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PREFACE TO THE SECOND EDITION

In the years since publication of the first edition of Basic Algebra, many readers
have reacted to the book by sending comments, suggestions, and corrections.
People especially approved of the inclusion of some linear algebra before any
group theory, and they liked the ideas of proceeding from the particular to the
general and of giving examples of computational techniques right from the start.
They appreciated the overall comprehensive nature of the book, associating this
feature with the large number of problems that develop so many sidelights and
applications of the theory.

Along with the general comments and specific suggestions were corrections,
and there were enough corrections, perhaps a hundred in all, so that a second
edition now seems to be in order. Many of the corrections were of minor matters,
yet readers should not have to cope with errors along with new material. Fortu-
nately no results in the first edition needed to be deleted or seriously modified,
and additional results and problems could be included without renumbering.

For the first edition, the author granted a publishing license to Birkhéduser
Boston that was limited to print media, leaving the question of electronic publi-
cation unresolved. The main change with the second edition is that the question
of electronic publication has now been resolved, and a PDF file, called the “digital
second edition,” is being made freely available to everyone worldwide for personal
use. This file may be downloaded from the author’s own Web page and from
elsewhere.

The main changes to the text of the first edition of Basic Algebra are as follows:

e The corrections sent by readers and by reviewers have been made. The most
significant such correction was a revision to the proof of Zorn’s Lemma, the
earlier proof having had a gap.

e A number of problems have been added at the ends of the chapters, most of
them with partial or full solutions added to the section of Hints at the back of
the book. Of particular note are problems on the following topics:

(a) (Chapter II) the relationship in two and three dimensions between deter-
minants and areas or volumes,

(b) (Chapters V and IX) further aspects of canonical forms for matrices and
linear mappings,

(c) (Chapter VIII) amplification of uses of the Fundamental Theorem of
Finitely Generated Modules over principal ideal domains,

xi



xii Preface to the Second Edition

(d) (Chapter IX) the interplay of extension of scalars and Galois theory,
(e) (Chapter IX) properties and examples of ordered fields and real closed
fields.

e Some revisions have been made to the chapter on field theory (Chapter IX).
It was originally expected, and it continues to be expected, that a reader who
wants a fuller treatment of fields will look also at the chapter on infinite
field extensions in Advanced Algebra. However, the original placement of the
break between volumes left some possible confusion about the role of “normal
extensions” in field theory, and that matter has now been resolved.

e Characteristic polynomials initially have a variable A as a reminder of how
they arise from eigenvalues. But it soon becomes important to think of them
as abstract polynomials, not as polynomial functions. The indeterminate
had been left as A throughout most of the book in the original edition, and
some confusion resulted. The indeterminate is now called X rather than A
from Chapter V on, and characteristic polynomials have been treated
unambiguously thereafter as abstract polynomials.

e Occasional paragraphs have been added that point ahead to material in
Advanced Algebra.

The preface to the first edition mentioned three themes that recur throughout
and blend together at times: the analogy between integers and polynomials in
one variable over a field, the interplay between linear algebra and group theory,
and the relationship between number theory and geometry. A fourth is the gentle
mention of notions in category theory to tie together phenomena that occur in
different areas of algebra; an example of such a notion is “universal mapping
property.” Readers will benefit from looking for these and other such themes,
since recognizing them helps one get a view of the whole subject at once.

It was Benjamin Levitt, Birkhduser mathematics editor in New York, who
encouraged the writing of a second edition, who made a number of suggestions
about pursuing it, and who passed along comments from several anonymous
referees about the strengths and weaknesses of the book. I am especially grateful
to those readers who have sent me comments over the years. Many corrections and
suggestions were kindly pointed out to the author by Skip Garibaldi of Emory
University and Ario Contact of Shiraz, Iran. The long correction concerning
Zorn’s Lemma resulted from a discussion with Qiu Ruyue. The typesetting was
done by the program Textures using ApsS-TEX, and the figures were drawn with
Mathematica.

Just as with the first edition, I invite corrections and other comments from
readers. For as long as I am able, I plan to point to a list of known corrections

from my own Web page, www.math.stonybrook.edu/~aknapp.
A. W. KNAPP

January 2016



PREFACE TO THE FIRST EDITION

Basic Algebra and its companion volume Advanced Algebra systematically de-
velop concepts and tools in algebra that are vital to every mathematician, whether
pure or applied, aspiring or established. These two books together aim to give the
reader a global view of algebra, its use, and its role in mathematics as a whole.
The idea is to explain what the young mathematician needs to know about algebra
in order to communicate well with colleagues in all branches of mathematics.

The books are written as textbooks, and their primary audience is students who
are learning the material for the first time and who are planning a career in which
they will use advanced mathematics professionally. Much of the material in the
books, particularly in Basic Algebra but also in some of the chapters of Advanced
Algebra, corresponds to normal course work. The books include further topics
that may be skipped in required courses but that the professional mathematician
will ultimately want to learn by self-study. The test of each topic for inclusion is
whether it is something that a plenary lecturer at a broad international or national
meeting is likely to take as known by the audience.

The key topics and features of Basic Algebra are as follows:

e Linear algebra and group theory build on each other throughout the book.
A small amount of linear algebra is introduced first, as the topic likely to be
better known by the reader ahead of time, and then a little group theory is
introduced, with linear algebra providing important examples.

e Chapters on linear algebra develop notions related to vector spaces, the
theory of linear transformations, bilinear forms, classical linear groups, and
multilinear algebra.

e Chapters on modern algebra treat groups, rings, fields, modules, and Galois
groups, including many uses of Galois groups and methods of computation.

e Three prominent themes recur throughout and blend together at times: the
analogy between integers and polynomials in one variable over a field, the in-
terplay between linear algebra and group theory, and the relationship between
number theory and geometry.

e The development proceeds from the particular to the general, often introducing
examples well before a theory that incorporates them.

e More than 400 problems at the ends of chapters illuminate aspects of the
text, develop related topics, and point to additional applications. A separate
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xiv Preface to the First Edition

90-page section “Hints for Solutions of Problems” at the end of the book gives
detailed hints for most of the problems, complete solutions for many.

e Applications such as the fast Fourier transform, the theory of linear error-
correcting codes, the use of Jordan canonical form in solving linear systems
of ordinary differential equations, and constructions of interest in mathematical
physics arise naturally in sequences of problems at the ends of chapters and
illustrate the power of the theory for use in science and engineering.

Basic Algebra endeavors to show some of the interconnections between
different areas of mathematics, beyond those listed above. Here are examples:
Systems of orthogonal functions make an appearance with inner-product spaces.
Covering spaces naturally play a role in the examination of subgroups of free
groups. Cohomology of groups arises from considering group extensions. Use
of the power-series expansion of the exponential function combines with algebraic
numbers to prove that r is transcendental. Harmonic analysis on a cyclic group
explains the mysterious method of Lagrange resolvents in the theory of Galois
groups.

Algebra plays a singular role in mathematics by having been developed so
extensively at such an early date. Indeed, the major discoveries of algebra even
from the days of Hilbert are well beyond the knowledge of most nonalgebraists
today. Correspondingly most of the subject matter of the present book is at
least 100 years old. What has changed over the intervening years concerning
algebra books at this level is not so much the mathematics as the point of
view toward the subject matter and the relative emphasis on and generality of
various topics. For example, in the 1920s Emmy Noether introduced vector
spaces and linear mappings to reinterpret coordinate spaces and matrices, and
she defined the ingredients of what was then called “modern algebra” —the
axiomatically defined rings, fields, and modules, and their homomorphisms. The
introduction of categories and functors in the 1940s shifted the emphasis even
more toward the homomorphisms and away from the objects themselves. The
creation of homological algebra in the 1950s gave a unity to algebraic topics
cutting across many fields of mathematics. Category theory underwent a period
of great expansion in the 1950s and 1960s, followed by a contraction and a return
more to a supporting role. The emphasis in topics shifted. Linear algebra had
earlier been viewed as a separate subject, with many applications, while group
theory and the other topics had been viewed as having few applications. Coding
theory, cryptography, and advances in physics and chemistry have changed all
that, and now linear algebra and group theory together permeate mathematics and
its applications. The other subjects build on them, and they too have extensive
applications in science and engineering, as well as in the rest of mathematics.

Basic Algebra presents its subject matter in a forward-looking way that takes
this evolution into account. It is suitable as a text in a two-semester advanced
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undergraduate or first-year graduate sequence in algebra. Depending on the grad-
uate school, it may be appropriate to include also some material from Advanced
Algebra. Briefly the topics in Basic Algebra are linear algebra and group theory,
rings, fields, and modules. A full list of the topics in Advanced Algebra appears
on page x; of these, the Wedderburn theory of semisimple algebras, homological
algebra, and foundational material for algebraic geometry are the ones that most
commonly appear in syllabi of first-year graduate courses.

A chart on page xix tells the dependence among chapters and can help with
preparing a syllabus. Chapters I-VII treat linear algebra and group theory at
various levels, except that three sections of Chapter IV and one of Chapter V
introduce rings and fields, polynomials, categories and functors, and determinants
over commutative rings with identity. Chapter VIII concerns rings, with emphasis
on unique factorization; Chapter IX concerns field extensions and Galois theory,
with emphasis on applications of Galois theory; and Chapter X concerns modules
and constructions with modules.

For a graduate-level sequence the syllabus is likely to include all of Chapters
I-V and parts of Chapters VIII and IX, at a minimum. Depending on the
knowledge of the students ahead of time, it may be possible to skim much of
the first three chapters and some of the beginning of the fourth; then time may
allow for some of Chapters VI and VII, or additional material from Chapters VIII
and IX, or some of the topics in Advanced Algebra. For many of the topics in
Advanced Algebra, parts of Chapter X of Basic Algebra are prerequisite.

For an advanced undergraduate sequence the first semester can include Chap-
ters I through III except Section 1.9, plus the first six sections of Chapter IV and
as much as reasonable from Chapter V; the notion of category does not appear
in this material. The second semester will involve categories very gently; the
course will perhaps treat the remainder of Chapter IV, the first five or six sections
of Chapter VIII, and at least Sections 1-3 and 5 of Chapter IX.

More detailed information about how the book can be used with courses can
be deduced by using the chart on page xix in conjunction with the section “Guide
for the Reader” on pages xxi—xxiv. In my own graduate teaching, I have built one
course around Chapters I-III, Sections 1-6 of Chapter IV, all of Chapter V, and
about half of Chapter VI. A second course dealt with the remainder of Chapter
IV, a little of Chapter VII, Sections 1-6 of Chapter VIII, and Sections 1-11 of
Chapter IX.

The problems at the ends of chapters are intended to play a more important
role than is normal for problems in a mathematics book. Almost all problems
are solved in the section of hints at the end of the book. This being so, some
blocks of problems form additional topics that could have been included in the
text but were not; these blocks may either be regarded as optional topics, or they
may be treated as challenges for the reader. The optional topics of this kind
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usually either carry out further development of the theory or introduce significant
applications. For example one block of problems at the end of Chapter VII
carries the theory of representations of finite groups a little further by developing
the Poisson summation formula and the fast Fourier transform. For a second
example blocks of problems at the ends of Chapters IV, VII, and IX introduce
linear error-correcting codes as an application of the theory in those chapters.

Not all problems are of this kind, of course. Some of the problems are
really pure or applied theorems, some are examples showing the degree to which
hypotheses can be stretched, and a few are just exercises. The reader gets no
indication which problems are of which type, nor of which ones are relatively
easy. Each problem can be solved with tools developed up to that point in the
book, plus any additional prerequisites that are noted.

Beyond a standard one-variable calculus course, the most important prereq-
uisite for using Basic Algebra is that the reader already know what a proof is,
how to read a proof, and how to write a proof. This knowledge typically is
obtained from honors calculus courses, or from a course in linear algebra, or
from a first junior—senior course in real variables. In addition, it is assumed that
the reader is comfortable with a small amount of linear algebra, including matrix
computations, row reduction of matrices, solutions of systems of linear equations,
and the associated geometry. Some prior exposure to groups is helpful but not
really necessary.

The theorems, propositions, lemmas, and corollaries within each chapter are
indexed by a single number stream. Figures have their own number stream, and
one can find the page reference for each figure from the table on pages xvii—xviii.
Labels on displayed lines occur only within proofs and examples, and they are
local to the particular proof or example in progress. Some readers like to skim
or skip proofs on first reading; to facilitate this procedure, each occurrence of the
word “PROOF” or “PROOF” is matched by an occurrence at the right margin of the
symbol [ to mark the end of that proof.

I am grateful to Ann Kostant and Steven Krantz for encouraging this project
and for making many suggestions about pursuing it. I am especially indebted to
an anonymous referee, who made detailed comments about many aspects of a
preliminary version of the book, and to David Kramer, who did the copyediting.
The typesetting was by AyzS-TgX, and the figures were drawn with Mathematica.

I invite corrections and other comments from readers. I plan to maintain a list

of known corrections on my own Web page.
A. W. KNAPP
August 2006
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DEPENDENCE AMONG CHAPTERS

Below is a chart of the main lines of dependence of chapters on prior chapters.
The dashed lines indicate helpful motivation but no logical dependence. Apart
from that, particular examples may make use of information from earlier chapters
that is not indicated by the chart.
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STANDARD NOTATION

See the Index of Notation, pp. 717-719, for symbols defined starting on page 1.

Item

#S or | S|

%)

{x e E| P}

E€

EUF, ENF, E—F
Uoz EO" m(an
ECF, EDF

E ; F, E ::2 F
ExF, X, ¢Xs
(ai,...,ay), {ai,...,a,}
f:E—F, x— f(x)
fogorfg. f|,
VAGER))

f(E), f~YE)

@ .

n positive, n negative
Z,Q,R,C

max (and similarly min)
Yor]]

countable

[x]

Rez,Imz

Z

|z

1

lorl

1x

Qn,R",Cn

diag(ay, ..., an)

Meaning

number of elements in §

empty set

the set of x in E such that P holds
complement of the set E

union, intersection, difference of sets

union, intersection of the sets E,

E is contained in F', E contains F

E properly contained in F, properly contains F
products of sets

ordered n-tuple, unordered n-tuple

function, effect of function

composition of g followed by f, restriction to E
the function x — f(x, y)

direct and inverse image of a set

Kronecker delta: 1ifi = j,0ifi # j
binomial coefficient

n>0,n<0

integers, rationals, reals, complex numbers
maximum of a finite subset of a totally ordered set
sum or product, possibly with a limit operation
finite or in one-one correspondence with Z
greatest integer < x if x is real

real and imaginary parts of complex z
complex conjugate of z

absolute value of z

multiplicative identity

identity matrix or operator

identity function on X

spaces of column vectors

diagonal matrix

is isomorphic to, is equivalent to

XX



GUIDE FOR THE READER

This section is intended to help the reader find out what parts of each chapter are
most important and how the chapters are interrelated. Further information of this
kind is contained in the abstracts that begin each of the chapters.

The book pays attention to at least three recurring themes in algebra, allowing
a person to see how these themes arise in increasingly sophisticated ways. These
are the analogy between integers and polynomials in one indeterminate over a
field, the interplay between linear algebra and group theory, and the relationship
between number theory and geometry. Keeping track of how these themes evolve
will help the reader understand the mathematics better and anticipate where it is
headed.

In Chapter I the analogy between integers and polynomials in one indeterminate
over the rationals, reals, or complex numbers appears already in the first three
sections. The main results of these sections are theorems about unique factoriza-
tion in each of the two settings. The relevant parts of the underlying structures for
the two settings are the same, and unique factorization can therefore be proved in
both settings by the same argument. Many readers will already know this unique
factorization, but it is worth examining the parallel structure and proof at least
quickly before turning to the chapters that follow.

Before proceeding very far into the book, it is worth looking also at the appendix
to see whether all its topics are familiar. Readers will find Section A1l useful
at least for its summary of set-theoretic notation and for its emphasis on the
distinction between range and image for a function. This distinction is usually
unimportant in analysis but becomes increasingly important as one studies more
advanced topics in algebra. Readers who have not specifically learned about
equivalence relations and partial orderings can learn about them from Sections
A2 and A5. Sections A3 and A4 concern the real and complex numbers; the
emphasis is on notation and the Intermediate Value Theorem, which plays a role
in proving the Fundamental Theorem of Algebra. Zorn’s Lemma and cardinality
in Sections A5 and A6 are usually unnecessary in an undergraduate course. They
arise most importantly in Sections I1.9 and IX.4, which are normally omitted in
an undergraduate course, and in Proposition 8.8, which is invoked only in the last
few sections of Chapter VIII.

The remainder of this section is an overview of individual chapters and pairs
of chapters.

XX1



Xxii Guide for the Reader

ChapterLis in three parts. The first part, as mentioned above, establishes unique
factorization for the integers and for polynomials in one indeterminate over the
rationals, reals, or complex numbers. The second part defines permutations and
shows that they have signs such that the sign of any composition is the product of
the signs; this result is essential for defining general determinants in Section I1.7.
The third part will likely be a review for all readers. It establishes notation for row
reduction of matrices and for operations on matrices, and it uses row reduction
to show that a one-sided inverse for a square matrix is a two-sided inverse.

Chapters II-11I treat the fundamentals of linear algebra. Whereas the matrix
computations in Chapter I were concrete, Chapters II-11I are relatively abstract.
Much of this material is likely to be a review for graduate students. The geometric
interpretation of vectors spaces, subspaces, and linear mappings is not included in
the chapter, being taken as known previously. The fundamental idea that a newly
constructed object might be characterized by a “universal mapping property”
appears for the first time in Chapter II, and it appears more and more frequently
throughout the book. One aspect of this idea is that it is sometimes not so
important what certain constructed objects are, but what they do. A related idea
being emphasized is that the mappings associated with a newly constructed object
are likely to be as important as the object, if not more so; at the least, one needs to
stop and find what those mappings are. Section IL.9 uses Zorn’s Lemma and can
be deferred until Chapter IX if one wants. Chapter III discusses special features
of real and complex vector spaces endowed with inner products. The main result
is the Spectral Theorem in Section 3. Many of the problems at the end of the
chapter make contact with real analysis. The subject of linear algebra continues
in Chapter V.

Chapter IV is the primary chapter on group theory and may be viewed as in
three parts. Sections 1-6 form the first part, which is essential for all later chapters
in the book. Sections 1-3 introduce groups and some associated constructions,
along with a number of examples. Many of the examples will be seen to be
related to specific or general vector spaces, and thus the theme of the interplay
between group theory and linear algebra is appearing concretely for the first time.
In practice, many examples of groups arise in the context of group actions, and
abstract group actions are defined in Section 6. Of particular interest are group
representations, which are group actions on a vector space by linear mappings.
Sections 4-5 are a digression to define rings, fields, and ring homomorphisms,
and to extend the theories concerning polynomials and vector spaces as presented
in Chapters I-II. The immediate purpose of the digression is to make prime fields,
their associated multiplicative groups, and the notion of characteristic available
for the remainder of the chapter. The definition of vector space is extended
to allow scalars from any field. The definition of polynomial is extended to
allow coefficients from any commutative ring with identity, rather than just the
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rationals or reals or complex numbers, and to allow more than one indeterminate.
Universal mapping properties for polynomial rings are proved. Sections 7-10
form the second part of the chapter and are a continuation of group theory. The
main result is the Fundamental Theorem of Finitely Generated Abelian Groups,
which is in Section 9. Section 11 forms the third part of the chapter. This section
is a gentle introduction to categories and functors, which are useful for working
with parallel structures in different settings within algebra. As S. Mac Lane says
in his book, “Category theory asks of every type of Mathematical object: ‘What
are the morphisms?’; it suggests that these morphisms should be described at the
same time as the objects. . . . This emphasis on (homo)morphisms is largely due to
Emmy Noether, who emphasized the use of homomorphisms of groups and rings.”
The simplest parallel structure reflected in categories is that of an isomorphism.
The section also discusses general notions of product and coproduct functors.
Examples of products are direct products in linear algebra and in group theory.
Examples of coproducts are direct sums in linear algebra and in abelian group
theory, as well as disjoint unions in set theory. The theory in this section helps in
unifying the mathematics that is to come in Chapters VI-VIII and X. The subject
of group theory in continued in Chapter VII, which assumes knowledge of the
material on category theory.

Chapters V and VI continue the development of linear algebra. Chapter VI uses
categories, but Chapter V does not. Most of Chapter V concerns the analysis of a
linear transformation carrying a finite-dimensional vector space over a field into
itself. The questions are to find invariants of such transformations and to classify
the transformations up to similarity. Section 2 at the start extends the theory of
determinants so that the matrices are allowed to have entries in a commutative
ring with identity; this extension is necessary in order to be able to work easily
with characteristic polynomials. The extension of this theory is carried out by
an important principle known as the “permanence of identities.” Chapter VI
largely concerns bilinear forms and tensor products, again in the context that the
coefficients are from a field. This material is necessary in many applications to
geometry and physics, but it is not needed in Chapters VII-IX. Many objects in
the chapter are constructed in such a way that they are uniquely determined by
a universal mapping property. Problems 18-22 at the end of the chapter discuss
universal mapping properties in the general context of category theory, and they
show that a uniqueness theorem is automatic in all cases.

Chapter VII continues the development of group theory, making use of category
theory. It is in two parts. Sections 1-3 concern free groups and the topic of
generators and relations; they are essential for abstract descriptions of groups
and for work in topology involving fundamental groups. Section 3 constructs a
notion of free product and shows that it is the coproduct functor for the category
of groups. Sections 4-6 continue the theme of the interplay of group theory and
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linear algebra. Section 4 analyzes group representations of a finite group when
the underlying field is the complex numbers, and Section 5 applies this theory
to obtain a conclusion about the structure of finite groups. Section 6 studies
extensions of groups and uses them to motivate the subject of cohomology of
groups.

Chapter VIII introduces modules, giving many examples in Section 1, and
then goes on to discuss questions of unique factorization in integral domains.
Section 6 obtains a generalization for principal ideal domains of the Fundamental
Theorem of Finitely Generated Abelian Groups, once again illustrating the first
theme — similarities between the integers and certain polynomial rings. Section 7
introduces the third theme, the relationship between number theory and geometry,
as a more sophisticated version of the first theme. The section compares a certain
polynomial ring in two variables with a certain ring of algebraic integers that
extends the ordinary integers. Unique factorization of elements fails for both, but
the geometric setting has a more geometrically meaningful factorization in terms
of ideals that is evidently unique. This kind of unique factorization turns out to
work for the ring of algebraic integers as well. Sections 8—11 expand the examples
in Section 7 into a theory of unique factorization of ideals in any integrally closed
Noetherian domain whose nonzero prime ideals are all maximal.

Chapter IX analyzes algebraic extensions of fields. The first 13 sections
make use only of Sections 1-6 in Chapter VIII. Sections 1-5 of Chapter IX
give the foundational theory, which is sufficient to exhibit all the finite fields and
to prove that certain classically proposed constructions in Euclidean geometry
are impossible. Sections 68 introduce Galois theory, but Theorem 9.28 and
its three corollaries may be skipped if Sections 14-17 are to be omitted. Sec-
tions 9-11 give a first round of applications of Galois theory: Gauss’s theorem
about which regular n-gons are in principle constructible with straightedge and
compass, the Fundamental Theorem of Algebra, and the Abel-Galois theorem
that solvability of a polynomial equation with rational coefficients in terms of
radicals implies solvability of the Galois group. Sections 12—13 give a second
round of applications: Gauss’s method in principle for actually constructing the
constructible regular n-gons and a converse to the Abel-Galois theorem. Sections
14—-17 make use of Sections 7—11 of Chapter VIII, proving that r is transcendental
and obtaining two methods for computing Galois groups.

Chapter X is a relatively short chapter developing further tools for dealing
with modules over a ring with identity. The main construction is that of the
tensor product over a ring of a unital right module and a unital left module, the
result being an abelian group. The chapter makes use of material from Chapters
VI and VIII, but not from Chapter IX.
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CHAPTERI

Preliminaries about the Integers, Polynomials,
and Matrices

Abstract. This chapter is mostly a review, discussing unique factorization of positive integers,
unique factorization of polynomials whose coefficients are rational or real or complex, signs of
permutations, and matrix algebra.

Sections 1-2 concern unique factorization of positive integers. Section 1 proves the division
and Euclidean algorithms, used to compute greatest common divisors. Section 2 establishes unique
factorization as a consequence and gives several number-theoretic consequences, including the
Chinese Remainder Theorem and the evaluation of the Euler ¢ function.

Section 3 develops unique factorization of rational and real and complex polynomials in one inde-
terminate completely analogously, and it derives the complete factorization of complex polynomials
from the Fundamental Theorem of Algebra. The proof of the fundamental theorem is postponed to
Chapter IX.

Section 4 discusses permutations of a finite set, establishing the decomposition of each permu-
tation as a disjoint product of cycles. The sign of a permutation is introduced, and it is proved that
the sign of a product is the product of the signs.

Sections 5-6 concern matrix algebra. Section 5 reviews row reduction and its role in the solution
of simultaneous linear equations. Section 6 defines the arithmetic operations of addition, scalar
multiplication, and multiplication of matrices. The process of matrix inversion is related to the
method of row reduction, and it is shown that a square matrix with a one-sided inverse automatically
has a two-sided inverse that is computable via row reduction.

1. Division and Euclidean Algorithms

The first three sections give a careful proof of unique factorization for integers
and for polynomials with rational or real or complex coefficients, and they give
an indication of some first consequences of this factorization. For the moment
let us restrict attention to the set Z of integers. We take addition, subtraction,
and multiplication within Z as established, as well as the properties of the usual
ordering in Z.

A factor of an integer n is a nonzero integer k such that n = kl for some
integer /. In this case we say also that k divides #n, that k is a divisor of n, and
that n is a multiple of k. We write k | n for this relationship. If n is nonzero, any
product formula n = kl; - - -, is a factorization of n. A unit in Z is a divisor

1
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of 1, hence is either +1 or —1. The factorization n = k/ of n # 0 is called
nontrivial if neither k£ nor / is a unit. An integer p > 1 is said to be prime if it
has no nontrivial factorization p = kl.

The statement of unique factorization for positive integers, which will be given
precisely in Section 2, says roughly that each positive integer is the product of
primes and that this decomposition is unique apart from the order of the factors.!
Existence will follow by an easy induction. The difficulty is in the uniqueness. We
shall prove uniqueness by a sequence of steps based on the “Euclidean algorithm,”
which we discuss in a moment. In turn, the Euclidean algorithm relies on the
following.

Proposition 1.1 (division algorithm). If a and b are integers with b # 0, then
there exist unique integers ¢ and r such thata = bg +r and 0 <r < |b|.

PROOF. Possibly replacing g by —g, we may assume that b > 0. The integers
n with bn < a are bounded above by |a|, and there exists such an n, namely
n = —|a|. Therefore there is a largest such integer, say n = ¢q. Setr =
a—bg. Then0 <randa = bg+r. If r = b, thenr — b > 0 says that
a=b(g+ 1)+ ( —b) = b(qg+1). The inequality g + 1 > g contradicts the
maximality of ¢, and we conclude that » < b. This proves existence.

For uniqueness when b > 0, suppose a = bq; + r; = bqy + r;. Subtracting,
we obtain b(q, — q») = r, — r; with [rp, — r;| < b, and this is a contradiction
unlessrp, —r; = 0. O

Let a and b be integers not both 0. The greatest common divisor of a and
b is the largest integer d > 0 such that d | a and d | b. Let us see existence.
The integer 1 divides a and b. If b, for example, is nonzero, then any such d
has |d| < |b|, and hence the greatest common divisor indeed exists. We write
d = GCD(a, b).

Let us suppose that b # 0. The Euclidean algorithm consists of iterated ap-
plication of the division algorithm (Proposition 1.1) to a and b until the remainder
term r disappears:

a=bq +r, 0<r <b,
b=riqx+ra, 0<r <ry,
ry =ryq3 +rs, 0<r3; <ry,
Fn—2 =Tp_1qy + 1y, 0<r, <r,_1 (withr, #0, say),

F'n—1 =Tnqn+1-

!t is to be understood that the prime factorization of 1 is as the empty product.
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The process must stop with some remainder term r,, .| equal to O in this way since

b > ry > ry > --- > 0. The last nonzero remainder term, namely r, above, will
be of interest to us.

EXAMPLE. For a = 13 and b = 5, the steps read

13=5-2+3,
5=3-1+2,
3=2-1+[1],
2=1-2.

The last nonzero remainder term is written with a box around it.

Proposition 1.2. Let a and b be integers with b # 0, and let d = GCD(a, b).
Then

(a) the number r,, in the Euclidean algorithm is exactly d,
(b) any divisor d’ of both a and b necessarily divides d,
(c) there exist integers x and y such that ax + by = d.

REMARK. Proposition 1.2¢ is sometimes called Bezout’s identity.

EXAMPLE, CONTINUED. We rewrite the steps of the Euclidean algorithm, as
applied in the above example with @ = 13 and b = 5, so as to yield successive
substitutions:

13=5-2+3, 3=13-5-2,

5=3-1+2, 2=5-3.1=5-(13-5-2)-1=5-3—13.1,

3=2-1+[1], 1=3-2.1=(13-5-2)-(5-3-13-1)-1
—13.2-5.5.

Thus we see that 1 = 13x 4+ 5y with x = 2 and y = —5. This shows for the
example that the number r,, works in place of d in Proposition 1.2¢, and the rest
of the proof of the proposition for this example is quite easy. Let us now adjust
this computation to obtain a complete proof of the proposition in general.

PROOF OF PROPOSITION 1.2. Putry = b and r_; = a, so that
Tk—2 = Tk—1qk + Tk forl <k <n. (%)

The argument proceeds in three steps.
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Step 1. We show that r,, is a divisor of both a and b. In fact, from r,_; =
T'nqn+1, We have r, | r,—1. Let k < n, and assume inductively that r, divides
Tk—1,+++,Tn_1,7n. Then (x) shows that r, divides r;_,. Induction allows us to
conclude that r,, divides r_, rg, ..., r,—. In particular, r,, divides a and b.

Step 2. We prove that ax + by = r, for suitable integers x and y. In fact,
we show by induction on k for k < n that there exist integers x and y with
ax + by =ry. Fork = —1 and k = 0, this conclusion is trivial. If k > 1 is given
and if the result is known for kK — 2 and k — 1, then we have

axy + by, =ri_a,

kk
axy +byy = rr—y ()

for suitable integers x;, y, x1, y1. We multiply the second of the equalities of
(xx) by g, subtract, and substitute into (). The result is

T =Tk—2 — '—1qx = a(x2 — qix1) +b(y2 — qxy1),

and the induction is complete. Thus ax + by = r, for suitable x and y.

Step 3. Finally we deduce (a), (b), and (c). Step 1 shows that r,, divides a and
b. If d’ > 0 divides both a and b, the result of Step 2 shows that d’ | r,. Thus
d" <ry,, and r, is the greatest common divisor. This is the conclusion of (a); (b)
follows from (a) since d’ | r,,, and (c) follows from (a) and Step 2. U]

Corollary 1.3. Within Z, if ¢ is a nonzero integer that divides a product mn
and if GCD(c, m) = 1, then ¢ divides n.

PROOF. Proposition 1.2c produces integers x and y with cx +my = 1.
Multiplying by n, we obtain cnx + mny = n. Since ¢ divides mn and divides
itself, ¢ divides both terms on the left side. Therefore it divides the right side,
which is n. O

Corollary 1.4. Within Z, if a and b are nonzero integers with GCD(a, b) = 1
and if both of them divide the integer m, then ab divides m.

PROOF. Proposition 1.2c produces integers x and y with ax 4+ by = 1.
Multiplying by m, we obtain amx 4+ bmy = m, which we rewrite in integers
as ab(m/b)x + ab(m/a)y = m. Since ab divides each term on the left side, it
divides the right side, which is m. O

2. Unique Factorization of Integers

We come now to the theorem asserting unique factorization for the integers. The
precise statement is as follows.
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Theorem 1.5 (Fundamental Theorem of Arithmetic). Each positive integer
n can be written as a product of primes, n = p;p;--- p,, with the integer 1
being written as an empty product. This factorization is unique in the following
sense: if n = g1q3 - - - g5 is another such factorization, then » = s and, after some
reordering of the factors, g; = p; for1 < j <r.

The main step is the following lemma, which relies on Corollary 1.3.

Lemma 1.6. Within Z, if p is a prime and p divides a product ab, then p
divides a or p divides b.

REMARK. Lemma 1.6 is sometimes known as Euclid’s Lemma.

PROOF. Suppose that p does not divide a. Since p is prime, GCD(a, p) = 1.
Taking m = a, n = b, and ¢ = p in Corollary 1.3, we see that p divides b. [J

PROOF OF EXISTENCE IN THEOREM 1.5. We induct on 7, the case n = 1 being
handled by an empty product expansion. If the result holds for k = 1 through
k = n — 1, there are two cases: n is prime and # is not prime. If n is prime, then
n = n is the desired factorization. Otherwise we can write n = ab nontrivially
witha > landb > 1. Thena <n —1and b < n — 1, so that a and b have
factorizations into primes by the inductive hypothesis. Putting them together
yields a factorization into primes for n = ab. g

PROOF OF UNIQUENESS IN THEOREM 1.5. Suppose that n = pip>--- pr =
q192 - - - qs with all factors prime and with r < s. We prove the uniqueness by
induction on r, the case r = 0 being trivial and the case r = 1 following from
the definition of “prime.” Inductively from Lemma 1.6 we have p, | g; for some
k. Since gy is prime, p, = qx. Thus we can cancel and obtain pyp; -+ - p,—1 =
q192 - - - qx - - - g, the hat indicating an omitted factor. By induction the factors
on the two sides here are the same except for order. Thus the same conclusion
is valid when comparing the two sides of the equality p1p2--- pr = q1g2 - - - ¢s.
The induction is complete, and the desired uniqueness follows.

In the product expansion of Theorem 1.5, it is customary to group factors that
are equal, thus writing the positive integer n as n = pll‘l ‘e pf" with the primes
pj distinct and with the integers k; all > 0. This kind of decomposition is unique
up to order if all factors p;("
factorization of n.

with k; = 0 are dropped, and we call it a prime

Corollary 1.7. If n = p'l‘1 .. pk

n, then the positive divisors d of n are exactly all products d = plll - pb with
0< lj < kj for all J.

" is a prime factorization of a positive integer
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REMARK. A general divisor of n within Z is the product of a unit 1 and a
positive divisor.

PROOF. Certainly any such product divides n. Conversely if d divides n, write
n = dx for some positive integer x. Apply Theorem 1.5 to d and to x, form the
resulting prime factorizations, and multiply them together. Then we see from the
uniqueness for the prime factorization of n that the only primes that can occur in
the expansions of d and x are py, ..., p, and that the sum of the exponents of p;
in the expansions of d and x is k;. The result follows. O

If we want to compare prime factorizations for two positive integers, we can
insert 0" powers of primes as necessary and thereby assume that the same primes
appear in both expansions. Using this device, we obtain a formula for greatest
common divisors.

Corollary 1.8. If two positive integers a and b have expansions as products
of powers of r distinct primes given by a = p]f‘ e pf" and b = plll e pf', then

GCD(a, b) = p;nin(kl,ll) . p;nin(kr,lr).

PROOF. Let d’ be the right side of the displayed equation. It is plain that d’
is positive and that d’ divides a and b. On the other hand, two applications of
Corollary 1.7 show that the greatest common divisor of a and b is a number d
of the form p{"' --. p/' with the property that m; < k; and m; < [; for all j.
Therefore m; < min(k;, [;) forall j, and d < d’. Since any positive divisor of
botha and bis < d, wehave d’ < d. Thusd' =d. O

In special cases Corollary 1.8 provides a useful way to compute GCD(a, b),
but the Euclidean algorithm is usually a more efficient procedure. Nevertheless,
Corollary 1.8 remains a handy tool for theoretical purposes. Here is an example:
Two nonzero integers a and b are said to be relatively prime if GCD(a, b) = 1.
It is immediate from Corollary 1.8 that two nonzero integers a and b are relatively
prime if and only if there is no prime p that divides both a and b.

Corollary 1.9 (Chinese Remainder Theorem). Let a and b be positive rela-
tively prime integers. To each pair (7, s) of integers withO <r <aand0 <s < b
corresponds a unique integer n such that 0 < n < ab, a divides n — r, and b
divides n — s. Moreover, every integer n with 0 < n < ab arises from some such
pair (r, s).

REMARK. Innotation for congruences that we introduce formally in Chapter IV,
the result says that if GCD(a, b) = 1, then the congruences n = r mod a and
n = s mod b have one and only one simultaneous solution n with 0 < n < ab.



2. Unique Factorization of Integers 7

PROOF. Let us see that n exists as asserted. Since a and b are relatively
prime, Proposition 1.2¢ produces integers x’ and y’ such that ax’ — by’ = 1.
Multiplying by s — r, we obtain ax — by = s — r for suitable integers x and y.
Putt = ax +r = by + s, and write by the division algorithm (Proposition 1.1)
t = abq + n for some integer ¢ and for some integer n with 0 < n < ab. Then
n—r =t—abgq —r = ax —abgq is divisible by a, and similarly n — s is divisible
by b.

Suppose that n and n’ both have the asserted properties. Then a divides
n—n=m-r)— (' —r),and bdividesn —n' = (n —s) — (n’ — 5). Since
a and b are relatively prime, Corollary 1.4 shows that ab divides n — n’. But
|n — n’| < ab, and the only integer N with |N| < ab that is divisible by ab is
N =0. Thus n — n’ = 0 and n = n’. This proves uniqueness.

Finally the argument just given defines a one-one function from a set of ab
pairs (r, s) to a set of ab elements n. Its image must therefore be all such integers
n. This proves the corollary. (]

If n is a positive integer, we define ¢(n) to be the number of integers k with
0 < k < n such that k and n are relatively prime. The function ¢ is called the
Euler ¢ function.

Corollary 1.10. Let N > 1 be an integer, and let N = p]f‘ -+ pk be a prime
factorization of N. Then

o) =[]r/ " ;= .
j=1

REMARK. The conclusion is valid also for N = 1 if we interpret the right side
of the formula to be the empty product.

PROOF. For positive integers a and b, let us check that
p(ab) = p(a)p(b) if GCD(a,b) =1. (*)

In view of Corollary 1.9, it is enough to prove that the mapping (r, s) + n given
in that corollary has the property that GCD(r, a) = GCD(s, b) = 1 if and only if
GCD(n, ab) = 1.

To see this property, suppose that n satisfies0 < n < ab and GCD(n, ab) > 1.
Choose a prime p dividing both #n and ab. By Lemma 1.6, p divides a or p divides
b. By symmetry we may assume that p divides a. If (r, s) is the pair corresponding
to n under Corollary 1.9, then the corollary says that a divides n — r. Since p
divides a, p divides n — r. Since p divides n, p divides r. Thus GCD(r, a) > 1.

Conversely suppose that (r, s) is a pair with0 <r < a and 0 < s < b such
that GCD(r, a) = GCD(s, b) = 1 is false. Without loss of generality, we may
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assume that GCD(r, a) > 1. Choose a prime p dividing both r and a. If n is the
integer with 0 < n < ab that corresponds to (r, s) under Corollary 1.9, then the
corollary says that a divides n — r. Since p divides a, p divides n — r. Since p
divides r, p divides n. Thus GCD(n, ab) > 1. This completes the proof of (x).

For a power p* of a prime p with k > 0, the integers n with 0 < n < p*
such that GCD(n, p") > 1 are the multiples of p, namely O, p, 2p, ..., pk - p.
There are p*~! of them. Thus the number of integers n with 0 < n < p* such
that GCD(n, p*) = 1is pk — p*=! = p*=1(p — 1). In other words,

o(p"y=p*"p—1) ifpisprimeandk > 1. (x%)

To prove the corollary, we induct on r, the case r = 1 being handled by (xx). If
the formula of the corollary is valid for r — 1, then () allows us to combine that

result with the formula for ¢(p*) given in (xx*) to obtain the formula for ¢(N).
O

We conclude this section by extending the notion of greatest common divisor to
apply to more than two integers. If ay, . .., a; are integers not all 0, their greatest
common divisor is the largest integer d > 0 that divides all of ay, ..., a;. This
exists, and we write d = GCD(ay, ..., a,) forit. Itis immediate that d equals the
greatest common divisor of the nonzero members of the set {ay, ..., a,;}. Thus,
in deriving properties of greatest common divisors, we may assume that all the
integers are nonzero.

Corollary 1.11. Letay, ..., a, be positive integers, and let d be their greatest
common divisor. Then

. . . ki kej - .
(a) if foreach j with 1 < j <t, aj = p,"’ --- p,"/ is an expansion of a; as

a product of powers of r distinct primes py, ..., p,, it follows that
d = pminlgjgt{kl.j} L pminlfjfr{kr,j}
- 1 r ’
(b) any divisor d’ of all of ay, ..., a, necessarily divides d,
(c) d = GCD(GCD(al, ey di 1), a,) ift > 1,
(d) there exist integers xy, ..., x; such thata;x; + - - - 4+ a;x; = d.

PROOF. Part (a) is proved in the same way as Corollary 1.8 except that Corollary
1.7 is to be applied r times rather than just twice. Further application of Corollary
1.7 shows that any positive divisord’ of ay, . .., a, is of the formd’ = p}"' - - - p™
with m; < ky; forall j, ..., and with m, < k. ; for all j. Therefore m; <
minj<j<-{ki ;}, ..., and m, < min;<;< {k,;}, and it follows that 4" divides
d. This proves (b). Conclusion (c) follows by using the formula in (a), and (d)
follows by combining (c), Proposition 1.2¢, and induction. (|
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3. Unique Factorization of Polynomials

This section establishes unique factorization for ordinary rational, real, and com-
plex polynomials. We write QQ for the set of rational numbers, R for the set of
real numbers, and C for the set of complex numbers, each with its arithmetic
operations. The rational numbers are constructed from the integers by a process
reviewed in Section A3 of the appendix, the real numbers are defined from the
rational numbers by a process reviewed in that same section, and the complex
numbers are defined from the real numbers by a process reviewed in Section A4
of the appendix. Sections A3 and A4 of the appendix mention special properties
of R and C beyond those of the arithmetic operations, but we shall not make
serious use of these special properties here until nearly the end of the section—
after unique factorization of polynomials has been established. Let F denote any
of @Q, R, or C. The members of F are called scalars.

We work with ordinary polynomials with coefficients in IF. Informally these
areexpressions P(X) = a, X"+ - -4+a; X +ap witha,, ..., a;, apinF. Although
it is tempting to think of P(X) as a function with independent variable X, it is
better to identify P with the sequence (ag, ay, ..., a,,0,0, ...) of coefficients,
using expressions P(X) = a, X" +--- + a; X + aop only for conciseness and for
motivation of the definitions of various operations.

The precise definition therefore is that a polynomial in one indeterminate
with coefficients in [F is an infinite sequence of members of I such that all terms
of the sequence are 0 from some point on. The indexing of the sequence is to begin
with 0. We may refer to a polynomial P as P(X) if we want to emphasize that
the indeterminate is called X. Addition, subtraction, and scalar multiplication
are defined in coordinate-by-coordinate fashion:

(ag,ay,...,a,,0,0,...) 4+ (bo,by,...,0,,0,0,...)
= (ao+bo,a1 +b1,...,a,+0,,0,0,...),
(ao,ai,...,a,,0,0,...) = (bo,by,...,b,,0,0,...)
= (ap — bo,a1 — by1,...,a, —b,,0,0,...),
c(ap,ay,...,a,,0,0,...) = (cap, cay, ...,ca,,0,0,...).
Polynomial multiplication is defined so as to match multiplication of expressions

ap X" + .-+ + a1 X + ayp if the product is expanded out, powers of X are added,
and then terms containing like powers of X are collected:

((1(),(11,...,0,0,...)(bo,b],...,o,o,...)=(C0,C1,...,0,0,...),

where ¢y = Z/ivzo arby_x. We take it as known that the usual associative,
commutative, and distributive laws are then valid. The set of all polynomials in
the indeterminate X is denoted by F[X].
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The polynomial with all entries O is denoted by O and is called the zero
polynomial. For all polynomials P = (ao, ..., a,,0,...) other than 0, the
degree of P, denoted by deg P, is defined to be the largest index n such that
a, # 0. The constant polynomials are by definition the zero polynomial and the
polynomials of degree 0. If P and Q are nonzero polynomials, then

P+0=0 or deg(P + Q) < max(deg P, deg Q),
deg(cP) = deg P,
deg(P Q) = deg P + deg Q.

In the formula for deg(P + Q), equality holds if deg P # deg Q. Implicit in the
formula for deg(P Q) is the fact that P Q cannotbe O unless P =0or Q =0. A
cancellation law for multiplication is an immediate consequence:

PR = QR with R#0  implies P = Q.

In fact, PR = QR implies (P — Q)R = 0; since R # 0, P — Q must be 0.

If P=(ag,...,a,,0,...)is apolynomial and r is in IF, we can evaluate P
at r, obtaining as a result the number P(r) = a,r" + - - - + a1r + ag. Taking into
account all values of r, we obtain a mapping P — P(-) of F[X] into the set of
functions from F into [F. Because of the way that the arithmetic operations on
polynomials have been defined, we have

(P+QO)(r) =P(r)+ Q(r),

(P =Q)(r) = P(r) = Q(r),
(cP)(r) =cP(r),
(PO)(r) = P(r)Q(r).

In other words, the mapping P — P(-) respects the arithmetic operations. We
say that r is aroot of P if P(r) = 0.

Now we turn to the question of unique factorization. The definitions and the
proof are completely analogous to those for the integers. A factor of a polynomial
A is a nonzero polynomial B such that A = BQ for some polynomial Q. In
this case we say also that B divides A, that B is a divisor of A, and that A is a
multiple of B. We write B | A for this relationship. If A is nonzero, any product
formula A = BQ - - - Q, is afactorization of A. A unitin F[X]isadivisorof1,
hence is any polynomial of degree 0; such a polynomial is a constant polynomial
A(X) = c with ¢ equal to a nonzero scalar. The factorization A = BQ of
A # 0 is called nontrivial if neither B nor Q is a unit. A prime P in F[X]is a
nonzero polynomial that is not a unit and has no nontrivial factorization P = B Q.
Observe that the product of a prime and a unit is always a prime.
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Proposition 1.12 (division algorithm). If A and B are polynomials in F[X]
and if B not the O polynomial, then there exist unique polynomials Q and R in
F[X] such that

(a) A= BQ + R and
(b) either R is the O polynomial or deg R < deg B.

REMARK. This result codifies the usual method of dividing polynomials in
high-school algebra. That method writes A/B = Q + R/ B, and then one obtains
the above result by multiplying by B. The polynomial Q is the quotient in the
division, and R is the remainder.

PROOF OF UNIQUENESS. If A= BQ + R = BQ; + Ry, then B(Q — Q1) =
R — R. Withoutloss of generality, R; — R is not the O polynomial since otherwise
O — Q1 =0 also. Then

deg B + deg(Q — Q1) = deg(R; — R) < max(deg R, deg R|) < deg B,

and we have a contradiction. O

PROOF OF EXISTENCE. If A = 0 or deg A < deg B, we take Q = 0 and
R = A, and we are done. Otherwise we induct on deg A. Assume the result
for degree < n — 1, and let deg A = n. Write A = a,X" 4+ A} with A} =0
ordeg A; < deg A. Let B = b X* + B, with B; = 0 or deg B; < deg B. Put
0 = a,,b,:lX"’k. Then

A—BQ) =a, X"+ A; —a, X" —a,b' X" *B; = A; — a,b' X" B,

with the right side equal to O or of degree < deg A. Then the right side, by
induction, is of the form BQ, + R, and A = B(Q, + Q) + R is the required
decomposition. O

Corollary 1.13 (Factor Theorem). If r is in F and if P is a polynomial in
F[X], then X — r divides P if and only if P(r) = 0.

PROOF. If P = (X —r)Q, then P(r) = (r —r)Q(r) = 0. Conversely let
P(r) = 0. Taking B(X) = X — r in the division algorithm (Proposition 1.12),
we obtain P = (X —r)Q + R with R = O ordegR < deg(X —r) = 1.
Thus R is a constant polynomial, possibly 0. In any case we have 0 = P(r) =
(r —r)Q@) + R(r), and thus R(r) = 0. Since R is constant, we must have
R =0,and then P = (X —r)Q. O

Corollary 1.14. If P is a nonzero polynomial with coefficients in F and if
deg P = n, then P has at most n distinct roots.
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REMARKS. Since there are infinitely many scalars in any of Q and R and
C, the corollary implies that the function from I to I associated to P, namely
r +— P(r), cannot be identically O if P # 0. Starting in Chapter IV, we shall
allow other [F’s besides (Q and R and C, and then this implication can fail. For
example, when [ is the two-element “field” F = {0, 1} with 1 4+ 1 = 0 and with
otherwise the expected addition and multiplication, then P(X) = X2 + X is not
the zero polynomial but P(r) = O forr = 0 and r = 1. It is thus important to
distinguish polynomials in one indeterminate from their associated functions of
one variable.

PROOF. Letry,...,r,+1 be distinct roots of P(X). By the Factor Theorem
(Corollary 1.13), X — ry is a factor of P(X). We prove inductively on k that
the product (X —r1)(X —rp) -+ - (X —ry) is a factor of P(X). Assume that this
assertion holds for &, so that P(X) = (X —ry)--- (X —rp) Q(X) and

0=P(riq1) = (g1 —11) -+ (P — 1) Q(riey1).

Since the r;’s are distinct, we must have Q(rx+1) = 0. By the Factor Theorem,
we can write Q(X) = (X —rr41) R(X) for some polynomial R(X). Substitution
gives P(X) = (X —rp) - (X —r)(X =1 ) R(X), and (X —rp) - - - (X —rq1)
is exhibited as a factor of P(X). This completes the induction. Consequently

PX)=X—r)- (X —rp1)S(X)

for some polynomial S(X). Comparing the degrees of the two sides, we find that
deg S = —1, and we have a contradiction. (]

We can use the division algorithm in the same way as with the integers in
Sections 1-2 to obtain unique factorization. Within the set of integers, we defined
greatest common divisors so as to be positive, but their negatives would have
worked equally well. That flexibility persists with polynomials; the essential
feature of any greatest common divisor of polynomials is shared by any product
of that polynomial by a unit. A greatest common divisor of polynomials A and
B with B # 0 is any polynomial D of maximum degree such that D divides A
and D divides B. We shall see that D is indeed unique up to multiplication by a
nonzero scalar.?

2For some purposes it is helpful to isolate one particular greatest common divisor by taking the
coefficient of the highest power of X to be 1.
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The Euclidean algorithm is the iterative process that makes use of the division
algorithm in the form

A=BQ|+ Ry, R, =0or deg R, < deg B,
B=R 0>+ R, Ry, =0or deg R, < deg Ry,
Ry = R, 03 + Rs, R3; =0 or deg R3 < deg R,

Ry—2=R,—10n + Ry, R, =0or deg R, < deg Ry—1,
Ry—1 = RyOnt1-

In the above computation the integer 7 is defined by the conditions that R,, # 0
and that R,1; = 0. Such an n must exist since deg B > degR; > --- > 0. We
can now obtain an analog for IF[ X] of the result for Z given as Proposition 1.2.

Proposition 1.15. Let A and B be polynomials in F[X] with B # 0, and let
Ry, ..., R, bethe remainders generated by the Euclidean algorithm when applied
to A and B. Then

(a) R, is a greatest common divisor of A and B,

(b) any D, that divides both A and B necessarily divides R,,,

(c) the greatest common divisor of A and B is unique up to multiplication
by a nonzero scalar,

(d) any greatest common divisor D has the property that there exist polyno-
mials P and Q with AP + BQ = D.

PROOF. Conclusions (a) and (b) are proved in the same way that parts (a) and
(b) of Proposition 1.2 are proved, and conclusion (d) is proved with D = R, in
the same way that Proposition 1.2c is proved.

If D is a greatest common divisor of A and B, it follows from (a) and (b) that
D divides R, and that deg D = deg R,,. This proves (c). ]

Using Proposition 1.15, we can prove analogs for F[X] of the two corollaries
of Proposition 1.2. But let us instead skip directly to what is needed to obtain an
analog for F[ X] of unique factorization as in Theorem 1.5.

Lemma 1.16. If A and B are nonzero polynomials with coefficients in F and
if P is a prime polynomial such that P divides A B, then P divides A or P divides
B.

PROOF. If P does not divide A, then 1 is a greatest common divisor of A and
P, and Proposition 1.15d produces polynomials S and 7 such that AS+ PT = 1.
Multiplication by B gives ABS + PTB = B. Then P divides ABS because it
divides AB, and P divides PT B because it divides P. Hence P divides B. [J
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Theorem 1.17 (unique factorization). Every member of F[ X ] of degree > 1lisa
product of primes. This factorization is unique up to order and up to multiplication
of each prime factor by a unit, i.e., by a nonzero scalar.

PROOF. The existence follows in the same way as the existence in Theorem
1.5; induction on the integers is to be replaced by induction on the degree. The
uniqueness follows from Lemma 1.16 in the same way that the uniqueness in
Theorem 1.5 follows from Lemma 1.6. (]

We turn to a consideration of properties of polynomials that take into account
special features of R and C. If F is R, then X2 + 1 is prime. The reason is that
a nontrivial factorization of X 4+ 1 would have to involve two first-degree real
polynomials and then 2 4 1 would have to be O for some real r, namely for r equal
to the root of either of the first-degree polynomials. On the other hand, X2 + 1
is not prime when F = C since X?> 4+ 1 = (X + i)(X — i). The Fundamental
Theorem of Algebra, stated below, implies that every prime polynomial over C is
of degree 1. It is possible to prove the Fundamental Theorem of Algebra within
complex analysis as a consequence of Liouville’s Theorem or within real analysis
as a consequence of the Heine—Borel Theorem and other facts about compactness.
This text gives a proof of the Fundamental Theorem of Algebra in Chapter IX
using modern algebra, specifically Sylow theory as in Chapter IV and Galois
theory as in Chapter IX. One further fact is needed; this fact uses elementary
calculus and is proved below as Proposition 1.20.

Theorem 1.18 (Fundamental Theorem of Algebra). Any polynomial in C[X]
with degree > 1 has at least one root.

Corollary 1.19. Let P be a nonzero polynomial of degree n in C[X],
and let rq, ..., r be the distinct roots. Then there exist unique integers m; > 0

for 1 < j < k such that P(X) is a scalar multiple of ]—[f=1 (X —rj)™. The
numbers m; have Zf:  mj =n.

PROOF. We may assume that deg P > 0. We apply unique factorization
(Theorem 1.17) to P(X). It follows from the Fundamental Theorem of Algebra
(Theorem 1.18) and the Factor Theorem (Corollary 1.13) that each prime polyno-
mial with coefficients in C has degree 1. Thus the unique factorization of P (X)
has to be of the form ¢ [];_,(X — z;) for some ¢ # 0 and for some complex
numbers z; that are unique up to order. The z;’s are roots, and every root is a z; by
the Factor Theorem. Grouping like factors proves the desired factorization and
its uniqueness. The numbers m; have Z;f:l m; = n by a count of degrees. [

The integers m; in the corollary are called the multiplicities of the roots of the
polynomial P(X).



4. Permutations and Their Signs 15

We conclude this section by proving the result from calculus that will enter
the proof of the Fundamental Theorem of Algebra in Chapter IX.

Proposition 1.20. Any polynomial in R[X] with odd degree has at least one
root.

PROOF. Without loss of generality, we may take the leading coefficient to
be 1. Thus let the polynomial be P(X) = X"t + a5, X" + -+ a1 X +ay =
X2+ 4 R(X). Since lim,_, +o0 P(x)/x?"+! = 1, there is some positive r( such
that P(—rg) < 0 and P(rp) > 0. By the Intermediate Value Theorem, given in
Section A3 of the appendix, P (r) = 0 for some r with —rg <r < ry. O

4. Permutations and Their Signs

Let S be a finite nonempty set of n elements. A permutation of S is a one-one
function from S onto S. The elements might be listed as a;, ay, ..., a,, but it
will simplify the notation to view them simply as 1, 2, ..., n. We use ordinary
function notation for describing the effect of permutations. Thus the value of a
permutation o at j is o (j), and the composition of t followed by ¢ is o o T or
simply o7, with (67)(j) = o(7(j)). Composition is automatically associative,
ie., (po)t = p(oT), because the effect of both sides on j, when we expand
things out, is p(o (7(j))). The composition of two permutations is also called
their product.

The identity permutation will be denoted by 1. Any permutation o, being
a one-one onto function, has a well-defined inverse permutation o ~! with the
property that co~! = 6~!o = 1. One way of describing concisely the effect
of a permutation is to list its domain values and to put the corresponding range
values beneath them. Thus o = igg;‘g) is the permutation of {1, 2, 3, 4, 5}
witho(l) = 4,02) =3,03) =5,004) = 1, and 0(5) = 2. The inverse

permutation is obtained by interchanging the two rows to obtain (4 351 2) and

12345
then adjusting the entries in the rows so that the first row is in the usual order:
_1_ (12345
—\45213 )

If 2 < k < n, a k-cycle is a permutation o that fixes each element in some
subset of n — k elements and moves the remaining elements c, . . ., ¢ according
too(c1) =c¢3, 0(c2) =c¢3,...,0(ck—1) = Ck, 0(ck) = c1. Suchacycle may be
denoted by (c; ¢y --- ckx—1 ci) to stress its structure. For example take n = 5;

12345)

then 0 = (2 3 5) is the 3-cycle given in our earlier notation by (1 3542
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The cycle (2 3 5) is the same as the cycle (3 5 2) and the cycle (5 2 3). Itis
sometimes helpful to speak of the identity permutation 1 as the unique 1-cycle.
A system of cycles is said to be disjoint if the sets that each of them moves
are disjoint in pairs. Thus (2 3 5) and (1 4) are disjoint, but (2 3 5) and (1 3)
are not. Any two disjoint cycles o and T commute in the sense that ot = to.

Proposition 1.21. Any permutation o of {1, 2, ..., n} is a product of disjoint
cycles. The individual cycles in the decomposition are unique in the sense of
being determined by o.

12345
EXAMPLE. (43512> =2 3 51 4.

PROOF. Let us prove existence. Working with {1, 2, ..., n}, we show that any
o is the disjoint product of cycles in such a way that no cycle moves an element
j unless o moves j. We do so for all o simultaneously by induction downward
on the number of elements fixed by o. The starting case of the induction is that
o fixes all n elements. Then o is the identity, and we are regarding the identity
as a l-cycle.

For the inductive step suppose o fixes the elements in a subset T of r el-
ements of {1,2,...,n} with r < n. Let j be an element not in 7, so that
o(j) # j. Choose k as small as possible so that some element is repeated
among j, 0 (j), 52(j), ..., o*(j). This condition means that o/ (j) = o () for
some [ with 0 < [ < k. Then o*~/(j) = j, and we obtain a contradiction to
the minimality of k unless k — [ = k, i.e., [ = 0. In other words, we have
ok (j) = j. We may thus form the k-cycle y = (j o(j) o%(j) o*~1(}j)). The
permutation y‘la then fixes the r 4+ k elements of T U U, where U is the set of
elements j, o(j), 0%(j), ..., X 1(j). By the inductive hypothesis, y ~'o is the
product 7; - - - T, of disjoint cycles that move only elements notin 7 U U. Since
y moves only the elements in U, y is disjoint from each of 71, .. ., 7,. Therefore
0 = yT - T, provides the required decomposition of .

For uniqueness we observe from the proof of existence that each element
J generates a k-cycle C; for some k > 1 depending on j. If we have two
decompositions as in the proposition, then the cycle within each decomposition
that contains j must be C;. Hence the cycles in the two decompositions must
match. g

A 2-cycle is often called a transposition. The proposition allows us to see
quickly that any permutation is a product of transpositions.

Corollary 1.22. Any k-cycle o permuting {1, 2, ..., n} is a product of k — 1
transpositions if k > 1. Therefore any permutation o of {1, 2, ..., n}is a product
of transpositions.
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PROOF. For the first statement, we observe that (¢c; ¢y -+ ci—1 Cr) =
(c1 cr)(c1 ck—1)---(c1 c3)(c1 c2). The second statement follows by combining
this fact with Proposition 1.21. g

Our final tasks for this section are to attach a sign to each permutation and to
examine the properties of these signs. We begin with the special case that our
underlying set S is {1, ..., n}. If o is a permutation of {1, ..., n}, consider the
numerical products

[[ le®—0o(l  and [ -l

1<j<k<n 1<j<k<n

If (r, s) is any pair of integers with 1 < r < s < n, then the expression s — r
appears once and only once as a factor in the first product. Therefore the first
product is independent of ¢ and equals ]_[1S j<k<n (k — j). Meanwhile, each
factor of the second product is 1 times the corresponding factor of the first
product. Therefore we have

[] @ —o()=@6eo) [] *-p,

I<j<kzn I1<j<k<n

where sgno is +1 or —1, depending on o. This sign is called the sign of the
permutation o.

Lemma 1.23. Leto be apermutationof {1, ..., n},let(a b)beatransposition,
and form the product o (a b). Then sgn (o (a b)) = —sgno.

PROOF. For the pairs (j, k) with j < k, we are to compare o (k) — o (j) with
o(a b)(k)y —o(a b)(j). There are five cases. Without loss of generality, we
may assume that a < b.

Case 1. 1If neither j nor k equals a or b, then o(a b)(k) — o(a b)(j) =
o (k) — o (j). Thus such pairs (j, k) make the same contribution to the product
for o(a b) as to the product for o, and they can be ignored.

Case 2. If one of j and k equals one of a and b while the other does not, there
are three situations of interest. For each we compare the contributions of two such
pairs together. The first situation is that of pairs (a, t) and (¢, b) witha < t < b.
These together contribute the factors (o (¢) — o(a)) and (o (b) — o (¢)) to the
product for o, and they contribute the factors (o (t) — o (b)) and (o (a) — o (1))
to the product for o (a b). Since

(0(1) —o(@)(ob) —a () =(a(1) —a(b))(o(a) —o(r)),

the pairs together make the same contribution to the product for o (a b) as to the
product for o, and they can be ignored.
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Case 3. Continuing with matters as in Case 2, we next consider pairs (a, ) and
(b, t) witha < b < t. These together contribute the factors (o (t) — o (a)) and
(o (t) — o (b)) to the product for o, and they contribute the factors (o (¢) — o (b))
and (o () — o (a)) to the product for o (a b). Since

(0(1) —o(a)(o(t) —o(b) = (o(1) —a(b))(o(r) —o(a)),

the pairs together make the same contribution to the product for o (a b) as to the
product for o, and they can be ignored.

Case 4. Still with matters as in Case 2, we consider pairs (¢, @) and (¢, b) with
t < a < b. Arguing as in Case 3, we are led to an equality

(0(a) —a () (o) —a (1) = (a(b) —o())(o(a) —o(r)),

and these pairs can be ignored.

Case 5. Finally we consider the pair (a, b) itself. It contributes o (b) — o (a)
to the product for ¢, and it contributes o (a) — o (b) to the product for o (a b).
These are negatives of one another, and we get a net contribution of one minus
sign in comparing our two product formulas. The lemma follows. (]

Proposition 1.24. The signs of permutations of {1, 2, ..., n} have the follow-
ing properties:
(a) sgnl = +1,
(b) sgno = (—1)¥ if o can be written as the product of k transpositions,
(c) sgn(o) = (sgno)(sgn ),
(d) sgn(o~!) =sgno.

PROOF. Conclusion (a) is immediate from the definition. For (b), let ¢ =
Ty - - - T with each 7; equal to a transposition. We apply Lemma 1.23 recursively,
using (a) at the end:

sgn(ty -+ ) = (=D sgn(ty - i) = (1) sgn(ry -+ - 1% 2)
=...= (=]! sgnt; = (—D* sgnl = (— k.

For (¢), Corollary 1.22 shows that any permutation is the product of transpositions.
If o is the product of k transpositions and t is the product of / transpositions, then
ot is manifestly the product of k + [ transpositions. Thus (c) follows from (b).
Finally (d) follows from (c) and (a) by taking T = o', ]

Our discussion of signs has so far attached signs only to permutations of
S ={1,2,...,n}. If we are given some other set S’ of n elements and we want to
adapt our discussion of signs so that it applies to permutations of §’, we need
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to identify S with §’, say by a one-one onto function ¢ : S — §'. Ifo isa
permutation of S, then ¢~ o ¢ is a permutation of S, and we can define sgn,(0) =
sgn(¢~'o@). The question is whether this definition is independent of .

Fortunately the answer is yes, and the proof is easy. Suppose that ¢ : § — §’
is a second one-one onto function, so that sgn,, (0) = sgn(y'oy). Then
¢~ ' = t is a permutation of {1,2, ..., n}, and (c) and (d) in Proposition 1.24
give

lope™ ')

o@)sgn(t) = sgn(t) sgnw(a) sgn(t) = sgnw(a).

sgny, () = sgn(¥ o) = sgn(y ' pg~
= sgn(t ") sgn(ep™!

Consequently the definition of signs of permutations of {1, 2, ..., n} can be
carried over to give a definition of signs of permutations of any finite nonempty set
of n elements, and the resulting signs are independent of the way we enumerate
the set. The conclusions of Proposition 1.24 are valid for this extended definition
of signs of permutations.

5. Row Reduction

This section and the next review row reduction and matrix algebra for rational,
real, and complex matrices. As in Section 3 let F denote @Q or R or C. The
members of I are called scalars.

The term “row reduction” refers to the main part of the algorithm used for
solving simultaneous systems of algebraic linear equations with coefficients in
[F. Such a system is of the form

anxi + apxy + -+ apx, = by,

apx1 + appxa + -+ Xy = by,

where the g;; and b; are known scalars and the x; are the unknowns, or variables.
The algorithm makes repeated use of three operations on the equations, each of
which preserves the set of solutions (x1, . . ., x,;) because its inverse is an operation
of the same kind:

(i) interchange two equations,
(i1) multiply an equation by a nonzero scalar,
(iii) replace an equation by the sum of it and a multiple of some other equation.
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The repeated writing of the variables in carrying out these steps is tedious and
unnecessary, since the steps affect only the known coefficients. Instead, we can
simply work with an array of the form

an  ap - dai by

akl Ak Gig by

The individual scalars appearing in the array are called entries. The above
operations on equations correspond exactly to operations on the rows® of the
array, and they become

(i) interchange two rows,
(ii) multiply a row by a nonzero scalar,
(iii) replace a row by the sum of it and a multiple of some other row.

Any operation of these types is called an elementary row operation. The vertical
line in the array is handy from one point of view in that it separates the left sides
of the equations from the right sides; if we have more than one set of right sides,
we can include all of them to the right of the vertical line and thereby solve all
the systems at the same time. But from another point of view, the vertical line is
unnecessary since it does not affect which operation we perform at a particular
time. Let us therefore drop it, abbreviating the system as

ai  apn  ---  a,, b

agi Ay G by

The main step in solving the system is to apply the three operations in succes-
sion to the array to reduce it to a particularly simple form. An array with k rows
and m columns* is in reduced row-echelon form if it meets several conditions:

e Each member of the first [ of the rows, for some [ with 0 <[ < k, has at
least one nonzero entry, and the other rows have all entries O.

e Each of the nonzero rows has 1 as its first nonzero entry; let us say that
the i™ nonzero row has this 1 in its j (i)™ entry.

e The integers j (i) are to be strictly increasing as a function of i, and the
only entry in the j (i)™ column that is nonzero is to be the one in the i
TOw.

Proposition 1.25. Any array with k rows and m columns can be transformed
into reduced row-echelon form by a succession of steps of types (i), (ii), (iii).

3 “Rows” are understood to be horizontal, while “columns” are vertical.
“In the above displayed matrix, the array has m = n + 1 columns.
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In fact, the transformation in the proposition is carried out by an algorithm
known as the method of row reduction of the array. Let us begin with an
example, indicating the particular operation at each stage by a label over an arrow
. To keep the example from being unwieldy, we consolidate steps of type (iii)
into a single step when the “other row” is the same.

EXAMPLE. In this example, k = m = 4. Row reduction gives

0 0 27 1 -1 11 1 -1 11
I -1 Lt 1ol o o 27)am[fo 0 27
-1 1 -4 5 -1 1 -4 5 0 0 -3 6
-2 2 -5 4 -2 2 -5 4 0 0 -3 6
-1 11 I -10 =3 1 -1 0 -3

o o 1 Ifafo o1 Flafo o1 ]
0 0 -3 6 o oo % 0O 00 1
0 0 -3 6 o 00 2 o oo 2
1 -1 00

@0 0 10
0 0 0 1
0 00 0

The final matrix here is in reduced row-echelon form. In the notation of the
definition, the number of nonzero rows in the reduced row-echelon formis/ = 3,
and the integers j (i) are j(1) =1, j(2) = 3,and j(3) = 4.

The example makes clear what the algorithm is that proves Proposition 1.25.
We find the first nonzero column, apply an interchange (an operation of type (i))
if necessary to make the first entry in the column nonzero, multiply by a nonzero
scalar to make the first entry 1 (an operation of type (ii)), and apply operations of
type (iii) to eliminate the other nonzero entries in the column. Then we look for
the next column with a nonzero entry in entries 2 and later, interchange to get the
nonzero entry into entry 2 of the column, multiply to make the entry 1, and apply
operations of type (iii) to eliminate the other entries in the column. Continuing
in this way, we arrive at reduced row-echelon form.

In the general case, as soon as our array, which contains both sides of our system
of equations, has been transformed into reduced row-echelon form, we can read
off exactly what the solutions are. It will be handy to distinguish two kinds of
variables among x1, . . ., x, without including any added variables x,,y1, ..., X
in either of the classes. The corner variables are those x;’s for which j is < n and
is some j (i) in the definition of “reduced row-echelon form,” and the other x;’s
with j < n will be called independent variables. Let us describe the last steps
of the solution technique in the setting of an example. We restore the vertical line
that separated the data on the two sides of the equations.
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EXAMPLE. We consider what might happen to a certain system of 4 equations
in 4 unknowns. Putting the data in place for the right side makes the array have 4
rows and 5 columns. We transform the array into reduced row-echelon form and
suppose that it comes out to be

0 1
0 2
1 3
0

(= e
(= e
SO = O

lor0O

If the lower right entry is 1, there are no solutions. In fact, the last row corresponds
to an equation 0 = 1, which announces a contradiction. More generally, if any
row of 0’s to the left of the vertical line is equal to something nonzero, there are
no solutions. In other words, there are no solutions to a system if the reduced
row-echelon form of the entire array has more nonzero rows than the reduced
row-echelon form of the part of the array to the left of the vertical line.

On the other hand, if the lower right entry is 0, then there are solutions. To see
this, we restore the reduced array to a system of equations:

X] — X2 =1,
X3 =2,

X4 =3;

we move the independent variables (namely x; here) to the right side to obtain

x1 =14 xp,
x3 =2,
X4 =3;

and we collect everything in a tidy fashion as

X1 1
X2 0
X3 2
X4 3

1

1
+x2 0
0
The independent variables are allowed to take on arbitrary values, and we have
succeeded in giving a formula for the solution that corresponds to an arbitrary set
of values for the independent variables.

The method in the above example works completely generally. We obtain

solutions whenever each row of 0’s to the left of the vertical line is matched by
a0 on the right side, and we obtain no solutions otherwise. In the case that we are
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solving several systems with the same left sides, solutions exist for each of the
systems if the reduced row-echelon form of the entire array has the same number
of nonzero rows as the reduced row-echelon form of the part of the array to the
left of the vertical line.

Let us record some observations about the method for solving systems of linear
equations and then some observations about the method of row reduction itself.

Proposition 1.26. In the solution process for a system of k linear equations in
n variables with the vertical line in place,

(a) the sum of the number of corner variables and the number of independent
variables is n,

(b) the number of corner variables equals the number of nonzero rows on the
left side of the vertical line and hence is < k,

(c) when solutions exist, they are of the form

independent
variable

independent

. X column
variable

column + x column +---+

in such a way that each independent variable x; is a free parameter in [F,
the column multiplying x; has a 1 in its j™ entry, and the other columns
have a 0 in that entry,

(d) a homogeneous system, i.e., one with all right sides equal to O, has
a nonzero solution if the number k of equations is < the number n of
variables,

(e) the solutions of an inhomogeneous system, i.e., one in which the right
sides are not necessarily all 0, are all given by the sum of any one particular
solution and an arbitrary solution of the corresponding homogeneous
system.

PROOF. Conclusions (a), (b), and (c) follow immediately by inspection of
the solution method. For (d), we observe that no contradictory equation can
arise when the right sides are 0 and, in addition, that there must be at least one
independent variable by (a) since (b) shows that the number of corner variables
is < k < n. Conclusion (e) is apparent from (c), since the first column in the
solution written in (c) is a column of 0’s in the homogeneous case. ]

Proposition 1.27. For an array with k& rows and n columns in reduced row-
echelon form,

(a) the sum of the number of corner variables and the number of independent
variables is n,

(b) the number of corner variables equals the number of nonzero rows and
hence is < k,
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(c) when k = n, either the array is of the form

1 00 --- 0
010 --- 0
o001 - 0
0 00 --- 1

or else it has a row of 0’s.

PROOF. Conclusions (a) and (b) are immediate by inspection. In (c), failure of
the reduced row-echelon form to be as indicated forces there to be some noncorner
variable, so that the number of corner variables is < n. By (b), the number of
nonzero rows is < n, and hence there is a row of 0’s. O

One final comment: For the special case of n equations in n variables, some
readers may be familiar with a formula known as “Cramer’s rule” for using
determinants to solve the system when the determinant of the array of coefficients
on the left side of the vertical line is nonzero. Determinants, including their
evaluation, and Cramer’s rule will be discussed in Chapter II. The point to make
for current purposes is that the use of Cramer’s rule for computation is, for n
large, normally a more lengthy process than the method of row reduction. In fact,
Problem 13 at the end of this chapter shows that the number of steps for solving
the system via row reduction is at most a certain multiple of n3. On the other
hand, the typical number of steps for solving the system by rote application of
Cramer’s rule is approximately a multiple of n*.

6. Matrix Operations

A rectangular array of scalars (i.e., members of ) with k£ rows and n columns
is called a k-by-n matrix. More precisely a k-by-n matrix over [ is a function
from {1,...,k} x {1, ..., n} to F. The expression “k-by-n" is called the size of
the matrix. The value of the function at the ordered pair (i, j) is often indicated
with subscript notation, such as a;;, rather than with the usual function notation
a(i, j). Itis called the (i, j)™ entry. Two matrices are equal if they are the
same function on ordered pairs; this means that they have the same size and their
corresponding entries are equal. A matrix is called square if its number of rows
equals its number of columns. A square matrix with all entries O for i # j is
called diagonal, and the entries with i = j are the diagonal entries.

As the reader likely already knows, it is customary to write matrices in rectan-
gular patterns. By convention the first index always tells the number of the row
and the second index tells the number of the column. Thus a typical 2-by-3 matrix
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is an 4z ap . Inthe indication of the size of the matrix, here 2-by-3, the 2
ay ax» axs

refers to the number of rows and the 3 refers to the number of columns.

An n-dimensional row vector is a 1-by-n matrix, while a k-dimensional
column vector is a k-by-1 matrix. The set of all k-dimensional column vectors
is denoted by IF*. The set IF¥ is to be regarded as the space of all ordinary garden-
variety vectors. Foreconomy of space, books often write such vectors horizontally
with entries separated by commas, for example as (¢, ¢z, ¢3), and it is extremely
important to treat such vectors as column vectors, not as row vectors, in order
to get matrix operations and the effect of linear transformations to correspond
nicely.’ Thus in this book, (c1, ¢, ¢3) is to be regarded as a space-saving way of

C1
writing the column vector <c2 ) .
3

If a matrix is denoted by some letter like A, its (i, j) entry will typically be
denoted by A;;. In the reverse direction, sometimes a matrix is assembled from
its individual entries, which may be expressions depending on i and j. If some
such expression a;; is given for each pair (7, j), then we denote the corresponding
matrix by [a;;] i=11 ...k » or simply by [a;;] if there is no possibility of confusion.

j=1,..., n

Various operations are defined on matrices. Specifically let My, (IF) be the
set of k-by-n matrices with entries in F, so that M, (F) is the same thing as F¥.
Addition of matrices is defined whenever two matrices have the same size, and it
is defined entry by entry; thus if A and B are in My, (IF), then A+ B is the member
of My, (IF) with (A + B);; = A;; + B;;. Scalar multiplication on matrices is
defined entry by entry as well; thus if A is in M, () and c is in F, then cA is
the member of M, (F) with (cA);; = cA;;. The matrix (—1)A is denoted by
—A. The k-by-n matrix with O in each entry is called a zero matrix. Ordinarily
it is denoted simply by 0; if some confusion is possible in a particular situation,
more precise notation will be introduced at the time. With these operations the
set My, (F) has the following properties:

(i) the operation of addition satisfies

@ A+ (B+C)=(A+B)+C forall A, B, C in M, (IF) (associative
law),

b) A+0=04+A=A forall Ain My,(F),

) A+ (—A) =(—A)+A=0 forall Ain My, ((IF),

(d A+ B=B+ A forall Aand B in M,(IF) (commutative law);

>The alternatives are unpleasant. Either one is forced to write certain functions in the unnatural
notation x +— (x)f, or the correspondence is forced to involve transpose operations on frequent
occasions. Unhappily, books following either of these alternative conventions may be found.
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(i) the operation of scalar multiplication satisfies

(@) (cd)A =c(dA) forall Ain M, (IF) and all scalars ¢ and d,
(b) 1A= A forall Ain M, (F) and for the scalar 1;

(iii) the two operations are related by the distributive laws

(@) c(A+ B) =cA+c¢B forall A and B in My, (IF) and for all scalars c,
(b) (c+d)A=cA+dA forall Ain My, (IF) and all scalars c and d.

Since addition and scalar multiplication are defined entry by entry, all of these
identities follow from the corresponding identities for members of .

Multiplication of matrices is defined in such a way that the kind of system
of linear equations discussed in the previous section can be written as a matrix
equation in the form AX = B, where

ai - A X by
A= , X = -], and B =

kgl Qi Xn by

More precisely if A is a k-by-m matrix and B is an m-by-n matrix, then the
product C = AB is the k-by-n matrix defined by

m
C,'j = ZA”BU'
=1

The (i, j)™ entry of C is therefore the product of the i™ row of A and the j™
column of B.

Let us emphasize that the condition for a product AB to be defined is that
the number of columns of A should equal the number of rows of B. With this
definition the system of equations mentioned above is indeed of the form AX = B.

Proposition 1.28. Matrix multiplication has the properties that

(a) it is associative in the sense that (AB)C = A(BC), provided that the
sizes match correctly, i.e., A is in My, (F), B is in M,,,(IF), and C is in
M, (),

(b) it is distributive over addition in the sense that A(B + C) = AB + AC
and (B 4+ C)D = BD + CD if the sizes match correctly.

REMARK. Matrix multiplication is not necessarily commutative, even for

= (50)- wite (35) (55) =

. 10) (01
square matrices. For example, ( )( )

00 00
00
00/°
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PROOF. For (a), we have
(AB)C)ij = 31—y (AB)iiCrj = 31—y D AisBuCyj
and (A(BC))ij =Y i, Ais(BC)sj =0 Y7, Ais B Cyj.
and these are equal. For the first identity in (b), we have
(AB+C))ij =), Au(B+C)j =), Au(Bij + Cyij)
=, AuBij + Y, AiCi; = (AB);j + (AC);j,
and the second identity is proved similarly. (]

We have already defined the zero matrix O of a given size to be the matrix
having 0 in each entry. This matrix has the property that0A = 0 and BO = O if the
sizes match properly. The n-by-n identity matrix, denoted by / or sometimes 1,
is defined to be the matrix with I;; = §;;, where §;; is the Kronecker delta

defined by
| T
5, = ! ifi =j

0 ifi # j.
In other words, the identity matrix is the square matrix of the form

100---0
010 ---0
J=]o001-0
000 --- 1

It has the property that / A = A and BI = I whenever the sizes match properly.

Let A be an n-by-n matrix. We say that A is invertible and has the n-by-n
matrix B as inverse if AB = BA = [. If B and C are n-by-n matrices with
AB = [ and CA = I, then associativity of multiplication (Proposition 1.28a)
implies that B = IB = (CA)B = C(AB) = CI = C. Hence an inverse for A
is unique if it exists. We write A~! for this inverse if it exists. Inverses of n-by-n
matrices have the property that if A and D are invertible, then AD is invertible
and (AD)~! = D' A~!; moreover, if A is invertible, then A~! is invertible and
its inverse is A.

The method of row reduction in the previous section suggests a way of com-
puting the inverse of a matrix. Suppose that A is a square matrix to be inverted
and we are seeking its inverse B. Then AB = I. Examining the definition of
matrix multiplication, we see that this matrix equation means that the product of
A and the first column of B equals the first column of 7, the product of A and the
second column of B equals the second column of /, and so on. We can thus think
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of a column of B as the unknowns in a system of linear equations, the known
right sides being the entries of the column of the identity matrix. As the column
index varies, the left sides of these equations do not change, since they are always
given by A. So we can attempt to solve all of the systems (one for each column)

123
simultaneously. For example, to attempt to invert A = <4 56 > we set up
7810
1 2 3 1 0 O
4 5 6 0 1 0
7 8 10 0O 0 1

Imagine doing the row reduction. We can hope that the result will be of the form
1 0 O
0 1 0 - - -
0 0 1

with the identity matrix on the left side of the vertical line. If this is indeed the
result, then the computation shows that the matrix on the right side of the vertical
line is the only possibility for A=!. But does A~! in fact exist?

Actually, another question arises as well. According to Proposition 1.27c, the
other possibility in applying row reduction is that the left side has a row of 0’s.
In this case, can we deduce that A~! does not exist? Or, to put it another way,
can we be sure that some row of the reduced row-echelon form has all 0’s on the
left side of the vertical line and something nonzero on the right side?

All of the answers to these questions are yes, and we prove them in a mo-
ment. First we need to see that elementary row operations are given by matrix
multiplications.

Proposition 1.29. Each elementary row operation is given by left multiplica-
tion by an invertible matrix. The inverse matrix is the matrix of another elementary
row operation.

REMARK. The square matrices giving these left multiplications are called
elementary matrices.

PROOF. For the interchange of rows i and j, the part of the elementary matrix
in the rows and columns with i or j as index is
ij
i (0 1
(5 0)

and otherwise the matrix is the identity. This matrix is its own inverse.
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For the multiplication of the i ™" row by a nonzero scalar ¢, the matrix is diagonal
with c in the i diagonal entry and with 1 in all other diagonal entries. The inverse
matrix is of this form with ¢! in place of c.

For the replacement of the i™ row by the sum of the i row and the product
of a times the j th row, the part of the elementary matrix in the rows and columns
with i or j as index is

rJ

i (1 a
j\o 1)’

and otherwise the matrix is the identity. The inverse of this matrix is the same
except that a is replaced by —a. (]

Theorem 1.30. The following conditions on an n-by-n square matrix A are
equivalent:

(a) the reduced row-echelon form of A is the identity,
(b) A is the product of elementary matrices,

(c) A has an inverse,
X1

(d) the system of equations AX = 0 with X = < : ) has only the solution
X =0. "

PROOF. If (a) holds, choose a sequence of elementary row operations that
reduce A to the identity, and let E, ..., E, be the corresponding elementary
matrices given by Proposition 1.29. Then we have E, --- E;A = I, and hence
A=E fl - EC !, The proposition says that each E jfl is an elementary matrix,
and thus (b) holds.

If (b) holds, then (c) holds because the elementary matrices are invertible and
the product of invertible matrices is invertible.

If (c) holds and if AX = 0,then X = IX = (A'A)X = A~1(AX) =
A~'0 = 0. Hence (d) holds.

If (d) holds, then the number of independent variables in the row reduction of
A is 0. Proposition 1.26a shows that the number of corner variables is n, and
parts (b) and (c) of Proposition 1.27 show that the reduced row-echelon form of
Ais I. Thus (a) holds. ]

Corollary 1.31. If the solution procedure for finding the inverse of a square
matrix A leads from (A | I) to (I | X), then A is invertible and its inverse is X.
Conversely if the solution procedure leads to (R | Y) and R has arow of 0’s, then
A is not invertible.

REMARK. Proposition 1.27c shows that this corollary addresses the only
possible outcomes of the solution procedure.
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PROOF. We apply the equivalence of (a) and (c) in Theorem 1.30 to settle the
existence or nonexistence of A~!. In the case that A~! exists, we know that the
solution procedure has to yield the inverse. O

Corollary 1.32. Let A be a square matrix. If B is a square matrix such that
BA = I, then A is invertible and B is its inverse. If C is a square matrix such
that AC = I, then A is invertible with inverse C.

PROOF. Suppose BA = I. Let X be a column vector with AX = 0. Then
X =1X = (BA)X = B(AX) = B0 = 0. Since (d) implies (c) in Theorem
1.30, A is invertible.

Suppose AC = I. Applying the result of the previous paragraph to C, we
conclude that C is invertible with inverse A. Therefore A is invertible with
inverse C. (]

7. Problems

1.  What is the greatest common divisor of 9894 and 110587

2. (a) Find integers x and y such that 11x + 7y = 1.
(b) How are all pairs (x, y) of integers satisfying 11x 4+ 7y = 1 related to the
pair you found in (a)?
3. Let {an}y>1 be a sequence of positive integers, and let d be the largest integer

dividing all a,,. Prove that d is the greatest common divisor of finitely many of
the a,,.

4. Determine the integers n for which there exist integers x and y such that n divides
x+y—2and2x — 3y — 3.

5. Let P(X) and Q(X) be the polynomials P(X) = X* 4+ X3 +2X? 4+ X + 1 and
0(X) = X° 4+2X3 + X in R[X].
(a) Find a greatest common divisor D(X) of P(X) and Q(X).
(b) Find polynomials A and B such that AP + BQ = D.

6. Let P(X) and Q(X) be polynomials in R[X]. Prove that if D(X) is a greatest
common divisor of P(X) and Q(X) in C[X], then there exists a nonzero complex
number ¢ such that cD(X) is in R[X].

7. (a) Let P(X) bein R[X], and regard it as in C[X]. Applying the Fundamental
Theorem of Algebra and its corollary to P, prove that if z; is a root of P,
then so is z;, and z; and z; have the same multiplicity.

(b) Deduce that any prime polynomial in R[X] has degree at most 2.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

7. Problems 31

(a) Suppose that a polynomial A(X) of degree > 0 in Q[X] has integer coef-
ficients and leading coefficient 1. Show that if p/q is a root of A(X) with
p and ¢ integers such that GCD(p, g) = 1, then p/q is an integer n and n
divides the constant term of A(X).

(b) Deduce that X?> — 2 and X> 4+ X2 4 1 are prime in Q[X].

Reduce the fraction 8645/10465 to lowest terms.

How many different patterns are there of disjoint cycle structures for permutations
of {1, 2, 3, 4}? Give examples of each, telling how many permutations there are
of each kind and what the signs are of each.

Prove for n > 2 that the number of permutations of {1, ..., n} with sign —1
equals the number with sign +1.

123
Find all solutions X of the system AX = B when A = <4 5 6) and B is given

789
by

0 5 3
(a)B:(o), (b)B=(3>, (c)B:(z).
0 2 1

Suppose that a single step in the row reduction process means a single arithmetic
operation or a single interchange of two entries. Prove that there exists a constant
C such that any square matrix can be transformed into reduced row-echelon form
in < Cn? steps, the matrix being of size n-by-n.

Compute A + B and AB if A = (ii) and B = (:‘fg)

Prove that if A and B are square matrices with AB = BA, then (A + B)" is
given by the Binomial Theorem: (A 4+ B)" = Y }_, (;) A" * B, where (}) is
the binomial coefficient n!/((n — k)!k!).

110
Find a formula for the n™ power of (0 11 ), n being a positive integer.
001
Let D be an n-by-n diagonal matrix with diagonal entries dy, ..., d,, and let A

be an n-by-n matrix. Compute AD and D A, and give a condition for the equality
AD = DA to hold.

Fix n, and let E;; denote the n-by-n matrix that is 1 in the (i, j )" entry and
is 0 elsewhere. Compute the product Ey, E,,, expressing the result in terms of
matrices E;; and instances of the Kronecker delta.

—1
Verify thatifad —bc # 0, then (Z 2) = (ad—bc)™! ( _i _i> and that the sys-

ab x\ _(p . . X\ _ —1 ( dp—bq
tem (c d) <y) = (q) has the unique solution (}) = (ad — bc) (aq_cp>.
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20.

21.
22.

23.

24.

25.
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Which of the following matrices A is invertible? For the invertible ones, find
Afl

’ 123 123 741
(a)A=<456>, (b)A=<456>, (C)A=<641).
789 7810 431

Can a square matrix with a row of 0’s be invertible? Why or why not?

Prove that if the product AB of two n-by-n matrices is invertible, then A and B
are invertible.

Let A be a square matrix such that AX = 0 for some positive integer n. Prove
that / 4 A is invertible.

Give an example of a set S and functions f : S — Sand g : S — § such that
the composition g o f is the identity function but neither f nor g has an inverse
function.

Give an example of two matrices, A of size 1-by-2 and B of size 2-by-1, such
that AB = I, I being the 1-by-1 identity matrix. Verify that B A is not the 2-by-2
identity matrix. Give a proof for these sizes that BA can never be the identity
matrix.

Problems 26-29 concern least common multiples. Let a and b be positive integers.
A common multiple of @ and b is an integer N such that a and b both divide N. The
least common multiple of ¢ and b is the smallest positive common multiple of a and
b. Tt is denoted by LCM(a, b).

26.
27.

28.

29.

Prove that @ and b have a least common multiple.

If a has a prime factorization given by a = pll‘l e pf’, prove that any positive

multiple M of a has a prime factorization given by a = pi"' -+~ ;" q{" -+ q5",
where g1, ..., g are primes not in the list p1, ..., p,, where m; > k; for all j,

and where n; > 0 for all j.

(a) Prove thatifa = plf‘ e pf’ and b = plll e pi" are expansions of @ and b
as products of powers of r distinct primes py, ..., p,, then LCM(a, b) =
max(ky,li) max(k,,l,)
1 e pr .
(b) Prove thatif N is any common multiple of @ and b, then LCM(a, b) divides
N.
(¢) Deduce that ab = GCD(a, b) LCM(a, b).
Ifay, ..., a; are positive integers, define their least common multiple to be the
smallest positive integer M such that each a; divides M. Give a formula for this
M in terms of expansions of ay, . . ., a; as products of powers of distinct primes.



CHAPTER 11

Vector Spaces over (Q, R, and C

Abstract. This chapter introduces vector spaces and linear maps between them, and it goes on
to develop certain constructions of new vector spaces out of old, as well as various properties of
determinants.

Sections 1-2 define vector spaces, spanning, linear independence, bases, and dimension. The
sections make use of row reduction to establish dimension formulas for certain vector spaces
associated with matrices. They conclude by stressing methods of calculation that have quietly
been developed in proofs.

Section 3 relates matrices and linear maps to each other, first in the case that the linear map carries
column vectors to column vectors and then in the general finite-dimensional case. Techniques are
developed for working with the matrix of a linear map relative to specified bases and for changing
bases. The section concludes with a discussion of isomorphisms of vector spaces.

Sections 46 take up constructions of new vector spaces out of old ones, together with corre-
sponding constructions for linear maps. The four constructions of vector spaces in these sections
are those of the dual of a vector space, the quotient of two vector spaces, and the direct sum and
direct product of two or more vector spaces.

Section 7 introduces determinants of square matrices, together with their calculation and prop-
erties. Some of the results that are established are expansion in cofactors, Cramer’s rule, and the
value of the determinant of a Vandermonde matrix. It is shown that the determinant function is well
defined on any linear map from a finite-dimensional vector space to itself.

Section 8 introduces eigenvectors and eigenvalues for matrices, along with their computation.
Also, in this section the characteristic polynomial and the trace of a square matrix are defined, and
all these notions are reinterpreted in terms of linear maps.

Section 9 proves the existence of bases for infinite-dimensional vector spaces and discusses the
extent to which the material of the first eight sections extends from the finite-dimensional case to be
valid in the infinite-dimensional case.

1. Spanning, Linear Independence, and Bases

This chapter develops a theory of rational, real, and complex vector spaces. Many
readers will already be familiar with some aspects of this theory, particularly in
the case of the vector spaces Q", R", and C" of column vectors, where the tools
developed from row reduction allow one to introduce geometric notions and to
view geometrically the set of solutions to a set of linear equations. Thus we shall

33
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be brief about many of these matters, concentrating on the algebraic aspects of
the theory. Let F denote any of Q, R, or C. Members of IF are called scalars.'
A vector space over I is a set V with two operations, addition carrying V x V
into V and scalar multiplication carrying F x V into V, with the following
properties:
(i) the operation of addition, written -+, satisfies
(@) vi + (va+v3) = (v1 +v2) +v;3 forall vy, vy, v3in V (associative law),
(b) there exists an elementOin V withv +0=04+v =vforallvinV,
(c) to each v in V corresponds an element —v in V such that v + (—v) =
(—v)+v=0,
(d) vi + v, =vy + vy forall vy and v, in V' (commutative law);
(i) the operation of scalar multiplication, written without a sign, satisfies

(a) a(bv) = (ab)v for all v in V and all scalars a and b,
(b) 1v = v forall vin V and for the scalar 1;

(iii) the two operations are related by the distributive laws

(a) a(vy + v2) = avy + av, forall vy and v, in V and for all scalars a,
(b) (@a+b)v =av + bv forall vin V and all scalars a and b.
It is immediate from these properties that
0 is unique (since 0’ =0+ 0 = 0),
—v is unique (since (—v) = (—v) +0 = (—v) + (v + (-v)) =
(=v) +v) + (=v) =0+ (—v) = (-v)),
e v =0 (sinceOv = (0+0)v =0v + Ov),
e (—Dv=—v (since0 =0v =1+(—1))v = lv+(—Dv =v+(—1v),
e a0 =0 (since a0 =a(0+ 0) = a0 + a0).
Members of V are called vectors.

EXAMPLES.

(1) V = My, (IF), the space of all k-by-n matrices. The above properties of a
vector space over IF were already observed in Section 1.6. The vector space F¥ of
all k-dimensional column vectors is the special case n = 1, and the vector space
[F of scalars is the special case k = n = 1.

(2) Let S be any nonempty set, and let V be the set of all functions from S into
IF. Define operations by (f + g)(s) = f(s) + g(s) and (cf)(s) = c(f(s)). The
operations on the right sides of these equations are those in IF, and the properties
of a vector space follow from the fact that they hold in IF at each s.

1 All the material of this chapter will ultimately be seen to work when F is replaced by any “field.”
This point will not be important for us at this stage, and we postpone considering it further until
Chapter IV.
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(3) More generally than in Example 2, let S be any nonempty set, let U be a
vector space over [, and let V be the set of all functions from § into U. Define
the operations as in Example 2, but interpret the operations on the right sides of
the defining equations as those in U. Then the properties of a vector space follow
from the fact that they hold in U at each s.

(4) Let V be any vector space over C, and restrict scalar multiplication to an
operation R x V' — V. Then V becomes a vector space over R. In particular, C
is a vector space over R.

(5) Let V = F[X] be the set of all polynomials in one indeterminate with
coefficients in IF, and define addition and scalar multiplication as in Section 1.3.
Then V is a vector space.

(6) Let V be any vector space over IF, and let U be any nonempty subset closed
under addition and scalar multiplication. Then U is a vector space over F. Such a
subset U is called a vector subspace of V; sometimes one says simply subspace
if the context is unambiguous.?

(7) Let V be any vector space over I, and let U = {v,} be any subset of
V. A finite linear combination of the members of U is any vector of the form
CayVay + +** + Cq, Vo, With each cq; in F, each vy, in U, and n > 0. The linear
span of U is the set of all finite linear combinations of members of U. Itis a
vector subspace of V and is denoted by span{v,}. By convention, span & = 0.

(8) Many vector subspaces arise in the context of some branch of mathematics
after some additional structure is imposed. For example let V be the vector
space of all functions from R? into R, an instance of Example 2. The subset
U of continuous members of V is a vector subspace; the closure under addition
and scalar multiplication comes down to knowing that addition is a continuous
function from R? x R3 into R? and that scalar multiplication from R x R3
into R3 is continuous as well. Another example is the subset of twice continu-
ously differentiable members f of V satisfying the partial differential equation

Pf 2 4 0 - 3
axlz+ax§+ax§+f_00nR'

The associative and commutative laws in the definition of “vector space” imply
certain more complicated formulas of which the stated laws are special cases.
With associativity of addition, if n vectors vy, ..., v, are given, then any way of
inserting parentheses into the expression vy + v, +- - - +v, leads to the same result,
and a similar conclusion applies to the associativity-like formula a(bv) = (ab)v
for scalar multiplication. In the presence of associativity, the commutative law
for addition implies that vi + vy + - - - + Vv, = Vo (1) + Vo(2) + -+ - + Vg fOr any

2The word “subspace” arises also in the context of metric spaces and more general topological
spaces, and the metric-topological notion of subspace is distinct from the vector notion of subspace.
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permutation of {1, ..., n}. All these facts are proved by inductive arguments, and
the details are addressed in Problems 2-3 at the end of the chapter.

Let V be a vector space over IF. A subset {v,} of V spans V or is a spanning
set for V if the linear span of {v,}, in the sense of Example 7 above, is all of V.
A subset {v,} is linearly independent if whenever a finite linear combination
CoyVoy + + -+ + Ca, Vg, €quals the O vector, then all the coefficients must be O:
Cq, = -+ = ¢y, = 0. By subtraction we see that in this case any equality of two
finite linear combinations

Can Vo +** F Ca, Vo, = oy Vo + -+ + dy, Vo,

implies that the respective coefficients are equal: ¢, = dy,; for 1 < j < n.

A subset {vy} is a basis if it spans V and is linearly independent. In this case
each member of V has one and only one expansion as a finite linear combination
of the members of {v,}.

EXAMPLE. In [F”, the vectors

1 0 0 0
0 1 0 0
el - 0 ’ 82 - 0 ’ 63 - ! ’ ctt el’l - 0
0 0 0 1

form a basis of F” called the standard basis of F".

Proposition 2.1. Let V be a vector space over F.

(a) If {v,} is a linearly independent subset of V' that is maximal with respect to
the property of being linearly independent (i.e., has the property of being strictly
contained in no linearly independent set), then {v,} is a basis of V.

(b) If {v,} is a spanning set for V that is minimal with respect to the property
of spanning (i.e., has the property of strictly containing no spanning set), then
{v,} is a basis of V.

PROOF. For (a), let v be given. We are to show that v is in the span of {v}.
Without loss of generality, we may assume that v is not in the set {v,} itself.
By the assumed maximality, {v,} U {v} is not linearly independent, and hence
CV + Cq Vo, + -+ + Co, Vo, = 0 for some scalars ¢, cq,, .. ., Cq, not all 0. Here
¢ # O since {v,} is linearly independent. Then v = —c_lco,1 Vgy = ~—c_lcan Vg, »
and v is exhibited as in the linear span of {v,}.

For (b), suppose that ¢, Vo, + - - - + Co, Vo, = O Withcy,, ..., cq, notall 0. Say
¢q,; 7 0. Then we can solve for v, and see that v, is a finite linear combination of
Vgys - - - » Vg, Substitution shows that any finite linear combination of the v, ’s is a
finite linear combination of the v, ’s other than vy, , and we obtain a contradiction
to the assumed minimality of the spanning set. O
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Proposition 2.2. Let V be a vector space over F. If V has a finite spanning
set {vy, ..., v,}, then any linearly independent set in V has < m elements.

PROOF. It is enough to show that no subset of m + 1 vectors can be linearly
independent. Arguing by contradiction, suppose that {u;, ..., u,} is a linearly
independent set with n = m + 1. Write

Uy =cvy +c21v2+ -+ Gt U,

Up = ClpV1 + C2pV2 + - -+ + Cun Ui
The system of linear equations

cixi + -+ cix, =0,

Cm1X1 + -+ CpnXp = 0,

is ahomogeneous system of linear equations with more unknowns than equations,
and Proposition 1.26d shows that it has a nonzero solution (xy, ..., x,). Then
we have

xXiuy + -+ xuy, =cr1x1v1 F x4+ F Cp1 X1V

+ + +
+ + +
CinXnV1 + CopXpV2 + + + + + CrnXnUnm
=0,
in contradiction to the assumed linear independence of {uy, ..., u,}. [l
Corollary 2.3. If the vector space V has a finite spanning set {vy, ..., Uy},
then
(a) {v1,...,v,} has a subset that is a basis,

(b) any linearly independent set in V can be extended to a basis,
(c) V has a basis,
(d) any two bases have the same finite number of elements, necessarily < m.

REMARKS. In this case we say that V is finite-dimensional, and the number
of elements in a basis is called the dimension of V, written dim V. If V has no
finite spanning set, we say that V is infinite-dimensional. A suitable analog of
the conclusion in Corollary 2.3 is valid in the infinite-dimensional case, but the
proof is more complicated. We take up the infinite-dimensional case in Section 9.
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PROOF. By discarding elements of the set {vy, ..., v,} one at a time if nec-
essary and by applying Proposition 2.1b, we obtain (a). For (b), we see from
Proposition 2.2 that the given linearly independent set has < m elements. If we
adjoin elements to it one at a time so as to obtain larger linearly independent sets,
Proposition 2.2 shows that there must be a stage at which we can proceed no
further without violating linear independence. Proposition 2.1a then says that we
have a basis. For (c), we observe that (a) has already produced a basis. Any two
bases have the same number of elements, by two applications of Proposition 2.2,
and this proves (d). ]

EXAMPLES. The vector space My, (F) of k-by-n matrices has dimension kn.
The vector space of all polynomials in one indeterminate is infinite-dimensional
because the subspace consisting of 0 and of all polynomials of degree < n has
dimension n + 1.

Corollary 2.4. If V is a finite-dimensional vector space with dim V = n, then
any spanning set of n elements is a basis of V, and any linearly independent set
of n elements is a basis of V. Consequently any n-dimensional vector subspace
U of V coincides with V.

PROOF. These conclusions are immediate from parts (a) and (b) of Corollary
2.3 if we take part (d) into account. ]

Corollary 2.5. If V is a finite-dimensional vector space and U is a vector
subspace of V, then U is finite-dimensional, and dimU < dim V.

PROOF. Let {vy, ..., v,} be a basis of V. According to Proposition 2.2, any
linearly independent set in U has < m elements, being linearly independent in
V. We can thus choose a maximal linearly independent subset of U with < m
elements, and Proposition 2.1a shows that the result is a basis of U. O

2. Vector Spaces Defined by Matrices

Let A be a member of My, (F), thus a k-by-n matrix. The row space of A is the
linear span of the rows of A, regarded as a vector subspace of the vector space of
all n-dimensional row vectors. The column space of A is the linear span of the
columns, regarded as a vector subspace of k-dimensional column vectors. The
null space of A is the vector subspace of n-dimensional column vectors v for
which Av = 0, where Av is the matrix product. The fact that this last space
is a vector subspace follows from the properties A(v; + v) = Av; + Av; and
A(cv) = c(Av) of matrix multiplication.
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We can use matrix multiplication to view the matrix A as defining a function
v = Av of F” to F¥. This function satisfies the properties just listed,

A(vy + 1p) = Avy + Avy and A(cv) = c(Av),

and we shall consider further functions with these two properties starting in the
next section. In terms of this function, the null space of A is the set in the domain
" mapped to 0. Because of these same properties and because the product Ae;
of A and the j™ standard basis vector ej in F" is the 7™ column of A, the column
space of A is the image of the function v > Av as a subset of the range F¥.

Theorem 2.6. If A is in M, (IF), then
dim(column space(A)) + dim(null space(A)) = #(columns of A) = n.

PROOF. Corollary 2.5 says that the null space is finite-dimensional, being a
vector subspace of ", and Corollary 2.3c shows that the null space has a basis,
say {vi, ..., v }. By Corollary 2.3b we can adjoin vectors v,41, ..., U, so that
{vi,...,v,}is abasis of F". If v is in F"*, we can expand v in terms of this basis
asv =cjv; + - -+ + ¢,v,. Application of A gives

Av=A(civi + -+ cpu)=c1Avi + - + ¢ Avr + 41 AV + - - - + Ay

:Cr+lAvr+l + -+ cnAvy.

Therefore the vectors Av, 41, ..., Av, span the column space.

Let us see that they form a basis for the column space. Thus suppose that
Cr+1AV 41 + -+ + c,Av, = 0. Then A(cr41vr41 + -+ + cyv,) = 0, and
Cr41Vr+1 + - - -+ ¢cyv, 1s in the null space. Since {vy, ..., v,} is a basis of the null
space, we have

Cr1Ur1 t -+ CaUp = a1 + - + Gy 0y
for suitable scalars ay, ..., a,. Therefore

(_al)vl +--+ (_ar)vr + 1V - Fopuy = 0.

Since vy, ..., v, are linearly independent, all the ¢; are 0. We conclude that
Av,41, ..., Av, are linearly independent and therefore form a basis of the column
space.

As a result, we have established in the identity » + (n —r) = n thatn — r
can be interpreted as dim(column space(A)) and that » can be interpreted as
dim(null space(A)). The theorem follows. O
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Proposition 2.7. If A is in M, (IF), then each elementary row operation on A
preserves the row space of A.

PROOF. Let the rows of A be ry,...,r;. Their span is unchanged if we
interchange two of them or multiply one of them by a nonzero scalar. If we
replace the row r; by r; + cr; with j # i, then the span is unchanged since

a;ri +ajr; = a;(r; +crj) + (a; — a;c)r;

shows that any finite linear combination of the old rows is a finite linear combi-
nation of the new rows and since

bi (r,- + er) + bjl”j = b,’l’i + (biC + bj)rj
shows the reverse. O

Theorem 2.8. If A in M;,(IF) has reduced row-echelon form R, then

dim(row space(A)) = dim(row space(R))

= #(nonzero rows of R) = #(corner variables of R)
and
dim(null space(A)) = dim(null space(R)) = #(independent variables of R).

PROOF. The first equality in the first conclusion is immediate from Proposition
2.7, and the last equality of that conclusion is known from the method of row
reduction. To see the middle equality, we need to see that the nonzero rows of R
are linearly independent. Let theserowsbery, ..., r;. Foreachi with1 <i <1,
the index of the first nonzero entry of r; was denoted by j (i) in Section 1.5. That
entry has to be 1, and the other rows have to be 0 in that entry, by definition of
reduced row-echelon form. If a finite linear combination cyry + - - - + ¢, is O,
then inspection of the j (i )" entry yields the equality ¢; = 0, and thus we conclude
that all the coefficients are 0. This proves the desired linear independence.

The first equality in the second conclusion is by the solution procedure for ho-
mogeneous systems of equations in Section 1.5; the set of solutions is unchanged
by each row operation. To see the second equality, we recall that the form of the
solution is as a finite linear combination of specific vectors, the coefficients being
the independent variables. What the second equality is asserting is that these
vectors form a basis of the space of solutions. We are thus to prove that they are
linearly independent. Let the independent variables be certain x;’s, and let the
corresponding vectors be v;’s. Then we know that the vector v; has j® entry 1
and that all the other vectors have j® entry 0. If a finite linear combination of the
vectors is 0, then examination of the j™ entry shows that the j® coefficient is 0.
The result follows. O
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Corollary 2.9. If A is in My, (IF), then
dim(row space(A)) + dim(null space(A)) = #(columns of A) = n.
PROOF. We add the two formulas in Theorem 2.8 and see that
dim(row space(A)) + dim(null space(A))

equals the sum #(corner variables of R) + #(independent variables of R). Since
all variables are corner variables or independent variables, this sum is », and the
result follows. g

Corollary 2.10. If A is in My, (F), then
dim(row space(A)) = dim(column space(A)).

REMARK. The common value of the dimension of the row space of A and the
dimension of the column space of A is called the rank of A. Some authors use
the separate terms “row rank” and “column rank” for the two sides, and then the
result is that these integers are equal.

PROOF. This follows by comparing Theorem 2.6 and Corollary 2.9. g

Although the above results may seem to have an abstract sound at first, methods
of calculation for all the objects in question have quietly been carried along in
the proofs, with everything rooted in the method of row reduction. All the proofs
have in effect already been given that these methods of calculation do what they
are supposed to do. If A is in My, (F), the transpose of A, denoted by A’, is the
member of M, (F) with entries (A?); ; = Aj;. In particular, the transpose of a
row vector is a column vector, and vice versa.

METHODS OF CALCULATION.

(1) Basis of the row space of A. Row reduce A, and use the nonzero rows of
the reduced row-echelon form.

(2) Basis of the column space of A. Transpose A, compute a basis of the row
space of A’ by Method 1, and transpose the resulting row vectors into column
vectors.

(3) Basis of the null space of A. Use the solution procedure for Av = 0 given
in Section I.5. The set of solutions is given as all finite linear combinations of
certain column vectors, the coefficients being the independent variables. The
column vectors that are obtained form a basis of the null space.

(4) Basis of the linear span of the column vectors vy, ..., v,. Arrange the
columns into a matrix A. Then the linear span is the column space of A, and a
basis can be determined by Method 2.
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(5) Extension of a linearly independent set {vy, ..., v} of column vectors in
[F" to a basis of F". Arrange the columns into a matrix, transpose, and row reduce.
Adjoin additional row vectors, one for each independent variable, as follows: if
x; is an independent variable, then the row vector corresponding to x; is to be 1
in the j" entry and 0 elsewhere. Transpose these additional row vectors so that
they become column vectors, and these are vectors that may be adjoined to obtain
a basis.

(6) Shrinking of a set {v;, ..., v,} of column vectors to a subset that is a
basis for the linear span of {vy,..., v,}. Foreachi with0 < i < r, compute
d; = dim(spanf{vy, ..., v,}). Retain v; fori > 0 if d;_; < d;, and discard v;
otherwise.

3. Linear Maps

In this section we discuss linear maps, first in the setting of functions from F” to
[F* and then in the setting of functions between two vector spaces over F. Much of
the discussion will center on making computations for such functions by means
of matrices.

We have seen that any k-by-n matrix A defines a function L : F" to F* by
L(v) = Av and that this function satisfies

L(u+v) = L)+ L(v),
L(cv) = cL(v),
for all u and v in F” and all scalars c. A function L : F” — F* satisfying these
two conditions is said to be linear, or IF linear if the scalars need emphasizing.

Traditional names for such functions are linear maps, linear mappings, and
linear transformations.> Thus matrices yield linear maps. Here is a converse.

Proposition 2.11. If L : F* — F is a linear map, then there exists a unique
k-by-n matrix A such that L(v) = Av for all v in F".
REMARK. The proof will show how to obtain the matrix A.

PROOF. For 1 < j < n,lete; be the j th standard basis vector of F”, having 1 in
its j™ entry and 0’s elsewhere, and let the j™ column of A be the k-dimensional
column vector L(e;). If v is the column vector (c1, ¢2, .. ., ¢,), then

n n
L(v) = L(X}_; ¢jej) = X7y L(cjey)
=D icille) =3, ¢;(j™ column of A).
3The term linear function is particularly appropriate when the emphasis is on the fact that a

certain function is linear. The term linear operator is used also, particularly when the context has
something to do with analysis.
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If L(v); denotes the i™ entry of the column vector L(v), this equality says that
L(v); =371 ¢jAjj-

The right side is the i ™ entry of Av, and hence L(v) = Av. This proves existence.
For uniqueness we observe from the formula L(e;) = Ae; that the j ® column of
A has to be L(e;) for each j, and therefore A is unique. ([l

In the special case of linear maps from [ to IF¥, the proof shows that two linear
maps that agree on the members of the standard basis are equal on all vectors.
We shall give a generalization of this fact as Proposition 2.13 below.

EXAMPLE 1. Let L : R? — R? be rotation about the origin counterclockwise
through the angle #. Taking L to be defined geometrically, one finds from the
parallelogram rule for addition of vectors that L is linear. Computation shows

that L (é) = (COSG) and that L (?) = ( ~sind ) Applying Proposition 2.11

sin @ cos @
and the prescription for forming the matrix A given in the proof of the proposition,

we see that L(v) = (C(.)SQ —sinf ) v for all v in R?.
sinf  cos6

We can add two linear maps L : F” — F¥ and M : F” — F* by adding their
values at corresponding points: (L + M)(v) = L(v) + M(v). In addition, we
can multiply a linear map by a scalar by multiplying its values. Then L + M
and cL are linear, and it follows that the set of linear maps from F” to F¥ is a
vector subspace of the vector space of all functions from F" to F¥, hence is itself
a vector space. The customary notation for this vector space is Homg (F”, F¥);
the symbol Hom refers to the validity of the rule L(u + v) = L(u) + L(v), and
the subscript I refers to the validity of the additional rule L(cv) = cL(v) for all
cinF.

If L corresponds to the matrix A and M corresponds to the matrix B, then
L 4+ M corresponds to A + B and cL corresponds to cA. The next proposition
shows that composition of linear maps corresponds to multiplication of matrices.

Proposition 2.12. Let L : F” — [ be the linear map corresponding to an
m-by-n matrix A, and let M : F"" — ¥ be the linear map corresponding to a
k-by-m matrix B. Then the composite function M o L : F* — F* is linear, and
it corresponds to the k-by-n matrix B A.

PROOF. The function M o L satisfies (M o L)(u + v) = M(L(u + v)) =
M(Lu+ Lv) = M(Lu) + M(Lv) = (Mo L)(u) + (M o L)(v), and similarly it
satisfies (M o L)(cv) = ¢(M o L)(v). Therefore it is linear. The correspondence
of linear maps to matrices and the associativity of matrix multiplication together
give (M o L)(v) = M(L(v)) = (B)(Lv) = B(Av) = (BA)v, and therefore
M o L corresponds to B A. O
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Now let us enlarge the setting for our discussion, treating arbitrary linear maps
L : U — V between vector spaces over F. We say that L : U — V is linear, or
F linear, if

L +v)=L®u)+ L),
L(cv) = cL(v),

for all # and v in U and all scalars c. As with the special case that U = F”* and
V = F*, linear functions are called linear maps, linear mappings, and linear
transformations. The set of all linear maps L : U — V is a vector space over F
and is denoted by Homp (U, V). The following result is fundamental in working
with linear maps.

Proposition 2.13. Let U and V be vector spaces over IF, and let I" be a basis
of U. Then to each function £ : ' — V corresponds one and only one linear
map L : U — V whose restriction to I" has L|r ={.

REMARK. We refer to L as the linear extension of £.

PROOF. Suppose that £ : ' — V is given. Since I' is a basis of U, each
element of U has a unique expansion as a finite linear combination of members
of I'. Say that u = ¢4 g, + -+ + o Uo,. Then the requirement of linearity
on L forces L(u) = L(cyUg, + -+ + Co,Ua,) = Coy L(Ue,) + -+ - + Co, L(Ug, ),
and therefore L is uniquely determined. For existence, define L by this formula.
Expanding u and v in this way, we readily see that L(u + v) = L(u) + L(v) and
L(cu) = cL(u). Therefore ¢ has a linear extension. ]

The definition of linearity and the proposition just proved make sense even if
U and V are infinite-dimensional, but our objective for now will be to understand
linear maps in terms of matrices. Thus, until further notice at a point later in this
section, we shall assume that U and V are finite-dimensional. Remarks about the
infinite-dimensional case appear in Section 9.

Since U and V are arbitrary finite-dimensional vector spaces, we no longer
have standard bases at hand, and thus we have no immediate way to associate a
matrix to a linear map L : U — V. What we therefore do is fix arbitrary bases
of U and V and work with them. It will be important to have an enumeration of
each of these bases, and we therefore let

I'=(uy,...,u,)

and A= ,...,v)
be ordered bases of U and V, respectively.* If a member u of U may be expanded
4The notation (i1, ..., u,) for an ordered basis, with each u ; equal to a vector, is not to be

confused with the condensed notation (ct, . . ., ¢,) for a single column vector, with each ¢; equal to
a scalar.
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intermsof I as u = cju; + - - - + c,u,, we write

(&

D)

Cn
calling this the column vector expressing u in the ordered basis I". Using our

linear map L : U — V, let us define a k-by-n matrix ( ALF> by requiring that

.th L L(u;)
j ' column of <AF) be ( A .

The positions in which the ordered bases A and I' are listed in the notation is
important here; the range basis is to the left of the domain basis.’

the

EXAMPLE 2. Let V be the space of all complex-valued solutions on R of the
differential equation y”(#) = y(¢). Then V is a vector subspace of functions,
hence is a vector space in its own right. It is known that V' is 2-dimensional with
solutions cie’ 4 coe™". If y(¢) is a solution, then differentiation of the equation
shows that y’(¢) is another solution. In other words, the derivative operator d /dt is
alinear map from V to itself. One ordered basisof VisT" = (¢, ¢™"), and another
is A = (cosht, sinh¢), where cosht = %(e‘ + e ") and sinht = %(e‘ —e ). To
d/dt

AT
and sinh f. We have

(d/dt)ye)\ (e _ (cosht+sinhr) (1

A \A )T A 1
d/dt)e)\ _ (—e"\ _ (—cosht+sinht) [ —1
o ()= = ()

didt (1 -1
Therefore( AT > = <1 1).

Theorem 2.14. If L : U — V is a linear map between finite-dimensional
vector spaces over [F and if I" and A are ordered bases of U and V, respectively,

then (L(AM)>:<ALF)<?‘)

5This order occurs in a number of analogous situations in mathematics and has the effect of
keeping the notation reasonably consistent with the notation for composition of functions.

find , we need to express (d/dt)(e") and (d/dt)(e™") in terms of cosh ¢

foralluin U.
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PROOF. The two sides of the identity in question are linear in u#, and Proposition
2.13 shows that it is enough to prove the identity for the members u of some
ordered basis of U. We choose I' as this ordered basis. For the basis vector
uj
r
the column vector e; that is 1 in the j™ entry and is O elsewhere. The product

L . .th L . L(M/)
< AT ) e; is the j™ column of AT ), which was defined to be < A . Thus

u equal to the j™ member u ; of T', use of the definition shows that is

the identity in question is valid for u;, and the theorem follows.

If we take into account Proposition 2.13, saying that linear maps on U arise
uniquely from arbitrary functions on a basis of U, then Theorem 2.14 supplies
a one-one correspondence of linear maps L from U to V with matrices A of
the appropriate size, once we fix ordered bases in the domain and range. The

L
AT )°

As in the special case with linear maps between spaces of column vectors,
this correspondence respects addition and scalar multiplication. Theorem 2.14
implies that under this correspondence, the image of L corresponds to the column
space of A. It implies also that the vector subspace of the domain U with L(u) =
0, which is called the kernel of L and is sometimes denoted by ker L, corresponds
to the null space of A. The kernel of L has the important property that

correspondence is L <>

the linear map L is one-one if and only if ker L = 0.

Another important property comes from this association of kernel with null space
and of image with column space. Namely, we apply Theorem 2.6, and we obtain
the following corollary.

Corollary 2.15. If L : U — V is a linear map between finite-dimensional
vector spaces over IF, then

dim(domain(L)) = dim(kernel(L)) + dim(image(L)).

The next result says that composition corresponds to matrix multiplication
under the correspondence of Theorem 2.14.

Theorem 2.16. Let L : U — V and M : V — W be linear maps between
finite-dimensional vector spaces, and let I', A, and 2 be ordered bases of U,
V,and W. Then the composition ML is linear, and the corresponding matrix is

ghanty (5E)= () (5)
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PROOF. If u is in U, three applications of Theorem 2.14 and one application
of associativity of matrix multiplication give

(ar) (1) = (") = (al) (%)
=(ad)[(ar) (1) ] =[(aa) () ) (7).

Taking u to be the j member of I, we see from this equation that the j column
ML -th M L . . .
of ( or ) equals the j* column of <QA) (AF)' Since j is arbitrary, the

theorem follows.

A computational device that appears at first to be only of theoretical interest
and then, when combined with other things, becomes of practical interest, is to
change one of the ordered bases in computing the matrix of a linear map. A handy

device for this purpose is a change-of-basis matrix ! since Theorem 2.16

o ()= () (4) )

EXAMPLE 2, CONTINUED. Let L be d/dt as a linear map carrying the space of
solutions of y”(¢) = y(¢) to itself, with ' = (¢’, ¢™") and A = (cosht, sinht)
as before. Then (dlfﬁt) = ((1) _?) Since e’ = cosht + sinhz and e’ =

. 1 1 1 . . . L
cosht — sinhz, <AF) = (1 _1) by inspection. The product is <AF> =

1 didet (1 -1 ) .
( AT ) ( Ir ) =1, | ) aresult we found before with a little more effort

by computing matters directly.

Often in practical applications the domain and the range are the same vector
space, the domain’s ordered basis equals the range’s ordered basis, and the matrix
of a linear map is known in this ordered basis. The problem is to determine the
matrix when the ordered basis is changed in both domain and range —changed in
such a way that the ordered bases in the domain and range are the same. This time

. . 1 I
we use two change-of-basis matrices ( AT ) and ( A ), but these are related.

. 1 1 1 . .
Since <FA) (AF) = (FF > = [, the two matrices are the inverses of one
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another. Thus, except for matrix algebra, the problem is to compute just one of

1 1
(FA) and (AF)'

Normally one of these two matrices can be written down by inspection. For
example, if we are working with a linear map from a space of column vectors
to itself, one ordered basis of interest is the standard ordered basis . Another

ordered basis A might be determined by special features of the linear map. In
this case the members of A are given as column vectors, hence are expressed in

1 . . . .
s A | can be written by inspection. We shall encounter this
situation later in this chapter when we use “eigenvectors” in order to understand
linear maps better. Here is an example, but without eigenvectors.

terms of 2. Thus

EXAMPLE 1, CONTINUED. We saw that rotation L counterclockwise about
the origin in R? is given in the standard ordered basis ¥ = ( ( é) , (?) ) by

¥y sinf  cos6

1 1 . . . 1 (11
( <0> , ( . ) ) The easy change-of-basis matrix to form is (ZA) = (O | )

Hence

() =(4s) () () =(0 1) (e —ame) (3 1),

and the problem is reduced to one of matrix algebra.

( L ) = ( cosf —sin6 ) . Letus compute the matrix of L in the ordered basis A =

Our computations have proved the following proposition, which, as we shall
see later, motivates much of Chapter V. The matrix C in the statement of the

o 1
proposition is (F A )

Proposition 2.17. Let L : V — V be a linear map on a finite-dimensional
vector space, and let A be the matrix of L relative to an ordered basis I" (in domain
and range). Then the matrix of L in any other ordered basis A is of the form
C ' AC for some invertible matrix C depending on A.

REMARK. If A is a square matrix, any square matrix of the form C ~' AC is said
to be similar to A. It is immediate that “is similar to” is an equivalence relation.

Now let us return to the setting in which our vector spaces are allowed to be
infinite-dimensional. Two vector spaces U and V are said to be isomorphic if
there is a one-one linear map of U onto V. In this case, the linear map in question
is called an isomorphism, and one often writes U = V.
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Here is a finite-dimensional example: If U is n-dimensional with an ordered
basis I' and V is k-dimensional with an ordered basis A, then Homp(U, V) is
isomorphic to M, (IF) by the linear map that carries a member L of Homp (U, V)

. L
to the k-by-n matrix AT

The relation “is isomorphic to” is an equivalence relation. In fact, it is reflexive
since the identity map exhibits U as isomorphic to itself. It is transitive since
Theorem 2.16 shows that the composition ML of two linear maps L : U — V
and M : V — W is linear and since the composition of one-one onto functions
is one-one onto. To see that it is symmetric, we need to observe that the inverse
function L~! of a one-one onto linear map L : U — V is linear. To see this
linearity, we observe that L (L ™" (v)) + L™ (v2)) = L(L™'(v1)) + L(L ™' (v2)) =
vi + v, =1 (vy +v2) = L(L™'(v; + v2)). Since L is one-one,

L™ () + L7 (w2) = L7 (v1 + v2).

Similarly the facts that L(L~!(cv)) = cv = ¢L(L™'v) = L(c(L~'(v))) and that
L is one-one imply that

L7 (cv) = (L7 (v)),

and hence L ™! is linear. Thus “is isomorphic to” is indeed an equivalence relation.

The vector spaces over [F are partitioned, according to the basic result about
equivalence relations in Section A2 of the appendix, into equivalence classes.
Each member of an equivalence class is isomorphic to all other members of that
class and to no member of any other class.

An isomorphism preserves all the vector-space structure of a vector space.
Spanning sets are mapped to spanning sets, linearly independent sets are mapped
to linearly independent sets, vector subspaces are mapped to vector subspaces,
dimensions of subspaces are preserved, and so on. In other words, for all purposes
of abstract vector-space theory, isomorphic vector spaces may be regarded as the
same. Let us give a condition for isomorphism that might at first seem to trivialize
all vector-space theory, reducing it to a count of dimensions, but then let us return
to say why this result is not to be considered as so important.

Proposition 2.18. Two finite-dimensional vector spaces over [F are isomorphic
if and only if they have the same dimension.

PROOF. If a vector space U is isomorphic to a vector space V, then the
isomorphism carries any basis of U to a basis of V, and hence U and V have the
same dimension. Conversely if they have the same dimension, let (u, ..., u;)
be an ordered basis of U, and let (vy, ..., v,) be an ordered basis of V. Define
L(u;) =vjforl < j <n,andlet L : U — V be the linear extension of £
given by Proposition 2.13. Then L is linear, one-one, and onto, and hence U is
isomorphic to V. U
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The proposition does not mean that one should necessarily be eager to make the
identification of two vector spaces that are isomorphic. Animportantdistinctionis
the one between “isomorphic” and “isomorphic via a canonically constructed lin-

L
AT
is canonical since no choices are involved once I' and A have been specified.
This is a useful isomorphism because we can track matters down and use the
isomorphism to make computations. On the other hand, it is not very useful to
say merely that Homp(U, V) and My, (IF) are isomorphic because they have the
same dimension.

What tends to happen in practice is that vector spaces in applications come
equipped with additional structure—some rigid geometry, or a multiplication
operation, or something else. A general vector-space isomorphism has little
chance of having any connection to the additional structure and thereby of being
very helpful. On the other hand, a concrete isomorphism that is built by taking
this additional structure into account may indeed be useful.

In the next section we shall encounter an example of an additional structure
that involves neither a rigid geometry nor a multiplication operation. We shall
introduce the “dual” V'’ of a vector space V, and we shall see that V and V' have
the same dimension if V is finite-dimensional. But no particular isomorphism
of V with V' is singled out as better than other ones, and it is wise not to try
to identify these spaces. By contrast, the double dual V” of V, which too will
be constructed in the next section, will be seen to be isomorphic to V in the
finite-dimensional case via a linear map ¢ : V — V” that we define explicitly.
The function ¢ is an example of a canonical isomorphism that we might want to
exploit.

ear map.” The isomorphism of linear maps with matrices given by L +—

4. Dual Spaces

Let V be a vector space over [F. A linear functional on V is a linear map from
V into F. The space of all such linear maps, as we saw in Section 3, is a vector
space. We denote it by V' and call it the dual space of V.

The development of Section 3 tells us right away how to compute the dual
space of the space of column vectors F”. If ¥ is the standard ordered basis of "
and if 1 denotes the basis of I consisting of the scalar 1, then we can associate to
a linear functional v’ on [F" its matrix

(%) =en vy - v,

which is an n-dimensional row vector. The operation of v' on a column vector
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X1

v=| : ] isgiven by Theorem 2.14. Namely, v'(v) is a multiple of the scalar 1,

Xn
and the theorem tells us how to compute this multiple:

X1 X1

(vgv)>=<1v2> ] =en Vi) e vien)

xl’l 'xl’l
Thus the space of all linear functionals on F”* may be identified with the space of
all n-dimensional row vectors, and the effect of the row vector on a column vector
is given by matrix multiplication. Since the standard ordered basis of " and the
basis 1 of [F are singled out as special, this identification is actually canonical,
and it is thus customary to make this identification without further comment.

For a more general vector space V, no natural way of writing down elements
of V' comes to mind. Indeed, if a concrete V is given, it can help considerably
in understanding V to have an identification of V’ that does not involve choices.
For example, in real analysis one proves in a suitable infinite-dimensional setting
that a (continuous) linear functional on the space of integrable functions is given
by integration with a bounded function, and that fact simplifies the handling of
the space of integrable functions.

In any event, the canonical identification of linear functionals that we found
for " does not work once we pass to a more general finite-dimensional vector
space V. To make such an identification in the absence of additional structure,
we first fix an ordered basis (vy, ..., v,) of V. If we do so, then V' is indeed
identified with the space of n-dimensional row vectors. The members of V' that
correspond to the standard basis of row vectors, i.e., the row vectors that are 1
in one entry and are O elsewhere, are of special interest. These are the linear
functionals v; such that

v; (v)) = 8y,

where §;; is the Kronecker delta. Since these standard row vectors form a basis of
the space of row vectors, (v}, ..., v,) is an ordered basis of V. If the members
of the ordered basis (vy, ..., v,) are permuted in some way, the members of
(vi, ..., v,) are permuted in the same way. Thus the basis {v], ..., v)} depends
only on the basis {vy, ..., v,}, not on the enumeration.® The basis {v/l, )
is called the dual basis of V relative to {vy, ..., v,}. A consequence of this
discussion is the following result.

Proposition 2.19. If V is a finite-dimensional vector space with dual V’, then
V'’ is finite-dimensional with dim V' = dim V.
6 Although the enumeration is not important, more structure is present here than simply an

association of an unordered basis of V’ to an unordered basis of V. Each member of {v], ..., v} is
matched to a particular member of {vy, ..., v,}, namely the one on which it takes the value 1.
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Linear functionals play an important role in working with a vector space. To
understand this role, it is helpful to think somewhat geometrically. Imagine the
problem of describing a vector subspace of a given vector space. One way of
describing it is from the inside, so to speak, by giving a spanning set. In this
case we end up by describing the subspace in terms of parameters, the parameters
being the scalar coefficients when we say that the subspace is the set of all finite
linear combinations of members of the spanning set. Another way of describing
the subspace is from the outside, cutting it down by conditions imposed on its
elements. These conditions tend to be linear equations, saying that certain linear
maps on the elements of the subspace give 0. Typically the subspace is then
described as the intersection of the kernels of some set of linear maps. Frequently
these linear maps will be scalar-valued, and then we are in a situation of describing
the subspace by a set of linear functionals.

We know that every vector subspace of a finite-dimensional vector space V
can be described from the inside in this way; we merely give all its members. A
statement with more content is that we can describe it with finitely many members;
we can do so because we know that every vector subspace of V has a basis.

For linear functionals really to be useful, we would like to know a correspond-
ing fact about describing subspaces from the outside —that every vector subspace
U of a finite-dimensional V can be described as the intersection of the kernels of
a finite set of linear functionals. To do so is easy. We take a basis of the vector
subspace U, say {vi, ..., v,}, extend it to a basis of V by adjoining vectors
Vr41, - - ., Up, and form the dual basis {v{, ..., v,} of V'. The subspace U is then
described as the set of all vectors v in V such that vj’.(v) =0forr+1<j<n.
The following proposition expresses this fact in ways that are independent of the
choice of a basis. It uses the terminology annihilator of U, denoted by Ann(U),
for the vector subspace of all members v’ of V/ with v/(u) = 0 for all u in U.

Proposition 2.20. Let V be a finite-dimensional vector space, and let U be a
vector subspace of V. Then

(@) dimU 4 dim Ann(U) = dim V,

(b) every linear functional on U extends to a linear functional on V,

(c) whenever vy is a member of V that is not in U, there exists a linear
functional on V that is O on U and is 1 on vy.

PROOF. We retain the notation above, writing {vy, ..., v} for a basis of U,
Vr41, - - -, Uy fOr vectors that are adjoined to form a basis of V, and {v/l, S )

for the dual basis of V'. For (a), we check that {v, |, ..., v, }isabasis of Ann(U).
It is enough to see that they span Ann(U). These linear functionals are O on every
member of the basis {vy, ..., v} of U and hence are in Ann(U). On the other

hand, if v" is a member of Ann(U), we can certainly write v’ = cjv] +- - - 4+ c,v,,
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for some scalars ¢y, ..., c,. Since v' is 0 on U, we must have v'(v;) = 0 for
i <r. Since v'(v;) = ¢;, we obtain ¢; = 0 for i < r. Therefore v’ is a linear
combination of v)_ , ..., v, and (a) is proved.

For (b), let us observe that the restrictions v/ NIRRT v, |U form the dual basis
of U’ relative to the basis {v, ..., v,} of U. If u’ is in U’, we can therefore write
u' = cv) |U+~ . -—|—crv;|U forsomescalarscy, ..., ¢,. Thenv' = cjvj+- - -4c, v,
is the required extension of u’ to all of V.

For (c), we use a special choice of basis of V in the argument above. Namely,

we still take {vy, ..., v,} to be a basis of U, and then we let v, ;] = vy. Finally
we adjoin v,49, ..., v, to obtain a basis {vy, ..., v,} of V. Then v,’,+l has the
required property.

If L : U — V is alinear map between finite-dimensional vector spaces, then
the formula

(L") (u) = v'(L(u)) foru e Uandv' € V’

defines a linear map L’ : V/ — U’. The linear map L’ is called the contragre-
dient of L. The matrix of the contragredient of L is the transpose of the matrix
of L in the following sense.’

Proposition 2.21. Let L : U — V be alinear map between finite-dimensional
vector spaces, let L' : V' — U’ be its contragredient, let I" and A be respective
ordered bases of U and V, and let I’ and A’ be their dual ordered bases. Then

() =(ar)

PROOF. LetI' = (u1,...,uy), A = (vi,..., ), I'" = (u},...,u,), and
A" = (v],...,v). Write B and A for the respective matrices in the formula
in question. The equations L(u;) = Zf’:l Ajjvi and L' (v) = Z?’:l Bj/iu;.,
imply that

Ui (L) = vi( Yoy Avjur) = Ayj
and Lt(vlf)(uj) = Z;’:l Bj/,'u"l.,(uj) = Bji-
Therefore Bj; = L' (v))(u;) = v.(L(u;)) = Ajj, as required. O

7A general principle is involved in the definition of contragredient once we have a definition of
dual vector space, and we shall see further examples of this principle in the next two sections and in
later chapters: whenever a new systematic construction appears for the objects under study, it is well
to look for a corresponding construction with the functions relating these new objects. In language
to be introduced near the end of Chapter IV, the context for the construction will be a “category,” and
the principle says that it is well to see whether the construction is that of a “functor” on the category.
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With V finite-dimensional, now consider V" = (V’)’, the double dual. In the
case that V = ", we saw that V' could be viewed as the space of row vectors,
and it is reasonable to expect V” to involve a second transpose and again be the
space of column vectors. If so, then V gets identified with V”. In fact, this is true
in all cases, and we argue as follows. If v is in V, we can define a member ¢(v)
of V" by

t)@) =v'(v) forve Vandv e V.

This definition makes sense whether or not V is finite-dimensional. The function
¢ is a linear map from V into V” called the canonical map of V into V”. It is
independent of any choice of basis.

Proposition 2.22. If V is any finite-dimensional vector space over IF, then the
canonical map ¢ : V — V" is one-one onto.

REMARKS. In the infinite-dimensional case the canonical map is one-one but
it is not onto. The proof that it is one-one uses the fact that V has a basis, but
we have deferred the proof of this fact about infinite-dimensional vector spaces
to Section 9. Problem 14 at the end of the chapter will give an example of an
infinite-dimensional V for which ¢ does not carry V onto V”. When combined
with the first corollary in Section A6 of the appendix, this example shows that ¢
never carries V onto V" in the infinite-dimensional case.

PROOF. We saw in Section 3 that a linear map ¢ is one-one if and only if
ker: = 0. Thus suppose t(v) = 0. Then 0 = ((v)(v') = v'(v) for all v’. Arguing
by contradiction, suppose v # 0. Then we can extend {v} to a basis of V, and the
linear functional v’ that is 1 on v and is 0 on the other members of the basis will
have v'(v) # 0, contradiction. We conclude that ¢ is one-one. By Proposition
2.19 we have

dimV =dimV’' =dim V". (%)

Since ¢ is one-one, it carries any basis of V to a linearly independent set in V”.
This linearly independent set has to be a basis, by Corollary 2.4 and the dimension
formula (x). ([l

5. Quotients of Vector Spaces

This section constructs a vector space V /U out of a vector space V and a vector
subspace U. We begin with the example illustrated in Figure 2.1. In the vector
space V = R2, let U be a line through the origin. The lines parallel to U are
of the foom v+ U = {v+u | u € U}, and we make the set of these lines
into a vector space by defining (v; + U) + (v + U) = (v; + v2) + U and
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c(v+ U) = cv + U. The figure suggests that if we were to take any other line
W through the origin, then W would meet all the lines v + U, and the notion of
addition of lines v + U would correspond exactly to addition in W. Indeed we
can successfully make such a correspondence, but the advantage of introducing
the vector space of all lines v + U is that it is canonical, independent of the kind
of choice we have to make in selecting W. One example of the utility of having a
canonical construction is the ease with which we obtain correspondence of linear
maps stated in Proposition 2.25 below. Other examples will appear later.

U

Y

FIGURE 2.1. The vector space of lines v 4+ U in R?
parallel to a given line U through the origin.

Proposition 2.23. Let V be a vector space over I, and let U be a vector
subspace. The relation defined by saying that v; ~ vy if vy — vy isin U is an
equivalence relation, and the equivalence classes are all sets of the form v + U
with v € V. The set of equivalence classes V /U is a vector space under the
definitions

wm+U)+w+U)=w +1r)+U,
cwv+U)=cv+U,
and the function g (v) = v + U is linear from V onto V /U with kernel U.

REMARKS. We say that V /U is the quotient space of V by U. The linear map
q(v) = v + U is called the quotient map of V onto V/U.

PROOF. The properties of an equivalence relation are established as follows:

v~ Uy because 0 is in U,
v ~ vy implies vy ~ vy because U is closed under negatives,
vy ~ vy and vy ~ V3
together imply v; ~ v3 because U is closed under addition.

Thus we have equivalence classes. The class of v; consists of all vectors v, such
that vy — vy is in U, hence consists of all vectors in v; + U. Thus the equivalence
classes are indeed the sets v + U.
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Let us check that addition and scalar multiplication, as given in the statement
of the proposition, are well defined. For addition let v; ~ w; and v, ~ w;.
Then vy — w; and vy, — wy are in U. Since U is a vector subspace, the sum
(v —wy)+ (v —wy) = (V1 +v2) — (w; +wy) isin U. Thus vy + vy ~ wy +wo,
and addition is well defined. For scalar multiplication let v ~ w, and let a scalar
c be given. Thenv — wisin U, and c(v — w) = cv — cw is in U since U is a
vector subspace. Hence cv ~ cw, and scalar multiplication is well defined.

The vector-space properties of V /U are consequences of the properties for V.
To illustrate, consider associativity of addition. The argument in this case is that

(i +0)++U)+ W +U)=((vy+v2)+U)+ (v3+U)
=((vi4+v)4+v3)+U =W+ (v24+v3)+U
= +U)+((n+v3)+U)=w +U)+ (12 +U) + (v3+ U)).
Finally the quotient map g : V — V/U given by q(v) = v + U is certainly

linear. Its kernelis {v | v+ U = 0+ U}, and this equals {v | v € U}, as asserted.
The map ¢ is onto V /U since v + U = ¢q(v). O

Corollary 2.24. If V is a vector space over IF and U is a vector subspace, then
(@) dimV =dimU +dim(V/U),
(b) the subspace U is the kernel of some linear map defined on V.

REMARK. The first conclusion is valid even when all the spaces are not finite-
dimensional. For current purposes it is sufficient to regard dim V as +oco if V is
infinite-dimensional; the sum of 400 and any dimension as +-o00.

PROOF. Let g be the quotient map. The linear map g meets the conditions of
(b). For (a), take a basis of U and extend to a basis of V. Then the images under
q of the additional vectors form a basis of V/U. O

Quotients of vector spaces allow for the factorization of certain linear maps,
as indicated in Proposition 2.25 and Figure 2.2.

Proposition 2.25. Let L : V — W be a linear map between vector
spaces over IF, let Uy = ker L, let U be a vector subspace of V contained in
Up, and let ¢ : V — V/U be the quotient map. Then there exists a linear
map L : V/U — W such that L = Lgq. It has the same image as L, and
ker L = {ug + U | ug € Up}.

V—L>W

1
ql L

ViU
FIGURE 2.2. Factorization of linear maps via a quotient of vector spaces.
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REMARK. One says that L factors through V /U or descends to V/U.

PROOF. The definition of L has to be L(v + U) = L(v). This forces Zq =1L,
and L will have to be linear. What needs proof is that L is well defined. Thus
suppose v; ~ vy. We are to prove that L, +U) = L(v, + U), ie., that
L(vy) = L(v). Now v — vy isin U C Uy, and hence L(vi — vp) = 0. Then
L(vy) = L(v; — vp) + L(vy) = L(vy), as required. This proves that L is well
defined, and the conclusions about the image and the kernel of L are immediate
from the definition. O

Corollary 2.26. Let L : V — W be a linear map between vector spaces over
IF, and suppose that L is onto W and has kernel U. Then V /U is canonically
isomorphic to W.

PRL)OF. Take U = Uy in Proposit_ion 2.25, and form L : V/U — W with
L = Lgq. The proposition shows that L is onto W and has trivial kernel, i.e., the 0
element of V/U. Having trivial kernel, L is one-one. (]

Theorem 2.27 (First Isomorphism Theorem). Let L : V — W be a linear
map between vector spaces over [F, and suppose that L is onto W and has kernel
U. Then the map S +— L(S) gives a one-one correspondence between

(a) the vector subspaces S of V containing U and
(b) the vector subspaces of W.

REMARK. As in Section Al of the appendix, we write L(S) and L~'(T) to
indicate the direct and inverse images of S and T, respectively.

PROOF. The passage from (a) to (b) is by direct image under L, and the passage
from (b) to (a) will be by inverse image under L~'. Certainly the direct image
of a vector subspace as in (a) is a vector subspace as in (b). We are to show that
the inverse image of a vector subspace as in (b) is a vector subspace as in (a) and
that these two procedures invert one another.

For any vector subspace T of W, L~!(T) is a vector subspace of V. In fact, if
v; and v, are in L~!(T'), we can write L(v;) = #; and L(v,) = , with #; and 1,
in T. Then the equations L(v; + v) = t; + #; and L(cvy) = cL(vy) = ct; show
that v; + v, and cv; are in L~ (7).

Moreover, the vector subspace L~!(T) contains L~!(0) = U. Therefore the
inverse image under L of a vector subspace as in (b) is a vector subspace as in
(a). Since L is a function, we have L(L~'(T)) = T. Thus passing from (b) to
(a) and back recovers the vector subspace of W.

If S is a vector subspace of V containing U, we still need to see that § =
L=Y(L(S)). Certainly S € L~'(L(S)). In the reverse direction let v be in
L='(L(S)). Then L(v) is in L(S), i.e., L(v) = L(s) for some s in S. Since L
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is linear, L(v — s) = 0. Thus v — s is in ker L = U, which is contained in S
by assumption. Then s and v — s are in S, and hence v is in S. We conclude
that L= (L(S)) C S, and thus passing from (a) to (b) and then back recovers the
vector subspace of V containing U. O

If V is a vector space and V| and V, are vector subspaces, then we write
V1 + V, for the set V| + V, of all sums vy + v, with vy € V; and v, € V5. This
is again a vector subspace of V and is called the sum of V; and V,. If we have
vector subspaces Vi, ..., V,, we abbreviate ((--- (V1 + Vo) + V3) +-- -+ V,,) as
Vit + V.

Theorem 2.28 (Second Isomorphism Theorem). Let M and N be vector
subspaces of a vector space V over F. Then the mapn + (M N N) +— n+ M is
a well-defined canonical vector-space isomorphism

N/(MNN)= (M+ N)/M.

PROOF. The function L(n+ (M NN)) = n+ M is well defined since MNN C
M, and L is linear. The domainof L is {n + (M N N) | n € N}, and the kernel is
the subset of this where n lies in M as well as N. For this to happen, n must be in
M N N, and thus the kernel is the O element of N /(M N N). Hence L is one-one.

To see that L isonto (M +N)/M, let (m+n)+ M be given. Thenn+ (M NN)
maps to n + M, which equals (m + n) + M. Hence L is onto. (]

Corollary 2.29. Let M and N be finite-dimensional vector subspaces of a
vector space V over F. Then

dim(M + N) +dim(M N N) =dim M +dim N.
PROOF. Theorem 2.28 and two applications of Corollary 2.24a yield

dim(M + N) — dim M = dim((M + N)/M)
= dim(N/(M N N)) = dim N — dim(M N N),

and the result follows. O

6. Direct Sums and Direct Products of Vector Spaces

In this section we introduce the direct sum and direct product of two or more
vector spaces over IF. When there are only finitely many such subspaces, these
constructions come to the same thing, and we call it “direct sum.” We begin with
the case that two vector spaces are given.
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We define two kinds of direct sums. The external direct sum of two vector
spaces V| and V, over I, written V| @ V>, is a vector space obtained as follows.
The underlying set is the set-theoretic product, i.e., the set V| x V, of ordered
pairs (vy, vp) with v; € V| and v, € V,. The operations of addition and scalar
multiplication are defined coordinate by coordinate:

(1, uz) + (v, v2) = (U1 +v1, Uz + v2),

c(vy, v2) = (cvy, cvy),

and it is immediate that V| @ V; satisfies the defining properties of a vector space.

If {a;} is a basis of V; and {b;} is a basis of V>, then it follows from the formula
(vi, v2) = (v, 0) + (0, v) that {(a;, 0)} U {(0, b;)} is a basis of V| @ V,. Con-
sequently if V| and V; are finite-dimensional, then V| @ V; is finite-dimensional
with

dim(V; & V) = dim V| + dim V5.

Associated to the construction of the external direct sum of two vector spaces

are four linear maps of interest:

two “projections,” pL:VidV,— WV with py(vi, v2) = vy,
p:Vieva—> VW, with p2(vy, v2) = v,
two “injections,’ L Vi=-VieWw, with i1 (vy) = (v, 0),
h:Vo—>VioV, with i (v2) = (0, v2).

These have the properties that

. {1 on Vyifr =s,
le =
Pris 0 on Vi ifr #£s,

ipr+ip=1 onV; @ V,.

The second notion of direct sum captures the idea of recognizing a situation as
canonically isomorphic to an external direct sum. This is based on the following
proposition.

Proposition 2.30. Let V be a vector space over IF, and let V| and V, be vector
subspaces of V. Then the following conditions are equivalent:

(a) every member v of V decomposes uniquely as v = v; + v, with v} € V)
and v, € V,

b)) Vi+V,=Vand VNV, =0,

(c) the function from the external direct sum V@V, to V given by (v, v2) >
v1 + v; is an isomorphism of vector spaces.
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REMARKS.

(1) If V is a vector space with vector subspaces V| and V, satisfying the
equivalent conditions of Proposition 2.30, then we say that V is the internal
direct sum of V| and V,. It is customary to write V = V| @ V, in this case even
though what we have is a canonical isomorphism of the two sides, not an equality.

(2) The dimension formula

dim(V, @ V») =dim V| +dim V;

for an internal direct sum follows, on the one hand, from the corresponding
formula for external direct sums; it follows, on the other hand, by using (b) and
Corollary 2.29.

(3) In the proposition it is possible to establish a fourth equivalent condition as
follows: there exist linear maps p; : V. — V, pr: V — V, i| :imagep; — V,
and i, : image p, — V such that

e p,isps equals p, if r = s and equals 0 if » # s,
e i\p;+ixp, =1,and
e V| =imagei; p; and V, = image i, p;.

PROOF. If (a) holds, then the existence of the decomposition v = v; + v,
showsthat Vi +V, = V. Ifvisin Vi N V,, then 0 = v+ (—v) is a decomposition
of the kind in (a), and the uniqueness forces v = 0. Therefore V| NV, = 0. This
proves (b).

The function in (c) is certainly linear. If (b) holds and v is given in V, then
the identity V; + V, = V allows us to decompose v as v = vy + vp. This
proves that the linear map in (c) is onto. To see that it is one-one, suppose that
v; + vy = 0. Then v; = —v; shows that vy isin V] N V,. By (b), this intersection
is 0. Therefore v; = v, = 0, and the linear map in (c) is one-one.

If (c) holds, then the fact that the linear map in (c) is onto V proves the existence
of the decomposition in (a). For uniqueness, suppose that vy + v, = u; + up
with #; and v; in Vi and with u, and v, in V,. Then (uy, u;) and (vq, v2) have
the same image under the linear map in (c). Since the function in (c) is assumed
one-one, we conclude that (¢, up) = (vq, v2). This proves the uniqueness of the
decomposition in (a). O

If V.= V; @& V; is a direct sum, then we can use the above projections and
injections to pass back and forth between linear maps with V; and V, as domain
or range and linear maps with V as domain or range. This passage back and forth
is called the universal mapping property of V| & V, and will be seen later in this
section to characterize V| @ V, up to canonical isomorphism. Let us be specific
about how this property works.
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To arrange for V to be the range, suppose that U is a vector space over I and
that L; : U — Viyand L, : U — V, are linear maps. Then we can define a linear
mapL :U — VbyL =iL,+iyL,,ie.,by

L(u) = (i1Ly + i2L2)(u) = (L1(u), La(u)),

and we can recover L and L, from L by L; = p;L and L, = p,L.

To arrange for V to be the domain, suppose that W is a vector space over [F
and that M, : Vi — W and M, : V, — W are linear maps. Then we can define
alinearmapM : V — Wby M = Mp; + M, p»,ie., by

M(vi, v2) = Mi(v1) + Ma(v2),

and we can recover M| and M, from M by M| = Mi| and M, = Mi,.

The notion of direct sum readily extends to the direct sum of n vector spaces
over F. The external direct sum V| & --- @ V,, is the set of ordered pairs
(v, ..., v,) witheach v; in V; and with addition and scalar multiplication defined
coordinate by coordinate. In the finite-dimensional case we have

dm(Vi@---dV,) =dimV; +--- +dim V,.

If Vi,...,V, are given as vector subspaces of a vector space V, then we say
that V is the internal direct sum of V|, ..., V, if the equivalent conditions of
Proposition 2.31 below are satisfied. In this case we write V. =V, @ --- @V,
even though once again we really have a canonical isomorphism rather than an
equality.

Proposition 2.31. Let V be a vector space over IF, and let V1, ..., V,, be vector
subspaces of V. Then the following conditions are equivalent:

(a) every member v of V decomposes uniquely as v = vy + - - - + v, with
vjeViforl <j<n,

(b) Vi+---+V,=VandalsoV,N(Vi+---+V,_1+ Vi +---+V,) =0
foreach j with1 < j <mn,

(c) the function from the external direct sum V; & --- @ V,, to V given by
(vi, ..., V) > V] + - -+ 4 vy, is an isomorphism of vector spaces.

Proposition 2.31 is proved in the same way as Proposition 2.30, and the
expected analog of Remark 3 with that proposition is valid as well. Notice
that the second condition in (b) is stronger than the condition that V; N V; = 0 for
all i # j. Figure 2.3 illustrates how the condition V; N'V; = 0 for all i # j can
be satisfied even though (b) is not satisfied and even though the vector subspaces
do not therefore form a direct sum.
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FIGURE 2.3. Three 1-dimensional vector subspaces of R?
such that each pair has intersection 0.

ItV =V, &---@YV,isadirect sum, then we can define projections py, ..., p,
andinjectionsiy, ..., i, in the expected way, and we again get a universal mapping
property. Thatis, we can pass back and forth between linear maps with Vi, ..., V,

as domain or range and linear maps with V as domain or range. The argument
given above for n = 2 is easily adjusted to handle general n, and we omit the
details.

To generalize the above notions to infinitely many vector spaces, there are two
quite different ways of proceeding. Let us treat first the external constructions.
Let anonempty collection of vector spaces V,, over I be given, one foreach o € A.

The external direct sum &, _, V, is the set of all tuples {v,} in the Cartesian

product X . 4V, with all but finitely many v, equal to 0 and with addition and
scalar multiplication defined coordinate by coordinate. For this construction we
obtain a basis as the union of embedded bases of the constituent spaces. The
external direct product [, ., Ve is the set of all tuples {vg} in X ycq Ve,
again with addition and scalar multiplication defined coordinate by coordinate.
When there are only finitely many factors Vi, ..., V,, the external direct product,
which manifestly coincides with the external direct sum, is sometimes denoted
by Vi x --- x V,. For the external direct product when there are infinitely many
factors, there is no evident way to obtain a basis of the product from bases of the
constituents.

The projections and injections that we defined in the case of finitely many
vector spaces are still meaningful here. The universal mapping property is still
valid as well, but it splinters into one form for direct sums and another form for
direct products. The formulas given above for using linear maps with the V,,’s
as domain or range to define linear maps with the direct sum or direct product
as domain or range may involve sums with infinitely many nonzero terms, and
they are not directly usable. Instead, the formulas that continue to make sense
are the ones for recovering linear maps with the V,,’s as domain or range from
linear maps with the direct sum or direct product as domain or range. These turn
out to determine the formulas uniquely for the linear maps with the direct sum
or direct product as domain or range. In other words, the appropriate universal
mapping property uniquely determines the direct sum or direct product up to an
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isomorphism that respects the relevant projections and injections.

Let us see to the details. We denote typical membersof [ [, 4 Vo and P, 4 V.
by {v4}aca, With the understanding that only finitely many v, can be nonzero in
the case of the direct sum. The formulas are

ppi [[Va— Ve  with pp({valaca) = vp.

aeA

ig:Vg—> P Ve  withip(vp) = {Walaes and wy = {

aeA

Vg ifa = ,B,
0 ifa#p.

If U is a vector space over IF and if a linearmap Lg : U — Vjy is given for each
B € A, we can obtain a linear map L : U — ]—[aeA V., that satisfies pgL = Lg
for all 8. The definition that makes perfectly good sense is

L(u) = {LW)a}aea = {Lo(t)}qea.

What does not make sense is to try to express the right side in terms of the
injections i, ; we cannot write the right side as > _ , iy (Lo (1)) because infinitely
many terms might be nonzero.

If W is a vector space and a linear map Mg : Vg — W is given for each 8, we
can obtain a linear map M : @, ., Vo — W that satisfies Mig = Mp for all B;
the definition that makes perfectly good sense is

M ({valaca) = ) Ma(va).

acA

aEA

The right side is meaningful since only finitely many v, can be nonzero. It can
be misleading to write the formulaas M = ) ,_, M, p, because infinitely many
of the linear maps M, p, can be nonzero functions.

In any event, we have a universal mapping property in both cases —for the direct
product with the projections in place and for the direct sum with the injections
in place. Let us see that these universal mapping properties characterize direct
products and direct sums up to an isomorphism respecting the projections and
injections, and that they allow us to define and recognize “internal” direct products
and direct sums.

A direct product of a set of vector spaces V, over IF for « € A consists of
a vector space V and a system of linear maps p, : V — V, with the following
universal mapping property: whenever U is a vector space and {L,} is a system
of linear maps L, : U — V,, then there exists a unique linearmap L : U — V
such that p,L. = L, for all @. See Figure 2.4. The external direct product
establishes existence of a direct product, and Proposition 2.32 below establishes
its uniqueness up to an isomorphism of the V’s that respects the p,’s. A direct
product is said to be internal if each V,, is a vector subspace of V and if for each
a, the restriction pg |, 1s the identity map on V,,. Because of the uniqueness, this
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definition of internal direct product is consistent with the earlier one when there
are only finitely V,’s.

Va<L—“U

paT L
L
14

FIGURE 2.4. Universal mapping property of a direct product of vector spaces.

Proposition 2.32. Let A be a nonempty set of vector spaces over IF, and let
Ve be the vector space corresponding to the member « of A. If (V, {py}) and
(V*, {p2}) are two direct products of the V,,’s, then the linear maps p, : V — Vj
and p} : V* — V, are onto V,, there exists a unique linear map L : V* — V
such that p¥ = p,L forall « € A, and L is invertible.

PROOF. In Figure 2.4let U = V*and Ly, = pj. If L : V* — V is the linear
map produced by the fact that V is a direct product, then we have p, L = p} for
all «. Reversing the roles of V and V*, we obtain a linear map L* : V — V*
with p} L* = p, for all a. Therefore p, (LL*) = (po L)L* = piL* = py.

In Figure 2.4 we nextlet U = V and L, = p, for all «. Then the identity
1y on V has the same property p,ly = p, relative to all p, that LL* has, and
the uniqueness says that LL* = 1y. Reversing the roles of V and V*, we obtain
L*L = 1y+. Therefore L is invertible.

For uniqueness suppose that @ : V* — V is another linear map with p} =
po® for all « € A. Then the argument of the previous paragraph shows that
L*® = 1y«. Applying L on the left gives ® = (LL*)® = L(L*®) = L1y =
L. Thus ® = L.

Finally we have to show that the o™ map of a direct product is onto V,. It
is enough to show that p’ is onto V,. Taking V as the external direct product
[ I4ea Vo With py equal to the coordinate mapping, form the invertible linear map
L* : 'V — V* that has just been proved to exist. This satisfies p, = p}; L* for all
a € A. Since py is onto V., p: must be onto V. OJ

A direct sum of a set of vector spaces V,, over I for @ € A consists of a vector
space V and a system of linear maps i, : V, — V with the following universal
mapping property: whenever W is a vector space and { M, } is a system of linear
maps M, : V, — W, then there exists a unique linear map M : V — W such
that Mi, = M, for all «. See Figure 2.5. The external direct sum establishes
existence of a direct sum, and Proposition 2.33 below establishes its uniqueness
up to isomorphism of the V’s that respects the i,’s. A direct sum is said to be
internal if each V,, is a vector subspace of V and if for each «, the map i, is the
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inclusion map of V,, into V. Because of the uniqueness, this definition of internal
direct sum is consistent with the earlier one when there are only finitely V,,’s.
Mo(
Vo — W
7

ial M
1%

FIGURE 2.5. Universal mapping property of a direct sum of vector spaces.

Proposition 2.33. Let A be a nonempty set of vector spaces over [F, and let
Ve be the vector space corresponding to the member « of A. If (V, {i,}) and
(V*, {iz}) are two direct sums of the V,’s, then the linear maps i, : V, — V and
i+ Vy, — V7 are one-one, there exists a unique linear map M : V — V* such
that iy = Mi, forall « € A, and M is invertible.

PROOF. In Figure 2.5let W = V*and M, =i;. If M : V — V™ is the linear
map produced by the fact that V is a direct sum, then we have Mi, = i for all
a. Reversing the roles of V and V*, we obtain a linear map M* : V* — V with
M*i}; =iy for all . Therefore (M*M)i, = M*i} = i,.

In Figure 2.5 we next let W = V and M,, = i, for all @. Then the identity 1y
on V has the same property 1yi, = i, relative to all i, that M*M has, and the
uniqueness says that M*M = 1y. Reversing the roles of V and V*, we obtain
M M* = 1y«. Therefore M is invertible.

For uniqueness suppose that ® : V' — V* is another linear map with i} = ®i,
for all « € A. Then the argument of the previous paragraph shows that M*® =
ly. Applying M on the left gives ® = (MM*)® = M(M*P) = M1y = M.
Thus ® = M.

Finally we have to show that the o™ map of a direct sum is one-one on V,,. It
is enough to show that i} is one-one on V,,. Taking V as the external direct sum
D, Vo with i, equal to the embedding mapping, form the invertible linear map
M* : V* — V that has just been proved to exist. This satisfies i, = M*i for all
a € A. Since i, is one-one, iy must be one-one. O

7. Determinants

A “determinant” is a certain scalar attached initially to any square matrix and
ultimately to any linear map from a finite-dimensional vector space into itself.
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The definition is presumably known from high-school algebra in the case of
2-by-2 and 3-by-3 matrices:

a b
det(c d) =ad — bc,

a b c
det(d e f) =aei +bfg+cdh —afh — bdi — ceg.
g h i

For n-by-n square matrices the determinant function will have the following
important properties:
(i) det(AB) = det Adet B,

(i) detl =1,

(iii) det A = 0 if and only if A has no inverse.

Once we have constructed the determinant function with these properties, we
can then extend the function to be defined on all linear maps L : V — V with V
finite-dimensional. To do so, we let I" be any ordered basis of V, and we define

det L = det <1_,LF ) If A is another ordered basis, then

L 1 L 1
det(AA) _det(AF>det(FF>det(FA>’

. L o I I .
and this equals det <F1" ) by (i) since ( AT ) and (F A> are inverses of each
other and since their determinants, by (i) and (ii), are reciprocals. Hence the

definition of det L is independent of the choice of ordered basis, and determinant
is well defined on the linear map L : V — V. It is then immediate that the
determinant function on linear maps from V into V satisfies (i), (ii), and (iii)
above.

Thus it is enough to establish the determinant function on rn-by-n matrices.
Setting matters up in a useful way involves at least one subtle step, but much of
this step has fortunately already been carried out in the discussion of signs of
permutations in Section 1.4. To proceed, we view det on n-by-n matrices over
I as a function of the n rows of the matrix, rather than the matrix itself. We
write V for the vector space My, (IF) of all n-dimensional row vectors. A function
f:V x.--xV — Fdefined on ordered k-tuples of members of V is called a
k-multilinear functional or k-linear functional if it depends linearly on each of
the k vector variables when the other k — 1 vector variables are held fixed. For
example,

f(a b),(c d))=ac+blc+d)+ 3ad
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is a 2-linear functional on M(IF) x M,(IF). A little more generally and more
suggestively,

gla b),(c d))=tbi(a D)lr(c d)+4t3(a b)ls(c d)

is a 2-linear functional on M, (F) x M;,(IF) whenever ¢, ..., {4 are linear
functionals on M, (IF).

Let {v;, ..., v,} be a basis of V. Then a k-multilinear functional as above
is determined by its value on all k-tuples of basis vectors (vj,, ..., v;,). (Here
i1, ..., I are integers between 1 and n.) The reason is that we can fix all but
the first variable and expand out the expression by linearity so that only a basis
vector remains in each term for the first variable; for each resulting term we can
fix all but the second variable and expand out the expression by linearity; and so
on. Conversely if we specify arbitrary scalars for the values on each such k-tuple,
then we can define a k-multilinear functional assuming those values on the tuples
of basis vectors.

A k-multilinear functional f on k-tuples from My, (IF) is said to be alternating
if f is O whenever two of the variables are equal.

EXAMPLE. Fork = 2andn = 2,weuse {v; = (1 0), v =(0 1) }asba-
sis. Then a 2-linear multilinear functional f isdetermined by f (v, vy), f(vy, v2),
f(v2,v1), and f(vy, v2). If f is alternating, then f (v, vy) = f(va, v2) = 0.
But also f(v; 4 vz, v; + v2) = 0, and expansion via 2-multilinearity gives

S, v) + f(v, v2) + f(v2, v1) + f(v2,v2) =0.

We have already seen that the first and last terms on the left side are 0, and thus
f(va,v1) = — f(v1, v2). Therefore f is completely determined by f (v, v2).

The principle involved in the computation within the example is valid more
generally: whenever a multilinear functional f is alternating and two of its
arguments are interchanged, then the value of f is multiplied by —1. In fact,
let us suppress all variables except for the i™ and the j. Then we have

O=fwv+w,v+w)=f+w,v)+ fv+w, w)
= f(,v) + f(w,v) + f(v,w) + f(w,w) = f(w,v) + f(v, w).

Theorem 2.34. For M, (), the vector space of alternating n-multilinear
functionals has dimension 1, and a nonzero such functional has nonzero value on
(eﬁ, ..., €e), where {ei, ..., e,} is the standard basis of F". Let f, be the unique
such alternating n-multilinear functional taking the value 1 on (e}, ..., ¢). Ifa
function det : M,,,(F) — F is defined by

det A = f()(Al. s Ay
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when A has rows Aj., ..., A,., then det has the properties that
(a) det(AB) = det Adet B,
(b) detl =1,

(c) det A =0 if and only if A has no inverse,
(d) detA=73"_(sgn0)Ai51)A20(2) - - - Ano(n), the sum being taken over all
permutations o of {1, ..., n}.

PROOF OF UNIQUENESS. Let f be an alternating n-multilinear functional, and
let{uy, ..., u,} be the basis of the space of row vectors defined by u; = ef. Since
f is multilinear, f is determined by its values on all n-tuples (ug,, ..., ug,).
Since f is alternating, f(uy,,...,ur,) = O unless the u;, are distinct, i.e.,
unless (ug,, ..., ux,) is of the form (uy(1), ..., Us@)) for some permutation
o. We have seen that the value of f on an n-tuple of rows is multiplied
by —1 if two of the rows are interchanged. Corollary 1.22 and Proposition
1.24b consequently together imply that the value of f on an n-tuple is multi-
plied by sgno if the members of the n-tuple are permuted by o. Therefore

fUsqy, ... usmy) = (sgno) f(uy,...,u,), and f is completely determined
by its value on (uy, ..., u,). We conclude that the vector space of alternating
n-multilinear functionals has dimension at most 1. ]

PROOF OF EXISTENCE. Define det A, and therefore also fy, by (d). Each term
in this definition is the product of 7 linear functionals, the & linear functional
being applied to the k™ argument of fy, and f; is consequently n-multilinear.
To see that f; is alternating, suppose that the i™ and j™ rows are equal with
i # j. If T is the transposition of i and j, then Ai5:(1)A2%r2) " Ansr(n) =
Alo(1)A25(2) * - - Ano(n)» and Lemma 1.23 hence shows that

(Sgngr)Alnr(l)AZUt(Z) e Anat(n) + (SgnU)Ala(l)AZU(Z) o Anrr(n) =0.

Thus if we compute the sum in (d) by grouping pairs of terms, the one for ot and
the one for o if sgno = +1, we see that the whole sumis 0. Thus f; is alternating.
Finally when A is the identity matrix /, we see that Ai5(1)A252) * * * Apom) =0
unless o is the identity permutation, and then the productis 1. Sincesgn1 = +1,
det/ = +41. We conclude that the vector space of alternating n-multilinear
functionals has dimension exactly 1. (]

PROOF OF PROPERTIES OF det. Fix an n-by-n matrix B. Since fj is alternating
n-multilinear, so is (vy,...,v,) — fo(viB,...,v,B). The vector space of
alternating n-multilinear functionals has been proved to be of dimension 1, and
therefore fo(v1B, ..., v,B) = c(B) fo(vi, ..., v,) for some scalar c(B). In the
notation with det, this equation reads det(AB) = c(B) det A. Putting A = I, we
obtaindet B = c(B) det I. Thus c(B) = det B, and (a) follows. We have already
proved (b), and (d) was the definition of det A. We are left with (c). If A~!
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exists, then (a) and (b) give det(A~')det A = det/ = 1, and hence det A # 0.
If A~! does not exist, then Theorem 1.30 and Proposition 1.27c show that the
reduced row-echelon form R of A has arow of 0’s. We combine Proposition 1.29,
conclusion (a), the invertibility of elementary matrices, and the fact that invertible
matrices have nonzero determinant, and we see that det A is the product of det R
and a nonzero scalar. Since det is linear as a function of each row and since R
has a row of 0’s, det R = 0. Therefore det A = 0. This completes the proof of
the theorem. ]

The fast procedure for evaluating determinants is to use row reduction, keeping
track of what happens. The effect of each kind of row operation on a determinant
and the reasons the function det behaves in this way are as follows:

(i) Interchange two rows. This operation multiplies the determinant by —1
because of the alternating property.

(i) Multiply a row by a nonzero scalar ¢. This operation multiplies the
determinant by ¢ because of the linearity of determinant as a function of
that row.

(iii) Replace the i row by the sum of it and a multiple of the j® row with
Jj # i. This operation leaves the determinant unchanged. In fact, the
matrix whose i row is replaced by the j™ row has determinant 0 by the
alternating property, and the rest follows by linearity in the i row.

As with row reduction the number of steps required to compute a determinant
this way is < Cn? in the n-by-n case.

A certain savings of computation is possible as compared with full-fledged
row reduction. Namely, we have only to arrange for the reduced matrix to be 0
below the main diagonal, and then the determinant of the reduced matrix will
be the product of the diagonal entries, by inspection of the formula in Theorem
2.34d.

1 2 3
EXAMPLE. For the matrix (4 5 6 ), we have
7 8 10

12 3\ 1 2 3
det(4 5 6>@det<o _3 —6)
7 8 10 0 —6 —I11
) 12 3\ 1 2 3
“:‘)—3det(o 1 2>(2—3det<o 1 2):—3.

0 -6 -11 0 0 1

We conclude this section with a number of formulas for determinants.
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Proposition 2.35. If A is an n-by-n square matrix, then det A’ = det A.

PROOF. Corollary 2.9 says that the row space and the column space of A have
the same dimension, and A is invertible if and only if the row space has dimension
n. Thus A is invertible if and only if A’ is invertible, and Theorem 2.34¢ thus
shows thatdet A = 0 if and only if det A” = 0. Now suppose that det A and det A’
are nonzero. Then we can write A = E| - - - E, with each E; an elementary matrix
of one of the three types. Theorem 2.34a shows that det A = ]_[;:1 det E; and
det A" = ]_[;zl det E}, and hence it is enough to prove that det £; = det E for
each j. For E; of either of the first two types, £; = E ]’ and there is nothing to
prove. For E; of the third type, we have det E; = det £ j’ = 1. The result follows.

g

__Proposition 2.36 (expansion in cofactors). Let A be an n-by-n matrix, and let
A;; be the square matrix of size n — 1 obtained by deleting the i * row and the j1
column. Then

(a) forany j,det A = Y"_, (—1)"*/ A;; det A, i.e., det A may be calculated
by “expansion in cofactors” about the j™ column,

(b) foranyi,det A =)7_| (=1)""/ A;; det Z[\j i.e., det A may be calculated
by “expansion in cofactors” about the i row.

REMARKS. If this formula is iterated, we obtain a procedure for evaluating a
determinant in about Crn! steps. This procedure amounts to using the formula for
det A in Theorem 2.34d and is ordinarily not of practical use. However, it is of
theoretical use, and Corollary 2.37 will provide a simple example of a theoretical
application.

PROOF. It is enough to prove (a) since (b) then follows by combining (a) and
Proposition 2.35. In (a), the right side is 1 when A = I, and it is enough by
Theorem 2.34 to prove that the right side is alternating and n-multilinear. Each
term on the right side is n-multilinear, and hence so is the whole expression. To
see that the right side is alternating, suppose that the A k™ and /™ rows are equal
with k < I. The k™ and /™ rows are both present in A;; if i is not equal to k or /,
and thus each det Zl\, is O for i not equal to k or /. We are left with showing that

(—1)% Ay; det Ay; + (—1)"H Ay det Aj; = 0.

The two matrices Z; and Zl\j have the same rows but in a different order. The
order is

L. ok=1,k+1,....,0=1,1,I4+1,....,n inthe case of A,
L,....k—1,kk+1,....,1—=1,14+1,...,n inthecaseole\j.
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We can transform the first matrix into the second by transposing the index for
row [ to the left one step at a time until it gets to the k™ position. The number of
steps is / — k — 1, and therefore det A;; = (—1)' %=1 det Ay;. Consequently

(=DM Ay det Ay; + (—1)!H Ay det Ay
= (DA + (=D* 7 4);) det Ay, .

The right side is O since Ax; = A;;, and the proof is complete. (]

Corollary 2.37 (Vandermonde matrix and determinant). If ry,...,r, are
scalars, then

1 1 1
r r Ty
2 2 2
det| "1 ry oo Ty :n(rj—ri).
. . . : Jj>i
-1 -1 1
i r
PROOF. We show that the determinant is
1 1
r2 Y r
=[] —rodec| 7 . Sl
j>1 : T :
rg_z . rr';l_z

and then the result follows by induction. In the given matrix, replace the n™ row
by the sum of it and —r; times the (n — 1) row, then the (n — 1) row by the
sum of it and —r; times the (n — 2)" row, and so on. The resulting determinant
is

1 I . I
0 r, —ri e I'n —T1
det| : : . :
0 r§_2 — rlrg_3 R e ST
0 ré’_l — rlr;_2 vl 2
ry —ri e Tn =11
 det : . : by P.ropos.ition 2.36a
r;—z _ r1r§_3 o r;lq—z _ ”1’”,7_3 applied with j =1
rg_l 1’1r£’_2 pr—l —rlr;‘f2
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5 ...
=@a—ry)---(rp—r)det| . N

the last step following by multilinearity of the determinant in the columns (as a
consequence of Proposition 2.35 and multilinearity in the rows). H

The classical adjoint of the square matrix A, denoted by A2 is the matrix with
entries Af‘;.jJ = (—1)"*/ det A;; with Ay defined as in the statement of Proposition
2.36: A, is the matrix A with the k™ row and /™ column deleted.

adj .
In the 2-by-2 case, we have (a b) = ( d b). Thus we have
c d —-c a
AAM = A A = (det A)T in the 2-by-2 case. Cramer’s rule for solving simul-
taneous linear equations results from the n-by-n generalization of this formula.

Proposition 2.38 (Cramer’s rule). If A is an n-by-n matrix, then AA =

AMA = (det A)I, and thus det A # 0 implies A~! = (det A)~' A4, Conse-
quently if det A # 0, then the unique solution of the simultaneous system Ax = b
X1 b]
of n equations in n unknowns, in whichx = | : Jandb=| : |, has
Xn b,
det Bj
Xj =
det A

with B; equal to the n-by-n matrix obtained from A by replacing the j column
of A by b.

REMARKS. If we think of the calculation of the determinant of an n-by-n matrix
as requiring about n° steps, then application of Cramer’s rule, at least if done in
an unthinking fashion, suggests that solving an invertible system requires about
n3 (n+1) steps, i.e., n + 1 determinants are involved in the explicit solution. Use
of row reduction directly to solve the system is more efficient than proceeding this
way. Thus Cramer’s rule is more important for its theoretical applications than it
is for making computations. One simple theoretical application is the observation
that each entry of the inverse of a matrix is the quotient of a polynomial function
of the entries divided by the determinant.

PROOF. The (i, j)™ entry of A2 A is

n . n . P
(A4); =" AR Ay = (1) (det Ag) Ay
k=1 k=1
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If i = j, then expansion in cofactors about the j® column (Proposition 2.36a)
identifies the right side as det A. If i # j, consider the matrix B obtained from A
by replacing the i column of A by the j column. Then the i™ and j™ columns
of B are equal, and hence det B = 0. Expanding det B in cofactors about the i
column (Proposition 2.36a), we obtain
n n
0=detB =Y (—1)"(det Bi)Bii = Y _ (—1)"™(det Ayi) Ay;.
k=1 k=1

Thus AA*Y = (det A)I. A similar argument proves that A% A = (det A)].
For the application to Ax = b, we multiply both sides on the left by A% and
obtain (det A)x = A*Yb. Hence

(det A)x; = Y (A™);ib; = (1M b; det A5,
i=1 i=1

and the right side equals det B; by expansion in cofactors of det B; about the j th
column (Proposition 2.36a). ]

8. Eigenvectors and Characteristic Polynomials

A vector v # 0 in F” is an eigenvector of the n-by-n matrix A if Av = Av
for some scalar .. We call A the eigenvalue associated with v. When A is an
eigenvalue, the vector space of all v with Av = Av, i.e., the set consisting of the
eigenvectors and the 0 vector, is called the eigenspace for A.

If we think of A as giving a linear map L from F” to itself, an eigenvector takes
on geometric significance as a vector mapped to a multiple of itself by L. Another
geometric way of viewing matters is that the eigenvector yields a 1-dimensional
subspace U = Fv that is invariant, or stable, under L in the sense of satisfying
LU)CU.

Proposition 2.39. An n-by-n matrix A has an eigenvector with eigenvalue A
if and only if det(A/ — A) = 0. In this case the eigenspace for A is the kernel of
Al — A.

PROOF. We have Av = Av if and only if (Al — A)v =0, if and only if v is in
ker(AI — A). This kernel is nonzero if and only if det(Al — A) = 0. O
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With A fixed, the expression det(A/ — A) is a polynomial in A of degree n
and is called the characteristic polynomial® of A. To see that it is at least a
polynomial function of A, let us expand det(Al — A) as

A=A —Ap - —Ap
—Ay  A—Axpn -+ —Ay

det . . . .
_Anl _An2 A— Ann

= Z (sgno)termy g (1) - - - t€rmMy o () -
g

The term for the permutation ¢ = 1 has o(k) = k for every k and gives
]_[;‘:l (A — Ajj). All other o’s have o (k) = k for at most n — 2 values of &,
and X therefore occurs at most n — 2 times. Thus the above expression is

n .
ther terms with powers
- )\. N A 4 {0 }
]lzll ( i) of A at most n — 2

_n ! n—1 terms with powers of n

=4 _(jZI:Ajj))L +{Afromn—2t01 }+(_1) det 4.
The constant term is (—1)" det A as indicated because it is the value of the poly-
nomial at A = 0, which is det(—A). In any event, we now see that characteristic
polynomials are polynomial functions. Starting in Chapter V, we shall treat them
as polynomials in one indeterminate in the sense’ of Section 1.3; for now, we are
calling the indeterminate A, but later as our point of view evolves, we shall start
calling it X. The negative of the coefficient of A"~! is the trace of A, denoted
by Tr A. Thus Tr A = Z;'zl Aj;. Trace is a linear functional on the vector space
M,,,,(F) of n-by-n matrices.

EXAMPLE 1. For A = < _3 i ), the characteristic polynomial is
A—4 -1
det()\I—A)_det( ) A—l)

=A—dHA—-D+2=2>=51+6=0L—=2)(L = 3).

8Some authors call det(A — AJ) the characteristic polynomial. This is the same polynomial as
det(Al — A) if n is even and is the negative of it if n is odd. The choice made here has the slight
advantage of always having leading coefficient 1, which is a handy property in some situations.

°In Chapter V we will allow determinants of matrices whose entries are from any “commutative
ring with identity,” C[A] being an example. Then we can think of det(A/ — A) directly as involving
an indeterminate A and not initially as a function of a scalar A.
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The roots, and hence the eigenvalues, are . = 2 and A = 3. The eigenvectors for
A = 2 are computed by solving (21 — A)v = 0. The method of row reduction
gives

2-4 -1 0 -2 -1 |0 1 3]0
= > .
2 2-11]0 2 1|0 00 |0

Thus we have x| + %xg =0and x; = —%Xg. So the eigenvectors for A = 2
1
are the nonzero vectors of the form il) = X % . Similarly we find
2

the eigenvectors for A = 3 by starting from (3/ — A)v = 0 and solving. The
result is that the eigenvectors for A = 3 are the nonzero vectors of the form

(il ) =X ( _} ) For this example, there is a basis of eigenvectors.
2

Corollary 2.40. An n-by-n matrix A has at most n eigenvalues.

PROOF. Since det(Al — A) is a polynomial of degree n, this follows from
Proposition 2.39 and Corollary 1.14. O

It will later be of interest that certain matrices A have a basis of eigenvectors.
Such a basis exists for A as in Example 1 but not in general. One thing that
can prevent a matrix from having a basis of eigenvectors is the failure of the
characteristic polynomial to factor into first-degree factors. Thus, for example,

0 1 . . .
A= 1 0 has characteristic polynomial A> + 1, which does not factor
into first-degree factors when F = R. Even when we do have a factorization
into first-degree factors, we can still fail to have a basis of eigenvectors, as the

following example shows.

I -1

0 1

A—1 1
0 A—1

EXAMPLE 2. For A = ( ) the characteristic polynomial is given

by det(Al — A) = det = (A — 1)>2. When we solve for

. 0 1 0 _ X1 _ 1
eigenvectors, we get ( 0 0 ‘ 0 ), and x, = 0. Thus <x2> = X <0>,

and we do not have a basis of eigenvectors.

What happens is that the presence of a factor (A — ¢)* in the characteristic
polynomial ensures the existence of an r-parameter family of eigenvectors for
eigenvalue ¢, with 1 < r < k, but not necessarily with » = k. Example 2 shows
that 7 can be strictly less than k. For purposes of deciding whether there is a basis
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of eigenvectors, the positive result is that the different roots of the characteristic
polynomial do not interfere with each other; this is a consequence of the following
proposition.

Proposition 2.41. If A is an n-by-n matrix, then eigenvectors for distinct
eigenvalues are linearly independent.

REMARK. It follows that if the characteristic polynomial of A has n distinct
eigenvalues, then it has a basis of eigenvectors.

PROOF. Let Avy = Avy, ..., Avy = Agvg with Aq, ..., A; distinct, and
suppose that
civ; + -+ v =0.

Applying A repeatedly gives

ciAvy + -+ crrpve =0,

cl)»%vl —+ o+ ck)»,%vk =0,

C1K1;71U1 + -+ Ck)ulliilvk =0.

If the j™ entry of v; is denoted by vi(j ), this system of vector equations says that

e ()
AL e M 1Y 0

. . : =1 : forl < j <n.

: R K

AT ke CrkVx 0

The square matrix on the left side is a Vandermonde matrix, which is invertible
by Corollary 2.37 since A, ..., A are distinct. Therefore c; vi(] ) — 0 for all i
and j. Each v; is nonzero in some entry vl.(] ) with J perhaps depending on i, and
hence ¢; = 0. Since all the coefficients ¢; have to be 0, vy, ..., v are linearly
independent. ([l

The theory of eigenvectors and eigenvalues for square matrices allows us to
develop a corresponding theory for linear maps L : V — V, where V is an
n-dimensional vector space over F. If L is such a function, a vector v # 0
in V is an eigenvector of L if L(v) = Av for some scalar .. We call A the
eigenvalue. When A is an eigenvalue, the vector space of all v with L(v) = Av
is called the eigenspace for A under L. We can compute the eigenvalues and
eigenvectors of L by working in any ordered basis I" of V. The equation L(v) =
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L v v . . . .
Av becomes <FF> (F) =A (F ) and is satisfied if and only if the column

vector ;), is an eigenvector of the matrix A = FLF
Applying Proposition 2.39 and remembering that determinants are well defined
on linear maps L : V — V, we see that L has an eigenvector with eigenvalue A
if and only if det(A/ — L) = 0 and that in this case the eigenspace is the kernel
of A\l — L.

What happens if we make these computations in a different ordered basis A?

. . L L
We know from Proposition 2.17 that the matrices A = < T ) and B = < AA )

with eigenvalue A.

are similar, related by B = C “1AC, where C = ( ! Computing with

I'A

Aleadstou = (}J,

result for B is that B(C~'u) = C'ACC™'u = C'Au = AC~'u. Thus

1 v v . . s .
—1 _ _
Clu = < F) <F) = ( ) is an eigenvector of B with eigenvalue A, just

as it should be.

These considerations about eigenvalues suggest some facts about similar ma-
trices that we can observe more directly without first passing from matrices to
linear maps: One is that similar matrices have the same characteristic polynomial.
To see this, suppose that B = C~! AC; then

) as eigenvector for the eigenvalue A. The corresponding

det(AI — B) = det(Al — C'AC) = det(C~ (LI — A)C)
= (detC~ ) det(A ] — A)(detC™h)
= (detC N (det C™ N det(A ] — A) = det(L] — A).

A second fact is that similar matrices have the same trace. In fact, the trace is
the negative of the coefficient of A”~! in the characteristic polynomial, and the
characteristic polynomials are the same.

Because of these considerations we are free in the future to speak of the char-
acteristic polynomial, the eigenvalues, and the trace of a linear map from a finite-
dimensional vector space to itself, as well as the determinant, and these notions
do not depend on any choice of ordered basis. We can speak unambiguously also
of the eigenvectors of such a linear map. For this notion the realization of the
eigenvectors in an ordered basis as column vectors depends on the ordered basis,
the dependence being given by the formulas two paragraphs before the present
one.

One final remark is in order. When the scalars are taken to be the complex
numbers C, the Fundamental Theorem of Algebra (Theorem 1.18) is applicable:
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every polynomial of degree > 1 has at least one root. When applied to the char-
acteristic polynomial of a square matrix or a linear map from a finite-dimensional
vector space to itself, this theorem tells us that the matrix or linear map always
has at least one eigenvalue, hence an eigenvector. We shall make serious use of
this fact in Chapter I11.

9. Bases in the Infinite-Dimensional Case

So far in this chapter, the use of bases has been limited largely to vector spaces
having a finite spanning set. In this case we know from Corollary 2.3 that the
finite spanning set has a subset that is a basis, any linearly independent set can be
extended to a basis, and any two bases have the same finite number of elements.
We called such spaces finite-dimensional and defined the dimension of the vector
space to be the number of elements in a basis.

The first objective in this section is to prove analogs of these results in the
infinite-dimensional case. We shall make use of Zorn’s Lemma as in Section A5
of the appendix, as well as the notion of cardinality discussed in Section A6 of the
appendix. Once these analogs are in place, we shall examine the various results
that we proved about finite-dimensional spaces to see the extent to which they
remain valid for infinite-dimensional spaces.

Theorem 2.42. If V is any vector space over I, then

(a) any spanning set in V has a subset that is a basis,

(b) any linearly independent set in V can be extended to a basis,
(c) V has a basis,

(d) any two bases have the same cardinality.

REMARKS. The common cardinality mentioned in (d) is called the dimension
of the vector space V. In many applications it is enough to use 400 in place of
each infinite cardinal in dimension formulas. This was the attitude conveyed in
the remark with Corollary 2.24.

PROOF. For (b), let E be the given linearly independent set, and let S be the
collection of all linearly independent subsets of V' that contain E. Partially order
S by inclusion upward. The set S is nonempty because E is in S. Let 7 be a
chain in S, and let A be the union of the members of 7. We show that A is in
S, and then A is certainly an upper bound of 7. Because of its definition, A
contains E, and we are to prove that A is linearly independent. For A to fail to
be linearly independent would mean that there are vectors vy, ..., v, in A with
civy + -+ + ¢yv, = 0 for some system of scalars not all 0. Let v; be in the
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member A; of the chain 7. Since A; C A or Ay C Ay, vy and v, are both in
Ay or both in A,. To keep the notation neutral, say they are both in A}. Since
A, C Az or A3 C A), all of vy, v, v3 are in A} or they are all in A3. Say they

are all in A’3. Continuing in this way, we arrive at one of the sets Ay, ..., A,
say AJ, such that all of vy, ..., v, are all in A,. The members of A/, are linearly
independent by assumption, and we obtain the contradictionc¢; = --- = ¢, = 0.

We conclude that A is linearly independent. Thus the chain 7 has an upper bound
in S. By Zorn’s Lemma, S has a maximal element, say M. By Proposition 2.1a,
M is a basis of V containing E.

For (a), let E be the given spanning set, and let S be the collection of all
linearly independent subsets of V' that are contained in E. Partially order S by
inclusion upward. The set S is nonempty because & is in S. Let 7 be a chain in
S, and let A be the union of the members of 7. We show that A is in S, and then
A is certainly an upper bound of 7. Because of its definition, A is contained in
E, and the same argument as in the previous paragraph shows that A is linearly
independent. Thus the chain 7 has an upper bound in S. By Zorn’s Lemma, S
has a maximal element, say M. Proposition 2.1a is not applicable, but its proof is
easily adjusted to apply here to show that M spans V and hence is a basis: Given
v in V, we are to prove that v lies is the linear span of M. First suppose that v
isin E. If v is in M, there is nothing to prove. Since M U {v} is contained in
E, the assumed maximality implies that M U {v} is not linearly independent, and

hence cv + c¢yv; + - - - + ¢,v, = 0 for some scalars ¢, ¢y, ..., ¢, not all 0 and
for some vectors vy, ..., v, in M. The scalar ¢ cannot be 0 since M is linearly
independent. Thus v = —c~'cjv; — -+ — ¢!¢,v,, and v is exhibited as in the

linear span of M. Consequently every member of E lies in the linear span of M.
Now suppose that v is not in E. Since every member of V lies in the linear span
of E, every member of V lies in the linear span of M.

Conclusion (c) follows from (a) by taking the spanning set to be V ; alternatively
it follows from (b) by taking the linearly independent set to be &.

For (d), let A = {v,} and B = {wg} be two bases of V. Each member a of A
can be written as a = cjwg, + - - - + ¢, wg, uniquely with the scalars ¢y, . .., ¢,
nonzero and with each wg; in B. Let B, be the finite subset {wg,, . .., wg,}. Then
we have associated to each member of A a finite subset B, of B. Let us see that
Uuea Ba = B. If bis in B, then the linear span of B — {b} is not all of V. Thus
some v in V is notin this span. Expand v intermsof Aasv = djvy, +- - - +d Vg,
with all d; # 0. Since v is not in the linear span of B — {b}, some ay = Vo,
with 1 < jo < m is not in this linear span. Then b is in B,,, and we conclude
that B = (.4 Ba. By the corollary near the end of Section A6 of the appendix,
card B < card A. Reversing the roles of A and B, we obtain card A < card B.
By the Schroeder—Bernstein Theorem, A and B have the same cardinality. This
proves (d). ]
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Now let us go through the results of the chapter and see how many of them
extend to the infinite-dimensional case and why. It is possible but not very useful
in the infinite-dimensional case to associate an infinite “matrix” to a linear map
when bases or ordered bases are specified for the domain and range. Because this
association is not very useful, we shall not attempt to extend any of the results
concerning matrices. The facts concerning extensions of results just dealing with
dimensions and linear maps are as follows:

COROLLARY 2.5. If V is any vector space and U is a vector subspace, then
dimU < dimV.

In fact, take a basis of U and extend it to a basis of V; a basis of U is then
exhibited as a subset of a basis of V, and the conclusion about cardinal-number
dimensions follows.

PROPOSITION 2.13. Let U and V be vector spaces over [F, and let I" be a basis
of U. Then to each function £ : I' — V corresponds one and only one linear
map L : U — V such that L|. = ¢£.

In fact, the proof given in Section 3 is valid with no assumption about finite
dimensionality.

COROLLARY 2.15. If L : U — V is a linear map between vector spaces over
IF, then
dim(domain(L)) = dim(kernel(L)) + dim(image(L)).

In fact, this formula remains valid, but the earlier proof via matrices has to be
replaced. Instead, take a basis {v, | @ € A} of the kernel and extend it to a basis
{vy | @ € S} of the domain. It is routine to check that {L(v,) |« € S — A} isa
basis of the image of L.

THEOREM 2.16 (part). The composition of two linear maps is linear.

In fact, the proof in Section 3 remains valid with no assumption about finite
dimensionality.

PROPOSITION 2.18. Two vector spaces over F are isomorphic if and only if
they have the same cardinal-number dimension.

In fact, this result follows from Proposition 2.13 just as it did in the finite-
dimensional case; the only changes that are needed in the argument in Section 3
are small adjustments of the notation. Of course, one must not overinterpret this
result on the basis of the remark with Theorem 2.42: two vector spaces with
dimension 400 need not be isomorphic. Despite the apparent definitive sound of
Proposition 2.18, one must not attach too much significance to it; vector spaces
that arise in practice tend to have some additional structure, and an isomorphism
based merely on equality of dimensions need not preserve the additional structure.
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PROPOSITION 2.19. If V is a vector space and V' is its dual, then dimV <
dim V’. (In the infinite-dimensional case we do not have equality.)

In fact, take a basis {v,} of V. If for each « we define v],(vg) = 84p and use
Proposition 2.13 to form the linear extension v,,, then the set {v, } is a linearly
independent subset of V’ that is in one-one correspondence with the basis of V.
Extending {v, } to a basis of V’, we obtain the result.

PROPOSITION 2.20. Let V be a vector space, and let U be a vector subspace of
V. Then

(b) every linear functional on U extends to a linear functional on V,
(c) whenever vy is a member of V that is not in U, there exists a linear
functional on V thatis O on U and is 1 on vy.

Conclusion (a) of the original Proposition 2.20, which concerns annihilators, does
not extend to the infinite-dimensional case.

To prove (b) without the finite dimensionality, let #” be a given linear functional
on U, let {uy} be a basis of U, and let {vg} be a subset of V such that {uy} U {vg})
is a basis of V. Define v'(uy) = u'(uy) for each o and v'(vg) = 0 for each .
Using Proposition 2.13, let v’ be the linear extension to a linear functional on V.
Then v’ has the required properties.

To prove (c) without the finite dimensionality, we take a basis {u,} of U and
extend {uy} U {vg} to a basis of V. Define v’ to equal 0 on each u,, to equal 1 on
Vo, and to equal 0 on the remaining members of the basis of V. Then the linear
extension of v’ to V is the required linear functional.

PROPOSITION 2.22. If V is any vector space over [, then the canonical map
t : V. — V”is one-one. The canonical map is not onto V” if V is infinite-
dimensional.

The proof that it is one-one given in Section 4 is applicable in the infinite-
dimensional case since we know from Theorem 2.42 that any linearly independent
subset of V can be extended to a basis. For the second conclusion when V has a
countably infinite basis, see Problem 31 at the end of the chapter.

PROPOSITION 2.23 THROUGH COROLLARY 2.29. For these results about quo-
tients, the only place that finite dimensionality played a role was in the dimension
formulas, Corollaries 2.24 and 2.29. We restate these two results separately.

COROLLARY 2.24. If V is a vector space over [F and U is a vector subspace,
then

(@) dimV =dimU + dim(V/U),
(b) the subspace U is the kernel of some linear map defined on V.
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The proof in Section 5 requires no changes: Let g be the quotient map. The
linear map ¢ meets the conditions of (b). For (a), take a basis of U and extend to
a basis of V. Then the images under g of the additional vectors form a basis of
V/U.

COROLLARY 2.29. Let M and N be vector subspaces of a vector space V over
F. Then
dim(M + N) +dim(M N N) =dimM +dim N.

In fact, Corollary 2.24a gives us dim(M + N) = dim((M + N)/M) +dim M.
Substituting dim((M + N)/M) = dim(N/(M N N)) from Theorem 2.28 and
adding dim(M N N) to both sides, we obtain dim(M + N) + dim(M N N) =
dim(M N N) +dim(N/(M N N)) +dim M. The first two terms on the right side
add to dim N by Corollary 2.24a, and the result follows.

PROPOSITIONS 2.30 THROUGH 2.33. These results about direct products and
direct sums did not assume any finite dimensionality.

The determinants of Sections 7-8 have no infinite-dimensional generalization,
and Proposition 2.41 is the only result in those two sections with a valid infinite-
dimensional analog. The valid analog in the infinite-dimensional case is that
eigenvectors for distinct eigenvalues under a linear map are linearly independent.
The proof given for Proposition 2.41 in Section 8 adapts to handle this analog,
provided we interpret components vl.(j ) of a vector v; as the coefficients needed
to expand v; in a basis of the underlying vector space.

10. Problems

1. Determine bases of the following subsets of R:
(a) the plane 3x —2y + 5z =0,

x =2t
(b) the line {y = —t },Where —00 <t < 00.
7z =4t

2. This problem shows that the associativity law in the definition of “vector space”
implies certain more complicated formulas of which the stated law is a special
case. Let vy, ..., v, be vectors in a vector space V. The only vector-space
properties that are to be used in this problem are associativity of addition and the
existence of the O element.

(a) Define v inductively upward by vy = 0 and vx) = vk—1) + v, and
define v inductively downward by v”*D = 0 and v® = v; + vV,
Prove that vy + v*+D is always the same element for 0 < k < n.

(b) Prove that the same element of V results from any way of inserting paren-
theses in the sum vy + - - - + v, so that each step requires the addition of
only two members of V.
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This problem shows that the commutative and associative laws in the definition
of “vector space” together imply certain more complicated formulas of which the
stated commutative law is a special case. Let vy, ..., v, be vectors in a vector
space V. The only vector-space properties that are to be used in this problem are
commutativity of addition and the properties in the previous problem. Because
of the previous problem, vy + - - - 4+ v, is a well-defined element of V, and it is
not necessary to insert any parentheses in it. Prove that vi + vy +--- 4+ v, =
Vo (1) + Vg(2) + -+ + Vg (n) for each permutation o of {1, ..., n}.

12 -1

For the matrix A = <2 4 6), find
00 -8

(a) a basis for the row space,

(b) abasis for the column space, and

(¢) the rank of the matrix.

Let A be an n-by-n matrix of rank one. Prove that there exists an n-dimensional
column vector ¢ and an n-dimensional row vector r such that A = cr.

Let A be a k-by-n matrix, and let R be a reduced row-echelon form of A.

(a) Prove for each r that the rows of R whose first 7 entries are O form a basis
for the vector subspace of all members of the row space of A whose first r
entries are 0.

(b) Prove that the reduced row-echelon form of A is unique in the sense that any
two sequences of steps of row reduction lead to the same reduced form.

Let E be an finite set of N points, let V be the N-dimensional vector space of

all real-valued functions on E, and let n be an integer with 0 < n < N. Suppose

that U is an n-dimensional subspace of V. Prove that there exists a subset D of

n points in E such that the vector space of restrictions to D of the members of

U has dimension 7.

A linear map L : R? — R? is given in the standard ordered basis by the matrix

( _2 _}T) Find the matrix of L in the ordered basis { (3) , ( —‘3‘) }

Let V be the real vector space of all polynomials in x of degree < 2, and let

L : V — V be the linear map I — D?, where [ is the identity and D is the
differentiation operator d/dx. Prove that L is invertible.

Let A be in My, (C) and B be in M,,,(C). Prove that

rank(AB) < max(rank A, rank B).

Let A be in M, (C) with k > n. Prove that there exists no B in M,;(C) with
AB = 1.

Let A be in My, (C) and B be in M,;;(C). Give an example with k = n to show
that rank(A B) need not equal rank(B A).
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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With the differential equation y”(t) = y(¢z) in Example 2 of Section 3, two
examples of linear functionals on the vector space of solutions are given by
£1(y) = y(0) and £,(y) = y’(0). Find a basis of the space of solutions such that
{€1, €5} is the dual basis.

Suppose that a vector space V has a countably infinite basis. Prove that the dual
V' has an uncountable linearly independent set.

(a) Give an example of a vector space and three vector subspaces L, M, and N
suchthat LN (M + N) # (LN M)+ (LN N).

(b) Show that inclusion always holds in one direction in (a).

(c) Show that equality always holds in (a) if L © M.

Construct three vector subspaces M, Ny, and N> of a vector space V such that
M®N = M®®N, =V but Ny # N,. What is the geometric picture
corresponding to this situation?

Suppose that x, y, u, and v are vectors in R*: let M and N be the vector subspaces
of R* spanned by {x, y} and {u, v}, respectively. In which of the following cases
is it true that R* = M & N?

(a x=(1,1,0,0),y=(1,0,1,0),u = (0,1,0, 1), v = (0,0, 1, 1);

b) x=(-1,1,1,0),y=(,1,-1,1),u = (1,0,0,0), v = (0,0,0, 1);

(¢) x=1(1,0,0,1),y=(0,1,1,0),u = (1,0,1,0),v = (0, 1,0, 1).

Section 6 gave definitions and properties of projections and injections associated
with the direct sum of two vector spaces. Write down corresponding definitions
and properties for projections and injections in the case of the direct sum of n
vector spaces, n being an integer > 2.

Let T : R" — R”" be a linear map with ker 7 Nimage T = 0.
(a) Prove that R" =ker T @ image T .
(b) Prove that the condition ker 7 N image T = 0 is satisfied if T2 =T.

If V| and V; are two vector spaces over IF, prove that (V; @ V,) is canonically
isomorphic to V{ @ V.

Suppose that M is a vector subspace of a vector space V and thatg : V — V/M
is the quotient map. Corresponding to each linear functional y on V/M is a
linear functional z on V' given by z = yg. Why is the correspondence y + z an
isomorphism between (V/M)" and Ann M?

Let M be a vector subspace of the vector space V,andletqg : V — V /M be the
quotient map. Suppose that NV is a vector subspace of V. Prove that V. = M & N
if and only if the restriction of g to N is an isomorphism of N onto V /M.

For a square matrix A of integers, prove that the inverse has integer entries if and
only if det A = £1.
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Let A be in My, (C), and let r = rank A. Prove that r is the largest integer
such that there exist r row indices i1, ..., i, and r column indices ji, ..., j,
for which the r-by-r matrix formed from these rows and columns of A has
nonzero determinant. (Educational note: This problem characterizes the subset
of matrices of rank < r — 1 as the set in which all determinants of r-by-r
submatrices are zero.)

Suppose that a linear combination of functions 7 > e’ with ¢ real vanishes for
every integer + > 0. Prove that it vanishes for every real ¢.

Find all eigenvalues and eigenvectors of A = ( _2 ;)

Let A and C be n-by-n matrices with C invertible. By making a direct calculation
with the entries, prove that Tr(C “TAC) =Tr A.

0100 0 0
0010 0 0
0001 0 0
0000 0 0

Find the characteristic polynomial of the n-by-n matrix

000O0- 0 1
ap ap az az - dp—2 Adp—|
Let A and B be in M,,,(C).
(a) Prove under the assumption that A is invertible that det(Al — AB) =
det(AI — BA).
(b) By working with A + €1 and letting € tend to O, show that the assumption
in (a) that A is invertible can be dropped.

In proving Theorem 2.42a, it is tempting to argue by considering all spanning
subsets of the given set, ordering them by inclusion downward, and seeking a
minimal element by Zorn’s Lemma. Give an example of a chain in this ordering
that has no lower bound, thereby showing that this line of argument cannot work.

Problems 31-34 concern annihilators. Let V be a vector space, let M and N be vector
subspaces, and let ¢ : V — V" be the canonical map.

31.
32.
33.
34.

If V has an infinite basis, how can we conclude that ¢ does not carry V onto V”?
Prove that Ann(M + N) = Ann M N Ann N.
Prove that Ann(M N N) = Ann M + Ann N.

(a) Prove that ((M) € Ann(Ann M).
(b) Prove that equality holds in (a) if V is finite-dimensional.
(c) Give an infinite-dimensional example in which equality fails in (a).
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Problems 35-39 concern operations by blocks within matrices.

35.

36.

37.

38.

39.

Let A be a k-by-m matrix of the form A = (A; A), where A; has size
k-by-m1, A; has size k-by-my, and m| + mp = m. Let B by an m’-by-n matrix

of the form B = (gl ), where B has size m-by-n, B, has size m}-by-n, and
2

my+my=m'.

(@) If my = m/ and my = m/, prove that AB = A;B| + A2 B;.

_ _ ( BiA1 BiA
(b) If k = n, prove that BA = <BzA2 32A2>.
(c) Deduce a general rule for block multiplication of matrices that are in 2-by-2
block form.

Let A be in M (C), B be in My, (C), and D be in M,,(C). Prove that

A B
det(o D) =det Adet D.

Let A, B, C, and D be in M,,,,(C). Suppose that A is invertible and that AC =
C A. Prove that det <é g) = det(AD — CB).

Let A be in My, (C) and B be in M,;(C) with k < n. Let I; be the k-by-
k identity, and let I, be the n-by-n identity. Using Problem 29, prove that
det(Al, — BA) = A" % det(AIy — AB).

Prove the following block-form generalization of the expansion-in-cofactors
formula. For each subset S of {1, ..., n}, let S be the complementary subset
within {1, ..., n}, and let sgn(S, S¢) be the sign of the permutation that carries
(1, ..., n) to the members of S in order, followed by the members of S in order.
Fix k with 1 < k < n — 1, and let the subset S have |S| = k. For an n-by-n
matrix A, define A(S) to be the square matrix of size k obtained by using the
Trows ,Pf A indexed by 1, ..., k and the columns indexed by the members of S.
Let A(S) be the square matrix of size k — 1 obtained by using the rows of A
indexed by k + 1, ..., n and the columns indexed by the members of S¢. Prove
that

detA= > sgn(S,5%)det A(S)det A(S).

SC{l,...,n},
|S|=k

Problems 40—44 compute the determinants of certain matrices known as Cartan
matrices. These have geometric significance in the theory of Lie groups.
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2-1 0 0 0 0
-1 2-1 0 0 0
0o-1 2-1 - 0 O
Let A, be the n-by-n matrix 0 0-1 2 0 01" Using expansion in
000 0 2-1
0o 0 0 0. —I
cofactors about the last row, prove that det A, = 2detA,_; — det A, _, for

n>3.

Computing det A; and det A, directly and using the recursion in Problem 40,

prove thatdet A, =n + 1 forn > 1.

Let C,, for n > 2 be the matrix A,, except that the (1, 2)th entry is changed from

—1to —2.

(a) Expanding in cofactors about the last row, prove that the argument of Prob-
lem 40 is still applicable when n > 4 and a recursion formula for det C,,
results with the same coefficients.

(b) Computing det Cy and det C3 directly and using the recursion equation in
(a), prove that detC,, = 2 for n > 2.

Let D, for n > 3 be the matrix A, except that the upper left 3-by-3 piece is

changed from <—? i —(1)) to ( (2) (2) —i)

0-1 2 -1-1 2

(a) Expanding in cofactors about the last row, prove that the argument of Prob-
lem 40 is still applicable when n > 5 and a recursion formula for det D,
results with the same coefficients.

(b) Show that D3 can be transformed into A3z by suitable interchanges of rows
and interchanges of columns, and conclude that det D3 = det A3 = 4.

(c) Computing det D4 directly and using (b) and the recursion equation in (a),
prove that det D,, = 4 forn > 3.

Let E, for n > 4 be the matrix A, except that the upper left 4-by-4 piece is

2-1 0 0 2-1 0 0
-1 2-1 0 -1 2 0-1
changed from { = 7, [ Jto| o oo,
0 0-1 2 0-1-1 2

(a) Expanding in cofactors about the last row, prove that the argument of Prob-
lem 40 is still applicable when n > 6 and a recursion formula for det E,
results with the same coefficients.

(b) Show that E4 can be transformed into A4 by suitable interchanges of rows
and interchanges of columns, and conclude that det E4 = det A4 = 5.

(c) Show that E5 can be transformed into Ds by suitable interchanges of rows
and interchanges of columns, and conclude that det Es = det D5 = 4.

(d) Using (b) and (c) and the recursion equation in (a), prove thatdet £, = 9—n
forn > 4.
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Problems 45-48 relate determinants to areas and volumes. They begin by showing
how a computation of an area in R? leads to a determinant, they then show how
knowledge of the answer and of the method of row reduction illuminate the result,
and finally they indicate how the result extends to R>. If u and v are vectors in R?, let
us say that the parallelogram determined by u and v is the parallelogram with vertices
0,u,v,and u +v. If u, v, and w are in R, the parallelepiped determined by u, v, and
w is the parallelepiped with vertices O, u, v, w, u + v, u +w, v+ w, and u + v + w.

45.

46.

47.

48.

The area of a trapezoid is the product of the average of the two parallel sides by
the distance between the parallel sides. Compute the area of the parallelogram

determined by u = <‘z) and v = (3) in the diagram below as the area of a
large rectangle minus the area of two trapezoids minus the area of two triangles,
recognizing the answer as det (‘z 2) except for a minus sign. To what extent is
the answer dependent on the picture?

FIGURE 2.6. Area of a parallelogram as a difference of areas.

What is the geometric effect on the parallelogram of replacing the matrix (f Z)

by the matrix (‘Z Z) <(1) i ), i.e., of right-multiplying (‘z Z) by ((1) i )? What
does this change do to the area? What algebraic operation does this change
correspond to?

Answer the same questions as in Problem 46 for right multiplication by the

matrices ( : (1)), (? (1)), (g ?) for a nonzero number ¢, and ((1) ?) for a nonzero

number r.

Explain on the basis of Problems 45-47 why if three column vectors u, v, and w
in R3 are assembled into a 3-by-3 matrix A and A is invertible, then the volume
of the parallelepiped determined by u, v, and w has to be | det A|.



CHAPTER III

Inner-Product Spaces

Abstract. This chapter investigates the effects of adding the additional structure of an inner product
to a finite-dimensional real or complex vector space.

Section 1 concerns the effect on the vector space itself, defining inner products and their cor-
responding norms and giving a number of examples and formulas for the computation of norms.
Vector-space bases that are orthonormal play a special role.

Section 2 concerns the effect on linear maps. The inner product makes itself felt partly through
the notion of the adjoint of a linear map. The section pays special attention to linear maps that are
self-adjoint, i.e., are equal to their own adjoints, and to those that are unitary, i.e., preserve norms of
vectors.

Section 3 proves the Spectral Theorem for self-adjoint linear maps on finite-dimensional inner-
product spaces. The theorem says in part that any self-adjoint linear map has an orthonormal basis
of eigenvectors. The Spectral Theorem has several important consequences, one of which is the
existence of a unique positive semidefinite square root for any positive semidefinite linear map. The
section concludes with the polar decomposition, showing that any linear map factors as the product
of a unitary linear map and a positive semidefinite one.

1. Inner Products and Orthonormal Sets

In this chapter we examine the effect of adding further geometric structure to
the structure of a real or complex vector space as defined in Chapter II. To be
a little more specific in the cases of R? and R?, the development of Chapter I
amounted to working with points, lines, planes, coordinates, and parallelism, but
nothing further. In the present chapter, by comparison, we shall take advantage
of additional structure that captures the notions of distances and angles.

We take F to be R or C, continuing to call its members the scalars. We
do not allow FF to be Q in this chapter; the main results will make essential
use of additional facts about R and C beyond those of addition, subtraction,
multiplication, and division. The relevant additional facts are summarized in
Sections A3 and A4 of the appendix.!

IThe theory of Chapter IT will be observed in Chapter IV to extend to any “field” F in place of Q
or R or C, but the theory of the present chapter is limited to R and C, as well as some other special
fields that we shall not try to isolate.

89
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Many of the results that we obtain will be limited to the finite-dimensional case.
The theory of inner-product spaces that we develop has an infinite-dimensional
generalization, but useful results for the generalization make use of a hypothesis
of “completeness” for an inner-product space that we are not in a position to
verify in examples.?

Let V be a vector space over F. An inner product on V is a function from
V x V into F, which we here denote by (-, -), with the following properties:

(i) the function u — (u, v) of V into F is linear,
(ii) the function v — (u, v) of V into [ is conjugate linear in the sense
that it satisfies (u, vi + v2) = (u, v1) + (u, v») for v; and v, in V and
(u,cv) =c(u,v)forvinVandcinF,
(iii) (u,v) = (v,u) foruandvinV,
@iv) (v,v) >0forallvinV,
V) (v,v) =0onlyifv=0inV.
The overbars in (ii) and (iii) indicate complex conjugation. Property (ii) reduces
when ' = R to the fact that v — (u, v) is linear. Properties (i) and (ii) together
are summarized by saying that (-, -) is bilinear if F = R or sesquilinear if
F = C. Property (iii) is summarized when F = R by saying that (-, -) is
symmetric, or when F = C by saying that (-, -) is Hermitian symmetric.
An inner-product space, for purposes of this book, is a vector space over R

or C with an inner product in the above sense.*
EXAMPLES.
(1) V. = R" with (-, -) as the dot product, i.e., with (x,y) = y'x =
X1 Y1
xiy1+--F+x,yifx=1|(: Jandy = : ). The traditional notation for the
Xn Yn

dot product is x - y.
(2) V. = C" with (-, -) defined by (x,y) = y'x = x131 + -+ + x,, if

X1 M
x= | ]andy =|{ : ). Here y denotes the entry-by-entry complex conjugate

Xn Yn
of y. The sesquilinear expression (-, -) is different from the complex bilinear

dot product x - y = x1y; + -+ + X, Y-

2 A careful study in the infinite-dimensional case is normally made only after the development
of a considerable number of topics in real analysis.

3When the scalars are complex, many books emphasize the presence of complex scalars by
referring to the inner product as a “Hermitian inner product.” This book does not need to distinguish
the complex case very often and therefore will not use the modifier “Hermitian” with the term “inner
product.”

4Some authors, particularly in connection with mathematical physics, reverse the roles of the
two variables, defining inner products to be conjugate linear in the first variable and linear in the
second variable.
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(3) V equal to the vector space of all complex-valued polynomials with ( f, g) =

i F)g) dx.

Let V be an inner-product space. If v is in V, define ||v|| = +/(v, v), calling
| - || the norm associated with the inner product. The norm of v is understood to
be the nonnegative square root of the nonnegative real number (v, v) and is well
defined as a consequence of (iv). In the case of R”, ||x|| is the Euclidean distance

\ /xl2 + -+ 4 x2 from the origin to the column vector x = (xi, ..., x,). In this

interpretation the dot product of two nonzero vectors in R” is shown in analytic
geometry to be given by x - y = ||x]|||y]| cos 8, where 6 is the angle between the
vectors x and y.

Direct expansion of norms squared of sums of vectors using bilinearity or
sesquilinearity leads to certain formulas of particular interest. The formula that
we shall use most frequently is

lu + v* = llull* + 2 Re(u, v) + |[v]|%,

which generalizes from R? a version of the law of cosines in trigonometry relating
the lengths of the three sides of a triangle when one of the angles is known. With
the additional hypothesis that (¢, v) = 0, this formula generalizes from R2 the
Pythagorean Theorem

lu+vll* = llull® + [vll*.
Another such formula is the parallelogram law
lu +vl)> + lu — v||> = 2||ul|® + 2||v||*>  forall uand vin V,

which is proved by computing || + v||? and ||lu — v||? by the law of cosines and
adding the results. The name “parallelogram law” is explained by the geometric
interpretation in the case of the dot product for R? and is illustrated in Figure 3.1.
That figure uses the familiar interpretation of vectors in R? as arrows, two arrows
being identified if they are translates of one another; thus the arrow from v to u
represents the vector u — v.

The parallelogram law is closely related to a formula for recovering the inner
product from the norm, namely

1
(,v) = ;ik lu + i*v|?,

where the sum extends for £k € {0, 2} if the scalars are real and extends for
k € {0, 1, 2, 3} if the scalars are complex. This formula goes under the name
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polarization. To prove it, we expand ||u + i*v||? = ||lu||? + 2Re(u, i*v) + ||v]|?
= Jlull® + 2Re ((—i)*(u, v)) + [[v]%. Multiplying by i* and summing on k
shows that >, i lu + i*v||> = 2Y", i*Re ((—=i)*(u, v)). If k is even, then
i*Re((—i)*z) = Re z for any complex z, while if k is odd, then i* Re((—i)*z) =
ilmz. S02Y, i*Re((—i)*z) = 4z,and Y, i* |lu+i*v||* = 4(u, v), as asserted.

u-+v

FIGURE 3.1. Geometric interpretation of the parallelogram law: the sum
of the squared lengths of the four sides of a parallelogram
equals the sum of the squared lengths of the diagonals.

Proposition 3.1 (Schwarz inequality). In any inner-product space V,
|(u, v)| < ||u|l||v] forall # and v in V.

REMARK. The proof is written so as to use properties (i) through (iv) in the
definition of inner product but not (v), a situation often encountered with integrals.

PROOF. Possibly replacing u by eu for some real 6, we may assume that

(u, v) is real. In the case that ||v|| # 0, the law of cosines gives
_ 2 _ _
= 172, v)v]” = el = 20021, 0) 2 + ol ™ e v Pl

The left side is > 0, and the right side simplifies to ||u||> — ||v]|~2|(, v)|?. Thus
the inequality follows in this case.

In the case that ||v|| = 0, it is enough to prove that (u, v) = 0 for all u. If ¢ is
a scalar, then we have

lu + cvll* = [lull* + 2Re (c(u, v)) + lc[*[v]I* = [lull* + 2Re (c(u, v)).

The left side is > 0 as ¢ varies, but the right side is < O for a suitable choice of ¢
unless (¢, v) = 0. This completes the proof. (]

Proposition 3.2. In any inner-product space V, the norm satisfies
(a) ||lv]l = 0 for all v in V, with equality if and only if v = 0,
(®) |lcv]| = |clllv]| for all v in V and all scalars c,
©) llu+v|| <|lu|l + ||v| forallu and v in V.
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PROOF. Conclusion (a) is immediate from properties (iv) and (v) of an inner
product, and (b) follows since ||cv||> = (cv, cv) = ¢é(v, v) = |c|?||v]|?. Finally
we use the law of cosines and the Schwarz inequality (Proposition 3.1) to write
lu+vl? = [lul*+2Re(w, v)+[v|* < llul®+2[ulvll+vI* = (ull+ v
Taking the square root of both sides yields (c). O

Two vectors u and v in V are said to be orthogonal if (#, v) = 0, and one
sometimes writes # L v in this case. The notation is a reminder of the interpre-
tation in the case of dot product—that dot product O means that the cosine of the
angle between the two vectors is 0 and the vectors are therefore perpendicular.
An orthogonal set in V is a set of vectors such that each pair is orthogonal.

The nonzero members of an orthogonal set are linearly independent. In fact, if
{v1, ..., vx} is an orthogonal set of nonzero vectors and some linear combination
has civ; + - -+ 4+ cxvr = 0, then the inner product of this relation with v; gives
0= (v +-- -+, vj) = cjllvj||2, and we see that ¢; = 0 for each j.

A unit vector in V is a vector u with |u|| = 1. If v is any nonzero vector,
then v/||v] is a unit vector. An orthonormal set in V is an orthogonal set of
unit vectors. Under the assumption that V is finite-dimensional, an orthonormal
basis of V is an orthonormal set that is a vector-space basis.’

EXAMPLES.
(1) In R" or C", the standard basis {ey, ..., e,} is an orthonormal set.

(2) Let V be the complex inner-product space of all complex finite linear
combinations, for n from —N to +N, of the functions x > ¢"* on the closed
interval [—z, 7], the inner product being (f, g) = % ffﬂ f(x)g(x)dx. With
respect to this inner product, the functions e'** form an orthonormal set.

A simple but important exercise in an inner-product space is to resolve a vector
into the sum of a multiple of a given unit vector and a vector orthogonal to the
given unit vector. This exercise is solved as follows: If v is given and u is a unit
vector, then v decomposes as

v=,uwu+ (v — (v, u)u).

Here (v, u)u is a multiple of u, and the two components are orthogonal since
(u, v— (v, u)u) = (u,v) — (v, u)(u,u) = (u,v) — (u,v) = 0. This decom-
position is unique since if v = v; + v, with v; = cu and (v,, u) = 0, then the
inner product of v = v + v, with u yields (v, u) = (cu, u) + (v2, u) = c. Hence

>In the infinite-dimensional theory the term “orthonormal basis” is used for an orthonormal set
that spans V when limits of finite sums are allowed, in addition to finite sums themselves; when V
is infinite-dimensional, an orthonormal basis is never large enough to be a vector-space basis.
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¢ must be (v, u), v; must be (v, u)u, and v, must be v — (v, u)u. Figure 3.2
illustrates the decomposition, and Proposition 3.3 generalizes it by replacing the
multiples of a single unit vector by the span of a finite orthonormal set.

FIGURE 3.2. Resolution of v into a component (v, u)u parallel
to a unit vector # and a component orthogonal to u.

Proposition 3.3. Let V be an inner-product space. If {uy, ..., u;} is an or-
thonormal setin V and if v is given in V, then there exists a unique decomposition

1
v=ciuy+---+crup+v

with v orthogonal to u j for 1 < j < k. In this decomposition ¢; = (v, u;).

REMARK. The proof illustrates a technique that arises often in mathematics.
We seek to prove an existence—uniqueness theorem, and we begin by making
calculations toward uniqueness that narrow down the possibilities. We are led to
some formulas or conditions, and we use these to define the object in question and
thereby prove existence. Although it may not be so clear except in retrospect, this
was the technique that lay behind proving the equivalence of various conditions
for the invertibility of a square matrix in Section 1.6. The technique occurred
again in defining and working with determinants in Section II.7.

PROOF OF UNIQUENESS. Taking the inner product of both sides with u;, we
obtain (v, u;) = (ciuy + - -+ cpux + v+, u;) = ¢; foreach j. Thenc; = (v, u;)
is forced, and v must be given by v — (v, up)u; — - — (v, up)ug. ]

PROOF OF EXISTENCE. Putting ¢; = (v, u;), we need check only that the
difference v — (v, u1)uy —- - - — (v, ug)uy is orthogonal toeach u; with 1 < j < k.
Direct calculation gives

(v =2 o upui, uj) = (U, uj) — 3, ((, upui, uj) = (v, u;) — (v, u;) =0,
and the proof is complete. (]

Corollary 3.4 (Bessel’s inequality). Let V be an inner-product space. If
{ui, ..., ux}isanorthonormal setin V and if v is given in V, then Zle [(v, u.,»)|2
< |lv||* with equality if and only if v is in span{u, ..., uy}.
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k

PROOF. Using Proposition 3.3, write v = > 7, (v, uj)u; + vt with vt

j
orthogonal to uy, ..., u;. Then

lI? = (X6 o wdu; + v, Y5, v, upu; + vt)
=Y, @, i) (v, up)(ui, uy) + (32 (v, uug, vb)
+ (vh Y L upug) + [l
= 0, u) (W, u)8ij +0 40+ [lvt|?
=30 [, up P+ o2,

From Proposition 3.3 we know that v is in span{u, . .., uz} if and only if vt =0,
and the corollary follows. g

We shall now impose the condition of finite dimensionality in order to obtain
suitable kinds of orthonormal sets. The argument will enable us to give a basis-
free interpretation of Proposition 3.3 and Corollary 3.4, and we shall obtain
equivalent conditions for the vector v* in Proposition 3.3 and Corollary 3.4 to
be O for every v.

If an ordered set of k linearly independent vectors in the inner-product space
V is given, the above proposition suggests a way of adjusting the set so that it
becomes orthonormal. Let us write the formulas here and carry out the verifi-
cation via Proposition 3.3 in the proof of Proposition 3.5 below. The method
of adjusting the set so as to make it orthonormal is called the Gram-Schmidt
orthogonalization process. The given linearly independent set is denoted by
{vi, ..., v}, and we define

vy

logll”

uy = vy — (vp, uuy,
)

llusll”

uy = vz — (v3, upuy — (v3, up)uz,

uy =

Uy =

I
u
uy = ——,
(|5l
up = vp — (g, upuy — -+ — (U, Ug—1)Ug—1,
I
u
U = k

llug Il
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Proposition 3.5. If {v,..., vt} is a linearly independent set in an inner-
product space V, then the Gram—Schmidt orthogonalization process replaces
{v1, ..., v} by an orthonormal set {u1, ..., ux} such that span{vy, ..., v;} =
span{ui, ..., u;} forall j.

PROOF. We argue by induction on j. The base case is j = 1, and the result
is evident in this case. Assume inductively that uy, ..., u;_; are well defined
and orthonormal and that span{vy, ..., vj_1} = span{u, ..., u;_}. Proposition
3.3 shows that u} is orthogonal to uy, ..., uj_;. If u; = 0, then v; has to be
in span{uy, ..., u;j—1} = span{vy, ..., vj_1}, and we have a contradiction to the
assumed linear independence of {vy, ..., vx}. Thus u} #0,and {ui,...,u;}isa
well-defined orthonormal set. This set must be linearly independent, and hence its
linear span is a j-dimensional vector subspace of the linear span of {vy, ..., v;}.
By Corollary 2.4, the two linear spans coincide. This completes the induction
and the proof. (]

Corollary 3.6. If V is a finite-dimensional inner-product space, then any
orthonormal set in a vector subspace S of V can be extended to an orthonormal
basis of S.

PROOF. Extend the given orthonormal set to a basis of S by Corollary 2.3b.
Then apply the Gram—Schmidt orthogonalization process. The given vectors do
not get changed by the process, as we see from the formulas for the vectors u;.
and u;, and hence the result is an extension of the given orthonormal set to an
orthonormal basis. O

Corollary 3.7. If S is a vector subspace of a finite-dimensional inner-product
space V, then S has an orthonormal basis.

PROOF. This is the special case of Corollary 3.6 in which the given orthonormal
set is empty. O

The set of all vectors orthogonal to a subset M of the inner-product space V
is denoted by M. In symbols,

Mt*={ueV|@u,v)=0foralve M).

We see by inspection that M~ is a vector subspace. Moreover, M N M+ = 0
since any u in M N M~ must have (u, u) = 0. The interest in the vector subspace
M+ comes from the following proposition.

Theorem 3.8 (Projection Theorem). If S is a vector subspace of the finite-
dimensional inner-product space V, then every v in V decomposes uniquely as
v = v; + vy with v; in § and v, in S*. In other words, V = S & S+.
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REMARKS. Because of this proposition, S* is often called the orthogonal
complement of the vector subspace S.

PROOF. Uniqueness follows from the fact that S N S = 0. For existence,
use of Corollaries 3.7 and 3.6 produces an orthonormal basis {u;, ..., u,} of S
and extends it to an orthonormal basis {ui, ..., u,} of V. The vectors u; for
j > r are orthogonal to each u; with i < r and hence are in S*. If v is given
in S, we can write v = Z;'zl ujas v = v + vy with vy = > ;_, (v, u;)u; and
vy = )i, (v, uj)u;, and this decomposition for all v shows that V = § + S*.

O

Corollary 3.9. If S is a vector subspace of the finite-dimensional inner-product
space V, then
(a) dimV =dim S + dim S,
(b) S+ =5.

PROOF. Conclusion (a) is immediate from the direct-sum decomposition V =
S @ S+ of Theorem 3.8. For (b), the definition of orthogonal complement gives
S C S+, On the other hand, application of (a) twice shows that S and S+ have
the same finite dimension. By Corollary 2.4, S*+ = §. O

Section I1.6 introduced “projection” mappings in the setting of any direct sum
of two vector spaces, and we shall use those mappings in connection with the
decomposition V = S@ S+ of Theorem 3.8. We make one adjustment in working
with the projections, changing their ranges from the image, namely S or S+, to
the larger space V. In effect, a linear map p; or p, as in Section I1.6 will be
replaced by ij p; or i ps.

Specifically let E : V — V be the linear map that is the identity on S and is O
on S*. Then E is called the orthogonal projection of V on S. The linear map
I — E is the identity on S* andisO on S. Since S = S+, I — E is the orthogonal
projection of V on S*. It is the linear map that picks out the S* component
relative to the direct-sum decomposition V = S+ @ S++. Proposition 3.3 and
Corollary 3.4 can be restated in terms of orthogonal projections.

Corollary 3.10. Let V be a finite-dimensional inner-product space, let S be a
vector subspace of V, let {uy, ..., u} be an orthonormal basis of S, and let E be
the orthogonal projection of V on S. If v is in V, then

k
E@) =) (v,uju;
j=1

k
and IE@)IP =" I, u)P.
j=1
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The vector v in the expansion v = Z;f:l (v, uj)u; + vt of Proposition 3.3 is
equal to (I — E)v, and the equality of norms

k
2 2 12
> =1, up P + vl
j=1

has the interpretations that
vlI> = [E@)II* + (I — E)v|?

and that equality holds in Bessel’s inequality if and only if E(v) = v.
. k
PROOF. Write v = } ;

is in S, and the vector v, being orthogonal to each member of a basis of S, is in

S+. This proves the formula for E (v), and the formula for || E(v)|? follows by
applying Corollary 3.4 to v — v,

Reassembling v, we now have v = E(v) + v*, and hence vt = v — E(v) =

(I — E)v. Finally the decomposition v = E(v) + (I — E)(v) is into orthogonal

terms, and the Pythagorean Theorem shows that ||v I1>=I1E@|*+ I —E)v|>

O

_; (v, uj)u; + vt as in Proposition 3.3. Then each u;

Theorem 3.11 (Parseval’s equality). If V is a finite-dimensional inner-product
space, then the following conditions on an orthonormal set {uy, ..., u,} are
equivalent:

(a) {ug,...,u,}is a vector-space basis of V, hence an orthonormal basis,
(b) the only vector orthogonal to all of uy, ..., u, is 0,

() v= Z;":l (v, uj)uj forallvin V,

@ |v|?= Z;nzl [ (v, uj)l2 forallvin V,

e) (v,w) = Z;"zl (v, u;)(w, u;) forall vand win V.

PROOF. Let S = span{u, ..., u,}, and let E be the orthogonal projection of
V on S. If (a) holds, then S = V and S+ = 0. Thus (b) holds.

If (b) holds, then S+ = 0 and E is the identity. Thus (c) holds by Corollary
3.10.

If (c) holds, then Corollary 3.4 shows that (d) holds.

If (d) holds, we use polarization to prove (e). Let k be in {0, 2} if F = R, or in
{0, 1,2,3}if F = C. Conclusion (d) gives us
m m

[0+i*w, up) > = [P+ 2Re (v, up)ik(w, u;)) + |w].
j=l1 j=l

lv+ifw|* =

Multiplying by i¥ and summing over k, we obtain

4, w) =2 Y i*Re (=) (v, up)(w, uy).
j k

Jj=1
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In the proof of polarization, we saw that 2 ", i*Re((—i)kz) = 4z. Hence
4(v, w) = 42}11 (v, u;)(w, u;). This proves (e).

If (e) holds, we take w = v in (e) and apply Corollary 3.10 to see that
I|E@)||?> = ||v||> for all v. Then ||[(I — E)v||*> = O for all v, and E(v) = v
for all v. Hence S = V, and {uy, ..., u,} is a basis. This proves (a). O

Theorem 3.12 (Riesz Representation Theorem). If £ is a linear functional on
the finite-dimensional inner-product space V, then there exists a unique v in V
with £(u) = (u, v) forall u in V.

PROOF. Uniqueness is immediate by subtracting two such expressions, since if
(u, v) = 0 for all u, then the special case u = v gives (v, v) =0 and v = 0. Let
us prove existence. If £ = 0, take v = 0. Otherwise let S = ker £. Corollary 2.15
shows that diim § = dim V — 1, and Corollary 3.9a then shows that dim S+ = 1.
Let w be a nonzero vector in S*. This vector w must have £(w) # 0 since
SN S+ =0, and we let v be the member of S+ given by

L(w)
vV=—>w.
llwl

L(u)
L(w)

L(u)
L(w)

For any u in V, we have Z(u — w) =0, and hence u — wisin S. Since

2(u)

visin St, u — w is orthogonal to v. Thus

()
I BN () W2 BN ZCO B 171
@9 = (g * ) = (G T ™) =@ gy e =
This proves existence. O

2. Adjoints

Throughout this section, V will denote a finite-dimensional inner-product space
with inner product (-, -) and with scalars from F, with IF equal to R or C. We
shall study aspects of linear maps L : V — V related to the inner producton V.
The starting point is to associate to any such L another linearmap L*: V — V
known as the “adjoint” of V, and then to investigate some of its properties.
A tool in this investigation will be the scalar-valued function on V x V given
by (u,v) — (L(u),v), which captures the information in any matrix of L
without requiring the choice of an ordered basis. This function determines L
uniquely because an equality (L(u),v) = (L'(u), v) for all u and v implies
(L(u) — L' (1), v) = 0 for all u and v, in particular for v = L(u) — L’ (u); thus
|L(u) — L'(u)||> =0 and L(u) = L' (u) for all u.
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Proposition 3.13. Let L : V — V be a linear map on the finite-dimensional
inner-product space V. For each u in V, there exists a unique vector L*(u) in V
such that

(L(v), u) = (v, L*(u)) forallvin V.

As u varies, this formula defines L* as a linear map from V to V.
REMARK. The linear map L* : V — V is called the adjoint of L.

PROOF. The function v — (L(v), u) is a linear functional on V, and Theorem
3.12 shows that it is given by the inner product with a unique vector of V. Thus
we define L*(u) to be the unique vector of V with (L(v), u) = (v, L*(u)) for all
vinV.

If ¢ is a scalar, then the uniqueness and the computation (v, L*(cu)) =
(L(v), cu) = ¢(L(v),u) = c(v, L*(w)) = (v, cL*(u)) yield L*(cu) = cL*(u).
Similarly the uniqueness and the computation

(v, L*(u1 + u2)) = (L(v), u1 +uz) = (L(v), u1) + (L(v), u2)
= (v, L*(u1)) + (v, L*(u2)) = (v, L*(u1) + L*(u2))

yield L*(u; + up) = L*(uy) + L*(up). Therefore L* is linear. O

The passage L +— L* to the adjoint is a function from Homgr (V, V) toitself that
is conjugate linear, and it reverses the order of multiplication: (L{L,)* = L3L7.
Since the formula (L(v), u) = (v, L*(u#)) in the proposition is equivalent to the
formula (u, L(v)) = (L*(u), v), we see that L™ = L.

All of the results in Section I1.3 concerning the association of matrices to linear

maps are applicable here, but our interest now will be in what happens when the
bases we use are orthonormal. Recall from Section II.3 that if I' = (uq, ..., u,)

and A = (vy, ..., v,) are any ordered bases of V, then the matrix A = (ALF>

associated to the linearmap L : V — V has A;; = (L(Zj )) .
i

Lemma 3.14. If L : V — V is a linear map on the finite-dimensional inner-
product space V and if I' = (uy,...,u,) and A = (vy, ..., v,) are ordered

orthonormal bases of V, then the the matrix A = ( ALF> has A;; = (L(u;), v;).

PROOF. Applying Theorem 3.11c, we have

o (L@ _ (S (L, v

=D (L), vi) <IZ). =D (L), vi)di = (L), v). O
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Proposition 3.15. If L : V — V is a linear map on the finite-dimensional

inner-product space V and if ' = (uy, ..., u,)and A = (vy, ..., v,) are ordered
. (L « [ L*
orthonormal bases of V, then the matrices A = < AF) and A* = (F A) of L

and its adjoint are related by A}, = Aji.

PROOF. Lemma 3.14 and the definition of L* give A;."j = (L*(vj),u;) =
(v, L)) = (L(u), vj) = Aji. O

Accordingly, we define A* = A’ for any square matrix A, sometimes calling
A* the adjoint® of A.

Alinearmap L : V — V is called self-adjoint if L* = L. Correspondingly a
square matrix A is self-adjoint if A* = A. It is more common, however, to say
that a matrix with A* = A is symmetric if F = R or Hermitian’ if F = C. A
real Hermitian matrix is symmetric, and the term “Hermitian” is thus applicable
also when F = R.

Any Hermitian matrix A arises from a self-adjoint linear map L. Namely,
we take V to be F* with the usual inner product, and we let I' and A each be

the standard ordered basis ¥ = (e, ..., e,). This basis is orthonormal, and we
define L by the matrix product L(v) = Av for any column vector v. We know that
( ELE = A. Since A* = A, we conclude from Proposition 3.15 that L* = L.

Thus we are free to deduce properties of Hermitian matrices from properties of
self-adjoint linear maps.

Self-adjoint linear maps will be of special interest to us. Nontrivial examples
of self-adjoint linear maps, constructed without simply writing down Hermitian
matrices, may be produced by the following proposition.

Proposition 3.16. If V is a finite-dimensional inner-product space and § is a
vector subspace of V, then the orthogonal projection £ : V. — V of V on § is
self-adjoint.

PROOF. Letv = v;+v; andu = u;-+u, be the decompositions of two members
of V according to V = S @ S*. Then we have (v, E*(u)) = (E(v),u) =
(v1, uy + up) = (vy,u1) = (v, uy) = (v, E(u)), and the proposition follows by
the uniqueness in Proposition 3.13. (I

The name “adjoint” happens to coincide with the name for a different notion that arose in
connection with Cramer’s rule in Section II.7. The two notions never seem to arise at the same time,
and thus no confusion need occur.

TThe term “Hermitian” is used also for a class of linear maps in the infinite-dimensional case,
but care is needed because the terms “Hermitian” and “self-adjoint” mean different things in the
infinite-dimensional case.
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To understand Proposition 3.16 in terms of matrices, take an ordered or-
thonormal basis (uq, ..., u,) of S, and extend it to an ordered orthonormal basis
I'=(u,...,u,) of V. Then

u; for j <r,
E(uj) = .
0 for j > r,
and hence < E(rbfj ) > equals the j™ standard basis vector e; if j < r and equals 0 if

Jj > r. Consequently the matrix is diagonal with 1°s in the first 7 diagonal

E

rr
entries and 0’s elsewhere. This matrix is equal to its conjugate transpose, as it
must be according to Propositions 3.15 and 3.16.

Proposition 3.17. If V is a finite-dimensional inner-product space and
L : V — V is a self-adjoint linear map, then (L(v), v) is in R for every v
in V, and consequently every eigenvalue of L is in R. Conversely if F = C and
if L : V — V is alinear map such that (L(v), v) is in R for every v in V, then L
is self-adjoint.

REMARK. The hypothesis F = C is essential in the converse. In fact, the 90°
rotation L of R? whose matrix in the standard basis is (7? (1)) is not self-adjoint

but does have L(v) - v = 0 for every v in R

PROOF. If L = L*, then (L(v),v) = (v, L*(v)) = (v, L(v)) = (L(v), v),
and hence (L (v), v) is real-valued. If v is an eigenvector with eigenvalue X, then
substitution of L(v) = Av into (L(v),v) = (L(v), v) gives Al[v||> = A%
Since v # 0, A must be real.

For the converse we begin with the special case that (L(w), w) = 0 for all w.
For 0 < k < 3, we then have

(—DM(L(u), v)+i* (L), u) = (Lu+i*v), u+i*v)— (L), u)—(L(v), v) = 0.

Taking k = 0 gives (L(u),v) + (L(v),u) = 0, while taking k = 1 gives
(L(u),v) — (L(v),u) = 0. Hence (L(u),v) = O for all u and v. Since the
function (u, v) — L(u, v) determines L, we obtain L = 0.

In the general case, (L (v), v) real-valued implies that (L (v), v) = (L*(v), v)
for all v. Therefore ((L — L*)(v), v) = 0 for all v, and the special case shows
that L — L* = 0. This completes the proof. (]

We conclude this section by examining one further class of linear maps having
a special relationship with their adjoints.
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Proposition 3.18. If V is a finite-dimensional inner-product space, then the
following conditions on a linear map L : V — V are equivalent:
(a) L*L =1,
(b) L carries some orthonormal basis of V to an orthonormal basis,
(c) L carries each orthonormal basis of V to an orthonormal basis,
(d) (L(u), L(v)) = (u,v)foralluandvinV,
(e) IL()]| = ||v]| forall vin V.

REMARK. A linear map satisfying these equivalent conditions is said to be
orthogonal if F = R and unitary if F = C.

PROOF. We prove that (a), (d), and (e) are equivalent and that (b), (c), and (d)
are equivalent.

If (a) holds and u and v are given in V, then (L(u), L(v)) = (L*L(u),v) =
(I (u), v) = (u, v), and (d) holds. If (d) holds, then setting u = v shows that (e)
holds. If (e) holds, we use polarization twice to write

(L), L(w)) =Y, 3i*IL@) +i*L@))? =X, 1iKIL@ + i*v)|?

1. .
=Y zifllu + )2 = (u, v).

Then ((L*L — I)(u), v) = 0 for all u and v, and we conclude that (a) holds.

Since (b) is a special case of (c) and (c) is a special case of (d), proving that (b)
implies (d) will prove that (b), (c), and (d) are equivalent. Thus let {1, ..., u,}
be an orthonormal basis of V such that {L(u;), ..., L(u,)} is an orthonormal
basis, and let # and v be given. Then

(L(u), L(v)) = (L(Z,. (u, ui)ui), L(Zj (v, u.,-)uj))

= wu) (v, u)(Lu;), Luy))
=3 wu)u)si; =3 (u,ui) (v, ui) = (u, v),

the last equality following from Parseval’s equality (Theorem 3.11). O

As with self-adjointness, we use the geometrically meaningful definition for
linear maps to obtain a definition for matrices: a square matrix A with A*A =1
is said to be orthogonal if F = R and unitary if F = C. The condition is that
A is invertible and its inverse equals its adjoint. In terms of individual entries,
the condition is that ) °, A}, Ay; = 8;;, hence that ) _, Axi Axj = 8;j. This is the
condition that the columns of A form an orthonormal basis relative to the usual
inner product on R” or C”. A real unitary matrix is orthogonal.

If A is an orthogonal or unitary matrix, we can construct a corresponding
orthogonal or unitary linear map on R” or C" relative to the standard ordered
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basis X. Namely, we define L(v) = Av, and Proposition 3.15 shows that L is
orthogonal or unitary: L*L(v) = A*Av = [v = v. Proposition 3.19 below
gives a converse.

Letus notice that an orthogonal or unitary matrix A necessarily has | det A| = 1.
In fact, the formula A* = (A) implies that det A* = det A. Then

1 =det/ =det A*A = det A*det A = det Adet A = | det A|°.

An orthogonal matrix thus has determinant -1, while we conclude for a unitary
matrix only that the determinant is a complex number of absolute value 1.

EXAMPLES.
(1) The 2-by-2 orthogonal matrices of determinant 41 are all matrices of the

form ( 72:’53 2;299 ) The 2-by-2 orthogonal matrices of determinant —1 are the

product of (é _?) and the 2-by-2 orthogonal matrices of determinant +1.

(2) The 2-by-2 unitary matrices of determinant 41 are all matrices of the form

( 7% 5 ) with |a|>+|B8|> = 1; these may be regarded as parametrizing the points of

the unit sphere S* of R*. The 2-by-2 unitary matrices of arbitrary determinant are
the products of all matrices ( Lo ) and the 2-by-2 unitary matrices of determinant

0 eiG
+1.

Proposition 3.19. If V is a finite-dimensional inner-product space, if I' =
(uq,...,u,) and A = (vy, ..., v,) are ordered orthonormal bases of V, and if
L : V — V is alinear map that is orthogonal if F = R and unitary if F = C,

then the matrix A = ( AL T > is orthogonal or unitary.

. . L* L
* p—
PROOF. Proposition 3.15 and Theorem 2.16 give A*A = (F ) ( F) =

( AI A ) and the right side is the identity matrix, as required. O

AT
ordered orthonormal bases is orthogonal or unitary, since the identity function
I : V — V is certainly orthogonal or unitary. Thus a change from writing the
matrix of a linear map L in one ordered orthonormal basis I" to writing the matrix
of L in another ordered orthonormal basis A is implemented by the formula

LY\ (L . . . 1
(FF) =C <AA> C, where C is the orthogonal or unitary matrix (AF )

.. . . 1 .
One consequence of Proposition 3.19 is that any matrix < ) relative to two
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Another consequence of Proposition 3.19 is that the matrix FLF> of an

orthogonal or unitary linear map L in an ordered orthonormal basis I" is an
orthogonal or unitary matrix. We have defined det L to be the determinant of

( FLF ) relative to any I', and we conclude that | det L| = 1.

3. Spectral Theorem

In this section we deal with the geometric structure of certain kinds of linear maps
from finite-dimensional inner-product spaces into themselves. We shall see that
linear maps that are self-adjoint or unitary, among other possible conditions, have
bases of eigenvectors in the sense of Section I1.8. Moreover, such a basis may
be taken to be orthonormal. When an ordered basis of eigenvectors is used for
expressing the linear map as a matrix, the result is that the matrix is diagonal.
Thus these linear maps have an especially uncomplicated structure. In terms of
matrices, the result is that a Hermitian or unitary matrix A is similar to a diagonal
matrix D, and the matrix C with D = C~!' AC may be taken to be unitary. We
begin with a lemma.

Lemma 3.20. If L : V — V is a self-adjoint linear map on an inner-
product space V, then v +— (L(v), v) is real-valued, every eigenvalue of L is
real, eigenvectors under L for distinct eigenvalues are orthogonal, and every
vector subspace S of V with L(S) € S has L(SL) c st

PROOF. The first two conclusions are contained in Proposition 3.17. If v; and
v, are eigenvectors of L with distinct real eigenvalues A; and X, then

(A — A2)(v1, v2) = (Mvr, v2) — (v1, Aav2) = (L(v1), v2) — (v1, L(v2)) =0.

Since A # Ay, we must have (v, vp) = 0. If S is a vector subspace with
L(S) C S, then also L(S*) € S+ because s € S and s+ € S* together imply

0= (L(s),s) = (s, L(s1)). 0

Theorem 3.21 (Spectral Theorem). Let L : V — V be a self-adjoint linear
map on an inner-product space V. Then V has an orthonormal basis of eigenvec-
tors of L. In addition, for each scalar A, let

Vi, ={veV|L®Ww) =Arv},

so that V, when nonzero is the eigenspace of L for the eigenvalue 1. Then the
eigenvalues of L are all real, the vector subspaces V; are mutually orthogonal,
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and any orthonormal basis of V of eigenvectors of L is the union of orthonormal
bases of the V,’s. Correspondingly if A is any Hermitian n-by-n matrix, then
there exists a unitary matrix C such that C~' AC is diagonal with real entries. If
the matrix A has real entries, then C may be taken to be an orthogonal matrix.

PROOF. Lemma 3.20 shows that the eigenvalues of L are all real and that the
vector subspaces V; are mutually orthogonal.

To proceed further, we first assume that F = C. Applying the Fundamental
Theorem of Algebra (Theorem 1.18) to the characteristic polynomial of L, we see
that L has at least one eigenvalue, say 1. Then L(V,,) € V,,, and Lemma 3.20
shows that L((V;,)1) € (Vj,)*. The vector subspace (Vj,)* is an inner-product
space, and the claim is that L| Vit is self-adjoint. In fact, if v; and v, are in

(Vx])l, then

((L|(VM)¢)*(U1)’ v) = (v, L|(VA])L (v2)) = (v1, L(v2))
= (L(v1)7 U2) = (L|(V)L])L(vl)s U2),

and the claim is proved. Since A is an eigenvalue of L, dim(V;,)* < dim V.
Therefore we can now set up an induction that ultimately exhibits V' as an orthog-
onal directsum V =V, @.-- @ V,,. If vis an eigenvector of L with eigenvalue
A/, then either A" = A; for some j in this decomposition, in which case v is in
Vi, or A’ is not equal to any A;, in which case v, by the lemma, is orthogonal
to all vectors in V,, @ --- @ Vj,, hence to all vectors in V; being orthogonal to
all vectors in V, v must be 0. Choosing an orthonormal basis for each V;, and
taking their union provides an orthonormal basis of eigenvectors and completes
the proof for L when F = C.

Next assume that A is a Hermitian n-by-n matrix. We define a linear map
L :C" — C"by L(v) = Av, and we know from Proposition 3.15 that L is self-
adjoint. The case just proved shows that L has an ordered orthonormal basis I"
of eigenvectors, all the eigenvalues being real. If ¥ denotes the standard ordered

) " (L
basis of C", then D = (FF

(i) (s5) (s ) = e

where C = ( ELF ) . The matrix C is unitary by Proposition 3.19, and the formula

) is diagonal with real entries and is equal to

D = C~1AC shows that A is as asserted.
Now let us return to L and suppose that F = R. The idea is to use the
same argument as above in the case that F = C, but we need a substitute for
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the use of the Fundamental Theorem of Algebra. Fixing any orthonormal basis
of V, let A be the matrix of L. Then A is Hermitian with real entries. The
previous paragraph shows that any Hermitian matrix, whether or not real, has
a characteristic polynomial that splits as a product ]_[;":1 (A —r;)™ with all r;
real. Consequently L has this property as well. Thus any self-adjoint L when
F = R has an eigenvalue. Returning to the argument for L above when F = C,
we readily see that it now applies when ' = R.

Finally if A is a Hermitian matrix with real entries, then we can define a self-
adjoint linear map L : R* — R” by L(v) = Av, obtain an orthonormal basis
of eigenvectors for L, and argue as above to obtain D = C~'AC, where D is
diagonal and C is unitary. The matrix C has columns that are eigenvectors in R”"
of the associated L, and these have real entries. Thus C is orthogonal. O

An important application of the Spectral Theorem is to the formation of a
square root for any “positive semidefinite” linear map. We say that a linear map
L : V — V on a finite-dimensional inner-product space is positive semidefinite
if L* = L and (L(v),v) > O0forallvin V. If F = C, then the condition L* = L
is redundant, according to Proposition 3.17, but that fact will not be important
for us. Similarly an n-by-n matrix A is positive semidefinite if A* = A and
X" Ax > 0 for all column vectors x. An example of a positive semidefinite n-by-n
matrix is any matrix A = B*B, where B is an arbitrary k-by-n matrix. In fact, if
x is in ", then X' B* Bx = (Bx)'(Bx), and the right side is > 0, being a sum of
absolute values squared.

Corollary 3.22. Let L : V — V be a positive semidefinite linear map on a
finite-dimensional inner-product space, and let A be an n-by-n Hermitian matrix.
Then

(a) L or Ais positive semidefinite if and only if all of its eigenvalues are > 0.

(b) whenever L or A is positive semidefinite, L or A is invertible if and only
if (L(v), v) > 0 forall v # 0 or x' Ax > 0 for all x # 0.

(c) whenever L or A is positive semidefinite, L or A has a unique positive
semidefinite square root.

REMARKS. A positive semidefinite linear map or matrix satisfying the condi-
tion in (b) is said to be positive definite, and the content of (b) is that a positive
semidefinite linear map or matrix is positive definite if and only if it is invertible.

PROOF. We apply the Spectral Theorem (Theorem 3.21). For each conclusion
the result for a matrix A is a special case of the result for the linear map L, and
it is enough to treat only L. In (a), let (i1, ..., u,) be an ordered basis of eigen-
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vectors with respective eigenvalues A, ..., A,, not necessarily distinct. Then
(L(uj), uj) = A; shows the necessity of having A; > 0, while the computation

(L(U),U) = (L(Zz ('U,ll,')lz{,'), Zj (U,uj)uj)
= (Zz )"i(v7ui)uia Z] (U,Mj)l/l])
= hilw,up)?

shows the sufficiency.

In (b), if L fails to be invertible, then O is an eigenvalue for some eigenvector
v # 0, and v has (L(v),v) = 0. Conversely if L is invertible, then all the
eigenvalues A; are > 0 by (a), and the computation in (a) yields

(L), v) =) il u) = (min2;) Dl unP = (mjinxj)nvnz,

the last step following from Parseval’s equality (Theorem 3.11).

For existence in (c), the Spectral Theorem says that there exists an ordered
orthonormal basis I' = (uy, ..., u,) of eigenvectors of L, say with respective
eigenvalues A, ..., A,. The eigenvalues are all > 0 by (a). The linear extension
of the function P with P(u;) = kll./ u ; is given by

n
P) =Y 1", uju;.
j=1

and it has
P2(v) = Zj Aj(u,ujuj = Zj (v, uj)L(u;) = L(Zj (v, uj)uj) = L(v).

Thus P? = L. Relative to I, we have
P — ((P(u: Pu: — (P(u)). u:) = 2125
T —(( (uj)7ul)ul+"'+( (u]),un)un)l.—( (uj)aul)— j ijs
ij

and this is a Hermitian matrix; Proposition 3.15 therefore shows that P* = P.
Finally

(Pw).v) = (X, 42, upui, 35 . upug) = 21w, up)? = 0,

and thus P is positive semidefinite. This proves existence.
For uniqueness in (c), let P satisfy P* = P and P> = L, and suppose P is

positive semidefinite. Choose an orthonormal basis of eigenvectors uy, ..., u,
of P, say with eigenvalues cy, ..., c,, all > 0. Then L(u;) = Pz(uj) = c}zuj,
and we see that uy, ..., u, form an orthonormal basis of eigenvectors of L with

eigenvalues cjg. On the space where L acts as the scalar A;, P must therefore act

as the scalar )»,.1 /2. We conclude that P is unique. O
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The technique of proof of (c) allows one, more generally, to define f (L) for
any function f : R — C whenever L is self-adjoint. Actually, the function f
needs to be defined only on the set of eigenvalues of L for the definition to make
sense.

At the end of this section, we shall use the existence of the square root in (c) to
obtain the so-called “polar decomposition” of square matrices. But before doing
that, let us mine three additional easy consequences of the Spectral Theorem.
The first deals with several self-adjoint linear maps rather than one, and the other
two apply that conclusion to deal with single linear maps that are not necessarily
self-adjoint.

Corollary 3.23. Let V be a finite-dimensional inner-product space, and let
Ly, ..., L, beself-adjointlinear maps from V to V that commute in the sense that
L;L; = L;L; foralli and j. Then V has an orthonormal basis of simultaneous
eigenvectors of Ly, ..., L,,. In addition, for each m-tuple of scalars A, ..., A,
let
wmw =1 EV|Li(v)=2xjv forl < j <mj

consist of 0 and the simultaneous eigenvectors of Ly, ..., L,, corresponding to
AL, ..., Am. Then all the eigenvalues A; are real, the vector subspaces V;, .,
are mutually orthogonal, and any orthonormal basis of V of simultaneous eigen-
vectorsof Ly, ..., L,, is the union of orthonormal bases of the V;, ., ’s. Corre-
spondingly if Ay, ..., A, are commuting Hermitian n-by-n matrices, then there
exists a unitary matrix C such that C~' A ;C is diagonal with real entries for all j.
If all the matrices A; have real entries, then C may be taken to be an orthogonal
matrix.

PROOF. This follows by iterating the Spectral Theorem (Theorem 3.21). In
fact, let {V,, } be the system of vector subspaces produced by the theorem for L;.
For each j, the commutativity of the linear maps L; forces

Li(Li(v)) = Li(L1(v)) = Li(Av) = AL (v) forv e V,,,
and thus L;(V,,) € V,,. The restrictions of Ly, ..., L, to Vy, are self-adjoint

and commute. Let {V,, ,,} be the system of vector subspaces produced by the
Spectral Theorem for L2|V" . Each of these, by the commutativity, is carried
A1

into itself by Ls, ..., L,,, and the restrictions of L3, ..., L, to V,,,, form a
commuting family of self-adjoint linear maps. Continuing in this way, we arrive
at the decomposition asserted by the corollary for L1, ..., L,,. The assertion of

the corollary about commuting Hermitian matrices is a special case, in the same
way that the assertions in Theorem 3.21 about matrices were special cases of the
assertions about linear maps. O
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A linear map L : V — V, not necessarily self-adjoint, is said to be normal if
L commutes with its adjoint: LL* = L*L.

Corollary 3.24. Suppose that F = C, and let L : V — V be a normal linear
map on the finite-dimensional inner-product space V. Then V has an orthonormal
basis of eigenvectors of L. In addition, for each complex scalar A, let

Vi={veV|L{w) =i},

so that V, when nonzero is the eigenspace of L for the eigenvalue 1. Then the
vector subspaces V, are mutually orthogonal, and any orthonormal basis of V of
eigenvectors of L is the union of orthonormal bases of the V,’s. Correspondingly
if A is any n-by-n complex matrix such that AA* = A*A, then there exists a
unitary matrix C such that C~' AC is diagonal.

REMARK. The corollary fails if F = R: for the linear map L : R? — R?
with L(v) = Avand A = (_(1) (1)) L* = L~! commutes with L, but L has no

eigenvectors in R? since the characteristic polynomial A> + 1 has no first-degree
factors with real coefficients.

PROOF. The pointisthat L = (3(L+L*))+i(3-(L—L*)) and that 1 (L + L")
and %(L — L*) are self-adjoint. If L commutes with L*, then T} = %(L + L*)
and T, = %(L — L*) commute with each other. We apply Corollary 3.23 to
the commuting self-adjoint linear maps 77 and 7. The vector subspace V, g
produced by Corollary 3.23 coincides with the vector subspace V, ;g defined in
the present corollary, and the result for L follows. The result for matrices is a
special case. ([l

Corollary 3.25. Suppose that F = C, and let L : V — V be a unitary linear
map on the finite-dimensional inner-product space V. Then V has an orthonormal
basis of eigenvectors of L. In addition, for each complex scalar A, let

Vi={veV|L{w) =i},

so that V, when nonzero is the eigenspace of L for the eigenvalue 1. Then the
eigenvalues of L all have absolute value 1, the vector subspaces V, are mutually
orthogonal, and any orthonormal basis of V of eigenvectors of L is the union
of orthonormal bases of the Vj’s. Correspondingly if A is any n-by-n unitary
matrix, then there exists a unitary matrix C such that C “TAC is diagonal; the
diagonal entries of C~! AC all have absolute value 1.

PROOF. This is a special case of Corollary 3.24 since a unitary linear map L
has LL* = I = L*L. The eigenvalues all have absolute value 1 as a consequence
of Proposition 3.18e. U
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Now we come to the polar decomposition of linear maps and of matrices.
When F = C, this is a generalization of the polar decomposition z = ¢r of
complex numbers. WhenF = R, it generalizes the decompositionx = (sgn x)|x|
of real numbers.

Theorem 3.26 (polar decomposition). If L : V — V is a linear map on a
finite-dimensional inner-product space, then L decomposes as L = U P, where
P is positive semidefinite and U is orthogonal if F = R and unitary if F = C.
The linear map P is unique, and U is unique if L is invertible. Correspondingly
any n-by-n matrix A decomposes as A = U P, where P is a positive semidefinite
matrix and U is an orthogonal matrix if F = R and a unitary matrix if F = C.
The matrix P is unique, and U is unique if A is invertible.

REMARKS. As we have already seen in other situations, the motivation for the
proof comes from the uniqueness.

PROOF OF UNIQUENESS. Let L = UP = U'P’. Then L*L = P?> = P’?. The
linear map L*L is positive semidefinite since its adjoint is (L*L)* = L*L** =
L*L and since (L*L(v),v) = (L(v), L(v)) > 0. Therefore Corollary 3.22c
shows that L*L has a unique positive semidefinite square root. Hence P = P’.
If L is invertible, then P is invertible and L = U P implies that U = LP~'. The
same argument applies in the case of matrices. ([l

PROOF OF EXISTENCE. If L is given, then we have just seen that L*L is
positive semidefinite. Let P be its unique positive semidefinite square root. The
proof is clearer when L is invertible, and we consider that case first. Then we
canset U = LP~'. Since U* = (P~)*L* = P~'L*, we find that U*U =
P'L*LP~! = P~'P2P~! = I, and we conclude that U is unitary.

When L is not necessarily invertible, we argue a little differently with the
positive semidefinite square root P of L*L. The kernel K of P is the 0 eigenspace
of P, and the Spectral Theorem (Theorem 3.21) shows that the image of P is the
sum of all the other eigenspaces and is just K. Since K N K+ = 0, P is one-one
from K= onto itself. Thus P(v) — L(v) is a one-one linear map from K+ into
V. Call this function U, so that U(P(v)) = L(v). For any v, and v, in V, we
have

(L(v1), L(v2)) = (L*L(v1), v2) = (P*(v1), v2) = (P(v1), P(12)), (%)

and hence U : K+ — V preserves inner products. Let {u,...,u;} be an
orthonormal basis of K+, and let {ur41,...,u,} be an orthonormal basis of
K. Since U preserves inner products and is linear, {U (u1), ..., U(u)} is an
orthonormal basis of U(K+). Extend {U(u,), ..., U(u)} to an orthonormal
basis of V by adjoining vectors vi4i, ..., v,, define U(u;) = v; fork +1 <
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Jj < n, and write U also for the linear extension to all of V. Since U carries one

orthonormal basis {u1, ..., u,} of V to another, U is unitary. We have UP = L
on K+, and equation (x) with v; = v, shows thatker L = ker P = K. Therefore
UP = L everywhere. O

4. Problems

1. LetV = M,,(C), and define an inner product on V by (A, B) = Tr(B*A). The
norm || - ||g obtained from this inner product is called the Hilbert—Schmidt
norm of the matrix in question.

(a) Prove that ||A||%S = Zi,j |A,<j|2 for Ain V.

(b) Let Ej; be the matrix thatis 1 in the (7, j yth entry and is O elsewhere. Prove
that the set of all E;; is an orthonormal basis of V.

(c) Interpret (a) in the light of (b).

(d) Prove that the Hilbert—Schmidt norm is given on any matrix A in V by

1AIZs = X, 1Auj 12 = X, ; v} Auj 2,

where {u1,...,u,} and {vy, ..., v,} are any orthonormal bases of C" and
v* refers to the conjugate transpose of any member v of C".

(e) Let W be the vector subspace of all diagonal matrices in V. Describe
explicitly the orthogonal complement W+, and find its dimension.

2. Let V, be the inner-product space over R of all polynomials on [0, 1] of degree
< n with real coefficients. (The O polynomial is to be included.) The Riesz
Representation Theorem says that there is a unique polynomial p, such that
f(%) = fol F(x)pn(x)dx for all f in V,. Set up a system of linear equations
whose solution tells what p,, is.

3. Let V be a finite-dimensional inner-product space, and suppose that L and M
are self-adjoint linear maps from V to V. Show that LM is self-adjoint if and
only if LM = ML.

4. Let V be a finite-dimensional inner-product space. If L : V — V is a linear map
with adjoint L*, prove that ker L = (image L*)™.

Find all 2-by-2 Hermitian matrices A with characteristic polynomial A% 44X +6.

6. Let Vi and V; be finite-dimensional inner-product spaces over the same F, the
inner products being (-, -); and (-, - )3.
(a) Using the case when V| = V, as a model, define the adjoint of a linear

map L : V] — V,, proving its existence. The adjoint is to be a linear map
L*:V, — V.
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(b) IfT isanorthonormal basis of V| and A is an orthonormal basis of V5, prove
that the matrices of L and L* in these bases are conjugate transposes of one
another.

Suppose that a finite-dimensional inner-product space V is a direct sum V =

S @ T of vector subspaces. Let E : V — V be the linear map that is the identity

onSandisOon 7.

(a) ProvethatV =S+ TL.

(b) Prove that E* : V — V is the linear map that is the identity on 7+ and is 0
on S+

(Iwasawa decomposition) Let g be an invertible n-by-n complex matrix. Apply

the Gram—Schmidt orthogonalization process to the basis {gey, ..., ge,}, where
{e1, ..., ey} is the standard basis, and let the resulting orthonormal basis be
{vi,...,v,}. Define an invertible n-by-n matrix £ such that k’lvj = ¢; for

1 < j < n. Prove that k~!g is upper triangular with positive diagonal entries,
and conclude that g = k(k~'g) exhibits g as the product of a unitary matrix and
an upper triangular matrix whose diagonal entries are positive.

Let A be an n-by-n positive definite matrix.

(a) Prove thatdet A > 0.

(b) Prove for any subset of integers 1 < i; < ip < --- < iy < n that the
submatrix of A built from rows and columns indexed by (i1, ..., i) is
positive definite.

Prove that if A is a positive definite n-by-n matrix, then there exists an n-by-n
upper-triangular matrix B with positive diagonal entries such that A = B*B.
ab
bd
d real and with b complex. Find a diagonal matrix D and a unitary matrix U
such that D = U~ AU.

The most general 2-by-2 Hermitian matrix is of the form A = ( with @ and

In the previous problem,

(a) what conditions on A make A positive definite?

(b) when A is positive definite, how can its positive definite square root be
computed explicitly?

Prove that if an n-by-n real symmetric matrix A has v’ Av = 0 for all v in R”,

then A = 0.

Let L : C" — C" be a self-adjoint linear map. Show for each x € C” that there
is some y € C" such that (I — L)?(y) = (I — L)(x).

In the polar decomposition L = U P, prove that if P and U commute, then L is
normal.

Let V be an n-dimensional inner-product space over R. What is the largest pos-
sible dimension of a commuting family of self-adjoint linear maps L : V — V?
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17. Let vy, ..., v, be an ordered list of vectors in an inner-product space. The
associated Gram matrix is the Hermitian matrix of inner products given
by G(vi,...,v,) = [(vi,v;)], and detG(vy,...,v,) is called its Gram
determinant. o

(@ If ¢,...,cp are in C, let ¢ = <> Prove that ¢'G(vy, ..., v,)C =

Cn

llcivy + -+ + cnvn||2, and conclude that G(v1, ..., v,) is positive semi-
definite.
(b) Prove thatdetG(vy, ..., v,) > 0 with equality if and only if vy, ..., v, are

linearly dependent. (This generalizes the Schwarz inequality.)
(c) Under what circumstances does equality hold in the Schwarz inequality?

Problems 18-23 introduce the Legendre polynomials and establish some of their
elementary properties, including their orthogonality under the inner product (P, Q) =
S _11 P(x)Q(x) dx. They form the simplest family of classical orthogonal polynomi-
als. They are uniquely determined by the conditions that the n'" one P,, forn > 0,
is of degree n, they are orthogonal under (-, -), and they are normalized so that
P,(1) = 1. But these conditions are a little hard to work with initially, and instead
we adopt the recursive definition Py(x) = 1, P;(x) = x, and

n+DPp1(x) =2n+ DxPy(x) —nPy_1(x) forn > 1.

18. (a) Provethat P,(x) hasdegreen,that P,(—x) = (—1)" P,(x),and that P, (1) =
1. In particular, P, is an even function if # is even and is an odd function if

n is odd.
(b) Let ¢™ be the constant term of P, if n is even and the coefficient of x if n
is odd, so that ¢ = ¢( = 1. Prove that ¢™ = —"n;l =2 forn > 2.

19. This part establishes a useful concrete formula for P,(x). Let D = d/dx and

X = x%>—1,writing X’ = 2x, X" = 2,and X" = 0 for the derivatives. Two parts

of this problem make use of the Leibnizrule D" (fg) = Y ;_ ({) (D"~ f)(D*g)

for higher-order derivatives of a product.

(a) Verify that D*(X"*1) = Qn+ 1)D(X"X') —n(n+ X" X" —4n? X"~ 1,

(b) By applying D"~! to the result of (a) and rearranging terms, show that
DML (X"t = 2n + X' DM (X") — 4n2 D" LX),

(¢) PutR,(x) = (2"n!))"'D"(X")forn > 0. Show that Ry(x) = 1, Ry (x) = x,
and (n + DR,41(x) = 2n + 1)xR,(x) —nR,—1(x) forn > 1.

(d) (Rodrigues’s formula) Conclude that 2"n!P,(x) = (%)"[(x2 —D"].

20. Using Rodrigues’s formula and iterated integration by parts, prove that
f_ll Pn(x)P,(x)dx =0 form < n.

Conclude that { Py, Pi, ..., P,} is an orthogonal basis of the inner-product space
of polynomials on [—1, 1] of degree < n with inner product (-, -).
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Arguing as in the previous problem and taking for granted that |’ _11 (1—x>)"dx =

n 2 —1
%ﬁf{;, , prove that (P,, P,) = (n + %) )

This problem shows that P, (x) satisfies a certain second-order differential equa-

tion. Let D = d/dx. The first two parts of this problem use the Leibniz rule

quoted in Problem 19. Let X = x> — 1 and K, = 2"n!, so that Rodrigues’s

formula says that K, P, = D"(X").

(a) Expand D"*![(D(X"))X] by the Leibniz rule.

(b) Observe that (D(X"))X = nX"X’', and expand D"t'[(nX")X'] by the
Leibniz rule.

(c) Equating the results of the previous two parts, conclude that y = P,(x)
satisfies the differential equation (1 — x2)y” — 2xy’ +n(n 4+ 1)y = 0.

Let P,(x) = ZZ:O cexk. Using the differential equation, show that the coeffi-
cients ¢y satisfy k(k — 1)cp = [(k —2)(k — 1) — n(n + 1)]cg—2 for k > 2 and
that ¢y = O unless n — k is even.

Problems 24-28 concern the complex conjugate of an inner-product space over C.
For any finite-dimensional inner-product space V, the Riesz Representation Theorem
identifies the dual V’ with V, saying that each member of V' is given by taking the
inner product with some member of V. When the scalars are real, this identification
is linear; thus the Riesz theorem uses the inner product to construct a canonical
isomorphism of V onto V’. When the scalars are complex, the identification is
conjugate linear, and we do not get an isomorphism of V with V'. The complex
conjugate of V provides a substitute result.

24.

25.

26.

27.

28.

Let V be a finite-dimensional vector space over C. Define a new complex vector

space V as follows: The elements of V are the elements of V, and the definition
of addition is unchanged. However, there is a change in the definition of scalar
multiplication, in that if v is in V, then the product cv in V is to equal the product
¢vin V. Verify that V is indeed a complex vector space.

If V is a complex vector spaceand L : V — V isalinear map, defineL : V — V
to be the same function as L. Prove that L is linear.

Suppose that the complex vector space V is actually a finite-dimensional inner-
product space, with inner product (-, -)v. Define (4, v)y; = (v, u)y. Verify
that V is an inner-product space.

With V as in the previous problem, show that the Riesz Representation Theorem
uses the inner product to set up a canonical isomorphism of V’ with V.

With V and V as in the two previous problems, let L : V — V be linear, so
that (L)* : V — V is linear. Under the identification of the previous problem
of V with V', show that (L)* corresponds to the contragredient L’ as defined in
Section IL.4.
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Problems 29-32 use inner-product spaces to obtain a decomposition of polynomials
in several variables. A real-valued polynomial function p in xy, ..., x, is said to be
homogeneous of degree N if every monomial in p has total degree N. Let Viy be
the space of real-valued polynomials in x1, ..., x, homogeneous of degree N. For
any homogeneous polynomial p, we define a differential operator d(p) with constant
coefficients by requiring that 9( - ) be linear in (- ) and that

L . gkiHetky
Axy' - xy) = 3 e
ox;' .- 0xy"
. 02 a2
For example, if |x|* stands for x12 + - +x,%, then 3(|x|?) = A = % +- 4+ %
1 n

If p and ¢q are in the same Vy, then d(g) p is a constant polynomial, and we define
(p, q) to be that constant. Then (-, -) is bilinear.
29. (a) Prove that (-, -) satisfies (p, q¢) = (q, p).
(b) Prove that (x}" .- x", xI' - x}) is positive if (ki, ..., kq) = (1, ..., 1y)
and is O otherwise.
(¢c) Deduce that (-, -) is an inner product on Vy.

30. Call p € Vy harmonic if 3(Jx|?)p = 0, and let Hy be the vector subspace of
harmonic polynomials. Prove that the orthogonal complement of |x|?>Vy_» in
Vy relative to (-, -) is Hy.

31. Deduce from Problem 30 that each p € V decomposes uniquely as
p=hy+IxPhy_a+ |x*hy_s+ -

with iy, hy—2, hy—a, ... homogeneous harmonic of the indicated degrees.

32. For n = 2, describe a computational procedure for decomposing the element
xi‘ + xg of V4 as in Problem 31.

Problems 33-34 concern products of n-by-n positive semidefinite matrices. They

make use of Problem 26 in Chapter II, which says that det(A/ —C D) = det(Al — DC).

33. Let A and B be positive semidefinite. Using the positive definite square root of
B, prove that every eigenvalue of AB is > 0.

34. Let A, B, and C be positive semidefinite, and suppose that ABC is Hermit-
ian. Under the assumption that C is invertible, introduce the positive definite
square root P of C. By considering P~' ABC P~!, prove that ABC is positive
semidefinite.



CHAPTER 1V

Groups and Group Actions

Abstract. This chapter develops the basics of group theory, with particular attention to the role of
group actions of various kinds. The emphasis is on groups in Sections 1-3 and on group actions
starting in Section 6. In between is a two-section digression that introduces rings, fields, vector
spaces over general fields, and polynomial rings over commutative rings with identity.

Section 1 introduces groups and a number of examples, and it establishes some easy results.
Most of the examples arise either from number-theoretic settings or from geometric situations in
which some auxiliary space plays a role. The direct product of two groups is discussed briefly so
that it can be used in a table of some groups of low order.

Section 2 defines coset spaces, normal subgroups, homomorphisms, quotient groups, and quotient
mappings. Lagrange’s Theorem is a simple but key result. Another simple but key result is the
construction of a homomorphism with domain a quotient group G/H when a given homomorphism
is trivial on H. The section concludes with two standard isomorphism theorems.

Section 3 introduces general direct products of groups and direct sums of abelian groups, together
with their concrete “external” versions and their universal mapping properties.

Sections 4-5 are a digression to define rings, fields, and ring homomorphisms, and to extend the
theories concerning polynomials and vector spaces as presented in Chapters I-II. The immediate
purpose of the digression is to make prime fields and the notion of characteristic available for the
remainder of the chapter. The definitions of polynomials are extended to allow coefficients from any
commutative ring with identity and to allow more than one indeterminate, and universal mapping
properties for polynomial rings are proved.

Sections 6-7 introduce group actions. Section 6 gives some geometric examples beyond those
in Section 1, it establishes a counting formula concerning orbits and isotropy subgroups, and it
develops some structure theory of groups by examining specific group actions on the group and its
coset spaces. Section 7 uses a group action by automorphisms to define the semidirect product of
two groups. This construction, in combination with results from Sections 5-6, allows one to form
several new finite groups of interest.

Section 8 defines simple groups, proves that alternating groups on five or more letters are simple,
and then establishes the Jordan—-Holder Theorem concerning the consecutive quotients that arise
from composition series.

Section 9 deals with finitely generated abelian groups. It is proved that “rank” is well defined
for any finitely generated free abelian group, that a subgroup of a free abelian group of finite rank is
always free abelian, and that any finitely generated abelian group is the direct sum of cyclic groups.

Section 10 returns to structure theory for finite groups. It begins with the Sylow Theorems,
which produce subgroups of prime-power order, and it gives two sample applications. One of these
classifies the groups of order pg, where p and ¢ are distinct primes, and the other provides the
information necessary to classify the groups of order 12.

Section 11 introduces the language of “categories” and “functors.” The notion of category is a
precise version of what is sometimes called a “context” at points in the book before this section,
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and some of the “constructions” in the book are examples of “functors.” The section treats in this
language the notions of “product” and “coproduct,” which are abstractions of “direct product” and
“direct sum.”

1. Groups and Subgroups

Linear algebra and group theory are two foundational subjects for all of algebra,
indeed for much of mathematics. Chapters II and III have introduced the basics
of linear algebra, and the present chapter introduces the basics of group theory. In
this section we give the definition and notation for groups and provide examples
that fit with the historical development of the notion of group. Many readers will
already be familiar with some group theory, and therefore we can be brief at the
start.

A group is a nonempty set G with an operation G X G — G satisfying the
three properties (i), (ii), and (iii) below. In the absence of any other information
the operation is usually called multiplication and is written (a, ) — ab with no
symbol to indicate the multiplication. The defining properties of a group are

(1) (ab)c = a(bc) for all a, b, ¢ in G (associative law),
(ii) there exists an element 1 in G such that al = la = a for all @ in G
(existence of identity),
(iii) for each a in G, there exists an elementa™' in G withaa™! =a~la =1
(existence of inverses).
It is immediate from these properties that

e 1isunique (since I’ =1'l = 1),

e a!isunique (since (@) =@ ) 1=@ Y (@@ "))=(a""Ya)(a")

=1l =(@™"),

e the existence of a left inverse for each element implies the existence of a
right inverse for each element (since ba = 1 and cb = 1 together imply
¢ = c(ba) = (cb)a = a and hence also ab = cb = 1),

1 is its own inverse (since 11 = 1),
e ax = ay implies x = y, and xa = ya implies x = y (cancellation laws)

(since x = lx = (@ 'a)x = a (ax) = a‘l(ay) = (a_la)y =ly=y

and since a similar argument proves the second implication).

Problem 2 at the end of Chapter II shows that the associative law extends to
products of any finite number of elements of G as follows: parentheses can
be inserted in any fashion in such a product, and the value of the product is
unchanged; hence any expression aja; - - - a, in G is well defined without the use
of parentheses.

The group whose only element is the identity 1 will be denoted by {1}. It is
called the trivial group.
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We come to other examples in a moment. First we make three more definitions
and offer some comments. A subgroup H of a group G is a subset containing
the identity that is closed under multiplication and inverses. Then H itself is a
group because the associativity in G implies associativity in H. The intersection
of any nonempty collection of subgroups of G is again a subgroup.

An isomorphism of a group G| with a group G» is a function ¢ : G| — G
that is one-one onto and satisfies ¢(ab) = ¢(a)p(b) for all @ and b in Gy. It is
immediate that

e ¢(1) =1 (bytakinga =b = 1),

e p(a ) =¢(a)~! (bytaking b = a~ "),

e 7' : G, —> G satisfies 97! (cd) = ¢~ (c)p~ ' (d) (by taking ¢ = p(a)
and d = ¢(b) on the right side and then observing that ¢ (go’l o 'd ))
= p(ab) = p(a)¢(b) = cd = p(¢~ " (cd))).

The first and second of these properties show that an isomorphism respects all the
structure of a group, not just products. The third property shows that the inverse
of an isomorphism is an isomorphism, hence that the relation “is isomorphic to” is
symmetric. Since the identity isomorphism exhibits this relation as reflexive and
since the use of compositions shows that it is transitive, we see that “is isomorphic
to” is an equivalence relation. Common notation for an isomorphism between
G| and G, is G| = Gy; because of the symmetry, one can say that G| and G,
are isomorphic.

An abelian group is a group G with the additional property

(iv) ab = ba for all @ and b in G (commutative law).

In an abelian group the operation is sometimes, but by no means always, called
addition instead of “multiplication.” Additionistypically written (a, b) — a+b,
and then the identity is usually denoted by O and the inverse of a is denoted by —a,
the negative of a. Depending on circumstances, the trivial abelian group may
be denoted by {0} or 0. Problem 3 at the end of Chapter II shows for an abelian
group G with its operation written additively that n-fold sums of elements of G
can be written in any order: a; +ax + -+ - +a, = ds1) + Ao 2) + -+ - + A () for
each permutation o of {1, ..., n}.

Historically the original examples of groups arose from two distinct sources,
and it took a while for the above definition of group to be distilled out as the
essence of the matter.

One of the two sources involved number systems and vectors. Here are
examples.

EXAMPLES.

(1) Additive groups of familiar number systems. The systems in question are
the integers Z, the rational numbers @, the real numbers R, and the complex
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numbers C. In each case the set with its usual operation of addition forms an
abelian group. The group properties of Z under addition are taken as known in
advance in this book, as mentioned in Section A3 of the appendix, and the group
properties of Q, R, and C under addition are sketched in Sections A3 and A4 of
the appendix as part of the development of these number systems.

(2) Multiplicative groups connected with familiar number systems. In the
cases of Q, R, and C, the nonzero elements form a group under multiplication.
These groups are denoted by Q*, R*, and C*. Again the properties of a group
for each of them are properties that are sketched during the development of each
of these number systems in Sections A3 and A4 of the appendix. With Z, the
nonzero integers do not form a group under multiplication, because only the two
units, i.e., the divisors +1 and —1 of 1, have inverses. The units do form a group,
however, under multiplication, and the group of units is denoted by Z*.

(3) Vector spaces under addition. Spaces such as Q" and R” and C" provide
us with further examples of abelian groups. In fact, the defining properties of
addition in a vector space are exactly the defining properties of an abelian group.
Thus every vector space provides us with an example of an abelian group if we
simply ignore the scalar multiplication.

(4) Integers modulo m, under addition. Another example related to number
systems is the additive group of integers modulo a positive integer m. Let us say
that an integer n; is congruent modulo = to an integer n; if m divides n; — n,.
One writes n; = n, or n; = ny mod m or n; = n, mod m for this relation.! It
is an equivalence relation, and we can write [n] for the equivalence class of n
when it is helpful to do so. The division algorithm (Proposition 1.1) tells us that
each equivalence class has one and only one member between O and m — 1. Thus
there are exactly m equivalence classes, and we know a representative of each.
The set of classes will be denoted by? Z/mZ. The point is that Z/mZ inherits
an abelian-group structure from the abelian-group structure of Z. Namely, we
attempt to define

lal + [b] = [a + b].

To see that this formula actually defines an operation on Z/mZ, we need to
check that the result is meaningful if the representatives of the classes [a] and
[b] are changed. Thus let [a] = [@'] and [b] = [b]. Then m divides a — a’ and
b — b, and m must divide the sum (@ —a’) + (b — b)) = (a + b) — (@’ + b');
consequently [a + b] = [a’ + /], and addition is well defined. The same kind of

I This notation was anticipated in a remark explaining the classical form of the Chinese Remainder
Theorem (Corollary 1.9).

2The notation Z/(m) is an allowable alternative. Some authors, particularly in topology, write
Zy for this set, but the notation Z,, can cause confusion since Z,, is the standard notation for the
“p-adic integers” when p is prime. These are defined in Chapter VI of Advanced Algebra.
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argument shows that the associativity and commutativity of addition in Z imply
associativity and commutativity in Z/mZ. The identity element is [0], and group
inverses (negatives) are given by —[a] = [—a]. Therefore Z/mZ is an abelian
group under addition, and it has m elements. If x and y are members of Z/mZ,
their sum is often denoted by x + y mod m.

The other source of early examples of groups historically has the members of
the group operating as transformations of some auxiliary space. Before abstract-
ing matters, let us consider some concrete examples, ignoring some of the details
of verifying the defining properties of a group.

EXAMPLES, CONTINUED.

(5) Permutations. A permutation of a nonempty finite set £ of n elements is a
one-one function from E onto itself. Permutations were introduced in Section [.4.
The product of two permutations is just the composition, defined by (o7)(x) =
o (t(x)) for x in E, with the symbol o for composition dropped. The resulting
operation makes the set of permutations of E into a group: we already observed
in Section 1.4 that composition is associative, and it is plain that the identity
permutation may be taken as the group identity and that the inverse function to
a permutation is the group inverse. The group is called the symmetric group
on the n letters of E. It has n! members for n > 1. The notation &,, is often
used for this group, especially when £ = {1,...,n}. Signs £1 were defined
for permutations in Section 1.4, and we say that a permutation is even or odd
according as its sign is +1 or —1. The sign of a product is the product of the
signs, according to Proposition 1.24, and it follows that the even permutations
form a subgroup of &,. This subgroup is called the alternating group on n
letters and is denoted by ,,. It has %(n!) members if n > 2.

(6) Symmetries of a regular polygon. Imagine a regular polygon in R? centered
at the origin. The plane-geometry rotations and reflections about the origin that
carry the polygon to itself form a group. If the number of sides of the polygon
is n, then the group always contains the rotations through all multiples of the
angle 2 /n. The rotations themselves form an n-element subgroup of the group
of all symmetries. To consider what reflections give symmetries, we distinguish
the cases n odd and n even. When # is odd, the reflection in the line that passes
through any vertex and bisects the opposite side carries the polygon to itself, and
no other reflections have this property. Thus the group of symmetries contains n
reflections. When n is even, the reflection in the line passing through any vertex
and the opposite vertex carries the polygon to itself, and so does the reflection in
the line that bisects a side and also the opposite side. There are n/2 reflections of
each kind, and hence the group of symmetries again contains n reflections. The
group of symmetries thus has 2n elements in all cases. It is called the dihedral
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group D,,. The group D, is isomorphic to a certain subgroup of the permutation
group G,,. Namely, we number the vertices of the polygon, and we associate to
each member of D, the permutation that moves the vertices the way the member
of D, does.

(7) General linear group. With F equal to Q or R or C, consider any n-
dimensional vector space V over F. One possibility is V = F", but we do not
insist on this choice. Among all one-one functions carrying V onto itself, let
G consist of the linear ones. The composition of two linear maps is linear, and
the inverse of an invertible function is linear if the given function is linear. The
result is a group known as the general linear group GL(V). When V = F”,
we know from Chapter II that we can identify linear maps from F” to itself with
matrices in M, (IF) and that composition corresponds to matrix multiplication.
It follows that the set of all invertible matrices in M, (F) is a group, which is
denoted by GL(n, F), and that this group is isomorphic to GL(IF"). The set SL(V)
or SL(n, IF) of all members of GL(V) or GL(n, F) of determinant 1 is a group
since the determinant of a product is the product of the determinants; it is called
the special linear group. The dihedral group D, is isomorphic to a subgroup of
GL(2, R) since each rotation and reflection of R? that fixes the origin is given by
the operation of a 2-by-2 matrix.

(8) Orthogonal and unitary groups. If V is a finite-dimensional inner-product
space over R or C, Chapter III referred to the linear maps carrying the space
to itself and preserving lengths of vectors as orthogonal in the real case and
unitary in the complex case. Such linear maps are invertible. The condition of
preserving lengths of vectors is maintained under composition and inverses, and
it follows that the orthogonal or unitary linear maps form a subgroup O(V) or
U(V) of the general linear group GL(V). One writes O(n) for O(R") and U(n)
for U(C"). The subgroup of members of O(V') or O(n) of determinant 1 is called
the rotation group SO(V) or SO(n). The subgroup of members of U(V) or U(n)
of determinant 1 is called the special unitary group SU(V) or SU(n).

Before coming to Example 9, let us establish a closure property under the
arithmetic operations for certain subsets of C. We are going to use the theories of
polynomials as in Chapter [ and of vector spaces as in Chapter II with the rationals
Q as the scalars. Fix a complex number 6, and form the result of evaluating at 6
every polynomial in one indeterminate with coefficients in Q. The resulting set
of complex numbers comes by substituting 6 for X in the members of Q[ X], and
we denote this subset of C by Q[8].

Suppose that 6 has the property that the set {1, 6,62, ...,0"} is linearly de-
pendent over Q for some integer n > 1, i.e., has the property that Fp(6) = O for
some nonzero member Fy of Q[ X] of degree < n. For example, if 6 = V2, then
the set {1, v/2, (v/2)2} is linearly dependent since 2 — (W2)2 =0;if 0 = &27i/5,
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then {1, 6, 62,03, 6%, 6°} is linearly dependent since 1 — 0> =0, or alternatively
since 1 +6 + 6% +6° 4+ 6 =0.

Returning to the general 6, we lose no generality if we assume that the polyno-
mial Fj has degree exactly n. If we divide the equation F(#) = 0 by the leading
coefficient, we obtain an equality 8" = G((6), where Gy is the zero polynomial
or is a nonzero polynomial of degree at most n — 1. Then 8" = 6" G (0), and
we see inductively that every power 6" with r > n is a linear combination of the
members of the set {1, 6, 62, ...,0"'}. This set is therefore a spanning set for
the vector space Q[#], and we find that Q[0] is finite-dimensional, with dimension
at most n. Since every positive integer power of 6 lies in Q[0] and since these
powers are closed under multiplication, the vector space Q[6] is closed under
multiplication. More striking is that Q[6] is closed under division, as is asserted
in the following proposition.

Proposition 4.1. Let 6 be in C, and suppose for some integer n > 1 that the set
{1,60,0%,...,0"}) is linearly dependent over Q. Then the finite-dimensional ra-
tional vector space Q[6] is closed under taking reciprocals (of nonzero elements),
as well as multiplication, and hence is closed under division.

REMARKS. Under the hypotheses of Proposition 4.1, Q[#] is called an
algebraic number field,* or simply a number field, and 6 is called an algebraic
number. The relevant properties of C that are used in proving the proposition
are that C is closed under the usual arithmetic operations, that these satisfy the
usual properties, and that Q is a subset of C. The deeper closure properties of C
that are developed in Sections A3 and A4 of the appendix play no role.

PROOF. We have seen that Q[6] is closed under multiplication. If x is anonzero
member of Q[6], then all positive powers of x must be in Q[#], and the fact that

dim Q[@] < n forces {1, x, x%, ..., x"} to be linearly dependent. Therefore there
areintegers j and k withO < j < k < nsuchthatc;x/+cj1x/ T+ +exh =0
for some rational numbers ¢;, ..., ¢y with ¢ # 0. Since x is assumed nonzero,

we can discard unnecessary terms and arrange that ¢; # 0. Then

-1 —1 -1 k—j—1
L =x(=c; ¢jy1 —¢j cjpax —¢j ckx =N,

and the reciprocal of x has been exhibited as in Q[6]. ]

EXAMPLES, CONTINUED.

(9) Galois’s notion of automorphisms of number fields. Let 8 be a complex
number as in Proposition 4.1. The subject of Galois theory, whose details will

3The definition of “algebraic number field” that is given later in the book is ostensibly more
general, but the Theorem of the Primitive Element in Chapter IX will show that it amounts to the
same thing as this.
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be discussed in Chapter IX and whose full utility will be glimpsed only later,
works in an important special case with the “automorphisms” of Q[6] that fix Q.
The automorphisms are the one-one functions from Q[6] onto itself that respect
addition and multiplication and carry every element of Q to itself. The identity
is such a function, the composition of two such functions is again one, and the
inverse of such a function is again one. Therefore the automorphisms of Q[6]
form a group under composition. We call this group Gal(Q[0]/Q). Let us see
that it is finite. In fact, if o is in Gal(Q[0]/Q), then o is determined by its effect
on 6, since we must have o (F(0)) = F(o(0)) for every F in Q[X]. We know
that there is some nonzero polynomial Fy(X) such that Fy(6) = 0. Applying o
to this equality, we see that F(o(0)) = 0. Therefore o (6) has to be a root of
Fy. Viewing Fy as in C[X], we can apply Corollary 1.14 and see that F has only
finitely many complex roots. Therefore there are only finitely many possibilities
for o, and the group Gal(Q[6]/Q) has to be finite. Galois theory shows that
this group gives considerable insight into the structure of Q[6]. For example it
allows one to derive the Fundamental Theorem of Algebra (Theorem 1.18) just
from algebra and the Intermediate Value Theorem (Section A3 of the appendix);
it allows one to show the impossibility of certain constructions in plane geometry
by straightedge and compass; and it allows one to show that a quintic polynomial
with rational coefficients need not have a root that is expressible in terms of
rational numbers, arithmetic operations, and the extraction of square roots, cube
roots, and so on. We return to these matters in Chapter IX.

Examples 5-9, which all involve auxiliary spaces, fit the pattern that the
members of the group are invertible transformations of the auxiliary space and the
group operation is composition. This notion will be abstracted in Section 6 and
will lead to the notion of a “group action.” For now, let us see why we obtained
groups in each case. If X is any nonempty set, then the set of invertible functions
f : X — X forms a group under composition, composition being defined by
(fg)(x) = f(g(x)) with the usual symbol o dropped. The associative law is just
a matter of unwinding this definition:

(fOM(x) = (f&)(h(x)) = f(g(h(x))) = f((gh)(x)) = (f(gh)(x).

The identity function is the identity of the group, and inverse functions provide
the inverse elements in the group.

For our examples, the set X was E in Example 5, R? in Example 6, V or F”"
in Example 7, V or Q" or R” or C" in Example 8, and Q[6] in Example 9. All
that was needed in each case was to know that our set G of invertible functions
from X to itself formed a subgroup of the set of all invertible functions from X
to itself. In other words, we had only to check that G contained the identity and
was closed under composition and inversion. Associativity was automatic for G
because it was valid for the group of all invertible functions from X to itself.
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Actually, any group can be realized in the fashion of Examples 5-9. This is
the content of the next proposition.

Proposition 4.2 (Cayley’s Theorem). Any group G is isomorphic to a sub-
group of invertible functions on a set X. The set X can be taken to be G itself.
In particular any finite group with n elements is isomorphic to a subgroup of the
symmetric group &,,.

PROOF. Define X = G, put f,(x) = ax forain G,andlet G’ = {f, | a € G}.
To see that G’ is a group, we need G’ to contain the identity and to be closed
under composition and inverses. Since f; is the identity, the identity is indeed
in G'. Since fup(x) = (ab)x = a(bx) = fu(bx) = fu(fo() = (fufi) (¥,
G’ is closed under composition. The formula f, f,-1 = f1 = f,-1 f, then shows
that f,-1 = (f,)~' and that G’ is closed under inverses. Thus G’ is a group.

Define ¢ : G — G’ by ¢(a) = f,. Certainly ¢ is onto G’, and it is one-
one because ¢(a) = ¢(b) implies f, = fp, fu(1) = fp(1), and a = b. Also,
p(ab) = fup = fafo = @(a)e(b), and hence ¢ is an isomorphism.

In the case that G is finite with n elements, G is exhibited as isomorphic
to a subgroup of the group of permutations of the members of G. Hence it is
isomorphic to a subgroup of &,,. O

It took the better part of a century for mathematicians to sort out that two
distinct notions are involved here —that of a group, as defined above, and that
of a group action, as will be defined in Section 6. In sorting out these matters,
mathematicians realized that it is wise to study the abstract group first and then
to study the group in the context of its possible group actions. This does not at all
mean ignoring group actions until after the study of groups is complete; indeed,
we shall see in Sections 6, 7, and 10 that group actions provide useful tools for
the study of abstract groups.

We turn to a discussion of two general group-theoretic notions—cyclic group
and the direct product of two or more groups. The second of these notions will
be discussed only briefly now; more detail will come in Section 3.

If a is an element of a group, we define a” for integers n > 0O inductively
by a! = a and " = a" 'a. Then we can put a® = 1 and a™" = (a~')"
for n > 0. A little checking, which we omit, shows that the ordinary rules of
exponents apply: a”™ 1" = a™a" and a™" = (a™)" for all integers m and n. If the
underlying group is abelian and additive notation is being used, these formulas
read (m + n)a = ma + na and (mn)a = n(ma).

A cyclic group is a group with an element a such that every element is a power
of a. The element a is called a generator of the group, and the group is said to
be generated by a.
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Proposition 4.3. Each cyclic group G is isomorphic either to the additive
group Z of integers or to the additive group Z/mZ of integers modulo m for some
positive integer m.

PROOF. If all a" are distinct, then the rule ™" = a™a" implies that the
function n > a” is an isomorphism of Z with G. On the other hand, if a* = a'
with k > [, then a*~! = 1 and there exists a positive integer n such that " = 1.
Let m be the least positive integer with a™ = 1. For any integers ¢ and r, we
have a?"*" = (a™)%a" = a’. Thus the function ¢ : Z/mZ — G given by
¢([n]) = a” is well defined, is onto G, and carries sums in Z/mZ to products in
G.If0 <[ < k < m, then a* #+ a' since otherwise a*~! would be 1. Hence @ is
one-one, and we conclude that ¢ : Z/mZ — G is an isomorphism. (]

Let us denote abstract cyclic groups by C, and C,,, the subscript indicating
the number of elements. Finite cyclic groups arise in guises other than as Z/mZ.
For example the set of all elements ¢>7*/" in C, with multiplication as opera-

tion, forms a group isomorphic to C,,. So does the set of all rotation matrices
( cos2mk/m —sin2mk/m

sin2k/m  cos 2k /m ) with matrix multiplication as operation.

Proposition 4.4. Any subgroup of a cyclic group is cyclic.

REMARK. The proof of Proposition 4.4 exhibits a one-one correspondence
between the subgroups of Z/mZ and the positive integers k dividing m.

PROOF. Let G be a cyclic group with generator a, and let H be a subgroup.
We may assume that H # {1}. Then there exists a positive integer n such that
a" is in H, and we let k be the smallest such positive integer. If n is any integer
such that a" is in H, then Proposition 1.2 produces integers x and y such that
xk + yn = d, where d = GCD(k, n). The equation a? = (a*)*(a")? exhibits
a? as in H, and the minimality of k forces d > k. Since GCD(k, n) < k, we
conclude that d = k. Hence k divides n. Consequently H consists of the powers
of a* and is cyclic. O

A notion of the direct product of two groups is definable in the same way as
was done with vector spaces in Section IL.6, except that a little care is needed in
saying how this construction interacts with mappings. As with the corresponding
construction for vector spaces, one can define an explicit “external” direct product,
and one can recognize a given group as an “internal” direct product, i.e., as
isomorphic to an external direct product. We postpone a fuller discussion of direct
product, as well as all comments about direct sums and mappings associated with
direct sums and direct products, to Section 3.

The external direct product G; x G, of two groups G| and G, is a group
whose underlying set is the set-theoretic product of G| and G, and whose group
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law is (g1, 2)(g], &) = (818}, §285)- The identity is (1, 1), and the formula for
inverses is (g1, g2) "' = (gl_l, g{l). The two subgroups G x {1} and {1} x G,
of G| x G, commute with each other.

A group G is the internal direct product of two subgroups G and G, if the
function from the external direct product G| x G, to G given by (g1, g2) — €182
is an isomorphism of groups. The literal analog of Proposition 2.30, which gave
three equivalent definitions of internal direct product* of vector spaces, fails here.
It is not sufficient that G| and G, be two subgroups such that G; N G, = {1} and
every element in G decomposes as a product g;g» with g; € G and g, € G,.
For example, with G = G3, the two subgroups

Gi=1{1,(12} and Gy={l,(123),(132)

have these properties, but G is not isomorphic to G| x G, because the elements
of G| do not commute with the elements of G».

Proposition 4.5. If G is a group and G| and G, are subgroups, then the
following conditions are equivalent:

(a) G is the internal direct product of G| and G»,

(b) every element in G decomposes uniquely as a product g; g, with g; € G
and g» € G,, and every member of G| commutes with every member of
G,

(c) G1 N G, = {1}, every element in G decomposes as a product g;g> with
g1 € G and g, € G», and every member of G| commutes with every
member of G,.

PROOF. We have seen that (a) implies (b). If (b) holds and g is in G| N G,
then the formula 1 = gg~' and the uniqueness of the decomposition of 1 as a
product together imply that g = 1. Hence (c) holds.

If (c) holds, define ¢ : G; x G, — G by ¢(g1, &) = g1&. This map is
certainly onto G. To see that it is one-one, suppose that ¢ (g1, g2) = ¢(g}, &3)-
Then g1g2 = g g, and hence g} ~'g; = ghg, '. Since G\ N G2 = {1}, g, 'g1 =
gég;l = 1. Thus (g1, g2) = (g}, &5), and ¢ is one-one. Finally the fact that
elements of G| commute with elements of G, implies that ¢((g1, 82)(g]. &) =
9(8181. 8285) = 8181828> = 8182818> = ¢ (81, 82)¢ (g}, &»). Therefore ¢ is an
isomorphism, and (a) holds. ]

Here are two examples of internal direct products of groups. In each let
R™ be the multiplicative group of positive real numbers. The first example is

4The direct sum and direct product of two vector spaces were defined to be the same thing in
Chapter II.
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R* = C, xR* with C, providing the sign. The second exampleis C* = §' xR™*,
where S! is the multiplicative group of complex numbers of absolute value 1; the
isomorphism here is given by the polar-coordinate mapping (¢'?, r) — €.

We conclude this section by giving an example of a group that falls outside
the pattern of the examples above and by summarizing what groups we have
identified with < 15 elements.

EXAMPLES, CONTINUED.

(10) Groups associated with the quaternions. The set H of quaternions is an
object like R or C in that it has both an addition/subtraction and a multiplica-
tion/division, but H is unlike R and C in that multiplication is not commutative.
We give two constructions. In one we start from R* with the standard basis
vectors written as 1, i, j, k. The multiplication table for these basis vectors is

11=1, Ili=i, 1j =j, 1k =k,
il=i, ii=-1, ij=k, ik = —j,
it=j, ji=-k ji=-1 jk=i
kl =k, ki=j, kj=—-i, kk=-1,
and the multiplication is extended to general elements by the usual distributive

laws. The multiplicative identity is 1, and multiplicative inverses of nonzero
elements are given by

(@l +bi+cj+k) ' =s"al —s7'hi—s7'cj—s7dk

with s = +/a? + b2 + c2 + d?. Since ij = k while ji = —k, multiplication is not
commutative. What takes work to see is that multiplication is associative. To see
this, we give another construction, using M5, (C). Within M, (C), take

i=(30). i=(00). i=(0). k=(17).

and define H to be the linear span, with real coefficients, of these matrices. The
operations are the usual matrix addition and multiplication. Then multiplication
is associative, and we readily verify the multiplication table for 1, i, j, k. A little
computation verifies also the formula for multiplicative inverses. The set H*
of nonzero elements forms a group under multiplication, and it is isomorphic to
R* x SU(2), where

su ={( 55)| el +187 =1}

is the 2-by-2 special unitary group defined in Example 8. Of interest for our
current purposes is the 8-element subgroup £1, +i, £j, £k, which is called the
quaternion group and will be denoted by Hg.



2. Quotient Spaces and Homomorphisms 129

The order of a finite group is the number of elements in the group. Let us list
some of the groups we have discussed that have order at most 15:

1 C] 9 C9, C3 X C3

2 G, 10 Cio, Ds

3 C; 11 Cp

4 C4, C2 X C2 12 C12, C6 X Cz, D6, 9[4
5 Cs 13 Ci3

6 Ces, D3 14 Cia, D;

7 Cq 15 Cis

8 Cg, C4 X Cz, C2 X C2 X Cz, D4, Hg

No two groups in the above table are isomorphic, as one readily checks by counting
elements of each “order” in the sense of the next section. We shall see in Section 10
and in the problems at the end of the chapter that the above table is complete
through order 15 except for one group of order 12. Some groups that we have
discussed have been omitted from the above table because of isomorphisms with
the groups above. For example, S, = C,, 3 = C3, C3 x C = Cq, 63 = D3,
Cs x Cy =Z Cp, Cy xC3 Z2 Cip, D3 x Cy = Dg, C7 x Cy = Cy4, and
C5 X C3 = C]5.

2. Quotient Spaces and Homomorphisms

Let G be a group, and let H be a subgroup. For purposes of this paragraph, say
that g; in G is equivalent to g, in G if g = goh for some & in H. The relation
“equivalent” is an equivalence relation: it is reflexive because 1 is in H, it is
symmetric since H is closed under inverses, and it is transitive since H is closed
under products. The equivalence classes are called left cosets of H in G. The
left coset containing an element g of G isthe set gH = {gh | h € H}.

EXAMPLES.

(1) When G = Z and H = mZ, the left cosets are the sets r + mZ, i.e., the
sets {x € Z | x = r mod m} for the various values of r.

(2) When G = &3 and H = {(1), (1 3)}, there are three left cosets: H,
(1 2)H={(1 2), (1 32)},and (2 3)H ={12 3), (1 2 3)}.

Similarly one can define the right cosets H g of H in G. When G is nonabelian,
these need not coincide with the left cosets; in Example 2 above with G = &3
and H = {(1), (1 3)}, the right coset H(1 2) = {(1 2), (1 2 3)} is not a left
coset.
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Lemma 4.6. If H is a subgroup of the group G, then any two left cosets of H
in G have the same cardinality, namely card H.

REMARKS. We shall be especially interested in the case that card H is finite,
and then we write |H| = card H for the number of elements in H.

PROOF. If g1 H and g, H are given, then the map g — gog, !¢ is one-one on
G and carries g; H onto go H. Hence g; H and g, H have the same cardinality.
Taking g; = 1, we see that this common cardinality is card H. (]

We write G/H for the set {gH} of all left cosets of H in G, calling it the
quotient space or left-coset space of G by H. The set {Hg} of right cosets is
denoted by H\G.

Theorem 4.7 (Lagrange’s Theorem). If G is a finite group, then |G| =
|G/H||H|. Consequently the order of any subgroup of G divides the order
of G.

REMARK. Using the formula in Theorem 4.7 three times yields the conclusion
that if H and K are subgroups of a finite group G with K € H, then |G/K| =
|G/H||H/K]|.

PROOF. Lemma 4.6 shows that each left coset has |H| elements. The left
cosets are disjoint and exhaust G, and there are |G/ H| left cosets. Thus G has
|G/H||H| elements. ]

If a is an element of a group G, then we have seen that the powers a” of a form
a cyclic subgroup of G that is isomorphic either to Z or to some group Z/mZ
for a positive integer m. We say that a has finite order m when the cyclic group
is isomorphic to Z/mZ. Otherwise a has infinite order. In the finite-order case
the order of a is thus the least positive integer n such that a” = 1.

Corollary 4.8. If G is a finite group, then each element a of G has finite order,
and the order of a divides the order of G.

PROOF. The order of a equals |H| if H = {a" | n € Z}, and Corollary 4.8 is
thus a special case of Theorem 4.7. ([l

Corollary 4.9. If p is a prime, then the only group of order p, up to isomor-
phism, is the cyclic group C,, and it has no subgroups other than {1} and C,
itself.

PROOF. Suppose that G is a finite group of order p and that H # {1} is a
subgroup of G. Leta # 1 bein H, and let P = {a" | n € Z}. Since a # 1,
Corollary 4.8 shows that the order of a is an integer > 1 that divides p. Since p
is prime, the order of @ must equal p. Then |P| = p. Since P € H € G and
|G| = p, we must have P = G. ]
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Let G| and G, be groups. We say that ¢ : G; — G, is a homomorphism
if p(ab) = @(a)p((b) for all a and b in G. In other words, ¢ is to respect
products, but it is not assumed that ¢ is one-one or onto. Any homomorphism ¢
automatically respects the identity and inverses, in the sense that

e p(1) =1 (since p(1) = ¢(11) = p(1)p(1)),
e pla™) = p(@" (since 1 = ¢(1) = g(aa™") = p(a)p(a”") and
similarly 1 = g(a~Ye(a)).

EXAMPLES. The following functions are homomorphisms: any isomorphism,
the function ¢ : Z — Z/mZ given by ¢(k) = k mod m, the function¢ : G, —
{£1} given by ¢(c) = sgn o, the function ¢ : Z — G given for fixed a in G by
¢(n) = a", and the function ¢ : GL(n, F) — F* given by ¢(A) = det A.

The image of ahomomorphism ¢ : G; — G, is just the image of ¢ considered
as a function. It is denoted by image ¢ = ¢(G) and is necessarily a subgroup of
G, since if p(g1) = g2 and ¢(g}) = g5, then p(g1g}) = g2g>and p(g;") = g5 .

The kernel of a homomorphism ¢ : G| — G is the set kergp = ¢! ({1}) =
{x € G1 | ¢(x) = 1}. This is a subgroup since if ¢(x) = 1 and p(y) = 1, then
p(xy) = p@e(y) =land p(x~") = p(x)~' = 1.

The homomorphism ¢ : G| — G, is one-one if and only if ker ¢ is the trivial
group {1}. The necessity follows since 1 is already in ker ¢, and the sufficiency
follows since ¢(x) = ¢(y) implies that ¢(xy~!) = 1 and therefore that xy~' is
in ker ¢.

The kernel H of a homomorphism ¢ : G| — G, has the additional property
of being a normal subgroup of G| in the sense that ghg~! is in H whenever g
isin Gy and hisin H,ie., gHg ! = H. Infact, if h is in ker ¢ and g is in G,
then p(ghg™") = p(g)p(M)e(g)~" = ¢(g)p(g)~" = 1 shows that ghg™" is in
ker ¢.

EXAMPLES.

(1) Any subgroup H of an abelian group G is normal since ghg ™' = gg~'h =

h. The alternating subgroup 2{,, of the symmetric group S, is normal since 2,
is the kernel of the homomorphism o + sgno.

(2) The subgroup H = {1, (1 3)} of &3 is not normal since (1 2)H(1 2)~' =
{1, 2 3)}

(3) If a subgroup H of a group G has just two left cosets, then H is normal
even if G is an infinite group. In fact, suppose G = H U gy H whenever gy is not
in H. Taking inverses of all elements of G, we see that G = H U Hg; whenever
giisnotin H. If g in G is given, then either g isin H and gHg™' = H, or g is
notin H and gH = Hg, so that gHg~! = H in this case as well.
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Let H be a subgroup of G. Let us look for the circumstances under which
G/ H inherits a multiplication from G. The natural definition is

?
(81H)(g2H) = g142H,

but we have to check that this definition makes sense. The question is whether
we get the same left coset as product if we change the representatives of gy H and
g2 H from g; and g, to g1h; and grh;. Since our prospective definition makes
(g1h1H)(g2hoyH) = g1hi1g2hyH, the question is whether g 4 g,h, H equals
g1g2H. That is, we ask whether g1h;g2h, = gi1g2h for some h in H. If this
equality holds, then h1g2hy = g2h, and hence g5 'hags equals ik, "', which is
an element of H. Conversely if every expression g, 'hyg, is in H, then we can
go backwards and see that g;hg,h, = g1g2h for some h in H, hence see that
G/H indeed inherits a multiplication from G. Thus a necessary and sufficient
condition for G/ H to inherit a multiplication from G is that the subgroup H is
normal. According to the next proposition, the multiplication inherited by G/ H
when this condition is satisfied makes G/H into a group.

Proposition 4.10. If H is a normal subgroup of a group G, then G/ H becomes
a group under the inherited multiplication (g, H)(g2H) = (g1g2)H, and the
function ¢ : G — G/H given by g(g) = gH is a homomorphism of G onto
G/H with kernel H. Consequently every normal subgroup of G is the kernel of
some homomorphism.

REMARKS. When H is normal, the group G/ H is called a quotient group of G,
and the homomorphism ¢ : G — G/H is called the quotient homomorphism.’
In the special case that G = Z and H = mZ, the construction reduces to the
construction of the additive group of integers modulo m and accounts for using
the notation Z/mZ for that group.

PROOF. The coset 1H is the identity, and (¢H)~' = g~'H. Also, the com-
putation (g1Hg,H)gsH = g1g,83H = g1H(g2HgszH) proves associativity.
Certainly ¢g is onto G/H. It is a homomorphism since ¢(g182) = g182H =
g1HgH = q(81)q(82)- U

In analogy with what was shown for vector spaces in Proposition 2.25, quo-
tients in the context of groups allow for the factorization of certain homomor-
phisms of groups. The appropriate result is stated as Proposition 4.11 and is
pictured in Figure 4.1. We can continue from there along the lines of Section IL.5.

5Some authors call G/H a “factor group.” A “factor set,” however, is something different.
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Proposition 4.11. Let ¢ : G| — G, be a homomorphism between groups, let
Hy = kerg, let H be a normal subgroup of G contained in Hy, and define
q : G — G;/H to be the quotient homomorphism. Then there exists a
homomorphism ¢ : G;/H — G, suchthatgp =@ ogq,ie, p(g1H) = ¢(g1). It
has the same image as ¢, and kerp = {hoH | ho € Hp}.

G] _(p) Gz
A

Gi/H ’

FIGURE 4.1. Factorization of homomorphisms of groups via the quotient
of a group by a normal subgroup.

REMARK. One says that ¢ factors through G,/ H or descendsto G,/ H. See
Figure 4.1.

PROOF. We will have ¢ o ¢ = ¢ if and only if ¢ satisfies ©(g1 H) = ¢(g1).
What needs proof is that ¢ is well defined. Thus suppose that g; and g| are in the
same left coset, so that g; = g1h with 2 in H. Then ¢(g]) = ¢(g1)¢(h) = ¢(g1)
since H C ker ¢, and ¢ is therefore well defined.

The computation 9(g1HgH) = 9(g182H) = ¢(8182) = ¢(81)¢(82) =
©(g1H)p(g2H) shows that @ is a homomorphism. Since image ¢ = image ¢, @
is onto image ¢. Finally ker @ consists of all g; H such that 9(g; H) = 1. Since
©(g1H) = ¢(g1), the condition that g; is to satisfy is that g; be in ker ¢ = Hp.
Hence kerp = {hoH | hy € Hy}, as asserted. ([l

Corollary 4.12. Let ¢ : G; — G, be a homomorphism between groups, and
suppose that ¢ is onto G, and has kernel H. Then ¢ exhibits the group G|/ H as
canonically isomorphic to G».

PROOF. Take H = Hj in Proposition 4.11, and form ¢ : G;/H — G, with
¢ = @ o q. The proposition shows that ¢ is onto G, and has trivial kernel, i.e.,
the identity element of G;/H. Having trivial kernel, 9 is one-one. g

Theorem 4.13 (First Isomorphism Theorem). Let ¢ : G; — G; be a
homomorphism between groups, and suppose that ¢ is onto G, and has kernel
K. Then the map H; — ¢(H)) gives a one-one correspondence between

(a) the subgroups H; of G| containing K and
(b) the subgroups of G».

Under this correspondence normal subgroups correspond to normal subgroups.
If H; isnormal in G, then g H| — ¢(g)¢(H)) is an isomorphism of G|/ H; onto
G2/@(Hy).
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REMARK. In the special case of the last statement that ¢ : G; — Gy is a
quotientmap g : G — G/K and H is a normal subgroup of G containing K, the
last statement of the theorem asserts the isomorphism

G/H = (G/K)/(H/K).

PROOF. The passage from (a) to (b) is by direct image under ¢, and the passage
from (b) to (a) will be by inverse image under ¢ ~'. Certainly the direct image of
a subgroup as in (a) is a subgroup as in (b). To prove the one-one correspondence,
we are to show that the inverse image of a subgroup as in (b) is a subgroup as in
(a) and that these two constructions invert one another.

For any subgroup H, of G2, ¢! (H>) is a subgroup of G. In fact, if g; and
g} are in ¢! (Ha), we can write ¢(g1) = hy and ¢(g}) = h) with hy and /) in
H,. Then the equations ¢(g1g}) = haoh) and ¢(g7") = ¢(g1)~' = h;' show
that g, ¢} and gl_1 are in ¢~ (H>).

Moreover, the subgroup ¢~ '(H,) contains ¢~ '({1}) = K. Therefore the
inverse image under ¢ of a subgroup as in (b) is a subgroup as in (a). Since ¢ is
a function, we have ¢(¢~!(H,)) = H,. Thus passing from (b) to (a) and back
recovers the subgroup of G».

If H; is a subgroup of G containing K, we still need to see that H; =
¢~ '(@(Hy)). Certainly H € ¢~ '(¢(H))). For the reverse inclusion let g; be
in o~ (¢(H;)). Then ¢(gy) is in ¢(H), i.e., (g1) = @(h) for some h; in H.
Since ¢ is a homomorphism, (p(glhfl) = 1. Thus glhfl isinkerp = K, which
is contained in H; by assumption. Then 4, and glhl_1 are in H;, and hence their
product (glhfl)hl = gy is in H,. We conclude that ¢ ~!(¢(H;)) € Hj, and thus
passing from (a) to (b) and then back recovers the subgroup of G| containing K.

Next let us show that normal subgroups correspond to normal subgroups. If H,
isnormal in G, let H; be the subgroup (p_1 (Hy)of Gy. Forh;in Hyand g, in Gy,
we can write ¢(h;) = h, with h, in H,, and then (p(glh]gfl) = ¢(g )hch(gl)_l
isin ¢(g1) Hap(g1)~' = Hy. Hence gih1g; " isin ¢~ (Hy) = H,. In the reverse
direction let H; be normal in G, and let g, be in G,. Since ¢ is onto G,, we can
write g» = ¢(g1) forsome g; in G;. Thengz(p(Hl)g;] = o(g)e(H)e(g)) ™! =
@(g1Higr") = ¢(Hy). Thus ¢(H,) is normal.

For the final statement let H, = @(H;). We have just proved that this image
is normal, and hence G,/ H, is a group. The mapping ® : G; — G,/ H, given
by ®(g1) = ¢(g1)H> is the composition of two homomorphisms and hence is a
homomorphism. Its kernel is

{g1€G1|9(g) € Hb) ={g1 € G |p(g1) € p(H)} = ¢~ (p(H))),

and this equals H; by the first conclusion of the theorem. Applying Corollary
4.12 to ®, we obtain the required isomorphism ® : G|/H| — G,/¢(H}). O
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Theorem 4.14 (Second Isomorphism Theorem). Let H; and H; be subgroups
of a group G with H, normal in G. Then H; N H; is a normal subgroup of Hy, the
set Hy H; of products is a subgroup of G with H; as a normal subgroup, and the
map hi(H; N H) — hy H; is a well-defined canonical isomorphism of groups

H\/(Hy N Hy) = (H H)/H>.

PROOF. The set H; N H; is a subgroup, being the intersection of two subgroups.
For hy in H;, we have h{(H; N Hz)hl_1 - h]thl_1 C Hj since H| is a subgroup
and h(H; N Hz)hl_1 C h1H2h1_1 C H, since H, is normal in G. Therefore
hi(H; N Hz)hfl C H, N Hy,and H; N H is normal in H;.

The set H, H, of products is a subgroup since /1 hyh b}, = hih) (h/l‘lhzh/l)h/2
and since (hihy)™" = h{'(hihy'h"), and H, is normal in Hy H, since H is
normal in G.

The function ¢(h(H; N H)) = h; H; is well defined since Hy N Hy € H,,
and ¢ respects products. The domain of ¢ is {h(H; N H,) | h; € H;}, and the
kernel is the subset of this such that 4, lies in H, as well as H,. For this to happen,
hy must be in H; N H;, and thus the kernel is the identity coset of H,/(H; N Hy).
Hence ¢ is one-one.

To see that ¢ is onto (H; H,)/H,, let hihy H, be given. Then h(H; N Hy)
maps to i Hy, which equals i1 hy Hy. Hence ¢ is onto. ]

3. Direct Products and Direct Sums

We return to the matter of direct products and direct sums of groups, direct
products having been discussed briefly in Section 1. In a footnote in Section 11.4
we mentioned a general principle in algebra that “whenever a new systematic con-
struction appears for the objects under study, it is well to look for a corresponding
construction with the functions relating these new objects.” This principle will
be made more precise in Section 11 of the present chapter with the aid of the
language of “categories” and “functors.”

Another principle that will be relevant for us is that constructions in one context
in algebra often recur, sometimes in slightly different guise, in other contexts. One
example of the operation of this principle occurs with quotients. The construction
and properties of the quotient of a vector space by a vector subspace, as in Section
IL.5, is analogous in this sense to the construction and properties of the quotient of
a group by a normal subgroup, as in Section 2 in the present chapter. The need for
the subgroup to be normal is an example of what is meant by “slightly different
guise.” Anyway, this principle too will be made more precise in Section 11 of
the present chapter using the language of categories and functors.
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Let us proceed with an awareness of both these principles in connection with
direct products and direct sums of groups, looking for analogies with what hap-
pened for vector spaces and expecting our work to involve constructions with
homomorphisms as well as with groups.

The external direct product G; x G, was defined as a group in Section 1 to
be the set-theoretic product with coordinate-by-coordinate multiplication. There
are four homomorphisms of interest connected with G| x G, namely

i1:G1—> Gy xGy  givenby i1(g1) = (g1, 1),

ir:Gy,— Gy xGy  givenby ix(g2) = (1, g2),

p1:GixGy— Gy givenby pi(g1, 8) = g1,

p2:G1 x Gy — Gy givenby p:(g1, 82) = g
Recall from the discussion before Proposition 4.5 that Proposition 2.30 for the
direct product of two vector spaces does not translate directly into an analog for
the direct product of groups; instead that proposition is replaced by Proposition
4.5, which involves some condition of commutativity.

Warned by this anomaly, let us work with mappings rather than with groups
and subgroups, and let us use mappings in formulating a definition of the direct
product of groups. As with the direct product of two vector spaces, the mappings
to use are p; and p; but not i; and i;. The way in which p; and p; enter is
through the effect of the direct product on homomorphisms. If ¢; : H — G
and ¢, : H — G, are two homomorphisms, then 2 — (¢;(h), ¢2(h)) is the
corresponding homomorphism of H into G| X G,. In order to state matters fully,
let us give the definition with an arbitrary number of factors.

Let S be an arbitrary nonempty set of groups, and let G be the group cor-
responding to the member s of S. The external direct product of the G,’s
consists of a group [[,.¢ G, and a system of group homomorphisms. The
group as a set is X .G, whose elements are arbitrary functions from S to
(U,cs G5 such that the value of the function at s is in Gy, and the group law is
({8s}ses) ({84 )ses) = {858, }ses. The group homomorphisms are the coordinate
mappings py, : [ [,cs Gs = Gy, With pSO({gs}SeS) = gs,- The individual groups
G, are called the factors, and a direct product of n groups may be written as
G x---x G, instead of with the symbol [ [. The group [ [,_¢ G has the universal
mapping property described in Proposition 4.15 and pictured in Figure 4.2.

Proposition 4.15 (universal mapping property of external direct product). Let
{Gs | s € S} be a nonempty set of groups, and let [ [ _¢ G, be the external direct
product, the associated group homomorphisms being the coordinate mappings
Ds - ]_[565 Gy — Gy,. If H is any group and {¢; | s € S} is a system of group
homomorphisms ¢; : H — Gj, then there exists a unique group homomorphism
¢ H — [],cg Gs such that py, o ¢ = @y, forall sp € S.
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FIGURE 4.2. Universal mapping property of an external direct product of groups.

PROOF. Existence of ¢ is proved by taking ¢ (h) = {¢,(h)}ses. Then py, (¢ (h))
= Ds, ({gas(h)}ses) = @y, (h) as required. For uniqueness let ¢’ : H — [, ¢ G;
be a homomorphism with py, o ¢" = ¢, forall 59 € S. For each & in H, we can
write ¢’ (h) = {¢'(h)s}ses. For so in S, we then have ¢, (h) = (ps, 0 ¢')(h) =
Ds, (@' (h)) = ¢'(h)y,, and we conclude that ¢’ = ¢. O

Now we give an abstract definition of direct product that allows for the possi-
bility that the direct product is “internal” in the sense that the various factors are
identified as subgroups of a given group. The definition is by means of the above
universal mapping property and will be seen to characterize the direct product up
to canonical isomorphism. Let S be an arbitrary nonempty set of groups, and let
G, be the group corresponding to the member s of S. A direct product of the
G’s consists of a group G and a system of group homomorphisms p; : G — G
for s € § with the following universal mapping property: whenever H is a
group and {¢; | s € S} is a system of group homomorphisms ¢, : H — G, then
there exists a unique group homomorphism ¢ : H — G such that p; o ¢ = ¢;
for all s € S. Proposition 4.15 proves existence of a direct product, and the next
proposition addresses uniqueness. A direct product is internal if each Gy is a

subgroup of G and each restriction p; ] . 18 the identity map.

Ps
GS <—S
psT e

L

G
FIGURE 4.3. Universal mapping property of a direct product of groups.

Proposition 4.16. Let S be a nonempty set of groups, and let G be the group
corresponding to the member s of S. If (G, {p,}) and (G', {p;}) are two direct
products, then the homomorphisms p, : G — G, and p; : G’ — G are onto
G, there exists a unique homomorphism ® : G' — G such that p; = p, o ® for
all s € §, and @ is an isomorphism.

PROOF. In Figure 43 let H = G’ and ¢, = p,. If ® : G’ — G is the
homomorphism produced by the fact that G is a direct product, then we have
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pso® = p; foralls. Reversing the roles of G and G’, we obtain a homomorphism
®': G — G’ with p,o®" = p, foralls. Therefore p;o(Pod’) = p,od’ = p;.

In Figure 4.3 we next let H = G and ¢; = p; for all s. Then the identity 15
on G has the same property p; o 1g = pj relative to all p; that ® o @’ has, and the
uniqueness says that ® o ® = 1. Reversing the roles of G and G’, we obtain
@' 0 ® = 1. Therefore @ is an isomorphism.

For uniqueness suppose that ¥ : G’ — G is another homomorphism with
p. = ps o ¥ forall s € S. Then the argument of the previous paragraph shows
that &’ oW = 1. Applying @ ontheleftgives W = (Pod')oW = Po(P’'oV) =
dolg =. Thus ¥ = .

Finally we have to show that the s™ mapping of a direct product is onto
G,. It is enough to show that p; is onto G,. Taking G as the external direct
product [ [,y G with p, equal to the coordinate mapping, form the isomorphism
@’ : G — G’ that has just been proved to exist. This satisfies p; = p. o ¢’ for
all s € S. Since p; is onto G, p; must be onto G. O

Let us turn to direct sums. Part of what we seek is a definition that allows
for an abstract characterization of direct sums in the spirit of Proposition 4.16.
In particular, the interaction with homomorphisms is to be central to the dis-
cussion. In the case of two factors, we use i; and i, rather than p; and p,. If
¢1: G, — Hand ¢, : G, — H are two homomorphisms, then the correspond-
ing homomorphism ¢ of G| @ G, to H is to satisfy ¢; = ¢ oij and ¢, = @ o i>.
With G; @ G, defined, as expected, to be the same group as G| x G,, we are led
to the formula

@(g1, 82) = ¢(g1, Do, g2) = ¢1(g1)92(82).

The images of commuting elements under a homomorphism have to commute,
and hence H had better be abelian. Then in order to have an analog of Proposition
4.16, we will want to specialize H at some point to G| @ G, and therefore G
and G, had better be abelian. With these observations in place, we are ready for
the general definition.

Let S be an arbitrary nonempty set of abelian groups, and let G be the group
corresponding to the member s of S. We shall use additive notation for the group
operation in each G,. The external direct sum of the G,’s consists of an abelian
group @, s G, and a system of group homomorphisms i for s € S. The group is
the subgroup of [ [,y G of all elements that are equal to 0 in all but finitely many
coordinates. The group homomorphisms are the mappings iy, : G5, = @, Gy
carrying a member g, of G, to the element that is g, in coordinate sp and is 0
at all other coordinates. The individual groups are called the summands, and
a direct sum of n abelian groups may be written as G| & - - - & G,. The group
@D, G, has the universal mapping property described in Proposition 4.17 and
pictured in Figure 4.4.
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Proposition 4.17 (universal mapping property of external direct sum). Let
{Gs | s € S} be a nonempty set of abelian groups, and let @, ¢ G4 be the
external direct sum, the associated group homomorphisms being the embedding
mappings iy, : Gy, — @seS G,. If H is any abelian group and {¢; | s € S}isa
system of group homomorphisms ¢, : Gy — H, then there exists a unique group
homomorphism ¢ : @, _¢ Gy — H such that ¢ o iy, = ¢, forall 59 € S.

seS

¢
Gy, —

a1

is()l e
@sES GS

FIGURE 4.4. Universal mapping property of an external direct sum
of abelian groups.

PROOF. Existence of ¢ is proved by taking gp({gs}seg) =Y, ¢s5(gs). The sum
on the right side is meaningful since the element {g;};cg of the direct sum has
only finitely many nonzero coordinates. Since H is abelian, the computation

o ({8s}ses) + o({8))ses) = D5 0s(85) + X, @s(8))
=2 (@5(8) + @5(8)) = 2 05 (gs + &)
= (p({gs + gg}ses) = ‘P({gs}ses + {g;}ses)

shows that ¢ is a homomorphism. If gy is given and {g;}ses denotes the el-
ement that is g, in the so™ coordinate and is O elsewhere, then (i, (85)) =
@({8s)ses) = D, @s(gs), and the right side equals ¢, (gs,) since g; = 0 for all
other s’s. Thus ¢ o is, = @,.

For uniqueness let ¢’ : @, g Gy — H be ahomomorphism with ¢’ oiy, = ¢,
forall so € S. Then the value of ¢’ is determined at all elements of P, cs G that
are 0 in all but one coordinate. Since the most general member of P ¢ G is a
finite sum of such elements, ¢’ is determined on all of ¢ G. O

Now we give an abstract definition of direct sum that allows for the possibility
that the direct sum is “internal” in the sense that the various constituents are
identified as subgroups of a given group. Again the definition is by means of a
universal mapping property and will be seen to characterize the direct sum up to
canonical isomorphism. Let § be an arbitrary nonempty set of abelian groups,
and let G be the group corresponding to the member s of S. A direct sum of
the G,’s consists of an abelian group G and a system of group homomorphisms
iy : Gy — G for s € § with the following universal mapping property: when-
ever H is an abelian group and {¢; | s € S} is a system of group homomorphisms
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¢s © Gy — H, then there exists a unique group homomorphism ¢ : G - H
such that ¢ o iy = ¢, for all s € S. Proposition 4.17 proves existence of a direct
sum, and the next proposition addresses uniqueness. A direct sum is internal if
each G, is a subgroup of G and each mapping i; is the inclusion mapping.

GSL)H

1

L

FIGURE 4.5. Universal mapping property of a direct sum of abelian groups.

Proposition 4.18. Let S be a nonempty set of abelian groups, and let G be
the group corresponding to the member s of S. If (G, {i;}) and (G’, {i}}) are
two direct sums, then the homomorphisms i; : G; — G and i} : Gy — G’ are
one-one, there exists a unique homomorphism ® : G — G’ such thati; = ® o
forall s € §, and ® is an isomorphism.

PROOF. In Figure 451let H = G’ and ¢, = i,. If ® : G — G’ is the
homomorphism produced by the fact that G is a direct sum, then we have ® o i
= i, for all s. Reversing the roles of G and G’, we obtain a homomorphism
P’ : G’ — G with @' o i = i  for all s. Therefore (&' o ) oiy = P’ 0} = .

In Figure 4.5 we next let H = G and ¢; = i, for all s. Then the identity 1
on G has the same property 1¢ o iy = i relative to all iy that &’ o ® has, and the
uniqueness says that ®' o ® = 15. Reversing the roles of G and G’, we obtain
® o @' = 1¢/. Therefore @ is an isomorphism.

For uniqueness suppose that ¥ : G — G’ is another homomorphism with
i = Wolisforalls € S. Then the argument of the previous paragraph shows that
@' oW = 1. Applying ® on the left gives W = (P o @) oW = P o (P o0 W) =
dolg=®. Thus ¥ = .

Finally we have to show that the s™ mapping of a direct sum is one-one on
G;. Itis enough to show that i; is one-one on G. Taking G as the external direct
sum ;¢ G with i equal to the embedding mapping, form the isomorphism
@’ : G’ — G that has just been proved to exist. This satisfies iy = &’ o i}, for all
s € §. Since i is one-one, ié must be one-one. O

EXAMPLE. The group Q* is the direct sum of copies of Z, one for each prime,
plus one copy of Z/2Z. If p is a prime, the mapping i, : Z — Q* is given
by ip(n) = p". The remaining coordinate gives the sign. The isomorphism
results from unique factorization, only finitely many primes being involved for
any particular nonzero rational number.
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4. Rings and Fields

In this section we begin a two-section digression in order to develop some more
number theory beyond what is in Chapter I and to make some definitions as new
notions arise. In later sections of the present chapter, some of this material will
yield further examples of concrete groups and tools for working with them.

We begin with the additive group Z/mZ of integers modulo a positive integer
m. We continue to write [a] for the equivalence class of the integer a when it is
helpful to do so. Our interest will be in the multiplication structure that Z/mZ
inherits from multiplication in Z. Namely, we attempt to define

[a][b] = [ab].

To see that this formula is meaningful in Z/mZ, we need to check that the same
equivalence class results on the right side if the representatives of [a] and [b]
are changed. Thus let [a] = [¢'] and [b] = [b']. Then m divides a — a’ and
b — b’ and must divide the sum of products (@ — a’)b + a’'(b — b') = ab — a'b’.
Consequently [ab] = [a'D’], and multiplication is well defined. If x and y are in
7/ mZ, their product is often denoted by xy mod m.

The same kind of argument as just given shows that the associativity of multi-
plication in Z and the distributive laws imply corresponding facts about Z/mZ.
The result is that Z/mZ is a “commutative ring with identity” in the sense of the
following definitions.

A ring is a set R with two operations R x R — R, usually called addition
and multiplication and often denoted by (a, b) — a + b and (a, b) — ab, such
that

(i) R is an abelian group under addition,
(i1) multiplication is associative in the sense that a(bc) = (ab)c foralla, b, ¢
in R,
(iii) the two distributive laws

a(b+c) = (ab) + (ac) and (b + c)a = (ba) + (ca)

hold for all a, b, ¢ in R.
The additive identity is denoted by 0, and the additive inverse of a is denoted by
—a. A suma+ (—b) is often abbreviated a — b. By convention when parentheses
are absent, multiplications are to be carried out before additions and subtractions.
Thus the distributive laws may be rewritten as

alb+c)=ab+ac and (b +c)a =ba + ca.

Aring R is called a commutative ring if multiplication satisfies the commutative
law

(iv) ab = ba for all a and b in R.
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A ring R is called a ring with identity® if there exists an element 1 such that
la = al = a for all a in R. It is immediate from the definitions that

e Oa = 0 and a0 = 0O in any ring (since, in the case of the first formula,
0=0a —0a =(0+4+0)a —0a =0a+0a —0a =0a),

e the multiplicative identity is unique in a ring with identity (since 1’ =
't =1,

e (—1)a = —a = a(—1) in any ring with identity (partly since 0 = Oa =
I+ (=1)a=1la+ (-Da=a+ (—Da).

In a ring with identity, it will be convenient not to insist that the identity be
different from the zero element 0. If 1 and O do happen to coincide in R, then it
readily follows that O is the only element of R, and R is said to be the zero ring.

The set Z of integers is a basic example of a commutative ring with identity.
Returning to Z/mZ, suppose now that m is a prime p. If [a] is in Z/pZ with a
in{l1,2,..., p— 1}, then GCD(a, p) = 1 and Proposition 1.2 produces integers
r and s with ar + ps = 1. Modulo p, this equation reads [a][r] = [1]. In other
words, [r] is a multiplicative inverse of [a]. The result is that Z/ pZ, when p is a
prime, is a “field” in the sense of the following definition.

A field I is a commutative ring with identity such that [F' # 0 and such that

(v) toeacha # 0 in F corresponds an element ! in IF such that aa~' = 1.

In other words, F* = IF — {0} is an abelian group under multiplication. Inverses
are necessarily unique as a consequence of one of the properties of groups.

When p is prime, we shall write I, for the field Z/pZ. Its multiplicative
group IF; has order p — 1, and Lagrange’s Theorem (Corollary 4.8) immediately
implies that a?~! = 1 mod p whenever a and p are relatively prime. This result
is known as Fermat’s Little Theorem.’

For general m, certain members of Z/mZ have multiplicative inverses. The
product of two such elements is again one, and the inverse of one is again one.
Thus, even though Z/mZ need not be a field, the subset (Z/mZ)* of members
of Z/mZ with multiplicative inverses is a group. The same argument as when m
is prime shows that the class of a has an inverse if and only if GCD(a, m) = 1.
The number of such classes was defined in Chapter I in terms of the Euler ¢
function as ¢(m), and a formula for ¢(m) was obtained in Corollary 1.10. The

6Some authors, particularly when discussing only algebra, find it convenient to incorporate the
existence of an identity into the definition of a ring. However, in real analysis some important natural
rings do not have an identity, and the theory is made more complicated by forcing an identity into
the picture. For example the space of integrable functions on R forms a very natural ring, with
convolution as multiplication, and there is no identity; forcing an identity into the picture in such
a way that the space remains stable under translations makes the space large and unwieldy. The
distinction between working with rings and working with rings with identity will be discussed further
in Section 11.

7 As opposed to Fermat’s Last Theorem, which lies deeper.
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conclusion is that (Z/mZ)* is an abelian group of order ¢(m). Application of
Lagrange’s Theorem yields Euler’s generalization of Fermat’s Little Theorem,
namely that a?” = 1 mod m for every positive integer m and every integer a
relatively prime to m.

More generally, in any ring R with identity, a unit is defined to be any element
a such that there exists an elementa~! withaa™! = a~'a = 1. The elementa~!
is unique if it exists® and is called the multiplicative inverse of a. The units of R
form a group denoted by R*. For example the group Z* consists of +1 and —1,
and the zero ring R has R* = {0}. If R is a nonzero ring, then O is not in R*.

Here are some further examples of fields.

EXAMPLES OF FIELDS.
(1) Q, R, and C. These are all fields.

(2) Q[A]. This was introduced between Examples 8 and 9 of Section 1. It
is assumed that 6 is a complex number and that there exists an integer n > 0

such that the complex numbers 1,6, 62, ..., 6" are linearly dependent over Q.
The set Q[6] is defined to be the linear span over Q of all powers 1, 9, 0%, ... of
6, which is the same as the linear span of the finite set 1, 6, 62,...,0" 1. The

set Q[0] was shown in Proposition 4.1 to be a subset of C that is closed under
the arithmetic operations, including the passage to reciprocals in the case of the
nonzero elements. It is therefore a field.

(3) Afield of 4 elements. LetF4 = {0, 1, 6, 6+ 1}, where 6 is some symbol not
standing for O or 1. Define addition in F4 and multiplication in F; by requiring
thata + 0 = 0 4+ a = a for all a, that

1+1=0, 1+60=@0+1), 1+ +1)=09,
6+1=(@0+1), 0+6=0, 0+@0O+1) =1,
@+D+1=0, @+DH+6=1, @+DH+@E+1)=0,
and that
11=1, 16 =6, 1O@+1)=(@®+1),
01 =0, 00 =@ +1), 60 +1) =1,
@+Dl=@O+1), @+10=1, @+hHE+1)=6.

The result is a field. With this direct approach a certain amount of checking is
necessary to verify all the properties of a field. We shall return to this matter in
Chapter IX when we consider finite fields more generally, and we shall then have
a way of constructing 4 that avoids tedious checking.

8In fact, if b and ¢ exist with ab = ca = 1, then a is a unit with ! = b = ¢ because
b =1b = (ca)b = c(ab) =cl =c.
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In analogy with the theory of groups, we define a subring of a ring to be a
nonempty subset that is closed under addition, negation, and multiplication. The
set 27 of even integers is a subring of the ring Z of integers. A subfield of a field is
a subset containing 0 and 1 that is closed under addition, negation, multiplication,
and multiplicative inverses for its nonzero elements. The set Q of rationals is a
subfield of the field R of reals.

Intermediate between rings and fields are two kinds of objects—integral do-
mains and division rings —that arise frequently enough to merit their own names.

The setting for the first is a commutative ring R. A nonzero element a of
R is called a zero divisor if there is some nonzero b in R with ab = 0. For
example the element 2 in the ring Z/6Z is a zero divisor because 2 - 3 = 0.
An integral domain is a nonzero commutative ring with identity having no zero
divisors. Fields have no zero divisors since if a and b are nonzero, then ab = 0
would force b = 1b = (a~'a)b = a'(ab) = a='0 = 0 and would give a
contradiction; therefore every field is an integral domain. The ring of integers
Z is another example of an integral domain, and the polynomial rings Q[X] and
R[X] and C[X] introduced in Section 1.3 are further examples. A cancellation
law for multiplication holds in any integral domain:

ab =ac with a #0 implies b=c.

In fact, ab = ac implies a(b — ¢) = 0; since a # 0, b — ¢ must be 0.

The other object with its own name is a division ring, which is a nonzero ring
with identity such that every nonzero element is a unit. The commutative division
rings are the fields, and we have encountered only one noncommutative division
ring so far. That is the set H of quaternions, which was introduced in Section 1.
Division rings that are not fields will play only a minor role in this book but are
of great interest in Chapters II and III of Advanced Algebra.

Let us turn to mappings. A function ¢ : R — R’ between two rings is an
isomorphism of rings if ¢ is one-one onto and satisfies ¢ (a + b) = p(a) + ¢(b)
and p(ab) = @p(a)p(b) for all a and b in R. In other words, ¢ is to be an
isomorphism of the additive groups and to satisfy ¢(ab) = ¢(a)p(b). Such a
mapping carries the identity, if any, in R to the identity of R’. The relation “is
isomorphic to” is an equivalence relation. Common notation for an isomorphism
of rings is R = R’; because of the symmetry, one can say that R and R’ are
isomorphic.

A function ¢ : R — R’ between two rings is a homomorphism of rings if ¢
satisfies p(a + b) = ¢(a) + ¢(b) and ¢p(ab) = p(a)p(b) for all a and b in R.
In other words, ¢ is to be a homomorphism of the additive groups and to satisfy
p(ab) = p(@)p(b).

EXAMPLES OF HOMOMORPHISMS OF RINGS.
(1) The mapping ¢ : Z — Z/mZ given by ¢(k) = k mod m.
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(2) The evaluation mapping ¢ : R[X] — R given by P(X) +— P(r) for some
fixed r in R.

(3) Mappings with the direct product Z x Z. The additive group Z x Z becomes
a commutative ring with identity under coordinate-by-coordinate multiplication,
namely (a,a’) + (b,b") = (a + b,a’ + b'). The identity is (1, 1). Projection
(a,a’) + a to the first coordinate is a homomorphism of rings Z x Z — Z that
carries identity to identity. Inclusion a — (a, 0) of Z into the first coordinate is
a homomorphism of rings Z — 7 x Z that does not carry identity to identity.’

Proposition 4.19. If R is a ring with identity 1g, then there exists a unique
homomorphism of rings ¢, : Z — R such that ¢(1) = 1.

PROOF. The formulas for manipulating exponents of an element in a group,
when translated into the additive notation for addition in R, say that n +— nr
satisfies (m + n)r = mr + nr and (mn)r = m(nr) for all r in R and all
integers m and n. The first of these formulas implies, for any r in R, that
@r(n) = nr is a homomorphism between the additive groups of Z and R, and
it is certainly uniquely determined by its value for n = 1. The distributive
laws imply that ¥, (r') = r’r is another homomorphism of additive groups.
Hence v, o ¢, and ¢,, are homomorphisms between the additive groups of
Z and R. Since (Y, o ¢)(1) = ¥, (¢") = r'r = ¢,(1), we must have
(Y, o @ )(m) = @ (m) for all integers m. Thus (mr’)r = m@'r) for all
m. Putting r = nlg and r’ = 1 proves the fourth equality of the computation

p1(mn) = (mn)lgp = m(nlg)
=m(1gnlg)) = (mlg)(nlg) = @1 (m)e;(n),

and shows that ¢; is in fact a homomorphism of rings. H

The image of a homomorphism ¢ : R — R’ of rings is a subring of R’, as is
easily checked. The kernel turns out to be more than just of subring of R. If a
is in the kernel and b is any element of R, then p(ab) = p(a)p(b) = 0p(b) =0
and similarly ¢(ba) = 0. Thus the kernel of a ring homomorphism is closed
under products of members of the kernel with arbitrary members of R. Adapting
a definition to this circumstance, one says that an ideal / of R (or two-sided
ideal in case of ambiguity) is an additive subgroup such that ab and ba are in
whenever a is in  and b is in R. Briefly then, the kernel of a homomorphism of
rings is an ideal.

Conversely suppose that / is an ideal in a ring R. Since / is certainly an
additive subgroup of an abelian group, we can form the additive quotient group

9Sometimes authors who build the existence of an identity into the definition of “ring” insist as
a matter of definition that homomorphisms of rings carry identity to identity. Such authors would
then exclude this particular mapping from consideration as a homomorphism.
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R/I. Tt is customary to write the individual cosets in additive notation, thus as
r + I. In analogy with Proposition 4.10, we have the following result for the
present context.

Proposition 4.20. If / is an ideal in a ring R, then a well-defined operation
of multiplication is obtained within the additive group R/I by the definition
(ri+ 1)@+ 1) =rirp+1,and R/I becomes aring. If R has an identity 1, then
1 + I is an identity in R/I. With these definitions the functiong : R — R/I
given by g(r) = r + I is a ring homomorphism of R onto R/I with kernel 1.
Consequently every ideal of R is the kernel of some homomorphism of rings.

REMARKS. When [ is an ideal, the ring R/ is called a quotient ring' of R,
and the homomorphism ¢ : R — R/I is called the quotient homomorphism.
In the special case that R = Z and I = mZ, the construction of R/I reduces to
the construction of Z/mZ as a ring at the beginning of this section.

PROOF. If we change the representatives of the cosets from r; and r; to ry + i
and rp +ip with iy and ir in I, then (ry +1i1)(rp +i2) = rirp + (i1rp +riis +i1in)
isin ryrp + I by the closure properties of /. Hence multiplication is well defined.

The associativity of this multiplication follows from the associativity of mul-
tiplication in R because

((r1 + I)(ry + I))(r3 + D=+ D+ 1)=G1rors+1=ri(rar3)+1
=1+ D3+ 1D =0+ D(r2+ D3 + 1)),

Similarly the computation

ri+D(r+ D+ 3+ D)=ri(ra+r3)+1=ra+rr3)+ 1
=r+Dr+ D+ @+ D3+ 1)

yields one distributive law, and the other distributive law is proved in the same
way. If R has an identity 1, then (1 + I)(r + 1) = Ir +1 = r + I and
r+ 1A +1)=r1+1=r+1showthat 1+ [ is an identity in R/I.

Finally we know that the quotient map ¢ : R — R/I is a homomorphism of
additive groups, and the computation g(r;r) =riry+1 =1+ D+ 1) =
q(r1)q(r2) shows that g is a homomorphism of rings. ]

EXAMPLES OF IDEALS.

(1) The ideals in the ring Z coincide with the additive subgroups and are the
sets mZ; the reason each mZ is an ideal is that if a and b are integers and m
divides a, then m divides ab.

10Quotient rings are known also as “factor rings.” A “ring of quotients.” however, is something
different.
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(2) The ideals in a field [F are O and F itself, no others; in fact, if a # 0 is in
an ideal and b is in F, then the equality » = (ba~')a shows that b is in the ideal
and that the ideal therefore contains all elements of IF.

3)If RisQ[X] or R[X] or C[X], then every ideal [ is of the form I = Rf (X)
for some polynomial f(X). In fact, we can take f(X) =0if [ =0. If I # 0,
let £ (X) be a nonzero member of I of lowest possible degree. If A(X) isin /,
then Proposition 1.12 shows that A(X) = f(X)B(X) + C(X) with C(X) =0 or
deg C < deg f. The equality C(X) = A(X) — f(X)B(X) shows that C(X) is in
1, and the minimality of deg f implies that C (X) = 0. Thus A(X) = f(X)B(X).

(4) In aring R with identity 1, an ideal / is a proper subset of R if and only if 1
isnotin /. In fact, I is certainly a proper subset if 1 is not in /. In the converse
direction if 1 is in /, then every element r = r1, for r in R, lies in /. Hence
I = R, and I is not a proper subset.

In analogy with what was shown for vector spaces in Proposition 2.25 and
for groups in Proposition 4.11, quotients in the context of rings allow for the
factorization of certain homomorphisms of rings. The appropriate result is stated
as Proposition 4.21 and is pictured in Figure 4.6.

Proposition 4.21. Let ¢ : Ry — R, be a homomorphism of rings, let Iy =
ker ¢, let I be anideal of R containedin Iy, andletq : Ry — R;/I be the quotient
homomorphism. Then there exists a homomorphism of rings ¢ : R;/I — R
such that ¢ = @ o g, i.e., (r; + I) = @(r1). It has the same image as ¢, and
kerg ={r+1|r € I}

Rl L> R2
77

Ry/I ’

FIGURE 4.6. Factorization of homomorphisms of rings via the quotient
of a ring by an ideal.

REMARK. One says that ¢ factors through R, /I or descends to R; /1.

PROOF. Proposition 4.11 shows that ¢ descends to a homomorphism @ of
the additive group of R;/I into the additive group of R, and that all the other
conclusions hold except possibly for the fact that ¢ respects multiplication. To
see that @ respects multiplication, we just compute that o((r + (' + 1)) =
orr’+ 1) = o(rr') = p(r)e’') =90 + Do’ + ). U
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An example of special interest occurs when ¢ is a homomorphism of rings
¢ 1 Z — R and the ideal mZ of Z is contained in the kernel of ¢. Then the
proposition says that ¢ descends to a homomorphism of rings ¢ : Z/mZ — R.
We shall make use of this result shortly. But first let us state a different special
case as a corollary.

Corollary 4.22. Let ¢ : Ry — R, be a homomorphism of rings, and suppose
that ¢ is onto R; and has kernel /. Then ¢ exhibits the ring R; /I as canonically
isomorphic to R;.

PROOF. Take I = Iy in Proposition 4.21, and form ¢ : R;/I — R, with
¢ = @ o q. The proposition shows that ¢ is onto R, and has trivial kernel, i.e.,
the identity element of R;//. Having trivial kernel, @ is one-one. (]

Proposition 4.23. Any field IF contains a subfield isomorphic to the rationals
Q or to some field IF,, with p prime.

REMARKS. The subfield in the proposition is called the prime field of IF. The
characteristic of IF is defined to be 0 if the prime field is isomorphic to Q and to
be p if the prime field is isomorphic to IF,,.

PROOF. Proposition 4.19 produces a homomorphism of rings ¢; : Z — F
with ¢;(1) = 1. The kernel of ¢, is an ideal, necessarily of the form mZ with
m an integer > 0, and the image of ¢; is a commutative subring with identity in
F. Let @, : Z/mZ — T be the descended homomorphism given by Proposition
4.21. The integer m cannot factor nontrivially, say as m = rs, because otherwise
@,(r) and @, (s) would be nonzero members of F with ¢, (r)p,(s) = @,(rs) =
©,(0) = 0, in contradiction to the fact that a field has no zero divisors.

Thus m is prime or m is 0. If m is a prime p, then Z/pZ is a field, and the
image of @, is the required subfield of . Thus suppose that m = 0. Then ¢,
is one-one, and [ contains a subring with identity isomorphic to Z. Define a
function ®; : Q — F by saying that if k and [ are integers with [ # 0, then
@ (k™" = @1 (k)i (1)~". This is well defined because ¢; (1) # 0 and because
klll_l = kzlz_l implies kllz = kzll and hence ¥1 (k])(pl(lg) = gal(kg)(pl (11) and
o1(kDe1(1) ™! = @1 (k)1 (1) ~'. We readily check that ®; is a homomorphism
with kernel 0. Then [ contains the subfield ®;(Q) isomorphic to Q. O

5. Polynomials and Vector Spaces

In this section we complete the digression begun in Section 4. We shall be using
the elementary notions of rings and fields established in Section 4 in order to
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work with (i) polynomials over any commutative ring with identity and (ii) vector
spaces over arbitrary fields.

It is an important observation that a good deal of what has been proved so
far in this book concerning polynomials when F is Q or R or C remains valid
when F is any field. Specifically all the results in Section 1.3 through Theorem
1.17 on the topic of polynomials in one indeterminate remain valid as long as the
coefficients are from a field. The theory breaks down somewhat when one tries to
extend it by allowing coefficients that are not in a field or by allowing more than
one indeterminate. Because of this circumstance and because we have not yet
announced a universal mapping property for polynomial rings and because we
have not yet addressed the several-variable case, we shall briefly review matters
now while extending the reach of the theory that we have.

Let R be anonzero commutative ring with identity, sothat 1 # 0. A polynomial
in one indeterminate is to be an expression P(X) = a, X"+ - -4+a, X>+a; X +ao
in which X is a symbol, not a variable. Nevertheless, the usual kinds of ma-
nipulations with polynomials are to be valid. This description lacks precision
because X has not really been defined adequately. To make a precise definition,
we remove X from the formalism and simply define the polynomial to be the
tuple (ag, ai, ..., a,,0,0,...) of its coefficients. Thus a polynomial in one
indeterminate with coefficients in R is an infinite sequence of members of R
such that all terms of the sequence are O from some point on. The indexing of the
sequence is to begin with 0, and X is to refer to the polynomial (0, 1, 0,0, ...).
We may refer to a polynomial P as P(X) if we want to emphasize that the
indeterminate is called X. Addition and negation of polynomials are defined in
coordinate-by-coordinate fashion by

(a05a17"'7an70707"')+(b03b17"'7bn70707"')
:(a0+b05a1+bla"'7al’l+bn»070$"-)7
_(a()vala""anaosov"'):(_a07_al7”"_an70’07”')’

and the set R[X] of polynomials is then an abelian group isomorphic to the direct
sum of infinitely many copies of the additive group of R. As in Section 1.3, X"
is to be the polynomial whose coefficients are 1 in the n™ position, with n > 0,
and O in all other positions. Polynomial multiplication is then defined so as to
match multiplication of expressions a,X" 4 --- 4+ a1 X + aop if the product is
expanded out, powers of X are added, and the terms containing like powers of X
are collected. Thus the precise definition is that

(ao,al,...,O,O,...)(bo,bl,...,O,O,...)=(co,c1,...,0,0,...),

where cy = ZQ’:O arby . Itis a simple matter to check that this multiplication
makes R[X] into a commutative ring.
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The polynomial with all entries O is denoted by O and is called the zero
polynomial. For all polynomials P = (ao, ..., a,,0,...) other than 0, the
degree of P, denoted by deg P, is defined to be the largest index n such that
a, # 0. In this case, a, is called the leading coefficient, and a, X" is called the
leading term,; if @, = 1, the polynomial is called monic. The usual convention
with the 0 polynomial is either to leave its degree undefined or to say that the
degree is —oo0; let us follow the latter approach in this section in order not to have
to separate certain formulas into cases.

There is a natural one-one homomorphism of rings ¢t : R — R[X] given by
t(c) = (c,0,0,...) for c in R. This sends the identity of R to the identity of
R[X]. Thus we can identify R with the constant polynomials, i.e., those of
degree < 0.

If P and Q are nonzero polynomials, then

deg(P + Q) < max(deg P, deg Q).

In this formula equality holds if deg P # deg Q. In the case of multiplication, let
P and Q have respective leading terms a,, X" and b, X". All the coefficients of
P Q are 0 beyond the (m +n)", and the (m +n)" is a,,b,,. This in principle could
be 0 but is nonzero if R is an integral domain. Thus P and Q nonzero implies

dee(PO) { <deg P +deg QO for general R,
e
g =deg P +deg Q if R is an integral domain.

It follows in particular that R[X] is an integral domain if R is.

Normally we shall write out specific polynomials using the informal notation
with powers of X, using the more precise notation with tuples only when some
ambiguity might otherwise result.

In the special case that R is a field, Section 1.3 introduced the notion of
evaluation of a polynomial P (X) ata pointr in the field, thus providing a mapping
P(X) +— P(r) from R[X] to R foreachr in R. We listed a number of properties
of this mapping, and they can be summarized in our present language by the
statement that the mapping is a homomorphism of rings. Evaluation is a special
case of a more sweeping property of polynomials given in the next proposition
as a universal mapping property of R[X].

Proposition 4.24. Let R be a nonzero commutative ring with identity, and
let: : R — R[X] be the identification of R with constant polynomials. If T is
any commutative ring with identity, if ¢ : R — T is a homomorphism of rings
sending 1 into 1, and if ¢ is in 7', then there exists a unique homomorphism of
rings ® : R[X] — T carrying identity to identity such that ®(¢(r)) = ¢(r) for
allr € Rand ®(X) =1¢.
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REMARKS. The mapping & is called the substitution homomorphism ex-
tending ¢ and substituting ¢ for X, and the mapping is written P(X) — P¢(t).
The notation means that ¢ is to be applied to the coefficients of P and then X is
to be replaced by 7. A diagram of this homomorphism as a universal mapping
property appears in Figure 4.7. In the special case that 7 = R and ¢ is the
identity, ® reduces to evaluation at ¢, and the mapping is written P(X) +— P(¢),
just as in Section L.3.

R 2.7

1

R[X]
FIGURE 4.7. Substitution homomorphism for polynomials in one indeterminate.

PROOF. Define ®(ag, aj, ..., a,,0,...) = @(ag) + ¢(a))t + - - - + p(a,)t".
It is immediate that ® is a homomorphism of rings sending the identity ¢(1) =
(1,0,0,...) of R[X] to the identity ¢(1) of T. If r is in R, then ®(«(r)) =
®(r,0,0,...) = @). Also, d(X) = ¢(0,1,0,0,...) = ¢. This proves
existence. Uniqueness follows since ((R) and X generate R[X] and since a
homomorphism defined on R[X] is therefore determined by its values on ¢(R)
and X. ]

The formulation of the proposition with the general ¢ : R — T, rather than just
the identity mapping on R, allows several kinds of applications besides the routine
evaluation mapping. An example of one kind occurs when R = C, T = C[X],
and ¢ : C — C[X] is the composition of complex conjugation on C followed
by the identification of complex numbers with constant polynomials in C[X]; the
proposition then says that complex conjugation of the coefficients of a member
of C[X] is a ring homomorphism. This observation simplifies the solution of
Problem 7 in Chapter 1. Similarly one can set up matters so that the proposition
shows the passage from Z[ X] to (Z/mZ)[ X] by reduction of coefficients modulo
m to be a ring homomorphism.

Still a third kind of application is to take 7" in the proposition to be aring with the
same kind of universal mapping property that R[ X] has, and the consequence is an
abstract characterization of R[X]. We carry out the details below as Proposition
4.25. This result will be applied later in this section to the several-indeterminate
case to show that introducing several indeterminates at once yields the same ring,
up to canonical isomorphism, as introducing them one at a time.

Proposition 4.25. Let R and S be nonzero commutative rings with identity,
let X’ be an element of S, and suppose that ¢’ : R — S is a one-one ring
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homomorphism of R into S carrying 1 to 1. Suppose further that (S, ¢, X’)
has the following property: whenever 7 is a commutative ring with identity,
¢ : R — T is ahomomorphism of rings sending 1 into 1, and # is in 7', then there
exists a unique homomorphism @’ : § — T carrying identity to identity such
that ®'(/(r)) = ¢(r) for all € R and ®'(X") = ¢. Then there exists a unique
homomorphism of rings ¥ : R[X] — § such that ¥ o¢ = ¢ and ¥(X) = X/,
and W is an isomorphism.

REMARK. A somewhat weaker conclusion than in the proposition is that any
triple (S, ¢/, X’) having the same universal mapping property as (R[X], ¢, X) is
isomorphic to (S, ¢/, X’), the isomorphism being unique.

PROOF. In the universal mapping property for S, take T = R[X], ¢ = ¢, and
t = X. The hypothesis gives us a ring homomorphism &’ : § — R[X] with
(1) =1, P ot = ¢, and ¥'(X’) = X. Next apply Proposition 4.24 with
T =S,¢ ={!,andr = X'. We obtain a ring homomorphism ® : R[X] — §
with®(1) = 1, Por = ¢/,and ®(X) = X’'. Then &' o ® is aring homomorphism
from R[X] to itself carrying 1 to 1, fixing X, and having ®’ o <I>|[(R) = (. From
the uniqueness in Proposition 4.24 when T = R[X], ¢ = ¢, and t = X, we see
that @’ o ® is the identity on R[X]. Reversing the roles of ® and ®’ and applying
the uniqueness in the universal mapping property for S, we see that ® o @’ is the
identity on S. Therefore ® may be taken as the isomorphism W in the statement
of the proposition. This proves existence for W, and uniqueness follows since
t(R) and X together generate R[X] and since W is a homomorphism. ]

If P is a polynomial over R in one indeterminate and r is in R, then r is a
root of P if P(r) = 0. We know as a consequence of Corollary 1.14 that for
any prime p, any polynomial in F,[ X] of degree n > 1 has at most n roots. This
result does not extend to Z/mZ for all positive integers m: when m = 8, the
polynomial X2 — 1 has 4 roots, namely 1,3, 5,7. This result about F,[X] has
the following consequence.

Proposition 4.26. If I is a field, then any finite subgroup of the multiplicative
group F* is cyclic.

PROOF. Let C be a subgroup of F* of finite order n. Lagrange’s Theorem
(Corollary 4.8) shows that the order of each element of C divides n. With h
defined as the maximum order of an element of C, it is enough to show that
h = n. Let a be an element of order 4. The polynomial X" — 1 has at most /4
roots by Corollary 1.14, and a is one of them, by definition of “order.” If & < n,
then it follows that some member b of C is not a root of X" — 1. The order A’
of b is then a divisor of n but cannot be a divisor of 4 since otherwise we would
have b" = (b")"/"" = 1"/" = 1. Consequently there exists a prime p such that
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some power p” of p divides 4’ but not 4. Let s < r be the exact power of p
dividing &, and write h = mp?®, so that GCD(m, p”) = 1 and @’ = a”" has order
m. Putg = h’/p", so that b’ = b? has order p”. The proof will be completed
by showing that ¢ = a’b’ has order mp”™ = hp"~* > h, in contradiction to the
maximality of 4.

Let ¢ be the order of ¢c. On the one hand, from ¢ = (a’)""" (b')"" =
ah?’ pme'a = ght"" pmh' — (a”)PH‘v ("™ = 1, we see that 7 divides mp”. On
the other hand, 1 = ¢’ says that (a’)’ = (b')~". Raising both sides to the p”
power gives 1 = ((b')?" )™ = (a’)'"", and hence m divides tp”; by Corollary
1.3, m divides ¢. Raising both sides of (a’)’ = (b')™" to the m™ power gives
1 = ((@)™)" = ()", and hence p” divides rm; by Corollary 1.3, p” divides
t. Applying Corollary 1.4, we conclude that mp” divides ¢. Therefore t = mp",
and the proof is complete. (]

Corollary 4.27. The multiplicative group of a finite field is cyclic.

PROOF. This is a special case of Proposition 4.26. (]

A finite field F can have a nonzero polynomial that is O at every element of FF.
Indeed, every element of IF, is a root of X” — X, as a consequence of Fermat’s
Little Theorem. It is for this reason that it is unwise to confuse a polynomial in
an indeterminate with a “polynomial function.”

Let us make the notion of a polynomial function of one variable rigorous. If
P (X) is a polynomial with coefficients in the commutative ring R with identity,
then Proposition 4.24 gives us an evaluation homomorphism P +— P (r) for each
r in R. The function r +— P(r) from R into R is the polynomial function
associated to the polynomial P. This function is a member of the commutative
ring of all R-valued functions on R, and the mapping P +—> (r = P(r)) is
a homomorphism of rings. What we know from Corollary 1.14 is that this
homomorphism is one-one if R is an infinite field. A negative result is that
if R is a finite commutative ring with identity, then [ [, (X —r) is a polynomial
that maps to the O function, and hence the homomorphism is not one-one. A more
general positive result than the one above for infinite fields is the following.

Proposition 4.28.

(a) If R is a nonzero commutative ring with identity and P (X) is a member of
R[X] with aroot r, then P(X) = (X —r)Q(X) for some Q(X) in R[X].

(b) If R is an integral domain, then a nonzero member of R[X] of degree n
has at most n roots.

(c) If R is an infinite integral domain, then the ring homomorphism of R[X]
to the ring of polynomial functions from R to R, given by evaluation, is one-one.
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PROOF. For (a), we proceed by induction on the degree of P, the base case of
the induction being degree < 0. If the conclusion has been proved for degree < n
withn > 1, let the leading term of P be a, X". Then P(X) = a,(X —r)" + A(X)
withdeg A < n. Evaluationatr gives, by virtue of Proposition4.24,0 = 0+ A(r).
By the inductive hypothesis, A(X) = (X —r)B(X). Then P(X) = (X —r) Q(X)
with Q(X) = a,(X —r)"~! 4+ B(X), and the induction is complete.

For (b), let P(X) have degree n with at least n + 1 distinct roots ry, ..., Fyy1.
Part (a) shows that P(X) = (X — ry)P1(X) withdeg P, = n — 1. Also, 0 =
P(rp) = (rp —r1)Pi(rp). Since r; — ry # 0 and since R has no zero divisors,
Pi(r,) = 0. Part (a) then shows that P;(X) = (X — r) P,(X), and substitution
gives P(X) = (X — r;)(X — rp) P2(X). Continuing in this way, we obtain
PX)=X—-r1)-- (X —rp)Py(X) withdeg P, = 0. Since P # 0, P, # 0.
So P, is a nonzero constant polynomial P,(X) = ¢ # 0. Evaluating at r,11, we
obtain0 = (r, 1 —ry) - - - (r,o1 — rp)c with each factor nonzero, in contradiction
to the fact that R is an integral domain.

For (c), apolynomial in the kernel of the ring homomorphism has every member
of R as aroot. If R is infinite, (b) shows that such a polynomial is necessarily
the zero polynomial. Thus the kernel is 0, and the ring homomorphism has to be
one-one. ([l

Let us turn our attention to polynomials in several indeterminates. Fix the
nonzero commutative ring R with identity, and let n be a positive integer. Infor-
mally a polynomial over R in n indeterminates is to be a finite sum

oy
§ , Tjtrrin X1 Xy

J1=0,...,ju=0

witheachr;  ; in R. To make matters precise, we work just with the system of
coefficients, just as in the case of one indeterminate.

Let J be the set of integers > 0, and let J" be the set of n-tuples of elements of
J. A member of J" may be writtenas j = (ji, ..., j,). Addition of members of
J" is defined coordinate by coordinate. Thus j + j' = (ji + j{, ..., ju + j)) if
j=U, ..., joand j' = (j{,..., j,). Apolynomial in » indeterminates with
coefficients in R is a function f : J” — R such that f(j) # O for only finitely
many j € J". Temporarily let us write S for the set of all such polynomials for a
particular n. If f and g are two such polynomials, their sum % and product k are
the polynomials defined by

h(j) = f() + &),
k@)= 2> f()Hgl"-

J+i=i

Under these definitions, S is a commutative ring.
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Define a mapping ¢ : R — S by

r if j =(0,...,0),
0 otherwise.

L) = {

Then ¢ is a one-one homomorphism of rings, ¢(0) is the zero element of S and is
called simply 0, and ¢(1) is a multiplicative identity for S. The polynomials in
the image of ¢ are called the constant polynomials.

For 1 < k < n, let ¢; be the member of J”" that is 1 in the & place and is O
elsewhere. Define X to be the polynomial that assigns 1 to e; and assigns O to all
other members of J”". We say that X} is an indeterminate. If j = (ji, ..., j,)
is in J", define X/ to be the product

X/ =X X

If r isin R, we allow ourselves to abbreviate ¢(r) X/ as r X/, and any such polyno-
mial is called a monomial. The monomial X/ is the polynomial that assigns r to
J and assigns O to all other members of J". Then it follows immediately from the
definitions that each polynomial has a unique expansion as a finite sum of nonzero
monomials. Thus the most general member of S is of the form 3, ;. r; X J with
only finitely many nonzero terms. This is called the monomial expansion of the
given polynomial.

We may now write R[X|, ..., X,] for S. A polynomial Zjejn r; X/ may
be conveniently abbreviated as P or as P(X) or as P(Xy, ..., X,) when its
monomial expansion is either understood or irrelevant.

The degree of the 0 polynomial is defined for this section to be —oo, and the
degree of any monomial X/ with r # 0 is defined to be the integer

l=i+-Fjn  Hj=01s )

Finally the degree of any nonzero polynomial P, denoted by deg P, is defined to
be the maximum of the degrees of the terms in its monomial expansion. If all the
nonzero monomials in the monomial expansion of a polynomial P have the same
degree d, then P is said to be homogeneous of degree d. Under these definitions
the O polynomial has degree —oo but is homogeneous of every degree. If P and
Q are homogeneous polynomials of degrees d and d’, then P Q is homogeneous
of degree dd’ (and possibly equal to the O polynomial).

In any event, by grouping terms in the monomial expansion of a polynomial
according to their degree, we see that every polynomial is uniquely the sum
of nonzero homogeneous polynomials of distinct degrees. Let us call this the
homogeneous-polynomial expansion of the given polynomial. Let us expand
two such nonzero polynomials P and Q in this fashion, writing P = Py 4 - -+ Py,
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and Q = Qg + -+ + Qg withd; < --- <dyandd| < --- < d;. Then we see
directly that
deg(P + Q) < max(deg P, deg Q),

deg(PQ) < deg P +deg Q.

In the formula for deg(P + Q), the term that is potentially of largest degree is
Py, + Qg and it is of degree max(deg P, deg Q) if deg P # deg Q. In the
formula for deg(P Q), the term that is potentially of largest degree is Py, Q. It
is homogeneous of degree d; + d;, but it could be 0. Some proof is required that
itis not O if R is an integral domain, as follows.

Proposition 4.29. If R is an integral domain, then R[ X, ..., X,,] is an integral
domain.

PROOF. Let P and Q be nonzero homogeneous polynomials with deg P = d
and deg Q = d’. We are to prove that P Q # 0. We introduce an ordering on the
set of all members j of J", saying j = (ji, ..., j») > j = (j{,..., j,) if there
is some k such that j; = j/ fori < k and ji > j;. In the monomial expansion
of Pas P(X) = lel:d anf, let i be the largest n-tuple j in the ordering such
that a; # 0. Similarly with Q(X) = > _s by X7, let i’ be the largest n-tuple
Jj' in the ordering such that b # 0. Then

PXOOX) = abi X' + 3 agby X7,
Jj,j' with
(. JN#GT

and all terms in the sum Zj’ ;» on the right side have j + j" < i +i". Thus

aiby Xt is the only term in the monomial expansion of P(X)Q(X) involving
the monomial X', Since R is an integral domain and a; and b,  are nonzero,
a; by is nonzero. Thus P(X)Q(X) is nonzero. O

Proposition 4.30. Let R be a nonzero commutative ring with identity, let
R[Xy, ..., X,] be the ring of polynomials in n indeterminates, and define
t: R — R[Xy,..., X,] to be the identification of R with constant polynomials.
If T is any commutative ring with identity, if ¢ : R — T is a homomorphism
of rings sending 1 into 1, and if #, ..., 1, are in T, then there exists a unique
homomorphism ® : R[X|, ..., X,] = T carrying identity to identity such that
®D(u(r)) =¢(r) forallr € Rand ®(X;) =t forl < j <n.

REMARKS. The mapping & is called the substitution homomorphism ex-
tending ¢ and substituting #; for X; for 1 < j < n, and the mapping is written
P(Xy,...,X,) — P?(ty,...,t,). The notation means that ¢ is to be applied
to each coefficient of P and then X1, ..., X, are to be replaced by 71, ..., t,.
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A diagram of this homomorphism as a universal mapping property appears
in Figure 4.8. In the special case that T = R x --- x R (cf. Example 3 of
homomorphisms in Section 4) and ¢ is the identity, ® reduces to evaluation at

(t1,...,t,), and the mapping is written P(Xq, ..., X)) — P(t1, ..., t,).
R T
i
Ll P
R[X4, ..., X,]

FIGURE 4.8. Substitution homomorphism for polynomials in n indeterminates.

PROOF. If P(X1,..., X,) = Zjlz(),...,jnzo aj,.., an{‘ e X,{" is the monomial
expansion of a member P of R[ X1, ..., Xnl, then ®(P) is defined to be the cor-

responding finite sum ) 7120, jnz0 Dt i -4, Existence readily follows,
and uniqueness follows since ((R) and X1, ..., X, generate R[ X, ..., X,] and
since ® is a homomorphism. O

Corollary 4.31. If R is a nonzero commutative ring with identity, then
R[X1, ..., Xn—1][X,] is isomorphic as a ring to R[ X1, ..., X,].

REMARK. The proof will show that the isomorphism is the expected one.

PROOF. In the notation with n-tuples and J”, any (n — 1)-tuple may be iden-
tified with an n-tuple by adjoining 0 as its n™ coordinate, and in this way, every
monomial in R[X1, ..., X,,_1] can be regarded as a monomial in R[ X, ..., X,,].
The extension of this mapping to sums gives us a one-one homomorphism of rings
! R[Xy,...,Xu_1] = R[X1,..., X,]. We are going to use Proposition 4.25
to prove the isomorphism of rings R[ X1, ..., X;,—1][X,] = R[X1, ..., X»]. In
the notation of that proposition, the role of R is played by R[X,..., X,-1],
we take S = R[X|, ..., X,], and we have constructed (/. We are to show that
(S, V, X,) satisfies a certain universal mapping property. Thus suppose that T is a
commutative ring with identity, thatz isin 7', and that ¢’ : R[Xy, ..., X,11 > T
is a homomorphism of rings carrying identity to identity.

We shall apply Proposition 4.30 in order to obtain the desired homomorphism
® S —- T. Lett,_; : R - R[X4,..., X,—1] be the identification of R
with constant polynomials in R[X1, ..., X,_1], and let ¢, = ¢/ o 1,1 be the
identification of R with constant polynomials in S. Define ¢ : R — T by
¢ = ¢'ot,_1,andtaket, = randt; = ¢'(X;)for1 < j < n—1. ThenProposition
4.30 produces a homomorphism of rings ®" : S — T with ®'(¢,(r)) = ¢(r) for
reR, (X)) =¢'(X;)forl < j<n-—1,and ®'(X,) = t,. The equations

D' (ty-1(r)) = ' (L (1) = 9(r) = ¢ (tu-1(r))
and (X)) = ¢'(X))
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show that ' ot/ = ¢’ on R[Xy, ..., X,]. Also, ®'(X,) = t, = t. Thus the
mapping &’ sought by Proposition4.25 exists. Itisunique since R[ X1, ..., X,—1]
and X, together generate S. The conclusion from Proposition 4.25 is that S is
isomorphic to R[ X, ..., X;,—1][X,] via the expected isomorphism of rings. [J

We conclude the discussion of polynomials in several variables by making the
notion of a polynomial function of several variables rigorous. If P(Xy,..., X,)
is a polynomial in n indeterminates with coefficients in the commutative ring
R with identity, then Proposition 4.30 gives us an evaluation homomorphism
P+ P(ry,...,r,) foreach n-tuple (r, ..., r,) of members of R. The function
(ri,...,rp) = P(@ry,...,ry) from R x --- x R into R is the polynomial
function associated to the polynomial P. This function is a member of the
commutative ring of all R-valued functions on R X --- x R, and the mapping
P ((rl, ...,Tp) > P(ry,...,ry)) is a homomorphism of rings.

Corollary 4.32. If R is an infinite integral domain, then the ring homomor-
phism of R[X1, ..., X,;] to polynomial functions from R x --- x R to R, given
by evaluation, is one-one.

REMARK. This result extends Proposition 4.28 to several indeterminates.

PROOF. We proceed by induction on n, the case n = 1 being handled by
Proposition 4.28. Assume the result for n — 1 indeterminates. If P % 0 is in
R[X1, ..., X,], Corollary 4.31 allows us to write

k
P(X1,...,Xa) =Y PiX1,..., Xp DX,
i=1

for some k, with each P; in R[ X, ..., X,,—1] and with P.(Xy, ..., X,—1) # 0.
By the inductive hypothesis, Py(ry,...,r,—1) is nonzero for some elements
rls...,rp—1 of R. So the polynomial Zf:o Pi(ry,..., r,l_l)X,"1 in R[X,] is not
the 0 polynomial, and Proposition 4.28 shows that it is not 0 when evaluated at
some r,. Then P(ry,...,r,) # 0. ]

It is possible also to introduce polynomial rings in infinitely many variables.
These will play roles only as counterexamples in this book, and thus we shall not
stop to treat them in detail.

We complete this section with some remarks about vector spaces. The defini-
tion of a vector space over a general field IF remains the same as in Section II.1,
where [ is assumed to be Q or R or C. We shall make great use of the fact that all
the results in Chapter II concerning vector spaces remain valid when QQ or R or
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C is replaced by a general field F. The proofs need no adjustments, and it is not
necessary to write out the details. For the moment we make only the following
application of vector spaces over general fields, but the extended theory of vector
spaces will play an important role in most of the remaining chapters of this book.

Proposition 4.33. If I is a finite field, then the number of elements in IF is a
power of a prime.

REMARK. We return to this matter in Chapter IX, showing at that time that for
each prime power p" > 1, there is one and only one field with p” elements, up
to isomorphism.

PROOF. The characteristic of IF cannot be O since I is finite, and hence it is some
prime p. Denote the prime field of IF by IF,. By restricting the multiplication
so that it is defined only on IF, x IF, we make I into a vector space over F,,
necessarily finite-dimensional. Proposition 2.18 shows that [ is isomorphic as a
vector space to the space (IF,)" of n-dimensional column vectors for some n, and
hence F must have p" elements. O

6. Group Actions and Examples

Let X be a nonempty set, let 7(X) be the group of invertible functions from X
onto itself, the group operation being composition, and let G be a group. A group
action of G on X is a homomorphism of G into 7(X). When X = {1, ..., n},
the group F(X) is just the symmetric group &,,. Thus Examples 5-9 of groups
in Section 1 are all in fact subgroups of various groups F(X) and are therefore
examples of group actions. Thus every group of permutations of {1, . . ., n}, every
dihedral group acting on R?, and every general linear group or subgroup acting
on a finite-dimensional vector space over Q or R or C or an arbitrary field F
provides an example. So do the orthogonal and unitary groups acting on R"” and
C", as well as the automorphism group of any number field.

We saw an indication in Section 1 that many early examples of groups arose in
this way. One source of examples that is of some importance and was not listed in
Section 1 occurs in the geometry of R?. The translations in R?, together with the
rotations about arbitrary points of R? and the reflections about arbitrary lines in
R?, form a group G of rigid motions of the plane.!! This group G is a subgroup
of F(R?), and thus G acts on R?. More generally, whenever a nonempty set X
has a notion of distance, the set of isometries of X, i.e., the distance-preserving
members of F(X), forms a subgroup of F(X), and thus the group of isometries
of X acts on X.

One can show that G is the full group of rigid motions of R?, but this fact will not concern us.
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At any rate a group action T of G on X, being a homomorphism of G into
F(X), is of the form g +— 1., where 7, is in F(X) and 7,4, = T, Tg,. There is
an equivalent way of formulating matters that does not so obviously involve the
notion of a homomorphism. Namely, we write 74(x) = gx. In this notation the
group action becomes a function G x X — X with (g, x) — gx such that

(1) (g182)x = g1(g2x) forall g; and g, in G and for all x in X (from the fact
that Te10 = ‘L’gl‘L'g2),
(i1) 1x = x for all x in X (from the fact that t; = 1).

Conversely if G x X — X satisfies (i) and (ii), then the formulas x = 1x =
(gg Hx = g(g7'x) and x = 1x = (g~ 'g)x = g~ '(gx) show that the function
x +— gx from X to itself is invertible with inverse x +— g~ 'x. Consequently
the definition 7,(x) = gx makes g — T, a function from G into F(X), and (i)
shows that t is a homomorphism. Thus (i) and (ii) indeed give us an equivalent
formulation of the notion of a group action. Both formulations are useful.

Quite often the homomorphism G — F(X) of a group action is one-one, and
then G can be regarded as a subgroup of F(X). Here is an important geometric
example in which the homomorphism is not one-one.

EXAMPLE. Linear fractional transformations. Let X = C U {oc}, a set that
becomes the Riemann sphere in complex analysis. The group G = GL(2, C)
acts on X by the linear fractional transformations

the understanding being that the image of oo is ac™! and the image of —dc™!
is 0o, just as if we were to pass to a limit in each case. Property (ii) of a group
action is clear. To verify (i), we simply calculate that

(2 9)(( o)
¢ d')\\c d CI(ER) +d

_ (@a+bc)yz+ (@b+bd)
" (Ca+dc)z+ (c'b+d'd)

(e @) (@ &)e

and indeed we have a group action. Let SL(2, R) be the subgroup of real matrices
in GL(2, C) of determinant 1, and let Y be the subset of X where Imz > 0, not
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including co. The members of SL(2, R) carry the subset Y into itself, as we see
from the computation

az+b (az +b)(cz+d) adz + bcz
Im =1m = -
cz+d lez + d|? lcz + d|?
_ (ad — bc)Imz _ Imz
ez +d?P ez +d*F

Since the effect of a matrix g~ is to invert the effect of g, and since both g and

g~ ! carry Y to itself, we conclude that SL(2, R) actson ¥ = {z € C | Imz > 0}
by linear fractional transformations. In similar fashion one can verify that the
subgroup'? of GL(2, C)

(5 )

acts on {z € C | |z| < 1} by linear fractional transformations.

aeC, peC, |a|2—|,3|2:1}

One group action can yield many others. For example, from an action of G on
X, we can construct an action on the space of all complex-valued functions on
X. The definition is (gf)(x) = f(g~'x), the use of the inverse being necessary
in order to verify property (i) of a group action:

(818 ) = f((g182) %) = £ (g5 g7 Hx)
= (g, ' (g7' ) = (821 (g7 %) = (g1(g2./))(x).

There is nothing special about the complex numbers as range for the functions
here. We can allow any set as range, and we can even allow G to act on the range,
as well as on the domain.!® If G acts on X and Y, then the set of functions from
X to Y inherits a group action under the definition

(8f)x) = g(f(g'x)),

as is easily checked. In other words, we are to use g~ ! where the domain enters

the formula and we are to use g where the range enters the formula.
If V is a vector space over a field F, a representation of G on V is a group
action of G on V by linear functions. Specifically for each g € G, 7, is to be a

12This subgroup is commonly called SU(1, 1) for reasons that are not relevant to the current
discussion.

13When C was used as range in the previous display, the group action of G on C was understood
to be trivial in the sense that gz = z for every g in G and z in C.
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member of the group of linear maps from V into itself. Usually one writes 7(g)
instead of 7, in representation theory, and thus the condition is that 7 (g) is to be
linear for each g € G and we are to have (1) = 1 and 7(g;g2) = 7(g1)7(g2) for
all g; and g;. There are interesting examples both when V is finite-dimensional
and when V is infinite-dimensional.'*

EXAMPLES OF REPRESENTATIONS.
(1) If m > 1, then the additive group Z/mZ acts linearly on R? by

2k o 2wk

COS =— —SIn=-—
T(k):( . 27’?]( 2’;](), kE{O,l,Z,...,m—l}.

Sm=, CoSE”

Each t (k) is arotation matrix about the origin through an angle that is a multiple of
27 /m. These transformations of R? form a subgroup of the group of symmetries
of a regular k-gon centered at the origin in R?.

(2) The dihedral group Ds acts linearly on R? with

1(1):(3?), e 3):((1)_?), t(12) = (‘é ?)

_l),r(132):<_ﬁ_l).
2 2 2

Each of these matrices carries into itself the equilateral triangle with center at the
origin and one vertex at (1, 0). To obtain these matrices, we number the vertices
#1, #2, #3 counterclockwise with the vertex at (1, 0) as #1.

Q
PAY
—
w
N
Il
N
|
|
I— Nl&
N~

(1 23)=(

MG o

(3) The symmetric group &, acts linearly on R" by permuting the indices
of standard basis vectors. For example, with n = 3, we have (1 3)e; = es,
(1 3)ey = ey, etc. The matrices may be computed by the techniques of Section
I1.3. With n = 3, we obtain, for example,

001 001
(1 3)|—>(010> and (123)+—>(100).

100 010

(4) If G acts on a set X, then the corresponding action (gf)(x) = f(g~'x) on
complex-valued functions is a representation on the vector space of all complex-
valued functions on X. This vector space is infinite-dimensional if X is an infinite
set. The linearity of the action on functions follows from the definitions of addition

141n some settings a continuity assumption may be added to the definition of a representation, or
the field F may be restricted in some way. We impose no such assumption here at this time.
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and scalar multiplication of functions. In fact, let functions f; and f, be given,
and let ¢ be a scalar. Then

&(fi + LNE) = (fi + £)(E& %) = filg™'x) + fo(g 'x)
= (gfi)x) + (gf)(x) = (gfi + gf2)(x)

and

(glcf) @) = (cf)(g 'x) = c(fi(g 'x)) = c((gfi)(x)) = (c(gfi) ().

One more important class of group actions consists of those that are closely
related to the structure of the group itself. Two simple ones are the action of G
on itself by left translations (g, g2) > gi1&> and the action of G on itself by
right translations (g1, g2) — £ gl_l. More useful is the action of G on a quotient
space G/ H, where H is a subgroup. This actionis givenby (g1, g2 H) — g182H.
There are still others, and some of them are particularly handy in analyzing finite
groups. We give some applications in the present section and the next, and we
postpone others to Section 10. Before describing some of these actions in detail,
let us make some general definitions and establish two easy results.

Let G x X — X be a group action. If pisin X, then G, = {g € G | gp = p}
is a subgroup of G called the isotropy subgroup at p or stabilizer of G at p.
This is not always a normal subgroup; however, the subgroup () pec Gp that fixes
all points of X is the kernel of the homomorphism G — F(X) defining the group
action, and such a kernel has to be normal.

Let p and g be in X. We say that p is equivalent to g for the purposes of
this paragraph if p = gg for some g € G. The result is an equivalence relation:
it is reflexive since p = 1p, it is symmetric since p = gg implies g~'p = ¢,
and it is transitive since p = gq and ¢ = g'r together imply p = (gg’)r. The
equivalence classes are called orbits of the group action. The orbit of a point p
in Xis Gp = {gp | g € G}. If Y = Gp is an orbit,'® or more generally if Y is
any subset of X carried to itself by every element of G,then G x ¥ — Y isa
group action. In fact, each function y + gy is invertible on ¥ with y > g~ 'y
as the inverse function, and properties (i) and (ii) of a group action follow from
the same properties for X.

A group action G x X — X is said to be transitive if there is just one orbit,
hence if X = Gp for each p in X. It is simply transitive if it is transitive and if
for each p and ¢ in X, there is just one element g of G with gp = g.

15 Although the notation G p for the isotropy subgroup and Gp for the orbit are quite distinct in
print, it is easy to confuse the two in handwritten mathematics. Some readers may therefore prefer
a different notation for one of them. The notation Zg (p) for the isotropy subgroup is one that is in
common use; its use is consistent with the notation for the “centralizer” of an element in a group,
which will be defined shortly. Another possibility, used by many mathematicians, is to write G - p
for the orbit.
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Proposition 4.34. Let G x X — X be a group action, let p be in X, and let
H be the isotropy subgroup at p. Then the map G — Gp given by g — gp
descends to a well-defined map G/H — Gp that is one-one from G/H onto the
orbit Gp and respects the group actions.

REMARK. In other words, a group action of G on a single orbit is always
isomorphic as a group action to the action of G on some quotient space G/H.

PROOF. Let ¢ : G — Gp be defined by ¢(g) = gp. For h in H = G,
o(gh) = (gh)p = g(hp) = gp = ¢(g) shows that ¢ descends to a well-defined
function ¢ : G/H — Gp, and ¢ is certainly onto Gp. If (g1 H) = 9(g.H),
then g1 p = ¢(g1p) = ¢(g2p) = g2p. and hence g5 'g1p = p. g5 'g1 isin H,
g1isin goH,and g H = g, H. Thus ¢ is one-one.

Respecting the group action means that p(gg’ H) = g@(g’ H), and this identity
holds since gg(g'H) = g¢(g') = g(g'p) = (8¢ )p = ¢(gg") = p(gg'H). U

A simple consequence is the following important counting formula in the
case of a group action by a finite group.

Corollary 4.35. Let G be a finite group, let G x X — X be a group action,
let p be in X, and G, be the isotropy group at p, and let Gp be the orbit of p.
Then |G| = |Gp| |Gl

PROOF. Proposition 4.34 shows that the action of G on some G /G, is the most
general group action on a single orbit, G, being the isotropy subgroup. Thus the
corollary follows from Lagrange’s Theorem (Theorem 4.7) with H = G, and
G/H = Gp. (]

We turn to applications of group actions to the structure of groups. If H is a
subgroup of a group G, the index of H in G is the number of elements in G/ H,
finite or infinite. The first application notes a situation in which a subgroup of a
finite group is automatically normal.

Proposition 4.36. Let G be a finite group, and let p be the smallest prime
dividing the order of G. If H is a subgroup of G of index p, then H is normal.

REMARKS. The most important case is p = 2: any subgroup of index 2 is
automatically normal, and this conclusion is valid even if G is infinite, as was
already pointed out in Example 3 of Section 2. If G is finite and if 2 divides the
order of G, there need not, however, be any subgroup of index 2; for example,
the alternating group 24 has order 12, and Problem 11 at the end of the chapter
shows that 2{4 has no subgroup of order 6.
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PROOF. Let X = G/H, and restrict the group action G x X — X to an action
H x X — X. The subset {1 H} is a single orbit under H, and the remaining p — 1
members of G/H form a union of orbits. Corollary 4.35 shows that the number
of elements in an orbit has to be a divisor of | H|, and the smallest divisor of |H |
other than 1 is > p since the smallest divisor of |G| other than 1 equals p and
since | H| divides |G|. Hence any orbit of H containing more than one element
has at least p elements. Since only p — 1 elements are left under consideration,
each orbit under H contains only one element. Therefore hgH = gH for all h
in H and g in G. Then g~'hg is in H, and we conclude that H is normal. (]

If G isa group, the center Z of G is the set of all elements x such that gx = xg
forall g in G. The center of G is a subgroup (since gx = xg and gy = yg together
imply g(xy) = xgy = (xy)gandxg™' = g7 (gx)g™' =g ' (xg)g™ = g7 %),
and every subgroup of the center is normal since x € Zs and g € G together
imply gxg~! = x. Here are examples: the center of a group G is G itself if and
only if G is abelian, the center of the quaternion group Hy is {1}, and the center
of any symmetric group &, withn > 3is {1}.

If x is in G, the centralizer of x in G, denoted by Zs(x), is the set of all g
such that gx = xg. This is a subgroup of G, and it equals G itself if and only if
x is in the center of G. For example the centralizer of i in Hg is the 4-element
subgroup {1, +£i}.

Having made these definitions, we introduce a new group action of G on G,
namely (g, x) — gxg~'. The orbits are called the conjugacy classes of G. If x
and y are two elements of G, we say that x is conjugate to y if x and y are in
the same conjugacy class. In other words, x is conjugate to y if there is some g
in G with gxg~! = y. The result is an equivalence relation. Let us write C£(x)
for the conjugacy class of x. We can easily compute the isotropy subgroup G,
at x under this action; it consists of all g € G such that gxg~! = x and hence is
exactly the centralizer Zg(x) of x in G. In particular, C{(x) = {x} if and only
if x is in the center Z;. Applying Corollary 4.35, we immediately obtain the
following result.

Proposition 4.37. If G is a finite group, then |G| = | C4(x)| |Zg(x)]| for all x
in G.

Thus | C€(x)| is always a divisor of |G|, and it equals 1 if and only if x is in the
center Z¢g. Let us apply these considerations to groups whose order is a power
of a prime.

Corollary 4.38. If G is a finite group whose order is a positive power of a
prime, then the center Z is not {1}.
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PROOF. Let |G| = p" with p prime and with n > 0. The conjugacy classes of
G exhaust G, and thus the sum of all | C¢(x)|’s equals |G|. Since | Cl(x)| = 1
if and only if x is in Zg, the sum of |Zg| and all the | C¢(x)|’s that are not 1 is
equal to |G|. All the terms | C£(x)| that are not 1 are positive powers of p, by
Proposition 4.37, and so is |G|. Therefore p divides | Z¢|. ]

Corollary 4.39. If G is a finite group of order p? with p prime, then G is
abelian.

PROOF. From Corollary 4.38 we see that either | Zg| = p?, in which case G is
abelian, or | Zg| = p. We show that the latter is impossible. If fact, if x is not in
Zg, then Zg(x) is a subgroup of G that contains Zg and the element x. It must
then have order p? and be all of G. Hence every element of G commutes with x,
and x is in Zg, contradiction. O

Corollary 4.40. If G is a finite group whose order is a positive power p” of
a prime p, then there exist normal subgroups G of G for 0 < k < n such that
|G| = p* forall k < n and such that Gy S G4 forall k < n.

PROOF. We proceed by induction on n. The base case of the induction is
n = 1 and is handled by Corollary 4.9. Assume inductively that the result
holds for n, and let G have order p"*!. Corollary 4.38 shows that Zg # {1}.
Any element # 1 in Zg must have order a power of p, and some power of
it must therefore have order p. Thus let a be an element of Zs of order p,
and let H be the subgroup consisting of the powers of a. Then H is normal
and has order p. Let G’ = G/H be the quotient group, and let ¢ : G — G’
be the quotient homomorphism. The group G’ has order p”, and the inductive
hypothesis shows that G’ has normal subgroups G for 0 < k < n such that
|G| = pkfork < nand G, € G;<+1 fork <n—1.Forl <k <n+1,define
Gy =¢! (Gy_,), and let Gy = {1}. The First Isomorphism Theorem (Theorem
4.13) shows that each Gy for k£ > 1 is a normal subgroup of G containing H and
that 9(Gx) = G}_,. Then (p| Gy is a homomorphism of G onto G} _, with kernel

H, and hence |G| = |G_,||H| = p*~'p = p*. Therefore the G;’s will serve
as the required subgroups of G. (]

Itis not always so easy to determine the conjugacy classes in a particular group.
For example, in GL(n, C) the question of conjugacy is the question whether
two matrices are similar in the sense of Section II.3; this will be one of the
main problems addressed in Chapter V. By contrast, the problem of conjugacy in
symmetric groups has a simple answer. Recall that every permutation is uniquely
the product of disjoint cycles. The cycle structure of a permutation consists of
the number of cycles of each length in this decomposition.
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Lemma 4.41. Let o0 and 7 be members of the symmetric group G,. If o
is expressed as the product of disjoint cycles, then o7 ™! has the same cycle
structure as o, and the expression for toT ™! as the product of disjoint cycles is
obtained from that for o by substituting t (k) for k throughout.

REMARK. For example, if 0 = (a b)(c d e), then tot~! decomposes as

(t(@) T®)(z(0) T(d) T(e)).

PROOF. Because the conjugate of a product equals the product of the conju-
gates, it is enough to handle a cycle y = (a; a, --- a,) appearing in o. The
corresponding cycle y’ = tytlisassertedtobe y’ = (t(a)) t(az) --- t(a)).
Application of 7! to 7(a;) yields a;, application of o to this yields a; 1 if j < r
and a; if j = r, and application of 7 to the result yields t(a;;1) or t(a;). For
each of the symbols b not in the list {ai, ..., a.}, Tyt~ ' (zr(h)) = 7(b) since
y(b) =b. Thus tyt~! =y, as asserted. O

Proposition 4.42. Let H be a subgroup of a symmetric group &,,. If C€(x)
denotes a conjugacy class in H, then all members of C¢(x) have the same cycle
structure. Conversely if H = &, then the conjugacy class of a permutation o
consists of all members of G, having the same cycle structure as o.

PROOF. The first conclusion is immediate from Lemma 4.41. For the second
conclusion, let o and o have the same cycle structure, and let T be the permutation
that moves, for each k, the k™ symbol appearing in the disjoint-cycle expansion
of o into the k™ symbol in the corresponding expansion of ¢’. Define 7 on
the remaining symbols in any fashion at all. Application of the lemma shows
that tot~! = ¢’. Thus any two permutations with the same cycle structure are
conjugate. O

7. Semidirect Products

One more application of group actions to the structure theory of groups will
be to the construction of “semidirect products” of groups. If H is a group,
then an isomorphism of H with itself is called an automorphism. The set of
automorphisms of H is a group under composition, and we denote it by Aut H.
We are going to be interested in “group actions by automorphisms,” i.e., group
actions of a group G on a space X when X is itself a group and the action by each
member of G is an automorphism of the group structure of X; the group action
is therefore a homomorphism of the form 7 : G — Aut X.

EXAMPLE 1. In R?, we can identify the additive group of the underlying
vector space with the group of translations ¢,(w) = v + w; the identification
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associates a translation £ with the member £(0) of R?. Let H be the group of

translations. The rotations about the origin in R?, namely the linear maps with

cosf sinf
—sin6 cos6
the set H of translations. The linearity of the rotations says that the action of

G = SO(2) on the translations is by automorphisms of H, i.e., that each rotation,
in its effect on G, is in Aut H. Out of these data—the two groups G and H and a
homomorphism of G into Aut H —we will construct below what amounts to the
group of all rotations (about any point) and translations of R?. The construction
is that of a “semidirect product.”

matrices ( ) form a group G = SO(2) that acts on R?, hence acts on

EXAMPLE 2. Take any group G, and let G acton X = G by conjugation. Each
conjugation x — gxg~! is an automorphism of G, and thus the action of G on
itself by conjugation is an action by automorphisms.

Let G and H be groups. Suppose that a group action 7 : G — F(H) is given
with G acting on H by automorphisms. Thatis, suppose thateachmap h — 7, (h)
is an automorphism of H. We define a group G %, H whose underlying set will be
the Cartesian product G x H. The motivation for the definition of multiplication
comes from Example 2, in which 7,(h) = ghg™'. We want to write a product
g1h1g2h; in the form g’h’, and we can do so using the formula

gihigohy = g182(85 'h1g2)hy = (glgz)((Tg;l (h1)hy).
Similarly the formula for inverses is motivated by the formula
g~ =hlgT =g gh T e = g7 (h Y.

Proposition 4.43. Let G and H be groups, and let T be a group action of G on
H by automorphisms. Then the set-theoretic product G x H becomes a group
G x. H under the definitions

(81, 1) (82, h2) = (8182, (g1 (h1))h2)
and (g.h =g, ‘Eg(h_l))-

The mappings i, : G - G x; Handi, : H — G x; H givenbyi;(g) = (g, 1)
and ip(h) = (1, h) are one-one homomorphisms, and p; : G x; H — G given
by p1(g, h) = g is a homomorphism onto G. The images G’ = i;(G) and H' =
i2(H) are subgroups of G x ; H with H' normal such that G'N H’ = {1}, such that
every element of G x; H is the product of an element of G’ and an element of H’,
and such that conjugation of G’ on H' is given by i1(g)i2(h)i1(g) ™" = i2(t4(h)).
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REMARK. The group G x, H is called the external semidirect product'® of
G and H with respect to 7.

PROOF. For associativity we compute directly that
((g1, 1) (82, h2)) (83, h3) = (818283, Tyt (11 (M1)h2)h3)
and (g1, 711)((82, h2)(83, h3)) = (818283, Tyt (1) Ty (h2)3).

Since
Tyl (rg2-1 (h)hy) = (Tg;lfgz—l(hl))fg;l(h2) = Tg;lgz—l(hl)fg;I (hy),

we have a match. It is immediate that (1, 1) is a two-sided identity. Since
(g. Mg tg(h™) = (A tgte(h™h) = (Lrghh ™)) = (1, 75(1) =
(1, yand (871, 7o (A1) (g, ) = (1, Tg-1(zg (R~ ")) = (1, (k= h) = (1, 1),
(g, T, (h™1)) is indeed a two-sided inverse of (g, /). It is immediate from the
definition of multiplication that i, i, and p; are homomorphisms, that i} and i,
are one-one, that p; isonto, that G'NH’ = {1},andthat G x, H = G'H’. Since i,
and i, are homomorphisms, G’ and H’ are subgroups. Since H' is the kernel of py,
H' is normal. Finally the definition of multiplication gives i;(g)i>(h)i;(g)~' =
(&M D™ = (&g, 1) = (1, (t,(h)1) = ir(ry(h)), and the proof is
complete. O

Proposition 4.44. Let S be a group, let G and H be subgroups with H normal,
and suppose that G N H = {1} and that every element of S is the product of an
element of G and an element of H. For each g € G, define an automorphism 7,
of H by t,(h) = ghg~!. Then 7 is a group action of G on H by automorphisms,
and the mapping G x; H — § given by (g, h) — gh is an isomorphism of
groups.

REMARKS. In this case we call S an internal semidirect product of G and
H with respect to 7. We shall not attempt to write down a universal mapping
property that characterizes internal semidirect products.

PROOF. Since 7,4, (h) = glgzhgz_lgl_1 = giT,, (h)gl_l = Tg, Tg,(h) and since
each 7, is an automorphism of H, 7 is an action by automorphisms. Proposition
4.43 therefore shows that G x; H is a well-defined group. The function ¢ from
G x. H to S givenby ¢(g, h) = gh is ahomomorphism by the same computation
that motivated the definition of multiplication in a semidirect product, and ¢ is
onto S since every element of § lies in the set G H of products. If gh = 1, then
g = h~! exhibits g asin G N H = {1}. Hence g = 1 and h = 1. Therefore ¢ is
one-one and must be an isomorphism. O

16The notation x is used by some authors in place of x ;. The normal subgroup goes on the open
side of the x and on the side of the subscript 7 in x..
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EXAMPLE 1. Dihedral groups D,. We show that D,, is the internal semidirect
product of a 2-element group and the rotation subgroup. Let H be the group
of rotations about the origin through multiples of the angle 2 /n. This group
is cyclic of order n, and it is normal in D, because it is of index 2. If s is any
of the reflections in D,, then G = {1, s} is a subgroup of D, of order 2 with
G N H = {1}. Counting the elements, we see that every element of D,, is of the
form r* or sr¥, in other words that the set of products GH is all of D,. Thus
Proposition 4.44 shows that D, is an (internal) semidirect product of G and H
withrespectto some 7 : G — Aut H. To understand the homomorphism 7, let us
write the members of H as the powers of r, where r is rotation counterclockwise
about the origin through the angle 27 /n. For the reflection s (or indeed for any
reflection in D,), a look at the geometry shows that sr¥s~! = % for all k. In
other words, the automorphism 7 (1) leaves each element of H fixed while t(s)
sends each k mod n to —k mod n. The map that sends each element of a cyclic
group to its group inverse is indeed an automorphism of the cyclic group, and
thus 7 is indeed a homomorphism of G into Aut H.

EXAMPLE 2. Construction of a nonabelian group of order 21. Let H = C7,
written multiplicatively with generator a, and let G = Cs, written multiplicatively
with generator b. To arrange for G to act on H by automorphisms, we make use
of a nontrivial automorphism of H of order 3. Such a mapping is a* > a?*. In
fact, there is no doubt that this mapping is an automorphism, and we have to see
that it has order 3. The effect of applying it twice is a* — a*, and the effect
of applying it three times is a* — a®*. But a® = a* since a’ = 1, and thus
the mapping a* > a?* indeed has order 3. We send b" into the n™ power of
this automorphism, and the result is a homomorphism t : G — Aut H. The
semidirect product G x, H is certainly a group of order 3 x 7 = 21. To see
that it is nonabelian, we observe from the group law in Proposition 4.43 that
ab = bty,-1(a) = ba*. Thus ab # ba, and G x, H is nonabelian.

It is instructive to generalize the construction in Example 2 a little bit. To do
so, we need a lemma.

Lemma 4.45. If p is a prime, then the automorphisms of the additive group
of the field IF, are the multiplications by the members of the multiplicative group
IF;, and consequently Aut C), is isomorphic to a cyclic group C),_;.

PROOF. Let us write AutF,, for the automorphism group of the additive group
of IF,. Each function ¢, : F, — F, given by ¢,(n) = na, taken modulo
p, is in AutlF,, as a consequence of the distributive law. We define a function
@ : AutF, — F] by () = ¢(1) for ¢ € AutF,. Again by the distributive
law ¢(n) = ne(1) for every integer n. Thus if ¢; and ¢, are in AutF,, then
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D(p1 0 92) = (g1 0 2)(1) = @1(p2(1)) = p2(1)g; (1), and consequently D is a
homomorphism. If a member ¢ of AutlF, has ®(¢) = 11in ]F;, then (1) =1
and therefore ¢(n) = n¢(1) = n for all n. Therefore ¢ is the identity in Aut[F,.
We conclude that @ is one-one. If a is given in IF;, then ®(¢,) = ¢,(1) = a,
and hence ® is onto I . Therefore ® is an isomorphism of AutF, and 7. By
Corollary 4.27, ® exhibits AutlF, as isomorphic to the cyclic group C,_;. [

Proposition 4.46. If p and g are primes with p < ¢ such that p divides ¢ — 1,
then there exists a nonabelian group of order pgq.

REMARKS. For p = 2, the divisibility condition is automatic, and the proof
will yield the dihedral group D,. For p = 3 and ¢ = 7, the condition is that 3
divides 7 — 1, and the constructed group will be the group in Example 2 above.

PROOF. Let G = C, with generatora, andlet H = C,. Lemma4.45 shows that
AutC, = Cy4_1. Let b be a generator of AutC,. Since p divides g — 1, pla=b/p
has order p. Then the map a* > b*@=1/7 is a well-defined homomorphism
7 of G into Aut H, and it determines a semidirect product S = G x,; H, by
Proposition 4.43. The order of S is pg, and the multiplication is nonabelian since
for h € H, we have (a, 1)(1,h) = (a,h) and (1, h)(a, 1) = (a, t,-1(h)) =
(a, b=4=V/P(R)), but b~@=D/P is not the identity automorphism of H because
it has order p. (|

8. Simple Groups and Composition Series

A group G # {1} is said to be simple if its only normal subgroups are {1} and G.

Among abelian groups the simple ones are the cyclic groups of prime order.
Indeed, a cyclic group C, of prime order has no nontrivial subgroups at all, by
Corollary 4.9. Conversely if G is abelian and simple, let a # 1 be in G. Then
{a"} is a cyclic subgroup and is normal since G is abelian. Thus {a"} is all of G,
and G is cyclic. The group Z is not simple, having the nontrivial subgroup 27,
and the group Z/(rs)Z withr > 1 and s > 1 is not simple, having the multiples
of r as a nontrivial subgroup. Thus G has to be cyclic of prime order.

The interest is in nonabelian simple groups. We shall establish that the alter-
nating groups 2(, are simple for n > 5, and some other simple groups will be
considered in Problems 55-62 at the end of the chapter.

Theorem 4.47. The alternating group 2, is simple if n > 5.

PROOF. Let K # {1} be a normal subgroup of 2,,. Choose ¢ in K with o # 1
suchthato (i) = i for the maximum possible number of integersi with 1 < i < n.
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The main step is to show that o is a 3-cycle. Arguing by contradiction, suppose
that o is not a 3-cycle. Then there are two cases.

The first case is that the decomposition of o as the product of disjoint cycles
contains a k-cycle for some k > 3. Without loss of generality, we may take the
cycle in questiontobe y = (1 2 3 ---),andthenoc =yp=(1 2 3 ---)p
with p equal to a product of disjoint cycles not containing the symbols appearing
in y. Being even and not being a 3-cycle, o moves at least two other symbols
besides the three listed ones, say 4 and 5. Put t = (3 4 5). Lemma 4.41 shows
that o’ = tot~' = y/p’ = (1 2 4 -..)p’ with p’ not containing any of the
symbols appearing in y’. Thus o’c~! moves 3 into 4 and cannot be the identity.
But o’c~!is in K and fixes all symbols other than 1, 2, 3, 4, 5 that are fixed by
o. In addition, 0’0 ! fixes 2, and none of 1, 2, 3, 4, 5 is fixed by 0. Thus o’ ~!
is a member of K other than the identity that fixes fewer symbols than o, and we
have arrived at a contradiction.

The second case is that o is a product ¢ = (1 2)(3 4)--- of disjoint
transpositions. There must be at least two factors since o is even. Put 7 =
(1 2)(4 5), the symbol 5 existing since the group 2, in question has n > 5. Then
o’ =(2)3 5)---. Since 0’c ! carries 4 into 5, 0’o ! is a member of K other
than the identity. It fixes all symbols other than 1, 2, 3, 4, 5 that are fixed by o,
and in addition it fixes 1 and 2. Thus o’c ~! fixes more symbols than o does, and
again we have arrived at a contradiction.

We conclude that K contains a 3-cycle, say (1 2 3). If i, j, k, [, m are five
arbitrary symbols, then we can construct a permutation t witht (1) =i, 7(2) = j,
7(3) =k, t(4) =1/, and t(5) = m. If 7 is odd, we replace T by t(/ m), and the
result is even. Thus we may assume that 7 is in 2, and has t(1) =i, t(2) = j,
and 7(3) = k. Lemma 4.41 shows that tot~! = (i j k). Since K is normal,
we conclude that K contains all 3-cycles.

To complete the proof, we show for n > 3 that every element of 2, is a product
of 3-cycles. If o is in 2, we use Corollary 1.22 to decompose o as a product of
transpositions. Since o is even, we can group these in pairs. If the members of a
pair of transpositions are not disjoint, then their product is a 3-cycle. If they are
disjoint, then the identity (1 2)(3 4) = (1 2 3)(2 3 4) shows that their product
is a product of 3-cycles. This completes the proof. (]

Let G be a group. A descending sequence
G,2G,.12---2G12Gy

of subgroups of G with G, = G, Gy = {1}, and each G;_; normal in Gy is
called a normal series for G. The normal series is called a composition series if
each inclusion G, 2 Gy_; is proper and if each consecutive quotient G/ Gy—1
is simple.
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EXAMPLES.

(1) Let G be a cyclic group of order N. A normal series for G consists of
certain subgroups of G, all necessarily cyclic by Proposition 4.4. Their respective
orders N,, N,_1,..., N1, No have N, = N, No = 1, and N;_; | N; for all k.
The series is a composition series if and only if each quotient Nj /Ny is prime.
In this case the primes that occur are exactly the prime divisors of N, and a
prime p occurs r times if p” is the exact power of p that divides N. Thus the
consecutive quotients from a composition series of this G, up to isomorphisms,
are independent of the particular composition series —though they may arise in a
different order.

(2) For G = Z, a normal series is of the form
Z2OmZ2mmyZ 2 mmomsZ 2 --- 2 0.

The group G = Z has no composition series.

(3) For the symmetric group G = Gy, let C, x C, refer to the 4-element
subgroup {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. The series

G2 2CxC2{1, (1 23 9} 2{1}

is a composition series, the consecutive quotients being C,, C3, Cy, C,. Each
term in the composition series except for {1, (1 2)(3 4)} is actually normal in
the whole group G, but there is no way to choose the 2-element subgroup to make
it normal in G. The other two possible choices of 2-element subgroup, which
lead to different composition series but with isomorphic consecutive quotients,
are obtained by replacing {1, (1 2)(3 4)} by {1, (1 3)(2 4)} and again by
{1, 1 H2 3}

(4) For the symmetric group G = Gs, the series
Ss 2 Us 2 {1}

is a composition series, the consecutive quotients being C, and s.

(5) Let G be a finite group of order p” with p prime. Corollary 4.40 produces
a composition series, and this time all the subgroups are normal in G. The
successive normal subgroups have orders pk fork =n,n—1,...,0, and each
consecutive quotient is isomorphic to Cp,.

Historically the Jordan—Ho6lder Theorem addressed composition series for
groups, showing that the consecutive quotients, up to isomorphisms, are indepen-
dent of the particular composition series. They can then consistently be called the
composition factors of the group. Finding the composition factors of a particular



174 1V. Groups and Group Actions

group may be regarded as a step toward understanding the structure of the group.
A generalization of the Jordan—Holder Theorem due to Zassenhaus and Schreier
applies to normal series in situations in which composition series might not exist,
such as Example 2 above. We prove the Zassenhaus—Schreier Theorem, and the
Jordan—-Holder Theorem is then a special case.

Two normal series

Gn2Gp_12:---2G1 260Gy
and H,2>H, 2---2H 2 H

for the same group G are said to be equivalent normal series if m = n and the
order of the consecutive quotients G,/ G,,—1, Gu—1/Gm—2, ... , G1/ Gy may be
rearranged so that they are respectively isomorphic to H,,/H,;,—1, Hyy—1/Hpy—2,
..., Hy/Hy. One normal series is said to be a refinement of another if the
subgroups appearing in the second normal series all appear as subgroups in the
first normal series.

Lemma 4.48 (Zassenhaus). Let G, G,, G, and G/, be subgroups of a group
G with G| € G| and G}, € G, G| normal in G, and G, normal in G,. Then
(G1NG%)Gisnormalin (G1NG2)G, (G} NG2)GY isnormal in (G1 N G2)G),
and

((G1N GG /((G1NGHGY) = ((G1 N G2)GL)/ (G N G)Gy).

PROOF. Let us check that (G| N G,)G is normal in (G| N G»)G'|. Handling
conjugation by members of G| N G is straightforward: If g is in G| N Gy,
then g(G; N GYg™' = G, N G} since g is in G| and gGLg™' = G,. Also,
gG g~! = G| since g is in G|. Hence g(G| NG5G g~' = (G1 N G,)G).

Handling conjugation by members of G requires a little trick: Let g be in G
and let hg' be in (G| N G5)G|. Then g(hg')g~' = h(h~'gh)g'g™". The left
factor h is in Gy N G5. The remaining factors are in G|; for g’ and g~', this is
a matter of definition, and for 2~ gh, it follows because /4 is in G| and g is in
G). Thus g(G, N G5)G g7 = (G, N G,) G/, and (G| N G5)G/, is normal in
(G1 N G2)G'|. The other assertion about normal subgroups holds by symmetry
in the indexes 1 and 2.

By the Second Isomorphism Theorem (Theorem 4.14),

(G1NG2)/(((G1N GG N (G1NG))
= ((G1NG)(G1 N GHGY/((G1 N GGY) ()
= ((G1 N G2)G/((G1 N GHGY).
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Since we have
(Gi N GG N (G N Ga) = (G N GG} NGy = (G1 N GH(G, N G,
we can rewrite the conclusion of (x) as

(G1NGY)/((G1NGYH(G] N Gr)) = ((G1NG2)G/((G1NGHGY). (%)

The left side of () is symmetric under interchange of the indices 1 and 2. Hence
so is the right side, and the lemma follows. (|

Theorem 4.49 (Schreier). Any two normal series of a group G have equivalent
refinements.

PROOF. Let the two normal series be

GmQGm—] QQGI QGOy
Hnan—lg"‘QngHO’ (*)

and define
Gij=(GiNH)Giq for0 < j <n,
o
Hj; = (G;NHj)H;y;  for0<i<m. ()

Then we obtain respective refinements of the two normal series () given by

G =Ggo 2 Go1 2 --- 2 Gop
2G6G102612-2G - 2G6u-1,=1{1},

G = Hy 2 Ho1 2 -+ 2 Hon M
2Ho2H1 22 Hyp 2 Hymym = {1}

The containments G;, 2 G0 and Hj,, 2 H;io are equalities in (}), and

the only nonzero consecutive quotients are therefore of the form G;;/G; j;+1 and
Hj;/H; ;1. For these we have

Gij/Gijr1 =G, NH)G;11)/(GiNHj11)Gi11) by (%)
= ((G, ﬂHj)Hj+1)/((Gi+1 ﬂHj)Hj+1) by Lemma 4.48
= Hji/Hj i by (%),

and thus the refinements (}) are equivalent. ]
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Corollary 4.50 (Jordan—Holder Theorem). Any two composition series of a
group G are equivalent as normal series.

PROOF. Let two composition series be given. Theorem 4.49 says that we
can insert terms in each so that the refined series have the same length and are
equivalent. Since the given series are composition series, the only way to insert
a new term is by repeating some term, and the repetition results in a consecutive
quotient of {1}. Because of Theorem 4.49 we know that the quotients {1} from
the two refined series must match. Thus the number of terms added to each series
is the same. Also, the quotients that are not {1} must match in pairs. Thus the
given composition series are equivalent. ([l

9. Structure of Finitely Generated Abelian Groups

A set of generators for a group G is a set such that each element of G is a finite
product of generators and their inverses. (A generator and its inverse are allowed
to occur multiple times in a product.)

In this section we shall study abelian groups having a finite set of generators.
Such groups are said to be finitely generated abelian groups, and our goal is
to classify them up to isomorphism. We use additive notation for all our abelian
groups in this section. We begin by introducing an analog Z" for the integers Z
of the vector space R” for the reals R, and along with it a generalization.

A free abelian group is any abelian group isomorphic to a direct sum, finite or
infinite, of copies of the additive group Z of integers. The external direct sum of n
copies of Z will be denoted by Z". Let us use Proposition 4.17 to see that we can
recognize groups isomorphic to free abelian groups by means of the following
condition: an abelian group G is isomorphic to a free abelian group if and only if
it has a Z basis, i.e., a subset that generates G and is such that no nontrivial linear
combination, with integer coefficients, of the members of the subset is equal to
the O element of the group. It will be helpful to use terminology adapted from the
theory of vector spaces for this latter condition—that the subset is to be linearly
independent over Z.

Let us give the proof that the condition is necessary and sufficient for G to be
free abelian. In one direction if G is an external direct sum of copies of Z, then
the members of G that are 1 in one coordinate and are O elsewhere form a Z basis.
Conversely if {g;}ses 1s a Z basis, let G, be the subgroup of multiples of g, and
let ¢y, be the inclusion homomorphism of G, into G. Proposition 4.17 produces
a unique group homomorphism ¢ : EBSE s Gy — G such that ¢ o iy, = gy, for
all sp € S. The spanning condition for the Z basis says that ¢ is onto G, and the
linear independence condition for the Z basis says that ¢ has O kernel.
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The similarity between vector-space bases and Z bases suggests further com-
parison of vector spaces and abelian groups. With vector spaces over a field, every
vector space has a basis over the field. However, it is exceptional for an abelian
group to have a Z basis. Two examples that hint at the difficulty are the additive
group Z/mZ with m > 1 and the additive group Q. The group Z/mZ has no
nonempty linearly independent set, while the group Q has a linearly independent
set of one element, no spanning set of one element, and no linearly independent
set of more than one element. Here are two positive examples.

EXAMPLES.

(1) The additive group of all points in R" whose coordinates are integers. The
standard basis of R” is a Z basis.

(2) The additive group of all points (x, y) in R? with x and y both in Z or both
in Z + % The set {(1, 0), (%, %)} is a Z basis.

Next we take a small step that eliminates technical complications from the
discussion, proving that any subgroup of a finitely generated abelian group is
finitely generated.

Lemma 4.51. Let ¢ : G — H be a homomorphism of abelian groups. If
ker ¢ and image ¢ are finitely generated, then G is finitely generated.

PROOF. Let{x, ..., x,}and{y, ..., y,} berespective finite sets of generators
for kerg and imageg. For 1 < j < n, choose x} in G with ¢(x}) = y;.
We shall prove that {x1, ..., x, xi, ..., x,} is a set of generators for G. Thus
let x be in G. Since ¢(x) is in image ¢, there exist integers ay, ..., a, with
o(x) = aiy1 + -+ + ayy,. The element x’ = a;x] + --- + a,x;, of G has
e(x’) = ayy1 + -+ a,y, = @(x). Therefore (x — x’) = 0, and there exist
integers by, ..., b, withx — x’ = bjx; + - - - + byx,,. Hence

x=bixi+- -+ buxp+x" =bixi + -+ bpxy +arx; + - +apx,. O

Proposition 4.52. Any subgroup of a finitely generated abelian group is finitely
generated.

PROOF. Let G be finitely generated with a set {g, ..., g,} of n generators, and
define Gy = Zg, + - - - + Zgy for 1 <k < n. If H is any subgroup of G, define
H, = HN Gy for 1 < k < n. We shall prove by induction on & that every Hj
is finitely generated, and then the case k = n gives the proposition. For k = 1,
G| = Zg, is a cyclic group, and any subgroup of it is cyclic by Proposition 4.4
and hence is finitely generated.

Assume inductively thatevery subgroup of G is known to be finitely generated.
Let g : Giy1 = Giy1/ Gy be the quotient homomorphism, and let ¢ = g

Hiyy?
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mapping Hy41 into Gi4+1/Gg. Then ker ¢ = Hyy1 N Gy, is a subgroup of G and
is finitely generated by the inductive hypothesis. Also, image ¢ is a subgroup of
Gi+1/ Gy, which s a cyclic group with generator equal to the coset of g;;. Since
a subgroup of a cyclic group is cyclic, image ¢ is finitely generated. Applying
Lemma 4.51 to ¢, we see that Hy, is finitely generated. This completes the
induction and the proof. O

A free abelian group has finite rank if it has a finite Z basis, hence if it is
isomorphic to Z" for some n. The first theorem is that the integer » is determined
by the group.

Theorem 4.53. The number of Z summands in a free abelian group of finite
rank is independent of the direct-sum decomposition of the group.

We define this number to be the rank of the free abelian group. Actually,
“rank” is a well-defined cardinal in the infinite-rank case as well, because the rank
coincides in that case with the cardinality of the group. In any event, Theorem
4.53 follows immediately by two applications of the following lemma.

Lemma 4.54. If G is a free abelian group with a finite Z basis xy, . . ., x,,, then
any linearly independent subset of G has < n elements.

PROOF. Let{yj, ..., ¥} bealinearly independentsetin G. Since {xy, ..., x,}
is a Z basis, we can define an m-by-n matrix C of integers by y; = Z;’zl Cijx;.
As a matrix in M,,,,(Q), C has rank < n. Consequently if m > n, then the rows
are linearly dependent over Q, and we can find rational numbers ¢, . .., g, not
allOsuchthat ) ;" | ¢;C;; = O forall j. Multiplying by a suitable integer to clear
fractions, we obtain integers ky, . .., k;;, not all O such that Zl'.":l kiC;; = 0 for
all j. Then we have

n m

m m n n
Yokivi=Y ki Y Cijxj =Y (X kiCij)xj = ) O0x; =0,

i=1 i=1  j=1 j=1 i=l =1
in contradiction to the linear independence of {yi, ..., y,} over Z. Therefore
m <n. O

Now we come to the two main results of this section. The first is a special
case of the second by Proposition 4.52 and Lemma 4.54. The two will be proved
together, and it may help to regard the proof of the first as a part of the proof of
the second.

Theorem 4.55. A subgroup H of a free abelian group G of finite rank n is
free abelian of rank < n.

REMARK. This result persists in the case of infinite rank, but we do not need
the more general result and will not give a proof.
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Theorem 4.56 (Fundamental Theorem of Finitely Generated Abelian Groups).
Every finitely generated abelian group is a finite direct sum of cyclic groups. The
cyclic groups may be taken to be copies of Z and various C« with p prime, and
in this case the cyclic groups are unique up to order and to isomorphism.

REMARKS. The main conclusion of the theorem is the decomposition of each
finitely generated abelian group into the direct sum of cyclic groups. An alterna-
tive decomposition of the given group that forces uniqueness is as the direct sum
of copies of Z and finite cyclic groups Cq,, . .., C4 suchthatd; | da, dr | d5, ... ,
d,_1 | d,. A proof of the additional statement appears in the problems at the end
of Chapter VIII. The integers di, ..., d, are sometimes called the elementary
divisors of the group.

Let us establish the setting for the proof of Theorem 4.56. Let G be the given
group, and say that it has a set of n generators. Proposition 4.17 produces a
homomorphism ¢ : Z" — G that carries the standard generators x, ..., x, of
7" to the generators of G, and ¢ is onto G. Let H be the kernel of ¢. As a
subgroup of Z", H is finitely generated, by Proposition 4.52. Let yi, ..., Ym
be generators. Theorem 4.55 predicts that H is in fact free abelian, hence that
{y1, ..., ym} could be taken to be linearly independent over Z with m < n, but
we do not assume that knowledge in the proof of Theorem 4.56.

The motivation for the main part of the proof of Theorem 4.56 comes from
the elementary theory of vector spaces, particularly from the method of using a
basis for a finite-dimensional vector space to find a basis of a vector subspace
when we know a finite spanning set for the vector subspace. Thus let V be a
finite-dimensional vector space over R, with basis {x; };’: 1» and let U be a vector
subspace with spanning set {y;}?" ;. To produce a vector-space basis for U, we
imagine expanding the y;’s as linear combinations of xy, ..., x,. We can think
symbolically of this expansion as expressing each y; as th);c product of a row

1

vector of real numbers times the formal “column vector” | : ). The entries of
Xn
this column vector are vectors, but there is no problem in working with it since

Y1
this is all just a matter of notation anyway. Then the formal column vector ( : )
Ym

of m members of U equals the product of an m-by-n matrix of real numbers times
X1

the formal column vector < : ) . We know from Chapter II that the procedure for

Xn
finding a basis of U is to row reduce this matrix of real numbers. The nonzero

rows of the result determine a basis of the span of the m vectors we have used, and
this basis is related tidily to the given basis for V. We can compare the two bases
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to understand the relationship between U and V. To prove Theorem 4.56, we
would like to use the same procedure, but we have to work with an integer matrix
and avoid division. This means that only two of the three usual row operations are
fully available for the row reduction; division of a row by an integer is allowable
only when the integer is £1. A partial substitute for division comes by using the
steps of the Euclidean algorithm via the division algorithm (Proposition 1.1), but

0 0 3
further row reduction is possible with integer operations. However, the equations
tell us that H is the subgroup of 73 generated by (2, 1, 1) and (0, 0, 3), and it is
not at all clear how to write Z3/ H as a direct sum of cyclic groups.

The row operations have the effect of changing the set of generators of H
while maintaining the fact that they generate H. What is needed is to allow also
column reduction with integer operations. Steps of this kind have the effect of
changing the Z basis of Z". When steps of this kind are allowed, we can produce
new generators of H and a new basis of Z" so that the two can be compared.
With the example above, suitable column operations are

(2 1 1>}—><1 2 1>}—><1 0 0>|_)<1 0 0)
0 0 3 0 0 3 0 0 3 0 3 0/
The equations with the new generators say that y; = x} and y; = 3x}. Thus H is
the subgroup Z @ 3Z @ 0Z, nicely aligned with Z> = Z @ Z @ Z. The quotient
is(Z/7) & (Z/3Z2) & (Z)0Z) = C3 & Z.

The proof of Theorem 4.56 will make use of an algorithm that uses row and
column operations involving only allowable divisions and that converts the matrix
C of coefficients so that its nonzero entries are the diagonal entries C;; for

1 <i <r and no other entries. The algorithm in principle can be very slow, and
it may be helpful to see what it does in an ordinary example.

even that is not enough. For example, if the m-by-n matrix is <2 bl ), no

EXAMPLE. Suppose that the relationship between generators yj, y2, y3 of H
and the standard Z basis {x;, x»} of Z? is

Vi 35
(yz)zC(x1>, whereC=(7 13).
v3 2 5 9
In row reduction in vector-space theory, we would start by dividing the first row
of C by 3, but division by 3 is not available in the present context. Our target for
the upper-left entry is GCD(3, 7, 5) = 1, and we use the division algorithm one

step at a time to get there. To begin with, it says that 7 = 2 - 3 4+ 1 and hence
7 —2-3 = 1. The first step of row reduction is then to replace the second row by
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the difference of it and 2 times the first row. The result can be achieved by left

multiplication by
1 00 35
( -2 1 0 ) and is < 1 3 ) .
0 0 1 59

We write this step as

100
3 5 leftby(—210> 3 5
(7 13>|¢>(1 3).
5 9 59

The entry 1 in the first column is our target for this stage since GCD(3, 7, 5) = 1.
The next step interchanges two rows to move the 1 to the upper left entry, and the
subsequent step uses the 1 to eliminate the other entries of the first column:

010 100

3 5 leftby<100> 1 3 leftby(—310> 1 3
001 -501

(l 3>|—>(3 5>|—>(0 —4).
59 59 0 —6

The algorithm next seeks to eliminate the off-diagonal entry 3 in the first row.
This is done by a column operation:

1 3\ rightby (17 1 0
<o —4) AUV o) (0 —4) .
0 -6 0 —6
With two further row operations we are done:
10 0 100
1 0 leftby(Ol—l) 1 0 leftby<010> 1 0
(0 —4)%(0 2)|¢>(0 2).
0 —6 0 —6 0 0
Our steps are summarized by the fact that the matrix A with

1 0 0 /1 O O 1 0 0, /O 1 O
A=<010><01—1)(—310)(100)(—
0 3 1/\0 0 1 -5 0 1/\0 0 1

1 0
has AC<(1) f):(o 2)
0 0

and by the fact that the integer matrices to the left and right of C have determinant

1 0
2 1
00

—_ o O

)

—1
+1. The determinant condition ensures that A~' and ((1) _?> have integer
entries, according to Cramer’s rule (Proposition 2.38).
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Lemma 4.57. If C is an m-by-n matrix of integers, then there exist an m-by-m
matrix A of integers with determinant &1 and an n-by-n matrix B of integers
with determinant &1 such that for some r > 0, the nonzero entries of D = ACB
are exactly the diagonal entries Dy, Do, ..., Dy,.

PROOF. Given C, choose (7, j) with |C;;| # 0 but |C;;| as small as possible.
(If C = 0, the algorithm terminates.) Possibly by interchanging two rows and/or
then two columns (a left multiplication with determinant —1 and then a right
multiplication with determinant —1), we may assume that (i, j) = (1, 1). By the
division algorithm write, for each i,

Cii=¢qCn+r; with0 < r; < |Cyy],

and replace the i™ row by the difference of the i row and g, times the first row (a
left multiplication). If some r; is not 0, the result will leave a nonzero entry in the
first column that is < |Cy| in absolute value. Permute the least such r; # 0 to the
upper left and repeat the process. Since the least absolute value is going down,
this process at some point terminates with all r; equal to 0. The first column then
has a nonzero diagonal entry and is otherwise 0.

Now consider C;; and apply the division algorithm and column operations
in similar fashion in order to process the first row. If we get a smaller nonzero
remainder, permute the smallest one to the first column. Repeat this process until
the first row is 0 except for entry C;;. Continue alternately with row and column
operations in this fashion until both C1; =0 for j > 1and C;; =0 fori > 1.

Repeat the algorithm for the (m — 1)-by-(n — 1) matrix consisting of rows 2
through m and columns 2 through 7, and continue inductively. The algorithm
terminates when either the reduced-in-size matrix is empty or is all 0. At this
point the original matrix has been converted into the desired “diagonal form.” []

Lemma 4.58. Let Gy, ..., G, be abelian groups, and for 1 < j < n, let H;
be a subgroup of G;. Then
G1®---®Gy)/(H & - D H,) =(G1/H) ® - & (Gy/H,y).

PROOF. Letg : G1 @ --- D G, — (G1/H) & --- ® (G,/H,) be the
homomorphism defined by ¢(g1, ..., 8:) = (g1H1, ..., g H,). The mapping
¢ is onto (G1/H) & --- ® (G,/H,), and the kernel is H; & --- & H,. Then
Corollary 4.12 shows that ¢ descends to the required isomorphism. (]

PROOF OF THEOREM 4.55 AND MAIN CONCLUSION OF THEOREM 4.56. Given G
with n generators, we set up matters as indicated immediately after the statement

of Theorem 4.56, writing
M X1
Y Xn
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where x1, ..., x, are the standard generators of Z", yy, .. ., y,, are the generators
of the kernel of the homomorphism from Z" onto G, and C is a matrix of integers.
Applying Lemma 4.57, let A and B be square integer matrices of determinant 1
such that D = AC B is diagonal as in the statement of the lemma. Define

21 1 up X1
Zm Ym Un Xn

Substitution gives

21 1 X1 ui
(}):A(f):(ACB)B‘1(§>=ACB(§>.
Zm Ym Xn Uy

If(¢;, --- ¢p)and (d; --- dy) =(c; --- c,)B~" are row vectors, then the
formula
ui X1
cuyr+-teup =1 - )| | = - dn)

u}’l xn
=dixi+---+dyx, (%)
shows that {uy, ..., u,} generates the same subset of Z" as {x, ..., x,}. Since
(c; --- cp)isnonzeroifandonlyif (d; --- d,)isnonzero, the formula () shows
also that the linear independence of {xi, ..., x,} implies that of {u;, ..., u,}.
Hence {1, ..., u,} is a Z basis of Z". Similarly {y;, ..., y»} and {zy, ..., Zm}
generate the same subgroup H of Z". Therefore we can compare H and Z"
using {zy, ..., Zm} and {uy, ..., u,}. Since D is diagonal, the equations relating
{z1,...,zm} and {uy, ..., u,} are z; = Dj;u; for j < min(m, n) and z; = 0 for

min(m, n) < j < m. If ¢ = min(m, n), then we see that

m q m q
H=)Y Zzi =) DiZui+ ) Zzi =) DiiZu;.
i=1 i=1 i=q+1 i=1
Since the set {uy, ..., uy} is linearly independent over Z, this sum exhibits H as
given by
H=D\Z® - @& Dy,Z

with Dyjuy, ..., Dygug as a Z basis. Consequently H has been exhibited as free
abelian of rank < ¢ < n. This proves Theorem 4.55. Applying Lemma 4.58 to
the quotient Z"/H and letting Dy, ..., D,, be the nonzero diagonal entries of
D, we see that H has rank r, and we obtain an expansion of G in terms of cyclic
groups as

G=Cp,® --®Cp, ®Z"".

This proves the main conclusion of Theorem 4.56. O
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PROOF OF THE DECOMPOSITION WITH CYkCLIC GROUPS OF PRIME-POWER ORDER.
It is enough to prove that if m = ]—[?]:1 pjj with the p; equal to distinct primes,
then Z/mZ = (Z/p]f‘Z) DD (Z/p]vaZ). This is a variant of the Chinese
Remainder Theorem (Corollary 1.9). For the proof let

0 Z— Z/Ip'D)®--- & (Z/pNT)

be the homomorphism given by ¢(s) = (s mod p}', ..., s mod prN) fors € Z.
Since ¢(m) = (0, ..., 0), ¢ descends to a homomorphism

G:2/mL — LN & - & (Z/pNT).

The map @ is one-one because if ¢(s) = 0, then p;('" divides s for all j. Since
the p;{j are relatively prime in pairs, their product m divides s. Since m divides s,

s = 0mod m. The map @ is onto since it is one-one and since the finite sets
Z/mZand (Z/p\'Z) ® - - - ® (Z/ piY Z) both have m elements. O

PROOF OF UNIQUENESS OF THE DECOMPOSITION. Write G = Z°* @ T, where
T =(Z/p\2) & - & (Z/py7)

and the p;’s are not necessarily distinct. The subgroup T is the subgroup of
elements of finite order in G, and it is well defined independently of the decom-
position of G as the direct sum of cyclic groups. The quotient G/T = Z° is
free abelian of finite rank, and its rank s is well defined by Theorem 4.53. Thus
the number s of factors of Z in the decomposition of G is uniquely determined,
and we need only consider uniqueness of the decomposition of the finite abelian
group T'.

For p prime the elements of 7' of order p“ for some a are those in the sum of
the groups Z/ p;j Z for which p; = p, and we are reduced to considering a group

H=Z/p"Z& ---®Z/p'"Z

with p fixed and /y < --- < [y. The set of p/ powers of el_ements of H
is a subgroup of H and is given by Z/p"/Z & --- & Z/p'"IZ if I, is the
first index > j, while the set of p/*! powers of elements of H is given by
Z)p I 7& - - ®Z/p'm—IZifl, is the first index > j + 1. Therefore Lemma
4.58 gives

P H/p™ T HE @/ p" D) () p T D)@ @ L p T L) (2 D).
Each term of p/ H/p/*' H has order p, and thus

|ij/pj+1H| — pl{i 1>}

Hence H determines the integers /4, . .., [y, and uniqueness is proved. ]
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10. Sylow Theorems

This section continues the use of group actions to obtain results concerning
structure theory for abstract groups. We shall prove the three Sylow Theorems,
which are a starting point for investigations of the structure of finite groups that
are deeper than those in Sections 6 and 7. We state the three theorems as the parts
of Theorem 4.59.

Theorem 4.59 (Sylow Theorems). Let G be a finite group of order p™r, where
p is prime and p does not divide r. Then

(a) G contains a subgroup of order p™, and any subgroup of G of order p/'
with 0 <[ < m is contained in a subgroup of order p™,

(b) any two subgroups of order p™ in G are conjugate in G, i.e., any two
such subgroups P; and P, have P, = aPya~! for some a € G,

(c) the number of subgroups of order p™ is of the form pk + 1 and divides r.

REMARK. A subgroup of order p™ as in the theorem is called a Sylow
p-subgroup of G. A consequence of (a) when m > 1 is that G has a subgroup
of order p; this special case is sometimes called Cauchy’s Theorem in group
theory.

Before coming to the proof, let us carefully give two simple applications
to structure theory. The applications combine Theorem 4.59, some results of
Sections 6 and 7, and Problems 35-38 and 45-48 at the end of the chapter.

Proposition 4.60. If p and g are primes with p < g, then there exists a
nonabelian group of order pq if and only if p divides g — 1, and in this case the
nonabelian group is unique up to isomorphism. It may be taken to be a semidirect
product of the cyclic groups C,, and C, with C, normal.

REMARK. It follows from Theorem 4.56 that the only abelian group of order
pq, up to isomorphism, is C, x C; = Cp,. If p = 2 in the proposition, then g
is odd and p divides g — 1; the proposition yields the dihedral group D,. For
p > 2,thedivisibility condition may or may not hold: For pg = 15, the condition
does not hold, and hence every group of order 15 is cyclic. For pg = 21, the
condition does hold, and there exists a nonabelian group of order 21; this group
was constructed explicitly in Example 2 in Section 7.

PROOF. Existence of a nonabelian group of order pgq, together with the
semidirect-product structure, is established by Proposition 4.46 if p divides g — 1.
Let us see uniqueness and the necessity of the condition that p divide g — 1.

If G has order pg, Theorem 4.59a shows that G has a Sylow p-subgroup H,
and a Sylow g-subgroup H,. Corollary 4.9 shows that these two groups are cyclic.
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The conjugates of H, are Sylow g-subgroups, and Theorem 4.59¢ shows that the
number of such conjugates is of the form kg + 1 and divides p. Since p < ¢,
k = 0. Therefore H, is normal. (Alternatively, one can apply Proposition 4.36
to see that H, is normal.)

Each element of G is uniquely a product ab with a in H), and b in H,. For the
uniqueness, if a;b; = a;b,, then az_lal = b2b1_1 is an element of H, N H,. Its
order must divide both p and ¢ and hence must be 1. Thus the pg products ab
with @ in H, and b in H, are all different. Since the number of them equals the
order of G, every member of G is such a product. By Proposition 4.44, G is a
semidirect product of H,, and H,.

If the action of H}, on H, is nontrivial, then Problem 37 at the end of the chapter
shows that p divides ¢ — 1, and Problem 38 shows that the group is unique up
to isomorphism. On the other hand, if the action is trivial, then G is certainly
abelian. (]

Proposition 4.61. If G is a group of order 12, then G contains a subgroup
H of order 3 and a subgroup K of order 4, and at least one of them is normal.
Consequently there are exactly five groups of order 12, up to isomorphism—two
abelian and three nonabelian.

REMARK. The second statement follows from the first, as a consequence of
Problems 45-48 at the end of the chapter. Those problems show how to construct
the groups.

PROOF. Theorem 4.59a shows that H may be taken to be a Sylow 3-subgroup
and K may be taken to be a Sylow 2-subgroup. We have to prove that either H
or K is normal.

Suppose that H is not normal. Theorem 4.59c shows that the number of
Sylow 3-subgroups is of the form 3k 4 1 and divides 4. The subgroup H, not
being normal, fails to equal one of its conjugates, which will be another Sylow
3-subgroup; hence k > 0. Therefore k = 1, and there are four Sylow 3-subgroups.
The intersection of any two such subgroups is a subgroup of both and must be
trivial since 3 is prime. Thus the set-theoretic union of the Sylow 3-subgroups
accounts for 4 - 2 + 1 elements. None of these elements apart from the identity
lies in K, and thus K contributes 3 further elements, for a total of 12. Thus
every element of G lies in K or a conjugate of H. Consequently K equals every
conjugate of K, and K is normal. ([l

Let us see where we are with classifying finite groups of certain orders, up to
isomorphism. A group of order p is cyclic by Corollary 4.9, and a group of order
p? is abelian by Corollary 4.39. Groups of order pq are settled by Proposition
4.60. Thus for p and g prime, we know the structure of all groups of order p,
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p?, and pg. Problems 39—44 at the end of the chapter tell us the structure of the
groups of order 8, and Proposition 4.61 and Problems 45—48 tell us the structure
of the groups of order 12. In particular, the table at the end of Section 1, which
gives examples of nonisomorphic groups of order at most 15, is complete except
for the one group of order 12 that is discussed in Problem 48.

Problems 30-34 and 49-54 at the end of the chapter go in the direction of
classifying finite groups of certain other orders.

Now we return to Theorem 4.59. The proof of the theorem makes use of the
theory of group actions as in Section 6. In fact, the proof of existence of Sylow
p-subgroups is just an elaboration of the argument used to prove Corollary 4.38,
saying that a group of prime-power order has a nontrivial center. The relevant
action for the existence part of the proof is the one (g, x) — gxg~! given by
conjugation of the elements of the group, the orbit of x being the conjugacy class
C{(x). Proposition 4.37 shows that |G| = | C£(x)||Zg(x)|, where Zg(x) is the
centralizer of x. Since the disjoint union of the conjugacy classes is all of |G|,
we have

G| = |Zg| + > GI/1Za ().

representatives x;
of each conjugacy class
with | CE(x)|#1

a formula sometimes called the class equation of G.

PROOF OF EXISTENCE OF SYLOW p-SUBGROUPS IN THEOREM 4.59a. We induct
on |G|, the base case being |G| = 1. Suppose that existence holds for groups of
order < |G|. Without loss of generality suppose that m > 0, so that p divides
|G-

First suppose that p does not divide |Z;|. Referring to the class equation
of G, we see that p must fail to divide some integer |G|/|Zs(x;)| for which
|Zg(x;)| < |G]. Since p™ is the exact power of p dividing |G|, we conclude that
p™ divides this | Zg(x;)| and p"*! does not. Since |Zg (x;)| < |G|, the inductive
hypothesis shows that Zs(x;) has a subgroup of order p™, and this is a Sylow
p-subgroup of G.

Now suppose that p divides |Zg|. The group Zg is finitely generated abelian,
hence is a direct sum of cyclic groups by Theorem 4.56. Thus Zs contains an
element ¢ of order p. The cyclic group C generated by c then has order p. Being
a subgroup of Zg, C is normal in G. The group G/C has order p™~'r, and
the inductive hypothesis implies that G/C has a subgroup H of order p”~!. If
¢ : G — G/C denotes the quotient map, then ¢~!(H) is a subgroup of G of
order |H|| kerg| = p"~'p = p™. (]

For the remaining parts of Theorem 4.59, we make use of a different group
action. If I" denotes the set of all subgroups of G, then G acts on I" by conjugation:



188 1V. Groups and Group Actions

(g, H) — gHg™'. The orbit of a subgroup of H consists of all subgroups
conjugate to H in G, and the isotropy subgroup at the point H in I" is

{g€G|gHg™ ' =H}

This is a subgroup N (H) of G known as the normalizer of H in G. It has the
properties that N(H) 2 H and that H is a normal subgroup of N(H). The
counting formula of Corollary 4.35 gives

l{gHg ™' | g € G}| = |G/N(H)|.

Meanwhile, application of Lagrange’s Theorem (Theorem 4.7) to the three quo-
tients G/H, G/N(H),and N(H)/H shows that

|G/H| =|G/N(H)||N(H)/H],

with all three factors being integers.
Now assume as in the statement of Theorem 4.59 that |G| = p™r with p prime
and p not dividing r. In this setting we have the following lemma.

Lemma 4.62. If P is a Sylow p-subgroup of G and if H is a subgroup of the
normalizer N (P) whose order is a power of p, then H C P.

PROOF. Since H € N(P) and P is normal in N (P), the set H P of products is
a group, by the same argument as used for H, H, in the proof of Proposition 4.60.
Then HP/P = H/(H N P) by the Second Isomorphism Theorem (Theorem
4.14), and hence |HP/P| is some power p* of p. By Lagrange’s Theorem
(Theorem 4.7), |HP| = p™*k with k > 0. Since no subgroup of G can have
order pl with [ > m, we must have k = 0. Thus HP = Pand H C P. O

PROOF OF THE REMAINDER OF THEOREM 4.59. Within the set I" of all subgroups
of G, let IT be the set of all subgroups of G of order p”. We have seen that IT is
not empty. Since the conjugate of a subgroup has the same order as the subgroup,
[T is the union of orbits in I" under conjugation by G. Thus we can restrict the
group action by conjugation from G x I' - I'to G x [T — II.

Let P and P’ be members of I, and let £ and X’ be the G orbits of P and
P’ under conjugation. Suppose that ¥ and ¥’ are distinct orbits of G. Let us
restrict the group action by conjugation from G x [1 — I1to P x IT — II. The
G orbits ¥ and X’ then break into P orbits, and the counting formula Corollary
4.35 says for each orbit that

p" = | P| = #{subgroups in a P orbit} x |isotr0py subgroup within P|.
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Hence the number of subgroups in a P orbit is of the form p' for some [ > 0.
Suppose that I = 0. Then the P orbit is some singleton set { P”}, and the
corresponding isotropy subgroup within P is all of P:

P={peP|pP'p~ ' =P’} C NP".

Lemma 4.62 shows that P C P”, and therefore P = P”. Thus! = 0 only for the
P orbit {P}. In other words, the number of elements in any P orbit other than
{P} is divisible by p. Consequently |X| = 1 mod p while |X’| = 0 mod p, the
latter because X and X’ are assumed distinct. But this conclusion is asymmetric
in the G orbits ¥ and X', and we conclude that ¥ and ¥’ must coincide. Hence
there is only one G orbit in I, and it has kp 4+ 1 members for some k. This proves
parts (b) and (c) except for the fact that kp + 1 divides r.

For this divisibility let us apply the counting formula Corollary 4.35 to the
orbit ¥ of G. The formula gives |G| = | Z| |isotropy subgroup|, and hence |X|
divides |G| = p™r. Since |X| = kp + 1, we have GCD(|X], p) = 1 and also
GCD(|X2|, p™) = 1. By Corollary 1.3, kp + 1 divides r.

Finally we prove that any subgroup H of G of order p' lies in some Sylow
p-subgroup. Let ¥ = IT again be the G orbit in I" of subgroups of order p™,
and restrict the action by conjugation from G x ¥ — X to H x ¥ — X. Each
H orbit in X must have p“ elements for some a, by one more application of the
counting formula Corollary 4.35. Since |X| = 1 mod p, some H orbit has one
element, say the H orbit of P. Then the isotropy subgroup of H at the point P
isallof H,and H C N(P). By Lemma4.62, H C P. This completes the proof
of Theorem 4.59. 0

11. Categories and Functors

The mathematics thus far in the book has taken place in several different contexts,
and we have seen that the same notions sometimes recur in more than one context,
possibly with variations. For example we have worked with vector spaces, inner-
product spaces, groups, rings, and fields, and we have seen that each of these areas
has its own definition of isomorphism. In addition, the notion of direct product
or direct sum has arisen in more than one of these contexts, and there are other
similarities. In this section we introduce some terminology to make the notion
of “context” precise and to provide a setting for discussing similarities between
different contexts.
A category C consists of three things:

e aclass of objects, denoted by Obj(C),
e for any two objects A and B in the category, a set Morph(A, B) of
morphisms,
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o for any three objects A, B, and C in the category, a law of composition
for morphisms, i.e., a function carrying Morph(A, B) x Morph(B, C) into
Morph(A, C), with the image of (f, g) under composition written as gf,

and these are to satisfy certain properties that we list in a moment. When more
than one category is under discussion, we may use notation like Morph,(A, B)
to distinguish between the categories.

We are to think initially of the objects as the sets we are studying with a par-
ticular kind of structure on them; the morphisms are then the functions from one
object to another that respect this additional structure, and the law of composition
is just composition of functions. Indeed, the defining conditions that are imposed
on general categories are arranged to be obvious for this special kind of category,
and this setting accounts for the order in which we write the composition of two
morphisms. But the definition of a general category is not so restrictive, and it is
important not to restrict the definition in this way.

The properties that are to be satisfied to have a category are as follows:

(i) the sets Morph(A;, B;) and Morph(A;, B,) are disjoint unless A; =
Ay and By = B, (because two functions are declared to be different
unless their domains match and their ranges match, as is underscored in
Section A1l of the appendix),

(i1) the law of composition satisfies the associativity property h(gf) = (hg) f
for f € Morph(A, B), g € Morph(B, C), and h € Morph(C, D),

(iii) foreachobject A, there is an identity morphism 1 4 in Morph(A, A) such
that f14 = fand 1,¢g = gfor f € Morph(A, B) and g € Morph(C, A).

A subcategory S of acategory C by definition is a category with Obj(S) € Obj(C)
and Morphg(A, B) € Morph.(A, B) whenever A and B are in Obj(S), and it
is assumed that the laws of composition in S and C are consistent when both are
defined.

Here are several examples in which the morphisms are functions and the law
of composition is ordinary composition of functions. They are usually identified
in practice just by naming their objects, since the morphisms are understood to
be all functions from one object to another respecting the additional structure on
the objects.

EXAMPLES OF CATEGORIES.

(1) The category of all sets. An object A is a set, and a morphism in the set
Morph(A, B) is a function from A into B.

(2) The category of all vector spaces over a field F. The morphisms are linear
maps.

(3) The category of all groups. The morphisms are group homomorphisms.
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(4) The category of all abelian groups. The morphisms again are group
homomorphisms. This is a subcategory of the previous example.

(5) The category of all rings. The morphisms are all ring homomorphisms.
The kernel and the image of a morphism are necessarily objects of the category.

(6) The category of all rings with identity. The morphisms are all ring homo-
morphisms carrying identity to identity. This is a subcategory of the previous
example. The image of a morphism is necessarily an object of the category, but
the kernel of a morphism is usually not in the category.

(7) The category of all fields. The morphisms are as in Example 6, and the
result is a subcategory of Example 6. In this case any morphism is necessarily
one-one and carries inverses to inverses.

(8) The category of all group actions by a particular group G. If G acts on X
and on Y, then a morphism from the one space to the other is a G equivariant
mapping from X to Y, i.e., a function ¢ : X — Y such that ¢(gx) = g¢(x) for
all x in X.

(9) The category of all representations by a particular group G on a vector space
over a particular field F. The morphisms are the linear G equivariant functions.
This is a subcategory of the previous example.

Readers who are familiar with point-set topology will recognize that one can
impose topologies on everything in the above examples, insisting that the func-
tions be continuous, and again we obtain examples of categories. For example the
category of all topological spaces consists of objects that are topological spaces
and morphisms that are continuous functions. The category of all continuous
group actions by a particular topological group has objects that are group actions
G x X — X that are continuous functions, and the morphisms are the equivariant
functions that are continuous.

Readers who are familiar with manifolds will recognize that another example
is the category of all smooth manifolds, which consists of objects that are smooth
manifolds and morphisms that are smooth functions.

The morphisms in a category need not be functions in the usual sense. An
important example is the “opposite category” C°PP to a category C, which is a
handy technical device and is discussed in Problems 78—80 at the end of the
chapter.

In all of the above examples of categories, the class of objects fails to be a set.
This behavior is typical. However, it does not cause problems in practice because
in any particular argument involving categories, we can restrict to a subcategory
for which the objects do form a set.!’

17For the interested reader, a book that pays closer attention to the inherent set-theoretic difficul-
ties in the theory is Mac Lane’s Categories for the Working Mathematician.
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If Cisacategory, amorphism@ € Morph(A, B) is said to be an isomorphism if
there exists a morphism ¢ € Morph(B, A) such thaty¥¢ = 14 and ¢y = 1. In
this case we say that A is isomorphic to B in the category C. Let us check that the
morphism v is unique if it exists. In fact, if /' is a member of Morph(B, A) with
Vo =1laand oy’ = lp, then ¢ = 1,9 = (V') =¥’ (py) = ¢'lp =Y.
We can therefore call ¢ the inverse to ¢.

The relation “is isomorphic to” is an equivalence relation.'® In fact, the relation
is symmetric by definition, and it is reflexive because 14 € Morph(A, A) has 14
as inverse. For transitivity let ¢; € Morph(A, B) and ¢, € Morph(B, C) be iso-
morphisms, with respective inverses {r; € Morph(B, A) and ¥, € Morph(C, B).
Then @¢, is in Morph(A, C), and ¥; v, is in Morph(C, A). Calculation gives
W1¥2) (201) = Yi(V2(e201) = Yi((Y2e2)e1) = Yi(leer) = Yigr = g,
and similarly (¢2¢1) (¥1¥2) = 1¢. Therefore go¢; € Morph(A, C) is an isomor-
phism, and “is isomorphic to” is an equivalence relation. When A is isomorphic
to B, it is permissible to say that A and B are isomorphic.

The next step is to abstract a frequent kind of construction that we have
used with our categories. If C and D are two categories, a covariant functor
F : C — D associates to each object A in Obj(C) an object F'(A) in Obj(D) and
to each pair of objects A and B and morphism f in Morph.(A, B) a morphism
F(f) in Morphp(F (A), F(B)) such that

(1) F(gf) =F(g)F(f)for f € Morph,(A, B) and g € Morph.(B, C),
(ii)) F(14) = 1pa) for A in Obj(C).

EXAMPLES OF COVARIANT FUNCTORS.
(1) Inclusion of a subcategory into a category is a covariant functor.

(2) Let C be the category of all sets. If F carries each set X to the set 2% of
all subsets of X, then F is a covariant functor as soon as its effect on functions
between sets, i.e., its effect on morphisms, is defined in an appropriate way.
Namely, if f : X — Y is a function, then F(f) is to be a function from
F(X) =2%to F(Y) =2Y. That is, we need a definition of F(f)(A) as a subset
of Y whenever A is a subset of X. A natural way of making such a definition is
to put F(f)(A) = f(A), and then F is indeed a covariant functor.

(3) Let C be any of Examples 2 through 6 of categories above, and let D be
the category of all sets, as in Example 1 of categories. If F carries an object A in
C (i.e., a vector space, group, ring, etc.) into its underlying set and carries each
morphism into its underlying function between two sets, then F is a covariant
functor and furnishes an example of what is called a forgetful functor.

18Technically one considers relations only when they are defined on sets, and the class of objects
in a category is typically not a set. However, just as with vector spaces, groups, and so on, we can
restrict attention in any particular situation to a subcategory for which the objects do form a set, and
then there is no difficulty.
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(4) Let C be the category of all vector spaces over a field F, let U be a
vector space over IF, and let F : C — C be defined on a vector space to
be the vector space of linear maps F (V) = Homp(U, V). The set of mor-
phisms Morph,(V;, V,) is Homg(V;, V2). If f is in Morph,(V;, V»), then F(f)
is to be in Morph, (Homg (U, V1), Homp(U, V»)), and the definition is that
F(f)(L) = f oL for L € Homp(U, Vy). Then F is a covariant functor:
to check that F(gf) = F(g)F(f) when g is in Morph,(V2, V3), we write
F@f)(L)=gfoL=go fL=goF(f)=FQ@F(f).

(5) Let C be the category of all groups, let D be the category of all sets, let G
be a group, and let F : C — D be the functor defined as follows. For a group
H, F(H) is the set of all group homomorphisms from G into H. The set of
morphisms Morph.(H;, H>) is the set of group homomorphisms from H; into
H,. If f isin Morph,(H;, H,), then F () is to be a function with domain the set
of homomorphisms from G into H; and with range the set of homomorphisms
from G into H;. Let F(f)(¢) = ¢ o f. Then F is a covariant functor.

(6) Let C be the category of all sets, and let D be the category of all abelian
groups. To a set S, associate the free abelian group F(S) with S as Z basis.
If f: 8§ — § is a function, then the universal mapping property of external
direct sums of abelian groups (Proposition 4.17) yields a corresponding group
homomorphism from F(S) to F(S’), and we define this group homomorphism
to be F(f). Then F is a covariant functor.

(7) Let C be the category of all finite sets, fix a commutative ring R with
identity, and let D be the category of all commutative rings with identity. To
a finite set S, associate the commutative ring F(S) = R[{X; | s € S}]. If
f S — S is a function, then the properties of substitution homomorphisms
give us a corresponding homomorphism of rings with identity carrying F'(S) to
F(S"), and the result is a covariant functor.

There is a second kind of functor of interest to us. If C and D are two categories,
a contravariant functor F : C — D associates to each object A in Obj(C) an
object F'(A) in Obj(D) and to each pair of objects A and B and morphism f in
Morph.(A, B) a morphism F(f) in Morph,(F (B), F(A)) such that
(1) F(gf) =F(f)F(g) for f € Morph.(A, B) and g € Morph(B, C),
(ii) F(14) = lp(a) for A in Obj(C).

EXAMPLES OF CONTRAVARIANT FUNCTORS.

(1) Let C be the category of all vector spaces over a field F, let W be a
vector space over IF, and let ' : C — C be defined on a vector space to be
the vector space of linear maps F (V) = Homp(V, W). The set of morphisms
Morph.(Vi, V2) isHomp(Vi, V2). If f isin Morph,(V1, V2), then F(f)istobein
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Morph, (Hom]F(Vz, W), Homp(V;, W)), and the definition is that F(f)(L) =
Lo f for L € Homp(V,, W). Then F is a contravariant functor: to check
that F(gf) = F(f)F(g) when g is in Morph,(V2, V3), we write F(gf)(L) =
Logf =Lgo f=F(f)(Lg) =F(f)F(Q(L).

(2) Let C be the category of all vector spaces over a field [F, define F of a
vector space V to be the dual vector space V’, and define F of a linear mapping
f between two vector spaces V and W to be the contragredient f* carrying W’
into V', defined by f/(w)(v) = w'(f(v)). This is the special case of Example 1
of contravariant functors in which W = . Hence F is a contravariant functor.

(3) Let C be the category of all groups, let D be the category of all sets, let G
be a group, and let F : C — D be the functor defined as follows. For a group
H, F(H) is the set of all group homomorphisms from H into G. The set of
morphisms Morph.(H;, H>) is the set of group homomorphisms from H; into
H,. If fisin Morph.(H;, H,), then F(f) is to be a function with domain the set
of homomorphisms from H, into G and with range the set of homomorphisms
from H; into G. The definition is F(f)(¢) = ¢ o f. Then F is a contravariant
functor.

It is an important observation about functors that the composition of two
functors is a functor. This is immediate from the definition. If the two functors
are both covariant or both contravariant, then the composition is covariant. If
one of them is covariant and the other is contravariant, then the composition is
contravariant.

A—25 B

ﬁl ly

¢C — D
8

FIGURE 4.9. A square diagram. The square commutes if yo = 68.

In the subject of category theory, a great deal of information is conveyed by
“commutative diagrams” of objects and morphisms. By a diagram is meant a
directed graph, usually but not necessarily planar, in which the vertices represent
some relevant objects in a category and the arrows from one vertex to another
represent morphisms of interest between pairs of these objects. Often the vertices
and arrows are labeled, but in fact labels on the vertices can be deduced from the
labels on the arrows since any morphism determines its “domain” and “range”
as a consequence of defining property (i) of categories. A diagram is said to be
commutative if for each pair of vertices A and B and each directed path from
A to B, the compositions of the morphisms along each path are the same. For
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example a square as in Figure 4.9 is commutative if ya = §8. The triangular
diagrams in Figures 4.1 through 4.8 are all commutative.

F(a) G(a)

Fa) —2 F(B) G(A) < G(B)
F(ﬁ)l lF(V) and G(ﬁ)T TG(V)
F(C) — F(D) G(C) «—— G(D)
F(8) G(%)

FIGURE 4.10. Diagrams obtained by applying a covariant functor F
and a contravariant functor G to the diagram in Figure 4.9.

Functors can be applied to diagrams, yielding new diagrams. For example,
suppose that Figure 4.9 is a diagram in the category C, that F : C — D is a
covariant functor, and that G : C — 7D is a contravariant functor. Then we
can apply F and G to the diagram in Figure 4.9, obtaining the two diagrams in
the category D that are pictured in Figure 4.10. If the diagram in Figure 4.9 is
commutative, then so are the diagrams in Figure 4.10, as a consequence of the
effect of functors on compositions of morphisms.

The subject of category theory seeks to analyze functors that make sense for
all categories, or at least all categories satisfying some additional properties.
The most important investigation of this kind is concerned with homology and
cohomology, as well as their ramifications, for “abelian categories,” which include
several important examples affecting algebra, topology, and several complex
variables. The topic in question is called “homological algebra” and is discussed
further in Advanced Algebra, particularly in Chapter I'V.

There are a number of other functors that are investigated in category theory,
and we mention four:

e products, including direct products,
e coproducts, including direct sums,

e direct limits, also called inductive limits,

e inverse limits, also called projective limits.

We discuss general products and coproducts in the present section, omitting a
general discussion of direct limits and inverse limits. Inverse limits will arise in
Section VIL.6 of Advanced Algebra for one category in connection with Galois
groups, but we shall handle that one situation on its own without attempting a
generalization. An attempt in the 1960s to recast as much mathematics as possible
in terms of category theory is now regarded by many mathematicians as having
been overdone, and it seems wiser to cast bodies of mathematics in the framework
of category theory only when doing so can be justified by the amount of time saved
by eliminating redundant arguments.
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When a category C and a nonempty set S are given, we can define a category
CS. The objects of C5 are functions on S with the property that the value of the
function at each s in § is in Obj(C), two such functions being regarded as the
same if they consist of the same ordered pairs.'® Let us refer to such a function
as an S-tuple of members of Obj(C), denoting it by an expression like { X} cs.
A morphism in Morphes ({X,}ses, {¥s}ses) is an S-tuple { f;}ses of morphisms
of C such that f; lies in Morph,(Xj, Y;) for all s, and the law of composition of
such morphisms takes place coordinate by coordinate.

Let {X,}ses be an object in C5. A product of {X,},cs is a pair (X, {ps}ses)
such that X is in Obj(C) and each p; is in Morph,(X, X;) with the following
universal mapping property: whenever A in Obj(C) is given and a morphism
@; € Morph(A, X;) is given for each s, then there exists a unique morphism
¢ € Morph,(A, X) such that p;¢ = @, for all s. The relevant diagram is pictured
in Figure 4.11.

2
X, «——

PST ,/'l, ¢
L
X

FIGURE 4.11. Universal mapping property of a product in a category.

EXAMPLES OF PRODUCTS.

(1) Products exist in the category of vector spaces over a field F. If vector
spaces V; indexed by a nonempty set S are given, then their product exists in the
category, and an example is their external direct product [, ¢ Vs, according to
Figure 2.4 and the discussion around it.

ses

(2) Products exist in the category of all groups. If groups G, indexed by a
nonempty set S are given, then their product exists in the category, and an example
is their external direct product [ [, _¢ Gy, according to Figure 4.2 and Proposition
4.15. If the groups G, are abelian, then [ [, _¢ G, is abelian, and it follows that
products exist in the category of all abelian groups.

(3) Products exist in the category of all sets. If sets X indexed by a nonempty
set S are given, then their product exists in the category, and an example is their
Cartesian product X ;¢ X, as one easily checks.

(4) Products exist in the category of all rings and in the category of all rings with
identity. If objects R, in the category indexed by a nonempty set S are given, then

19Tn other words, the range of such a function is considered as irrelevant. We might think of the
range as Obj(C) except for the fact that a function is supposed to have a set as range and Obj(C) need
not be a set.
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their product may be taken as an abelian group to be the external direct product
[ Les Ry, with multiplication defined coordinate by coordinate, and the group
homomorphisms p; are easily checked to be morphisms in the category.

A product of objects in a category need not exist in the category. An artificial
example may be formed as follows: Let C be a category with one object G, namely
a group of order 2, and let Morph(G, G) = {0, 15}, the law of composition being
the usual composition. Let S be a 2-element set, and let the corresponding objects
be X| = G and X, = G. The claim is that the product X x X, does not existinC.
In fact, take A = G. There are four S-tuples of morphisms (¢, ¢2) meeting the
conditions of the definition. Yet the only possibility for the productis X = G, and
then there are only two possible ¢’s in Morph(A, X). Hence we cannot account
for all possible S-tuples of morphisms, and the product cannot exist.

The thing that category theory addresses is the uniqueness. A product is
always unique up to canonical isomorphism, according to Proposition 4.63. We
proved uniqueness for products in the special cases of Examples 1 and 2 above
in Propositions 2.32 and 4.16.

Proposition 4.63. Let C be a category, and let S be a nonempty set. If {X}scs
is an object in C5 and if (X, {p,}) and (X', {p.}) are two products, then there
exists a unique morphism ® : X’ — X such that p;, = p; o ® forall s € S, and
@ is an isomorphism.

REMARK. There is no assertion that p; is onto X. In fact, “onto” has no
meaning for a general category.

PROOF. In Figure 4.11 let A = X’ and ¢, = p;. If & € Morph(X’, X)
is the morphism produced by the fact that X is a direct product, then we have
ps® = p; for all s. Reversing the roles of X and X’, we obtain a morphism
@’ € Morph(X, X') with p;®" = p, for all 5. Therefore p;(PP') = (p; )P’ =
ps® = ps.

In Figure 4.11 we next let A = X and ¢; = p, for all s. Then the identity 1y
in Morph(X, X) has the same property p,1x = p; relative to all p, that @@’ has,
and the uniqueness in the statement of the universal mapping property implies that
®P’ = 1x. Reversing the roles of X and X’, we obtain ®'® = 1. Therefore
@ is an isomorphism.

For uniqueness suppose that ¥ € Morph(X’, X) is another morphism with
p. = psVforall s € S. Then the argument of the previous paragraph shows that
®'W = 1x. Consequently ¥ = 1x¥ = (OP)¥ = &(P'¥) = Ply = P, and
U = . O

If products always exist in a particular category, they are not unique, only
unique up to canonical isomorphism. Such a product is commonly denoted by
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[ Lics X, even though it is not uniquely defined. I is customary to treat the
product over S as a covariant functor F : C5 — C, the effect of the functor on
objects being given by F({X }ses) = [[,cs Xs. For a well-defined functor we
have to fix a choice of product for each object under consideration®” in Obj(C5).
For the effect of F' on morphisms, we argue with the universal mapping property.
Thus let { X, }ses and {Y;}scs be objects in C5, let f; be in Morph,(Xj, Ys) for all
s, and let the products in question be ( [Lies X5 {ps}seS) and ( [Lics Yss {qs}ses).
Then f;, py, is in Morphe ([ T,cs Xs. Ys,) for each s, and the universal mapping
property gives us f in Morphg ([T cs Xs. [ [;es ¥s) such that g, f = f; p, for all
s. We define this f to be F ({f;}scs), and we readily check that F is a functor.
We turn to coproducts, which include direct sums. Let { X;}scs be an object in
CS. A coproduct of {X,}ses is a pair (X, {i;}ses) such that X is in Obj(C) and
each i is in Morph(X;, X) with the following universal mapping property:
whenever A in Obj(C) is given and a morphism ¢; € Morph.(X;, A) is given
for each s, then there exists a unique morphism ¢ € Morph,(X, A) such that
@iy = @ for all s. The relevant diagram is pictured in Figure 4.12.
X, —2
A

isl e
X

FIGURE 4.12. Universal mapping property of a coproduct in a category.

EXAMPLES OF COPRODUCTS.

(1) Coproducts exist in the category of vector spaces over a field F. If vector
spaces V; indexed by a nonempty set S are given, then their coproduct exists in
the category, and an example is their external direct sum €, _¢ V;, according to
Figure 2.5 and the discussion around it.

sesS

(2) Coproducts exist in the category of all abelian groups. If abelian groups G,
indexed by a nonempty set S are given, then their coproduct exists in the category,
and an example is their external direct sum €, _ G, according to Figure 4.4 and
Proposition 4.17.

(3) Coproducts existin the category of all sets. If sets X indexed by anonempty
set S are given, then their coproduct exists in the category, and an example is their
disjoint union | J, ¢ {(xs, s) | x; € X}. The verification appears as Problem 74
at the end of the chapter.

20Since Obj(CS) need not be a set, it is best to be wary of applying the Axiom of Choice when
the indexing of sets is given by Obj(C%). Instead, one makes the choice only for all objects in some
set of objects large enough for a particular application.
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(4) Coproducts exist in the category of all groups. Suppose that groups G
indexed by a nonempty set S are given. It will be shown in Chapter VII that
the coproduct is the “free product” sk;csG; that is defined in that chapter. In the
special case that each G is the group Z of integers, the free product coincides
with the free group on S. Therefore, even if all the groups G are abelian, their
coproduct need not be a subgroup of the direct product and need not even be
abelian. In particular it need not coincide with the direct sum.

A coproduct of objects in a category need not exist in the category. Problem 76
at the end of the chapter offers an example that the reader is invited to check.

Proposition 4.64. Let C be a category, and let S be a nonempty set. If {X}ses
is an object in C5 and if (X, {is}) and (X, {i}}) are two coproducts, then there
exists a unique morphism ® : X — X’ such thati, = ® oi, forall s € S, and ®
is an isomorphism.

REMARKS. There is no assertion that i, is one-one. In fact, “one-one” has
no meaning for a general category. This proposition may be derived quickly
from Proposition 4.63 by a certain duality argument that is discussed in Problems
78-80 at the end of the chapter. Here we give a direct argument without taking
advantage of duality.

PROOF. In Figure 4.12 let A = X’ and ¢, = i;. If ® € Morph(X, X') is the
morphism produced by the fact that X is a coproduct, then we have ® i; = i for
all s. Reversing the roles of X and X', we obtain a morphism &’ € Morph(X’, X)
with @i} = i, for all 5. Therefore (®'®)i; = ®'i; = is.

In Figure 4.12 we next let A = X and ¢; = i for all s. Then the identity 1x
in Morph(X, X) has the same property 1yi; = i, relative to all i; that ®'® has,
and the uniqueness says that ®'® = 1y. Reversing the roles of X and X'/, we
obtain @&’ = 1y. Therefore ® is an isomorphism.

For uniqueness suppose that ¥ € Morph(X, X’) is another morphism with
i, = Wi, forall s € S. Then the argument of the previous paragraph shows that
@'Y = 1x. Consequently ¥ = 1y ¥ = (OP)V = &(P'V) = &1y = ®, and
v = . g

If coproducts always exist in a particular category, they are not unique, only
unique up to canonical isomorphism. Such a coproduct is commonly denoted by
[ ;<5 X, even though it is not uniquely defined. As with product, it is customary
to treat the coproduct over S as a covariant functor F : C5 — C, the effect of the
functor on objects being given by F({X,}ses) = ][5 Xs. For a well-defined
functor we have to fix a choice of coproduct for each object under consideration
in Obj(C%). For the effect of F on morphisms, we argue with the universal
mapping property. Thus let {X,},cs and {Y;}ses be objects in C5, let f; be in
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Morph. (X, Y,) forall s, and let the coproducts in question be ( [es X {is }Seg)
and ([ [,cs Yy, {Js}ses)- Then jy, fy, is in Morphe (X, [ [ s Ys) for each so, and
the universal mapping property gives us f in Morphe ([ [, X, [ ;e ¥s) such
that fi; = j; f; forall s. We define this f tobe F ({f;}scs), and we readily check
that F is a functor.

Universal mapping properties occur in other contexts than for products and
coproducts. We have already seen them in connection with homomorphisms on
free abelian groups and with substitution homomorphisms on polynomial rings,
and more such properties will occur in the development of tensor products in
Chapter VI. A general framework for discussing universal mapping properties
appears in the problems at the end of Chapter VI.

12. Problems

1. Let G be a group in which all elements other than the identity have order 2. Prove
that G is abelian.

2. The dihedral group D4 of order 8 can be viewed as a subgroup of the symmetric
group G4 of order 8. Find 8 explicit permutations in G4 forming a subgroup
isomorphic to Dj.

2A. Let g be an element of finite order ord(g) in a group G. Prove that
(a) g~ ! has the same order as g.
(b) gk = 1if and only if ord(g) divides .
(c) foreachr € Z, the order of g” is ord(g)/GCD(ord(g), r).

3. Suppose G is a finite group, H is a subgroup, and a € G is an element with a/
in H for some integer / with GCD(/, |G|) = 1. Prove thata is in H.

4. Let G be a group, and define a new group G’ to have the same underlying set as
G but to have multiplication given by a o b = ba. Prove that G’ is a group and
that it is isomorphic to G.

5. Prove that if G is an abelian group and # is an integer, then a — a” is a
homomorphism of G. Give an example of a nonabelian group for which a — a?
is not a homomorphism.

6. Suppose that G is a group and that H and K are normal subgroups of G with
H N K = {1}. Verify that the set HK of products is a subgroup and that this
subgroup is isomorphic as a group to the external direct product H x K.

7. Take as known that 8191 is prime, so that Fgjo; is a field. Without carrying
through the computations and without advocating trial and error, describe what
steps you would carry out to solve for x mod 8191 such that 1234x = 1 mod
8191.
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(Wilson’s Theorem) Let p be an odd prime. Starting from the fact that
1,...,p — 1 are roots of the polynomial X?~! — 1 = 0 mod p in F,, prove
that (p — 1)! = —1 mod p.

Classify, up to isomorphism, all groups of order p? if p is a prime.

This problem concerns conjugacy classes in a group G.
(a) Prove that all elements of a conjugacy class have the same order.
(b) Prove that if ab is in a conjugacy class, so is ba.

(a) Find explicitly all the conjugacy classes in the alternating group 24.

(b) For each conjugacy class in 24, find the centralizer of one element in the
class.

(c) Prove that 24 has no subgroup isomorphic to Cg or G3.

Prove that the alternating group 25 has no subgroup of order 30.

Let G be a nonabelian group of order p”, where p is prime. Prove that any
subgroup of order p”~! is normal.

Let G be a finite group, and let H be a normal subgroup. If |H| = p and p is
the smallest prime dividing |G|, prove that H is contained in the center of G.

Let G be a group. An automorphism of G of the form x + gxg~! is called an

inner automorphism. Prove that the set of inner automorphisms is a normal
subgroup of the group Aut G of all automorphisms and is isomorphic to G/Z¢.

(a) Prove that Aut Cy, is isomorphic to (Z/mZ)*.
(b) Find a value of m for which Aut C,, is not cyclic.

Fix n > 2. In the symmetric group &,, for each integer k with 1 < k < n/2, let
C be the set of elements in &, that are products of k disjoint transpositions.
(a) Prove that if t is an automorphism of &,,, then 7(C1) = Cy for some k.
n\ (2k)!
(b) Prove that |Cy| = <2k> TR
(¢) Provethat |Cg| # |Cq|unless k = 1 orn = 6. (Educational note: From this,
it follows that 7(C;) = C; except possibly when n = 6. One can deduce
as a consequence that every automorphism of G,, is inner except possibly
when n = 6.)

Give an example: G is a group with a normal subgroup N, N has a subgroup M
that is normal in N, yet M is not normal in G.

Show that the cyclic group C,s is isomorphic to C, x Cs if and only if
GCD(r,s) = 1.

How many abelian groups, up to isomorphism, are there of order 277
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Let G be the free abelian group with Z basis {x1, x2, x3}. Let H be the subgroup
of G generated by {u1, u», u3}, where

up = 3x; + 2x2 + 5x3,

uy = x + 3x3,

U3z = xp + Sx3.
Express G/H as a direct sum of cyclic groups.
Let {e1, e2, e3, e4} be the standard basis of R*. Let G be the additive subgroup
of R* generated by the four elements

e, ei+en Sleitertestes), Jlertertes—es),
and let H be the subgroup of G generated by the four elements
e —ey, ey—e3, e3—eq, e3+eq.

Identify the abelian group G/H as a direct sum of cyclic groups.
Let G be the free abelian group with Z basis {x1, ..., x,}, and let H be the

uj X1
subgroup generated by {u1, ..., u;;}, where ( 1 =C ( : ) for an m-by-n

Um Xn
matrix C of integers. Prove that the number of summands Z in the decomposition

of G/H into cyclic groups is equal to the rank of the matrix C when C is
considered as in M,,, (Q).

Prove that every abelian group is the homomorphic image of a free abelian group.

Let G be a group, and let H and K be subgroups.
(a) For x and y in G, prove that x H N yK is empty or is a coset of H N K.
(b) Deduce from (a) that if H and K have finite index in G, then so does H N K.

Let G be a free abelian group of finite rank 7, and let H be a free abelian subgroup
of rank n. Prove that H has finite index in G.

Let G = G4 be the symmetric group on four letters.

(a) Find a Sylow 2-subgroup of G. How many Sylow 2-subgroups are there,
and why?

(b) Find a Sylow 3-subgroup of G. How many Sylow 3-subgroups are there,
and why?

Let H be a subgroup of a group G. Prove or disprove that the normalizer N (H)
of H in G is a normal subgroup of G.

How many elements of order 7 are there in a simple group of order 168?

Let G be a group of order pg?, where p and ¢ are primes with p < ¢. Let Sp
and S, be Sylow subgroups for the primes p and g. Prove that G is a semidirect
product of S, and §; with S; normal.



31.

32.

33.

34.

12. Problems 203

Suppose that G is a finite group and that H is a subgroup whose index in G is

a prime p. By considering the action of G on the set of subgroups conjugate

to H and considering the possibilities for the normalizer N (H), determine the

possibilities for the number of subgroups conjugate to H.

Let G be a group of order 24, let H be a subgroup of order 8, and assume that H

is not normal.

(a) Using the Sylow Theorems, explain why H has exactly 3 conjugates in G,
counting H itself as one.

(b) Show how to use the conjugates in (a) to define a homomorphism of G into
the symmetric group &3 on three letters.

(¢) Use the homomorphism of (b) to conclude that G is not simple.

Let G be a group of order 36. Arguing in the style of the previous problem, show
that there is a nontrivial homomorphism of G into the symmetric group G4.

Let G be a group of order 2pq, where p and g are primes with2 < p < q.

(a) Prove thatif g + 1 # 2p, then a Sylow g-subgroup is normal.

(b) Suppose that g + 1 = 2p, let H be a Sylow p-subgroup, and let K be a
Sylow g-subgroup. Prove that at least one of H and K is normal, that the
set HK of products is a subgroup, and that the subgroup H K is cyclic of
index 2 in G.

Problems 35-38 concern the detection of isomorphisms among semidirect products.
For the first two of the problems, let H and K be groups, and let ¢1 : H — AutK
and ¢, : H — Aut K be homomorphisms.

35.

36.

37.

38.

Suppose that g2 = ¢ o¢ for some automorphism ¢ of H. Define y : H xy, K —
H xy, K by y(h, k) = (¢(h), k). Prove that ¢ is an isomorphism.

Suppose that ¢y = ¢ o ¢ for some inner automorphism ¢ of Aut K in the sense
of Problem 15, i.e., ¢ : Aut K — Aut K is to be given by ¢(x) = axa—! with a
in Aut K. Define ¢ : H xy, K — H x4, K by ¥ (h, k) = (h, a(k)). Prove that
¥ is an isomorphism.

Suppose that p and g are primes and that the cyclic group C), acts on Cy by
automorphisms with a nontrivial action. Prove that p divides g — 1.

Suppose that p and g are primes such that p divides ¢ — 1. Let 7y and 1o
be nontrivial homomorphisms from C, to AutC,. Prove that C, x; C; =
C, X4, Cy, and conclude that there is only one nonabelian semidirect product
Cp x¢ C4 up to isomorphism.

Problems 3944 discuss properties of groups of order 8, obtaining a classification of
these groups up to isomorphism.

39.

Prove that the five groups Cg, C4 x Ca, C2» X Cy x Ca, D4, and Hg are mutually
nonisomorphic and that the first three exhaust the abelian groups of order 8, apart
from isomorphisms.
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40. (a) Find a composition series for the 8-element dihedral group Djy.
(b) Find a composition series for the 8-element quaternion group Hg.

41. (a) Prove that every subgroup of the quaternion group Hg is normal.
(b) Identify the conjugacy classes in Hg.
(c) Compute the order of Aut Hg.

42. Suppose that G is a nonabelian group of order 8. Prove that G has an element of
order 4 but no element of order 8.

43. Let G be a nonabelian group of order 8, and let K be the copy of C4 generated
by some element of order 4. If G has some element of order 2 that is not in K,
prove that G = Dy.

44. Let G be a nonabelian group of order 8, and let K be the copy of C4 generated
by some element of order 4. If G has no element of order 2 that is not in K,
prove that G = Hg.

Problems 4548 classify groups of order 12, making use of Proposition 4.61, Prob-
lem 15, and Problems 35-38. Let G be a group of order 12, let H be a Sylow
3-subgroup, and let K be a Sylow 2-subgroup. Proposition 4.61 says that at least one
of H and K is normal. Consequently there are three cases, and these are addressed
by the first three of the problems.
45. Verify that there are only two possibilities for G up to isomorphismif G is abelian.
46. Suppose that K is normal, so that G = H x, K. Prove that either
(i) t is trivial or
(ii) 7 is nontrivial and K = C; x Cy,
and deduce that G is abelian if (i) holds and that G = 204 if (ii) holds.
47. Suppose that H is normal, so that G = K x; H. Prove that one of the conditions
(i) 7 is trivial,
(i1) K = Cy x C, and t is nontrivial,
(iii) K = C4 and 7 is nontrivial
holds, and deduce that G is abelian if (i) holds, that G = Dg if (ii) holds, and
that G is nonabelian and is not isomorphic to 24 or Dy if (iii) holds.
48. Inthe setting of the previous problem, prove that there is one and only one group,

up to isomorphism, satisfying condition (iii), and find the order of each of its
elements.

Problems 49-52 assume that p and g are primes with p < g. The problems go in the

direction of classifying finite groups of order p?q.

49. If G is a group of order p?q, prove that either p?>q = 12 or a Sylow g-subgroup
is normal.

50. If p? divides g — 1, exhibit three nonabelian groups of order p?q that are mutually
nonisomorphic.
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51. If p divides ¢ — 1 but p? does not divide g — 1, exhibit two nonabelian groups
of order p?q that are not isomorphic.

52. If p does not divide ¢ — 1, prove that any group of order p?q is abelian.

Problems 53-54 concern nonabelian groups of order 27.

53. (a) Show that multiplication by the elements 1, 4, 7 mod 9 defines a nontrivial
action of Z/37Z on Z/9Z by automorphisms.
(b) Show from (a) that there exists a nonabelian group of order 27.
(c) Show that the group in (b) is generated by elements a and b that satisfy

a=b=b"laba* =1.

54. Show that any nonabelian group of order 27 having a subgroup H isomorphic to
Co and an element of order 3 not lying in H is isomorphic to the group constructed
in the previous problem.

Problems 55-62 give a construction of infinitely many simple groups, some of them
finite and some infinite. Let F be a field. For n > 2, let SL(n, I) be the special linear
group for the space " of n-dimensional column vectors. The center Z of SL(n, [F)
consists of the scalar multiples of the identity, the scalar being an n' root of 1. Let
PSL(n, F) = SL(n, F)/Z. Itis known that PSL(n, IF) is simple except for PSL(2, ;)
and PSL(2, F3). These problems will show that PSL(2, [F) is simple if |F| > 5 and
F is not of characteristic 2. Most of the argument will consider SL(2, ), and the
passage to PSL will occur only at the very end. In Problems 56-61, G denotes a
normal subgroup of SL(2, F) that is not contained in the center Z, and it is to be
proved that G = SL(2, IF).

55. Suppose that F is a finite field with g elements.

(a) By considering the possibilities for the first column of a matrix and then
considering the possibilities for the second column when the first column is
fixed, compute |GL(2, )| as a function of gq.

(b) By using the determinant homomorphism, compute |SL(2, F)| in terms of
IGL(2,F)|.

(c) Taking into account that F does not have characteristic 2, prove that
IPSL(2, F)| = §ISL(2, F)|.

(d) Show for a suitable finite field I with more than 5 elements that PSL(2, IF)
has order 168.

56. Let M be a member of G that is not in Z. Since M is not scalar, there exists a
column vector # with Mu not a multiple of u. Define v = Mu, so that (i, v) is
an ordered basis of 2. By rewriting all matrices with the ordered basis (u, v),
show that there is no loss in generality in assuming that G contains a matrix

A= (? _i) if it is ultimately shown that G = SL(2, F).
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57. Let a be a member of the multiplicative group F* to be chosen shortly, and let

B be the member (“ “.") of SL(2, F). Prove that

(a) B~'A~!'BA is upper triangular and is in G,

(b) B~!A~!BA has unequal diagonal entries if a* # 1,

(c) the condition in (b) can be satisfied for a suitable choice of @ under the
assumption that |F| > 5.

58. Suppose that C = (|,

0 xﬂ) is a member of G for some x # =£1 and some y.

Taking D = ( (1) }) and forming CDC~'D~!, show that G contains a matrix
E= (é}) with A % 0.

59. By conjugating E by (g a(ll ), show that the set of A in I such that (é ’}) is in

G is closed under multiplication by squares and under addition and subtraction.
60. Using the identity x = %(x + 1)> — $(x — 1)%, deduce from Problems 56-59
that G contains all matrices ((1) ?) with A € F.

10
-1

((1) )1‘) and (;, ?) generates SL(2, IF). Conclude that G = SL(2, [F).

62. Using the First Isomorphism Theorem, conclude that the only normal subgroup
of PSL(2, F) other than {1} is PSL(2, IF) itself.

61. Show that ( (1) ’}) is conjugate to ( ), and show that the set of all matrices

Problems 63-73 briefly introduce the theory of error-correcting codes. Let F be the
finite field Z/27Z. The vector space F" over F will be called Hamming space, and
its members are regarded as “words” (potential messages consisting of 0’s and 1’s).
The weight wt(c) of a word c is the number of nonzero entries in ¢c. The Hamming
distance d(a, b) between wordsa = (ay, ..., a,) andb = (by, ..., by) is the weight
of a — b, i.e., the number of indices i with 1 < i < n and a; # b;. A code is a
nonempty subset C of ", and the minimal distance &(C) of a code is the smallest
value of d(a, b) for a and b in C with @ # b. By convention if |C| = 1, take
6(C) = n + 1. One imagines that members of C, which are called code words, are
allowable messages, i.e., words that can be stored and retrieved, or transmitted and
received. A code with minimal distance § can then detect up to § — 1 errors in a
word ostensibly from C that has been retrieved from storage or has been received
in a transmission. The code can correct up to (§ — 1)/2 errors because no word of
" can be at distance < (§ — 1)/2 from more than one word in C, by Problem 63
below. The interest is in linear codes, those for which C is a vector subspace. It
is desirable that each message have a high percentage of content and a relatively
low percentage of further information used for error correction; thus a fundamental
theoretical problem for linear codes is to find the maximum dimension of a linear
code if n and a lower bound on the minimal distance for the code are given. As a
practical matter, information is likely to be processed in packets of a standard length,
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such as some power of 2. In many situations packets can be reprocessed if they have
been found to have errors. The initial interest is therefore in codes that can recognize
and possibly correct a small number of errors. The problems in this set are continued
at the ends of Chapters VII and IX.

63.

64.

65.

66.

67.

68.

Prove that the Hamming distance satisfies d(a,b) < d(a,c) + d(c, b), and
conclude that if a word w in F” is at distance < (D — 1)/2 from two distinct
members of the linear code C, then §(C) < D.

Explain why the minimal distance § (C) of a linear code C # {0} is given by the
minimal weight of the nonzero words in C.

Fix n > 2. List §(C) and dim C for the following elementary linear codes:

(a) C =0.

(b) C =TF".

(¢c) (Repetition code) C = {0, (1,1,..., 1)}

(d) (Parity-check code) C = {c¢ € F" | wt(c) is even}. (Educational note: To
use this code, one sends the message in the first # — 1 bits and adjusts the
last bit so that the word is in C. If there is at most one error in the word, this
parity bit will tell when there is an error, but it will not tell where the error
occurs.)

One way to get a sense of what members of a linear code C in F” have small
weight starts by making a basis for the code into the row vectors of a matrix and
row reducing the matrix.

(a) Takinginto accountthe distinction between corner variables and independent
variables in the process of row reduction, show that every basis vector of C
has weight at most the sum of 1 and the number of independent variables.
Conclude that dimC 4 §(C) < n + 1.

(b) Give an example of a linear code with §(C) = 2 for which equality holds.

(c) Examining the argument for (a) more closely, show that2 < dimC < n —2
implies dim C + §(C) < n.

100110
Let C be a linear code with a basis consisting of the rows of <0 10101 > Show
001011

that §(C) = 3. Educational note: Thus forn = 6 and §(C) = 3, we always have
dim C < 3, and equality is possible.

(Hamming codes) The Hamming code C7 of order 7 is a certain linear code
having dim C; = 4 that will be seen to have §(C7) = 3. The code words of a
basis, with their commas removed, may be taken as

1110000, 1001100, 0101010, 1101001.

The basis may be described as follows. Bits 1, 2,4 are used as checks. The
remaining bits are used to form the standard basis of F*. What is put in bits
1,2,4 is the binary representation of the position of the nonzero entry in
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positions 3, 5, 6, 7. When all 16 members of C7 are listed in the order dictated
by the bits in positions 3, 5, 6, 7, the resulting list is

Decimal value  Code word Decimal value Code word
in3,5,6,7 in3,5,6,7
0 0000000 8 1110000
1 1101001 9 0011001
2 0101010 10 1011010
3 1000011 11 0110011
4 1001100 12 0111100
5 0100101 13 1010101
6 1100110 14 0010110
7 0001111 15 1111111

For the general members of C7, not just the basis vectors, the check bits in

positions 1, 2, 4 may be described as follows: the bit in position 1 is a parity

bit for the positions among 3, 5, 6, 7 having a 1 in their binary expansions, the

bit in position 2 is a parity bit for the positions among 3, 5, 6, 7 having a 2 in

their binary expansions, and the bit in position 4 is a parity bit for the positions

among 3, 5, 6, 7 having a 4 in their binary expansions. The Hamming code Cg

of order 8 is obtained from C7 by adjoining a parity bit in position 8.

(a) Prove that §(C7) = 3. (Educational note: Thus forn = 7 and §(C) = 3, we
always have dim C < 4, and equality is possible.)

(b) Prove that §(Cg) = 4.

(c) Describe how to form a generalization that replaces n = 8 by n = 2" with
r > 3. The Hamming codes that are obtained will be called C>-_{ and C»r.

(d) Prove that dimCy_y = dimCyr =2"—r—1, 8(Cor_1) = 3, and §(Cy) =
4.

1010101
The matrix H = <0 11001 1), when multiplied by any column vector ¢ in
0001111

the Hamming code C,, performs the three parity checks done by bits 1, 2, 4 and

described in the previous problem. Therefore such a ¢ must have Hc = 0.

(a) Prove that the condition works in the reverse direction as well —that Hc = 0
only if ¢ is in C7.

(b) Deduce that if a received word r is not in C7 and if r is assumed to match
some word of C7 except in the i™ position, then Hr matches the i column
of H and this fact determines the integer i. (Educational note: Thus there is
a simple procedure for testing whether a received word is a code word and
for deciding, in the case that it is not a code word, what unique bit to change
to convert it into a code word.)

Let r > 4. Prove for 2’~! < n < 2" — 1 that any linear code C in F" with
8(C) = 3 has dimC < n —r. Observe that equality holds for C = Cor_;.



71.

72.

73.

12. Problems 209

The weight enumerator polynomial of a linear code C is the polynomial
We(X,Y) in Z[X, Y] given by We(X,Y) = Y }_o Ne(C)X"¥YK, where
Ni(C) is the number of words of weight k in C.

(a) Compute Wc (X, Y) for the following linear codes C: the 0 code, the code
", the repetition code, the parity code, the code in Problem 67, the Hamming
code C7, and the Hamming code Cg.

(b) Why is the coefficient of X" in W (X, Y) necessarily equal to 1?

(¢) Show that We (X, Y) = Y .o X" WOyWHO),

(Cyclic redundancy codes) Cyclic redundancy codes treat blocks of data as
coefficients of polynomials in F[X]. With the size n of data blocks fixed, one
fixes a monic generating polynomial G(X) = 1 +a; X +- - - +ag_1Xg’l + X¢
with a nonzero constant term and with degree g suitably less than n. Data to
be transmitted are provided as members (bo, by, ..., b,—g—1) of F"78 and are
converted into polynomials B(X) = bg + )1 X + -+ + b,,_g_lX”_g_l. Then
the n-tuple of coefficients of G(X) B(X) is transmitted. To decode a polynomial
P (X) that is received, one writes P(X) = G(X)Q(X) 4+ R(X) via the division
algorithm. If R(X) = 0, it is assumed that P(X) is a code word. Otherwise
R(X) is definitely not a code word. Thus the code C amounts to the system
of coefficients of all polynomials G(X)B(X) with B(X) = 0 or deg B(X) <
n — g — 1. A basis of C is obtained by letting B(X) run through the monomials
1, X,..., X" ¢! andthereforedimC = n—g. Take G(X) = 1+ X+ X2+ X*
and n > 8. Prove that §(C) = 2.

(CRC-8) The cyclic redundancy code C bearing the name CRC-8 has G(X) =
14+ X + X? + X8 Prove that if 8 < n < 19, then §(C) = 4. (Educational
note: It will follow from the theory of finite fields in Chapter IX, together with
the problems on coding theory at the end of that chapter, that n = 255 plays a
special role for this code, and §(C) = 4 in that case.)

Problems 74—77 concern categories and functors. Problem 75 assumes knowledge of
point-set topology.

74.

75.

Let C be the category of all sets, the morphisms being the functions between sets.
Verify that the disjoint union of sets is a coproduct.

Let C be the category of all topological spaces, the morphisms being the contin-

uous functions. Let S be a nonempty set, and let X be a topological space for

each s in S.

(a) Show that the Cartesian product of the spaces X, with the product topology,
is a product of the X;’s.

(b) Show that the disjoint union of the spaces X, topologized so that a set E is
open if and only if its intersection with each X is open, is a coproduct of
the X;’s.



210 1V. Groups and Group Actions

76. Taking a cue from the example of a category in which products need not exist,
exhibit a category in which coproducts need not exist.

77. LetC be a category having just one object, say X, and suppose that every member
of Morph(X, X) is an isomorphism. Prove that Morph(X, X) is a group under
the law of composition for the category. Can every group be realized in this way,
up to isomorphism?

Problems 78-80 introduce a notion of duality in category theory and use it to derive
Proposition 4.64 from Proposition 4.63. If C is a category, then the opposite category
C°PP is defined to have Obj(C °PP) = Obj(C) and Morph;op (A, B) = Morphq(B, A).
If o denotes the law of composition in C, then the law of composition o°PP in C °PP is
defined by g o°P f = f o g for f € Morph.op (A, B) and g € Morphop (B, C).
78. Verify that C°PP is indeed a category, that (C°PP)°PP = (, and that to pass from
a diagram involving objects and morphisms in C to a corresponding diagram
involving the same objects and morphisms considered as in C °PP, one leaves all
the vertices and labels alone and reverses the directions of all the arrows. Verify
also that the diagram of C commutes if and only if the diagram in C °°P commutes.

79. Let C be the category of all sets, the morphisms in Morph-(A, B) being all
functions from A to B. Show that the morphisms in Morph.eyp (A, B) cannot
necessarily all be regarded as functions from A to B.

80. Suppose that S is a nonempty set and that { X }scys is an object in C.
(a) Prove that if (X, {ps}ses) is a product of {X}ses in C, then (X, {ps}ses) is
a coproduct of {X}ses in C°PP, and that if (X, {ps}ses) is a coproduct of
{Xs}ses inC, then (X, {ps}ses) is a product of {X}seg in CPP.
(b) Show that Proposition 4.64 for C follows from the validity of Proposition
4.63 for C°PP,



CHAPTER V

Theory of a Single Linear Transformation

Abstract. This goal of this chapter is to find finitely many canonical representatives of each
similarity class of square matrices with entries in a field and correspondingly of each isomorphism
class of linear maps from a finite-dimensional vector space to itself.

Section 1 frames the problem in more detail. Section 2 develops the theory of determinants over
a commutative ring with identity in order to be able to work easily with characteristic polynomials
det(XI — A). The discussion is built around the principle of “permanence of identities,” which
allows for passage from certain identities with integer coefficients to identities with coefficients in
the ring in question.

Section 3 introduces the minimal polynomial of a square matrix or linear map. The Cayley—
Hamilton Theorem establishes that such a matrix satisfies its characteristic equation, and it follows
that the minimal polynomial divides the characteristic polynomial. It is proved that a matrix is
similar to a diagonal matrix if and only if its minimal polynomial is the product of distinct factors
of degree 1. In combination with the fact that two diagonal matrices are similar if and only if their
diagonal entries are permutations of one another, this result solves the canonical-form problem for
matrices whose minimal polynomial is the product of distinct factors of degree 1.

Section 4 introduces general projection operators from a vector space to itself and relates them to
vector-space direct-sum decompositions with finitely many summands. The summands of a direct-
sum decomposition are invariant under a linear map if and only if the linear map commutes with
each of the projections associated to the direct-sum decomposition.

Section 5 concerns the Primary Decomposition Theorem, whose subject is the operation of
a linear map L : V — V with V finite-dimensional. The statement is that if L has minimal
polynomial P (X Yoo Pe(X)M with the P;(X) distinct monic prime, then V has a unique direct-
sum decomposition in which the respective summands are the kernels of the linear maps P; (L),
and moreover the minimal polynomial of the restriction of L to the j™ summand is Pi(X )i

Sections 6-7 concern Jordan canonical form. For the case that the prime factors of the minimal
polynomial of a square matrix all have degree 1, the main theorem gives a canonical form under
similarity, saying that a given matrix is similar to one in “Jordan form” and that the Jordan form
is completely determined up to permutation of the constituent blocks. The theorem applies to all
square matrices if the field is algebraically closed, as is the case for C. The theorem is stated and
proved in Section 6, and Section 7 shows how to make computations in two different ways.

1. Introduction

This chapter will work with vector spaces over acommon field of “scalars,” which
will be called K. As was observed near the end of Section IV.5, all the results
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concerning vector spaces in Chapter II remain valid when the scalars are taken
from K rather than just Q or R or C. The ring of polynomials in one indeterminate
X over K will be denoted by K[X].

For the field C of complex numbers, every nonconstant polynomial in C[X]
has a root, according to the Fundamental Theorem of Algebra (Theorem 1.18).
Because of this fact some results in this chapter will take an especially simple
form when K = C, and this simple form will persist for any field with this
same property. Accordingly, we make a definition. Let us say that a field K is
algebraically closed if every nonconstant polynomial in K[X] has a root. We
shall work hard in Chapter IX to obtain examples of algebraically closed fields
beyond K = C, but let us mention now what a few of them are.

EXAMPLES.

(1) The subset of C of all roots of polynomials with rational coefficients is an
algebraically closed field.

(2) For each prime p, we have seen that any finite field of characteristic p has
p" elements for some n. It turns out that there is one and only one field of p”
elements, up to isomorphism, for each n. If we align them suitably for fixed p
and take their union on 7, then the result is an algebraically closed field.

(3) If K is any field, then there exists an algebraically closed field having K as
a subfield. We shall prove this existence in Chapter IX by means of Zermelo’s
Well-Ordering Theorem (which appears in Section A5 of the appendix).

The general problem to be addressed in this chapter is to find “canonical forms”
for linear maps from finite-dimensional vector spaces to themselves, special ways
of realizing the linear maps that bring out some of their properties. Let us phrase
a specific problem of this kind completely in terms of linear algebra at first. Then
we can rephrase it in terms of a combination of linear algebra and group theory,
and we shall see how it fits into a more general context.

In terms of matrices, the specific problem is to find a way of deciding whether
two square matrices represent the same linear map in different bases. We know
from Proposition 2.17 that if L : V — V is linear on the finite-dimensional
vector space V and if A is the matrix of L relative to a particular ordered basis in
domain and range, then the matrix B of L in another ordered basis is of the form
B = C~'AC for some invertible matrix C, i.e., A and B are similar.! Thus one
kind of solution to the problem would be to specify one representative of each
similarity class of square matrices. But this is not a convenient kind of answer

to look for; in fact, the matrices A = ( (l) (2)) and B = (g ?) are similar via

' A square matrix A with a two-sided inverse is sometimes said to be nonsingular. A square
matrix with no inverse is then said to be singular.
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C = (? é) but there is no particular reason to prefer one of A or B to the other.
Thus a “canonical form” for detecting similarity will allow more than one repre-
sentative of each similarity class (but typically only finitely many such represen-
tatives), and a supplementary statement will tell us when two such are similar.

So far, the best information that we have about solving this problem concerning
square matrices comes from Section II.8. In that section the discussion of eigen-
values gave us some necessary conditions for similarity, but we did not obtain a
useful necessary and sufficient condition.

In terms of linear maps, what we seek for a linear L : V — V is to use the
geometry of L to construct an ordered basis of V such that L acts in a particularly
simple way on that ordered basis. Ideally the description of how L acts on the
ordered basis is to be detailed enough so that the matrix of L in that ordered basis
is completely determined by the description, even though the ordered basis may
not be determined by it. For example, if L were to have a basis of eigenvectors,
then the description could be that “L has an ordered basis of eigenvectors with
eigenvalues xi, ..., x,.” In any ordered basis with this property, the matrix of L
would then be diagonal with diagonal entries x, . .., x,.

Suppose then that we have this kind of detailed description of how a linear
map L acts on some ordered basis. To what extent is L completely determined?
The answer is that L is determined up to an isomorphism of the underlying vector
space. In fact, suppose that L and M are linear maps from V to itself such that

( L ) =A= ( AMA) for some ordered bases I" and A. Then

(i) == () = () (1) ()
~() () ()= (")

where S : V — V is the invertible linear map defined by <1_,SF) = (FIA)

Hence L = S™'MS and SL = MS. In other words, if we think of having
two copies of V, one called V| and the other called V,, that are isomorphic via
S : Vi — V,, then the effect of M in V, corresponds under S to the effect of L
in Vj. In this sense, L is determined up to an isomorphism of V.

Thus we are looking for a geometric description that determines linear maps
up to isomorphism. Two linear maps L and M that are related in this way have
L = S~'M S for some invertible linear map S. Passing to matrices with respect to
some basis, we see that the matrices of L and M are to be similar. Consequently
our two problems, one to characterize similarity for matrices and the other to
characterize isomorphism for linear maps, come to the same thing.
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These two problems have an interpretation in terms of group theory. In the
case of n-by-n matrices, the group GL(n, K) of invertible matrices acts on the set
of all square matrices of size n by conjugation via (g, x) — gxg~'; the similarity
classes are exactly the orbits of this group action, and the canonical form is to
single out finitely many representatives from each orbit. In the case of linear
maps, the group GL(V) of invertible linear maps on the finite-dimensional vector
space V acts by conjugation on the set of all linear maps from V into itself; the
isomorphism classes of linear maps on V are the orbits, and the canonical form
is to single out finitely many representatives from each orbit.

The above problem, whether for matrices or for linear maps, does not have a
unique acceptable solution. Nevertheless, the text of this chapter will ultimately
concentrate on one such solution, known as the “Jordan canonical form.”

Now that we have brought group theory into the statement of the problem, we
can put matters in a more general context: The situation is that some “important”
group G acts in an important way on an “interesting” vector space of matrices. The
canonical-form problem for this situation is to single out finitely many represen-
tatives of each orbit and give a way of deciding, in terms of these representatives,
whether two of the given matrices lie in the same orbit. We shall not pursue the
more general problem in the text at this time. However, Problem 1 at the end of
the chapter addresses one version beyond the one concerning similarity: to find
a canonical form for the action of GL(m, K) x GL(n, K) on m-by-n matrices
by ((g,h),x) = gxh~!. Some other groups that are important in this sense,
besides products of general linear groups, are introduced in Chapter VI, and a
problem at the end of Chapter VI reinterprets two theorems of that chapter as
further canonical-form theorems under the action of a general linear group.

Let us return to the canonical-form problems for similarity of matrices and
isomorphism of linear maps. The basic tool in studying these problems is the
characteristic polynomial of a matrix or a linear map, as in Chapter II. However,
we subtly used a special feature of (Q and R and C in working with characteristic
polynomials in Chapter II: we passed back and forth between the characteristic
polynomial det(A/ — A) as a polynomial in one indeterminate (defined by its
expression after expanding it out) and as a polynomial function of A, defined for
each value of A in Q or R or C, one value at a time. This passage was legitimate
because the homomorphism of the ring of polynomials in one indeterminate over
a field to the ring of polynomial functions is one-one when the field is infinite,
by Proposition 4.28c or Corollary 1.14. Some care is required, however, in
working with general fields, and we begin by supplying the necessary details for
justifying manipulations with determinants in a more general setting than earlier.
The end result will be that the characteristic polynomial is a polynomial in one
indeterminate, and we shall henceforth call that indeterminate X, rather than A,
so as to emphasize this point of view.
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2. Determinants over Commutative Rings with Identity

Throughout this section let R be a commutative ring with identity. The main case
of interest for us at this time will be that R = K[X] is the polynomial ring in one
indeterminate X over a field K.

The set of n-by-n matrices with entries in R is an abelian group under entry-
by-entry addition, and matrix multiplication makes it into a ring with identity.
Following tradition, we shall usually write M,,(R) rather than M,,,,(R) for this
ring. In this section we shall define a determinant function det : M, (R) — R and
establish some of its properties. For the case that R is a field, some of our earlier
proofs concerning determinants used vector-space concepts —bases, dimensions,
and so forth—and these are not available for general R. Yet most of the properties
of determinants remain valid for general R because of a phenomenon known as
permanence of identities. We shall not try to state a general theorem about
this principle but instead will be content to observe a pattern in how the relevant
identities are proved.

If Aisin M, (R), we define its determinant to be

det A = Z (sgno)Ais1yAxs2) -+ - Ano(n)s

oeS,

in effect converting into a definition the formula obtained in Theorem 2.34d when
R is a field.
A sample of the kind of identity we have in mind is the formula

det(AB) = det Adet B for A and B in M, (R).

The key is that this formula says that two polynomials in 2n? variables, with
integer coefficients, are equal whenever arbitrary members of R are substituted
for the variables. Thus let us introduce 2n2 indeterminates X1, X12, - - -, Xnn
and Y1y, Yo, ..., Yy, to correspond to these variables. Forming the commutative
ring § = Z[X11, X12,---» Xuns Y11, Y12, - .., Yun], we assemble the matrices
X = [X;], Y = [¥;;], and XY = [ Y, XieYi;] in M, (S). Consider the two
members of S given by

det X detY
=( X 6gno)Xie))X20@  * Xnow)( X (5810 Y161)Y202) * * * Yaom))
oeS, 0eB,

and det(XY) = > (sgno)(XY)io(y(XY)202) - - (XY )no ),

ceS,
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where (XY);; = >, XitYij. If we fix arbitrary elements xiy, X12, . .., X, and
Vi1, Y125 - - - » Yun Of Z, then Proposition 4.30 gives us a unique substitution ho-
momorphism ¥ : § — Z such that (1) = 1, ¥(X;;) = x;;, and W(Y;;) = y;;
for all i and j. Writing x = [x;;] and y = [y;;] and using that matrices with
integer entries have det(xy) = det x det y because Z is a subset of the field Q, we
see that W(det(XY)) = W(det X det Y) for each choice of x and y. Since Z is an
infinite integral domain and since x and y are arbitrary, Corollary 4.32 allows us
to deduce that
det(XY) =det X detY

as an equality in S.

Now we pass from an identity in S to an identity in R. Let 1 be the identity in
R. Proposition 4.19 gives us a unique homomorphism of rings ¢; : Z — R
such that ¢(1) = 1g. If we fix arbitrary elements Ay, Aj2, ..., Ay, and
B11, Bia, ..., By, of R, then Proposition 4.30 gives us a unique substitution
homomorphism & : § — R such that ®(1) = ¢1(1) = 1g, ®(X;;) = A;j
for all i and j, and ®(Y;;) = B;; for all i and j. Applying ® to the equality
det(XY) = det X det Y, we obtain the identity we sought, namely

det(AB) = det Adet B for A and B in M, (R).

Proposition 5.1. If R is a commutative ring with identity, then the determinant
function det : M,,(R) — R has the following properties:

(a) det(AB) = det Adet B,

(b) detl =1,

(c) det AT =det A,

(d) detC = det A + det B if A, B, and C match in all rows but the j® and if
the j™ row of C is the sum of the j™ rows of A and B,

(e) det B =rdet Aif A and B match in all rows but the j® and if the j® row
of B is equal entry by entry to r times the j® row of A for some r in R,

(f) det A = 0 if A has two equal rows,

(@) det(g g) — det Adet D if Ais in My(R), D is in M;(R), and k +1 = n.

REMARKS. Properties (d), (e), and (f) imply that usual steps in manipulating
determinants by row reduction continue to be valid.

PROOF. Part (a) was proved above, and parts (c) through (f) may be proved
in the same way from the corresponding facts about integer matrices in Section
I1.7. Part (b) is immediate from the definition.

For (g), we first prove the result when the entries are in Q, and then we argue
in the same way as with (a) above. When the entries are in QQ, row reduction
of D allows us to reduce to the case either that D has a row of 0’s or that D
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is the identity. If D has a row of 0’s, then det (3 g) and det A det D are both
0 and hence are equal. If D is the identity, then further row reduction shows
that det (3 f) = det (3 ([)), and the right side equals det A = det Adet/, as
required. ([l

Proposition 5.2 (expansion in cofgtgtors). Let R be a commutative ring with
identity, let A be in M,,(R), and let A;; be the member of M,_;(R) obtained by
deleting the i row and the j™ column from A. Then

(a) forany j,detA =7, (—1)'"/ A;; det Z,\j i.e., det A may be calculated
by “expansion in cofactors” about the j t}Lgolumn,

(b) foranyi,det A =)"/_, (=1)'"/ A;jdet A;;, i.e., det A may be calculated
by “expansion in cofactors” about the i row.

PROOF. This may be derived in the same way from Proposition 2.36 by using

the principle of permanence of identities. H
Corollary 5.3 (Vandermonde matrix and determinant). If ry,...,r, liein a
commutative ring R with identity, then

1 1 e 1

rl r2 ... rn

2 2 2

det] i ry o Ty :l_[(rj—rl-).
: : . : j>i
ril_l I’g_l . }",’11_1

PROOF. The derivation of this from Proposition 5.2 is the same as the derivation
of Corollary 2.37 from Proposition 2.35. g

Proposition 5.4 (Cramer’s rule). Let R be a commutative ring with identity,
let A be in M, (R), and define A*Y in M, (R) to be the classical adjoint of A,
namely the matrix with entries A?](.lj = (—1)"*J det ;1;, where ;l./:, defined as in
the statement of Proposition 5.2. Then AA*Y = A4 A = (det A)1.

PROOF. This may be derived from Proposition 2.38 in the same way as for
Propositions 5.1 and 5.2 using the principle of permanence of identities. (]

Corollary 5.5. Let R be a commutative ring with identity, and let A be
in M,(R). If det A is a unit in R, then A has a two-sided inverse in M, (R).
Conversely if A has a one-sided inverse in M, (R), then det A is a unit in R.

REMARK. If R is a field, then A and any associated linear map are often called
nonsingular if invertible, singular otherwise. When R is not a field, terminology
varies for what to call a noninvertible matrix whose determinant is not O.



218 V. Theory of a Single Linear Transformation

PROOF. If det A is a unit in R, let r be its multiplicative inverse. Then
Proposition 5.4 shows that » A% is a two-sided inverse of A. Conversely if A
has, say, a left inverse B, then BA = I implies (det B)(det A) = det/ = 1, and
det B is an inverse for det A. A similar argument applies if A has a right inverse.

O

3. Characteristic and Minimal Polynomials

Again let K be a field. If A is in M, (K), the characteristic polynomial of A is
defined to be the member of the ring K[X] of polynomials in one indeterminate
X given by F(X) = det(XI — A). The material of Section 2 shows that F(X)
is well defined, being the determinant of a member of M, (K[X]). It is apparent
from the definition of determinant in Section 2 that F'(X) is a monic polynomial
of degree n with coefficient —Tr A = — »"_, A;; for X"~'. Evaluating F(X)
at 0, we see that the constant term is (—1)" det A.

Since the determinant of a product in M, (K[X]) is the product of the de-
terminants (Proposition 5.1a) and since C~'(XI — A)C = XI — C~'AC, we
have

det(XI — C7'AC) = (detC) "' det(XI — A)(det C) = det(XI — A).

Thus similar matrices have equal characteristic polynomials. If V is an n-
dimensional vector space over K and L : V — V is linear, then the matrices of
L in any two ordered bases of V (the domain basis being assumed equal to the
range basis) are similar, and their characteristic polynomials are the same. Conse-
quently we can define the characteristic polynomial of L to be the characteristic
polynomial of any matrix of L.

The development of characteristic polynomials has thus be redone in a way
that is valid over any field K without making use of the ring homomorphism from
polynomials in one indeterminate over K to polynomial functions from K into
itself. The discussion in Section I1.8 of eigenvectors and eigenvalues for members
A of M,,(K) and for linear maps L : V — V with V finite-dimensional over K
is now meaningful, and there is no need to repeat it.

In particular, the eigenvalues of A and L are exactly the roots of their charac-
teristic polynomial, no matter what K is. If K is algebraically closed, then the
characteristic polynomial has a root, and consequently A and L each have at least
one eigenvalue.

If L:V — Vislinear and V is finite-dimensional, then a vector subspace
U of V is said to be invariant under L if L(U) C U. In this case L|U is a
well-defined linear map from U to itself. Since L(U) C U, Proposition 2.25
shows that L : V — V factors through V/U as alinearmap L : V/U — V/U.
We shall use this construction, the existence of eigenvalues in the algebraically
closed case, and an induction to prove the following.
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Proposition 5.6. If K is an algebraically closed field, if V is a finite-
dimensional vector space over K, and if L : V — V is linear, then V has
an ordered basis in which the matrix of L is upper triangular. Consequently any
member of M, (K) is similar to an upper triangular matrix.

cl *
REMARKS. For an upper triangular matrix A = in M, (K), the
0 o
characteristic polynomial is ]_[7:1 (X — ¢;) because the only nonzero term in the
definition of det(X/ — A) is the one corresponding to the identity permutation.
Triangular form is not yet the canonical form we seek for a square matrix because
a particular square matrix may be similar to infinitely many matrices in triangular
form.

PROOF. We proceed by induction on n = dim V, with the base case n = 1
being clear. Suppose that the result holds for all linear maps from spaces of
dimension < » to themselves. Given L : V — V withdimV = n, let v; be
an eigenvector of L. This exists by the remarks before the proposition since K
is algebraically closed. Let U be the vector subspace Kv;. Then L(U) C U,
and Proposition 2.25 shows that L : V — V factors through V /U as a linear
map L : V/U — V/U. Since dimV/U = n — 1, the inductive hypothesis

produces an ordered basis (s, . . ., U,) of V/U such that the matrix of L is upper
triangular in this basis. This condition means that Z(Dj) = Z{ZZ cijv; for j > 2.
Select coset representatives vy, ..., v, of v, ..., v, so that v; = v; + U for

Jj = 2. Then L(v; + U) = 2{22 ¢ij(v; + U) for j > 2, and hence L(v;)
lies in the coset Zij:2 cijv; + U for j > 2. For each j > 1, we then have
L(vj) = Z;fzz ¢ijv; + c1jv; for some scalar ¢, and we see that (vy, ..., v,) is
the required ordered basis. (]

Let us return to the situation in which K is any field. For a matrix A in M, (K)
and a polynomial P in K[X], it is meaningful to form P(A). We can do so by
two equivalent methods, both useful. The concrete way of forming P(A) is as
PA) =c, A"+ ---+c1A+col if P(X) = c, X"+ ---4+c1X + ¢g. The
abstract way is to form the subring 7 of M, (K) generated by K/ and A. This
subring is commutative. We let ¢ : K — T be given by ¢(c) = cI. Then the
universal mapping property of K[ X] given in Proposition 4.24 produces a unique
ring homomorphism @ : K[X] — T such that ®(¢) = c¢I for all ¢ € K and
®(X) = A. The value of P(A) is the element ®(P) of T.

For A in M, (K), let us study all polynomials P such that P(A) = 0. For any
polynomial P and any invertible matrix C, we have

P(C~'AC) =C'P(A)C
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because if P(X) = ¢, X" +--- 4+ c1X + co, then

P(CT'AC) = c,(C"TAC)" + -+ 4+ ¢;C7 AC + col
=C e, A"+ - 4+ 1A+ co])C.

Consequently if P(A) = 0, then P(C~'AC) = 0, and the set of matrices with
P(A) = 0 is closed under similarity. We shall make use of this observation a
little later in this section.

Proposition 5.7. If A is in M, (K), then there exists a nonzero polynomial P
in K[X] such that P(A) = 0.

PROOF. The K vector space M, (K) has dimension n?. Therefore the n> + 1
matrices I, A, A%, ..., A" are linearly dependent, and we have

co+clA+c2A2+-~+cn2A”2=O

for some set of scalars not all 0. Then P(A) = 0 for the polynomial P(X) =
o+ X+ Xi 4+ + Cp2 an; this P is not the O polynomial since at least one
of the coefficients is not 0. (]

ALTERNATIVE PROOF IF K IS ALGEBRAICALLY CLOSED. Since the set of poly-
nomials P with P(A) = 0 depends only on the similarity class of A, Proposition
5.6 shows that there is no loss of generality in assuming that A is upper triangular,

Al *
say of the form . Then A — A;I is upper triangular with 0 in the j®
0 )"Il
diagonal entry, and ]_[;’Zl (A — A;I) is upper triangular with O in all diagonal
entries. Therefore (H?:l (A — Ajl))" =0. O

With A fixed, we continue to consider the set of all polynomials P(X) such
that P(A) = 0. Let us think of P(A) as being computed by the abstract proce-
dure described above, namely as the image of A under the ring homomorphism
@ : K[X] — T such that ®(c) = cI forall c € K and ®(X) = A, where T is
the commutative subring of M, (K) generated by K/ and A. Then the set of all
polynomials P(X) with P(A) = 0 is the kernel of the ring homomorphism .
This set is therefore an ideal, and Proposition 5.7 shows that the ideal is nonzero.
We shall apply the following proposition to this ideal.

Proposition 5.8. If / is a nonzero ideal in K[X], then there exists a unique
monic polynomial of lowest degree in /, and every member of / is the product
of this particular polynomial by some other polynomial.
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PROOF. Let B(X) be a nonzero member of /I of lowest possible degree;
adjusting B by a scalar factor, we may assume that B is monic. If A isin I,
then Proposition 1.12 produces polynomials Q and R such that A = BQ + R
and either R = 0 or deg R < deg B. Since [ is an ideal, BQ is in I and hence
R = A — BQ isin I. From minimality of the degree of B, we conclude that
R = 0. Hence A = BQ, and A is exhibited as the product of B and some other
polynomial Q. If By is a second monic polynomial of lowest degree in /, then we
can take A = Bj to see that By = QB. Since deg B; = deg B, we conclude that
deg Q = 0. Thus Q is a constant polynomial. Comparing the leading coefficients
of B and B;, we see that Q(X) = 1. U]

With A fixed in M,,(K), let us apply Proposition 5.8 to the ideal of all polyno-
mials P in K[ X] with P(A) = 0. The unique monic polynomial of lowest degree
in this ideal is called the minimal polynomial of A. Let us try to identify this
minimal polynomial.

Theorem 5.9 (Cayley—Hamilton Theorem). If A is in M,,(K) and if F(X) =
det(X 1 — A) is its characteristic polynomial, then F(A) = 0.

PROOF. Let T be the commutative subring of M, (K) generated by K/ and A,
and define a member B(X) of the ring T[X] by B(X) = XI — A. The (i, j)
entry of B(X) is B;;(X) = §;; X — A;;, and F(X) = det B(X).

Let C(X) = B(X)™ denote the classical adjoint of B(X) as a member of
T[X]; the form of C(X) is given in the statement of Cramer’s rule (Proposition
5.4), and that proposition says that

B(X)C(X) = (det B(X))I = F(X)I.

The equality in the (i, j) entry is the equality 8 F(X) = Zj B (X)Cyj(X) of
members of K[ X]. Application of the substitution homomorphism X +— A gives

8ijF (A) = 3 Bi(A)Cj(A) = 3 Bix A — AuI)Cij(A).
x x

Multiplying on the right by the " standard basis vector ¢; and summing on i, we
obtain the equality of vectors

F(A)e; = Z ; (BixAe; — Ajke;))Crj(A) = ; ij(A)(Z (BikAe; — Airey))

since Cy;(A) is ascalar. But ) _; (§ixAe; — Aike;) = Aex — ), Ajre; = 0 for all
k, and therefore F'(A)e; = 0. Since j is arbitrary, F'(A) = 0. O
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Corollary 5.10. If A is in M, (K), then the minimal polynomial of A divides
the characteristic polynomial of A.

PROOF. Theorem 5.9 shows that the characteristic polynomial of A lies in
the ideal of all polynomials vanishing on A. Then the corollary follows from
Proposition 5.8. (|

For our matrix A in M,,(K), let F(X) be the characteristic polynomial, and let
M (X) be the minimal polynomial. By unique factorization (Theorem 1.17), the
monic polynomial F'(X) has a factorization into powers of distinct prime monic
polynomials of the form

F(X) = Pi(X)" - P(X),

and this factorization is unique up to the order of the factors. Since M (X) is a
monic polynomial dividing F'(X), we must have

M(X) = P (X)" - P (X

withl <k, ...,Il, <k, by the same argument that deduced Corollary 1.7 from
unique factorization in the ring of integers. We shall see shortly that k; > 0
implies/; > 0if P;(X) is of degree 1, i.e., if P;(X) is of the form X — A¢; in other
words, if A¢ is an eigenvalue of A, then X — A¢ divides its minimal polynomial.
We return to this point in a moment. Problem 31 at the end of the chapter will
address the same question when P;(X) has degree > 1.

EXAMPLES.

(1) In the 2-by-2 case, ((C) S) has minimal polynomial M(X) = X — ¢, and
(S z) has M(X) = (X — ¢)>. Both matrices have characteristic polynomial
F(X)= (X —c¢)>

(2) The k-by-k matrix

cl 0 00
0 I 00
00 0 - cl
00 0 -0c¢

with ¢ in every diagonal entry, with 1 in every entry just above the diagonal, and
with 0 elsewhere has minimal polynomial M(X) = (X — c)* and characteristic
polynomial F(X) = (X — o)~

(3) If a matrix A is made up exclusively of several blocks of the type in
Example 2 with the same ¢ in each case, the i th plock being of size k;, then the
minimal polynomial is M (X) = (X — ¢)™i ki and the characteristic polynomial
is F(X) = (X —c)xiki,
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(4) If A is made up exclusively of several blocks as in Example 3 but with ¢
different for each block, then the minimal and characteristic polynomials for A
are obtained by multiplying the minimal and characteristic polynomials obtained
from Example 3 for the various c’s.

To proceed further, let us change our point of view, working with linear
maps L : V — V, where V is a finite-dimensional vector space over K. We
have already defined the characteristic polynomial of L to be the characteristic
polynomial of the matrix of L in any ordered basis; this is well defined because
similar matrices have the same characteristic polynomial. In analogous fashion
we can define the minimal polynomial of L to be the minimal polynomial of the
matrix of L in any ordered basis; this is well defined since, as we have seen, the
set of polynomials P in one indeterminate with P(A) = O is the same as the set
with P(C~'AC) = 0 if C is invertible.

Another way of approaching the matter of the minimal polynomial of L is to
define P (L) for any polynomial P in one indeterminate. As with matrices, we
can define P (L) either concretely by substituting L for X in the expression for
P(X), or we can define P (L) abstractly by appealing to the universal mapping
property in Proposition 4.24. For the latter we work with the subring 7" of linear
maps from V to itself generated by K/ and L. This subring is commutative. We
let ¢ : K — T’ be given by ¢(c) = cI, and we use Proposition 4.24 to obtain the
unique ring homomorphism @ : K[X] — T’ such that ®(¢) = c¢I forall c € K
and ®(X) = L. Then P(L) is the element ®(P) of T'. Once P (L) is defined,
we observe that the set of polynomials P (X) such that P(L) = 0 is a nonzero
ideal in K[ X]; Proposition 5.8 yields a unique monic polynomial of lowest degree
in this ideal, and that is the minimal polynomial of L.

Linear maps enable us to make convenient use of invariant subspaces. Recall
from earlier in the section that a vector subspace U of V is said to be invariant
under the linearmap L : V — V if L(U) C U, in this case we obtain associated
linear maps L| y - U — Uand L : V/U — V/U. Relationships among
the characteristic polynomials and minimal polynomials of these linear maps are
given in the next two propositions.

Proposition 5.11. Let V be a finite-dimensional vector space over K, let
L : V — V be linear, let U be a proper nonzero invariant subspace under L, and
let L : V/U — V/U be the induced linear map on V/U. Then the characteristic
polynomials of L, L|,,, and L are related by

det(X1 — L) = det (X1 — L|,) det(XI — L).

PROOF. Let I'y = (vy, ..., 1) be an ordered_basis of U, and extend I'y to
an ordered basis I' = (v, ...,v,) of V. ThenI' = (vp 1 + U, ..., v, + U)
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is an ordered basis of V/U. Since U is invariant under L, the matrix of L in
the ordered basis I' is of the form (8\ g), where A is the matrix of L U in the

ordered basis I'yy and D is the matrix of L in the ordered basis T'. Passing to the
characteristic polynomials and applying Proposition 5.1g, we obtain the desired
conclusion. O

Proposition 5.12. Let V be a finite-dimensional vector space over K, let
L : V — V be linear, let U be a proper nonzero invariant subspace under L, and
let L : V/U — V/U be the induced linear map on V/U. Then the minimal
polynomials of L | y and L divide the minimal polynomial of L.

PROOF. Let N(X) be the minimal polynomial of L|U. Then N(X) is the
unique monic polynomial of lowest degree in the ideal of all polynomials P (X)
such that P(L)u = O for all ¥ in U. The minimal polynomial M (X) of L has
this property because M (X)v = 0 for all v in V. Therefore M (X) is in the ideal
and is the product of N(X) and some other polynomial.

Among linear maps S from V into V carrying U into itself, the function S > §
sending S to the linear map S induced on V/U is a homomorphism of rings. It
follows that if P(X) is a polynomial with P(L) = 0, then P(L) = 0. Taking
P(X) to be the minimal polynomial of L, we see that the minimal polynomial of
L is in the ideal of polynomials vanishing on L. Therefore it is the product of the
minimal polynomial of L and some other polynomial. ([l

Let us come back to the unproved assertion before the examples—that k; > 0
implies /; > 0 if P.(X) has degree 1. We prove the linear-function version of
this statement as a corollary of Proposition 5.12.

Corollary 5.13. If L : V — V is linear on a finite-dimensional vector
space over K and if a first-degree polynomial X — Ag divides the characteristic
polynomial of L, then X — X divides the minimal polynomial of L.

PROOF. If X —Aq divides the characteristic polynomial, then X is an eigenvalue
of L, say with v as an eigenvector. Then U = Kuv is an invariant subspace under
L, and the characteristic and minimal polynomials of L|,, are both X — 4. By
Proposition 5.12, X — X divides the minimal polynomial of L. (]

Theorem 5.14. If L : V — V is linear on a finite-dimensional vector space
over K, then L has a basis of eigenvectors if and only if the minimal polynomial
M (X) of L is the product of distinct factors of degree 1; in this case, M (X) equals
(X = XAp) -+ (X — Ag), where Aq, ..., A are the distinct eigenvalues of L. Con-
sequently a matrix A in M, (K) is similar to a diagonal matrix if and only if its
minimal polynomial is the product of distinct factors of degree 1.
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PROOF. The easy direction is that vy, ..., v, are the members of a basis
of eigenvectors for L with respective eigenvalues u1, ..., u,. In this case, let
A1, ..., At be the distinct members of the set of eigenvalues, with p; = A;;) for
some function j : {I,...,n} — {1,...,k}. Then (L — A;1)(v) = O for v equal
to any v; with j(i) = j. Since the linear maps L — A;/ commute as j varies,

]—[f=1 (L—X;I)(v) = Oforvequaltoeachof vy, ..., v,, henceforall v. Therefore

the minimal polynomial M (X) of L divides ]_[;.‘:1 (X — A;). On the other hand,
Corollary 5.13 shows that the deg M (X) > k. Hence M(X) = ]_[f:1 (X —A)).

Conversely suppose that M(X) = ]_[f: 1 (X — A;) with the A; distinct. If S}
is the linear map S; = ]_[5;2 (L — A;1I), then the formula for M (X) shows that
(L —A11)S1(v) = 0forall vin V, and hence image S is a vector subspace of the
eigenspace of L for the eigenvalue A;. If v is in ker S; N image S, we then have
0= $1(v) = [Tjy (L — ;D) = [Ti_, (&1 — 4j)v. Since A, s distinct from
A2, ..., Ak, we conclude that v = 0, hence that ker S| N image S} = 0. Since
dimker S| + dimimage S; = dim V, Corollary 2.29 therefore gives

dim V = dimker S| + dimimage S
= dim(ker S| + image S;) + dim(ker S; N image S;)
= dim(ker S; + image ).

Hence V = ker S| + image S;. Since ker §; N image S; = 0, we conclude that
V = ker S| @ image S.

Actually, the same calculation of S;(v) as above shows that image S; is the
full eigenspace of L for the eigenvalue A. In fact, if L(v) = A v, then S;(v) =

]_[f:2 (A — Aj)v, and hence v equals the image under S of ( ]_[l',.‘:2 (M —21))) .
Next, since L commutes with Sy, ker S is an invariant subspace under L, and

A1 is not an eigenvalue of L\ker X Thus X — A; does not divide the minimal
polynomial of L|ker 5" On the other hand, S; vanishes on the eigenspaces of
L for eigenvalues A5, ..., Ax, and Corollary 5.13 shows for j > 2 that X — A;
divides the minimal polynomial of L |ker 5 Taking Proposition 5.12 into account,

we conclude that L|ker 5, has minimal polynomial ]_[;?:2 (X — ;). We have
succeeded in splitting off the eigenspace of L under A; as a direct summand and
reducing the proposition to the case of k — 1 eigenvalues. Thus induction shows
that V is the direct sum of its eigenspaces for the eigenvalues A5, ..., Ax, and L
thus has a basis of eigenvectors. (]

Theorem 5.14 comes close to solving the canonical-form problem for similarity
in the case of one kind of square matrices: if the minimal polynomial of A is the
product of distinct factors of degree 1, then A is similar to a diagonal matrix. To
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complete the solution for this case, all we have to do is to say when two diagonal
matrices are similar to each other; this step is handled by the following easy
proposition.

Proposition 5.15. Two diagonal matrices A and A’ in M,,(K) with respective
diagonal entries dy, ..., d, and di, ..., d), are similar if and only if there is a
permutation o in &, such thatd; = d ;) for all j.

PROOF. The respective characteristic polynomials are ]_[7:1 (X —d;) and
]—[}’zl (X - dj’.). If A and A’ are similar, then the characteristic polynomials are
equal, and unique factorization (Theorem 1.17) shows that the factors X — d]’.
match the factors X — d; up to order. Conversely if there is a permutation o in
S, such thatd; = dj ;) for all j, then the matrix C whose j" column is e, j) has
the property that A’ = C~' AC. O

To proceed further with obtaining canonical forms for matrices under similarity
and for linear maps under isomorphism, we shall use linear maps in ways that
we have not used them before. In particular, it will be convenient to be able to
recognize direct-sum decompositions from properties of linear maps. We take up
this matter in the next section.

4. Projection Operators

In this section we shall see how to recognize direct-sum decompositions of a
vector space V from the associated projection operators, and we shall relate these
operators to invariant subspaces under a linearmap L : V — V.

If V. = U, & U,, then the function E| defined by E;(u; + uy) = u; when u
is in U and u; is in U is linear, satisfies El2 = E1, and has image E| = U; and
ker E; = U,. We call E| the projection of V on U; along U,. A decomposition
of V as the direct sum of two vector spaces, when the first of the two spaces is
singled out, therefore determines a projection operator uniquely. A converse is
as follows.

Proposition 5.16. If V is a vector space and E| : V — V is alinear map such
that E? = E, then there exists a direct-sum decomposition V = U; @ U, such
that E; is the projection of V on U; along U,. In this case, (I — EN?>=1-E,
and [ — E is the projection of V on U, along Uj.

PROOF. Define U; = image E| and U, = ker E;. If visinimage E; Nker E|,
then E(v) = O since v is in ker £y and v = E;(w) for some w in V since
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v is in image E;. Then 0 = E|(v) = E%(w) = E;(w) = v, and therefore
image E1 Nker E; = 0.

Ifv € Visgiven, writev = E{(v) + (I — E1)(v). Then E;(v) is in image E,
and the computation E(I — E)(v) = (E| — Elz)(v) = (E1— E1)(v) = 0shows
that (I — E1)(v) = 0. Consequently V = image E| + ker E|, and we conclude
that V = image E| @ ker E.

Hence V = U; & U,, where U; = image E| and U, = ker E|. In this
notation, E; is 0 on U,. If v is in Uy, then v = E;(w) for some w, and we have
v=FE(w)= E%(w) = E|(E{(w)) = E;(v). Thus E| is the identity on U; and
is the projection as asserted.

For (I — E;)?, wehave (I — E|)?> =1 —2E, —l—E% =1-2E,+E,=1-E,,
and I — E is a projection. Itis 1 on U; and is 0 on Uy, hence is the projection
of V on U, along Uj. O

Let us generalize these considerations to the situation that V is the direct sum
of r vector subspaces. The following facts about the situation in Proposition 5.16,
with the definition E, = I — E|, are relevant to formulating the generalization:

(i) Ej and E; have E? = E; and E3 = E,
(i) E1E, = E2E1 =0,
(iii) E1+E,=1.
Suppose that V. = U; @ --- ® U,. Define E;(u; + --- + u,) = u;. Then E;
is linear from V to itself with EJ2 = E;, and Proposition 5.16 shows that E; is
the projection of V on U; along the direct sum of the remaining U;’s. The linear
maps Ey, ..., E, then satisfy
{) E]Z:Ejforlfjfr,
(i) EjE; =0ifi # j,
i)y Ey+---+ E, =1.

A converse is as follows.

Proposition 5.17. If V is a vector space and E; : V — V for 1 < j <r are
linear maps such that
(@) E;E; =0ifi # j,and
®) Ey+---+E =1,
then E]2 = E; for 1 < j <r and the vector subspaces U; = image E; have the
properties that V = Uy @ - - - ® U, and that E; is the projection of V on U; along
the direct sum of all U; but U;.

PROOF. Multiplying (b) through by E; on the left and applying (a) to each
term on the left side except the j, we obtain Ej2 = E;. Therefore, for each j,
E; is a projection on U; along some vector subspace depending on j.
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If v isin V, then (b) gives v = E|(v) + --- 4+ E,(v) and shows that V =
Ui + -+ + U,. Suppose that v is in the intersection of U; with the sum of the
other U;’s. Write v = Zi# u; with u; = E;(w;) in U;. Applying E; and using
the fact that v is in U;, we obtain v = E;(v) = Z#j E;E;(w;). Every term of
the right side is 0 by (a), and hence v =0. Thus V =U, & --- & U,.

Since E;E; =0fori # j, E; is 0 oneach U; fori # j. Therefore the sum of
all U; except U; is contained in the kernel of E;. Since the image and kernel of
E; intersect in 0, the sum of all U; except U; is exactly equal to the kernel of E;.
This completes the proof. g

Proposition 5.18. Suppose that a vector space V is a direct sum V =
U, @ --- @ U, of vector subspaces, that Ey, ..., E, are the corresponding pro-
jections, and that L : V — V is linear. Then all the subspaces U; are invariant
under L if and only if LE; = E;L forall j.

PROOF. If L(U;) € U; for all j, theni # j implies E;L(U;) C E;(U;) =0
and LE;(U;) = L(0) = 0. Also, v € U; implies E;L(v) = L(v) = LE;(v).
Hence E;L = E;L for all i.

Conversely if E;L = LE; and if v isin U}, then E;L(v) = LE;(v) = L(v)
shows that L(v) is in U;. Therefore L(U;) € U; for all j. ]

5. Primary Decomposition

For the case that the minimal polynomial of alinearmap L : V — V is the product
of distinct factors of degree 1, Theorem 5.14 showed that V is a direct sum of its
eigenspaces. The proof used elementary vector-space techniques from Chapter
II but did not take full advantage of the machinery developed in the present
chapter for passing back and forth between polynomials in one indeterminate
and the values of polynomials on L. Let us therefore rework the proof of that
proposition, taking into account the discussion of projections in Section 4.

We seek an eigenspace decomposition V = Vy, @& --- @ V), relative to L.
Proposition 5.17 suggests looking for the corresponding decomposition of the
identity operator as a sum of projections: / = E; + - - - + E;. According to that
proposition, we obtain a direct-sum decomposition as soon as we obtain this kind
of sum of linear maps such that E; E; = O fori # j. The E;’s will automatically
be projections.

The proof of Theorem 5.14 showed that S| = ]_[jfzz (L —X;I) has image equal
to the kernel of L — A1, i.e., equal to the eigenspace for eigenvalue A;. If v

is in this eigenspace, then S;(v) = 1_[?:2 (A1 — Aj)v. Hence E = ¢S, where

cf] = ]_[;;2 (A1 — Aj). The linear map S equals Q;(L), where Q{(X) =
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]—[f=2 (X — Aj). Thus E; = c¢;Q(L). Similar remarks apply to the other

eigenspaces, and therefore the required decomposition of the identity operator

has to be of the form I = ¢; Q(L) + -+ 4+ cx Qx (L) with ¢y, ..., ¢ equal to
certain scalars.
The polynomials Q;(X), ..., Q;(X) are athand from the start, each containing

all but one factor of the minimal polynomial. Moreover, i # j implies that

0:i(L)Q;(L) = (ﬁ @ =uD)( [T @=uD).
I=1 1,

The first factor on the right side is the value of the minimal polynomial of L with
L substituted for X. Hence the right side is 0, and we see that our linear maps
Ey,...,Exhave E;E; =0fori # j.

As soon as we allow nonconstant coefficients in place of the ¢;’s in the above
argument, we obtain a generalization of Theorem 5.14 to the situation that the
minimal polynomial of L is arbitrary. The prime factors of the minimal polyno-
mial need not even be of degree 1. Hence the theorem applies to all L’s even if
K is not algebraically closed.

Theorem 5.19 (Primary Decomposition Theorem). Let L : V — V be linear
on a finite-dimensional vector space over K, and let M (X) = P;(X)" - - - P (X))
be the unique factorization of the minimal polynomial M (X) of L into the product
of powers of distinct monic prime polynomials P;(X). Define U; = ker(P; (L)Y)
for1 < j < k. Then

@QV=U®-  -dU,

(b) the projection E; of V on U; along the sum of the other U;’s is of the
form T; (L) for some polynomial 7},

(c) each vector subspace Uj is invariant under L,

(d) any linear map from V to itself that commutes with L carries each U;
into itself,

(e) any vector subspace W invariant under L has the property that

W=Wnu)e---&WnUp,
(f) the minimal polynomial of L; = L|U' is P;j(X)l.
J

REMARKS. The decomposition in (a) is called the primary decomposition of
V under L, and the vector subspaces U; are called the primary subspaces of V
under L.

PROOF. For 1 < j < k, define Q;(X) = M(X)/Pj(X)lf. The ideal in
KI[X] generated by Q1(X), ..., Qx(X) consists of all products of a single monic
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polynomial D(X) by arbitrary polynomials, according to Proposition 5.8, and
D(X) has to divide each Q;(X). Since Q;(X) = ]_[,.#j P;(X)", D(X) cannot
be divisible by any P;(X), and consequently D(X) = 1. Thus there exist
polynomials R (X), ..., Ri(X) such that

1= 01(X)R1(X) + - + Qu(X)Ri(X).

Define E; = Q;(L)R;(L), so that Ey + --- + Ex = I. If i # j, then
0,(X)0;(X) =M(X) ]_[r#j P.(X)". Since M(L) = 0, we see that E; E; = 0.

Proposition 5.17 says that each E; is a projection. Also, it says that if U;
denotes image E;,then V = U; @ - - - @ Uy, and E is the projection on U; along
the sum of the other U;’s. With this definition of the U;’s (rather than the one in
the statement of the theorem), we have therefore shown that (a) and (b) hold.

Let us see that conclusions (c), (d), and (e) follow from (b). Conclusion
(c) holds by Proposition 5.18 since L commutes with 7;(L) whenever T; is a
polynomial. For (d), if J : V — V is a linear map commuting with L, then
J commutes with each E; since (b) shows that each E; is of the form T;(L).
From Proposition 5.18 we conclude that each U; is invariant under J. For (e),
the subspace W certainly contains (W NU;) @ - - - & (W N Uy). For the reverse
containment suppose w is in W. Since E; is of the form 7;(L) and since W
is invariant under L, E;(w) is in W. But also E;(w) is in U;. Therefore the
expansion w = Zj E;(w) exhibits w as the sum of members of the spaces
wnu;.

Next let us prove that U;, as we have defined it, is given also by the definition
in the statement of the theorem. In other words, let us prove that

image E; = ker(P; (L)[/'). (%)

We need a preliminary fact. The polynomial P;(X)’ has the property that
M(X) = Pi(X)Q;(X). Hence P;(L)iQ;(L) = M(L) = 0. Multiplying
by R;(L), we obtain
Pi(LVE; = 0. ()
Now suppose that v is in image E;. Then Pj(L)’f v) = Pj(L)[i Ei(v) =0
by (%), and hence image E; C ker(Pj(L)l-/'). For the reverse inclusion, let v be
in ker(P;(L)"). Fori # j, Qi(X)Ri(X) = ([T, P-(X)")Ri(X)P;(X)" and
hence
E;i() = ([T Pr(L)")Ri(L) P, (L) (v) = 0.

Writing v = Ej(v) + - - - + Ex(v), we see that v = E;(v). Thus ker(P;(L)") C
image E;. Therefore (x) holds, and U; is as in the statement of the theorem.
Finally let us prove (f). Let M;(X) be the minimal polynomial of L; = L ] Ui
J

From (**) we see that P; (Lj)[' = 0. Hence M;(X) divides P; (X)li. For the
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reverse divisibility we have M;(L;) = 0. Then certainly M;(L;)Q;(L;)R;(L;),
which equals M;(L)E; on Uj, is 0 on U;. Consider M;(L)E; on U; = image E;
wheni # j. Since E;E; = 0, M;(L)E; equals 0 on all U; other than U;. We
conclude that M; (L) E; equalsOon V,i.e., M;(L)Q;(L)R;(L) = 0. Since M (X)
is the minimal polynomial of L, M (X) divides

M;(X)Qj(X)R;(X) = M;(X)(1 — ; 0i(X)R; (X)), (M

i#]
and the factor P;(X )i of M(X) must divide the right side of (). On that right
side, P/(X)lf divides each Q;(X) withi # j. Since P;(X) does not divide 1,
P;(X) does not divide the factor 1 — Zi# Q;(X)R;(X). Since P;(X) is prime,
P; (X)i and 1 — Zi?ﬁj Q;(X)R;(X) are relatively prime. We know that Pj(X)lf
divides the product of M;(X) and 1 — Z,# Qi (X)R;(X), and consequently

P;(X)li divides M;(X). This proves the reverse divisibility and completes the
proof of (f). ]

6. Jordan Canonical Form

Now we can return to the canonical-form problem for similarity of square matrices
and isomorphism of linear maps from a finite-dimensional vector space to itself.
The answer obtained in this section will solve the problem completely if K
is algebraically closed but only partially if K fails to be algebraically closed.
Problems 3240 at the end of the chapter extend the content of this section to give
a complete answer for general K.

The present theorem is most easily stated in terms of matrices. A square matrix
is called a Jordan block if it is of the form

c 1.0 0 --- 0O
c 1 0 0 0
c 1 -« 00

c 1

c
c

of some size and for some c in K, as in Example 2 of Section 3, with 0 everywhere
below the diagonal. A square matrix is in Jordan form, or Jordan normal form,
if itis block diagonal and each block is a Jordan block. One can insist on grouping
the blocks for which the constant c is the same and arranging the blocks for given
¢ in some order, but these refinements are inessential.
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Theorem 5.20 (Jordan canonical form).

(a) If the field K is algebraically closed, then every square matrix over K is
similar to a matrix in Jordan form, and two matrices in Jordan form are similar
to each other if and only if their Jordan blocks can be permuted so as to match
exactly.

(b) For a general field K, a square matrix A is similar to a matrix in Jordan
form if and only if each prime factor of its minimal polynomial has degree 1.
Two matrices in Jordan form are similar to each other if and only if their Jordan
blocks can be permuted so as to match exactly.

The first step in proving existence of a matrix in Jordan form similar to a
given matrix is to use the Primary Decomposition Theorem (Theorem 5.19). We
think of the matrix A as operating on the space K" of column vectors in the
usual way. The primary subspaces are uniquely defined vector subspaces of K",
and we introduce an ordered basis, yet to be specified in full detail, within each
primary subspace. The union of these ordered bases gives an ordered basis of
K", and we change from the standard basis to this one. The result is that the
given matrix has been conjugated so that its appearance is block diagonal, each
block having minimal polynomial equal to a power of a prime polynomial and the
prime polynomials all being different. Let us call these blocks primary blocks.
The effect of Theorem 5.19 has been to reduce matters to a consideration of each
primary block separately. The hypothesis either that K is algebraically closed
or, more generally, that the prime divisors of the minimal polynomial all have
degree 1 means that the minimal polynomial of the primary block under study
may be taken to be (X — ¢)’ for some ¢ in K and some integer / > 1. In terms
of Jordan form, we have isolated, for each ¢ in K, what will turn out to be the
subspace of K" corresponding to Jordan blocks with ¢ in every diagonal entry.

Let us write B for a primary block with minimal polynomial (X — c)!. We
certainly have (B — ¢I)! = 0, and it follows that the matrix N = B — ¢ has
N! = 0. A matrix N with N/ = 0 for some integer / > 0 is said to be nilpotent.
To prove the existence part of Theorem 5.20, it is enough to prove the following
theorem.

Theorem 5.21. For any field K, each nilpotent matrix N in M, (K) is similar
to a matrix in Jordan form.

The proof of Theorem 5.21 and of the uniqueness statements in Theorem
5.20 will occupy the remainder of this section. It is implicit in Theorem 5.21
that a nilpotent matrix in M, (K) has 0 as a root of its characteristic polynomial
with multiplicity n, in particular that the only prime polynomials dividing the
characteristic polynomial are the ones dividing the minimal polynomial. We
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proved such a fact about divisibility earlier for general square matrices when the
prime factor has degree 1, but we did not give a proof for general degree. We
pause for a moment to give a direct proof in the nilpotent case.

Lemma 5.22. If N is a nilpotent matrix in M,,(K), then N has characteristic
polynomial X" and satisfies N" = 0.

PROOF. If N! = 0, then
XI—N)YX""T+ XN+ + XN P XN 24N = X TN = XL
Taking determinants and using Proposition 5.1 in the ring R = K[X], we obtain
det(XI — N) det(other factor) = det(X'1) = X',

Thus det(X 1 — N) divides X*. By unique factorization in K[X], det(X1 — N) is
a constant times a power of X. Then we must have det(X7 — N) = X". Applying
the Cayley—Hamilton Theorem (Theorem 5.9), we obtain N" = 0. g

Let us now prove the uniqueness statements in Theorem 5.20; this step will in
fact help orient us for the proof of Theorem 5.21. In (b), one thing we are to prove
is that if A is similar to a matrix in Jordan form, then every prime polynomial
dividing the minimal polynomial has degree 1. Since characteristic and minimal
polynomials are unchanged under similarity, we may assume that A is itself in
Jordan form. The characteristic and minimal polynomials of A are computed in
the four examples of Section 3. Since the minimal polynomial is the product of
polynomials of degree 1, the only primes dividing it have degree 1.

In both (a) and (b) of Theorem 5.20, we are to prove that the Jordan form
is unique up to permutation of the Jordan blocks. The matrix A determines
its characteristic polynomial, which determines the roots of the characteristic
polynomial, which are the diagonal entries of the Jordan form. Thus the sizes
of the primary blocks within the Jordan form are determined by A. Within each
primary block, we need to see that the sizes of the various Jordan blocks are
completely determined.

Thus we may assume that N is nilpotent and that C"'NC = J is in Jordan
form with 0’s on the diagonal. Although we shall make statements that apply
in all cases, the reader may be helped by referring to the particular matrix J in
Figure 5.1 and its powers in Figure 5.2.
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0100
0010
0001

0000
010

001

000
01

00
01

00

FIGURE 5.1. Example of a nilpotent matrix in Jordan form.

Each block of the Jordan form J contributes 1 to the dimension of the kernel
(or null space really) of J via the first column of the block, and hence

dim(ker J) = #{Jordan blocks in J}.

In Figure 5.1 this number is 5.

0010 0001
0001 0000
0000 0000
0000 0000
001 000
J? = 000 and J° = 000
000 000
00 00
00 00
00 00
00 00
0 0

FIGURE 5.2. Powers of the nilpotent matrix in Figure 5.1.

When J is squared, the 1°s in J move up and to the right one more step beyond
the diagonal except that blocks of size 2 become 0. When J is cubed, the 1’s in
J move up and to the right one further step except that blocks of size 3 become 0.
Each time J is raised to a new power one higher than before, each block that
is nonzero in the old power contributes an additional 1 to the dimension of the
kernel. Thus we have

dim(ker J?) — dim(ker J) = #{Jordan blocks of size > 2}
and dim(ker J?) — dim(ker J?) = #{Jordan blocks of size > 3};
in the general case,

dim(ker J*) — dim(ker J*~') = #{Jordan blocks of size > k} fork > 1.
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Lemma 5.22 says that J k' = 0 when k is > the size of J, and the differences need
not be computed beyond that point.

For Figure 5.2 the values by inspection are dim(ker J?) = 9 and dim(ker J 3=
11; also J* = 0 and hence dim(ker J*) = 12. The numbers of Jordan blocks
of size > kfork =1, 2,3,4 are 5,4, 2, 1, and these numbers indeed match the
differences 5 — 0, 9 — 5, 11 —9, 12 — 11, as predicted by the above formula.

Since C"'NC = J, we have C"'N¥C = J* and N*C = CJ*. The matrix
C is invertible, and therefore dim(ker J*) = dim(ker C J*) = dim(ker N*C) =
dim(ker N¥). Hence

dim(ker N*) — dim(ker N*~!) = #{Jordan blocks of size > k} fork > 1,

and the number of Jordan blocks of each size is uniquely determined by properties
of N. This completes the proof of all the uniqueness statements in Theorem 5.20.

Now let us turn to the proof of Theorem 5.21, first giving the idea. The
argument involves a great many choices, and it may be helpful to understand it in
the context of Figures 5.1 and 5.2. Let ¥ = (ey, .. ., e12) be the standard ordered
basis of IK'?. The matrix J, when operating by multiplication on the left, moves
basis vectors to other basis vectors or to 0. Namely,

Je1=0, Je2=e1, Je3=€2, Je4=e3,
Jes =0, Jeg=es5, Je7=es,
Je8:0, Jegzeg,
Jeip =0, Jei = e,
Jepp =0,
with each line describing what happens for a single Jordan block. Let us think
L .
oy for some linear map L. We
want to find a new ordered basis I' = (vq, ..., v12) in which the matrix of L is

of the given nilpotent matrix N as equal to

J. In the expression C"! NC = J, the matrix C equals > and its columns

I
are expressions for vy, ..., vy in the basis X, i.e., Ce; = v;. For each index i,
we have Je; = Je;—) or Je; = 0. The formula NC = CJ, when applied to ¢;,

therefore says that
Cei_1=v,_1 ifJe =e_q,
NU,‘=NC€,'=CJ€,‘={ it i ! il

if Je; =0.

Thus we are looking for an ordered basis such that N sends each member of the
basis either into the previous member or into 0. The procedure in this example
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will be to pick out v4 as a vector not annihilated by N 3 obtain v3, vy, v;, from
it by successively applying N, pick out v7 as a vector not annihilated by N? and
independent of what has been found, obtain vg, vs from it by successively applying
N, and so on. It is necessary to check that the appropriate linear independence
can be maintained, and that step will be what the proof is really about.

The proof of Theorem 5.21 will now be given in the general case. The core of
the argument concerns linear maps and appears as three lemmas. Afterward the
results of the lemmas will be interpreted in terms of matrices. For all the lemmas
let V be an n-dimensional vector space over K, and let N : V — V be linear
with N" = 0. Define K; = ker N/, so that

0=KoCKiCK,&---CK,=V.
Lemma 5.23. Suppose j > 1 and suppose S| is any vector subspace of V such
that K; 1 = K; ®S;. Then N is one-one from S; into K; and N(S;) N K;_; = 0.

PROOF. Since N (ker N/*1) C ker N/, we obtain N(S;) C K;; thus N indeed
sends S; into K;. To see that N is one-one from S; into K, suppose that s is a
member of S; with N(s) = 0. Then s is in K. Since j > 1, K1 C K. Thus s
isin K;. Since K; N §; =0, 5 is 0. Hence N is one-one from §; into K;. To see

that N(S;) N K;_; = 0, suppose s is a member of S; with N(s) in K;_;. Then
0 = N/=!(N(s)) = N/ (s) shows that s is in K;. Since K; N S; = 0, s equals 0.
O

Lemma 5.24. Define U, = W, = 0. For 0 < j < n — 1, there exist vector
subspaces U; and W; of K such that

Kipn=K;eU; & W,
and N :Ujy1 @ Wiy — U; s one-one.

PROOF. Define U,—; = N(U, & W,)) =0, and let W,,_; be a vector subspace
suchthat V = K, = K, ® W,_;. Put S, = U,_; & W,_;. Proceeding
inductively downward, suppose that U,, U,_1, ..., Ujy1, Wy, W1, ..., Wiy
have been defined so that Uy = N (Ug+1 @ Wis1), N @ Ugp1 @ Wiy — Uy is
one-one, and K| = K @ Uy @& W, whenever k satisfies j <k <n — 1. We
put Sy = Uy & W, for these values of k, and then S satisfies the hypothesis of
Lemma 5.23 whenever £ satisfies j < k < n — 1. We now construct U; and W;.
We put U; = N(§;41). Since §;4 satisfies the hypothesis of Lemma 5.23, we
see that U; C K4, N is one-one from S; into U;, and U; N K; = 0. Thus
we can find a vector subspace W; with K; ;| = K; ® U; @ W;, and the inductive
construction is complete. O
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Lemma 5.25. The vector subspaces of Lemma 5.24 satisfy
V=UdWodU &W & ---BU,_1 dW,_1.
PROOF. Iterated use of Lemma 5.24 gives

V=K,=K,_1® U1 ®W,_1)
=Kn2® (Un2® W,2) ® (Uy—1 ® Wy—1)
= =Ko®Uo®Wp) @D (Up—1 & Wy_1)
=Wy @Wo) @@ (Up—1 © Wyy),

the last step holding since Ky = 0, Ky being the kernel of the identity function.
O

PROOF OF THEOREM 5.21. We regard N as acting on V = K" by multiplication
on the left, and we describe an ordered basis in which the matrix of N is in Jordan
form. For 0 < j < n — 1, form a basis of the vector subspace W; of Lemma
5.24, and let v/) be a typical member of this basis. Each v/ will be used as the
last basis vector corresponding to a Jordan block of size j + 1. The full ordered
basis for that Jordan block will therefore be N/ v, N/=1yWD . NpD W),
The theorem will be proved if we show that the union of these sets as j and v/
vary is a basis of K" and that N/*!'v) = 0 for all j and v/,

From the first conclusion of Lemma 5.24 we see for j > O that W; C K;,
and hence N/ (W;) = 0. Therefore N/*!'v) = 0 for all j and v'/).

Let us prove by induction downward on j that a basis of U; & W; consists of all
v and all N¥vU*+® for k > 0. The base case of the inductionis j = n — 1, and
the statement holds in that case since U,_; = 0 and since the vectors v~ form
a basis of W,_;. The inductive hypothesis is that all v+ and all N¥pU+1+0 for
k > 0 together form a basis of U; | @ W;4. The second and third conclusions
of Lemma 5.24 together show that all NvU*+! and all N¥+1pU+1+0 for k > 0
together form a basis of U;. In other words, all N kpU+th with k > 0 together
form a basis of U;. The vectors v/ by construction form a basis of W;, and
U; N W; = 0. Therefore the union of these separate bases is a basis for U; ® W;,
and the induction is complete.

Taking the union of the bases of U; ® W, for all j and applying Lemma 5.25,
we see that we have a basis of V = K". This shows that the desired set is a basis
of K" and completes the proof of Theorem 5.21. (]
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7. Computations with Jordan Form

Let us illustrate the computation of Jordan form and the change-of-basis matrix
with a few examples. We are given a matrix A and we seek J and C with
J = C~'AC. Weregard A as the matrix of some linear L in the standard ordered
basis X, and we regard J as the matrix of L in some other ordered basis I'. Then

C = < EIF ), and so the columns of C give the members of I written as ordinary
column vectors (in the standard ordered basis).

EXAMPLE 1. This example will be a nilpotent matrix, and we shall compute J
and C merely by interpreting the proof of Theorem 5.21 in concrete terms. Let

-1 10
A ( T 0) |
-1 10
The first step is to compute the characteristic polynomial, which is

X+1 -1 0
det(XI—A):det( 1 )(—10):Xdet<xirl X_—11>:X3'
1 -1 X

Then A3 = 0 by the Cayley—Hamilton Theorem (Theorem 5.9), and A is indeed
nilpotent. The diagonal entries of J are thus all 0, and we have to compute the
sizes of the various Jordan blocks. To do so, we compute the dimension of the
kernel of each power of A. The dimension of the kernel of a matrix equals the
number of independent variables when we solve AX = 0 by row reduction. With
the first power of A, the variable x; is dependent, and x, and x3 are independent.
Also, A> = 0. Thus

dim(ker A°) =0, dim(ker A) =2, and dim(ker A%) = 3.
Hence

#{Jordan blocks of size > 1} = dim(ker A) — dim(ker A =2-0=2,
#{Jordan blocks of size > 2} = dim(ker A?) — dim(ker A) =3 —2 = 1.

From these equalities we see that one Jordan block has size 2 and the other has

size 1. Thus
01
J = 00 .
0
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We want to set up vector subspaces asinLemma5.24 sothatK; | = K;QU; ®W;
and U; = A(U;j41 @ Wjy1) for 0 < j < 2. Since K3 = K>, the equations begin
with K, = --- and are

Kx=Ki®0d W, Uy=A0® W), Ki=KydUdW,.

X1

Here K, = K3 and K| is the subspace of all X = xz) such that AX = 0.

X
The space W is to satisfy K, = K| & Wi, and we see th?at W, is 1-dimensional.
Let {v"} be a basis of the 1-dimensional vector subspace W;. Then U is
1-dimensional with basis { Av‘"}. The subspace K is 2-dimensional and contains
Uy. The space Wy isto satisfy K| = Uy Wy, and we see that Wy is 1-dimensional.
Let {v@} be a basis of W,. Then the respective columns of C may be taken to be

AvD, D O

Let us compute these vectors.
If we extend a basis of K to a basis of K;, then W; may be taken to be the

linear span of the added vector. To obtain a basis of K|, we compute that the
1-10

reduced row-echelon form of A is (0 00 ), and the resulting system consists of
0 00

the single equation x; — x, = 0. Thus x; = x;, and

(2)==()+= ()

The coefficients of x; and x3 on the right side form a basis of K, and we are to
chloose a vector that is not a linear combination of these. Thus we ca{l take v(l)1 =
0) as the basis vector of W;. Then Uy = A(W,) has AvD = A (0 = 1>

0 0 -1
as a basis, and the basis of W may be taken as any vector in K but not Uy. We

can take this basis to consist of v = ( o
1

110
Lining up our three basis vectors as the columns of C gives us C = < -100 )

-101
0-10

Computation gives C~! = ( 1-10 ), and we readily check that C™'AC = J.
0-11

EXAMPLE 2. We continue with A and J as in Example 1, but we compute the
columns of C without directly following the proof of Theorem 5.21. The method
starts from the fact that each Jordan block corresponds to a 1-dimensional space
of eigenvectors, and then we backtrack to find vectors corresponding to the other
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columns. For this particular A, we know that the three columns of C are to be of
the form v; = AvP, v, = v and v3 = v®. The vectors v; and v3 together
span the O eigenspace of A. We find all the 0 eigenvectors, writing them as a

two-parameter family. This eigenspace is just K; = ker A, and we found in
X2

Example 1 that K; = {(Xz > } One of these vectors is to be vy, and it has to
X3
X2

equal Av,. Thus we solve Av, = ( 2 ). Applying the solution procedure yields

X3
1 -1 0 —X2
0 00 0 .
0 00 X3—X2

This system has no solutions unless x3 — x, = 0. If we take x, = x3 = —1, then

we obtain the same first two columns of C as in Example 1, and any vector in K
-1
independent of (—1 ) may be taken as the third column.

-1
2 10
A:(—l 4 0).
-1 2 2

Direct calculation shows that the characteristic polynomial is det(X/ — A) =
X3 —8X%2 421X — 18 = (X — 2)(X — 3)%. The possibilities for J are therefore

300 310
030 and 030 );
002 002

the first one will be correct if the dimension of the eigenspace for the eigenvalue 3
is 2, and the second one will be correct if that dimension is 1.
The third column of C corresponds to an eigenvector for the eigenvalue 2,

EXAMPLE 3. Let

0
hence to a nonzero solution of (A — 21)v = 0. The solutions are v = k (0),

1
0

and we can therefore use | 0

1
For the first two columns of C, we have to find ker(A — 37) no matter which of

the methods we use, the one in Example 1 or the one in Example 2. Solving the
1

system of equations, we obtain all vectors in the space {z < 1 ) . The dimension

1

of the space is 1, and the second possibility for the Jordan form is the correct one.
Following the method of Example 1 to find the columns of C means that we
pick a basis of this kernel and extend it to a basis of ker(A — 31)%. A basis of
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1 0 00
ker(A — 31) consists of the vector [ 1 ]. The matrix (A — 31)? is (0 0 0), and
1 0-11
the solution procedure leads to the formula

()= () =)

1
for its kernel. The vector < 1 ) arises froma = 1 and ¢ = 1. We are to make an

1
independent choice, say a = 1 and ¢ = 0. Then the second basis vector to use is
1

0 ) This becomes the second column of C, and the first column then has to be

1 —1 —-110
(A=3D)o)=| -1 .TheresultisthatC:(—100).
0 —1 101
Following the method of Example 2 for this example means that we retain the
1

entire kernel of A — 3/, namely all vectors v; = z [ 1 |, as candidates for the
1
first column of C. The second column is to satisfy (A — 37)v, = v;. Solving

—1 1
leadstov, =z| o) +c ( 1 ) In contrast to Example 2, there is no potential
0 1
contradictory equation. So we choose z and then c¢. If we take z = 1 and

1 -1
¢ = 0, we find that the first two columns of C are to be (1) and ( 0). Then

1 0
1-10
C:(1 00).
1 01

For any example in which we can factor the characteristic polynomial exactly,
either of the two methods used above will work. The first method appears
complicated but uses numbers throughout; it tends to be more efficient with
large examples involving high-degree minimal polynomials. The second method
appears direct but requires solving equations with symbolic variables; it tends to
be more efficient for relatively simple examples.

8. Problems

In Problems 1-25 all vector spaces are assumed finite-dimensional, and all linear
transformations are assumed defined from such spaces into themselves. Unless
information is given to the contrary, the underlying field K is assumed arbitrary.

1. Let M,,(C) be the vector space of m-by-n complex matrices. The group
GL(m, C) x GL(n, C) acts on M,,,(C) by ((g, h), x) — gxh~!, where gxh™!
denotes a matrix product. Do the following:



242

9A.

V. Theory of a Single Linear Transformation

(a) Verify that this is indeed a group action.

(b) Prove that two members of M,,,(C) lie in the same orbit if and only if they
have the same rank.

(c) For each possible rank, give an example of a member of M,,, (C) with that
rank.

Prove that a member of M,,(KK) is invertible if and only if the constant term of its
minimal polynomial is different from 0.

Suppose that L : V — V is a linear map with minimal polynomial M(X) =
Pi(X)" - Pe(X)% and that V = U @ W with U and W both invariant under
L. Let P (X)"--- Pr(X)* and P (X)"' --- Pr(X)* be the respective minimal
polynomials 0fL|U and L|W. Prove that [; = max(r;, s;) for1 < j <k.

(a) If A and B are in M, (K), if P(X) is a polynomial such that P(AB) = 0,
and if Q(X) = X P(X), prove that Q(BA) = 0.

(b) What can be inferred from (a) about the relationship between the minimal
polynomials of AB and of BA?

(a) Suppose that D and D’ are in M,,(K), are similar to diagonal matrices, and
have DD’ = D’D. Prove that there is a matrix C such that C~'DC and
C~'D’'C are both diagonal.

(b) Give an example of two nilpotent matrices N and N’ in M,,(K) with NN’ =
N'’N such that there is no C with C"'NC and C~! N’C both in Jordan form.

(a) Prove that the matrix of a projection is similar to a diagonal matrix. What
are the eigenvalues?

(b) Give a necessary and sufficient condition for two projections involving the
same V to be given by similar matrices.

Let E:V — Vand F : V — V be projections. Prove that £ and F have
(a) the same image if and only if EF = F and FE = E,
(b) the same kernel if and only if EF = E and FE = F.

Let E:V — Vand F : V — V be projections. Prove that EF is a projection
if EF = FE. Prove or disprove a converse.

An involution on V is a linear map U : V — V such that U?> = I. Show
that the equation U = 2E — 1 establishes a one-one correspondence between all
projections E and all involutions U.

Explain how the proof of the converse half of Theorem 5.14 greatly simplifies
once the Primary Decomposition Theorem (Theorem 5.19) is available.
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Let L : V — V be linear. Prove that there exist vector subspaces U and W of V
such that
) Vv=UeoWw,
(i) L(U) U and L(W) C W,
(iii) L is nilpotent on U,
(iv) L is nonsingular on W.

Prove that the vector subspaces U and W in the previous problem are uniquely
characterized by (i) through (iv).

(Special case of Jordan—Chevalley decomposition) Let L : V — V be a
linear map, and suppose that its minimal polynomial is of the form M(X) =
]_[];:1 (X—Aj)lf with the A; distinct. Let V = Uy ®- - -@® Uy be the corresponding
primary decompositionof V,anddefine D : V — Vby D = A E1+- - -+ At Ep,

where E1, ..., Ej are the projections associated with the primary decomposition.
Finally put N = L — D. Prove that
(a L=D+N,

(b) D has a basis of eigenvectors,

(c) N is nilpotent, i.e., has N9mV =0,

(d DN =ND.

(¢) D and N are given by unique polynomials in L such that each of the
polynomials is equal to O or has degree less than the degree of M (X),

(f) the minimal polynomial of D is 1—[.1;21 (X —24)),

(g) the minimal polynomial of N is XM/

(Special case of Jordan—Chevalley decomposition, continued) In the previous
problem with L given, prove that a decomposition L = D + N is uniquely
determined by properties (a) through (d). Avoid using (e) in the argument.

(a) Let N’ be a nilpotent square matrix of size n’. Prove for arbitrary ¢ € K that
the characteristic polynomial of N’ + ¢I is (X — ¢)", and deduce that the
only eigenvalue of N’ + c¢I is c.

(b) Let L = D+ N be the decomposition in Problems 12 and 13 of a square ma-
trix L of size n. Prove that L and D have the same characteristic polynomial.

-59
—47

invertible matrix C such that J = C~1AC.

For the complex matrix A = ( ), find a Jordan-form matrix J and an

4 1-1

For the complex matrix A = <—8 -2 2), find a Jordan-form matrix J and an
8 2-2

invertible matrix C such that J = C~'AC.
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17. For the upper triangular matrix

2001100
200011
20100

A= 2012 |,
211
21
3

find a Jordan-form matrix J and an invertible matrix C such that / = C~' AC.

18. (a) For M3(C), prove that any two matrices with the same minimal polynomial
and the same characteristic polynomial must be similar.
(b) Is the same thing true for M4(C)?

19. Suppose that K has characteristic O and that J is a Jordan block with nonzero
eigenvalue and with size > 1. Prove that there is no n > 1 such that J”" is
diagonal.

20. Classify up to similarity all members A of M, (C) with A" = [.

21. How many similarity classes are there of 3-by-3 matrices A with entries in C
such that A> = A? Explain.

22. Letn > 2, and let N be a member of M,,(K) with N” = 0 but N*~! # 0. Prove
that there is no n-by-n matrix A with A> = N.

23. For a Jordan block J, prove that J' is similar to J.
24. Prove that if A is in M, (C), then A’ is similar to A.

25. Let N be the 2-by-2 matrix 8 (1) , and let A and B be the 4-by-4 matrices
_(NoO _ (NN .
A= ( 0 N) and B = < 0 N). Prove that A and B are similar.

Problems 26-31 concern cyclic vectors. Fix a linear map L : V — V from a finite-
dimensional vector space V to itself. For v in V, let P(v) denote the set of all vectors
QO(L)(v) in V for Q(X) in K[X]; P(v) is a vector subspace and is invariant under
L. If U is an invariant subspace of V, we say that U is a cyclic subspace if there is
some v in U such that P(v) = U, in this case, v is said to be a ¢yclic vector for U,
and U is called the cyclic subspace generated by v. For v in V, let 7, be the ideal
of all polynomials Q(X) in K[X] with Q(L)v = 0. The monic generator of v is the
unique monic polynomial M, (X) such that M, (X) divides every member of Z,,.

26. For v € V, explain why Z, is nonzero and why M, (X) therefore exists.

27. For v € V, prove that
(a) the degree of the monic generator M, (X) equals the dimension of the cyclic
subspace P(v),
(b) the vectors v, L(v), L?(v), ..., LY€M~ (y) form a vector-space basis of
P(v),
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(c) the minimal and characteristic polynomials of L|7>(v) are both equal to
M, (X).

28. Suppose that M,(X) =co+c1 X +---+ ca—1 X4+ X4, Prove that the matrix
of L |P(v) in a suitable ordered basis is

—cgog 10 -
—cq—2 01
—c4-300

—c; 00 -+ 0 10
—c; 00 -+ 0 01
—co 00 - 00

29. Suppose that v is in V, that M, (X) is a power of a prime polynomial P(X),
and that Q(X) is a nonzero polynomial with deg Q(X) < deg P(X). Prove that
P(O(L)(v) = P(v).

30. Let P(X) be a prime polynomial.

(a) Prove by induction on dim V that if the minimal polynomial of L is P(X),
then the characteristic polynomial of L is a power of P(X).

(b) Prove by induction on [ that if the minimal polynomial of L is P(X )., then
the characteristic polynomial of L is a power of P(X).

(c) Conclude that if the minimal polynomial of L is a power of P(X), then
deg P(X) divides dim V.

31. Prove that every prime factor of the characteristic polynomial of L divides the
minimal polynomial of L.

Problems 3240 continue the study of cyclic vectors begun in Problems 2631, using
the same notation. The goal is to obtain a canonical-form theorem like Theorem 5.20
for L but with no assumption on K or P(X), namely that each primary subspace for
L is the direct sum of cyclic subspaces and the resulting decomposition is unique
up to isomorphism. This result and the Fundamental Theorem of Finitely Generated
Abelian Groups (Theorem 4.56) will be seen in Chapter VIII to be special cases of
a single more general theorem. Still another canonical form for matrices and linear
maps is an analog of the result with elementary divisors mentioned in the remarks
with Theorem 4.56 and is valid here; it is called rational canonical form, but we shall
not pursue it until the problems at the end of Chapter VIII. The proof in Problems
32-40 uses ideas similar to those used for Theorem 5.21 except that the hypothesis
will now be that the minimal polynomial of L is P(X)! with P(X) prime, rather than
just X', Define K; = ker(P(L)/) for j > 0, so that Ko = 0, K; € Kj1 forall j,
K; =V, and each K is an invariant subspace under L. Define d = deg P(X).

32. Suppose j > 1, and suppose S; is any vector subspace of V such that K| =
K; @ S;. Prove that P(L) is one-one from S; into K; and P(L)(S;) N K;j_1 = 0.
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33. Define Uy = W; = 0. For 0 < j <[ — 1, prove that there exist vector subspaces
U; and W; of K1 such that
Kjiv1=K; @U@ W,
Uj=P(L)Ujt1 & Wjt1),
P(L):Ujy1 ®@ Wjy1 — U; is one-one.

34. Prove that the vector subspaces of the previous problem satisfy
V=UgoWooUieW & - - dU-10&W-
35. For v # 0 in W}, prove that the set of all L" P(L)*(v) withO <r < d — 1 and

0 < s < j is a vector-space basis of P(v).

36. Going back over the construction in Problem 33, prove that each W; can be
chosen to have a basis consisting of vectors L’(v,.(" )) forl <i < (dimW;)/d
and0 <r <d-—1.

37. Let the index i used in the previous problem with j be denoted by i; for 1 <
ij < (dim Wj)/d. Prove that a vector-space basis of U; & W; consists of all
L’P(L)k(vl.(j’;k)) for0<r<d—1, k>0, 1 <ijy < (dimW,)/d.

38. Prove that V is the direct sum of cyclic subspaces under L. Prove specifically
that each vl(J] ) generates a cyclic subspace and that the sum of all these vector
subspaces, with 0 < j < /land 1 < i; < (dimW;)/d, is a direct sum and
equals V.

39. In the decomposition of the previous problem, each cyclic subspace generated
by some vf/_f ) has minimal polynomial P(X)/*!. Prove that

direct summands with minimal polynomial | . ‘ . '

#{P(X)k for some k > j + 1 } = (im Ky — dim K;)/d.

40. Prove that the formula of the previous problem persists for any decomposition
of V as the direct sum of cyclic subspaces, and conclude from Problem 28 that
the decomposition into cyclic subspaces is unique up to isomorphism.

Problems 41-46 concern systems of ordinary differential equations with constant
coefficients. The underlying field is taken to be C, and differential calculus is used.
For A in M,(C) and ¢ in R, define ¢'4 = Y22, ’Ak—/,‘k Take for granted that the
series defining e’ converges entry by entry, that the series may be differentiated term
by term to yield £ (¢'4) = Ae'4 = ¢4 A, and that e*4+'8 = ¢$4¢'B if A and B
commute.

41. Calculate e’ for A equal to

@ (_75)



42.

43.

44.

45.

46.
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® (73):

(c) the diagonal matrix with diagonal entries dy, . . ., d,.

(a) Calculate '’/ when J is a nilpotent n-by-n Jordan block.
(b) Use (a) to calculate e 7 when J is a general n-by-n Jordan block.

Let yi, ..., ¥, be unknown functions from R to C, and let y be the vector-valued
function formed by arranging yi, ..., y, in a column. Suppose that A is in
M, (C). Prove for each vector v € C” that y(r) = ¢'4v is a solution of the
system of differential equations % = Ay(t).

With notation as in the previous problem and with v fixed in C”, use e "4y (¢)

to show, for each open interval of #’s containing O, that the only solution of
% = Ay(t) on that interval such that y(0) = vis y(¢) = e .

For C invertible, prove that ¢/C'AC = C~1¢/AC, and deduce a relationship

between solutions of % = Ay(t) and solutions of i—f = (C7'AC)y ().

210

Let A = (—1 40 ) Taking into account Example 3 in Section 7 and Problems
—-122

42 through 45 above, find all solutions for # in (—1, 1) to the system % = Ay(t)

1
such that y(0) = (2)

3



CHAPTER VI

Multilinear Algebra

Abstract. This chapter studies, in the setting of vector spaces over a field, the basics concerning
multilinear functions, tensor products, spaces of linear functions, and algebras related to tensor
products.

Sections 1-5 concern special properties of bilinear forms, all vector spaces being assumed to be
finite-dimensional. Section 1 associates a matrix to each bilinear form in the presence of an ordered
basis, and the section shows the effect on the matrix of changing the ordered basis. It then addresses
the extent to which the notion of “orthogonal complement” in the theory of inner-product spaces
applies to nondegenerate bilinear forms. Sections 2-3 treat symmetric and alternating bilinear forms,
producing bases for which the matrix of such a form is particularly simple. Section 4 treats a related
subject, Hermitian forms when the field is the complex numbers. Section 5 discusses the groups that
leave some particular bilinear and Hermitian forms invariant.

Section 6 introduces the tensor product of two vector spaces, working with it in a way that does
not depend on a choice of basis. The tensor product has a universal mapping property —that bilinear
functions on the product of the two vector spaces extend uniquely to linear functions on the tensor
product. The tensor product turns out to be a vector space whose dual is the vector space of all
bilinear forms. One particular application is that tensor products provide a basis-independent way
of extending scalars for a vector space from a field to a larger field. The section includes a number
of results about the vector space of linear mappings from one vector space to another that go hand
in hand with results about tensor products. These have convenient formulations in the language of
category theory as “natural isomorphisms.”

Section 7 begins with the tensor product of three and then n vector spaces, carefully considering
the universal mapping property and the question of associativity. The section defines an algebra
over a field as a vector space with a bilinear multiplication, not necessarily associative. If E is a
vector space, the tensor algebra T'(E) of E is the direct sum over n > 0 of the n-fold tensor product
of E with itself. This is an associative algebra with a universal mapping property relative to any
linear mapping of E into an associative algebra A with identity: the linear map extends to an algebra
homomorphism of T'(E) into A carrying 1 into 1.

Sections 8-9 define the symmetric and exterior algebras of a vector space E. The symmetric al-
gebra S(E) is aquotient of T (E) with the following universal mapping property: any linear mapping
of E into a commutative associative algebra A with identity extends to an algebra homomorphism
of S(E) into A carrying 1 into 1. The symmetric algebra is commutative. Similarly the exterior
algebra A\ (E) is a quotient of T (E) with this universal mapping property: any linear mapping / of
E into an associative algebra A with identity such that /(v)? = 0 for all v € E extends to an algebra
homomorphism of A (E) into A carrying 1 into 1.

The problems at the end of the chapter introduce some other algebras that are of importance
in applications, and the problems relate some of these algebras to tensor, symmetric, and exterior
algebras. Among the objects studied are Lie algebras, universal enveloping algebras, Clifford
algebras, Weyl algebras, Jordan algebras, and the division algebra of octonions.

248
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1. Bilinear Forms and Matrices

This chapter will work with vector spaces over acommon field of “scalars,” which
will be called K. In Section 6 a field containing K as a subfield will briefly play
arole, and that will be called L.

If V is a vector space over K, a bilinear form on V is a function from V x V
into K that is linear in each variable when the other variable is held fixed.

EXAMPLES.

(1) For general K, take V = K". Any matrix A in M, (K) determines a bilinear
form by the rule (v, w) = v’ Aw.

(2) For K = R, let V be an inner-product space, in the sense of Chapter III,
with inner product (-, -). Then (-, -) is a bilinear form on V.

Multilinear functionals on a vector space of row vectors, also called k-linear
functionals or k-multilinear functionals, were defined in the course of working
with determinants in Section 1.7, and that definition transparently extends to
general vector spaces. A bilinear form on a general vector space is then just a
2-linear functional. From the point of view of definitions, the words “functional”
and “form” are interchangeable here, but the word “form” is more common in
the bilinear case because of a certain homogeneity that it suggests and that comes
closer to the surface in Corollary 6.12 and in Section 7.

For the remainder of this section, all vector spaces will be finite-dimensional.

Bilinear forms, i.e., 2-linear functionals, are of special interest relative to k-
linear functionals for general k because of their relationships with matrices and
linear mappings. To begin with, each bilinear form, in the presence of an ordered
basis, is given by a matrix. In more detail let V be a finite-dimensional vector
space, and let ( -, - ) be abilinear formon V. If an ordered basis I" = (vy, ..., v,)
of V is specified, then the bilinear form determines the matrix B with entries
B;; = (v;, v;). Conversely we can recover the bilinear form from B as follows:
Write v = ), a;v; and w = ), bjv;. Then

(0,0) = [ a0 X byug) = i, )y,

In other words, (v, w) = a’ Bb, where a = (F) and b = (111,)) in the notation

of Section I1.3. Therefore
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Consequently we see that all bilinear forms on a finite-dimensional vector space
reduce to Example 1 above—once we choose an ordered basis.
Let us examine the effect of a change of ordered basis. Suppose that I" =

(v1,...,vy) and A = (wy,...,wy,), and let B and C be the matrices of the
bilinear form in these two ordered bases: B;; = (v;, v;) and C;; = (w;, wj). Let
the two bases be related by w; = ), a;jv;, i.e., let [a;;] = (FIA ) Then we

have

Cij = (wi, wj) = (X axivk, Y aju) = Y akiarj(vk, vi) = Y. axi Buay,.
% 7 il il

Translating this formula into matrix form, we obtain the following proposition.

Proposition 6.1. Let (-, -) be a bilinear form on a finite-dimensional vector
space V, let I" and A be ordered bases of V, and let B and C be the respective
matrices of (-, -) relative to I' and A. Then

€= <FIA)[B <FIA)'

The qualitative conclusion about the matrices may be a little unexpected. It
is not that they are similar but that they are related by C = S'BS for some
nonsingular square matrix S. In particular, B and C need not have the same
determinant.

Guided by the circle of ideas around the Riesz Representation Theorem for
inner products (Theorem 3.12), let us examine what happens when we fix one
of the variables of a bilinear form and work with the resulting linear map. Thus
again let (-, -) be a bilinear form on V. For fixed u in V, v — (u, v) is a linear
functional on V, thus a member of the dual space V' of V. If we write L (u) for this
linear functional, then L is a function from V to V' satisfying L (u)(v) = (u, v).
The formula for L shows that L is in fact a linear function. We define the left
radical, Irad, of (-, -) to be the kernel of L; thus

lrad((-, ~)):{ue V| {u,v) =0forallv e V}.

Similarly we let R : V — V' be the linear map R(v)(u) = (u, v), and we define
the right radical, rrad, of (-, -) to be the kernel of R; thus

rrad ((+, -)) ={ve V| (u,v)=0forallu € V}.

EXAMPLE 1, CONTINUED. The vector space V is the space K" of n-dimensional
column vectors, the dual V' is the space of n-dimensional row vectors, A is
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an n-by-n matrix with entries in K, and (-, -) is given by (u, v) = u’'Av =
L(u)(v) = R()(u) for u and v in K”. Explicit formulas for L and R are
given by

Lu)=u"A=(A"u)
and R(v) = (Av).

Thus

Irad ((-, -)) = ker L = null space(A"),
rrad (( - )) = ker R = null space(A).

Since A is square and since the row rank and column rank of A are equal, the
dimensions of the null spaces of A and A’ are equal. Hence

dimlrad ((-, -)) = dimrrad ({-, -)).

This equality of dimensions for the case of K” extends to general V/, as is noted
in the next proposition.

Proposition 6.2. If (-, -) is any bilinear form on a finite-dimensional vector
space V, then
dim Irad (( ., .)) — dim rrad (( . ))_

PROOF. We saw above that computations with bilinear forms of V reduce, once
we choose an ordered basis for V, to computations with matrices, row vectors, and
column vectors. Thus the argument just given in the continuation of Example 1
is completely general, and the proposition is proved. g

A bilinear form (-, -) is said to be nondegenerate if its left radical is 0. In
view of the Proposition 6.2, it is equivalent to require that the right radical be 0.
When the radicals are 0, the associated linear maps L and R from V to V' are
one-one. Since dimV = dim V', it follows that L and R are onto V’. Thus a
nondegenerate bilinear form on V sets up two canonical isomorphisms of V with
its dual V.

For definiteness let us work with the linear mapping L : V — V’ given by
Lu)(v) = (u,v). If U € V is a vector subspace, define

Ut={ueV|{uv) =0forallveU)}.

It is apparent from the definitions that

UNU* =1rad ((-, -))

|U><U'
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In contrast to the special case that K = R and the bilinear form is an inner
product, U N U+ may be nonzero even if (-, -) is nondegenerate. For example

let V = R2, define
X1 Y1
().

and suppose that U is the 1-dimensional vector subspace U = {(x] )} The

X1
matrix of the bilinear form in the standard ordered basis is ( (l) —(1) ) ; since the matrix
is nonsingular, the bilinear form is nondegenerate. Direct calculation shows that
U+ = { (i: ) } = U,sothat UNU~+ # 0. Nevertheless, in the nondegenerate case
the dimensions of U and U~ behave as if U+ were an orthogonal complement.
The precise result is as follows.

Proposition 6.3. If (-, -) is a nondegenerate bilinear form on the finite-
dimensional vector space V and if U is a vector subspace of V, then

dimV = dimU + dim U™ .

PROOF. Define £ : V. — U’ by £(v)(u) = (v,u) forv e Vandu € U. The
definition of U~ shows that ker£ = U+. To see that image £ = U’, choose a
vector subspace Uy of V with V = U @ Uy, letu’ be in U’, and define v’ in V' by

, {u/ on U,
vV =
0 on Uj.

Since (-, -) is nondegenerate, the linear mapping L : V — V' is onto V’. Thus
we can choose v € V with L(v) = v’. Then

L)) = (v, u) = L)) = v'(u) = u'(u)
for all u in U, and hence £(v) = u’. Therefore image £ = U’, and we conclude
that
dim V = dim(ker £) + dim(image ¢) = dim U~ + dim U’ = dim U+ + dim U.
O

Corollary 6.4. If (-, -) is a nondegenerate bilinear form on the finite-
dimensional vector space V and if U is a vector subspace of V,then V = U@ U~

if and only if (-, - )} yxy 1s nondegenerate.

PROOF. Corollary 2.29 and Proposition 6.3 together give
dim(U +U*) +dim(U NU*) = dimU +dimU* = dim V.

Thus U + U+ = V if and only if U N U+ = 0, if and only if (-
nondegenerate. The result therefore follows from Proposition 2.30.

’ '>|U><U is
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2. Symmetric Bilinear Forms

We continue with the setting in which K is a field and all vector spaces of interest
are defined over K and are finite-dimensional.

A bilinear form (-, -) on V is said to be symmetric if (u, v) = (v, u) for
all # and v in V, skew-symmetric if (u, v) = —(v, u) for all ¥ and v in V, and
alternating if (u,u) =Oforalluin V.

“Alternating” always implies “skew-symmetric.” In fact, if (-, -) is alternat-
ing,then0 = (u+v, u+v) = (u, u) + (u, v) + (v, u) + (v, v) = (u, v) + (v, u);
thus (-, -) is skew-symmetric. If K has characteristic different from 2, then the
converse is valid: “skew-symmetric” implies “alternating.” In fact, if (-, -) is
skew-symmetric, then (u, u) = —(u, u) and hence 2(u, u) = 0; thus (u, u) = 0,
and (-, -) is alternating.

Let us examine further the effect of the characteristic of K. If, on the one hand,
K has characteristic different from 2, the most general bilinear form ( -, - ) is the
sum of the symmetric form (-, - ), and the alternating form (-, - ), given by

(u, v)s = 5((u, v) + (v, u)),

(u, v)a = 5((u, v) — (v, u)).
In this sense the symmetric and alternating bilinear forms are the extreme cases
among all bilinear forms, and we shall study the two cases separately.

If, on the other hand, K has characteristic 2, then “alternating” implies “skew-
symmetric” but not conversely. “Alternating” is a serious restriction, and we
shall be able to deal with it. However, “symmetric” and “skew-symmetric” are
equivalent since 1 = —1, and thus neither condition is much of a restriction; we
shall not attempt to say anything insightful in these cases.

In this section we study symmetric bilinear forms, obtaining results when K
has characteristic different from 2. From the symmetry it is apparent that the
left and right radicals of a symmetric bilinear form are the same, and we call
this vector subspace the radical of the form. By way of an example, here is a
continuation of Example 1 from the previous section.

EXAMPLE. Let V = K", let A be a symmetric n-by-n matrix (i.e., one with
A" = A), and let (i, v) = u' Av. The computation (v, u) = v’ Au = (v' Au)’ =
u'A'v = u' Av = (u, v) shows that the bilinear form (-, -) is symmetric; the
second equality v’ Au = (v™ Au)" holds since v’ Au is a 1-by-1 matrix.

Again the example is completely general. In fact, if ' = (vy,..., v,) is an
ordered basis of a vector space V and if (-, -) is a given symmetric bilinear form
on V, then the matrix of the form has entries A;; = (v;, v;), and these evidently
satisfy A;; = Aj;. So Ais asymmetric matrix, and computations with the bilinear
form are reduced to those used in the example.
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Theorem 6.5 (Principal Axis Theorem). Suppose that K has characteristic
different from 2.

(a) If (-, -) is a symmetric bilinear form on a finite-dimensional vector space
V, then there exists an ordered basis of V in which the matrix of ( -, - ) is diagonal.

(b) If A is an n-by-n symmetric matrix, then there exists a nonsingular n-by-n
matrix M such that M AM is diagonal.

REMARKS. Because computations with general symmetric bilinear forms
reduce to computations in the special case of a symmetric matrix and because
Proposition 6.1 tells the effect of a change of ordered basis, (a) and (b) amount
to the same result; nevertheless, we give two proofs of Theorem 6.5 —a proof via
matrices and a proof via linear maps. A hint of the validity of the theorem comes
from the case that K = R. For the field R when the bilinear form is an inner
product, the Spectral Theorem (Theorem 3.21) says that there is an orthonormal
basis of eigenvectors and hence that (a) holds. When K = R, the same theorem
says that there exists an orthogonal matrix M with M~' AM diagonal; since any
orthogonal matrix M satisfies M~' = M’, the Spectral Theorem is saying that
(b) holds.

PROOF VIA MATRICES. If A is an n-by-n symmetric matrix, we seek a non-
singular M with M' AM diagonal. We induct on the size of A, the base case of
the induction being n = 1, where there is nothing to prove. Assume the result to
be known for size n — 1, and write the given n-by-n matrix A in block form as

A= (“ b) with d of size 1-by-1. If d # 0, let x be the column vector —d1p.

b d
Then
I x a b 10 __ (%0
<Ol)<b’d)<x‘l)_(0d)’

and the induction goes through. If d = 0, we argue in a different way. We may
assume that b # 0 since otherwise the result is immediate by induction. Say
bi #0with1 <i <n — 1. Let y be an (n — 1)-dimensional row vector with i
entry a member 6 of K to be specified and with other entries 0. Then

DG = Crarmran) = Coiom)
y1 o 01 T\ yay'+b'y' +yb ) T\ x 82a;+28b; )

Since K has characteristic different from 2, 2b; is not O; thus there is some value
of & for which 82a;; + 28b; # 0. Then we are reduced to the case d # 0, which
we have already handled, and the induction goes through. U

PROOF VIA LINEAR MAPS. We may assume that the given symmetric bilinear
form is not identically 0, since otherwise any basis will do. Let the radical of
the form be denoted by rad = rad (( . )). Choose a vector subspace S of V

such that V =rad®S,and put[-, -] = (-, -)|st. Then [ -, -]is a symmetric
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bilinear form on §, and it is nondegenerate. In fact, [u, -] = 0 means (u, v) =0
for all v € §; since (u, v) = 0 for v in rad anyway, (1, v) =0forallv e V,uis
inrad as well as S, and u = 0.

Since (-, -) is not identically 0, the subspace S is not 0. Thus the nondegen-
erate symmetric bilinear form [ -, -] on § is not 0. Since

[u, v] = 3 ([u + v, u + v] — [u, u] — [v, v]),

it follows that [v, v] # O for some v in §. Put U; = Kv. Then [ -, -]|leu1

is nondegenerate, and Corollary 6.4 implies that § = U; & U]L. Applying the
converse direction of the same corollary to U L we see that [, ~]|U Loyt is
1 1

nondegenerate. Repeating this construction with U+ and iterating, we obtain
V=rad®U, P ---D U

with (U;, U;) = 0fori # j and with dimU; = 1 for all i. This completes the
proof. g

Theorem 6.5 fails in characteristic 2. Problem 2 at the end of the chapter
illustrates the failure.

Let us examine the matrix version of Theorem 6.5 more closely when K is C or
R. The theorem says that if A is n-by-n symmetric, then we can find a nonsingular
M with B = M'AM diagonal. Taking D diagonal and forming C = D'BD,
we see that we can adjust the diagonal entries of B by arbitrary nonzero squares.
Over C, we can therefore arrange that C is of the form diag(1, ..., 1,0,...,0).
The number of 1’s equals the rank, and this has to be the same as the rank of the
given matrix A. The form is nondegenerate if and only if there are no 0’s. Thus
we understand everything about the diagonal form.

Over R, matters are more subtle. We can arrange that C is of the form
diag(£l1,...,£1,0,...,0), the various signs ostensibly not being correlated.
Replacing C by P'C P with P a permutation matrix, we may assume that our
diagonal matrix is of the form diag(+1,...,+1,—1,...,—1,0,...,0). The
number of +1’s and —1’s together is again the rank of A, and the form is
nondegenerate if and only if there are no 0’s. But what about the separate numbers
of +1’s and —1’s? The triple given by

(p.m, z) = (#(+1)’s, #(—1)’s, #(0)s)

is called the signature of A when K = R. A similar notion can be defined in the
case of a symmetric bilinear form over R.

Theorem 6.6 (Sylvester’s Law). The signature of an n-by-n symmetric matrix
over R is well defined.
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PROOF. The integer p 4+ m is the rank, which does not change under a trans-
formation A — M'AM if M is nonsingular. Thus we may take z as known. Let
(p',m', z) and (p, m, z) be two signatures for a symmetric matrix A, with p’ < p.
Define the corresponding symmetric bilinear form on R” by (u, v) = u’ Av. Let
(v(,...,v,) and (vi, ..., v,) be ordered bases of R" diagonalizing the bilinear
form and exhibiting the resulting signature, i.e., having (v;, v}) = (v;, v;) = 0
fori # j and having

+1 forl <j<p,
(i, v)) =1 —1 forp’+1<j<n-z,
0 forn—z+1<j<n,

+1 forl<j<p,

(vj,v;) =1 —1 forp+1=<j<n-zg,
0 forn—z+1<j<n.
We shall prove that {vi, ..., v, v;,, FRTROR v, } is linearly independent, and then

we must have p’ > p. Reversing the roles of p and p’, we see that p’ = p and
m’ = m, and the theorem is proved. Thus suppose we have a linear dependence:

/ /
a4+ -+ apv, = bp/+1vp,+1 + -+ by,

Let v be the common value of the two sides of this equation. Then

P
(v,v) = (av1 + -+ -+ apv,, aivi +---+a,vy) = Za,z >0
j=1

and
n—z
(U’ U) = (bp/+1v;7/+] + -+ bnv,//la bp/+lvl/7’+] + -4 an,;) = — Z b]2 < 0.
J=p'+1

We conclude that (v, v) =0, Z;’Zl af =0,anda; =---=a, =0. Thusv =0
and bp’+lv;;/+1 + -+ byv, =0. Since {v;,,ﬂ, ..., v} is linearly independent,
we obtain also b, | = --- = b, = 0. Therefore {v(, ..., vp, vl/,,H, ..., U }isa
linearly independent set, and the proof is complete. g

3. Alternating Bilinear Forms

We continue with the setting in which K is a field and all vector spaces of interest
are defined over K and are finite-dimensional.
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In this section we study alternating bilinear forms, imposing no restriction on
the characteristic of K. From the skew symmetry of any alternating bilinear form
it is apparent that the left and right radicals of such a form are the same, and we
call this vector subspace the radical of the form. First let us consider examples
given in terms of matrices. Temporarily let us separate matters according to the
characteristic.

EXAMPLE 1 OF SECTION 1 WITH K OF CHARACTERISTIC # 2. Let V =

K", let A be a skew-symmetric n-by-n matrix (i.e., one with A’ = —A), and
let (u, v) = u'Av. The computation (v, u) = vV'Au = (V' Au) = u'A'v =
—u' Av = —(u, v) shows that the bilinear form (-, -) is skew-symmetric, hence
alternating.

EXAMPLE 1 OF SECTION 1 WITH KK OF CHARACTERISTIC = 2. Let V = K", let
A be an n-by-n matrix, and define (i, v) = u’ Av. We suppose that A is skew-
symmetric; it is the same to assume that A is symmetric since the characteristic
is 2. In order to have (e;,e¢;) = O for each standard basis vector, we shall
assume that A;; = O for all i. If u is a column vector with entries uy, ..., u,, then
(u, u) = u’Au = Zi,j u,-Aijuj = Zi?éj I/t,'A,'juj =Zi<j (Aijuiuj—i—Ajiuiuj) =
>_i-j2Aijuiu; = 0. Hence the bilinear form (-, -) is alternating.

Again the examples are completely general. In fact, if ' = (vy,...,v,) is
an ordered basis of a vector space V and if (-, -) is a given alternating bilinear
form, then the matrix of the form has entries A;; = (v;, v;) that evidently satisfy
A;j = —Aj;and A;; = 0. So A is a skew-symmetric matrix with 0’s on the
diagonal, and computations with the bilinear form are reduced to those used in
the examples. To keep the terminology parallel, let us say that a square matrix is
alternating if it is skew-symmetric and has 0’s on the diagonal.

Theorem 6.7.

(a) If (-, -) is an alternating bilinear form on a finite-dimensional vector space
V, then there exists an ordered basis of V' in which the matrix of (-, -) has the
form

01
-10

01
-10

01
-10
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If (-, -) is nondegenerate, then dim V is even.
(b) If A is an n-by-n alternating matrix, then there exists a nonsingular n-by-n
matrix M such that M’ AM is as in (a).

PROOF. Itis enough to prove (a). Letrad be the radical of the given form ( -, - ),
and choose a vector subspace S of V with V = rad ®S. The restriction of (-, -)
to S is then alternating and nondegenerate. We may now proceed by induction
on dim V under the assumption that (-, -) is nondegenerate. For dim V = 1, the
form is degenerate. For dim V = 2, we can find u and v with (u, v) # 0, and we
can normalize one of the vectors to make (u, v) = 1. Then (u, v) is the required
ordered basis.

Assuming the result in the nondegenerate case for dimension < n, suppose that
dim V = n. Again choose u and v with (4, v) = 1, and define U = Ku ¢ Kuv.

Then (- )]y,
V = U @ U*, and an application of the converse of the corollary shows that

(-, ) |U 1,.pyL 1s nondegenerate. The induction hypothesis applies to U L, and we
obtain the desired matrix for the given form. O

has matrix (7? (1)) and is nondegenerate. By Corollary 6.4,

4. Hermitian Forms

In this section the field will be C, and V will be a finite-dimensional vector space
over C.

A sesquilinear form ( -, -) on V is a function from V x V into C that is linear
in the first variable and conjugate linear in the second.! Sesquilinear forms do
not make sense for general fields because of the absence of a universal analog of
complex conjugation, and we shall consequently work only with the field C in
this section.?

A sesquilinear form (-, -) is Hermitian if (u, v) = (v, u) for all # and v in
V. The form is skew-Hermitian if instead (u, v) = —(v, u) for all ¥ and v in
V. Hermitian and skew-Hermitian forms are the extreme types of sesquilinear
forms since any sesquilinear form (-, -) is the sum of a Hermitian form (-, - )y
and a skew-Hermitian form (-, - )¢, given by

<I/t, U)h =

(M, v)sh =

ISome authors, particularly in mathematical physics, reverse the roles of the two variables and
assume the conjugate linearity in the first variable instead of the second.

2Sesquilinear forms make sense in number fields like Q[ﬁ] that have an automorphism of
order 2 (see Section IV.1), but sesquilinear forms in this kind of setting will not concern us here.
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In addition, any skew-Hermitian form becomes a Hermitian form simply by
multiplying by i. Specifically if (-, -)s is skew-Hermitian, then i (-, -)g, is
sesquilinear and Hermitian, as is readily checked. Consequently the study of
skew-Hermitian forms immediately reduces to the study of Hermitian forms.

EXAMPLE. Let V = (", and let A be a Hermitian matrix, i.e., one with
A* = A, where A* is the conjugate transpose of A. Then it is a simple matter to
check that (u, v) = v* Au defines a Hermitian form on C".

Again the example with a matrix is completely general. In fact,let (-, -) bea
Hermitian formon V,letI" = (v, ..., v,) be an ordered basis of V, and define
Ajj = (v;, vj). Then A is a Hermitian matrix, and (u, v) = u’ Av, where v is the
entry-by-entry complex conjugate of v.

If A = (wy,...,w,)is asecond ordered basis, then the formula for changing
basis may be derived as follows: Write w; = ), c;;v;, so that [c;;] is the matrix

( ! ) If B,‘j = (wi, wj), then B,’j = (w,-, wj) = Zkl Ck,'(vk, v1>51j, and hence

A
P
1 1
7= (ra) 2 (es)
Thus two Hermitian matrices A and B represent the same Hermitian form in
different bases if and only if B = M* AM for some nonsingular matrix M.

Proposition 6.8.

(a) If (-, -) is a Hermitian form on a finite-dimensional vector space V over
C, then there exists an ordered basis of V in which the matrix of (-, -) is diagonal
with real entries.

(b) If A is an n-by-n Hermitian matrix, then there exists a nonsingular n-by-n
matrix M such that M*AM is diagonal.

PROOF. The above considerations show that (a) and (b) are reformulations
of the same result. Hence it is enough to prove (b). By the Spectral Theorem
(Theorem 3.21), there exists a unitary matrix U such that U~' AU is diagonal
with real entries. Since U is unitary, U~ = U*. Thus we can take M = U to
prove (b). ]

Just as with symmetric bilinear forms over R, we can do a little better than
Proposition 6.8 indicates. If B is Hermitian and diagonal with diagonal entries
b;, and if D is diagonal with positive entries d;, then C = D*BD is diago-
nal with diagonal entries d?b;. Choosing D suitably and then replacing C by
P C P for a suitable permutation matrix P, we may assume that P'C P is of the
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form diag(+1,...,+1,—1,...,—1,0,...,0). The number of 4+1°s and —1°’s
together is the rank of A, and the form is nondegenerate if and only if there are
no 0’s. The triple given by

(p.m,z) = (#(+1)’s, #(—1)’s, #(0)’s)

is again called the signature of A. A similar notion can be defined in the case of
a Hermitian form, as opposed to a Hermitian matrix.

Theorem 6.9 (Sylvester’s Law). The signature of an n-by-n Hermitian matrix
is well defined.

The proof is the same as for Theorem 6.6 except for adjustments in notation.

5. Groups Leaving a Bilinear Form Invariant

Although it is not logically necessary to do so, we digress in this section to intro-
duce some important groups that are defined by means of bilinear or Hermitian
forms. These groups arise in many areas of mathematics, both pure and applied,
and their detailed structure constitutes a topic in the fields of Lie groups, algebraic
groups, and finite groups that is beyond the scope of this book. Thus the best
place to define them seems to be now.

We limit our comments on applications to just these: When the underlying
field in the definition of these groups is R or C, the group is quite often a “simple
Lie group,” one of the basic building blocks of the theory of the continuous groups
that so often arise in topology, geometry, differential equations, and mathematical
physics. When the underlying field is a number field in the sense of Example 9
of Section IV.1, the group quite often plays a role in algebraic number theory.
When the underlying field is a finite field, the group is often closely related to a
finite simple group; an example of this relationship occurred in Problems 55-62
at the end of Chapter IV, where it was shown that the group PSL(2, K), built in
an easy way from the general linear group GL(2, K), is simple if the field K has
more than 5 elements. More general examples of finite simple groups produced
by analogous constructions are said to be of “Lie type.” A celebrated theorem
of the late twentieth century classified the finite simple groups—establishing that
the only such groups are the cyclic groups of prime order, the alternating groups
on 5 or more letters, the simple groups of Lie type, and 26 so-called sporadic
simple groups.

If (-, -) is a bilinear form on an n-dimensional vector space V over a field K,
anonsingular linear map g : V — V is said to leave the bilinear form invariant
if

(g(u), g(v)) = (u, v)
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forall u and v in V. Fix an ordered basis I" of V, let A be the matrix of the bilinear

8

. . ) ;L
form in this basis, let g’ = T

) be the member of GL(#n, K) corresponding

. w . . .
to g, and abbreviate (I‘) as w’ for any w in V. To translate the invariance

condition into one concerning matrices, we use the formula (i, v) = u'* Av/, the
corresponding formula for (g(u), g(v)), and the formula g(w)" = g’(w’) from
Theorem 2.14. Then we obtain u''g"" Ag'v’ = u'" Av’. Taking u to be the i
member of the ordered basis I" and v to be the j™ member, we obtain equality of
the (i, j)™ entry of the two matrices g"’ Ag’ and A. Thus the matrix form of the
invariance condition is that a nonsingular matrix g’ satisfy

¢"Ag = A.

We know that changing the ordered basis I" amounts to replacing A by M’ AM for
some nonsingular matrix M. If g’ satisfies the invariance condition g"’ Ag’ = A
relative to A, then M ~'g’ M satisfies

(M~ 'g' MY (M'AM)(M ™' ¢’ M) = M' AM.

Thus we are led to a conjugate subgroup within GL(n, K). A conjugate subgroup
is not something substantially new, and thus we might as well make a convenient
choice of basis so that A looks particularly special.

The interesting cases are that the given bilinear form is symmetric or alter-
nating, hence that the matrix A is symmetric or alternating. Let us restrict our
attention to them. The left and right radicals coincide in these cases, and the first
thing to do is to take the two-sided radical into account. Returning to the original
bilinear form, we write V = rad @S, where rad is the radical and S is some
vector subspace of §, and we choose an ordered basis (vy, ..., Uy, Upt1, ..., Uy)
such that vy, ..., v, are in § and vy, ..., v, are in rad. Then (v;, v;) = 0 if
i > porj > p,and consequently A has its only nonzero entries in the upper
left p-by-p block. The same argument as in the proofs of Theorems 6.5 and
6.7 shows that the restriction of the bilinear form to S is nondegenerate, and
consequently the upper left p-by- p block of A is nonsingular. Changing notation

slightly, suppose that g is an n-by-n matrix written in block form as g = ( i;i iz )

with g1 of size p-by-p, suppose that ( g 8 ) is another matrix written in the same
block form, suppose that the p-by-p matrix A is nonsingular, and suppose that
00

sufficient conditions on g are that g;; be nonsingular and have g}, Ag;1 = A,
that g;, = 0, that g,, be arbitrary nonsingular, and that g,; be arbitrary. In other

g (3 8) g = (A 0). Making a brief computation, we find that necessary and
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words, the only interesting condition g{, Agi; = A is areflection of what happens
in the nonsingular case.

Consequently the interesting cases are that the given bilinear form is non-
degenerate, as well as either symmetric or alternating. If A is symmetric and
nonsingular, then the group of all nonsingular matrices g such that g’ Ag = A is
called the orthogonal group relative to A. If A is alternating and nonsingular,
then the group of all nonsingular matrices g such that g’ Ag = A is called the
symplectic group relative to A.

For the symplectic case it is customary to invoke Theorem 6.7 and take A to
be

01
-10

01

01
-10

except possibly for a permutation of the rows and columns and possibly for
a multiplication by —1. Two conflicting notations are in common use for the
symplectic group, namely Sp(n, K) and S p(%n, K), and one always has to check
a particular author’s definitions.

For the orthogonal case the notation is less standardized. Theorem 6.5 says
that we may take A to be diagonal except when K has characteristic 2. But the
theorem does not tell us exactly which A’s are representative of the same bilinear
form. When K = C, we know that we can take A to be the identity matrix /.
The group is known as the complex orthogonal group and is denoted by O(n, C).
When K = R, we can take A to be diagonal with diagonal entries +1. Sylvester’s
Law (Theorem 6.6) says that the form determines the number of +1°s and the
number of —1’s. The groups are called indefinite orthogonal groups and are
denoted by O(p, g), where p is the number of +1’s and ¢ is the number of —1’s.
When g = 0, we obtain the ordinary orthogonal group of matrices relative to an
inner product.

A similar analysis applies to Hermitian forms. The field is now C, the invari-
ance condition with the form is still (g(u#), g(v)) = (u, v), and the corresponding
condition with matrices is g’ AZ = A. The interesting case is that the Hermitian
form is nondegenerate. Proposition 6.8 and Sylvester’s Law (Theorem 6.9)
together show that we may take A to be diagonal with diagonal entries =1 and
that the Hermitian form determines the number of +1’s and the number of —1’s.
The groups are the indefinite unitary groups and are denoted by U(p, q), where
p is the number of +1’s and ¢ is the number of —1’s. When ¢ = 0, we obtain
the ordinary unitary group of matrices relative to an inner product.
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6. Tensor Product of Two Vector Spaces

If E is a vector space over K, then the set of all bilinear forms on E is a vector
space under addition and scalar multiplication of the values, i.e., it is a vector
subspace of the set of all functions from E x E into K. In this section we introduce
a vector space called the “tensor product” of E with itself, whose dual, even if E
is infinite-dimensional, is canonically isomorphic to this vector space of bilinear
forms.

Matters will be clearer if we work initially with something slightly more general
than bilinear forms on a single vector space E. Thus fix a field K, and let £ and
F be vector spaces over K. A function from E x F into a vector space U over K
is said to be bilinear if it is linear in each of the two variables when the other one
is held fixed. Such a space of bilinear functions is a vector space over K under
addition and scalar multiplication of the values. The bilinear functions are called
bilinear forms when the range space U is K itself. More generally, if £y, ..., Ej
are vector spaces over K, a function from E; x - -- x E} into a vector space over
K is said to be k-linear or k-multilinear if it is linear in each of its k variables
when the other k — 1 variables are held fixed. Again the word “form” is used in
the scalar-valued case, and all of these spaces of multilinear functions are vector
spaces over K.

In this section we shall introduce the tensor product of two vector spaces E
and F over K, ultimately denoting it by £ ®x F. The dual of this tensor product
will be canonically isomorphic to the vector space of bilinear forms on £ x F.
More generally the space of linear functions from the tensor product into a vector
space U will be canonically isomorphic to the vector space of bilinear functions
on E x F with values in U.

Following the habit encouraged by Chapter IV, we want to arrange that tensor
product is a functor. If V denotes the category of vector spaces over K and if
V x V denotes the category described in Section IV.11 as V5 for a two-element
set S, then tensor product is to be a functor from V x V into V. Hence we will
want to examine the effect of tensor products on morphisms, i.e., on linear maps.

As in similar constructions in Chapter IV, the effect of tensor product on linear
maps is captured by defining the tensor product by means of a universal mapping
property. The appropriate universal mapping property rephrases the statement
above that the space of linear functions from the tensor product into any vector
space U is canonically isomorphic to the vector space of bilinear functions on
E x F with values in U.

If E and F are vector spaces over K, a tensor product of £ and F is a pair
(V, 1) consisting of a vector space V over K together with a bilinear function
t: E x F — V, with the following universal mapping property: whenever b is
abilinear mapping of E x F into a vector space U over K, then there exists a unique
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linear mapping B of V into U such that the diagram in Figure 6.1 commutes, i.e.,
such that Bt = b holds in the diagram. When ¢ is understood, one frequently
refers to V itself as the tensor product. The linear mapping B : V — U is called
the linear extension of b to the tensor product.

ExF —25 U
1

Ll ,,,,"'IB

1%

FIGURE 6.1. Universal mapping property of a tensor product.

Theorem 6.10. If £ and F are vector spaces over K, then a tensor product
of E and F exists and is unique up to canonical isomorphism in this sense: if
(V1, 11) and (V2, 1p) are tensor products, then there exists a unique linear mapping
B : V, — V| with Bty = (), and B is an isomorphism. Any tensor product is
spanned linearly by the image of E x F init.

REMARKS. As usual, uniqueness will follow readily from the universal map-
ping property. What is really needed is a proof of existence. This will be carried
out by an explicit construction. Later, in Chapter X, we shall reintroduce tensor
products, taking the basic construction to be that of the tensor product of two
abelian groups, and then the tensor product of two vector spaces will in effect
be obtained in a slightly different way. However, the exact construction does not
matter, only the existence; the uniqueness allows us to match the results of any
two constructions.

ExF —25 V, ExF —1 5 v
1 1
[ll B, and L2l B,
V1 VZ

FIGURE 6.2. Diagrams for uniqueness of a tensor product.

PROOF OF UNIQUENESS. Let (Vy, ;) and (V», t2) be tensor products. Set up
the diagrams in Figure 6.2, and use the universal mapping property to obtain
linear maps B, : Vi — V, and By : V, — V) extending i, and ¢;. Then
B]Bz . V] g V] has B]thl = B]L2 =1, and 1V1 : V] g V] has (lvl)Ll =1].
By the assumed uniqueness within the universal mapping property, B1 B, = 1y,
on Vi. Similarly B,B; = 1y, on V,. Then B; : Vo — V) gives the canonical
isomorphism. Because of the isomorphism the image of £ x F will span an
arbitrary tensor product if it spans some particular tensor product. O
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PROOF OF EXISTENCE. Let V| = @(6’ " K(e, f), the direct sum being taken
over all ordered pairs (e, f) withe € E and f € F. Then V] is a vector space
over K with a basis consisting of all ordered pairs (e, f). We think of all identities
that the elements of V| must satisfy to be a tensor product, writing each as some
expression set equal to 0, and then we assemble those expressions into a vector
subspace to factor out from V;. Namely, let V, be the vector subspace of V;
generated by all elements of any of the kinds

(er +e2, f) — (e1, ) — (e2, f),
(ce, f) —c(e, f),

(e, fi+ f2) — (e, f1) — (e, f2),
(e,cf) —cle, f),

the understanding being that c¢ is in K, the elements e, e;, e, are in E, and the
elements f, f1, f> arein F. Define V = V|/Vy,and definet: E x F — V| /Vy
by t(e, f) = (e, f) + Vo. We shall prove that (V, ¢) is a tensor product of E and
F. The definitions show that the image of ¢ spans V linearly.

Letb : E x F — U be given as in Figure 6.1. To see that a linear extension
B exists and is unique, define By on V; by

Bi( Y cilei, f)) = Y ciblei, fi).

(finite) (finite)

The bilinearity of b shows that B; maps V, to 0. By Proposition 2.25, B; descends
toalinearmap B : V;/Vy — U, and we have Bt = b. Hence B exists as required.

To check uniqueness of B, we observe again that the cosets (e, f) + Vy within
Vi/ Vo span V; since commutativity of the diagram in Figure 6.1 forces

B((e, f) + Vo) = B(u(e, [)) = ble, [),
B is unique. This completes the proof. (]

A tensor product of E and F is denoted by (E ®x F, ¢), with the bilinear map
¢ given by (e, f) = e ® f; the map ¢ is frequently dropped from the notation
when there is no chance of ambiguity. The tensor product that was constructed
in the proof of existence in Theorem 6.10 is not given any special notation to
distinguish it from any other tensor product. The elements ¢ ® f span E ®xk F,
as was noted in the statement of the theorem. Elements of the form e ® f are
sometimes called pure tensors.

Not every element need be a pure tensor, but every element in £ Qg F is a
finite sum of pure tensors. We shall see in Proposition 6.14 that if {;} is a basis
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of E and {v;} is a basis of F, then the pure tensors u; ® v; form a basis of £ ®x F'.
In particular the dimension of the tensor product is the product of the dimensions
of the factors. We could have defined the tensor product in this way —by taking
bases and declaring that u; ® v; is to be a basis of the desired space. The difficulty
is that we would be forever wedded to our choice of those particular bases, or
we would constantly have to prove that our definitions are independent of bases.
The definition by means of Theorem 6.10 avoids this difficulty.

To make tensor product (E, F) — E ®x F into a functor, we have to describe
the effect on linear mappings. To aid in that discussion, let us reintroduce some
notation first used in Chapter II: if U and V are vector spaces over K, then
Homgk (U, V) is defined to be the vector space of K linear maps from U to V.

Corollary 6.11. If E, F, and V are vector spaces over K, then the vector space
Homgk (E ®k F, V) is canonically isomorphic (via restriction to pure tensors) to
the vector space of all V-valued bilinear functions on £ x F.

PROOF. Restriction is a linear mapping from Homg (E ®x F, V) to the vector
space of all V-valued bilinear functions on £ x F, and it is one-one since the
image of £ x F in E ® F spans E ®k F. It is onto since any bilinear function
from E x F to V has a linear extension to E ®xk F, by Theorem 6.10. O

Corollary 6.12. If E and F are vector spaces over K, then the vector space of
all bilinear forms on E x F is canonically isomorphic to (E ®k F)’, the dual of
the vector space £ Q@ F.

PROOF. This is the special case of Corollary 6.11 in which V = K. g

Corollary 6.13. If E, F, and V are vector spaces over K, then there is a
canonical K linear isomorphism & of left side to right side in

Homg (E ®k F, V) = Homg (E, Homg (F, V))

such that
D)) (f) =¢e® f)

for all p € Homg (E ®x F, V),e € E,and f € F.

REMARK. This result is just a restatement of Corollary 6.11, but let us prove it
anyway, writing the proof in the language of the statement.

PROOF. The map & is well defined and K linear, and it carries the left side to
the right side. For ¢ in the right side, define W () (e, f) = ¥ (e)(f). Then W (y)
is a bilinear map from £ x F into V, and we let W (/) be the linear extension
from E ®k F into V given in Theorem 6.10. Then W is a two-sided inverse to
@, and the corollary follows. O
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Let us now make (E, F) — E ®g F into a covariant functor. If (E;, F;) and
(E,, F») are objects in V x V), i.e., if they are two ordered pairs of vector spaces,
then a morphism from the first to the second is a pair (L, M) of linear maps of the
form L : Ey — Eand M : F; — F,. To (L, M), we are to associate a linear
map from E| ®k F; into Ey @k F; this linear map will be denoted by L @ M. We
use Corollary 6.11 to define L ® M as the member of Homg (E| ®k F, E2 QK F>)
that corresponds under restriction to the bilinear map (e;, f1) — L(e;) ® M(f1)
of E; x F| into E; ®k F>. In terms of pure tensors, the map L ® M satisfies

(L® M)(e1 ® f1) = L(en) @ M(f1),

and this formula completely determines L @ M because of the uniqueness of
linear extensions of bilinear maps.

To check that this definition of the effect of tensor product on pairs of linear
maps makes (E, F) — E ®k F into a covariant functor, we have to check the
effect on the identity map and the effect on composition. For the effect on the
identity map (1g,, 1r,) when E|; = E; and F| = F,, we see from the above
displayed formula that (1, ® 15,)(e1 ® f1) = 1g,(e1) @ 15, (f1) = e1 ® f1 =
1E,0xF (€1 ® f1). Since elements of the form e; ® f| span E; @k F, we conclude
that lg, ® 1p, = 1g,0xF,-

For the effect on composition, let (L, M) : (Ei, F1) — (E», F>) and
(Ly, My) : (E», F») — (E3, F3) be given. Then we have

(L @ Mo)(L1 @ My)(e1 ® f1) = (L2 ® Ma)(Li(er) ® Mi(f1))
= (LoL1)(e1) @ (MaMy)(f1) = (LoLy @ MaMy) (e @ f1).

Since elements of the form e; ® f; span E| ®k F), we conclude that
(L @ Mo)(Ly @ M) = LrLy @ Mo M.

Therefore (E, F) — E ®x F is a covariant functor.

In particular, £ — E Qk F and F — E ®x F are covariant functors from V
into itself. For these two functors from Vinto itself, the effect on linear mappings
is especially nice, namely that

L L ® M, {15 K linear from Homg(E;, E»)

into Homg (E| ®k Fi, E» Qk F»),

M L, ® M, {13 K linear from Homg(Fi, F>)

into Homg (E| ®k Fi, E» QK F>).

To prove the first of these assertions, for example, we observe that the sum of the
linear extensions of

(e1, f1) = Li(e1) ® M (f1) and (e1, fi) = Li(er) @ Mi(f1)



268 VI. Multilinear Algebra

is a linear extension of (ey, fi) — (L4 L})(e1) ® M (f1), and the uniqueness in
the universal mapping property implies that (L1 +L)@M; = Li@M;+L | ®M,.
Similar remarks apply to multiplication by scalars.

Let us mention some identities satisfied by ®k. There is a canonical isomor-
phism

EFEQ F=EFQx E

given by taking the linear extension of (e, f) > f ® e as the map from left to
right. The linear extension of ( f, e) > e® f gives a two-sided inverse. Category
theory has a way of capturing the idea that this isomorphism is systematic, rather
than randomly dependent on E and F. The two sides of the above isomorphism
may be regarded as the values of the covariant functors (E, F) — E ®xk F and
(E,F) — F ®g E. The notion in category theory capturing “systematic” is
called “naturality.” It makes precise the fact that the system of isomorphisms
respects linear maps, as well as the vector spaces. Here is the general definition.
Its usefulness will be examined later in this section.

Let C and D be two categories, and let ® : C - Dand ¥ : C - D
be covariant functors. Suppose that for each X in Obj(C), a morphism T
in Morphy (®(X), V(X)) is given. Then the system {7} is called a natural
transformation of @ into W if for each pair of objects X and X, in C and each
h in Morph,(X1, X»), the diagram in Figure 6.3 commutes. If furthermore each
Tx is an isomorphism, then it is immediate that the system {7 '} is a natural
transformation of W into @, and we say that {Tx} is a natural isomorphism.

o(X) — o(X,)

| [

(X)) — w(x,)

FIGURE 6.3. Commutative diagram of a natural transformation {7y }.

If ® and W are contravariant functors, then the system {7y} is called a natural
transformation of ® into W if the diagram obtained from Figure 6.3 by revers-
ing the horizontal arrows commutes. The system is a natural isomorphism if
furthermore each 7 is an isomorphism.

In the case we are studying, we have C = V x Vand D = V. Objects X in C
are pairs (E, F) of vector spaces, and @ and W are the covariant functors with
PE,F)=EQxFandV¥(E, F) = F®kE. Themapping T\ r) : EQg F —
F ®k E is uniquely determined by the condition that Tz ;) (e ® f) = f ®e
foralle € E and f € F. A morphism of pairs from (Ey, F) to (E3, F>) is of
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the form & = (L, M) with L € Homg(E1, E») and M € Homg(F;, F>). Our
constructions above show that

(L, M)=L®M € Homg(E, Qk F|, E; Qx F)
and W(L,M)=M ® L € Homg(F; ®k E1, F» Qk E»).

In Figure 6.3 the two routes from top left to bottom right in the diagram have

TE, r)y (L, M)(e1 @ f1) = T (g, k(L @ M)(e1 ® f1)
= T(g,, ) (L(e1) @ M(f1)) = M(f1) ® L(er)

and

W(L, M)T(g, rye1 ® fi) =YL, M)(fi1 ®er)
=MQL)(fi®e1) = M(f1) Q L(er).

The results are equal, and therefore the diagram commutes. Consequently the
isomorphism
EQr F=EF Qx E

is natural in the pair (E, F).
Another canonical isomorphism of interest is

E®rK=E.

Here the map from left to right is the linear extension of (e, c) — ce, while
the map from right to left is e > e ® 1. In view of the previous canonical
isomorphism, we have K ®x E = E also. Each of these isomorphisms is natural
in E.

Next let us consider how ®x interacts with direct sums. The result is that
tensor product distributes over direct sums, even infinite direct sums:

Eex (P F) =P EexF).

seS seS

The map from left to right is the linear extension of the bilinear map (e, { f;}ses)
{e ® fs}ses. For the definition of the inverse, the constructions of Section I1.6
show that we have only to define the map on each E ® F;, where it is the linear
extension of (e, f;) > e ® {is(f;))}ses; here iy, : Fy, — P, F; is the one-one
linear map carrying the s(t)h vector space into the direct sum. Once again it is
possible to prove that the isomorphism is natural; we omit the details.

It follows from the displayed isomorphism and the isomorphism £ Qg K = E
that if {x;} is a basis of E and {y;} is a basis of F, then {x; ® y;} is a basis of
E ®xk F. This proves the following result.
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Proposition 6.14. If E and F are vector spaces over K, then
dim(E ®k F) = (dim E)(dim F).

If {y;} is a basis of F, then the most general member of £ @y F is of the form
> ;¢ ®yjwithalle; in E.

We turn to a consideration of Homyk from the point of view of functors. In
the examples in Section IV.11, we saw that V — Homg (U, V) is a covariant
functor from V to itself and that U — Homg (U, V) is a contravariant functor
from Vto itself. If we are not squeamish about mixing the two types—covariant
and contravariant—then we can consider (U, V) + Homg (U, V) as a functor’
from V x Vto V. Atany rate if L is in Homg (U}, U;) and M is in Homg (V;, V»),
then Hom(L, M) carries Homg (U;, V;) into Homk (U;, V) and is given by

Hom(L, M)(h) = MhL for h € Homg (U, V7).
It is evident that the result is K linear as a function of %, and hence
Hom(L, M)  isin Homg (Homg (U,, V1), Homg (Uy, V2)).

When we look for analogs for the functor Homg of the identity £ Qg K = E
for the functor ®k, we are led to two identities. One is just the definition of the
dual of a vector space:

Homg (U, K) = U'.

The other is the natural isomorphism
Homg (K, V) = V.

In the proof of the latter identity, the mapping from left to right is given by sending
alinear : K — V to h(1), and the mapping from right to left is given by sending
vin V to h with h(c) = cv.

Next let us consider how Homy interacts with direct sums and direct products.
The construction Homg (U, V') distributes over finite direct sums in each variable,
but the situation with infinite direct sums or direct products is more subtle. Valid
identities are

Homg (P U;, V) = [ [Homg (U, V)

seS seS
and Homg (U, 1_[ VS) =~ nHomK(U, Vy),
seS seS

3Readers who care about this point can regard U as in the category VPP defined in Problems
78-80 at the end of Chapter I'V. Then (U, V) — Homg (U, V) is a covariant functor from VPP x V
into V.
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and these are natural isomorphisms. Proofs of these identities for all S and
counterexamples related to them when S is infinite appear in Problems 7-8 at the
end of the chapter.

We have already checked that the isomorphism E ®k F = F ®x F is natural in
(E, F), and we have asserted naturality in some other situations in which it is easy
to check. The next proposition asserts naturality for the identity of Corollary 6.13,
which combines @k and Homy in a nontrivial way. After the proof of the result,
we shall digress for a moment to indicate the usefulness of natural isomorphisms.

Proposition 6.15. Let E, F, V, E|, Fy, and V| be vector spaces over K, and
let Lg, : Ey — E,Lp : F1 — F,and Ly : V — V) be K linear maps. Then
the isomorphism & of Corollary 6.13 is natural in the sense that the diagram

Homg(E ®x F, V) —— Homg(E, Homg(F, V))
Hom(L g, ®Lr, Lv)l lHom(LEl Hom(Lg, .Ly))
Homg (E1 ®x Fi, V1) LN Homg (E1, Homg (F1, V1))
commutes.

REMARKS. Observe that the first two linear maps Lg, and Lr, go in the
opposite direction to the two vertical maps, while Ly goes in the same direction
as the vertical maps. This is a reflection of the fact that both sides of the identity
in Corollary 6.13 are contravariant in the first two variables and covariant in the
third variable.

PROOF. For ¢ in Homg (E @k F, V), e; in Eq, and f} in F|, we have

(Hom(Lg,, Hom(LF,,Ly)) o ®)(¢)(e1)(f1)
= (Hom(LF,, Ly) o ®(¢) o Lg,)(e1)(f1)
= (Hom(LF,, Ly) o (P(¢) o Lg,))(e)(f1)
= Ly(®(p)(LE (e1)(LF (1))
= Ly(¢p(LEg,(e1) ® Lr (f1)))
=(Lyvogo(Lg ®LF))(e1® f1)
= (Hom(Lg, ® Lr,, Lv)(p))(e1 ® f1)
= ®(Hom(Lg, ® LF,, Lv) o ¢)(e)(f1).

This proves the proposition. O
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Let us now discuss naturality in a wider context. In a general category D, if
we have two objects U and U’ such that Morph(U, V) and Morph(U’, V') have
the same cardinality for each object V, then we cannot really say anything about
the relationship between U and U’. But under a hypothesis that the isomorphism
of sets has a certain naturality to it, then, according to Proposition 6.16 below,
U and U’ are isomorphic objects. Thus naturality of a system of weak-looking
set-theoretic isomorphisms can lead to a much stronger-looking isomorphism.
Corollary 6.17 goes on to make a corresponding assertion about functors. The
assertion about functors in the corollary is a helpful tool for establishing natural
isomorphisms of functors, and an example appears below in Proposition 6.20'.

Proposition 6.16. Let D be a category, and suppose that U and U’ are objects
in D with the following property: to each object V in D corresponds a one-one
onto function

Ty : Morph(U, V) — Morph(U’, V)

with the system { Ty } natural in V in the sense that whenever o is in Morph(V, V'),
then the diagram

Morph(U, V) v, Morph(U’, V)

left—by—ol lleft—by—a

Ty
Morph(U, V') —Y— Morph(U’, V')

commutes. Then U is isomorphic to U’ as an object in D, an isomorphism from
U to U’ being the member TJ,I (1y+) of Morph(U, U’).

REMARKS.

(1) Another way of formulating this result is as follows: Let D be any category,
let S be the category of sets, and let U and U’ be objects in D. Define a covariant
functor Hy : D — S by Hy(V) = Morphp(U, V) and Hy (o) = left-by-o
for o € Morph,,(V, V'), and define Hy similarly. If Hy and Hy are naturally
isomorphic functors, then U and U’ are isomorphic objects in D.

(2) A similar result is valid when Hy and Hy: are contravariant functors,
Hy being defined by Hy (V) = Homp(V,U) and Hy (o) = right-by-o for
o € Morphp(V, V’). The result in this case follows immediately by applying
Proposition 6.16 to the opposite category D °PP of D as defined in Problems 78-80
at the end of Chapter I'V.

PROOF. Let ¢ be the element TU_,I(IU/) of Morph(U, U’), and let ¢ be the
element Ty (1) of Morph(U’, U). To prove the proposition, it is enough to show
that o = 1y and Y¢ = 1y.
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For o in Morph(V, V'), form the commutative diagram in the statement of the
proposition. The commutativity says that

oTy(h) =Ty (ch) for h € Morph(U, V). (%)

Taking V =U, V' =U’, 0 = ¢, and h = 1y in (x) proves the second equality
of the chain

o = oTy(ly) = Ty (ply) = Ty (p) = 1y

Taking V = U’, V' = U, 0 = ¢, and h = ¢ in (*) proves the first equality of
the chain
Ty(o) =y Ty (p) =y 1y =y =Ty(1y);

Applying T;;!, we obtain ¢¢ = 1y, as required. g

Corollary 6.17. Let C and D be categories, and let F : C — D and
G : C — D be covariant functors. Suppose that to each pair of objects (A, V) in
C x D corresponds a one-one onto function

Ta.v : Morph(F(A), V) — Morph(G(A), V)

with the system {74 v} naturalin (A, V). Then the functors F and G are naturally
isomorphic.

REMARKS. A similar result is valid if T4y carries Morph(V, F(A)) to
Morph(V, G(A)) and/or if F and G are contravariant. To handle these situations,
we apply the corollary to the opposite categories D °PP and/or C °PP, as defined in
Problems 78-80 at the end of Chapter IV, instead of to the categories D and/or C.

PROOF. By Proposition 6.16 and the hypotheses, the member TA_’IG( aacw)
of Morphy,(F(A), G(A)) is an isomorphism. We are to prove that the system
{Ta.Ga} is natural in A. If o in Morph(A, A’) is given, then the naturality of
T4 v in the V variable implies that the diagram

Ta.Ga)

Morphy(F(A), G(A)) —— Morphp(G(A4), G(A))
left—by—G(d)l lleft—by—G(a)
TA,G(A’)

Morphy(F(A), G(A")) ——— Morphy(G(A), G(A'))

commutes. Evaluating at T, 10( A)(IG( A)) € Morphp(F(A), G(A)) the two equal
compositions in the diagram, we obtain

G(o) =G(0)lgw = Ta ey (G(U)T/;]G(A)UG(A)))- ()
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With o as above, the naturality of 74 v in the A variable implies that the diagram

TA’,G(A/)

Morphp (F(A'), G(A") Morphy (G (A'), G(A))

right-by-F (U)J/ lright—by—G (o)

TA,G(A’)

Morphy, (F(A), G(A") Morphy(G(A), G(A))
commutes. Evaluating at T;}G( A,)(IG( A)) € Morphp(F(A'), G(A')) the two
equal compositions in the diagram, we obtain

G(0) = lgw)G(o) = Ta G (TQ,IG(A/)UG(A/))F(U))- (k)

Equations () and (), together with the fact that T4 g4 is invertible, say that
G() T4 gy (low) = Tilgun (o) F (o).

In other words, the isomorphism TA € Morphy(F(A), G(A)) given by TA =
T;lG( A)(IG( A)) makes the diagram

F(A) i) G(A)

F(cr)l lG(o)

Ty
F(A) —— G(A)
commute. Thus F' is naturally isomorphic to G. O

Tensor product provides a device for converting a real vector space canonically
into a complex vector space, so that a basis over R in the original space becomes a
basis over C in the new space. If E is the given real vector space, then the complex
vector space, called the complexification of E, is the space E C = E @ C with
multiplication by a complex number ¢ in E€ defined to be 1 ® (z > cz).

This construction works more generally when we have any inclusion of fields
K C L. In this situation, IL. becomes a vector space over K if scalar multiplication
K x . — L is defined as the restriction of the multiplication . x . — L within
L. For any vector space E over K, we define E* = E ® L, initially as a vector
space over K. For ¢ € L, we then define

(multiplication by ¢ in £ ®k L) = 1 ® (multiplication by ¢ in LL).
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The above identities concerning tensor products of linear maps allow one easily
to prove the following identities:

c1(cv) = (c1e2)v,
c(u+v)=cu+cv,
(c1 +c2)v =civ + v,

lv = .

Together these identities say that E = E ®x L, with its vector-space addition
and the above definition of multiplication by scalars in L, is a vector space over
L. The further identity

ce®l)=ce®1 ifcisinKandeisin E

shows that its scalar multiplication is consistent with scalar multiplication in E
when the scalars are in K and E is identified with the subset E ® 1 of E*.

Let us say that the pair (E", (), where t : E — E" is the mapping e > e ® 1,
is obtained by extension of scalars. This construction is characterized by a
universal mapping property as follows.

Proposition 6.18. Let K C I be an inclusion of fields, and let E be a vector
space over K.

(a) If (E™, 1) is formed by extension of scalars, then (E™, ¢) has the following
universal mapping property: whenever U is a vector spaceoverLand¢ : E — U
is a K linear map, there exists a unique L linear map ® : E* — U such that
D= 0g.

(b) Suppose that (V, j) is any pair in which V is a vector space over L and
j + E — VisaK linear function such that the following universal mapping
property holds: whenever U is a vector space over L and ¢ : E — U isaK
linear map, there exists a unique IL linear map ® : V — U such that ®j = ¢.
Then there exists a unique isomorphism ¥ : E% — V of IL vector spaces such that
v =j.

PROOF. In (a), for the uniqueness of ®, we musthave ®(e®c) = cP(e®1) =
c(®)(e) = cp(e). Hence @ is determined by ¢ on pure tensors in £ @k L and
therefore everywhere.

For existence let ® : £ Qg L. — U be the K linear extension of the K bilinear
function of £ x IL into U given by

(e, c) — cp(e) fore e Eandc € L.
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In the IL vector space E ®x L, multiplication by a member ¢( of L is defined to
be 1 ® (multiplication by cp). On a pure tensor e ® ¢, we therefore have

P (cole ® ¢)) = P(e ® coc) = (coc)p(e) = colcp(e)) = co(P(e ® ©)).

Since E ®x L is generated by pure tensors, ® is L linear. By the construction of
D, p(e) =P(e®1) = (Pr)(e). Thus ® has the required properties.

In (b), let (V, j) have the same universal mapping property as (E“, ). We
apply the universal mapping property of (E™, ¢) to the K linear map j : E — V
to obtain an L linear ® : E* — V with ®: = j, and we apply the universal
mapping property of (V, j) to the K linear map ¢ : E — E" to obtain an L linear
@ : V — EF with ®j = . From (&'®): = &'j = ¢t and 1z ¢ = 1, the
uniqueness in the universal mapping property for (E™, 1) implies ®'® = 1.
Arguing similarly, we obtain ®&®" = 1,,. Thus ® is an isomorphism with the
required properties.

If W : EL — V is another isomorphism with W ( = j, then the argument just
given shows that ®'W = 1. and W' = 1,,. Hence ¥ = (&) ! = &, and ¥
is unique. g

Tomake E — E™ into a covariant functor from vector spaces over K to vector
spaces over L, we must examine the effect on linear maps. The tool is Proposition
6.18a. Thus let E and F be two vector spaces over K, and let M : E — F be
a K linear map between them. We extend scalars for E and F. The proposition
applies to the composition E — F — F and shows that the composition
extends uniquely to an L linear map from E™ to F. A quick look at the proof
shows that this L linear map is M ® 1. Actually, we can see directly that M ® 1 is
indeed linear over L and not just over K: we just use our identity for compositions
of tensor products to write

(M ® 1)(I ® (multiplication by ¢)) = M ® (multiplication by c)
= (I ® (multiplication by ¢))(M ® 1).

In any event, the explicit form of the extended linear map as M ® 1 shows
immediately that the identity linear map goes to the identity and that compositions
go to compositions. Thus E — E is a covariant functor.

In the special case that the vector spaces are K" and K™, extension of scalars
has a particularly simple interpretation. The new spaces may be viewed as "
and I”". Thus column vectors with entries in K get replaced by column vectors
with entries in L. What happens with linear mappings is even more transparent.
Alinear map M : E — F is given by an m-by-n matrix A with entries in K, and
the linear map M ® 1 : E — FU is the one given by the same matrix A. Now
the entries of A are to be regarded as members of the larger field L. Viewed this
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way, extension of scalars might look as if it is dependent on choices of bases, but
the tensor-product formalism shows that it is not.

A related notion to extension of scalars is that of restriction of scalars. Again
with an inclusion K € L of fields, a vector space E over the larger field L
becomes a vector space Ex over the smaller field K by ignoring unnecessary
scalar multiplications. Although this notion is related to extension of scalars, it
is not inverse to it. For example, if the two fields are R and C and if we start with
an n-dimensional vector space E over R, then EC is a complex vector space of
dimension 7 and (E©)p is a real vector space of dimension 2n. We thus do not
get back to the original space E.

7. Tensor Algebra

Just as polynomial rings are often used in the construction of more general
commutative rings, so “tensor algebras” are often used in the construction of
more general rings that may not be commutative. In this section we construct the
“tensor algebra” of a vector space as a direct sum of iterated tensor products of
the vector space with itself, and we establish its properties. We shall proceed with
care, in order to provide a complete proof of the associativity of the multiplication.

Let A, B, and C be vector spaces over a field K. A triple tensor product V =
A ®k B ®x C is a vector space over K with a 3-linearmapt: Ax BxC — V
having the following universal mapping property: whenever ¢ is a 3-linear map-
ping of A x B x C into a vector space U over K, then there exists a linear mapping
T of V into U such that the diagram in Figure 6.4 commutes.

AxBxC LA 5/

K
Ll T

V=A®k B®gC

FIGURE 6.4. Commutative diagram of a triple tensor product.

The usual argument with universal mapping properties shows that there is at
most one triple tensor product up to a well-determined isomorphism, and one can
give an explicit construction of it that is similar to the one for ordinary tensor
products £ ®x F. We shall not need that particular proof of existence since
Proposition 6.19a below will give us an alternative argument. Once we have that
statement, we shall use the uniqueness of triple tensor products to establish in
Proposition 6.19b an associativity formula for ordinary iterated tensor products.
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A shorter proof of Proposition 6.19b, which avoids Proposition 6.19a and uses
naturality, will be given after the proof of Proposition 6.20.

Proposition 6.19. If K is a field and A, B, C are vector spaces over K, then

(a) (A®k B) ®k C and A ®k (B ®k C) are triple tensor products.
(b) there exists a unique K isomorphism & from left to right in

(A®k B)®x C = A®xk (B®xk ()
suchthat ®((a ®b) ®c) =a R (bR c) foralla € A,b € B,andc € C.

PROOF. In (a), consider (A ®x B) Qx C. Lett : Ax B x C — U be
3-linear. For ¢ € C, definet, : A x B — U by t.(a,b) = t(a,b,c). Thent,
is bilinear and hence extends to a linear T, : A ®g B — U. Since t is 3-linear,
tey+¢, = te, +1c, and t,. = xt. for scalar x; thus uniqueness of the linear extension
forces T¢,4+¢, = Ty + T¢, and Ty, = xT,. Consequently

' (AQg B) xC - U

given by #(d,¢) = T.(d) is bilinear and therefore extends to a linear
T : (A®k B)®x C — U. This T proves existence of the linear extension of the
given ¢. Uniqueness is trivial, since the elements (a ® b)) ® ¢ span (AQk B) ®x C.
So (A®k B) ®xk C is atriple tensor product. In a similar fashion, A ®k (B ®k C)
is a triple tensor product.

For (b), set up the diagram of the universal mapping property for a triple tensor
product, using V = (A®x B) ®x C, U = A ®k (B ®k C), and t(a, b,c) =
a ® (b ® c). We have just seen in (a) that V is a triple tensor product with
t(a,b,c) = (@a®b)®c. ThusthereexistsalinearT : V — U withT(a, b, ¢) =
t(a, b, c). Thisequation means that 7 (e ® b) ® c) = a ® (b ® c). Interchanging
the roles of (A ®k B) ®k C and A ®k (B ®k C), we obtain a two-sided inverse
for T. Thus T will serve as ® in (b), and existence is proved. Uniqueness is
trivial, since the elements (¢ ® b) ® ¢ span (A Qk B) ®k C. ]

When there is no danger of confusion, Proposition 6.19 allows us to write a
triple tensor product without parentheses as A @k B ®x C. The same argument
as in Corollaries 6.11 and 6.12 shows that the vector space of 3-linear forms on
A x B x C is canonically isomorphic to the dual of the vector space A®k B Rk C.

Just as with Corollary 6.13 and Proposition 6.15, the result of Proposition 6.19
can be improved by saying that the isomorphism is natural in the variables A, B,
and C, as follows.
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Proposition 6.20. Let A, B, C, A, Bj, and C; be vector spaces over a field
K,andlet Ly : A - Ay, Lgp : B - Bj,and L¢ : C — C; be linear maps.
Then the isomorphism @ of Proposition 6.19b is natural in the triple (A, B, C)
in the sense that the diagram

(A®k B) @k C LN A®g (B®kC)
(LA®LB)®Lcl lLA®(LB®Lc)
®
(A1 ®k B)) @k C1 —— A1 Qk (B1 ®k C1)

commutes.

PROOF. We have
(LAa®(Lp®Lc))o®)((a®b) ®c)

=(La®(Lp®Lc)a®(b®c))
=Laa®(Lp®Lc)D®c)
=Lsa® (Lpb® Lcc)
=& ((Laa® Lpb) ® Lcc)
=P((La®Lp)a®b)® Lcc)
=(Po((La®Lp)®Lc)(a®b) ®c),

and the proposition follows. g

The treatment of Propositions 6.19 and 6.20 can be shortened if we are willing

to bypass the notion of a triple tensor product and use what was proved about
naturality in the previous section. The result and the proof are as follows.

Proposition 6.20'. Let A, B, and C be vector spaces over a field K. Then
there is an isomorphism @ : (A ®k B) Qx C — A ®k (B ®k C) that is natural
in the triple (A, B, C) and satisfies P(a ® (b ®¢)) =a ® (b ® ¢).

PROOF. Writing = for “naturally isomorphic in all variables” and applying
Proposition 6.15 and other natural isomorphisms of the previous section repeat-
edly, we have

Homg ((A ®k B) ®k C, V) = Homg (A ®« B, Homg (C, V))

= Homg (B, Homg (A, Homg (C, V)))

= Homg (B, Homg (A ®k C, V))

= Homg (B, Homg (C ®k A, V))

= Homg ((C ®x B) ®k A, V) by symmetry
= Homg (A ®k (C ®x B), V)
= Homg (A ®k (B ®k C), V).



280 VI. Multilinear Algebra

Then the existence of the natural isomorphism follows from Corollary 6.17. Using
the explicit formula for the isomorphism in Proposition 6.16 and tracking matters
down, we seethat P(a @ (b ®c¢)) =a ® (b ® ¢). ]

There is no difficulty in generalizing matters to n-fold tensor products by
induction. An n-fold tensor product is to be universal for n-multilinear maps.
Again it is unique up to canonical isomorphism, as one proves by an argument
that runs along familiar lines. A direct construction of an n-fold tensor product
is possible in the style of the proof for ordinary tensor products, but such a
construction will not be needed. Instead, we can form an n-fold tensor product
as the (n — 1)-fold tensor product of the first n — 1 spaces, tensored with the n™
space. Proposition 6.19b allows us to regroup parentheses (inductively) in any
fashion we choose, and the same argument as in Corollaries 6.11 and 6.12 yields
the following proposition.

Proposition 6.21. If E, ..., E,, and V are vector spaces over K, then the
vector space Homg (E| ®k - - - ®k E,, V) is canonically isomorphic (via restric-
tion to pure tensors) to the vector space of all V-valued n-multilinear functions
on E; x --- x E,. In particular the vector space of all n-multilinear forms on
Eq x --- x E, is canonically isomorphic to (E| ®k - - - Qk E,)’.

Iterated application of Proposition 6.20 shows that we get also a well-defined
notion of a linear map L; ® - - - ® L,, the tensor product of n linear maps. Thus
(Eq,...,E,) — E{®k---Q®k E, is a functor. There is no need to write out the
details.

We turn to the question of defining a multiplication operation on tensors. If K
is a field, an algebra* over K is a vector space V over K with a multiplication
or product operation V x V — V that is K bilinear. The additive part of the K
bilinearity means that the product operation satisfies the distributive laws

alb+c)=ab+ac and (b+c)a=ba+ca foralla,b,cin V,
and the scalar-multiplication part of the K bilinearity means that
(ka)b = k(ab) = a(kb) forallkinKanda,bin V.

Within the text of the book, we shall work mostly just with associative
algebras, i.e., those algebras satisfying the usual associative law

a(bc) = (ab)c foralla,b,cin V.

4Some authors use the term “algebra” to mean what we shall call an “associative algebra.”
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An associative algebra is therefore a ring and a vector space, the scalar multipli-
cation and the ring multiplication being linked by the requirement that (ka)b =
k(ab) = a(kb) for all scalars k. Some commutative examples of associative alge-
bras over K are any field L. containing K, the polynomial algebra K[ X, ..., X, ],
and the algebra of all K-valued functions on a nonempty set S. Two noncommu-
tative examples of associative algebras over K are the matrix algebra M,, (K), with
matrix multiplication as its product, and Homg (V, V) for any vector space V,
with composition as its product. The division ring H of quaternions (Example 10
in Section IV.1) is another example of a noncommutative associative algebra
over R.

Despite our emphasis on algebras that are associative, certain kinds of nonasso-
ciative algebras are of great importance in applications, and consequently several
problems at the end of the chapter make use of nonassociative algebras. A
nonassociative algebra is determined by its vector-space structure and the mul-
tiplication table for the members of a K basis. There is no restriction on the
multiplication table; all multiplication tables define algebras. Perhaps the best-
known nonassociative algebra is the 3-dimensional algebra over R determined by
vector product in R*. A basis is {i, j, k}, the multiplication operation is denoted
by X, and the multiplication table is

ixi=0, ixj=Kk, ixk=-j,
jxi= -k, ixj=0, Jxk=i,
k xi=j, k xj=—i, k xk =0.
Sincei x (i x k) =i x (—=j) = —k and (i x i) x k = 0, vector product is not

associative. The vector-product algebra is a special case of a Lie algebra; Lie
algebras are defined in Problems 31-35 at the end of the chapter.

Tensor algebras, which we shall now construct, will be associative algebras.
Fix a vector space E over K, and for integers n > 1, let T"(E) be the n-fold
tensor product of E with itself. In the case n = 0, we let T°(E) be the field K.
Define, initially as a vector space, T (E) to be the direct sum

T(E) = @T"(E).
=0

The elements that lie in one or another 7"(E) are called homogeneous. We
define a bilinear multiplication on homogeneous elements

T"(E) x T"(E) — T™™(E)
to be the restriction of the canonical isomorphism

T"(E) @k T"(E) — T"(E)
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resulting from iterating Proposition 6.19b. This multiplication, denoted by ®, is
associative, as far as it goes, because the restriction of the K isomorphism

T'(E) @k (T"(E) ®x T"(E)) - (T'(E) ®x T"(E)) @k T"(E)
to T'(E) x (T™(E) x T"(E)) factors through the map
T (E) x (T™(E) x T"(E)) — (T'(E) x T™(E)) x T"(E)
given by (r, (s, 1)) = ((r, ), 7).
This much tells how to multiply homogeneous elements in 7'(E). Since each
element 7 in T (E) has a unique expansion as a finite sum ¢ = ) ,_ # with

t, € TF(E), we can define the product of this 7 and the element ' = Y, #/ to
n-+n’

betheelementr @+t =3 "' > . _, (& ®1;); the expression ) ", ., (t ®1;)
is the component of the product in T/ (E).

Multiplication is thereby well defined in T (E), and it satisfies the distributive
laws and is associative. Thus 7' (E) becomes an associative algebra with a
(two-sided) identity, namely the element 1 in T°(E). In the presence of the
identification t : E — T!(E), T(E) is known as the tensor algebra of E. The
pair (T'(E), ¢) has the universal mapping property given in Proposition 6.22
and pictured in Figure 6.5.

T(E)
FIGURE 6.5. University mapping property of a tensor algebra.

Proposition 6.22. The pair (T (E), ¢) has the following universal mapping
property: whenever/ : E — A is a linear map from E into an associative alge-
bra with identity, then there exists a unique associative algebra homomorphism
L :T(E) — Awith L(1) = 1 such that the diagram in Figure 6.5 commutes.

PROOF. Uniqueness is clear, since E and 1 generate 7 (E) as an algebra. For
existence we define L™ on 7" (E) to be the linear extension of the n-multilinear
map

(v1,v2, ..o, Up) B> L(UDI(V2) -+ - L(vn),
and we let L = €p L™ in obvious notation. Let u; ® - - - @ u,, be in T (E) and
VI ®---Qv, bein T"(E). Then we have
L<m>(u1 Q- Qupy) =1(uy) - l(up),
LYW @+ @vy) =1(v1) - 1(vp),

L™ @ @y Qi ® -+ @ vy) = L(uy) - - - L)L () - - - L(vp).



8. Symmetric Algebra 283

Hence
L™ @ Qua)L" (0@ ®v,) = L") ® - Qup Qv ®- - Q).
Taking linear combinations, we see that L is a homomorphism. O

Proposition 6.22 allows us to make E +— T (E) into a functor from the category
of vector spaces over K to the category of associative algebras with identity over
K. To carry out the construction, we suppose that ¢ : E — F is a linear map
between two vector spaces over K. Ifi : E — T(E) and j : F — T (F) are the
inclusion maps, then j¢ is a linear map from E into 7 (F'), and Proposition 6.22
produces a unique algebra homomorphism @ : T(E) — T (F) carrying 1 to 1
and satisfying ®i = jg. Then the tensor-product functor is defined to carry the
linear map ¢ to the homomorphism ® of associative algebras with identity.

For the situation in which R is a commutative ring with identity, Section
IV.5 introduced the ring R[X1, ..., X,] of polynomials in n commuting inde-
terminates with coefficients in R. This ring was characterized by a universal
mapping property saying that if a ring homomorphism of R into a commutative
ring with identity were given and if n elements ¢, ..., #, were given, then the
ring homomorphism of R could be extended uniquely to a ring homomorphism
of R[Xy, ..., X,] carrying X; into ¢; for each j.

Proposition 6.22 yields a noncommutative version of this result, except that the
ring of coefficients is assumed this time to be a field K. To arrange for X, ..., X,
to be noncommuting indeterminates, we form a vector space with {X1, ..., X,;}
as a basis. Thus we let £ = @;’:1 KX;. If 1, ..., t, are arbitrary elements of an
associative algebra A with identity, then the formulas [(X;) =¢t; for1 < j <n
define a linear map / : E — A. The associative-algebra homomorphism
L : T(E) — A produced by the proposition extends the inclusion of K into
the subfield K1 of A and carries each X; to ¢;.

8. Symmetric Algebra

We continue to allow K to be an arbitrary field. Let E be a vector space over
K, and let T(E) be the tensor algebra. We begin by defining the symmetric
algebra S(F). This is to be a version of T (E) in which the elements, which are
called symmetric tensors, commute with one another. It will not be canonically
an algebra of polynomials, as we shall see presently, and thus we make no use of
polynomial rings in the construction.

Just as the vector space of n-multilinear forms E x - - - x E — Kis canonically
the dual of 7" (E), so the vector space of symmetric n-multilinear forms will be
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canonically the dual of S”(E). Here “symmetric” means that f(x,...,x,) =
f(xzy, - -, Xz@ny) for every permutation 7 in the symmetric group &,,.

Since tensor algebras are supposed to be universal devices for constructing
associative algebras over K, whether commutative or not, we seek to form S(E)
as a quotient of T(E). If g is the quotient homomorphism, we want to have
g ®v) = g(v ® u) in S(E) whenever u and v are in («(E) = T'(E). Hence
every element # ® v — v ® u is to be in the kernel of the homomorphism. On the
other hand, we do not want to impose any unnecessary conditions on our quotient,
and so we factor out only what the elements # ® v — v ® u force us to factor out.
Thus we define the symmetric algebra by

S(E) =T(E)/I,

u® v —v®u with u and v
in T'(E)

two-sided ideal generated by all
where I = ( ) .

Then S(E) is an associative algebra with identity.
Let us see that the fact that the generators of the ideal / are homogeneous
elements (all being in 72(E)) implies that

I = @ (I N T"(E)).
n=0

In fact, each I N T"(E) is contained in /, and hence / contains the right side.
On the other hand, if x is any element of /, then x is a sum of terms of the form
a® (u®v—v®u)® b, and we may assume that each a and b is homogeneous.
Any individual terma ® (41 @ v — v ® ) ® b is in some I N T"(E), and x is
exhibited as a sum of members of the various intersections I N T"(E).

An ideal with the property I = @,_, (I N'T"(E)) is said to be homogeneous.
Since [ is homogeneous,

S(E) =@ T"(E)/UINT"(E)).
n=0

We write S”(E) for the n™ summand on the right side, so that
o
S(E) = P s™(E).
n=0

Since INT!(E) = 0,themapof E — T'(E) — S'(E) into first-order elements
is one-one onto. The product operation in S(E) is written without a product sign,
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the image in S"(E) of v} ® - - - ® v, in T"(E) being written as vy - - - v,. If a isin
S™(E) and b is in S"(E), then ab is in S"1"(E). Moreover, S"(E) is generated
by elements vy - - - v, with all v; in S'(E) = E, since T"(E) is generated by
corresponding elements v; ® --- ® v,. The defining relations for S(E) make
viv; = v;v; for v; and v; in ST(E), and it follows that the associative algebra
S(E) is commutative. ]

Proposition 6.23. Let E be a vector space over the field K.

(a) Let ¢ be the n-multilinear function ¢t(vy, ..., v,) = vy v, of EX .- X E
into $"(E). Then (S"(E), ) has the following universal mapping property:
whenever [ is any symmetric n-multilinear map of £ x --- x E into a vector

space U, then there exists a unique linear map L : S"(E) — U such that the
diagram

Ex---xE—l> U

7
LJ{ L

Sn (E)

commutes.

(b) Let ¢ be the one-one linear function that embeds E as S'(E) € S(E).
Then (S(E), t) has the following universal mapping property: whenever [ is
any linear map of E into a commutative associative algebra A with identity, then
there exists a unique algebra homomorphism L : S(E) — A with L(1) = 1 such
that the diagram

E — 5 4

7
Ll L

S(E)

commutes.

PROOF. In both cases uniqueness is trivial. For existence we use the universal
mapping properties of 7" (E) and T (E) to produce L on T"(E) or T (E). If we
can show that L annihilates the appropriate subspace so as to descend to §*(E)
or S(E), then the resulting map can be taken as L, and we are done. For (a), we
have L : T"(E) — U, and we are to show that L(T”(E) N1I) =0, where I is
generated by all u ® v — v ® u withu and v in T'(E). A member of T"(E) N [
is thus of the form >} a; ® (u; ® v; — v; ® u;) ® b; with each term in T"(E).
Each term here is a sum of pure tensors

X® QXU RUOY® QY —X1® - ®X QU QU QY ®- - ®Ys (%)
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with r 42 + s = n. Since [/ by assumption takes equal values on

Xp X oo X Xp XU XU XY X oo X Y

and X] X oo X Xp XV XU XYL X+ X Vg,

L vanishes on (%), and it follows that L(T"(E) N 1) = 0.

For (b) we are to show that L : T(E) — A vanishes on I. Since ker L
is an ideal, it is enough to check that L vanishes on the generators of /. But
Lu®v—v®u)=I[(u)l(v)—I1(v)l(u) = 0by the commutativity of A, and thus
L(I)=0. O

Corollary 6.24. If E and F are vector spaces over the field K, then the
vector space Homg (S (E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector space of all F-valued symmetric n-multilinear functions on
Ex.-.-xE.

PROOF. Restriction is linear and one-one. It is onto by Proposition 6.23a. [

Corollary 6.25. If E is a vector space over the field K, then the dual (S"(E))’
of §"(FE) is canonically isomorphic (via restriction to pure tensors) to the vector
space of symmetric n-multilinear formson £ X --- X E.

PROOF. This is a special case of Corollary 6.24. U

If p : E — F is a linear map between vector spaces, then we can use
Proposition 6.23b to define a corresponding homomorphism @ : S(E) — S(F)
of associative algebras with identity. In this way, we can make E — S(FE) into a
functor from the category of vector spaces over K to the category of commutative
associative algebras with identity over K. The details appear in Problem 14 at
the end of the chapter.

Next we shall identify a basis for S”(E) as a vector space. The union of such
bases as n varies will then be a basis of S(E). Let {u;};c4 be abasis of E, possibly
infinite. As noted in Section A5 of the appendix, a simple ordering on the index
set A is a partial ordering in which every pair of elements is comparable and in
which a < b and b < a together imply a = b.

Proposition 6.26. Let E be a vector space over the field K, let {u;};c4 be a
basis of E, and suppose that a simple ordering has been imposed on the index set
A. Then the set of all monomials u]' - --u/* withiy < --- <iyand )", jm =n
is a basis of S"(E).
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REMARK. In particular if E is finite-dimensional with (u;,...,uy) as an

ordered basis, then the monomials u{l e u{{,v of total degree n form a basis of
S"(E).

PROOF. Since S(E) is commutative and since n-fold products of elements ¢ (u;)
in 7' (E) span T"(E), the indicated set of monomials spans S” (E). Let us see that
the set is linearly independent. Take any finite subset F € A of indices. The map
Y ieaCilti = ;g ¢i X; of E into the polynomial algebra K[{X;};cr] is linear
into acommutative algebra with identity. Its extension via Proposition 6.23b maps
all monomials in the u; for i € F into distinct monomials in K[{X;};cr], which
are necessarily linearly independent. Hence any finite subset of the monomials in
the statement of the proposition is linearly independent, and the whole set must
be linearly independent. Therefore our spanning set is a basis. O

The proof of Proposition 6.26 shows that S(E) may be identified with poly-
nomials in indeterminates identified with members of E once a basis has been
chosen, but this identification depends on the choice of basis. Indeed, if we think
of E as specified in advance, then the isomorphism was set up by mapping the set
{X;}ica tothe specified basis of E, and the result certainly depended on what basis
was used. Nevertheless, if E is finite-dimensional, there is still an isomorphism
that is independent of basis; it is between S(E’), where E’ is the dual of E, and
a natural basis-free notion of “polynomials” on E. We return to this point after
one application of Proposition 6.26.

Corollary 6.27. Let E be a finite-dimensional vector space over K of dimen-
sion N. Then
n+ N —1

(a) dim S™(E) = ( N_1
(b) S"(E’) is canonically isomorphic to S (E)’ in such a way that

forO <n < o0,

(fi- f)wr---w,) = Z l_lfj(wr(j)))7

€6, j=I1

for any fi,...,f, in E' and any wy,...,w, in E, provided K has
characteristic 0; here &,, is the symmetric group on rn letters.

PROOF. For (a), a basis has been described in Proposition 6.26. To see its
cardinality, we recognize that picking out N — 1 objects from n + N — 1 to label
as dividers is a way of assigning exponents to the u;’s in an ordered basis; thus
n+N-—1 )

the cardinality of the indicated basis is ( N_1
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For (b), let f1,..., fu bein E’ and wy, ..., w, be in E, and define

Uiyt wn) = Y- [T fiwegy):

€6, j=I1

Then [y, f, is symmetric n-multilinear from E x ... x E into K and extends
by Proposition 6.23a to a linear Ly, : S"(E) — K. Thus I(fi,..., fu) =
... f, defines a symmetric n-multilinear map of E’ x --- x E’into S"(E)’. Its
linear extension L maps S"(E’) into S"(E)’.

To complete the proof, we shall show that L carries basis to basis. Let
ui, ..., uy be an ordered basis of E, and let u), ..., uy be the dual basis. Part
(a) shows that the elements (u})’' - - - (u)y)’¥ with Y j,, = n form a basis of
S"(E') and that the elements (1)1 - - - (un)* with Y, k,, = n form a basis of
S"(E). We show that L of the basis of $"(E’) is the dual basis of the basis of

S"(E), except for positive-integer factors. Thus let all of fi, ..., fj, be u}, let
all of fj11,..., fj,+j, be u}, and so on. Similarly let all of wy, ..., wy, be u,
let all of w41, - .., Wk, +k, be uz, and so on. Then

L((u/])j] te (M/N)jN)((Ml)kl e (MN)kN) = L(fl e fn)(wl . wn)
:l(fl"'wfn)(wl"'wn)

= Z l_[ Ji(weaiy)-

€6, i=1

For given 7, the product on the right side is 0 unless, for each index i, an inequality
Jm—1+1=<1i < j, implies that k,,_; + 1 < (i) < k,. In this case the product
is 1; so the right side counts the number of such t’s. For given 7, obtaining a
nonzero product forces k,, = j,, for all m. And when k,, = j,, for all m, the
choice 7 = 1 does lead to product 1. Hence the members of L of the basis are
positive-integer multiples of the members of the dual basis, as asserted. O

Let us return to the question of introducing a basis-free notion of polynomials
on the vector space E under the assumption that E is finite-dimensional. We take
a cue from Corollary 4.32, which tells us that the evaluation homomorphism
carrying K[X1, ..., X,] to the algebra of K-valued polynomial functions of
(t1,...,1,) is one-one if K is an infinite field. We regard the latter as the algebra
of polynomial functions on K”, and we check what happens when we identify
the vector space E with K" by fixing a basis. Let ' = {xy, ..., x,} be a basis of
E,andletI"" = {x{, ..., x,} be the dual basis of E". If e = f;x1 + - - - + t,x, is
the expansion of a member of E in terms of I', then we have xj{ (e) = t;. Thus the
polynomial functions ¢; are given by the members of the dual basis. The vector
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space of all homogeneous first-degree polynomial functions is the set of linear
combinations of the #;’s, and these are given by arbitrary linear functionals on E'.
Thus the vector space of homogeneous first-degree polynomial functions on E is
just the dual space E’, and this conclusion does not depend on the choice of basis.
The algebra of all polynomial functions on E is then the algebra of all K-valued
functions on E generated by £’ and the constant functions.

This discussion tells us unambiguously what polynomial functions on E are
to be, and we want to backtrack to handle abstract polynomials on E. Although
the evaluation homomorphism from K[ X1, ..., X,] to the algebra of polynomial
functions on K" may fail to be one-one if K is a finite field, its restriction to
homogeneous first-degree polynomials is one-one. Thus, whatever we might
mean by the vector space of homogeneous first-degree polynomials on E, the
evaluation mapping should exhibit this space as isomorphic to E’.

Armed with these clues, we define the polynomial algebra P (E) on E to be
the symmetric algebra S(E’) if E is finite-dimensional. We need an evaluation
mapping for each point e of E, and we obtain this from the universal mapping
property of symmetric algebras (Proposition 6.23b): With e fixed, we have a
linear map [ from the vector space E’ to the commutative associative algebra
K given with /(e’) = €'(e). The universal mapping property gives us a unique
algebra homomorphism L : S(E’) — K that extends / and carries 1 to 1. The
algebra homomorphism L is then a multiplicative linear functional on P(E) =
S(E’) that carries 1 to 1 and agrees with evaluation at ¢ on homogeneous first-
degree polynomials. We write this homomorphism as p — p(e), and we define
P"(E) = S"(E’); this is the vector space of homogeneous n'-degree polynomials
on E. A confirmation that P(FE) is indeed to be regarded as the algebra of abstract
polynomials on E comes from the following.

Proposition 6.28. If E is a finite-dimensional vector space over the field
K, then the system of evaluation homomorphisms P(E) — K on polynomials
given by p > {p(e)}.ck is an algebra homomorphism of P (E) onto the algebra
of K-valued polynomial functions on E that carries the identity to the constant
function 1, and it is one-one if K is an infinite field.

PROOF. Certainly p +— {p(e)}.c is an algebra homomorphism of P (E) into
the algebra of K-valued polynomial functions on E, and it carries the identity to
the constant function 1. We have seen that the image of P! (E) is exactly E’, and
hence the image of P(FE) is the algebra of K-valued functions on E generated
by E’ and the constants. This is exactly the algebra of all K-valued polynomial
functions, and hence the mapping is onto.

Suppose that K is infinite. The restriction of p + {p(e)}.cg to the finite-
dimensional subspace P"(E) of P(E) maps into the finite-dimensional subspace
of all polynomial functions on E homogeneous of degree n, and this restriction
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must therefore be onto. We can read off the dimension of the space of all
polynomial functions on E homogeneous of degree n from Corollary 4.32 and
Corollary 6.27a. This dimension matches the dimension of P"(E), according to
Corollary 6.27a. Since the mapping is onto and the finite dimensions match, the
restricted mapping is one-one. Hence p — {p(e)}.cE is one-one. O

We have defined the symmetric algebra S(E) as a quotient of the tensor algebra
T (E). Now let us suppose that K has characteristic 0. With this hypothesis we
shall be able to identify an explicit vector subspace of T (E) that maps one-one
onto S(E) during the passage to the quotient. This subspace of 7' (E) can therefore
be viewed as a version of S(E) for some purposes.

We define an n-multilinear function from £ x --- x E into T"(E) by

(Ul,---,vn)'—> — Z Vo) @ -+ - ® Ur(n)s
! €6,

andleto : T"(E) — T"(E) be its linear extension. We call o the symmetrizer
operator. The image of o in T (E) is denoted by S"(E), and the members of this
subspace are called symmetrized tensors.

Proposition 6.29. Let the field K have characteristic 0, and let E be a vector
space over K. Then the symmetrizer operator o satisfies 0> = o. The kernel of
o on T"(E) is exactly T"(E) N I, and therefore

T(E) = S"(E) ® (T"(E) N I).

REMARK. In view of this corollary, the quotient map 7" (E) — S"(E) carries
S”(E) one-one onto S”(E). Thus S”(E) can be viewed as a copy of S"(E)
embedded as a direct summand of 7" (E).

PROOF. We have

Uz(vl Q- Quy) = Z Vpr(1) R & Upt(n)

(a2
(n ) p,T€6,
1
= W Z Z V(1) @+ ® Vy(n)
: ,OEG,, wed,,
(w=p7)
1
= oW Q- Quy)
n! =3

=0V ®---Quy).
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Hence 0> = o. Thus o fixes any member of imageo, and it follows that
imageo Nkero = 0. Consequently 7"(FE) is the direct sum of imageo and
ker 0. We are left with identifying kero as T"(E) N I.
The subspace T"(E) N I is spanned by elements

XN® BN RUOVRYI® - @Y —X® QX QUVRURY - ® Y,

withr 42 4 s = n, and the symmetrizer o certainly vanishes on such elements.
Hence T"(E) NI < kero. Suppose that the inclusion is strict, say with ¢ in
kero but ¢t not in T"(E) N I. Let g be the quotient map T"(E) — S"(E).
The kernel of g is T"(E) N I, and thus ¢(t) # 0. From Proposition 6.26 the
T (E) monomials in basis elements from E with increasing indices map onto a
basis of S(E). Since K has characteristic 0, the symmetrized versions of these
monomials map to nonzero multiples of the images of the initial monomials.
Consequently ¢ carries S"(E) = image o onto S"(E). Thus choose ' € S"(E)
withg(t’) = q(t). Thent' —tisinkerqg = T"(E)NI C ker o. Since o (¢t) =0,
we see that o (') = 0. Consequently ¢’ is in ker o Nimage o = 0, and we obtain
t' = 0and g(r) = g(¢') = 0, contradiction. O

9. Exterior Algebra

We turn to a discussion of the exterior algebra. Let K be an arbitrary field, and
let E be a vector space over K. The construction, results, and proofs for the
exterior algebra /\ (E) are similar to those for the symmetric algebra S(E). The
elements of /\(E) are to be all the alternating tensors (= skew-symmetric if K
has characteristic # 2), and so we want to force v ® v = 0. Thus we define the
exterior algebra by

NE) =T(E)/T,

/— (two—sided ideal generated by all)

where v ® v with vin T'(E)

Then /\(FE) is an associative algebra with identity.
It is clear that I’ is homogeneous: I’ = @, (I’ N T"(E)). Thus we can
write

NE) = @yl T"(E)/(I' N T"(E)).
We write \" (E) for the n'" summand on the right side, so that

NE) =B,2, N'(E).
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Since I' N T'(E) = 0, the map of E into first-order elements /\1 (E) is one-one
onto. The product operation in /\ (E) is denoted by A rather than ®, the image in
N (E)of vy ® - - - v, in T"(E) being denoted by vy A - - - Avy,. Ifaisin A" (E)
and b is in A\"(E), then a A b is in \"*"(E). Moreover, \"(E) is generated
by elements vy A --- A v, with all v; in /\l (E) = E, since T"(E) is generated
by corresponding elements v; ® - - - ® v,. The defining relations for /\ (E) make
v; Avj = —vj Av; for v; and v; in A'(E), and it follows that

anb=(=1)""bnra fora e \"(E)and b € \"(E).

Proposition 6.30. Let E be a vector space over the field K.

(a) Lett be the n-multilinear functiont(vy, ..., v,) = ViA---AV, Of EX-- - X E
into /\"(E). Then (/\"(E), ¢) has the following universal mapping property:
whenever / is any alternating n-multilinear map of E x - - - X E into a vector space
U, then there exists a unique linear map L : /\"(E) — U such that the diagram

Ex---xE — > U

I
NUE)

commutes.

(b) Let ¢ be the function that embeds E as /\I(E) C A(E). Then (A\(E), 1)
has the following universal mapping property: whenever / is any linear map of
E into an associative algebra A with identity such that /(v)?> = O forall v € E,
then there exists a unique algebra homomorphism L : A(E) — Awith L(1) =1
such that the diagram

E—Z>A

77
|

AE)

commutes.
PROOF. The proof is completely analogous to the proof of Proposition 6.23. []
Corollary 6.31. If E and F are vector spaces over the field K, then the
vector space Homg (/\" (E), F) is canonically isomorphic (via restriction to pure

tensors) to the vector space of all F'-valued alternating n-multilinear functions on
Ex.-.-xE.

PROOF. Restriction is linear and one-one. It is onto by Proposition 6.30a. [
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Corollary 6.32. If E is a vector space over the field K, then the dual (\"(E))’
of /\"(E) is canonically isomorphic (via restriction to pure tensors) to the vector
space of alternating n-multilinear formson £ X --- x E.

PROOF. This is a special case of Corollary 6.31. (]

If p : E — F is a linear map between vector spaces, then we can use
Proposition 6.30b to define a corresponding homomorphism @ : A(E) — /\(F)
of associative algebras with identity. In this way, we can make E > /\(E) intoa
functor from the category of vector spaces over K to the category of commutative
associative algebras with identity over K. We omit the details, which are similar
to those for symmetric tensors.

Next we shall identify a basis for /\" (E) as a vector space. The union of such
bases as n varies will then be a basis of /\ (E).

Proposition 6.33. Let E be a vector space over the field K, let {u;};c4 be a
basis of E, and suppose that a simple ordering has been imposed on the index set
A. Then the set of all monomials u;, A --- A u;, withi; < .-+ < i, is a basis of
N"(E).

PROOF. Since multiplication in A(E) satisfies a A b = (—1)""b A a for
a € \"(E)and b € \"(E) and since monomials span 7" (E), the indicated set
spans /\"(E). Let us see that the set is linearly independent. For i € A, let u} be
the member of E’ with u/(u;) equal to 1 for j = i and equal to O for j # i. Fix
ry <---<rp,and define

l(wi, ..., w,) = det{u, (w;)} forwy,...,w, in E.

Then [ is alternating n-multilinear from E x --- x E into K and extends by
Proposition 6.30ato L : \"(E) - K. Ifk; < --- < ky, then

Ly A Aug,) =gy, ... ug,) = detfu; (ug,)},
and the right side is O unless r; = ki, ...,r, = k,, in which case it is 1. This
proves that the u,, A --- A u,, are linearly independent in " (E). 0

Corollary 6.34. Let E be a finite-dimensional vector space over K of dimen-
sion N. Then

(a) dim \"(E) = (i:,) for0<n<Nand=0forn > N,

(b) A\"(E') is canonically isomorphic to /\"(E)’ by

(i~ A ), ... wy) = det{fi(w;)}.
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PROOF. Part (a) is an immediate consequence of Proposition 6.33, and (b) is
proved in the same way as Corollary 6.27b, using Proposition 6.30a as a tool. The
“positive-integer multiples” that arise in the proof of Corollary 6.27b are all 1 in
the current proof, and hence no restriction on the characteristic of K is needed. [

Now let us suppose that K has characteristic 0. We define an n-multilinear
function from E x --- x E into T"(E) by

1
Wi, ..., 0p) > — Z (SENT)Vr (1) ® *++ ® Vr(ny,s
n: 7eS

and let ¢’ : T"(E) — T"(E) be its linear extension. We call or the antisym-
metrizer operator. The image of ¢’ in T(E) is denoted by /\ (E), and the
members of this subspace are called antisymmetrized tensors.

Proposition 6.35. Let the field K have characteristic 0, and let E be a vector
space over K. Then the antisymmetrizer operator o’ satisfies 0’> = o’. The
kernel of 0’ on T"(E) is exactly T"(E) N I', and therefore

T(E) = N'(E) & (T"(E) N I,

REMARK. In view of this corollary, the quotient map 7" (E) — /\"(E) carries

/\ (E) one-one onto \"(E). Thus /\ (E) can be viewed as a copy of A\"(E)
embedded as a direct summand of 7" (E).

PROOF. We have

( ) 0,766,
1
=\ Z Z (SEN W) V(1) B+ * @ Vey(n)
(n.) pES, wed,,
(w=p7)
1
== 2 dme e
" pes,

= 6/(Ul ®---® Un)-

Hence 0'> = o’. Consequently T"(E) is the direct sum of image o’ and kero’,
and we are left with identifying kero’ as T"(E) N I'.

The subspace T"(E) N I’ is spanned by elements

XIR® QX QR Yy Q@ - Q ys
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withr+2+s = n,and the antisymmetrizer o’ certainly vanishes on such elements.
Hence T"(E) N I' C kero’. Suppose that the inclusion is strict, say with ¢ in
kero’ butz notin T"(E) N 1'. Let ¢ be the quotient map 7" (E) — /\"(E). The
kernel of ¢ is T"(E) N I’, and thus ¢(¢) # 0. From Proposition 6.33 the T (E)
monomials with strictly increasing indices map onto a basis of /\(E). Since K
has characteristic 0, the antisymmetrized versions of these monomials map to
nonzero multiples of the images of the initial monomials. Consequently ¢ carries
/\n(E) = imageo’ onto /\"(E). Thus choose ' € /\n(E) with g(¢') = q(¢).
Thent —tisinkerg = T"(E) NI’ C ker ¢’. Since ¢’(t) = 0, we see that
o'(t") = 0. Consequently ¢’ is in kero’ N image o’ = 0, and we obtain ¢’ = 0
and g (¢t) = q(¢t') = 0, contradiction. O

10. Problems

1. LetV be a vector space over a field K, and let { -, - ) be a nondegenerate bilinear
formon V.
(a) Prove that every member v’ of V is of the form v'(w) = (v, w) for one and
only one member v of V.
(b) Suppose that (-, -) is another bilinear form on V. Prove that there is some
linear function L : V — V such that (v, w) = (L(v), w) for all v and w
inV.

2. The matrix A = ( ol

nonsingular M with M' AM diagonal.

) with entries in [, is symmetric. Prove that there is no

3. This problem shows that one possible generalization of Sylvester’s Law to other
fields is not valid. Over the field 3, show that there is a nonsingular matrix

M such that (7(1) _?) =M ( (1) (1]) M. Conclude that the number of squares in

K> among the diagonal entries of the diagonal form in Theorem 6.5 is not an
invariant of the symmetric matrix.

4. LetV beacomplex n-dimensional vector space, let (-, - ) be a Hermitian form on
V, let V be the 2n-dimensional real vector space obtained from V by restricting
scalar multiplication to real scalars, and define (-, -) = Im(-, -). Prove that
(a) (-, -)1is an alternating bilinear form on Vg,

() (J(vy), J(v2)) = (vy,vp) for all vy and vy if J : Vg — Vg is what
multiplication by i becomes when viewed as a linear map from Vp to itself,
(¢) (-, -)isnondegenerate on Vi if and only if (-, -) is nondegenerate on V.

5. Let W be a 2n-dimensional real vector space, and let (-, - ) be a nondegenerate
alternating bilinear form on W. Suppose that / : W — W is a linear map such
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that J2 = —I and (J(wy), J(w2)) = (wi, wy) for all w; and wy in W. Prove
that W equals Vr for some n-dimensional complex vector space V possessing a
Hermitian form whose imaginary partis (-, -).

This problem sharpens the result of Theorem 6.7 in the nondegenerate case. Let
(-, -) be a nondegenerate alternating bilinear form on a 2n-dimensional vector
space V over K. A vector subspace S of V is called an isotropic subspace if
(u, v) =0 forall u and v in S. Prove that

(a) any isotropic subspace of V that is maximal under inclusion has dimension
n,

(b) for any maximal isotropic subspace Si, there exists a second maximal
isotropic subspace > such that S; N $> = 0.

(c) if S7 and S, are maximal isotropic subspaces of V such that S N S, = 0,
then the linear map S, — S givenby s, = (-, 52) | s, is an isomorphism of
S> onto the dual space S7.

(d) if S; and S, are maximal isotropic subspaces of V such that S N S, = 0,
then there exist bases {p1, ..., p,} of S1 and {q1, ..., g,} of S2 such that
(pi» Pj) = (gi,q;) = 0 and (p;, g;) = §;; for all i and j. (The resulting
basis {p1, ..., Pn,q1,--.,qn} of V is called a Weyl basis of V.)

Let S be a nonempty set, and let K be a field. For s in S, let U and Vs be vector

spaces over K, and let U and V be two further vector spaces over K.

(a) Prove that Homg (P,cg Uy, V) = [[;es Homg (Uy, V).

(b) Prove that Homg (U, [T,cg Vs) = [1;es Homg (U, Vy).

(c) Give examples to show that neither isomorphism in (a) and (b) need remain
valid if all three direct products are changed to direct sums.

This problem continues Problem 1 at the end of Chapter V, which established
a canonical-form theorem for an action of GL(m,K) x GL(n,K) on m-by-
n matrices. For the present problem, the group GL(n, K) acts on M, (K) by
(8, x) — gxg'.

(a) Verify that this is indeed a group action and that the vector subspaces A, (K)
of alternating matrices and S, (K) of symmetric matrices are mapped into
themselves under the group action.

(b) Prove that two members of A, (K) lie in the same orbit if and only if they
have the same rank, and that the rank must be even. For each even rank < n,
find an example of a member of A, (K) with that rank.

(c) Prove that two members of S,,(C) lie in the same orbit if and only if they
have the same rank, and for each rank < n, find an example of a member of
Syun (C) with that rank.

Let U and V be vector spaces over K, and let U’ be the dual of U. The bilinear
map (1',v) — u'(-)v of U’ x V into Homg (U, V) extends to a linear map
Tyv : U ®k V — Homg (U, V). Do the following:
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11.

12.

13.
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(a) Prove that Ty y is one-one.

(b) Prove that Tyy is onto Homg (U, V) if U is finite-dimensional.

(c) Give an example for which Ty y is not onto Homg (U, V).

(d) Let C be the category of all vector spaces over K, and let & and ¥ be the
functors from C x C into C whose effects on objects are ®(U, V) = U' Qg V
and W (U, V) = Homg (U, V). Prove that the system {Tyy} is a natural
transformation of @ into W.

(e) Inview of (c), can the system {Tyy} be a natural isomorphism?

Let K € L be an inclusion of fields, and let Vk and )V, be the categories of
vector spaces over K and [L.. Section 6 of the text defined extension of scalars as
a covariant functor ®(E) = E ®x L. Another definition of extension of scalars
is W(E) = Homgk (L, E) with (Ip)(I") = ¢(l’). Verify that W(E) is a vector
space over L and that W is a functor.

A linear map L : E — F between finite-dimensional complex vector spaces
becomes a linear map Ly : Er — Fr when we restrict attention to real scalars.
Explain how to express a matrix for Ly in terms of a matrix for L.

(Kronecker product of matrices) Let L : Ey — E;and M : F| — F, be
linear maps between finite-dimensional vector spaces over K, let I' and ', be
ordered bases of £ and E», and let A; and A, be ordered bases of F;| and F5.

Define matrices A and B by A = (Ffrl) and B = (ATA] ) Use I't, Iy, Ay,
and A, to define ordered bases ©2; and 2, of E1 ®k F; and E> Qk F>, and

describe how the matrix C = (gf’gll ) is related to A and B.

Let Kbe afield, and let E be the vector space KX @KY. Prove that the subalgebra

of T (E) generated by 1, Y, and X + XY + Y? is isomorphic as an algebra with
identity to T (F) for some vector space F.

Problems 14-17 concern the functors £ — T(E), E +— S(E), and E — AE
defined for vector spaces over a field K.

14.

15.

If ¢ : E — F isalinear map between vector spaces over K, Section 8 of the text

indicated how to define a corresponding homomorphism @ : S(E) — S(F) of

associative algebras with identity over K, using Proposition 6.23b.

(a) Fill in the details of this application of Proposition 6.23b.

(b) Establish the appropriate conditions on mappings that complete the proof
that £ — S(F) is a functor.

(c) Verify that ® carries S (E) linearly into S” (F') for all integers n > 0.

Suppose that a linear map ¢ : E — E is given. Let ® : S(E) — S(E) and
D : T (E) — T(E) be the associated algebra homomorphisms of S(E) into itself
and of T'(E) into itself, and letg : T (E) — S(E) be the quotient homomorphism
appearing in the definition of S(E). These mappings are related by the equation
Dg(x) = qP(x) for x in T(E). Proposition 6.29 shows foreach n >0 that
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T"(E) = S"(E) ® (T"(E) N I), where S"(E) is the image of T"(E) under the
symmetrizer mapping. The remark with the proposition observes that g carries
S"(E) one-one onto S"(E). Prove that d> carries $"(E) into itself and that

|3 S () matches @ in the sense that ¢ ®(x) = ®q (x) for all x in §"(E).

S"(E)

16. With E finite-dimensional let ¢ : E — E be a linear mapping, and define
® : AE — /\E to be the corresponding algebra homomorphism of AE
sending 1 into 1. This carries each A\"E into itself. Prove that ® acts as
multiplication by the scalar det ¢ on the 1-dimensional space /\d'm EE).

17. Suppose that G is a group, that the vector space E over K is finite-dimensional,
andthaty : G — GL(F)isarepresentationof G on E. The functors E +— T (E),
E + S(E), and E — AE yield, for each ¢(g), algebra homomorphisms of
T (E) into itself, S(E) into itself, and /A E into itself.
(a) Show that as g varies, the result in each case is a representation of G.
(b) Suppose that E = K”". Give a formula for the representation of G on a
member of P(K") = S((K")").

Problems 18-22 concern universal mapping properties. Let .4 and V be two cat-
egories, and let 7 : A — V be a covariant functor. (In practice, F tends to be a
relatively simple functor, such as one that simply ignores some of the structure of
A.) Let E be in Obj(V). A pair (S, 1) with S in Obj(A) and ¢ in Morphy,(E, F(S))
is said to have the universal mapping property relative to E and F if the following
condition is satisfied: whenever A is in Obj(A) and a member / of Morph,,(E, F(A))
is given, there exists a unique member L of Morph 4(S, A) such that F(L): = 1.

18. (a) By suitably specializing A, V, F, etc., show that the universal mapping
property of the symmetric algebra of a vector space over K is an instance of
what has been described.

(b) How should the answer to (a) be adjusted so as to account for the universal
mapping property of the exterior algebra of a vector space over K?

(c) How should the answer to (a) be adjusted so as to account for the universal
mapping property of the coproduct of {X;} ;s in a category C, the universal
mapping property being as in Figure 4.12?7 (Educational note: For the
productof {X;};c; inC, the above description does not apply directly because
the morphisms go the wrong way. Instead, one applies the above description
to the opposite categories A°PP and VPP, defined as in Problems 78—80 at
the end of Chapter IV.)

19. If (S, ¢) and (', ') are two pairs that each have the universal mapping property
relative to E and JF, prove that S and S’ are canonically isomorphic as objects
in .A. More specifically prove that there exists a unique L in Morph 4(S, S”) such
that (L)t = ¢’ and that L is an isomorphism whose inverse L’ in Morph 4 (S, S)
has F(L')/ = t.
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20. Suppose that the pair (S, t) has the universal mapping property relative to £
and F. Let S be the category of sets, and define functors F : A — S and
G : A — Sby F(A) = Morph 4(S, A), F(¢) equals composition on the left
by ¢ for ¢ € Morph 4(A, A"), G(A) = Morphy,(E, F(A)), and G(p) equals
composition on the left by F(¢). Let T4 : Morph 4(S, A) — Morphy,(E, F(A))
be the one-one onto map given by the universal mapping property. Show that the
system {74} is a natural isomorphism of F into G.

21. Supposethat (', ¢) is a second pair having the universal mapping property relative
to E and F. Define F' : A — Sby F'(A) = Morph (S, A). Combining the
previous problem and Proposition 6.16, obtain a second proof (besides the one
in Problem 19) that S and S’ are canonically isomorphic.

22. Suppose that for each E in Obj(V), there is some pair (S, ¢) with the universal
mapping property relative to E and F. Fix such a pair (S, ¢) for each E, calling
it (S(E), tg). Making an appropriate construction for morphisms and carrying
out the appropriate verifications, prove that £ — S(FE) is a functor.

Problems 23-28 introduce the Pfaffian of a (2n)-by-(2n) alternating matrix X = [x;;]
with entries in a field K. This is the polynomial in the entries of X with integer
coefficients given by

n
Pfaff(X) = Z (sgnt) 1_[ Xt(2k—1),7(2k)
some 7’s k=1
in &y,
where the sum is taken over those permutations 7 such that 1 (2k — 1) < 7(2k) for
1 <k <nandsuchthat (1) < 7(3) < --- < t(2n — 1). It will be seen that det X
is the square of this polynomial. Examples of Pfaffians are

0 a
Plaff(_)3)=x and  Phff| 7 |

L0 =af —be+cd.

—C —e

b ¢
d e
0o f
The problems in this set will be continued at the end of Chapter VIII.

23. For the matrix J in Section 5, show that Pfaff(J) = 1.

24. In the expansion detX = } s, (sgno) ]_[1221 X1,6(1)> prove that the value of
the right side with X as above is not changed if the sum is extended only over
those o’s whose expansion in terms of disjoint cycles involves only cycles of
even length (and in particular no cycles of length 1).

25. Define o € Gy, to be “good” if its expansion in terms of disjoint cycles involves
only cycles of even length. If o is good, show that there uniquely exist two
disjoint subsets A and B of n elements each in {1, ..., 2n} such that A contains
the smallest-numbered index in each cycle and such that o maps each set onto
the other.
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26. In the notation of the previous problem with o good, let y(o) be the product
of the monomials x,j, such that a is in A and b = o (a). For each factor x;; of
y(o) with i > j, replace the factor by —x;;. In the resulting product, arrange
the factors in order so that their first subscripts are increasing, and denote this
expression by sx;,i, Xisiy * * * Xiy,_1is,» Where s is a sign. Let T be the permutation
that carries each r to i, and define s(t) to be the sign s. Similarly let z(o)
be the product of the monomials xj, such that b is in B and a = o(b). For
each factor x;; of z(0) withi > j, replace the factor by —x;;. In the resulting
product, arrange the factors in order so that their first subscripts are increasing,
and denote this expression by s'x;, j,Xj; j, - - - Xj,,_, j»,» Where s’ is a sign. Let 7’
be the permutation that carries each r to j,, and define s'(z’) to be the sign s'.
Prove, apart from signs, that the o™ term in the expansion of det X matches the
product of the 7" term of Pfaff(X) and the v/ term of Pfaff(X).

27. In the previous problem, take the signs s(t) and s’(z’) into account and show

that the signs of o, 7, and 7’ work out so that the o™ term in the expansion of
det X is the product of the " and 7" terms of Pfaff(X).

28. Show that every term of the product of Pfaff(X) with itself is accounted for once
and only once by the construction in the previous three problems, and conclude
that the alternating matrix X has det X = (Pfaff(X))>.

Problems 29-30 concern filtrations and gradings. A vector space V over K is said

to be filtered when an increasing sequence of subspaces Vo € V| € V, C .- is
specified with union V. In this case we put V_; = 0 by convention. The space V is
graded if a sequence of subspaces VO, V!, V2, ... is specified such that

o0
V= @ v,
n=0

When V is graded, there is a natural filtration of V givenby V,, = @@;_, V¥, Examples
of graded vector spaces are any tensor algebra V = T (E), symmetric algebra S(E),
exterior algebra /\ (E), and polynomial algebra P (E), the n™ subspace of the grading
consisting of those elements that are homogeneous of degree n. Any polynomial
algebra K[Xy, ..., X,] is another example of a graded vector space, the grading
being by total degree.

29. When V is a filtered vector space as in (A.34), the associated graded vector
spaceis gr V = @ZOZO Vi/ Va—1. Let V and V# be two filtered vector spaces,
and let ¢ be a linear map between them such that ¢(V,,) C V,f for all n. Since
the restriction of ¢ to V,, carries V,,_; into Vf_l, this restriction induces a linear
map gr" ¢ : (Vu/Va—1) = (V}/V? ). The direct sum of these linear maps
is then a linear map gr ¢ : gr V. — gr V¥ called the associated graded map
for ¢. Prove that if gr ¢ is a vector-space isomorphism, then ¢ is a vector-space
isomorphism.
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Let A be an associative algebra over K with identity. If A has a filtration
Ag, Ay, ... of vector subspaces with 1 € Ag such that A,,A, € A,4, for
all m and n, then one says that A is a filtered associative algebra; similarly
if Ais graded as A = @210 A" in such a way that A" A" € A™*" for all m
and n, then one says that A is a graded associative algebra. If A is a filtered
associative algebra with identity, prove that the graded vector space gr A acquires
a multiplication in a natural way, making it into a graded associative algebra with
identity.

Problems 31-35 concern Lie algebras and their universal enveloping algebras. If K
is a field, a Lie algebra g over K is a nonassociative algebra whose product, called
the Lie bracket and written [x, y], is alternating as a function of the pair (x, y) and
satisfies the Jacobi identity [x, [y, z]]1 + [y, [z, x]] + [z, [x, Y]] = O forall x, y, z in
g. The universal enveloping algebra U (g) of g is the quotient T'(g)/I”, where I”
is the two-sided ideal generated by all elements x ® y — y ® x — [x, y] with x and
y in T'(g). The grading for T (g) makes U (g) into a filtered associate algebra with
identity. The product of x and y in U (g) is written xy.

31.

32.

33.

34.

35.

If A is an associative algebra over K, prove that A becomes a Lie algebra if the
Lie bracket is defined by [x, y] = xy — yx. In particular, observe that M, (K)
becomes a Lie algebra in this way.

Fix a matrix A € M,,(K), and let g be the vector subspace of all members x of

M, (K) with x’A + Ax = 0.

(a) Prove that g is closed under the bracket operation of the previous problem
and is therefore a Lie subalgebra of M,,(K).

(b) Deduce as a special case of (a) that the vector space of all skew-symmetric
matrices in M, (K) is a Lie subalgebra of M, (K).

Let g be a Lie algebra over K, and let ¢ be the linear map obtained as the
composition of g — T!'(g) and the passage to the quotient U (g). Prove that
(U(g), v) has the following universal mapping property: whenever / is any linear
map of g into an associative algebra A with identity satisfying the condition of
being a Lie algebra homomorphism, namely [[x, y] = [(x)I(y) — I[(y)l(x) for
all x and y in g, then there exists a unique associative algebra homomorphism
L:U(g) > Awith L(1) = 1 suchthat L ot = 1.

Let g be aLie algebraover K, let {; };c 4 be a vector-space basis of g, and suppose
that a simple ordering has been imposed on the index set A. Prove that the set of
all monomials u{ll e ul]f withi; < --- <igand ), j, arbitrary is a spanning
set for U (g).

For a Lie algebra g over K, the Poincaré—Birkhoff—-Witt Theorem says that the

spanning set for U (g) in the previous problem is actually a basis. Assuming this
theorem, prove that gr U (g) is isomorphic as a graded algebra to S(g).

Problems 36—40 introduce Clifford algebras. Let K be a field of characteristic # 2,
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let E be a finite-dimensional vector space over K, and let (-, -) be a symmetric
bilinear form on E. The Clifford algebra CIiff(E, (-, -)) is the quotient T (E) /1",
where I” is the two-sided ideal generated by all elements® v ® v + (v, v) with v in
E. The grading for T (E) makes Cliff(E, (-, -)) into a filtered associative algebra
with identity. Products in Cliff(E, (-, -)) are written as ab with no special symbol.

36. Let ¢ be the composition of the inclusion E C T'(E) and the passage to the
quotient modulo I”. Prove that (Cliff(E, (-, -)), ¢) has the following universal
mapping property: whenever / is any linear map of E into an associative algebra
A with identity such that /(v)> = —(v, v)1 for all v € E, then there exists a
unique algebra homomorphism L : CUff(E, (-, -)) — A with L(1) = 1 and
suchthat Lot =1.

37. Let{uy,...,u,} be abasis of E. Prove that the 2" elements of CIiff(E, (-, -))
given by u; u;, - - - u;, withi; < --- < iy form a spanning set of CLff(E, (-, -)).
38. Using the Principal Axis Theorem, fix a basis {ej,...,e,} of E such that
(ei, ej) = d;d;; for all j. Introduce an algebra C over K of dimension 2" with
generators ey, . . . , e, and with a basis parametrized by subsets of {1, ..., n} and
given by all elements
€, i, e with 1 <ip <+ <ig,
with the multiplication that is implicit in the rules

e, = —di and eiej = —eje; if i 75 j,
namely, to multiply two monomials ¢; e;, - - - ¢;, and ¢ ej, - - - ¢j;, put them end
to end, replace any occurrence of two e;’s by the scalar —dj, and then permute
the remaining e ’s until their indices are in increasing order, introducing a minus
sign each time two distinct e;’s are interchanged. Prove that the algebra C is

associative.

39. Prove that the associative algebra C of the previous problem is isomorphic as an
algebra to CIliff(E, (-, -)).
40. Prove that gr Cliff(E, (-, -)) is isomorphic as a graded algebra to A\ (E).

Problems 41-48 introduce finite-dimensional Heisenberg Lie algebras and the corre-
sponding Weyl algebras. They make use of Problems 31-35 concerning Lie algebras
and universal enveloping algebras. Let V be a finite-dimensional vector space over
the field K, and let (-, -) be a nondegenerate alternating bilinear form on V x V.
Write 2n for the dimension of V. Introduce an indeterminate Xy. The Heisenberg
Lie algebra H(V) on V is a Lie algebra whose underlying vector space is KXo & V
and whose Lie bracket is given by [(c X, ©), (d Xo, v)] = (u, v) Xo. Let U (H(V)) be
its universal enveloping algebra. The Weyl algebra W (V) on V is the quotient of the
tensor algebra T (V') by the two-sided ideal generated by all u ® v — v @ u — (u, v)1
with # and v in V; as such, it is a filtered associative algebra.

5Some authors factor out the elements v ® v — (v, v) instead. There is no generally accepted
convention.
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Verify when the field is K = R that an example of a 2n-dimensional V with its
nondegenerate alternating bilinear form ( -, - )is V. = C" with (u, v) = Im(u, v),
where (-, -) is the usual inner product on C”. For this V, exhibit a Lie-algebra
isomorphism of H (V') with the Lie algebra of all complex (n + 1)-by-(n + 1)

07z ir
matrices of the form (0 0 z ) withz € C" and r € R.
000

In the general situation show that the linear map ¢ (¢ X, v) = cl4+visaLiealgebra
homomorphism of H(V) into W(V) and that its extension to an associative
algebra homomorphism7 : U(H (V)) — W(V) is onto and has kernel equal to
the two-sided ideal in U (H (V) generated by Xo — 1.

Prove that W (V) has the following universal mapping property: whenever
¢ : H(V) — A is a Lie algebra homomorphism of H (V) into an associative
algebra A withidentity such that ¢ (X(o) = 1, then there exists a unique associative
algebra homomorphism ¢ of W (V) into A such that ¢ = ¢ o ¢.

Letvy, ..., v2, be any vector space basis of V. Prove that the elements v]f‘ ‘. vgi”

with integer exponents > 0 span W (V).

For K = R, let S be the vector space of all real-valued functions P(x)e " Mz,
where P (x) is a polynomial in n real variables. Show that S is mapped into itself
by the linear operators d/dx; and m; = (multiplication by x;).

WithK = R, let{pi, ..., pu, q1, - .., gn} be a Weyl basis of V in the terminology
of Problem 6. In the notation of Problem 45, let ¢ : V — Homg(S, S) be the
linear map given by ¢(p;) = 9/0x; and ¢(q;) = m;. Use Problem 43 to extend
@ to an algebra homomorphism ¢ : W(V) — Homg(S, S) with ¢g(1) = 1,
and use Problem 42 to obtain a representation of H(V) on S. Prove that this
representation of H (V) is irreducible in the sense that there is no proper nonzero
vector subspace carried to itself by all members of @(H (V)).

In Problem 46 with K = R, prove that the associative algebra homomorphism
@ : W(V) — Homg(S, S) is one-one. Conclude for K = R that the elements

v]f‘ e v];fl” of Problem 44 form a vector-space basis of W (V).

For K = R, prove that gr W (V) is isomorphic as a graded algebra to S(V).

Problems 49-51 deal with Jordan algebras. Let K be a field of characteristic # 2. An
algebra J over K with multiplication a - b is called a Jordan algebra if the identities

a-b=b-aanda’-(b-a) = (a®-b)-a are always satisfied; here a? is an abbreviation
fora - a.
49. Let A be an associative algebra, and define a - b = %(ab + ba). Prove that A

becomes a Jordan algebra under this new multiplication.
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50.

51.

VI. Multilinear Algebra

In the situation of the previous problem, suppose thata — a' is a one-one linear
mapping of A onto itself such that (ab)’ = b'a’ for all a and b. (For example,
a +— a' could be the transpose mapping if A = M,,(K).) Prove that the vector
subspace of all a with a’ = a is carried to itself by the Jordan product a - b and
hence is a Jordan algebra.

Let V be a finite-dimensional vector space over K, and let (-, -) be a symmetric
bilinear form on V. Define A = K1 @ V as a vector space, and define a
multiplication in A by (c1, x) - (d1, y) = ((cd + (x, y)1, cy —|—dx). Prove that
A is a Jordan algebra under this definition of multiplication.

Problems 52-56 deal with the algebra O of real octonions, sometimes known as
the Cayley numbers. This is a certain 8-dimensional nonassociative algebra with
identity over R with an inner product such that ||ab| = |la|/||p|| for all @ and b and
such that the left and right multiplications by any elementa # 0 are always invertible.

52.

53.

Let A be an algebra over R. Let [a, b] = ab — ba and [a, b, c] = (ab)c —a(bc).

(a) The 3-multilinear function (a, b, ¢) +— [a, b, c] from Ax Ax Ato Ais called
the associator in A. Observe that itis O if and only if A is associative. Show
that it is alternating if and only if A always satisfies the limited associativity
laws

(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa).

In this case, A is said to be alternative.
(b) Show that A is alternative if the first and third of the limited associativity
laws in (a) are always satisfied.

(Cayley-Dickson construction) Suppose that A is an algebra over R with a
two-sided identity 1, and suppose that there is an R linear function * from A to
itself (called “conjugation”) such that 1* = 1, a™* = a, and (ab)* = b*a* for all
a and b in A. Define an algebra B over R to have the underlying real vector-space
structure of A @ A and to have multiplication and conjugation given by

(a,b)(c,d) = (ac — db*, a*d + cb) and (a,b)* = (a*, =b).

(a) Prove that (1, 0) is a two-sided identity in B and that the operation * in B
satisfies the required properties of a conjugation.
(b) Prove thatif a* = a for all @ € A, then A is commutative.
(¢c) Prove thatif a* = a for all @ € A, then B is commutative.
(d) Prove that if A is commutative and associative, then B is associative.
(e) Verify the following outcomes of the above construction A — B:
(i) A=Ryields B =C,
(ii)) A = Cyields B = H, the algebra of quaternions.
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54. Suppose that A is an algebra over R with an identity and a conjugation as in the
previous problem. Say that A is nicely normed if

55.

56.

(a)

(b)

(c)

(i) a + a* is always of the form r 1 with r real and

(ii) aa™ always equals a*a and for a # 0, is of the form r1 with r real and

positive.
Prove that if A is nicely normed, then so is the algebra B of the previous
problem.
Prove that if A is nicely normed, then (a, b) = %(ab* + ba™) is an inner
product on A with norm ||a|| = (aa*®)'/* = (a*a)'/?.
Prove that if A is associative and nicely normed, then the algebra B of the
previous problem is alternative.

Starting from the real algebra A = H, apply the construction of Problem 53,
and let the resulting 8-dimensional real algebra be denoted by O, the algebra of
octonions.

(a)
(b)
(©)
(d)

(e)
€]

Prove that O is an alternative algebra and is nicely normed.

Prove that (xx*)y = x(x*y) and x(yy*) = (xy)y™* within Q.

Prove that ||ab||?a = ||a||?||b||*a within Q.

Conclude from (c) that the operations of left and right multiplication by any
a # 0 within Q are invertible.

Show that the inverse operators are left and right multiplication by ||a | ~2a*.
Denote the usual basis vectors of H by 1, i, j, k. Write down a multiplication
table for the eight basis vectors of O given by (x, 0) and (0, y) as x and y
run through the basis vectors of H.

What prevents the construction of Problem 53, when applied with A = O, from
yielding a 16-dimensional algebra B in which ||ab||*> = ||a||?||b||> and therefore
in which the operations of left and right multiplication by any a # 0 within B
are invertible?



CHAPTER VII

Advanced Group Theory

Abstract. This chapter continues the development of group theory begun in Chapter IV, the main
topics being the use of generators and relations, representation theory for finite groups, and group
extensions. Representation theory uses linear algebra and inner-product spaces in an essential way,
and a structure-theory theorem for finite groups is obtained as a consequence. Group extensions
introduce the subject of cohomology of groups.

Sections 1-3 concern generators and relations. The context for generators and relations is that of
a free group on the set of generators, and the relations indicate passage to a quotient of this free group
by a normal subgroup. Section 1 constructs free groups in terms of words built from an alphabet
and shows that free groups are characterized by a certain universal mapping property. This universal
mapping property implies that any group may be defined by generators and relations. Computations
with free groups are aided by the fact that two reduced words yield the same element of a free group
if and only if the reduced words are identical. Section 2 obtains the Nielsen—Schreier Theorem that
subgroups of free groups are free. Section 3 enlarges the construction of free groups to the notion
of the free product of an arbitrary set of groups. Free product is what coproduct is for the category
of groups; free groups themselves may be regarded as free products of copies of the integers.

Sections 4-5 introduce representation theory for finite groups and give an example of an important
application whose statement lies outside representation theory. Section 4 contains various results
giving an analysis of the space C (G, C) of all complex-valued functions on a finite group G. In this
analysis those functions that are constant on conjugacy classes are shown to be linear combinations
of the characters of the irreducible representations. Section 5 proves Burnside’s Theorem as an
application of this theory —that any finite group of order p®¢® with p and ¢ prime and witha+b > 1
has a nontrivial normal subgroup.

Section 6 introduces cohomology of groups in connection with group extensions. If N is to be
a normal subgroup of G and Q is to be isomorphic to G/N, the first question is to parametrize the
possibilities for G up to isomorphism. A second question is to parametrize the possibilities for G if
G is to be a semidirect product of N and Q.

1. Free Groups

This section and the next two introduce some group-theoretic notions that in
principle apply to all groups but in practice are used with countable groups, often
countably infinite groups that are nonabelian. The material is especially useful in
applications in topology, particularly in connection with fundamental groups and
covering spaces. But the formal development here will be completely algebraic,
not making use of any definitions or theorems from topology.

306
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In the case of abelian groups, every abelian group G is a quotient of a suitable
free abelian group, i.e., a suitable direct sum of copies of the additive group Z
of integers.! Recall the discussion of Section IV.9: We introduce a copy Zg of
7 for each g in G, define G = ®g€G Lg, letiy : Zg — G be the standard
embedding, and let ¢, : Z, — G be the group homomorphism written additively
as @,(n) = ng. The universal mapping property of direct sums that was stated
as Proposition 4.17 produces a unique group homomorphism ¢ : G — G such
that ¢ o i, = @, for all g, and ¢ is the required homomorphism of a free abelian
group onto G.

The goal in this section is to carry out an analogous construction for groups that
are not necessarily abelian. The constructed groups, to be called “free groups,”
are to be rather concrete, and the family of all of them is to have the property that
every group is the quotient of some member of the family.

If S is any set, we construct a “free group F(S) on the set S.” Let us speak
of S as a set of “symbols” or as the members of an “alphabet,” possibly infinite,
with which we are working. If S is empty, the group F(S) is taken to be the
one-element trivial group, and we shall therefore now assume that S is not empty.
If @ is a symbol in S, we introduce a new symbol a~! corresponding to it, and we
let S~! denote the set of all such symbols a~! fora € S. Define &' = SU S~!.
A word is a finite string of symbols from §’, i.e., an ordered n-tuple for some
n of members of S’ with repetitions allowed. Words that are n-tuples are said
to have length n. The empty word, with length 0, will be denoted by 1. Other
words are usually written with the symbols juxtaposed and all commas omitted,
as in abca™'cb™'. The set of words will be denoted by W (S’). We introduce a
multiplication W (S§”) x W(S’) — W (S§’) by writing end-to-end the words that are
to be multiplied: (abca™', cb™') — abca='cb~!. The length of a product is the
sum of the lengths of the factors. It is plain that this multiplication is associative
and that 1 is a two-sided identity. It is not a group operation, however, since most
elements of W (§’) do not have inverses: multiplication never decreases length,
and thus the only way that 1 can be a product of two elements is as the product
11. To obtain a group from W (S’), we shall introduce an equivalence relation in
W(S").

Two words are said to be equivalent if one of the words can be obtained
from the other by a finite succession of insertions and deletions of expressions
aa~! or a—'a within the word; here g is assumed to be an element of S. It will be
convenient to refer to the pairs aa ~! and a~'a together; therefore when b = a~! is
in ™!, letus define b~! = (a~")~! to be a. Then two words are equivalent if one
of the words can be obtained from the other by a finite succession of insertions
and deletions of expressions of the form bb~! with b in §’. This definition is

Direct sum here is what coproduct, in the sense of Section IV.11, amounts to in the category of
all abelian groups.
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arranged so that “equivalent” is an equivalence relation. We write x ~ y if x and
y are words that are equivalent. The underlying set for the free group F(S) will
be taken to be the set of equivalence classes of members of W (S").

Theorem 7.1. If S is a set and W () is the corresponding set of words built
from S’ = S U S~!, then the product operation defined on W (S’) descends in a
well-defined fashion to the set F(S) of equivalence classes of members of W (S’),
and F(S) thereby becomes a group. Define ¢ : § — F(S) to be the composition
of the inclusion into words of length one followed by passage to equivalence
classes. Then the pair (F(S), ¢) has the following universal mapping property:
whenever G is a group and ¢ : § — G is a function, then there exists a unique
group homomorphism ¢ : F(S) — G such thatp = ¢ o «.

REMARK. The group F(S) is called the free group on S. Figure 7.1 illustrates
its universal mapping property. The brief form in words of the property is that
any function from § into a group G extends uniquely to a group homomorphism
of F(S) into G. This universal mapping property actually characterizes F(S), as
will be seen in Proposition 7.2.

s —*%,G

F(S)

FIGURE 7.1. Universal mapping property of a free group.

PROOF. Let us denote equivalence classes by brackets. We want to define
multiplication in F(S) by [w;][w;] = [wjw,]. To see that this formula makes
sense in F (S), let x{, x,, and y be words, and let » be in S’. Define x = x;x, and
x’ = x1bb~ x5, so that x’ ~ x. Then it is evident that x'y ~ xy and yx’ ~ yx.
Iteration of this kind of relationship shows that w] ~ w; and w} ~ w, implies
wjw), ~ wwy, and hence multiplication of equivalence classes is well defined.

Since multiplication in W(S’) is associative, we have [wi]([w2][w3]) =
(willwaws] = [wi(waw3)] = [(wiw)ws] = [wiwz][ws] = ((wil[w2])[ws].
Thus multiplication is associative in F'(S). The class [1] of the empty word 1 is a
two-sided identity. If by, ..., b, arein §’, then bn‘1 . bz_lbl_lblbz -+ b, isequiv-
alent to 1, and so is byby - - - b,b; ' --- by 'by". Consequently [b; ! --- by ' 'Tis
a two-sided inverse of [b1b; - - - b,], and F (S) is a group.

Now we address the universal mapping property, first proving the stated unique-
ness of the homomorphism. Every member of F'(S) is the product of classes [5]
with b in S’. In turn, if b is of the form a~! with a in S, then [b] = [«¢]~!. Hence
F(S) is generated by all classes [a] witha in S, i.e., by ¢(S). Any homomorphism
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of a group is determined by its values on the members of a generating set, and
uniqueness therefore follows from the formula ¢([a]) = ¢(t(a)) = ¢(a).
For existence we begin by defining a function ® : W(S’) — G such that

d(a) = ¢(a) fora in S,
d@ = (p(a)_1 fora='in 7!,
®(wiwr) = O(w)®(wy) for wy and w, in W(S').

We use the formulas ® (@) = ¢(a) forain Sand ®(a~!) = ¢(a)~ ' fora'in §~!
as a definition of ® (b) for b in §’. Any member of W (S’) can be written uniquely
as by - - - b, with each b; in §', and we set ®(by ---b,) = P(by)--- D(b,). (If
n = 0, the understanding is that ®(1) = 1.) Then ® has the required properties.

Let us show that w’ ~ w implies ®(w’) = ®(w). If by, ..., b, are in §’ and
b isin §’, then the question is whether

Dby -+ bbb gy - by) = D(by - bbiry - by).

If g and ¢’ denote the elements ® (by) - - - P (by) and O (biy 1) - - - P(by,) of G, then
the two sides of the queried formula are

gdBd)®(b g and  gg'.

Thus the question is whether ® (b)® (h~') always equals 1 in G. If b = a isin S,
thisequals p(a)p(a)~! = 1, whileifb = a~'isin S~!,itequals p(a) 'p(a) = 1.
We conclude that w’ ~ w implies ®(w") = @ (w).

We may therefore define ¢ ([w]) = ® (w) for [w]in F(S). Since g([w][w']) =
o((ww']) = ®(ww') = P(w)® (W) = g((w)@((w']), @ is a homomorphism
of F(S) into G. For a in S, we have ¢([a]) = ®(a) = ¢(a). In other words,
@(t(a)) = p(a). This completes the proof of existence. ]

Proposition 7.2. Let S be a set, F be a group, and ¢’ : S — F be a func-
tion. Suppose that the pair (F, ¢') has the following universal mapping property:
whenever G is a group and ¢ : § — G is a function, then there exists a unique
group homomorphism ¢ : F — G such that ¢ = @ o . Then there exists a
unique group homomorphism ® : F(S) — F such that/ = ® o, and it is a
group isomorphism.

REMARKS. Chapter VI is not a prerequisite for the present chapter. However,
readers who have been through Chapter VI will recognize that Proposition 7.2 is
a special case of Problem 19 at the end of that chapter.
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PROOF. We apply the universal mapping property of (F(S), ¢), as stated in
Theorem 7.1, to the group G = F and the function ¢ = (/, obtaining a group
homomorphism @ : F(S) — F such that / = ® o . Then we apply the given
universal mapping property of (F, (') to the group G = F(S) and the function
@ =, obtaining a group homomorphism ¥ : F — F(S) such thatt = W o /.

The group homomorphism W o & : F(S) — F(S) has the property that
(Wod)or = Wo(Pot) = Vo' =, and the identity 1 (s has this same property.
By the uniqueness of the group homomorphism in Theorem 7.1, ¥ o ® = 1ps).

Similarly the group homomorphism ® o W : FF — F has the property that
(® o W) ot =1, and the identity 15 has this same property. By the uniqueness
of the group homomorphism in the assumed universal mapping property of F,
doV¥ = lF-

Therefore @ is a group isomorphism. We know that ¢(S) generates F(S). If
@’ : F(S) — F is another group isomorphism with ¢’ = @’ o ¢, then &’ and ®
agree on ((S) and therefore have to agree everywhere. Hence ® is unique. [

Proposition 7.2 raises the question of recognizing candidates for the set 7 =
¢'(S) in a given group F so as to be in a position to exhibit F' as isomorphic to the
free group F(S). Certainly 7 has to generate F'. But there is also an independence
condition. The idea is that if we form words from the members of T', then two
words are to lead to equal members of F only if they can be transformed into one
another by the same rules that are allowed with free groups.

What this problem amounts to in the case that F = F(S) is that we want a
decision procedure for telling whether two given words are equivalent. This is
the so-called word problem for the free group. If we think about the matter for a
moment, not much is instantly obvious. If a; and a, are two members of S and if
they are considered as words of length 1, are they equivalent? Equivalence allows
for inserting pairs bb~! with b in §’, as well as deleting them. Might it be possible
to do some complicated iterated insertion and deletion of pairs to transform a;
into ay? Although the negative answer can be readily justified in this situation by
a parity argument, it can be justified even more easily by the universal mapping
property: there exist groups G with more than one element; we can map a; to
one element of G and a, to another element of G, extend to a homomorphism
@ : F(S) > G, see that ¢(t(ay)) # @(t(az)), and conclude that t(a;) # t(ay).
But what about the corresponding problem for two more-complicated words in a
free group? Fortunately there is a decision procedure for the word problem in a
free group. It involves the notion of “reduced” words. A word in W (S’) is said
to be reduced if it contains no consecutive pair b6~ with b in §'.

Proposition 7.3 (solution of the word problem for free groups). Let S be a set,
let S’ = SUS™!, and let W(S’) be the corresponding set of words. Then each
word in W (S") is equivalent to one and only one reduced word.
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REMARK. To test whether two words are equivalent, the proposition says to
delete pairs bb~! with b € §” as much as possible from each given word, and to
check whether the resulting reduced words are identical.

PROOF. Removal of a pair bb~! with b € S’ decreases the length of a word
by 2, and the length has to remain > 0. Thus the process of successively removing
such pairs has to stop after finitely many steps, and the result is a reduced word.
This proves that each equivalence class contains a reduced word.

For uniqueness we shall associate to each word a finite sequence of reduced
words such that the last member of the sequence is unchanged when we insert
or delete within the given word any expression bb~! with b € S'. Specifically if
w = by - - - by, witheach b; in §’, is a given word, we associate to w the sequence

of words xg, x1, ..., x, defined inductively by
xo =1,
x1 = by,
{ Xi_1b; if i > 2 and x;_; does not end in b;l, *)
X; = *
l Yi—2 ifi >2andx;_; = yi—2bl‘_1’

and we define r (w) = x,. Let us see, by induction on i > 0, that x; is reduced.
The base cases i = 0 and i = 1 are clear from the definition. Suppose thati > 2
and that xg, ..., x;_; are reduced. If x,_; = yi_gbfl for some y;_5, then x;_;
reduced forces y;_» to be reduced, and hence x; = y;_» is reduced. If x;_; does
not end in b;” ! then the last two symbols of x; = x;_1b; do not cancel, and no
earlier pair can cancel since x;_ is assumed reduced; hence x; is reduced. This
completes the induction and shows that x; is reduced for 0 < i < n.

If the word w = by - - - b, is reduced, then each x; fori > 2 is determined by
the first of the two choices in (), and hence x; = b - - - b; for all i. Consequently
r(w) = w if w is reduced. If we can prove for a general word b - - - b, that

r(by---by) =7 by bbb biyr -+ by), (k)

then it follows that every word w’ equivalent to a word w has r (w’) = r (w). Since
r(w) = w for w reduced, there can be only one reduced word in an equivalence
class.

To prove (xx), let xg, ..., x, be the finite sequence associated with by - - - b,,
and let xg, ..., x,, be the sequence associated with by - - bbb~ by -+ - by,
Certainly x; = x; fori < k. Letus compute x;_ ; and x; ,. From (x) we see that

, xib if x; does not end in b,
X1 =

y if x, = yb~ L.
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In the first of these cases, x;, 41 ends in b, and (x) says therefore that X, 4o = Xk
In the second of the cases, the fact that x; is reduced implies that y does not end
in b; hence (*) says that x;_, = yb~! = x;. In other words, X = X in both
cases. Since the inductive definition of any x; depends only on x;_1, and similarly
for x/, we see that x,’€+2+i = x34; for0 < i < n — k. Therefore x;,+2 = x,, and
() follows. This proves the proposition. (]

Let us return to the problem of recognizing candidates for the set T = ¢/(S)
in a given group F so that the subgroup generated by T is a free group. Using
the universal mapping property for the free group F(T), we form the group
homomorphism of F(T') into F that extends the identity mapping on 7. We want
this homomorphism to be one-one, i.e., to have the property that the only way a
word in F built from the members of T can equal the identity is if it comes from
the identity. Because of Proposition 7.3 the only reduced word in F (T) that yields
the identity is the empty word. Thus the condition that the homomorphism be
one-one is that the only image in F' of a reduced word in F (T') that can equal the
identity is the image of the empty word. Making this condition into a definition,
we say thata subset S = {g, | t € T'} of F not containing 1 is free if no nonempty
product Ak - - - hy, in which each h; or hi_1 is in S and each h;; is different
from hi_1 can be the identity. A free set in F' that generates F is called a free
basis for F.

EXAMPLE. Within the free group F ({x, y}) on two generators x and y, consider
the subgroup generated by u = x2, v = y?, and w = xy. The claim is that
the subset {u, v, w} is free, so that the subgroup generated by u, v, and w is
isomorphic to a free group F ({u#, v, w}) on three generators. We are to check that
no nonempty reduced word in u, v, w, ul, v=! w=! can reduce to the empty
word after substitution in terms of x and y. We induct on the length of the u, v, w
word, the base case being length 0. Suppose that v = y? occurs somewhere
in our reduced u, v, w word that collapses to the empty word after substitution.
Consider what is needed for the left-hand factor of y in the y? to cancel. The
cancellation must result from the presence of some y~!. Suppose that this y~!
occurs to the left of y%. Since passing to a reduced word need involve only
deletions and not insertions of pairs, everything between y~! and y? must cancel.
If the y~! has resulted from w~' = y~'x~!, then the number of x, y symbols
between y~! and y? is odd, and an odd number of factors can never cancel. So
the y~! must arise from the right-hand y~' in a factor v=! = y~2. The symbols
between y~2 and y? come from some reduced u, v, w word, and induction shows
that this word must be trivial. Then y~2 and y? are adjacent, contradiction. Thus
the left factor of y?> must cancel because of some y~! on the right of y2. If the y~!

is part of w™! = y~'x~! oris the left y~! in v~! = y~2, then the number of x, y
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symbols between the left y and the y~! is odd, and we cannot get cancellation. So

the y~! must be the right-hand y~' in a factor y~2. Then we have an expression
y(y---y~Hy~! in which the symbols in parentheses cancel. The symbols - - -
must cancel also; since these represent some reduced u, v, w word, induction
shows that - - - is empty. We conclude that y? and y~? are adjacent, contradiction.
Thus our reduced u, v, w word contains no factor v. Similarly examination of the
right-hand factor x in an occurrence of x2 shows that our reduced u, v, w word
contains no factor u. It must therefore be a product of factors w or a product of
factors w~!. Substitution of w = xy leads directly without any cancellation to
an x, y reduced word, and we conclude that the u, v, w word is empty. Thus the
subset {u, v, w} is free.

If G is any group, the commutator subgroup G’ of G is the subgroup generated
by all elements xyx~'y~! withx € Gand y € G.

Proposition 7.4. If G is a group, then the commutator subgroup is normal,
and G/G’ is abelian. If ¢ : G — H is any homomorphism of G into an abelian
group H, thenkerp D G'.

PROOF. The computation

la=! = (axail)(ayafl)(axa”)*] (aya71)7]

axyx71y7
shows that G’ is normal. If ¥ : G — G/’ is the quotient homomorphism, then
YY) = xyG = xy(y'x7'yx)G' = yxG' = ¥ (y)¥ (x), and therefore
G /G’ is abelian. Finally if ¢ : G — H is a homomorphism of G into an abelian
group H, then the computation (xyx~'y™") = o(x)e(M)e@)'p(y)™! =
(X)) 'e(»)e(y)~! = 1 shows that G’ C ker g. [

Corollary 7.5. If F is the free group on a set S and if F’ is the commutator
subgroup of F, then F/F’ is isomorphic to the free abelian group P, Z;.

PROOF. Let H = @), ¢ Zs, andletp : S — H be the function with ¢(s) = 15,
i.e., p(s) is to be the member of H thatis 1 in the s coordinate and is 0 elsewhere.
Application of the universal mapping property of F as given in Theorem 7.1
yields a group homomorphism ¢ : F — H such that ¢ ot = ¢. Since the
elements ¢(s), with s in S, generate H, ¢ carries F onto H. Since H is abelian,
Proposition 7.4 shows that ker ¢ 2 F’. Proposition 4.11 shows that ¢ descends
to a homomorphism @y : F/F’' — H, and @, has to be onto H.

To complete the proof, we show that @ is one-one. Let x be a member of F.
Since the products of the elements ¢(s) and their inverses generate F and since
F/F' is abelian, we can write xF’ = sifll . ~sl./n" F’, where s;, occurs a total of
Ji times in x, ..., and s;, occurs a total of j, times in x; it is understood that



314 VII. Advanced Group Theory

an occurrence of Si, ! is to contribute —1 toward Jj1. Then we have gy(xF') =
J1oGsi) -+ jae(si). f@o(x F') = 0, we obtain jio(s;,)+- - -+ ju@(si,) =0,
and then j; = --- = j, = O since the elements ¢(s;,), ..., ¢(s;,) are members
of a Z basis of H. Hence xF' = F’, x is in F’, and ¢ is one-one. O

Corollary 7.6. If F; and F, are isomorphic free groups on sets S; and S5,
respectively, then S; and S, have the same cardinality.

PROOF. Corollary 7.5 shows that an isomorphism of F; with F, induces an
isomorphism of the free abelian groups P, s, Zs, and P, Zs,. The rank of a
free abelian group is a well-defined cardinal, and the result follows—almost.

We did not completely prove this fact about the rank of a free abelian group
in Section IV.9. Theorem 4.53 did prove, however, that rank is well defined for
finitely generated free abelian groups. Thus the corollary follows if S and S, are
finite. If S| or S, is uncountable, then the cardinality of the corresponding free
abelian group matches the cardinality of its Z basis; hence the corollary follows
if §; or S, is uncountable. The only remaining case to eliminate is that one of
S1 and S, say the first of them, has a countably infinite Z basis and the other
has finite rank n. The first of the groups then has a linearly independent set of
n + 1 elements, and Lemma 4.54 shows that the span of these elements cannot
be isomorphic to a subgroup of a free abelian group of rank n. This completes
the proof in all cases. O

Because of Corollary 7.6, it is meaningful to speak of the rank of a free group;
it is the cardinality of any free basis. We shall see in the next section that any
subgroup of a free group is free. In contrast to the abelian case, however, the rank
may actually increase in passing from a free group to one of its subgroups: the
example earlier in this section exhibited a free group of rank 3 as a subgroup of
a free group of rank 2.

We turn to a way of describing general groups, particularly groups that are at
most countable. The method uses “generators,” which we already understand,
and “relations,” which are defined in terms of free groups. Let S be a set, let
R be a subset of F(S), and let N(R) be the smallest normal subgroup of F(S)
containing R. The group G = F(S)/N(R) is sometimes written as G = (S; R)
or as

G = (elements of §; elements of R),

with the elements of S and R listed rather than grouped as a set. Either of these
expressions is called a presentation of G. The set S is a set of generators, and
the set R is the corresponding set of relations. The following result implicit in
the universal mapping property of Theorem 7.1 shows the scope of this definition.
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Proposition 7.7. Each group G is the homomorphic image of a free group.

PROOF. Let S be a set of generators for G; for example, S can be taken to
be G itself. Let ¢ : § — G be the inclusion of the set of generators into G,
and let ¢ : F(S) — G be the group homomorphism of Theorem 7.1 such that
@(t(s)) = @(s) for all s in §. The image of ¢ is a subgroup of G that contains
the generating set S and is therefore equal to all of G. Thus ¢ is the required
homomorphism. 0

If G is any group and ¢ : F(S) — G is the homomorphism given in Propo-
sition 7.7, then the subgroup R = ker@ has the property that G = (S; R).
Consequently every group can be given by generators and relations.

For example the proof of the proposition shows that one possibility is to take
S = G and R equal to the set of all members of the multiplication table, but with
the multiplication table entry ss’ = s” rewritten as the left side ss’(s”)~! of an
equation ss’(s”)~! = 1 specifying a combination of generators that maps to 1.
This is of course not a very practical example. Generators and relations are most
useful when S and R are fairly small. One says that G is finitely generated if S can
be chosen to be finite, finitely presented if both S and R can be chosen to be
finite.

A frequently used device in working with generators and relations is the
following simple proposition.

Proposition 7.8. Let G = (S; R) be a group given by generators and relations,
let G’ be a second group, let ¢ be a one-one function ¢ from S onto a set of
generators for G/, and let ® : F(§) — G’ be the extension of ¢ to a group
homomorphism. If ®(r) = 1 for every member r of R, then ® descends to a
homomorphism of G onto G’. In particular, if G = (S; R) and G’ = (S; R’)
are groups given by generators and relations with R C R’, then the natural
homomorphism of F(S) onto G’ descends to a homomorphism of G onto G'.

PROOF. The proposition follows immediately from the universal mapping
property in Theorem 7.1 in combination with Proposition 4.11. (]

Now let us consider some examples of groups given by generators and relations.
The case of one generator is something we already understand: the group has to
be cyclic. A presentation of Z is as (a; ), and a presentation of C,, is as {a; a").
But other presentations are possible with one generator, such as (a; a®, a°) for

Cs. Here is an example with two generators.
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EXAMPLE. Let us prove that D, = (x, y; x", y2, (xy)2), where D,, is the
dihedral group of order 2n. Concretely let us work with D,, as the group of 2-by-2

cosn/n —sin2m/n ) and ( (1) 7? ) The generated group

sin2w/n  cos2m/n
indeed has order 2n. If we identify

¥ with (cosZn/n —sin2n/n) and y with ((1)_0),

sin2w/n  cos2m/n 1

real matrices generated by (

then y? = 1, and the formula

(c0s27r/n —sin2m/n )k . <c0s2nk/n 7sin2nk/n>

sin2mw/n cos2m/n sin2wk/n  cos2mwk/n

cos2mw/n  sin2m/n
sin2w/n —cos2mw/n

shows that x” = 1. In addition, xy = ( ), and the square of

this is the identity. By Proposition 7.8, D, is a homomorphic image of D, =
(x, y; x", y2, (x y)2>. To complete the identification, it is enough to show that the
order of 5n is < 2n because the homomorphism of Bn onto D, must then be
one-one. In (x, y; x", y2, (xy)z), we compute that y~! = y and that x (yx)y = 1
implies yx = x~!'y~! = x~!y. Induction then yields yx* = x~*y for k > 0.
Multiplying left and right by y gives yx ¥ = x¥y for k > 0. So yx! = x 'y for
every integer /. This means that every element is of the form x” or x”y, and we
may take 0 < m < n — 1. Hence there are at most 2n elements.

Without trying to be too precise, let us mention that the word problem for
finitely presented groups is to give an algorithm for deciding whether two words
represent the same element of the group. It is known that there is no such
algorithm applicable to all finitely presented groups. Of course, there can be
such an algorithm for certain special classes of presentations. For example, if
there are no relations in the presentation, then the group is a free group, and
Proposition 7.3 gives a solution in this case. There tends to be a solution for a
class of groups if the groups all correspond rather concretely to some geometric
situation, such as a tiling of Euclidean space or some other space. The example
above with D, is of this kind.

By way of a concrete class of examples, one can identify any doubly generated
group of the form (x, y; x4, yb, (xy)c> if a, b, ¢ are integers > 1, and one can
describe what words represent what elements in these groups. These groups all
correspond to tilings in 2 dimensions. Infact,lety =a~'4+b" '+ Ify > 1,
the tiling is of the Riemann sphere, and the group is finite. If y = 1, the tiling is
of the Euclidean plane R?, and the group is infinite. If y < 1, the tiling is of the
hyperbolic plane, and the group is infinite. In all cases one starts from a triangle in
the appropriate geometry with angles i /a, /b, and 7 /c, and a basic tile consists
of the double of this triangle obtained by reflecting the triangle about any of its
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sides. The group elements x, y, and xy are rotations, suitably oriented, about the
vertices of the triangle through respective angles 27 /a, 27 /b, and 27 /c. Further
information about the cases y > 1 and y = 1 is obtained in Problems 37-46 at
the end of the chapter.

We conclude with one further example of a presentation whose group we can
readily identify concretely.

Proposition 7.9. Let S be aset, and let R = {sts~ 't~ | s € S, t € S}. Then
the smallest normal subgroup of the free group F(S) containing R is the com-
mutator subgroup F(S)’, and therefore (S; R) is isomorphic to the free abelian

group P, Z;.

PROOF. The members of R are in F(S)’, the product of two members of F(S)’
is in F(S)’, and any conjugate of a member of F(S)’ is in F(S)'. Therefore
the smallest normal subgroup N(R) containing R has N(R) € F(S)’. Let
¢ : F(S) — F(S)/N(R) be the quotient homomorphism. Elements of the
quotient F(S)/N (R) may be expressed as words in the elements ¢ (s) and ¢(s) ™!
for s in S, and the factors commute because of the definition of R. Therefore
F(S)/N(R) is abelian. By Proposition 7.4, N(R) 2 F(S)'. Therefore N(R) =
F(S)'. This proves the first conclusion, and the second conclusion follows from
Corollary 7.5. O

2. Subgroups of Free Groups

The main result of this section is that any subgroup of a free group is a free group.
An example in the previous section shows that the rank can actually increase in
the process of passing to the subgroup.

The proof of the main result is ostensibly subtle but is relatively easy to under-
stand in topological terms. Although we shall give the topological interpretation,
we shall not pursue it further, and the proof that we give may be regarded as a
translation of the topological proof into the language of algebra, combined with
some steps of beautification.

For purposes of the topological argument, let us think of the given free group
for the moment as finitely generated, and let us suppose that the subgroup has
finite index. A free group on n symbols is the fundamental group of a bouquet
of n circles, all joined at a single point, which we take as the base point. By the
theory of covering spaces, any subgroup of index k is the fundamental group of
some k-sheeted covering space of the bouquet of circles. This covering space is
a 1-dimensional simplicial complex, and one can prove with standard tools that
the fundamental group of any 1-dimensional simplicial complex is a free group.
The theorem follows.
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If the special hypotheses are dropped that the given free group is finitely
generated and the subgroup has finite index, then the same proof is applicable as
long as one allows a suitable generalization of the notion of simplicial complex.
Thus the topological argument is completely general.

The theorem then is as follows.

Theorem 7.10 (Nielsen—Schreier Theorem). Every subgroup of a free group
is a free group.

REMARKS. The algebraic proof will occupy the remainder of the section but
will occasionally be interrupted by comments about the example in the previous
section.

Let the given free group be F, let the subgroup be H, and form the right cosets
Hg in F. Let C be a set of representatives for these cosets, with 1 chosen as
the representative of the identity coset; we shall impose further conditions on C
shortly.

EXAMPLE, CONTINUED. For the example in the previous section, we were
given a free group F with two generators x, y, and the subgroup H is taken to
have generators x2, xy, y%. In fact, one readily checks that H is the subgroup
formed from all words of even length, and we shall think of it that way. The set
C of coset representatives may be taken to be {1, x} in this case. The argument
we gave that H is free has points of contact with the proof we give of Theorem
7.10 but is not an exact special case of it. One point of contact is that within
each generator of H that we identify, there is some particular factor that does
not cancel when that generator appears in a word representing a member of the
subgroup.

We define a function p : F — C by taking p(x) to be the coset representative
of the member x of F. This function has the property that p(hx) = p(x) for all
hin H and x in F. Also, x — xp(x)~! is a function from F to H, and it is the
identity function on H. The first lemma shows that a relatively small subset of
the elements xp (x)~! is a set of generators of H.

Lemma 7.11. Let S be the set of generators of F, and let S’ = S U S~
Every element of H is a product of elements of the form ghp(gh)~! with g in
C and b in §’. Furthermore the element g’ = p(gb) of C has the properties
that g = p(g’b™") and that gb~'p(gb~")~! is of the form (g/b,o(g’b)*l)_l.
Consequently the elements gap(ga)~! with g in C and a in S form a set of
generators of H.
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EXAMPLE, CONTINUED. In the example, we are taking C = {1, x} and S =
{x, y}. The elements ghp(gh)~' obtained with g=1 and b equal to x, y, x !, y~!
are 1, yx~', x 'x~!, and y~'x~'. The elements ghp(gh)~' obtained with g = x
and b equal to x, y, x ', y~! are xx, xy, 1, and xy~!. The lemma says that 1,
yx~!, xx, and xy form a set of generators of H and that the elements x ~'x~!,

y”x*1 , 1, and xy~! are inverses of these generators in some order.

REMARK. The lemma needs no hypothesis that F is free. A nontrivial ap-
plication of the lemma with F not free appears in Problem 43 at the end of the
chapter.

PROOF. Any h in F can be written as a product & = b - - - b, with each b; in
S’. Definerg =1andry = p(by---by) for 1 <k < n. Then

hry b = (robiry Y (ribary ) - (ra—ibary ). ()

Since

re=pb1---br) =pb1---br_1br) = p(p(b1 -+ - br_1)bi) = p(ri—1by),

we have rk_lbkrk_l = gbp(gh)~! with ¢ = ry_ and b = by. Thus (x) exhibits
hr, ! as a product of elements as in the first conclusion of the lemma. Since
rn = pby---b,) = p(h), r, =1if hisin H. Therefore in this case, & itself is
a product of elements as in the statement of that conclusion, and that conclusion
is now proved.

For the other conclusion, let gb~' p(gb~')~! be given, and put g’ = p(gh™ "),

so that gh~'g’~! = h is in H. This equation implies that g’b = h~'g. Hence
p(g'b) = p(h™'g) = p(g) = g, and it follows that gb~' p(gb™") ' = gb~' g/~
=(g'bg™H ' = (g’b,o(g’b)_l)_l. This proves the lemma. g

Lemma 7.12. With F free it is possible to choose the set C of coset represen-
tatives in such a way that all of its members have expansions in terms of S as
g = by --- b, in which

(a) g =b1by---b, is areduced word as written,
(b) biby---b,_; is also a member of C.

REMARKS. It is understood from the case of » = 1 in (b) that 1 is the
representative of the identity coset. When C is chosen as in this lemma, C is
said to be a Schreier set. In the example, C = {1, x} is a Schreier set. So is
C = {1, y}, and hence the selection of a Schreier set may involve a choice.

PROOF. If S’ is finite or countably infinite, we enumerate it. In the uncountable
case (which is of less practical interest), we introduce a well ordering in S’ by
means of Zermelo’s Well-Ordering Theorem as in Section A5 of the appendix.
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The ordering of §” will be used to define a lexicographic ordering of the set of
all reduced words in the members of §’. If

x=b;---by, and y=>b,---b, (%)

n

are reduced words with m < n, we say that x < y if any of the following hold:

i) m < n,
(i) m =nand by < b’,
(iii) m = n, and for some k < m, by =b|,... , by =b;,and by < b;<+1'

With this definition the set of reduced words is well ordered, and hence any
nonempty subset of reduced words has a least element.

Let us observe that if x, y, z are reduced words with x < y and if yz is reduced
as written, then xz < yz after xz has been reduced. In fact, let us assume that x
and y are as in (*) and that the length of z is . The assumption is that yz has
length n + r, and the length of xz is at most m + r. If m < n, then certainly
xz < yz. If m = n and xz fails to be reduced, then the length of xz is less than the
length of yz, and xz < yz. If m = n and xz is reduced, then the first inequality
by < by, with x and y shows that xz < yz.

To define the set C of coset representatives, let the representative of Hg be
the least member of the set Hg, each element being written as a reduced word.
Since the length of the empty word is 0, the representative of the identity coset
H is 1 under this definition. Thus all we have to check is that an initial segment
of a member of C is again in C.

Supposethatb; - - - b, isin C, sothatb; - - - b, is the leastelementof Hb; - - - b,,.
Denote the least element of Hb ---b,_; by g. If g = by ---b,_1, we are done.
Otherwise g < b;---b,_1, and then the fact that by - - - b, is reduced implies
that gb, < by ---b,. But gb, isin Hb, ---b,, and this inequality contradicts
the minimality of b; - - - b, in that coset. Thus we conclude that g = by --- b, ;.
This proves the lemma. O

For the remainder of the proof of Theorem 7.10, we assume, as we may by
Lemma 7.12, that the set C of coset representatives is a Schreier set. Typical
elements of S will be denoted by a, and typical elements of S’ = S U S~! will be
denoted by b. Let us write u for a typical element gap(ga)~' with g in C, and let
us write v for a typical element ghp(gh)~! with g in C. The elements u generate
H by Lemma 7.11, and each element v is either an element u or the inverse of an
element u, according to the lemma. We shall prove that the elements u not equal
to 1 are distinct and form a free basis of H.

First we prove that each of the elements v = ghp(gh)~! either is reduced as
written or is equal to 1. Put g’ = p(gb), sothatv = ghg’'~!. Since g and g’ are in
the Schreier set C, they are reduced as written, and hence so are g and g’ ~! Thus
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the only possible cancellation in v occurs because the last factor of g is b~! or the
last factor of g’ is b. If the last factor of g is b~!, then gb is an initial segment of
¢ and hence is in the Schreier set C; thus p(gh) = gb and v = ghp(gh)~! = 1.
Similarly if the last factor of g’ is b, then g’b~! is an initial segment of g’ and
hence is in the Schreier set C; thus p(g’b~!) = g’b~!, and Lemma 7.11 gives
v = (gb,o(gb)_l)_1 = gb 'p(g’b~")"! = 1. Thus v = gbp(gh)~" either is
reduced as written or is equal to 1.

Next let us see that the elements v other than 1 are distinct. Suppose that
v = gbp(gh)~! = g'b'p(g’b’)~! is different from 1. Remembering that each of
these expressions is reduced as written, we see that if g is shorter than g’, then gb
is an initial segment of g’. Since C is a Schreier set, gb is in C and p(gb) = gb;
thus v = gbp(gh)~' equals 1, contradiction. Similarly g’ cannot be shorter than
g. So g and g’ must have the same length /. In this case the first [ + 1 factors
must match in the two equal reduced words, and we conclude that g = g’ and
b = b'. This proves the uniqueness.

We know that each v is either some u or some #'~!, and this uniqueness shows
that it cannot be both unless v = 1. Therefore the nontrivial u’s are distinct, and
the nontrivial v’s consist of the u’s and their inverses, each appearing once.

Since an element v not equal to 1 therefore determines its g and b, let us refer
to the factor b of v = gbp(gh)~! as the significant factor of v. This is the part
that will not cancel out when we pass from a product of v’s to its reduced form.

Specifically suppose that we have v = gbp(gb)~' and ¥ = gbp(gh)~', that
neither of these is 1, and that v # v='. Put g’ = p(gb) and g’ = p(gh). The
claim is that the cancellation in forming v = ghg’~'gbg'~"' does not extend
to either of the significant factors b and b. If it does, then one of three things
happens:

(i) the b in bg'~! gets canceled because the last factor of g’ is b, in which
case g’b! is an initial segment of g/, g'b~! = p(g’b™") = g, and

v =_gbg/j1 =1,or )
(ii) the b in gb gets canceled because the last factor of g is b1, in which case
gb is an initial segment of g, gb = p(gh) = g’, and v = ghg''=1,0r

(iii) g¢'~'g = 1 and bb = 1, in which case g = g’, b = b, and the middle

conclusion of Lemma 7.11 allows us to conclude that o = v~!.

All three of these possibilities have been ruled out by our assumptions, and
therefore neither of the significant factors in vv cancels.

As a consequence of this noncancellation, we can see that in any product
vy - -+ Uy, of v’s in which no vy is 1 and no vg equals vk_l, none of the significant
factors cancel. In fact, the previous paragraph shows that the significant factors
of v; and v, survive in forming v;v,, the significant factors of v, and vs survive
in right multiplying by vz, and so on. Since the nontrivial #’s are distinct and
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the nontrivial v’s consist of the u’s and their inverses, each appearing once, we
conclude that the set of nontrivial u’s is a free subset of /. Lemma 7.11 says that
the u’s generate H, and therefore the set of nontrivial u’s is a free basis of H.

3. Free Products

The free abelian group on an index set S, as constructed in Section IV.9, has a
universal mapping property that allows arbitrary functions from S into any target
abelian group to be extended to homomorphisms of the free abelian group into
the target group. The construction of free groups in Section 1 was arranged to
adapt the construction so that the target group in the universal mapping property
could be any group, abelian or nonabelian.

In this section we make a similar adaptation of the construction of a direct sum
of abelian groups so that the result is applicable in a context of arbitrary groups.
Proposition 4.17 gave the universal mapping property of the external direct sum
D, G; of a set of abelian groups with associated embedding homomorphisms
is, : Gy = @SE ¢ Gy. The statement is that if H is any abelian group and
{os | s € S} is a system of group homomorphisms ¢, : Gy — H, then there
exists a unique group homomorphism ¢ : @,_¢ Gy — H such that ¢ o iy, = gy,
for all sp € S. Example 2 of coproducts in Section IV.11 shows that direct sum
is therefore the coproduct functor in the category of all abelian groups.

This universal mapping property of €D, ¢ G fails when H is a nonabelian
group such as the symmetric group Gs. In fact, G5 has an element of order 2 and
an element of order 3 and hence admits nontrivial homomorphisms ¢, : C, — G3
and @3 : C3 — G3. But there is no homomorphism ¢ : C, & C3 — G3 such
that ¢ o i, = ¢, and @ o i3 = @3 because the image of ¢ has to be abelian but the
images of ¢, and @3 do not commute. Consequently direct sum cannot extend to
a coproduct functor in the category of all groups.

Instead, the appropriate group constructed from C, and Cs for this kind of
universal mapping property is the “free product” of C, and C3, denoted by
C, % C3. In this section we construct the free product of any set of groups,
finite or infinite. Also, we establish its universal mapping property and identify
it in terms of generators and relations. The prototype of a free product is the free
group F(S), which equals a free product of copies of Z indexed by S. A free
product is always an infinite group if at least two of the factors are not 1-element
groups.

An important application of free products occurs in the theory of the fundamen-
tal group in topology: if X is a topological space for which the theory of covering
spaces is applicable, and if A and B are open subsets of X with X = AU B such
that A N B is nonempty, connected, and simply connected, then the fundamental
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group of X is the free product of the fundamental group of A and the fundamental
group of B. This result, together with a generalization that no longer requires
A N B to be simply connected, is known as the Van Kampen Theorem.

Let S be a nonempty set of groups G, for s in S. The set § is allowed to be
infinite, but in practice it often has just two elements. We shall describe the group
defined to be the free product G = %k cs Gs. We start from the set W ({G,}) of

all words built from the groups G. This consists of all finite sequences g - - - g,
with each g; in some G depending on i. The length of a word is the number of
factors in it. The empty word is denoted by 1. We multiply two words by writing
them end to end, and the resulting operation of multiplication is associative. A
word is said to be equivalent to a second word if the first can be obtained from
the second by a finite sequence of steps of the following kinds and their inverses:

(i) drop a factor for which g; is the identity element of the group in which it
lies,

(ii) collapse two factors g;g; ;1 to a single one g/ if g; and g; 11 lie in the same
G, and their product in that group is g

The result is an equivalence relation, and the set of equivalence classes is the
underlying set of ks Gy.

Theorem 7.13. If S is a nonempty set of groups G, and W ({G,}) is the set
of all words from the groups Gy, then the product operation defined on W ({G,})
descends in a well-defined fashion to the set sk cs G of equivalence classes of
members of W({G,}), and 3k c5 G thereby becomes a group. For each s¢ in
S, define iy, : Gy, = kses Gy to be the group homomorphism obtained as the
composition of the inclusion of Gy, into words of length 1 followed by passage
to equivalence classes. Then the pair (sk;es Gy, {is}) has the following universal
mapping property: whenever H is a group and {¢; | s € S} is a system of group
homomorphisms ¢; : Gy — H, then there exists a unique group homomorphism
¢ : %ksesGs — H suchthat ¢ o iy, = @, forall s € S.

%
G, ——
1
iSOJ, e
*SGS Gs

FIGURE 7.2. Universal mapping property of a free product.

REMARKS. The group k;csG; is called the free product of the groups Gj.

Figure 7.2 illustrates its universal mapping property. This universal mapping
property actually characterizes *k;c5Gy, as will be seen in Proposition 7.14. One
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often writes G - - - * G, when the set § is finite; the order of listing the groups is
immaterial. The proof of Theorem 7.13 is rather similar to the proof of Theorem
7.1, and we shall skip some details.

PROOF. Let us write ~ for the equivalence relation on words, and let us denote
equivalence classes by brackets. We want to define multiplication in sk;csG; by

[wi][w2] = [wjw;]. To see that this formula makes sense in $kc5Gy, let x, x7,

and y be words in W ({G,}), and suppose that x and x’ differ by only one operation
of type (i) or type (ii) as above. Then x ~ x’, and it is evident that x’y ~ xy and
yx’ ~ yx. Iteration of this kind of relationship shows that w] ~ w; and w} ~ w,
implies wjw), ~ w;ws, and hence multiplication is well defined.

The associativity of multiplication in W ({G,}) implies that multiplication in
ksesGy 18 associative, and [1] is a two-sided identity. We readily check that if

g = g1---gn is a word, then the word g~! = gn_1 e gl_1 has the property that

[g~']is a two-sided inverse to [g]. Therefore sk,csGy is a group.

The uniqueness of the homomorphism ¢ in the universal mapping property
is no problem since all words are products of words of length 1 and since the
subgroups i, (Gy,) together generate k;csGs.

For existence of ¢, we begin by defining a function ® : W({G,}) — H such
that

D(gs) = @5(gs) for gy in G when viewed as a word of length 1,
O(wiwy) = ®(w)P(wy) for wy and wy in W({Gy}).

We take the formulas ®(g;) = ¢(g;) for g, in G, as a definition of ® on words
of length 1. Any member of W ({G,}) can be written uniquely as g; - - - g, with
each g; in Gy, and we set ®(gy---g,) = P(g1) - - P(gy). f n = 0, the
understanding is that ® (1) = 1.) Then ® has the required properties.
Let us show that w’ ~ w implies ® (w’) = ®(w). The questions are whether
(i) if g1, ..., gy are in various G,’s with g; equal to the identity 1, of Gy,
then

2
D(g1--gic1ls8iv1---8n) = P(g1---&i—18i+1" " &),

(ii) if g1, ..., g, are in various G,’s with G5, = G
Gy, then

and if g;g;11 = g/ in

Sit1

?
D(g1--&i-18i&i+18i+2-8n) = P(g1---8i-18; &i+2" "~ &n)-
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In the case of (i), the question comes down to whether a certain 7® (1)’ in H
equals #h’, and this is true because ® (1) = ¢, (1) is the identity of H. In
the case of (ii), the question comes down to whether A®(g;)P(g;1+1)h" equals
hCD(gl?")h’ if G, = Gy, and g;giy1 = g in Gy, and this is true because
QNP (&i+1) = @5 (8¢5 (8i+1) = ¢5(8i&i+1) = ¢5(&)) = P(g). We
conclude that w’ ~ w implies ®(w’) = ® (w).

We may therefore define ¢([w]) = ®(w) for [w] in F({G,}), and ¢ is a
homomorphism of F' ({G,}) into H as a consequence of the property ® (w;w;) =
O (w)P(w;y) of ® on W({Gy}). For g, in G, we have ¢([g;]) = D(g;) =
0s(gs), 1.e., p(i(gs)) = ¢s(gs). This completes the proof of existence. U]

Proposition 7.14. Let S be a nonempty set of groups Gy. Suppose that G’ is
a group and that i} : G; — G’ for s € § is a system of group homomorphisms
with the following universal mapping property: whenever H is a group and
{ps | s € S} is a system of group homomorphisms ¢; : Gy — H, then there
exists a unique group homomorphism ¢ : G' — H such that ¢ o i] = ¢, for all
s € S. Then there exists a unique group homomorphism ® : k;csG;, — G’

such that i} = ® o i, for all s € S. Moreover, ® is a group isomorphism, and the
homomorphisms i : G; — G’ are one-one.

REMARKS. As was true with Proposition 7.2, readers who have been through
Chapter VI will recognize that Proposition 7.14 is a special case of Problem 19
at the end of that chapter.

PROOF. Put G = kc5G,. In the universal mapping property of Theorem

7.13,let H = G' and ¢ = i;, and let ® : G — G’ be the homomorphism ¢
produced by that theorem. Then & satisfies ® o iy = i; for all s. Reversing the
roles of G and G’, we obtain a homomorphism @' : G — G with @' o i} = i
for all 5. Therefore (¥’ o @) o iy = ¥’ 0i] = is.

Comparing @’ o @ with the identity 15 and applying the uniqueness in the
universal mapping property for G, we see that ® o ® = 15. Similarly the
uniqueness in the universal mapping property of G’ gives ® o & = 1. Thus ®
is a group isomorphism. It is uniquely determined by the given properties since
the various subgroups i;(G;) generate G. Since i; = ® o i and since ® and i
are one-one, i, is one-one. g

As was the case for free groups, we want a decision procedure for telling
whether two given words in W ({G,}) are equivalent. This is the so-called word
problem for the free product. Solving it allows us to use free products concretely,
just as Proposition 7.3 allowed us to use free groups concretely. A word in
W ({Gy})) is said to be reduced if it

(i) contains no factor for which g; is the identity element of the group G, in
which it lies,
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(i) contains no two consecutive factors g; and g;;; taken from the same
group Gj.

Proposition 7.15. (solution of the word problem for free products). If S is a
nonempty set of groups G and W ({Gy}) is the set of all words from the groups
Gy, then each word in W ({G}) is equivalent to one and only one reduced word.

EXAMPLE. Consider the free product C,*C» of two cyclic groups, one with x as
generator and the other with y as generator. Words consist of a finite sequence of
factors of x, y, the identity of the first factor, and the identity of the second factor.
A word is reduced if no factor is an identity and if no two x’s are adjacent and no
two y’s are adjacent. Thus the reduced words consist of finite sequences whose
terms are alternately x and y. Those of length < 3 are 1, x, y, xy, yx, xyx, yxy,
and in general there are two of each length > 0. The proposition tells us that all
these reduced words give distinct members of C» * C,. In particular, the group is
infinite.

REMARK. More generally, to test whether two