧fi (ai ) whenever a =
(a1, . . . , an). Here ⌧fi is given by the formula of (b) for the case n = 1:
⌧fi (ai ) =

⌫
ci⌘F fi (ci )(�1)ai ci .

27. Fix two complex numbers x and y. Define f0 : F � C to be the function

with f0(0) = x and f0(1) = y. Define f : F � C to be the function with

f (c) =
⇠n

i=1 f0(ci ) = xn�wt(c)ywt(c) where wt(c) is the weight of c.

(a) Show that ⌧f0(0) = x + y and ⌧f0(1) = x � y.

(b) Show that ⌧f (a) = (x + y)n�wt(a)(x � y)wt(a).

28. Let C be a linear code in Fn . Take G to be the additive group of Fn and H to be

the additive group of C . Regard C as an additive group also.

(a) Map ⌥G/H to C by ✏ ◆� a✏ with ✏(c) = (�1)(a✏ ,c). Show that this

mapping is a group isomorphism.
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(b) Applying the Poisson summation formula of Problem 24, prove that

⌫
h⌘C

f (h) = 1

|C|
⌫

a⌘C

⌧f (a)

for all f in C(Fn, C).

(c) (MacWilliams identity) Let WC (X,Y ) =
⌫n

k=0 Nk(C)Xn�kY k , where
Nk(C) is the number of members of C with weight k, be the weight-

enumerator polynomial of C , and let WC(X,Y ) be defined similarly.

By applying (b) to the function f in the previous problem, prove that

WC (x, y) = |C|�1WC(x + y, x � y) for each x and y. Conclude from

Corollary 4.32 that weight-enumerator polynomials satisfy WC (X,Y ) =
|C|�1WC(X + Y, X � Y ).

(d) The polynomials WC (X,Y ) were seen in Chapter IV to be Xn for the 0

code, (X + Y )n for the code Fn , Xn + Yn for the repetition code,
1
2
((X+Y )n+(X�Y )n) for the parity-check code, and X8+14X4Y 4+Y 8 for
theHammingcodeof order 8. Using relationships established inProblem25,

verify the result of (c) for each of these codes.

(e) Suppose that C is a self-dual linear code. Applying (c) in this case, exhibit

WC (X,Y ) as being invariant under a copy of the dihedral group D8 of

order 16. (Educational note: If the polynomial WC (X,Y ) is invariant also

under X ◆� i X , as is true for the Hamming code of order 8, thenWC (X,Y )

is invariant under the group generated by D8 and this transformation, which

can be shown to have order 192.)

Problems 29–31 concern an unexpectedly fast method of computation of Fourier

coefficients in the context of finite abelian groups, particularly in the context of cyclic

groups. They show for a cyclic group of order m = pq that the use of the idea

behind the Poisson summation formula of Problem 24 makes it possible to compute

the Fourier coefficients of a function in about pq(p+q) steps rather than the expected

m2 = p2q2 steps. This savings may be iterated in the case of a cyclic group of order

2n so that the Fourier coefficients are computed in about n2n steps rather than the

expected 22n steps. An organized algorithm to implement thismethod of computation

is known as the fast Fourier transform. Write the cyclic group Cm as the set

{0, 1, 2, . . . ,m�1} of integers modulo m under addition, and let ⇧m = e2↵ i/m . For k

in Cm define a multiplicative character ✏n of Cm by ✏n(k) = (⇧ nm)k . The resulting m

multiplicative characters satisfy ✏n✏n✏ = ✏n+n✏ , and they exhaust �Cm since distinct
multiplicative characters are orthogonal. It will be convenient to identify ✏n with

✏n(1) = ⇧ nm .

29. In the setting of Problem 23, suppose that G = Cm with m = pq; here p and q

need not be relatively prime. Let H = {0, q, 2q, . . . , (p�1)q} be the subgroup
of G isomorphic to Cp, so that G/H = {0, 1, 2, . . . , q�1} is isomorphic to
Cq . Prove that the characters ✏ of G identified with ⇧ 0m, ⇧

p
m , ⇧

2p
m , . . . , ⇧

(q�1)p
m
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are the ones that are identically 1 on H and therefore descend to characters

of G/H . Verify that the descended characters
.
✏ are the ones identified with

⇧ 0q , ⇧ 1q , ⇧ 2q , . . . , ⇧
q�1
q . Consequently the formula ⌧f (✏) = ⌧F(

.
✏) of Problem 23

provides a way of computing ⌧f at ⇧ 0m, ⇧
p
m , ⇧

2p
m , . . . , ⇧

(q�1)p
m from the values of

⌧F . Show that if ⌧F is computed from the definition of Fourier coefficients, then
the number of steps involved in its computation is about q2, apart from a constant

factor. Show therefore that the total number of steps in computing ⌧f at these
special values of ✏ is therefore on the order of q2 + pq.

30. In the previous problem show for each k with 0 ⌦ k ⌦ p�1 that the value of ⌧f at
⇧ km, ⇧

p+k
m , ⇧

2p+k
m , . . . , ⇧

(q�1)p+k
m can be handled in the same way with a different

F by replacing f by a suitable variant of f . Doing so for each k requires p times

the number of steps detected in the previous problem, and therefore all of ⌧f can
be computed in about p(q2 + pq) = pq(p + q) steps.

31. Show how iteration of this process to compute the Fourier coefficients of each F ,

together with further iteration of this process, allows one to compute the Fourier

coefficients for a functiononCm1m2···mr
in aboutm1m2 · · ·mr (m1+m2+· · ·+mr )

steps.

Problems 32–36 concern contragredient representations and the decomposition of the

left regular representation of a finite group G. They make use of Problems 24–28 in

Chapter III,which introduce the complex conjugateV of a complex vector spaceV . In

the case that V is an inner-product space, those problems define (u, v)
V

= (v, u)V ,

and they show that if �v ⌘ V ✏ is given by �v(u) = (u, v)V = (v, u)
V
, then the

mapping �v � v is an isomorphism of V ✏ with V .

32. Show that the definition (�v1, �v2)V ✏ = (v1, v2)V makes the isomorphism of V
✏

with V preserve inner products.

33. If R is a unitary representation of G on the finite-dimensional complex vector

space V , define the contragredient representation Rc of G on V ✏ by Rc(x) =
R(x�1)t . Prove that Rc(x)�v = �R(x)v and that R

c is unitary on V ✏.

34. Show that the matrix coefficients of Rc are the complex conjugates of those of

R and that the characters satisfy ✏Rc = ✏R .

35. Give an example of an irreducible representation of a finite group G that is not

equivalent to its contragredient.

36. Let � be the left regular representation of G on C(G, C), and let VR be the linear

span in C(G, C) of the matrix coefficients of an irreducible representation R of

dimension d. Prove that the representation (�, VR) ofG is equivalent to the direct

sum of d copies of the contragredient Rc.

Problems 37–46 concern the free product C2 ⌅ C3 and its quotients. The problems
make use of the group of matrices SL(2, Z/mZ) of determinant 1 over the com-

mutative ring Z/mZ, as discussed in Section V.2. One of the quotients of C2 ⌅ C3
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will be PSL(2, Z) = SL(2, Z)/{scalar matrices}, and these problems show that the
quotient mapping can be arranged to be an isomorphism. Other quotients will be

the groups Gm = �X,Y ; X2,Y 3, (XY )m� with m ↵ 2. These arise in connection

with tilings in 2-dimensional geometry. The isomorphism C2 ⌅ C3 �= PSL(2, Z)

leads to a homomorphism that will be called �m carrying Gm onto PSL(2, Z/mZ) =
SL(2, Z/mZ)/{scalar matrices}, the image group being finite. The problems show
that the homomorphism �m : Gm � PSL(2, Z/mZ) is an isomorphism for the cases

in which Gm arises from spherical geometry, namely for 2 ⌦ m ⌦ 5, and that the

homomorphism is not an isomorphism for m = 6, the case in which Gm arises from

Euclidean geometry.

37. Show that the elements
⌦
0 �1
1 0

↵
and

⌦
0 1

�1 �1

↵
generate SL(2, Z) by arguing as

follows: if the subgroup � of SL(2, Z) generated by these two elements is not

SL(2, Z), choose an element
⌦
a b

c d

↵
outside � having max(|a|, |b|) as small as

possible, and derive a contradiction by showing that a suitable right multiple of

it by elements of � is in �.

38. By mapping X ◆� x =
⌦
0 �1
1 0

↵
mod ±I and Y ◆� y =

⌦
0 1

�1 �1

↵
mod ±I ,

produce a group homomorphism� ofC2⌅C3 = �X,Y ; X2,Y 3� onto PSL(2, Z).

39. Let x , y, and � : C2 ⌅ C3 � PSL(2, Z) be as in the previous problem.

(a) For any member
⌦
a b

c d

↵
mod ±I of PSL(2, Z), define µ

⌦⌦
a b

c d

↵
mod ±I

↵

= max(|a|, |b|) and ⌦
⌦⌦

a b

c d

↵
mod ±I

↵
= max(|c|, |d|). Prove that if

z =
⌦
a b

c d

↵
mod ±I in PSL(2, Z) has ab ⌦ 0, then µ(zyx) ↵ µ(z) and

µ(zy�1x) ↵ µ(z), while if cd ⌦ 0, then ⌦(zyx) ↵ ⌦(z) and ⌦(zy�1x) ↵
⌦(z).

(b) Prove that µ(zx) = µ(z) and ⌦(zx) = ⌦(z) for all z in PSL(2, Z).

(c) Show that there are only 10 members z of PSL(2, Z) for which the two

conditions µ(z) = 1 and ⌦(z) = 1 both hold.

(d) A reduced word in C2 ⌅ C3 is a finite sequence of factors X , Y , and Y�1,
with no two consecutive factors equal and with no two consecutive factors

YY�1 or Y�1Y . Prove for any reduced word a1 · · · an in C2 ⌅ C3, where
each aj is one of X , Y , and Y

�1, that µ(�(a1 · · · an)) ↵ µ(�(a1 · · · an�1))
and that ⌦(�(a1 · · · an)) ↵ ⌦(�(a1 · · · an�1)).

(e) Deduce that the homomorphism� is an isomorphism.

40. Let �(m) be the group of all matrices M in SL(2, Z) such that every entry of

M � I is divisible by m.

(a) Prove that passage from a matrix in SL(2, Z) to the same matrix with its

entries considered modulo m gives a homomorphism ��m : SL(2, Z) �
SL(2, Z/mZ) with ker��m = �(m).
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(b) Prove that if �, ⇥, and m are positive integers with GCD(�,⇥,m) = 1,

then there exists an integer r such that GCD(� + mr,⇥) = 1. (One

way of proceeding is to use Dirichlet’s theorem on primes in arithmetic

progressions.)

(c) Prove that image��m = SL(2, Z/mZ), i.e.,��m is onto.

41. Let�m : C2⌅C3 � Gm be thehomomorphismdefinedby the conditions X ◆� X

and Y ◆� Y . Let Hm be the smallest normal subgroup of PSL(2, Z) containing

(xy)m mod ±I . Let��m : SL(2, Z) � SL(2, Z/mZ) be the homomorphism of

the previous problem.

(a) Why is �m well defined?

(b) Why is Hm = �(ker�m)?

(c) Define PSL(Z/mZ) = SL(2, Z/mZ)/{scalar matrices}. Why does the

composition of ��m followed by passage to the quotient descend to a ho-
momorphism �m of PSL(2, Z) onto PSL(2, Z/mZ)?

(d) If K � PSL(2, Z) is the kernel of �m , why is Hm � Km?

(e) Show that if t is any integer, then the following members of Km lie in the

subgroup Hm :
⌦
1 tm

0 1

↵
mod ±I ,

⌦
1 0

tm 1

↵
mod ±I ,

⌦
1+tm tm

�tm 1�tm

↵
mod ±I ,

and
⌦
1+tm �tm
tm 1�tm

↵
mod ±I .

42. With Gm defined as above, exhibit homomorphisms of various groups Gm onto

the following finite groups:

(a) S3 when m = 2 by sending X ◆� (1 2) and Y ◆� (1 2 3).

(b) A4 when m = 3 by sending X ◆� (1 2)(3 4) and Y ◆� (1 2 3).

(c) S4 when m = 4 by sending X ◆� (1 2) and Y ◆� (2 3 4).

(d) A5 when m = 5 by sending X ◆� (1 2)(3 4) and Y ◆� (1 3 5).

43. This problem shows how to prove that Hm = Km for 2 ⌦ m ⌦ 5, and it asks

that the steps be carried out for m = 2 and m = 3. Recall from the remark

with Lemma 7.11 that Lemma 7.11 is valid for all groups in determining a set

of generators of a subgroup from generators of the whole group and a system of

coset representatives. The lemma is to be applied to the group PSL(2, Z) and

the subgroup Km . Generators of PSL(2, Z) are taken as b1 = x mod ±I and

b2 = y mod ±I .

(a) For the case m = 2, find members g1, . . . , g6 of PSL(2, Z) such that the six

cosets of PSL(2, Z)/K2 are exactly K2g1, . . . , K2g6.

(b) Still for the case m = 2, find gjbi�(gjbi )
�1 for 1 ⌦ i ⌦ 2 and 1 ⌦ j ⌦ 6.

Lemma 7.11 says that these 12 elements generate K2.

(c) Using Problem 41e and any necessary variations of it, show that each of

the 12 generators of K2 in (b) lies in the subgroup H2, and conclude that

H2 = K2.
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(d) Repeat steps (a), (b), and (c) for m = 3. There are 12 cosets K3gj of

PSL(2, Z)/K3. (Educational note: There are 24 cosets for PSL(2, Z)/K4
and 60 cosets for PSL(2, Z)/K5.)

44. Take for granted that Hm = Km for 2 ⌦ m ⌦ 5. Deduce the isomorphisms

(a) G2 �= PSL(2, Z/2Z) �= S3.

(b) G3 �= PSL(2, Z/3Z) �= A4. (This group is called the tetrahedral group.)

(c) G4 �= PSL(2, Z/4Z) �= S4. (This group is called the octahedral group.)

(d) G5 �= PSL(2, Z/5Z) �= A5. (This group is called the icosahedral group.)

45. A translation in the Euclidean plane R2 is any function T(a,b)(x, y) =
(a + x, b + y), the rotation about the origin clockwise through the angle ⌃

is the linear map R⌃ given by the matrix
⌦
cos ⌃ � sin ⌃

sin ⌃ cos ⌃

↵
, and the rotation about

(x0, y0) clockwise through the angle ⌃ is the linear map given by (x, y) ◆�
R⌃ (x � x0, y � y0) + (x0, y0).

(a) Prove that R⌃T(a,b)R
�1
⌃ = TR⌃ (a,b).

(b) Prove that the union of the set of translations and all the sets of rotations

about points of R2 is a group by showing that it is the semidirect product
of the subgroup of rotations about the origin and the normal subgroup of

translations.

46. Fix a triangle T in the Euclidean plane with vertices arranged counterclockwise

at a, b, c and with angles ↵/2 at a, ↵/3 at b, and ↵/6 at c. Let ra be rotation

clockwise through ↵ at a, rb be rotation clockwise through 2↵/3 at b, and rc be

rotation counterclockwise through ↵/3 at c.

(a) Show that r2a = 1, r3b = 1, r6c = 1, and rc = rarb.

(b) Show that the member rbrarbrarb of the group generated by ra and rb is a

nontrivial translation and therefore that the generated group is infinite.

(c) Conclude that G6 � PSL(2, Z/6Z). (Educational note: If �T denotes the
union of T and the reflection of T in one of the sides of T , it can be shown

that the group generated by ra and rb is isomorphic to G6 and tiles the plane

with copies of �T .)
Problems 47–52 establish a harmonic analysis for arbitrary representations of finite

groups on complex vector spaces, whether finite-dimensional or infinite-dimensional.

Let G be a finite group, and let V be a complex vector space. For any representation

R of G on V , one defines R( f )v =
⌫

x⌘G f (x)R(x)v for f in C(G, C) and v in V ,

just as in the case that V is finite-dimensional. The same computation as in Section

VII.4 shows that the formula R( f1 ⌅ f2) = R( f1)R( f2) remains valid when V is

infinite-dimensional.

47. Let (R1, V1) and (R2, V2) be irreducible finite-dimensional representations of G

on complex vector spaces, and let ✏R1 and ✏R2 be their characters. Using Schur

orthogonality, prove that

(a) ✏R1 ⌅ ✏R2 = 0 if R1 and R2 are inequivalent,
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(b) ✏R1 ⌅ ✏R1 = |G|d�1R1 ✏R1 , where dR1 = dim VR .

48. With (R, V ) given, let (R�, V�) be any irreducible finite-dimensional represen-

tation of G, and define E� : V � V by E� = |G|�1d�R(✏�), where ✏� is the

character of R� and where d� = dim V� .

(a) Prove that E2� = E� .

(b) Prove that E�E⇥ = E⇥E� = 0 if (R⇥ , V⇥) is an irreducible finite-

dimensional representation of G such that R� and R⇥ are inequivalent.

49. Observe for each v in V that {R(x)v | x ⌘ G} spans a finite-dimensional invariant
subspace of V . By Corollary 7.21, each v in V lies in a finite direct sum of finite-

dimensional invariant subspaces of V on each of which R acts irreducibly. Using

Zorn’s Lemma, prove that V is the direct sum of finite-dimensional subspaces

on each of which R acts irreducibly. (If V is infinite-dimensional, there will of

course be infinitely many such subspaces.)

50. Suppose that V0 is a finite-dimensional invariant subspace of V such that R
⌥⌥
V0

is equivalent to some R� , where R� is as in Problem 48. Prove that E� is the

identity on V0.

51. Deduce that if {(R⇥ , V⇥)} is a maximal collection of inequivalent finite-
dimensional irreducible representations of G, then

⌫
⇥ E⇥ = I on V and the

image of E� is the set of all sums of vectors in V lying in some finite-dimensional

invariant subspace V0 of V such that R
⌥⌥
V0
is equivalent to R� . (Educational note:

Consequently V is exhibited as the finite direct sum of the spaces image E� ,

each space image E� is the direct sum of finite-dimensional irreducible invariant

subspaces, and the restriction of R to any finite-dimensional irreducible invariant

subspace of image E� is equivalent with R� .

52. Suppose that (R�, V�) is a 1-dimensional representation of G given by a multi-

plicative character ⌘. Prove that the image of E� consists of all vectors v in V

such that R(x)v = ⌘(x)v for all x in G.



CHAPTER VIII

Commutative Rings and Their Modules

Abstract. This chapter amplifies the theory of commutative rings that was begun in Chapter IV,

and it introduces modules for any ring. Emphasis is on the topic of unique factorization.

Section 1 gives many examples of rings, some commutative and some noncommutative, and

introduces the notion of a module for a ring.

Sections 2–4 discuss some of the tools related to questions of factorization in integral domains.

Section 2 defines the field of fractions for an integral domain and gives its universalmapping property.

Section 3 defines prime and maximal ideals and relates quotients of them to integral domains and

fields. Section 4 introduces principal ideal domains, which are shown to have unique factorization,

and it defines Euclidean domains as a special kind of principal ideal domain for which greatest

common divisors can be obtained constructively.

Section5 proves that if R is an integral domainwith unique factorization, then so is the polynomial

ring R[X]. This result is a consequence of Gauss’s Lemma, which addresses what happens to the

greatest common divisor of the coefficients when one multiplies two members of R[X]. Gauss’s

Lemma has several other consequences that relate factorization in R[X] to factorization in F[X],

where F is thefield of fractionsof R. Still another consequence isEisenstein’s irreducibility criterion,

which gives a sufficient condition for a member of R[X] to be irreducible.

Section 6 contains the theorem that every finitely generated unital module over a principal ideal

domain is a direct sum of cyclic modules. The cyclic modules may be assumed to be primary in a

suitable sense, and then the isomorphism types of the modules appearing in the direct-sum decom-

position, together with their multiplicities, are uniquely determined. The main results transparently

generalize the Fundamental Theorem for Finitely Generated Abelian Groups, and less transparently

they generalize the existence and uniqueness of Jordan canonical form for square matrices with

entries in an algebraically closed field.

Sections 7–11 contain foundational material related to factorization for the two subjects of

algebraic number theory and algebraic geometry. Both these subjects rely heavily on the theory of

commutative rings. Section 7 is a section of motivation, showing the analogy between a situation

in algebraic number theory and a situation in algebraic geometry. Sections 8–10 introduce Noe-

therian rings, integral closures, and localizations. Section 11 uses this material to establish unique

factorization of ideals for Dedekind domains, as well as some other properties.

1. Examples of Rings and Modules

Sections 4–5 of Chapter IV introduced rings and fields, giving a small number of

examples of each. In the present section we begin by recalling those examples

and giving further ones. Although Chapters VI and VII are not prerequisite for

370
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the present chapter, our list of examples will include some rings and fields that

arose in those two chapters.

The theory to be developed in this chapter is intended to apply to commutative

rings, especially to questions related to unique factorization in such rings. Despite

this limitation it seems wise to include examples of noncommutative rings in the

list below.

In the conventions of this book, a ring need not have an identity. Many rings

that arise only in the subject of algebra have an identity, but there are important

rings in the subject of real analysis that do not. From the point of view of category

theory, one therefore distinguishes between the category of all rings, with ring

homomorphisms as morphisms, and the category of all rings with identity, with

ring homomorphisms carrying 1 to 1 as morphisms. In the latter case one may

want to exclude the zero ring from being an object in the category under certain

circumstances.

EXAMPLES OF RINGS.

(1) Basic commutative rings from Chapter IV. All of the structures Z, Q, R,
C, Z/mZ, and 2Z are commutative rings. All but the last have an identity. Of
these, Q, R, and C are fields, and so is Fp = Z/pZ if p is a prime number. The
others are not fields.

(2) Polynomial rings. Let R be a nonzero commutative ring with identity.

In Section IV.5 we defined the commutative ring R[X1, . . . , Xn] of polynomials
over R in n indeterminates. It has a universal mapping property with respect to

substitution for the indeterminatesanduseof a homomorphismon the coefficients.

Making substitutions from R itself andmapping the coefficients by the identity ho-

momorphism, we are led to the ring of all functions (r1, . . . , rn) ◆� f (r1, . . . , rn)
for r1, . . . , rn in R and f (X1, . . . , Xn) in R[X1, . . . , Xn]; this is called the ring
of all polynomial functions in n variables on R. Polynomials may be considered

also in infinitely many variables, but we did not treat this case in any detail.

(3) Matrix rings over commutative rings. Let R be a nonzero commutative

ring with identity. The set Mn(R) of all n-by-n matrices with entries in R is a ring
under entry-by-entry addition and the usual definition of matrix multiplication:

(AB)i j =
⇠n

k=1 Aik Bkj . It has an identity, namely the identity matrix I with
Ii j = ⇤i j . In this setting, Section V.2 introduced a theory of determinants, and it
was proved that a matrix has a one-sided inverse if and only if it has a two-sided

inverse, if and only if its determinant is a member of the group R⇤ of units in
R, i.e., elements of R invertible under multiplication. The matrix ring Mn(R) is
always noncommutative if n > 1.

(4)Matrix rings over noncommutative rings. If R is any ring, we can still make

the set Mn(R) of all n-by-n matrices with entries in R into a ring. However, if
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R has no identity, Mn(R) will have no identity. The theory of determinants does
not directly apply if R is noncommutative or if R fails to have an identity,1 and as

a consequence, questions about the invertibility of matrices are more subtle than

with the previous example.

(5) Spaces of linear maps from a vector space into itself. Let V be a vector

space over a field K. The vector space EndK(V ) = HomK(V, V ) of all K linear

maps from V to itself is initially a vector space over K. Composition provides a
multiplication that makes EndK(V ) into a ring with identity. In fact, associativity
ofmultiplication is automatic for anykindof function, and so is thedistributive law

(L1+L2)L3 = L1L3+L2L3. The distributive law L1(L2+L3) = L1L2+L1L3
follows from the fact that L1 is linear. This ring is isomorphic as a ring to Mn(K)
if V is n-dimensional, an isomorphismbeing determined by specifying an ordered

basis of V .

(6) Associative algebras over fields. These were defined in Section VI.7,

knowledge of which is not being assumed now. Thus we repeat the definition. If

K is a field, then an associative algebra overK, or associativeK algebra, is a ring

A that is also a vector space over K such that the multiplication A ⇤ A � A is

K-linear in each variable. The conditions of linearity concerning multiplication
have two parts to them: an additive part saying that the usual distributive laws

are valid and a scalar-multiplication part saying that

(ka)b = k(ab) = a(kb) for all k in K and a, b in A.

If A has an identity, the displayed condition says that all scalar multiples of

the identity lie in the center of A, i.e., commute with every element of A. In

Examples 2 and 3, when R is a field K, the polynomial rings and matrix rings
over K provide examples of associative algebras over K; scalar multiplication is
to be done in entry-by-entry fashion. Example 5 is an associative algebra as well.

IfL is any field such thatK is a subfield, thenLmay be regarded as an associative
algebra over K. An interesting commutative associative algebra over C without

identity is the algebra Ccom(R) of all continuous complex-valued functions on R
that vanish outside a bounded interval; the vector-space operations are the usual

pointwise operations, and the operation of multiplication is given by convolution

( f ⌅ g)(x) =
�

R
f (x � y)g(y) dy.

Section VII.4 worked with an analog C(G, C) of this algebra in the context that
R is replaced by a finite group G.

1A limited theory of determinants applies in the noncommutative case, but it will not be helpful

for our purposes.
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(7)Division rings. Adivision ring is a nonzero ringwith identity such that every

element has a two-sided inverse under multiplication. A commutative division

ring is just a field. The ringH of quaternions is the only explicit noncommutative

division ring that we have encountered so far. It is an associative algebra over R.
More generally, if A is a division ring, then we can easily check that the center

K of A is a field and that A is an associative algebra over K.2

(8) Tensor, symmetric, and exterior algebras. If E is a vector space over a field

K, ChapterVI defined the tensor, symmetric, and exterior algebras of E overK, as
well as the polynomial algebra on E in the case that E is finite-dimensional. These

are all associative algebras with identity. Symmetric algebras and polynomial

algebras are commutative. None of these algebras will be discussed further in

this chapter.

(9) A field of 4 elements. This was constructed in Section IV.4. Further finite

fields beyond the field of 4 elements and the fields Fp = Z/pZwith p prime will
be constructed in Chapter IX.

(10) Algebraic number fields Q[⌃]. These were discussed in Sections IV.1
and IV.4. In defining Q[⌃], we assume that ⌃ is a complex number and that
there exists an integer n > 0 such that the complex numbers 1, ⌃, ⌃2, . . . , ⌃n

are linearly dependent over Q. The set Q[⌃] is defined to be the subset of C
obtained by substitution of ⌃ into all members of Q[X]. It coincides with the
linear span over Q of 1, ⌃, ⌃2, . . . , ⌃n�1. Proposition 4.1 shows that it is closed
under the arithmetic operations, including passage to multiplicative inverses of

nonzero elements, and it is therefore a subfield of C. This example ties in with
the notion of minimal polynomial in Chapter V because the members of Q[X]
with ⌃ as a root are all multiples of one nonzero such polynomial that exhibits the
linear dependence. We return to this example occasionally later in this chapter,

particularly in Sections 7–11, and then we treat it in more detail in Chapter IX.

(11)Algebraic integers in a numberfieldQ[⌃]. Algebraic integerswere defined
in Section VII.4 as the roots in C of monic polynomials in Z[X], and they were
shown to form a commutative ring with identity. The set of algebraic integers

in Q[⌃] is therefore a commutative ring with identity, and it plays somewhat
the same role for Q[⌃] that Z plays for Q. We discuss this example further in
Sections 7–11.

(12) Integral group rings. If G is a group, then we can make the free abelian

group ZG on the elements of G into a ring by defining multiplication to be�⇠
i mi gi

⇥�⇠
j nj hj

⇥
=
⇠

i, j (minj )(gihj ) when the mi and nj are in Z and the
gi and hj are in G. It is immediate that the result is a ring with identity, and ZG

2Use of the term “division algebra” requires some care. Some mathematicians understand

division algebras to be associative, and others do not. The real algebraO of octonions, as defined in
Problems 52–56 at the end of Chapter VI, is not associative, but it does have division.



374 VIII. Commutative Rings and Their Modules

is called the integral group ring of G. The group G is embedded as a subgroup

of the group (ZG)⇤ of units of ZG, each element of g being identified with a
sum ⌥(g) =

⇠
migi in which the only nonzero term is 1g. The ring ZG has

the universal mapping property illustrated in Figure 8.1 and described as follows:

whenever � : G � R is a group homomorphism of G into the group R⇤ of units
of a ring R, then there exists a unique ring homomorphism ⇣ : ZG � R such

that⇣⌥ = �. The existence of⇣ as a homomorphism of additive groups follows
from the universal mapping property of free abelian groups, and then one readily

checks that ⇣ respects multiplication.3

G
����� R

⌥

⌘⌘$

ZG

⇣

FIGURE 8.1. Universal mapping property of the integral group ring of G.

(13) Quotient rings. If R is a ring and I is a two-sided ideal, then we saw in

Section IV.4 that the additive quotient R/I has a natural multiplication that makes
it into a ring called a quotient ring of R. This in effect was the construction that

obtained the ring Z/mZ from the ring Z.
(14) Direct product of rings. If {Rs | s ⌘ S} is a nonempty set of rings, then

a direct product
⇡

s⌘S Rs is a ring whose additive group is any direct product
of the underlying additive groups and whose ring operations are given in entry-

by-entry fashion. The resulting ring and the associated ring homomorphisms

ps0 :
⇡

s⌘S Rs � Rs0 amount to the product functor for the category of rings;

if each Rs has an identity, the result amounts also to the product functor for the

category of rings with identity.

We give further examples of rings near the end of this section after we have

defined modules and given some examples.

Informally a module is a vector space over a ring. But let us be more precise.

If R is a ring, then a left R module4 M is an abelian group with the additional

structure of a “scalar multiplication” R ⇤ M � M such that

(i) r(r ✏m) = (rr ✏)m for r and r ✏ in R and m in M ,

3Universal mapping properties are discussed systematically in Problems 18–22 at the end of

Chapter VI. The subject of such a property, here the pair (ZG, ⌥), is always unique up to canonical
isomorphism in a given category, but its existence has to be proved.

4Many algebra books write “R-module,” using a hyphen. However, when R is replaced by an

expression, particularly in applications of the theory, the hyphen is often dropped. For an example,

see “module” in Hall’s The Theory of Groups. The present book omits the hyphen in all cases in

order to be consistent.
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(ii) (r + r ✏)m = rm + r ✏m and r(m + m✏) = rm + rm✏ if r and r ✏ are in R
and m and m✏ are in M .

In addition, if R has an identity, we say that M is unital if

(iii) 1m = m for all m in M .

One may also speak of right R modules. For these the scalar multiplication is

usually written as mr with m in M and r in R, and the expected analogs of (i)

and (ii) are to hold.

When R is commutative, it is immaterial which side is used for the scalar

multiplication, and one speaks simply of an R module.

Let R be a ring, and let M and N be two left R modules. A homomorphism

of left R modules, or more briefly an R homomorphism, is an additive group

homomorphism � : M � N such that �(rm) = r�(m) for all r in R. Then we
can form a category for fixed R in which the objects are the left R modules and

the morphisms are the R homomorphisms from one left R module to another.

Similarly the right R modules, along with the corresponding kind of R homo-

morphisms, form a category. If R has an identity, then the unital R modules form

a subcategory in each case. These categories are fundamental to the subject of

homological algebra, which we take up in Chapter IV of Advanced Algebra.

EXAMPLES OF MODULES.

(1) Vector spaces. If R is a field, the unital R modules are exactly the vector

spaces over R.

(2) Abelian groups. The unital Z modules are exactly the abelian groups.

Scalar multiplication is given in the expected way: If n is a positive integer, the

product nx is the n-fold sum of x with itself. If n = 0, the product nx is 0. If

n < 0, the product nx is �((�n)x).
(3) Vector spaces as unital modules for the polynomial ring K[X]. Let V

be a finite-dimensional vector space over the field K, and fix L be in EndK(V ).
Then V becomes a unital K[X] module under the definition A(X)v = A(L)(v)
whenever A(X) is a polynomial in K[X]; here A(L) is the member of EndK(V )
defined as in Section V.3. In Section 6 in this chapter we shall see that some of

the deeper results in the theory of a single linear transformation, as developed in

Chapter V, follow from the theory of unitalK[X] modules that will emerge from
the present chapter.

(4) Modules in the context of algebraic number fields. Let Q[⌃] be a subfield
of C as in Example 10 of rings earlier in this section. It is assumed that the Q
vector space Q[⌃] is finite-dimensional. Let L be the member of EndQ(Q[⌃])
given as left multiplication by ⌃ on Q[⌃]. As in the previous example, Q[⌃]
becomes a unital Q[X] module. Chapter V defines a minimal polynomial for
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L , as well as a characteristic polynomial. These objects play a role in the study

to be carried out in Chapter IX of fields like Q[⌃]. If ⌃ is an algebraic integer
as in Example 11 of rings earlier in this section, then we can get more refined

information by replacingQ byZ in the above analysis; this technique plays a role
in the theory to be developed in Sections 7–11.

(5) Rings and their quotients. If R is a ring, then R is a left R module and also

a right R module. If I is a two-sided ideal in I , then the quotient ring R/I , as
defined in Proposition 4.20, is a left R module and also a right R module. These

modules are automatically unital if R has an identity. Later in this section we

shall consider quotients of R by “one-sided ideals.”

(6) Spaces of rectangular matrices. If R is a ring, then the space Mmn(R) of
m-by-nmatriceswith entries in R is an abelian group under addition and becomes

a left Rmodulewhenmultiplicationby the scalar r is defined as leftmultiplication

by r in each entry. Also, if we put S = Mm(R), then Mmn(R) is a left S module
under the usual definition of matrix multiplication: (sv)i j =

⇠n
k=1 sikvk j , where

s is in S and v is in Mmn(R).

(7) Direct product of R modules. If S is a nonempty set and {Ms}s⌘S is
a corresponding system of left R modules, then a direct product

⇡
s⌘S Ms is

obtained as an additive group by forming any direct product of the underlying

additive groups of the Ms’s and defining scalar multiplication by members of

R to be scalar multiplication in each coordinate. The associated abelian-group

homomorphisms ps0 :
⇡

s⌘S Ms � Ms0 become R homomorphisms under this

definition of scalar multiplication on the direct product. Direct product amounts

to the product functor for the category of left R modules; we omit the easy

verification, which makes use of the corresponding fact about abelian groups. As

in the case of abelian groups, we can speak of an external direct product as the

result of a construction that starts with the product of the sets Ms , and we can

speak of recognizing a direct product as internal when the Ms’s are contained in

the direct product and the restriction of each ps to Ms is the identity function.

(8) Direct sum of R modules. If S is a nonempty set and {Ms}s⌘S is a corre-
sponding system of left R modules, then a direct sum

�
s⌘S Ms is obtained as

an additive group by forming any direct sum of the underlying additive groups

of the Ms’s and defining scalar multiplication by members of R to be scalar

multiplication in each coordinate. The associated abelian-group homomorphisms

is0 : Ms0 �
�

s⌘S Ms become R homomorphisms under this definition of scalar

multiplication on the direct sum. Direct sum amounts to the coproduct functor for

the category of left R modules; we omit the easy verification, which makes use

of the corresponding fact about abelian groups. As in the case of abelian groups,

we can speak of an external direct sum as the result of a construction that starts

with a subset of the product of the sets Ms , and we can speak of recognizing a
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direct sum as internal when the Ms’s are contained in the direct sum and each is
is the inclusion mapping.

(9) Free R modules. Let R be a nonzero ring with identity, and let S be a

nonempty set. As in Example 5, let us regard R as a unital left R module. Then

the left R module given as the direct sum F(S) =
�

s⌘S R is called a free R
module, or free left R module. We define ⌥ : S � F(S) by ⌥(s) = is(1),
where is is the usual embedding map for the direct sum of R modules. The left

R module F(S) has a universal mapping property similar to the corresponding
property of free abelian groups. This is illustrated in Figure 8.2 and is described

as follows: whenever M is a unital left R module and � : S � M is a function,

then there exists a unique R homomorphism⇣ : F(S) � M such that ⇣⌥ = �.
The existence of ⇣ as an R homomorphism follows from the universal mapping

property of direct sums (Example 8) as soon as the property is demonstrated for

S equal to a singleton set. Thus let A be any left R module, and let a ⌘ A be

given; then it is evident that r ◆� ra is the unique R homomorphism of the left

R module R into A carrying 1 to a.

S
����� M

⌥

⌘⌘$

F(S)

⇣

FIGURE 8.2. Universal mapping property of a free left R module.

If R is a ring and M is a left R module, then an R submodule N of M is an

additive subgroup of M that is closed under scalar multiplication, i.e., has rm in

N when r is in R and m is in N . In situations in which there is no ambiguity, the

use of “left” in connection with R submodules is not necessary.

EXAMPLES OF SUBMODULES. If V is a vector space over a field K, then a K
submodule of V is a vector subspace of V . If M is an abelian group, then a Z
submodule of M is a subgroup. In Example 6 of modules, in which S = Mm(R),
then an example of a left S submodule of Mmn(R) is all matrices with 0 in every
entry of a specified subset of the n columns.

If the ring R has an identity and M is a unital left R module, then the R

submodule ofM generated bym ⌘ M , i.e., the smallest R submodule containing

m, is Rm, the set of products rm with r in R. In fact, the set of all rm is an abelian

group since (r ± s)m = rm ± sm, it is closed under scalar multiplication since

s(rm) = (sr)m, and it contains m since 1m = m. However, if the left R module

M is not unital, then the R submodule generated by m may not equal Rm, and it

was for that reason that Rmoduleswere assumed to be unital in the constructionof

free Rmodules in Example 9 ofmodules above. More generally the R submodule
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of M generated by a finite set {m1, . . . ,mn} in M is Rm1+· · ·+ Rmn if the left

R module M is unital.

Example 5 of modules treated R as a left R module. In this setting the left

R submodules are called left ideals in R. That is, a left ideal I is an additive

subgroup of R such that ri is in I whenever r is in R and i is in I . As a special

case of what was said in the previous paragraph, if the ring R has an identity, then

the left R module R is automatically unital, and the left ideal of R generated by

an element a is Ra, the set of all products ra with r in R.

Similarly a right ideal in R is an additive subgroup I such that ir is in I

whenever r is in R and i is in I . The right ideals are the right R submodules

of the right R module R. If R is commutative, then left ideals, right ideals, and

two-sided ideals are all the same.

Suppose that � : M � N is an R homomorphism of left R modules. In this

situation we readily verify that the kernel of �, denoted by ker� as usual, is an
R submodule of M , and the image of �, denoted by image� as usual, is an R
submodule of N . The R homomorphism � is one-one if and only if ker� = 0, as

a consequence of properties of homomorphisms of abelian groups. A one-one R

homomorphism of one left R module onto another is called an R isomorphism;

its inverse is automatically an R isomorphism, and “is R isomorphic to” is an

equivalence relation.

Still with R as a ring, suppose that M is a left R module and N is an R

submodule. Thenwecan form thequotientM/N of abeliangroups. This becomes
a left R module under the definition r(m + N ) = rm + N , as we readily check.

We call M/N a quotient module. The quotient mapping m ◆� m + N of M to

M/N is an R homomorphism onto. A particular example of a quotient module

is R/I , where I is a left ideal in R.
We can now go over the results on quotients of abelian groups in Section IV.2,

specifically Proposition 4.11 through Theorem 4.14, and check that they extend

immediately to results about left R modules. The statements appear below. The

arguments are all routine, and there is no point in repeating them. In the special

case that R is a field and the R modules are vector spaces, these results specialize

to results proved in Sections II.5 and II.6.

Proposition 8.1. Let R be a ring, let � : M1 � M2 be an R homomorphism

between left R modules, let N0 = ker�, let N be an R submodule of M1

contained in N0, and define q : M1 � M1/N to be the R module quotient

map. Then there exists an R homomorphism � : M1/N � M2 such that

� = �q, i.e, �(m1 + N ) = �(m1). It has the same image as �, and ker� =
{h0N | h0 ⌘ N0}.
REMARK. Aswith groups, one says that � factors throughM1/N or descends

to M1/N . Figure 8.3 illustrates matters.
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M1
����� M2

q

⌘⌘$

M1/N

�

FIGURE 8.3. Factorization of R homomorphisms via a quotient of R modules.

Corollary 8.2. Let R be a ring, let � : M1 � M2 be an R homomorphism

between left R modules, and suppose that � is onto M2 and has kernel N . Then

� exhibits the left R module M1/N as canonically R isomorphic to M2.

Theorem8.3 (First IsomorphismTheorem). Let R be a ring, let� : M1� M2

be an R homomorphism between left R modules, and suppose that � is onto M2

and has kernel K . Then the map N1 ◆� �(N1) gives a one-one correspondence
between

(a) the R submodules N1 of M1 containing K and

(b) the R submodules of M2.

Under this correspondence the mapping m + N1 ◆� �(m) + �(N1) is an R

isomorphism of M1/N1 onto M2/�(N1).

REMARK. In the special case of the last statement that � : M1 � M2 is

an R module quotient map q : M � M/K and N is an R submodule of

M containing K , the last statement of the theorem asserts the R isomorphism

M/N �= (M/K )
�
(N/K ).

Theorem 8.4 (Second Isomorphism Theorem). Let R be a ring, let M be a

left R module, and let N1 and N2 be R submodules of M . Then N1 � N2 is an

R submodule of N1, the set N1 + N2 of sums is an R submodule of M , and the

map n1 + (N1 � N2) ◆� n1 + N2 is a well-defined canonical R isomorphism

N1/(N1 � N2) �= (N1 + N2)/N2.

A quotient of a direct sum of R modules by the direct sum of R submodules

is the direct sum of the quotients, according to the following proposition. The

result generalizes Lemma 4.58, which treats the special case of abelian groups

(unital Z modules).

Proposition 8.5. Let R be a ring, let M =
�

s⌘S Ms be a direct sum of left R

modules, and for each s in S, let Ns be a left R submodule ofMs . Then the natural

map of
�

s⌘S Ms to the direct sum of quotients descends to an R isomorphism

⌫

s⌘S
Ms

�⌫

s⌘S
Ns �=

⌫

s⌘S
(Ms/Ns).
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PROOF. Let � :
�

s⌘S Ms �
�

s⌘S (Ms/Ns) be the R homomorphismdefined
by �({ms}s⌘S) = {ms + Ns}s⌘S . The mapping � is onto

�
s⌘S (Ms/Ns), and the

kernel is
�

s⌘S Ns . Then Corollary 8.2 shows that � descends to the required R
isomorphism. �

EXAMPLES OF RINGS, CONTINUED.

(15) Associative algebras over commutative rings with identity. These directly

generalizeExample 6 of rings. Let R be a nonzero commutative ringwith identity.

An associative algebra over R, or associative R algebra, is a ring A that is also

a left R module such that multiplication A⇤ A� A is R linear in each variable.

The conditions of R linearity in each variable mean that addition satisfies the

usual distributive laws for a ring and that the following condition is to be satisfied

relating multiplication and scalar multiplication:

(ra)b = r(ab) = a(rb) for all r in R and a, b ⌘ A.

If A has an identity, the displayed condition says that all scalar multiples of

the identity lie in the center of A, i.e., commute with every element of A.

Examples 2 and 3, treating polynomial rings and matrix rings whose scalars

lie in a commutative ring with identity, furnish examples. Every ring R is an

associative Z algebra when the Z action is defined so as to make the abelian

group underlying the additive structure of R into aZmodule. All that needs to be
checked is the displayed formula. For n = 1, we have (1a)b = 1(ab) = a(1b)
since the Z module R is unital. If we also have (na)b = n(ab) = a(nb) for a
positive integer n, then we can add and use the appropriate distributive laws to

obtain ((n + 1)a)b = (n + 1)(ab) = a((n + 1)b). Induction therefore gives
(na)b = n(ab) = a(nb) for all positive integers n, and this equality extends
to all integers n by using additive inverses. The associative R algebras form

a category in which the morphisms from one such algebra to another are the

ring homomorphisms that are also R homomorphisms. The product functor

for this category is the direct product as in Example 14 with an overlay of scalar

multiplication as in Example 7 of modules. The coproduct functor in the category

of commutative associative R algebras with identity is more subtle and involves

a tensor product over R, a notion we postpone introducing until Chapter X.

(16) Group algebra RG over R. If G is a group and R is a commutative ring

with identity, then we can introduce a multiplication in the free R module RG

on the elements of G by the definition
�⇠

i ri gi
⇥�⇠

j sj h j
⇥

=
⇠

i, j (ri sj )(gihj )
when the ri and sj are in R and the gi and hj are in G. It is immediate that

this multiplication makes the free R module into an associative R algebra with

identity, and RG is called the groupalgebraofG over R. The special case R = Z
leads to the integral group ring as in Example 12. The group G is embedded as a



2. Integral Domains and Fields of Fractions 381

subgroup of the group (RG)⇤ of units of RG, each element of g being identified
with a sum ⌥(g) =

⇠
ri gi in which the only nonzero term is 1g. The associative

R algebra RG has a universal mapping property similar to that in Figure 8.1 and

given in Figure 8.4 as follows: whenever � : G � A is a group homomorphism

of G into the group A⇤ of units of an associative R algebra A, then there exists
a unique associative R algebra homomorphism⇣ : RG � A such that⇣⌥ = �.

G
����� A

⌥

⌘⌘$

RG

⇣

FIGURE 8.4. Universal mapping property of the group algebra RG.

(17) Scalar-valued functions of finite support on a group, with convolution

as multiplication. If G is a group and R is a commutative ring with identity,

denote by C(G, R) the R module of all functions from G into R that are of finite

support in the sense that each function is 0 except on a finite subset of G. This R

module readily becomes an associative R algebra if ring multiplication is taken

to be pointwise multiplication, but the interest here is in a different definition of

multiplication. Instead, multiplication is defined to be convolution with

( f1 ⌅ f2)(x) =
⌧

y⌘G
f1(xy

�1) f2(y) =
⌧

y⌘G
f1(y) f2(y

�1x).

The sums in question are finite because of the finite support of f1 and f2, and the

sums are equal by a change of variables. This multiplication was introduced in

the special case R = C in Section VII.4, and the argument for associativity given
there in the special case works in general. With convolution as multiplication,

C(G, R) becomes an associative R algebra with identity. Problem 14 at the end
of the chapter asks for a verification that the mapping g ◆� fg with

fg(x) =
�
1 for x = g,

0 for x ✓= g,

extends to an R algebra isomorphism of RG onto C(G, R).

2. Integral Domains and Fields of Fractions

For the remainder of the chapter we work with commutative rings only. In several

of the sections, including this one, the commutative ring will be an integral

domain, i.e., a nonzero commutative ring with identity and with no zero divisors.
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In this section we show how an integral domain can be embedded canonically

in a field. This embedding is handy for recognizing certain facts about integral

domains as consequences of facts about fields. For example Proposition 4.28b

established that if R is a nonzero integral domain and if A(X) is a polynomial in
R[X] of degree n > 0, then A(X) has at most n roots. Since the coefficients of
the polynomial can be considered to be members of the larger field that contains

R, this result is an immediate consequence of the corresponding fact about fields

(Corollary 1.14).

The prototype is the construction of the field Q of rationals from the integral

domain Z of integers as in Section A3 of the appendix, in which one thinks of a
b

as a pair (a, b) with b ✓= 0 and then identifies pairs by saying that a
b

= c
d
if and

only if ad = bc.

We proceed in the same way in the general case. Thus let R be an integral

domain, form the set

 F = {(a, b) | a ⌘ R, b ⌘ R, b ✓= 0},

and impose the equivalence relation (a, b) � (c, d) if ad = bc. The relation

� is certainly reflexive and symmetric. To see that it is transitive, suppose that
(a, b) � (c, d) and (c, d) � (e, f ). Then ad = bc and c f = de, and these

together force ad f = bc f = bde. In turn, this implies a f = be since R is an

integral domain and d is assumed ✓= 0. Thus� is transitive and is an equivalence
relation. Let F be the set of equivalence classes.

The definitionof addition in  F is (a, b)+(c, d) = (ad+bc, bd), the expression
we get by naively clearing fractions, and we want to see that addition is consistent

with the equivalence relation. In checking this, we need change only one of the

pairs at a time. Thus suppose that (a✏, b✏) � (a, b) and that (c, d) is given. We
know that a✏b = ab✏, and we want to see that (ad + bc, bd) � (a✏d + b✏c, b✏d),
i.e., that (ad + bc)b✏d = (a✏d + b✏c)bd. In other words, we are to check that
adb✏d = a✏dbd; we see immediately that this equality is valid since ab✏ = a✏b.
Consequently addition is consistent with the equivalence relation and descends

to be defined on the set F of equivalence classes.

Taking into account the properties satisfied by members of an integral domain,

we checkdirectly that addition is commutative and associative on  F , and it follows
that addition is commutative and associative on F .

The element (0, 1) is a two-sided identity for addition in  F , and hence the
class of (0, 1) is a two-sided identity for addition in F . We denote this class
by 0. Let us identify this class. A pair (a, b) is in the class of (0, 1) if and only
if 0 · b = 1 · a, hence if and only if a = 0. In other words, the class of (0, 1)
consists of all (0, b) with b ✓= 0.

In  F , we have (a, b) + (�a, b) = (ab + b(�a), bb) = (0, b2) � (0, 1), and
therefore the class of (�a, b) is a two-sided inverse to the class of (a, b) under
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addition. Consequently F is an abelian group under addition.

The definition of multiplication in  F is (a, b)(c, d) = (ac, bd), and it is
routine to see that this definition is consistent with the equivalence relation.

Therefore multiplication descends to be defined on F . We check by inspection

that multiplication is commutative and associative on  F , and it follows that it is
commutative and associative on F . The element (1, 1) is a two-sided identity for

multiplication in  F , and the class of (1, 1) is therefore a two-sided identity for
multiplication in F . We denote this class by 1.

If (a, b) is not in the class 0, then a ✓= 0, as we saw above. Then ab ✓= 0,

and we have (a, b)(b, a) = (ab, ab) � (1, 1) = 1. Hence the class of (b, a) is
a two-sided inverse of the class of (a, b) under multiplication. Consequently the
nonzero elements of F form an abelian group under multiplication.

For one of the distributive laws, the computation

(a, b)((c, d) + (e, f )) = (a, b)(c f + de, d f ) = (a(c f + de), bd f )

= (ac f + ade, bd f ) � (acb f + bdae, b2d f )

= (ac, bd) + (ae, bf ) = (a, b)(c, d) + (a, b)(e, f )

shows that the classes of (a, b)((c, d)+ (e, f )) and of (a, b)(c, d)+ (a, b)(e, f )
are equal. The other distributive law follows from this one since F is commutative

under multiplication. Therefore F is a field.

The field F is called the field of fractions of the integral domain R. The

function ⇧ : R � F defined by saying that ⇧(r) is the class of (r, 1) is easily
checked to be a homomorphism of rings sending 1 to 1. It is one-one. Let us

call it the canonical embedding of R into F . The pair (F, ⇧) has the universal
mapping property stated in Proposition 8.6 and illustrated in Figure 8.5.

R
����� F ✏

⇧

⌘⌘$

F

��

FIGURE 8.5. Universal mapping property of the field of fractions of R.

Proposition 8.6. Let R be an integral domain, let F be its field of fractions,

and let ⇧ be the canonical embedding of R into F . Whenever � is a one-one ring
homomorphism of R into a field F ✏ carrying 1 to 1, then there exists a unique
ring homomorphism  � : F � F ✏ such that � =  �⇧, and  � is one-one as a
homomorphism of fields.

REMARK. We say that  � is the extension of � from R to F . Once this

proposition has been proved, it is customary to drop ⇧ from the notation and

regard R as a subring of its field of fractions.
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PROOF. If (a, b) with b ✓= 0 is a pair in  F , we define ⇣(a, b) = �(a)�(b)�1.
This iswell defined sinceb ✓= 0 and since�, beingone-one, cannot have�(b) = 0.

Let us see that ⇣ is consistent with the equivalence relation, i.e., that (a, b) �
(a✏, b✏) implies ⇣(a, b) = ⇣(a✏, b✏). Since (a, b) � (a✏, b✏), we have ab✏ =
a✏b and therefore also �(a)�(b✏) = �(a✏)�(b) and ⇣(a, b) = �(a)�(b)�1 =
�(a✏)�(b✏)�1 = ⇣(a✏, b✏), as required.
We can thus define � of the class of (a, b) to be⇣(a, b), and � is well defined

as a function from F to F ✏. If r is in R, then  �(⇧(r)) =  �(class of (r, 1)) =
⇣(r, 1) = �(r)�(1)�1, and this equals �(r) since � is assumed to carry 1 into 1.
Therefore  �⇧ = �.
For uniqueness, let the class of (a, b) be given in F . Since b is nonzero,

this class is the same as the class of (a, 1)(b, 1)�1, which equals ⇧(a)⇧(b)�1.
Since ( �⇧)(a) = �(a) and ( �⇧)(b) = �(b), we must have  �(class of (a, b)) =
 �(⇧(a)) �(⇧(b))�1 = �(a)�(b)�1. Therefore � uniquely determines  �. �

IfK is a field, then R = K[X] is an integral domain, andProposition8.6 applies
to this R. The field of fractions consists in effect of formal rational expressions

P(X)Q(X)�1 in the indeterminate X , with the expected identifications made.
We write K(X) for this field of fractions. More generally the field of fractions
of the integral domain K[X1, . . . , Xn] consists of formal rational expressions in
the indeterminates X1, . . . , Xn , with the expected identifications made, and is
denoted by K(X1, . . . , Xn).

3. Prime and Maximal Ideals

In this section, R will denote a commutative ring, not necessarily having an

identity. We shall introduce the notions of “prime ideal” and “maximal ideal,”

and we shall investigate relationships between these two notions.

A proper ideal I in R is prime if ab ⌘ I implies a ⌘ I or b ⌘ I . The ideal

I = R is not prime, by convention.5 We give three examples of prime ideals; a

fourth example will be given in a proposition immediately afterward.

EXAMPLES.

(1) For Z, it was shown in an example just before Proposition 4.21 that each
ideal is of the form mZ for some integer m. We may assume that m ↵ 0. The

prime ideals are 0 and all pZ with p prime. To see this latter fact, consider mZ
with m ↵ 2. If m = ab nontrivially, then neither a nor b is in I , but ab is in I ;

hence I is not prime. Conversely if m is prime, and if ab is in I = mZ, then
5This convention is now standard. Books written before about 1960 usually regarded I = R as

a prime ideal. Correspondingly they usually treated the zero ring as an integral domain.
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ab = mc for some integer c. Since m is prime, Lemma 1.6 shows that m divides

a or m divides b. Hence a is in I or b is in I . Therefore I is prime.

(2) IfK is a field, then each ideal in R = K[X] is of the form A(X)K[X] with
A(X) in K[X], and A(X)K[X] is prime if and only if A(X) is 0 or is a prime
polynomial. In fact, each ideal is of the form A(X)K[X] by Proposition 5.8. If
A(X) is not a constant polynomial, then the argument that A(X)K[X] is prime
if and only if the polynomial A(X) is prime proceeds as in Example 1, using
Lemma 1.16 in place of Lemma 1.6.

(3) In R = Z[X], the structure of the ideals is complicated, and we shall not
attempt to list all ideals. Let us observe simply that the ideal I = XZ[X] is prime.
In fact, if A(X)B(X) is in XZ[X], then A(X)B(X) = XC(X) for some C(X) in
Z[X]. If the constant terms of A(X) and B(X) are a0 and b0, this equation says
that a0b0 = 0. Therefore a0 = 0 or b0 = 0. In the first case, A(X) = X P(X)
for some P(X), and then A(X) is in I ; in the second case, B(X) = XQ(X) for
some Q(X), and then B(X) is in I . We conclude that I is prime.

Proposition 8.7. An ideal I in the commutative ring R is prime if and only if

R/I is an integral domain.

PROOF. If a proper ideal I fails to be prime, choose ab in I with a /⌘ I and

b /⌘ I . Then a + I and b + I are nonzero in R/I and have product 0 + I . So

R/I is nonzero and has a zero divisor; by definition, R/I fails to be an integral
domain.

Conversely if R/I (is nonzero and) has a zero divisor, choose a+ I and b+ I

nonzero with product 0+ I . Then neither a nor b is in I but ab is in I . Since I

is certainly proper, I is not prime. �

A proper ideal I in the commutative ring R is said to bemaximal if R has no

proper ideal J with I � J . If the commutative ring R has an identity, a simple

way of testing whether an ideal I is proper is to check whether 1 is in I ; in fact,

if 1 is in I , then I  RI  R1 = R implies I = R. Maximal ideals exist

in abundance when R is nonzero and has an identity, as a consequence of the

following result.

Proposition 8.8. In a commutative ring R with identity, any proper ideal is

contained in a maximal ideal.

PROOF. This follows from Zorn’s Lemma (Section A5 of the appendix).

Specifically let I be the given proper ideal, and form the set S of all proper

ideals that contain I . This set is nonempty, containing I as a member, and we

order it by inclusion upward. If we have a chain in S, then the union of the

members of the chain is an ideal that contains all the ideals in the chain, and it is
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proper since it does not contain 1. Therefore the union of the ideals in the chain is

an upper bound for the chain. By Zorn’s Lemma the set S has a maximal element,

and any such maximal element is a maximal ideal containing I . �

Lemma 8.9. If R is a nonzero commutative ring with identity, then R is a field

if and only if the only proper ideal in R is 0.

PROOF. If R is a field and I is a nonzero ideal in R, let a ✓= 0 be in I . Then

1 = aa�1 is in I , and consequently I = R. Conversely if the only ideals in R

are 0 and R, let a ✓= 0 be given in R, and form the ideal I = aR. Since 1 is in

R, a is in I . Thus I ✓= 0. Then I must be R. So there exists some b in R with

1 = ba, and a is exhibited as having the inverse b. �

Proposition 8.10. If R is a commutative ring with identity, then an ideal I is

maximal if and only if R/I is a field.

REMARK. One can readily give a direct proof, but it seems instructive to give

a proof reducing the result to Lemma 8.9.

PROOF. We consider R and R/I as unital R modules, the ideals for each of R
and R/I being the R submodules. The quotient ring homomorphism R� R/I is
an R homomorphism. By the First IsomorphismTheorem for modules (Theorem

8.3), there is a one-one correspondence between the ideals in R containing I and

the ideals in R/I . Then the result follows immediately from Lemma 8.9. �

Corollary 8.11. If R is a commutative ring with identity, then every maximal

ideal is prime.

PROOF. If I is maximal, then R/I is a field by Proposition 8.10. Hence R/I
is an integral domain, and I must be prime by Proposition 8.7. �

In the converse direction nonzero prime ideals need not be maximal, as the

following example shows. However, Proposition 8.12 will show that nonzero

prime ideals are necessarily maximal in certain important rings.

EXAMPLE. In R = Z[X], we have seen that I = XZ[X] is a prime ideal. But
I is not maximal since XZ[X]+ 2Z[X] is a proper ideal that strictly contains I .

Proposition 8.12. In R = Z or R = K[X] withK a field, every nonzero prime
ideal is maximal.

PROOF. Examples 1 and 2 at the beginning of this section show that every

nonzero prime ideal is of the form I = pR with p prime. If such an I is given

and if J is any ideal strictly containing I , choose a in J with a not in I . Since a
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is not in I = pR, it is not true that p divides a. So p and a are relatively prime,

and there exist elements x and y in R with xp + ya = 1, by Proposition 1.2c or

1.15d. Since p and a are in J , so is 1. Therefore J = R, and I is not strictly

contained in any proper ideal. So I is maximal. �

EXAMPLE. Algebraic number fields Q[⌃]. These were introduced briefly in
Chapter IV and again in Section 1 as theQ linear span of all powers 1, ⌃, ⌃2, . . . .
Here ⌃ is a nonzero complex number, and we make the assumption thatQ[⌃] is a
finite-dimensional vector space overQ. Proposition 4.1 showed thatQ[⌃] is then
indeed a field. Let us see how this conclusion relates to the results of the present

section. In fact, write a nontrivial linear dependence of 1, ⌃, ⌃2, . . . over Q in

the form c0 + c1⌃ + c2⌃
2 + · · · + cn�1⌃

n�1 + ⌃n = 0. Without loss of generality,

suppose that this particular linear dependence has n as small as possible among

all such relations. Then ⌃ is a root of

P(X) = c0 + c1X + c2X
2 + · · · + cn�1X

n�1 + Xn.

Consider the substitution homomorphism E : Q[X]� C given by E(A(X)) =
A(⌃). This ring homomorphism carries Q[X] onto the ring Q[⌃], and the kernel
is some ideal I . Specifically I consists of all polynomials A(X) with A(⌃) = 0,

and P(X) is one of these of lowest possible degree. Proposition 5.8 shows that I
consists of all multiples of some polynomial, and that polynomial may be taken

to be P(X) by minimality of the integer n. Proposition 8.1 therefore shows
that Q[⌃] �= Q[X]/P(X)Q[X] as a ring. If P(X) were to have a nontrivial
factorization as P(X) = Q1(X)Q2(X), then P(⌃) = 0 would imply Q1(⌃) = 0

or Q2(⌃) = 0, and we would obtain a contradiction to the minimality of n.

Therefore P(X) is prime. By Example 2 earlier in the section, I = P(X)Q[X]
is a nonzero prime ideal, and Proposition 8.12 shows that it is maximal. By

Proposition 8.10 the quotient ring Q[⌃] = Q[X]/P(X)Q[X] is a field. These
computations withQ[⌃] underlie the first part of the theory of fields that we shall
develop in Chapter IX.

4. Unique Factorization

We have seen that the positive members of Z and the nonzero members ofK[X],
whenK is a field, factor into the products of “primes” and that these factorizations
are unique up to order and up to adjusting each of the prime factors in K[X] by
a unit. In this section we shall investigate this idea of unique factorization more

generally. Zero divisors are problematic from the point of view of factorization,

and it will be convenient to exclude them. Therefore we work exclusively with

integral domains.
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The first observation is that unique factorization is not a completely general

notion for integral domains. Let us consider an example in detail.

EXAMPLE. R = Z[
⇢
�5 ]. This is the subring of C whose members are of

the form a + b
⇢
�5 with a and b integers. Since (a + b

⇢
�5 )(c + d

⇢
�5 ) =

(ac � 5cd) + (ad + bc)
⇢
�5, R is closed under multiplication and is indeed a

subring. Define N (a + b
⇢
�5 ) = a2 + 5b2 = (a + b

⇢
�5 )(a + b

⇢
�5). This

is a nonnegative-integer-valued function on R and is 0 only on the 0 element of

R. Since complex conjugation is an automorphism of C, we check immediately
that

N
�
(a + b

⇢
�5 )(c + d

⇢
�5 )

⇥
= N (a + b

⇢
�5 )N (c + d

⇢
�5 ).

The group of units of R, i.e., of elements with inverses under multiplication, is

denoted by R⇤ as usual. If r is in R⇤, then rr�1 = 1, and so N (r)N (r�1) =
N (1) = 1. Consequently the units r of R all have N (r) = 1. Settinga2+5b2 = 1,

we see that the units are ±1. The product formula for N shows that if we start

factoring a member of R, then factor its factors, and so on, and if we forbid

factorizations into two factors when one is a unit, then the process of factorization

has to stop at some point. So complete factorization makes sense. Now consider

the equality

6 = (1+
⇢
�5 )(1�

⇢
�5 ) = 2 · 3.

The factors here have N (1 +
⇢
�5 ) = N (1 �

⇢
�5 ) = 6, N (2) = 4, and

N (3) = 9. Considering the possible values of a2 + 5b2, we see that N ( · ) does
not take on either of the values 2 and 3 on R. Consequently 1+

⇢
�5, 1�

⇢
�5,

2, and 3 do not have nontrivial factorizations. On the other hand, consideration

of the values of N ( · ) shows that 2 and 3 are not products of either of 1±
⇢
�5

with units. We conclude that the displayed factorizations of 6 show that unique

factorization has failed.

Thus unique factorization is not universal for integral domains. It is time

to be careful about terminology. With Z and K[X], we have referred to the
individual factors in a complete factorization as “primes.” Their defining property

in Chapter I was that they could not be factored further in nontrivial fashion.

Primes in these rings were shown to have the additional property that if a prime

divides a product then it divides one of the factors. It is customary to separate

these two properties for general integral domains. Let us say that a nonzero

element a divides b if b = ac for some c. In this case we say also that a is

a factor of b. In an integral domain R, a nonzero element r that is not a unit

is said to be irreducible if every factorization r = r1r2 in R has the property

that either r1 or r2 is a unit. Nonzero nonunits that are not irreducible are said
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to be reducible. A nonzero element p that is not a unit is said to be prime6 if

the condition that p divides a product ab always implies that p divides a or p

divides b.

Prime implies irreducible. In fact, if p is a prime that is reducible, let us write

p = r1r2 with neither r1 nor r2 equal to a unit. Since p is prime, p divides r1 or

r2, say r1. Then r1 = pc with c in R, and we obtain p = r1r2 = pcr2. Since

R is an integral domain, 1 = cr2, and r2 is exhibited as a unit with inverse c, in

contradiction to the assumption that r2 is not a unit.

On the other hand, irreducible does not imply prime. In fact, we saw in

Z[
⇢
�5 ] that 1+

⇢
�5 is irreducible. But 1+

⇢
�5 divides 2 · 3, and 1+

⇢
�5

does not divide either of 2 or 3. Therefore 1+
⇢
�5 is not prime.

We shall see in amoment that thedistinctionbetween“irreducible”and“prime”

lies at the heart of the question of unique factorization. Let us make a definition

that helps identify our problem precisely. We say that an integral domain R is a

unique factorization domain if R has the two properties

(UFD1) every nonzero nonunit of R is a finite product of irreducible ele-

ments,

(UFD2) the factorization in (UFD1) is always unique up to order and to

multiplication of the factors by units.

The problem that arises for us for a given R is to decide whether R is a unique

factorization domain. The following proposition shows the relevance of the

distinction between “irreducible” and “prime.”

Proposition 8.13. In an integral domain R in which (UFD1) holds, the

condition (UFD2) is equivalent to the condition

(UFD2✏) every irreducible element is prime.

REMARKS. In fact, showing that irreducible implies prime was the main step

in Chapter I in proving unique factorization for positive integers and for K[X]
when K is a field. The mechanism for carrying out the proof that irreducible

implies prime for those settings will be abstracted in Theorems 8.15 and 8.17.

PROOF. Suppose that (UFD2) holds, that p is an irreducible element, and

that p divides ab. We are to show that p divides a or p divides b. We may

assume that ab ✓= 0. Write ab = pc, and let a =
⇡

i pi , b =
⇡

j p
✏
j , and

c =
⇡

k qk be factorizations via (UFD1) into products of irreducible elements.

6This definition enlarges the definition of “prime” in Z to include the negatives of the usual prime
numbers. Unique factorization immediately extends to nonzero integers of either sign, but the prime

factors are now determined only up to factors of ±1. In cases where confusion about the sign of an
integer prime might arise, the text will henceforth refer to “primes of Z” or “integer primes” when
both signs are allowed, and to “positive primes” or “prime numbers” when the primes are understood

to be as in Chapter I.
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Then
⇡

i, j pi p
✏
j = p

⇡
k qk . By (UFD2) one of the factors on the left side is �p

for some unit �. Then p either is of the form ��1 pi and then p divides a, or is of
the form ��1 p✏j and then p divides b. Hence (UFD2

✏) holds.

Conversely suppose that (UFD2✏) holds. Let the nonzero nonunit r have two
factorizations into irreducible elements as r = p1 p2 · · · pm = �0q1q2 · · · qn with
m ⌦ n and with �0 a unit. We prove the uniqueness by induction on m, the case
m = 0 following vacuously since r is not a unit and the case m = 1 following

from the definition of “irreducible.” Inductively from (UFD2✏) we know that pm
divides qk for some k. Since qk is irreducible, qk = �pm for some unit �. Thus we
can cancel qk and obtain p1 p2 · · · pm�1 = �0�q1q2 · · · �qk · · · qn , the hat indicating
an omitted factor. By induction the factors on the two sides here are the same

except for order and units. Thus the same conclusion is valid when comparing the

two sides of the equality p1 p2 · · · pm = �0q1q2 · · · qn . The induction is complete,
and (UFD2) follows. �

It will be convenient to simplify our notation for ideals. In any commutative

ring R with identity, if a is in R, we let (a) denote the ideal Ra generated by a.
An ideal of this kind with a single generator is called a principal ideal. More

generally, if a1, . . . , an are members of R, then (a1, . . . , an) denotes the ideal
Ra1 + · · · + Ran generated by a1, . . . , an . For example, in Z[X], (2, X) denotes
the ideal 2Z+ XZ of all polynomials whose constant term is even. The following
condition explains a bit the mystery of what it means for an element to be prime.

Proposition 8.14. A nonzero element p in an integral domain R is prime if

and only if the ideal (p) in R is prime.

PROOF. Suppose that the element p is prime. Then the ideal (p) is not R; in
fact, otherwise 1 would have to be of the form 1 = rp for some r ⌘ R, r would be

a multiplicative inverse of p, and p would be a unit. Now suppose that a product

ab is in the ideal (p). Then ab = pr for some r in R, and p divides ab. Since p

is prime, p divides a or p divides b. Therefore the ideal (p) is prime.

Conversely suppose that (p) is a prime ideal with p ✓= 0. Since (p) ✓= R, p

is not a unit. If p divides the product ab, then ab = pc for some c in R. Hence

ab is in (p). Since (p) is assumed prime, either a is in (p) or b is in (p). In the
first case, p divides a, and in the second case, p divides b. Thus the element p is

prime. �

An integral domain R is called a principal ideal domain if every ideal in R is

principal. At the beginning of Section 3, we saw a reminder that Z is a principal
ideal domain and that so is K[X] whenever K is a field. It turns out that unique

factorization for these cases is a consequence of this fact.
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Theorem 8.15. Every principal ideal domain is a unique factorization domain.

REMARKS. Let R be the given principal ideal domain. Proposition 8.13 shows

that it is enough to show that (UFD1) and (UFD2✏) hold in R.

PROOF OF (UFD1). Let a1 be a nonzero nonunit of R. Then the ideal (a1)
in R is proper and nonzero, and Proposition 8.8 shows that it is contained in a

maximal ideal. Since R is a principal ideal domain, this maximal ideal is of the

form (c1) for some c1, and c1 is a nonzero nonunit. Maximal ideals are prime
by Corollary 8.11, and Proposition 8.14 thus shows that c1 is a prime element,

necessarily irreducible. Therefore the inclusion (a1) � (c1) shows that some
irreducible element, namely c1, divides a1.

Write a1 = c1a2, and repeat the above argument with a2. Iterating this

construction, we obtain an = cnan+1 for each n with cn irreducible. Thus

a1 = c1c2 · · · cnan+1 with c1, . . . , cn irreducible. Let us see that this process
cannot continue indefinitely. Assuming the contrary, we are led to the strict

inclusions

(a1) � (a2) � (a3) � · · · .

Put I =
⇢⇣

n=1(an). Then I is an ideal. Since R is a principal ideal domain,
I = (a) for some element a. This element a must be in (ak) for some k, and then
we have (ak) = (ak+1) = · · · = (a). Since (ak) = (ak+1), ck has to be a unit,
contradiction. Thus ak has no nontrivial factorization, and a1 = c1 · · · ck�1ak is
the desired factorization. This proves (UFD1). �
PROOF OF (UFD2✏). If p is an irreducible element, we prove that the ideal (p)

is maximal. Corollary 8.11 shows that (p) is prime, and Proposition 8.14 shows
that p is prime. Thus (UFD2✏) will follow.
The element p, being irreducible, is not a unit. Thus (p) is proper. Suppose

that I is an ideal with I ⇥ (p). Since R is a principal ideal domain, I = (c)
for some c. Then p = rc for some r in R. Since I ✓= (p), r cannot be a unit.
Therefore the irreducibility of p implies that c is a unit. Then I = (c) = (1) = R,

and we conclude that (p) is maximal. �

Let us record what is essentially a corollary of the proof.

Corollary 8.16. In a principal ideal domain, every nonzero prime ideal is

maximal.

PROOF. Let (p) be a nonzero prime ideal. Proposition 8.14 shows that p
is prime, and prime elements are automatically irreducible. The argument for

(UFD2✏) in the proof of Theorem 8.15 then deduces in the context of a principal
ideal domain that (p) is maximal. �
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Principal ideal domains arise comparatively infrequently, and recognizing

them is not necessarily easy. The technique that was used with Z and K[X]
generalizes slightly, and we take up that generalization now. An integral domain

R is called aEuclidean domain if there exists a function ⇤ : R� {integers ↵ 0}
such that whenever a and b are in R with b ✓= 0, there exist q and r in R with

a = bq + r and ⇤(r) < ⇤(b). The ring Z of integers is a Euclidean domain if we
take ⇤(n) = |n|, and the ringK[X] forK a field is a Euclidean domain if we take

⇤(P(X)) to be 2deg P if P(X) ✓= 0 and to be 0 if P(X) = 0.

Another example of a Euclidean domain is the ring Z[
⇢
�1 ] = Z+Z

⇢
�1 of

Gaussian integers. It has ⇤(a+b
⇢
�1 ) = (a+b

⇢
�1 )(a�b

⇢
�1 ) = a2+b2,

a and b being integers. Let us abbreviate
⇢
�1 as i . To see that ⇤ has the required

property, we first extend ⇤ toQ[i], writing ⇤(x+yi) = (x+yi)(x�yi) = x2+y2

if x and y are rational. We use the fact that

⇤(zz✏) = ⇤(z)⇤(z✏) for z and z✏ in Q[i],

which follows from the computation ⇤(zz✏) = zz✏ · zz✏ = zzz✏z✏ = ⇤(z)⇤(z✏).
For any real number u, let [u] be the greatest integer ⌦ u. Every real u satisfies⌥⌥[u + 1

2
]� u

⌥⌥ ⌦ 1
2
. Given a + ib and c + di with c + di ✓= 0, we write

a + bi

c + di
= (a + bi)(c � di)

c2 + d2
= ac + bd

c2 + d2
+ bc � ad

c2 + d2
i.

Put p =
!
ac+bd
c2+d2 + 1

2

"
, q=

!
bc�ad
c2+d2 + 1

2

"
, and r+si = (a+bi)�(c+di)(p+qi).

Then

a + bi = (c + di)(p + qi) + (r + si),

and

⇤(r + si) = ⇤
�
(a+ bi)� (c+ di)(p+ qi)

⇥
= ⇤(c+ di)⇤

 a + bi

c + di
� (p+ qi)

⌦
.

The complex number x + yi = a+bi
c+di � (p + qi) =

�
ac+bd
c2+d2 � p

⇥
+
�
bc�ad
c2+d2 � q

⇥
i

has |x | ⌦ 1
2
and |y| ⌦ 1

2
, and therefore ⇤(x+ yi) = x2+ y2 ⌦ 1

4
+ 1
4

= 1
2
. Hence

⇤(r + si) < ⇤(c + di), as required.

Some further examples of this kind appear in Problems 13 and 25–26 at the

end of the chapter. The matter is a little delicate. The ring Z[
⇢
�5 ] may seem

superficially similar toZ[
⇢
�1 ]. ButZ[

⇢
�5 ]doesnot haveunique factorization,

and the following theorem, in combination with Theorem 8.15, assures us that

Z[
⇢
�5 ] cannot be a Euclidean domain.
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Theorem 8.17. Every Euclidean domain is a principal ideal domain.

PROOF. Let I be an ideal in R. We are to show that I is principal. Without

loss of generality, we may assume that I ✓= 0. Choose b ✓= 0 in I with ⇤(b) as
small as possible. Certainly I  (b). If a ✓= 0 is in I , write a = bq + r with

⇤(r) < ⇤(b). Then r = a � bq is in I with ⇤(r) < ⇤(b). The minimality of b
forces r = 0 and a = bq. Thus I � (b), and we conclude that I = (b). �

5. Gauss’s Lemma

In the previous section we saw that every principal ideal domain has unique

factorization. In the present section we shall establish that certain additional

integral domains have unique factorization, namely any integral domain R[X]

for which R is a unique factorization domain. A prototype is Z[X], which will
be seen to have unique factorization even though there exist nonprincipal ideals

like (2, X) in the ring. An important example for applications, particularly in
algebraic geometry, is K[X1, . . . , Xn], where K is a field; in this case our result

is to be applied inductively, making use of the isomorphism K[X1, . . . , Xn] �=
K[X1, . . . , Xn�1][Xn] given in Corollary 4.31.
For the conclusion that R[X] has unique factorization if R does, the heart of

the proof is an application of a result known as Gauss’s Lemma, which we shall

prove in this section. Gauss’s Lemma has additional consequences for R[X]

beyond unique factorization, and we give them as well.

Before coming to Gauss’s Lemma, let us introduce some terminology and

prove one preliminary result. In any integral domain R, we call two nonzero

elements a and b associates if a = b� for some � in the group R⇤ of units. The
property of being associates is an equivalence relation because R⇤ is a group.
Still with the nonzero integral domain R, let us define a greatest common

divisor of two nonzero elements a and b to be any element c of R such that c

divides both a and b and such that any divisor of a and b divides c. Any associate

of a greatest common divisor of a and b is another greatest common divisor of

a and b. Conversely if a and b have a greatest common divisor, then any two

greatest common divisors are associates. In fact, if c and c✏ are greatest common
divisors, then each of them divides both a and b, and the definition forces each

of them to divide the other. Thus c✏ = c� and c = c✏�✏, and then c✏ = c✏�✏� and
1 = �✏�. Consequently � is a unit, and c and c✏ are associates.
If R is a unique factorization domain, then any two nonzero elements a and b

have a greatest common divisor. In fact, we decompose a and b into the product

of a unit by powers of nonassociate irreducible elements as a = �
⇡m

i=1 p
ki
i and

b = �✏
⇡n

j=1 p
✏
j
lj . For each p✏j such that p

✏
j is associate to some pi , we replace

p✏j by pi in the factorization of b, adjusting �
✏ as necessary, and then we reorder
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the factors of a and b so that the common pi ’s are the ones for 1 ⌦ i ⌦ r . Then

c =
⇡r

i=1 p
min(ki ,li )
i is a greatest common divisor of a and b. We write GCD(a, b)

for a greatest common divisor of a and b; as we saw above, this is well defined

up to a factor of a unit.7

One should not read too much into the notation. In a principal ideal domain if

a and b are nonzero, then, as we shall see momentarily, GCD(a, b) is defined by
the condition on ideals that

(GCD(a, b)) = (a, b).

This condition implies that there exist elements x and y in R such that

xa + yb = GCD(a, b).

However, in the integral domain Z[X], in which GCD(2, X) = 1, there do not

exist polynomials A(X) and B(X) with A(X)2+ B(X)X = 1.

To prove that (GCD(a, b)) = (a, b) in a principal ideal domain, write (c)
for the principal ideal (a, b); c satisfies c = xa + yb for some x and y in R.

Since a and b lie in (c), a = rc and b = r ✏c. Hence c divides both a and b.
In the reverse direction if d divides a and b, then ds = a and ds ✏ = b. Hence

c = xa + yb = (xs + ys ✏)d, and d divides c. So c is indeed a greatest common
divisor of a and b.

In a unique factorization domain the definition of greatest common divisor

immediately extends to apply to n nonzero elements, rather than just two. We

readily check up to a unit that

GCD(a1, . . . , an) = GCD
�
GCD(a1, . . . , an�1), an

⇥
.

Moreover, we can allow any of a2, . . . , an to be 0, and there is no difficulty. In
addition, we have

GCD(da1, . . . , dan) = d GCD(a1, . . . , an) up to a unit

if d and a1 are not 0.

Let R be a unique factorization domain. If A(X) is a nonzero element of R[X],
we say that A(X) is primitive if the GCD of its coefficients is a unit. In this case
no prime of R divides all the coefficients of A(X).

7Greatest common divisors can exist for certain integral domains that fail to have unique factor-

ization, but we shall not have occasion to work with any such domains.
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Theorem 8.18 (Gauss’s Lemma). If R is a unique factorization domain, then

the product of primitive polynomials is primitive.

PROOF #1. Arguing by contradiction, let A(X) = amX
m + · · · + a0 and

B(X) = bnX
n + · · · + b0 be primitive polynomials such that every coefficient of

A(X)B(X) is divisible by some prime p. Since A(X) and B(X) are primitive,
we may choose k and l as small as possible such that p does not divide ak and

does not divide bl . The coefficient of X
k+l in A(X)B(X) is

a0bk+l + a1bk+l�1 + · · · + akbl + · · · + ak+lb0

and is divisible by p. Then all the individual terms, and their sum, are divisible

by p except possibly for akbl , and we conclude that p divides akbl . Since p is

prime and p divides akbl , p must divide ak or bl , contradiction. �
PROOF #2. Arguing by contradiction, let A(X) and B(X) be primitive poly-

nomials such that every coefficient of A(X)B(X) is divisible by some prime
p. Proposition 8.14 shows that the ideal (p) is prime, and Proposition 8.7
shows that R✏ = R/(p) is an integral domain. Let � : R � R✏[X] be the
composition of the quotient homomorphism R� R✏ and the inclusion of R✏ into
constant polynomials in R✏[X], and let⇣ : R[X]� R✏[X] be the corresponding
substitution homomorphism of Proposition 4.24 that carries X to X . Since A(X)
and B(X) are primitive, ⇣(A(X)) and ⇣(B(X)) are not zero. Their product
⇣(A(X))⇣(B(X)) = ⇣(A(X)B(X)) is 0 since p divides every coefficient of
A(X)B(X), and this conclusion contradicts the assertion of Proposition 4.29 that
R✏[X] is an integral domain. �

Let F be the field of fractions of the unique factorization domain R. The

consequences of Theorem 8.18 exploit a simple relationship between R[X] and

F[X], whichwe state below as Proposition 8.19. Once that proposition is in hand,

we can state the consequences of Theorem 8.18. If A(X) is a nonzero polynomial
in R[X], let c(A) to be the greatest common divisor of the coefficients, i.e.,

c(A) = GCD(an, . . . , a1, a0) if A(X) = anX
n + · · · + a1X + a0.

The element c(A) is well defined up to a factor of a unit. In this notation the
definition of “primitive” becomes, A(X) is primitive if and only if c(A) is a unit.
We shall make computations with c(A) as if it were a member of R, in order to
keep the notation simple. To be completely rigorous, one should regard c(A) as
an orbit of the group R⇤ of units in R, using equality to refer to equality of orbits.
If A(X) is not necessarily primitive, then at least c(A) divides each coefficient

of A(X), and hence c(A)�1A(X) is in R[X], say with coefficients bn, . . . , b1, b0.
Then we have

c(A) = GCD(an, . . . , a1, a0) = GCD(c(A)bn, . . . , c(A)b1, c(A)b0)

= c(A)GCD(bn, . . . , b1, b0) = c(A)c
�
c(A)�1A(X)

⇥
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up to a unit factor, and hence c
�
c(A)�1A(X)

⇥
is a unit. We conclude that

A(X) ⌘ R[X] implies that c(A)�1A(X) is primitive.

Proposition 8.19. Let R be a unique factorization domain, and let F be its

field of fractions. If A(X) is any nonzero polynomial in F[X], then there exist �
in F and A0(X) in R[X] such that A(X) = �A0(X) with A0(X) primitive. The
scalar � and the polynomial A0(X) are unique up to multiplication by units in R.

REMARK. We call A0(X) the associated primitive polynomial to A(X).
According to the proposition, it is unique up to a unit factor in R.

PROOF. Let A(X) = cn X
n + · · · + c1X + c0 with each ck in F . We can write

each ck as akb
�1
k with ak and bk in R and bk ✓= 0. We clear fractions. That is,

we let ⇥ =
⇡n

k=0 bk . Then the k
th coefficient of ⇥A(X) is ak

⇡
l ✓=k bl and is in

R. Hence ⇥A(X) is in R[X]. The observation just before the proposition shows
that c(⇥A)�1⇥A is primitive. Thus A(X) = �A0(X) with � = ⇥�1c(⇥A) and
A0(X) = c(⇥A)�1⇥A(X), A0(X) being primitive. This proves existence.

If �1A1(X) = �2A2(X) with �1 and �2 in F and with A1(X) and A2(X)
primitive, choose r ✓= 0 in R such that r�1 and r�2 are in R. Up to unit factors in
R, we then have r�1 = r�1c(A1) = c(r�1A1) = c(r�2A2) = r�2c(A2) = r�2.
Hence, up to a unit factor in R, we have �1 = �2. This proves uniqueness. �

Corollary 8.20. Let R be a unique factorization domain, and let F be its field

of fractions.

(a) Let A(X) and B(X) be nonzero polynomials in R[X], and suppose that
B(X) is primitive. If B(X) divides A(X) in F[X], then it divides A(X) in R[X].

(b) If A(X) is an irreducible polynomial in R[X] of degree> 0, then A(X) is
irreducible in F[X].

(c) If A(X) is a monic polynomial in R[X] and if B(X) is a monic factor of
A(X) within F[X], then B(X) is in R[X].

(d) If A(X), B(X), and C(X) are in R[X] with A(X) primitive and with
A(X) = B(X)C(X), then B(X) and C(X) are primitive.

PROOF. In (a), write A(X) = B(X)Q(X) in F(X), and letQ(X) =  Q0(X)be
a decomposition of Q(X) as in Proposition 8.19. Since c(A)�1A(X) is primitive,
the corresponding decomposition of A(X) is A(X) = c(A)

�
c(A)�1A(X)

⇥
. The

equality A(X) =  B(X)Q0(X) then reads c(A)(c(A)�1A(X)) =  B(X)Q0(X).
Since B(X)Q0(X) is primitive according to Theorem 8.18, the uniqueness in

Proposition 8.19 shows that c(A)�1A(X) = B(X)Q0(X) except possibly for a
unit factor in R. Then B(X) divides A(X) with quotient c(A)Q0(X), apart from
a unit factor in R. Since c(A)Q0(X) is in R[X], (a) is proved.
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In (b), the condition that deg A(X) > 0 implies that A(X) is not a unit in
F[X]. Arguing by contradiction, suppose that A(X) = B(X)Q(X) in F[X] with
neither of B(X) and Q(X) of degree 0. Let B(X) = ⇥B0(X) be a decomposition
of B(X) as in Proposition 8.19. Then we have A(X) = B0(X)(⇥Q(X)), and (a)
shows that ⇥Q(X) is in R[X], in contradiction to the assumed irreducibility of
A(X) in R[X].
In (c), write A(X) = B(X)Q(X), and let B(X) = ⇥B0(X) be a decomposition

of B(X) as in Proposition 8.19. Then we have A(X) = B0(X)(⇥Q(X)) with
⇥Q(X) in F[X]. Conclusion (a) shows that ⇥Q(X) is in R[X]. If b ⌘ R is the

leading coefficient of B0(X) and ifq ⌘ R is the leading coefficient of⇥Q(X), then
we have 1 = bq, and consequently b and q are units in R. Since B(X) = ⇥B0(X)
and B(X) is monic, 1 = ⇥b, and therefore ⇥ = b�1 is a unit in R. Hence B(X)
is in R[X].

In (d), we argue along the same lines as in (a). We may take B(X) =
c(B)(c(B)�1B(X)) and C(X) = c(C)(c(C)�1C(X)) as decompositions of
B(X) and C(X) according to Proposition 8.19. Then we have A(X) =
(c(B)c(C))

⇤
c(B)�1B(X)c(C)�1C(X)

⌅
. Theorem 8.18 says that the factor in

brackets is primitive, and the uniqueness in Proposition 8.19 shows that 1 =
c(B)c(C), up to unit factors. Therefore c(B) and c(C) are units in R, and B(X)
and C(X) are primitive. �

Corollary 8.21. If R is a unique factorization domain, then the ring R[X] is

a unique factorization domain.

REMARK. As was mentioned at the beginning of the section, Z[X] and
K[X1, . . . , Xn], when K is a field, are unique factorization domains as a con-

sequence of this result.

PROOF. We begin with the proof of (UFD1). Suppose that A(X) is a nonzero
member of R[X]. We may take its decomposition according to Proposition 8.19

to be A(X) = c(A)(c(A)�1A(X)). Consider divisors of c(A)�1A(X) in R[X].
These are all primitive, according to (d). Hence those of degree 0 are units

in R. Thus any nontrivial factorization of c(A)�1A(X) is into two factors of
strictly lower degree, both primitive. In a finite number of steps, this process of

factorizationwith primitive factors has to stop. We can then factor c(A)within R.
Combining the factorizations of c(A) and c(A)�1A(X), we obtain a factorization
of A(X).
For (UFD2✏), let P(X) be irreducible in R[X]. Since the factorization P(X) =

c(P)(c(P)�1P(X)) has to be trivial, either c(P) is a unit, in which case P(X) is
primitive, or c(P)�1P(X) is a unit, in which case P(X) has degree 0. In either
case, suppose that P(X) divides a product A(X)B(X).
In the first case, P(X) is primitive. Since F[X] is a principal ideal domain,

hence a unique factorization domain, either P(X) divides A(X) in F[X] or P(X)
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divides B(X) in F[X]. By symmetry we may assume that P(X) divides A(X)
in F[X]. Then (a) shows that P(X) divides A(X) in R[X].
In the second case, P(X) = P has degree 0 and is prime in R. Put R✏ = R(P)

as in Proof #2 of Theorem 8.18. Then A(X)B(X) maps to zero in the integral
domain R✏[X], and hence A(X) or B(X) is in P R[X]. �

The final application, Eisenstein’s irreducibility criterion, is proved somewhat

in the style of Gauss’s Lemma (Theorem 8.18). We shall give only the analog of

Proof #1 of Gauss’s Lemma, leaving the analog of Proof #2 to Problem 21 at the

end of the chapter.

Corollary 8.22 (Eisenstein’s irreducibility criterion). Let R be a unique fac-

torization domain, let F be its field of fractions, and let p be a prime in R. If

A(X) = aN X
N + · · · + a1X + a0 is a polynomial of degree ↵ 1 in R[X] such

that p divides aN�1, . . . , a0 but not aN and such that p
2 does not divide a0, then

A(X) is irreducible in F[X].

REMARK. The polynomial A(X) will be irreducible in R[X] also unless all its
coefficients are divisible by some nonunit of R.

PROOF. Without loss of generality, we may replace A(X) by c(A)�1A(X)
and thereby assume that A(X) is primitive; this adjustment makes use of the
hypothesis that p does not divide aN . Corollary 8.20b shows that it is enough to

prove irreducibility in R[X]. Assuming the contrary, suppose that A(X) factors
in R[X] as A(X) = B(X)C(X) with B(X) = bmX

m + · · · + b1X + b0, C(X) =
cn X

n + · · ·+ c1X + c0, and neither of B(X) and C(X) equal to a unit. Corollary
8.20d shows that B(X) and C(X) are primitive. In particular, B(X) and C(X)
have to be nonconstant polynomials. Define ak = 0 for k > N , bk = 0 for k > m,

and ck = 0 for k > n. Since p divides a0 = b0c0 and p is prime, p divides either

b0 or c0. Without loss of generality, suppose that p divides b0. Since p
2 does not

divide a0, p does not divide c0.

We show, by induction on k, that p divides bk for every k < N . The case

k = 0 is the base case of the induction. If p divides bj for j < k, then we have

ak = b0ck + b1ck�1 + · · · + bk�1c1 + bkc0.

Since k < N , the left side is divisible by p. The inductive hypothesis shows

that p divides every term on the right side except possibly the last. Consequently

p divides bkc0. Since p does not divide c0, p divides bk . This completes the

induction.

SinceC(X) is nonconstant, the degree of B(X) is< N , and therefore we have

shown that every coefficient of B(X) is divisible by p. Then c(B) is divisible by
p, in contradiction to the fact that B(X) is primitive. �
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EXAMPLES.

(1) Cyclotomic polynomials inQ[X]. Let us see for each prime number p that
the polynomial ⇣(X) = X p�1 + X p�2 + · · · + X + 1 is irreducible in Q[X].
We have X p � 1 = (X � 1)⇣(X). Replacing X � 1 by Y gives (Y + 1)p � 1 =
Y⇣(Y + 1). The left side, by the Binomial Theorem, is

⇠p

k=1
�
p

k

⇥
Y k . Hence

⇣(Y + 1) =
⇠p

k=1
�
p

k

⇥
Y k�1. The binomial coefficient

�
p

k

⇥
is divisible by p

for 1 ⌦ k ⌦ p � 1 since p is prime, and therefore the polynomial ⌘(Y ) =
⇣(Y + 1) satisfies the condition of Corollary 8.22 for the ring Z. Hence⌘(Y ) is
irreducible overQ[Y ]. A nontrivial factorizationof⇣(X)would yield a nontrivial
factorization of ⌘(Y ), and hence ⇣(X) is irreducible over Q[X].
(2) Certain polynomials in K[X,Y ] when K is a field. Since K[X,Y ] �=

K[X][Y ], it follows thatK[X,Y ] is a unique factorization domain, and any mem-
ber ofK[X,Y ] can be written as A(X,Y ) = an(X)Y n + · · · + a1(X)Y + a0(X).
The polynomial X is prime in K[X,Y ], and Corollary 8.22 therefore says that
A(X,Y ) is irreducible inK(X)[Y ] if X does not divide an(X) inK[X], X divides
an�1(X), . . . , a0(X) inK[X], and X2 does not divide a0(X) inK[X]. The remark
with the corollary points out that A(X,Y ) is irreducible in K[X,Y ] if also there
is no nonconstant polynomial in K[X] that divides every ak(X). For example,
Y 5 + XY 2 + XY + X is irreducible in K[X,Y ].

6. Finitely Generated Modules

TheFundamentalTheoremof FinitelyGeneratedAbelianGroups (Theorem4.56)

says that every finitely generated abelian group is a direct sum of cyclic groups.

If we think of abelian groups as Z modules, we can ask whether this theorem

has some analog in the context of R modules. The answer is yes—the theorem

readily extends to the case thatZ is replacedby an arbitraryprincipal ideal domain.
The surprising addendum to the answer is that we have already treated a second

special case of the generalized theorem. That case arises when the principal ideal

domain is K[X] for some field K. If V is a finite-dimensional vector space over
K and L : V � V is a K linear map, then V becomes a K[X] module under
the definition Xv = L(v). This module is finitely generated even without the
X present because V is finite-dimensional, and the generalized theorem that we

prove in this section recovers the analysis of L that we carried out in Chapter V.

WhenK is algebraically closed, we obtain the Jordan canonical form; for general

K, we obtain a different canonical form involving cyclic subspaces that was

worked out in Problems 32–40 at the end of Chapter V.

The definitions for the generalization of Theorem 4.56 are as follows. Let

R be a principal ideal domain. A subset S of an R module M is called a set

of generators of M if M is the smallest R submodule of M containing all the
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members of S. If {ms | s ⌘ S} is a subset of M , then the set of all finite
sums

⇠
s⌘S rsms is an R submodule, but it need not contain the elements ms and

therefore need not be the R submodule generated by all the ms . However, if M

is unital, then taking rs0 = 1 and all other rs equal to 0 exhibits ms0 as in the R

submodule of all finite sums
⇠

s⌘S rsms . For this reason we shall insist that all

the R submodules in this section be unital.

We say that the R module M is finitely generated if it has a finite set of

generators. The main theorem gives the structure of unital finitely generated R

modules when R is a principal ideal domain. We need to take a small preliminary

step that eliminates technical complications from the discussion, the same step

that was carried out in Lemma 4.51 and Proposition 4.52 in the case ofZmodules,
i.e., abelian groups.

Lemma 8.23. Let R be a commutative ring with identity, and let � : M � N

be a homomorphism of unital R modules. If ker� and image� are finitely
generated, then M is finitely generated.

PROOF. Let {x1, . . . , xm} and {y1, . . . , yn}be respective finite sets of generators
for ker� and image�. For 1 ⌦ j ⌦ n, choose x ✏j in M with �(x ✏j ) = yj . We shall

prove that {x1, . . . , xm, x ✏1, . . . , x
✏
n} is a set of generators forM . Thus let x be inM .

Since�(x) is in image�, there exist r1, . . . , rn in Rwith�(x) = r1y1+· · ·+rn yn .
The element x ✏ = r1x

✏
1+· · ·+ rnx

✏
n of M has �(x ✏) = r1y1+· · ·+ rn yn = �(x).

Therefore �(x � x ✏) = 0, and there exist s1, . . . , sm in R such that x � x ✏ =
s1x1 + · · · + smxm . Consequently

x = s1x1 + · · · + smxm + x ✏ = s1x1 + · · · + smxm + r1x
✏
1 + · · · + rnx

✏
n. �

Proposition 8.24. If R is a principal ideal domain, then any R submodule

of a finitely generated unital R module is finitely generated. Moreover, any R

submodule of a singly generated unital R module is singly generated.

REMARK. The proof will show that if M can be generated by n elements, then

so can the unital R submodule.

PROOF. Let M be unital and finitely generated with a set {m1, . . . ,mn} of n
generators, and define Mk = Rm1 + · · · + Rmk for 1 ⌦ k ⌦ n. Then Mn = M

since M is unital. We shall prove by induction on k that every R submodule of

Mk is finitely generated. The case k = n then gives the proposition. For k = 1,

suppose that S is an R submodule of M1 = Rm1. Since S is an R submodule

and every member of S lies in Rm1, the subset I of all r in R with rm1 in S is

an ideal with Im1 = S. Since every ideal in R is singly generated, we can write

I = (r0). Then S = Im1 = Rr0m1, and the single element r0m1 generates S.

Assume inductively that every R submodule of Mk is known to be finitely

generated, and let Nk+1 be an R submodule of Mk+1. Let q : Mk+1� Mk+1/Mk
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be the quotient R homomorphism, and let � be the restriction q
⌥⌥
Nk+1

, mapping

Nk+1 into Mk+1/Mk . Then ker� = Nk+1 � Mk is an R submodule of Mk and is

finitely generated by the inductive hypothesis. Also, image� is an R submodule
of Mk+1/Mk , which is singly generated with generator equal to the coset of

mk+1. Since an R submodule of a singly generated unital R module was shown
in the previous paragraph to be singly generated, image� is finitely generated.
ApplyingLemma8.23 to�, we see that Nk+1 is finitely generated. This completes
the induction and the proof. �

According to the definition in Example 9 of modules in Section 1, a free R

module is a direct sum, finite or infinite, of copies of the R module R. A free R

module is said to have finite rank if some direct sum is a finite direct sum. A

unital R module M is said to be cyclic if it is singly generated, i.e., if M = Rm0
for some m0 in M . In this case, we have an R isomorphism M �= R/I , where I
is the ideal {r ⌘ R | rm0 = 0}.
Before coming to the statement of the theorem and the proof, let us discuss

the heart of the matter, which is related to row reduction of matrices. We regard

the space M1n(R) of all 1-row matrices with n entries in R as a free R module.
Suppose that R is a principal ideal domain, and suppose that we have a particular

2-by-n matrix with entries in R and with the property that the two rows have

nonzero elements a and b, respectively, in the first column. We can regard

the set of R linear combinations of the two rows of our particular matrix as

an R submodule of the free R module M1n(R). Let c = GCD(a, b). This
member of R is defined only up to multiplication by a unit, but we make a

definite choice of it. The idea is that we can do a kind of invertible row-reduction

step that simultaneously replaces the two rows of our 2-by-n matrix by a first row

whose first entry is c and a second row whose first entry is 0; in the process the

corresponding R submodule of M1n(R)will be unchanged. In fact, we saw in the
previous section that the hypothesis on R implies that there exist members x and

y of R with xa+ yb = c. Since c divides a and b, we can rewrite this equality as

x(ac�1) + y(bc�1) = 1. Then the 2-by-2 matrix M =
� x y

�bc�1 ac�1
⇥
with entries

in R has the property that
↵

x y

�bc�1 ac�1

�↵
a ⌅
b ⌅

�
=
↵
c ⌅
0 ⌅

�
.

This equation shows explicitly that the rows of
� c ⌅
0 ⌅

⇥
lie in the R linear span of the

rows of
� a ⌅
b ⌅

⇥
. The key fact about M is that its determinant x(ac�1) + y(bc�1)

is 1 and that M is therefore invertible with entries in R: the inverse is just

M�1 =
 
ac�1 �y
bc�1 x

⌦
. This invertibility shows that the rows of

� a ⌅
b ⌅

⇥
lie in the R

linear span of
� c ⌅
0 ⌅

⇥
. Consequently the R linear span of the rows of our given

2-by-n matrix is preserved under left multiplication by M .
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In effect we can do the same kind of row reduction of matrices over R as we

did with matrices over Z in the proof of Theorem 4.56. The only difference is
that this time we do not see constructively how to find the x and y that relate a,

b, and c. Thus we would lack some information if we actually wanted to follow

through and calculate a particular example. We were able to make calculations

to imitate the proof of Theorem 4.56 because we were able to use the Euclidean

algorithm to arrive at what x and y are. In the present context we would be able

to make explicit calculations if R were a Euclidean domain.

Theorem 8.25 (Fundamental Theorem of Finitely Generated Modules). If R

is a principal ideal domain, then

(a) thenumberof R summands in a free Rmoduleoffinite rank is independent

of the direct-sum decomposition,

(b) any R submodule of a free R module of finite rank n is a free R module

of rank ⌦ n,

(c) any finitely generated unital R module is the finite direct sum of cyclic

modules.

REMARK. Because of (a), it is meaningful to speak of the rank of a free

R module of finite rank; it is the number of R summands. By convention

the 0 module is a free R module of rank 0. Then the statement of (b) makes

sense. Statement (c) will be amplified in Corollary 8.29 below. Some people

use the name “Fundamental Theorem of Finitely Generated Modules” to refer to

Corollary 8.29 rather than to Theorem 8.25.

PROOF. Let F be a free R module of the form Rx1 ⌃ · · · ⌃ Rxn , and

suppose that y1, . . . , ym are elements of F such that no nontrivial combination
r1y1 + · · · + rm ym is 0. We argue as in the proof of Proposition 2.2. Define an

m-by-n matrix C with entries in R by yi =
⇠n

j=1 Ci j xj for 1 ⌦ i ⌦ m. If Q is

the field of fractions of R, then we can regard C as a matrix with entries in Q. As

such, the matrix has rank ⌦ n. If m > n, then the rows are linearly dependent,

and we can find members q1, . . . , qm of Q, not all 0, such that
⇠m

i=1 qiCi j = 0

for 1 ⌦ j ⌦ n. Clearing fractions, we obtain members r1, . . . , rm of R, not all 0,
such that

⇠m
i=1 riCi j = 0 for 1 ⌦ j ⌦ n. Then

m⇠
i=1

ri yi =
m⇠
i=1

ri

 n⇠
j=1

Ci j xj

⌦
=

n⇠
j=1

 m⇠
i=1

riCi j

⌦
xj =

n⇠
j=1
0xj = 0,

in contradiction to the assumed independence property of y1, . . . , ym . Therefore
we must have m ⌦ n.

If we apply this conclusion to a set x1, . . . , xn that exhibits F as free and to
another set, possibly infinite, that does the same thing, we find that the second



6. Finitely Generated Modules 403

set has ⌦ n members. Reversing the roles of the two sets, we find that they both

have n members. This proves (a).

For (b) and (c), we shall reduce the result to a lemma saying that a certain kind

of result can be achieved by row and column reduction of matrices with entries in

R. Let F be a free Rmodule of rank n, defined by a subset x1, . . . , xn of F , and let
M be an R submodule of F . Proposition 8.24 shows that M is finitely generated.

We let y1, . . . , ym be generators, not necessarily with any independence property.
Define anm-by-nmatrixC with entries in R by yi =

⇠n
j=1 Ci j xj . We can recover

F as the set of R linear combinations of x1, . . . , xn , and we can recover M as the

set of R linear combinations of y1, . . . , ym .

If B is an n-by-n matrix with entries in R and with determinant in the group

R⇤ of units, then Corollary 5.5 shows that B�1 exists and has entries in R. If
we define x ✏i =

⇠n
j=1 Bi j xj , then any R linear combination of x

✏
1, . . . , x

✏
n is an

R linear combination of x1, . . . , xn . Also, the computation
⇠n

i=1(B
�1)ki x

✏
i =⇠

i, j (B
�1)ki Bi j xj =

⇠
j ⇤k j xj = xk shows that any R linear combination of

x1, . . . , xn is an R linear combination of x
✏
1, . . . , x

✏
n . Thus we can recover the

same F and M if we replaceC byCB. Arguing in the same way with y1, . . . , ym
and y✏1, . . . , y

✏
m , we see that we can recover the same F and M if we replace CB

by ACB, where A is an m-by-m matrix with entries in R and with determinant

in R⇤.
Lemma 8.26 below will say that we can find A and B such that the nonzero

entries of D = ACB are exactly the diagonal ones Dkk for 1 ⌦ k ⌦ l, where l is

a certain integer with 0 ⌦ l ⌦ min(m, n).

That is, the resulting equations restricting y✏1, . . . , y
✏
m in terms of x

✏
1, . . . , x

✏
n

will be of the form

y✏k =
�
Dkkx

✏
k for 1 ⌦ k ⌦ l,

0 for l + 1 ⌦ k ⌦ m.
(⌅)

Now let us turn to (b) and (c). For (b), the claim is that the elements y✏k with
1 ⌦ k ⌦ l exhibit M as a free R module. We know that y✏1, . . . , y

✏
m generate M

and hence that y✏1, . . . , y
✏
l generateM . For the independence, supposewe can find

members r1, . . . , rl not all 0 in R such that
⇠l

k=1 rk y
✏
k = 0. Then substitution

gives
⇠l

k=1 rk Dkkx
✏
k = 0, and the independence of x ✏1, . . . , x

✏
l forces rk Dkk = 0

for 1 ⌦ k ⌦ l. Since R is an integral domain, rk = 0 for such k. Thus indeed the

elements y✏k with 1 ⌦ k ⌦ l exhibit M as a free R module. Since l ⌦ min(m, n),
the rank of M is at most the rank of F .

For (c), let S be a finitely generated unital R module, say with n generators.

By the universal mapping property of free R modules (Example 9 in Section 1),

there exists a free R module F of rank n with S as quotient. Let x1, . . . , xn be
generators of F that exhibit F as free, and let M be the kernel of the quotient R
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homomorphism M � S, so that S �= F/M . Then (b) shows that M is a free

R module of rank m ⌦ n. Let y1, . . . , ym be generators of M that exhibit M

as free, and define an m-by-n matrix C with entries in R by yi =
⇠n

j=1 Ci j xj
for 1 ⌦ i ⌦ m. The result is that we are reduced to the situation we have just

considered, and we can obtain equations of the form (⌅) relating their respective
generators, namely y✏1, . . . , y

✏
m for M and x ✏1, . . . , x

✏
n for F .

For 1 ⌦ k ⌦ n, define Fk = Rx ✏k and

Mk =
�
Ry✏k = RDkkx

✏
k for 1 ⌦ k ⌦ l,

0 for l + 1 ⌦ k ⌦ n,

so thatM �= M1⌃ · · ·⌃Mn . Then Fk/Mk is R isomorphic to the cyclic Rmodule

R/(Dkk) if 1 ⌦ k ⌦ l, while Fk/Mk = Fk is isomorphic to the cyclic R module

R if l + 1 ⌦ k ⌦ n. Applying Proposition 8.5, we obtain

F/M �= (F1 ⌃ · · ·⌃ Fn)/(M1 ⌃ · · ·⌃ Mn) �= (F1/M1)⌃ · · ·⌃ (Fn/Mn).

Thus F/M is exhibited as a direct sum of cyclic R modules. �

To complete the proof of Theorem 8.25, we are left with proving the following

lemma, which is where row and column reduction take place.

Lemma 8.26. Let R be a principal ideal domain. If C is an m-by-n matrix

with entries in R, then there exist an m-by-m matrix A with entries in R and

with determinant in R⇤ and an n-by-n matrix B with entries in R and with

determinant in R⇤ such that for some l with 0 ⌦ l ⌦ min(m, n), the nonzero
entries of D = ACB are exactly the diagonal entries D11, D22, . . . , Dll .

PROOF. The matrices A and B will be constructed as products of matrices of

determinant ±1, and then det A and det B equal ±1 by Proposition 5.1a. The
matrix A will correspond to row operations on C , and B will correspond to

column operations. Each factor will be the identity except in some 2-by-2 block.

Among the row and column operations of interest are the interchange of two

rows or two columns, in which the 2-by-2 block is
 
0 1

1 0

⌦
. Another row operation

of interest replaces two rows having respective j th entries a and b by R linear

combinations of them in which a and b are replaced by c = GCD(a, b) and 0.

If x(ac�1) + y(bc�1) = 1, then the 2-by-2 block is
� x y

�bc�1 ac�1
⇥
. A similar

operation is possible with columns.

The reduction involves an induction that successively constructs the entries

D11, D22, . . . , Dll , stopping when the part of C involving rows and columns

numbered ↵ l + 1 has been replaced by 0. We start by interchanging rows and

columns to move a nonzero entry into position (1, 1). By a succession of row
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operations as in the previous paragraph, we can reduce the entry in position (1, 1)
to the greatest common divisor of the entries of C in the first column, while

reducing the remaining entries of the first column to 0. Next we do the same

thing with column operations, reducing the entry in position (1, 1) to the greatest
common divisor of the members of the first row, while reducing the remaining

entries of the first row to 0. Then we go back and repeat the process with row

operations and with column operations as many times as necessary until all the

entries of the first row and column other than the one in position (1, 1) are 0. We
need to check that this process indeed terminates at some point. If the entries that

appear in position (1, 1) as the iterations proceed are c1, c2, c3, . . . , then we have
(c1) � (c2) � (c3) � · · · . The union of these ideals is an ideal, necessarily a
principal ideal of the form (c), and c occurs in one of the ideals in the union; the
chain of ideals must be constant after that stage. Once the corner entry becomes

constant, the matrices
� x y

�bc�1 ac�1
⇥
for the row operations can be chosen to be

of the form
 

1 0

�ba�1 1

⌦
, and the result is that the row operations do not change

the entries of the first row. Similar remarks apply to the matrices for the column

operations. The upshot is that we can reduce C in this way so that all entries of

the first row and column are 0 except the one in position (1, 1). This handles
the inductive step, and we can proceed until at some l th stage we have only the 0

matrix to process. �

This completes the proof of Theorem 8.25. In Theorem 4.56, in which we

considered the special case of abelian groups, we obtained a better conclusion

than in Theorem 8.25c: we showed that the direct sum of cyclic groups could

be written as the direct sum of copies of Z and of cyclic groups of prime-power
order, and that in this case the decomposition was unique up to the order of the

summands. We shall now obtain a corresponding better conclusion in the setting

of Theorem 8.25.

The existence of the decomposition into cyclicmodules of a special kind uses a

very general form of the Chinese Remainder Theorem, whose classical statement

appears as Corollary 1.9. The generalization below makes use of the following

operations of addition and multiplication of ideals in a commutative ring with

identity: if I and J are ideals, then I + J denotes the set of sums x + y with

x ⌘ I and y ⌘ J , and I J denotes the set of all finite sums of products xy with

x ⌘ I and y ⌘ J ; the sets I + J and I J are ideals.

Theorem 8.27 (Chinese Remainder Theorem). Let R be a commutative ring

with identity, and let I1, . . . , In be ideals in R such that Ii + Ij = R whenever

i ✓= j .

(a) If elements x1, . . . , xn of R are given, then there exists x in R such that
x ⌥ xj mod Ij , i.e., x � xj is in Ij , for all j . The element x is unique if
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I1 � · · · � In = 0.

(b) The map � : R�
⇡n

j=1 R/Ij given by �(r) = (. . . , r+ Ij , . . . ) is an onto

ring homomorphism, its kernel is
�n

j=1 Ij , and the homomorphism descends to a
ring isomorphism

R
� n�
j=1

Ij �= R/I1 ⇤ · · ·⇤ R/In.

(c) The intersection
�n

j=1 Ij and the product I1 · · · In coincide.
PROOF. For existence in (a) when n = 1, we take x = x1. For existence

when n = 2, the assumption I1 + I2 = R implies that there exist a1 ⌘ I1 and

a2 ⌘ I2 with a1 + a2 = 1. Given x1 and x2, we put x = x1a2 + x2a1, and then

x ⌥ x1a2 ⌥ x1 mod I1 and x ⌥ x2a1 ⌥ x2 mod I2.

For general n, the assumption I1 + Ij = R for j ↵ 2 implies that there

exist aj ⌘ I1 and bj ⌘ Ij with aj + bj = 1. If we expand out the product

1 =
⇡n

j=2 (aj + bj ), then all terms but one on the right side involve some aj
and are therefore in I1. That one term is b2b2 · · · bn , and it is in

�n
j=2 Ij . Thus

I1 +
�n

j=2 Ij = R. The case n = 2, which was proved above, yields an element

y1 in R such that

y1 ⌥ 1 mod I1 and y1 ⌥ 0 mod
�

j ✓=1 Ij .

Repeating this process for index i and using the assumption Ii + Ij = R for j ✓= i ,

we obtain an element yi in R such that

yi ⌥ 1 mod Ii and yi ⌥ 0 mod
�

j ✓=i Ij .

If we put x = x1y1 + · · · + xn yn , then we have x ⌥ xi yi mod Ii ⌥ xi mod Ii for

each i , and the proof of existence is complete.

For uniqueness in (a), if we have two elements x and x ✏ satisfying the con-
gruences, then their difference x � x ✏ lies in Ij for every j , hence is 0 under the
assumption that I1 � · · · � In = 0.

In (b), the map � is certainly a ring homomorphism. The existence result in (a)
shows that � is onto, and the proof of the uniqueness result identifies the kernel.
The isomorphism follows.

For (c), consider the special case that I and J are ideals with I + J = R.

Certainly I J � I � J . For the reverse inclusion, choose x ⌘ I and y ⌘ J with

x + y = 1; this is possible since I + J = R. If z is in I � J , then z = zx + zy

with zx in J I and zy in I J . Thus z is exhibited as in I J .

Consequently I1 I2 = I1� I2. Suppose inductively that I1 · · · Ik = I1� · · ·� Ik .
We saw in the proof of (a) that Ik+1+

�
j ✓=k+1 Ij = R, and thus we certainly have

Ik+1 +
�k

j=1 Ij = R. The special case in the previous paragraph, in combination

with the inductive hypothesis, shows that Ik+1 I1 · · · Ik = Ik+1 ·
��k

j=1 Ij
⇥

=
�k+1

j=1 Ij . This completes the induction and the proof. �
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Corollary 8.28. Let R be a principal ideal domain, and let a = �pk11 · · · pknn
be a factorization of a nonzero nonunit element a into the product of a unit and

powers of nonassociate primes. Then there is a ring isomorphism

R/(a) �= R/(pk11 )⇤ · · ·⇤ R/(pknn ).

PROOF. Let Ij = (p
kj
j ) in Theorem 8.27. For i ✓= j , we have GCD(p

ki
i , p

kj
j ) =

1. Since R is a principal ideal domain, there exista andb in Rwithap
ki
i +bpkjj = 1,

and consequently (p
ki
i ) + (p

kj
j ) = R. The theorem applies, and the corollary

follows. �

Corollary 8.29. If R is a principal ideal domain, then any finitely generated

unital R moduleM is the direct sum of a nonunique free R submodule
�s

i=1 R of
a well-defined finite rank s ↵ 0 and the R submodule T of all members m of M
such that rm = 0 for some r ✓= 0 in R. In turn, the R submodule T is isomorphic

to a direct sum

T �=
n⌫

j=1
R/(p

kj
j ),

where the pj are primes in R and the ideals (p
kj
j ) are not necessarily distinct. The

number of summands (pk) for each class of associate primes p and each positive
integer k is uniquely determined by M .

REMARK. As mentioned with Theorem 8.25, some people use the name

“Fundamental Theorem of Finitely Generated Modules” to refer to Corollary

8.29 rather than to Theorem 8.25.

PROOF. Theorem 8.25c gives M = F ⌃
�n

j=1 Raj , where F is a free R

submodule of some finite rank s and the aj ’s are nonzero members of M that are

each annihilated by some nonzero member of R. The set T of allm with rm = 0

for some r ✓= 0 in R is exactly
�n

j=1 Raj . Then F is R isomorphic to M/T ,
hence is isomorphic to the same free R module independently of what direct-sum

decomposition of M is used. By Theorem 8.25a, s is well defined.

The cyclic R module Raj is isomorphic to R/(bj ), where (bj ) is the ideal of
all elements r in R with raj = 0. The ideal (bj ) is nonzero by assumption and
is not all of R since the element r = 1 has 1aj = aj ✓= 0. Applying Corollary

8.28 for each j and adding the results, we obtain T �=
�n

i=1 R/(p
ki
i ) for suitable

primes pi and powers ki . The isomorphism in Corollary 8.28 is given as a ring

isomorphism, and we are reinterpreting it as an R isomorphism. The primes

pi that arise for fixed (bj ) are distinct, but there may be repetitions in the pairs
(pi , ki ) as j varies. This proves existence of the decomposition.
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If p is a prime in R, then the elements m of T such that pkm = 0 for some k

are the ones corresponding to the sum of the terms in
�n

j=1 R/(p
kj
j ) in which pj

is an associate of p. Thus, to complete the proof, it is enough to show that the R

isomorphism class of the R module

N = R/(pl1)⌃ · · ·⌃ R/(plm )

with p fixed and with 0 < l1 ⌦ · · · ⌦ lm completely determines the integers

l1, . . . , lm .
For any unital R module L , we can form the sequence of R submodules

p j L . The element p carries p j L into p j+1L , and thus each p j L/p j+1L is an
R module on which p acts as 0. Consequently each p j L/p j+1L is an R/(p)
module. Corollary 8.16 and Proposition 8.10 together show that R/(p) is a field,
and therefore we can regard each p j L/p j+1L as an R/(p) vector space.
We shall show that the dimensions dimR/(p)(p

j N/p j+1N ) of these vector
spaces determine the integers l1, . . . , lm . We start from

p j N = p j R/(pl1)⌃ · · ·⌃ p j R/(plm ).

The term p j R/(plk ) is 0 if j ↵ lk . Thus

p j N =
⌫

j<lk

p j R/(plk ) =
⌫

j<lk

p j R/plk R.

Similarly

p j+1N =
⌫

j<lk

p j+1R/(plk ) =
⌫

j<lk

p j+1R/plk R.

Proposition 8.5 and Theorem 8.3 give us the R isomorphisms

p j N/p j+1N �=
⌫

j<lk

�
p j R/plk R

⇥��
p j+1R/plk R

⇥ �=
⌫

j<lk

p j R/p j+1R,

and these must descend to R/(p) isomorphisms. Consequently

dimR/(p)(p
j N/p j+1N ) = #{k | lk > j} dimR/(p)(p

j R/p j+1R).

The coset p j+ p j+1R of p j R/p j+1R has the property thatmultiplication by arbi-
trary elements of R yields all of p j R/p j+1R. Therefore dimR/(p)(p

j R/p j+1R)
= 1, and we obtain

dimR/(p)(p
j N/p j+1N ) = #{k | lk > j}.

Thus the R module N determines the integers on the right side, and these deter-

mine the number of lk’s equal to each positive integer j . This proves uniqueness.

�
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Let us apply Theorem 8.25 and Corollary 8.29 to the principal ideal domain

R = K[X], where K is a field. The particular unital module of interest is a

finite-dimensional vector space V overK, and the scalar multiplication byK[X]
is given by A(X)v = A(L)(v) for each polynomial A(X), where L is a fixed
linear map L : V � V . Let us see that the results of this section recover the

structure theory of L as developed in Chapter V.

Since V is finite-dimensional over K, V is certainly finitely generated over

R = K[X]. Theorem 8.25 gives

V �= R/(A1(X))⌃ · · ·⌃ R/(An(X))⌃ R ⌃ · · ·⌃ R

as R modules and in particular as vector spaces over K. Each summand R is
infinite-dimensional as a vector space, and consequently no summand R can be

present. Corollary 8.29 refines the decomposition to the form

V �= R/(P1(X)k1)⌃ · · ·⌃ R/(Pm(X)km )

as R modules, the polynomials Pj (X) being prime but not necessarily distinct.
Since the R isomorphism is in particular an isomorphism of K vector spaces,

each R/(Pj (X)kj ) corresponds to a vector subspace Vj , and V = V1⌃ · · ·⌃ Vm .

Since the R isomorphism respects the action by X , we have L(Vj ) � Vj for each

j . Thus the direct sum decompositions of Theorem 8.25 and Corollary 8.29 are

yielding a decomposition of V into a direct sum of vector subspaces invariant

under L . Since the j th summand is of the form R/(Pj (X)kj ), L acts on Vj in a
particular way, which we have to analyze.

Let us carry out this analysis in the case that K is algebraically closed (as for

example when K = C), seeing that each Vj yields a Jordan block of the Jordan
canonical form (Theorem 5.20a) of L . For the case of general K, the analysis
can be seen to lead to the corresponding more general results that were obtained

in Problems 32–40 at the end of Chapter V.

Since K is algebraically closed, any polynomial in K[X] of degree ↵ 1 has a
root in K and therefore has a first-degree factor X � c. Consequently all primes

in K[X] are of the form X � c, up to a scalar factor, with c in K. To understand
the action of L on Vj , we are to investigate K[X]/((X � c)k).
Suppose that A(X) is in K[X] and is of degree n ↵ 1. Expanding the

monomials of A(X) by the Binomial Theorem as

X j = ((X � c) + c) j =
⇠ j

i=0
�
j

i

⇥
c j�i (X � c)i ,

we see that A(X) has an expansion as

A(X) = a0 + a1(X � c) + · · · + an(X � c)n
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for suitable coefficients a0, . . . , an in K. Let the invariant subspace that we are
studying be Vj0 � V . Since Vj0 is isomorphic as an Rmodule toK[X]/((X�c)k),
(X � c)k acts on Vj0 as 0. So does every higher power of X � c, and hence

A(X) acts as a0 + a1(X � c) + · · · + ak�1(X � c)k�1.

The polynomials on the right, as their coefficients vary, represent distinct

cosets ofK[X]/((X � c)k): in fact, if two were to be in the same coset, we could
subtract and see that (X � c)k could not divide the difference unless it were 0.
The distinct cosets match in one-one K linear fashion with the members of Vj0 ,

and thus dim Vj0 = k. Let us write down this match. Let v0 be the member of

Vj0 that is to correspond to the coset 1 ofK[X]/(X � c)k . On Vj0 ,K[X] is acting
with Xv = L(v). We define recursively vectors v1, . . . , vk�1 of Vj0 by

v1 = (L � cI )v0 = (X�c)v0 �� (X�c) · 1 = X�c,
v2 = (L � cI )v1 = (X�c)v1 �� (X�c) · (X�c) = (X�c)2,

...

vk�1 = (L � cI )vk�2=(X�c)vk�2 �� (X�c) · (X�c)k�2 = (X�c)k�1,
(L � cI )vk�1 = (X�c)vk�1 �� (X�c) · (X�c)k�1 = (X�c)k ⌥ 0.

We conclude from this correspondence that the vectors v0, v1, . . . , vk�1 form a
basis of Vj0 and that the matrix of L � cI in the ordered basis vk�1, . . . , v1, v0 is

✏

✓

0 1 0 0 ··· 0 0

0 1 0 ··· 0 0

0 1 ··· 0 0

...
...

...
...

0 1 0

0 1

0

⇣

�����◆
.

Hence the matrix of L in the same ordered basis is
✏

✓

c 1 0 0 ··· 0 0

c 1 0 ··· 0 0

c 1 ··· 0 0

...
...

...
...

c 1 0

c 1

c

⇣

�����◆
,

i.e., is a Jordan block. Thus Theorem 8.25 and Corollary 8.29 indeed establish

the existence of Jordan canonical form (Theorem 5.20a) whenK is algebraically

closed. It is easy to check that Corollary 8.29 establishes also the uniqueness

statement in Theorem 5.20a.
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7. Orientation for Algebraic Number Theory and Algebraic Geometry

The remainder of the chapter introducesmaterial on commutative ringswith iden-

tity that is foundational for both algebraic number theory and algebraic geometry.

Historically algebraic number theory grew out of Diophantine equations, particu-

larly from two problems—from Fermat’s Last Theorem and from representation

of integers by binary quadratic forms. Algebraic geometry grew out of studying

the geometry of solutions of equations and out of studying Riemann surfaces.

Algebraic geometry and algebraic number theory are treated in more detail in

Advanced Algebra.

These two subjects can be studied on their own, but they also have a great

deal in common. The discovery that the plane could be coordinatized and that

geometry could be approached through algebra was one of the great advances of

all time formathematics. Since then, fundamental connections between algebraic

number theory and algebraic geometry have been discovered at a deeper level,

and the distinction between the two subjects is more and more just a question of

one’s point of view. The emphasis in the remainder of this chapter will be on

one aspect of this relationship, the theory that emerged from trying to salvage

something in the way of unique factorization.

By way of illustration, let us examine an analogy between what happens with

a certain ring of “algebraic integers” and what happens with a certain “algebraic

curve.” The ring of algebraic integers in question was introduced already in

Section 4. It is R = Z[
⇢
�5] = Z+Z

⇢
�5. The units are±1. Our investigation

of unique factorization was aided by the function

N (a + b
⇢
�5 ) = (a + b

⇢
�5 )(a � b

⇢
�5 ) = a2 + 5b2,

which has the property that

N
�
(a + b

⇢
�5 )(c + d

⇢
�5 )

⇥
= N (a + b

⇢
�5 )N (c + d

⇢
�5 ).

With this function we could determine candidates for factors of particular ele-

ments. In connection with the equality 2 · 3 = (1 +
⇢
�5 )(1 �

⇢
�5 ), we

saw that the two factors on the left side and the two factors on the right side are

all irreducible. Moreover, neither factor on the left is the product of a unit and

a factor on the right. Therefore R is not a unique factorization domain. As a

consequence it cannot be a principal ideal domain. In fact, (2, 1 +
⇢
�5 ) is an

example of an ideal that is not principal. We shall return shortly to examine this

ring further.

Now we introduce the algebraic curve. Consider y2 = (x � 1)x(x + 1) as
an equation in two variables x and y. To fix the ideas, we think of a solution as

a pair (x, y) of complex numbers. Although the variables in this discussion are
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complex, it is convenient to be able to draw pictures of the solutions, and one does

this by showing only the solutions (x, y) with x and y in R. Figure 8.6 indicates
the set of solutions in R2 for this particular curve. We can study these solutions
for a while, looking for those pairs (x, y) with x and y rationals or integers, but
a different level of understanding comes from studying functions on the locus of

complex solutions. The functions of interest are polynomial functions in the pair

(x, y), and we identify two of them if they agree on the locus. Thus we introduce
the ring

R✏ = C[x, y]/(y2 � (x � 1)x(x + 1)).

There is a bit of a question whether this is indeed the space of restrictions, but

that question is settled affirmatively by the “Nullstellensatz” in Section VII.1 of

AdvancedAlgebra and a verification that the principal ideal (y2�(x�1)x(x+1))
is prime.8 The ring R✏ is called the “affine coordinate ring” of the curve, and the
curve itself is an example of an “affine algebraic curve.”

FIGURE 8.6. Real points of the curve y2 = (x � 1)x(x + 1).

We can recover the locus of the curve from the ring R✏ as follows. If (x0, y0) is a
point of the curve, then it is meaningful to evaluate members of R✏ at (x0, y0), and
we let I(x0,y0) be the ideal of all members of R

✏ vanishing at (x0, y0). Evaluation
at (x0, y0) exhibits the ring R

✏/I(x0,y0) as isomorphic to C, which is a field. Thus
I(x0,y0) is a maximal ideal and is in particular prime. It turns out for this example

that all nonzero prime ideals are of this form.9 We return to make use of this

geometric interpretation of prime ideals in a moment.

8The polynomial y2 � (x � 1)x(x + 1) is prime since (x � 1)x(x + 1) is not a square, or since

Eisenstein’s criterion applies. The principal ideal (y2 � (x � 1)x(x + 1)) is therefore prime by
Proposition 8.14. What the Nullstellensatz says when the underlying field is algebraically closed is

that the only polynomials vanishing on the zero locus of a prime ideal are the members of the ideal.
9In Section 9, Example 3 of integral closures in combination with Proposition 8.45 shows that

every nonzero prime ideal of R✏ is maximal. (In algebraic geometry one finds that this property of
prime ideals is a reflection of the 1-dimensional nature of the curve.) The Nullstellensatz says that

the maximal ideals are all of the form I(x0,y0).
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Now let us consider factorization in R✏. Every element of R✏ can be written
uniquely as A(x) + B(x)y, where A(x) and B(x) are polynomials. The analog

in R✏ of the quantity N (a + b
⇢
�5 ) in the ring R is the quantity

N
�
A(x) + B(x)y

⇥
= (A(x) + B(x)y)(A(x)� B(x)y)

= A(x)2 � B(x)2y2

= A(x)2 � B(x)2(x3 � x).

Easy computation shows that

N
�
(A(x) + B(x)y)(C(x) + D(x)y)

⇥
= N

�
A(x) + B(x)y

⇥
N
�
C(x) + D(x)y

⇥
,

and hence N ( · ) gives us a device to use to check whether elements of R✏ are
irreducible. We find in the equation

(x + y)(x � y) = x2 � (x3 � x) = �x(x � 1
2
(1+

⇢
5))(x � 1

2
(1�

⇢
5))

that the two elements on the left side and the three elements on the right side are

irreducible. Therefore unique factorization fails in R✏.
Although unique factorization fails for the elements of R✏, there is a notion

of factorization for ideals in R✏ that behaves well algebraically and has a nice
geometric interpretation. Recall that the nonzero prime ideals correspond to the

points of the locus y2 = (x � 1)x(x + 1) via passage to the zero locus, the ideal
corresponding to (x0, y0) being called I(x0,y0). For any two ideals I and J , we
can form the product ideal I J whose elements are the sums of products of a

member of I and a member of J . Then I k(x0,y0) may be interpreted as the ideal of

all members of R✏ vanishing at (x0, y0) to order k or higher, and I
k1
(x1,y1)

· · · I kn(xn,yn)

becomes the ideal of all members of R✏ vanishing at each (xj , yj ) to order at
least kj . We shall see in Section 11 that every nonzero proper ideal I in R✏

factors in this way. The points (xj , yj ) and the integers kj have a geometric
interpretation in terms of I and are therefore uniquely determined: the (xj , yj )’s
form the locus of common zeros of the members of I , and the integer kj is the

greatest integer such that the vanishing at (xj , yj ) is always at least to order kj . In
a sense, factorization of elements was the wrong thing to consider; the right thing

to consider is factorization of ideals, which is unique because of the associated

geometric interpretation.

Returning to the ring R = Z[
⇢
�5 ], we can askwhether factorization of ideals

is a useful notion in R. Again I J is to be the set of all sums of products of an

element in I and an element in J . For I = (2, 1+
⇢
�5 ) and J = (2, 1�

⇢
�5 ),

we get all sums of expressions (2a+ b(1+
⇢
�5 ))(2c+ d(1�

⇢
�5 )) in which

a, b, c, d are in Z, hence all sums of expressions

2(2ac + 3bd) + 2(bc + ad) + 2
⇢
�5(bc � ad).
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All such elements are divisible by 2. Two examples come by taking a = c = 1

and b = d = 0 and by taking a = c = 0 and b = d = 1; these give 4 and 6.

Subtracting, we see that 2 is a sum of products. Thus I J = (2). The element 2
is irreducible and not prime, and we know from Proposition 8.14 that the ideal

(2) therefore cannot be prime. What we find is that the ideal (2) factors even
though the element 2 does not factor. It turns out that R has unique factorization

of ideals, just the way R✏ does.
The prime ideals of the ring R have a certain amount of structure in terms of

the primes or prime ideals of Z. To understand what to expect, let us digress for
a moment to discuss what happens with the ring R✏✏ = Z[i] = Z + Z

⇢
�1 of

Gaussian integers. This too was introduced in Section 4, and it is a Euclidean do-

main, hence a principal ideal domain. It has unique factorization. Its appropriate

N ( · ) function is N (a+ ib) = a2+b2. Problems 27–31 at the end of the chapter

ask one to verify that the primes of R✏✏, up to multiplication by one of the units
±1 and ±i , are members of R✏✏ of any of the three kinds

p = 4n + 3 that is prime in Z and has n ↵ 0,
p = a ± ib with a2 + b2 prime in Z of the form 4n + 1 with n ↵ 0,
p = 1± i (these are associates).

These three kinds may be distinguished by what happens to the function N ( · ).
In the first case N (p) = p2 is the square of a prime of Z and is the square of

a prime of R✏✏, in the second case N (p) is a prime of Z that is the product of

two distinct primes of R✏✏, and in the third case N (p) is a prime of Z that is the
square of a prime of R✏✏, apart from a unit factor. The nonzero prime ideals of R✏✏

are the principal ideals generated by the prime elements of R✏✏, and they fall into
three types as well. Each nonzero prime ideal P has a prime p of Z attached to
it, namely the one with (p) = Z� P , and the type of the ideal corresponds to the
nature of the factorization of the ideal pR✏✏ of R✏✏. Specifically in the first case
pR✏✏ is a prime ideal in R✏✏, in the second case pR✏✏ is the product of two distinct
prime ideals in R✏✏, and in the third case pR✏✏ is the square of a prime ideal in R✏✏.
The structure of the prime ideals in R is of the same nature as with R✏✏.

Each nonzero prime ideal P has a prime p of Z attached to it, again given

by (p) = Z � P , and the three kinds correspond to the factorization of the ideal

pR of R. Let us be content to give examples of the three possible behaviors:

11R is prime in R,

2R is the product of two distinct prime ideals in R,

5R is the square of the prime ideal (
⇢
�5 ) in R.

We have already seen the decomposition of 2R, and the decomposition of 5R is

easy to check. With 11R, the idea is to show that 11 is a prime element in R.

Thus let 11 divide a product in R. Then N (11) = 112 divides the product of
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the N ( · )’s, 11 divides the product of the N ( · )’s, and 11 must divide one of the
N ( · )’s. Say that 11 divides N (a + b

⇢
�5 ), i.e., that a2 + 5b2 ⌥ 0 mod 11. If

11 divides one of a or b, then this congruence shows that 11 divides the other of

them; then 11 divides a + b
⇢
�5, as we wanted to show. The other possibility

is that 11 divides neither a nor b. Then (ab�1)2 ⌥ �5 mod 11 says that �5 is a
square modulo 11, and we readily check that it is not. The conclusion is that 11

is indeed prime in R.

This structure for the prime ideals of R has an analog with the curve and its

ring R✏. The analogs for the curve case of Z and
⇢
�5 for the number-theoretic

case are C[x] and y. The primes of C[x] are nonzero scalars times polynomials
x � c with c complex, and the relevant question for R✏ is how the ideal (x � c)R✏
decomposes into prime ideals. We can think about this problem algebraically or

geometrically. Algebraically, the ideal of all polynomials vanishing at (x0, y0) is
I(x0,y0) = (x�x0, y� y0), the set of all (x�x0)A(x)� y0B(x)+ yB(x)with A(x)
and B(x) in C[x]. The intersection with C[x] consists of all (x � x0)A(x) and is
therefore the principal ideal (x � x0). We want to factor the ideal (x � x0)R

✏.
Ifwepause for amoment and thinkabout theproblemgeometrically, the answer

is fairly clear. Ideals correspond to zero loci with multiplicities. The question

is the factorization of the ideal of all polynomials vanishing when x = x0. For

most values of the complex number x0, there are two choices of the complex y

such that (x0, y) is on the locus since y is given by a quadratic equation, namely
y2 = (x0 � 1)x0(x0 + 1). Thus for most values of x0, (x � x0)R

✏ is the product
of two distinct prime ideals. The geometry thus suggests that

(x � x0)R
✏ = (x � x0, y � y0)(x � x0, y + y0),

where y20 = (x0� 1)x0(x0 + 1) and it is assumed that y0 ✓= 0. We can verify this

algebraically: The members of the product ideal are the polynomials

�
(x � x0)A(x) + (y � y0)B(x)

⇥�
(x � x0)C(x) + (y + y0)D(x)

⇥

= (x � x0)
2A(x)C(x) + (x � x0)

�
A(x)(y + y0)D(x)) + C(x)(y � y0)B(x)

⇥

+ (y2 � y20)B(x)D(x).

The last term on the right side is
�
(x3� x)� (x30 � x0)

⇥
B(x)D(x) and is divisible

by x � x0. Therefore every member of the product ideal lies in the principal

ideal (x � x0). On the other hand, the product ideal contains (x � x0)(x � x0)
and also (y2 � y20) = (x3 � x30) � (x � x0) = (x � x0)(x

2 + xx0 + x20). Since

GCD
�
(x�x0), (x2+xx0+x20)

⇥
= 1, the product ideal contains x�x0. Therefore

the product ideal equals (x � x0).
The exceptional values of x0 are �1, 0,+1, where the locus has y0 = 0.

The geometry of the factorization is not so clear in this case, but the algebraic
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computation remains valid. Thus we have (x � x0)R
✏ = (x � x0, y)

2 if x0 equals

�1, 0, or +1. The conclusion is that the nonzero prime ideals of R✏ are of two
types, with (x � x0)R

✏ equal to

the product of two distinct prime ideals in R✏ if x0 is not in {�1, 0,+1},
the square of a prime ideal in R✏ if x0 is in {�1, 0,+1}.

The third type, with (x � x0)R
✏ prime in R✏, does not arise. Toward the end of

Chapter IX we shall see how we could have anticipated the absence of the third

type.

That is enough of a comparison for now. Certain structural results useful in

both algebraic number theory and algebraic geometry are needed even before

we get started at factoring ideals, and those are some of the topics for the

remainder of this chapter. In Section 11 we conclude by establishing unique

factorization of ideals for a class of examples that includes the examples above.

In the examples above, the rings we considered wereZ[X]/(X2+5) = Z[
⇢
�5 ]

and C[x, y]/(y2 � (x � 1)x(x + 1)) �= C[x][
⇢

(x � 1)x(x + 1) ]. In each case
the notation [ · ] refers to forming the ring generated by the coefficients and the
expression or expressions in brackets.

First we establish a result saying that ideals in the rings of interest are not

too wild. For example, in algebraic geometry, one wants to consider the set of

restrictions of the members of K[X1, . . . , Xn], K being a field, to the locus of

common zeros of a set of polynomials. The general tool will tell us that any ideal

in K[X1, . . . , Xn] is finitely generated; thus a description of what polynomials
vanish on the locus under study is not completely out of the question. The tool is

the Hilbert Basis Theorem and is the main result of Section 8.

Secondwe need away of understanding, in amore general setting, the relation-

ship that we used in the above examples between Z and Z[
⇢
�5 ], and between

C[x] andC[x][
⇢

(x � 1)x(x + 1) ]. The tool is the notion of integral closure and
is the subject of Section 9.

Third we need a way of isolating the behavior of prime ideals, of eliminating

the influence of algebraic or geometric factors that have nothing to do with the

prime ideal under study. The tool is the notion of localization and is the subject

of Section 10.

In Section 11 wemake use of these three tools to establish unique factorization

of ideals for a class of integral domains known as “Dedekind domains.” It is easy

to see that principal ideal domains are Dedekind domains, and we shall show

that many other integral domains, including the examples above, are Dedekind

domains. A refined theorem producing Dedekind domains will be obtained

toward the end of Chapter IX once we have introduced the notion of a “separable”

extension of fields.
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8. Noetherian Rings and the Hilbert Basis Theorem

In this section, R will be a commutative ring with identity, and all R modules

will be assumed unital. We begin by introducing three equivalent conditions on

a unital R module.

Proposition 8.30. If R is a commutative ring with identity and M is a unital

R module, then the following conditions on R submodules of M are equivalent:

(a) (ascending chain condition) every strictly ascending chain of R sub-

modules M1 � M2 � · · · terminates in finitely many steps,
(b) (maximum condition) every nonempty collection of R submodules has

a maximal element under inclusion,

(c) (finite basis condition) every R submodule is finitely generated.

PROOF. To see that (a) implies (b), let C be a nonempty collection of R
submodules of M . Take M1 in C. If M1 is not maximal, choose M2 in C properly
containing M1. If M2 is not maximal, choose M3 in C properly containing M2.

Continue in this way. By (a), this processmust terminate, and then we have found

a maximal R submodule in C.
To see that (b) implies (c), let N be an R submodule of M , and let C be

the collection of all finitely generated R submodules of N . This collection is

nonempty since 0 is in it. By (b), C has a maximal element, say N ✏. If x is in
N but x is not in N ✏, then N ✏ + Rx is a finitely generated R submodule of N

that properly contains N ✏ and therefore gives a contradiction. We conclude that
N ✏ = N , and therefore N is finitely generated.

To see that (c) implies (a), let M1 � M2 � · · · be given, and put N =⇢⇣
n=1 Mn . By (c), N is finitely generated. Since the Mn are increasing with n,

we can find some Mn0 containing all the generators. Then the sequence stops no

later than at Mn0 . �

Let us apply Proposition 8.30 with M taken to be the unital R module R. As

always, the R submodules of R are the ideals of R.

Corollary 8.31. If R is a commutative ring with identity, then the following

conditions on R are equivalent:

(a) ascending chain condition for ideals: every strictly ascending chain of

ideals in R is finite,

(b) maximum condition for ideals of R: every nonempty collection of ideals

in R has a maximal element under inclusion,

(c) finite basis condition for ideals: every ideal in R is finitely generated.
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The corollary follows immediately from Proposition 8.30. A commutative

ring with identity satisfying the equivalent conditions of Corollary 8.31 is said to

be a Noetherian commutative ring.

EXAMPLES.

(1) Principal ideal domains, such as Z and K[X] when K is a field. The finite

basis condition for ideals is satisfied since every ideal is singly generated. The fact

that (c) implies (a) has already been proved manually for principal ideal domains

twice in this chapter—once in the proof of (UFD1) for a principal ideal domain

in Theorem 8.15 and once in the proof of Lemma 8.26.

(2) Any homomorphic image R✏ of aNoetherian commutative ring R, provided
1 maps to 1. In fact, if I ✏ � R✏ is an ideal, its inverse image I is an ideal in R;
the image of a finite set of generators of I is a finite set of generators of I ✏.

(3)K[X1, . . . , Xn] whenK is a field. This commutative ring is Noetherian by

application of the Hilbert Basis Theorem (Theorem 8.32 below) and induction on

n. This ring is also a unique factorization domain, as we saw in Section 5.

(4) Z[X]. This commutative ring is Noetherian, also by the Hilbert Basis
Theorem below. Example 2 shows therefore that the quotient Z[

⇢
�5 ] =

Z[X]/(X2 + 5) is Noetherian. This ring is an integral domain, and we have
seen that it is not a unique factorization domain.

Theorem 8.32 (Hilbert Basis Theorem). If R is a nonzero Noetherian com-

mutative ring, then so is R[X].

PROOF. If I is an ideal in R[X] and if k ↵ 0 is an integer, let Lk(I ) be the
union of {0} and the set of all nonzero elements of R that appear as the coefficient
of Xk in some element of degree k in I . First let us see that {Lk(I )}k↵0 is an
increasing sequence of ideals in R. In fact, if A(X) and B(X) are polynomials of
degree k in I with leading terms ak X

k and bk X
k , then A(X) + B(X) has degree

k if bk ✓= �ak , and hence ak + bk is in Lk(I ) in every case. Similarly if r is in R
and rak ✓= 0, then r A(X) has degree k, and hence rak is in Lk(I ) in every case.
Consequently Lk(I ) is an ideal in R. Since I is closed under multiplication by
X , Lk(I ) � Lk+1(I ) for all k ↵ 0.
Next let us prove that if J is any ideal in R[X] such that I � J and Lk(I ) =

Lk(J ) for all k ↵ 0, then I = J . Let B(X) be in J with deg B(X) = k. Arguing

by contradiction, we may suppose that B(X) is not in I and that k is the smallest
possible degree of a polynomial in J but not in I . Since Lk(I ) = Lk(J ), we
can find A(X) in I whose leading term is the same as the leading term of B(X).
Since B(X) is not in I , B(X)� A(X) is not in I . Since I � J , B(X)� A(X) is
in J . Since deg(B(X) � A(X)) ⌦ k � 1, we have arrived at a contradiction to
the defining property of k. We conclude that I = J .
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Now let {Ij }j↵0 be an ascending chain of ideals in R[X], and form Li (Ij ) for
each i . When i or j is fixed, these ideals are increasing as a function of the other

index, j or i . By the maximum condition in R, Li (Ij ) � Lp(Iq) for some p
and q and all i and j . For i ↵ p and j ↵ q, we have Li (Ij )  Lp(Iq) and
thus Li (Ij ) = Lp(Iq). The case j = q gives Lp(Iq) = Li (Iq), and therefore
Li (Ij ) = Li (Iq) for i ↵ p and j ↵ q. For any fixed i , the ascending chain

condition on ideals gives Li (Ij ) = Li (In(i)) for j ↵ n(i), and the above argument
shows thatwemay take n(i) = q if i ↵ p. Hencen(i)maybe taken to be bounded
in i , say by n0, and Li (Ij ) = Li (In0) for all i ↵ 0 and j ↵ n0. By the result

of the previous paragraph, Ij = In0 for j ↵ n0, and hence the ascending chain

condition has been verified for ideals in R[X]. �

Proposition 8.33. In a Noetherian integral domain R, every nonzero nonunit

is a product of irreducible elements.

REMARK. The proof below gives an alternative argument for (UFD1) in

Theorem 8.15, an argument that does not so explicitly use the full force of Zorn’s

Lemma.

PROOF. Let a1 be a nonzero nonunit of R. If a1 is not irreducible, then a1
has a factorization a1 = a2b2 in which neither a2 nor b2 is a unit. If a2 is not

irreducible, then a2 has a factorization a2 = a3b3 in which neither a3 nor b3 is

a unit. We continue in this way as long as it is possible to do so. Let us see

that this process cannot continue indefinitely. Assume the contrary. The equality

a1 = a2b2 with b2 not a unit says that the inclusion of ideals (a1) � (a1, a2) is
proper. Arguing in this way with a2, a3, and so on, we obtain

(a1) � (a1, a2) � (a1, a2, a3) � · · · ,

in contradiction to the ascending chain condition for ideals. Because of this

contradiction we conclude that for some n, an does not have any decomposition

an = an+1bn+1 with bn+1 a nonunit. Hence an is irreducible. The upshot is that
our original element a1 has an irreducible factor, say c1.

Write a1 = c1d2. If d2 is not a unit, repeat the process with it, obtaining

d2 = c2d3 with c2 irreducible. If d3 is not a unit, we can again repeat this process.

This process cannot continue indefinitely because otherwise we would have a

strictly increasing sequence of ideals

(c1) � (c1, c2) � (c1, c2, c3) � · · · ,

in contradiction to the ascending chain condition for ideals. Thus for some n, we

have a1 = c1c2 . . . cndn+1 with c1, . . . , cn irreducible and with dn+1 equal to a
unit. Grouping cn and dn+1 as a single irreducible factor, we obtain the desired
factorization of the given element a1. �
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Proposition 8.34. If R is a Noetherian commutative ring, then any R submod-

ule of a finitely generated unital R module is finitely generated.

REMARK. The proof follows the lines of the argument for Proposition 8.24.

PROOF. Let M be a unital finitely generated R module with a set {m1, . . . ,mn}
of n generators, and defineMk = Rm1+· · ·+Rmk for 1 ⌦ k ⌦ n. ThenMn = M

since M is unital. We shall prove by induction on k that every R submodule of

Mk is finitely generated. The case k = n then gives the proposition. For k = 1,

suppose that S is an R submodule of M1 = Rm1. Let I be the subset of all r

in R with rm1 in S. Since S is an R submodule, I is an ideal in R, necessarily

finitely generated since R is Noetherian. Let I = (r1, . . . , rl). Then S = Im1 =
Rr1m1 + Rr2m1 + · · · + Rrlm1, and the elements r1m1, r2m1, . . . , rlm1 form a
finite set of generators of S.

Assume inductively that every R submodule of Mk is known to be finitely

generated, and let Nk+1 be an R submodule of Mk+1. Let q : Mk+1� Mk+1/Mk

be the quotient R homomorphism, and let � be the restriction q
⌥⌥
Nk+1

, mapping

Nk+1 into Mk+1/Mk . Then ker� = Nk+1 � Mk is an R submodule of Mk and is

finitely generated by the inductive hypothesis. Also, image� is an R submodule
of Mk+1/Mk , which is singly generated with generator equal to the coset of

mk+1. Since an R submodule of a singly generated unital R module was shown
in the previous paragraph to be finitely generated, image� is finitely generated.
ApplyingLemma8.23 to�, we see that Nk+1 is finitely generated. This completes
the induction and the proof. �

9. Integral Closure

In this section, we let R be an integral domain, F be its field of fractions, and

K be a any field containing F . Sometimes we shall assume also that dimF K is

finite. The main cases of interest are as follows.

EXAMPLES OF GREATEST INTEREST.

(1) R = Z, F = Q, and dimF K <⇣. In Chapter IX we shall see in this case
from the “Theorem of the Primitive Element” that K is necessarily of the form

Q[⌃] as already described in Section 1 and in Chapter IV. This is the setting we
used in Section 7 as orientation for certain problems in algebraic number theory.

(2) R = K[X] for a field K, F = K(X) is the field of fractions of R, and
K is a field containing F with dimF K < ⇣. In the special case K = C, this
is the setting we used in Section 7 as orientation for treating curves in algebraic

geometry.
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Proposition 8.35. Let R be an integral domain, F be its field of fractions, and

K be any field containing F . Then the following conditions on an element x of

K are equivalent:

(a) x is a root of a monic polynomial in R[X],

(b) the subring R[x] of K generated by R and x is a finitely generated R

module,

(c) there exists a finitely generated nonzero unital R module M � K such

that xM � M .

REMARK. When the equivalent conditions of the proposition are satisfied,

we say that x is integral over R or x is integrally dependent on R. In this

terminology, in SectionVII.5 and inSection1 of the present chapter, wedefinedan

algebraic integer to be any member ofC that is integral overZ. The equivalence
of (a) and (c) in this setting allowed us to prove that the set of algebraic integers

is a subring of C.
PROOF. If (a) holds, we can write xn + an�1x

n�1 + · · · + a1x + a0 = 0

for suitable coefficients in R. Solving for xn and substituting, we see that the

subring R[x], which equals R + Rx + Rx2 + · · · , is actually given by R[x] =
R + Rx + · · · + Rxn�1. Therefore R[x] is a finitely generated R module, and
(b) holds.

If (b) holds, then we can take M = R[x] to see that (c) holds.

If (c) holds, let m1, . . . ,mk be generators of M as an R module. Then we can

find members ai j of R for which

xm1 = a11m1 + · · · + a1kmk,

...

xmk = ak1m1 + · · · + akkmk .

This set of equations, regarded as a single matrix equation over K , becomes
✏

✓

x�a11 �a12 · · · �a1k
�a21 x�a22 · · · �a2k

...
�ak1 �ak2 · · · x�akk

⇣

�◆

✏

✓
m1

m2
...
mk

⇣

◆ =

✏

✓
0

0
...
0

⇣

◆ .

The k-by-kmatrix on the left is therefore not invertible, and its determinant, which

is a member of the field K , must be 0. Expanding the determinant and replacing

x by an indeterminate X , we obtain a monic polynomial of degree k in R[X] for

which x is a root. Thus (a) holds. �

If R, F , and K are as above, the integral closure of R in K is the set of all

members of K that are integral over R. In Corollary 8.38 we shall prove that the

integral closure of R in K is a subring of K .
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EXAMPLES OF INTEGRAL CLOSURES.

(1) The integral closure ofZ inQ isZ itself. This fact amounts to the statement
that a rational root of a monic polynomial with integer coefficients is an integer;

this was proved10 in the course of Lemma 7.30. Recall the argument: If x = p/q
is a rational number in lowest terms that satisfies xn+an�1xn�1+· · ·+a1a+a0 =
0, thenwe clear fractions and obtain pn+an�1 pn�1q+· · ·+a1 pqn�1+a0qn = 0.

Examining divisibility by q, we see that q divides pn . Hence any prime factor of

q divides p and shows that p/q cannot be in lowest terms. Therefore q has no
prime factors, and p/q is an integer.

(2) Let us determine the integral closure of Z inQ(
⇢
m ), wherem is a square-

free integer other than 0 or 1. The result is going to be that the integral closure

consists of all a + b
⇢
m with

a and b

�
both in Z if m ⌥/ 1 mod 4,
both in Z or both in Z + 1

2
if m ⌥ 1 mod 4.

In other words, the integral closure is

� Z[
⇢
m ] if m ⌥/ 1 mod 4,

Z[ 1
2
(1+

⇢
m )] if m ⌥ 1 mod 4.

(⌅)

In fact, consider the polynomial

P(X) = X2 � 2aX + (a2 � mb2),

whose roots are exactly a±b
⇢
m. If a and b are in Z, then P(X) has coefficients

in Z, and hence both of a± b
⇢
m are in the integral closure. Ifm ⌥ 1 mod 4 and

a and b are both in Z + 1
2
, write a = c/2 and b = d/2 with c and d in 2Z + 1.

Since a2 � mb2 = 1
4
(c2 � md2), we have

c2 � md2 ⌥ c2 � d2 mod 4 ⌥ 1� 1 mod 4 ⌥ 0 mod 4,

and therefore 1
4
(c2 � md2) = a2 � mb2 is in Z. Consequently the polynomial

P(X) exhibits a + b
⇢
m as in the integral closure.

For the reverse inclusion, suppose that z = a+ b
⇢
m is in the integral closure

and is not in Z. Then z is a root of some monic polynomial A(X) in Z[X].
In addition, z is a root of P(X) above, and P(X) is a monic prime polyno-
mial in Q[X] because it has no rational first-degree factor. Writing A(X) =
B(X)P(X) + R(X) in Q[X] with R(X) = 0 or deg R(X) < deg P(X) = 2 and

10It is not assumed that the reader has looked at Chapter VII. A result that implies Lemma 7.30

will be obtained below as Corollary 8.38, which makes no use of material from Chapter VII.
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substituting z for X , we see that R(z) = 0, and we conclude that R(X) = 0.

Thus P(X) divides A(X). By Corollary 8.20c, P(X) is in Z[X]. Hence 2a and
a2 � mb2 are in Z. One case is that a is in Z, and then mb2 is in Z; since m is

square free, there are no candidates for primes dividing the denominator of b, and

so b is in Z. The other case is that a is in Z + 1
2
, and then mb2 is in Z + 1

4
. So

m(2b)2 is in 4Z + 1. Since m is square free, there are no candidates for primes

dividing the denominator of 2b, and 2b is an integer. Since m(2b)2 is in 4Z + 1,

m ⌥ 1 mod 4 and 2b ⌥ 1 mod 2 are forced. This completes the proof that the

integral closure is given by (⌅).
(3) Under the assumption that the characteristic of the field K is not 2, let

us determine the integral closure T of R = K[x] in K = K(x)[
⇢
P(x) ] =

K(x)[y]/(y2 � P(x)), where P(X) is a square-free polynomial in K[x]. Par-
enthetically we need to check that K is a field. Since K(x) is a field, K(x)[y]
is a principal ideal domain, and the question is whether (y2 � P(x)) is a prime
( =maximal) ideal. We have only to observe that y2� P(x) is irreducible because
P(x) is not a square, and then it follows that K is a field. Thus the situation for

this example fits the setting of Proposition 8.35 with R = K[x], F = K(x), and
K = F(y)/(y2 � P). We are going to show that the integral closure T of R in
K consists of all A(x) + B(x)

⇢
P(x) with A(x) and B(x) both in R = K[x]. It

follows that the integral closure will be

T = K[x][
#
P(x) ] = K[x]+ K[x]

#
P(x). (⌅)

To see this, first let A(x) and B(x) be inK[x], and consider the monic polynomial

Q(y) = y2 � 2Ay + (A2 � PB2) (⌅⌅)

in K[x][y]. Its roots in K are exactly A(x) ± B(x)
⇢
P(x), and thus we see that

both of A(x) ± B(X)P(x) are in T . Conversely let z = A(x) + B(x)
⇢
P(x) be

in T but not R. Here A(x) and B(x) are in K(x). Then z is a root in K of some

monic polynomial M(y) whose coefficients are in K[x]. In addition, z is a root
of the member Q(y) of K(x)[y] defined in (⌅⌅). The division algorithm gives
M(y) = N (y)Q(y) + W (y) in K(x)[y] with W = 0 or degW < deg Q = 2.

Substituting z ⌘ T for y, we obtain

0 = M(z) = N (z)Q(z) + W (z) = N (z)0+ W (z).

Thus W (z) = 0. If degW = 1, then z is in F , and the same argument as in

Example 1 shows that z is in R; since we are assuming that z is not in R, we

conclude that W = 0. Therefore Q(y) divides M(y). By Corollary 8.20c, M(y)
is in K[x][y]. Hence 2A and A2 � PB2 are in K[x]. Since the characteristic of
K is not 2, A is inK[x]. Then PB2 is inK[x], and B must be inK[x] since P is
square free. Thus T is given as in (⌅).
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From these examples we can extract a rough description of the situation that

will interest us. We start with a ring R such as Z or K[x], along with its field
of fractions F . We assume that the integral closure of R in F is R itself, as is

the case with Z in Q and as we shall see is the case with K[x] in K(x). Let K
be a field containing F with dimF K < ⇣. We are interested in an analog T of
integral elements relative to K , and what works as T is the integral closure of R

in K .

Lemma 8.36. If A, B, and C are integral domains with A � B � C such that

C is a finitely generated B module and B is a finitely generated A module, then

C is a finitely generated A module.

PROOF. LetC be generated over B by c1, . . . , cr , and let B be generated over A
by b1, . . . , bs . Then C is generated over A by the sr elements bjci for 1 ⌦ i ⌦ r

and 1 ⌦ j ⌦ s. �

Proposition 8.37. Let R be an integral domain, F be its field of fractions, and

K be any field containing F . If x1, . . . , xr are members of K integral over R,

then the subring R[x1, . . . , xr ] of K generated by R and x1, . . . , xr is a finitely
generated R module.

REMARKS. The ring R[x1, . . . , xr ] is certainly finitely generated over R as a
ring. The proposition asserts more—that it is finitely generated as an R module.

This means that all products of powers of the xj ’s are in the R linear span of

finitely many of them.

PROOF. We induct on r . Since x1 is assumed integral over R, the case r = 1

follows fromProposition8.35b. For the inductive step, suppose that R[x1, . . . , xs]
is a finitely generated R module. Since xs+1 is integral over R, it is certainly
integral over R[x1, . . . , xs]. Thus Proposition 8.35b shows that R[x1, . . . , xs+1]
is a finitely generated R[x1, . . . , xs] module. Taking A = R, B = R[x1, . . . , xs],
andC = R[x1, . . . , xs+1] in Lemma 8.36, we see that R[x1, . . . , xs+1] is a finitely
generated R module. �

Corollary 8.38. Let R be an integral domain, F be its field of fractions, and

K be any field containing F . Then the integral closure of R in K is a subring

of K .

REMARK. A special case of this corollary appears in somewhat different

language as Lemma 7.30.

PROOF. Let x and y be integral over R. Then R[x, y] is a finitely gener-
ated R module by Proposition 8.37. We have (x ± y)R[x, y] � R[x, y] and
(xy)R[x, y] � R[x, y]. Taking M = R[x, y] in Proposition 8.35c and using the
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implication that (c) implies (a) in that proposition, we see that x ± y and xy are

integral over R. �

Corollary 8.39. Let A, B, and C be integral domains with A � B � C . If

every member of B is integral over A and if every member of C is integral over

B, then every member of C is integral over A.

PROOF. Let K be the field of fractions of C , and regard C as a subring of

K . If x is in C , then x is a root of some monic polynomial with coefficients in

B, say xn + bn�1x
n�1 + · · · + b0 = 0. By Proposition 8.37 the subring D =

A[bn�1, . . . , b0] ofC is a finitely generated Amodule. Since x is integral over D,
D[x] is afinitelygeneratedDmodule, by a secondapplicationofProposition8.37.

Lemma 8.36 shows that D[x] is a finitely generated A module. By Proposition

8.35, x is integral over A. �

We say that the integral domain R is integrally closed if R equals its integral

closure in its field of fractions. Example 1 above in essence observed that the

ring Z of integers is integrally closed. Example 2 above showed, for the case

m = �3, that the integral closure of Z in Q[
⇢
�3 ] is something other than the

ring Z[
⇢
�3 ]; consequentlyZ[

⇢
�3 ] cannot be integrally closed. A more direct

argument is to observe that the element x = 1
2
(�1+

⇢
�3 ) ofQ[

⇢
�3 ] satisfies

x2 + x + 1 = 0 but is not in Z[
⇢
�3 ].

Corollary 8.40. Let R be an integral domain, F be its field of fractions, and

K be any field containing F . Then the integral closure T of R in K is integrally

closed.

PROOF. Corollary 8.38 shows that T is a subring of K . Let C be the integral

closure of T in K . We apply Corollary 8.39 to the integral domains R � T � C .

The corollary says that every member of C is integral over R, and hence C � T .

That is, C = T . Let ⇧ : T � L be the one-one homomorphism of T into its

field of fractions, and let � : T � K be the inclusion. By Proposition 8.6, there

exists a unique ring homomorphism  � : L � K such that � =  �⇧. Identifying
L with �(L) � K , we can treat L as a subfield of K containing T . Since the only

elements of K integral over T have been shown to be the members of T , the only

elements of the subfield L integral over T are the members of T . Therefore T is

integrally closed. �

Proposition 8.41. If R is a unique factorization domain, then R is integrally

closed.

PROOF. Suppose that y�1x is a member of the field of fractions F of R, with
x and y in R and y ✓= 0, and suppose that y�1x satisfies the equation

(y�1x)n + an�1(y
�1x)n�1 + · · · + a1(y

�1x) + a0 = 0
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with coefficients in R. Clearing fractions and moving xn over to one side by

itself, we have

xn = �y(an�1xn�1 + · · · + a1xy
n�2 + a0y

n�1).

If a prime p in R divides y, then it divides xn and must divide x . If R is a unique

factorization domain, this says that we cannot arrange for GCD(x, y) to equal 1
unless no prime divides y. In this case, y is a unit in R. Consequently y�1x is
in R. �

Since Z is a unique factorization domain, Proposition 8.41 gives a new proof
that Z is integrally closed. We see also that K[x] is integrally closed when K is

a field.

We saw above that the ring Z[
⇢
�3 ] is not integrally closed; consequently it

cannot be a unique factorization domain. Anotherway of drawing this conclusion

is to verify in the equality (1+
⇢
�3 )(1�

⇢
�3 ) = 2 · 2 that the two elements

on the left are irreducible and are not associates of the irreducible element 2 on

the right.

A more significant example, taking advantage of the contrapositive of Propo-

sition 8.41, is that any polynomial ringK[X1, . . . , Xn] over a fieldK is integrally

closed. In fact, we know from Section 5 that K[X1, . . . , Xn] has unique factor-
ization.

Proposition 8.42. Let R be an integral domain, F be its field of fractions, and

K be any field containing F . If dimF K < ⇣, then any x in K has the property

that there is some c ✓= 0 in R such that cx is integral over R.

REMARKS. Consequently K may be regarded as the field of fractions of the

integral closure T of R in K . In fact, let {xi } be a basis of K over F , and choose
ci ✓= 0 in R for each i such that yi = ci xi is integral over R. Then {yi } is a basis
for K over F consisting of members of T , and it follows that every member of

K is the quotient of a member of T by a member of R. Proposition 8.6 supplies

a one-one ring homomorphism of the field of fractions for T into K , and the

description just given for the elements of K shows that this homomorphism is

onto K . Therefore K may be regarded as the field of fractions of T .

PROOF. Since dimF K < ⇣, the elements 1, x, x2, . . . of K are linearly

dependent over F . Therefore anx
n + · · · + a1x + a0 = 0 for a suitable n and

for suitable members of F with an ✓= 0. Clearing fractions, we may assume that

an, . . . , a1, a0 are in R and that an ✓= 0. Multiplying the equation by an�1n , we

obtain

(anx)
n + an�1(anx)

n�1 + · · · + a1a
n�2
n (anx) + a0a

n�1
n = 0.

Thus we can take c = an . �
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In the base rings Z and K[x] of our examples, every nonzero prime ideal is
maximal because the rings are principal ideal domains. In Section7wementioned

that every nonzero prime ideal inZ[
⇢
�5 ] ismaximal even thoughZ[

⇢
�5 ] is not

a principal ideal domain. The remainder of this section, particularly Proposition

8.45, shows that the feature that every nonzero prime ideal is maximal is always

preserved in our passage from R to T .

Proposition 8.43. Let R be an integral domain, F be its field of fractions, K

be any field containing F , and T be the integral closure of R in K . If Q is a

nonzero prime ideal of T , then P = R � Q is a nonzero prime ideal of R.

REMARKS. Corollary 8.38 shows that T is a ring. A construction for prime

ideals that goes in the reverse direction, from R to T , appears below as Proposition

8.53.

PROOF. Let Q be a nonzero prime ideal of T , and put P = R � Q. The ideal

P is proper since 1 is not in Q and cannot be in P . It is prime since xy ⌘ P

implies that xy is in Q, x or y is in Q, and x or y is in R � Q = P . To see that

P is nonzero, take t ✓= 0 in Q. Since t is integral over R, t satisfies some monic

polynomial equation tn + an�1t
n�1 + · · · + a1t + a0 = 0 with coefficients in R.

Without loss of generality, a0 ✓= 0 since otherwise we could divide the equation

by a positive power of t . Then a0 = t (�tn�1 � an�1t
n�2 � · · ·� a1) exhibits a0

as in Q as well as in R. Thus P is nonzero. �

Lemma 8.44. Let R and T be integral domains with R � T and with every

element of T integral over R. If T ✏ is an integral domain and � : T � T ✏ is a
homomorphism of rings onto T ✏, then every member of T ✏ is integral over �(R).

PROOF. If t is in T , then t satisfies some monic polynomial equation of the

form tn+an�1t
n�1+· · ·+a1t+a0 = 0 with coefficients in R. Applying � to this

equation, we see that �(t) satisfies a monic polynomial equation with coefficients
in �(R). �

Proposition 8.45. Let R be an integral domain, F be its field of fractions,

K be any field containing F , and T be the integral closure of R in K . If every

nonzero prime ideal of R is maximal, then every nonzero prime ideal of T is

maximal.

REMARK. As with Proposition 8.43, Corollary 8.38 shows that T is a ring.

PROOF. Let Q be a nonzero prime ideal in T , and let P = R � Q.

Since P is a nonzero prime ideal of R by Proposition 8.43, the hypotheses say that

P is maximal in R. We shall apply Lemma 8.44 to the quotient homomorphism

T � T/Q. The lemma says that every element of the integral domain T/Q is
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integral over the subring (R + Q)/Q. Composing the inclusion homomorphism
R � T with the homomorphism T � T/Q yields a ring homomorphism

R � T/Q that carries P into the 0 coset. Since P = R � Q, this ring

homomorphism descends to a one-one ring homomorphism R/P � T/Q. The
Second Isomorphism Theorem (for abelian groups) identifies the image of R/P
with (R + Q)/Q. Since P is maximal as an ideal in R, R/P is a field. The
ring isomorphism R/P �= (R + Q)/Q thus shows that every element of T/Q is
integral over a field.

Let uswrite k for this field isomorphic to R/P , and let k ✏ be the field of fractions
of T/Q. We can now argue as in the proof of Proposition 4.1. If x ✓= 0 is in T/Q,
then x satisfies a monic polynomial equation xm+cm�1x

m�1+· · ·+c1x+c0 = 0

with coefficients in k, and we may assume that c0 ✓= 0. Then the equality

x�1 = �c�10 (c1 + · · · + am�1x
m�2 + xm�1) shows that the member x�1 of k ✏ is

in fact in T/Q. Therefore T/Q is a field, and the ideal Q is maximal in T . �

10. Localization and Local Rings

In this section, R denotes a commutative ring with identity. The objective is to

enlarge or at least adjust R so as to make further elements of R become invertible

under multiplication. The prototype is the construction of the field of fractions

for an integral domain. A subset S of R is called a multiplicative system if 1

is in S and if the product of any two members of S is in S. The multiplicative

systemwill be used as a set of new allowable denominators, and the new ring will

be denoted11 by S�1R.

The construction proceeds along the same lines as in Section 2, except that

some care is needed to take into account the possibility of zero divisors in R and

even in S. We begin with an intermediate set

 R = {(r, s) | r ⌘ R, s ⌘ S}

and impose the relation (r, s) � (r ✏, s ✏) if t (rs ✏ � sr ✏) = 0 for some t ⌘ S. To

check transitivity, suppose that (r, s) � (r ✏, s ✏) and (r ✏, s ✏) � (r ✏✏, s ✏✏). Then we
have t (rs ✏ � sr ✏) = 0 and t ✏(r ✏s ✏✏ � s ✏r ✏✏) = 0 for some t and t ✏ in S, and hence

s ✏t t ✏(rs ✏✏ � sr ✏✏) = s ✏✏t ✏
�
t (rs ✏ � sr ✏)

⇥
+ st

�
t ✏(r ✏s ✏✏ � s ✏r ✏✏)

⇥
= 0.

Since s ✏t t ✏ is in S, (r, s) � (r ✏✏, s ✏✏). Thus � is an equivalence relation.

11Some authors write RS instead of S
�1R.
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The set of equivalence classes is denoted by S�1R and is called the localiza-
tion12 of R with respect to S. Addition and multiplication are defined in  R by
(r, s) + (r ✏, s ✏) = (rs ✏ + sr ✏, ss ✏) and (r, s)(r ✏, s ✏) = (rr ✏, ss ✏). Simple variants
of the arguments in Section 2 show that these operations descend to operations

on S�1R. For example, with addition let (r, s), (r ✏, s ✏), and (r ✏✏, s ✏✏) be in  R with
(r ✏, s ✏) � (r ✏✏, s ✏✏), i.e., with t ✏(r ✏s ✏✏ � s ✏r ✏✏) = 0 for some t ✏ ⌘ S. Then the

equivalence

(r, s) + (r ✏, s ✏) = (rs ✏ + sr ✏, ss ✏) � (rs ✏✏ + sr ✏✏, ss ✏✏) = (r, s) + (r ✏✏, s ✏✏)

holds because

t ✏
�
(rs ✏ + sr ✏)ss ✏✏ � (rs ✏✏ + sr ✏✏)ss ✏

⇥
= s2t ✏(r ✏s ✏✏ � s ✏r ✏✏) = 0.

Similarly multiplication is well defined.

The result is that S�1R is a commutative ringwith identity and that themapping
r ◆� r⌅, where r⌅ is the class of (r, 1), is a ring homomorphism of R into S�1R
carrying 1 to 1. Let us observe the following simple properties of S�1R:

(i) S�1R = 0 if and only if 0 is in S, since S�1R = 0 if and only if

(1, 1) � (0, 1), if and only if t (1 · 1� 1 · 0) = 0 for some t ⌘ S.
(ii) r ◆� r⌅ is one-one if and only if S contains no zero divisors, since r⌅ = 0

if and only if (r, 1) � (0, 1), if and only if tr = 0 for some t ⌘ S.
(iii) s⌅ is a unit in S�1R for each s ⌘ S, since the class of (1, s) is a multi-

plicative inverse for s⌅.
(iv) every member of S�1R is of the form (s⌅)�1r⌅ for some r ⌘ R and s ⌘ S,

since (r, s) = (r, 1)(1, s) is the class of r⌅(s⌅)�1.
(v) S�1R is an integral domain if R is an integral domain and 0 is not in S.

In working with localizations, we shall normally drop the superscript ⌅ on the
image r⌅ in S�1R of an element r of R.
Localizations arise in algebraic number theory and in algebraic geometry. In

applications to algebraic number theory, the ring R typically is an integral domain,

and therefore the map r ◆� r⌅ is one-one. In applications to algebraic geometry,
S may have zero divisors.

EXAMPLES OF LOCALIZATIONS.

(1) R is arbitrary, and S = {1}. Then S�1R = R.

12Some authors use a term like “ring of fractions” or “ring of quotients” in connection with

localization in the general case or in some special cases. We shall not use these terms. In any event,

“ring of quotients” is emphatically not to be confused with “quotient ring” as in Chapter IV, which

is the coset space of a ring modulo an ideal.
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(2) R is arbitrary, and S = {nonzero elements that are not zero divisors in R}.
Then every nonzero element of S�1R is a zero divisor or is a unit. In this example
when S consists of all members of R other than 0, then R is an integral domain

and S�1R is the field of fractions of R.

(3) R is arbitrary, P is a prime ideal in R, and S is the set-theoretic complement

of P . The identity is in S since P is proper. The prime nature of P is used in

checking that S is a multiplicative system: if s and t are in S, then neither is in

P , by definition, and their product st cannot be in P since P is prime; thus the

product st is in S. With these definitions,

S�1R is often denoted by RP

and is called the localization of R at the prime P . In practice this is the most

important example of a localization,13 directly generalizing the construction of

the field of fractions of an integral domain as the localization at the prime ideal 0.

Here are some special cases, K being a field in the cases in which it occurs:

(a) When R = Z and P = (p) for a prime number p, the set S consists
of nonzero integers not divisible by p, and RP is the subset of all members of Q
whose denominators are not divisible by p.

(b)When R = K[X] and P = (X�c), the set S consists of all polynomials
that are nonvanishing at c, and RP is the set of formal rational expressions in X

that are finite at c.

(c) When R = K[X,Y ] and P = (X � c,Y � d), the set S consists of
all polynomials in X and Y that are nonvanishing at (c, d), and RP is the set of
formal rational expressions in X and Y that are finite at (c, d).

(d)When R = K[X,Y ] and P = (X), the set S consists of all polynomials
in X and Y that are not divisible by X , and RP is the set of formal rational

expressions in X and Y that are meaningful as rational expressions in Y when X

is set equal to 0. For example, 1/(X + Y ) is in RP , but 1/X is not.

(4) R is arbitrary, {P�} is a nonempty collection of prime ideals, and S is the
set of all elements of R that lie in none of the ideals P�. Then S

�1R may be
regarded as the localization of R at the set of all primes P�.

(5) R is arbitrary, u is an element of R, and S = {1, u, u2, . . . }. For example,
if R = Z/(p2), where p is a prime, and if u = p, then 0 is in S, and observation

(i) shows that S�1R = 0.

(6) R is a Noetherian integral domain, E is an arbitrary set of nonzero elements

of R, and S is the set of all finite products of members of E , including the element

13Beware of confusing RP with R/P . The ring RP is obtained by suitably enlarging R, at least
in the case that R is an integral domain, whereas the ring R/P is obtained by suitably factoring
something out from R.
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1 as the empty product. Let us see that the same S�1R results when E is replaced
by a certain set E ✏ of units and irreducible elements of R, namely the union
of R⇤ and the set of all irreducible elements x in R such that x�1 is in S�1R.
Define T to be the set of all finite products of members of E ✏. We show that
S�1R = T�1R. If e is in E ✏, then either e is a unit in R, in which case e�1

lies in R and therefore also S�1R, or e is irreducible in R with e�1 in S�1R.
Passing to finite products of members of E ✏, we see that T�1 � S�1R. Hence
T�1R � S�1R. Now let s be in S, and use Proposition 8.33 to write s as a
product of irreducible elements s = s1 · · · sn . Then s�1j = s�1(s1 · · ·�sj · · · sn),
with �sj indicating a missing factor. By construction, each sj is in E ✏. Therefore
each sj is in T , and s is in T . Consequently S � T , and S�1R � T�1R.

The localization of R at S is characterized up to canonical isomorphism by the

same kind of universal mapping property that characterizes the field of fractions

of an integral domain. To formulate a proposition, let us write ⇧ for the homo-
morphism r ◆� r⌅ of R into S�1R. Then the pair (S�1R, ⇧) has the universal
mapping property stated in Proposition 8.46 and illustrated in Figure 8.7.

R
����� T

⇧

⌘⌘$

S�1R

��

FIGURE 8.7. Universal mapping property of the localization of R at S.

Proposition 8.46. Let R be a commutative ring with identity, let S be a

multiplicative system in R, let S�1R be the localization of R at S, and let ⇧ be the
canonical homomorphism of R into S�1R. Whenever � is a ring homomorphism
of R into a commutative ring T with identity such that �(1) = 1 and such that

�(s) is a unit in T for each s ⌘ S, then there exists a unique ring homomorphism
 � : S�1R� T such that � =  �⇧.

PROOF. If (r, s) with s ⌘ S is a pair in  R, we define ⇣(r, s) = �(r)�(s)�1.
This is well defined since �(s) is assumed to be a unit in T . Let us see that
⇣ is consistent with the equivalence relation, i.e., that (r, s) � (r ✏, s ✏) implies
⇣(r, s) = ⇣(r ✏, s ✏). Since (r, s) � (r ✏, s ✏), we have u(rs ✏ � r ✏s) = 0 for some

u ⌘ S, and therefore also �(u)(�(r)�(s ✏) � �(r ✏)�(s)) = 0. Since �(u) is a
unit, �(r)�(s ✏) = �(r ✏)�(s). Hence ⇣(r, s) = �(r)�(s)�1 = �(r ✏)�(s ✏)�1 =
⇣(r ✏, s ✏), as required.
We can thus define  � of the class of (r, s) to be ⇣(r, s), and  � is well defined

as a function from S�1R to T . It is a routine matter to check that  � is a ring
homomorphism. If r is in R, then  �(⇧(r)) =  �(class of (r, 1)) = ⇣(r, 1) =
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�(r)�(1)�1, and this equals �(r) since � is assumed to carry 1 into 1. Therefore
 �⇧ = �.

For uniqueness, observation (iv) shows that the most general element of S�1R
is of the form ⇧(r)⇧(s)�1 with r ⌘ R and s ⌘ S. Since ( �⇧)(r) = �(r)
and ( �⇧)(s) = �(s), we must have  �(⇧(r)⇧(s)�1) =  �(⇧(r)) �(⇧(s))�1 =
�(r)�(s)�1. Therefore � uniquely determines  �. �

We shall examine the relationship between ideals in R and ideals in the local-

ization S�1R. If I is an ideal in R, then S�1 I = {s�1i | s ⌘ S, i ⌘ I } is easily
checked to be an ideal in S�1R and is called the extension of I to S�1R. If J
is an ideal in S�1R, then R � J , i.e., the inverse image of J under the canonical

homomorphism ⇧ : R � S�1R, is an ideal in R and is called the contraction
of J .

Proposition 8.47. Let R be a commutative ring with identity, and let S�1R
be a localization. If J is an ideal in S�1R, then S�1(R � J ) = J . Consequently

the mapping I ◆� S�1 I is a one-one mapping of the set of all ideals I in R of
the form I = R � J onto the set of all ideals in S�1R, and this mapping respects
intersections and inclusions.

REMARKS. As in the definition of contraction, R � J means ⇧�1(J ), where
⇧ : R� S�1R is the canonical homomorphism. The map I ◆� S�1 I that carries
arbitrary ideals of R to ideals of S�1R need not be one-one; the localization could
for example be the field of fractions of an integral domain and have only trivial

ideals. The proposition says that the map I ◆� S�1 I is one-one, however, when
restricted to ideals of the form I = R � J .

PROOF. From the facts that R � J � J and J is an ideal in S�1R, we obtain
S�1(R � J ) � S�1 J � J . For the reverse inclusion let x be in J , and write

x = s�1r with r in R and s in S. Then sx = r is in R � J , and therefore x is in

S�1(R � J ).

For the conclusion about the mapping I ◆� S�1 I , the mapping is one-one
because S�1(R � J1) = S�1(R � J2) implies J1 = J2 by what we have just

shown; hence R � J1 = R � J2. The mapping is onto because if J is given,

then J = S�1(R � J ) by what has already been shown. To see that the mapping
respects the intersection of ideals, let ideals R � J� be given for � in some
nonempty set. Then

S�1
��

� (R � J�)
⇥

= S�1(R �
�

� J�) =
�

� J� =
�

� S
�1(R � J�).

Finally the fact that the mapping respects the intersection of two ideals implies

that it respects inclusions. �



10. Localization and Local Rings 433

Corollary 8.48. Let R be a commutative ring with identity, and let S�1R be
a localization.

(a) If R is Noetherian, then S�1R is Noetherian.
(b) If every nonzero prime ideal in R is maximal, then the same thing is true

in S�1R.
(c) If R is an integral domain that is integrally closed and if S�1R is not zero,

then S�1R is integrally closed.
(d) If I is an ideal in R, then the ideal S�1 I of S�1R is proper if and only if

I � S = ⇤.
PROOF. For (a), let {J�} be a nonempty collection of ideals in S�1R. Con-

traction of ideals is one-one by the first conclusion of Proposition 8.47, and it

respects inclusions because it is given by the inverse image of a function. Since R

is Noetherian, Corollary 8.31b produces a maximal element R � J from among

the ideals R � J� of R. The first and second conclusions of Proposition 8.47

together show that J = S�1(R � J )  S�1(R � J�) = J� for all �. Hence J is
maximal among the J�.

For (b), let J1 be a nonzero prime ideal in S
�1R. Arguing by contradiction,

suppose that J2 is an ideal in S
�1R with J1 � J2 � S�1R. Then R � J1 �

R � J2 � R. If either of these inclusions were an equality, then use of the second

conclusion of Proposition 8.47 would give a corresponding equality for J1, J2, R,
and there is no such equality. Hence R � J1 � R � J2 � R.

If J1 is prime in S
�1R, then R � J1 is prime in R: In fact, if a and b are

members of R such that ab is in R� J1, then ab is in J1, and either a or bmust be
in J1 since J1 is prime. Since a and b are both in R, one of a and b is in R � J1.

Thus R � J1 is prime.
14

By assumption for (b), R � J1 is then maximal in R, and this conclusion

contradicts the fact that R � J1 � R � J2 � R. The assumption that J2 exists has

thus led us to a contradiction. Consequently there can be no such J2, and J1 is a

maximal ideal in S�1R.
For (c), let F be the field of fractions of R, so that R � S�1R � F . The field

of fractions of S�1R is the field F as a consequence of Proposition 8.6. If x is a
memberof F that is integral over S�1R and if x satisfies xn+bn�1xn�1+· · ·+b0 =
0with coefficients in S�1R, thenwe can find a common element s of S and rewrite
this equation as

xn + (s�1an�1)x
n�1 + · · · + (s�1a0) = 0

with an�1, . . . , a0 in R. Multiplying by s
n , we obtain

(sx)n + an�1(sx)
n�1 + · · · + a1s

n�2(sx) + a0s
n�1 = 0.

14Problem 9 at the end of the chapter puts this argument in a broader context.
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Therefore sx is integral over R. Since R is integrally closed, sx is in R. Write

r = sx . Then x = s�1r with r in R and s in S. Hence x is exhibited as in S�1R,
and we conclude that S�1R is integrally closed.
For (d), suppose that I � S is nonempty. If s is in I � S, then 1 = s�1s is

in S�1 I and the ideal S�1 I equals S�1R. Conversely if S�1 I = S�1R, then 1
is in S�1 I = {s�1i | s ⌘ S, i ⌘ I }, and hence 1 = s�1i for some s and i ;
consequently I � S contains the element i = s. �

A local ring is a commutative ring with identity having a unique maximal

ideal. An equivalent definition is given in Proposition 8.49 below, and then it

follows that the localization S�1R of Example 2 earlier in this section is a local
ring. Corollary 8.50 belowwill produce amore useful example: localizationwith

respect to a prime ideal, as in Example 3 earlier, always yields a local ring.15

Proposition 8.49. A nonzero commutative ring R with identity is a local ring

if and only if the nonunits of R form an ideal.

REMARK. The zero ring is not local, having no proper ideals, and its set of

nonunits is empty, hence is not an ideal.

PROOF. If the nonunits of R form an ideal, then that ideal is a unique maximal

ideal since a proper ideal cannot contain a unit; hence R is local. Conversely

suppose that R is local and that M is the unique maximal ideal. If x is any

nonunit, then the principal ideal (x) is a proper ideal since 1 is not of the form xr .

By Proposition 8.8, (x) is contained in some maximal ideal, and we must have
(x) � M since M is the unique maximal ideal. Then x is in M , and we conclude

that every nonunit is contained in M . �

Corollary 8.50. Let R be an integral domain, let P be a prime ideal of R, let

S be the set-theoretic complement of P , and let RP = S�1R be the localization
of R at P . Then RP is a local ring, its unique maximal ideal is M = S�1P , and
P can be recovered from M as P = R � M . If Q is any prime ideal of R that is
not contained in P , then S�1Q = S�1R.

PROOF. The subset S�1P of S�1R is an ideal by Proposition 8.47, and Corol-
lary 8.48d shows that it is proper. Every member of S�1R that is not in S�1P
is of the form s ✏�1s with s and s ✏ in S and hence is a unit. Since no unit lies in
any proper ideal, S�1R has M = S�1P as its unique maximal ideal, and S�1R
is local by Proposition 8.49.

15For Example 3 with R = K[X] and P = (X � c), the sense in which the ring RP is “local”
has a geometric interpretation: the only spot in K where we can regard members of RP as K-valued
functions is “near” the point c, with “near” depending on the element of RP . See the discussion

after the proof of Corollary 8.50 below.
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The contraction R � M consists of all elements in R of the form s�1 p with s
in S and p in P . Let us see that the contraction equals P . Certainly R �M  P .

For the reverse inclusion the equation s�1 p = r says that p = rs. If r is not in

P , then the facts that s is not in P and P is prime imply that p = rs is not in P ,

contradiction. Thus r is in P , and we conclude that P can be recovered from M

as P = R � M .
If Q is any prime ideal of R that is not contained in P , then S�1Q = S�1R. In

fact, any element q of Q that is not in P is in S; therefore 1 is in the ideal S�1Q,
and S�1Q = S�1R. �

The construction of RP in the corollary reduces to the construction of the

field of fractions of R if P = 0. Other interesting and typical cases occur for

suitable nonzero P’s when R = K[X,Y ], K being a field. One such prime ideal

is P = (X � c,Y � d); then, as was mentioned in connection with Example 3
above, the localization of R at P consists of the rational expressions f (X,Y )
that are well defined at (c, d). The maximal ideal in this case consists of all such
rational expressions that are 0 at (c, d). Another example of a nonzero prime
ideal in R = K[X,Y ] is P = (X); then the localization of R at P consists of
the rational expressions f (X,Y ) whose denominators are not divisible by X ,
and the maximal ideal consists of all such rational expressions f (X,Y ) whose
numerators are divisible by X if f is written in lowest terms.

A number-theoretic analog of the localizations of the previous paragraph is the

localization of R = Z at (p), where p is a prime number. The discussion with
Example 3 above mentioned that the localization consists of all members of Q
with no factor of p in the denominator. In this case the maximal ideal consists

of those rationals q whose numerators are divisible by p if q is written in lowest

terms.

We conclude this section with introductory remarks about a product operation

on ideals. Let R be a nonzero commutative ringwith identity. If I and J are ideals

in R, then once again I J denotes16 the set of all sums of products of a member of

I by a member of J . Certainly I J is closed under addition and negatives, and the

fact that r(I J ) = (r I )J � I J for r ⌘ R shows that I J is an ideal. Localization

with respect to a prime ideal is a handy tool for extracting information about

products of ideals. We illustrate with Propositions 8.52 and 8.53 below. The first

of these will play an important role in Section 11.

16Sometimes, such as in the equality S�1S�1 = S�1, the product notation is meant to refer only
to the set of all products, not to all sums of products. With ideals we are to allow sums of products.

The applicable convention will normally be clear from the context, but we shall be explicit when

there might be a possibility of confusion.
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Lemma 8.51 (Nakayama’s Lemma). Let R be a commutative ring with

identity, let I be an ideal of R contained in all maximal ideals, and let M be

a finitely generated unital R module. If I M = M , then M = 0.

REMARK. Here I M means the set of sums of products of a member of I by a

member of M . The lemma applies to no ideals if R = 0.

PROOF. We induct on the number of generators ofM . IfM is singly generated,

say by a generator m, then the hypothesis I M = M implies that rm = m for

some r in I . Thus (1� r)m = 0. If 1� r is a unit, then we can multiply by its

inverse and obtain m = 0; we conclude that M = 0. If 1 � r is not a unit, then

it lies in some maximal ideal P , by application of Proposition 8.8 to the proper

principal ideal (1� r). Since r lies in P by hypothesis, 1 lies in P , and we have
a contradiction to the fact that P is proper.

Suppose that the lemma holds for n � 1 or fewer generators, and let M be

generated by m1, . . . ,mn . Since I M = M , we have
⇠n

j=1 rjmj = m1 for

suitable r1, . . . , rn in I . Then (1� r1)m1 =
⇠n

j=2 rjmj . If 1� r1 is a unit, then

we can multiply by its inverse and see that the generator m1 is unnecessary; we

conclude that M = 0 by induction. If 1 � r1 is not a unit, then it lies in some

maximal ideal P . Since r1 lies in P by hypothesis, 1 lies in P , and we have a

contradiction. �

Proposition 8.52. Let R be a Noetherian commutative ring, and let I and P

be ideals in R with P prime. If I P = I , then I = 0.

PROOF. Let us localize with respect to the prime ideal P . If we write S for the

set-theoretic complement of P in R, then RP = S�1R is a local ring by Corollary
8.50, and its unique maximal ideal is S�1P . Since (S�1 I )(S�1R) = S�1 I R =
S�1 I , S�1 I is an ideal in RP . Also, (S�1 I )(S�1P) = S�1 I P = S�1 I , and
S�1 I has to be proper. In Nakayama’s Lemma (Lemma 8.51), let us take M to

be the S�1R module S�1 I . Since S�1P is the only maximal ideal in S�1R, M is

contained in all maximal ideals of S�1R. Since R is Noetherian, Corollary 8.48a
shows S�1R to be Noetherian, and the ideal S�1 I is a finitely generated S�1R
module by Corollary 8.31c. The lemma applies since (S�1P)(S�1 I ) = S�1 I ,
and the conclusion is that S�1 I = 0. Then the subset I of S�1 I must be 0. �

Proposition 8.53. Let R be an integral domain, F be its field of fractions,

K be any field containing F , and T be the integral closure of R in K . If P is a

maximal ideal in R, then PT ✓= T , and there exists a maximal ideal Q of T with

P = R � Q.

REMARKS. This result inverts the construction of Proposition 8.43, of course

not necessarily uniquely. The examples in Section 7 illustrate what can happen
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in simple cases. More detailed analysis of what can happen in general requires

some field theory and is postponed to Chapter IX, specifically when we discuss

“splitting of prime ideals in extensions.”

PROOF. If PT ✓= T , then Proposition 8.8 supplies a maximal ideal Q of T

with PT � Q. Since 1 is not in Q, we then have P � R�Q � R. Consequently

the maximality of P implies that P = R � Q.
Arguing by contradiction, we now assume that PT = T . Localizing, let S

be the set-theoretic complement of P in R, so that S�1P is the unique maximal
ideal of S�1R by Corollary 8.50. From PT = T , we can write

1 = a1t1 + · · · + antn (⌅)
with each ai in P and each ti in T . If we define T0 to be the subring R[t1, · · · , tn]
of T , then T0 is a finitely generated R module by Proposition 8.37, and S

�1T0
is therefore a finitely generated S�1R module. Equation (⌅) shows that 1 lies
in PT0. Multiplying by an arbitrary element of T0, we see that PT0 = T0.

Since S�1S�1 = S�1, we obtain (S�1P)(S�1T0) = S�1T0. Nakayama’s Lemma
(Lemma 8.51) allows us to conclude that S�1T0 = 0. Since 1 lies in T0, we have

arrived at a contradiction. �

11. Dedekind Domains

ADedekind domain is an integral domainwith the following three properties:

(i) it is Noetherian,

(ii) it is integrally closed,

(iii) every nonzero prime ideal is maximal.

Every principal ideal domain R is a Dedekind domain. In fact, (i) every ideal

in R is singly generated, (ii) R is integrally closed by Proposition 8.41, and (iii)

every nonzero prime ideal in R is maximal by Corollary 8.16.

We shall be interested in Dedekind domains that are obtained by enlarging a

principal ideal domain suitably. The general theorem in this direction is that if

R is a Dedekind domain with field of fractions F and if K is a field containing

F with dimF K finite, then the integral closure of R in K is a Dedekind domain.

Let us state something less sweeping.

Theorem 8.54. If R is a Dedekind domain with field of fractions F and if K

is a field containing F with dimF K finite, then the integral closure T of R in K

is a Dedekind domain if any of the following three conditions holds:

(a) T is Noetherian,

(b) T is finitely generated as an R module,

(c) the field extension F � K is “separable.”
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REMARKS. The term“separable”will be defined inChapter IX, and the fact that

(c) implies (b)will be proved at that time. Itwill be proved also that characteristic0

implies separable. For now, we shall be content with showing that (b) implies (a)

and that (a) implies that T is a Dedekind domain.

PROOF. We are given that R satisfies conditions (i), (ii), (iii) above, and we are

to verify the conditions for T . Condition (ii) holds for T by Corollary 8.40, and

Proposition 8.45 shows that (iii) holds. If (a) holds, then T satisfies the defining

conditions of a Dedekind domain.

Let us see that (b) implies (a). If (b) holds, then Proposition 8.34 shows that

every R submodule of T is finitely generated. Since T  R, every T submodule

of T is finitely generated. That is, every ideal of T is finitely generated, and T is

Noetherian. Thus (a) holds, and the proof is complete. �

Example 2 of integral closures in Section 9 showed that the integral closure of

Z in Q(
⇢
m ) is doubly generated as a Z module, a set of generators being either

{1,
⇢
m } or {1, 1

2
(1+

⇢
m )}, depending on the value of m. Example 3 showed,

under the assumption that K has characteristic different from 2, that the integral

closure of K[x] in K(x)[
⇢
P(x) ] is doubly generated as a K[x] module, a set of

generators being {1,
⇢
P(x) }. Since Z andK[x] are principal ideal domains and

henceDedekind domains, these examples give concrete cases inwhich hypothesis

(b) in Theorem 8.54 is satisfied. Consequently in each case the theorem asserts

that a certain explicit integral closure is a Dedekind domain.

Theorem 8.55 (unique factorization of ideals). If R is a Dedekind domain,

then each nonzero proper ideal I in R decomposes as a finite product
⇡n

j=1 P
kj
j ,

where the Pj ’s are distinct nonzero prime ideals and the kj ’s are positive integers.

Moreover,

(a) the decomposition into positive powers of distinct nonzero prime ideals

is unique up to the order of the factors,

(b) the power Pk of a nonzero prime ideal P appearing in the decomposition

of I is characterized as the unique nonnegative integer such that Pk

contains I and Pk+1 does not contain I (with k = 0 interpreted as saying

that P is not one of the Pj ),

(c) whenever I, J1, J2 are nonzero ideals with I J1 = I J2, then J1 = J2,

(d) whenever I and J1 are two nonzero proper ideals with I � J1, then there

exists a nonzero ideal J2 with I = J1 J2.

Let us say that a nonzero ideal J1 divides a nonzero ideal I if I = J1 J2 for

some ideal J2. We say also that J1 is a factor of I . Conclusion (d), once it

is established, is an important principle for working with ideals in a Dedekind

domain: to contain is to divide.



11. Dedekind Domains 439

Thinking along these lines leads us to expect that prime ideals play some

special role with respect to containment. Such a role is captured by the following

lemma.

Lemma 8.56. In an integral domain, if P is a prime ideal such that

P  I1 · · · In for the product of the ideals I1, . . . , In , then P  Ij for some j .

PROOF. By induction it is enough to handle n = 2. Thus suppose P  I1 I2.

We are to show that P  I1 or P  I2. Arguing by contradiction, suppose

on the contrary that x ⌘ I1 and y ⌘ I2 are elements with x /⌘ P and y /⌘ P .

Then xy cannot be in P since P is prime, but xy is in I1 I2 � P , and we have a

contradiction. �

Lemma 8.57. Let R be a Dedekind domain, and let I be a nonzero ideal of

R. Then there exists a finite product P1 · · · Pk of nonzero prime ideals, possibly
empty and not necessarily having distinct factors, such that P1 · · · Pk � I .

PROOF. We argue by contradiction. Among all nonzero ideals for which there

is no such finite product, choose one, say J , that is maximal under inclusion.

This choice is possible since R is Noetherian. The ideal J cannot be prime since

otherwise J � J would be the containment asserted by the lemma. Thus we can

choose elements a1 and a2 in R with a1a2 ⌘ J , a1 /⌘ J , and a2 /⌘ J . Define

ideals I1 and I2 by I1 = J + Ra1 and I2 = J + Ra2. These strictly contain

J , and their product manifestly has I1 I2 � J . By maximality of J , we can find

products P1 · · · Pk and Q1 · · · Ql of nonzero prime ideals with P1 · · · Pk � I1 and

Q1 · · · Ql � I2. Then P1 · · · PkQ1 · · · Ql � I1 I2 � J , contradiction. �

Lemma 8.58. Let R be a Dedekind domain, regard R as embedded in its field

of fractions F , let P be a nonzero prime ideal in R, and define

P�1 =
⇧
x ⌘ F | x P � R

⌃
.

Then the set PP�1 of sums of products equals R.

PROOF. By definition of P�1, P � PP�1 � R. Since P is an ideal and

PP�1 is closed under addition and negatives, PP�1 is an ideal. Property (iii) of
Dedekinddomains shows that P is amaximal ideal in R, and therefore PP�1 = P

or PP�1 = R. We are to rule out the first alternative.

Thus suppose that PP�1 = P . Since R is Noetherian by (i), P is a finitely

generated R submodule of F . The equality PP�1 = P implies that eachmember

x of P�1 has x P � P , and Proposition 8.35c implies that each such x is integral

over R. Since R is integrally closed by (ii), x is in R. Thus P�1 � R, and the

definition of P�1 shows that P�1 = R.
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Fix a nonzero element a of P . Applying Lemma 8.57, find a product of

nonzero prime ideals such that P1 · · · Pk � (a) � P . Without loss of generality,

we may assume that k is as small as possible among all such inclusions. Since

P is prime and P1 · · · Pk � P , Lemma 8.56 shows that P contains some Pj , say

P1. By (iii), P1 is maximal, and therefore P = P1. Form the product P2 · · · Pk ,
taking this product to be R if k = 1. Then P2 · · · Pk is not a subset of (a), by
minimality of k, and there exists a member b of P2 · · · Pk that is not in (a). On
the other hand, PP2 · · · Pk � (a) shows that Pb � (a), hence that a�1bP � R.

Thus a�1b is in P�1, which we are assuming is R. In other words, a�1b is in R,
and b is in aR = (a), contradiction. �

PROOF OF THEOREM 8.55. Arguing by contradiction, we may assume because

R is Noetherian that I is maximal among the nonzero proper ideals that do not

decomposeas products of prime ideals. Then certainly I is not prime. Application

of Proposition 8.8 produces a maximal ideal P containing I , and P is prime

by Corollary 8.11. Multiplying I � P by P�1 as in Lemma 8.58, we obtain
I � P�1 I � P�1P = R, the equality holding by Lemma 8.58. Hence P�1 I
is an ideal. An equality I = P�1 I would imply that P I = PP�1 I = I by

Lemma 8.58, and then Proposition 8.52 would yield I = 0, a contradiction

to the hypothesis that I is nonzero. An equality P�1 I = R would imply

I = PP�1 I = PR = P by Lemma 8.58, in contradiction to the fact that

I is not prime. We conclude that I � P�1 I � R. The maximal choice

of I shows that P�1 I decomposes as a product P�1 I = P1 · · · Pr of prime
ideals, not necessarily distinct. One more application of Lemma 8.58 yields

I = PP�1 I = PP1 · · · Pr , and we have a contradiction. We conclude that every
nonzero proper ideal decomposes as a product of prime ideals. Grouping equal

factors, we can write the decomposition as in the statement of the theorem.

Next let us establish uniqueness as in (a). Suppose that we have two equal

decompositions P1 · · · Pr = Q1 · · · Qs as the product of prime ideals, and suppose

that r ⌦ s. We show by induction on r that r = s and that the factors on the

two sides match, apart from their order. The base case of the induction is r = 0,

and then it is evident that s = 0. Assume the uniqueness for r � 1. Since P1 is
prime and P1  Q1 · · · Qs , P1  Qj for some j by Lemma 8.56. By (iii) for

Dedekind domains, Qj is a maximal ideal, and therefore P1 = Qj . Multiplying

the equality P1 · · · Pr = Q1 · · · Qs by P
�1
1 and applying Lemma 8.58 to each

side, we obtain P2 · · · Pr = Q1 · · · Qj�1Qj+1 · · · Qs . The inductive hypothesis

implies that r � 1 = s � 1 and the factors on the two sides match, apart from
their order. Then we can conclude about the equality P1 · · · Pr = Q1 · · · Qs that

r = s and that the factors on the two sides match, apart from their order. This

proves (a).

Let us establish the formula in (b) for kj . Suppose that P is a prime ideal.
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By (a), we can write I = Pn J for a certain integer n ↵ 0 in such a way that P
does not appear in the unique decomposition of J . Certainly Pk  I for k ⌦ n

because Pk  Pk Pn�k = Pn  Pn J = I . Suppose Pn+1  I . Multiplying

Pn+1  I = Pn J by n factors of P�1 and using Lemma 8.58 repeatedly, we
obtain P  P�n I = J . Since P is prime, Lemma 8.56 shows that P must

contain one of the factors when J is decomposed as the product of prime ideals,

and we have a contradiction to the maximality of this factor unless this factor is

P itself. In this case, P appears in the decomposition of J , and again we have a

contradiction.

For (c), if I J1 = I J2, substitute the unique decompositions as products of

prime ideals for I , J1, and J2, and use (a) to cancel the factors from I on each

side, obtaining J1 = J2.

For (d), suppose that I and J1 are two nonzero proper ideals with I � J1. If

P
ki
i is the largest power of a prime ideal Pi appearing in the decomposition of J1,

then P
ki
i  J1  I , and (b) shows that P

ki
i appears in the decomposition of I . In

other words, if li is the largest power of Pi appearing in the decomposition of I ,

then li ↵ ki . Let J2 =
⇡

i P
li�ki
i . Then we obtain I = J1 J2, and (d) is proved.�

Corollary 8.59. Let R be a Dedekind domain, and let P be a nonzero prime

ideal in R. Then there exists an element � in P such that � is not in P2, and any
such element has the property that � k is not in Pk+1 for any k ↵ 1.
PROOF. Proposition 8.52 shows that P2 is a proper subset of P , and therefore

we can find an element � in P that is not in P2. Since the principal ideal (�) has
(�) � P and (�) � P2, the factorization of (�) involves P but not P2. Thus we
can use Theorem 8.55 to write (�) = PQ1 · · · Qn for prime ideals Q1, . . . , Qn

different from P . Then (� k) = (�)k = PkQk
1 · · · Qk

n , and (b) of the theorem

says that Pk+1 does not contain (� k). �

Corollary 8.60. Let R be a Dedekind domain, and let P be a nonzero prime

ideal in R. For any integer e ↵ 1, the natural action of R on powers of P

makes Pe�1/Pe into a vector space over the field R/P , and this vector space is
1-dimensional.

REMARKS. This technical-sounding corollary will be used crucially late in

Chapter IX of this volume and again in Chapter V of Advanced Algebra.

PROOF. Since R(Pe�1) � Pe�1 and P(Pe�1) � Pe, we obtain

(R/P)(Pe�1/Pe) � Pe�1/Pe.

Thus Pe�1/Pe is a unital R/P module, i.e., a vector space over the field R/P .
We show that it has dimension 1. Corollary 8.59 shows that there exists a member
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� of P not in P2, and it shows that � k is not in Pk+1 for any k. This element
� has the property that (�) = PQ1 · · · Qr for nonzero prime ideals Q1, . . . , Qr

distinct from P , and thus

R� e�1 = (� e�1) = (�)e�1 = Pe�1Qe�1
1 · · · Qe�1

r .

Hence

R� e�1 + Pe = Pe�1(Qe�1
1 · · · Qe�1

r + P).

The ideal in parentheses on the right side strictly contains P since the failure

of P to divide Qe�1
1 · · · Qe�1

r means that P does not contain Qe�1
1 · · · Qe�1

r (by

Theorem 8.55d). Since P is maximal, the ideal in parentheses is R, and we see

that R(� e�1+Pe) = Pe�1/Pe. Therefore (R/P)(� e�1+Pe) = Pe�1/Pe. This
formula says that Pe�1/Pe consists of all scalar multiples of a certain element,
and it follows that Pe�1/Pe is 1-dimensional. �

Lemma 8.61. If P and Q are distinct maximal ideals in an integral domain R

and if k and l are positive integers, then Pk + Ql = R.

PROOF. We know that Pk + Ql is an ideal. Arguing by contradiction, assume

that it is proper. Then we can find a maximal ideal M with M  Pk + Ql . This

M satisfies M  Pk and M  Ql . By Lemma 8.56, M  P and M  Q. Since

P and Q are distinct and maximal, we obtain P = M = Q, contradiction. �

Corollary 8.62. If R is a Dedekind domain with only finitely many prime

ideals, then R is a principal ideal domain.

REMARKS. Corollary 8.48 may be used to produce examples to which Corol-

lary 8.62 is applicable. All we have to do is to take one of our standard Dedekind

domains R and localize with respect to a nonzero prime ideal P . The corollary

says that the result RP is a Dedekind domain, and it has a unique maximal ideal,

hence a unique nonzero prime ideal. The conclusion is that RP is a principal

ideal domain.

PROOF. Let P1, . . . , Pn be the distinct nonzero prime ideals. Theorem 8.55

shows that any nonzero ideal I in R factors uniquely as I = P
k1
1 · · · Pknn with

each kj ↵ 0. For 1 ⌦ i ⌦ n, Corollary 8.59 produces �i in Pi such that �i is not

in P2i , and it shows that �
m
i is not in P

m+1
i .

Lemma 8.61 gives P
ki
i + P

kj
j = R if i ✓= j . Applying the Chinese Remainder

Theorem(Theorem8.27a),we canfindan elementa in Rwitha ⌥ �
ki
i mod P

ki+1
i

for 1 ⌦ i ⌦ n. Using Theorem 8.55 again, let (a) = P
l1
1 · · · Plnn be the unique

factorization of the principal ideal (a). The defining property of a shows that a

is in P
ki
i but not P

ki+1
i for each i . Thus (a) is contained in P

ki
i but not in P

ki+1
i .

By Theorem 8.55b, li = ki for each i . Hence the ideal I = P
k1
1 · · · Pknn = (a) is

exhibited as principal. �
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Corollary 8.63. If R is a Dedekind domain and if I =
⇡n

j=1 P
kj
j is the unique

factorization of a nonzero proper ideal I as the product of positive powers of

distinct prime ideals Pj , then the map r ◆�
⇡n

j=1 P
kj
j defined on R by r ◆�

(. . . , r + P
kj
j , . . . ) descends to a ring isomorphism

R/I �= R/Pk11 ⇤ · · ·⇤ R/Pknn .

PROOF. Lemma 8.61 shows that P
ki
i + P

kj
j = R if i ✓= j . Then the result

follows immediately from the Chinese Remainder Theorem (Theorem 8.27). �

12. Problems

1. This problem examines ring homomorphisms of the field of real numbers into

itself that carry 1 into 1. Let � be such a homomorphism.

(a) Prove that � is the identity on Q.
(b) Prove that � maps squares into squares.

(c) Prove that � respects the ordering ofR, i.e., that a ⌦ b implies �(a) ⌦ �(b).

(d) Prove that � is the identity on R.
2. An element r in a commutative ring with identity is called nilpotent if rn = 0

for some integer n. Prove that if r is nilpotent, then 1+ r is a unit.

3. If R is a field, prove that the embedding of R in its field of fractions exhibits R

as isomorphic to its field of fractions.

4. Prove that X is prime in R[X] if R is an integral domain.

5. Suppose that R is an integral domain that is not a field.

(a) Prove that there is a nonzero prime ideal in R[X] that is not maximal.

(b) Prove that there is an ideal in R[X] that is not principal.

6. This problem makes use of real-analysis facts concerning closed bounded inter-

vals of the real line. Let R be the ring of all continuous functions from [0, 1] into

R, with pointwise multiplication as the ring multiplication.
(a) Prove for each x0 in [0, 1] that the set Ix0 of members of R that vanish at x0

is a maximal ideal of R.

(b) Prove that any maximal ideal I of R that is not some Ix0 contains finitely

many members f1, . . . , fn of R that have no common zero on [0, 1].

(c) By considering f 21 + · · · + f 2n in (b), prove that every maximal ideal of R is

of the form Ix0 for some x0 in [0, 1].

7. Let R be the ring of all bounded continuous functions from R into R, with
pointwise multiplication as the ring multiplication. Say that a member f of R

vanishes at infinity if for each ⌅ > 0, there is some N such that | f (x)| < ⌅

whenever |x | ↵ N . Answer the following:
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(a) Show that the subset I⇣ of all members of R that vanish at infinity is an

ideal but not a maximal ideal.

(b) Why must R have at least one maximal ideal I that contains I⇣?
(c) Why can there be no x0 in R such that the maximal ideal I of (b) consists

of all members of R that vanish at x0?

8. Let I be a nonzero ideal in Z[
⇢
�5 ].

(a) Prove that I contains some positive integer.

(b) Prove that I , as an abelian group under addition, is free abelian of rank 2.

(c) If n denotes the least positive integer in I , prove that I has a Z basis of the
form {n, a + b

⇢
�5 } for a suitable member a + b

⇢
�5 of Z[

⇢
�5 ].

9. Let � : R � R✏ be a homomorphism of commutative rings with identity such
that �(1) = 1. Prove that if P ✏ is a prime ideal in R✏, then P = ��1(P ✏) is a
prime ideal in R.

10. Determine the maximal ideals of each of the following rings:

(a) R⇤ R,
(b) R[X]/(X2),
(c) R[X]/(X2 � 3X + 2),

(d) R[X]/(X2 + X + 1).

11. (a) Prove or disprove: If I is a nonzero prime ideal in Q[X], then Q[X]/I is a
unique factorization domain.

(b) Prove or disprove: If I is a nonzero prime ideal in Z[X], then Z[X]/I is a
unique factorization domain.

12. (Partial fractions) Let R be a principal ideal domain, and let F be its field of

fractions.

(a) Let n be a nonzero member of R with a factorization n = cd such that

GCD(c, d) = 1. Prove for each m in R that the member mn�1 of F has a
decomposition as mn�1 = ac�1 + bd�1 with a and b in R.

(b) Let n be a nonzero member of R with a factorization n = p
k1
1 · · · pkrr , the

elements pj being nonassociate primes in R. Prove for each m in R that the

membermn�1 of F has a decomposition asmn�1 = q1 p
�k1
1 +· · ·+qr p

�kr
r

with all qj in R.

13. (a) By adapting the proof that the ring of Gaussian integers forms a Euclidean

domain, prove that the function ⇤(a+b
⇢
�2) = a2+2b2 satisfies ⇤(rr ✏) =

⇤(r)⇤(r ✏) and exhibits Z[
⇢
�2] as a Euclidean domain.

(b) It was shown in Section 9 thatZ[
⇢
�3 ] is not a unique factorization domain,

hence cannot be a Euclidean domain. What goes wrong with continuing the

adaptation in the previous problem so that it applies to Z[
⇢
�3 ]?
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14. Let G be a group, and let R be a commutative ring with identity. Examples 16

and 17 in Section 1 defined the group algebra RG and the R algebra C(G, R)

of functions from G into R, convolution being the multiplication in C(G, R).

Prove that the mapping g ◆� fg described with Example 17 extends to an R

algebra isomorphism of RG onto C(R,G).

15. Let I be an ideal in Z[X], and suppose that the lowest degree of a nonzero
polynomial in I is n and that I contains some monic polynomial of degree n.

Prove that I is a principal ideal.

16. For each integer n > 0, exhibit an ideal In in Z[X] that cannot be written with
fewer than n generators.

17. Let� be the substitution homomorphism� : K[x, y]� K[t] defined by x ◆� t2,

y ◆� t3, and �(c) = c for c ⌘ K.
(a) Prove that ker� is the principal ideal (y2 � x3).

(b) What is image�?

18. Let R = Z[i].
(a) Show that each unital R module M may be regarded as an abelian group

with an abelian-group homomorphism � : M � M for which �2 is the

mapping m ◆� �m.
(b) Show conversely that if M is an abelian group and there exists an abelian-

group homomorphism � : M � M for which �2 is the mappingm ◆� �m,
then M may be regarded as a unital R module.

19. Let R be a unique factorization domain, and let F be its field of fractions. Let

A(X) and B(X) be nonzero polynomials in F[X], let A0(X) and B0(X) be their

associated primitive polynomials, and suppose that B(X) divides A(X) in F[X].

Prove that B0(X) divides A0(X) in R[X].

20. Prove that an integral domain with finitely many elements is a field.

21. Two proofs of Theorem 8.18 were given, one using direct multiplication of

polynomials and the other using polynomials with coefficients taken modulo

(p), and it was stated that proofs in both these styles could be given for Corollary

8.22. A proof in the first style was supplied in the text. Supply a proof in the

second style.

22. Let K be a field.

(a) Prove that det
 
W X

Y Z

⌦
, when considered as a polynomial in K[W, X,Y, Z ],

is irreducible.

(b) Let Xi j be indeterminates for i and j from 1 to n. Doing an induction, prove

that the polynomial det[Xi j ] is irreducible in K[X11, X12, . . . , Xnn].
23. Prove that two members of Z[X] are relatively prime in Q[X] if and only if the

ideal they generate in Z[X] contains a nonzero integer.
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24. Let V be the Z[i] module with two generators u1, u2 related by the conditions
(1+ i)u1 + (2� i)u2 = 0 and 3u1 + 5iu2 = 0. Express V as the direct sum of

cyclic Z[i] modules.

Problems 25–26 concern the ring R = Z
⇤
1
2
(1 +

⇢
�m )

⌅
, where m is a square-free

integer > 1 with m ⌥ 3 mod 4. Let F = Q[
⇢
�m ] be the field of fractions of R.

25. For z = x + y
⇢
�m in F , define ⇤(z) = x2 + my2.

(a) Show that ⇤(zw) = ⇤(z)⇤(w).

(b) Show that if for each z in F there is some r in R with ⇤(z � r) < 1, then ⇤

exhibits R as a Euclidean domain.

26. Prove that the condition of part (b) of the previous problem is satisfied form = 3,

7, and 11, and conclude that Z
⇤
1
2
(1 +

⇢
�m )

⌅
is a Euclidean domain for these

values of m.

Problems 27–31 classify the primes in the ring Z[i] of Gaussian integers. This ring
is a Euclidean domain and therefore is a unique factorization domain. Members of

this ring will be written as a + bi , and it is understood that a and b are in Z. Put
N (a + bi) = (a + bi)(a � bi) = a2 + b2.

27. Let a + bi be prime in Z[i]. Prove that
(a) a � bi is prime.

(b) N (a + bi) is a power of some positive prime p in Z.
(c) N (a + bi) equals p or p2 when p is as in (b).

(d) N (a + bi) = p2 in (c) forces a + bi = p, apart from a unit factor.

28. Prove that no prime a+bi in Z[i] has N (a+bi) = p with p of the form 4n+3.
Conclude that every positive prime in Z of the form 4n + 3 is a prime in Z[i].

29. Prove that the only primes a+ bi of Z[i] for which N (a+ bi) equals 2 or 22 are

1+ i and its associates, for which N (a + bi) = 2.

30. Prove that if p is a positive prime in Z of the form 4n + 1, then �1 is a square
in the finite field Fp.

31. Let p be a positive prime in Z of the form 4n + 1.

(a) Prove that there exist ring homomorphisms�1 ofZ[X] ontoFp[X]/(X
2+1)

and �2 of Z[X] onto Z[i]/(p).
(b) Prove that ker�1 and ker�2 are both equal to the ideal (p, X

2 + 1) in Z[X],
and deduce a ring isomorphism Z[i]/(p) �= Fp[X]/(X

2 + 1).

(c) Taking into account the results of Problems 27 and 30, show that p is not

prime in Z[i] and is therefore of the form p = N (a + bi) = a2 + b2 for

some prime a + bi in Z[i].
(d) Prove a uniqueness result for the decomposition p = a2 + b2, that if also

p = a✏2 + b✏2, then a✏ + b✏i is an associate either of a + bi or of a � bi .



12. Problems 447

Problems 32–35 establish a theory of elementary divisors. This theory provides

a different uniqueness result, beyond the one in Corollary 8.28, to accompany the

Fundamental Theorem of Finitely GeneratedModules over a Principal Ideal Domain.

When specialized toK[X] for a fieldK, the theory yields the rational canonical form
of a member of Mn(K). Let R be a nonzero principal ideal domain. If C and D are

members of Mmn(R), let us say that C and D are equivalent if there exist A in

Mm(R) and B in Mn(R) with det A in R⇤, det B in R⇤, and D = ACB. Fix m

and n, and put k = min(m, n). If C is a member of Mmn(R), its diagonal entries

are the entries C11,C22, . . . ,Ckk . The matrix C will be called diagonal if its only

nonzero entries are diagonal entries. Problems 26–31 of Chapter V are relevant for

Problem 34.

32. (a) Suppose that C is a diagonal matrix in Mmn(R) with C11 ✓= 0. Show that

C is equivalent to a matrix C ✏ described as follows: all entries of C ✏ are the
same as those of C except possibly for the entries C ✏21, . . . ,C

✏
k1 in the first

column, and these satisfy C ✏j1 = Cj j .

(b) By applying the algorithm of Lemma 8.26 to the matrix C ✏ in (a), prove that
any nonzero diagonal matrixC in Mmn(R) is equivalent to a diagonal matrix

C ✏✏ such that C ✏✏11 divides all the diagonal entries of C
✏✏.

(c) By iterating the construction in (a) and (b), prove that any diagonal matrix

C in Mmn(R) is equivalent to a diagonal matrix D having the following

properties: The nonzero diagonal entries of D are the entries Dj j with

1 ⌦ j ⌦ l for some integer l with 0 ⌦ l ⌦ k. For each j with 1 ⌦ j < l,

Dj j divides Dj+1, j+1.

33. (a) Establish the following uniqueness theorem: Let D and E be diagonal

matrices in Mmn(R) whose diagonal entries satisfy the divisibility property

in (c) of the previous problem. Prove that if D and E are equivalent, then they

have the same number of nonzero entries, and their corresponding diagonal

entries are associates.

(b) Combine Corollary 8.29, Problem 32, and Problem 33a to establish the

following elementary-divisors version of the Fundamental Theorem of

Finitely Generated Modules: If R is a principal ideal domain, then any

finitely generated unital R moduleM is the direct sum of a nonunique free R

submodule
�s

i=1 R of a well-defined finite rank s ↵ 0 and the R submodule
T of all members m of M such that rm = 0 for some r ✓= 0 in R. In turn,

the R submodule T is isomorphic to a direct sum T �=
�l

j=1 R/(dj ), where

the dj are nonzero nonunits in R such that dj divides dj+1 for 1 ⌦ j < l.

The number of l of summands and the ideals (dj ) are uniquely determined

by M .

34. (a) (Rational decomposition) Let K be a field, and let L : V � V be a K
linear mapping from a finite-dimensional K vector space V to itself. By

applying Theorem 8.25 and the results of the previous problems to V as a
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K[X] module with Xv = L(v), prove the following: V can be written as

the direct sum of cyclic subspaces V1, . . . , Vr under L in such a way that

the minimal polynomial of L on Vj divides the minimal polynomial of L on

Vj+1 for 1 ⌦ j < r ; moreover, the integer r and the minimal polynomials

are uniquely determined by L , and any two linear mappings with the same

r and matching minimal polynomials are similar over K.
(b) (Rational canonical form) Interpret the result of (a) as saying something

about similarity overK of any matrix in Mnn(K) to a certain block diagonal

matrixwith blocks of the form in Problem28 forChapterV andwithminimal

polynomials having a suitable divisibility property.

35. LetK and L be fields withK � L, and suppose that two members of Mn(K) are

conjugate via GL(n, L). Prove that they are conjugate via GL(n, K).

Problems 36–39 concern symmetric polynomials in n indeterminates over a field. Let

F be a field, and let R = F[X1, . . . , Xn]. If ⌦ ⌘ Sn is a permutation, then there

is a corresponding substitution homomorphism of rings ⌦ ⌅ : R � R fixing F and

carrying each Xj into X⌦ ( j). A symmetric polynomial A in R is a member of R

for which ⌦ ⌅A = A for every permutation ⌦ . The symmetric polynomials form a

subring of R containing the constants. The main result about symmetric polynomials

is that every symmetric polynomial is a polynomial in the “elementary symmetric

polynomials”; these will be defined below.

36. Prove that the ring homomorphisms ⌦ ⌅ satisfy (⌦↵ )⌅ = ⌦ ⌅↵ ⌅. Deduce that each
⌦ ⌅ : R� R is an isomorphism.

37. Prove that the homogeneous-polynomialexpansionof any symmetric polynomial

is into symmetric polynomials.

38. For each permutation ⌦ , let ⌦ ⌅⌅ be the substitution homomorphism of R[X] �=
F[X1, . . . , Xn, X] acting as ⌦

⌅ on R and carrying X to itself.
(a) Prove that (⌦↵ )⌅⌅ = ⌦ ⌅⌅↵ ⌅⌅ and that each ⌦ ⌅⌅ is a ring isomorphism of

R[X].

(b) Prove that each coefficient in R[X] of any polynomial fixed by all ⌦ ⌅⌅ is a
symmetric polynomial in R.

(c) The polynomial (X � X1)(X � X2) · · · (X � Xn) is fixed by all ⌦
⌅⌅, and its

coefficients are called the elementary symmetric polynomials. Show that

they are

E1=
⇠
i

Xi , E2=
⇠
i< j

Xi X j , E3 =
⇠

i< j<k

Xi X j X j , . . . , En= X1X2 · · · Xn.

39. Order the monomials of total degreem by saying that the monomial aX
k1
1 · · · Xknn

with a ✓= 0 and
⇠
kj = m is greater than the monomial a✏Xl11 · · · Xlnn with a✏ ✓= 0

and
⇠
lj = m if the first j for which kj ✓= lj has kj > lj .
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(a) If A(X1, . . . , Xn) is a nonzero symmetric polynomial homogeneous of de-

gree m and if aX
k1
1 · · · Xknn is its nonzero monomial that is highest in the

above order, why must it be true that k1 ↵ k2 ↵ · · · ↵ kn?

(b) Verify that the largest monomial in E
c1
1 · · · Ecnn in the ordering is

X
c1+c2+···+cn
1 X

c2+···+cn
2 · · · Xcnn .

(c) Show that if A(X1, . . . , Xn) is a nonzero symmetric polynomial homoge-

neous of degreem, then there exist a symmetric polynomialM = E
c1
1 · · · Ecnn

homogeneous of degree m and a scalar r such that the largest monomials in

A and rM are equal.

(d) With notation as in (c), show that A � rM equals 0 or else the largest

monomial of A is greater than the largest monomial of A � rm.

(e) Deduce that every symmetric polynomial is a polynomial in the elementary

symmetric polynomials.

Problems 40–43 concern the Pfaffian of a (2n)-by-(2n) alternating matrix X = [xi j ]

with entries in a field K. Here “alternating” means that xi j = �xji for all i and j

and xii = 0 for all i . The Pfaffian is the polynomial in the entries of X with integer

coefficients given by

Pfaff(X) =
⌧

certain ↵ ’s
inS2n

(sgn ↵ )
n�

k=1
x↵ (2k�1),↵ (2k),

where the sum is taken over those permutations ↵ such that ↵ (2k � 1) < ↵ (2k) for

1 ⌦ k ⌦ n and such that ↵ (1) < ↵ (3) < · · · < ↵ (2n�1). ThePfaffianwas introduced
in Problems 23–28 at the end of Chapter VI. It was shown in those problems that

the Pfaffian satisfies det X = (Pfaff(X))2. The present problems will make use of

that result but of no other results from Chapter VI. They will also make use of facts

concerning continuous functions and connected open subsets of Euclidean space.

40. Prove by induction on m that the open subset of Cm on which a nonzero poly-

nomial function P(z1, . . . , zm) is nonzero is pathwise connected and therefore

connected.

41. For this problem let K = C.
(a) For any two matrices A and X in M2n(C) with X alternating, prove that

Pfaff(At X A) = ±(det A)Pfaff(X) with the sign depending on A and X .

(b) Fix X , and allow A to vary. Using Problem 40, prove that the sign is always

positive in (a). That is, prove that Pfaff(At X A) = (det A)Pfaff(X).
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42. For this problem let K be any field. By regarding the expressions Pfaff(At X A)

and (det A)Pfaff(X) as polynomials with coefficients in Z in the indeterminates
Ai j for all i and j and the indeterminates Xi j for i < j , and using the prin-

ciple of permanence of identities in Section V.2, prove that Pfaff(At X A) =
(det A)Pfaff(X) whenever A and X are in M2n(K) and X is alternating.

43. Section VI.5 defines a particular alternating matrix J for which Pfaff(J ) = 1.

A symplectic matrix g over K is one for which gt Jg = J . Prove that every

symplectic matrix has determinant 1.

Problems 44–47 concern Dedekind domains. Let R be such a domain. It is to be

proved that each nonzero ideal I is doubly generated in the sense that I = Ra + Rb

for suitable members a and b of R.

44. Let R1, . . . , Rn be nonzero commutative rings with identity, not necessarily

integral domains. Prove that if every ideal of each Rj is principal, then every

ideal in R1 ⇤ · · ·⇤ Rn is principal.

45. Let P be a nonzero prime ideal, and let k be a positive integer.

(a) Prove that the only nonzero proper ideals in R/Pk are P/Pk , P2/Pk , . . . ,

Pk�1/Pk .
(b) Using the element � in the statement of Corollary 8.59, prove that each of

the ideals in (a) is principal.

46. Combining Corollary 8.63 with Problems 44 and 45, conclude that the quotient

of R by any nonzero proper ideal has only principal ideals.

47. Let I be a nonzero proper ideal in R. By letting a be any nonzero element of I

and by applying (c) in the previous problem to the ideal I/(a) of R/(a), prove

that I = Ra + Rb for a suitable b in I .

Problems 48–53 introduce and classify “fractional ideals” in Dedekind domains. Let

R be aDedekind domain, regarded as a subring of its field of fractions F . A fractional

ideal in F is a finitely generated R submodule of F .

48. Prove that the fractional ideals in F that lie in R are exactly the ordinary ideals

of R.

49. Prove for any fractional ideal M that there exists a nonzero member a of F such

that aM lies in R and hence is an ordinary ideal. Conclude that the product of

two fractional ideals is a fractional ideal.

50. Prove that if I is a nonzero ideal of R and if I�1 is defined by

I�1 = {x ⌘ F | x R � I },

then I�1 is a fractional ideal in F . Conclude that if P is a prime ideal in R, then
P�1 as defined in Lemma 8.58 is a fractional ideal in F .
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51. Prove, by arguing with an ideal that is maximal among those for which the

statement is false, that to any nonzero ideal I in R corresponds some fractional

ideal M of F such that I M = R.

52. Prove in the notation of the previous two problems that M = I�1.

53. Deduce that every nonzero fractional ideal is of the form I J�1, where I and J
are nonzero ideals. Conclude that

(a) the nonzero fractional ideals are exactly all products
⇡n

i=1 P
ki
i , where the Pi

are distinct nonzero prime ideals and the ki are arbitrary nonzero integers,

positive or negative,

(b) the nonzero fractional ideals form a group.



CHAPTER IX

Fields and Galois Theory

Abstract. This chapter develops some general theory for field extensions and then goes on to

study Galois groups and their uses. More than half the chapter illustrates by example the power

and usefulness of the theory of Galois groups. Prerequisite material from Chapter VIII consists

of Sections 1–6 for Sections 1–13 of the present chapter, and it consists of all of Chapter VIII for

Sections 14–17 of the present chapter.

Sections 1–2 introduce field extensions. These are inclusions of a base field in a larger field.

The fundamental construction is of a simple extension, algebraic or transcendental, and the next

construction is of a splitting field. An algebraic simple extension is made by adjoining a root of an

irreducible polynomial over the base field, and a splitting field is made by adjoining all the roots of

such a polynomial. For both constructions, there are existence and uniqueness theorems.

Section 3 classifies finite fields. For each integer q that is a power of some prime number, there

exists one and only one finite field of order q, up to isomorphism. One finite field is an extension of

another, apart from isomorphisms, if and only if the order of the first field is a power of the order of

the second field.

Section 4 concerns algebraic closure. Any field has an algebraic extension in which each

nonconstant polynomial over the extension field has a root. Such a field exists and is unique up

to isomorphism.

Section 5 applies the theory of Sections 1–2 to the problem of constructibility with straightedge

and compass. First the problem is translated into the language of field theory. Then it is shown that

three desired constructions from antiquity are impossible: “doubling a cube,” trisecting an arbitrary

constructible angle, and “squaring a circle.” The full proof of the impossibility of squaring a circle

uses the fact that ↵ is transcendental over the rationals, and the proof of this property of ↵ is deferred

to Section 14. Section 5 concludes with a statement of the theorem of Gauss identifying integers n

such that a regular n-gon is constructible and with some preliminary steps toward its proof.

Sections 6–8 introduce Galois groups and develop their theory. The theory applies to a field

extension with three properties—that it is finite-dimensional, separable, and normal. Such an

extension is called a “finite Galois extension.” The Fundamental Theorem of Galois Theory says in

this case that the intermediate extensions are in one-one correspondencewith subgroups of theGalois

group, and it gives formulas relating the corresponding intermediate fields and Galois subgroups.

Sections 9–11 give three standard initial applications of Galois groups. The first is to proving the

theorem of Gauss about constructibility of regular n-gons, the second is to deriving the Fundamental

Theorem of Algebra from the Intermediate Value Theorem, and the third is to proving the necessity

of the condition of Abel and Galois for solvability of polynomial equations by radicals—that the

Galois group of the splitting field of the polynomial have a composition series with abelian quotients.

Sections 12–13 begin to derive quantitative information, rather than qualitative information, from

Galois groups. Section 12 shows how an appropriate Galois group points to the specific steps in

the construction of a regular n-gon when the construction is possible. Section 13 introduces a tool

452
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known as Lagrange resolvents, a precursor of modern harmonic analysis. Lagrange resolvents are

used first to show that Galois extensions in characteristic 0 with cyclic Galois group of prime order p

are simple extensions obtained by adjoining a pth root, provided all the pth roots of 1 lie in the base

field. Lagrange resolvents and this theorem about cyclic Galois groups combine to yield a derivation

of Cardan’s formula for solving general cubic equations.

Section 14 begins the part of the chapter that depends on results in the later sections of Chap-

ter VIII. Section 14 itself contains a proof that ↵ is transcendental; the proof is a nice illustration of

the interplay of algebra and elementary real analysis.

Section 15 introduces the field polynomial of an element in a finite-dimensional extension field.

The determinant and trace of this polynomial are called the norm and trace of the element. The

section gives various formulas for the norm and trace, including formulas involving Galois groups.

With these formulas in hand, the section concludes by completing the proof of Theorem 8.54 about

extending Dedekind domains, part of the proof having been deferred from Section VIII.11.

Section 16 discusses how prime ideals split when one passes, for example, from the integers to

the algebraic integers in a number field. The topic here was broached in the motivating examples

for algebraic number theory and algebraic geometry as introduced in Section VIII.7, and it was the

main topic of concern in that section. The present results put matters into a wider context.

Section 17 gives two tools that sometimes help in identifying Galois groups, particularly of

splitting fields of monic polynomials with integer coefficients. One tool uses the discriminant of the

polynomial. The other uses reduction of the coefficients modulo various primes.

1. Algebraic Elements

If K and k are fields such that k is a subfield of K, we say that K is a field

extension of k. When it is necessary to refer to this situation in some piece of
notation, we often write K/k to indicate the field extension. In this section we
shall study field extensions in a general way, and in the next section we shall

discuss constructions and uniqueness results involving them.

If K and K⌘ are two fields and if ⇣ is a ring homomorphism of K into K⌘ with
⇣(1) = 1, then ⇣ is automatically one-one since K has no nontrivial ideals. We

refer to ⇣ as a field map or field mapping.1 IfK andK⌘ are both field extensions
of a field k and if the restriction of a field map ⇣ to k is the identity, then ⇣ is
called a k field map or a field map fixing k. The terminology “k field map” is
consistent with the view thatK andK⌘ are two R algebras for R = k in the sense
of Examples 6 and 15 in Section VIII.1, and that the isomorphism in question is

just an R algebra isomorphism.

If a field map ⇣ : K ⇣ K⌘ is onto K⌘, then ⇣ is a field isomorphism; it is a
k field isomorphism if K and K⌘ are extensions of k and ⇣ is the identity on k.
When K = K⌘ and ⇣ is onto K⌘, ⇣ is called an automorphism of K; if also ⇣ is
the identity on a subfield k, then ⇣ is called a k automorphism of K.

1This is the notion of morphism in the category of fields.
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Throughout this section we let K/k be a field extension. If x1, . . . , xn are
members of K, we let

k[x1, . . . , xn] = subring of K generated by 1 and x1, . . . , xn,

k(x1, . . . , xn) = subfield of K generated by 1 and x1, . . . , xn.

The latter, in more detail, means the set of all quotients ab�1 with a and b in
k[x1, . . . , xn] and with b = 0. It is referred to as the field obtained by adjoining

x1, . . . , xn to k. Because of this description of the elements of k(x1, . . . , xn), the
field k(x1, . . . , xn) can be regarded as the field of fractions F of k[x1, . . . , xn]. In
fact, we argue as follows: let ⌃ : k[x1, . . . , xn] ⇣ F be the natural ring homo-
morphism a �⇣ class of (a, 1) of k[x1, . . . , xn] into its field of fractions; then the
universal mapping property of F stated in Proposition 8.6 gives a factorization of
the inclusion � : k[x1, . . . , xn]⇣ k(x1, . . . , xn) as � =��⌃, and the field mapping
�� has to be onto k(x1, . . . , xn) since the class of (a, b) maps to the member ab

�1

of k(x1, . . . , xn).

As in Chapter IV and elsewhere, we let k[X] be the ring of polynomials in
the indeterminate X with coefficients in k. For each x in K, we have a unique
substitution homomorphism ⇣x : k[X]⇣ k[x] carrying k to itself and carrying
X to x . We say that x is algebraic over k if ⇣x is not one-one, i.e., if x is a root
of some nonzero polynomial in k[X], and that x is transcendental over k if ⇣x
is one-one.

EXAMPLES.

(1) If k = R, if K = C, and if x is the usual element i =
�
�1, then

⇣i (X
2 + 1) = 0, and i is algebraic over R.

(2) If k = Q, if K = C, and if ⌥ is a complex number with the property that
⌥n + cn�1⌥

n�1 + · · · + c1⌥ + c0 = 0 for some n and for some coefficients in Q,
then ⌥ is algebraic over Q. This situation was the subject of Proposition 4.1, of
Example 2 in Section IV.4, and of Example 10 in Section VIII.1.

(3) Let k = Q and K = C. For ↵ equal to the usual trigonometric constant,
given as the least positive real such that ei↵ = �1 when ez =

�✓
n=0 z

n/n!, it will
be proved in Section 14 that there is no polynomial F(X) inQ[X] with F(↵) = 0,

and ↵ is consequently transcendental over Q.
(4) If k = Z/2Z and K is the 4-element field constructed in Example 3 of

fields in Section IV.4, then any element of K is algebraic over k.
(5) If k = C(X) and if K = C(X)[

�
(X � 1)X (X + 1) ] as with the ring R⌘

in Section VIII.7 and as in Example 3 of integral closures in Section VIII.9, then�
(X � 1)X (X + 1) is algebraic over C(X).
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Suppose that x in K is algebraic over k. Then

ker⇣x = {F(X) ◆ k[X] | F(x) = 0}

is an ideal in k[X] that is necessarily nonzero and principal. A generator is

determined up to a constant factor as any nonzero polynomial in the ideal that has

lowest possible degree, and we might as well take this polynomial to be monic.

Thus ker⇣x is of the form (F0(X)) for some uniquemonic polynomial F0(X), and
this polynomial F0(X) is called theminimal polynomial of x over k. Review of
the example at the end of Section VIII.3 may help motivate the first five results

below.

Proposition 9.1 If x ◆ K is algebraic over k, then the minimal polynomial of
x over k is prime as a polynomial in K[X].
PROOF. Suppose that F(X) factors nontrivially as F(X) = G(X)H(X). Since

F(x) = 0, either G(x) = 0 or H(x) = 0, and then we have a contradiction to

the fact that F has minimal degree among all polynomials vanishing at x . �

Theorem 9.2. If x ◆ K is algebraic over k, then the field k(x) coincides with
the ring k[x]. Moreover, if the minimal polynomial of x over k has degree n,
then each element of k(x) has a unique expansion as

cn�1x
n�1 + cn�2x

n�2 + · · · + c1x + c0 with all ci ◆ k.

PROOF. Since the substitution ring homomorphism ⇣x carries k[X] onto k[x],
we have an isomorphism of rings k[x] �= k[X]/ ker⇣x = k[X]/(F0(X)), where
F0(X) is the minimal polynomial of x over k. Since F0 is prime, (F0(X)) is a
nonzero prime ideal and hence is maximal. Thus k[x] is a field. Consequently
k(x) = k[x].
Any element in k[x], hence in k(x), is a polynomial in x . Since F0(x) = 0,

we can solve F0(x) = 0 for its leading term, say xn , obtaining xn = G(x), where
G(X) = 0 or degG(X) ↵ n � 1. Thus the expansions in the statement of the
theorem yield all the members of k[x]. If an element has two such expansions,
we subtract them and obtain a nonzero polynomial H(X) of degree at most n�1
with H(x) = 0, in contradiction to the minimality of the degree of F0(X). �

Corollary 9.3. If x ◆ K is algebraic over k, then the field k(x), regarded as
a vector space over k, is of dimension n, where n is the degree of the minimal
polynomial of x over k. The elements 1, x, x2, . . . , xn�1 form a basis of k(x)
over k.
PROOF. This is just a restatement of the second conclusion of Theorem 9.2.�
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We say that the field extensionK/k is an algebraic extension if every element
of K is algebraic over k.

Proposition 9.4. If the vector-space dimension of K over k is some finite n,
thenK is an algebraic extension of k, and each element x ofK has some nonzero

polynomial F(X) in k[X] of degree at most n for which F(x) = 0.

PROOF. This is immediate since the elements 1, x, x2, . . . , xn ofK have to be

linearly dependent over k. �

WhenK/k is a field extension, wewrite [K : k] for the vector-space dimension

dimk K, and we call this the degree of K over k. If [K : k] is finite, we say that
K is a finite extension of k, or finite algebraic extension of k, the condition
“algebraic” being automatic by Proposition 9.4.

Corollary 9.5. If x is in K, then x is algebraic over k if and only if k(x) is a
finite algebraic extension of k. In this case the minimal polynomial of x over k
has degree [k(x) : k].
PROOF. If x is algebraic over k, then [k(x) : k] is finite and is the degree of the

minimal polynomial of x over k, by Corollary 9.3. Proposition 9.4 shows in this
case that k(x) is a finite algebraic extension. If x is transcendental over k, then the
substitution homomorphism ⇣x is one-one, and dimk k(x) � dimk k[X] = +✓.

�

Theorem 9.6. Let k, K, and L be fields with k  K  L, and suppose that
[K : k] = n and [L : K] = m, finite or infinite. Let {✏1,✏2, . . . } be a vector-
space basis ofK over k, and let {⌦1, ⌦2, . . . } be a vector-space basis ofL/K. Then
the mn products ✏i⌦j form a basis of L over k.
PROOF OF SPANNING. If ⌦ is in L, write ⌦ =

�
j aj⌦j with each aj in K and

with only finitely many aj ’s not 0. Then expand each aj in terms of the ✏i ’s, and
substitute. �
PROOF OF LINEAR INDEPENDENCE. Let

�
i, j ci j✏i⌦j = 0 with the ci j ’s in k.

Since the members ⌦j of L are linearly independent over K,
�

i ci j✏i = 0 for

each j . Since the members ✏i of K are linearly independent over k, ci j = 0 for

all i and j . �

Corollary 9.7. If k, K, and L are fields with k  K  L, then

[L : k] = [L : K] [K : k] .

PROOF. This is immediate by counting basis elements in Theorem 9.6. �
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Theorem 9.8. If K/k is a field extension and if x1, . . . , xn are members of K
that are algebraic over k, then k(x1, . . . , xn) is a finite algebraic extension of k.

REMARK. If a finite algebraic extension of k turns out to be of the form k(x)
for some x , we say that the extension is a simple algebraic extension.

PROOF. Since xi is algebraic overk, it is algebraic overk(x1, . . . , xi�1). Hence
[k(x1, . . . , xi ) : k(x1, . . . , xi�1)] is finite. Applying Corollary 9.7 repeatedly, we
see that k(x1, . . . , xn) is a finite extension of k. Proposition 9.4 shows that it is a
finite algebraic extension. �

EXAMPLE. The sum
�
2+ 3
�
2 is algebraicoverQ, as a consequenceofTheorem

9.8. This fact suggests Corollary 9.9 below.

Corollary 9.9 If K/k is a field extension, then the elements of K that are

algebraic over k form a field.

PROOF. If x and y in K are algebraic over k, then k(x, y) is a finite algebraic
extension of k, according to Theorem 9.8. This extension contains x ± y and xy,

and it contains x�1 if x = 0. The corollary therefore follows from Proposition

9.4. �

For the special case of Corollary 9.9 in whichK = C and k = Q, this subfield
ofC is called the field of algebraic numbers, and any finite algebraic extension of
QwithinC is called a number field, or an algebraic number field. The seeming
discrepancy between this definition and the definition given in remarks with

Proposition 4.1 (that in essence a “number field” is any simple algebraic extension

of Q) will be resolved by the Theorem of the Primitive Element (Theorem 9.34
below).

2. Construction of Field Extensions

In this section, k denotes any field. Our interest will be in constructing extension
fields for k and in addressing the question of uniqueness under additional hy-
potheses. We begin with a kind of converse to Proposition 9.1 that generalizes the

method described in Section A4 of the appendix for constructing C = R(
�
�1 )

from R and the polynomial X2 + 1 .

Theorem 9.10 (existence theorem for simple algebraic extensions). If F(X) is
a monic prime polynomial in k[X], then there exists a simple algebraic extension
K = k(x) of k such that x is a root of F(X). Moreover, F(X) is the minimal
polynomial of x over k.
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PROOF. Define K = k[X]/(F(X)) as a ring. Since F(X) is prime, (F(X)) is
a nonzero prime ideal, hence maximal. ThereforeK is a field, an extension field

of k. Define x to be the coset X + (F(X)). Then F(x) = F(X) + (F(X)) =
0+ (F(X)), and x is therefore algebraic over k. It is immediate that K = k[x],
and Theorem 9.2 shows that K = k(x). If G(x) = 0 for some G(X) in k[X],
then G(X) is in (F(X)). We conclude that F(X) has minimal degree among all
polynomials with x as a root, and F(X) is therefore the minimal polynomial. �

Theorem 9.11 (uniqueness theorem for simple algebraic extensions). If F(X)
is a monic prime polynomial in k[X] and if K = k(x) and K⌘ = k(y) are two
simple algebraic extensions such that x and y are roots of F(X), then there exists
a field isomorphism ⇣ of K onto K⌘ fixing k and carrying x to y.

EXAMPLE. The monic polynomial F(X) = X3 � 2 is prime in Q[X], and
x = 3

�
2 and y = e2↵ i/3

3
�
2 are roots of it within C. The fields Q(x) and Q(y)

are subfields of C and are distinct because Q(x) is contained in R and Q(y) is
not. Nevertheless, these fields are Q isomorphic, according to the theorem.

PROOF. In view of the proof of Theorem 9.10, there is no loss of generality

in assuming that K = k[X]/(F(X)). Since y is algebraic over k, we can
form the substitution homomorphism ⇣y : k[X] ⇣ k(y). This is a k alge-
bra homomorphism. Its kernel is the ideal (F(X)) since F(X) is the minimal
polynomial of y, and⇣y therefore descends to a one-onek algebra homomorphism
⇣y : k(x)⇣ k(y). Since dimk(x) and dimk(y) both match the degree of F(X),
⇣y is onto k(y) and is therefore the required k isomorphism. �

We say that a nonconstant polynomial F(X) in k[X] splits in a given extension
field if F(X) factors completely into degree-one factors over that extension field.
A splittingfieldoverk for a nonconstant polynomial F(X) ink[X] is an extension
field L of k such that F(X) splits in L and such that L is generated by k and the
roots of F(X) in L.

EXAMPLES. Let k = Q. ThenQ(
�
�1 ) is a splitting field for X2+1, because

±
�
�1 are both in Q(

�
�1 ) and they generateQ(

�
�1 ) over Q. But Q(

3
�
2) is

not a splitting field for X3 � 2 because Q(
3
�
2) does not contain the two nonreal

roots of X3 � 2.

Theorem 9.12 (existence of splitting field). If F(X) is a nonconstant polyno-
mial in k[X], then there exists a splitting field of F(X) over k.

PROOF. We begin by constructing a certain extension field K of k in which
F(X) factors completely into degree-one factors inK[X]. We do so by induction
on n = deg F(X). For n = 1, there is nothing to prove. For general n, let G(X)
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be a prime factor of F(X), and apply Theorem 9.10 to obtain a simple algebraic
extension k1 = k(x1) over k such that G(x1) = 0. Then F(x1) = 0, and the

Factor Theorem (Corollary 1.13) gives F(X) = (X � x1)H(X) for some H(X)
in k1(X) of degree n � 1. Since deg H(X) = n � 1 < deg F(X), the inductive
hypothesis produces an extension K of k1 such that H(X) is a constant multiple
of (X � x2) · · · (X � xn) with all xi in K. Then F(X) factors into degree-one
factors in K[X], and the induction is complete.
Within the constructed fieldK, let L be the subfield L = k(x1, . . . , xn). Then

F(X) still factors completely into degree-one factors inL(X), andL is generated
by k and the xi . Hence L is a splitting field. �

EXAMPLES OF SPLITTING FIELDS.

(1)k = Q and F(X) = X3�2. The proof of Theorem9.12 takesk1 = Q(
3
�
2)

and writes X3 � 2 = (X � 3
�
2)
�
X2 + 3

�
2 X + (

3
�
2)2

⇥
. Then the proof adjoins

one root ⌥ (hence both roots) of X2 + 3
�
2 X + (

3
�
2)2, setting K = Q(

3
�
2, ⌥).

With this choice ofK, the splitting field turns out to be L = K. In fact, to see that
L is not a proper subfield ofK, we observe that 6 = [K : k] = [K : L] [L : Q] by
Corollary 9.7 and that the proper containment L � Q(

3
�
2) implies [L : Q] > 3.

Since [L : Q] is a divisor of 6 greater than 3, [L : Q] = 6. Thus [K : L] = 1,

and K = L.
(2) k = Q and F(X) = X3 � X � 1

3
. Application of Corollary 8.20c to

the polynomial G(X) = �3X2F(1/X) = X3 + 3X2 � 3 shows that G(X)
has no degree-one factor and hence is irreducible over Q. Then it follows that
F(X) is irreducible over Q. The proof of Theorem 9.12 takes k1 = Q(r), where
r3 � r � 1

3
= 0. Then division gives

X3 � X � 1
3

= (X � r)(X2 + r X + (r2 � 1)).

The discriminant b2 � 4ac of the quadratic factor is

r2 � 4(r2 � 1) = 4� 3r2 = r2

(1+ 2r)2
,

the right-hand equality following from direct computation. This discriminant is

a square in k1 = Q(r), and hence X2 + r X + (r2 � 1) factors into degree-one
factors in Q(r) without passing to an extension field. Therefore L = Q(r) with
[L : Q] = 3.

Theorem 9.13 (uniqueness of splitting field). If F(X) is a nonconstant poly-
nomial in k[X], then any two splitting fields of F(X) over k are k isomorphic.
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The idea of the proof is simple enough, but carrying out the idea runs into a

technical complication. The idea is to proceed by induction, using the uniqueness

result for simple algebraic extensions (Theorem9.11) repeatedly until all the roots

have been addressed. The difficulty is that after one step the coefficients of the

two quotient polynomials end up in two distinct but k isomorphic fields. Thus
at the second step Theorem 9.11 does not apply directly. What is needed is the

reformulated version given below as Theorem9.11⌘, which lends itself to this kind
of induction. In addition, as soon as the induction involves at least three steps, the

above statement of Theorem 9.13 does not lend itself to a direct inductive proof.

For this reason we shall instead prove a reformulated version Theorem 9.13⌘ of
Theorem 9.13 that is ostensibly more general than Theorem 9.13.

Recall from Proposition 4.24 that a general substitution homomorphism that

starts from a polynomial ring can have two ingredients. One is the substitution

of some element, such as x , for the indeterminate X , and the other is a homo-

morphism that is made to act on the coefficients. If the homomorphism is � ,
let us write F� (X) to indicate the polynomial obtained by applying � to each
coefficient of F(X).

Theorem 9.11⌘. Let k and k⌘ be fields, and let � : k ⇣ k⌘ be a field
isomorphism. Suppose that F(X) is a monic prime polynomial in k[X] and that
K = k(x) and K⌘ = k⌘(x ⌘) are simple algebraic extensions such that F(x) = 0

and F� (x ⌘) = 0. Then there exists a field isomorphism ⇣ : k(x) ⇣ k⌘(x ⌘) such
that ⇣

⌥⌥
k = � and ⇣(x) = x ⌘.

PROOF. The argument is essentially unchanged from the proof of Theorem

9.11. We start from the substitution homomorphism G(X) �⇣ G� (x ⌘) that
replaces X by x ⌘ and that operates by � on the coefficients. This descends to
a field map of k[x] into k⌘[x ⌘], and the homomorphism must be onto k⌘[x ⌘] by a
count of dimensions. �

Theorem 9.13⌘. Let k and k⌘ be fields, and let � : k ⇣ k⌘ be a field
isomorphism. If F(X) is a nonconstant polynomial in k[X] and if L and L⌘
are respective splitting fields for F(X) over k and for F� (X) over k⌘, then there
exists a field isomorphism ⇣ : L ⇣ L⌘ such that ⇣

⌥⌥
k = � and such that ⇣ sends

the set of roots of F(X) to the set of roots of F� (X).

PROOF. We proceed by induction on n = deg F(X), the case n = 1 being

evident. Assume the result for degree n�1. Let G(X) be a prime factor of F(X)
over k. Then G� (X) is a prime factor of F� (X) over k⌘. The polynomials G(X)
andG� (X) have roots inL andL⌘, respectively. Fix one such root for each, say x1
and x ⌘1. By Theorem 9.11

⌘, there exists a field isomorphism �1 : k(x1)⇣ k⌘(x ⌘1)
extending � and satisfying �1(x1) = x ⌘1. Write F(X) = (X � x1)H(X) with
coefficients in k(x1), by the Factor Theorem (Corollary 1.13). Applying �1 to
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the coefficients, we obtain F� (X) = (X� x ⌘1)H�1(X)with coefficients in k⌘(x ⌘1).
Then L and L⌘ are splitting fields for H(X) and H�1(X) over k(x1) and k⌘(x ⌘1),
respectively. By induction we can extend �1 to an isomorphism ⇣ : L ⇣ L⌘, and
the theorem readily follows. �

3. Finite Fields

In this section we shall use the results on splitting fields in Section 2 to classify

finite fields up to isomorphism. So far, the examples of finite fields that we have

encountered are the prime fields Fp = Z/pZwith p elements, p being any prime
number, and the field of 4 elements in Example 3 of fields in Section IV.4. Every

finite field has to contain a subfield isomorphic to one of the prime fields Fp, and

Proposition 4.33 observed as a consequence that any finite field necessarily has

pn elements for some prime number p and some integer n > 0.

Theorem 9.14. For each pn with p a prime number and with n a positive

integer, there exists up to isomorphism one and only one field with pn elements.

Such a field is a splitting field for X pn � X over the prime field Fp.

If q = pn , it is customary to denote by Fq a field of order q. The theorem
says that Fq exists and is unique up to isomorphism. Some authors refer to finite
fields as Galois fields.

Some preparation is needed before we can come to the proof of the theorem.

We need to carry over the simplest aspects of differential calculus to polynomials

with coefficients in an arbitrary field k. First we give an informal definition of
the derivative of a polynomial; then we give a more precise definition. For any

polynomial F(X) =
�n

j=0 cj X
j in k[X], we informally define the derivative to

be the polynomial

F ⌘(X) =
n�
j=1

jcj X
j�1 =

n�1�
j=0

( j + 1)cj+1X
j .

The more precise definition uses the definition of members of k[X] as infinite
sequences ofmembers ofkwhose terms are 0 from some point on. In this notation
if F = (c0, c1, . . . , cn, 0, . . . ) with cj in the j

th position for j ↵ n and with 0 in

the j th position for j > n, then F ⌘ = (c1, 2c2, . . . , ncn, 0, . . . ) with ( j + 1)cj+1
in the j th position for j ↵ n � 1 and with 0 in the j th position for j > n � 1. In
any event, the mapping F �⇣ F ⌘ is k linear from k[X] to itself. The operation is
called differentiation.
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Proposition 9.15. Differentiation on k[X] satisfies the product rule: F = GH

implies F ⌘ = G ⌘H + GH ⌘.

PROOF. Because of the k linearity, it is enough to prove the result for monomi-
als. Thus let G(X) = Xm and H(X) = Xn , so that F(X) = Xm+n . Then
F ⌘(X) = (m + n)Xm+n�1, G ⌘(X)H(X) = mXm+n�1, and G(X)H ⌘(X) =
nXm+n�1. Hence we indeed have F ⌘(X) = G ⌘(X)H(X) + G(X)H ⌘(X). �

Corollary 9.16. If n is a positive integer, if r is in k, and if F(X) = (X � r)n
in k[X], then F ⌘(X) = n(X � r)n�1.

PROOF. This is immediate by induction from Proposition 9.15 since the deriv-

ative of X � r is 1. �

Corollary 9.17. Let r be in k, and let F(X) be in k[X]. If (X � r)2 divides
F(X), then F(r) = F ⌘(r) = 0. Conversely if F(r) = F ⌘(r) = 0, then (X � r)2

divides F(X).

PROOF. Write F(X) = (X � r)2G(X). If we substitute r for X , we see that
F(r) = 0. If instead we differentiate, using Proposition 9.15 and Corollary 9.16,

then we obtain F ⌘(X) = 2(X � r)G(X) + (X � r)2G ⌘(X). Substituting r for X ,
we obtain F ⌘(r) = 0+ 0 = 0.

For the converse, let F(r) = F ⌘(r) = 0. Proposition 4.28a shows that F(X) =
(X � r)G(X). Differentiating this identity by means of Proposition 9.15 gives
F ⌘(X) = G(X)+(X�r)G ⌘(X). Substitutingr for X yields0 = F ⌘(r) = G(r)+0
and shows that G(r) = 0. By Proposition 4.28, G(X) = (X � r)H(X). Hence
F(X) = (X � r)2H(X). �

Lemma 9.18. If k is a field of characteristic p = 0, then the map ⇣ : k ⇣ k
given by ⇣(x) = x p is a field mapping.

REMARK. The map x �⇣ x p is often called the Frobeniusmap. If k is a finite
field, then it must carry k onto k since one-one implies onto for functions from a
finite set to itself; in this case the map is an automorphism of k.
PROOF. The computation ⇣(uv) = (uv)p = u pv p = ⇣(u)⇣(v) shows that ⇣

respects products. If u and v are in k, then

⇣(u + v) = (u + v)p = ⇣(u) +
p�1�
j=1

�
p

j

⇥
u p� jv j + ⇣(v) = ⇣(u) + ⇣(v),

the last equality holding since the binomial coefficient
�
p

j

⇥
has a p in the numerator

for 1 ↵ j ↵ p� 1. Thus ⇣ is a ring homomorphism. Since ⇣(1) = 1, ⇣ is a field
mapping. �
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PROOF OF UNIQUENESS IN THEOREM 9.14. Let k be a finite field, say of
characteristic p, and let P be the prime field of order p within k. We know that P
is isomorphic to Fp = Z/pZ. Since k is a finite-dimensional vector space over P,
we know also that k has order q = pn for some integer n > 0. The multiplicative

group k⇤ of k thus has order q � 1, and every x = 0 in k therefore satisfies
xq�1 = 1. Taking x = 0 into account, we see that every member of k satisfies
xq = x . Forming the polynomial Xq � X in P[X], we see that every member of
k is a root of this polynomial. Iterated application q times of the Factor Theorem
(Corollary 1.13) shows that Xq � X factors into degree-one factors in k. Since
every member of k is a root of Xq � X , k is a splitting field of Xq � X over P.
Then the uniqueness of the prime field up to isomorphism, in combination with

the uniqueness of the splitting field of Xq � X given in Theorem 9.13⌘, shows
that k is uniquely determined up to isomorphism. �
PROOF OF EXISTENCE IN THEOREM 9.14. Let q = pn be given, and define k to

be a splitting field of Xq � X over Fp = Z/pZ. The field k exists by Theorem
9.12, and it has characteristic p. Since Xq�X is monic of degree q, the definition
of splitting field says that we can write

Xq � X = (X � u1)(X � u2) · · · (X � uq) with all uj ◆ k.

Because of Lemma 9.18, the map ⇣(u) = uq , which is the nth power of the

map u �⇣ u p, is a field mapping of k into itself. The members of k fixed by
⇣ form a subfield of k, and these elements of k are exactly the members of the
set S = {u1, . . . , uq}. Therefore S is a subfield of k, necessarily containing
Fp = Z/pZ. Since Xq � X splits in S and since the roots of Xq � X generate

S, S is a splitting field of Xq � X over Fp. In other words, S = k. To complete
the proof, it is enough to show that the elements u1, . . . , uq are distinct, and then
k will be a field of q elements. The question is therefore whether some root of
Xq� X has multiplicity at least 2, i.e., whether (X�r)2 divides Xq� X for some

r in k. Corollary 9.17 gives a necessary condition for this divisibility, saying that
the derivative of Xq�X must have r as a root. However, the derivative of Xq�X
is qXq�1 � 1 = �1, and the constant polynomial�1 has no roots. We conclude
that k has q elements. �

Corollary 9.19. If q and r are integers with 2 ↵ q ↵ r , then the finite field

Fq is isomorphic to a subfield of the finite field Fr if and only if r = qn for some

integer n � 1.
PROOF. If Fq is isomorphic to a subfield of Fr , then we may consider Fr as a

vector space over Fq , say of dimension n. In this case, Fr has qn elements.
Conversely let r = qn , and regard Fr as a splitting field of Xqn � X over the

prime field Fp, by Theorem 9.14. Let S be the subset of Fr of all roots of Xq� X .
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Putting a = q � 1 and k = qn�1
q�1 = qn�1 + qn�2 + · · · + 1, we have

Xka � 1 = (Xa � 1)(X (k�1)a + X (k�2)a + · · · + 1).

Multiplying by X , we see that Xq � X is a factor of Xqn � X . Since Xqn � X

splits in Fr and has distinct roots, the same is true of Xq � X . Therefore |S| = q.

Let q = pm . Themth power of the homomorphism of Lemma 9.18 on k = Fr
is x �⇣ xq , and the subset of Fr fixed by this homomorphism is a subfield. Thus
S is a subfield, and it has q elements. �

4. Algebraic Closure

Algebraically closed fields—those for which every nonconstant polynomial with

coefficients in the field has a root in the field—were introduced in SectionV.1, and

it was mentioned at that time that every field is a subfield of some algebraically

closed field. We shall prove that existence theorem in this section in a form

lending itself to a uniqueness result.

Throughout this section letk be a field. We begin by giving further descriptions
of algebraically closed fields that take the theory of Sections 1–2 into account.

Proposition 9.20. The following conditions on the field k are equivalent:
(a) k has no nontrivial algebraic extensions,
(b) every irreducible polynomial in k[X] has degree 1,
(c) every polynomial in k[X] of positive degree has at least one root in k,
(d) every polynomial in k[X] of positive degree factors over k into polyno-

mials of degree 1.

PROOF. If (a) holds, then (b) holds since any irreducible polynomial of degree

greater than 1 would give a nontrivial simple algebraic extension (Theorem 9.10).

If (b) holds and a polynomial of positive degree is given, apply (b) to an irreducible

factor to see that the given polynomial has a root; thus (c) holds. Condition (c)

implies condition (d) by induction and the Factor Theorem. If (d) holds and if

K is an algebraic extension of k, let x be in K, and let F(X) be the minimal
polynomial of x over k. Then F(X) is irreducible over k, and (d) says that F(X)
has degree 1. Hence x is in k, and we conclude that K = k. �

A field satisfying the equivalent conditions of Proposition 9.20 is said to be

algebraically closed.
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EXAMPLES OF ALGEBRAICALLY CLOSED FIELDS.

(1) The Fundamental Theorem of Algebra (Theorem 1.18) says that C is

algebraically closed. This theorem was not proved in Chapter I, but a proof

will be given in this chapter in Section 10.

(2) Let K be the subset of all members of C that are algebraic over Q. By
Corollary 9.9, K is a subfield of C. Example 1 shows that every polynomial in
Q[X] splits in K, and Lemma 9.21 below then allows us to conclude that K is

algebraically closed.

(3) Fix a prime number p, and start with k0 = Fp as the prime field Z/pZ.
Enumerate the members of Fp[X], letting Fn(X) be the nth such polynomial. We
construct kn by induction on n so that kn is a splitting field for Fn(X) over kn�1
when n � 1. Then k0  k1  k2  · · · is an increasing sequence of fields
containing Fp. LetK be the union. Any two elements ofK lie in a single kn , and
it follows that K is closed under the field operations. Any three elements lie in a

single kn , and it follows that any of the defining properties of a field is valid in
K because it is valid in kn . Therefore K is a field. This field is an extension of

Fp, and every polynomial in Fp[X] splits in K. As in Example 2, Lemma 9.21
below shows that K is algebraically closed.

Lemma 9.21. If K/k is an algebraic extension of fields and if every non-
constant polynomial in k[X] splits into degree-one factors in K, then K is

algebraically closed.

PROOF. Let K⌘ be an algebraic extension of K, and let x be in K⌘. Let G(X)
be the minimal polynomial of x over K, and write G(X) as

G(X) = Xn + cn�1X
n�1 + · · · + c0 with all ci ◆ K.

Then x is algebraic over k(cn�1, . . . , c0), which is a finite extension of k by
Theorem 9.8. By Corollary 9.7, x lies in a finite extension of k. Thus Proposition
9.4 shows that x is algebraic over k. Let F(X) be the minimal polynomial of x
over k. By assumption this splits over K, say as

F(X) = (X � x1) · · · (X � xm) with all xi ◆ K.

Evaluating at x and using the fact that F(x) = 0, we see that x = xj for some j .

Therefore x is in K, and K is algebraically closed. �

An extension field K/k is an algebraic closure of k if K is algebraic over k
and if K is algebraically closed. Example 2 of algebraically closed fields above

gives an algebraic closure of Q, and Example 3 gives an algebraic closure of Fp.
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Theorem 9.22 (Steinitz). Every field k has an algebraic closure, and this is
unique up to k isomorphism.

REMARKS. The proof of existence is modeled on the argument for Example 3

of algebraic closures. However, we are not free in general to use a simple union

of a sequence of fields and have to work harder. Because there is no evident set

of possibilities within which we are forming extension fields, Zorn’s Lemma is

inconvenient to use and tends to result in an unintuitive construction. Instead,

we use Zermelo’s Well-Ordering Theorem, whose use more closely parallels the

inductive construction in Example 3.

PROOF OF EXISTENCE. With k as the given field, let S be the set of nonconstant
polynomials s(X) in k[X], and introduce a well ordering into S by means of
Zermelo’s Well-Ordering Theorem (Section A5 of the appendix). Let us write✏
for “strictly precedes in the ordering” and⇥ for “equals or strictly precedes.” For
each s ◆ S, let s̄ be the successor of s, i.e., the first element among all elements t
with s ✏ t . We write s0 for the first element of S. Without loss of generality, we

may assume that S has a last element s✓. The idea is to construct simultaneously
two kinds of things:

(i) an algebraic extension field ks/k for each s ◆ S such that ks0 = k and
such that ks̄ is a splitting field for s(X) over ks whenever s ✏ s✓,

(ii) a field mapping ⇣ut : kt ⇣ ku for each ordered pair of elements t and u
in S having t ⇥ u, such that ⇣t t = 1 for all t and such that t ⇥ u ⇥ v
implies ⇣vt = ⇣vu⇣ut .

These extension fields and mappings are to be such that ks =
⇠

t✏s ⇣st(kt)
whenever s is not a successor and is not s0. If such a system of extension fields

and field homomorphisms exists, then Lemma 9.21 applies to a splitting field

over ks✓ of the nonconstant polynomial s✓(X) and shows that this splitting field
is algebraically closed; since this splitting field is an algebraic extension of k, it
is an algebraic closure of k.
A partial such system through t0 means a system consisting of fields ks with

s ⇥ t0 and field homomorphisms ⇣ut with t ⇥ u ⇥ t0 such that the above

conditions hold as far as they are applicable. A partial system exists through

the first member s0 of S because we can take ks0 = k and ⇣s0s0 = 1. Arguing

by contradiction, we suppose that such a system of extension fields and field

homomorphisms fails to exist through some member of S. Let t0 be the first

member of S such that there is no partial system through t0.

Suppose that t0 is the successor of some element t1 in S. We know that a partial

system exists through t1. If we let kt0 be a splitting field for t1(X) over kt1 , and
if we define

⇣t0t =
�
⇣t0t1⇣t1t for t ⇥ t1,

1 for t = t0,
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then the enlarged system is a partial system through t0, contradiction. Thus t0
cannot be the successor of some element of S.

When t0 is not a successor, at least kt is defined for t ✏ t0 and ⇣ut is defined
for t ⇥ u ✏ t0. We want to form a union, but we have to keep the field operations

aligned properly in the process. Define a “t-allowable tuple” to be a function

u �⇣ xu defined for t ⇥ u ✏ t0 such that xu is in ku and ⇣vu(xu) = xv whenever

t ⇥ u ⇥ v ✏ t0. If x is in kt , then an example of a t-allowable tuple is given by
u �⇣ ⇣ut(x) for t ⇥ u ✏ t0.

If t ✏ t0 and t
⌘ ✏ t0, then we can apply field operations to the t-allowable tuple

u �⇣ xu and to the t
⌘-allowable tuple u �⇣ yu , obtaining max(t, t

⌘)-allowable
tuples u �⇣ xu + yu , u �⇣ �xu , u �⇣ xu yu , and xu �⇣ x�1u as long as xt = 0.

These operations are meaningful since each ⇣vu is a field mapping.

If t ✏ t0 and t
⌘ ✏ t0, we say that the t-allowable tuple u �⇣ xu is equivalent to

the t ⌘-allowable tuple u �⇣ yu if xu = yu for max(t, t
⌘) ⇥ u ✏ t0. The result is

an equivalence relation, and the equivalence relation respects the field operations

in the previous paragraph. We define kt0 to be the set of equivalence classes of
allowable tuples with the inherited field operations. The 0 element is the class of

the s0-allowable tuple u �⇣ 0, and the multiplicative identity is the class of the

s0-allowable tuple u �⇣ 1. It is a routine matter to check that kt0 is a field.
If t ✏ t0 is given, we define the function ⇣t0t : kt ⇣ kt0 as follows: if x is

in kt , we form the t-allowable tuple u �⇣ ⇣ut(x) and take its equivalence class,
which is a member of kt0 , as ⇣t0t(x). Then ⇣t0t is evidently a field mapping. It
is evident also that ⇣t0v⇣vu = ⇣t0u when u ⇥ v ✏ t0. Defining ⇣t0t0 to be the
identity, we have a complete system of field mappings ⇣vu for kt0 .
The final step is to check that kt0 is the union of the images of the ⇣t0t for t ✏ t0.

Thus choose a representative of an equivalence class in kt0 . Let the representative
be a t-allowable tuple u �⇣ xu for t ⇥ u ✏ t0. The element xt is in kt , and the
condition xu = ⇣ut(xt) is just the condition that the class of u �⇣ xu be the image

of xt under ⇣t0t . Hence every member of kt0 is in the image of some ⇣t0t with
t ✏ t0, and we have a contradiction to the hypothesis that a partial system through

t0 does not exist. This completes the proof of existence. �

For the uniqueness in Theorem 9.22, we again need a serious application of

the Axiom of Choice, but here Zorn’s Lemma can be applied fairly routinely.

The proof will show a little more than is needed, and in fact the uniqueness in

Theorem 9.22 will be derived as a consequence of Theorem 9.23 below.

Theorem9.23. LetK⌘ be an algebraicallyclosedfield, and letKbe an algebraic
extension of a field k. If ⇣ is a field mapping of k intoK⌘, then ⇣ can be extended
to a field mapping of K into K⌘.
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PROOF OF UNIQUENESS IN THEOREM 9.22 USING THEOREM 9.23. Let K and

K⌘ be algebraic closures of k, and let ⇣ : k ⇣ K⌘ be the inclusion mapping.
Theorem 9.23 supplies a field mapping � : K ⇣ K⌘ such that �

⌥⌥
k = ⇣, i.e.,

such that� fixes k. SinceK is an algebraic closure of k, so is�(K). ThenK⌘ is
an algebraic extension of the algebraically closed field �(K), and we must have
�(K) = K⌘. Thus � is a k isomorphism of K onto K⌘.

PROOF OF THEOREM 9.23. Let S be the set of all triples (L, L⌘,�) such
that L is a field with k  L  K and � is a field mapping of L onto the

subfield L⌘ of K⌘ with �
⌥⌥
k = ⇣. The set S is nonempty since (k,⇣(k),⇣) is

a member of it. Defining (L1, L⌘1,�1)  (L2, L⌘2,�2) to mean that L1  L2,
that L⌘1  L⌘2, and that �1 as a set of ordered pairs is a subset of �2 as a set
of ordered pairs, we partially order S by inclusion upward. If {(L�, L⌘�,��)} is
a nonempty chain in S, form the triple

�⇠
� L�,

⇠
� L⌘�,

⇠
� ��

⇥
, and put � =⇠

� ��. Then�
�⇠

� L�

⇥
=
⇠

� L⌘�, and consequently
�⇠

� L�,
⇠

� L⌘�,
⇠

� ��

⇥

is an upper bound in S for the chain. By Zorn’s Lemma, S has a maximal element

(L0, L⌘0,�0). We shall prove that L0 = K, and the proof will be complete.
Fix x in K, and let F(X) be the minimal polynomial of x over L0. The

minimal polynomial of �0(x) over L⌘0 is then F�0(X). Since K⌘ is algebraically
closed, F�0(X) has a root x ⌘ in K⌘. By Theorem 9.11⌘, �0 : L0 ⇣ L⌘ can be
extended to an isomorphism �0 : L0(x) ⇣ L⌘0(x ⌘) such that �0(x) = x ⌘. Then
(L0(x), L⌘0(x ⌘),�0) is in S and contains (L0, L⌘0,�0). This containment, if strict,
would contradict the fact that (L0, L⌘0,�0) is a maximal element of S. Thus
equality must hold: L0(x) = L0. Therefore x is in L0, and we conclude that
L0 = K. �

The use of algebraic closures allows us to simplify understanding of splitting

fields. If we are working with a field k and is k is a fixed algebraic closure of k,
then the existence and uniqueness of the splitting field of a polynomial F(X) in
k[X] becomes evident; no isomorphisms are involved. Namely let �1, . . . ,�n be
the roots of F(X) in k. Then the subfield of k generated by k and �1, . . . ,�n is
the splitting field of F(X), and it is manifestly unique. Henceforth when we refer
to the splitting field of a polynomial over a field k, it is with an understanding of
working within a fixed algebraic closure in this way.

5. Geometric Constructions by Straightedge and Compass

Classical Euclidean geometry attached a certain emphasis to constructions in the

Euclidean plane that could be made by straightedge and compass. These are

often referred to casually as constructions by “ruler and compass,” but one is not
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allowed to use the markings on a ruler. Thus “straightedge and compass” is a

more accurate description.

In these constructions the starting configurationmay be regarded as a line with

two pointsmarked on the line. Allowable constructions are the following: to form

the line through a given point different from finitely many other lines through that

point, to form the line through two distinct points, to form a circle with a given

center and a radius different from that of finitely many other circles through the

point, and to form a circle with a given center and radius. Intersections of a line

or a circle with previous lines and circles establish new points for continuing the

construction.

For example a line perpendicular to a given line at a given point can be

constructed by drawing any circle centered at the point, using the two intersection

points as centers of new circles, drawing those circles so as to have radius larger

than the first circle, and forming the line between their two points of intersection.

An angle at the point P of intersection between two intersecting lines A and B

may be bisected by drawing any circle centered at P , selecting one of the points

of intersection on each line so that P and the two new points Q and R describe

the angle, drawing circles with that same radius centered at Q and R, and forming

the line between the points of intersection of the two circles. And so on.

Three notable problems remained unsolved in antiquity:

(i) how to double a cube, i.e., how to construct the side of a cube of double

the volume of a given cube,

(ii) how to trisect any constructible angle, i.e., how to divide the angle into

three equal parts by means of constructed lines,

(iii) how to square a circle, i.e., how to construct the side of a square whose

area equals that of a given disk.

In this sectionwe shall use the elementaryfield theory of Sections 1–2 to show that

doubling a cube and trisecting a 60-degree angle are impossible with straightedge

and compass. As to (iii), we shall reduce a proof of the impossibility of squaring

the circle to a proof that ↵ is transcendental over Q. This latter proof we give in
Section 14.

The first step is to translate the problem of geometric constructibility into a

statement in algebra. Since we are given two points on a line, we can introduce

Cartesian coordinates for the Euclidean plane, taking one of the points to be (0, 0)
and the other point to be (1, 0). Points in the Euclidean plane are now determined
by their Cartesian coordinates, which determine all distances. Distances in turn

can be laid off on the x-axis from (0, 0). Thus the question becomes, what points
on the x-axis can be constructed?

Let C be the set of constructible x coordinates. We are given that 0 and 1 are
in C. Closure of C under addition and subtraction is evident; the straightedge is
not even necessary for this step. Figure 9.1 indicates why the positive elements
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c
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b d

FIGURE 9.1. Closure of positive constructible x coordinates

under multiplication and division.

of C are closed under multiplication and division. In more detail we take two
intersecting lines and mark three known positive members of C as the distances
a, b, c in the figure. Then we form the line through the two points marking a

and b, and we form a line parallel to that line through the point marked off by

the distance c. The intersection of this parallel line with the other original line

defines a distance d. Then a/b = c/d, and so d = bc/a. By taking a = 1, we

see that we can multiply any two members b and c in C, obtaining a result in C.
By instead taking c = 1, we see that we can divide. The conclusion is that C is a
field.

c

b

a

FIGURE 9.2. Closure of positive constructible x coordinates

under square roots.

Figure 9.2 indicates why the positive elements of C are closed under taking
square roots. In more detail let a and b be positive members of C with a < b. By

forming a circle whose diameter is a segment of length b and by forming a line

perpendicular to that line at the point marked by a, we determine the pictured

right triangle with a side c satisfying a/c = c/b. Then c =
�
ab. By taking one

of a and b to be 1, we see that the square root of the other of a and b is in C. This
completes the proof of the direct part of the following theorem.

Theorem 9.24. The set C of x coordinates that can be constructed from x = 1

and x = 0 by straightedge and compass forms a subfield ofR such that the square
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root of any positive element of the field lies in the field. Conversely the members

of C are those real numbers lying in some subfield Fn of R of the form

F1 = Q(
�
a0 ), F2 = F1(

�
a1 ), . . . , Fn = Fn�1(

�
an�1 )

with each aj in Fj and with a0, . . . , an�1 all � 0.
PROOF OF CONVERSE. Suppose we have a subfield F = Fn of R of the

kind described in the statement of the theorem. The possibilities for obtaining

a new constructible point from F by an additional construction arise from three

situations: the intersection of two lines, each passing through two points of F ;

the intersection of a line and a circle, each determined by data from F ; and the

intersection of two circles, each determined by data from F .

In the case of two intersecting lines, each line is of the form ax + by = c for

suitable coefficients a, b, c in F , and the intersection is a point (x, y) in F ⇤ F .

So intersections of lines do not force us to enlarge F .

For a line and a circle, we assume that the line is given by ax + by = c with

a, b, c in F , that the circle has radius in F and center in F ⇤ F , and that the lines

and the circle actually intersect. The circle is thengivenby (x�h)2+(y�k)2 = r2

with h, k, r in F . Substitution of the equation of the line into the equation of the
circle gives us a quadratic equation either for x , and x then determines y, or for

y, and y then determines x . The quadratic equation has real roots, and thus its

discriminant is � 0. The result is that x and y are in a field F(
�
l ) for some

l � 0 in F .
For two circles, without loss of generality, we may take their equations to be

x2 + y2 = r2 and (x � h)2 + (y � h)2 = s2

with r, h, k, s in F . Subtracting gives 2xh+ 2yk = h2 + k2� s2 + r2. With this

equation and with x2 + y2 = r2, we again have a line and circle that are being

intersected. Thus the same remarks apply as in the previous paragraph.

The conclusion is that any new single construction of points of intersection by

straightedge and compass leads from F to F(
�
l ) for some l � 0 in F . Thus

every member of the set C is as described in the theorem. �

Toapply the theoremtoprove the impossibilityof the threenever-accomplished

constructions thatwere described earlier in the section,weobserve that [Fi : Fi�1]
in the theorem equals 1 or 2 for each i . Consequently every member of the

constructible set C lies in a finite algebraic extension ofQ of degree 2k for some k.
For the problem of doubling a cube, the question amounts to constructing

3
�
2.

We argue by contradiction. If
3
�
2 lies in Fn as in the theorem, thenQ(

3
�
2 )  Fn .

With k as the integer ↵ n such that [Fn : Q] = 2k , Corollary 9.7 gives

2k = [Fn : Q] = [Fn : Q(
3
�
2 )] [Q(

3
�
2 ) : Q] = 3[Fn : Q(

3
�
2 )].
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Thus 3 must divide a power of 2, and we have arrived at a contradiction. We

conclude that it is not possible to double a cube with straightedge and compass.

For the problem of trisecting any constructible angle, let us show that a 60⌥

angle cannot be trisected. A 60⌥ angle is itself constructible, being the angle
between two sides in an equilateral triangle. Trisecting a 60⌥ angle amounts to
constructing cos 20⌥; sin 20⌥ is then (1� cos2 20⌥)1/2. To proceed, we derive an
equation satisfied by cos 20⌥, starting from

(cos 20⌥ + i sin 20⌥)3 = cos 60⌥ + i sin 60⌥ = 1
2

+ i
�
3
2

.

We expand the left side and extract the real part of both sides to obtain

cos3 20⌥ � 3 cos 20⌥ sin2 20⌥ = 1
2
.

Substituting sin2 20⌥ = 1 � cos2 20⌥ and simplifying, we see that r = cos 20⌥

satisfies

4r3 � 3r � 1
2

= 0.

Arguing with Corollary 8.20 as in Example 2 of splitting fields in Section 2, we

readily check that 4X3 � 3X � 1
2
is irreducible over Q. Hence [Q(cos 20⌥) : Q]

= 3, and we are led to the same contradiction as for the problem of doubling

the cube. Therefore it is not possible to trisect a 60⌥ angle with straightedge and
compass.

For the problem of squaring a circle, let A be the area of the circle, and let

r be the radius. If the square has side x , then x2 = A = ↵r2, with r given.
Thus x = r

�
↵ , and the essence of the matter is to construct

�
↵ . However, ↵

is known to be transcendental by a theorem of F. Lindemann (1882); we give a

proof in Section 14. Since ↵ is transcendental,
�
↵ is transcendental.

A fourth notable problem, which leads to further insights, concerns the con-

struction of a regular polygon of outer radius 1 with n sides. This construction

is easy with straightedge and compass when n is a power of 2 or is 3 times a

power of 2, and Euclid showed that a construction is possible for n = 5. But a

construction cannot be managed with straightedge and compass for n = 9, for

example, because a central angle in this case is 40⌥ and the constructibility of
cos 40⌥ would imply the constructibility of cos 20⌥. Thus the question is, for what
values of n can a regular n-gon be constructed with straightedge and compass?

The remarkable answer was given by Gauss. By a Fermat number is meant

any integer of the form 22
N + 1. A Fermat prime is a Fermat number that is

prime. The Fermat numbers for N = 0, 1, 2, 3, 4 are 3, 5, 17, 257, 65537, and
each is a Fermat prime. No larger Fermat primes are known.2 The answer given

2Many Fermat numbers for N � 5 are known not to be prime, sometimes by the discovery of

an explicit factor and sometimes by a verification that 3 to the power 22
N�1 is not congruent to �1

modulo (22
N + 1). (Cf. Lemma 9.46.) For example Euler discovered that 641 divides 22

5 + 1.

Computer calculations have shown that 22
N+1 is not prime if 5 ↵ N ↵ 32.
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by Gauss, which we shall prove in stages in Sections 6–9, is as follows.

Theorem 9.25 (Gauss).3 A regular n-gon is constructible with straightedge

and compass if and only if n is the product of distinct Fermat primes and a power

of 2.

We can show the relevance of Fermat primes right now, and we can give an

indication that if n is a prime number, then a regular n-gon can be constructed if

and only if n is a Fermat prime. But a full proof even of this statement will make

use of Galois groups, which we take up in the next three sections.

For the necessity let n be prime, and suppose that a regular n-gon is con-

structible. Returning from degrees to radians, we observe that each central angle

is 2↵/n. Thus the constructibility implies the constructibility of cos 2↵/n, and it
follows that e2↵ i/n = cos 2↵/n+ i sin 2↵/n is in the field C+ iC of constructible
points in the complex plane. We have the factorization

Xn � 1 = (X � 1)(Xn�1 + Xn�2 + · · · + X + 1).

and e2↵ i/n is a root of the second factor. The first example of Eisenstein’s criterion

(Corollary 8.22) in Section VIII.5 shows that the second factor is irreducible.

According to the results of Section 1, Q(e2↵ i/n) is a simple algebraic extension
of Q of degree n � 1.
Applying Theorem 9.24, we see that n � 1 must be a power of two. Let us

write n � 1 = 2m . Suppose m = a2N with a odd. If a > 1, then the equality

n = 2a2
N + 1 = (22

N

)a + 1a exhibits n as the sum of two ath powers, necessarily
divisible by 22

N +1. Sincen is assumedprime, we conclude thata = 1. Therefore

n = 22
N + 1, and n is a Fermat prime.

We do not quite succeed in proving the converse at this point. If n is the Fermat

prime 22
N + 1, then the above argument shows that the degree of Q(e2↵ i/n) over

Q is 22
N

. However, we cannot yet conclude that Q(e2↵ i/n) can be built from Q
by successively adjoining 2N square roots, and thus the converse part of Theorem

9.24 is not immediately applicable. Once we have the theory of Galois groups in

hand, we shall see that the existence of these intermediate extensions involving

square roots is ensured, and then the constructibility follows.

3Gauss announced both the necessity and the sufficiency in this theorem in his Disquisitiones

Arithmeticae in 1801, but he included a proof of only the sufficiency (partly in his articles 336 and

365). A proof of the necessity appeared in a paper of Pierre-Laurent Wantzel in 1837.
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6. Separable Extensions

The Galois group Gal(K/k) of a field extension K/k is defined to be the set

Gal(K/k) = {k automorphisms of K}

with composition as group operation. An instance of this groupwas introduced in

the context of Example 9 of Section IV.1; in this example the field kwas the field
Q of rationals and the fieldK was a number fieldQ[⌥], where ⌥ is algebraic over
Q. In studyingGal(K/k) in this chapter, we ordinarily assume that dimk K <✓,
but there will be instances where we do not want to make such an assumption.

Beginning in this section, we take up a study of Galois groups in general.

We shall be interested in relationships between fields L with k  L  K and

subgroups of Gal(K/k). If H is a subgroup of Gal(K/k), then

KH =
⇧
x ◆ K | ⇣(x) = x for all ⇣ ◆ H

⌃

is a field called the fixed field of H ; it provides an example of an intermediate

field L and gives a hint of the relationships we shall investigate. We begin with
some examples; in each case the base field k is the field Q of rationals.

EXAMPLES OF GALOIS GROUPS.

(1a) K = Q(
�
�1 ). If ⇣ is in Gal(K/Q), then we must have ⇣

⌥⌥
Q = 1, and

⇣(
�
�1 ) must be a root of X2 + 1. Thus ⇣(

�
�1 ) = ±

�
�1. Since Q and�

�1 generate Q(
�
�1 ), there are at most two such ⇣’s. On the other hand,

Q(
�
�1 ) andQ(�

�
�1 ) are simple extensions ofQ such that

�
�1 and�

�
�1

have the same minimal polynomial. Theorem 9.11 therefore produces a Q auto-

morphism of Q(
�
�1 ) with ⇣(

�
�1 ) = �

�
�1, namely complex conjugation.

We conclude that Gal(K/Q) has order 2, hence that Gal(K/Q) �= C2.

(1b) K = Q(
�
2 ). The same argument applies as in Example 1a, and the

conclusion is that Gal(K/Q) �= C2. The nontrivial element of the Galois group

carries
�
2 to �

�
2 and is different from complex conjugation.

(2) K = Q(
3
�
2 ). If ⇣ is in Gal(K/Q), then ⇣

⌥⌥
Q = 1, and ⇣(

3
�
2 ) has to be

a root of X3 � 2. But K is a subfield of R, and there is only one root of X3 � 2
in R. Hence ⇣(

3
�
2 ) = 3

�
2. SinceQ and

3
�
2 generateQ(

3
�
2 ) as a field, we see

that ⇣ = 1. We conclude that Gal(K/Q) has order 1, i.e., is the trivial group.

(3) K = Q(r), where r is a root of X3 � X � 1
3
. Any ⇣ in Gal(K/Q) fixes Q

and sends r to a root of X3� X � 1
3
. In Example 2 of splitting fields in Section 2,

we saw that all three complex roots of X3 � X � 1
3
lie in K. Arguing as in

Example 1a, we see that Gal(K/Q) has order 3, hence that Gal(K/Q) �= C3.
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(4) K = Q(e2↵ i/17). According to Section 5, this is the field we need to
consider in addressing the constructibility of a regular 17-gon. We saw in that

section that [K : Q] = 16 and that the minimal polynomial of e2↵ i/17 over Q
is X16 + X15 + · · · + X + 1. The other roots of the minimal polynomial in

C are e2↵ il/17 for 2 ↵ l ↵ 16, and these all lie in K. Theorem 9.11 therefore

gives us a Q automorphism ⇣l of K sending e2↵ i/17 into e2↵ il/17 for each l with

1 ↵ l ↵ 16. Since Q and e2↵ i/17 generate K, a Q automorphism of K is

completely determined by its effect on e2↵ i/17. Thus the order of Gal(K/Q)
is 16. Let us determine the group structure. Since ⇣l sends e

2↵ i/17 into e2↵ il/17, it

sends e2↵ ir/17 = (e2↵ i/17)r into (e2↵ il/17)r = e2↵ ilr/17. If we drop the exponential

from the notation, we can think of ⇣l as defined on the integers modulo 17, the
formula being ⇣l(r) = rl mod 17. From this viewpoint ⇣l is an automorphism
of the additive group of F17. Lemma 4.45 shows that the group of additive
automorphisms of F17 is isomorphic to F⇤17, and it follows from Corollary 4.27
that Gal(K/Q) �= C16. For our application of constructibility of a regular 17-

gon, we would like to know whether the elements ofK are constructible. Taking

Theorem 9.24 into account, we therefore seek an intermediate field L of which
K is a quadratic extension. Since we know that Gal(K/Q) is cyclic, we can let
H  Gal(K/Q) �= C16 be the 2-element subgroup, and it is natural to try the

fixed field L = KH . To understand this fixed field, we need to understand the

isomorphism F⇤17 �= C16 better. Modulo 17, we have

32 = 9, 34 = �22, 38 = 24 = �1, 316 = 1.

Consequently 3 is a generator of the cyclic groupF⇤17. Then H = {38, 1} = {±1},
and L = {x ◆ K | ⇣�1(x) = ⇣+1(x) = x}. Since ⇣�1(e2↵ ir/17) = e�2↵ ir/17 =
e2↵ ir/17 with the overbar indicating complex conjugation, we see that

L = KH = {x ◆ K | x = x̄}.

It is not hard to check that indeed [K : L] = 2. Next we need a subfield L⌘ of
L with [L : L⌘] = 2. We try L⌘ = KH ⌘ with H ⌘ equal to the 4-element cyclic
subgroup ofGal(K/Q). Herewe have a harder time checkingwhetherL is indeed
a quadratic extension of L⌘, but we shall see in Section 8 that it is.4 We continue
in this way, and ultimately we end up with the chain of subfields that exhibits the

members of K as constructible.

We seek to formulate the kind of argument in the above examples as a general

theorem. We have to rule out the bad behavior of Q(
3
�
2 ), where one root of the

4Actually, Section 8 will point out how Corollary 9.36 in Section 7 already handles this step. In

fact, Corollary 9.37 handles this step with no supplementary argument.
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minimal polynomial lies in the field but others do not, and we shall do this by

assuming that the extension field is a “normal” extension, in a sense to be defined

in Section 7. In addition, our style of argument shows that we might run into

trouble if our irreducible polynomials over k can have repeated roots in K. We
shall rule out this bad behavior by insisting that the extension be “separable,” a

condition that we introduce now. The extension will automatically be separable

if K has characteristic 0.

For the remainderof this section, fix thebasefieldk. An irreduciblepolynomial
F(X) in k[X] is called separable if it splits into distinct degree-one factors in its
splitting field, i.e., if

f (X) = an(X � x1) · · · (X � xn) with xi = xj for i = j.

Once this splitting into distinct degree-one factors occurs in the splitting field, it

occurs in any larger field as well.

Lemma9.26. Apolynomial F(X) in k[X] has no repeated roots in its splitting
field K if and only if GCD(F, F ⌘) = 1, where F ⌘(X) is the derivative of F(X).

PROOF. The polynomial F(X) has repeated roots in K if and only if F(X) is
divisible by (X � r)2 for some r ◆ K, if and only if some r ◆ K has F(r) =
F ⌘(r) = 0 (by Corollary 9.17), if and only if some r ◆ K has (X � r) dividing
F(X) and also F ⌘(X) (by the Factor Theorem), if and only if some r ◆ K has

(X � r) dividing GCD(F, F ⌘) when the GCD is computed in K, if and only
if GCD(F, F ⌘) = 1 when the GCD is computed in K (by unique factorization

in K[X]). However, the Euclidean algorithm calculates GCD(F, F ⌘) without
reference to the field, and the GCD is therefore the same when computed inK as

it is when computed in k. The lemma follows. �

Proposition 9.27. An irreducible polynomial F(X) in k[X] is separable if
and only if F ⌘(X) = 0. In particular, every irreducible (necessarily nonconstant)

polynomial is separable if k has characteristic 0.
PROOF. Since the polynomial F(X) is irreducible and GCD(F, F ⌘) divides

F(X), GCD(F, F ⌘) equals1or F(X) in all cases. If F ⌘(X) = 0, thenGCD(F, F ⌘)
= F(X), and Lemma 9.26 implies that F(X) is not separable. Conversely

if F ⌘(X) = 0, then the facts that GCD(F, F ⌘) divides F ⌘(X) and that deg F ⌘ <
deg F together imply that GCD(F, F ⌘) cannot equal F(X). So GCD(F, F ⌘) = 1,

and Lemma 9.26 implies that F(X) is separable. �

Fix an algebraic extensionK of k. We say that an element x ofK is separable

over k if the minimal polynomial of x over k is separable. We say that K is a

separable extension of k if every x in K is separable over k.
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EXAMPLES OF SEPARABLE EXTENSIONS AND EXTENSIONS NOT SEPARABLE.

(1) In characteristic 0, every algebraic extension K of k is separable, by

Proposition 9.27.

(2) Every algebraic extension K of a finite field k is separable. In fact, if x is
in K, then [k(x) : k] is finite. Hence k(x) is a finite field. Then we may assume
thatK is a finite field, say of order q = pn with p prime. Since the multiplicative

groupK⇤ has order q� 1, every nonzero element ofK is a root of Xq�1� 1, and
every element ofK is therefore a root of Xq� X . The minimal polynomial F(X)
of x over kmust then divide Xq � X . However, we know that Xq � X splits over

K and has no repeated roots. Thus F(X) splits overK and has no repeated roots.

Then F(X) is separable over k, and x is separable over k.
(3) Let k = Fp(x) be a transcendental extension of the finite field Fp. Because

this extension is transcendental, X p � x is irreducible over k. Let K be the

simple algebraic extension k[X]/(X p � x), which we can write more simply as
k(x1/p). The minimal polynomial of x1/p over k is X p � x , and its derivative is

pX p�1 = 0 since the derivative of the constant x is 0. By Proposition 9.27, x1/p

is not separable over k.

The way that separability enters considerations with Galois groups is through

the following theorem, explicitly or implicitly. One of the corollaries of the

theorem is that if K/k is an algebraic extension, then the set of elements in K
separable over k is a subfield of K.

Theorem 9.28. Let k  L  K be an inclusion of fields such that K is a

simple algebraic extension of L of the form K = L(�), let K be an algebraic

closure of K, and let M(X) be the minimal polynomial of � over L. Then the
number of field mappings of K into K fixing k is the product of the number of
distinct roots of M(X) inK by the number of field mappings ofL intoK fixing k.
REMARKS. An algebraic closure K of K exists by Theorem 9.22. Because K

is known to exist, the present theorem reduces to Theorem 9.11 when L = k.
PROOF. Any field mapping ⇣ : K ⇣ K is uniquely determined by ⇣

⌥⌥
L and

⇣(�). If � = ⇣
⌥⌥
L, then the equality M(�) = 0 implies that M� (⇣(�)) = 0, and

thus ⇣(�) has to be a root of M� (X). The number of distinct roots of M� (X)

in K equals the number of distinct roots of M(X) in K; hence the number of
possibilities for ⇣(�) is at most the number of distinct roots of M(X) in K.
Consequently the number of such ⇣’s fixing k is bounded above by the product
of the number of distinct roots of M(X) inK times the number of field mappings

� of L into K fixing k.
For an inequality in the reverse direction, let � : L ⇣ K be any field mapping

of L into K fixing k, put L⌘ = � (L), let x be any root of M� (X), and form the
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subfield L⌘(x) of K. Theorem 9.11⌘ shows that there exists a field isomorphism
⇣ : L(�) ⇣ L⌘(x) with ⇣

⌥⌥
L = � and ⇣(�) = x , and we can regard ⇣ as a

field mapping of K into K fixing k, extending � , and having ⇣(�) = x . Thus

the number of field mappings ⇣ : K ⇣ k fixing k is bounded below by the
product of the number of distinct roots of M(X) in K times the number of field

homomorphisms � of L into K fixing k. �

Corollary 9.29. Let K = k(�1, . . . ,�n) be a finite algebraic extension of

the field k, and let K be an algebraic closure of K. Then the number of field
mappings of K into K fixing k is ↵ [K : k]. Moreover, the following conditions
are equivalent:

(a) the number of field mappings of K into K fixing k equals [K : k],
(b) each �j is separable over k(�1, . . . ,�j�1) for 1 ↵ j ↵ n,

(c) each �j is separable over k for 1 ↵ j ↵ n.

PROOF. The minimal polynomial of �j over k(�1, . . . ,�j�1) divides the min-
imal polynomial of �j over k. If the second of these polynomials has distinct
roots in its splitting field, so does the first. Thus (c) implies (b).

For 1 ↵ j ↵ n, let the minimal polynomial of �j over k(�1, . . . ,�j�1) be
Mj (X), let dj be the degree of Mj (X), and let sj be the number of distinct roots

of Mj (X) in K. Then sj ↵ dj with equality for a particular j if and only if �j
is separable over k(�1, . . . ,�j�1), by definition. Also, [K : k] =

⌫n
j=1 dj by

Corollary 9.7, and the number of field mappings of K into K fixing k is
⌫n

j=1 sj
by iterated application of Theorem 9.28. From these facts, the first conclusion of

the corollary is immediate, and so is the equivalence of (a) and (b).

Condition (a) is independent of the order of enumeration of �1, . . . ,�n . Since
we can always take any particular �j to be first, we see that (a) implies (c). �

Corollary 9.30. Let K = k(�1, . . . ,�n) be a finite algebraic extension of the
field k. If each �j for 1 ↵ j ↵ n is separable over k, then K/k is a separable
extension.

PROOF. Let ⇥ be in K, We apply the equivalence of (a) and (c) in Corollary
9.29 once to the set of generators {�1, . . . ,�n} and once to the set of generators
{⇥,�1, . . . ,�n}, and the result is immediate. �

Corollary 9.31. If K/k is an algebraic field extension, then the subset L of
elements of K that are separable over k is a subfield of K.

PROOF. If � and ⇥ are given in L, we apply Corollary 9.30 to the extension
k(�,⇥) of k to see that L contains the subfield generated by k and the elements
� and ⇥. �
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Proposition 9.32. If K/k is a separable algebraic extension and if L is a field
with k  L  K, then K is separable over L, and L is separable over k.
PROOF. The separability assertion about L/k says the same thing about el-

ements of L that separability of K/k says about those same elements, and it is
therefore immediate that L/k is separable.
Next let us consider K/L. If x is in K, let F(X) be its minimal polynomial

over k, and let G(X) be its minimal polynomial over L. Since F(X) is in L[X]
and F(x) = G(x) = 0, G(X) divides F(X). Since K/k is separable, F(X)
splits into distinct degree-one factors in its splitting field F. The field F contains
the splitting field of G(X), and thus the degree-one factors of G(X) in F[X] are a
subset of the degree-one factors of F(X) in F[X]. There are no repeated factors
for F(X), and there can be no repeated factors for G(X). Thus x is separable
over L, and K/L is a separable extension. �

In studying Galois groups, we shall be chiefly interested in the following

situation in Corollary 9.29: K is an algebraic field extensionK = k(�1, . . . ,�n)
of k for which every field mapping of K into an algebraic closure that fixes k
actually carriesK into itself. We seek conditions underwhich this situation arises,
and then we mine the consequences. As we did in the study begun in Theorem

9.28, we begin with the case of a simple algebraic extension.

Let K = k(⇤ ) be a simple algebraic extension of k, and let F(X) be the
minimal polynomial of ⇤ over k. Any member ⇣ of the Galois group Gal(K/k)
carries ⇤ to another root ⇤ ⌘ of F(X), and ⇣ is uniquely determined by ⇤ ⌘ since
k and ⇤ generate the field K. An element ⇣ of Gal(K/k) carrying ⇤ to ⇤ ⌘ can
exist only if ⇤ ⌘ is in K. If ⇤ ⌘ is in K, then k(⇤ ) ⌦ k(⇤ ⌘), and the equal finite
dimensionality of k(⇤ ) and k(⇤ ⌘) forces k(⇤ ) = k(⇤ ⌘). In other words, if ⇤ ⌘ is
in K, then the unique k isomorphism k(⇤ ) ⇣ k(⇤ ⌘) of Theorems 9.10 and 9.11
carrying ⇤ to ⇤ ⌘ is a member of Gal(K/k). Making a count of what happens to
all the elements ⇤ ⌘, we see that we have proved the following.

Proposition 9.33. LetK = k(⇤ ) be a simple algebraic extension of k, and let
F(X) be the minimal polynomial of ⇤ . Then

|Gal(K/k)| ↵ [K : k]

with equality if and only if F(X) is a separable polynomial andK is the splitting

field of F(X) over k.

EXAMPLE. For K = Q(
3
�
2 ) with minimal polynomial F(X), we know that

F(X) does not split in K; the nonreal roots of F(X) do not lie in K. Proposition
9.33 gives us |Gal(K/Q)| < [K : Q] = 3, and a glance at the argument preceding

Proposition 9.33 shows that |Gal(K/Q)| has to be 1.
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It is possible to investigate the case of several generators directly, but it is more

illuminating to reduce it to the case of a single generator as in Proposition 9.33.

The tool for doing so is the following important theorem.

Theorem 9.34 (Theorem of the Primitive Element). Let K/k be a separable
algebraic extension with [K : k] <✓. Then there exists an element ⇤ inK such

that K = k(⇤ ).

PROOF. We may assume that k is infinite because Corollary 4.27 shows that
the multiplicative group of a finite field is cyclic. With k infinite, we can write
K = k(x1, . . . , xn), and we proceed by induction on n, the case n = 1 being

trivial. For general n, let L = k(x1, . . . , xn�1), so that K = L(xn). By the
inductive hypothesis, L is of the form L = k(�) for some � in K, and thus
K = k(�, xn). Changing notation, we see that it is enough to prove that whenever
K is a separable algebraic extension of the form K = k(�,⇥), then K is of the

form K = k(⇤ ) for some ⇤ . We shall show this for ⇤ of the form ⇤ = ⇥ + c�
for some c in k.
Let F(X) and G(X) be the minimal polynomials of � and ⇥ over k, and let

K⌘ be an extension in which F(X)G(X) splits, i.e., in which F(X) and G(X)
both split. Let �1 = �, �2, . . . ,�m and ⇥1 = ⇥, ⇥2, . . . ,⇥n be the roots of
F(X) andG(X) inK⌘, In each case the roots are necessarily distinct by definition
of separability of � and ⇥. Define L = k(⇤ ) with ⇤ = ⇥ + c�, where c is a
member of k yet to be specified. For suitable c, we shall show that � is in L.
Then ⇥ = ⇤ � c� must be in L, and we obtain K  L. Since ⇤ is in K, the
reverse inclusion is built into the construction, and thus we will have K = L.
We shall compute the minimal polynomial of � over L. We know that � is a

root of F(X), and we put H(X) = G(⇤ � cX). Then H(X) is in L[X]  K⌘[X],
andG(⇥) = 0 implies H(�) = 0. Therefore X�� divides both F(X) and H(X)
in the ring K⌘[X]. Let us determine GCD(F, H) in K⌘[X]. The separability of
� says that X � � divides F(X) only once. Since F(X) splits in K⌘[x], any
other prime divisor of GCD(F, H) in K⌘[X] has to be of the form X � �i with
i = 1. The definition of H(X) gives H(�i ) = G(⇤ � c�i ). If G(⇤ � c�i ) = 0,

then ⇤ � c�i = ⇥j for some j , with the consequence that ⇥ + c� � c�i = ⇥j
and c = (⇥j � ⇥)(� � �i )

�1. Since k is an infinite field, we can choose c in
K different from all the finitely many quotients (⇥j � ⇥)(� � �i )

�1. For such a
choice of c, GCD(F, H) = X � � in K⌘[X]. Then GCD(F, H) = X � �, up to
a scalar factor, in L[X] since F(X) and H(X) are in L[X] and since the GCD
can be computed without reference to the field containing both elements. The

ratio of the constant term to the coefficient of X has to be in L independently of
the scalar factor multiplying X � �, and therefore � is in L. This completes the
proof. �
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7. Normal Extensions

In using Galois groups to help in understanding field extensions, an example to

keep in mind is the extension Q(
3
�
2 )/Q. In this case the Galois group is trivial

and therefore gives us no information about the extension. Thus it makes sense

to regard the failure of equality to hold in an inequality |Gal(K/k)| ↵ [K : k] as
an undesirable situation.5

Proposition 9.33 suggests that the failure of equality to hold in the inequality

|Gal(K/k)| ↵ [K : k] has something to do with two phenomena. One is the
possible failure of some polynomials over k to be separable, and the other is the
failure of polynomials over k to split fully in K once they have at least one root

in K. Having examined separability in Section 6, we turn to this question of full
splitting of polynomials.

Accordingly, we make a definition, choosing among several equivalent condi-

tions the one that is usually the easiest to check in practice. A finite6 algebraic

extensionK of a fieldk is said to benormaloverk ifK is the splittingfield of some
F(X) in k[X]. The following proposition gives some equivalent formulations of
this condition.

Proposition 9.34A.LetK be a finite algebraic extension of a fieldk, and regard
K as contained in a fixed algebraic closure K. Then the following conditions on
K are equivalent.

(a) K is the splitting field of some F(X) in k[X], i.e., K is normal over k,
(b) every irreducible polynomial M(X) in k[X] with a root in K splits in K,

i.e., K contains the splitting field for each such M(X),

(c) every k isomorphism of K into K carries K into itself.

REMARK. Although (a) is often the easiest of the conditions to check, (b) is

often the easiest to disprove. It is therefore quite handy to know the equivalence.

PROOF. Suppose that (a) holds. Let F(X) be as in (a), and let its roots be
⇤1, . . . , ⇤n . Let M(X) be an irreducible polynomial in k[X] with a root � in K,
and let L be the splitting field of M(X) over K. Let ⇥ be any root of M(X) in
L. Since M(X) is irreducible over k, Theorem 9.11 produces a k isomorphism
� of k(�) onto k(⇥) with � (�) = ⇥. The isomorphism � leaves F(X) fixed,
since the coefficients of F(X) are in k. Now the splitting field of F(X) over k(�)

5We obtained this inequality in Proposition 9.33 only when K has a single generator over k, but
we take this case as indicative of what to expect more generally.

6Many books do not restrict the definition to finite extensions. The additional generality of

infinite algebraic extensions will not be of benefit for our current purposes, and thus we restrict to

finite extensions for now. But in Section VII.6 of Advanced Algebra, we shall enlarge the definition

of “normal” to allow infinite algebraic extensions.
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is K, since the roots of F(X) are in K and generate K over k(�). Similarly the
splitting field of F(X) over k(⇥) is K(⇥). Application of Theorem 9.13⌘ yields
a field isomorphism ⇣ of K onto K(⇥) such that ⇣

⌥⌥
k(�)

= � and such that ⇣

carries the roots of F(X) to the roots of F(X). We can express � as a rational
expression in ⇤1, . . . , ⇤n with coefficients in k, and then ⇥ = ⇣(�) is the same
rational expression in ⇣(⇤1), . . . ,⇣(⇤n), which themselves are members of K.
Therefore ⇥ is in K, and the conclusion is that M(X) splits in K.
Suppose that (b) holds. Let ⇣ be a k isomorphism of K into K, and let � be

any element ofK. The minimal polynomial M(X) of � over k is irreducible and
has � as a root in K. By (b), M(X) splits in K. The element ⇣(�) has to be a
root of M(X) since ⇣ fixes the coefficients of M(X), and all the roots of M(X)
are assumed to lie in K. Therefore ⇣(�) lies in K, and (b) implies (c).
Suppose that (c) holds. Since K is a finite algebraic extension of k, we can

write K = k(�1, . . . ,�n) for suitable elements �1, . . . ,�n of K. Let Pj (X) be
the minimal polynomial of �j over k, and put F(X) =

⌫n
j=1 Pj (X). Since the

roots �1, . . . ,�n generateK over k, it is enough to show that every root of F(X)

lies in K , i.e., each root of each Pj (X) lies in K. Let ⇥ be a root of Pj (X) in K.
We know from Theorem 9.11 that there is a k isomorphism ⇣ of k(�j ) onto k(⇥)
with ⇣(�j ) = ⇥. Theorem 9.23 shows that ⇣ extends to a field mapping ofK into

K, and (c) shows that the extended ⇣ sends K into itself. Therefore ⇥ = ⇣(�j )

lies in K, and all the roots of F(X) in K lie in K. Thus (c) implies (a). �

Now we can put together the properties of normal and separable extensions.

It will be convenient to be able to refer in this context to the equivalence of (a)

and (b) that was proved in Proposition 9.34A, and thus we repeat the statement

of that equivalence here.

Proposition 9.35. Let K be a finite separable algebraic extension of a field k,
so that |Gal(K/k)| ↵ [K : k]. Then the following are equivalent.

(a) K is the splitting field of some F(X) in k[X], i.e., K is normal over k,
(b) every irreducible polynomial M(X) in k[X] with a root in K splits in K,

i.e., K contains the splitting field for each such M(X),
(c) |Gal(K/k)| = [K : k],
(d) k = KG for G = Gal(K/k).

REMARKS. The equivalence of (a) and (b) is part of Proposition 9.34A, and

the fact that they are equivalent with (c) follows from Proposition 9.33 and the

Theorem of the Primitive Element (Theorem 9.34). We prove that the equivalent

(a), (b), and (c) imply (d), and that (d) implies (b).

PROOF. Suppose that the equivalent (a), (b), and (c) hold for K/k. We prove
(d). Write G = Gal(K/k), and let k⌘ = KG . Since every member of Gal(K/k)
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fixes k⌘, Gal(K/k)  Gal(K/k⌘). Meanwhile, (a) for K/k implies (a) for K/k⌘,
and K is separable over k⌘ by Proposition 9.32. Since (a) implies (c), (c) holds
for both k⌘ and k, and we have

[K : k] = |Gal(K/k)| ↵ |Gal(K/k⌘)| = [K : k⌘].

Since k⌘ ⌦ k, the inequality of dimensions implies that k⌘ = k. Thus (d) holds.
Suppose (d) holds. We prove (b). Let M(X) be an irreducible polynomial

in k[X] having a root r in K. The polynomial M(X) is necessarily the minimal
polynomial of r over k. Define

J (X) =
⌫
⇣◆G

(X � ⇣(r)). (⌅)

If ⇣0 is in G, then F
⇣0 is given by replacing each ⇣(x) by ⇣0⇣(r), and the product

is unchanged. Therefore J (X) = J⇣0(X), and J (X) is in KG[X]. From the

assumption in (d), KG = k. Therefore J (X) is in k[X]. Since J (r) = 0 and

since M(X) is the minimal polynomial of r over k, M(X) divides J (X). Over
K, J (X) splits because of its definition in (⌅). By unique factorization in K[X],
M(X) must split too. Thus M(X) splits in K[X], and (b) holds. �

Corollary 9.36. If K is a finite normal separable extension of k and if L is a
field with k  L  K, thenK is a finite normal separable extension of L, and the
subgroup H = Gal(K/L) of Gal(K/k) has

|H | · [L : k] = |Gal(K/k)| .

PROOF. The field K is a separable extension of the intermediate field L by

Proposition 9.32, and it is a normal extension by Proposition 9.35a. Therefore

Proposition 9.35c gives |Gal(K/L)| = [K : L], and we have

|H |·[L : k] = |Gal(K/L)|·[L : k] = [K : L]·[L : k] = [K : k] = |Gal(K/k)|,

the last two equalities holding by Corollary 9.7 and Proposition 9.35c. �

Corollary 9.37. LetK/k be a separable algebraic extension, and suppose that
H is a finite subgroup of Gal(K/k). Then K/KH is a finite normal separable

extension, H is the subgroup Gal(K/KH ) of Gal(K/k), and [K : KH ] = |H |.
PROOF. Proposition 9.32 shows that K is separable over KH . For an arbitrary

element x of K, form the polynomial in K[X] given by

F(X) =
⌫
⇣◆H

(X � ⇣(x)).



484 IX. Fields and Galois Theory

If ⇣0 is in H , then F
⇣0 is given by replacing each ⇣(x) by ⇣0⇣(x), and the product

is unchanged. Therefore F(X) = F⇣0(X), and F(X) is in KH [X]. Thus F(X)
is a polynomial in KH [X] that has x as a root and splits in K. The minimal
polynomial M(X) of x over KH must divide F(X), and it too has x as a root.
By unique factorization in K[X], M(X) must split in K. Thus K/KH will be a

normal extension if it is shown that [K : KH ] <✓.
The element x has [KH (x) : KH ] = degM(X) ↵ deg F(X) = |H |, and

the claim is that [K : KH ] ↵ |H |. Assuming the contrary, we would at

some point have an inequality [KH (x1, . . . , xn) : KH ] > |H | because every
element of K is algebraic over k. By the Theorem of the Primitive Element

(Theorem 9.34), KH (x1, . . . , xn) = KH (z) for some element z, and therefore
[KH (x1, . . . , xn) : KH ] = [KH (z) : KH ] ↵ |H |, contradiction. We conclude
that [K : KH ] ↵ |H |. From the previous paragraph, K/KH is a finite separable

normal extension.

The definition of KH shows that H  Gal(K/KH ), and Proposition 9.35c
gives |Gal(K/KH )| = [K : KH ]. Putting these facts together with the inequality

[K : KH ] ↵ |H | from the previous paragraph, we have

|H | ↵ |Gal(K/KH )| = [K : KH ] ↵ |H |

with equality on the left only if H = Gal(K/KH ). Equalitymust hold throughout
the displayed line since the ends are equal, and therefore H = Gal(K/KH ). �

8. Fundamental Theorem of Galois Theory

We are now in a position to obtain the main result in Galois theory.

Theorem 9.38 (Fundamental Theorem of Galois Theory). If K is a finite

normal separable extension of k, then there is a one-one inclusion-reversing
correspondence between the subgroups H of Gal(K/k) and the subfields L ofK
that contain k, corresponding elements H and L being given by

L = KH and H = Gal(K/L).

The effect of the theorem is to take an extremely difficult problem, namely

finding intermediate fields, and reduce it to a problem that is merely difficult,

namely finding the Galois group. For example the finiteness of Gal(K/k) implies
that there areonlyfinitelymany subgroupsofGal(K/k), and the theoremtherefore
implies that there are only finitely many intermediate fields; this finiteness of the

number of intermediate fields is not so obvious without the theorem.
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As a reminder of the availability of Theorem 9.38, Proposition 9.35, and

Corollary 9.36, it is customary to refer to a finite normal separable extension

as a finite Galois extension.

Before coming to the proof of the theorem, let us examine what the theorem

says for the examples in Section 6. In each case the field k is the field Q of

rationals. The extensions are separable because the characteristic is 0.

EXAMPLES.

(1a) K = Q(
�
�1 ). This is the splitting field7 for X2 + 1. Proposition

9.33 gives |Gal(K/Q)| = [K : Q] = 2. Thus Gal(K/Q) �= C2. There are no

nontrivial subgroups, and there are consequently no intermediate fields. We knew

this already since there cannot be any intermediate Q vector spaces between Q
and K. Thus the theorem tells us nothing new.
(1b) K = Q(

�
2 ). Similar remarks apply.

(2) K = Q(
3
�
2 ). This extension is not normal, as a consequence of (b)

in Proposition 9.34A. (Namely X3 � 2 has a root in K but does not split in K.)
Theorem9.38doesnot apply toK. Ifwe adjoinr toKwith r2+(

3
�
2 )r+(

3
�
2 )2 =

0, we obtain the splitting field K⌘ for X3 � 2 over Q. Then K⌘ is a normal
extension of Q, and the theorem applies. Since each element of Gal(K⌘/Q)
permutes the three roots of X3 � 2 and is determined by its effect on these roots,
Gal(K⌘/Q) is isomorphic to a subgroup of the symmetric groupS3. The Galois

group Gal(K⌘/Q) has order [K⌘ : Q] = 6 and hence is isomorphic to the whole

symmetric group S3. The group S3 has three subgroups of order 2 and one

subgroup of order 3. Therefore K⌘ has three intermediate fields of degree 3 and
one of degree 2. The intermediate fields of degree 3 are the three fields generated

by Q and one of the three roots of X3 � 2. The intermediate field of degree 2
corresponds to the alternating subgroup of order 3 and is the subfield generated

by Q and the cube roots of 1. It is the splitting field for X2 + X + 1 over Q.
(3) K = Q(r), where r is a root of X3 � X � 1

3
. We know from Section 2

that X3 � X � 1
3
is irreducible over Q and splits in K, and K by definition is

therefore normal. Proposition 9.33 tells us that Gal(K/Q) has order 3 and hence
is isomorphic to C3. There are no nontrivial subgroups, and Theorem 9.38 tells

us that there are no intermediate fields. We could have seen in more elementary

fashion that there are no intermediate fields by using Corollary 9.7, since the

corollary tells us that the degree of an intermediate field would have to divide 3.

(4) K = Q(e2↵1/17). We have seen that [K : Q] = 16 and that Gal(K/Q) �=
F⇤17 �= C16. Let c be a generator of the cyclic Galois group. Let H2 = {1, c8},

7It is customary to regard the algebraic closure of Q as a subfield of C, and thus there is no
ambiguity in referring to the splitting field.
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H4 = {1, c4, c8, c12}, and H8 = {1, c2, c4, c6, c8, c10, c12, c14}. Then put

L2 = KH2, L4 = KH4, L8 = KH8 .

The inclusions among our subgroups are

{1}  H2  H4  H8  Gal(K/Q),

and the theorem says that the correspondence with intermediate fields reverses

inclusions. Then we have

K ⌦ L2 ⌦ L4 ⌦ L8 ⌦ Q.

Applying Corollary 9.36, we see that each of these subfields is a quadratic ex-

tension of the next-smaller one. Theorem 9.24 says that the members of K are

therefore constructible with straightedge and compass. Consequently a regular

17-gon is constructible with straightedge and compass. The constructibility or

nonconstructibilityof regularn-gons for generalnwill be settled in similar fashion

in the next section. In Section 12 we return to the question of using Galois theory

to guide us through the actual steps of the construction when it is possible.

PROOF OF THEOREM 9.38. The function L �⇣ Gal(K/L) has domain the
set of all intermediate fields and range the set of all subgroups of Gal(K/k),
since an element in Gal(K/L) is necessarily in Gal(K/k). Each such exten-
sion K/L is separable by Proposition 9.32 and is normal by Proposition 9.34A.
Thus Proposition 9.35d applies to each K/L and shows that L = KGal(K/L).

Consequently the function L �⇣ Gal(K/L) is one-one. If H is a subgroup of

Gal(K/k), then Corollary 9.37 shows that L = KH is an intermediate field for

which H = Gal(K/L), and therefore the function L �⇣ Gal(K/L) is onto.

It is immediate from the definition of Galois group that L1  L2 implies
Gal(K/L1) ⌦ Gal(K/L2), and it is immediate from the formula L = KGal(K/L)

that Gal(K/L1) ⌦ Gal(K/L2) implies L1  L2. This completes the proof. �

Corollary 9.39. If K is a finite Galois extension of k and if L is a subfield of
K that contains k, then L is a normal extension of k if and only if Gal(K/L) is
a normal subgroup of Gal(K/k). In this case, the map Gal(K/k) ⇣ Gal(L/k)
given by restriction from K to L is a group homomorphism that descends to a

group isomorphism

Gal(K/k)
�
Gal(K/L) �= Gal(L/k).
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PROOF. LetL correspond to H = Gal(K/L) inTheorem9.38, so thatL = KH .

If ⇣ is in Gal(K/k), then

K⇣H⇣�1 = {k ◆ K | ⇣h⇣�1(k) = k for all h ◆ H}
= {⇣(k ⌘) ◆ K | ⇣h(k ⌘) = ⇣(k ⌘) for all h ◆ H}
= {⇣(k ⌘) ◆ K | h(k ⌘) = k ⌘ for all h ◆ H}
= ⇣(KH ) = ⇣(L).

Since the correspondence of Theorem 9.38 is one-one onto, ⇣H⇣�1 = H if and

only if ⇣(L) = L. Therefore H is a normal subgroup of Gal(K/k) if and only if
⇣(L) = L for all ⇣ ◆ Gal(K/k).
Now suppose that H is a normal subgroup of Gal(K/k). We have just seen that

⇣(L) = L for all ⇣ ◆ Gal(K/k). Then each ⇣ defines by restriction a member
⇣ = ⇣

⌥⌥
L of Gal(L/k), and ⇣ �⇣ ⇣ is certainly a group homomorphism. The

kernel of ⇣ �⇣ ⇣ is the subgroup of Gal(K/k) given by

⇧
⇣ ◆ Gal(K/k)

⌥⌥ ⇣
⌥⌥
L = 1

⌃
,

and this is just Gal(K/L). Thus ⇣ �⇣ ⇣ descends to a one-one homomorphism
of Gal(K/k)

�
Gal(K/L) into Gal(L/k), and we have

|Gal(K/k)|/|Gal(K/L)| ↵ |Gal(L/k)|.

We make use of Corollary 9.7 relating degrees of extensions. Applying Proposi-

tion 9.35c to K/k and K/L, as well as Proposition 9.33 to L/k, we obtain

[L : k] = [K : k]
�
[K : L]

= |Gal(K/k)|/|Gal(K/L)|
↵ |Gal(L/k)| ↵ [L : k],

with equality at the first↵ sign only if ⇣ �⇣ ⇣ is onto Gal(L/k) and with equality
at the second↵ sign only ifL is the splittingfield overk of theminimal polynomial
of a certain element ⇤ of L. Equality must hold in both cases because the end
members of the display are equal, and we conclude that ⇣ �⇣ ⇣ is onto and that
L/k is a normal extension.
We are left with proving that if L/k is a normal extension, then H is a normal

subgroup of Gal(K/k). Thus let L/k be normal. In view of the conclusion

of the first paragraph of the proof, it is enough to prove that ⇣(L) = L for all

⇣ ◆ Gal(K/k). By definition of normal extension, L is the splitting field of some
polynomial F(X) in k[X]. We may assume that F(X) is monic. Let us write

F(X) = (X � x1) · · · (X � xn) with all xj in L.
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Applying a given member ⇣ of Gal(K/k) to the coefficients, we obtain

F(X) = (X � ⇣(x1)) · · · (X � ⇣(xn)),

and here the ⇣(xj )’s are known only to be inK. By unique factorization inK[X],
⇣(xi ) = xj (i) for some j = j (i). Therefore ⇣(xi ) is in L for all i . Since L is the
splitting field of F(X) over k, L = k(x1, . . . , xn). Thus ⇣ maps L into L. �

The examples of Galois groups given in Section 6 all involved fields that are

finite extensionsof the rationalsQ. Aswe shall see inSection17, it is important for
the understanding of Galois groups of finite extensions ofQ to be able to identify

Galois groups of finite extensions of finite fields. This matter is addressed in the

following proposition.

Proposition 9.40. Let K be a finite extension of the finite field Fq , where
q = pa and p is prime, and suppose that [K : Fq] = n. Then K is a Galois

extension of Fq , the Galois group Gal(K/Fq) is cyclic of order n, and a generator
is the ath-power Frobenius automorphism x �⇣ xq = x p

a

.

PROOF. Theorem 9.14 shows that K is a splitting field for Xqn � X over Fp.

Hence it is a splitting field for Xqn � X over Fq , andK/Fq is a normal extension.
The polynomial Xqn � X has no multiple roots, and it follows that K/Fq is a
separable extension.

Define ⇣ by ⇣(x) = xq . Lemma 9.18 shows that ⇣ is an automorphism of K.
Since every member of F⇤q has order dividing q�1, every nonzero element of Fq
is fixed by ⇣. The map ⇣ certainly carries 0 to 0, and thus ⇣ is in Gal(K/Fq). By
a similar argument, ⇣n fixes every element of K, and hence ⇣n = 1. Corollary

4.27 shows that K⇤ is cyclic, hence that there exists an element y in K⇤ such
that yl = 1 for 1 ↵ l < qn � 1. This y has yl = y for 2 ↵ l ↵ qn � 1. Then
⇣k(y) = yq

k

cannot be 1 for 1 ↵ k ↵ n � 1, and ⇣ must have order exactly n.
This shows that ⇣ generates a cyclic subgroup of order n in Gal(K/Fq). Since
n is an upper bound for the order of Gal(K/Fq) by Proposition 9.33, this cyclic
subgroup exhausts the Galois group. �
EXAMPLE. Suppose that we are given a polynomial with coefficients in Fp

and we want to find the Galois group of a splitting field. Since there are efficient

computer programs for factoring the polynomial into irreducible polynomials,

let us take that factorization as done. The Galois group will be cyclic of some

order with generator the Frobenius automorphism x �⇣ x p. For an irreducible

polynomial of degree n, a splitting field has degree n, and the smallest power of

x �⇣ x p that gives the identity is the nth power. The conclusion is that the Galois

group is cyclic of order equal to the least common multiple of the degrees of the

irreducible constituents, a generator being the Frobenius automorphism.
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9. Application to Constructibility of Regular Polygons

In this section we use Galois theory to give a proof of Theorem 9.25 concerning

the constructibility of regular n-gons. Let us recall the statement.

THEOREM 9.25 (Gauss). A regular n-gon is constructible with straightedge

and compass if and only if n is the product of distinct Fermat primes and a power

of 2.

PROOF OF SUFFICIENCY. First suppose that n is a Fermat prime n = 22
N + 1.

Let K = Q(e2↵ i/n). We saw in Section 5 that the degree [K : Q] is 22N , hence is
a power of 2. Furthermore we know that K is a separable extension of Q, being
of characteristic 0, and it is normal, being the splitting field for Xn � 1 over Q.
In Section 6 we saw that the Galois group Gal(K/Q) is cyclic of order 22

N

. Let

c be a generator of this group. For each integer k with 0 ↵ k ↵ 2N , let H2k be
the unique cyclic subgroup of Gal(K/Q) of order 2k . For this subgroup, c2

2N�k

is a generator. Put L2k = KH
2k . Then we have inclusions

{1}  H2  H22  · · · H2k  · · ·  H
22

N�1  H
22

N = Gal(K/Q),

the index being 2 at each stage. Theorem 9.38 says that the correspondence

with intermediate fields reverses inclusions and that the degree of each consec-

utive extension of subfields matches the index of the corresponding consecutive

subgroups. The intermediate fields are therefore of the form

K ⌦ L2 ⌦ L22 ⌦ · · · L2k ⌦ · · · ⌦ L
22

N�1 ⌦ L
22

N = Q,

and the degree in each case is 2. In view of the formula for the roots of a

quadratic polynomial, each extension is obtained by adjoining some square root.

By Theorem 9.24 the members of K are constructible with straightedge and

compass. In particular, e2↵ i/n is constructible, anda regularn-gon is constructible.

Next suppose that e2↵ i/r and e2↵ i/s are both constructible and thatGCD(r, s) =
1. Choose integers a and b with ar + bs = 1, so that a

s
+ b

r
= 1

rs
. Then the

equality (e2↵ i/s)a(e2↵ i/r )b = e2↵ i/(rs) shows that e2↵ i/(rs) is constructible. This

proves the sufficiency for any product of distinct Fermat primes. Bisection of an

angle is always possible with straightedge and compass, as was observed in the

third paragraph of Section 5, and the proof of the sufficiency in Theorem 9.25 is

therefore complete. �

REMARKS. The above proof shows that the construction is possible, but it gives

little clue how to carry out the construction. We shall address this matter further

in Section 12.
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We turn our attention to the necessity—that n has to be the product of distinct

Fermat primes and a power of 2 if a regularn-gon is constructible. For themoment

let n � 1 be any integer. Let us consider the distinct nth roots of 1 in C, which
are ek2↵ i/n for 0 ↵ k < n. The order of each of these elements divides n, and the

order is exactly n if and only if GCD(k, n) = 1. In this case we say that ek2↵ i/n

is a primitive nth root of 1. Define the cyclotomic polynomial�n(X) by

�n(X) =
⇢

GCD(k,n)=1,
0↵k<n

(X � ek2↵ i/n).

Each such polynomial is monic by inspection. The splitting field Q(e2↵ i/n) in C
is called a cyclotomic field. Since the complex roots of Xn � 1 are exactly the
numbers ek2↵ i/n , we have

Xn � 1 =
⇢

d|n
�d(X),

the product being taken over the positive divisors d of n.

Lemma9.41. Each cyclotomic polynomial�n(X) lies inZ[X], and the degree
of �n(X) is ⇣(n), where ⇣ is the Euler ⇣ function defined just before Corollary
1.10.

PROOF. Weknow that�n(X) is inC[X], andwebegin by showingby induction
on n that �n(X) is in Q[X]. For n = 1, we have �1[X] = X � 1, and the
assertion is true. If it is true for all d with 1 ↵ d < n, then the formula

Xn � 1 =
⌫

d|n �d(X) and induction show that Xn � 1 = �n(X)F(X) for some

F(X) in Q[X]. By the division algorithm, Xn � 1 = F(X)Q(X) + R(X) for
polynomials Q(X) and R(X) inQ[X] with R(X) = 0 or deg R(X) < deg F(X).
Subtraction gives F(X)

�
�n(X) � Q(X)

⇥
= �R(X) in C[X]. If R(X) is not

0, then deg R(X) < deg F(X) gives a contradiction. Therefore R(X) = 0 and

F(X)
�
�n(X)�Q(X)

⇥
= 0. SinceC[X] is an integral domain,�n(X) = Q(X).

Thus �n(X) is in Q[X], and the induction is complete.
To see that�n(X) is inZ[X], we again induct, the case n = 1 being clear. The

formula Xn � 1 =
⌫

d|n �d(X) and induction show that Xn � 1 = �n(X)F(X)

for some F(X) in Z[X]. Since �n(X) is known to be in Q[X], Corollary 8.20c
shows that �n(X) is in Z[X], and the induction is complete. �

Lemma 9.42. Each cyclotomic polynomial�n(X) is irreducible as a member
of Q[X].
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PROOF. Let ⇧ be a primitive nth root of 1, let p be a prime number not dividing
n, let F(X) be the minimal polynomial of ⇧ overQ, and let G(X) be the minimal
polynomial of ⇧ p. The main step is to show that F(X) = G(X).
To carry out this step, we observe that F(⇧ ) = G(⇧ p) = 0 and that F(X)

and G(X) must divide �n(X). Arguing by contradiction, suppose that F(X) =
G(X). Then GCD(F,G) = 1 since F(X) and G(X) are irreducible overQ, and
therefore F(X)G(X) divides �n(X). Hence we can write

Xn � 1 = F(X)G(X)H(X),

and H(X) is a monic member of Z[X] by Lemma 9.41 and Corollary 8.20c.
Since ⇧ is a root of G(X p), we must have G(X p) = F(X)M(X) for some
monic polynomial M(X) in Z[X]. We apply the substitution homomorphism to
Z[X] ⇣ Fp[X] that carries X to X and reduces the coefficients modulo p; the

mapping on the coefficients will be denoted by a bar. Then we have

Xn � 1̄ = F(X)G(X)H(X) and G(X)p = G(X p) = F(X)M(X),

the equality G(X)p = G(X p) following from Lemma 9.18. If Q(X) is a prime

factor of F(X), then Q(X) divides G(X)p and therefore must divide G(X). So
Q(X)2 divides Xn � 1̄. Therefore Xn � 1̄ has multiple roots in its splitting field,
in contradiction to Corollary 9.17 and the fact that the derivative of Xn � 1̄ is
nonzero at each nonzero member of Fp (since GCD(p, n) = 1 by assumption).

We conclude that F(X) = G(X).
Now suppose that r is a positive integer with GCD(r, n) = 1. Then we can

write r = p1 · · · pl with each pj not dividing n, and we see inductively that ⇧ r has
F(X) as minimal polynomial. Thus F(X) has at least ⇣(n) roots. Since F(X)
divides �n(X), we must have F(X) = �n(X). Therefore �n(X) is irreducible
over Q. �

PROOF OF NECESSITY IN THEOREM 9.25. Theorem 9.24 shows that the degree

[Q(e2↵ i/n) : Q] must be a power of 2 if a regular n-gon is constructible. Since
e2↵ i/n is a root of �n(X) and since Lemma 9.42 shows �n(X) to be irreducible
over Q, �n(X) is the minimal polynomial of e2↵ i/n over Q. By Lemma 9.41 the
degree in question is given by [Q(e2↵ i/n) : Q] = ⇣(n), where ⇣ is the Euler ⇣

function. Corollary 1.10 shows that if n = p
k1
1 · · · pkrr is a prime factorization of

n into distinct prime powers with each kj > 0, then

⇣(n) =
r⌫
j=1

p
kj�1
j (pj � 1).

For constructibility this must be a power of 2. Then each pj dividing n must be 1

more than a power of 2, i.e., must be 2 or a Fermat prime, and the only pj allowed

to have p2j dividing n is pj = 2. �
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10. Application to Proving the Fundamental Theorem of Algebra

In this section we use Galois theory to give a proof of the Fundamental Theorem

of Algebra. Let us recall the statement.

THEOREM 1.18 (Fundamental Theorem of Algebra). Any polynomial inC[X]
with degree � 1 has at least one root.

We begin with a lemma that handles three easy special cases.

Lemma 9.43. There are no finite extensions ofR of odd degree greater than 1,
the only extension of R of degree 2 up to R isomorphism is C, and there are no
finite extensions of C of degree 2.
PROOF. If K is a finite extension of R of odd degree and if x is in K, then

[R(x) : R] is odd, and consequently the minimal polynomial F(X) of x over
R is irreducible of odd degree. By Proposition 1.20, which is derived from the

Intermediate Value Theorem of Section A3 of the appendix, F(X) has at least
one root in R. Therefore F(X) has degree 1, and x is in R.
If F(X) is an irreducible polynomial in R[X] of degree 2, then F(X) splits in

C by the quadratic formula, and hence the only extension of R of degree 2 is C,
up to R isomorphism, by the uniqueness of splitting fields (Theorem 9.13).
Let G(X) = X2 + bX + c be a polynomial in C[X] of degree 2. Then G(X)

has a root x in C given by the quadratic formula since every member of C has

a square root8 in C, and G(X) cannot be irreducible. Since any finite extension
of C of degree 2 would have to be of the form C(x), with x equal to a root of an
irreducible quadratic polynomial over C, there can be no such extension. �

PROOF OF THEOREM 1.18. First let us show that every irreducible member

F(X) of R[X] splits over C. Let K be a splitting field for F(X). Say that
[K : R] = 2mN with N odd. ThenK is a Galois extension ofR, and |Gal(K/R)|
= 2mN . By the Sylow Theorems (particularly Theorem 4.59a), let H be a Sylow

2-subgroup of Gal(K/R). This H has |H | = 2m . The field L = KH that

corresponds to H under Theorem 9.38 has [L : R] = N with N odd, and the

first conclusion of Lemma 9.43 shows that N = 1. Thus |Gal(K/R)| = 2m .

Corollary 4.40 shows that Gal(K/R) has nested subgroups of all orders 2m�k

with 0 ↵ k ↵ m, and Theorem 9.38 says that the corresponding fixed fields are

nested and have respective degrees 2k with 0 ↵ k ↵ m. The extension field of

R for k = 1 is necessarily C by Lemma 9.43, and Lemma 9.43 shows that there

8To see that every member of C has a square root in C, let c+ di be given with c and d real and

with d = 0. Let a and b be real numbers with a2 = 1
2
(c +

�
c2 + d2 ), b2 = 1

2
(�c +

�
c2 + d2 ),

and sgn(ab) = sgn d. Then (a + bi)2 = c + di .
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are no quadratic extensions of C. Therefore m = 0 or m = 1, and the possible

splitting fields for F(X) are R and C in the two cases.
To complete the proof, suppose that K is a finite algebraic extension of C of

degree n. ThenK is a finite algebraic extension of R of degree 2n. The Theorem
of the Primitive Element allows us to write K = R(x) for some x ◆ K, and
the minimal polynomial of x over R necessarily has degree 2n. The previous

paragraph shows that this polynomial splits in C. Thus x is in C, and K = C.
This completes the proof. �

11. Application to Unsolvability of Polynomial

Equations with Nonsolvable Galois Group

The quadratic formula for finding the roots of a quadratic polynomial has in

principle been known since the time of the Babylonians about 400 B.C.9 The

corresponding problem of finding roots of cubics was unsolved until the sixteenth

century, andCardan’s formulawas discovered at that time. The original formula

assumes real coefficients and was in two parts, a first case corresponding to

what we now view as one real root and two complex roots, the second case

corresponding to what we view as three real roots.10 There is a similar formula,

but more complicated, for solving quartics. Further centuries passed with no

progress on finding a corresponding formula for the roots of a polynomial of

degree 5 or higher. The introduction of Galois theory in the early nineteenth

centurymade it possible to prove a surprising negative statement about all degrees

beyond 4.

Suppose that we are given a polynomial equation with coefficients in the field

Q or a more general field k of characteristic 0. In this section we use Galois
theory to address the question whether the roots of the equation in a splitting field

can be expressed in terms of k and the adjunction of finitely many nth roots to the
field, for various values of n. For the moment let us say in this case that the roots

are “expressible in terms of the members of k and radicals.” We shall make this
notion more precise shortly.

Recall from Section IV.8 that with a finite group G, we can find a strictly

decreasing sequence of subgroups starting with G and ending with {1} such
9The Babylonians did not actually have equations but had an algorithmic method that amounted

to completing the square.
10Cardan’s name was Girolamo Cardano. The solution in the first case of the cubic seems to

have been discovered by Scipione dal Ferro and later by Nicolo Tartaglia. Dal Ferro died in 1526

and passed the secret method to his student Antonio Fior. In 1535 Fior engaged in a public contest

with Tartaglia at solving cubics, and he lost. Cardano wheedled the solution method in the first case

from Tartaglia, published it in 1539, and discovered and published the solution in the second case.

Cardano’s student Lodovico Ferrari discovered how to solve quartics, and Cardano published that

solution as well. See “St. Andrews” in the Selected References for more information.
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that each subgroup is normal in the next larger one and each quotient group is

simple. Such a series was defined to be a composition series for G. The Jordan–

Hölder Theorem (Corollary 4.50) says that the respective consecutive quotients

are isomorphic for any two composition series, apart from the order in which they

appear. We define the finite group G to be solvable if each of the consecutive

quotients is cyclic of prime order, rather than nonabelian. It is enough that the

group have a normal series for which each of the consecutive quotients is abelian.

Examples of solvable and nonsolvable groups are obtainable from the calcula-

tions in Section IV.8: abelian groups and groups of prime-power order are always

solvable, the symmetric groupS4 and each of its subgroups are solvable, and the

symmetric groupS5 is not solvable since a composition series isS5 ⌦ A5 ⌦ {1}
and the group A5 is simple (Theorem 4.47).
Modulo a precise definition for a field k of the words “expressible in terms of

the members of k and radicals,” the answer to our main question is as follows.
Theorem 9.44 (Abel, Galois).11 Let k be a field of characteristic 0, let F(X)

be in k[X], and letK be a splitting field of F(X) over k. Then the roots of F(X)
are expressible in terms of the members of k and radicals if and only if the group
Gal(K/k) is solvable.

EXAMPLE. With k = Q, let F(X) be the polynomial F(X) = X5� 5X + 1 in
Q[X]. We shall show that

(i) F(X) is irreducible over Q,
(ii) F(X) has three roots in R and one pair of conjugate complex roots in C,
(iii) the splitting field K over Q of any polynomial of degree 5 for which (i)

and (ii) hold has Galois group with Gal(K/Q) �= S5.

We know that from Theorem 4.47 that S5 is not solvable, and Theorem 9.44

therefore allows us to conclude that the roots of X5� 5X + 1 are not expressible
in terms of the members of Q and radicals.

To prove (i), we apply Eisenstein’s criterion (Corollary 8.22) to the polynomial

F(X � 1) = X5 � 5X4 + 10X3 � 10X2 + 5 and to the prime p = 5, and the

irreducibility is immediate.

To prove (ii), we observe that F(�2) < 0, F(0) > 0, F(1) < 0, F(2) > 0.

Applying the Intermediate Value Theorem (Section A3 of the appendix), we see

that there are at least three roots in R. Since F ⌘(X) = 5(X4 � 1) has exactly the
two roots ±1 in R, F(X) has at most three roots in R by an application of the

Mean Value Theorem.

To prove (iii), label the roots 1, 2, 3, 4, 5 with 1 and 2 denoting the nonreal
roots. Each member of the Galois group permutes the roots and is determined

11Abel proved that there is no general solution via radicals that gives the roots of polynomials

of degree 5. Galois found the present theorem, which shows how to decide the question for each

individual polynomial of degree 5.
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by its effect on the roots. Thus Gal(K/Q) may be regarded as a subgroup ofS5.

Since F(X) is irreducible over Q, 5 divides [K : Q] and 5 divides |Gal(K/Q)|.
By the Sylow Theorems, Gal(K/Q) contains an element of order 5, hence a 5-
cycle. Some power of this 5-cycle carries root 1 to root 2. So we may assume

that the 5-cycle is (1 2 3 4 5). Also, Gal(K/Q) contains complex conjugation,
which acts as (1 2). Then Gal(K/Q) contains

(1 2 3 4 5)(1 2)(1 2 3 4 5)�1 = (2 3),

(1 2 3 4 5)(2 3)(1 2 3 4 5)�1 = (3 4),

(1 2 3 4 5)(3 4)(1 2 3 4 5)�1 = (4 5).

Since the set {(1 2), (2 3), (3 4), (4 5)} of transpositions is easily shown from
Corollary 1.22 to generateS5, Gal(K/Q) = S5.

LetK⌘ be a finite extension of the given field k. A root tower forK⌘ over k is
a finite sequence of extensions

k = K⌘
0  K⌘

1  · · ·  K⌘
l�1  K⌘

l = K⌘

such that for each i with 0 ↵ i ↵ l � 1, there is a prime number ni > 1 and there

is an element ri inK⌘
i+1 with ai = r

ni
i inK⌘

i and ri not inK⌘
i . Then it follows that

rki is not in K⌘
i for any k with 0 < k < ni .

(If we write ai = r
ni
i , then we might think of writing K⌘

i+1 = K⌘
i (

ni�
ai ), but

this formulation is less precise at the moment since it does not specify precisely

which choice of
ni�
ai is to be used.)

With “root tower” now well defined, we can make a precise definition and

thereby complete the precise formulation of Theorem 9.44. Let k be the given
field of characteristic 0, let F(X) be in k[X], and letK be a splitting field of F(X)
over k. We say that the roots of F(X) are expressible in terms of members of
k and radicals if there exists some finite extension K⌘ of K having a root tower

over k.
The statement of Theorem 9.44 is now completely precise, and the remainder

of the section will be devoted to the proof of one direction of the theorem: if the

roots are expressible in terms of members of k and radicals, then the Galois group
is solvable. The proof of the converse direction of the theorem is postponed to

Section 13. We begin with a lemma.

Lemma 9.45. Let k be a field of any characteristic, and let p be a prime
number. If a is a member of k such that X p � a has no root in k, then X p � a is

irreducible in k.
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PROOF. First suppose that p is different from the characteristic. Let L be a
splitting field for X p � a. The derivative of X p � a, evaluated at any root of

X p � a in L, is nonzero, and Corollary 9.17 shows that X p � a splits as the

product of p distinct linear factors in L. The quotient of any two roots of X p � a
is a pth root of 1. Fixing one of these two roots of X p � a and letting the other

vary, we obtain p distinct pth roots of 1. Thus L contains all p of the pth roots
of 1. Proposition 4.26 shows that the group of pth roots of 1 is cyclic. Let ⇧ be a
generator. If a1/p denotes one of the roots of X p � a in L, then the set of all the
roots is given by {a1/p⇧ k | 0 ↵ k ↵ p � 1}.
Now suppose that X p�a has a nontrivial factorization X p�a = F(X)G(X)

in k[X]. Possibly by adjusting the leading coefficients of F(X) and G(X), we
may assume that F(X) and G(X) are both monic. Unique factorization in L[X]
then implies that there is a nonempty subset S of {k | 0 ↵ k ↵ p � 1} with a
nonempty complement Sc such that

F(X) =
⌫
k◆S

(X � ⇧ ka1/p) and G(X) =
⌫
k◆Sc

(X � ⇧ ka1/p).

If S has m elements, then the constant term of F(X) is (�a1/p)m✏, where ✏
is some pth root of 1. Thus x = (a1/p)m✏ is in k. Since GCD(m, p) = 1,

we can choose integers c and d with cm + dp = 1. Since x is in k, so is
xcad = (a1/p)mc+dp✏c = a1/p✏c. But a1/p✏c is a root of X p�a, in contradiction
to the hypothesis that no root of X p � a lies in k. Hence X p � a is irreducible.

If p equals the characteristic of k, then Lemma 9.18 gives the factorization
X p�a = (X�a1/p)p, where a1/p is one root of X p�a inK. Then we can argue
as above except that ⇧ and ✏ are to be replaced by 1 throughout. This completes
the proof of the lemma. �

PROOF OF NECESSITY IN THEOREM 9.44 THAT Gal(K/k) BE SOLVABLE. We
are to prove that if some finite extension K⌘ of K has a root tower over k, then
Gal(K/k) is solvable.

Step 1. We enlarge each field in the given root tower to obtain a root tower

k  K⌘⌘
0  K⌘⌘

1  · · ·  K⌘⌘
l�1  K⌘⌘

l = K⌘⌘

of a finite extensionK⌘⌘ of K⌘ in such a way that K⌘⌘
0 is the normal extension of k

obtained by adjoining all nth roots of 1 for a suitably large n and such that each

K⌘⌘
i+1 is the normal extension ofK⌘⌘

i for 0 ↵ i ↵ l�1 obtained by adjoining all nthi
roots of the member ai of K⌘

i . Using Theorem 9.22, choose an algebraic closure

K⌘ of K⌘. Let n be the product of the integers n0, n1, . . . , nl�1. Let ⇧1, . . . , ⇧n�1
be the nth roots of 1 in K⌘ other than 1 itself, define subfields of K⌘ by

K⌘⌘
i = K⌘

i (⇧1, . . . , ⇧n�1) for 0 ↵ i ↵ l,
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and putK⌘⌘ = K⌘
l . The fieldK⌘⌘

0 is a splitting field for X
n�1 overk and is therefore

a normal extension. The fieldK⌘⌘
i+1 is given byK⌘⌘

i+1 = K⌘⌘
i (ri ), where ri is a root

in K⌘⌘
i+1 of the polynomial X

ni � ai in K⌘⌘
i [X]. Here ni is prime. Lemma 9.45

shows that either ri is in K⌘⌘
i [X] or X

ni � ai is irreducible in K⌘⌘
i [X]. In the first

case, K⌘⌘
i+1 = K⌘⌘

i , and we have a normal extension. In the second case, K⌘⌘
i+1 is

a splitting field for Xni � ai over K⌘⌘
i because it is generated by K⌘⌘

i and one root

of Xni � ai and because all n
th
i roots of 1 already lie in K⌘⌘

0; thus again we have a

normal extension.

Step 2. The Galois group of K⌘⌘
0 over k is abelian. In fact, Proposition 4.26

shows that the group of nth roots of 1 in K⌘⌘
0 is cyclic. Let ⇧ be a generator, and

let U = {⇧ k}n�1k=0. The map of Gal(K⌘⌘
0/k) into AutU given by ⇣ �⇣ ⇣

⌥⌥
U
is a

one-one homomorphism, and AutU is isomorphic to (Z/nZ)⇤. Since (Z/nZ)⇤

is abelian, it follows that Gal(K⌘⌘
0/k) is abelian.

Step 3. The Galois group of K⌘⌘
i+1 over K⌘⌘

i is trivial or is cyclic of order

ni . In fact, the Galois group is trivial if K⌘⌘
i+1 = K⌘⌘

i . The contrary case is that

[K⌘⌘
i+1 : K⌘⌘

i ] = ni , and then Gal(K⌘⌘
i+1/K⌘⌘

i ) has order ni , which is prime. Every

group of order ni is cyclic, and hence Gal(K⌘⌘
i+1/K⌘⌘

i ) is cyclic.

Step 4. We extend the root tower to a larger field L ⌦ K⌘⌘ that is a normal
extension of k. The resulting root tower of L will be written as

k  L0 = K⌘⌘
0  L1 = K⌘⌘

1  · · ·
 Lk�1 = K⌘⌘

l�1  Ll = K⌘⌘  Ll+1  · · ·  Lt = L.

As it is, we cannot say that K⌘⌘ is the splitting field over k for the product of the
minimal polynomials used in Step 1, because the elements ai are not assumed to

lie in k. To adjust the tower to correct this problem, write K⌘⌘ as

K⌘⌘ = k(r0, r1, . . . , rl�1, ⇧ ) = k(x0, . . . , xl),

with ⇧ as in Step 2. Here r0, . . . , rl�1 are the given elements that define the
original root tower, and we define xl = ⇧ and xj = rj for 0 ↵ j < l. SinceK⌘⌘ is
a finite extension of k, each xj has a minimal polynomial Gj (X) over k. Define
G(X) =

⌫l
j=0 Gj (X), and let L be the splitting field of G(X) in the algebraic

closure K⌘. The field L is a normal extension of k. The roots of G(X) are the
members of L that are roots of some Gj (X). Each xj is a root of its own Gj (X).
If x ⌘j is another root of Gj (X), then there is a k isomorphism of k(xj ) onto k(x ⌘j ),

and we know by the uniqueness of splitting fields (Theorem 9.13⌘)12 that this

12The theorem is to be applied to � : k(xj ) ⇣ k(x ⌘j ) with F(X) = F� (X) = G(X) and with

L⌘ = L.
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extends to a k isomorphism of L onto L. Hence to each root ⌥ of G(X) in L
corresponds some xj and some ⇣ ◆ Gal(K/k) with ⇣(xj ) = ⌥ . Thus

L = k
�
{⇣(xj ) | 0 ↵ j ↵ l and ⇣ ◆ Gal(L/k}

⇥
.

For any ⇣ in Gal(L/k) and any j ↵ l � 1, the element ⇣(xj ) of L satisfies

(⇣(xj ))
nj = ⇣(x

nj
j ) = ⇣(aj ),

and the element on the right is in ⇣(K ⌘⌘j ). Any element ⇣(⇧ ) is an nth root of 1

and hence is already in K⌘⌘
0; such elements are redundant for ⇣ = 1. Enumerate

Gal(L/k) as ⇣1, . . . ,⇣s with ⇣1 = 1. The tower for K⌘⌘ is to be continued with
the fields obtained by adjoining one at a time the elements

⇣2(r0), . . . ,⇣2(rl�1),⇣3(r0), . . . ,⇣3(rl�1), . . . , ⇣s(r0), . . . ,⇣s(rl�1).

The final field is L, and then we have an enlarged tower as asserted.
Step 5. Gal(L/k) is a solvable group. In fact, first we prove by induction

downward on i that Gal(L/Li ) is solvable, the case i = t being the case of

the trivial group. Let i < t be given. We have arranged that Li+1 is a normal
extension of Li . Since L is normal over all the smaller fields by Step 4, Corollary
9.39 therefore gives Gal(Li+1/Li ) �= Gal(L/Li )

�
Gal(L/Li+1). The group on

the left side is cyclic by Step 3 or the analogous proof with some rj replaced by

a suitable ⇣(rj ), and thus a normal series with abelian quotients for Gal(L/Li+1)
may be extended by including the term Gal(L/Li ), and the result is still a normal
series with abelian quotients. Thus Gal(L/Li ) is solvable. This completes the
induction and shows that Gal(L/L0) is solvable. To complete the proofwe use the
isomorphism Gal(L0/k) �= Gal(L/k)

�
Gal(L/L0) given by Corollary 9.39. The

group on the left side is abelian by Step 2, and thus a normal series with abelian

quotients forGal(L/L0)maybe extendedby including the termGal(L/k), and the
result is still a normal series with abelian quotients. Thus Gal(L/k) is solvable.

Step6. Gal(K/k) is a solvable group. WehaveL ⌦ K ⌦ kwithL/knormalby
Step 4 and withK/k normal sinceK is a splitting field of F(X) over k. Applying
Corollary 9.39, we obtain an isomorphism Gal(K/k) �= Gal(L/k)

�
Gal(L/K).

Then Step 6 will follow from Step 5 if it is shown that any homomorphic im-

age of a solvable group is solvable. Thus let G be a solvable group, and let

⇣ : G ⇣ H be an onto homomorphism. Write G = G1 ⌦ · · · ⌦ Gm = {1}
with abelian quotients, and define Hi = ⇣(Gi ). Passage to the quotient gives
us a homomorphism ⇣i carrying Gi onto Hi/Hi+1. Since ⇣(Gi+1)  Hi+1,
⇣ induces a homomorphism ⇣i of Gi/Gi+1 onto Hi/Hi+1. As the image of
an abelian group under a homomorphism, Hi/Hi+1 is abelian. Therefore H is

solvable. This completes the proof. �
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12. Construction of Regular Polygons

Theorem 9.25 proved the constructibility of regular n-gons when n is the product

of a power of 2 and distinct Fermat primes, but it gave little clue how to carry

out the construction. In this section we supply enough further detail so that one

can actually carry out the construction. It is enough to handle the case that n is a

Fermat prime, n = 22
N + 1, and we shall suppose that n is a prime of this form.

Let ⇧ = e2↵ i/n . The field of interest is Q(⇧ ), with [Q(⇧ ) : Q] = n � 1. The
usual basis of Q(⇧ ) over Q is {1, ⇧, ⇧ 2, . . . , ⇧ n�2}, but we shall use the basis

{⇧, ⇧ 2, ⇧ 3, . . . , ⇧ n�1}

instead, in order to identify the Galois group Gal(Q(⇧ )/Q)more readily with F⇤n ,
whereFn = Z/nZ is the field of n elements. In more detail we associate the addi-
tive group ofFn with the additive group of exponents of themembers of the cyclic
group {1, ⇧, ⇧ 2, ⇧ 3, . . . , ⇧ n�1}, andmembersof theGalois groupcorrespond to the
various multiplications of these exponents by F⇤n = {1, 2, . . . , n�1}. The group
F⇤n is known to be cyclic of order n � 1, and thus the isomorphic Galois group
is cyclic. If a generator � of the Galois group is to correspond to multiplication
by a generator g of F⇤n , then � (⇧ s) = ⇧ gs for all s. With the prime n of the form

22
N + 1, let us note for the sake of completeness why we can always take g = 3.

Lemma 9.46. The number 3 is a generator of F⇤n when n is prime of the form
22

N + 1 with N > 0.

REMARKS. We verified this assertion for n = 17 in Section 6, and in principle

one could verify the lemma in any particular case in the same way. Here is a

general argument using the law of quadratic reciprocity, whose full statement and

proof will be given in Chapter I of Advanced Algebra. For a prime number n

that is congruent to 1 modulo 4, quadratic reciprocity implies that 3 is a square

modulo n if and only if n is a square modulo 3. Since

22
N � 1 = (22

N�1 + 1)(22
N�2 + 1) · · · (221 + 1)(22

1 � 1)

and 22
1 � 1 = 3, 3 divides 22

N � 1. Thus n is congruent to 2 modulo 3, n is
not a square modulo 3, and 3 is not a square modulo n. The nonsquares modulo

n = 22
N + 1 are exactly the generators of F⇤n , and therefore 3 is a generator.

Taking Lemma 9.46 into account, we suppose for the remainder of this section

that the generator� of theGalois groupcorresponds tomultiplicationof exponents
of ⇧ by 3. Then � (⇧ ) = ⇧ 3 and � (⇧ s) = ⇧ 3s . These formulas andQ linearity tell

us explicitly how � operates on all of Q(⇧ ).
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The fixed fields that arise within Q(⇧ ) correspond to subgroups of the group

Gal(Q(⇧ )/Q) �= {� j | 0 ↵ j < 22
N }, and there is one for each power of 2 from

20 to 22
N

. Fix attention on the subgroup Hl of order l, and write 2
2N = kl, with

k and l being powers of 2. A generator of this subgroup is � k , and the subgroup
is Hl = {1, � k, � 2k, . . . , � (l�1)k}. Let Kl be the fixed field of this subgroup, or

equivalently of its generator � k ; this has dimension k over Q.
We shall determine a basis ofKl overQ. Since� (⇧ s) = ⇧ 3s , we have� k(⇧ s) =

⇧ 3
k s . For 0 ↵ r ↵ k � 1, the k elements

⌃r = ⇧ 3
r + ⇧ 3

r+k + ⇧ 3
r+2k + · · · + ⇧ 3

r+k(l�1)

are linearly independent overQ because they involve disjoint sets of basis vectors
of Q(⇧ ) as r varies. The computation

� k(⌃r ) = � k
�
⇧ 3

r + ⇧ 3
r+k + ⇧ 3

r+2k + · · · + ⇧ 3
r+k(l�1)⇥

= ⇧ 3
r+k + ⇧ 3

r+2k + ⇧ 3
r+3k + · · · + ⇧ 3

r+kl

= ⇧ 3
r + ⇧ 3

r+k + ⇧ 3
r+2k + · · · + ⇧ 3

r+k(l�1)

= ⌃r

shows that each of these vectors is in Kl . Hence {⌃0, . . . , ⌃k�1} is a basis of
Kl over Q. The elements of this basis are called the periods of l terms of the
cyclotomic field.

The extreme cases for the periods are (k, l) = (22
N

, 1), for which 0 ↵ r ↵
22

N � 1 with ⌃r = ⇧ 3
r

, and (k, l) = (1, 22
N

), for which r = 0 with

⌃0 = ⇧ 3
0 + ⇧ 3

1 + ⇧ 3
2 + · · · + ⇧ 3

22
N
�1 = ⇧ + ⇧ 2 + ⇧ 3 + · · · + ⇧ n�1 = �1.

Two facts enter into determining how towrite ⇧ in terms of rationals and square
roots. The first is that at stage k for k � 2, the sum of certain pairs of ⌃r ’s is
an ⌃ for stage k � 1. The second is that the product of two ⌃r ’s at stage k is an
integer combination of ⌃’s from the same stage and that the sum formulas express
this combination in terms of ⌃’s from earlier stages. The result is that at the kth

stage we obtain expressions for the sum and product of two ⌃r ’s in terms of ⌃’s
from earlier stages. Therefore the two ⌃r ’s at stage k are the roots of a quadratic
equation whose coefficients involve ⌃’s from earlier stages. Consequently we

can compute the ⌃r ’s explicitly by induction on k. To proceed further, we need
to know the formula for the product of two ⌃r ’s, which is due to Gauss.
To multiply two ⌃r ’s, we need to multiply various powers of ⇧ , and the expo-

nents get added in the process. This addition is not readily compatible with terms

like ⇧ 3
r

and ⇧ 3
s

, and for that reason Gauss introduced new notation. Define

⌃(t) = ⇧ t + ⇧ t3
k + ⇧ t3

2k + · · · + ⇧ t3
k(l�1) =

�
v mod l

⇧ t3
kv
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for 0 ↵ t ↵ n � 1. Then ⌃(0) = l, and for 0 < t ↵ n � 1, ⌃(t) is the ⌃r in which
⇧ t occurs. Gauss’s product formula is given by

⌃(s)⌃(t) =
�

u mod l

� �
v mod l

⇧ s3
ku+t3kv⇥

=
�

u mod l

� �
w mod l

⇧ s3
ku+t3k(u+w)⇥

with v �⇣ u + w

=
�

w mod l

� �
u mod l

⇧ (s+t3kw)3ku
⇥

=
�

w mod l

⌃(s+t3kw).

In words, this says that to multiply two ⌃’s, we add the ⌃’s for the exponents
obtained by multiplying the first term of ⌃(s) by all the terms of ⌃(t).

At this point it is more illuminating to work some examples than to try for a

general result.

EXAMPLE 1. n = 5, N = 1, 22
N = 4. The relevant pairs (k, l) to study in

sequence are (k, l) = (1, 4), (2, 2), (4, 1), and the case (k, l) = (1, 4) is trivial

since the only subscripted ⌃ is
�3

s=0 ⇧
3s = �1.

FIGURE 9.3. Construction of a regular pentagon. The circle with center
�
1
2
, 1
4

⇥

and radius 1
4
meets the line from

�
1
2
, 1
4

⇥
to the origin at a point at distance

cos(2↵/5) from the origin.

For k = 2, i.e., for the case that there are 2 periods of 2 terms each, we go

back to the definition of the ⌃’s and find that

⌃0 = ⇧ 3
0+2·0 + ⇧ 3

0+2·1 = ⇧ 1 + ⇧ 4,

⌃1 = ⇧ 3
1+2·0 + ⇧ 3

1+2·1 = ⇧ 3 + ⇧ 2.
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We form those sums of pairs of ⌃’s that yield an ⌃ from the previous step. Here
there is only one pair, and the sum is given by

⌃0 + ⌃1 = �1.
Next we form the elements ⌃(t), remembering that for t > 0, ⌃(t) is the ⌃r in
which ⇧ t occurs. Then

⌃(0) = 2, ⌃(1) = ⌃0, ⌃(2) = ⌃1, ⌃(3) = ⌃1, ⌃(4) = ⌃0.

We apply Gauss’s product formula to compute the product of the two ⌃’s whose
sum we have identified. The formula gives

⌃0⌃1 = ⌃(1)⌃(2) = ⌃(4) + ⌃(3) = ⌃0 + ⌃1 = �1,
the second equality following since the rule for the indices is to extract a power

of ⇧ appearing in ⌃(1) and add that index to all the powers of ⇧ appearing in ⌃(2).

Since ⌃0 and ⌃1 have sum�1 and product�1, they are the roots of the quadratic
equation

x2 + x � 1 = 0, namely 1
2
(�1±

�
5 ).

Deciding which root is ⌃0 and which is ⌃1 involves looking at signs. The two
roots of the quadratic equation are of opposite sign because the constant term of

the quadratic equation is negative. Since ⌃0 = ⇧ + ⇧�1 = e2↵ i/5 + e�2↵ i/5 =
2 cos(2↵/5) is positive, we obtain

⌃0 = 1
2
(�1+

�
5 ) and ⌃1 = 1

2
(�1�

�
5 ).

The computation can in principle stop here, since knowing cos(2↵/5) gives
us sin(2↵/5) and therefore e2↵ i/5. See Figure 9.3. But it is instructive to carry
out the algorithm anyway. We are thus to treat k = 4. The periods of 1 term are

⌦0 = ⇧, ⌦1 = ⇧ 3, ⌦2 = ⇧ 4, ⌦3 = ⇧ 2.

The corresponding objects with superscripts are

⌦ (0) = 1, ⌦ (1) = ⌦0, ⌦ (2) = ⌦3, ⌦ (3) = ⌦1, ⌦ (4) = ⌦2.

The relevant sums of pairs are

⌦0 + ⌦2 = ⌃0,

⌦1 + ⌦3 = ⌦1.

We again use Gauss’s product formula, and this time we obtain

⌦0⌦2 = ⌦ (1)⌦ (4) = ⌦ (5) = ⌦ (0) = 1.

Hence ⌦0 and ⌦2 are the roots of the quadratic equation

y2 � ⌃0y + 1 = 0, namely

�1+
�
5

2
± i

⌧
4�

��1+�5
2

)2

2
.

The root y involving the plus sign is e2↵ i/5.
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EXAMPLE 2.13 n = 17, N = 2, 22
N = 16. The relevant pairs (k, l) have

kl = 16, and the case (k, l) = (1, 16) is trivial since the only subscripted ⌃ is�15
s=0 ⇧

3s = �1.
For k = 2, the 2 periods have 8 terms each, and

⌃0 = ⇧ 3
0+2·0 + ⇧ 3

0+2·1 + ⇧ 3
0+2·2 + ⇧ 3

0+2·3 + ⇧ 3
0+2·4 + ⇧ 3

0+2·5 + ⇧ 3
0+2·6 + ⇧ 3

0+2·7

= ⇧ 1 + ⇧ 9 + ⇧ 13 + ⇧ 15 + ⇧ 16 + ⇧ 8 + ⇧ 4 + ⇧ 2,

⌃1 = ⇧ 3
1+2·0 + ⇧ 3

1+2·1 + ⇧ 3
1+2·2 + ⇧ 3

1+2·3 + ⇧ 3
1+2·4 + ⇧ 3

1+2·5 + ⇧ 3
1+2·6 + ⇧ 3

1+2·7

= ⇧ 3 + ⇧ 10 + ⇧ 5 + ⇧ 11 + ⇧ 14 + ⇧ 7 + ⇧ 12 + ⇧ 6.

We form those sums of pairs of ⌃’s that yield an ⌃ from the previous step. Here
there is only one pair, and the sum is given by

⌃0 + ⌃1 = �1.

Next we form the elements ⌃(t), remembering that for t > 0, ⌃(t) is the ⌃r in
which ⇧ t occurs. Then ⌃(0) = 2,

⌃(1) = ⌃(9) = ⌃(13) = ⌃(15) = ⌃(16) = ⌃(8) = ⌃(4) = ⌃(2) = ⌃0,

⌃(3) = ⌃(10) = ⌃(5) = ⌃(11) = ⌃(14) = ⌃(7) = ⌃(12) = ⌃(6) = ⌃1.

To compute ⌃0⌃1 by means of Gauss’s product formula, we use ⌃0 = ⌃(1) and

⌃1 = ⌃(3). Then

⌃0⌃1 = ⌃(1)⌃(3) = ⌃(4) + ⌃(11) + ⌃(6) + ⌃(12) + ⌃(15) + ⌃(8) + ⌃(13) + ⌃(7),

the indices on the right side being the indices for ⌃1 plus one. Resubstituting in
terms of ⌃0 and ⌃1, we obtain

⌃0⌃1 = 4⌃0 + 4⌃1 = �4.

Therefore ⌃0 and ⌃1 are the roots of the quadratic equation

x2 + x � 4 = 0, namely 1
2
(�1±

�
17 ).

Deciding which root is ⌃0 and which is ⌃1 involves looking at signs. The two
roots of the quadratic equation are of opposite sign. Since

⌃0 = (⇧ 1 + ⇧�1) + (⇧ 2 + ⇧�2) + (⇧ 4 + ⇧�4) + (⇧ 8 + ⇧�8)

= 2
�
cos(2↵/17) + cos(4↵/17) + cos(8↵/17) + cos(16↵/17)

⇥

> 2
�
1
2

+ 1
2

+ 0+ (�1)
⇥

= 0,

13The discussion of this example closely follows that in Van der Waerden, Vol. I, Section 54.
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⌃0 is the positive root, and we have

⌃0 = 1
2
(�1+

�
17 ) and ⌃1 = 1

2
(�1�

�
17 ).

For k = 4, the 4 periods have 4 terms each, and

⌦0 = ⇧ 3
0+4·0 + ⇧ 3

0+4·1 + ⇧ 3
0+4·2 + ⇧ 3

0+4·3 = ⇧ 1 + ⇧ 13 + ⇧ 16 + ⇧ 4,

⌦1 = ⇧ 3
1+4·0 + ⇧ 3

1+4·1 + ⇧ 3
1+4·2 + ⇧ 3

1+4·3 = ⇧ 3 + ⇧ 5 + ⇧ 14 + ⇧ 12,

⌦2 = ⇧ 3
2+4·0 + ⇧ 3

2+4·1 + ⇧ 3
2+4·2 + ⇧ 3

2+4·3 = ⇧ 9 + ⇧ 15 + ⇧ 8 + ⇧ 2,

⌦3 = ⇧ 3
3+4·0 + ⇧ 3

3+4·1 + ⇧ 3
3+4·2 + ⇧ 3

3+4·3 = ⇧ 10 + ⇧ 11 + ⇧ 7 + ⇧ 6.

The sums of pairs of these that yield ⌃’s are

⌦0 + ⌦2 = ⌃0

⌦1 + ⌦3 = ⌃1.

We can read off superscripted ⌦ ’s from the exponents on the right sides of the

formulas for ⌦0, . . . , ⌦3, and the results are

⌦ (1) = ⌦ (13) = ⌦ (16) = ⌦ (4) = ⌦0,

⌦ (3) = ⌦ (5) = ⌦ (14) = ⌦ (12) = ⌦1,

⌦ (9) = ⌦ (15) = ⌦ (8) = ⌦ (2) = ⌦2,

⌦ (10) = ⌦ (11) = ⌦ (7) = ⌦ (6) = ⌦3.

Then the relevant products are

⌦0⌦2 = ⌦ (1)⌦ (9) = ⌦ (10) + ⌦ (16) + ⌦ (9) + ⌦ (3) = ⌦3 + ⌦0 + ⌦2 + ⌦1 = �1,
⌦1⌦3 = ⌦ (3)⌦ (6) = ⌦ (13) + ⌦ (14) + ⌦ (10) + ⌦ (9) = ⌦0 + ⌦1 + ⌦3 + ⌦2 = �1.

Thus ⌦0 and ⌦2 are the roots of the quadratic equation

y2 � ⌃0y � 1 = 0,

while ⌦1 and ⌦3 are the roots of the quadratic equation

y2 � ⌃1y � 1 = 0.

Since ⌦0⌦2 and ⌦1⌦3 are negative, these equations each have roots of opposite
sign. We observe that ⌦0 = 2

�
cos(2↵/17) + cos(8↵/17)

⇥
> 0 and that ⌦3 =

2
�
cos(14↵/17) + cos(12↵/17)

⇥
< 0, and we conclude that the signs are

⌦0 > 0 and ⌦2 < 0,

⌦1 > 0 and ⌦3 < 0.
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FIGURE 9.4. Construction of a regular 17-gon. The small circle has center
�
1
2
, 1
8
)

and radius 1
8
. Two circles are drawn tangent to it with center (0, 0); their radii

are ⌃0/4 and |⌃1|/4. Their x intercepts and height 12 determine the dashed box.
The diameter of the large solid semicircle is ⌦0/2, and its heavy part is  0/2.
The separate semicircle at the left constructs

�
⌦1/4 from ⌦1/2, and the chord

in the large semicircle is at distance
�
⌦1/4 from the diameter.

For k = 8, the 8 periods have 2 terms each, and the two with sum ⌦0 are

 0 = ⇧ 3
0+8·0 + ⇧ 3

0+8·1 = ⇧ 1 + ⇧ 16,

 4 = ⇧ 3
4+8·0 + ⇧ 3

4+8·1 = ⇧ 13 + ⇧ 4.

Their sum and their product are given by

 0 +  4 = ⌦0,

 0 4 = ⇧ 14 + ⇧ 5 + ⇧ 12 + ⇧ 3 = ⌦1.

Thus  0 and  4 are the roots of the quadratic equation

z2 � ⌦0z + ⌦1 = 0.

Since  0 = 2 cos(2↵/17) > 2 cos(8↵/17) =  4,  0 is the larger of the two roots
of the equation.

In summary, we have successively defined

⌃0 = 1
2

�
� 1+

�
17

⇥
and ⌃1 = 1

2

�
� 1�

�
17

⇥
,

⌦0 = 1
2

�
⌃0 +

⌧
⌃20 + 4

⇥
and ⌦2 = 1

2

�
⌃0 �

⌧
⌃20 + 4

⇥
,

⌦1 = 1
2

�
⌃1 +

⌧
⌃21 + 4

⇥
and ⌦3 = 1

2

�
⌃1 �

⌧
⌃21 + 4

⇥
,

 0 = 1
2

�
⌦0 +

⌧
⌦ 20 � 4⌦1

⇥
.
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Since  0 = 2 cos(2↵/17), these formulas explicitly point to how to construct a
regular 17-gon. See Figure 9.4.

13. Solution of Certain Polynomial

Equations with Solvable Galois Group

In this section we investigate what specific information can be deduced about a

finite Galois extension in characteristic 0 when the Galois group is solvable.

The tool is a precursor of modern harmonic analysis14 known as “Lagrange

resolvents.” The argument of the previous section could be regarded as an instance

of applying the theory of Lagrange resolvents, but Lagrange resolvents give only

the simpler formulas of the previous section, not the Gauss product formula.

Proposition 9.47. Let K be a finite normal extension of a field k of charac-
teristic 0, suppose that Gal(K/k) is cyclic of order n with � as a generator, and
suppose that Xn � 1 splits in k. Fix a generator � of Gal(K/k) and a primitive
nth root ✏ of 1 in k. For 0 ↵ r < n, define k linear maps Er : K ⇣ K by

Er x = n�1
⇡

k mod n

✏�kr� k x for x ◆ K.

Then

(a) Er Es equals Es if r = s and equals 0 if r � s mod n, so that the Er ’s are

commuting projection operators whose images are linearly independent,

(b)
�

r mod n Er = I , so that the direct sum of the images of the Er ’s is

all of K,
(c) � (x) = ✏r x for all r and for all x in image Er ,
(d) image E0 = k.

REMARKS. The integers k and r depend only on their values modulo n, and the

summation indices “k mod n” and “r mod n” are to be interpreted accordingly.

The operators Er are known classically as Lagrange resolvents, apart from

the constant n�1. The proposition says that the k linear map � has a basis of
eigenvectors, that the eigenvalues are a subset of the powers ✏r , and that each Er
is the projection operator on the eigenspace for the eigenvalue ✏r along the sum
of the remaining eigenspaces.

14Lagrange resolvents give a certain specific Fourier decomposition relative to a cyclic group.

Similar formulas applywhenever a cyclic group acts linearly on a vector space over k and the relevant
roots of 1 lie in k. For the corresponding decomposition of a vector space overCwhen a finite group
G acts linearly, see Problems 47–52 at the end of Chapter VII. The decomposition in those problems

can be seen to work for any field k of characteristic 0 for which the values of all irreducible characters
of G lie in k. The values of the characters are sums of certain roots of 1, and thus it is enough that
k contain a certain finite set of roots of 1.
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PROOF. For x in K, we compute

Er Esx = n�2
�

k mod n

✏�kr� k
� �
l mod n

✏�ls� l x
⇥

= n�2
�

k mod n

�
m mod n

✏�kr� k✏�ms+ks�m�k x

= n�2
�

m mod n

� �
k mod n

✏k(s�r)
⇥
✏�ms�mx .

The expression in parentheses on the right side is the sum of a finite geometric

series. If s � r mod n, then every term in the sum is 1, and the sum is n. If

s � r mod n, then the sum is 1�✏
n(s�r)

1�✏s�r = 0. Thus (a) follows.

Next we calculate

�
r mod n

Er x =
�

r mod n

n�1
�

k mod n

✏�kr� k x =
�

k mod n

n�1
� �
r mod n

✏�kr
⇥
� k x .

As in the previous paragraph, the sum in parentheses is n if k = 0 and it is 0 if

k � 0 mod n. Therefore only the k = 0 term on the right side contributes, and

the right side simplifies to x . This proves (b).

The computation

� (Er x) = n�1
�

k mod n

✏�kr� k+1x

= n�1
�

l mod n

✏(�l+1)r� l x

= ✏r n�1
�

l mod n

✏�lr� l x = ✏r Er x

shows that� (y) = ✏r y for every y of the form Er x , and these y’s are themembers

of the image of Er . This proves (c).

Combining (b) and (c), we see that � (x) = x if and only if x is in image E0.

Since Gal(K/k) is cyclic, the members of K fixed by � are the members fixed
by the Galois group, and these are the members of k by Proposition 9.35d. This
proves (d). �

Corollary 9.48. LetK be a finite normal extension of a field k of characteris-
tic 0, suppose that Gal(K/k) is cyclic of prime order p, and suppose that X p � 1
splits in k. Then there exist a in k and x in K such that x p = a and K = k(x).

REMARKS. In other words, a finite normal extension field in characteristic 0

with Galois group cyclic of prime order p is necessarily obtained by adjoining a

pth root of some element of the base field, provided that the base field contains

all the pth roots of 1. Once the extension field contains one pth root of an element

of the base field, it has to contain all pth roots, since the base field by assumption

contains a full complement of pth roots of 1.
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PROOF. We apply Proposition 9.47 with n = p. Since [K : k] = p > 1, (d)

shows that E0 is not the identity. By (b), some Er with r = 0 is not the 0 operator.

Let x be a nonzero element in image Er . Since the generator� of theGalois group
is a field automorphism, � (x p) = � (x)p = (✏r x)p = ✏rpx p = x p. Since x p is

fixed by the Galois group, x p lies in k. Then the element a = x p has the property

that x p = a andK ⌦ k(x) � k. Since [K : k] is prime, Corollary 9.7 shows that
there are no intermediate fields between K and K. Therefore K = k(x). �

We shall apply Corollary 9.48 to prove the converse statement in Theorem

9.44—that solvability of the Galois group for a polynomial equation in charac-

teristic 0 implies that the solutions of the equation are expressible in terms of

radicals and the base field. We begin with a lemma that handles a special case.

Lemma 9.49. Let k be a field of characteristic 0, let n > 0 be an integer,

and let K be a splitting field for
⌫n

r=1 (Xr � 1) over k. Then K/k is a Galois
extension, the Galois group of Gal(K/k) is abelian, andK has a root tower over k.

PROOF. Being a splitting field in characteristic 0,K is a finite Galois extension

of k. For 1 ↵ r ↵ n, let ✏r be a primitive r
th root of 1 in K. The primitive

r th roots of 1 are parametrized by the group (Z/rZ)⇤ once some ✏r is specified,
the parametrization being k �⇣ ✏kr . If � is in Gal(K/k), then � (✏r ) = ✏kr for
some such k. This correspondence respects multiplication in (Z/rZ)⇤ since if
� (✏r ) = ✏kr and �

⌘(✏r ) = ✏lr , then �
⌘(� (✏r )) = � ⌘(✏kr ) = � ⌘(✏r )

k = ✏klr .
Thus for each r , we have a homomorphism of Gal(K/k) into the abelian group
(Z/rZ)⇤. Putting these homomorphisms together as r varies and using the fact
that the✏r ’s generateK over k, we obtain a one-one homomorphismof Gal(K/k)
into the abelian group

⌫n
r=1 (Z/rZ)⇤. Consequently Gal(K/k) is isomorphic to

a subgroup of an abelian group and is abelian.

It follows from Corollary 9.39 that every extension of intermediate fields is

Galois and has abelian Galois group. For 1 ↵ r ↵ n, we introduce the interme-

diate field Kr = k(✏1,✏2, . . . ,✏r ). Here K1 = k(1) = k. For 1 < r < n, Kr is

generated as a vector space over Kr�1 by ✏r ,✏
2
r , . . . ,✏

r�1
r since

�r�1
k=0 ✏

k
r = 0

for r > 1, and thus [Kr : Kr�1] ↵ r � 1. Since Gal(Kr/Kr�1) is abelian, it has
a composition series whose consecutive quotients are cyclic of prime order, the

prime order necessarily being ↵ [Kr : Kr�1] ↵ r � 1. Applying Galois theory,
form the chain of intermediate extensions between Kr�1 and Kr . The degree of

each extension is some prime p with p ↵ r � 1, the prime depending on the two
fields in the chain. The pth roots of unity are in the smaller of any two consecutive

fields because they are in Kr�1. By Corollary 9.48, such a degree-p extension
between Kr�1 and Kr is generated by the smaller field and the p

th root of an

element in the smaller field. SinceK1 = k, we see inductively thatKr has a root

tower over Kr�1 for each r . Since K = Kn , K has a root tower over k. �
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PROOF OF SUFFICIENCY IN THEOREM 9.44 THAT Gal(K/k) BE SOLVABLE. Let
F(X) be in k[X], and suppose that K is a splitting field of F(X) over k. Under
the assumption that Gal(K/k) is solvable, we are to prove that there exists a finite
extension K⌘ of K having a root tower.

Since G = Gal(K/k) is solvable, we can find a finite sequence of subgroups
ofG, each normal in the next larger one, such that the quotient of any consecutive

pair is cyclic of prime order. We write

G = H0 ⌦ H1 ⌦ · · · ⌦ Hk�1 ⌦ Hk = {1}
with Hj/Hj+1 cyclic of prime order pj for 0 ↵ j < k. Let

k = K0  K1  · · ·  Kk�1  Kk = K
be the corresponding sequence of intermediate fields given by the Fundamen-

tal Theorem of Galois Theory (Theorem 9.38). Here Kj = KHj , and Hj =
Gal(K/Kj ).
According to Corollary 9.39, Kj+1 is a normal extension of Kj if and only if

Gal(K/Kj+1) is a normal subgroup of Gal(K/Kj ), and in this case we have a

group isomorphism Gal(K/Kj )
�
Gal(K/Kj+1) �= Gal(Kj+1/Kj ). Since Hj+1 is

a normal subgroup of Hj with quotient cyclic of order pj , it follows thatKj+1/Kj

is indeed normal and the Galois group is cyclic of order pj .

Let us use Theorem 9.22 to regard K as lying in a fixed algebraic closure K⌘
.

Let n be the product of all the primes pj , and let K⌘
0 be the splitting field over

k for
⌫n

r=1 (Xr � 1) within K⌘
. For 1 ↵ j ↵ k, let K⌘

j be the subfield of K⌘

generated by Kj and K⌘
0. We define K⌘ = K⌘

k . Then we have

k  K⌘
0  K⌘

1  · · ·  K⌘
k�1  K⌘

k = K⌘.

Lemma 9.49 shows thatK⌘
0 has a root tower overK⌘. To complete the proof, it is

enough to show for each j � 0 that either K⌘
j+1 = K⌘

j or else [K⌘
j+1 : K⌘

j ] = pj

and K⌘
j+1 is generated by K⌘

j and the p
th
j root of some member of K⌘

j .

For each j � 0, suppose thatKj+1 = Kj (xj ). Let Fj (X) be the minimal poly-
nomial of xj overKj . SinceKj+1/Kj is normal,Kj+1 is the splittingfield of Fj (X)
over Kj . ThenK⌘

j+1 = K⌘
j (xj ) is the splitting field of Fj (X)

⌫n
r=1 (Xr � 1) over

K⌘
j , and consequently K⌘

j+1/K⌘
j is a normal extension. If g is in Gal(K⌘

j+1/K⌘
j ),

then g sends xj into a root of Fj (X) and is determined by this root. The restriction

g
⌥⌥
Kj+1

therefore carries Kj+1 into itself and is in Gal(Kj+1/Kj ). Since g is

determined by g(xj ), the group homomorphism g �⇣ g
⌥⌥
Kj+1

is one-one. The

image of this homomorphismmust be a subgroup of Gal(Kj+1/Kj ) and therefore
must be trivial or have pj elements. In the first case, K⌘

j+1 = K⌘
j , and in the

second case, [K⌘
j+1 : K⌘

j ] = pj . In the latter case, K⌘
j contains all pj of the p

th
j

roots of 1 since these roots of 1 are in K⌘
0; by Corollary 9.48, K⌘

j+1 is generated

by K⌘
j and a p

th
j root of some member of K⌘

j . This completes the proof. �
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We turn now to apply our methods to irreducible cubics over a field k of char-
acteristic 0. In effect we shall derive Cardan’s formula,15 which was mentioned

at the beginning of Section 11.

The Galois group of a splitting field of a cubic polynomial has to be a subgroup

of the symmetric groupS3, and irreducibility of the cubic implies that the Galois

group has to contain a 3-cycle. Therefore the Galois group has to be eitherS3 or

the alternating group A3 �= C3.

Let the cubic be X3+a2X2+a1X+a0, the coefficients being ink. Substituting
X = Z � 1

3
a2 converts the polynomial into

(Z � 1
3
a2)

3 + a2(Z � 1
3
a2)

2 + a1(Z � 1
3
a2) + a0

= Z3 + (a1 � 1
3
a22)Z + (a0 � 1

3
a1a2 + 2

27
a32),

and therefore we can assume whenever convenient that the given polynomial has

a2 = 0.

Suppose for the moment that the Galois group is G = S3. A composition

series is

G = S3 ⌦ A3 ⌦ {1},
and we can write the corresponding sequence of fixed fields as

k  L  K,

where K is the splitting field and L is KA3 . The dimensions satisfy [L : k] = 2

and [K : L] = 3.

Let the roots inK of the given cubic be r1, r2, r3. SinceG is solvable, Theorem
9.44 tells us that the roots are expressible in terms of radicals and members of

k. To derive explicit formulas for the roots, the idea is to use a two-step process
with Lagrange resolvents, arguing as in the proof of Corollary 9.48 at each step.

The first step involves passing from k to L. The square roots of 1 are already
in k, and L is to be obtained from k by adjoining one of the square roots of
some element of k. In Proposition 9.47 the Galois group Gal(L/k) is a 2-element
quotient group, the sum is over members of the quotient group, and the element x

is inL. It is a little more convenient to pull the sum back to one over the 6-element
symmetric group, taking ✏ to be the sign function on S3 and taking x to be any

element of K. The formulas for the projection operators E0 and E1 are then

E0x = 1
6

�
�◆S3

� (x),

E1x = 1
6

�
�◆S3

(sgn � )� (x),

15We discuss only Cardan’s cubic formula, omitting any discussion of the corresponding quartic

formula, which often bears Cardan’s name and which can be handled with the same techniques. See

Van der Waerden, Vol. I, Section 58, for details.
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with x inK, and the proof of Corollary 9.48 tells us to adjoin to k the square root
of any element of image E1, i.e., any element with � (x) = (sgn x)x for all � in
S3.

The only elements of K for which we have good control of the action of the

Galois group, apart from the elements of k, are the elements that are expressed
directly in terms of the roots r1, r2, r3 of the polynomial. By renumbering the
roots if necessary, we may assume that the roots are permuted byS3 according to

their subscripts. An example of a polynomial function of r1, r2, r3 that transforms
according to the sign of the permutation played a role in Section I.4 in defining

the sign of a permutation. It is the difference product of the polynomial, namely

⇢

1↵i< j↵3
(rj � ri ).

This is a square root of the discriminant D of the polynomial, which is given by

D =
⇢

1↵i< j↵3
(rj � ri )

2.

We shall compute D in terms of the coefficients of the cubic shortly. In the

meantime, the proof of Corollary 9.48 thus tells us that L = k(
�
D ). Here

�
D

is given by

�
D = (r3 � r2)(r3 � r1)(r2 � r1)

= (r1r
2
2 + r2r

2
3 + r3r

2
1 )� (r21r2 + r22r3 + r23r1).

The second step is to pass from L to K. Corollary 9.48 says to expect K
to be obtained by adjoining the cube root of something if the cube roots of 1

are already present in L. The proof of the second half of Theorem 9.44, which
follows Corollary 9.48, indicates how we can incorporate the cube roots of 1 into

the fields in order to have a root tower. What we can do is to replace k at the start
by a splitting field for

⌫
1↵r↵3 (Xr � 1). Since ±1 are already in k, we are to

adjoin the nontrivial cube roots of 1, i.e., the roots of X2 + X + 1, if they are not
already present. In other words, what we do is replace k at the start by k(

�
�3 ).

Changing notation, we assume that
�
�3 lies in k from the outset.

We can now use Lagrange resolvents. Let � be the generator (1 2 3) of A3,
sending r1 to r2, r2 to r3, and r3 to r1. Let ✏ = 1

2
(�1 +

�
�3 ) be a primitive

cube root of 1. Then we have

E0x = 1
3
(x + � x + � 2x),

E1x = 1
3
(x + ✏�1� x + ✏�2� 2x),

E2x = 1
3
(x + ✏�2� x + ✏�1� 2x).
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Again we can use any x , but the roots of the cubic are the simplest nontrivial

elements for which we know the action of � . Corollary 9.48 shows that K =
L(E1x) if E1x = 0. Proposition 9.47 says that (E1x)

3 is fixed by � , and it
therefore lies in L. HenceK is identified as obtained from L by adjoining a cube
root of the element (E1x)

3 of L.
Taking x = r1, we have � x = r2 and �

2x = r3. Also, ✏
±1 = 1

2
(�1±

�
�3 ).

Using the formula for E1x and substituting for
�
D and ✏±1 then gives

(3E1r1)
3 = r31 + r32 + r23 + 6r1r2r3

+ 3✏�1(r21r2 + r22r3 + r23r1) + 3✏(r1r
2
2 + r2r

2
3 + r3r

2
1 )

=
�
i

r3i + 6r1r2r3 � 3
2

�
i = j

r2i rj + 3
2

�
�3
�
D.

To proceed further, we shall want to substitute expressions involving the co-

efficients of the cubic for the above symmetric expressions in the roots.16 These

expressions will be considerably simplified if we assume that the coefficient of

X2 in the cubic is 0. We know that this assumption involves no loss of generality.

Thus we assume for the remainder of this section that the cubic is X3 + pX + q.

The relevant formulas relating the roots and the coefficients are

r1 + r2 + r3 = 0,

r1r2 + r1r3 + r2r3 = p,

r1r2r3 = �q.

Aiming for the right side of the displayed formula for (3E1r1)
3, we have

0 = (r1 + r2 + r3)
3 =

�
i

r3i + 3
�
i = j

r2i rj + 6r1r2r3,

0 = (r1 + r2 + r3)(r1r2 + r1r3 + r2r3) = � 9
2

�
i = j

r2i rj � 27
2
r1r2r3,

� 27
2
q = 27

2
r1r2r3.

Addition of these three lines and comparison with the expression for 3(E1r1)
3

yields

� 27
2
q =

�
i

r3i � 3
2

�
i = j

r2i rj + 6r1r2r3 = (3E1r1)
3 � 3

2

�
�3
�
D.

Consequently

(3E1r1)
3 = � 27

2
q + 3

2

�
�3
�
D.

16Problems 36–39 at the end of Chapter VIII assure us that this rewriting is possible. For our

derivation this assurance is not logically necessary, since we will be producing explicit formulas.
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Similarly

(3E2r1)
3 = � 27

2
q � 3

2

�
�3
�
D.

Since 3E0r1 = r1 + r2 + r3 = 0, we have expressions for E0r1, E1r1, and E2r1,

apart from the choices of the cube roots. Proposition 9.47b says that we recover

r1 by addition: r1 = E0r1 + E1r1 + E2r1. Thus we have found a root explicitly

as soon as we sort out the ambiguity in the choices of cube roots and determine

the value of D in terms of the coefficients p and q.

Theorem 9.50 (Cardan’s formula). Let k be a field of characteristic 0 con-
taining

�
�3, and let X3 + pX + q be an irreducible cubic in k[X]. For this

polynomial the discriminant D is given by

D = �4p3 � 27q2.

The Galois group of a splitting field of the cubic is S3 if D is a nonsquare in k
and is A3 if D is a square in k. In either case, fix a square root of D, denote it by�
D, and let ✏±1 = 1

2
(�1 ±

�
�3) be the primitive cube roots of 1. Then it is

possible to determine cube roots of the form

3E1r1 = 3

⌧
� 27

2
q + 3

2

�
�3
�
D and 3E2r1 = 3

⌧
� 27

2
q � 3

2

�
�3
�
D

in such a way that their product is (3E1r1)(3E1r2) = �3p, and in this case the
three roots of X3 + pX + q are given by

r1 = E1r1 + E2r1,

r2 = ✏E1r1 + ✏2E2r1,

r3 = ✏2E1r1 + ✏E2r1.

PROOF. Define �k = rk1 + rk2 + rk3 for 1 ↵ k ↵ 4. By inspection we have

�
1 1 1

r1 r2 r3
r21 r22 r23

✏⇣

✓
1 r1 r21
1 r2 r22
1 r3 r23

⌘

◆ =
�
3 �1 �2
�1 �2 �3
�2 �3 �4

✏
.

Taking the determinant of both sides and applying Corollary 5.3, we obtain

D = det

�
3 �1 �2
�1 �2 �3
�2 �3 �4

✏
= 3�2�4 � � 32 � 3� 23 .

The given cubic shows that �1 = r1 + r2 + r3 = 0. For the other �i ’s, we have
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�2 = r21 + r22 + r23 = (r1 + r2 + r3)
2 � 2(r1r2 + r1r3 + r2r3) = �2p,

�3 = r31 + r32 + r33 = (r1 + r2 + r3)(r
2
1 + r22 + r23 )

� (r21r2 + r21r3 + r22r1 + r22r3 + r23r1r
2
3r2)

= �(r1 + r2 + r3)(r1r2 + r1r3 + r2r3) + 3r1r2r3 = �3q,

�4 = r41 + r42 + r43 = (r21 + r22 + r23 )
2 � 2(r21r22 + r21r

2
3 + r22r

2
3 )

= (�2p)2 � 2(r1r2 + r1r3 + r2r3)
2

+ 4r1r2r3(r1 + r2 + r3) = (�2p)2 � 2(p)2 = 2p2.

Substituting, we obtain D = �12p3+8p3�27q2 = �4p3�27q2. This proves
the formula for D. In particular, it confirms that D lies in k.
The Galois group of the splitting field of the polynomial must beS3 or A3. If

it isS3, then we saw above that L = k(
�
D) and that [L : k] = 2. Hence D is a

nonsquare in k. If the Galois group isA3, then (r3� r2)(r3� r1)(r2� r1) is fixed
by the Galois group and lies in k. The square of this element is D, and hence D
is a square in k.
With either Galois group the calculationswith the cubic extension that precede

the statement of the theorem are valid. If r1 is one of the roots, then we know that

r1 = E0r1 + E1r1 + E2r1 = E1r1 + E2r1,

(3E1r1)
3 = � 27

2
q + 3

2

�
�3
�
D,

(3E2r1)
3 = � 27

2
q � 3

2

�
�3
�
D.

The uniqueness of simple extensions (Theorem 9.11) says that we can make any

choice of cube root to determine 3E1r1. Then

(3E1r1)(3E2r1) = (r1 + ✏�1�r1 + ✏�2� 2r1)(r1 + ✏�2�r1 + ✏�1� 2r1)

= (r1 + ✏�1r2 + ✏r3)(r1 + ✏r2 + ✏�1r3)

= (r21 + r22 + r23 ) + (✏ + ✏�1)(r1r2 + r1r3 + r2r3)

= (r21 + r22 + r23 )� (r1r2 + r1r3 + r2r3).

The first term on the right side we calculated in the first paragraph of the proof

as �2 = �2p, and the second term gives �p. Thus (3E1r1)(3E2r1) = �3p as
asserted. Since � operates on image E1 as multiplication by ✏ and on image E2
as multiplication by ✏2, the fact that r1 = E1r1 + E2r1 implies that

r2 = � (r1) = ✏E1r1 + ✏2E2r1

r3 = � 2(r1) = ✏2E1r1 + ✏E2r1.and

This completes the proof. �
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14. Proof That ↵ Is Transcendental

In this section and the next three, we combine Galois theory with some of the

ring theory in the second half of Chapter VIII. This combination will allow us to

prove some striking theorems, see how Galois groups can be used effectively in

practice, and develop some techniques for identifying Galois groups explicitly.

The present section is devoted to the proof of the following theorem.

Theorem 9.51 (Lindemann, 1882). The number ↵ is transcendental over Q.

The argument we give is based on that in a book by L. K. Hua.17 For purposes

of having a precise theorem, ↵ is defined as the least positive real number such
that e↵ i = �1. In addition to Galois theory in the form of Proposition 9.35,

the proof here will make use of a few facts about algebraic integers. Algebraic

integers were defined in Section VIII.1 and again in Section VIII.9 (as well as in

Section VII.4) as complex numbers that are roots of monic polynomials in Z[X].
The algebraic integers form a ring by Corollary 8.38 (or alternatively by Lemma

7.30), the only algebraic integers in Q are the members of Z by Proposition 8.41
(or alternatively by Lemma 7.30), and any algebraic number x has the property

that nx is an algebraic integer for some integer n = 0 by Proposition 8.42.

We begin with a lemma.

Lemma 9.52. Let f (X) in C[X] be given by f (X) =
�n

k=0 ak X
k , and define

F(X) to be the sum of the derivatives of f (X):

F(X) =
n�
l=0

f (l)(X).

If Q(z) is defined as Q(z) = F(0)ez � F(z) for z ◆ C, then F(0) =
�n

k=0 akk!
and

|Q(z)| ↵ e|z|
n�

k=0
|ak ||z|k .

PROOF. We calculate directly that

F(z) =
n�
l=0

n�
k=l

akk!

(k � l)!
zk�l =

n�
k=0

ak
k�
l=0

k!

(k � l)!
zk�l =

n�
k=0

ak
k�
l=0

k!

l!
zl .

17Introduction to Number Theory, pp. 484–488. In the same pages Hua establishes the earlier

theorem of Hermite that e is transcendental, using a related but simpler argument.
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Evaluation at z = 0 gives F(0) =
�n

k=0 akk!. Then

|Q(z)| ↵
⌥⌥⌥

n�
k=0

ak
✓�
l=0

k!

l!
zl �

n�
k=0

k�
l=0

k!

l!
zl
⌥⌥⌥

=
⌥⌥⌥

n�
k=0

ak
✓�

l=k+1

k!

l!
zl
⌥⌥⌥

↵
n�

k=0
|ak |

✓�
l=k+1

|z|l
(l � k)!

since
�
l

k

⇥�1 ↵ 1

=
n�

k=0
|ak ||z|k

✓�
m=1

|z|m
m!

↵ e|z|
n�

k=0
|ak ||z|k . �

PROOF OF THEOREM 9.51. Arguing by contradiction, suppose that ↵ is al-

gebraic over Q, so that � = ↵ i is algebraic over Q as well. Let M(X) be the
minimal polynomial of � over Q, and let K be the splitting field of M(X) in C.
This exists since C is algebraically closed. We write �1, . . . ,�m for the roots of
M(X) in K, with �1 = �. These are distinct algebraic numbers, and they are
permuted by the Galois group, G = Gal(K/Q). What we shall show is that

R =
m⌫
j=1

(1+ e�j ) = 0.

This will be a contradiction since 1+ e�1 = 0 for �1 = i↵ .
We expand the product defining R, obtaining

R = 1+
�
j

e�j +
�
j,k

e�j+�k + · · · ,

Whenever one of the exponentials has total exponent 0, we lump that term with

the constant 1. Otherwise we write the term as e⇥l , allowing repetitions among

terms e⇥l . Thus

R = N + e⇥1 + e⇥2 + · · · + e⇥r ,

with N an integer � 1, with each ⇥l = 0, and with N + r = 2m .

Each member of G = Gal(K/Q) permutes �1, . . . ,�m , and it therefore per-
mutes the ⇥l’s that are single �j ’s, permutes the ⇥l’s that are the nonzero sums of
two �j ’s, permutes the ⇥l’s that are the nonzero sums of three �j ’s, and so on.
Choose an integer a > 0 such that a�1, . . . , a�m are algebraic integers, let p

be a prime number large enough to satisfy some conditions to be specified shortly,

and define

f (X) = (aX)p�1

(p � 1)!
r⌫
l=1

(aX � a⇥l)
p =

n�
k=0

ak X
n.
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The members � of G act on f (X) as usual by acting on the coefficients. Each ⇥l
that is the nonzero sum of a certain number of �j ’s is sent into another ⇥l ⌘ of the
same kind, and thus � just permutes the factors of the product defining f , leaving
f (X) unchanged. The coefficients of (p� 1)! f (a�1X) are algebraic integers in
K. Being fixed by G, they are in Q by Proposition 9.35d, and hence they are in

Z. Therefore
f (X) = Ap�1a

p�1X p�1 + Apa
pX p + · · ·

(p � 1)!
with Ap�1, Ap, . . . inZ. Since Ap�1 =

⌫r
l=1(�a⇥l)p, we can arrange that p does

not divide Ap�1a
p�1 by choosing p greater than a and greater than

⌥⌥⌫r
l=1(a⇥l)

⌥⌥.
If we look at the l th factor in the product defining f (X), we see that (X � ⇥l)

p

divides f (X) in K[X]. Therefore we have further formulas for f (X), namely

f (X) = ⇤p,l(X � ⇥l)
p + ⇤p+1,l(X � ⇥l)

p+1 + · · ·
(p � 1)!

for 1 ↵ l ↵ r.

As in Lemma 9.52, we define

F(X) =
n�
l=0

f (l)(X) and Q(z) = F(0)ez � F(z).

Then we have F(0) =
�n

k=0 akk!. For 1 ↵ l ↵ r , the definition of Q(z) gives

F(0)e⇥l = F(⇥l) + Q(⇥l). Substituting from the definition of R, we obtain

F(0)R = F(0)
�
N +

r�
l=1

e⇥l
⇥

= NF(0) +
r�
l=1

F(⇥l) +
r�
l=1

Q(⇥l). (⌅)

A further condition that we impose on the size of p is that p > N . Then the

computation

NF(0) = N
n�

k=0
akk! = N (Ap�1a

p�1 + pApa
p + p(p + 1)Ap+1a

p+1 + · · · )

and the properties of Ap�1, Ap, . . . together imply that NF(0) is an integer and
is not divisible by p.

Let us compute F(⇥l). The derivatives through order p � 1 of f (X) are 0 at
⇥l . For the p

th derivative we have

p⇤p,l = f (p)(⇥l) = pApa
p +

�
j�1

(p + j) · · · ( j + 1)

(p � 1)!
Ap+ j a

p+ j⇥
j

l .

The coefficient of Ap+ j a
p+ j⇥

j

l inside the sum equals

(p + j) · · · ( j + 1) j!p

p(p � 1)! j!
= p

↵
p + j

j

�
,
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and thus

p⇤p,l = f (p)(⇥l) = ap
�
pAp +

�
j�1

p
�
p+ j

j

⇥
Ap+ j (a⇥l)

j
⇥
.

The higher-order derivatives are computed and simplified similarly. For the

(p + k)th derivative with k � 1, we find that

(p + k) · · · (p + 1)p⇤p+k,l = f (p+k)(⇥l)

= ap+k
�
(p + k) · · · (p + 1)pAp+k (⌅⌅)

+
�
j�1

(p + k) · · · (p + 1)p
�
p+ j+k

j

⇥
Ap+ j+k(a⇥l)

j
⇥
.

Put Cp+k =
�r

l=1 ⇤p+k,l . Summing the left and right members of (⌅⌅) over l
gives

Cp+k = ap+k
�
r Ap+k +

�
j�1

�
p+ j+k

j

⇥
Ap+ j+k

l�
j=1

(a⇥l)
j
⇥
.

The sum
�l

j=1(a⇥l)
j is an algebraic integer fixed by G, and it is therefore an

integer. Consequently each Cp+k is an integer. Summing the left and middle
members of (⌅⌅) over k and l gives

r�
l=1

F(⇥l) =
�
k�0

(p + k) · · · (p + 1)pCp+k,

and this is an integer divisible by p.

Since NF(0) is an integer not divisible by p, NF(0) +
�r

l=1 F(⇥l) is an
integer not divisible by p, and we have

⌥⌥NF(0) +
r�
l=1

F(⇥l)
⌥⌥ � 1.

In view of (⌅), we will have a contradiction to R = 0 if we show that

⌥⌥
r�
l=1

Q(⇥l)
⌥⌥ < 1.

An easy argument by induction on m shows that if
�m

k=0 dkz
k =

⌫s
j=1 (z � cj ),

then
�m

k=0 |dk ||z|k ↵
⌫s

j=1(|z|+ |cj |). Applying this observation to the sum and
product defining f (X) and using Lemma 9.52, we see that

e�|z||Q(z)| ↵
n�

k=0
|ak ||z|k ↵

(a|z|)p�1
⌫r

l=1 (a|z| + a|⇥l |)p

(p � 1)!
.
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For each fixed z, the right side is the (p�1)st term of the convergent series for an
exponential function at an appropriate point, and hence the right side is less than

r�1e�|z| for p sufficiently large, p depending on z. Choosing p large enough to
make the right side less than r�1e�|z| for z = ⇥1, . . . ,⇥l and summing over these
z’s, we obtain

⌥⌥�r
l=1 Q(⇥l)

⌥⌥ < 1, and we have arrived at the contradiction we

anticipated. �

15. Norm and Trace

This is the second of four sections in which we combine Galois theory with

some of the ring theory in the second half of Chapter VIII. We shall make use

of a little more linear algebra than we have used thus far in this chapter, and we

shall conclude the section by completing the proof of Theorem 8.54 concerning

extensions of Dedekind domains.

Let k be a field, not necessarily of characteristic 0, and let K be a finite

algebraic extension. We take advantage of the fact that K is a vector space over

k. If a is in K, let us write M(a) for the k linear mapping from K to K given by

multiplication by a. The characteristic polynomial det(X I �M(a)) is called the
field polynomial of a and is a monic polynomial in k[X] of degree [K : k]. The
norm and trace of a relative to K/k are defined to be the determinant and trace
of the linear mapping M(a). In symbols,

NK/k(a) = det(M(a)),

TrK/k(a) = Tr(M(a)).

Both NK/k and TrK/k are functions from K to k. If n = [K : k], then NK/k(a)
is (�1)n times the constant term of det(X I � M(a)), and TrK/k(a) is minus the
coefficient of Xn�1. The subscriptK/k may be omitted when there is no chance
of ambiguity.

EXAMPLE. k = Q, K = Q(
�
2 ), a =

�
2. If we use ◆ = (1,

�
2 ) as an

ordered basis of K over k, then the matrix of M(a) relative to ◆ is
 
M(a)

◆◆

⌦
=

 
0 2

1 0

⌦
. Since characteristic polynomials are independent of the choice of basis,

the field polynomial of a can be computed in this basis and is given by

det
 
X I�M(a)

◆◆

⌦
= det

 
X �2
�1 X

⌦
= X2 � 2.

We can read off the norm and trace as N (a) = �2 and Tr(a) = 0.
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Proposition 9.53. If K/k is a finite extension of fields with n = [K : k], then
norms and traces relative to K/k have the following properties:

(a) N (ab) = N (a)N (b),
(b) N (ca) = cnN (a) for c ◆ k,
(c) N (1) = 1, and consequently N (c) = cn for c ◆ k,
(c) Tr(a + b) = Tr(a) + Tr(b),
(d) Tr(ca) = c Tr(a) for c ◆ k,
(e) Tr(1) = n, and consequently Tr(c) = nc for c ◆ k.

PROOF. Properties (a) and (b) follow from properties of the determinant in

combination with the identities M(ab) = M(a)M(b) and M(ca) = cM(a).
Properties (c) and (d) follow from properties of the trace in combination with the

identities M(a + b) = M(a) + M(b) and M(ca) = cM(a). Since M(1) is the
identity, the norm and trace of 1 are 1 and n, respectively. The other conclusions

in (c) and (e) are then consequences of this fact in combination with (b) and (d).

�
Proposition 9.54. Let K/k and L/K be finite extensions of fields with

[K : k] = n and [L : K] = m, and let a be in K. The element a acts by
multiplication on K and also on L, yielding k linear maps in each case that will
be denoted byMK/k(a) andML/k(a). Then in suitable ordered vector-space bases
the matrix of ML/k(a) is block diagonal, each block being the matrix of MK/k(a).

PROOF. We choose the bases as in Theorem 7.6. Thus let ◆ = (✏1,✏2, . . . )
be an ordered basis ofK over k, and let = (⌦1, ⌦2, . . . ) be a basis of L overK.
Theorem 7.6 observes that themn products ⌦i✏j form a basis of L over k, and we
make this set into an ordered basis � by saying that (i1, j1) < (i2, j2) if i1 < i2
or if i1 = i2 and j1 < j2. Let MK/k(a)✏j =

�
l cl j✏l . Then

ML/k(a)⌦i✏j =
� n�
l=1

cl j✏l
⇥
⌦i =

m�
k=1

n�
l=1

(⌅ki cl j )⌦k✏l,

where ⌅ki is 1 when k = i and is 0 otherwise. The matrix
 
ML/k(a)

��

⌦
has

((k, l), (i, j))th entry ⌅ki cl j , and this is 0 unless the primary indices k and i are

equal. Thus the matrix is block diagonal, the entries of the i th diagonal block

being cl j . �

Corollary 9.55. Let K/k and L/K be finite extensions of fields with

[L : K] = m, and let a be inK. Let MK/k(a) and ML/k(a) denote multiplication
by a on K and on L, and let FK/k(X) and FL/k(X) be the corresponding field
polynomials. Then

FL/k(X) =
�
FK/k(X)

⇥m
.

Consequently NL/k(a) = (NK/k(a))m and TrL/k(a) = m TrK/k(a).
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PROOF. Proposition 9.54 shows that the matrix of X I � ML/k(a) may be
taken to be block diagonal with each of the m diagonal blocks equal to the

matrix of X I � MK/k(a). The determinant of X I � ML/k(a) is the product
of the determinants of the diagonal blocks, and the formula relating the field

polynomials is proved.

The formulas for the norms and the traces are consequencesof this relationship.

In fact, let
FK/k(X) = Xn + cn�1X

n�1 + · · · + c0

FL/k(X) = Xmn + dmn�1X
mn�1 + · · · + d0.and

Comparing coefficients of FL/k(X) and
�
FK/k(X)

⇥m
, we see that dmn�1 = mcn�1

and d0 = cm0 . Therefore

NL/k(a) = (�1)mnd0 = ((�1)nc0)m = (NK/k(a))
m

TrL/k(a) = �dmn�1 = �mcn�1 = m TrK/k(a).and

This completes the proof. �

Corollary 9.56. LetK/k be a finite extension of fields, and let a be inK. Then
the field polynomial of a relative toK/k is a power of the minimal polynomial of
a over k, the power being [K : k(a)]. In the special case K = k(a), the minimal
polynomial of a coincides with the field polynomial.

REMARKS. In the theory of a single linear transformation as in Chapter V,

the minimal polynomial of a linear map divides the characteristic polynomial, by

the Cayley–Hamilton Theorem (Theorem 5.9). For a multiplication operator in

the context of fields, we get a much more precise result—that the characteristic

polynomial is a power of the minimal polynomial.

PROOF. If F(X) is in k[X], then the operation M of multiplication has

M(F(a))b = F(a)b = F(M(a))b for b ◆ K, (⌅)

as we see by first consideringmonomials and then forming k linear combinations.
The minimal polynomial of a over k is the unique monic F(X) of lowest degree
in k[X] for which F(a) = 0, hence such that M(F(a)) = 0. Meanwhile, the

minimal polynomial of the linear map M(a) is the unique monic F(X) of lowest
degree such that F(M(a)) = 0. These two polynomials coincide because of (⌅).
The degree of the minimal polynomial of M(a) thus equals the degree of the

minimal polynomial of a, which is [k(a) : k]. The Cayley–Hamilton Theorem
(Theorem 5.9) shows that the minimal polynomial of M(a) divides the charac-
teristic polynomial of M(a), i.e., the field polynomial of a. When the field K is

k(a), the minimal polynomial of a and the field polynomial of a have the same
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degree; since they are monic, they are equal. This proves the second conclusion

of the corollary.

For the first conclusion we know from Corollary 9.55 that the field polynomial

of a relative to a generalK is the [K : k(a)]th power of the field polynomial of a
relative to k(a). Since we have just seen that the latter polynomial is the minimal
polynomial of a, the first conclusion of the corollary follows. �

EXAMPLE, CONTINUED. k = Q, K = Q(
�
2 ), a =

�
2. We have seen that

the field polynomial of a is X2 � 2, that the norm and trace are N (a) = �2 and
Tr(a) = 0, and that the matrix of the multiplication operator M(a) in the ordered

basis ◆ = (1,
�
2 ) is

 
M(a)

◆◆

⌦
=

 
0 2

1 0

⌦
. The eigenvalues of

 
M(a)

◆◆

⌦
are ±

�
2,

namely the roots of the field polynomial. These are not in the field k. Indeed,
they could not possibly be in the field, or we would have M(a)x =  x for some
x = 0 in K and some  in k, and this would mean that  = a. Since the roots

±
�
2 of the field polynomial each have multiplicity 1 and lie in K, the matrix 

M(a)

◆◆

⌦
is similar overK to the diagonalmatrix

 �
2 0

0 �
�
2

⌦
. Since similarmatrices

have the same trace and the same norm, we can compute the trace and norm of

M(a) from this diagonal matrix, namely by adding or multiplying its diagonal

entries. The significance of the diagonal entries is that they are the images of
�
2

under the members of the Galois group Gal(K/k). We shall now generalize these
considerations. Additional complications arise when K/k fails to be separable
and normal.18

Proposition 9.57. Let k be a field, let k(a) be an algebraic extension of k, and
suppose that the minimal polynomial F(X) of a over k is separable. Let K be a

splitting field of F(X), and factor F(X) over K as

F(X) = (X � a1)(X � a2) · · · (X � an)

with all aj ◆ K and with a1 = a. Then the matrix of the multiplication operator

M(a)k(a)/k of a on k(a) is similar over K to a diagonal matrix with diagonal

entries a1, . . . , an . Consequently

Nk(a)/k(a) =
n⇢

j=1
aj and Trk(a)/k(a) =

n⇡

j=1
aj .

18The above argument used a matrix with entries in k and considered the entries as in the larger
fieldK. The readermaywonder what the corresponding construction is for the k linear mapM(a). It

is not to treat M(a) as aK linear map onK, since then M(a)would have just the one eigenvalue
�
2,

which would have multiplicity 1. Instead, it is to use tensor products as in Chapter VI, knowledge

of which is not being assumed at present. The idea is to extend scalars, replacing K by K⌃k K and
replacing M(a) by M(a)⌃ 1. The K linearity occurs in the second member of the tensor product,

not the first, and the operator M(a)⌃ 1 is the K linear map with eigenvalues ±
�
2.
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REMARKS. The elements a1, . . . , an of K, with a1 = a, are called the

conjugates of a over k. The conjugates of a are the images of a under the
Galois group when k(a) is Galois over k, but they extend outside k when k(a)/k
is not normal.

PROOF. Corollary 9.56 shows that F(X) equals the field polynomial of a
relative to k(a)/k, i.e., is the characteristic polynomial of the multiplication
operator Mk(a)/k(a). Let A be the matrix of Mk(a)/k(a) in some ordered basis of
k(a) over k. If we regard A as a matrix with entries in K, then the characteristic
polynomial of A splits in K, and the roots of the characteristic polynomial have
multiplicity 1, by separability. Consequently A has a basis of eigenvectors, the

eigenvectors being column vectors with entries inK and the eigenvalues being the
members a1, . . . , an ofK. It follows that A is similar overK to a diagonal matrix

with diagonal entries a1, . . . , an . The determinant and trace of this diagonal
matrix equal the determinant and trace of A, and therefore the norm and trace of

a are the product and sum of the members a1, . . . , an of K. �

Corollary 9.58. Let K be a finite Galois extension of the field k, let G =
Gal(K/k), letL be an intermediate fieldwithk  L  K, and let H = Gal(K/L)
as a subgroup ofG. Fix an ordered basis◆ ofL overk. Then the expression “� (a)
for � ◆ G/H ” is well defined for a in L, and there exists a nonsingular matrix
C of size [L : k] with entries in K such that every a in L has C�1

 
ML/k(a)

◆◆

⌦
C

diagonal with diagonal entries � (a) for � ◆ G/H . In particular, every member
a of L has norm and trace given by

NL/k(a) =
⇢

�◆G/H

� (a) and TrL/k(a) =
⇡

�◆G/H

� (a).

PROOF. Let a be in L, � be in G, and � be in H . Then � (a) = a, and therefore

�� (a) = � (a). Consequently all members of the coset �H of G/H have the

same value on a, and “� (a) for � ◆ G/H ” is well defined.
Let n = [L : k] = |G/H |. Fix an ordered basis◆ ofL over k. For each a ◆ L,

let A(a) be the matrix of the multiplication operator M(a)L/k relative to ◆.
The Theorem of the Primitive Element (Theorem 9.34) shows that L = k(x)

for some x . Proposition 9.57 applies to this element x and to a splitting field

within K for its minimal polynomial, showing that there is a nonsingular matrix

C with entries in K such that C�1A(x)C is a diagonal matrix whose diagonal

entries are the n conjugates x1, . . . , xn of x inK, x1 being x ; the diagonal entries
are necessarily distinct by separability. For each i with 1 ↵ i ↵ n, there exists �i
inG with �i (x) = xi by Theorems 9.11 and 9.23. Since H fixesL, everymember
of the coset �i H carries x to xi . On the other hand, every � in G must carry x to

some conjugate, hence must have � (x) = �i (x) for some i . Then �
�1
i � fixes x
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and hence L, and it follows that ��1i � is in H . Thus � is in �i H . In other words,
the conjugates x1, . . . , xn may be regarded exactly as the images of the n cosets
�j H .

In this terminology the diagonal entries of C�1A(x)C are the n elements � (x)
for� inG/H . For each j with 0 ↵ j ↵ n�1, we have A(x j ) = A(x) j , and hence
C�1A(x j )C = C�1A(x) jC is diagonal with diagonal entries � (x) j = � (x j ) for
� in G/H . Forming k linear combinations, we see for every polynomial P(X)
in k[X] of degree ↵ n � 1 that C�1A(P(x))C is diagonal with diagonal entries
� (P(x)). Every element a of K is of the form P(x) for some such P(X), and
the existence of C in the statement of the corollary is proved. The formulas for

the norm and trace follow by taking the determinant and trace. �

Corollary 9.59. If K is a finite separable extension of the field k, then the
trace function TrK/k is not identically 0.

REMARKS. This result is trivial in characteristic 0 because TrK/k(1) = [K : k]
is not zero. The result is not so evident in characteristic p, and the assump-

tion of separability is crucial. An example for which separability fails and

the trace function is identically 0 has k = F(x), where F is a finite field of

characteristic p and x is transcendental, and K = k(x1/p). The basis elements
1, x1/p, x2/p, . . . , x (p�1)/p all have trace 0, and therefore the trace is identically 0.

PROOF. By the Theorem of the Primitive Element (Theorem 9.34), we can

write K = k(a) for some a = 0. Let K⌘ be a splitting field for the minimal
polynomial of a over k. Then K⌘/k is a separable extension by Corollary 9.30
and hence is a finite Galois extension. Proposition 9.57 shows that the matrix of

MK/k(a) in any ordered basis of K over k is similar over K⌘ to a diagonal matrix
with entries a1, . . . , an , where a1, . . . , an are the conjugates of a with a1 = a.

These conjugates are necessarily distinct by separability. For 1 ↵ k ↵ n, the

matrix of MK/k(ak) is similar via the same matrix over K⌘ to a diagonal matrix
with entries ak1, . . . , a

k
n . If TrK/k(ak) = 0 for 1 ↵ k ↵ n, then we obtain the

homogeneous system of linear equations

a1x1 + a2x2 + · · · + anxn = 0,

a21x1 + a22x2 + · · · + a2nxn = 0,

...

an1 x1 + an2 x2 + · · · + ann xn = 0,

with (x1, . . . , xn) = (1, . . . , 1) as a nonzero solution. The coefficientmatrixmust
therefore have determinant 0. This coefficientmatrix, however, is a Vandermonde

matrix except that the j th column is multiplied by aj for each j . Since a1, . . . , an
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are distinct, Corollary 5.3 shows that the determinant of the coefficient matrix

can be 0 only if a1a2 · · · an = 0. Since a = 0, we have arrived at a contradiction,

and we conclude that TrK/k(ak) = 0 for some k. �

With the aid of Corollary 9.59, we can complete the proof of Theorem 8.54 in

Section VIII.11. Let us restate the part that still needs proof.

THEOREM 8.54. If R is a Dedekind domain with field of fractions F and if K

is a finite separable extension field of F , then the integral closure T of R in K is

finitely generated as an R module and consequently is a Dedekind domain.

REMARKS. What needs proof is that T is finitely generated as an R module.

It was shown in Section VIII.11 how to deduce as a consequence that T is a

Dedekind domain.

PROOF. Since R is Noetherian (being a Dedekind domain), Proposition 8.34

shows that it is enough to exhibit T as an R submodule of a finitely generated R

module in K . Let {u1, . . . , un} be a vector-space basis of K over F . Proposition
8.42 shows that we may assume that each ui is in T .

Define an F linear map from K into its F vector-space dual K ⌘ by y �⇣ ⌧y ,
where ⌧y(x) = TrK/F(xy) for x ◆ K . This map is one-one by Corollary 9.59,

and the equality of dimensions of K and K ⌘ over F therefore implies that the
map is onto. We can thus view every member of K ⌘ as uniquely of the form ⌧y
for some y in K . With this understanding, let {⌧v1, . . . , ⌧vn } be the dual basis of
K ⌘ with ⌧vj (ui ) = ⌅i j for all i and j . Then we have

TrK/F(uivj ) = ⌅i j for all i and j.

Applying Proposition 8.42, choose c = 0 in R with cvj in T for all j . We shall
complete the proof by showing that

T  Rc�1u1 + · · · + Rc�1un. (⌅)

Before doing so, let us observe that

TrK/F(t) is in R if t is in T . (⌅⌅)

In fact, Proposition 9.57 shows that TrF(t)/F(t) is the sumof all the conjugates of t ,
whether or not they are in K . The conjugates have the same minimal polynomial

over F that t has, and hence they are integral over R. Their sum TrF(t)/F(t)must
be integral over R by Corollary 8.38, and it must lie in F . Since R is integrally

closed (being a Dedekind domain), TrF(t)/F(t) lies in R. This proves (⌅⌅).
Now we can return to the proof of (⌅). Let x be given in T . Since T is a ring,

cxvj is in T for each j , and TrK/F(cxvj ) is in R by (⌅⌅). Since {u1, . . . , un} is a
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basis, we can write x =
�

i diui with each di in F . Since Tr(cxvj ) is in R, the
computation

Tr(cxvj ) = c TrK/F(xvj ) = c
n�
i=1

di Tr(uivj ) = cdj

shows that cdj is in R. Then the expansion x =
�

i (cdi )c
�1ui exhibits x as in

Rc�1u1 + · · · + Rc�1un and completes the proof of (⌅). �

16. Splitting of Prime Ideals in Extensions

Section VIII.7 was a section of motivation showing the importance for number

theory and geometry of passing from factorization of elements to factorization

of ideals. The later sections of Chapter VIII set the framework for this study,

examining the notions of Noetherian domain, integral closure, and localization

and putting them together in the notion of Dedekind domain. Only just now

were we able to complete the proof of the fundamental result (Theorem 8.54) for

constructing Dedekind domains out of other Dedekind domains. However, that

proposition does not complete the task of extending what is in Section VIII.7 to a

wider context. Much of Section VIII.7 concerned the relationship between prime

ideals in one domain and prime ideals in an extension. In the present section we

put that relationship in a wider context, showing how the examples of Section

VIII.7 are special cases of the present theory.

In two of the examples in SectionVIII.7, we worked with the ringZ of integers
inside its field of fractions Q and with the ring T of algebraic integers within a

quadratic extension K of Q. In the third example in that section, we worked
with the ring C[x], for transcendental x , inside its field of fractions C(x) and
with a certain integral domain T within a quadratic extension of C(x). For all
three examples we saw a correspondence between prime ideals P in T and prime

ideals (p) inZ orC[x], and that correspondencewas formalized in amore general
setting in Propositions 8.43 and 8.53. The objective now is to understand that

correspondence a little better.

The notation for this section is as follows: Let R be a Dedekind domain, such

as Z or C[x], and let F be its field of fractions.19 Let K be a finite separable

extension of F , and let T be the integral closure of R in K . Theorem 8.54,

including the part just proved in the previous section, shows that T is a Dedekind

domain. We make repeated use of the fact about Dedekind domains that every

nonzero prime ideal is maximal.

19It might seem more natural to assume that R is a principal ideal domain, as it is with Z and
C[x]. But that extra assumption will not help us, and it will often not be satisfied when the present
results are used in the proof of the important Theorem 9.64 in the next section.
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Proposition8.43 shows that if P is anynonzeroprime ideal ofT , thenp = R⇡P
is a nonzero prime ideal of R. In the reverse direction Proposition 8.53 shows that

if p is any nonzero prime ideal in R, then pT = T , and there exists at least one

prime ideal P of T with p = R⇡P . The unique factorization of ideals in T (given
as Theorem 8.55) explains this correspondence better. If p is given, then pT is a
proper ideal, hence is contained in some maximal ideal P . Since “to contain is

to divide” (by Theorem 8.55d), such P’s (and only such P’s) are factors in the

decomposition of pT as the product of nonzero prime ideals. Accordingly let us
write

pT =
g⇢

i=1
P
ei
i ,

where the Pi are the distinct prime ideals of T containing pT , or equivalently the
distinct prime ideals of T satisfying R ⇡ Pi = p. The ei are positive integers
called the ramification indices.

For each Pi , we can form the composition R  T ⇣ T/Pi of inclusion
followed by passage to the quotient. Since p  Pi , this composition descends to

a ring homomorphism R/p⇣ T/Pi . The ideal p is maximal in R, and the ideal
Pi is maximal in T . Thus the mapping R/p ⇣ T/Pi is in fact a field map. We
regard it as an inclusion. Define

fi = [T/Pi : R/p],

allowing the dimension for the moment possibly to be +✓. It will follow from
Theorem 9.60, however, that fi is finite. The integer fi is called the residue class

degree.

Theorem 9.60. Let R be a Dedekind domain, let F be its field of fractions, let

K be a finite separable extension of F with [K : F] = n, and let T be the integral

closure of R in K . If p is a nonzero prime ideal in R and pT =
⌫g

i=1 P
ei
i is a

decomposition of pT as the product of powers of distinct nonzero prime ideals in
T , then the ramification indices ei and residue class degrees fi = [T/Pi : R/p]
are related by

g⇡

i=1
ei fi = n.

REMARKS. Consequently each fi is finite. The cases of interest for our earlier

examples have R = Z or R = C[x]. When R = Z, each R/p is a finite field.
However, when R = K[x] for some field K of characteristic 0 like K = C, then
each R/p is a finite extension of K, hence is an infinite field.20

20When R = C[x], then T/Pi = R/p�= C since C is algebraically closed. The last example of
the present section will elaborate.
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PROOF. Corollary 8.63 gives a ring isomorphism

T/(pT ) �= T/Pe11 ⇤ · · ·⇤ T/P
eg
g . (⌅)

Recall from the definition of residue class degree that we have a field mapping of

R/p into each T/Pi . Since p  Pei for 1 ↵ e ↵ ei and since p  pT , it follows
similarly that we have a one-one ring homomorphism of R/p into each T/Pei
with 1 ↵ e ↵ ei and another one-one ring homomorphism of R/p into T/(pT ).

Consequently each T/Pei with 1 ↵ e ↵ ei , the product T/Pe11 ⇤ · · · ⇤ T/P
eg
g ,

and T/(pT ) may all be regarded as unital R/p modules, i.e., as vector spaces
over the field R/p. Fix i . For 1 ↵ e ↵ ei , let us prove by induction on e that

dimR/p(T/Pei ) = e fi , (⌅⌅)

the case e = 1 being the base case of the induction. Assume inductively that (⌅⌅)
holds for exponents from 1 to e�1. We know from Corollary 8.60 that Pe�1i /Pei
is a vector space over the field T/Pi with

dimT/Pi (P
e�1
i /Pei ) = 1. (†)

The First Isomorphism Theorem (as in the remark with Theorem 8.3) gives

T/Pe�1i
�= (T/Pei )

�
(Pe�1i /Pei ) as vector spaces over R/p, and it follows that

dimR/p(T/Pei ) = dimR/p(T/Pe�1i ) + dimR/p(P
e�1
i /Pei )

= (e � 1) fi + fi = e fi ,

the next-to-last equality following from (†) and the inductive hypothesis for the
cases e � 1 and 1. This completes the induction and the proof of (⌅⌅).
In view of the decomposition (⌅) and the formula (⌅⌅) when e = ei , the

theorem will follow if it is shown that

dimR/p(T/(pT )) = n. (††)

To prove (††) we localize. Let S be the complement of the prime ideal p of R.
Corollary 8.48 shows that S�1R is a Dedekind domain, Corollary 8.50 shows
that S�1p is its unique maximal ideal, and Corollary 8.62 shows that S�1R is a
principal ideal domain.

The composition R  S�1R ⇣ S�1R/S�1p descends to a field mapping
R/p ⇣ S�1R/S�1p. Let us see that this mapping is onto. If s�10 r0 + S�1p in
S�1R/S�1p is given, then s0 is not in p, and the maximality of p as an ideal in
R implies that (s0) + p = R. Therefore we can choose r in R and x in p with
rs0 + x = r0. Under the mapping R/p ⇣ S�1R/S�1p, the image of r + p is
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r + S�1p = r + s�10 x + S�1p = s�10 (rs0 + x) + S�1p = s�10 r0 + S�1p. Thus
our mapping is onto S�1R/S�1p, and we have an isomorphism of fields

R/p �= S�1R/S�1p. (‡)

Similarly the composition T  S�1T ⇣ S�1T/(S�1pT ) descends to a ho-
momorphism of rings T/pT ⇣ S�1T/(S�1pT ). Let us show that this map too
is one-one onto.

If t + pT is in the kernel, then the member t of T is in S�1pT , and st is in
pT for some s in S. Hence we have (s)(t)  P

e1
1 · · · Pegg , and we can write

(s)(t) = P
e1
1 · · · Pegg Q for some ideal Q. Factoring the principal ideals (s) and

(t) and using the uniqueness of factorization of ideals gives

(s) = P
u1
1 · · · Pugg Q1 and (t) = P

v1
1 · · · Pvg

g Q2

with Q = Q1Q2 and with uj + vj = ej for all j . If uj > 0, then we must have

(s)  Pj and sR  Pj ⇡ R = p. This says that s is in p, in contradiction to
the fact that S equals the set-theoretic complement of p in R. We conclude that
uj = 0 for all j . Therefore (t) = P

e1
1 · · · Pegg Q2  P

e1
1 · · · Pegg = pT , and t is in

pT . Consequently the kernel consists of the 0 coset alone.
Let us show that T/pT maps onto S�1T/(S�1pT ). If s�10 t0 + S�1pT in

S�1T/S�1pT is given, then s0 is not in p, and the maximality of p as an ideal
in R implies that (s0) + p = R. Therefore we can choose r in R and x in p
with rs0 + x = 1, hence with rs0t0 + xt0 = t0. Under the mapping T/pT ⇣
S�1T/(S�1pT ), the image of rt0 + pT is

rt0 + S�1pT =rt0 + s�10 xt0 + S�1pT

= s�10 (rs0t0 + xt0) + S�1pT

= s�10 t0 + S�1pT .

Thus our mapping is onto S�1T/S�1pT , and we conclude that we have an
isomorphism of rings

T/pT ⇣ S�1T/(S�1pT ). (‡‡)

Since T is finitely generated as an R module (Theorem 8.54), S�1T is finitely
generated as an S�1Rmodulewith the same generators. Since S�1R is a principal
ideal domain, Theorem 8.25c shows that S�1T is the direct sum of cyclic S�1R
modules. Each of these cyclic modules must in fact be isomorphic to S�1R since
S�1T has no zero divisors, and therefore S�1T is a free S�1R module of some
finite rank m. If t1, . . . , tm are free generators, then we have

S�1T = S�1Rt1 + · · · + S�1Rtm . (§)



530 IX. Fields and Galois Theory

Let us see that {t1, . . . , tm} is an F vector-space basis of K . Suppose
�

j cj tj = 0

with all cj in F . Proposition 8.42 shows that there is an r = 0 in R with

rc1, . . . , rcm in R. Then
�

j (rcj )tj = 0, and the independence of t1, . . . , tm

over S�1R implies that rcj = 0 for all j . Thus cj = 0 for all j , and we obtain

linear independence over F . If x ◆ K is given, we can choose r = 0 in R with

r x in T by Proposition 8.42. Since t1, . . . , tm span S
�1T over S�1R, we can find

members d1, . . . , dm of S
�1R with r x =

�
j dj tj . Then x =

�
j r
�1dj tj with

each coefficient r�1dj in F . This proves the spanning. Hence {t1, . . . , tm} is an
F vector-space basis, and m = n.

To complete the proof of (††) andhence the theorem, it is enough, in viewof the
isomorphisms (‡) and (‡‡), to prove that the cosets tj +S�1pT in S�1T/(S�1pT )

form a vector-space basis over S�1R/S�1p. If t is in S�1T , then (§) says that
t =

�
cj tj with cj in S

�1R. Hence

t + S�1pT =
�

(cj + S�1p)(tj + S�1pT ),

andwe have spanning. If
�

j (cj+S�1p)(tj+S�1pT ) = 0+S�1pT , then
�

j cj tj

is in S�1pT . Thus we can write
�

j cj tj =
�

i ai t
⌘
i with ai ◆ p and t ⌘i ◆ S�1T .

Expanding each t ⌘i according to (§), substituting, and using the uniqueness of the
expansion (§), we see for each j that cj is a sumof products of the ai ’s bymembers

of S�1R. Therefore each cj is in S
�1p. This proves the linear independence and

establishes (††). �

The case of greatest interest is that K is a finite Galois extension of F . In this

case the statement of Theorem 9.60 simplifies and will be given in its simplified

form as Theorem 9.62. We begin with a lemma.

Lemma 9.61. Let R be a Dedekind domain, let F be its field of fractions,

let K be a finite separable extension of F , and let T be the integral closure of R

in K . Suppose that K is Galois over F . If p is a nonzero prime ideal in R and
pT =

⌫g

i=1 P
ei
i is a decomposition of pT as the product of nonzero prime ideals

in T , then Gal(K/F) is transitive on the set of ideals {P1, . . . , Pg}.
PROOF. Arguing by contradiction, suppose that Pj is not of the form � (P1)

for some � in Gal(K/F). By the Chinese Remainder Theorem we can choose
an element t of T with t � 0 mod Pj and t � 1 mod � (P1) for all � . Every �
in Gal(K/F) carries t to a member of T since t and � (t) have the same minimal
polynomial over F . Corollary 9.58 shows that NK/F(t) =

⌫
�◆Gal(K/F) � (t), and

consequently NK/F(t) is in T ⇡ F = R. Since the factor t itself is in Pj , NK/F(t)

is in Pj . Therefore NK/F(t) is in R ⇡ Pj = p  
⌫g

i=1 P
ei
i . The right side is

contained in P1. Since P1 is prime, some factor �l(t) of NK/F(t) is in P1. Then

t is in ��1l (P1), in contradiction to the fact that t � 1 mod � (P1) for all � . �
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Theorem 9.62. Let R be a Dedekind domain, let F be its field of fractions,

let K be a finite separable extension of F with [K : F] = n, and let T be the

integral closure of R in K . Suppose that K is Galois over F . If p is a nonzero
prime ideal in R and pT =

⌫g

i=1 P
ei
i is a decomposition of pT as the product

of powers of distinct nonzero prime ideals in T , then the ramification indices

have e1 = · · · = eg, and the residue class degrees fi = [T/Pi : R/p] have
f1 = · · · = fg. If e and f denote the common value of the ei ’s and of the f j ’s,

then

e fg = n .

PROOF. For � in Gal(K/F), apply � to the factorization pT =
⌫g

i=1 P
ei
i ,

obtaining

pT = � (P1)
e1

g⌫
i=2

� (Pi )
ei .

Lemma 9.61 shows that � (P1) can be any Pj , and unique factorization of ideals
(Theorem 8.55) therefore implies that e1 = ej . With the same � , the fact that �
respects the field operations implies that

T/P1 �= � (T )/� (P1) = T/Pj ,

and thus f1 = f j . Substituting the values of the ei ’s and the f j ’s into the formula

of Theorem 9.60, we obtain e f g = n. �

EXAMPLES WITH n = 2 CONTINUED FROM SECTION VIII.7.

(1) R = Z and T = Z[
�
�1 ]. In this case, Z and T are both principal ideal

domains. We found three possible behaviors21 for the prime factorization of a

principal ideal (p)T in T generated by a prime p > 0 in Z:
(a) (p)T is prime in T if p = 4m + 3. Here e = g = 1; so f = 2.

(b) (p)T = (a+ ib)(a� ib)with p = a2+b2 if p = 4m+1. Here e = 1

and g = 2; so f = 1.

(c) (2)T = (1+ i)2. Here e = 2 and g = 1; so f = 1.

(2) R = Z and T = Z[
�
�5 ]. In this case, T is not a unique factorization

domain and is in particular not a principal ideal domain. We gave examples of

three possible behaviors for the prime factorization of a principal ideal (p)T in
T generated by a prime p > 0 in Z:

(a) (11)T is prime in T . Here e = g = 1; so f = 2.

(b) (2)T = (2, 1+
�
�5)(2, 1�

�
�5). Here e = 1 and g = 2; so f = 1.

(c) (5)T = (
�
�5 )2. Here e = 2 and g = 1; so f = 1.

21The notation here fits with the notation in Theorem 9.62 and is different from the notation in

Section VIII.7.
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(3) R = C[x] and T = C[x,
�

(x � 1)x(x + 1) ]. In this case, R is a principal
ideal domain, and we saw that T is not a unique factorization domain. We found

two possible behaviors for the prime factorization of a principal ideal (p)T in T
generated by a prime p in C[x]:

(a) (x � x0)T = (x � x0, y� y0)(x � x0, y+ y0) if the equal expressions
y20 = (x0 � 1)x0(x0 + 1) are not 0. Here e = 1 and g = 2; so f = 1.

(b) (x � x0)T = (x � x0, y)
2 if x0 is in {�1, 0,+1}. Here e = 2 and

g = 1; so f = 1.

The third type, with (x � x0)T prime in T , does not arise. It cannot arise since
f > 1 would point to a quadratic extension of C, yet C is algebraically closed.

17. Two Tools for Computing Galois Groups

In Section 8 we mentioned that the effect of the Fundamental Theorem of Galois

Theory is to reduce the extremely difficult problem of finding intermediate fields

to the less-difficult problem of finding a Galois group. In the intervening sections

we have seen some illustrations of the power of this reduction, all in cases in

which the Galois group was close at hand.

The problem of finding a Galois group in a particular situation is usually not

as easy as in those cases, and it by no means can be considered as solved in

general. In this section we combine Galois theory with some of the ring theory

in the second half of Chapter VIII in order to develop two tools that sometimes

help identify particular Galois groups.

Let us think in terms of a finite Galois extension K of the rationals Q. The
field K is the splitting field of some irreducible monic polynomial with rational

coefficients, and we can scale this polynomial’s indeterminate (in effect by multi-

plying its roots by some nonzero integer) so that the polynomial is monic and has

integer coefficients. Thus let F(X) be a monic irreducible polynomial inZ[X] of
some degree d, and let K be its splitting field overQ. The members of Gal(K/Q)
are determined by their effect on the d roots of F(X), and hence Gal(K/Q)may
be regarded as a subgroup of the symmetric groupSd . If r1, . . . , rd are the roots
of F(X), then the discriminant of F(X) is the member of K defined by

D =
⌫

1↵i< j↵d
(rj � ri )

2.

Thiswas defined in Section 13 in the cases d = 2 and d = 3, andwe computed the

value of D in those cases. The discriminant is an integer under our hypotheses,

and it is computable even though the roots r1, . . . , rd of F(X) are not at hand. In
fact, the proof of Theorem 9.50 indicates that the discriminant D is given by the

determinant
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D = det

⇣

✓

d a1 a2 · · · ad�1
a1 a2 a3 · · · ad
a2 a3 a4 · · · ad+1

...
ad�1 ad ad+1 · · · a2d�2

⌘

����◆
,

where aj = r
j

1 + r
j

2 + · · · + r
j

d . Problems 36–39 at the end of Chapter VIII show

that each of a1, . . . , a2d�1 can be expressed as a polynomial in the elementary
symmetric polynomials in r1, . . . , rd , i.e., in the coefficients of F(X), and doing
so in a symbolic manipulation program is manageable for any fixed degree.22

The first of the two tools that sometimes help in identifying particular Galois

groups directly concerns the discriminant: the discriminant is a square if and only

if the Galois group is a subgroup of the alternating group. Let us state the result

in the context of a general finite Galois extension even though we shall use it only

for our Galois extension K/Q.

Proposition 9.63. Let K/k be a finite Galois extension, and suppose that K
is the splitting field of a separable polynomial F(X) in k[X] of degree d. Let
D be the discriminant of F(X), and regard G = Gal(K/k) as a subgroup of the
symmetric group Sd . Then D is in k, and G is a subgroup of the alternating

group Ad if and only if D is the square of an element of k.
REMARK. The proofwill useGalois theory to show that D is ink, and Problems

36–39 at the end of Chapter VIII do not need to be invoked.

PROOF. Let r1, . . . , rd be the roots of F(X), and put  =
⌫

i< j (rj � ri ).

Under the identification of G with a subgroup of the permutation group Sd on

{1, . . . , d}, each � in G has

� ()=
⌫
i< j

(� (rj )�� (ri )) =
⌫
i< j

(r� ( j)�r� (i)) =(sgn � )
⌫
i< j

(rj�ri ) =(sgn � ).

22For example, when d = 3, let F(X) = X3� c1X2 + c2X � c3. In Mathematica the following
program produces a1, a2, a3, a4 as output:
e1={a1==r1+r2+r3, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2,

r1 r2 r3==c3}
Eliminate[e1,{r1,r2,r3}]
e2={a2==r1⇢2+r2⇢2+r3⇢2, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2,

r1 r2 r3==c3}
Eliminate[e2,{r1,r2,r3}]
e3={a3==r1⇢3+r2⇢3+r3⇢3, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2,

r1 r2 r3==c3}
Eliminate[e3,{r1,r2,r3}]
e4={a4==r1⇢4+r2⇢4+r3⇢4, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2,

r1 r2 r3==c3}
Eliminate[e4,{r1,r2,r3}]
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In particular, the element D = 2 has � (D) = D. By Proposition 9.35d, D is

in k.
If some � in G has sgn � = �1, then � does not fix , and  is not in k.

Since  is a square root of D and since any two square roots of an element in a

field differ at most by a sign, D is not the square of any element of k.
Conversely if every � in G has sgn � = +1, then every � fixes , and

Proposition 9.35d shows that  is in k. Since D = 2, D is the square of the

member of k. �

The second tool is complicated to prove but simple to state. We reduce the

polynomial F(X) modulo p for each prime number p and form the associated
finite splitting field. The Galois group for a finite extension of finite fields is

cyclic by Proposition 9.40, and we thus obtain a cyclic subgroup of Sd . The

second tool is this: if p does not divide the discriminant of F(X), then this cyclic
group as a permutation group is a subgroup of Gal(K/Q) as a permutation group,
up to a relabeling of the symbols. In other words, the order and cycle structure

of a generator of the cyclic group are the same as the order and cycle structure of

some element of Gal(K/Q).

Let us formulate the result precisely. In the setting of Theorem9.62, fix a prime

ideal P of T lying in the factorization of pT . Each member � of G = Gal(K/F)
carries T to itself, but not every � in G carries P to itself. Let GP be the isotropy

subgroup of G at P , i.e., let GP = {� ◆ G | � (P) = P}. The subgroup
GP is called the decomposition group at P . Each � in GP descends to an

automorphism of the field T/P that fixes the subfield R/p, since � fixes each
element of R. Thus � defines a member � of G = Gal((T/P)/(R/p)) by the
formula

� (x̄) = � (x), where ȳ = y + P for y ◆ T .

It is apparent that � �⇣ � is a homomorphism of G into G. This homomorphism
turns out to yield the result stated informally in the previous paragraph. It has the

key property given in Theorem 9.64.

Theorem 9.64. Let R be a Dedekind domain, let F be its field of fractions, let

K be a finite separable extension of F with [K : F] = n, and let T be the integral

closure of R in K . Suppose that K isGalois over F . Letp be a nonzeroprime ideal
in R, let P = P1 be a prime factor in a decomposition pT =

⌫g

i=1 P
ei
i of pT as

the product of powers of distinct nonzero prime ideals in T , and suppose that T/P
is a Galois extension of R/p. Let G = Gal(K/F), GP = {� ◆ G | � (P) = P},
and G = Gal((T/P)/(R/p)). Then the group homomorphism � �⇣ � of GP

into G carries GP onto G.
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REMARKS. In our application with R = Z, T/P and R/p are finite fields, and
Proposition 9.40 shows that T/P is a Galois extension of R/p with no further
assumptions.

PROOF. Let Kd be the fixed field of GP within K ; Theorem 9.38 shows that

Gal(K/Kd) = GP . Let T
d be the integral closure of R in Kd ; this is a Dedekind

domain, and T is the integral closure of T d in K . We are going to apply Theorem

9.62 with R in the theorem replaced23 by T d .

Proposition 8.43 shows thatP = T d ⇡ P is a nonzero prime ideal of T d . Since

every member of GP carries P to itself and since GP is the full Galois group

of K over Kd , Lemma 9.61 shows that P is the only nonzero prime ideal of T

whose intersection with T d is P. Therefore PT d = Pe
⌘
for some integer e⌘ � 1.

As always, we have a field mapping R/p ⇣ T d/P. Let us show that this
mapping is onto T d/P. For any given u in T d , we are to produce r in R with

r � u mod P. (⌅)

Each � in G that is not in GP has �
�1P = P , and the previous paragraph shows

that the nonzero prime idealP� = T d⇡��1P of T d hasP� = T d⇡P . Therefore
P� + P = T d , and the Chinese Remainder Theorem (Theorem 8.27) shows that

we can find an element v of T d with

v � u mod P and v � 1 mod P�

for all � that lie in G but not GP . The first congruence implies that v � u is in

P = T d ⇡ P  P , hence that

v � u mod P, (⌅⌅)

while the second congruence implies that v� 1 is in P� = T d ⇡ ��1P  ��1P ,
hence that � (v � 1) lies in P . Therefore

� (v) � 1 mod P for all � in G but not GP . (†)

Put r = NKd/F(v). Since the splitting field of the minimal polynomial of v over
F is contained in K , Corollary 9.58 shows that r is the product of the elements

� (v) for � in G/GP . Each of these is in T , and hence NKd/F(v) is in T . Since
NKd/F(v) is also in F , r = NKd/F(v) is in T ⇡ F = R. If we use � = 1 as the

representative of the identity coset of G/GP , then we have

r = NKd/F(v) = v
� ⌫
some � ’s
not in GP

� (v)
⇥
.

23Consequently it would not have been sufficient to prove Theorem 9.62 when the ring R is a

principal ideal domain.
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The factor of v is congruent to u mod P by (⌅⌅), and each factor in parentheses
is congruent to 1 mod P by (†). Therefore r � u mod P , and r � u is in P .

Since r � u is in T d , r � u is in T d ⇡ P = P. This proves (⌅). Consequently we
can identify G = Gal((T/P)/(R/p)) with Gal((T/P)/(T d/P)).

Choose x̄1 in T/P with T/P = (T d/P)[x̄1]; this choice is possible by the
assumedseparabilityof (T/P)/(R/p). Let x1 be amemberof T with x̄1 = x1+P ,

and let M(X) be the minimal polynomial of x1 over K
d . Since x1 is in T , the

coefficients of M(X) are in T d . Let M(X) be the corresponding member of
(T d/P)[X], given by the substitution homomorphism that takes T d to T d/P and
takes X to X . Since K/Kd is normal, M(X) splits over K . Write x1, . . . , xn for
its roots; these are in T .

Let � be given in G, and suppose that � (x̄1) = x̄ j . Since M(X) is irreducible

over Kd , the Galois group Gal(K/Kd) = GP is transitive on its roots. Choose �
in GP with � (x1) = xj . Then � (x̄1) = x̄ j . Since � and � agree on the generator

x̄1 of T/P over T d/P, they agree on T/P . Therefore � is exhibited as the image
of � under the homomorphism of the theorem, and the proof is complete. �

A first consequence of Theorem 9.64 is that we get interpretations of the

integers e, f , and g, and they will be helpful to us. Galois theory gives us

|G| = n, and Theorem 9.62 says that e f g = n. The transitivity in Lemma 9.61

says that G acts transitively on the set {P1, . . . , Pg}, and the isotropy subgroup at
P = P1 is GP . Hence g|GP | = |G|, and |GP | = n/g = e f . Galois theory gives

us |G| = f , and the fact thatGP maps ontoG says thatGP/kernel �= G; therefore

|kernel| = |GP |/|G| = (e f )/ f = e. We conclude that g is the number of cosets

modulo GP , e is the order of the kernel of the homomorphism in Theorem 9.64,

and f is the order of the cyclic group G.

In the setting of interest for current purposes, we are taking R = Z, F = Q,
and K equal to the splitting field of a givenmonic irreducible polynomial F(X) of
degree d in Z[X]. We will be using Theorem 9.64 for various choices of p = (p)

in Z to make progress on identifying Gal(K/Q). In order to identify G with the

subgroup GP of G, we need the kernel of the homomorphism of GP onto G to

be trivial. From the previous paragraph we know that the condition in question

is that e = 1. We postpone to Chapter V of Advanced Algebra any justification

of the assertion that e = 1 if p does not divide the discriminant of F(X).

In previous sections we have identified Gal(K/Q) in some cases when the
Galois group is relatively small compared with the degree d of the polynomial.

The method now is helpful when the Galois group is relatively large compared

with d.

Let us be sure when e = 1 that the theorem is telling us not only that GP

is isomorphic to G as an abstract group, but also that the cycle structure of the

elements of G is the same as the cycle structure of the elements of GP . For this
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purposewe ignore the proof of the theorem and concentrate only on the statement.

Assuming that p does not divide the discriminant, let F(X) be the reduction of
F(X) modulo p, let r1, . . . , rd be the roots of F(X) in T , and let r̄1, . . . , r̄d be
the images of r1, . . . , rd under the quotient homomorphism T ⇣ T/P . The
elements r̄1, . . . , r̄d are distinct since p does not divide the discriminant of F(X).
Any member � of G = Gal(K/Q) permutes r1, . . . , rd and is determined by the
resulting permutation since K is assumed to be generated by r1, . . . , rd . Under
the assumption that � is in GP , � descends to an automorphism � of T/P . This
automorphism � acts on the set of elements r̄1, . . . , r̄d , permuting them. Since
the mapping of the rj ’s to the r̄j ’s is one-one, the resulting permutation of the

subscripts 1, . . . , d is the same.
When p varies, we cannot match the elements r̄1, . . . , r̄d for one value of

p with those for another value of p, because we have no direct knowledge of

r1, . . . , rd . Thus we cannot directly compare the permutation groups G that we

obtain for different p’s. But at least we know their cycle structure.

To apply the theory, we factor F(X) quickly with a symbolic manipulation

program, andwe obtain theGalois group of a splittingfield of F(X) by inspection,
together with the cycle structure of its elements. Specifically an irreducible factor

of degreem contributes anm-cycle for the element, and the cycles corresponding

to distinct irreducible factors are disjoint. Then we put together the information

from various p’s and see what elements must be in Gal(K/Q), up to a relabeling
of indices.

EXAMPLE 1. F(X) = X5� X � 1. The discriminant is D = 2869 = 19 · 151.
Thus the method may be used with any prime number other than 19 and 151.

Here is the factorization for a few primes, together with the cycle structure within

S5 for a generator of G:

p F(X) Cycle lengths

2 (X2 + X + 1)(X3 + X + 1) 2, 3
3 X5 + 2X + 2 5

17 (X + 9)(X + 11)(X3 + 14X2 + 12X + 6) 1, 1, 3
23 (X + 9)(X4 + 14X3 + 12X2 + 7X + 5) 1, 4

For comparison, p = 19 gives F(X) = (X + 6)2(X2 + 7X2 + 13X + 10), but
we cannot use this prime since it divides the discriminant. It is enough to use

the information from p = 2 and p = 3. The irreducibility modulo 3 implies

irreducibility over Q. From p = 3, we obtain a 5-cycle in Gal(K/Q). From
p = 2, we obtain the product of a 2-cycle and a 3-cycle, and the cube of this

element is a 2-cycle. In the example in Section 11 following the statement of

Theorem 9.44, we saw in effect that the only subgroup ofS5 containing a 5-cycle

and a 2-cycle isS5 itself. Therefore Gal(K/Q) = S5.
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EXAMPLE 2. F(X) = X5 + 10X3 � 10X2 + 35X � 18. The discriminant
is D = 3025000000 = 2658112, a perfect square. Thus the Galois group is a

subgroup of the alternating group A5. The method using reduction modulo p
may be used with any prime other than 2, 5, and 11. Here is the factorization for

a few primes, together with the cycle structure withinS5 for a generator of G:

p F(X) Cycle lengths

3 X (X + 2)(X3 + X2 + 2X + 1) 1, 1, 3
7 X5 + 3X3 + 4X2 + 3 5

17 (X + 14)(X2 + 5X + 14)(X2 + 15X + 15) 1, 2, 2

It is enough to use the information from p = 3 and p = 7. The irreducibility

modulo 7 implies irreducibility over Q. From p = 7, we obtain a 5-cycle in

Gal(K/Q). From p = 3, we obtain a 3-cycle. Any 5-cycle and any 3-cycle

together generate all of A5. In fact, the generated subgroup must have order
divisible by 15, hence must have order 15, 30, or 60. It cannot be of order 15

because every group of order 15 is cyclic and A5 has no elements of order 15. It
cannot be of order 30 because A5 is simple and subgroups of index 2 have to be
normal. Hence it is all of A5.

EXAMPLE 3. Galois group Sd . Given d � 4, let us see how to form an

irreducible F(X) for which Gal(K/Q) is all of Sd . For any degree d and any

prime number ⌧, there exists at least one irreducible monic polynomial of degree
d in F⌧[X]; the reason is that the finite field F⌧d is a simple extension of F⌧ by

Corollary 9.19. Let Hd,2(X) be such a polynomial of degree d for ⌧ = 2, and let

Hd�1,3(X) be such a polynomial of degree d�1 for ⌧ = 3. Then let p be a prime

greater than d, and let H2,p(X) be an irreducible monic polynomial of degree 2
in Fp[X]. We can regard each of Hd,2(X), Hd�1,3(X), and H2,p(X) as in Z[X]
by reinterpreting their coefficients as integers. Consider the congruences

F[X] � Hd,2(X) mod (2),

F[X] � XHd�1,3(X) mod (3),

F[X] �
� d�3⌫
k=0

(X � k)
⇥
H2,p(X) mod (p),

in Z[X]. Since the sum of any two of the three ideals (2), (3), and (p) of Z[X] is
Z[X], the Chinese Remainder Theorem (Theorem 8.27) implies that there exists a
simultaneous solution F[X] to these congruences inZ[X], andwemay take F[X]
to be monic of degree d. Let K be a splitting field for F[X] overQ. Our method
applies to the primes 2, 3, and p since none of the three polynomials has any
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repeated factors. The result of applying the method is that Gal(K/Q) contains
a d-cycle, a (d�1)-cycle, and a 2-cycle. Let us see that the subgroup generated
by these three elements is all of Sd . We may assume that the (d � 1)-cycle is
(1 2 · · · d�1). Without loss of generality, the 2-cycle is either (1 j)with j < d

or is (k d)with k < d. In the first case some power of the d-cycle is a permutation

� with � (1) = d; if � denotes the 2-cycle (1 j), then Lemma 4.41 shows that
����1 is the 2-cycle (d � ( j)), and this is of the form (k d) with k < d. Thus

we may assume in any event that Gal(K/Q) contains (1 2 · · · d�1) and some
2-cycle (k d) with k < d. Conjugating (k d) by powers of (1 2 · · · d�1), we
see that Gal(K/Q) contains every 2-cycle (k d) with k < d. For 1 ↵ k < d � 1,
we then find that Gal(K/Q) contains

(k d)(k + 1 d)(k d) = (k k + 1).

So Gal(K/Q) contains (1 2), (2 3), . . . , (d�2 d�1), and we have already seen
that it contains (d�1 d). These d � 1 transpositions generate the full symmetric
group, and therefore Gal(K/Q) = Sd .

18. Problems

1. Take as known that the polynomial X3 � 3X + 4 is irreducible over Q, and let
r be a complex root of it. In the field Q(r), find a multiplicative inverse for

r2 + r + 1 and express it in the form ar2 + br + c with a, b, c in Q.
2. Suppose that R is an integral domain and that F is a subring that is a field, so

that R can be considered as a vector space over F . Prove that if dimF R is finite,

then R is a field.

3. LetK be a subfield of C that is not a subfield of R. Prove thatK is topologically

dense in C.
4. LetK = k(x) be a transcendental extension of the field k, and let y be a member

of K that is not in k. Prove that k(x) is an algebraic extension of k(y).

5. What is a necessary and sufficient condition on an integer N > 0 for the positive

square root of N to be in the subfield Q(
3
�
2 ) of R?

6. The polynomials F(X) = X3+ X + 1 and G(Y ) = Y 3+ Y 2+ 1 are irreducible
over F2. Let K be the field K = F2[X]/(F(X)), and let L be the field L =
F2[Y ]/(G(Y )). SinceK andL are two fields of order 8, theymust be isomorphic.
Find an explicit isomorphism.

7. Can a field of order 8 have a subfield of order 4? Why or why not?

8. If K is a finite field, prove that the product of the nonzero elements of K is �1.
(Educational note: WhenK is Fp, this result reduces toWilson’s Theorem, given

as Problem 8 at the end of Chapter IV.)

9. Suppose that K/k is a finite extension of the form K = k(r) with [K : k] odd.
Prove that K = k(r2).
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10. Suppose that K/k is a finite extension of fields and that K = k[r, s]. Prove that
if [k(r) : k] is relatively prime to [k(s), k], then
(a) the minimal polynomial of r over k is irreducible over k(s),

(b) [K : k] = [k(r) : k] [k(s) : k].

11. In C, let ⇥ = 3
�
2, ✏ = 1

2
(�1+

�
�3), and � = ✏⇥.

(a) Prove for all c inQ that ⇤ = ⇥+c� is a root of some sixth-degree polynomial
of the form X6 + aX3 + b.

(b) Prove that the minimal polynomial of ⇥ + � over Q has degree 3.

(c) Prove that the minimal polynomial of ⇥ � � over Q has degree 6.

12. Suppose thatk is a finite field and that F(X) is amember ofk[X]whose derivative
is the 0 polynomial. Prove that F(X) is reducible over k.

13. Let k be a field, let F(X) be a separable polynomial in k[X], letK be a splitting

field of F(X) over k, and let r1, . . . , rn be the roots of F(X) in K. Regard
Gal(K/k) as a subgroup of the symmetric groupSn .

(a) Prove that Gal(K/k) is transitive on {r1, . . . , rn} if and only if F(X) is

irreducible over k.
(b) Show that the cyclotomic polynomial�8(X) is an example with k = Q and

n = 4 for which Gal(K/k) is transitive but Gal(K/k) contains no 4-cycle.

(c) Prove that if n is prime and F(X) is irreducible over k, then Gal(K/k)

contains an n-cycle.

14. Let a1, . . . , an be relatively prime square-free integers � 2, and define Lk =
Q(
�
a1, . . . ,

�
ak ) for 0 ↵ k ↵ n.

(a) Show for each k that [Lk : Q] = 2l with 0 ↵ l ↵ k.

(b) Suppose for a particular k that [Lk : Q] = 2k . Exhibit a vector-space basis

of Lk over Q, and describe the members of Gal(Lk/Q) by telling the effect

of each member on all basis vectors of Lk over Q.
(c) Suppose for a particular k < n that [Lk : Q] = 2k . Assume that

�
ak+1 lies

in Lk , and let
�
ak+1 be expanded in terms of the basis of (b). Show that

application of the members of Gal(Lk/Q) leads to a contradiction.

(d) Deduce that [Ln : Q] = 2n .

15. Let p be a prime number, and suppose that a is a member ofQ such that X p � a
has no root in Q. If r is a member of C with r p = a, prove that

(a) the cyclotomic polynomial�p(X) is irreducible in Q(r),

(b) the splitting field K of X p � a over Q has degree [K : Q] = p(p � 1),
(c) the Galois group Gal(K/Q) is isomorphic to a semidirect product of the

multiplicative group of Fp and the additive group of Fp, with the action of

a member m of the multiplicative group on the members n of the additive

group being given by m(n) = mn.
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16. Let F(X) be a polynomial in k[X] of degree n, where k is a field of character-
istic 0, and let K be a splitting field for F(X) over k. Prove that [K : k] divides
n!.

17. Let k be a field, and let K be a quadratic extension k(r), where r2 = a is a

member of k.
(a) If k has characteristic 0, determine all elements ofKwhose squares are in k.
(b) What happens differently if the characteristic is different from 0?

18. Let G be a finite group. Show that there exist two finite extensions k and K
of Q such that K is a Galois extension of k and the Galois group Gal(K/k) is

isomorphic to G.

19. LetK/k be a finite normal extension. For F(X) inK[X] and � in Gal(K/k), let

F� (X) be the result of the substitution homomorphismK[X]⇣ K[X] carrying
X to X and extending the action of� onK, i.e., let F� (X) be obtainedby applying

� to the coefficients of F(X). Prove that
⌫

�◆Gal(K/k) F
� (X) is in k[X].

20. Corollary 9.37 concerns a separable algebraic extension K/k and a finite sub-
group H of Gal(K/k), showing that K/KH is a finite Galois extension with

H = Gal(K/KH ) and [K : KH ] = |H |. By going over its proof, obtain the
conclusion that if {x1, . . . , xn} is the H orbit of x1 in K, then
(a) the minimal polynomial of x1 over KH is

⌫n
j=1 (X � xj ).

(b) n divides |H |.
(c) K = KH (x1) if the isotropy subgroup of H at x1 is trivial.

21. Let K be the transcendental extension C(z) of C.
(a) Prove that any linear fractional transformation⇣(z) = az+b

cz+d withad�bc = 0

in C extends uniquely to a C automorphism of K.
(b) Let H be the 4-element subgroup of Gal(K/C) generated by the extensions

of � (z) = �z and � (z) = 1/z. Show that w = z2 + z�2 is invariant under
H , and conclude that every member of C(w) lies in KH .

(c) Applying the previous problem to the element x1 = z of K, show that the
minimal polynomial of z over C(w) has degree 4.

(d) Conclude that KH = C(z2 + z�2).

22. In characteristic 0, let L/K and K/k be quadratic extensions.
(a) Show that there exists an irreducible polynomial F(X) = X4 + bX2 + c in

k[X] such that F(r) = 0 for some r in L.
(b) Show that the element r in (a) has L = k(r).

(c) Show that L is a normal extension of k with Galois group C2 ⇤ C2 if and

only if c is a square in k for some polynomial as in (a), if and only if c is a
square in k for every polynomial as in (a).
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(d) Show that L is a normal extension of k with Galois group C4 if and only if
c�1(b2 � 4c) is a square in k for some polynomial as in (a), if and only if
c�1(b2 � 4c) is a square in k for every polynomial as in (a).

(e) Give an example of quadratic extensions L/K and K/k in characteristic 0
such that L/k is not normal.

23. Determine Galois groups for splitting fields over Q for the two polynomials

X3 � 3X + 1 and X3 + X + 1.

24. Suppose that F(X) is an irreducible cubic polynomial in Q[X] whose splitting
field K has Gal(K/Q) isomorphic to S3. What are the possibilities, up to

isomorphism, for the Galois group of a splitting field of (X3 � 1)F(X) over Q?

25. Let K/k be a finite Galois extension whose Galois group is isomorphic to S3.

Is K necessarily a splitting field of some irreducible cubic polynomial in k[X]?
Why or why not?

26. Is Cardan’s cubic formula valid for finding roots of reducible cubics X3+ pX+q

in characteristic 0?

27. Prove that the discriminant of a real cubic with distinct roots is positive if all the

roots are real, and is negative if two of the roots are complex.

28. Let F(X) = X3 + pX + q be irreducible in Q[X], and suppose that X � r is a

factor for some r in C.
(a) Show that F(X) factors inQ(r)[X] as F(X) = (X�r)(X2+r X+(r2+ p)).

(b) We know that Q(r) is a splitting field for F(X) over Q if and only if

the discriminant �4p3 � 27q2 is a square in Q. On the other hand, it is
evident from the factorization of F(X) that it splits isQ(r) if and only if the

discriminant r2�4(r2+ p) is a square inQ(r). Show by a direct calculation

that these two conditions are equivalent.

29. Let K be a splitting field of an irreducible cubic polynomial F(X) in Q[X]. If
Gal(K/Q) is S3, does it follow that K contains all three cube roots of 1? Why

or why not?

30. In characteristic 0, letK be the splitting field over k of an irreducible polynomial
in k[X] of degree 5. Assuming that the discriminant of the polynomial is a square
in k, what are the possibilities for Gal(K/k) up to a relabeling of the indices?

31. Determine the Galois group of a splitting field over Q for the polynomial

X5 + 6X3 � 12X2 + 5X � 4. Use of a computer may be helpful for this

problem.

32. TheproofofTheorem9.64 introducedapositive integer e⌘ in its secondparagraph.
Prove that e⌘ equals the integer e1 in the statement of the theorem.
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33. Let R be a Dedekind domain, let F be its field of fractions, let K be a finite

separable extension of F , and let L be a finite separable extension of K . Let T

be the integral closure of R in K , and letU be the integral closure of R in L . Let

p, P , and Q be nonzero prime ideals in R, T , and U , respectively, and let the

ramification indices and decomposition degrees for the extensions L/K , L/F ,

and K/F be

e(Q|P), e(P|p), e(Q|p) and f (Q|P), f (P|p), f (Q|p).

Prove that

e(Q|p) = e(Q|P)e(P|p) and f (Q|p) = f (Q|P) f (P|p).

Problems 34–40 concern norms and traces.

34. Let m be a square-free integer, and let N and Tr denote the norm and trace from

Q(
�
m ) to Q.

(a) Show that N (a + b
�
m ) = a2 � mb2 and Tr(a + b

�
m ) = 2a.

(b) Let T be the ring of algebraic integers in Q(
�
m ). It was shown in Section

VIII.9 that T consists of all a + b
�
m with a, b in Z if m � 2 mod 4 or

m � 3 mod 4, and of all a + b
�
m with a, b in Z or a, b in Z + 1

2
if

m � 1 mod 4. Prove for a + b
�
m in Q(

�
m ) that a + b

�
m is in T if and

only if N (a + b
�
m ) and Tr(a + b

�
m ) are both in Z.

(c) Assume that a+b
�
m is in T . Prove that N (a+b

�
m ) is in Z⇤ if and only

if a + b
�
m is in T⇤.

(d) For m = 2, give an example of a member of T⇤ other than ±1.

35. For the extensionQ(
3
�
2 )/Q, find the value of the norm N and the trace Tr on a

general element a + b
3
�
2+ c(

3
�
2 )2 of Q(

3
�
2 ); here a, b, c are in Q.

36. Let N ( · ) be the norm relative to the extension Q(⇧ )/Q, where ⇧ is a primitive
nth root of 1.

(a) Show that N (1�⇧ )=�n(1), where�n(X) is the nth cyclotomic polynomial.

(b) Using the formula
⌫

d|n, d>1�d(X) = Xn�1 + Xn�2 + · · · + 1, show that

N (1 � ⇧ ) = �n(1) equals p if n is a power of the positive prime p and

equals 1 if n is divisible by more than one positive prime.

37. Let p > 0 be a prime in Z of the form 4n + 1. It was shown in Problem 31

at the end of Chapter VIII that such a prime is the sum of two squares. This

problem gives a shorter proof. Take as known from Section VIII.4 that the ring

Z[
�
�1 ] of Gaussian integers is a Euclidean domain, and from Problem 30 at

the end of Chapter VIII that x2 � �1 mod p has an integer solution x . Carry
out the following steps:
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(a) Write

x ±
�
�1

p
= 1

p
x ± 1

p

�
�1.

If p were prime in Z[
�
�1 ], then it would follow from the divisibility of

x2 + 1 by p that p divides x +
�
�1 or p divides x �

�
�1. Deduce from

the displayed equation that neither alternative is viable, and conclude that p

cannot be prime in Z[
�
�1 ].

(b) Using the conclusion of (a) to write p as a nontrivial product in Z[
�
�1]

and applying the norm function, prove that there exist integers a and b such

that p = a2 + b2.

38. Let p > 0 be a prime in Z of the form 8n + 1. Take as known from Problem

13 at the end of Chapter VIII that Z[
�
�2 ] is a Euclidean domain, and from the

law of quadratic reciprocity (to be proved in Chapter I of Advanced Algebra)

that x2 � �2 mod p has an integer solution x . Guided by the argument for the
previous problem, prove that there exist integers a and b such that p = a2+2b2.

39. Let p > 0 be a prime in Z of the form 6n + 1. Take as known from Problem

26 at the end of Chapter VIII that Z
⇤
1
2
(1+

�
�3 )

⌅
is a Euclidean domain, and

from the law of quadratic reciprocity (to be proved in Advanced Algebra) that

x2 � �3 mod p has an integer solution x . Guided by the argument for the
previous problem, prove that there exist integers a and b such that p = a2+3b2.

40. Let k  L  L⌘ be fields such that L⌘/k is a finite separable extension. Using
Corollary 9.58, prove that the norm and trace satisfy

NL⌘/k = NL/k ⌥ NL⌘/L and TrL⌘/k = TrL/k ⌥TrL⌘/L .

Problems 41–45 make use of the theory of symmetric polynomials, which was intro-

duced in Problems 36–39 at the end of Chapter VIII.

41. Let k be a field, let F(X) be a polynomial in k[X], let K be an extension field

in which F(X) splits, and let r1, . . . , rn be the roots of F(X) in K, repeated
according to their multiplicities. If P(X1, . . . , Xn) is a symmetric polynomial

in k[X1, . . . , Xn], prove that P(r1, . . . , rn) is a member of k.

42. Let k be a field, let F(X) andG(X) be polynomials over k, letK be an extension
field in which F(X) and G(X) both split, and let r1, . . . , rm and s1, . . . , sn
be the respective roots of F(X) and G(X) in K, repeated according to their
multiplicities. Deduce from the previous problem that the polynomials

H1(X) =
m⌫
i=1

n⌫
j=1

(X � ri � sj ) and H2(X) =
m⌫
i=1

n⌫
j=1

(X � ri sj )

lie in k[X].
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43. (a) Find a nonzero polynomial with rational coefficients having
�
2+

�
3 as a

root. What is the minimal polynomial of
�
2+

�
3 over Q?

(b) Find a nonzero polynomial with rational coefficients having
�
2+ 3

�
2 as a

root. What is the minimal polynomial of
�
2+ 3

�
2 over Q?

44. Let k be a field of characteristic 0, and let K = k(r1, . . . , rn) be the field of

fractions of the polynomial ring k[r1, . . . , rn] in n indeterminates. Show that
any � in the symmetric group Sn defines a member of Gal(K/k) such that

� (rj ) = r� ( j) for all � inSn . Then define F(X) to be the polynomial

F(X) = (X � r1) · · · (X � rn)

in K[X], and show that
(a) F(X) is irreducible over the fixed field KSn ,

(b) K is a splitting field for F(X) over KSn ,

(c) KSn = k(u1, . . . , un), where u1, . . . , un are given by

u1 =
�
i

rI , u2 =
�
i< j

ri rj , . . . , un =
⌫
i

ri ,

(d) the Galois group of the splitting field of F(X) over k(u1, . . . , un) isSn .

45. (Cubic resolvent) This problem carries out one step in finding the roots of an ar-

bitrary quartic polynomial. Let k be a field of characteristic 0, letK = k(p, q, r)

be the field of fractions of the polynomial ring k[p, q, r] in n indeterminates,

and let L be a splitting field of the polynomial

F(X) = X4 + pX2 + qX + r

in K[X]. The Galois group Gal(L/K) is S4 by the previous problem. Let

B4 = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. In the composition series
S4 ⌦ A4 ⌦ B4 ⌦ {(1), (1 2)}(3 4)} ⌦ {1}, Proposition 9.63 shows that the
fixed field of A4 is K(

�
D ), where D is the discriminant. To obtain the fixed

field of B4, we adjoin to K(
�
D ) an element of L invariant under B4 but not

under A4. If s1, s2, s3, s4 denote the roots of F(X) in L, then such an element is
(s1 + s2)(s3 + s4). Its three conjugates under A4/B4 are

⌥1 = (s1 + s2)(s3 + s4),

⌥2 = (s1 + s3)(s2 + s4),

⌥3 = (s1 + s4)(s2 + s3),

which are the three roots of the “cubic resolvent” polynomial

⌥3 � c1⌥
2 + c2⌥ � c3,

where c1, c2, c3 are the elementary symmetric polynomials in ⌥1, ⌥2, ⌥3 given by
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c1 =
�
i

⌥i , c2 =
�
i< j

⌥i⌥j , c3 =
⌫
i

⌥i .

(a) Show that c1, c2, c3 are symmetric polynomials in s1, s2, s3, s4, hence are

polynomials in the coefficients p, q, r .

(b) Verify that c1 = 2p, c2 = p2 � 4r , and c3 = q2.

(c) Show that the discriminant of the cubic resolvent equals the discriminant of

the original quartic polynomial.

Problems46–50concernGalois groupsof splittingfields of quartic polynomials. Take

as known that the discriminant of a quartic polynomial F(X) = X4+ pX2+qX + r

is given by

�4p3q2 � 27q4 + 16p4r + 144pq2r � 128p2r2 + 256r3.

Let K be a splitting field for F(X) over Q, and let G = Gal(K/Q). Regard G as a

subgroup of the symmetric groupS4.

46. (a) Identify all transitive subgroupsof the alternatinggroupA4, up to a relabeling

of the four indices.

(b) Identify all transitive subgroups of the symmetric groupS4 other than those

in (a), up to a relabeling of the four indices.

47. Suppose q = 0.

(a) Show that G is a subgroup of A4 if and only if r is a square in Q.
(b) Show by solving F(X) = 0 explicitly that [K : Q] is a power of 2, and

conclude that G has no element of order 3.

(c) Deducewhen r is a square thatG = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
if F(X) is irreducible over Q.

(d) Deduce when r is a nonsquare that G is cyclic of order 4 or is dihedral of

order 8 if F(x) is irreducible overQ; in the dihedral case, G is generated by
a 4-cycle and the group listed in (c). (Problem 22 shows how to distinguish

between the two cases.)

48. For F(X) = X4 + X + 1, show by considering reduction modulo 2 and modulo
3 that G = S4.

49. Let F(X) = X4 + 8X + 12.

(a) Compute the discriminant of F(X), and verify that it is a square.

(b) Show that F(X) � (1+ X)(2+ X +4X2+ X3) mod 5 with the two factors

on the right side irreducible in F5.
(c) Show from (a) and (b) that if F(X) is reducible over Q, then it must have a

root that is an integer. Check that there is no such root.

(d) Conclude that G = A4.
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50. For each transitive groupG as in Problem46, find a polynomial F(X) of degree 4

over Q whose splitting field K over Q has Gal(K/Q) isomorphic to G.

Problems51–56continue the introduction to error-correctingcodesbegun inProblems

63–73 at the end of Chapter IV and continued in Problems 25–28 at the end of Chapter

VII. The current problems will not make use of the problems in Chapter VII. As in

the problems in Chapter IV, we work with the field F = Z/2Z, with Hamming space
Fn , and with linear codes C in Fn . The minimal distance of C is denoted by ⌅(C).

Problem 72 in Chapter IV introduced cyclic redundancy codes, which are determined

by a generating polynomial G(X) of some degree g suitably less than n. Such a code

C is built from all polynomialsG(X)B(X)with B(X) = 0 or deg B(X) ↵ n� g�1.
A given polynomial c0 + c1X + · · · becomes the n-tuple (c0, c1, . . . ) of C ; the code

C has dimension n � g. This set of problems will discuss a special class of cyclic

redundancy codes called cyclic codes, and then a special subclass called BCH codes.

51. A linear code C in Fn is called a cyclic code if whenever (c0, c1, . . . , cn�1) is in
C , then so is (cn�1, c0, c1, . . . , cn�2).
(a) Prove that a linear code C is cyclic if and only if the set of all polynomials

c0 + c1X + · · · + cn�1Xn�1 corresponding to members (c0, c1, . . . , cn�1)
of C is an ideal in the ring F[X]/(Xn � 1). (In this case the members of C
will be identified with the set of such polynomials.)

(b) Prove that if C is cyclic and nonzero, then there exists a unique G(X) in

C of lowest possible degree. Moreover, G(X) divides Xn � 1 in F[X],
and C consists exactly of the polynomials G(X)F(X) mod (Xn � 1) such
that F(X) = 0 or deg F(X) ↵ n � degG(X) � 1, and C has dimension

n�degG(X). (The polynomialG(X) is called the generating polynomial

of C . A cyclic code C over the field Z/2Z having block length n and

dimension k is called a binary cyclic (n, k) code.)

(c) Prove that if G(X) has degree n � k, then a basis of C consists of the

polynomials G(X), XG(X), X2G(X), . . . , Xk�1G(X).

(d) Under the assumption thatC is cyclic and nonzero, (b) says that it is possible

to write Xn � 1 = G(X)H(X) for some H(X) in F[X]. Prove that a
member B(X) of F[X]/(Xn � 1) lies in C if and only if H(X)B(X) �
0 mod (Xn � 1).

52. (a) Show that the row space C of the matrix G =
↵
1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

�
is a cyclic

(7, 3) code with generating polynomial G(X) = 1+ X2 + X3 + X4.

(b) Show directly from G that C has minimal distance ⌅ = 4.

(c) The polynomial H(X) = 1+ X2 + X3 has the property that G(X)H(X) =
X7�1 in F[X]. Find a 4-by-7matrixH such that the column vectors v ◆ F7
that lie in C are exactly the ones withHv = 0.
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(d) The matrix H in (c) is called the check matrix for the code. Describe a

procedure for constructing the check matrix when starting from a general

binary cyclic (n, k) code whose generating polynomial G(X) is known and

whose polynomial H(X) with G(X)H(X) = Xn � 1 is known. Prove that
the procedure works.

53. Show that Xn�1 is a separable polynomial over F if n is odd but not if n is even.
54. Let C be a binary cyclic (n, k) code with generating polynomial G(X), and

suppose that n is odd. Let K be a finite extension field of F in which Xn � 1
splits, and let � be a primitive nth root of 1, i.e., a root of Xn � 1 in K such that

�m = 1 for 0 < m < n. Suppose that r and s are integers with 0 ↵ s < n and

G(�r ) = G(�r+1) = · · · = G(�r+s) = 0.

(a) Let P(X) = G(X)F(X) with F(X) = 0 and deg F < k be an arbitrary

nonzero member of C , so that P(�r ) = P(�r+1) = · · · = P(�r+s) = 0.

Write P(X) = c0 + c1X + · · · + cn�1Xn�1, and use the values of P(� j )

for r ↵ j ↵ r + s to set up a homogeneous system of s+ 1 linear equations
with n unknowns c0, . . . , cn�1.

(b) Using an argumentwithVandermonde determinants, show that every (s+1)-
by-(s+1) submatrix of the coefficientmatrix of the system in (a) is invertible.

(c) Obtain a contradiction from (b) if s+ 1 or fewer of the coefficients of P(X)

are nonzero.

(d) Conclude that the minimal distance ⌅(C) is � s + 2.

55. (BCH codes, or Bose–Chaudhuri–Hocquenghem codes) Let n be an odd

positive integer, let e be a positive integer < n/2, let K be a finite extension

field of F in which Xn � 1 splits, and let � be a primitive nth root of 1 in

K. For 1 ↵ j ↵ 2e, let Fj (X) be the minimal polynomial of � j over F, and
define G(X) = (1 + X)LCM(F1(X), . . . , F2e(X)). Prove that G(X) divides

Xn � 1 and that G(X) is the generating polynomial for a cyclic code C in Fn
with minimal distance ⌅(C) � 2e + 2. (Educational note: Therefore C has the

built-in capability of correcting at least e errors.)

56. In the setting of the previous problem, let n = 2m � 1 for a positive integer m,
and let K be a field of order 2m .

(a) Prove that any irreducible polynomial in F[X] with a root in K has order

dividing m, and conclude that the order of the generating polynomial G(X)

in the previous problem is at most 2em + 1.

(b) Prove that there exists a sequenceCr of binary cyclic (nr , kr ) codes of BCH

type such that kr/nr tends to 1 and the minimal distance ⌅(Cr ) tends to

infinity. (Educational note: The fraction kr/nr tells the fraction of message

bits to total bits in each transmitted block. Thus the problem says that there

are linear codes capable of correcting as large a number of errors as we

please while having as large a percentage of message bits as we please.)
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57. Take as known that F1(X) = 1 + X + X4 is irreducible over F. Let K be the

field F[X]/(F1(X)) of order 16, and let � be the coset X + (F1(X)) in K.
(a) Explain why F1(X) factors as F1(X) = (X ��)(X ��2)(X ��4)(X ��8)

over K.
(b) Find the minimal polynomial F3(X) of �3.

(c) Show in F15 that the binary cyclic code C with generating polynomial

G(X) = (1+ X)F1(X)F3(X) has dimC = 6 and ⌅(C) � 6.

Problems 58-63 combine Problems 12–13 in Chapter V with the notion of extension

of scalars from Chapter VI and some Galois theory from Chapter IX to prove the

general Jordan–Chevalley decomposition. Let k be a field, and let V be a finite-

dimensional vector space over k. A linear map N : V ⇣ V is called nilpotent if

Nk = 0 for some k. A linear map S : V ⇣ V is called semisimple if there is

some finite extension K of k for which the linear map SK : VK ⇣ VK obtained by
extension of scalars has a basis of eigenvectors. The theorem is that if L : V ⇣ V is a

linear map with the property that every irreducible factor of the minimal polynomial

of L over k is separable, then L has a unique decomposition L = S + N with S

semisimple, N nilpotent, and SN = NS. The theorem applies without restriction

to a linear L : V ⇣ V if k is finite or has characteristic 0 because the separability
condition is automatically satisfied in these cases.

58. Let k be a field, let V be a vector space over k, and letK be an extension field of

k. Extend scalars to form the K vector space given by VK = V ⌃k K, and let
Gal(K/k) act on VK by saying that ⇣(v⌃ c) = v⌃ ⇣(c) for ⇣ in Gal(K/k) and

v⌃ c in VK. Explain for V = kn that VK may be interpreted asKn and that the

action by ⇣ reduces to (⇣(u))j = ⇣(uj ).

59. Let k be a field, let V be a finite-dimensional vector space over k, and let
L : V ⇣ V be a linearmap. Suppose that every irreducible factor of theminimal

polynomial of L over k is separable. Prove the existence of a Jordan–Chevalley
decomposition of L by following these steps:

(a) LetK be a splitting field of k, so thatK is a finite Galois extension of k. Use
Problems 12–13 of Chapter V to show that L ⌃ 1 : VK ⇣ VK has a unique
decomposition as a sum S + N of K linear maps of VK to itself such that
SN = NS, N is nilpotent, and S has a basis of eigenvectors.

(b) Prove that anyK linear T : VK ⇣ VK such that (1⌃⇣)T = T (1⌃⇣) for all

⇣ ◆ Gal(K/k) is of the form T = T ⌃ 1 for a unique k linear T : V ⇣ V .

(c) Show that the K linear maps S and N of (a) satisfy (1⌃ ⇣)S = S (1⌃ ⇣)

and (1⌃ ⇣)N = N (1⌃ ⇣) for all ⇣ ◆ Gal(K/k), and deduce from (b) that

S andNmay be written as S = S⌃ 1 andN = N ⌃ 1 for uniquely defined
k linear maps S and N of V into itself.

(d) Show that S is semisimple, N is nilpotent, and SN = NS, and conclude

that L = S + N is a Jordan–Chevalley decomposition of L .
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(e) Show that S and N are polynomials in L .

60. Let k be a field, let V be a finite-dimensional vector space over k, and let
L : V ⇣ V be a linear map. Prove the uniqueness result that there is at most

one decomposition L = S+ N with S semisimple, N nilpotent, and SN = NS.

61. Let k = R, and let L : R4⇣ R4 be the linear map defined by the matrix

A =

⇣

✓
0 �1 0 0

1 0 1 0

0 0 0 �1
0 0 1 0

⌘

◆ .

Theminimal polynomial of L or A is (X2+1)2. Calculate the Jordan–Chevalley
decomposition of L in matrix form.

62. Let F2 be a field of two elements, and let k = F2(x), where x is transcendental
over F2. Let L : k2 ⇣ k2 be the linear map defined by the matrix A =

 
0 x

1 0

⌦
.

The characteristic polynomial of L or A is M(X) = X2 � x . This is irreducible

over k and hence is also the minimal polynomial. The quadratic extension
K = k[x1/2] of k is a splitting field for M(X), and M(X) has a double root in

k[x1/2].
(a) Show that A, regarded as a matrix in M2(K), does not have a basis of

eigenvectors. Conclude that L is not semisimple.

(b) Calculate the most general 2-by-2 matrix commuting with A, and show that

it cannot have characteristic polynomial X2 unless it is the 0 matrix.

(c) Conclude that L cannot have a Jordan–Chevalley decomposition.

63. Let k be a field, let V be a finite-dimensional vector space over k, and let
L : V ⇣ V be an invertible linear map. Suppose that every irreducible factor

of the minimal polynomial of L over k is separable. A linear map U : V ⇣ V

is called unipotent if (U � I )k = 0 for some k. By suitably adjusting the proof

of the Jordan–Chevalley decomposition, prove that there exist linear maps S and

U of V into itself such that S is semisimple,U is unipotent, and L = SU = US.

Problems 64–73 introduce ordered fields, formally real fields, and real closed fields.

An ordered field k is a field with a specified subset P of “positive” elements that is
closed under addition and multiplication and is such that each nonzero element of k
is in exactly one of P and �P . The fields Q and R are examples. A formally real

field k is a field in which �1 is not the sum of squares. A real closed field k is a
formally real field such that no proper algebraic extension of k is formally real. The
problems together prove the existence part of the Artin–Schreier Theorem: If k is
an ordered field with P as its set of positive elements and if k is an algebraic closure,
then there exists a real closed fieldK between k and k that is an ordered field with P
contained in its set of positive elements. Moreover,K is unique up to k isomorphism,
and k is of the form K(

�
�1 ).
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64. Verify the following properties of an ordered field kwhen P is the set of positive
elements:

(a) 1 is in P ,

(b) every nonzero square is in P ,

(c) whenever a is in P , then so is a�1,
(d) k is formally real,
(e) k has characteristic 0.

65. In an ordered field kwhose set of positive elements is P , define x > y and y < x

to mean x � y is in P . Let a, b, c, d be in k. Check the following:
(a) exactly one the relations a > b, a = b, and a < b holds,

(b) if a > b and b > c, then a > c,

(c) if a > b, then a + c > b + c,

(d) if a > b and c > 0, then ac > bc,

(e) if a > b > 0, then b�1 > a�1,
(f) if a > b > 0 and c > d > 0, then ac > bd,

(g) if a > b and c > d, then ac + bd > ad + bc.

66. Let k be an ordered field with P as its set of positive elements, let k(x) be a

transcendental extension, and define the positive elements of k(x) to be those

for which the quotient of the leading coefficient of the numerator by the leading

coefficient of the denominator is in P . Show that with this definition of the set

of positive elements, k(x) becomes an ordered field in which x > n for every

positive integer n. (Then also 1/n > 1/x for every positive integer n by Problem

65e.)

67. (a) Show that Q(
�
2 ) becomes an ordered field in two distinct ways.

(b) If k is an ordered field with P as its set of positive elements and if c is a
member of P that is not a square, show that there are two ways of defining

the set of positive elements P ⌘ ofK = k(
�
c ) so thatK becomes an ordered

field with P  P ⌘.

68. Let k be an ordered field, and let K be the extension that arises by adjoining the

square roots of all the positive elements of K. Prove that K is a formally real

field by carrying out the following steps:

(a) Show that if n is chosen as small as possible so that an equation �1 =�k
j=1 pj⌦

2
j holds in K with all pj positive in k and all ⌦j in an extension

k(
�
c1 , . . . ,

�
cn ) of k with all cj positive in k, then writing

k(
�
c1 , . . . ,

�
cn ) = k(

�
c1 , . . . ,

�
cn�1 )(

�
cn )

leads to an equation

�1 =
k�
j=1

pja
2
j +

k�
j=1

pj cnb
2
j + 2

�
cn

k�
j=1

pjajbj (⌅)

in which aj and bj are in k(
�
c1 , . . . ,

�
cn�1 ).
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(b) Consider the third term on the right side of (⌅), and show that a contradiction
results if this term is 0 and a different contradiction arises if this term is not 0.

69. Let k be a formally real field, and let k be an algebraic closure. Show that there
exist maximal formally real subfields of k containing k, and show that any such
is a real closed field.

70. Carry out the following steps to show that a real closed fieldk becomes an ordered
field in one and only one way:

(a) Suppose that c = 0 is not a square, hence that k(
�
c ) is a quadratic extension

of k. Why is�1 =
�n

j=1(aj +bj
�
c )2 for suitable members aj and bj of k?

(b) By expanding the identity in (a), show that c is not a sum of squares. In

other words, every sum of squares in k is a square in k.
(c) Solve for c in the expansion in (b), and conclude that �c is a square.
(d) Conclude from the previous steps that the choice of P as the set of nonzero

squares makes k into an ordered field and that there no other possible defi-
nition for the set P of positive elements that makes k into an ordered field.

71. Carry out the following steps to show that in any real closed field k, every
polynomial of odd degree has a root:

(a) Show by induction that it is enough to handle irreducible polynomials of

odd degree.

(b) For an irreducible polynomial Q(X) of odd degree n, let k(�) be a simple

algebraic extension of k such that Q(�) = 0. Show that an expression of�1
as a sum of squares in k(�) forces an identity

�k
j=1 Rj (X)2+Q(X)A(X) =

�1 for suitable polynomials Rj (X) in k[X] of degree ↵ n � 1 and some
polynomial A(X) in k[X] of odd degree ↵ n � 2.

(c) If r is a root of the polynomial A(X) in (b), show that
�k

j=1 Rj (r)
2 = �1,

and deduce a contradiction.

72. By using the results of Problems 70–71 and taking into account the proof of

Theorem 1.18 that appears in Section IX.10, prove that if k is a real closed field,
then k(

�
�1 ) is algebraically closed.

73. Put the above results together to give a proof of the existence in theArtin–Schreier

Theorem: if an ordered field k has P as its set of positive elements and k as an
algebraic closure, then there exists a real closed field K with k  K � k such
that k = K(

�
�1 ) and such that P is contained in the set of squares in k, i.e.,

such that the set of positive elements in the natural ordered-field structure on k
contains P .



CHAPTER X

Modules over Noncommutative Rings

Abstract. This chapter contains two sets of tools for working with modules over a ring R with

identity. The first set concerns finiteness conditions on modules, and the second set concerns the

Hom and tensor product functors.

Sections 1–3 concern finiteness conditions onmodules. Section 1 dealswith simple and semisim-

ple modules. A simple module over a ring is a nonzero unital module with no proper nonzero

submodules, and a semisimple module is a module generated by simple modules. It is proved that

semisimple modules are direct sums of simple modules and that any quotient or submodule of a

semisimplemodule is semisimple. Section 2 establishes an analog for modules of the Jordan–Hölder

Theorem for groups that was proved in Chapter IV; the theorem says that any two composition series

have matching consecutive quotients, apart from the order in which they appear. Section 3 shows

that a module has a composition series if and only if it satisfies both the ascending chain condition

and the descending chain condition for its submodules.

Sections 4–6 concern the Hom and tensor product functors. Section 4 regards HomR(M, N ),

where M and N are unital left R modules, as a contravariant functor of the M variable and as a

covariant functor of the N variable. The section examines the interaction of these functors with

the direct sum and direct product functors, the relationship between Hom and matrices, the role

of bimodules, and the use of Hom to change the underlying ring. Section 5 introduces the tensor

product M ⌃R N of a unital right R module M and a unital left R module N , regarding tensor

product as a covariant functor of either variable. The section examines the effect of interchanging

M and N , the interaction of tensor product with direct sum, an associativity formula for triple tensor

products, an associativity formula involving a mixture of Hom and tensor product, and the use of

tensor product to change the underlying ring. Section 6 introduces the notions of a complex and an

exact sequence in the category of all unital left R modules and in the category of all unital right R

modules. It shows the extent to which the Hom and tensor product functors respect exactness for

part of a short exact sequence, and it gives examples of how Hom and tensor product may fail to

respect exactness completely.

1. Simple and Semisimple Modules

This chapter develops further theory for unital modules over a ring with identity

beyond what is in Section VIII.1. Results about modules that take advantage of

commutativity of the ring were included in Chapter VIII. In the present chapter

the ring may or may not be commutative. We shall be interested in those modules

whose structure is especially easy to analyze and in constructions that create new

modules from old ones. The chapter consists of tools for working with such

553
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modules and their related rings and algebras. There are no major theorems in the

chapter, but the material here is essential for the developments in several of the

chapters of Advanced Algebra.

Throughout this chapter, R will denote a ring with identity. We shall work

with the category C of all unital left R modules. Specifically the objects of

C are left unital R modules, and the space of morphisms between two such

modules M and N consists of all R homomorphisms from M into N . It is

customary to write HomR(M, N ) for this set of morphisms.1 In the special case
that R is a field, the notation HomR(M, N ) reduces to notation we introduced in
Section II.3 for the set of linear maps from one vector space over R to another.

For general R, the set HomR(M, N ) is an abelian group under addition of the
values: (⌥1 + ⌥2)(m) = ⌥1(m) + ⌥2(m). Without some further hypothesis on R,
HomR(M, N ) does not have a natural R module structure.
However, there is some residual action by scalars. Any element z in the center

Z of R, i.e., any element with cr = rc for all r in R, acts on HomR(M, N ). The
definition is that (c⌥)(m) = ⌥(cm). The function c⌥ certainly respects addition,
and it respects action by a scalar r in R because (c⌥)(rm) = ⌥(crm) = ⌥(rcm) =
r⌥(cm) = r(c⌥)(m); thus c⌥ is in HomR(M, N ), and HomR(M, N ) becomes a
Z module. The center Z automatically contains the multiplicative identity 1 and

its integer multiples Z 1.
We shall tend to ignore this action by the center except in two special cases.

One is that R is commutative, and then HomR(M, N ) is an R module. The other
is that R is an associative algebra (with identity) over a field F . In this case the

action of members of F on the identity of R embeds F into R, and F may thus

be identified with a subfield of the center of R. The result is that when R is an

associative algebra over a field F , then HomR(M, N ) is a vector space over F .
We write EndR(M) for HomR(M,M). This abelian group has the structure

of a ring with identity, multiplication being composition: (⌥⌃)(m) = ⌥(⌃(m)).
The distributive laws need to be checked: the formula (⌥1+⌥2)⌃ = ⌥1⌃ +⌥2⌃
is immediate from the calculation

((⌥1 + ⌥2)⌃)(m) = (⌥1 + ⌥2)(⌃(m))

= ⌥1(⌃(m)) + ⌥2(⌃(m)) = (⌥1⌃ + ⌥2⌃)(m),

while the formula ⌥(⌃1+⌃2) = ⌥⌃1+⌥⌃2 makes use of the fact that ⌥ respects
addition and is proved by the calculation

(⌥(⌃1 + ⌃2))(m) = ⌥(⌃1(m) + ⌃2(m))

= ⌥(⌃1(m)) + ⌥(⌃2(m)) = (⌥⌃1 + ⌥⌃2)(m).

1The notation Hom(M, N )with no subscript is sometimes used for HomZ(M, N ), i.e., to denote
the group of homomorphisms from one abelian group to another.
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If Z is the center of R, then EndR(M) is a Z module, as well as a ring, and
the two structures are compatible; the result is that EndR(M) is an associative Z
algebra in the sense of Example 15 in Section VIII.1. In particular, when R is an

associative algebra over a field F , then EndR(M) is an associative F algebra.
There is usually no need to re-prove for right R modules an analog of each

result about left R modules. The reason is that we can make use of the opposite

ring Ro of R, defined to be the same underlying abelian group but with reversed

multiplication: a ⌥ b = ba. Any left R module M then becomes a right Ro

module Mo under the definition mro = rm for r in R, m in M , and ro equal to

the same set-theoretic member of Ro as r . The theory of unital left R modules

for all R thereby yields a theory of unital right R modules for all R.

A unital left R module M is said to be simple, or irreducible, if M ✓= 0 and if

M has no proper nonzero R submodules. If M is simple, then M = Rx for each

x ✓= 0 in M; conversely if M ✓= 0 has M = Rx for each x ✓= 0 in M , then M is

simple. Whenever M = Rx for an element x , then M is isomorphic as a unital

left R module to R/I , where I is the left ideal I = {r ⌘ R | r x = 0}.
A unital left R module M is said to be semisimple if M is generated by simple

left R submodules, i.e., if it is the sum of simple left R submodules. In this

definition, the sum may be empty (and then M = 0), it may be finite, or it may

be infinite. Evidently simple implies semisimple for unital left R modules.

We come to examples in a moment. First we prove that the sum of simple left

R modules in a semisimple module may always be taken to be a direct sum, i.e.,

that semisimple modules are completely reducible.

Proposition 10.1. If the unital left R module M is semisimple, then M

is the direct sum of some family of simple R submodules. In more detail if

{Ms | s ⌘ S} is a family of simple R submodules of the unital left R module M
whose sum is M , then there is a subset T of S with the property that

M =
 

t⌘T
Mt .

PROOF. Call a subset U of S “independent” if the sum
⌦

u⌘U Mu is direct.

This condition means that for every finite subset {u1, . . . , un} of U and every

set of elements mi ⌘ Mui , the equation m1 + · · · + mn = 0 implies that each

mi is 0. From this formulation it follows that the union of any increasing chain

of independent subsets of S is itself independent. By Zorn’s Lemma there is a

maximal independent subset T of S. By definition the sum M0 =
⌦

t⌘T Mt is

direct. Consequently it suffices to show that M0 is all of M . By the hypothesis

on S, it is enough to show that each Ms is contained in M0. For s in T , this

conclusion is clear. Thus suppose s is not in T . By the maximality of T , T � {s}
is not independent. Consequently the sum Ms + M0 is not direct, and it follows
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that Ms ⌫ M0 ✓= 0. But this intersection is an R submodule of Ms . Since Ms is

simple, a nonzero R submodule of Ms must be all of Ms . Thus Ms ⌫ M0 = Ms ,

and Ms is contained in M0. �

EXAMPLES OF SEMISIMPLE MODULES.

(1) Let F be a field. Left and right amount to the same thing for modules when

the underlying ring is commutative. We know that the unital F modules are just

the vector spaces over F . Such a vector space V is a simple F module if and

only if it is 1-dimensional, since 1-dimensionality is the necessary and sufficient

condition to have V ✓= 0 be of the form V = Fx for all x ✓= 0 in V . Any vector

space V is the sum of all of its 1-dimensional subspaces, and consequently every

unital F module is semisimple. Theorem 2.42 shows that each vector space V

has a basis; this theorem is therefore a special case of Proposition 10.1, which

says that any semisimple module is the direct sum of simple modules.

(2) Let D be a division ring. Division rings were defined in Section IV.4 as

rings with identity 1 ✓= 0 such that the nonzero elements form a group under

multiplication. Every field is a division ring, and the quaternions form a division

ring that is not a field. Let M be a unital left D module, and let x ✓= 0 be in

M . Then the left D module Dx is simple because if N � Dx is a nonzero D

submodule and if y is in N , then we can write y = dx with d in D and see from

the formula d�1y = x that x is in N and N = Dx . Any unital left D module is

the sum of its D submodules Dx for x in M , and therefore every unital left D

module is semisimple. From Proposition 10.1 we can conclude that every unital

left D module M is the direct sum of simple modules. In other words, M has a

basis, just as if D were a field. Consequently it is customary to refer to unital left

D modules as left vector spaces over D. A notion of (left) dimension, equal to

a well-defined nonnegative integer or⇣, will emerge from the discussion in the
next section.

(3) Let D be a division ring. SectionV.2 introduced the ring of n-by-nmatrices

over any commutative ring with identity, and Example 4 of rings in SectionVIII.1

extended the definition to the case that the ring is noncommutative. Thus let R

be the ring Mn(D). Let M = Dn be the abelian group of n-component column

vectors with entries in D. Undermultiplication of matrices times column vectors,

M becomes a unital left R module. Let us prove that M is simple. It is enough to

show that Rm = M for every nonzero m in M . Let m ✏ be in M with entries m✏i ,
and suppose that the i th0 component mi0 of m is ✓= 0. Then we can multiply on

the left of m by the matrix r whose (i, j)th entry ri j is m
✏
im
�1
i0
if (i, j) = (i, j0)

and is 0 otherwise, and the product is the column vector m✏. Thus m✏ is in Rm,
and Rm = M as required. Hence M = Dn is an example of a simple R module.

(4) Again let D be a division ring, and let R = Mn(D). Let us see that the left
R module R is semisimple. In fact, if Rj is the additive subgroup of R whose
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nonzero entries are all in the j th column, then Rj is a left R submodule of R that

is R isomorphic to Dn . Thus we see that R = R1 ⇧ · · ·⇧ Rn as left R modules,

and the left R module R is semisimple as a consequence of Example 3.

(5) Let G be a group, and let CG be the complex group algebra defined

in Example 16 in Section VIII.1. Let V be a vector space over C, and let
⌦ : G � GL(V ) be a representation of G on V . The universal mapping

property of complex group algebras described in that example and pictured in

Figure 8.4 shows that the representation ⌦ of G extends to CG and makes V

into a unital left CG module. Conversely if the complex vector space V is a

unital left CG module, then we obtain a representation of G by restriction from
CG to G. What needs to be checked here is that each member of G acts by an

invertible linear mapping. This is a consequence of the unital property; since

1 acts as 1, the action by g�1 inverts the action of g. Thus we have a one-one
correspondence of representations of G on complex vector spaces with unital left

CG module structures. Under this correspondence, irreducible representations

of G (i.e., nonzero representations having no proper nonzero invariant subspace)

correspond to simple CG modules. Now suppose that G is finite. Readers

who have looked at Section VII.4 know from Corollary 7.21 that every finite-

dimensional representation of a finite group G on a complex vector space is the

direct sum of irreducible representations; the corresponding CG modules are

therefore semisimple. But more is true. If V is any CG module for the finite

groupG and if x is in V , thenCGx is a vector subspace spanned by {gx | g ⌘ G}
and consequently is finite-dimensional. Applying what is known from Section

VII.4, we can write CGx as the direct sum of simple CG modules. Therefore

the sum of all simple CG modules in V is all of V , and V is semisimple. From
Proposition 10.1 we conclude that every unital left CG module is semisimple if
G is a finite group.

The next proposition shows that decompositions of semisimple modules as

direct sums of simple modules behave in a fashion analogous to decompositions

of vector spaces as direct sums of 1-dimensional vector subspaces. However,

the simple modules need not all be isomorphic to one another, as is shown by

Example 5. A theory that takes the isomorphism types of simple modules into

account appears in Problems 12–20 at the end of the chapter.

Proposition 10.2. Let M be a semisimple left R module, and suppose that

M =
�

s⌘S Ms is the direct sum of simple R modules Ms . Let N be any R

submodule of M . Then

(a) the quotient module M/N is semisimple. In more detail there is a subset
T of S with the property that the submodule MT =

�
t⌘T Mt of M maps

R isomorphically onto M/N .
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(b) N is a direct summand of M . In more detail, M = N ⇧ MT , where MT

is as in (a).

(c) N is semisimple. In more detail choose T as in (a), and write T ✏ for the
complement of T in S. Then the quotientmappingM � M/MT restricts

to an R isomorphism of N onto M/MT , and M/MT is R isomorphic to

MT ✏ .

PROOF. Each simple R submodule Ms of M maps to an R submodule Ms of

M/N . This image either is simple (and then is R isomorphic to Ms) or is zero.

We let U be the subset of S for which it is simple. Then M/N is evidently the

sum of the simple R submodules {Ms | s ⌘ U}. By Proposition 10.1 there is a
subset T of U such that

M/N =
 

t⌘T
Mt .

This proves (a).

For (b), we use the following elementary observation: if N and N ✏ are R
submodules of M , then M = N ⇧ N ✏ if and only if the quotient map M � M/N
carries N ✏ isomorphically onto the quotientM/N . Taking N ✏ = MT and applying

(a), we obtain (b).

For (c), the same observation when applied first to M = N ⇧ MT and then to

M = MT ✏ ⇧ MT shows that the quotient map M � M/MT carries N isomor-

phically onto M/MT and carries MT ✏ isomorphically onto M/MT . Therefore

N �= M/MT
�= MT ✏ , and (c) is proved. �

In the context of simple modules, HomR(M, N ) has special properties. Read-
ers who have looked at Section VII.4 have seen these special properties in the

context of representations of finite groups on complex vector spaces. There they

were captured by Schur’s Lemma (Proposition 7.18). If we pass from represen-

tations on complex vector spaces to CG modules, following the prescription in

Example 5, we obtain a result about HomCG(M, N ) when G is a finite group.

Lemma 10.3 and Proposition 10.4 generalize this to a result about HomR(M, N )
for arbitrary R.

Lemma 10.3. Suppose that E is a simple left R module and that M =�
a⌘A Ma is a direct-sum decomposition of the unital left R module M into

arbitrary R submodules, not necessarily simple. Then

HomR(E,M) �=
 

a⌘A
HomR(E,Ma)

as an isomorphism of abelian groups.



1. Simple and Semisimple Modules 559

REMARKS. The hypothesis that E is simple is critical here. Without it a

map into a direct sum might have nonzero projections into infinitely many of the

summands, and then it could not be represented as a finite sum of maps into sum-

mands. Proposition 10.12 below will point out that the correct identity without a

special hypothesis on E is HomR(E,
↵

a⌘A Ma) �=
↵

a⌘A HomR(E,Ma).

PROOF. Suppose ⌥ is in HomR(E,M). Write ⌥a for the composition of ⌥ with
the projectionM � Ma . Themap from left to right in the displayed isomorphism

is to be ⌥ ◆� {⌥a}a⌘A. Suppose for the moment that the image is contained in the
direct sum on the right. The mapping is one-one since M is the sum of the Ma’s,

and it is onto since the mapping is the identity on each subgroup HomR(E,Ma)
of HomR(E,M).
Thus we must show for each ⌥ that only finitely many of the maps ⌥a are

nonzero. Choose e in E with ⌥(e) ✓= 0, and write

⌥(e) = m1 + · · · + mn with mi ⌘ Mai .

Since E is simple, E = Re. Therefore

⌥(E) = R⌥(e) = R(m1 + · · · + mn) � Rm1 + · · · + Rmn

� Ma1 ⇧ · · ·⇧ Man .

Consequently only ⌥a1, . . . ,⌥an can be nonzero. �

Lemma 10.3 enables us to study maps between semisimple modules in terms

of maps between simple modules. The latter are described by the next result.

Proposition 10.4 (Schur’s Lemma). Suppose that M and N are simple left R

modules.

(a) If M and N are not R isomorphic, then HomR(M, N ) = 0.

(b) EndR(M) is a division ring.
(c) (Dixmier) If R is an associative algebra over an algebraically closed field

F and if the vector-space dimension of M over F is less than the cardinality of

F , then EndR(M) consists of the F multiples of the identity.

REMARK. In the setting of representations of a finite group G as in Section

VII.4, or in the case thatG is a finite group and R = CG in the current setting, any
singly generated R module such as M or N is finite-dimensional over C. Part (a)
in that case reduces to the statement that the vector space of intertwining operators

between two inequivalent irreducible representations is 0. Part (c) in that case

says that the space of self-intertwining operators for an irreducible representation

consists of the scalar multiples of the identity. For a general R, we get only the

weaker conclusion of (b) that EndR(M) is a division ring. If R is an associative
algebra over a field F , we have seen that EndR(M) is an associative algebra over
F , and (c) gives a condition under which we can improve upon (b).
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PROOF. Suppose that ⌥ is nonzero in HomR(M, N ). Then ker⌥ is a proper
R submodule of M , and we must have ker⌥ = 0 since M is simple. Similarly

image⌥ is a nonzero R submodule of N , and we must have image⌥ = F since

N is simple. Therefore ⌥ is an R isomorphism of M onto N . This proves (a) and

(b).

For (c) let m be a nonzero element of M . The map ⌥ ◆� ⌥(m) is F linear and
one-one from EndR(M) into M by (b). Thus EndR(M) as an associative division
algebra over F has vector-space dimension at most the vector-space dimension of

M , and the latter by hypothesis is strictly less than the cardinality of F . Arguing

by contradiction, let us assume that EndR(M) is not equal to F ; say EndR(M)
contains an element ⌥ not in F .
The smallest division subalgebra of EndR(M) containing F and ⌥ is the field

F generated by F and ⌥. Since F is algebraically closed, ⌥ is not a root of any
nonzero polynomial with coefficients in F . Thus the substitution homomorphism

equal to the identity on F and carrying X to ⌥ is one-one from F[X] into F .

By the universal mapping property of fields of fractions (Proposition 8.6), the

substitution homomorphism factors through the field of fractions F(X). Thus

we may regard F(X) as a subfield of F . In the field F(X), the set of elements
{(X � c)�1 | c ⌘ F} is linearly independent over F , as we see by assuming a
nontrivial linear dependence and clearing fractions, and hence dimF F(X) is ↵
the cardinality of F . Since EndR(M)  F  F(X) under our identification, the
dimension of EndR(M) over F is↵ the cardinality of F . This conclusion contra-
dicts the observation of the previous paragraph that the dimension of EndR(M) is
strictly less than the cardinality of F . So the assumption that EndR(M) contains
an element not in F must be false, and (c) follows. �

2. Composition Series

We continue with R as a ring with identity, and we work with the category of

all unital left R modules. In this section we shall say what is meant by a unital

left R module of “finite length,” and we shall investigate semisimplicity for such

modules.

A finite filtration of a unital left R module M is a finite descending chain

M = M0  M1  · · ·  Mn = 0

of R submodules. We do not insist on this particular indexing, and with the

obvious adjustments, we allow also a finite increasing chain to be called a fi-

nite filtration. Relative to the displayed inclusions, the modules Mi/Mi+1 for
0 ⌦ i ⌦ n � 1 are called the consecutive quotients of the filtration. The finite
filtration is called a composition series if the consecutive quotients are all simple
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R modules; in particular, they are to be nonzero. The consecutive quotients in

this case are called composition factors.

We encountered an analogous notion with groups in Section IV.8, but there

was a complication in that case. The complication was that each subgroup had

to be normal in the next-larger subgroup in order for the consecutive quotients to

be groups. The overlap between the current treatment and the earlier treatment

occurs for abelian groups, which on the one hand are unital Z modules and on
the other hand are groups whose subgroups are automatically normal.

We are going to obtain analogs for the category of unital left R modules of the

group-theoretic results of Zassenhaus, Schreier, and Jordan–Hölder in Section

IV.8. The ones here will be a little easier to prove than those in Section IV.8 since

we do not have the complication of checking whether subgroups are normal. Let

M = M0  M1  · · ·  Mm = 0

M = N0  N1  · · ·  Nn = 0and

be two finite filtrations of M . We say that the second is a refinement of the first

if there is a one-one function f : {0, . . . ,m} � {0, . . . , n} with Mi = Nf (i) for

0 ⌦ i ⌦ m. The two finite filtrations of M are said to be equivalent ifm = n and

if the order of the consecutive quotients M0/M1, M1/M2, . . . , Mm�1/Mm may

be rearranged so that they are respectively isomorphic to N0/N1, N1/N2, . . . ,
Nm�1/Nm .

Lemma 10.5 (Zassenhaus). Let M1, M2, M
✏
1, and M

✏
2 be R submodules of a

unital left R module M with M ✏
1 � M1 and M

✏
2 � M2. Then

((M1 ⌫ M2) + M ✏
1)/((M1 ⌫ M ✏

2) + M ✏
1)

�= ((M1 ⌫ M2) + M ✏
2)/((M

✏
1 ⌫ M2) + M ✏

2).

PROOF. By the Second Isomorphism Theorem (Theorem 8.4),

(M1 ⌫ M2)/(((M1 ⌫ M ✏
2) + M ✏

1) ⌫ (M1 ⌫ M2))

�= ((M1 ⌫ M2) + (M1 ⌫ M ✏
2) + M ✏

1)/((M1 ⌫ M ✏
2) + M ✏

1)

= ((M1 ⌫ M2) + M ✏
1)/((M1 ⌫ M ✏

2) + M ✏
1).

Since we have

((M1 ⌫ M ✏
2) + M ✏

1) ⌫ (M1 ⌫ M2) = ((M1 ⌫ M ✏
2) + M ✏

1) ⌫ M2

= (M1 ⌫ M ✏
2) + (M ✏

1 ⌫ M2),

we can rewrite the above isomorphism as

(M1 ⌫ M2)/((M1 ⌫ M ✏
2) + (M ✏

1 ⌫ M2))

�= ((M1 ⌫ M2) + M ✏
1)/((M1 ⌫ M ✏

2) + M ✏
1).

The left side of this isomorphism is symmetric under interchange of the indices 1

and 2. Hence so is the right side, and the lemma follows. �
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Theorem 10.6 (Schreier). Any two finite filtrations of a module M in C have
equivalent refinements.

PROOF. Let the two finite filtrations be

M = M0  M1  · · ·  Mm = 0

M = N0  N1  · · ·  Nn = 0,and

and define

Mi j = (Mi ⌫ Nj ) + Mi+1 for 0 ⌦ i ⌦ m � 1 and 0 ⌦ j ⌦ n,

Nji = (Mi ⌫ Nj ) + Nj+1 for 0 ⌦ i ⌦ m and 0 ⌦ j ⌦ n � 1.

Then

M = M00  M01  · · ·  M0n

 M10  M11  · · ·  M1n  · · ·  Mm�1,n = 0

M = N00  N01  · · ·  N0mand

 N10  N11  · · ·  N1m  · · ·  Nn�1,m = 0

are refinements of the respective given filtrations. The containments Min  
Mi+1,0 and Njm  Nj+1,0 are equalities here, and the only nonzero consecutive
quotients are therefore of the formMi j/Mi, j+1 and Nji/Nj,i+1. For these we have

Mi j/Mi, j+1

= ((Mi ⌫ Nj ) + Mi+1)/((Mi ⌫ Nj+1 + Mi+1) by definition

�= ((Mi ⌫ Nj ) + Nj+1)/((Mi+1 ⌫ Nj ) + Nj+1) by Lemma 10.5

= Nji/Nj,i+1 by definition,

and thus the above refinements are equivalent. �

Corollary 10.7 (Jordan–Hölder Theorem). If M is a unital left R module with

a composition series, then

(a) any finite filtration of M in which all consecutive quotients are nonzero

can be refined to a composition series, and

(b) any two composition series of M are equivalent.

PROOF. We apply Theorem 10.6 to a given filtration and a known composition

series. After discarding redundant terms from each refinement (those that lead to

0 as a consecutive quotient), we arrive at a refinement of our given finite filtration

that is equivalent to the known composition series. Hence the refinement is a

composition series. This proves (a). If we specialize this argument to the case

that the given filtration is a composition series, then we obtain (b). �
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Corollary 10.7 implies that the composition factors for a given composition

series depend only on M , not on the particular composition series. Moreover,

if M ✏  M ✏✏ are R submodules of an M with a composition series such that

M ✏/M ✏✏ is simple, then M ✏/M ✏✏ is a composition factor of M . This fact follows
by eliminating redundant terms from the finite filtration M  M ✏  M ✏✏  0 and
applying Corollary 10.7a to the result.

If a unital left R module M has a composition series, then we say that M has

finite length. This notion is closed under passage to submodules and quotients.

In fact, if

M = M0  M1  · · ·  Mn = 0

is a composition series of M and if M ✏ is an R submodule of M , then

M ✏ = M0 ⌫ M ✏  M1 ⌫ M ✏  · · ·  Mn ⌫ M ✏ = 0

is a finite filtration of M ✏ in which each consecutive quotient is simple or 0.
Discarding redundant terms (which lead to 0 as a consecutive quotient), we obtain

a composition series for M ✏. A similar argument works for M/M ✏.
Let us see that if the unital left R modules M ✏ and M/M ✏ have finite length,

then so does M . In fact, we take a composition series for M/M ✏, pull it back to
M , and concatenate it to a composition series for M ✏. The result is a composition
series for M , and the assertion follows. In particular, the direct sum of two unital

left R modules of finite length has finite length.

If M has a composition series of the form M = M0  M1  · · ·  Mn = 0,

then we say that M has length n. If it has no composition series, we say it has

infinite length. According to Corollary 10.7, this notion of length is independent

of the particular composition series that we use. The argument in the previous

paragraph shows that if M ✏ is an R submodule of M , then

length(M) = length(M ✏) + length(M/M ✏),

with the finiteness of either side implying the finiteness of the other side. One

consequence is that if M ✏ is a length-n submodule of a length-n module M with

n finite, then M ✏ = M . Another consequence is that if M is a semisimple left R

module, then M has a composition series if and only if M is the finite direct sum

of simple left R modules.

From the last of these observations, we see that if F is a field, then the vector

spaces over F that have a composition series are the finite-dimensional vector

spaces, and in this case the length of the vector space is its dimension. The

structure of finite-dimensional vector spaces is so elementary that the Jordan–

Hölder Theorem is of no interest in this case, and it was for that reason that no

version of the Jordan–Hölder Theorem for vector spaces appeared earlier in the

book.
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In the case that R = D is a division ring, matters are slightly subtler. We know

fromExample 2 in Section 1 that every unital left Dmodule is semisimple, andwe

noted that such D modules are therefore called left vector spaces. Corollary 10.7

shows that the number of summands in any decomposition of a left vector space

V as the direct sum of simple D modules is either an integer n ↵ 0 independent
of the decomposition or is infinite, independently of the decomposition. This

number, the integer n or⇣, is called the dimension of the left vector space V .
We saw one other example of a semisimple left Rmodule. Specifically if D is a

division ring, thenwe saw in Example 4 of Section 1 that R = Mn(D) is semisim-
ple as a left R module. The number of simple summands is n, and hence R has

length n. So R has a composition series when considered as a left R module.

There are two other cases in which composition series give something familiar.

One is the case that R is the ring Z of integers. A unital Z module is an abelian
group, and we know that the simple abelian groups are the cyclic groups of

prime order. For an abelian group with a composition series, the order of the

group is the product of the orders of the consecutive quotients and hence is finite.

Consequently an abelian group has a composition series if and only if it is a finite

abelian group. Such a group need not be semisimple; the group C4, for example,

is not the direct sum of cyclic groups of prime order.

The other case concerns triangular form, Jordan canonical form, and related

decompositions, as explained in Sections V.3 and V.6 and as reinterpreted after

Corollary 8.29. Let V be a finite-dimensional vector space over a fieldK, and let
L : V � V be a linearmapping fromV to itself. Put R = K[X], andmake V into
a unital R module by the definition A(X)(v) = A(L)v for any A(X) inK[X] and
v in V . The R submodules are the vector subspaces of V that are invariant under
L . The finite dimensionality of V forces V to have a composition series as an R

module. Let us suppose for a moment thatK is algebraically closed. Proposition

5.6 says that the matrix of L in some ordered basis is upper triangular, and linear

combinations of the first k vectors in this basis form an invariant subspace under

L of dimension k. These subspaces are nested, and thus we obtain a composition

series. Thus obtaining a composition series when K is algebraically closed is

equivalent to obtaining triangular form. The existence of Jordan form is a finer

result. The discussion after Corollary 8.29 shows that V is a finite direct sum of R

modules R/(X � cj )kj with cj inK and kj > 0. For each of these, the discussion

at the end of Section VIII.6 shows how to refine R/(X � cj )
kj to a composition

series for which there is an R submodule of each possible dimension from 0 to

kj ; the finer structure is hidden in the way that each invariant subspace is obtained

from the next smaller invariant subspace. If K is not necessarily algebraically

closed, then (X � cj )
kj is to be replaced by Pj (X)kj for some prime polynomial

Pj (X), and the consecutive quotients for R/(Pj (X))kj have dimension equal to
the degree of Pj (X).
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3. Chain Conditions

We continue with R as a ring with identity, and we work with the category of

all unital left R modules. Except in special cases we did not address conditions

in Section 2 under which a unital left R module M has a composition series. In

this section we shall see that a necessary and sufficient condition for M to have a

composition series is that it satisfy two “chain conditions,” an ascending one and

a descending one, that we shall define. We already encountered the ascending

chain condition in Proposition 8.30 for the special case that R is a commutative

ring with identity, and the proof for general R requires only cosmetic changes.

Proposition 10.8. If R is a ring with identity and M is a unital left R module,

then the following conditions on R submodules of M are equivalent:

(a) (ascending chain condition) every strictly ascending chain of R sub-

modules M1 � M2 � · · · terminates in finitely many steps,
(b) (maximum condition) every nonempty collection of R submodules has

a maximal element under inclusion,

(c) (finite basis condition) every R submodule is finitely generated.

PROOF. To see that (a) implies (b), let S be a nonempty collection of R
submodules of M . Take M1 in S. If M1 is not maximal, choose M2 in S properly
containing M1. If M2 is not maximal, choose M3 in S properly containing M2.

Continue in this way. By (a), this processmust terminate, and then we have found

a maximal R submodule in S.
To see that (b) implies (c), let N be an R submodule of M , and let S be

the collection of all finitely generated R submodules of N . This collection is

nonempty since 0 is in it. By (b), S has a maximal element, say N ✏. If x is in
N but x is not in N ✏, then N ✏ + Rx is a finitely generated R submodule of N

that properly contains N ✏ and therefore gives a contradiction. We conclude that
N ✏ = N , and therefore N is finitely generated.

To see that (c) implies (a), let M1 � M2 � · · · be given, and put N =�⇣
n=1 Mn . By (c), N is finitely generated. Since the Mn are increasing with n,

we can find some Mn0 containing all the generators. Then the sequence stops no

later than at Mn0 . �

The corresponding result for descending chains is as follows.

Proposition 10.9. If R is a ring with identity and M is a unital left R module,

then the following conditions on R submodules of M are equivalent:

(a) (descending chain condition) every strictly descending chain of R

submodules M1 ⇥ M2 ⇥ · · · terminates in finitely many steps,
(b) (minimum condition) every nonempty collection of R submodules has

a minimal element under inclusion.
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PROOF. To see that (a) implies (b), let S be a nonempty collection of R
submodules of M . Take M1 in S. If M1 is not minimal, choose M2 in S properly
contained in M1. If M2 is not minimal, choose M3 in S properly contained in
M2. Continue in this way. By (a), this process must terminate, and then we have

found a minimal R submodule in S.
To see that (b) implies (a), we observe that the members of any strictly de-

scending chain would be a family without a minimal element. Since (b) says that

any nonempty family has a minimal element, there can be no such chain. �

Proposition 10.10. Let R be a ring with identity, let M be a unital left R

module, and let N be an R submodule of M . Then

(a) M satisfies the ascending chain condition if and only if N and M/N
satisfy the ascending chain condition,

(b) M satisfies the descending chain condition if and only if N and M/N
satisfy the descending chain condition.

PROOF. We prove (a), and the proof of (b) is completely similar. Suppose M

satisfies the ascending chain condition and hence also the maximum condition

by Proposition 10.8. The R submodules of N are in particular R submodules

of M and hence satisfy the maximum condition. The R submodules of M/N
lift back to R submodules of M containing N , and they too must satisfy the

maximum condition. By Proposition 10.8, N and M/N satisfy the ascending

chain condition.

Conversely suppose that N and M/N satisfy the ascending chain condition.

Let {Ml} be an ascending chain of R submodules of M; we are to show that {Ml}
is constant from some point on. Since N and M/N satisfy the ascending chain

condition, we can find an n such that

Mn+k ⌫ N = Mn ⌫ N and (Mn+k + N )/N = (Mn + N )/N

for all k ↵ 0. Combining the Second Isomorphism Theorem (Theorem 8.4) and
the first of these identities gives

(Mn+k + N )/N �= Mn+k/(Mn+k ⌫ N ) = Mn+k/(Mn ⌫ N )

for all k ↵ 0. Combining this result and two applications of the second of the

identities gives

Mn+k/(Mn ⌫ N ) = Mn/(Mn ⌫ N ).

The First Isomorphism Theorem (Theorem 8.3) shows that
�
Mn+k/(Mn ⌫ N )

⇥⌃�
Mn/(Mn ⌫ N )

⇥ �= Mn+k/Mn.

Since the left side is the 0 module, the right side is the 0 module. Therefore

Mn+k = Mn for all k ↵ 0. �
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Proposition 10.11. If R is a ring with identity and M is a unital left R module,

then M has a composition series if and only if M satisfies both the ascending

chain condition and the descending chain condition.

PROOF. If M has a composition series of length n, then the Jordan–Hölder

Theorem (Corollary 10.7a) shows that every finite filtration of M with nonzero

consecutive quotients has length⌦ n, and henceM satisfies both chain conditions.

Conversely suppose that M satisfies both chain conditions. By the maximum

condition, choose if possible amaximalproper R submoduleN1 ofM , then choose

if possible amaximal proper R submodule N2 of N1, and so on. If all these choices

are possible, we obtain a strictly descending chain M ⇥ N1 ⇥ N2 ⇥ · · · , and the
consecutive quotients will be simple at each stage. The minimum condition says

that we cannot have such a chain, and thus the choice is impossible for the first

time at some stage k. That means that some Nk has no proper R submodule, and

Nk must be 0. Then M = N1 ⇥ N2 ⇥ · · · ⇥ Nk = 0 is a composition series. �

4. Hom and End for Modules

We continue to work with the category C of unital left R modules, where R is
a ring with identity, not necessarily commutative. Our interest in this section is

with HomR(M, N ) and EndR(M), whereM and N are modules in C. Recall from
Section 1 that HomR(M, N ) is a unital Z module, where Z is the center of R,
and that EndR(M) is a Z algebra, the multiplication being composition. We shall
tend to ignore Z except when R is commutative or R is an associative algebra

over a field. However, Z will implicitly play a role in the context of bimodules,

which we introduce near the end of this section.

In this section we shall be interested in interactions of HomR(M, N ) and
EndR(M) within the category C, in identities that they satisfy, in the naturality of
such identities, and in the use of HomR(M, N ) in “change of rings,” also known
as “extension of scalars.” The next section will carry out a similar investigation

for a notion of tensor product that generalizes the tensor products in Chapter VI,

and we shall obtain in addition one important formula involving Hom and tensor

products at the same time. Finally in Section VI we shall examine the effect of

Hom and tensor product on “exact sequences.”

The first observation is that HomR is a functor, either a functor of one variable

with the other variable held fixed or, less satisfactorily, a functor of two variables.

To be precise, letD be the category of all abelian groups. For fixed M in Obj(C ),
we define

F(N ) = HomR(M, N ).
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If⌥ is inHomR(N , N ✏), we define F(⌥) inHomZ
�
HomR(M,N ),HomR(M,N ✏)

⇥

by the formula

F(⌥)(⇧ ) = ⌥⇧ for ⇧ ⌘ HomR(M, N ),

where ⌥⇧ denotes the composition of ⇧ followed by ⌥. In other words, F(⌥)
is given by postmultiplication by ⌥. By inspection we see that F(1N ) is the
identity from HomR(M, N ) to itself if 1N is the identity on N and that F(⌥✏⌥) =
F(⌥✏)F(⌥) if ⌥✏ is in HomR(N

✏, N ✏✏); the latter formula comes down to the asso-
ciativity formula (⌥✏⌥)⇧ = ⌥✏(⌥⇧ ) for functions under composition. Therefore F
is a covariant functor from the category C to the categoryD. We write Hom(1,⌥)
for F(⌥), so that Hom(1,⌥)(⇧ ) = ⌥⇧ .
Similarly for fixed N in Obj(C ), we define

G(M) = HomR(M, N ).

On morphisms, G is given by premultiplication. Specifically for a morphism ⌃
in HomR(M,M ✏), we define G(⌃) in HomZ

�
HomR(M

✏, N ),HomR(M, N )
⇥
by

the formula

G(⌃)(⇧ ) = ⇧⌃ for ⇧ ⌘ HomR(M
✏, N ).

We readily check that G is a contravariant functor from C to D. We write

Hom(⌃, 1) for G(⌃), so that Hom(⌃, 1)(⇧ ) = ⇧⌃ .
To create a single functor H from F and G, we can try to define a functor

H from C 2 to D by H(M, N ) = HomR(M, N ). If ⌥ ⌘ HomR(N , N ✏) and
⌃ ⌘ HomR(M,M ✏) are given, we can try the formula H(⌃,⌥)(⇧ ) = ⌥⇧⌃ as a

definition for ⇧ in HomR(M
✏, N ). The trouble is that H is mixed as contravariant

in the first variable and covariant in the second variable. To get H to be covariant,

we can use the same formulas but regard H as defined on C opp⇤C, where C opp is
the opposite category of C, as defined in Problems 78–80 at the end of Chapter IV.
But this is getting to be a complicated structure for describing something simple,

and we shall simply avoid this construction altogether,2 working with F or G as

circumstances dictate.

Even though we shall not work with H as a functor, it is convenient to

combine Hom(1,⌥) and Hom(⌃, 1) into a single definition of Hom(⌃,⌥) as
Hom(⌃,⌥)(⇧ ) = ⌥⇧⌃ . In particular, Hom(1,⌥) and Hom(⌃, 1) commute with
each other; the commutativity follows from the associative law

Hom(⌃, 1) ⌥ Hom(1,⌥)(⇧ ) = (⌥⇧ )⌃ = ⌥(⇧⌃) = Hom(1,⌥) ⌥ Hom(⌃, 1)(⇧ ).

2In category theory one sometimes proceeds in another way, defining a “bifunctor” to be a

functor-like thing depending on two variables, covariant or contravariant in each but maybe not the

same in each, and satisfying an appropriate commutativity property for the two variables.
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Now let us turn to three identities involving HomR and to their ramifications.

Each identitywill assert some isomorphism involvingHom, andwe consider each

side of the identity as the value of a functor. We shall be interested in knowing

that the isomorphism is natural in each case, the notion of naturality having been

defined in Section VI.6. The naturality need be proved in just one direction in

each case, since the inverse of an isomorphism that is natural is an isomorphism

that is natural.

The first two identities concern the interaction of HomR with direct products

and direct sums. Direct products and direct sums of unital left R modules were

defined in Examples 7 and 8 of modules in Section VIII.1, and they were seen to

be the product and coproduct functors for the category C. If S is a nonempty set,
then the direct product

↵
s⌘S Ms of a family of unital left R modules {Ms | s ⌘ S}

is the module whose underlying set is the Cartesian product of the sets Ms and

whose operations are defined coordinate by coordinate. The direct sum
�

s⌘S Ms

is the R submodule of elements of
↵

s⌘S Ms that are nonzero in only finitelymany

coordinates.

Proposition 10.12. Let S be a nonempty set, let Ms and Ns be unital left R

modules for each s ⌘ S, and let M and N be unital left R modules. Then there

are isomorphisms of abelian groups

(a) HomR

��
s⌘S Ms, N

⇥ �=
↵

s⌘S HomR(Ms, N ),

(b) HomR

�
M,
↵

s⌘S Ns
⇥ �=
↵

s⌘S HomR(M, Ns).

Moreover, the isomorphism in (a) is natural in the variable {Ms}s⌘S and in the
variable N , and the isomorphism in (b) is natural in the variable M and in the

variable {Ns}s⌘S .
REMARKS. In each instance the assertion of naturality is that some square

diagram is commutative, as illustrated in Figure 6.3. For example, if the mapping

from left to right in the isomorphism (a) is denoted for fixed N by ⌦{Ms}s⌘S and

if a system of R homomorphisms ⌥s : Ms � M ✏
s is given, then one assertion of

naturality for (a) is that⌦{M ✏
s}s⌘S ⌥ {Hom(⇧⌥s, 1)} = {Hom(⇧⌥s, 1)} ⌥⌦{Ms}s⌘S .

The other says for fixed {Ms}s⌘S and for an R homomorphism ⌃ : N � N ✏ that
⌦N ✏ ⌥Hom(1,⌃) = Hom(1,⌃) ⌥⌦N if the isomorphism (a) is denoted for fixed�

Ms by ⌦N and if ⌃ : N � N ✏ is an R homomorphism. Two corresponding
assertions are made about (b). To simplify the notation, we shall usually drop the

subscripts from ⌦.

PROOF. For (a), let es : Ms �
�

t Mt be the s
th inclusion, and let

ps :
�

t Mt � Ms be the s
th projection; the latter is defined as the restriction of

the projection associated with the direct product. The map from left to right in

(a) is given by⌦(⌅ ) = {⌅ ⌥es}s⌘S for ⌅ in HomR

��
s Ms, N

⇥
, and the expected

formula for the inverse is ⌦✏({⇧s}s⌘S) =
⌦

s (⇧s ⌥ ps). Then we have
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⌦✏(⌦(⌅ )) = ⌦✏({⌅ ⌥ es}s) =
⌦
s

(⌅ ⌥ es ⌥ ps) = ⌅

⌦(⌦✏({⇧s}s)) = ⌦
�⌦

s

(⇧s ⌥ ps)
⇥

=
⇤�⌦

s

(⇧s ⌥ ps)
⇥
⌥ et
⌅
t

and

= {⇧s ⌥ ps ⌥ es}s = {⇧s}s .

Hence ⌦ is an isomorphism with inverse ⌦✏.
Next let the system of R homomorphisms ⌥s : M

✏
s � Ms be given, let

e✏s : M
✏
s �
�

t M
✏
t be the s

th inclusion, and fix N . For ⌅ in HomR

��
s Ms, N

⇥
,

we have

{Hom(⇧⌥s, 1)}s(⌦(⌅ )) = {Hom(⇧⌥s, 1)}s({⌅ ⌥ es}s) = {⌅ ⌥ es}s ⌥ {⌥s}s
= {⌅ ⌥ es ⌥ ⌥s}s = {⌅ ⌥ ⌥s ⌥ e✏s}s = {⌅ ⌥ {⌥s}s ⌥ e✏t}t
= ⌦(⌅ ⌥ {⌥s}s) = ⌦({Hom(⇧⌥s, 1)}s(⌅ )).

This proves naturality in the variable {Ms}s . If an R homomorphism⌥ : N � N ✏

is given and if ⌅ is in HomR

��
s Ms, N

⇥
, then

⌦(Hom(1,⌥)(⌅ )) = ⌦(⌥ ⌥ ⌅ ) = {⌥ ⌥ ⌅ ⌥ es}s
= Hom(1,⌥)({⌅ ⌥ es}s) = Hom(1,⌥)(⌦(⌅ )).

This proves naturality in the variable N .

For (b), let ps :
↵
Nt � Ns be the s

th projection. The map from left to right

in (b) is given by ⌦(⌅ ) = {ps ⌥ ⌅ }s for ⌅ in HomR

�
M,
↵

s Ns
⇥
, and the inverse

is given by ⌦✏({⇧s}s) = ⇧ , where ⇧ (m) = {⇧s(m)}s . The proof of naturality is
similar to the corresponding proof in (a) and is omitted. �

One ramification of Proposition 10.12 is the correspondence of “linear” maps

to matrices when the ring R of scalars is noncommutative. If R is a field and V is

an n-dimensional vector space over R, then we know that EndR(V ) is isomorphic
as an R algebra to the space Mn(R) of n-by-n matrices over R, the isomorphism
being fixed once we choose an ordered basis of V . Things are more subtle when

R is noncommutative.

Corollary 10.13. Let V be a unital left R module, and let S be the ring

S = EndR(V ). For integers m ↵ 1 and n ↵ 1, there is a canonical isomorphism
of abelian groups

HomR(V
n, Vm) �= Mmn(S)

such that composition of R homomorphisms, given as a mapping

HomR(V
n, Vm)⇤ HomR(V

p, V n) �� HomR(V
p, Vm),
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corresponds to matrix multiplication

Mmn(S)⇤ Mnp(S) �� Mmp(S).

In particular, in the special case thatm = n, this canonical isomorphism becomes

an isomorphism of rings

EndR(V
n) �= Mn(S).

REMARKS. For V = R, this isomorphism takes the form

EndR(R
n) �= Mn(EndR(R))

and looks like something familiar from the case that R is a field. If EndR(R)
were to be isomorphic as a ring to R, then the correspondence would be exactly

what we might expect between R linear mappings from a free R module of rank

n into itself, with n-by-n matrices with entries in R. However, EndR(R) is not
ordinarily isomorphic to R, and the correspondence is something different and

unexpected. We shall sort out these matters in Proposition 10.14 and Corollary

10.15.

PROOF. Let ej : V � V n =
�n

k=1 V =
↵n

k=1 V be the j th inclusion for

whatever n is under discussion, and let pi : V
m � V be the i th projection

for whatever m is under discussion. For f in HomR(V
n, Vm), define fi j =

pi f ej . Then fi j is R linear from V into V , hence is in S = EndR(V ). If also
g is in HomR(V

p, V n), so that f ⌥ g is in HomR(V
p, Vm), then the formula⌦n

k=1 ek pk = 1 on V n gives

( f ⌥ g)i j = pi f gej =
n⌦

k=1
pi f ek pkgej =

n⌦
k=1

fikgk j .

Thus f ⌥ g corresponds to the matrix product [ fi j ][gi j ], and the mapping is a ring
homomorphism. Since

⌦
i, j

ei fi j pj =
⌦
i, j

ei pi f ej pj =
�⌦

i

ei pi
⇥
f
�⌦

j

ej pj
⇥

= 1 f 1 = f,

the mapping is one-one. If an arbitrary member [ui j ] of Mmn(S) is given, then
we can define f =

⌦
k,l ekukl pl , obtain fi j = pi f ej =

⌦
k,l pi ekukl plej =

pieiui j pj ej = ui j , and conclude that the mapping is onto. �

Proposition10.14. Themapping⌥ ◆� ⌥(1) is a ring isomorphismEndR(R) �=
Ro of EndR(R) onto the opposite ring Ro of R.

PROOF. The mapping ⌥ ◆� ⌥(1) certainly respects addition. If ⌥ maps to ⌥(1)
and ⇧ maps to ⇧ (1), then ⌥⇧ maps to (⌥⇧ )(1) = ⌥(⇧ (1)) = ⌥(⇧ (1)1) = ⇧ (1)⌥(1)
since ⌥ respects left multiplication by the element ⇧ (1) of R. The order of
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multiplication is therefore reversed, and ⌥ ◆� ⌥(1) is a ring homomorphism of
EndR(R) into Ro.

If r is given in Ro, define ⌥r (s) = sr for s in R. Then ⌥r respects addition, and
it respects left multiplication by R because ⌥r (r

✏s) = r ✏sr = r ✏⌥r (s). Therefore
⌥r is a member of EndR(R) such that ⌥r (1) = r , and ⌥ ◆� ⌥(1) is onto Ro.

If ⌥ in EndR(R) has ⌥(1) = 0, then the R linearity of ⌥ implies that ⌥(r) =
⌥(r1) = r⌥(1) = r0 = 0, so that ⌥ = 0. Consequently the map ⌥ ◆� ⌥(1) is
one-one. �

Corollary 10.15. For any integer n ↵ 1, EndR(R
n) is ring isomorphic to

Mn(R
o).

REMARKS. Now we can complete the remarks with Corollary 10.13: the case

in which R is commutative might lead us to believe that EndR(R
n) is isomorphic

to Mn(R), but the correct isomorphism is with Mn(R
o) instead.

PROOF. Corollary 10.13 shows that EndR(R
n) is isomorphic toMn(EndR(R)),

and Proposition 10.14 shows that the latter ring is isomorphic to Mn(R
o). �

The third identity involving HomR concerns HomR(R,M), where M is a

unital left R module. Ordinarily HomR(N ,M), when N and M are two unital

left R modules, is not an R module, but in the case that N = R, it is. The

definition of the scalar multiplication by r ⌘ R is (r⌥)(r ✏) = ⌥(r ✏r) for r ✏ ⌘ R

and ⌥ ⌘ HomR(R,M). To see that r⌥ is in HomR(R,M), we let s be in R and
compute that (r⌥)(sr ✏) = ⌥((sr ✏)r) = ⌥(s(r ✏r)) = s(⌥(r ✏r)) = s((r⌥)(r ✏)), as
required. To see that (sr)⌥ = s(r⌥), we compute that ((sr)⌥)(r ✏) = ⌥(r ✏(sr)) =
⌥((r ✏s)r) = (r⌥)(r ✏s) = (s(r⌥))(r ✏). Proposition 10.16 identifies HomR(R,M)
as an R module.

Proposition 10.16. For any unital left R module M , there is a canonical R

isomorphism

HomR(R,M) �= M,

and this isomorphism is natural in the variable M .

PROOF. The map⌦ from left to right is given by⌦(⌅ ) = ⌅ (1), and the inverse
will be seen to be given by ⌦✏(m) = ⇧m with ⇧m(r) = rm. The computation

⌦(r⌅ ) = (r⌅ )(1) = ⌅ (1r) = ⌅ (r1) = r(⌅ (1)) = r(⌦(⌅ )) shows that ⌦ is an

R homomorphism, and the computation ⇧m(sr) = (sr)m = s(rm) = s(⇧m(r))
shows that ⇧m is in HomR(R,M).

To see that⌦ is an isomorphism with inverse⌦✏, we observe that⌦✏⌦ carries

HomR(R,M) into itself and has (⌦✏⌦)(⌅ ) = ⌦✏(⌅ (1)) = ⇧⌅ (1), where ⇧⌅ (1)(r) =
r⌅ (1) = ⌅ (r); thus (⌦✏⌦)(⌅ ) = ⌅ , and ⌦✏⌦ is the identity. Also, (⌦⌦✏)(m) =
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⌦(⇧m) = ⇧m(1) = 1m = m, and ⌦⌦✏ is the identity.

For the naturality let ⌥ : M � M ✏ be an R homomorphism. Then we have
⌦(Hom(1,⌥)(⌅ )) = ⌦(⌥⌅ ) = ⌥⌅ (1) = ⌥(⌦(⌅ )), and naturality is proved. �

A relevant observation about the construction whose result is identified in

Proposition 10.16 is that we could get by with something more general than R

in the first variable of HomR . In fact, the construction would have worked for

HomR(P,M) for any unital (R, R) “bimodule” P , i.e., any abelian group P that
is a unital left R module and unital right R module in such a way that the two

actions commute: (rp)r ✏ = r(pr ✏). More generally let S be a second ring with
identity. We say that P is a unital (R, S) bimodule if P is simultaneously a unital
left R module and a unital right S module in such a way that (rp)s = r(ps) for
r ⌘ R, s ⌘ S, and p ⌘ P . The following proposition shows that P allows us to

construct a unital left S module out of any unital left R module M .

Proposition 10.17. If R and S are two rings with identity, if P is a unital

(R, S) bimodule, and if M is any unital left R module, then the abelian group

HomR(P,M) becomes a unital left S module under the definition (s⌥)(p) =
⌥(ps) for s ⌘ S, ⌥ ⌘ HomR(P,M), and p ⌘ P .

PROOF. To see that s⌥ is an R homomorphism, we compute that (s⌥)(rp) =
⌥((rp)s) = ⌥(r(ps)) = r(⌥(ps)) = r((s⌥)(p)). It is clear that 1 acts as 1, and
the distributive laws are routine. What needs checking is the formula (ss✏)⌥ =
s(s✏⌥) for s and s✏ in S and ⌥ in HomR(P,M). We compute that ((ss✏)⌥)(p) =
⌥(p(ss✏)) = ⌥((ps)s✏) = (s ✏⌥)(ps) = s((s ✏⌥))(p), and the result follows. �

An example of a unital (R, S) bimodule P is a ring S with identity such that
R is a subring of S with the same identity. Then we can take P = S, with the

result that R acts on the left, S acts on the right, and the two actions commute by

the associative law for multiplication in S. In this situation the passage from R

to HomR(S,M) is called a change of rings, or extension of scalars, for M .

In the special case that the rings are fields and the modules are vector spaces,

we saw a different kind of change of rings in Section VI.6. What we saw there

is that if K � L is an inclusion of fields and if E is a vector space over K, then
EL = E ⌃K L has a canonical scalar multiplication by members of L under the
definition that multiplication by c ⌘ L is the linear mapping 1⌃ (l ◆� cl). In the
next section we shall see that this change of rings by means of tensor products

for vector spaces generalizes to give a second construction of a change of rings

for modules over a ring with identity.
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5. Tensor Product for Modules

In this section, R is still a ring with identity, and others rings will play a role

as well. We are going to generalize the discussion of tensor products of Section

VI.6, extending the notion from the tensor product of two vector spaces over a

field to the tensor product of a unital right R module and a unital left R module.

The tensor product will ordinarily not have the structure of an R module; it will

be just an abelian group. Additional structure on the tensor product will come

from a bimodule structure on one or both of the given R modules. For example it

will be seen that the tensor product, in the current sense, of two vector spaces over

a field F is a vector space over F because both vector spaces can be regarded as

unital bimodules over F . We return to this detail after giving the definition and

the theorem. Later in this section we shall obtain two fundamental associativity

formulas, one for triple tensor products and one involving tensor product and

Hom together.

Let M be a unital right R module, and let N be a unital left R module. An R

bilinear function from M ⇤ N into an abelian group is a function b such that

b(m1 + m2, n) = b(m1, n) + b(m2, n) for all m1 ⌘ M , m2 ⌘ M , n ⌘ N ,

b(m, n1 + n2) = b(m, n1) + b(m, n2) for all m ⌘ M , n1 ⌘ N , n2 ⌘ N ,

b(mr, n) = b(m, rn) for all m ⌘ M , n ⌘ N , r ⌘ R.

The first two conditions are summarized by saying that b is additive in each

variable. A tensor product of M and N over R is a pair (V, �) consisting of an
abelian group V and an R bilinear map � : M ⇤ N � V having the following

universal mapping property: whenever b is an R bilinear function from M ⇤ N

into an abelian group A, then there exists a unique abelian-group homomorphism

L : V � A such that the diagram in Figure 10.1 commutes, i.e., such that L� = b

holds in the diagram. When � is understood, one frequently refers to V itself as
the tensor product. The abelian-group homomorphism L : V � A is called

the additive extension of b to the tensor product.3 Theorem 10.18 below will

address existence and essential uniqueness of the tensor product. Because of the

essential uniqueness, it is customary to denote a tensor product by M ⌃R N , and

Figure 10.1 incorporates this notation.4 The image �(m, n) of the member (m, n)
of M ⇤ N under � is denoted by m ⌃ n.

3Warning. The name “additive extension” is in analogy with the situation for the tensor product

of vector spaces over a field, in which the extension is linear and really is an extension. Example 2

below will show that the tensor product of nonzero modules can be 0, and hence we do not always

get something for general R that we can regard intuitively as an extension.
4Sometimes the notationM⌃R N refers to the constructed abelian group in the proof of Theorem

10.18, and sometimes it refers to any abelian group as in the definition of tensor product.
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M ⇤ N
b���� A

�

⌥⌥✏

M ⌃R N

L

FIGURE 10.1. Universal mapping property of a tensor product

of a right R module M and a left R module N .

Theorem 10.18. Let R be a ring with identity. If M is a unital right R module

and N is a unital left R module, then there exists a tensor product (M⌃R N , �) of
M and N over R, and it is unique in the following sense: if (V1, �1) and (V2, �2)
are two tensor products, then there exists a unique abelian-group homomorphism

⌦ : V1� V2 such that⌦⌥ �1 = �2, and it is an isomorphism. Any tensor product
is generated as an abelian group by the image of M ⇤ N in it. Moreover, tensor

product is a covariant functor from the category of pairs consisting of a unital

right R module and a unital left R module to the category of abelian groups under

the following definition: if ⌥ : M � M ✏ is a homomorphism of unital right R
modules and⌃ : N � N ✏ is a homomorphismof unital left Rmodules, then there
exists a unique homomorphism of abelian groups ⌥⌃⌃ : M⌃R N � M ✏ ⌃R N

✏

such that (⌥ ⌃ ⌃)(m ⌃ n) = ⌥(m)⌃ ⌃(n) for all m ⌘ M and n ⌘ N .

PROOF. Form the free abelian group G with a Z basis parametrized by the

elements of M ⇤ N . We write e(m, n) for the basis element in G corresponding
to the element (m, n) of M ⇤ N , and we regard e as a one-one function from

M ⇤ N onto the Z basis of G. Let H be the subgroup of G generated by all

elements of any of the forms

e(m1 + m2, n)� e(m1, n)� e(m2, n),

e(m, n1 + n2)� e(m, n1)� e(m, n2),

e(mr, n)� e(m, rn),

(⌅)

where the elements m,m1,m2 are in M , the elements n, n1, n2 are in N , and the
scalar r is in R. We defineM⌃R N to be the quotient groupG/H , q : G � G/H
to be the quotient homomorphism, and � to be the function (m, n) ◆� e(m, n)+H

from M ⇤ N into G/H . The function � is therefore given by � = q ⌥ e.
Let us prove that (M⌃R N , �) is a tensor product of M and N over R. Each of

the elements in (⌅) lies in H and hence is mapped by q into the 0 coset of G/H .
Since q is a homomorphism and since � = q ⌥ e, we obtain

�(m1 + m2, n) = �(m1, n) + �(m2, n)
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from the first relation in (⌅) and similar equalities from the other two relations.
Therefore � : M ⇤ N � M ⌃R N is an R bilinear function.

Now let b : M ⇤ N � A be an R bilinear function from M ⇤ N into an

abelian group A. The universal mapping property in Figure 8.2 for free abelian

groups shows that there exists a unique group homomorphism �L : G � A such

that �L(e(m, n)) = b(m, n) for all (m, n) in M ⇤ N . For the first expression in

(⌅), we have
�L
�
e(m1 + m2, n)� e(m1, n)� e(m2, n)

⇥

= �L(e(m1 + m2, n))��L(e(m1, n))��L(e(m2, n))

= b(m1 + m2, n)� b(m1, n)� b(m2, n).

The right side is 0 since b is R bilinear, and a similar conclusion applies to the

other two expressions in (⌅). Therefore eachmember of (⌅) lies in the kernel of�L ,
and the generated subgroup H lies in the kernel of �L . Consequently �L descends
to a group homomorphism L : G/H � A, i.e., there exists L with �L = L ⌥ q.
On any element (m, n) in M ⇤ N , we then have L ⌥ � = L ⌥ q ⌥ e = �L ⌥ e = b.

This proves the existence asserted by the universal mapping property for a tensor

product over R. For the asserted uniqueness, the formula L ⌥ � = b shows that L

is determined uniquely by b on �(M ⇤ N ). It is immediate from the definition of
M ⌃R N that �(M ⇤ N ) generates M ⌃R N , and thus L is determined uniquely

on all of M ⌃R N .

Therefore (M ⌃R N , �) is a tensor product. Problems 18–22 at the end of
Chapter VI show that the uniqueness up to the asserted isomorphism follows

from general category theory.

We are left with defining ⌥ ⌃ ⌃ when ⌥ : M � M ✏ and ⌃ : N � N ✏ are
given, and to showing that this definition makes tensor product into a covariant

functor. Define b : M ⇤ N � M ✏ ⌃R N
✏ by b(m, n) = ⌥(m)⌃⌃(n). Then b is

R bilinear into an abelian group, the property b(mr, n) = b(m, rn) being verified
by the calculation

b(mr, n) = ⌥(mr)⌃ ⌃(n) = ⌥(m)r ⌃ ⌃(n)

= ⌥(m)⌃ r⌃(n) = ⌥(m)⌃ ⌃(rn) = b(m, rn).

The additive extension of b to M ⌃R N is taken to be ⌥ ⌃ ⌃ . The formula is
therefore (⌥ ⌃⌃)(m ⌃ n) = ⌥(m)⌃⌃(n). If we are given also ⌥✏ : M ✏ � M ✏✏

and ⌃ ✏ : N ✏ � N ✏✏, then

(⌥✏ ⌃ ⌃ ✏)(⌥ ⌃ ⌃)(m ⌃ n) = (⌥✏ ⌃ ⌃ ✏)(⌥(m)⌃ ⌃(n)) = ⌥✏⌥(m)⌃ ⌃ ✏⌃(n)

= (⌥✏⌥ ⌃ ⌃ ✏⌃)(m ⌃ n).

Since the elements m ⌃ n generate M ⌃R N , we obtain (⌥✏ ⌃ ⌃ ✏)(⌥ ⌃ ⌃) =
⌥✏⌥⌃⌃ ✏⌃ . Similarly we check that 1M⌃1N = 1M⌃N . Therefore tensor product
is a covariant functor. �
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As in the last part of the above proof, the general procedure for constructing

an abelian-group homomorphism L : M ⌃R N � A is somehow to define an

R bilinear function b : M ⇤ N � A and to take the additive extension from

Theorem 10.18 as the desired homomorphism. Once one has observed that the

expression b(m, n) is of a form that makes it R bilinear, then the homomorphism
L is defined and is uniquely determinedby its values on elementsm⌃n, according
to the theorem.

In practice, M or N often has some additional structure, and that structure

may be reflected in some additional property of the tensor product. The corollary

below addresses some situations of this kind.

Corollary 10.19. Let R, S, and T be rings with identity, and suppose that M

is a unital right R module and N is a unital left R module. Under the additional

hypothesis that

(a) M is a unital (S, R) bimodule, then M ⌃R N is a unital left S module in

a unique way such that s(m ⌃ n) = sm ⌃ n for all m ⌘ M , n ⌘ N , and

s ⌘ S,
(b) N is a unital (R, T ) bimodule, then M ⌃R N is a unital right T module

in a unique way such that (m⌃ n)t = m⌃ nt for all m ⌘ M , n ⌘ N , and

t ⌘ T ,
(c) M is a unital (S, R) bimodule and N is a unital (R, T ) bimodule, then

M ⌃R N is a unital (R, T ) bimodule under the left R module structure
in (a) and the right T module structure in (b).

PROOF. In (a), let left multiplication by s ⌘ S within M be given by ⌥s : M �
M with ⌥s(m) = sm. Then multiplication by s in S within M ⌃R N is given

by ⌥s ⌃ 1. The covariant-functor property makes ⌥s⌥s✏ = ⌥ss✏ and ⌥1 = 1, and

the distributive properties follow from the definitions and the fact that each ⌥s
is a homomorphism of the additive group M . This proves (a), and (b) is proved

similarly. For (c), if left multiplication by s ⌘ S within M is given by ⌥s and if
right multiplication by t ⌘ T within N is given by ⌃t , then the commutativity of

the operations onM⌃R N follows from the fact that the additive homomorphisms

⌥s ⌃ 1 and 1⌃ ⌃t commute with each other. �

EXAMPLES.

(1) R ⌃R M �= M as an isomorphism of left R modules whenever M is a left

R module. Here we regard R as a unital (R, R) bimodule, so that R⌃R M �= M

has the structure of a unital left R module by Corollary 10.19a. The mapping of

left to right is the additive extension ⌦ of the R bilinear function b(r,m) = rm,

satisfying ⌦(r ⌃ m) = rm. It respects the left action by R. The two-sided

inverse ⌦✏ to ⌦ is given by ⌦✏(m) = 1 ⌃ m. Then ⌦✏ ⌥ ⌦ is the identity since
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⌦✏(⌦(r ⌃ m)) = ⌦✏(rm) = 1⌃ rm = r ⌃ m, and ⌦ ⌥ ⌦✏ is the identity since
⌦(⌦✏(m)) = ⌦(1 ⌃ m) = 1m = m. The R isomorphism R ⌃R M �= M is

natural in M . In fact, if ⌥ : M � M ✏ is given, then

⌥(⌦(r ⌃ m)) = ⌥(rm) = r⌥(m)

= ⌦(r ⌃ ⌥(m)) = ⌦
�
(1⌃ ⌥)(r ⌃ m)

⇥
.

(2) R = Z. In this case, M ⌃Z N is the tensor product of abelian groups.

Let us consider what abelian group we obtain when M and N are both finitely

generated. Proposition 10.21 below shows that direct sums pull out of any tensor

product, and hence it is enough to treat the tensor product of two cyclic groups.

For Z ⌃Z A, we get A by Example 1, and Proposition 10.20 below shows that

A ⌃Z Z gives the same thing. Problem 3 at the end of the chapter identifies the
tensor product of two arbitrary finite cyclic groups (Z/kZ)⌃Z (Z/ lZ). For now,
let us verify in the special case that GCD(k, l) = 1 that (Z/kZ)⌃Z (Z/ lZ) = 0.

This tensor product is a unital Z module, being an abelian group, and Corollary
10.19a shows that the action by Z is given by c(a ⌃ b) = ca ⌃ b for any integer

c. Then we have 0 = (k1) ⌃ 1 = k(1 ⌃ 1) and 0 = 1 ⌃ (l1) = (1l) ⌃ 1 =
(l1)⌃ 1 = l(1⌃ 1). Choosing integers x and y such that xk + yl = 1, we see

that 1 ⌃ 1 = x(k(1 ⌃ 1)) + y(l(1 ⌃ 1)) = 0 + 0 = 0. The tensor product is

generated by 1⌃ 1, and thus the tensor product is 0.
(3) R equal to a commutative ringwith identity. ThenM is an (R, R) bimodule,

since any unital left module for a commutative ring is a right module under the

definitionmr = rm and vice versa. Corollary 10.19 shows therefore thatM⌃R N

is a unital R module. The special case that R is a field was treated in Section

VI.6.

(4)M equal to a ring S with R as a subringwith the same identity. Thenwe can

regard S as a unital (S, R) bimodule, and Corollary 10.19a shows that S ⌃R M

is a unital left S module. The passage from M to S ⌃R M is a second kind of

change of rings, or extension of scalars, the first kind being the passage from

M to HomR(S,M) as in the previous section. Complexification of a real vector
space V as V ⌃R C is an instance of this change of rings by means of tensor

products. (Here we are taking into account the isomorphism V ⌃R C �= C⌃R V
given in Proposition 10.20 below.)

(5) M and N equal to associative R algebras with identity over a commutative

ring R with identity. Proposition 10.24 below shows that M ⌃R N is another

associative algebra with identity over R, with a multiplication such that

(m1 ⌃ n1)(m2 ⌃ n2) = m1m2 ⌃ n1n2.

In this case the additional structure on the tensor product is not a consequence of

Corollary 10.19, and additional argument is necessary.
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The rest of this sectionwill be devoted to establishing some identities for tensor

product, together with their naturality, and to proving that the tensor product over

R of two R algebras, for a commutative ring Rwith identity, is again an R algebra.

Each identity involves setting up a homomorphism involving one or more tensor

products, and it is necessary to prove in each case that the homomorphism is an

isomorphism. For this purpose it is often inconvenient to prove directly that the

homomorphism has 0 kernel and is onto. In such cases one constructs what ought

to be the inverse homomorphism and proves that it is indeed a two-sided inverse.

Proposition 10.20. Let R be a ring with identity, let M be a unital right R

module, and let N be a unital left R module. Let Ro be the opposite ring of R,

let Mo be M regarded as a left Ro module, and let No be N regarded as a right

Ro module. Then

M ⌃R N �= No ⌃Ro M
o

under the unique homomorphism of abelian groups carrying m ⌃ n in M ⌃R N

into n⌃m in No⌃Ro M
o. The isomorphism is natural in the variables M and N .

REMARK. Tomake the proof belowa little clearer, we shall distinguishbetween

elements of M and Mo, writing m in the first case and mo in the second case,

even though mo = m under our definitions. A similar notational convention will

be in force for N .

PROOF. The map (m, n) ◆� no ⌃ mo is additive in each variable and carries

(m, rn) to (rn)o⌃mo = noro⌃mo = no⌃romo = no⌃ (mr)o. This expression
is the image also of (mr, n), and hence (m, n) ◆� no ⌃ mo is R bilinear and has

an additive extension ⌦ to M ⌃R N . Arguing similarly, we readily construct a

homomorphism⌦✏ : No ⌃Ro M
o � M ⌃R N . It is immediate that ⌦

✏ is a two-
sided inverse to⌦, and the isomorphism follows. For the naturality inM , suppose
that ⌥ : M � M ✏ is an R homomorphism. Write ⌥o for the homomorphism
with ⌥o(mo) = (⌥(m))o. Then (1 ⌃ ⌥o)(⌦(m ⌃ n)) = (1 ⌃ ⌥o)(no ⌃ mo) =
no ⌃ ⌥o(mo) = no ⌃ (⌥(m))o = ⌦(⌥(m) ⌃ n) = ⌦((⌥ ⌃ 1)(m ⌃ n)). This
proves the naturality in the M variable, and naturality in the N variable is proved

similarly. �

Proposition 10.21. Let R be a ring with identity, let S be a nonempty set, let

Ms be a unital right R module for each s ⌘ S, and let N be a unital left R module.
Then � 

s⌘S
Ms

⇥
⌃R N �=

 

s⌘S
(Ms ⌃R N )

as abelian groups, and the isomorphism is natural in the tuple ({Ms}s⌘S, N ).
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REMARKS. A similar conclusion holds if the direct sum occurs in the second

member of the tensor product, as a consequence of Proposition 10.20. The

naturality carries with it some additional conclusions. For example, if each Ms is

a unital (T, R)bimodule for a ringT with identity, then thedisplayed isomorphism
is an isomorphism of left T modules.

PROOF. The map ({ms}s, n) ◆� {ms ⌃ n}s is R bilinear from
��

s⌘S Ms

⇥
⇤ N

into
�

s⌘S (Ms ⌃R N ), and its additive extension ⌦ is the homomorphism from

left to right in the displayed isomorphism. It has ⌦({ms}s ⌃ n) = {ms ⌃ n}s .
To construct the inverse, let is : Ms �

�
t⌘S Mt be the s

th inclusion. Then

(ms, n) ◆� is(ms)⌃ n is R bilinear into
��

s⌘S Ms

⇥
⌃R N and has an additive

extension carrying ms ⌃ n to is(ms) ⌃ n in
��

s⌘S Ms

⇥
⌃R N . The universal

mapping property of direct sums of abelian groups then gives us a corresponding

abelian-group homomorphism ⌦✏ :
�

s⌘S (Ms ⌃R N ) �
��

s⌘S Ms

⇥
⌃R N . It

has⌦✏({ms ⌃ n}s) = {ms}s ⌃ n. It is immediate that⌦✏ ⌥⌦ fixes each {ms}s ⌃ n

and hence is the identity, and that ⌦ ⌥⌦✏ fixes each {ms ⌃ n}s and hence is the
identity.

For the naturality let ⌥s : Ms � M ✏
s be an R homomorphism of right R

modules, and let ⌃ : N � N ✏ be an R homomorphism of left R modules. Then

⌦
�
({⌥s}s ⌃ ⌃)({ms}s ⌃ n)

⇥
=⌦
�
{⌥s(ms)}s ⌃ ⌃(n)

⇥
= {⌥s(ms)⌃ ⌃(n)}s

={⌥s ⌃ ⌃}s({ms ⌃ n})={⌥s ⌃ ⌃}s(⌦({ms}⌃ n),

and naturality is proved. �

Proposition 10.22. Let R and S be rings with identity, let M be a unital right

R module, let N be a unital (R, S) bimodule, and let P be a unital left S module.
Then

(M ⌃R N )⌃S P �= M ⌃R (N ⌃S P)

under the unique homomorphism⌦ of abelian groups such that⌦((m⌃n)⌃ p) =
m ⌃ (n ⌃ p). The isomorphism is natural in the triple (M, N , P).

REMARKS. As with Proposition 10.21, the naturality carries with it some

additional conclusions. For example, if T is a ring with identity and M is actually

a unital (T, R) bimodule, then the isomorphism is one of left T modules.

PROOF. For fixed p, the map (m, n, p) ◆� m ⌃ (n ⌃ p) is R bilinear. In fact,
the map is certainly additive in m and in n. For the transformation law with an

element r of R, the calculation is (mr, n, p) ◆� mr⌃ (n⌃ p) = m⌃r(n⌃ p) =
m ⌃ (rn ⌃ p), and this is the image of (m, rn, p).

Thus for each fixed p, we have a unique well-defined extension, additive in

m and n, carrying (m ⌃ n, p) to m ⌃ (n ⌃ p). Using the uniqueness, we see



5. Tensor Product for Modules 581

that this extended map is additive in the variables m ⌃ n and p. Also, if s is in

S, then ((m ⌃ n)s, p) = (m ⌃ ns, p) maps to m ⌃ (ns ⌃ p) = m ⌃ (n ⌃ sp),
which is the image of (m ⌃ n, sp), and therefore (m ⌃ n, p) ◆� m ⌃ (n ⌃ p) is
S bilinear. Consequently there exists a homomorphism⌦ of abelian groups as in

the statement of the proposition.

A similar argument produces a homomorphism⌦✏ of abelian groups carrying
the right member of the display to the left member such that⌦✏(m ⌃ (n⌃ p)) =
(m ⌃ n)⌃ p. On the generating elements, we see that⌦✏ ⌥⌦ and⌦ ⌥⌦✏ are the
identity. This proves the isomorphism.

For the naturality, let ⌥ : M � M ✏, ⌃ : N � N ✏, and ⇧ : P � P ✏ be maps
respecting the appropriate module structure in each case. Then

⌦
�
((⌥⌃⌃)⌃ ⇧ )((m ⌃ n)⌃ p)

⇥
= ⌦
�
(⌥ ⌃ ⌃)(m ⌃ n)⌃ ⇧ (p)

⇥

= ⌦
�
(⌥(m)⌃ ⌃(n))⌃ ⇧ (p)

⇥
= ⌥(m)⌃ (⌃(n)⌃ ⇧ (p))

= (⌥ ⌃ (⌃ ⌃ ⇧ ))(m ⌃ (n ⌃ p)) = (⌥ ⌃ (⌃ ⌃ ⇧ ))(⌦((m ⌃ n)⌃ p)),

and naturality is proved. �

Proposition 10.23. Let R and S be rings with identity, let M be a unital left

R module, let N be a unital (S, R) bimodule, and let P be a unital left S module.
Then

HomS(N ⌃R M, P) �= HomR(M,HomS(N , P))

under the homomorphism ⌦ of abelian groups defined by ⌦(⌥)(m)(n) =
⌥(n ⌃ m) for m ⌘ M , n ⌘ N , and ⌥ ⌘ HomS(M ⌃R N , P). The isomorphism
is natural in the variables (N ,M) and P .

REMARKS. In the displayed isomorphism, N ⌃R M on the left side is au-

tomatically a left S module, and hence HomS(N ⌃R M, P) is a well-defined
abelian group. For the right side, Proposition 10.17 shows that HomS(N , P)
is a left R module under the definition (r⇧ )(n) = ⇧ (nr); consequently
HomR(M,HomS(N , P)) is a well-defined abelian group. The naturality in the
conclusion allows one to conclude, for example, that if M is in fact a unital

(R, T ) bimodule for a ring T with identity, then the displayed isomorphism is an
isomorphism of left T modules.

PROOF. The homomorphism⌦ is well defined. We construct its inverse. If ⌃
is in HomR(M,HomS(N , P)), then the map (n,m) ◆� ⌃(m)(n) sends (nr,m)
to ⌃(m)(nr) = (r(⌃(m))(n) = (⌃(rm))(n), and this is the image of (n, rm).
Hence (n,m) ◆� ⌃(m)(n) is R bilinear and yields a map of N ⌃R M into P such

that n⌃m maps to⌃(m)(n). The latter map is an S homomorphism since sn⌃m
maps to ⌃(m)(sn) = s(⌃(m)(n)), which is s applied to the image of n⌃m. We

define⌦✏(⌃) to be the map defined on N ⌃R M with⌦✏(⌃)(n⌃m) = ⌃(m)(n).
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Then⌦✏(⌦(⌥))(n ⌃m) = ⌦(⌥)(m)(n) = ⌥(n ⌃m) shows that⌦✏ ⌥⌦ is the

identity, and ⌦(⌦✏(⌃))(m)(n) = ⌦✏(⌃)(n ⌃ m) = ⌃(m)(n) shows that ⌦ ⌥⌦✏

is the identity. Hence ⌦ is an isomorphism of abelian groups.

For naturality in (N ,M), let ⌅ : N ✏ � N and ⇧ : M ✏ � M be given. Then

⌦(Hom(⌅ ⌃ ⇧, 1)⌥)(m✏)(n✏) = (Hom(⌅ ⌃ ⇧, 1)(⌥))(n✏ ⌃ m✏)

= ⌥(⌅ ⌃ ⇧ )(n✏ ⌃ m✏) = ⌥(⌅ (n✏)⌃ ⇧ (m✏)) = ⌦(⌥)(⇧ (m✏))(⌅ (n✏))

= Hom(⇧,Hom(⌅, 1))(⌦(⌥))(m✏)(n✏),

and naturality is proved in (N ,M). For naturality in P , let ⌅ : P � P ✏ be given.
Then

⌦(Hom(1, ⌅ )⌥)(m)(n) = (Hom(1, ⌅ )⌥)(n ⌃ m) = ⌅⌥(n ⌃ m)

= ⌅
�
(⌦(⌥))(m)(n)

⇥
= Hom(1,Hom(1, ⌅ ))(⌦(⌥))(m)(n),

and naturality is proved in P . �

Proposition 10.24. Let R be a commutative ring with identity, and let M and

N be associative R algebras with identity. Then M ⌃R N is an associative R

algebra with identity under the unique multiplication law satisfying

(m ⌃ n)(m✏ ⌃ n✏) = mm✏ ⌃ nn✏.

PROOF. What we know from Example 3 is that M ⌃R N is a unital R module.

We need to define the associative-algebra multiplication in M ⌃R N and check

that it satisfies the required properties.

Let µ(m) and ⇤(n) be the left multiplication operators in M and N defined by

µ(m)(m✏) = mm✏ and ⇤(n)(n✏) = nn✏. The fact that R is central in M means

that µ(m)(rm✏) = mrm✏ = rmm✏ = rµ(m)(m✏) and hence that the mapping
µ(m) : M � M is a homomorphism of R modules. Similarly ⇤(n) : N � N

is a homomorphism of R modules. Therefore µ(m) ⌃ ⇤(n) is a well-defined
homomorphism of abelian groups for each (m, n) in M ⇤ N , and b(m, n) =
µ(m)⌃⇤(n) is awell-definedmapofM⇤N into the abeliangroupEndZ(M⌃RN ).
The map b is certainly additive in the M variable and in the N variable. If r is in

R, then b(mr, n) = µ(mr)⌃ ⇤(n). Since

(µ(mr)⌃ ⇤(n))(m✏ ⌃ n✏) = mrm✏ ⌃ nn✏ = mm✏r ⌃ nn✏

= mm✏ ⌃ rnn✏ = (µ(m)⌃ ⇤(rn))(m ⌃ n✏),

we see that b(mr, n) = b(m, rn). Thus b is R bilinear and extends to a homo-
morphism L : M ⌃R N � EndZ(M ⌃R N ) of abelian groups.
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For x and y inM⌃R N , we define a product by xy = L(x)(y). Since L(x) is in
EndZ(M ⌃R N ), we have x(y1 + y2) = xy1 + xy2. Since L is a homomorphism,

L(x1 + x2) = L(x1) + L(x2), and therefore (x1 + x2)y = x1y + x2y. The

element 1M ⌃1N , where 1M and 1N are the respective identities of M and N , is a

two-sided identity for M ⌃R N . Since M ⌃R N is a two-sided unital R module,

we have r x = xr , and thus R(1M ⌃ 1N ) lies in the center of M ⌃R N . Therefore

the product operation is R linear in each variable.

Suppose that x = m ⌃ n and y = m ✏ ⌃ n✏. Then we have

xy = L(x)(y) = L(m ⌃ n)(m✏ ⌃ n✏) = b(m, n)(m✏ ⌃ n✏)

= (µ(m)⌃ ⇤(n))(m✏ ⌃ n✏) = mm✏ ⌃ nn✏

as asserted in the statement of the proposition. Consequently

(m ⌃ n)
�
(m✏ ⌃ n✏)(m✏✏ ⌃ n✏✏)

⇥
=(m ⌃ n)(m✏m✏✏ ⌃ n✏n✏✏)=m(m✏m✏✏)⌃ n(n✏n✏✏)

=(mm✏)m✏✏ ⌃ (nn✏)n✏✏=(mm✏ ⌃ nn✏)(m✏✏ ⌃ n✏✏)

=
�
(m ⌃ n)(m✏ ⌃ n✏)

⇥
(m✏✏ ⌃ n✏✏).

This proves associativity of multiplication on elements of the form m⌃ n. Since

these elements generate the tensor product as an abelian group and since the

distributive laws hold, associativity holds in general. �

6. Exact Sequences

Consider a diagram of abelian groups and group homomorphisms of the form

· · · ⌥n�1��� Mn�1
⌥n�� Mn

⌥n+1��� Mn+1
⌥n+2��� · · · ,

where Mn�1, Mn , Mn+1, etc., are abelian groups and ⌥n�1, ⌥n , ⌥n+1, ⌥n+2, etc.,
are homomorphisms. The diagram can be finite or infinite, and the particular kind

of indexing is not important. The sequence in question is called a complex if all

consecutive compositions are 0, i.e., if ⌥k+1⌥k = 0 for all k. This condition is

equivalent to having image(⌥k) � ker(⌥k+1) and is the backdrop for the traditional
definitions of homology and cohomology groups, which are the various quotients

ker(⌥k+1)/ image(⌥k).

EXAMPLES OF COMPLEXES.

(1) The simplicial homology of a simplicial complex. For this situation the

indexing is reversed (say by replacing n by �n), so that the homomorphisms
lower the index. Each group Mn is a group whose elements are called “chains,”

and the homomorphisms are called “boundary maps.” The chains in the kernel

of one of the homomorphisms are said to be “closed,” and those in the image
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of a homomorphism are said to be “exact.” The quotient of the two, taking into

account the reversal of the indexing, is the system of simplicial homology groups

of the simplicial complex.

(2) The de Rham cohomology of a smooth manifold. For this situation the

indexing goes upward as indicated, the group Mn is the vector space of smooth

differential forms of degree n, the homomorphisms are the restrictions to these

spaces of the linear de Rham operator d, ker(⌥n+1) is the vector subspace of
“closed” forms, image(⌥n) is the vector subspace of “exact” forms, and the
quotient ker(⌥n+1)/ image(⌥n) is the n

th de Rham cohomology space of the

manifold.

(3) Cohomology of groups. This was defined in Section VII.6, knowledge

of which is not assumed in the present chapter. The result that shows that the

appropriate sequence is a complex is Proposition 7.39, for which we gave a direct

but complicated combinatorial proof.

The above sequence is said to be exact at Mn if ker(⌥n+1) = image(⌥n). It
is said to be an exact sequence if it is exact at every group in the sequence.

The condition of exactness may be viewed as having two parts to it. One is the

inclusion image(⌥n) � ker(⌥n+1) that enters the definition of complex. Since
this condition says that ⌥n+1⌥n = 0, it is often easy to check. The other condition

is that ker(⌥n+1) � image(⌥n), a condition that often is more difficult to check.
The extent to which a complex fails to be exact plays a fundamental role in the

subject of homological algebra. This is a subject that for the most part is left to

Chapter IV of Advanced Algebra. That chapter will put the examples above into

a wider context, and it will develop techniques for working with homology and

cohomology. In the present sectionwe shall give the barest hint of an introduction

to the subject by discussing some of the effects of the Hom functor and the tensor

product functor on exact sequences.

Let us establish a setting for applying a functor F to an exact sequence or more

general complex. For current purposes we have in mind that F is Hom in one of

its two variables or is tensor product in one of its two variables. First we need

to have two categories available so that F carries the one category to the other.

These categories will have to satisfy some properties, but we shall not attempt to

list such properties at this time.5 Let us be contentwith some familiar examples of

categories whose objects are abelian groups with additional structure and whose

morphisms are group homomorphisms with additional structure. Specifically let

R be a ring with identity, let CR be the category of all unital left R modules, and
letDR be the category of all unital right R modules. We suppose that our functor

5The appropriate notion is that of an “abelian category,” which is defined in Section IV.8 of

Advanced Algebra.



6. Exact Sequences 585

F carries some CR or DR to another such category, possibly for a different ring.

The functor F can be covariant or contravariant. We require also of F that it be

an additive functor, i.e., that F(⌥1+⌥2) = F(⌥1)+ F(⌥2) for any maps ⌥1 and
⌥2 that lie in the same Hom group.
With the additional structure in place, we can now introduce the notions of

complex and exact sequence for the domain and range categories of F , not just

for the category of abelian groups. In this case the abelian groups in the sequence

are to be objects in the category, and the group homomorphisms in the sequence

are to be morphisms in the category; otherwise the definitions are unchanged.

The condition that F be additive implies that F carries any 0 map to a 0 map, and

that property will be key for us. In fact, we can apply F to any complex in the

domain category (by applying it to each object and morphism in the sequence);

after F is applied, the arrows point the same way if F is covariant, and they point

the opposite way if F is contravariant. If F is covariant, it sends any consecutive

composition 0 = ⌥k+1⌥k to 0 = F(0) = F(⌥k+1⌥k) = F(⌥k+1)F(⌥k); therefore
the consecutive composition of F of the maps is 0, and we obtain a complex.

If F is contravariant, we have 0 = F(0) = F(⌥k+1⌥k) = F(⌥k)F(⌥k+1); the
consecutive composition of F of the maps is still 0, and we still obtain a complex.

Thus the additive functor F sends any complex to a complex.

However, not all additive functors invariably send exact sequences to exact

sequences, as we shall see with Hom and tensor product in the category CZ. Yet
they each preserve some features of certain exact sequences, even when Z is

replaced by a general ring with identity. To be precise we introduce the following

definition.

A short exact sequence in our category is an exact sequence of the form

0 �� M
⌥�� N

⌃��� P �� 0.

Exactness of this sequence incorporates three conditions:

(i) ⌥ is one-one,
(ii) ker⌃ = image⌥,
(iii) ⌃ is onto.

In fact, the three conditions are precisely the conditions of exactness at M , N ,

and P , respectively, since the maps at either end are 0 maps. If we think of ⌥ as
an inclusion map, then the short exact sequence corresponds to the isomorphism

N/M �= P obtained because ⌃ factors through to the quotient N/M .

Proposition 10.25. Let R be a ring with identity, let

0 �� M
⌥�� N

⌃��� P �� 0

be a short exact sequence in the category CR , let E be a module in CR , and let E ✏
be a module in DR . Then the following sequences in CZ are exact:
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E ✏ ⌃R M
1⌃⌥���� E ✏ ⌃R N

1⌃⌃���� E ✏ ⌃R P ���� 0,

0 ���� HomR(E,M)
Hom(1,⌥)������� HomR(E, N )

Hom(1,⌃)������� HomR(E, P),

HomR(M, E)
Hom(⌥,1)������� HomR(N , E)

Hom(⌃,1)������� HomR(P, E)���� 0.

REMARKS. Similarly tensor product in the first variable, which carries DR to

CZ, retains the same exactness as in the first of these three sequences. In each
case when we specialize to R = Z, there are examples to show that exactness
fails if we try to include the expected remaining 0 in the above three sequences.

We give such examples after the proof of the proposition.

PROOF. For the first sequence in CZ, we are to show that 1⌃⌃ is onto E ✏ ⌃R P

and that every member of the kernel of 1⌃⌃ is in the image of 1⌃⌥. (Recall that
ker(1⌃ ⌃)  image(1⌃ ⌥) since the sequence is a automatically a complex.)

Thus let p ⌘ P be given. Since ⌃ : N � P is onto, choose n ⌘ N with

⌃(n) = p. Then (1⌃⌃)(e⌃n) = e⌃ p. The elements e⌃ p generate E ✏ ⌃R P

as an abelian group, and hence 1⌃ ⌃ is onto E ✏ ⌃R P .

To show that ker(1 ⌃ ⌃) � image(1 ⌃ ⌥), we observe from the exactness

of the given sequence at N that E ✏ ⌃R ker⌃ = E ✏ ⌃R image⌥ is generated
by all elements e ⌃ ⌥(m), hence by all elements (1 ⌃ ⌥)(e ⌃ m). Therefore
E ✏ ⌃R image⌥ = image(1⌃ ⌥), and it is enough to prove that

ker(1⌃ ⌃) � E ✏ ⌃R ker⌃. (⌅)

To prove (⌅), we use the fact that ⌃ is onto P . Define W = E ✏ ⌃R ker⌃ as a

subgroup of E ✏ ⌃R N , and let q : E
✏ ⌃R N � (E ✏ ⌃R N )/W be the quotient

homomorphism. Define b : E ✏ ⇤ P � (E ✏ ⌃R N )/W by

b(e, p) = (e⌃ n) + W, where n is chosen such that ⌃(n) = p.

The expression b(e, p) does not depend on the choice of the element n having
⌃(n) = p since another choice n✏will differ from n by amember of ker⌃ andwill
affect the definition only by a member of W . The function b is certainly additive

in each variable, and it evidently has b(er, p) = b(e, rp) for r ⌘ R as well. Thus

b is R bilinear. Let L : E ✏ ⌃R P � (E ✏ ⌃R N )/W be the additive extension.

From b(e,⌃(n)) = (e⌃n)+W , we see that L(e⌃⌃(n)) = (e⌃n)+W , hence

that L ⌥ (1 ⌃ ⌃) = q. This formula shows that ker(1 ⌃ ⌃) � ker q = W , and

this is the inclusion (⌅).
For the second sequence in CZ, we are to show that Hom(1,⌥) is one-one and

that every member of the kernel of Hom(1,⌃) is in the image of Hom(1,⌥). If
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⌅ is in HomR(E,M) with Hom(1,⌥)(⌅ ) = 0, then ⌥(⌅ (e)) = 0 for all e ⌘ E .

Since ⌥ is one-one, ⌅ (e) = 0 for all e, and ⌅ = 0.

If ⇧ in HomR(E, N ) is in the kernel of Hom(1,⌃), so that⌃(⇧ (e)) = 0 for all

e ⌘ E , then ⇧ (e) = ⌥(m) for some m ⌘ M depending on e, by exactness of the

given sequence at N ; the element m is unique because ⌥ is one-one. Define ⇧ ✏

in HomR(E,M) by ⇧ ✏(e) = this m; the uniqueness of m for each e ensures that

⇧ ✏ is in HomR(E,M). Then we have ⇧ (e) = ⌥(m) = ⌥(⇧ ✏(e)), and we conclude
that ⇧ = Hom(1,⌥)(⇧ ✏).
For the third sequence in CZ, we are to show that Hom(⌃, 1) is one-one and

that every member of the kernel of Hom(⌥, 1) is in the image of Hom(⌃, 1). If
⌅ is in HomR(P, E) with Hom(⌃, 1)(⌅ ) = 0, then ⌅ (⌃(n)) = 0 for all n in N .

Since ⌃ carries N onto P , ⌅ = 0.

If ⇧ in HomR(N , E) is in the kernel of Hom(⌥, 1), then Hom(⌥, 1)(⇧ ) = 0.

So ⇧ (⌥(m)) = 0 for all m ⌘ M . Thus ⇧ vanishes on image⌥ = ker⌃ , and ⇧
descends to an R homomorphism ⇧ : N/ ker⌃ � E . That is, ⇧ is of the form
⇧ = ⇧⌃ = Hom(⌃, 1)(⇧ ). �

EXAMPLES OF FAILURE OF EXACTNESS IN CZ. We start from the exact sequence

0 �� Z ⌥�� Z ⌃��� Z/2Z �� 0,

where ⌥ is multiplication by 2 and ⌃ is the usual quotient homomorphism.

(1) We apply Z/2Z⌃Z ( · ) to the given exact sequence, and the claim is that
1⌃⌥ : (Z/2Z⌃ZZ)� (Z/2Z⌃ZZ) is not one-one. In fact,Z/2Z⌃ZZ �= Z/2Z,
and 1⌃ ⌥ acts as multiplication by 2 under the isomorphism, hence is the 0 map
and is not one-one.

(2) We apply HomZ(Z/2Z, · ) to the given exact sequence, and the claim is
that Hom(1,⌃) : HomZ(Z/2Z, Z) � HomZ(Z/2Z, Z/2Z) is not onto. In fact,
HomZ(Z/2Z, Z) = 0, and the identity map in HomZ(Z/2Z, Z/2Z) is nonzero;
therefore Hom(1,⌃) cannot be onto.

(3) We apply HomZ( · , Z/2Z)) to the given exact sequence, and the claim
is that Hom(⌥, 1) : HomZ(Z, Z/2Z) � HomZ(Z, Z/2Z) is not onto. In fact,
Hom(⌥, 1) is premultiplication by 2 and carries any ⌅ in HomZ(Z, Z/2Z) to the
homomorphism k ◆� ⌅ (2k) = 2⌅ (k) = 0. Since the usual quotient homomor-

phism Z � Z/2Z is a nonzero member of HomZ(Z, Z/2Z), Hom(⌥, 1) is not
onto HomZ(Z, Z/2Z).

7. Problems

1. Suppose that the commutative ring R is an integral domain. As usual, the R

submodules of R are the ideals. Prove that the ideals satisfy the descending

chain condition if and only if R is a field.
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2. Let F = F2 be a field with two elements.
(a) Give an example of a representation of the cyclic group C2 on F2 with the

property that there is a 1-dimensional invariant subspace U but there is no

invariant subspace V with F2 = U ⇧ V .

(b) How can one conclude from (a) that the group algebra R = FC2 has a unital
left R module of finite length that is not semisimple? (Educational note:

Compare this conclusion with Example 5 in Section 1, which shows that

every unital left CG module is semisimple if G is a finite group.)

3. Let G be the abelian group (Z/kZ) ⌃Z (Z/ lZ), where k and l are nonzero

integers.

(a) Prove that G is generated by the element 1⌃ 1.
(b) Prove that if k divides l, then (Z/kZ)⌃Z (Z/ lZ) �= (Z/kZ)⌃Z (Z/kZ).

(c) Using multiplication as a Z bilinear form on (Z/kZ)⇤ (Z/kZ), prove that

(Z/kZ)⌃Z (Z/kZ) has at least |k| elements.
(d) Conclude that (Z/kZ)⌃Z (Z/ lZ) �= Z/dZ, where d = GCD(k, l).

4. (Fitting’s Lemma) Let R be a ring with identity, let M be a unital left R module,

and suppose that M has a composition series. Let ⌥ be a member of EndR(M).

(a) Prove for the composition powers ⌥n of ⌥ that there exists an integer N such

that ker⌥n = ker⌥n+1 and image⌥n = image⌥n+1 for all n ↵ N .

(b) Let K and I be the respective R submodules of M obtained for n ↵ N in

(a). Prove that K ⌫ I = 0.

(c) For x in M , show that there is some y in image⌥N with ⌥N (x) = ⌥N (y).

(d) Deduce from (c) that M = K+ I, and conclude from (b) that M = K⇧ I.
(e) Prove that ⌥ carries I one-one onto I and that (⌥

⇧⇧
K)n = 0 for some n.

5. Let R be a ring with identity, and let

0 �� M
⌥��� N

⌃��� P �� 0

be an exact sequence of unital left Rmodules. Prove that the following conditions

are equivalent:

(i) N is a direct sum N ✏ ⇧ ker⌃ of R submodules for some N ✏,
(ii) there exists an R homomorphism ⌅ : P � N such that ⌃⌅ = 1P ,

(iii) there exists an R homomorphism ⇧ : N � M such that ⇧⌥ = 1M .

(Educational note: In this case one says that the exact sequence is split.)

6. (a) If R is the ring of quaternions, prove that EndR(R) is isomorphic to R as a

ring.

(b) Give an example of a noncommutative ring with identity for which EndR(R)

is not isomorphic to R, and explain why it is not isomorphic.
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7. Let R be a ring with identity, and let M be a unital left R module. Prove that M

has a unique maximal semisimple R submodule N . (Educational note: The R

submodule N is called the socle of M .)

8. Let F � K be an inclusion of fields, and let A be an associative algebra with

identity over F. Proposition 10.24 makes A ⌃F K into an associative algebra

over F with a multiplication such that (a1 ⌃ k1)(a2 ⌃ k2) = a1a2 ⌃ k1k2. Show

that A ⌃F K is in fact an associative algebra over K with scalar multiplication

by k in K equal to left multiplication by 1⌃ k.

9. A Lie algebra g over a field K is defined, according to Problems 31–35 at the

end of Chapter VI, to be a nonassociative algebra over K with a multiplication

written [x, y] that is alternating as a function of the pair (x, y) and satisfies

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z in g. If L is a field

containingK, prove that gL = g⌃K L becomes a Lie algebra over L in a unique
way such that its multiplication satisfies [x ⌃ c, y⌃ d] = [x, y]⌃ cd for x, y in

g and c, d in L.

10. Let R be a ringwith identity, let A be a unital right Rmodule, and let B be a unital

left Rmodule. SinceZ � R, A and B can be considered also asZmodules. Form
a version of A⌃R B with associated R bilinear map b1 : A⇤ B � A⌃R B, and

form a version of A⌃Z B with associatedZ bilinear map b2 : A⇤ B � A⌃Z B.
Let H be the subgroup of A⌃Z B generated by all elements b2(ar, b)�b2(a, rb)
with a ⌘ A, b ⌘ B, r ⌘ R, and let q : A ⌃Z B � (A ⌃Z B)/H be the

quotient homomorphism. Prove that there is an abelian group isomorphism

⌦ : (A⌃Z B)/H � A⌃R B such that⌦(q(b2(a, b))) = b1(a, b) for all a ⌘ A

and b ⌘ B.

11. Let R be a commutative ring with identity, and let C be the category of all
commutative associative R algebras with identity. Prove that if A1 and A2 are in

Obj(C), then (A1 ⌃R A2, {i1, i2}) is a coproduct, where i1 : A1� A1 ⌃R A2 is

given by i1(a1) = a1 ⌃ 1 and i2 : A2� A1 ⌃R A2 is given by i2(a2) = 1⌃ a2.

Problems 12–20 partition simple left R modules into isomorphism types, where R

is a ring with identity. For each simple left R module E and each unital left R

module M , one forms the sum ME of all simple R submodules that are isomorphic

to E and calls it an isotypic R submodule of M . The problems introduce a calculus

for working with the members of EndR(ME ) in terms of right vector spaces over a

certain division ring. They show that if M is semisimple, then M is the direct sum of

all its isotypic R submodules, each of these is mapped to itself by every member of

EndR(M), and consequently one can understand EndR(M) in terms of right vector

spaces over certain division rings. These problems generalize and extend Problems

47–52 at the end of Chapter VII, which in effect deal with what happens for the ring

CG whenG is a finite group; however, the material of Chapter VII is not prerequisite

for these problems. The following notation is in force: M is any unital left R module,
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E is a simple left R module, DE = HomR(E, E) is the ring known from Proposition

10.4b to be a division ring,

ME = (sum of all R submodules of M that are R isomorphic to E),

and ME = HomR(E,M).

Unital right DE modules are right vector spaces over DE . In Problems 18–20, E
denotes a set of representatives of all R isomorphismclasses of simple left Rmodules.

12. Prove that

(a) ME is a direct sum of simple R modules that are R isomorphic to E ,

(b) the image of every mapping in ME belongs to ME ,

(c) redefinition of the range from M to ME defines an isomorphism ME �=
HomR(E,ME ) of abelian groups.

13. Prove that

(a) ME is a unital right DE module under composition of R homomorphisms,

(b) E is a unital left DE module under the operation of the members of DE ,

(c) the left R module action and the left DE module action on E commute with

each other.

14. Show that ME ⌃DE
E is a unital left R module in such a way that r(m ⌃ e) =

m ⌃ re.

15. Prove that there is a well-defined R homomorphism⌦ : ME ⌃DE
E � M such

that ⌦(⌃ ⌃ e) = ⌃(e) and such that ⌦ is an R isomorphism onto ME .

16. Prove that the left R submodules N of ME are in one-one correspondence with

the right DE vector subspaces W of ME by the maps

N ◆� HomR(E, N ) � HomR(E,M) = ME if N � ME

and W ◆� W ⌃DE
E � ME ⌃DE

E �= ME if W � ME .

17. Prove for any unital left R module N that there is a canonical isomorphism

HomR(ME , NE ) �= HomDE
(ME , NE )

of abelian groups defined as follows. Suppose ⌥ is in HomR(ME , NE ). Com-

position with ⌥ carries HomR(E,M) into HomR(E, N ); this map respects the

right action of DE and hence induces a map

⌥E ⌘ HomDE
(ME , NE ).

The isomorphism is given in terms of the isomorphisms ⌦M for M and ⌦N for

N in Problem 15 by

⌥(⌦M(⌃ ⌃ e)) = ⌦N (⌥E (⌃)⌃ e) for ⌃ ⌘ ME .
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18. If M is semisimple, prove that

M =
 

E⌘E
ME

�=
 

E⌘E
(ME ⌃DE

E).

19. Still with M semisimple, prove that the left R submodules of M are in one-one

correspondence with families {WE | E ⌘ E} of right DE vector subspaces of

ME .

20. Suppose that M and N are two semisimple left R modules. Prove that there is a

canonical isomorphism of abelian groups

HomR(M, N ) �=
�

E⌘E
HomDE

(ME , NE ).

More precisely prove that an R module map from M to N is specified by giving,

for a representative E of each class of simple left R modules, an arbitrary right

vector-space map from ME to NE .





APPENDIX

Abstract. This appendix treats some topics that are likely to bewell known by some readers and less

known by others. Most of it already comes into play by Chapter II. Section A1 deals with set theory

and with functions: it discusses the role of formal set theory, it works in a simplified framework that

avoids too much formalism and the standard pitfalls, it establishes notation, and it mentions some

formulas. Some emphasis is put on distinguishing the image and the range of a function, since this

distinction is important in algebra and algebraic topology.

Section A2 defines equivalence relations and establishes the basic fact that they lead to a parti-

tioning of the underlying set into equivalence classes.

Section A3 reviews the construction of rational numbers from the integers, and real numbers

from the rational numbers. From there it concentrates on the solvability within the real numbers of

certain polynomial equations.

SectionA4 is a quick review of complex numbers, real and imaginary parts, complex conjugation,

and absolute value.

Sections A5 and A6 return to set theory. Section A5 defines partial orderings and includes Zorn’s

Lemma, which is a powerful version of the Axiom of Choice, while Section A6 concerns cardinality.

A1. Sets and Functions

Algebra typically makes use of an informal notion of set theory and notation for

it in which sets are described by properties of their elements and by operations

on sets. This informal set theory, if allowed to be too informal, runs into certain

paradoxes, such as Russell’s paradox: “If S is the set of all sets that do not

contain themselves as elements, is S a member of S or is it not?” The conclusion

of Russell’s paradox is that the “set” of all sets that do not contain themselves as

elements is not in fact a set.

Mathematicians’ experience is that such pitfalls can be avoided completely by

working within some formal axiom system for sets, of which there are several

that are well established. A basic one is “Zermelo–Fraenkel set theory,” and the

remarks in this section refer specifically to it but refer to the others at least to

some extent.1

The standard logical paradoxes are avoided by having sets, elements (or “en-

tities”), and a membership relation ⇣ such that a ⇣ S is a meaningful statement,

1Mathematicians have no proof that this technique avoids problems completely. Such a proof

would be a proof of the consistency of a version of mathematics in which one can construct the

integers, and it is known that this much of mathematics cannot be proved to be consistent unless it

is in fact inconsistent.
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true or false, if and only if a is an element and S is a set. The terms set, element,

and ⇣ are taken to be primitive terms of the theory that are in effect defined by
a system of axioms. The axioms ensure the existence of many sets, including

infinite sets, and operations on sets that lead to other sets. To make full use of this

axiom system, one has to regard it as occurring in the framework of certain rules

of logic that tell the forms of basic statements (namely, a = b, a ⇣ S, and “S

is a set”), the connectives for creating complicated statements from simple ones

(“or,” “and,” “not,” and “if . . . then”), and the way that quantifiers work (“there
exists” and “for all”).

Working rigorously with such a system would likely make the development

of mathematics unwieldy, and it might well obscure important patterns and di-

rections. In practice, therefore, one compromises between using a formal axiom

system and working totally informally; let us say that one works “informally but

carefully.” The logical problems are avoided not by rigid use of an axiom system,

but by taking care that sets do not become too “large”: one limits the sets that one

uses to those obtained from other sets by set-theoretic operations and by passage

to subsets.2

A feature of the axiom system lying behind working informally but carefully

is that it does not preclude the existence of additional sets beyond those forced to

exist by the axioms. Thus, for example, in the subject of coin-tossingwithin prob-

ability, it is normal to workwith the set of possible outcomes as S = {heads, tails}
even though it is not immediately apparent that requiring this S to be a set does

not introduce some contradiction.

It is worth emphasizing that the points of the theory at which one takes particu-

lar care vary somewhat from subject to subject within mathematics. For example

it is sometimes of interest in calculus of several variables to distinguish between

the range of a function and its image in a way that will be mentioned below, but it

is usually not too important. In homological algebra, however, the distinction is

extremely important, and the subject loses a great deal of its impact if one blurs

the notions of range and image.

Some references for set theory that are appropriate for reading once are

Halmos’s Naive Set Theory, Hayden–Kennison’s Zermelo–Fraenkel Set Theory,

and Chapter 0 and the appendix of Kelley’s General Topology. The Kelley book

is one that uses the word “class” as a primitive term more general than “set”; it

develops von Neumann set theory.

All that being said, let us now introduce the familiar terms, constructions,

and notation that one associates with set theory. To cut down on repetition, one

2Not every set so obtained is to be regarded as “constructed.” The Axiom of Choice, which we

come to shortly, is an existence statement for elements in products of sets, and the result of applying

the axiom is a set that can hardly be viewed as “constructed.”
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allows some alternative words for “set,” such as family and collection. The word

“class” is used by some authors as a synonym for “set,” but the word class is used

in some set-theory axiom systems to refer to a more general notion than “set,”

and it will be useful to preserve this possibility. Thus a class can be a set, but we

allow ourselves to speak, for example, of the class of all groups even though this

class is too large to be a set. Alternative terms for “element” are member and

point; we shall not use the term “entity.” Instead of writing ⇣ systematically, we
allow ourselves to write “in.” Generally, we do not use ⇣ in sentences of text as
an abbreviation for an expression like “is in” that contains a verb.

If A and B are two sets, some familiar operations on them are the union A⌫B,
the intersection A⇠ B, and the difference A� B, all defined in the usual way in

terms of the elements they contain. Notation for the difference of sets varies from

author to author; some other authors write A\ B or A ↵ B for difference, but this

book uses A� B. If one is thinking of A as a universe, one may abbreviate A� B

as Bc, the complement of B in A. The empty set ⇤ is a set, and so is the set of

all subsets of a set A, which is sometimes denoted by 2A. Inclusion of a subset A

in a set B is written A ⌥ B or B � A; then B is a superset of A. Inclusion that

does not permit equality is denoted by A � B or B ⇥ A; in this case one says

that A is a proper subset of B or that A is properly contained in B.

If A is a set, the singleton {A} is a set with just the one member A. Another
operation is unordered pair, whose formal definition is {A, B} = {A}⌫ {B} and
whose informal meaning is a set of two elements in which we cannot distinguish

either element over the other. Still another operation is ordered pair, whose

formal definition is (A, B) = {{A}, {A, B}}. It is customary to think of an
ordered pair as a set with two elements in which one of the elements can be

distinguished as coming first.3

Let A and B be two sets. The set of all ordered pairs of an element of A and

an element of B is a set denoted by A ⇤ B; it is called the product of A and B

or the Cartesian product. A relation between a set A and a set B is a subset of

A⇤ B. Functions, which are to be defined in a moment, provide examples. Two

examples of relations that are usually not functions are “equivalence relations,”

which are discussed in Section A2, and “partial orderings,” which are discussed

in Section A5.

If A and B are sets, a relation f between A and B is said to be a function,

written f : A � B, if for each x ⇣ A, there is exactly one y ⇣ B such that

(x, y) is in f . If (x, y) is in f , we write f (x) = y. In this informal but careful

definition of function, the function consists of more than just a set of ordered

3Unfortunately a “sequence” gets denoted by {x1, x2, . . . } or {xn}✏n=1. If its notation were really
consistent with the above definitions, we might infer, inaccurately, that the order of the terms of

the sequence does not matter. The notation for unordered pairs, ordered pairs, and sequences is,

however, traditional, and it will not be changed here.
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pairs; it consists of the set of ordered pairs regarded as a subset of A ⇤ B. This

careful definition makes it meaningful to say that the set A is the domain, the set

B is the range,4 and the subset of y ⇣ B such that y = f (x) for some x ⇣ A is

the image of f . The image is also denoted by f (A). Sometimes a function f

is described in terms of what happens to typical elements, and then the notation

is x ✓� f (x) or x ✓� y, possibly with y given by some formula or by some

description in words about how it is obtained from x . Sometimes a function f is

written as f ( · ), with a dot indicating the placement of the variable; this notation
is especially helpful in working with restrictions, which we come to in a moment,

and with functions of two variables when one of the variables is held fixed. This

notation is useful also for functions that involve unusual symbols, such as the

absolute value function x ✓� |x |, which in this notation becomes | · |. The
wordmap ormapping is used for “function” and for the operation of a function,

especially when a geometric setting for the function is of importance.

Often mathematicians are not so careful with the definition of function. De-

pending on the degree of informality that is allowed, one may occasionally refer

to a function as f (x)when it should be called f or x ✓� f (x). If any confusion is
possible, it is wise to use themore rigorous notation. Another habit of informality

is to regard a function f : A � B as simply a set of ordered pairs. Thus two

functions f1 : A � B and f2 : A � C become the same if f1(a) = f2(a) for
all a in A. With the less-careful definition, the notion of the range of a function is

not really well defined. The less-careful definition can lead to trouble in algebra

and topology, but it does not often lead to trouble in analysis until one gets to

a level where algebra and analysis merge somewhat. One place where it comes

into play in algebra is in the notion of an exact sequence of three abelian groups

A
⌥�� B

⌃�� C , which is defined as a system of three abelian groups and

homomorphisms as indicated such that the kernel of ⌃ equals the image of ⌥. In
this definition one is not free to adjust B to be the image of ⌥ since that adjustment
will affect the kernel of ⌃ as well.

The set of all functions from a set A to a set B is a set. It is sometimes denoted

by BA. The special case 2A that arises with subsets comes by regarding 2 as a

set {1, 2} and identifying a function f from A into {1, 2} with the subset of all
elements x of A for which f (x) = 1.

If a subset B of a set A may be described by some distinguishing property

P of its elements, we may write this relationship as B = {x ⇣ A | P}. For
example the function f in the previous paragraph is identified with the subset

{x ⇣ A | f (x) = 1}. Another example is the image of a general function
f : A � B, namely f (A) = {y ⇣ B | y = f (x) for some x ⇣ A}. Still more
generally along these lines, if E is any subset of A, then f (E) denotes the set

4Some authors refer to B as the codomain.
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{y ⇣ B | y = f (x) for some x ⇣ E}. Some authors use a colon or semicolon or
comma instead of a vertical line in this notation.

This book frequently uses sets denoted by expressions like
�

x⇣S Ax , an in-
dexed union, where S is a set that is usually nonempty. If S is the set {1, 2}, this
reduces to A1⌫ A2. In the general case it is understood that we have an unnamed
function, say f , given by x ✓� Ax , having domain S and range the set of all

subsets of an unnamed set T , and
�

x⇣S Ax is the set of all y ⇣ T such that y is

in Ax for some x ⇣ S. When S is understood, we may write
�

x Ax instead of�
x⇣S Ax . Indexed intersections

 
x⇣S Ax are defined similarly, and this time it is

essential to disallow S empty because otherwise the intersection cannot be a set

in any useful set theory.

There is also an indexed Cartesian product�x⇣S Ax that specializes in the
case that S = {1, 2} to A1⇤ A2. Usually S is assumed nonempty. This Cartesian

product is the set of all functions f from S into
�

x⇣S Ax such that f (x) is in
Ax for all x ⇣ S. In the special case that S is {1, . . . , n}, the Cartesian product
is the set of ordered n-tuples from n sets A1, . . . , An and may be denoted by
A1 ⇤ · · · ⇤ An; its members may be denoted by (a1, . . . , an) with aj ⇣ Aj for

1  j  n. When the factors of a Cartesian product have some additional

algebraic structure, the notation for the Cartesian product is often altered; for

example the Cartesian product of groups Ax is denoted by
⌥

x⇣S Ax .
It is completely normal in algebra, and it is the practice in this book, to take

the following axiom as part of one’s set theory; the axiom is customarily used

without specific mention.

Axiom of Choice. The Cartesian product of nonempty sets is nonempty.

If the index set is finite, then the Axiom of Choice reduces to a theorem of set

theory. The axiom is often used quite innocently with a countably infinite index

set. For example a theorem of analysis asserts that any bounded sequence {an} of
real numbers has a subsequence converging to lim sup an , and the proof constructs

onemember of the sequence at a time. When the proof iswritten in such away that

these members have some flexibility in their definitions, the Axiom of Choice

is usually being invoked. The proof can be rewritten so that the members of

the subsequence have specific definitions, such as “the term an such that n is the

smallest integer satisfying such-and-suchproperties.” In this case the axiom is not

being invoked. In fact, one can often rewrite proofs involving a countably infinite

choice so that they involve specific definitions and therefore avoid invoking the

axiom, but there is no point in undertaking this rewriting. In algebra the axiom

is often invoked in situations in which the index set is uncountable; selection of

a representative from each of uncountably many equivalence classes is such a

choice if all equivalence classes have more than one element.
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From the Axiom of Choice, one can deduce a powerful tool known as Zorn’s

Lemma, whose use it is customary to acknowledge. Zorn’s Lemma appears in

Section A5.

If f : A � B is a function and B is a subset of B �, then f can be regarded

as a function with range B � in a natural way. Namely, the set of ordered pairs is
unchanged but is to be regarded as a subset of A ⇤ B � rather than A ⇤ B.

Let f : A � B and g : B � C be two functions such that the range of f

equals the domain of g. The composition g ⇧ f : A� C , written sometimes as

g f : A� C , is the function with (g ⇧ f )(x) = g( f (x)) for all x . Because of the
construction in the previous paragraph, it is meaningful to define the composition

more generally when the range of f is merely a subset of the domain of g.

A function f : A � B is said to be one-one if f (x1) ⌘= f (x2) whenever x1
and x2 are distinct members of A. The function is said to be onto, or often “onto

B,” if its image equals its range. The terminology “onto B” avoids confusion: it

specifies the image and thereby guards against the use of the less careful definition

of function mentioned above. A mathematical audience often contains some

people who use the more careful definition of function and some people who use

the less careful definition. For the latter kind of person, a function is always onto

something, namely its image, and a statement that a particular function is onto

might be regarded as a tautology. A function from one set to another is said to

put the sets in one-one correspondence if the function is one-one and onto.

When a function f : A� B is one-one and is onto B, there exists a function

g : B � A such that g ⇧ f is the identity function on A and f ⇧ g is the identity
function on B. The function g is unique, and it is defined by the condition, for

y ⇣ B, that g(y) is the unique x ⇣ A with f (x) = y. The function g is called

the inverse function of f and is often denoted by f �1.

Conversely if f : A � B has an inverse function, then f is one-one and

is onto B. The reason is that a composition g ⇧ f can be one-one only if f is

one-one, and in addition, that a composition f ⇧ g can be onto the range of f
only if f is onto its range.

If f : A � B is a function and E is a subset of A, the restriction of f

to E , denoted by f
⇤⇤
E
, is the function f : E � B consisting of all ordered

pairs (x, f (x)) with x ⇣ E , this set being regarded as a subset of E ⇤ B, not of

A⇤B. One especially common example of a restriction is restriction to one of the
variables of a function of two variables, and then the idea of using a dot in place

of a variable can be helpful notationally. Thus the function of two variables might

be indicated by f or (x, y) ✓� f (x, y), and the restriction to the first variable,
for fixed value of the second variable, would be f ( · , y) or x ✓� f (x, y).

We conclude this section with a discussion of direct and inverse images of

sets under functions. If f : A � B is a function and E is a subset of A, we

have defined f (E) = {y ⇣ B | y = f (x) for some x ⇣ E}. This is the same
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as the image of f
⇤⇤
E
and is frequently called the image or direct image of E

under f . The notion of direct image does not behave well with respect to some

set-theoretic operations: it respects unions but not intersections. In the case of

unions, we have

f
⌅⌦

s⇣S
Es

⇧
=
⌦

s⇣S
f (Es);

the inclusion� follows since f
⌅�

s⇣S Es
⇧
� f (Es) for each s, and the inclusion

⌥ follows because any member of the left side is f of a member of some Es . In
the case of intersections, the question f (E ⇠ F)

?= f (E)⇠ f (F) can easily have
a negative answer, the correct general statement being f (E⇠F) ⌥ f (E)⇠ f (F).
An example with equality failing occurs when A = {1, 2, 3}, B = {1, 2}, f (1) =
f (3) = 1, f (2) = 2, E = {1, 2} and F = {2, 3} because f (E ⇠ F) = {2} and
f (E) ⇠ f (F) = {1, 2}.
If f : A � B is a function and E is a subset of B, the inverse image of E

under f is the set f �1(E) = {x ⇣ A | f (x) ⇣ E}. This is well defined even if f
does not have an inverse function. (If f does have an inverse function f �1, then
the inverse image of E under f coincides with the direct image of E under f �1.)
Unlike direct images, inverse images behave well under set-theoretic opera-

tions. If f : A � B is a function and {Es | s ⇣ S} is a set of subsets of B,
then

f �1
⌅↵

s⇣S
Es

⇧
=
↵

s⇣S
f �1(Es),

f �1
⌅⌦

s⇣S
Es

⇧
=
⌦

s⇣S
f �1(Es),

f �1(Ec
s ) = ( f �1(Es))

c.

In the third of these identities, the complement on the left side is taken within

B, and the complement on the right side is taken within A. To prove the

first identity, we observe that f �1
� 

s⇣S Es
⇥
⌥ f �1(Es) for each s ⇣ S and

hence f �1
� 

s⇣S Es
⇥
⌥
 

s⇣S f
�1(Es). For the reverse inclusion, if x is in 

s⇣S f
�1(Es), then x is in f

�1(Es) for each s and thus f (x) is in Es for each s.
Hence f (x) is in

 
s⇣S Es , and x is in f �1

� 
s⇣S Es

⇥
. This proves the reverse

inclusion. The second and third identities are proved similarly.

A2. Equivalence Relations

An equivalence relation on a set S is a relation between S and itself, i.e., is a

subset of S⇤ S, satisfying three defining properties. We use notation like a � b,
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written “a is equivalent to b,” to mean that the ordered pair (a, b) is a member of
the relation, and we say that “�” is the equivalence relation. The three defining
properties are

(i) a � a for all a in S, i.e., � is reflexive,
(ii) a � b implies b � a if a and b are in S, i.e., � is symmetric.
(iii) a � b and b � c together imply a � c if a, b, and c are in S, i.e., � is

transitive.

An example occurs with S equal to the set Z of integers with a � b meaning

that the difference a � b is even. The properties hold because (i) 0 is even, (ii)

the negative of an even integer is even, and (iii) the sum of two even integers is

even.

There is one fundamental result about abstract equivalence relations. The

equivalence class of a, written [a] for now, is the set of all members b of S such

that a � b.

Proposition. If � is an equivalence relation on a set S, then any two equiv-
alence classes are disjoint or equal, and S is the union of all the equivalence

classes.

PROOF. Let [a] and [b] be the equivalence classes of members a and b of S.

If [a] ⇠ [b] ⌘= ⇤, choose c in the intersection. Then a � c and b � c. By (ii),

c � b, and then by (iii), a � b. If d is any member of [b], then b � d. From

(iii), a � b and b � d together imply a � d. Thus [b] ⌥ [a]. Reversing the

roles of a and b, we see that [a] ⌥ [b] also, whence [a] = [b]. This proves the

first conclusion. The second conclusion follows from (i), which ensures that a is

in [a], hence that every member of S lies in some equivalence class. �

EXAMPLE. With the equivalence relation on Z that a � b if a � b is even,

there are two equivalence classes—the subset of even integers and the subset of

odd integers.

The first two examples of equivalence relations in this book arise in Section

II.3. The first example, which is captured in the definition of square matrices

that are “similar,” yields equivalence classes exactly as above. A square matrix

A is similar to a square matrix B if there is a matrix C with B = C�1AC . The
text does not mention in Chapter II that similarity is an equivalence relation, but

it is routine to check that it is reflexive, symmetric, and transitive. The second

example is a relation “is isomorphic to” and implicitly is defined on the class of all

vector spaces. This class is not a set, and Section A1 of this appendix suggested

avoiding using classes that are not sets in order to avoid the logical paradoxes

mentioned at the beginning of the appendix. There is not much problem with

using general classes in this particular situation, but there is a simple approach
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in this situation for eliminating classes that are not sets and thereby following

the suggestion of Section A1 without making an exception. The approach is to

work with any subclass of vector spaces that is a set. The equivalence relation

is well defined on the set of vector spaces in question, and the proposition yields

equivalence classes within that set. This set can be an arbitrary subclass of the

class of all vector spaces that happens to be a set, and the practical effect is the

same as if the equivalence relation had been defined on the class of all vector

spaces.

A3. Real Numbers

Real numbers are taken as known, as are the rational numbers from which they

are constructed. It will be useful, however, to review the constructions of both

these number systems so as to be able to discuss the solvability of polynomial

equations better.

We take the setZ of integers as given, alongwith its ordering and its operations
of addition, subtraction, and multiplication. The set Q of rational numbers is

constructed rigorously from Z as follows. We start from the set of ordered pairs
(a, b) of integers such that b ⌘= 0. The idea is that (a, b) is to correspond to
a/b and that we want (na, nb) to correspond to the same a/b if n is any nonzero
integer. Thus we say that two such pairs have (a, b) ↵ (c, d) if ad = bc.

This relation is evidently reflexive and symmetric, and it will be an equivalence

relation if it is transitive. If (a, b) ↵ (c, d) and (c, d) ↵ (e, f ), then ad = bc

and c f = de. So ad f = bc f = bde. Since d ⌘= 0, a f = be and ↵ is transitive.
From Section A2 the set of such pairs is partitioned into equivalence classes

by means of ↵. Each equivalence class is called a rational number. To de-
fine the arithmetic operations on rational numbers, we first define operations on

pairs, and then we check that the operations respect the partitioning into classes.

For addition, the definition is (a, b) + (c, d) = (ad + bc, bd). What needs
checking is that if (a, b) ↵ (a�, b�) and (c, d) ↵ (c�, d �), then (ad + bc, bd) ↵
(a�d �+b�c�, b�d �). This is a routine matter: (ad+bc)(b�d �) = ab�dd �+bb�cd � =
a�bdd � + bb�c�d = (a�d � + b�c�)bd, and thus addition of rational numbers is
well defined. The operations on pairs for negative, multiplication, and reciprocal

are �(a, b) = (�a, b), (a, b)(c, d) = (ac, bd), and (a, b)�1 = (b, a), and we
readily check that these define corresponding operations on rational numbers.

Finally one derives the familiar associative, commutative, and distributive laws

for these operations on Q.
The above construction is repeated, with more details, in the more general

construction of “fields of fractions” in Chapter VIII.

Inequalities on rational numbers are defined from inequalities on integers, tak-
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ing into account that an inequality between integers is preserved when multiplied

by a positive integer. Each rational number has a representative pair (a, b) with
b > 0 because any pair can always be replaced by the pair of negatives. Thus

let (a, b) and (c, d) be given with b > 0 and d > 0. We say that (a, b)  (c, d)
if ad  bc. One readily checks that this ordering respects equivalence classes

and leads to the usual properties of the ordering on Q. The positive rationals are
those greater than 0, and the negative rationals are those less than 0.

The formal definition is that a real number is a cut of rational numbers, i.e.,

a subset of rational numbers that is neither Q nor the empty set, has no largest

element, and contains all rational numbers less than any rational that it contains.

The set of cuts, i.e., the set of real numbers, is denoted by R. The idea of the
construction is as follows: Each rational number q determines a cut q⌅, namely
the set of all rationals less than q. Under the identification of Q with a subset of

R, the cut defining a real number consists of all rational numbers less than the
given real number.

The set of cuts gets a natural ordering, given by inclusion. In place of ⌥, we
write  . For any two cuts r and s, we have r  s or s  r , and if both occur,

then r = s. We can then define <, ⌦, and > in the expected way. The positive

cuts r are those with 0⌅ < r , and the negative cuts are those with r < 0⌅.
Once cuts and their ordering are in place, one can go about defining the usual

operations of arithmetic and proving that R with these operations satisfies the

familiar associative, commutative, and distributive laws, and that these interact

with inequalities in the usualways. The definitions of addition and subtraction are

easy: the sum or difference of two cuts is simply the set of sums or differences of

the rationals from the respective cuts. For multiplication and reciprocals one has

to take signs into account. For example the product of two positive cuts consists

of all products of positive rationals from the two cuts, as well as 0 and all negative

rationals. After these definitions and the proofs of the usual arithmetic operations

are complete, it is customary to write 0 and 1 in place of 0⌅ and 1⌅.
This much allows us to define nth roots. The following proposition gives the

precise details.

Proposition. If r is a positive real number and n is a positive integer, then

there exists a unique positive real number s such that sn = r .

REMARK. In the terminology and notation introduced in Section I.3, the

polynomial Xn � r in R[X] has a unique positive root if r is positive in R.

SKETCH OF PROOF. Let s consist of all positive rationals q such that qn < r ,

together with all rationals  0. One checks that s is a cut and that sn = r . This

proves existence. For uniqueness any positive cut s � with (s �)n = r must contain

exactly the same rationals and hence must equal s. �
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To make efficient use of cuts in connection with arithmetic and algebra, one

needs to develop a certain amount of real-variable theory. This theory will not

be developed in any detail here; let us be content with a sketch, giving a proof of

the one specific result that we shall need.5

The first step in the process is to observe that any nonempty subset of reals

with an upper bound has a least upper bound (the supremum, written as sup).

This is proved by taking the union of the cuts for each of the given real numbers

and showing that the result is a cut. Similarly any nonempty subset of reals with

a lower bound has a greatest lower bound (the infimum, written as inf). This

property follows by applying the least-upper-bound property to the negatives of

the given reals and then taking the negative of the resulting least upper bound.

Meanwhile, we can introduce sequences of real numbers and convergence

of sequences in the usual way. In terms of convergence, the key property of

sequences of real numbers is given by the Bolzano–Weierstrass Theorem: any

bounded sequence has a convergent subsequence. In fact, if the given bounded

sequence is {sn}, it can be shown that there is a subsequence convergent to the
greatest lower bound over m of the least upper bound for k ⌦ m of the numbers

sk .

Next one introduces continuity of functions in the usual way. The Bolzano–

WeierstrassTheoremmay readily be used to prove that any continuous real-valued

function on a closed bounded interval takes on itsmaximumandminimumvalues.

With a little more effort the Bolzano–Weierstrass Theorem may be used also

to show that any continuous real-valued function on a closed bounded interval

is uniformly continuous. That brings us to the theorem that we shall use in

developing basic algebra.

Theorem (Intermediate Value Theorem). Let a < b be real numbers, and let

f : [a, b]� R be continuous. Then f , in the interval [a, b], takes on all values
between f (a) and f (b).

PROOF. Let f (a) = � and f (b) = ⇥, and let ⇤ be between � and ⇥. We may
assume that ⇤ is in fact strictly between � and ⇥. Possibly by replacing f by

� f , we may assume that also � < ⇥. Let

A = {x ⇣ [a, b] | f (x)  ⇤ } and B = {x ⇣ [a, b] | f (x) ⌦ ⇤ }.

These sets are nonempty since a is in A and b is in B, and f is bounded since

any continuous function on a closed bounded interval takes on finite maximum

and minimum values. Thus the numbers ⇤1 = sup { f (x) | x ⇣ A} and ⇤2 =
inf { f (x) | x ⇣ B} are well defined and have ⇤1  ⇤  ⇤2.

5Details of the omitted steps may be found, for example, in Section I.1 of the author’s book Basic

Real Analysis.
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If ⇤1 = ⇤ , thenwe canfind a sequence {xn} in A such that f (xn) converges to ⇤ .
Using the Bolzano–Weierstrass Theorem, we can find a convergent subsequence

{xnk } of {xn}, say with limit x0. By continuity of f , { f (xnk )} converges to f (x0).
Then f (x0) = ⇤1 = ⇤ , and we are done. Arguing by contradiction, we may
therefore assume that ⇤1 < ⇤ . Similarly we may assume that ⇤ < ⇤2, but we do
not need to do so.

Let ⇧ = ⇤2 � ⇤1, and choose, since the continuous function f is necessarily

uniformly continuous, ⌅ > 0 such that |x1 � x2| < ⌅ implies | f (x1)� f (x2)| <
⇧ whenever x1 and x2 both lie in [a, b]. Then choose an integer n such that
2�n(b� a) < ⌅, and consider the value of f at the points pk = a+ k2�n(b� a)
for 0  k  2n . Since pk+1�pk = 2�n(b�a) < ⌅, we have | f (pk+1)� f (pk)| <
⇧ = ⇤2 � ⇤1. Consequently if f (pk)  ⇤1, then

f (pk+1)  f (pk) + | f (pk+1)� f (pk)| < ⇤1 + (⇤2 � ⇤1) = ⇤2,

and hence f (pk+1)  ⇤1. Now f (p0) = f (a) = �  ⇤1. Thus induction shows
that f (pk)  ⇤1 for all k  2n . However, for k = 2n , we have p2n = b. Hence

f (b) = ⇥ ⌦ ⇤ > ⇤1, and we have arrived at a contradiction. �

A4. Complex Numbers

Complex numbers are taken as known, and this section reviews their notation and

basic properties.

Briefly, the system C of complex numbers is a two-dimensional vector space

over R with a distinguished basis {1, i} and a multiplication defined initially by
11 = 1, 1i = i1 = i , and i i = �1. Elements may then be written as a + bi or

a + ib with a and b in R; here a is an abbreviation for a1. The multiplication is
extended to all ofC so that the distributive laws hold, i.e., so that (a+bi)(c+di)
can be expanded in the expected way. The multiplication is associative and

commutative, the element 1 acts as a multiplicative identity, and every nonzero

element has a multiplicative inverse: (a + bi)
�

a
a2+b2 � i b

a2+b2
⇥

= 1.

Complex conjugation is indicated by a bar: the conjugate of a+ bi is a� bi

if a and b are real, and we write a + bi = a� bi . Then we have z + w = z̄+ w̄,
r z = r z̄ if r is real, and zw = z̄w̄.
The real and imaginary parts of z = a + bi are Re z = a and Im z = b.

These may be computed as Re z = 1
2
(z + z̄) and Im z = � i

2
(z � z̄).

The absolute value function of z = a + bi is given by |z| =
�
a2 + b2, and

this satisfies |z|2 = zz̄. It has the simple properties that |z̄| = |z|, |Re z|  |z|,
and | Im z|  |z|. In addition, it satisfies

|zw| = |z||w|
because |zw|2 = zwzw = zwz̄w̄ = zz̄ww̄ = |z|2|w|2,
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and it satisfies the triangle inequality

|z + w|  |z| + |w|

because |z + w|2 = (z + w)(z + w) = zz̄ + zw̄ + wz̄ + ww̄

= |z|2 + 2Re(zw̄) + |w|2  |z|2 + 2|zw̄| + |w|2

= |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2.

A5. Partial Orderings and Zorn’s Lemma

A partial ordering on a set S is a relation between S and itself, i.e., a subset of

S⇤ S, satisfying two properties. We define the expression a  b to mean that the

ordered pair (a, b) is a member of the relation, and we say that “ ” is the partial
ordering. The properties are

(i) a  a for all a in S, i.e.,  is reflexive,
(ii) a  b and b  c together imply a  c whenever a, b, and c are in S, i.e.,

 is transitive.
An example of such an S is any set of subsets of a set X , with  taken to

be inclusion ⌥. This particular partial ordering has a third property of interest,
namely

(iii) a  b and b  a with a and b in S imply a = b.

However, the validity of (iii) has no bearing on Zorn’s Lemma below. A partial

ordering is said to be a total ordering or simple ordering if (iii) holds and also

(iv) any a and b in S have a  b or b  a or both.

For the sake of a result to be proved at the end of the section, let us interpolate

one further definition: a totally ordered set is said to be well ordered if every

nonempty subset has a least element, i.e., if each nonempty subset contains an

element a such that a  b for all b in the subset.

A chain in a partially ordered set S is a totally ordered subset. An upper

bound for a chain T is an element u in S such that c  u for all c in T . A

maximal element in S is an element m such that whenever m  a for some a in

S, then a  m. (If (iii) holds, we can conclude in this case that m = a.)

Zorn’s Lemma. If S is a nonempty partially ordered set in which every chain

has an upper bound, then S has a maximal element.

REMARKS. Zorn’s Lemma will be proved below using the Axiom of Choice,

which was stated in Section A1. It is an easy exercise to see, conversely,

that Zorn’s Lemma implies the Axiom of Choice. It is customary with many
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mathematical writers to mention Zorn’s Lemma each time it is invoked, even

though most writers nowadays do not ordinarily acknowledge uses of the Axiom

of Choice. Before coming to the proof, we give an example of howZorn’s Lemma

is used. This example uses vector spaces and is expanded upon in Section II.9.

EXAMPLE. Zorn’s Lemma gives a quick proof that any real vector space V

has a basis. In fact, let S be the set of all linearly independent subsets of V , and

order S by inclusion upward as in the example above of a partial ordering. The

set S is nonempty because ⇤ is a linearly independent subset of V . Let T be a

chain in S, and let u be the union of the members of T . If t is in T , we certainly

have t ⌥ u. Let us see that u is linearly independent. For u to be dependent

would mean that there are vectors x1, . . . , xn in u with r1x1 + · · · + rnxn = 0 for

some system of real numbers not all 0. Let xj be in the member tj of the chain

T . Since t1 ⌥ t2 or t2 ⌥ t1, x1 and x2 are both in t1 or both in t2. To keep the

notation neutral, say they are both in t �2. Since t
�
2 ⌥ t3 or t3 ⌥ t �2, all of x1, x2, x3

are in t �2 or they are all in t3. Say they are both in t
�
3. Continuing in this way,

we arrive at one of the sets t1, . . . , tn , say t
�
n , such that all of x1, . . . , xn are all

in t �n . The members of t
�
n are linearly independent by assumption, and we obtain

the contradiction r1 = · · · = rn = 0. We conclude that the chain T has an upper

bound in S. By Zorn’s Lemma, S has a maximal element, say m. If m is not

a basis, it fails to span. If a vector x is not in its span, it is routine to see that

m ⌫ {x} is linearly independent and properly contains m, in contradiction to the
maximality of m. We conclude that m is a basis.

We now begin the proof of Zorn’s Lemma. If T is a chain in a partially ordered

set S, then an upper bound u0 for T is a least upper bound for T if u0  u for all

upper bounds of T . If (iii) holds in S, then there can be at most one least upper

bound for T . In fact, if u0 and u
�
0 are least upper bounds, then u0  u�0 since

u0 is a least upper bound, and u
�
0  u0 since u

�
0 is a least upper bound; by (iii),

u0 = u�0. The proof follows that in Dunford–Schwartz’s Linear Operators I.

Lemma. Let X be a nonempty partially ordered set such that (iii) holds, and

write  for the partial ordering. Suppose that X has the additional property that
each nonempty chain in X has a least upper bound in X . If f : X � X is a

function such that x  f (x) for all x in X , then there exists an x0 in X with
f (x0) = x0.

PROOF. A nonempty subset E of X will be called admissible for purposes of

this proof if f (E) ⌥ E and if the least upper bound of each nonempty chain in

E , which exists in X by assumption, actually lies in E . By assumption, X is an

admissible subset of X . If x is in X , then the intersection of admissible subsets of

X containing x is admissible. Let Ax be the intersection of all admissible subsets
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of X containing x . This is admissible, and since the set of all y in X with x  y

is admissible and contains x , it follows that x  y for all y ⇣ Ax . By hypothesis,

X is nonempty. Fix an element a in X , and let A = Aa . The main step will be to

prove that A is a chain.

To do so, consider the subsetC of members x of A with the property that there

is a nonempty chain Cx in A containing a and x such that

• a  y  x for all y in Cx ,

• f (Cx � {x}) ⌥ Cx , and

• the least upper bound of any nonempty subchain of Cx is in Cx .

The element a is in C because we can take Ca = {a}. If x is in C , so that Cx

exists, let us use the bulleted properties to see that

A = Ax ⌫ Cx . (⌅)

We have A � Cx by definition; also A⇠ Ax is an admissible set containing x and
hence containing A, and thus A � Ax . Therefore A � Ax ⌫ Cx . For the reverse

inclusion it is enough to prove that Ax⌫Cx is an admissible subset of X containing

a. The elementa is inCx , and thusa is in Ax⌫Cx . For the admissibilitywehave to

show that f (Ax ⌫Cx) ⌥ Ax ⌫Cx and that the least upper bound of any nonempty

chain in Ax ⌫Cx lies in Ax ⌫Cx . Since x lies in Ax , Ax ⌫Cx = Ax ⌫ (Cx � {x})
and f (Ax ⌫ Cx) = f (Ax) ⌫ f (Cx � {x}) ⌥ Ax ⌫ Cx , the inclusion following

from the admissibility of A and the second bulleted property of Cx .

To complete the proof of (⌅), take a nonempty chain in Ax ⌫ Cx , and let u be

its least upper bound in X ; it is enough to show that u is in Ax ⌫Cx . The element

u is necessarily in A since A is admissible. Observe that

y  x and x  z whenever y is in Cx and z is in Ax . (⌅⌅)

If the chain has at least one member in Ax , then (⌅⌅) implies that x  u, and

hence the set of members of the chain that lie in Ax forms a nonempty chain in

Ax with least upper bound u. Since Ax is admissible, u is in Ax . Otherwise the

chain has all its members in Cx , and then u is in Cx by the third bulleted property

of Cx .

This completes the proof of (⌅). Let us now prove that ifCx andCx � exist with

x  x � and x ⌘= x �, then
Cx ⌥ Cx � . (†)

In fact, application of (⌅) to x � gives A = Ax � ⌫Cx � . Intersecting both sides with

Cx shows that Cx = (Cx ⇠ Ax �)⌫ (Cx ⇠Cx �). On the right side, the first member
is empty by (⌅⌅), and thus Cx = Cx ⇠ Cx � . This proves (†).
Let C be the set of all members x of A for which Cx exists. We have seen that

a is in C . If we apply (⌅) and (⌅⌅) first to a member x of C and then to a member
x � of C , we see that either x  x � or x �  x . That is, C is a chain.
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Let us see that f (C) ⌥ C . If x is in C , then the set D = Cx ⌫ { f (x)} certainly
has a as a member. The second bulleted property of Cx shows that f carries

Cx � {x} into D, and also f carries x into D. Thus f carries D � { f (x)} into
D, and D satisfies the second bulleted property of Cf (x). If {x�} is a chain in D
with least upper bound u, there are two possibilities. Either u is f (x), which is
in D by construction, or u is in C , which contains the least upper bound of any

nonempty chain in it. Thus u is in D, D satisfies the third bulleted property of

Cf (x), and Cf (x) exists. In other words, f (x) is in C , and f (C) ⌥ C .

Finally let us see that the least upper bound u of an arbitrary chain {x�} in C ,
which exists in X by assumption, is a member of C . If x� = u for some �, then
Cu = Cx�

exists, and u is in C . So assume that x� ⌘= u for all �. Our candidate
for Cu will be D = (

�
� Cx�

) ⌫ {u}. This certainly contains a. We check that
D satisfies the second bulleted property of Cu . For each �, we can find a ⇥ with
x�  x⇥ and x� ⌘= x⇥ , since u is the least upper bound of all the x’s. Then (†)
gives Cx�

⌥ Cx⇥
� {x⇥}, and f (Cx�

) ⌥ f (Cx⇥
� {x⇥}) ⌥ Cx⇥

⌥ D. Taking the

union over � shows that D satisfies the second bulleted property of Cu .

To see that D satisfies the third bulleted property ofCu , let v be the least upper
bound in A of a chain {y⇥} in Cu . If v ⌘= u, then v cannot be an upper bound of
{x�}. So we can choose some x�0 such that v  x�0 . Each y⇥ is  v, and thus
each y⇥ is  x�0 . Referring to (⌅), we see that all y⇥’s lie in Cx�0

. By the third

bulleted property of Cx�0
, v is in Cx�0

. Thus v is in D, and D satisfies the third
bulleted property of Cu . Consequently the least upper bound u of an arbitrary

chain in C lies in C .

In short, C is an admissible set containing a, and it also is a chain. Since A is

a minimal admissible set containing a, C = A and also A is a chain. Let u be the

least upper bound of A. We have seen that f (A) ⌥ A, and thus f (u)  u. On

the other hand, u  f (u) by the defining property of f . Therefore f (u) = u,

and the proof is complete.

PROOF OF ZORN’S LEMMA. Let S be a partially ordered set, with partial

ordering  , in which every chain has an upper bound. Let X be the partially
ordered system, ordered by inclusion upward ⌥, of nonempty chains6 in S. The
partially ordered system X , being given by ordinary inclusion, satisfies property

(iii). A nonempty chainC in X is a nested system of chains c� of S, and
�

� c� is

a chain in S that is a least upper bound for C . The lemma is therefore applicable

to any function f : X � X such that c ⌥ f (c) for all c in X . We use the lemma
to produce a maximal chain in X .

Arguing by contradiction, suppose that no chain within S is maximal under

6Here a chain is simply a certain kind of subset of S, and no element of S can occur more than

once in it even if (iii) fails for the partial ordering. Thus if S = {x, y} with x  y and y  x , then

{x, y} is in X and in fact is maximal in X .
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inclusion. For each nonempty chain cwithin S, let f (c) be a chain with c ⌥ f (c)
and c ⌘= f (c). (This choice of f (c) for each c is where we use the Axiom of
Choice.) The result is a function f : X � X of the required kind, the lemma

says that f (c) = c for some c in X , and we arrive at a contradiction. We conclude

that there is some maximal chain c0 within S.

By assumption in Zorn’s Lemma, every nonempty chain within S has an upper

bound. Let u0 be an upper bound for the maximal chain c0. If u is a member of S

with u0  u, then c0 ⌫ {u} is a chain and maximality implies that c0 ⌫ {u} = c0.

Therefore u is in c0, and u  u0. This is the condition that u0 is a maximal

element of S. �

Corollary (Zermelo’sWell-OrderingTheorem). Every set has awell ordering.

PROOF. Let S be a set, and let E be the family of all pairs (E, E) such that E
is a subset of S and  E is a well ordering of E . The family E is nonempty since
(⇤, ⇤) is a member of it. We partially order E by a notion of “inclusion as an
initial segment,” saying that (E, E)  (F, F) if

(i) E ⌥ F ,

(ii) a and b in E with a  E b implies a  F b,

(iii) a in E and b in F but not E together imply a  F b.

In preparation for applying Zorn’s Lemma, let C = {(E�, �)} be a chain in E,
with the �’s running through some set I . Define E0 =

�
� E� and define  0 as

follows: If e1 and e2 are in E0, let e1 be in E�1 with �1 in I , and let e2 be in E�2

with �2 in I . Since C is a chain, we may assume without loss of generality that
(E�1, �1)  (E�2, �2), so that E�1 ⌥ E�2 in particular. Then e1 and e2 are both

in E�2 and we define e1  0 e2 if e1  �2 e2, and e2  0 e1 if e2  �2 e1. Because of

(i) and (ii) above, the result is well defined independently of the choice of �1 and
�2. Similar reasoning shows that  0 is a total ordering of E0. If we can prove
that  0 is a well ordering, then (E0, 0) is evidently an upper bound in E for the
chain C, and Zorn’s Lemma is applicable.
Now suppose that F is a nonempty subset of E0. Pick an element of F , and

let E�0 be a set in the chain that contains it. Since (E�0, �0) is well ordered and
F⇠E�0 is nonempty, F⇠E�0 contains a least element f0 relative to �0 . We show

that f0  0 f for all f in F . In fact, if f is given, there are two possibilities. One

is that f is in E�0 ; in this case, the consistency of  0 with  �0 forces f0  0 f .

The other is that f is not in E�0 but is in some E�1 . Since C is a chain and
E�1 ⌥ E�0 fails, we must have (E�0, �0)  (E�1, �1). Then f is in E�1 but

not E�0 , and property (iii) above says that f0  �1 f . By the consistency of the

orderings, f0  0 f . Hence f0 is a least element in F , and E0 is well ordered.

Application of Zorn’s Lemma produces a maximal element (E, E) of E. If
E were a proper subset of S, we could adjoin to E a member s of S not in E and
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define every element e of E to be  s. The result would contradict maximality.

Therefore E = S, and S has been well ordered. �

A6. Cardinality

Two sets A and B are said to have the same cardinality, written card A = card B,

if there exists a one-one function from A onto B. On any setA of sets, “having the
same cardinality” is plainly an equivalence relation and therefore partitionsA into
disjoint equivalence classes, the sets in each class having the samecardinality. The

question of what constitutes cardinality (or a “cardinal number”) in its own right

is one that is addressed in set theory but that we do not need to address carefully

here; the idea is that each equivalence class under “having the same cardinality”

has a distinguished representative, and the cardinal number is defined to be that

representative. We write card A for the cardinal number of a set A.

Having addressed equality, we now introduce a partial ordering, saying that

card A  card B if there is a one-one function from A into B. Thefirst result below

is that card A  card B and card B  card A together imply card A = card B.

Proposition (Schroeder–Bernstein Theorem). If A and B are sets such that

there exist one-one functions f : A � B and g : B � A, then A and B have

the same cardinality.

PROOF. Define the function g�1 : image g � A by g�1(g(a)) = a; this

definition makes sense since g is one-one. Write (g ⇧ f )(n) for the composition
of g ⇧ f with itself n times, and define ( f ⇧ g)(n) similarly. Define subsets An
and A�n of A and subsets Bn and B

�
n for n ⌦ 0 by

An = image((g ⇧ f )(n))� image((g ⇧ f )(n) ⇧ g),
A�n = image((g ⇧ f )(n) ⇧ g)� image((g ⇧ f )(n+1)),
Bn = image(( f ⇧ g)(n))� image(( f ⇧ g)(n) ⇧ f ),
B �n = image(( f ⇧ g)(n) ⇧ f )� image(( f ⇧ g)(n+1)),

and let

A✏ =
✏ 
n=0

image((g ⇧ f )(n)) and B✏ =
✏ 
n=0

image(( f ⇧ g)(n)).

Then we have

A = A✏ ⌫
✏�
n=0

An ⌫
✏�
n=0

A�n and B = B✏ ⌫
✏�
n=0

Bn ⌫
✏�
n=0

B �n,
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with both unions disjoint.

Let us prove that f carries An one-one onto B
�
n . If a is in An , then a =

(g ⇧ f )(n)(x) for some x ⇣ A and a is not of the form (g ⇧ f )(n)(g(y)) with
y ⇣ B. Applying f , we obtain f (a) = ( f ⇧ ((g ⇧ f )(n))(x) = ( f ⇧ g)(n)( f (x)),
so that f (a) is in the image of (( f ⇧ g)(n) ⇧ f ). Meanwhile, if f (a) is in the
image of ( f ⇧ g)(n+1), then f (a) = ( f ⇧ g)(n+1)(y) = f ((g ⇧ f )(n)(g(y))) for
some y ⇣ B. Since f is one-one, we can cancel the f on the outside and obtain

a = (g ⇧ f )(n)(g(y)), in contradiction to the fact that a is in An . Thus f carries
An into B

�
n , and it is certainly one-one. To see that f (An) contains all of B

�
n , let

b ⇣ B �n be given. Then b = ( f ⇧ g)(n)( f (x)) for some x ⇣ A and b is not of the

form ( f ⇧ g)(n+1)(y) with y ⇣ B. Hence b = f ((g ⇧ f )(n)(x)), i.e., b = f (a)
with a = (g ⇧ f )(n)(x). If this element a were in the image of (g ⇧ f )(n) ⇧ g,
we could write a = (g ⇧ f )(n)(g(y)) for some y ⇣ B, and then we would have

b = f (a) = f ((g ⇧ f )(n)(g(y))) = ( f ⇧ g)(n+1)(y), contradiction. Thus a is in
An , and f carries An one-one onto B

�
n .

Similarly g carries Bn one-one onto A
�
n . Since A

�
n is in the image of g, we can

apply g�1 to it and see that g�1 carries A�n one-one onto Bn .
The same kind of reasoning as above shows that f carries A✏ one-one onto

B✏. In summary, f carries each An one-one onto B
�
n and carries A✏ one-one

onto B✏, while g
�1 carries each A�n one-one onto Bn . Then the function

h =
⌃
f on A✏ and each An,

g�1 on each A�n,

carries A one-one onto B. �

Next we show that any two sets A and B have comparable cardinalities in the

sense that either card A  card B or card B  card A.

Proposition. If A and B are two sets, then either there is a one-one function

from A into B or there is a one-one function from B into A.

PROOF. Consider the set S of all one-one functions f : E � B with E ⌥ A,

the empty function with E = ⇤ being one such. Each such function is a certain

subset of A⇤B. If we order S by inclusion upward, then the union of themembers
of any chain is an upper bound for the chain. By Zorn’s Lemma let G : E0 � B

be a maximal one-one function of this kind, and let F0 be the image of G. If

E0 = A, then G is a one-one function from A into B. If F0 = B, then G�1

is a one-one function from B into A. If neither of these things happens, then

there exist x0 ⇣ A � E0 and y0 in B � F0, and the function �G equal to G on

E0 and having �G(x0) = y0 extends G and is still one-one; thus it contradicts the

maximality of G. �
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Corollary. If E is an infinite set, then E has a countably infinite subset.

PROOF. The proposition shows that either there is a one-one function from the

set of positive integers into E , in which case we are done, or there is a one-one

function from E into the set of positive integers. In the latter case the image cannot

be finite since E is assumed infinite. Then the image must be an infinite subset

of the positive integers. This set can be enumerated and is therefore countably

infinite. Thus E is countably infinite. �
Cantor’s proof that there exist uncountable sets, donewith a diagonal argument,

in fact showed how to start from any set A and construct a set with strictly larger

cardinality.

Proposition (Cantor). If A is a set and 2A denotes the set of all subsets of A,

then card 2A is strictly larger than card A.

PROOF. The map x ✓� {x} is a one-one function from A into 2A. If we are

given a one-one function F : A� 2A, let E be the set of all x in A such that x

is not in F(x). If we define E = F(x0), then x0 ⇣ E implies x0 /⇣ F(x0) = E ,

while x0 /⇣ E implies x ⇣ F(x0) = E . We have a contradiction in any case, and

hence E cannot be of the form F(x0). We conclude that F cannot be onto 2
A. �

Proposition. If E is an infinite set, then E is the disjoint union of sets that are

each countably infinite.

PROOF. Let S be the set of all disjoint unions of countably infinite subsets of
E . If A =

�
� A� and B =

�
⇥ B⇥ are members of S, say that A  B if each

A� is some B⇥ . The result is a partial ordering on S. If U is a chain in S, then
the collection C of all countably infinite sets that are U�’s in some member of U
is a collection of countably infinite subsets of E that contains each member of U.
If U� and U⇥ are distinct members of C , then U� and U⇥ must both be in some

member of U and hence must be disjoint. Thus C is an upper bound for U. Also,
the empty union is a member of S. By Zorn’s Lemma, S has a maximal element
M . Let F be the union of the members of M . If E � F were to be infinite, then

the corollary above would show that E � F has a countably infinite subset Z ,

and M ⌫ {Z} would contradict the maximality of M . Thus E � F is finite. Since

E is infinite, the corollary shows that E contains at least one countably infinite

subset. Thus M has some member T . The set T � = T ⌫ (E � F) is countably
infinite, and (M � {T }) ⌫ T � is the required decomposition of E as the disjoint
union of countably infinite sets. �

Corollary. Let S and E be nonempty sets with S infinite, and suppose that to

each element s of S is associated a countable subset Ex of E in such a way that

E =
�

s⇣S Es . Then card E  card S.
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PROOF. The proposition allows us to write S as the disjoint union of countably

infinite sets. If U is one of these sets, then EU =
�

s⇣U Es is countable, being

the countable union of countable sets. Therefore there exists a function from U

onto EU . The union of these functions, as U varies, yields a function f from S

onto
�
EU = E . Applying the Axiom of Choice, we can select, for each e ⇣ E ,

an element s ⇣ f �1({e}) and call it g(e). The result is a one-one function g from
E into S, and consequently card E  card S. �

Addition is well defined for cardinals: the sum of two cardinal numbers is

defined to be the cardinality of the disjoint union of the two sets in question. If

at least one of the two cardinals is infinite, the sum equals the larger of the two,

as an immediate consequence of the above corollary.



Don't even think about it!
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INDEX OF NOTATION

This list indexes recurring symbols introduced in Chapters I through X (pages

1–591). For other recurring symbols, including set-theoretic notation introduced

in the appendix (pages 593–613), see the list of Standard Notation on page xx.

In the list below, each piece of notation is regarded as having a key symbol.

The first group consists of those items for which the key symbol is a fixed Latin

letter, and the items are arranged roughly alphabetically by that key symbol. The

next group consists of those items for which the key symbol is a Greek letter.

The final group consists of those items for which the key symbol is a variable or

a nonletter, and these are arranged by type.

An, 121
a(u, v), 348
Aadj, 72
Ann(U), 52
Aut H, 167
Bn(G, N ), 356
Cm, 126
C(G, C), 330
C(G, R), 381
c(A), 395
Cn(G, N ), 356
C✓(x), 165
Cliff(E, ◆ · · ), 302
D, 511, 532
Dn, 122
deg, 150, 156
det, 67, 215
dim V, 37
EndK(V ), 372
EndR(M), 554
e1, . . . , en, 36
ei , fi , g, 527
F, 9, 34, 158
F4, 143

Fp, 142, 148
Fq , 461
F(S), 307, 377
F(S), 159
Gal(K/k), 474
GCD, 2, 394
GL(V ), 122
GL(n, F), 122
H, 128
H8, 128
H(V ), 302
Hn(G, N ), 356
Hom(⌥,�), 568
HomF(U, V ), 43, 44
HomK(U, V ), 266
HomR(M, N ), 554
i, j, k, 128
K, k, K/k, 453
ker L , 46
ker�, 131
l, 332
LCM, 32
lrad, 250
Mn(R), 215
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Mkn(F), 25
Mmn(R), 376
Morph(A, B), 189
NK/k(a), 519
N (H), 188
O, 304
O, 343
O(V ), O(n), 122
Obj(C ), 189
C opp, 191, 210
Pfaff(X), 299, 449
PSL(2, Z), 366
PSL(2, Z/mZ), 366
PSL(n, F), 205
Q[⇤], 122, 143
r, 332
rrad, 250
Sn, 121
S(E), 284
Sn(E), 284
S⌦ = S ⇣ S�1, 307
SL(V ), 122
SL(n, F), 122
SO(V ), SO(n), 122
SU(V ), SU(n), 122
sgn, 17
span{v�}, 35
T (E), 281
T n(E), 281
Tr A, 74
TrK/k(a), 519
U(g), 301
U(V ), U(n), 122
W (S⌦), 307
W (V ), 302
wt(c), 206
ZG, 165
ZG(x), 165
Z/mZ, 120
Z/(m), 120

Z[
⌫
�1 ], 392

Zn(G, N ), 356
ZG, 373

Greek

↵, �, 44� u
↵

⇥
, 45⇤

L

�↵

⌅
, 45

⇥n, 356
⇥(C), 206
⌅ : V  V ⌦⌦, 54
�, 48
⌃R, 339
�, 7
�x , 454
�n(X), 490

Operations on sets given

by superscripts

V ⌦, 50
G ⌦, 313
M�, 96
U�, 251
L⌅, 100
A⌅, 101
V , 115
↵G, 329
At , 41
Lt , 53
Mo, Ro, 555
C⇤, Q⇤, R⇤, Z⇤, 120
(Z/mZ)⇤, 142
R⇤, 143
P�1, 439

Specific functions

( · , · ), 90
� · �, 91
[ · , · ], 301
◆ · , · , 249
[K : k], 456
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Isolated symbols
�=, 48, 119, 144
⌥, 120
1, 118
{1}, 118
1A, 190

Operations on sets and classes

G/H, G\H, 130
gH, Hg, 129
G1 ⇤ G2, 126
G ⇤⇧ H, 169
G1 ⌅ G2, 324
Gp, 163
G = ◆S; R, 314
RG, 380
F[X], 9
R[X], 149
R[X1, . . . , Xn], 155
k[x1, . . . , xn], 454
k(x1, . . . , xn), 454
K(X), 384
CS, 196
V/U, 55
M/N , 378
I + J, 405
I J, 405, 435
U ⇧ V, 59

E ⌃K F, 265
e⌃ f, 265
M ⌃R N , 574
m ⌃ n, 574
� ⌃ ⌥, 575 

(E), 291 n(E), 291

EC, 274
EL, 275⌥

s↵S , 62, 138, 376
�

s↵S , 62, 136, 198, 376
⌦

s↵S , 199

*s↵S , 323

KH , 474
S�1R, 428
RS, 428
RP , 430
GP , 534

Miscellaneous⇧
1 2 3 4 5

4 3 5 1 2

⌃
, permutation, 15

(5 2 3), cycle, 16
f1 ⌅ f2, convolution, 339
(a), principal ideal, 390
(a1, . . . , an), ideal, 390
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Abel, 494

abelian group, 119

direct sum for, 138, 139

finitely generated, 176

free, 176

tensor product for, 578

absolute value, 604

addition in abelian group, 119

addition in ring, 141

addition in vector space, 34

addition of cardinal numbers, 613

addition of matrices, 25

additive extension, 574

additive functor, 585

additive in a variable, 574

adjoin, 454

adjoint, 100, 101

classical, 72

algebra, 280

alternative, 304

associative, 280, 372

associative R, 380

Clifford, 302

division, 373

exterior, 291

filtered associative, 301

graded associative, 301

group, 380, 445

Heisenberg Lie, 302

Jordan, 303

Lie, 281, 301

polynomial, 289

symmetric, 284

tensor, 282

tensor product for, 582

universal enveloping, 301

Weyl, 302

algebraic closure, 465

existence, 466

uniqueness, 467–468

algebraic curve, 411

algebraic element, 454

algebraic extension, 456

finite 456

simple 457

algebraic integer, 342, 411, 421, 515

algebraic number, 123, 387, 457. 465, 515

algebraic number field, 123, 373, 387, 457

algebraically closed, 464

algebraically closed field, 212

alternating, 67

alternating bilinear form, 253

alternating group, 121, 171

alternating matrix, 257

alternative algebra, 304

annihilator, 52, 85

antisymmetrized tensor, 294

antisymmetrizer, 294

area, 86

Artin–Schreier Theorem, 550, 552

ascending chain condition, 421, 565

associate, 393

associated graded map, 300

associated graded vector space, 300

associated primitive polynomial, 396

associative algebra, 280, 372

filtered, 301

graded, 301

tensor product for, 582

associative law, 25, 34, 82, 118, 141

associative R algebra, 380

associativity formula, 580, 581

associator, 304

automorphism, 453

inner, 201

of group, 167

of number field, 124

Axiom of Choice, 597
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Baer multiplication, 355, 361

basis, 36, 176

dual, 51

free, 312

standard, 36

standard ordered, 48

vector space, 36

Weyl, 296

BCH code, 548

Bessel’s inequality, 94

Bezout’s identity, 3

bilinear, 90

bilinear form, 249

alternating, 253

invariant, 260

nondegenerate, 251

skew-symmetric, 253

symmetric, 253

bilinear function, 263, 574

bilinear map, 263

bilinear mapping, 263

bimodule, 573

block, 232

block multiplication, 86

Bolzano–Weierstrass Theorem, 603

boundary map, 583

Burnside’s Theorem, 345

cancellation law, 118

canonical form, 212

Jordan, 232, 409

of rectangular matrix, 242

rational, 245, 447, 448

canonical map into double dual, 54

canonical-form problem, 214

Cantor, 612

Cardan’s formula, 492, 510, 513

Cardano, 493

cardinal number, 610

addition of, 613

cardinality, 610

Cartan matrix, 86

Cartesian product, 595

indexed, 597

category, 53, 135, 189

opposite, 191, 210

Cauchy’s Theorem in group theory, 185

Cayley number, 304

Cayley–Dickson construction, 304

Cayley–Hamilton Theorem, 221

Cayley’s Theorem, 125

center, 372, 380, 554

of group, 165

centralizer of element, 165

chain, 583, 605

chain condition

ascending, 417, 565

descending, 565

change of rings, 573, 578

character, 339

multiplicative, 329

characteristic of a field, 148

characteristic polynomial, 74, 218

characteristic subgroup, 360

check matrix, 548

Chinese Remainder Theorem, 6, 405

class, 594, 595

equivalence, 600

class equation of group, 187

class function, 340

classical adjoint, 72

Clifford algebra, 302

closed, 583

closed form, 584

coboundary, 356

coboundary map, 356

cochain, 356

cocycle, 356

code, 207

BCH, 548

cyclic, 547

cyclic redundancy, 209

dual, 363

error-correcting, 206, 363, 547

Hamming, 207

linear, 207

parity-check, 207

repetition, 207

self-dual linear, 363

codomain, 596

coefficient, 9, 149

Fourier, 330, 362

leading, 150

matrix, 336

cofactor, 70, 217
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cohomology group, 356

cohomology of groups, 355, 584

collection, 595

column space, 38

column vector, 25

in an ordered basis, 45

common multiple, 32

commutative diagram, 194

commutative law, 25, 34, 83, 119

commutative ring, 141

commutator, 360

commutator subgroup, 313

complement, 595

completely reducible, 555

complex, 583, 585

complex conjugate of vector space, 115

complex conjugation, 604

complex number, 604

complexification, 274

composition, 598

composition factor, 173, 561

composition series, 172, 560

congruent modulo, 120

conjugacy class, 165

conjugate, 165

conjugate linear, 90

conjugates of an element, 523

conjugation, complex, 604

consecutive quotient, 172, 560

constant polynomial, 10, 150, 155

constructible coordinates, 470

field of, 470–471

constructible regular polygon, 473, 489, 499

contraction of ideal, 432

contragredient, 53

matrix of, 53

contragredient representation, 365

contravariant functor, 193

convolution, 339, 372, 381

coproduct functor, 199, 376, 589

in a category, 198

corner variable, 21

correspondence, one-one, 598

coset

left, 129

right 129

countable, xx

counting formula, 164

covariant functor, 192

Cramer’s rule, 24, 72, 217

CRC-8, 209

crossed homomorphism, 357

cubic polynomial, 542

cubic resolvent, 545

cut, 602

cycle, 15

cycle structure, 166

cycles, disjoint, 16

cyclic

code, 547

group, 125

R module, 401

redundancy code, 209

subspace, 244

vector, 244

cyclotomic field, 490, 500

cyclotomic polynomial, 399, 490, 540

dal Ferro, 493

de Rham cohomology, 584

decomposition group, 534

Dedekind domain, 416, 437, 450, 525

degree, 10, 150, 154, 456

dependent, integrally, 421

derivative of polynomial, 461

descend to, 57, 133, 147, 375

descending chain condition, 565

determinant, 65, 86, 215

Gram, 114

of linear map, 66

of matrix, 66

of square matrix, 67

properties of, 68, 216

Vandermonde, 71, 217

diagonal entry, 24, 180, 447

diagonal matrix, 24, 447

diagram, 194

commutative, 194

square, 194

difference, 595

difference product, 511

differential equations, system, 246

differential form, 584

differentiation, 461

dihedral group, 121, 170, 316

dimension, 564
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of vector space, 37, 78

direct image, 599

direct product

of groups, 126, 127, 136, 137

of R modules, 376

of rings, 374

of vector spaces, 62, 63

direct sum

of abelian groups, 138, 139

of R modules, 376

of vector spaces, 59, 60, 61, 62, 64

Dirichlet’s theorem on primes in arithmetic

progressions, 330, 367

discriminant, 511, 532, 533

disjoint cycles, 16

disjoint union, 198

distributive law, 26, 34, 141

divide, 1, 10, 388, 438

division algebra, 373

division algorithm, 2, 11

division ring, 144, 373

divisor, 1

elementary, 179, 447

greatest common, 2, 8, 12, 393

zero, 144

Dixmier, 559

domain, 596

Dedekind, 416, 437, 450, 525

Euclidean, 392, 444, 446

integral, 144

principal ideal, 390, 442

unique factorization, 389

dot product, 90

double a cube, 469, 471

double dual, 54

dual

double, 54

of vector space, 50

dual basis, 51

dual code, 363

duality in category theory, 210

eigenspace of linear function, 76

eigenspace of matrix, 73

eigenvalue of linear function, 76

eigenvalue of matrix, 73

eigenvector of linear function, 76

eigenvector of matrix, 73

Eisenstein’s irreducibility criterion, 398

element, 593, 594

elementary divisor, 179, 447

elementary matrix, 28

elementary row operation, 20

elementary symmetric polynomial, 448

entity, 593

entry, 20, 24

diagonal, 24, 180, 447

enveloping algebra, universal, 301

equality of matrices, 24

equation, linear, 23

equivalence class, 600

equivalence relation, 599–600

equivalent

factor set, 352

finite filtrations, 561

group extensions, 352

normal series, 174

words, 307

equivariant mapping, 191

error-correcting code, 206, 363, 547

Euclid’s Lemma, 5

Euclidean algorithm, 2, 13

Euclidean domain, 392, 444, 446

Euler ⇥ function, 7

evaluate, 10

evaluation, 151, 157

even permutation, 121

exact, 583, 584

exact form, 584

exact sequence, 584, 585

short, 585

split, 588

expansion

homogeneous-polynomial, 155

in cofactors, 70, 217

monomial, 155

expressible in terms of k and radicals, 495
extension

additive, 574

algebraic, 456

field, 453

finite, 456

finite algebraic, 456

finite Galois, 485

group, 348

linear, 44, 264
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normal, 481

of ideal, 432

of scalars, 275, 573, 578

separable, 476

simple algebraic, 457

exterior algebra, 291

external direct product

of groups, 126, 136

of R modules, 376

external direct sum

of abelian groups, 138

of R modules, 376

of vector spaces, 59, 61

external semidirect product of groups, 169

factor, 1, 10, 136, 388, 438

factor group, 132

factor ring, 146

factor set, 348

Factor Theorem, 11

factor through, 57, 133, 147, 378

factorization, 1, 10

nontrivial, 2, 10

prime, 5

unique, 5, 14

family, 595

fast Fourier transform, 331, 364

Fermat number, 472

Fermat prime, 472

Fermat’s Little Theorem, 142

Ferrari, 493

field, 142

algebraically closed, 212, 464

characteristic of, 148

cyclotomic, 490, 500

extension, 453

finite, 143, 153, 159, 373, 461, 488

fixed, 474

formally real, 550

Galois, 461

number, 123, 373, 387, 457

obtained by adjoining, 454

of constructible coordinates, 470–471

of fractions, 383, 601

ordered, 550

prime, 148

quadratic number, 422, 543

real closed, 550

splitting, 458

field isomorphism, 453

field map, 453

field mapping, 453

field polynomial, 519

filtered associative algebra, 301

filtered vector space, 300

filtration, finite, 560

finite

algebraic extension, 456

basis condition, 417, 565

extension, 456

field, 143, 153, 159, 373, 461, 488

filtration, 560

Galois extension, 485

length, 563

linear combination, 35

order, 130

rank, 178

rank of free R module, 401

support, 381

finite-dimensional vector space, 37

finitely generated abelian group, 176

fundamental theorem for, 179

finitely generated group, 315

finitely generated R module, 400

finitely presented group, 315

First Isomorphism Theorem, 57, 133, 379

Fitting’s Lemma, 588

fixed field, 474

forgetful functor, 192

form, 263

bilinear, see bilinear form

Hermitian, 258

sesquilinear, see sesquilinear form

skew-Hermitian, 258

formally real field, 550

Fourier coefficient, 330, 362

Fourier inversion formula

for class functions, 341

for finite abelian group, 330

for finite group, 338

Fourier inversion problem, 330

Fourier series 330

fractional ideal, 450

unique factorization of, 451

fractions

field of, 383, 601
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partial, 444

free abelian group, 176

free basis, 312

free group, 308

rank, 314

free product, 199, 323

free R module, 377

free subset, 312

Frobenius map, 462

function, 595

bilinear, 263

class, 340

k-linear, 263

k-multilinear, 263

linear, 42, 44

multilinear, 263

polynomial, 153, 158

functional, linear, 50

functional, multilinear, 66

functor, 53, 135

additive, 585

contravariant, 193

coproduct, 199, 376, 589

covariant, 192

forgetful, 192

product, 196, 376

Fundamental Theorem

of Algebra, 14, 465, 492

of Arithmetic, 5

of Finitely Generated Abelian Groups, 179

of Finitely Generated Modules, 402, 447

of Galois Theory, 345, 490

Galois, 494

Galois extension, finite, 485

Galois field, 461

Galois group, 474

Galois theory, 123, 484

Gauss, 473, 489, 500

Gauss’s Lemma, 395

Gaussian integer, 392, 446

general linear group, 122

generated by, 125

generated submodule, 377–378

generating polynomial, 209, 547

generator, 125, 176, 399

monic, 244

generators, 314

graded associative algebra, 301

graded vector space, 300

Gram determinant, 114

Gram matrix, 114

Gram–Schmidt orthogonalization process, 95

greatest common divisor, 2, 8, 12, 393

greatest lower bound, 603

group, 118

abelian, 119

alternating, 121, 171

automorphism of, 167

center of, 165

cohomology, 356

cyclic, 125

decomposition, 534

dihedral, 121, 170, 316

direct product for, 126, 127, 136, 137

finitely generated, 315

finitely presented, 315

free, 308

free abelian, 176

free product for, 323

Galois, 474

general linear, 122

homomorphism of, 131

icosahedral, 368

octahedral, 368

of units, 143

order of, 129

orthogonal, 122

quaternion, 128

quotient of, 132

rotation, 122

semidirect product for, 169

simple, 171

solvable, 494

special linear, 122

special unitary, 122

symmetric, 121

tetrahedral, 368

trivial, 118

unitary, 122

group action, 124, 159

transitive, 163

trivial, 161

group algebra, 380, 445

group extension, 348

group ring, integral, 373
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Hamming code, 207

Hamming distance, 206

Hamming space, 206

harmonic analysis, 506

harmonic polynomial, 116

Heisenberg Lie algebra, 302

heptadecagon, 503

Hermite, 515

Hermitian, 101

Hermitian form, 258

Hermitian matrix, 259

Hermitian sesquilinear form, 258

Hermitian symmetric, 90

Hilbert Basis Theorem, 416, 418

Hilbert–Schmidt norm, 112

homogeneous element, 281

homogeneous ideal, 284

homogeneous polynomial, 116, 155

homogeneous system, 23

homogeneous-polynomial expansion, 155

homomorphism

crossed, 357

of groups, 131

of R modules, 375

of rings, 144

substitution, 151, 156

icosahedral group, 368

ideal, 145

contraction of, 432

extension of, 432

fractional, 450

left, 378

maximal, 385

prime, 384

principal, 390

right, 378

two-sided, 145

unique factorization of, 438

identity element, 118

identity in a ring, 142

identity matrix, 27

identity morphism, 190

image, 596

direct, 599

inverse, 599

of homomorphism, 131

imaginary part, 604

independent variable, 21

indeterminate, 9, 149, 154, 155

index of subgroup, 164

indexed Cartesian product, 597

indexed intersection, 597

indexed union, 597

infimum, 603

infinite order, 130

infinite-dimensional vector space, 78

inhomogeneous system, 23

injection, 59, 62

inner automorphism, 201

inner product, 90

inner-product space, 90

integer, algebraic, 342, 411, 421, 515

integer, Gaussian, 392, 446

integers modulo, 120

integral, 421

integral closure, 416, 421

integral domain, 144

integral group ring, 373

integrally closed, 425

integrally dependent, 421

Intermediate Value Theorem, 603

internal direct product

of groups, 127, 137

of R modules, 376

of vector spaces, 63

internal direct sum

of abelian groups, 139

of R modules, 377

of vector spaces, 60, 61, 64

internal semidirect product of groups, 169

intersection, 595

indexed, 597

intertwining operator, 333

invariant

leave a bilinear form, 260

of group action, 357

invariant subspace, 73, 333

invariant vector subspace, 218

inverse, 192

multiplicative, 143

inverse element, 118

inverse function, 598

inverse image, 599

inverse matrix, 27
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invertible matrix, 27

involution, 242

irreducible element, 388

irreducible left R module, 555

irreducible representation, 333

isometry, 159

isomorphic, 48, 119, 144, 164, 192, 352,

378

isomorphism, 48, 119, 144, 192, 378, 453

natural, 268

isotropic subspace, 296

isotropy subgroup, 163

isotypic submodule, 589

Iwasawa decomposition, 113

Jacobi identity, 301

Jordan algebra, 303

Jordan block, 231, 409

Jordan canonical form, 232, 409

Jordan form, 231

Jordan normal form, 231

Jordan–Chevalley decomposition, 243, 549

Jordan–Hölder Theorem, 176, 562

k automorphism, 453
k isomorphism, 453
k-linear, 66

function, 263

map, 263

mapping, 263

k-multilinear

function, 263

map, 263

mapping, 263

kernel of homomorphism, 131

kernel of linear map, 46

Kronecker delta, xx, 27

Kronecker product, 297

Lagrange resolvents, 506

Lagrange’s Theorem, 130

law of composition, 190

law of cosines, 91

law of quadratic reciprocity, 499, 544

leading coefficient, 150

leading term, 150

least common multiple, 32

least upper bound, 603, 606

leave a bilinear form invariant, 260

left coset, 129

left ideal, 378

left R module, 374

left radical, 250

left regular representation, 332, 338, 365

left vector space, 556

left-coset space, 130

Legendre polynomial, 114

length of module, 563

length of word, 307

letter, 121

Lie algebra, 281, 301

Heisenberg, 302

Lie bracket, 301

Lindemann, 515

linear, 42, 44

linear code, 207

self-dual, 363

linear combination, 35

linear equation, 23

linear extension, 44, 264

linear fractional transformation, 160

linear function, see linear map

linear functional, 50

linear map, 42, 44

determinant of, 66

eigenspace of, 76

eigenvalue of, 76

eigenvector of, 76

kernel of, 46

normal, 110

orthogonal, 103

positive definite, 107

positive semidefinite, 107

unitary, 103

linear mapping, see linear map

linear operator, 42

linear transformation, see linear map

linearly independent set, 36, 176

local ring, 434

localization, 416

of R at the prime P , 430

of R with respect to S, 429

lower bound, 603

MacWilliams identity, 364

map, 596
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bilinear, 263

coboundary, 356

field, 453

k-linear, 263

k-multilinear, 263

linear, 42, 44

multilinear, 263

mapping, see map

matrix, 24

addition for, 25

alternating, 257

Cartan, 86

check, 548

coefficient, 336

column space of, 38

determinant of, 66, 67

diagonal, 24, 447

eigenspace of, 73

eigenvalue of, 73

eigenvector of, 73

elementary, 28

equality for, 24

Gram, 114

Hermitian, 259

identity, 27

inverse, 27

invertible, 27

multiplication for, 26

nilpotent, 232

nonsingular, 212, 217

null space of, 38

of a linear map in two ordered bases, 45

orthogonal, 103

positive definite, 107

positive semidefinite, 107

rank of, 41

row space of, 38

scalar multiplication for, 25

singular, 212, 217

skew-symmetric, 257

square, 24

symmetric, 253

symplectic, 450

trace of, 74

transpose of, 41

unitary, 103

Vandermonde, 71, 217

zero, 25

matrix representation, 332

matrix ring, 371

maximal element, 605

maximal ideal, 385

maximum condition, 417, 565

member, 595

minimal distance, 207

minimal polynomial, 221, 223, 455

minimum condition, 565

module

cyclic, 401

direct product for, 376

direct sum for, 376

finitely generated, 400

free R, 377

homomorphism of, 375

irreducible, 555

left R, 374

of finite rank, 401

quotient, 378

rank of, 402

right R, 375

semisimple, 555

simple, 555

tensor product for, 574

modulo, 120

monic generator, 244

monic polynomial, 150

monomial, 155

monomial expansion, 155

morphism, 189

identity, 190

multilinear form

symmetric, 283

function, 263

functional, 66

map, 263

mapping, 263

multiple, 1, 10

least common, 32

multiplication

Baer, 355, 361

in a group, 118

in a ring, 141

in an algebra, 280

of matrices, 26

multiplicative character, 329

multiplicative inverse, 143
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multiplicative system, 428

multiplicity of a root, 14

n-fold tensor product, 280

Nakayama’s Lemma, 436

natural isomorphism, 268

natural transformation, 268

negative, xx, 119

nicely normed, 305

Nielsen–Schreier Theorem, 318

nilpotent, 549

element, 443

matrix, 232

Noetherian ring, 418

nondegenerate bilinear form, 251

nonsingular, 212, 217

nontrivial factorization, 2, 10

norm, 91, 519, 544

Hilbert–Schmidt, 112

normal extension, 481

normal linear map, 110

normal series, equivalent, 174

normal series of groups, 172

normal subgroup, 131

normalizer of subgroup, 188

null space, 38

Nullstellensatz, 412

number

algebraic, 123, 387, 457, 465, 515

complex, 604

rational, 601

real, 602

number field, 123, 373, 387, 457

automorphism of, 124

quadratic, 422, 543

object, 189

octahedral group, 368

octonion, 304

odd permutation, 121

one-one, 598

one-one correspondence, 598

onto, 598

operation, elementary row, 20

operator

intertwining, 333

linear, 42

projection, 226

opposite category, 191, 210

opposite ring, 555

orbit, 163

order

finite, 130

infinite, 130

of group, 129

ordered field, 550

ordered pair, 595

ordering

partial, 605

simple, 286, 605

total, 605

well, 605

ordinary differential equations, system, 246

orthogonal complement, 97

orthogonal group, 122, 262

orthogonal linear map, 103

orthogonal matrix, 103

orthogonal projection, 97

orthogonal set, 93

orthogonal vectors, 93

orthonormal basis, 93

orthonormal set, 93

pair

ordered, 595

unordered, 595

parallelogram law, 91

parity-check code, 207

Parseval’s equality, 98

partial fractions, 444

partial ordering, 605

pentagon, 501

period of cyclotomic field, 500

permanence of identities, 215

permutation, 15, 121

even, 121

odd, 121

Pfaffian, 299, 449

Plancherel formula, 338

Poincaré–Birkhoff–Witt Theorem, 301

point, 595

Poisson summation formula, 362

polar decomposition, 111

polarization, 92

polynomial, 9, 149, 154

associated primitive, 396
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characteristic, 74, 218

constant, 10, 150, 155

cubic, 542

cyclotomic, 399, 490, 540

elementary symmetric, 448

field, 519

generating, 209, 547

harmonic, 116

homogeneous, 116, 155

Legendre, 114

minimal, 221, 223, 455

monic, 150

primitive, 394

quartic, 541, 546

separable, 476

split, 458

symmetric, 448, 544

weight enumerator, 209

zero, 10, 150

polynomial algebra, 289

polynomial function, 153, 158

polynomial ring, 371

positive, xx

positive definite linear map, 107

positive definite matrix, 107

positive semidefinite linear map, 107

positive semidefinite matrix, 107

power, 125

presentation, 314

primary block, 232

primary decomposition, 229

Primary Decomposition Theorem, 229

primary subspace, 229

prime, 2, 10

relatively, 6

prime element, 389

prime factorization, 5

prime field, 148

prime ideal, 384

primitive element, 480

primitive polynomial, 394

associated, 396

primitive root, 490

Principal Axis Theorem, 254

principal ideal, 390

principal ideal domain, 390, 442

product

Cartesian, 595

difference, 511

dot, 90

free, 199, 323

functor, 198, 376

in a category, 196

in a group, 118

in an algebra, 280

indexed Cartesian, 597

inner, 90

Kronecker, 297

n-fold tensor, 280

of matrices, 26

of permutations, 15

set-theoretic, 595

tensor, 263

triple tensor, 277

vector, 281

projection, 59, 62, 226

orthogonal, 97

Projection Theorem, 96

proper subset, 595

properly contained, 595

pure tensor, 265

Pythagorean Theorem, 91

quadratic number field, 422, 543

quadratic reciprocity, 499, 544

quartic polynomial, 541, 546

quaternion, 128

quaternion group, 128

quotient

group, 132

homomorphism, 132, 146

map, 55

module, 378

ring, 146, 374

space, 55, 130

R homomorphism, 375

R module, 375

R submodule, 377

radical, 250, 253, 257, 495

ramification index, 527, 543

range, 596

rank

of free abelian group, 178

of free group, 314

of free R module, 402
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of matrix, 41

rational canonical form, 245, 447, 448

rational number, 601

real closed field, 550

real number, 602

real part, 604

reduced row-echelon form, 20

reduced word, 325

reducible element, 389

refinement, 174, 561

reflexive, 600, 605

regular

17-gon, 503

heptadecagon, 503

pentagon, 501

polygon, 473, 489, 499

representation, 332, 337, 338, 365

relation, 314, 595

equivalence, 599–600

function as, 595

partial ordering as, 605

relatively prime, 6

repetition code, 207

representation, 161

contragredient, 365

irreducible, 333

left regular, 332, 338, 365

matrix, 332

right regular, 332, 337, 338

unitary, 332

residue class degree, 527, 543

restriction, 598

restriction of scalars, 277

Riemann sphere, 160

Riesz Representation Theorem, 99

right coset, 129

right ideal, 378

right R module, 375

right radical, 250

right regular representation, 332, 337, 338

rigid motion, 159

ring, 141

commutative, 141

direct product for, 374

division, 144, 373

group, 373

homomorphism of, 144

local, 434

matrix, 371

Noetherian, 418

opposite, 555

polynomial, 371

quotient of, 146

with identity, 142

zero, 142

Rodrigues’s formula, 114

root, 10, 152

multiplicity of, 14

primitive, 490

tower, 495

rotation, 43

rotation group, 122

row operation, elementary, 20

row reduction, 21

row space, 38

row vector, 25

row-echelon form, 20

Russell’s paradox, 593

S-tuple, 196

scalar, 9, 19, 34, 89, 211

scalar multiplication

in vector space, 34

of matrices, 25

scalars, extension of, 275, 573, 578

scalars, restriction of, 277

Schreier, 175, 348, 562

Schreier set, 319

Schroeder–Bernstein Theorem, 79, 610

Schur orthogonality, 335

Schur’s Lemma, 333, 559

Schwarz inequality, 92

Second Isomorphism Theorem, 58, 135, 379

self-adjoint, 101

self-dual linear code, 363

semidirect product of groups, 169

semisimple, 549

semisimple left R module, 555

separable element, 476

separable extension, 476

separable polynomial, 476

sesquilinear, 90

sesquilinear form, 258

Hermitian, 258

skew-Hermitian, 258

set, 593, 594



Index 733

set theory, von Neumann, 594

set theory, Zermelo–Fraenkel, 593

set-theoretic product, 595

short exact sequence, 585

sign of permutation, 17

signature, 255, 260

significant factor, 321

similar matrices, 48, 213

simple algebraic extension, 457

existence, 457

uniqueness, 458

simple group, 171

simple left R module, 555

simple ordering, 286, 605

simplicial complex, 583

simplicial homology, 583

simply transitive group action, 163

singleton, 595

singular, 212, 217

size, 24

skew-Hermitian form, 258

skew-Hermitian sesquilinear form, 258

skew-symmetric bilinear form, 253

skew-symmetric matrix, 257

socle, 589

solvable group, 494

span, 35, 36

spanning set, 36

special linear group, 122

special unitary group, 122

Spectral Theorem, 105

split exact sequence, 588

split polynomial, 458

splitting field, 458

existence, 458

uniqueness, 459

square a circle, 469, 472

square diagram, 194

square matrix, 24

stabilizer, 163

stable subspace, 73

standard basis, 36

standard ordered basis, 48

Steinitz, 466

straightedge and compass, 468

subcategory, 190

subfield, 144

subgroup, 119

characteristic, 360

commutator, 313

index of, 164

isotropy, 163

normal, 131

normalizer of, 188

submodule, 377

generated, 377–378

isotypic, 589

subring, 144

subset, 595

subspace, 35

cyclic, 244

invariant, 73, 333

isotropic, 296

primary, 229

stable, 73

substitution homomorphism, 151, 156

sum of two cardinal numbers, 613

sum of vector subspaces, 58

superset, 595

support, finite, 381

supremum, 603

Sylow p-subgroup, 185

Sylow Theorems, 185

Sylvester’s Law, 255, 260

symmetric, 90, 101, 600

Hermitian, 90

symmetric algebra, 284

symmetric bilinear form, 253

symmetric group, 121, 159

symmetric matrix, 253

symmetric multilinear form, 283

symmetric polynomial, 448, 544

elementary, 448

symmetrized tensor, 290

symmetrizer, 290

symplectic group, 262

symplectic matrix, 450

system of linear equations, 23

system of ordinary differential equations, 246

Tartaglia, 493

tensor algebra, 282

tensor product, 263

n-fold, 280

of abelian groups, 578

of modules, 574
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of R algebras, 582

triple, 277

tetrahedral group, 368

Theorem of the Primitive Element, 123, 457,

480, 524

total ordering, 605

trace, 519, 544

of matrix, 74

transcendental element, 454

transcendental � , 472, 515

transformation

linear, 42, 44

linear fractional, 160

natural 268

transitive, 600, 605

transitive group action, 163

transpose of matrix, 41

transposition, 16

triangle inequality, 605

triangular form, 219

triple tensor product, 277

trisect an angle, 469, 472

trivial group, 118

trivial group action, 161

tuple 196

two-sided ideal, 145

UFD1, 389, 419

UFD2, 389

union, 595

disjoint, 198

indexed, 597

unipotent, 550

unique factorization, 5, 14

of fractional ideal, 451

of ideal, 438

unique factorization domain, 389

unit, 1, 10

in a ring, 143

unit vector, 93

unital, 375

unitary group, 122

unitary linear map, 103

unitary matrix, 103

unitary matrix representation, 332

unitary representation, 332

universal enveloping algebra, 301

universal mapping property

abstract, 200, 298

of Clifford algebra, 302

of coproduct in a category, 198

of direct product of groups, 136, 137

of direct product of vector spaces, 63–64

of direct sum of abelian groups, 138–139,

139–140

of direct sum of vector spaces, 60, 64–65

of exterior algebra, 292

of field of fractions, 383

of free group, 308

of free R module, 377

of group algebra, 381

of integral group ring, 374

of localization, 431

of product in a category, 196

of ring of polynomials, 150, 156–157

of Sn(E), 285

of symmetric algebra, 285

of tensor algebra, 282

of tensor product of modules, 575

of tensor product of vector spaces, 263–264

of universal enveloping algebra, 301

of
�n(E), 292

of Weyl algebra, 303

unknown, 19

unordered pair, 595

upper bound, 603, 605

Van Kampen Theorem, 323

Vandermonde determinant, 71, 217

Vandermonde matrix, 71, 217

variable, 19

corner, 21

independent, 21

vector, 34

addition for, 34

column, 25

cyclic, 244

row, 25

scalar multiplication for, 34

unit, 93

vector product, 281

vector space, 34, 158

associated graded, 300

basis of, 36

complex conjugate of, 115

dimension of, 37, 78
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direct product for, 62, 63

direct sum for, 59, 60, 61, 62, 64

dual of, 50

filtered, 300

finite-dimensional, 37

graded, 300

infinite-dimensional, 78

left, 556

quotient of, 55

vector subspace, 35

invariant, 218

sum for, 58

volume, 86

von Neumann set theory, 594

weight, 206

weight enumerator polynomial, 209

well ordering, 605

Wentzel, 473

Weyl algebra, 302

Weyl basis, 296

Wilson’s Theorem, 201, 539

word, 307

word problem, 310

for finitely presented groups, 316

for free groups, 310

for free products, 325, 326

Zassenhaus, 174, 561

Zermelo–Fraenkel set theory, 593

Zermelo’s Well-Ordering Theorem, 466, 609

zero divisor, 144

zero matrix, 25

zero polynomial, 10, 150

zero ring, 142

Zorn’s Lemma, 79, 385, 466, 468, 555, 605
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