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Foreword

In 1969, Jiirgen Neukirch’s book Klassenkorpertheorie was published by Bib-
liographisches Institut Mannheim. The main goal of the book was to grant
the reader, who has acquainted himself with the basics of algebraic number
theory, a quick and immediate access to class field theory.

Although this book has been out of print for many years, it has remained
the favorite introduction to class field theory in Germany. As a student in
the 1980s, I myself studied a copy from the library that showed clear signs of
extensive use. This motivated the idea to make the text available again, as a
printed book as well as a freely accessible file for downloading.

This book should not be confused with Neukirch’s book “Class Field Theory”
(Springer Grundlehren vol. 280, 1986), which has another focus. The text pre-
sented here is essentially identical with the German text based on Neukirch’s
original Bonn lectures; I only corrected mistakes and updated notation.

I would like to thank Rita Neukirch for her generous support for this new
English edition of the work of her late husband. I also thank Rosina Bonn
for her excellent typesetting of the original German text into M TEX and my
friends and colleagues Andreas Rosenschon, Bernd Schober and Malte Witte
for their invaluable help in improving the English edition.

Heidelberg, October 2012 Alexander Schmidt
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Preface

The present manuscript is an improved edition of a text that first appeared un-
der the same title in Bonner Mathematische Schriften, no. 26, and originated
from a series of lectures given by the author in 1965/66 in W. KRULL’s semi-
nar in Bonn. Since the mathematical literature lacked a uniform presentation
of class field theory based on modern cohomological methods, a summarizing
exposition of these lectures seemed to be useful. The main goal was to provide
the reader, who has acquainted himself with the basics of algebraic number
theory, a quick and immediate access to class field theory.

This script consists of three parts, the first of which discusses the cohomology
of finite groups. Nowadays, cohomology has conquered large areas of algebraic
number theory. Nevertheless, the question whether class field theory can be
done without this machinery is a frequent topic of discussion. However, apart
from the possibility of formulating the theory in terms of algebras, which is
closely related to cohomology, we do not dispose of such a theory at this
point, although recent results due to J. LUBIN and J. TATE on the explicit
determination of the local norm residue symbol provide some support for this
viewpoint. But one must not overlook the fact that cohomology presents —
in particular for the learner — a wealth of far reaching advantages. In class
field theory, cohomology plays the role of a calculus that allows a clear and
logical development of the theory under a unified viewpoint. Its importance,
however, is by no means only of formal nature. In fact, local class field theory
could originally be developed by defining the norm residue symbol via the
Frobenius automorphism for unramified extensions only. It was cohomology
that gave a vital impetus to the theory, making also the ramified extensions
accessible to class field theoretic methods. This relationship was discovered by
H. Hassk and had an immediate impact also on the global theory. Although
it was formulated in the language of algebras at first, the cohomological prin-
ciples behind it did not remain hidden for long. In addition, beyond class
field theory, the use of cohomological methods in general field theory has led,
via Galois cohomology, to a wealth of far reaching results with a novel allure.
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viii Preface

This is another reason why a student may wish to learn the effectiveness of the
cohomological calculus in class field theory, it provides him with a concrete
example of techniques which are used in many other areas of mathematics.

On the other hand, it cannot be denied that some students interested in class
field theory are deterred by cohomology, which at first sight may seem to be
some kind of mysterious formal mechanism that is difficult to understand. For
this reason we only introduce those notions and results from cohomology that
are essential for field theoretic applications, and we have made every endeavor
to present the material in a way that is as elementary as possible by avoiding
the general notions of homological algebra.

The second part discusses local class field theory. We have put ARTIN’s and
TATE’s theory of class formations at the beginning; it brings out the purely
group theoretical formalism of local and global class field theory based on the
theorem of TATE. For the sake of formal simplicity we have used the notion of a
profinite group; it is, however, not absolutely necessary for an understanding
of what follows, since all the essential theorems only refer to finite groups,
which are the building blocks of profinite groups. In § 7 we have included the
recent results by LUBIN and TATE [34] on the explicit determination of the
norm residue symbol, which also will be applied later in the global part of the
proof of ARTIN’s reciprocity law.

The third part concerns the class field theory of finite algebraic number fields.
For the sake of a development that is as straightforward as possible we have
decided to omit the theory of function fields over finite constant fields. In
order to elaborate to what extend the global theorems can be deduced from
their local counterparts, we have strictly separated considerations of a purely
local character from those possessing a specific global nature. For a clear
presentation it turned out to be appropriate to single out certain cohomology
groups that occur when considering different field extensions simultaneously.
We have exclusively used CHEVALLEY’s notion of ideles for developing the
global theory, and yet have tried to emphasize the importance of the classical
theory going back to KUMMER. We have obtained a clear structuring of the
proof of the reciprocity law by strictly separating the treatment of the idele
group from that of the idele class group. In the last section we establish the
connection between the modern and the classical purely ideal theoretic version
of class field theory in the sense of HASSE’s Zahlbericht.

I would like to thank my honored teacher, Professor W. KRULL, for his active
interest and concern in the genesis of this script. K.-O. STOHR has acquired
a special merit to the text; I thank him deeply for his first elaboration of
my occasionally rather sketchy accounts on cohomology and local class field
theory, as well as for suggesting many essential improvements.

Bonn, July 1969 Jirgen Neukirch
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Cohomology of Finite Groups
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§1. G-Modules 3

8§ 1. G-Modules

The cohomology of finite groups deals with a general situation that occurs
frequently in different concrete forms. For example, if L|K is a finite Galois
extension with Galois group G, then G acts on the multiplicative group L*
of the extension field L. In the special case of an extension of finite algebraic
number fields, G acts on the ideal group J of the extension field L. The theory
of group extensions provides us with the following example: If G is an abstract
finite group and A is a normal subgroup, then G acts on A via conjugation. In
representation theory we study matrix groups G that act on a vector space.
The basic notion underlying all these examples is that of a G-module. We will
now present some general considerations about G-modules, some of which the
reader may already know from the theory of modules over general rings.

In the following, G will always denote a multiplicatively written finite group;
its unit element will be denoted by 1.

(1.1) Definition. A G-module A is an (additively written) abelian group A
on which the group G acts in such a way that for all 0,7 € G and all a,b € A
we have

1) la = a,
2) o(a+b) =0a+ ob,
3)  (om)a=o(ra).

Although in applications we mainly deal with multiplicatively written G-
modules A, we prefer for formal reasons to write these groups in this section
additively.

We can interpret G-modules as modules over rings by introducing the group
ring Z[G] of G. This ring consists of all formal sums

E NgO
ceG

with integral coefficients n, € Z. In other words, Z[G] is the free abelian
group on the elements of G:

Z[G) = { Y g0 | ng € z}.
ceqG

Since the sums ) . 7,0 can be multiplied, Z[G] is a ring. Therefore we may
interpret a G-module A as a module over the ring Z[G], where the action of
Z|G] on A is defined as

( Z nga)a = Z ne(ca), a€ A.

ceG ceG

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/
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4 Part I. Cohomology of Finite Groups

Of course, Z|G] considered just as an additive group is a G-module itself; it
will play a distinguished role in our considerations.

The group ring Z[G] contains two distinguished ideals:
IG:{ZnUU|ZnU=O} and Z-Ngz{n-ZcﬂnEZ}.
oceG oG ocG

The ideal I is called the augmentation ideal of Z[G]. It is the kernel of
the homomorphism

€: Z|G] — Z with 5( Z ngo) = Z Ny
oeG oeG
which is called the augmentation of Z[G].
The element Ng = ) .50 € Z[G] is called the norm (or also trace) of

Z[G]. For each element 7 € G we have TNg = ) . 70 = Ng, which implies
that Z-Ng is an ideal in Z[G]. The map

p:Z — Z[|G) with p(n)=n-Ng

is called the coaugmentation of Z[G]. We set Jg = Z[G]/Z-N¢, and obtain
the exact sequences?) of rings and ring homomorphisms

0— Ig — Z[G] = Z — 0,
0—Z -5 Z[G] — Jg — 0.

Viewing these rings only as additive groups, we see immediately that they are
all free abelian groups, and that I¢ and Jg are direct summands of Z[G]:

(1.2) Proposition. I is the free abelian group on the elementso—1, 0 € G,
o # 1, and Jg is the free abelian group on the elements 0 mod Z-N¢, o # 1.
We have direct sum decompositions

Z2G =19 Z1 =218 Z,
Z|G) = (D, 41 Zo) ®Z-Nc = Jc DL .

Proof. If ) .sne.o € Ig, then ) .~ n, =0, from which we obtain

Z Neo = Z ne(o —1);

oeG c€eG
if, in addition, deG’ o1 ny(oc —1) =0, then n, =0 for all 0 € G, 0 # 1.

D A sequence -+ - A 5 B 5 C — ... of groups, modules or rings and ho-
momorphisms ¢, 7, ... is called exact, if the image of each map is equal to the
kernel of the subsequent map. We will often have to deal with short exact se-
quences 0 - A - B % C — 0. Such a sequence encodes the information that
the homomorphism j : B — C is surjective with kernel 14 & A.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/
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Since each element ) .~ n,0 € Z[G] can be written in the following form

anozz:ng(a—l)—i—(z:ng)-l,

oeG oeG oeG
we have the decomposition as an evidently direct sum Z[G] = I ¢ Z-1.

If, on the other hand, } ., n,0 mod Z-Ng € Jg, then we can write

Z NegO = Z(ng —n1)o+mnq- Z o= Z(m7 —n1)o mod Z-Ng,

oceG o#1 oceG o#1

and ZU# neo € Z-N¢ clearly implies n, = 0 for all o # 1.

Thus Jg is the free abelian group generated by the elements ¢ mod Z-Ng
with o # 1. Because of the uniqueness of the representation

Z NGo = Z(ng —ny)o +ni-Ng,

ceG o#l
we also obtain the direct sum decomposition Z[G] = ( D, Zo)®Z-Ng.

The ideals I and Z-N¢ in Z[G] are dual to each other in the following sense.
(1.3) Proposition. I¢ = AnnZ-N¢ and Z-Ng = Ann I¢.

Proof. We have

(Znao)~NG:an(a~Ng):ZnaNG:(Zna>~NG:O

ceG ceG ceG ceG

Zn(,:o.

oelG

Thus AnnZ-Ng = Ig. On the other hand, we know from (1.2) that I is the
free abelian group generated by the elements o — 1, 0 € G. Therefore

if and only if

ZnTTGAnnfgﬁ(ZnTT)(afl):O forallc € G
TEG TEG
@ZnTTU:ZnTT forallc € G
TEG TEG
= n,=mn forall 7€ G
<Y n.7=ny-Ng € Z-Ng,
T€G

so that Z-Ng = Ann I, as claimed.

After these remarks on group rings we now return to general G-modules. For
each G-module A we have the following four distinguished submodules:

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/
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6 Part I. Cohomology of Finite Groups

A% ={a € A|oa=a for all o € G}, the fixed group of 4,
NgA={Nga=Y ..o0a|a€ A}, the norm group of A 2,
NgA={a€ A| Nga =0},

IgA={> canos(oas —as) | as € A}.
Since I is the module generated by the elements o — 1, o € G, we obviously
have A = {a € A | Iga = 0}. On the other hand, IgA is the module

generated by the elements ca — a, a € A, o € G. Proposition (1.3) provides
us with the inclusions

NgAC A9 and IgAC n.A,
and we can form the factor groups
AY/NgA and n,A/IGA.

These groups will turn out to be the cohomology groups of the G-module A
of dimension 0 and —1 respectively.

If A is a G-module and ¢ is a subgroup of G, it is clear that A is also a
g-module. Moreover, if g is a normal subgroup of G, the fixed module A9 is
obviously a G/g-module.

In the following we consider the most important functorial properties of G-
modules.

Let A and B denote two G-modules. A homomorphism
f:A— B

is called a G-homomorphism if f(ca) = of(a) for all o € G. We will
often interpret a G-module A simply as an abelian group; in this case we will
talk about Z-modules and Z-homomorphisms instead of G-modules and
G-homomorphisms.

Given two G-modules A and B we can construct a third G-module, the module
Hom(A, B)
of all Z-homomorphisms f : A — B, on which the elements ¢ € G act as:
o(fy=0cofoo ! thatis, o(f)(a)=0cf(c "a), ac A.
The group Homg (A, B) of all G-homomorphisms from A to B is a subgroup
of Hom(A, B); clearly it is the fixed module of the G-module Hom(A, B):
Homg (A, B) = Hom(A, B)®.
2 For the elements > scc 0@ the name trace seems more appropriate. However,

given that our later applications mainly involve multiplicative G-modules, we
have decided use the word norm already here.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

§1. G-Modules 7

In addition to Homg (A, B) we have another G-module, the tensor product

A@ZB.

Roughly speaking, the tensor product of A and B consists of all formal sums
of products . a;-b;, a; € A, b; € B. A precise definition is given by:

(1.4) Definition. Given two abelian groups ( Z-modules) A and B, let F' be
the free abelian group generated by all pairs (a,b), a € A, b € B, and let R
denote the subgroup of F' generated by the elements of the form

(a+ad',b) —(a,b) — (a’,b) and (a,b+b)— (a,b) — (a,b).

Then the factor group
F/R=A®zB

is called the tensor product of A and B over Z.

Since we only consider tensor products over the ring Z, we will write for
simplicity A ® B instead of A ®z B. We denote by a ® b the coset

a®b=(a,b) +R€ AQ B.

By definition, the tensor product A ® B consists of all elements of the form

Zai®bi, aiGA, b, € B,

hence is generated by the elements a ® b.

In the special case A = Z we will often regard the tensor product Z ® B and
the Z-module B as equal by identifying® n®band n-bforn e Z, b € B.

If A and B are two abelian groups, we will identify the groups A ® B and
B ® A via the isomorphism

fiA®B-—B®A with fla®b) =boa.

Similarly, if A, B, C are three abelian groups, we will regard the groups
(A® B)® C and A® (B ® C) as equal, making use of the isomorphism

f:(A®B)®@C — A® (B (C) with f((a®b)®c)=a® (b®c).

If A and B are two G-modules, then A ® B becomes a G-module by defining
cla®@b)=ca®cb, acA, beB;, ocecG.Y

3) Starting from this case, we can think of the construction of the general tensor
product as a formal change of the domain of coefficients of B from Z to A. For
example, every abelian group B can be extended to a Q-vector space by tensoring
B with Q. This transition is the formal extension of the scalars of the Z-module B
from Z to Q, and multiplication of b € B by a rational number r € Q corresponds
to forming r ® b € Q ® B.

4 Since the products a ® b generate the module A ® B, we obtain the action of o
on the entire module by linear extension.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/
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8 Part I. Cohomology of Finite Groups

In general it is not true that AY ® BY is the fixed module of A ® B. In fact
A% @ BY might not even be a submodule of A® B. We only have the canonical
(but in general neither injective nor surjective) homomorphism

A% ® BY — (A® B)°.
It is easy to verify that the functors Homg and ® are additive:

(1.5) Proposition. Let {4, | . € I} be a family of G-modules, and let X be
another G-module. Then we have canonical isomorphisms®

Xo (@A) =PxeAa),

Home (EP 4., X) = HHomG(LAL, X), H(L)mG(X, [14) =[] Homea(X, A,).

Moreover, if X is finitely generated as an abelian group, then

Xo(([[a)=][XeA), Homa(X,PA)=EPHoma(X, A,).
Let A and B be G-modules and

Al oa
a G-homomorphism. Then h induces a G-homomorphism in the ‘opposite’
direction

Hom(A, B) «+— Hom(A', B)
given by composition f — foh (f € Hom(A’, B)), and a G-homomorphism
A®B— A ®B
defined by a ® b — h(a) ® b. On the other hand, given a G-homomorphism
B -4 B,
there are analogously defined G-homomorphisms
Hom(A, B) — Hom(A, B')

and ,

A®B— AR B'.
Because of these properties, Hom is called a contravariant functor in the first
and a covariant functor in the second argument, and the tensor product ® is
called a covariant functor in both arguments.

% The symbol @ stands for the direct sum, i.e., the group of all families
(-..,as,...), where only finitely many components a, are different from zero.
In contrast, [] denotes the direct product, i.e., the group of all families

(o, ..

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/
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If we have two G-homomorphisms
A A and B4 B,
we obtain a G-homomorphism
(h,g) : Hom(A, B) — Hom(A4’, B)
by defining f — go foh (f € Hom(A4, B)), and for two G-homomorphisms
Al 4 and B-L B
we get a G-homomorphism
h®g: A®B — A'®@ B/,
by setting h ® g (a ® b) = h(a) ® g(b).

In what follows, G-free G-modules will play an important role. A G-module
A is called G-free or Z[G]-free, if it is the direct sum of G-modules which
are isomorphic to Z[G]. A first basic property of G-free modules is:

(1.6) Proposition. Let X be a G-free G-module and

0—sAB 200

an exact sequence of G-modules A, B, C and G-homomorphisms h, g. Then
the induced sequence

0 — Homg (X, A) — Homg (X, B) — Homg(X,C) — 0

is also exact.

Write X = @, I, with I, = Z[G]. From (1.5) we have the decomposition
Homg (X, A) = H Homg (T, A).

If we set A, = Homg(I,, A) = Homg(Z[G], A) =2 A (where the last isomor-

phism is given by the map f € Homg(Z[G], A) — f(1) € A), and define B,

and C, analogously, we obtain the exact sequence
0—A — B —C, —0,

which implies the proposition.

Remark. Proposition (1.6) is valid more generally for so-called projective
G-modules X, i.e., G-modules which have the property that every diagram
X

N
B -4 C—0

with G-modules B,C and G-homomorphisms g, f/, g surjective, can be ex-
tended to a commutative diagram by a G-homomorphism f: X — B.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/
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10 Part I. Cohomology of Finite Groups

For arbitrary G-modules X it is easy to verify that if one omits the last map
— 0 in the induced Homg-sequence, the remaining sequence is still exact.

A G-free G-module is, of course, also Z-free, and therefore a free abelian
group, since Z[G] is the free abelian group generated by the elements of G.
For most questions concerning the exactness of sequences it suffices to consider
only Z-modules and Z-homomorphisms. In later applications we will need the
following three lemmas.

d d
(1.7) Lemma. If - +— X, 3 +~ X, <2 X,41 ¢— --- is an exact
sequence of Z-free modules and D is an arbitrary Z-module, then the sequence

.-+ — Hom(X,_1,D) — Hom(X,, D) — Hom(X,41,D) — - --

is also exact.

Proof. Let C4 = kerd, = imdg41. Since Cy—; is free as a subgroup of X,_1,
the exact sequence 0 + Cy_1 <+ X, < C4 < 0 is split, i.e., there is a
homomorphism ¢ : C;_1 — X, with d; o€ =id, and C}; is a direct summand
of Xy : Xy = Cy ® X, for all g. Thus if f is in the kernel of Hom(X,, D) —
Hom(Xy41, D), then f vanishes on Cy, and therefore induces a homomorphism
g : Cq—1 — D with f = ¢’ od,. Since Cy_; is a direct summand of X, 1,
we can extend ¢’ to a homomorphism g € Hom(X,_1, D), and f is the image
of g under the homomorphism Hom(X,_1, D) — Hom(X,, D). On the other
hand, if f € Hom(X,, D) is in the image of Hom(X,_1,D) — Hom(X,, D),
f=fod, with f' € Hom(X,_1,D), then fodsy1 = f'odgodst1 =0, ie.,
f lies in the kernel of Hom(X,, D) — Hom(Xy41, D).

(1.8) Lemma. If0 - X — Y — Z — 0 is an exact sequence of free
Z-modules and A is an arbitrary Z-module, then the sequence
0 —=X®A—=Y®RA—ZA—0

is also exact.

Proof. The exactness of the sequence X ® A - Y A - Z® A — 0
is completely trivial and holds without assuming that the modules are free.
Hence we only need to show that the map X ® A — Y ® A is injective. Since Z
is free, there is a homomorphism Z — Y whose composite with the given map
Y — Z is the identity map on Z. This implies that the image X' of X in Y is a
direct summand, i.e., Y = X'@X"”. Thus we find YA = (X'®A)B (X" ®A),
which implies the claimed injectivity.

(1.9) Lemma. If 0 - A— B — C — 0 is an exact sequence of Z-modules
and X a Z-free Z-module, then
0 —=X®A—=X®B—=X®(C-—0

is also an exact sequence.
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Proof. Let X =&, Z, with Z, = Z. Since the functor ® is additive, we have
the canonical isomorphism

XoA=2@Z oA)=@A, with A, =Z A=A,

and similarly for B and C. Hence the exactness of the sequence
0—A —B, —C,—0
immediately implies the exactness of

0 —X®A4A—X®B—-XC —0.

§ 2. The Definition of Cohomology Groups

It is a characteristic of cohomology theory that in order to give even simple
definitions and theorems, one must introduce an extensive formalism of ho-
momorphisms, functors and sequences. At first this might give the impression
that we are dealing with a particularly difficult and deep mathematical disci-
pline. However, once the reader has become more familiar with these methods,
he will realize that these considerations are particularly simple, and they may
even appear somewhat anemic. Nevertheless, their frequent repeated use leads
to concepts and theorems which could hardly be developed using a more el-
ementary approach. In order to introduce our cohomology groups, we start
with such formal considerations, although the definition of these groups can
be given in a direct and elementary way, as well®).

Let G be a finite group. By a complete free resolution of the group G, or
also of the G-module Z 7, we mean a complex

- d_
RIPLE RN GPLLIN gD
TN KL

Y/
0/ \0

d1 d2 d:}

Xo X, X,

with the following properties:

6 Cf. [16], 15.7, p. 236.
™) We always consider Z as a G-module by letting the group G act on Z trivially
(i-e., as the identity).
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12 Part I. Cohomology of Finite Groups

(1) The X, are free G-modules,

(2) e, p,dq are G-homomorphisms,
(3) do = proe,

(4) at every term we have exactness.

Thus a complete free resolution consists in fact of two exact sequences

0+— Z +— Xo éﬂl— X1 égz— s

and d

0—z M x 8 x o, 2

of free G-modules which are spliced together. Originally, cohomology groups
were derived from the first, and homology groups from the second sequence.
But putting these two sequences together is a crucial step which leads to a uni-
fied and, concerning the functorial properties, harmonious fusion of homology
and cohomology.

When defining the cohomology groups of a G-module we could start with an
arbitrary complete resolution, even one in which the X, need only be projec-
tive G-modules. But then we would need to show the definition is independent
from the chosen resolution. In order to avoid this effort, we start with a par-
ticular complete resolution, the so-called standard resolution, which has its
origins in algebraic topology and arises in the following way.

For ¢ > 1 we consider all g-tuples (o1, ..., 04), where the o; run through the
group G; we call such a g-tuple a g-cell (with “vertices” o1,...,0,). We use
these g-cells as free generators of our G-module, i.e., we set

Xo=X_q1 =P Z[G(or,...,0).

Xo = X_; = Z[C),

where we choose the identity element 1 € Z[G] as the generating “null cell”.
In particular, the modules

BREE) X*Q? X*h XOu le X27

For ¢ = 0 we put

are free G-modules.

Define the G-homomorphisms ¢ : Xg — Z and p: Z — X_1 by (cf. §1, p.4)

E(dec neo) = ZGGG Ng (augmentation)

u(n) = n-Ng (coaugmentation)

In order to determine the remaining G-homomorphisms d, it suffices, of
course, to give their values on the free generators (o1, ...,0,). Here we set
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§2. The Definition of Cohomology Groups 13
dol = Ng for g =0,
di(c)=0-1 forg=1,
dg(o1,...,04) = 01(02,...,04)
+Zg;11(—1)1(0'17 ey 041, 0'7;02'+1,02'+2, e ,O'q)
+(-1)9(o1,...,04-1) for g > 1,
d1=3% cclo (o) — (0)] for g = -1,
d_g-1(01,...,0¢9) = e o o,01,...,00)
+> vea Y (=D¥o1,...,0i-1,0i0,0 Lois1, ..., 0q)
+ Y e (D)o, ..., 04,0) for —qg—1<—1.

From these definitions we obtain a complex

d_» d_1 do dy da ds3

e X, — X Xo X4 Xo
N
z
N
0 0

which we call the standard complex of the group G. We will see that this
complex is a complete free resolution of the group G. The conditions (1)
(3) are trivially satisfied: By construction the X, are free G-modules, the
€, it, dg are G-homomorphisms; and because p o (1) = p(1) = Ng = dpl, we
have dyp = p o e. Hence it only remains to show that we have exactness at
every term. To prove this fact, we use computations that are based on similar
considerations in algebraic topology. We first show that the sequence

(+) 0+ Z < Xo & X &2 X, &

is exact. To do this, we define the following Z-homomorphisms:
E:Z — X, with E(1) = 1,
Dy : Xog — X4 with Do(O') = (O'),
D, : X, — Xy41 with Dy(oo(01,...,04)) = (00,...,04) for ¢ > 1.

An elementary calculation shows that
Foe+dioDy=1id and Dy_jody;+dsr1 0D, =1id

These formulas imply that given x € kere (resp. € kerd,), we have x =
diDox € imd; (resp. © = dg+1Dgx € imdy41), which proves the inclusions

kere Cimd; and kerd, Cimdgi1 for g > 1.
On the other hand, it is easily checked that eod; = 0, so that kere O im d;. We

now prove by induction that d; o dy4+1 = 0. For this we assume dy—1 o dy = 0.
(For ¢ =1 we replace dy by € and D_; by E.) Then, on one hand, we have
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14 Part I. Cohomology of Finite Groups

dg = (Dg—20dq—1+dgoDy1)odyg=dgoDy_10dy,
and on the other hand,
dq = dq o (Dg—10dg+dgt10Dg) =dgoDg—10dg+dgodgs10Dg.
Subtracting these equations we obtain
dgodgi1 0Dy =0.
But since every cell in X, lies in the image of D,, we have
dgodgy1 =0,

and therefore ker d, DO imd,yq for ¢ > 1. Thus the sequence (*) is exact.

The second sequence

(%) 0z x o x o, 2y x4

arises from (%) by dualizing. In fact, from (x) we first obtain the sequence
(%) 0 — Hom(Z,Z) — Hom(Xy,Z) — Hom(X,,Z) — - -,
which is exact by (1.7).

Let {x;} be the system of Z[G]-free generators of X, consisting of all g-cells.
Then the “dual basis” {z}} of {z;} defined by

“( ) 1 forc=1landi=%k
z;(oxy) =
0 otherwise.

is a Z[G]-free system of generators of Hom(X,,Z). Thus the G-modules
Hom(X,,Z) and X, are canonically isomorphic. If we identify x; with z,
we can write

X_4-1 =Hom(X,,Z) (¢>0) and Z =Hom(Z,Z).

An elementary calculation now shows that under these identifications the
sequence (*+%) is transformed into the sequence (kx), hence (¥x) is exact.

Finally, since p is injective, € is surjective, and dy = poe, we have ker dy = ker e
and im dy = im p; therefore

kerdy =imd; and imdy = kerd_q.

This completes the proof that the standard complex is exact at all terms.

Now we define our cohomology groups using the standard complex. If A is a

G-module, we set
Aq = HOmg(Xq,A).

We call the elements of Ay, ie., the G-homomorphisms z : X, — A, the
g-cochains of A. From the exact sequence

d_ d_ d, d d da
'~'<—2X_2(—1X_1%0X0(—1X1(—2X2(—3'”
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§2. The Definition of Cohomology Groups 15

we obtain the sequence

a_ a_
. O W et O S PN LN T N
in which, because dq o dq1+1 = 0, we evidently have 0,41 0 93 = 0; therefore
imd, C ker 0g41.

Contrary to the first sequence, the second sequence is not exact in general,
and the cohomology groups “measure” its deviation from being exact. We set

Zg =ker0g41, Rq=1m0,,
and call the elements in Z, (resp. R,) the g-cocyles (resp. g-coboundaries).

We now define the cohomology groups of G with coefficients in A as follows:

(2.1) Definition. The factor group
HY(G,A) = Zy/ Ry

is called the cohomology group of dimension q (q € Z) of the G-module A;
we also say H1(G, A) is the g-th cohomology group with coefficients in A.

We remark that the cohomology groups H~971(G, A) are the usual homology
groups denoted by H,(G, A) (¢ > 1). In algebraic topology, the cohomology
groups (with coefficients in Z) were originally introduced as the character
groups of the homology groups. This origin has left traces in the fact that the
left side of the standard complex is obtained from the right side by duality.
We point out again that splicing the two sides into a complete resolution,
which allows interpreting homology groups as cohomology groups of negative
dimension, is a crucial step which yields more than just a formal unification®).

We now come to the problem of analyzing the concrete meaning of cohomology
groups. The cochain group

A, =A_, 1 =Homg(Xy,A), ¢>1,

consists of all G-homomorphisms z : X, — A. Since the X, have the g-cells
(01,...,04) as free generators, a G-homomorphism x : X, — A is uniquely
determined by its values on the g-tuples (o1, ..., 0,). Thus we can view every
cochain as a function with arguments in G and values in A, hence as a map

z:GxX---xG— A.
—_——

g-times

By taking this view, we can identify
A=A 1 ={z:Gx---xG— A}, qg>1,

g-times

8) This fusion of homology and cohomology is due to J. TATE.
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16 Part I. Cohomology of Finite Groups
and obviously
Ag = A_; = Homg(Z[G], A) = A.

From the definition of the homomorphisms d, of the standard complex, we
obtain for the maps 9, in the sequence

a_ o_ O o o) o
N Ny LIy (LN IR L TN T N

the following formulas

Opx = Ngz forxe Ay = A,
(O1x)(0) =0z — forz € Ag = A,
(0qz) (01, ...,0¢) = 012(02,...,04)

+ Z?;ll(—l)ix(al, ey OOty -, Og)

+(=1)9z(o1,...,04-1) forz € Ay—1, ¢ > 1,
01z =3 cqlota(o) —z(0)) forx € A_o,
(0—g-13)(01,...,00) = ocq [0 2(0,01,...,04)

+ Zg:1<—1)i(0'1, e, 051, O'iO',U_l, Tigly--- ,O'q)

+(=1)"z(0q,...,04,0)] forz e A_g2,q>0.
The g-cocycles are therefore the maps
r:Gx---xG— A

with 04412 = 0, and the g-coboundaries among them are those maps for which
there is a y € A4—1 such that x = 0,y.

We remark that in algebraic applications only the cohomology groups of low
dimension appear. The reason for this is that only for these we have a con-
crete algebraic interpretation. The cohomological calculus would doubtlessly
acquire considerably more significance if we had a tangible interpretation for
the cohomology groups of higher dimensions as well. For small dimensions,
the cohomology groups are given as follows:

The Group H~1(G, A). We have
Z_1 =kerdy = n.A ((—1)-cocycles),
R_;=imd_ =IgA ((—1)-coboundaries).
We thus obtain (cf. §1, p.6)
H G, A) = n,A/IGA.
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§2. The Definition of Cohomology Groups 17

The Group H°(G, A). We have
Zy = ker0; = AY (0-cocycles),
Ry =im0y = NgA (0-coboundaries).

‘We obtain 0 o
H(G,A) = A% /NGA,

the norm residue group of the G-module A; this group is the main object
of interest in class field theory.

The Group H'(G, A). The 1-cocycles are the functions x : G — A with
Osx = 0, thus satisfying the property

z(o1) = ox(1)+ (o) foro,7 €.

Because this relation is similar to the one of being a homomorphism, the
1-cocycles are often also called crossed homomorphisms.

The 1-coboundaries are obviously the functions
z(oc)=0a—a, o€QG,
with fixed a € A = Ay (i.e., z = d1a).
If the group G acts trivially (i.e., as the identity) on A, then obviously Z; =
Hom(G, A) and R; = 0; therefore
H'(G,A) = Hom(G, A).
In particular, in case A = Q/Z, we obtain the character group of G:
H'(G,Q/Z) = Hom(G, Q/Z) = x(G).

When studying G-modules and their properties, one is immediately led to the
cohomology group H'(G, A) because of the following considerations:

If we start with a short exact sequence of G-modules A, B, C,
0—A-5BL0c—0

and pass to the sequence of their fixed modules A%, B¢, CY, the sequence
0 — A9 1 BG Ly €

always remains exact, but the homomorphism j is in general no longer sur-

jective. The question why exactness fails at the last term leads to a canonical

homomorphism C¢ KA HYG, A).

In fact, let ¢ € C¢. Since the homomorphism B ENVGRT surjective, there is
an element b € B with jb = ¢, but it is not certain that this element b can be
chosen from BY, i.e., in such a way that b — b = 0 for all o € G. Since

jleb—=b) =0(jb) —jb=0cc—c=0,
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18 Part I. Cohomology of Finite Groups

we can only say that ob— b lies in the kernel of B EA C, and thus in the image
of A% B, so that
iae =0ob—10, a, € A.

It is easy to verify that a, defines a 1-cocycle with coefficients in A. The only
freedom in the association ¢ — a, is the choice of b with jb = c. If we choose
a different element b’, we obtain a 1-cocycle al, that differs from a, only by
a 1-coboundary. Therefore every ¢ € C¢ defines a unique cohomology class
G, € H'(G,A), and it is easy to see that c is in the image of B¢ — C¢
if and only if @, = 0. In other words, we have a canonical homomorphism
cG S (G, A) with the property that the following sequence is exact

0— A9 5 BY 15 0% %5 HY(G, A).

In the next section we will encounter these ideas again in a more general
setting.

The Group H?(G, A). We have as 2-cocycles all functions = : G x G — A
which satisfy the equation 03z = 0, thus the equation

z(o7, p) + (0, 7) = ox(7,p) + x(0,7p), o T,pEC.

Among these we find that the 2-coboundaries are the functions such that

z(o,7) = oy(r) —y(oT) + y(o)
for an arbitrary 1-cochain y : G — A.

Long before the development of cohomology theory the 2-cocycles were known
in the theory of groups and algebras as so-called factor systems, and it
is fair to say that they historically represent the beginning of cohomological
considerations in algebra. We want to explain briefly how factor systems come
up in the theory of group extensions. This is the following type of problem.

Suppose that we are given an abelian group A, written multiplicatively, and an
arbltrary group G. We want to find all group extensions Gof A (i.e., all groups
G with a subgroup isomorphic to A) such that A is a normal subgroup in G

and G /A = G. The question now is which data (except A and G) determine
the possible solutions of this problem.

Assume first we have a solution @, so that A < G and @/A = G.If we

choose a system of representatives for the factor group G /A = @G, i.e., for

each 0 € G we choose a preimage u, € G then every element in G can be
written uniquely in the form

(1) a-uy, a€A oecG.

In order to obtain the complete group table for the group é, it obviously
suffices to know how the products u, -a (¢ € G, a € A) and uy-u, (0,7 € G)
are represented in the form (1).
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§2. The Definition of Cohomology Groups 19

Now since A is normal in G, u, - a lies in the same right coset as u,, i.e.,
(2) Uy - a=a’ - u,

for some a? € A. This gives the abelian group A a natural structure as a
G-module, because the elements o € G act on A (independently of the choice

of u,) via the rule a — a = uy - a - u;*.

The product u, - u, lies in the same coset as u,,, i.e.,

(3) Ug - Ur = 2(0,T) - Uyr with z(o,7) € A.

In this equation, the factor system x (o, 7) appears, which is eaiily seen to be a
2-cocycle of the G-module A. In fact, since multiplication in G is associative,

(Ug - Ur) - Up = Uy - (Ur - Up),
from which we get the equation
(Uo - Ur) - Up = (0, T) - Upr - Up = (0, T) - (0T, p) - Ugrp =
Ug - (Ur - Up) = Uy - T(TP) - Ur,p = 27 (T, p) - Uo - Urp
=27(7,p) - (0, Tp) - Ugrp.
It follows that
z(o,7) - x(oT,p) = 2°(7,p) - (0, Tp),

which is precisely the cocycle property.

The above analysis makes use of the choice of a system of representatives u,,.
Given a different system of representatives u/ , we get from the equation

/ /

_ /
o Ur =

u 2 (o,7) ul,

another factor system a'(o, 7). However, this system differs from (o, 7) only
by a 2-coboundary, namely by the 2-coboundary do(ul - u;!), as is easily
verified. Since the group G is completely determined by the relations (2) and
(3) (and by the relations in the groups A and G), this allows us to conclude:

The solution G of the group extension problem is uniquely determined by the
action of the group G on A, and a class of equivalent factor systems z(o, 1),
i.e., a cohomology class in H?(G, A).

Conversely, if we have made the group A into a G-module in any possible
way?), and we are given a class ¢ € H?(G, A), we always obtain a solution of
the extension problem: For the ¢ € G choose generators u, and define G as
the group generated by the elements of A and the u,, subject to the relations

a’ =uy-a-uy' and u, -u; = 2(0,7) - usr (x(0,7) a 2-cocycle in c).
Again this can be verified very easily.

9 More precisely: Recall that for a G-module A every element o € G provides an
automorphism of the group A. Thus a G-module A is precisely a pair of groups
A and G, together with a homomorphism h : G — Aut(A); the action of 0 € G
on A is given by oa = h(o)a. Thus making the group A into a G-module simply
means choosing a homomorphism from G to the automorphism group Aut(A).
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20 Part I. Cohomology of Finite Groups

Together with the groups H?(G, A) of dimension ¢ = —1,0, 1, 2, the cohomol-
ogy group H~2(G,Z) with coefficients in Z plays a special role. We will show
later that it is canonically isomorphic to the abelianization G** = G/G’
(where G’ is the commutator subgroup) of G, a fact which is heavily used in
class field theory. The main theorem of class field theory concerns an isomor-
phism between the abelianization G* and the norm residue group A /NgA
of a particular G-module A. It can be formulated in purely cohomological
terms as H~2(G,Z) = H°(G, A), and can be proven abstractly given certain
assumptions (cf. (7.3)).

§ 3. The Exact Cohomology Sequence

After having introduced the cohomology groups H?(G, A), we now want to
study how these groups behave in case either the module A or the group G
changes. We will discuss the first case in this section.

If A and B are two G-modules and
f:A— B
is a G-homomorphism, then f canonically induces a homomorphism
fq: HY(G,A) — HY(G, B),
which arises in the following way. From the map
z(o1,...,0¢) — fx(o1,...,04)

we get a homomorphism
fq: Ay — By

between the groups of cochains A, of A and B, of B with the property that

Jgt10 fq = far100q11-
Therefore these maps fit into the infinite commutative diagram

8+1
Aq q Aq+1 _ s ...

fql f§+1l

8+1
Bq ? Bq+1 —_—>

which means precisely that
z(01,...,0¢) — fx(o1,...,04)

takes cocycles to cocycles and coboundaries to coboundaries. It follows that
the homomorphism f;: A; = B, induces canonically a homomorphism

fy s HY(G, A) — H(G, B).

If c € H1(G, A), the image f,c is obtained by choosing a cocycle  from the
class ¢, and taking the cohomology class of the cocycle fx of the module B.
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We thus have a very simple explicit description of the homomorphism f,.
This is an advantage that does not occur very often in cohomology theory. In
fact, for many cohomological maps one knows only of their existence and their
functorial properties, without having an explicit description. Nevertheless, it
is equally significant that in the entire theory one almost always only works
with these functorial properties, and an explicit description of the maps is
required only in a few cases.

A first example of this typical situation is provided by the for the entire
theory fundamental connecting homomorphism §. Although this map is
still given explicitly, its definition does not exactly leave the impression of
great clarity and immediacy.

(3.1) Proposition. If

0—A-5B-21s0—0

is an exact sequence of G-modules and G-homomorphisms, then there exists
a canonical homomorphism

5.+ HY(G,C) — HTTY(G, A).

The map 64 is called the connecting homomorphism or also the §-
homomorphism.

For the construction of §, consider the following commutative diagram

0 Ay —4— B,y —1— Cyy 0
J Jo Jo

0 A, —— B, —L— C, 0
J Jo Jo

0 Agpr ——= Bgyr —— Cypn 0.

(For simplicity we have omitted the indices on the maps 4, j, 9.) The rows in
this diagram result from applying the functor Homg(X;, ) (i =¢—1,¢,q+1)
to the exact sequence 0 - A — B — C' — 0; since the G-modules X; are free
(cf. (1.6)), it follows that these rows are exact.

We denote by ag,by,c, elements of the groups of cochains Ay, By, Cy, and
write Gq, by, G4 for their images in the cohomology groups H(G, A), H1(G, B),
HY(G,C).

Assume now ¢, € H1(G, ('), so that dc, = 0. We choose a b, such that

cq = jby.
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We have job, = 0jb, = Ocq = 0, and thus 0b, € ker j,11. Hence there exists a
ag+1 With 0by = tag41. Because i0aq11 = Jiagy1 = 00bg = 0, i.e., Oagy1 =0,
we see that agy1 is a (g + 1)-cocycle of A. Now we set

6q6q == aq_;’_l.

This definition depends, of course, on the choice of the representative c, of

¢, and its preimage b,. However, if we choose another representative cfl with
/

o) and let a/ 441 be the resulting class, we have

preimage b (i.e., jbj, = ¢

Gy =g = cqg— ¢ = dcqy for a ¢ 1 = ¢g — ¢, = jbg_1 for a by,
= jbg—jby = jObg—1 = by—b,—0by_1 € ker j, = imiy = ia, = by—by—0b, 1
for an a, = Jiay = 0b, — Ob;, = i0ay = iagy1 —iagy = Oag = agr1—ag 1 =

Agt1 = qurl-
Therefore 0, is well defined; it is immediate that ¢ is a homomorphism.

As already mentioned, it is not necessary to recall the explicit definition of
the connecting homomorphism ¢ every time this map comes up. Once we
have proved the fundamental property of this map, its explicit definition is
used only occasionally. This fundamental and most important property is
given by the following theorem, which can be considered the main theorem of
cohomology theory.

(3.2) Theorem. Let

0—A-3BLs0c—0

be an exact sequence of G-modules and G-homomorphisms. Then the induced
infinite sequence

o HY(G, A) 25 HYG, B) 2% HYG,C) 2% HITY G, A) — -

is also exact. It is called the exact cohomology sequence.

Proof. The homomorphisms 4,4, j, and d, are respectively induced by:
Qg &> iGq, bg > Jby, Cq > Qgi,
where ¢, = jb, and 0by = ia4y1. It follows that
Jq©1q =0, because a, — ia, — jiag =0,
g0, =0, because by — jby + ag1 = 0 (we have iagy1 = dby = 0),

g1 00, =0, because ¢, — ag1 — iag41 = Ob, € OB,y.

From this we obtain the inclusions

imi, C kerj,, imj, C kerdy, imd, C kerig;.
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Let Eq e kerjq so that jb, = Ocq—1 for a cq—1. If we choose a by_1 with
Jbg—1 = cq—1, it follows that j(b; — 0bs—1) = 0. Hence we may assume from
the beginning that the representative b, of Eq satisfies jb, = 0. Then there
exists an aq with b, = ia,, and this a4 is a cocycle since ida, = 9b, = 0.
Hence by = iqa, € imiy, which proves the inclusion imi, 2 kerj,.

Let ¢, € ker §,. By definition of d4, there are elements a,; and b, such that
04Cq = Tg+1 = 0, tagy1 = 0by, and ¢y = jby. Because @411 = 0 we have
ag+1 = Oaq, which implies that d(b; — iay) = 0 and ¢, = j(by — iaq). From
this we obtain ¢, = j,(bg — ia,), which shows that im j, 2 ker dy.

Let @1 € kergq_H so that iaq41 = 0bg for some by. If we let ¢, = jby, then
Ocq = 0jbg = jOby = jiag+1 = 0. This shows that ¢, is a cocycle and implies
g1 = 0qCq € imy. It follows that imé,; 2 kerig4q, which completes the
proof of the exactness of the cohomology sequence.

When we introduced the cohomology groups we already mentioned that work-
ing with a complete free resolution of G leads to a unification of homology and
cohomology groups. The essential aspect here is not so much to have a unified
notation but rather the existence of an exact sequence ranging from —oo to
400 that involves both the homology as well as the cohomology groups.

Theorem (3.2) is applied mostly frequently in the following form: If an arbi-
trary term in the exact cohomology sequence

oo — HY(G,A) — HY(G,B) — HY(G,C) — HIT (G, A) — ---
vanishes, then the preceding map is surjective and the subsequent map is

injective. This type of argument will allow us frequently to prove important
isomorphism results. We state this in the following corollary.

(3.3) Corollary. Let

0—A-5BL0—0
be an exact sequence of G-modules. If H1(G,A) = 0 for all g, then jq :
HY(G,B) — HYG,C) is an isomorphism. Similarly, if H1(G,B) = 0
(resp. H1(G,C) = 0) for all q, then &, : HY(G,C) — HITY(G, A) (resp. i, :
HY(G,A) — HY(G, B)) is an isomorphism.

Because of this corollary the G-modules which have only trivial cohomology
groups play a distinguished role.

We continue our discussion of the connecting map A“ S H Y@, A) from p. 17
and show that the cohomology sequence (3.2) induces an exact sequence which
terminates on the left.
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(3.4) Theorem. Let
0—A-5B-L0—0

be an exact sequence of G-modules. Then the following sequence is exact:

0 AG 1y BG 1y 06 Oy gl A) 5 HY(G, B) b -

Proof. The homomorphism C¢ S H (@G, A) is defined as the composition
C¢ — C%/NgC = HY(G,C) 2% HY (G, A);

hence it suffices to show exactness at the term CS. To show im j C kerd
assume ¢ € imj C CY. Then ¢ = jb with b € B, and the claim follows from

dc = do(c+ NgC) = do(jb+ NaC) = dojo (b + NaB) = 0.

For the opposite inclusion ker § C im j, consider ¢ € kerd. Then ¢ € C¢ and
dc = do(c+ NgC) = 0. It follows from (3.2) that we have the identity

c+ NgC Zjo(b—l-NgB) = jb+ NgC,

hence ¢ = jb + Ngc'. If we choose a b/ € B with jb/ = ¢/, it follows that
c=jb+ Ng(jb') = jb+ jNgb' € B, which proves our claim.

Because of the exact sequence (3.4) the fixed modules A%, BY, and C¢ are
often defined as the zeroth cohomology groups; in particular, in case one is
only interested in cohomology groups of positive dimension.

In the following we consider various compatibility properties of the connecting
homomorphism §.

(3.5) Proposition. If

0 A—+s B, 0
I s [n
0 A g I, o 0

is a commutative diagram of G-modules and G-homomorphisms with exact

rows, then _ -
far1 009 =0q0hq;
in other words, the following diagram is commutative:

HY(G,C) —21s HIt(G, A)

jﬁq [

HY(G,C') —21s Hat (@, A,
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This follows almost immediately from the definition of ¢,. Let ¢, € HY(G, C).

If we choose by and ag1 such that ¢, = jby and iag1 = Obg, then 6,¢4 = Ggy1,
so that (fg41004)Cq = fer1(Agr1) = fagyq- If we set ¢, = heg, b, = gby and
ay1 = fagya, it follows that ¢ = j'b, and 9b), = i'ay ,,, from which we obtain

S e e B -
(6g 0 hg)eq = 04¢'g = @ g11 = fag1 = fgr1064)C, 1., fgy1 08, =3040hy.
The connecting homomorphism ¢ is “anticommutative”:

(3.6) Theorem. Assume the diagram of G-modules and G-homomorphisms

0 0 0
0 A A A" 0
0 B’ B B 0
0 c’ C c” 0
0 0 0

is commutative with exact rows and columns. Then the diagram

H (@G, C") —2— HY(G, ")
I |-
HY(G, A") —— HTY(G, A')
commutes.

Proof. Let D be the kernel of the composite map B — C”; thus the sequence
0—D-—B-—C"—0

is exact. We define G-homomorphisms

i: A= A® B’ by i(d) = (a,b), where a (resp. V') is the image of ¢’ in A
(resp. of @’ in B'),

j:A® B — D by j(a,b) =dy —dy, where d; (resp. dg) is the image of a
(resp. of ¥') in D C B.

It is easy to verify that with these definitions the sequence
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0— A 5AeB D0

is exact, and that the diagram

Al A A B" c"
R
A —is AeB D B c"
—id l(o,id) i J id
Al B’ (;’ c ol

commutes. Because im (D — B”) C im (A” — B”) and A” — B” is injective,
there is a G-homomorphism D — A” which extends the above diagram. Sim-
ilarly, since im (D — C) C im (€' — C') and C’ — C is injective, there is an
analogous G-homomorphism D — C”. Since the resulting extended diagram
is commutative, it follows from (3.5) that the following diagram

HI7Y(G,C") —2 HY(G,A") —— HHG, A')

| T

HI (G, C") —— HY(G,D) —2— HITY(@G, A

| l [~

HYG,C0") —— HIY(G,C") —— HIY(G,A),

id id

id

commutes as well, which immediately implies the theorem.

(3.7) Proposition. Let {A, | v € I'} be a family of G-modules. Then

H(G, P A) =P HIG, A,).

Proof. If we set A =@, A,, we have from (1.5) a canonical isomorphism

Ay = Homg(X,, A) = @ Homa (X, A) = @D (A,

L

and the proposition follows from the infinite commutative diagram

Ayy B A,

| |

T @(Ab)qfl - @(At)q —

L
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The same reasoning applies to the direct product [], A, in place of the direct
sum @, A,, using the evident isomorphism

(HAL)(] = Homg (X, HAL) = HHomG(Xq, A) = H(AL)‘I'

L

Therefore we also have
(3.8) Proposition. H(G,[][, A) =[], H4(G,A,)

The G-induced modules. We explained already in (3.3) that the exact co-
homology sequence yields isomorphism theorems in case the underlying exact
sequence contains a G-module with only trivial cohomology groups. A par-
ticular class of such G-modules are the G-induced modules, which we will
make use of in many of the proofs and definitions below.

(3.9) Definition. A G-module A is called G-induced if it can be represented
as a direct sum
A= @ oD

with a subgroup D C A.

In particular, the G-module Z[G] = @, 0(Z-1) is G-induced, and it is clear
that the G-induced modules are represented simply as the tensor products

Z[G)® D

with arbitrary abelian groups D. In fact, if we consider D as a trivial G-
module, we have the G-isomorphism

ZGloD=(Pzo)eD=PZoxD)=PoZz D).

ceG oeG ceG

More generally, we have

(3.10) Proposition. Let X be a G-induced module and A an arbitrary G-
module. Then the module X ® A is also G-induced.
By assumption X = @, ., oD, which implies

X®A:(@UD)®A%@(UD)Q@(UA)%@U(DQ@A).

oceG oceG ceG
(3.11) Proposition. Let A be a G-induced module, and g a subgroup of G.

Then A is a g-induced g-module. If g is normal in G, then A9 is a G /g-induced
G/g-module.
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Proof. Let A= @,.;0D. Then we can write
A= @Prro - D)
ocg T ocg T

where 7 ranges over a system of right coset representatives of G with respect
to g. Hence A is g-induced.

Assume ¢ is normal in G. We show the G /g-module A9 has the representation
A9 = @ 7N,D.
T€G/g

Because of the direct sum decomposition A = @ ., oD, the sum on the
right side of the above identity is obviously direct. Since VgD C A9, it is also
contained in AY9. Conversely, suppose a € AY9. The element a has a unique
representation as a = ) . 7d, with d; € D. If o € g, it follows that

a=o0a= Z ord, = Z 0Tdor,

T€G T€EG
and by uniqueness that d. = d,-. From this we obtain the representation

a= Z ZTUdm = ZT(Z od;) = ZTNg(dT),

T O0€g T gEg

where 7 ranges over a system of left coset representatives of G/g. This proves
that A9 is G/g-induced.

(3.12) Definition. We say that a G-module A has trivial cohomology if
H(g,A)=0
for all ¢ and all subgroups g C G.

The next theorem is crucial:
(3.13) Theorem. Every G-induced module A has trivial cohomology.

Proof. Because of (3.11) it suffices to prove H?(G, A) = 0, i.e., the sequence

-+ — Homg (X,, A) -2 Home(Xgsq, A) —> -

is exact. Let A =@ ., 0D, and let 7 : A — D is the natural projection of A
onto D. Then the map f — mof induces an obviously bijective homomorphism

Homg (X, A) — Hom(X,, D),

and we may identify Homg(X,, A) with Hom(X,, D). Therefore it suffices to
consider the sequence

.-+ — Hom(X,, D) — Hom(Xy441,D) — -+ -,
which is exact by (1.7).
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Because G-induced modules have trivial cohomology, we obtain from (3.3)
a very important potential application of G-induced modules, using the fact
that every G-module A can be viewed as a submodule as well as a factor
module of a G-induced module, as we explain next.

As before, we denote by I the augmentation ideal of Z[G], and by Jg the
factor module Jg = Z[G]/Z-N¢. By (1.2) all terms in the exact sequences

0—Ig —Z[G] =~ Z — 0,
0—Z 527G — Jo—0.

consist of free Z-modules. From (1.8) we immediately conclude

(3.14) Proposition. For all G-modules A we have the exact sequences

0—Ic®A—ZGeA— A —0,
0— A —ZG®A—Jcg®A—0.

Since the G-module Z[G] ® A is G-induced by (3.10), these exact sequences
allow us to view A as a submodule as well as a factor module of a G-induced
module.

Because Z[G] ® A is cohomologically trivial, applying the exact cohomology
sequence to the exact sequences from Proposition (3.14) yields isomorphisms

§: H1 (g, A') — Hi(g, A) with Al = Jg ® A,
571 Htl (g, A7) — Hi(g, A) with A l=Is® A
for every ¢ and every subgroup g C G; this uses (3.3). We want to iterate this:

For every integer m € Z set
A" =Jo® - R Jag®A, ifm >0,
—_——

m-times

A" =TI @ - @ Ic®A, ifm<O0.
|m|-times
From the composition of the isomorphism § (resp. ') we obtain maps
HI™ ™ (g, A™) — HI= (=N (g A™=1) — ... — HI(g, A)
and thus isomorphisms
oM HI™™ (g, A™) — H(g, A) (m e Z).
This shows:
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(3.15) Proposition. Let A be a G-module. There are G-modules

A" =Ja® - QJag® A (m >0), resp.
A=l ® - - RIg® A (mSO)

with the property that the m-fold composition of the connecting homomor-
phism § induces for every q and every subgroup g C G an isomorphism

5™ HI (g, A™) — H(g, ) (m € Z)

We will frequently use the isomorphism H9(g, A) = H?~™(g, A™) to deduce
from statements about cohomology groups of dimension ¢ analogous state-
ments for a higher or lower dimension. In particular, this technique will allow
us to reduce many definitions and proofs to the case of zero-dimensional coho-
mology groups, which we understand much better that the higher-dimensional
analogues. This method is called the method of dimension shifting!?.

The following theorem gives a first example of the usefulness of this method:

(3.16) Theorem. Let A be a G-module. Then H(G, A) is a torsion groups
and the orders of the elements in H1(G, A) divide the order n of the group G

n- HY(G, A) = 0.

Proof. If ¢ = 0, then n - H°(G, A) = 0, because H°(G,A) = A%/NgA
and na = Nga for all a € A%. The general case follows from this and the
isomorphism HY(G, A) = H°(G, A?).

(3.17) Corollary. A uniquely divisible'") G-module A has trivial cohomol-
ogy-

If A is divisible, the map ‘multiplication by n’; i.e., n-id : A — A, is bijective
for every natural number n, and therefore induces isomorphisms

n-id: H(g, A) — H(g,A)  (9C G).
If n = |G|, it follows from (3.16) that H9(g,A) =n- H(g,A) = 0.

19 Cohomology theory can be based directly on this principle. In fact, by (3.15)
HY(G,A) = H°(G, AY),
where A? is given canonically by A: A? = Jo ® ... ® Joa ® A for ¢ > 0, resp.
Al = Ic ®...® I ® A for ¢ < 0. Therefore one may define the cohomology
groups of the G-module A from the beginning as the quotient group
HY(G, A) = (AY)¢ /NG A“.
For cohomology theory developed along these lines, see C. CHEVALLEY [12].

1) An abelian group A is said to be uniquely divisible if for every a € A and every
natural number n the equation nx = a has a unique solution z € A.
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In particular, the G-module Q (on which the group G always acts trivially)
has trivial cohomology. From the cohomology sequence associated with the

exact sequence
0—Z—Q—Q/Z—0

we obtain

(3.18) Corollary. There is a canonical isomorphism

H?*(G,Z) = H'(G,Q/Z) = Hom(G, Q/Z) = x(G).
The group x(G) = Hom(G,Q/Z) is called the character group of G.

We end this section with the computation of the group H2(G,Z), which
plays an important role in class field theory. We denote the commutator sub-
group of G by G, and its abelianization by G** = G/G".

(3.19) Theorem. There is a canonical isomorphism H~2(G,Z) = G .

Proof. Since Z[G] is a G-induced module, it has trivial cohomology, and we
obtain from the exact cohomology sequence associated with

0—Ig —Z[G)—~Z—0

the isomorphism 9 1
0:H (G, Z) — H (G, Ig)

Since HY(G,Ig) = Ig/I% it suffices to produce an isomorphism G/G’ =
Ig/I%. (Note that G is written multiplicatively and I is written additively.)
For this we consider the map

G— Ig/I%, 0 (0 —1)+I3.

Because 07— 1=(c—1)+ (7t —1)+ (0 — 1) - ( — 1), this map is a homo-
morphism. Since I/1 é is abelian, the kernel of this homomorphism contains
the commutator subgroup G’, which implies that we have a homomorphism

log: G/G' — Ig /1.

In order to show that the map log is bijective, we use that Ig is the free
abelian group generated by o — 1, where o € G \ {1}. Hence setting

c—1—0-G
defines an evidently surjective homomorphism from I¢ to G/G’. Because
(c—1)-(t1=1)=(o71=1)—=(6=1) = (1= 1) — o170 77 !G' =1,
the elements in I lie in the kernel, so that we obtain a homomorphism
exp: Ig/IE — G/G', (0 —1)+ I& — oG’

with the property that logoexp = id and exp olog = id. Therefore the map
log : G/G' — Ig/I% is an isomorphism.
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It is easy to see that for the G-module Z we have H (G, Z) = n,Z/IcZ = 0,
H°(G,Z) = Z/nZ, and H'(G,Z) = Hom(G,Z) = 0. Thus we have deter-
mined the cohomology groups H(G, Z) of dimensions ¢ = —2,—1,0,1,2:

H™ (G, Z)=G*, H'(G,Z)=0, H(G,Z) = Z/nZ,
HYG,Z) =0, H*(G,Z) = x(G).

We mention without proof that there is a canonical isomorphism (by duality)
H Y9G, Z) = x(HY(G,Z)) forall ¢g>0.

§ 4. Inflation, Restriction and Corestriction

In the previous section we studied the dependence of the cohomology groups
H9(G, A) on the module A; now we consider the behavior of these groups in
case the group G varies. This mainly concerns the following questions.

Let A be a G-module and let g be a subgroup of G. Then A is always a g-
module and A9 is a G/g-module, provided g is normal in G. What are the
relations among the cohomology groups

H(G/g, A7), H*(G,A) and H%(g, A) ?
We first restrict our considerations to the case of positive dimension g > 1.

If g is normal in G, we associate with every g-cochain
x:Glgx--xGlg — AY

a g-cochain
y:Gx - xG— A

by defining y(o1,...,04) = z(01-9,...,04 - g). We call this y the inflation
of = and denote it by )
y = inf x.

It is easy to see that the map x — inf x is compatible with the coboundary
operator 0, i.e., Og41 oinf = inf 0 9,41. Hence cocycles are mapped to cocycles
and coboundaries to coboundaries, and we obtain a map on cohomology:

(4.1) Definition. Let A be a G-module and g a normal subgroup of G. The
homomorphism

inf, : HY(G/g, A%) — HY(G, A), ¢>1,

induced by the homomorphism from the g-th group of cochains of the G/g-
module A9 to the g-th group of cochains of the G-module A is called inflation.
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Along with inflation we obtain another cohomological map by associating with

every g-cochain
r:Gx---xG— A

its restriction
Yyigx---xg— A

from G x -+ X G to g X -+ x g. We call this g-cochain y the restriction of x

and denote it by
Yy =Tresw.

The crucial point here is again that the cochain homomorphism res commutes
with the operator 0, i.e., 0,41 o res = res o 9,41, hence there is an induced
map on cohomology groups:

(4.2) Definition. Let A be a G-module and g a subgroup of G. The homo-

morphism
resq:Hq(G,A)—>Hq(g,A), QZL

induced by the restriction of the cochains of the G-module A to the group g
is called restriction.

To make sure the cohomological maps defined above fit into the general theory,
we have to verify that they are compatible with the canonical homomorphisms
already given. This is the content of the following propositions.

(4.3) Proposition. Let A and B be two G-modules, g a normal subgroup

of G, and
f:A— B

a G-homomorphism. Then the following diagrams

H(G[g,A%) —L— HUG/g,B9) HG,A) —L> HG, B)

linfq linfq lrosq lrcsq

HY(G,A) —— HY(G,B), Hi(g,A) —— Hi(g,B)

are commutative. In the second diagram the normality of g in G is not needed.

Note here that the G-homomorphism f : A — B induces a G/g-homomor-
phism f: A9 — B9 as well as a g-homomorphism f: A — B.

(4.4) Proposition. Let
0—A—B—C-—0

be an exact sequence of G-modules and G-homomorphisms, and let g be a
normal subgroup of G. If the sequence

0—AY — B —CY—0

is also exact, then the diagram
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H9(G/g,0%) —2— HT(G/g, A9)

linfq linqurl
HY(G,C) —2— H™Y(G,A)
commutes.

(4.5) Proposition. Let
0—A—B—C—0

be an exact sequence of G-modules and G-homomorphisms, and let g be a
subgroup of G. Then the diagram

HY(G,C) —— HI(G, A)

erSq lrequrl

Hq(ga O) L} Hqul(ga A)
commutes.

Propositions (4.3), (4.4) and (4.5) are easy to verify. The proof of the last two
statements follows essentially from the fact that the inflation and restriction
maps commute with the operator 9, together with the definition of . We
leave the details to the reader.

If we compose inflation and restriction, we obtain the following relation:

(4.6) Theorem. Let A be a G-module and g a normal subgroup of G. Then
0 — HY(G/g,A%) 2 HY(G, A) X H'(g, A)

is exact.

Proof. To show the inflation map is injective, let « : G/g — A9 be a 1-cocycle
whose inflation inf z is a 1-coboundary of the G-module A. Then

infz(oc) =z(c-g9g) =0a—a, acA

Hence we have for all 7 € g the equation ca —a = o7a — a, i.e., a = Ta which
implies a € AY. Therefore x(0g) = 0 - ga — a is a 1-coboundary.

In order to prove the exactness at the term H!(G, A), consider a 1-cocyle
x:G/g— A9 of A9. If o € g, it follows that

res o inf x(0) = inf z(0) = x(og) = 2(g9) = =(1).
But now z(1) = z(1-1) = x(1)+z(1) = 0 which implies resoinf = 0. Therefore

iminf C kerres.
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Conversely, let x : G — A be a 1-cocycle of the G-module A whose restriction
to g is a 1-coboundary of the g-module A:

z(r)=1a—a, a€ A, foral 7 €g.

If we subtract from z the 1-coboundary p: G — A, p(0) = oa —a, 0 € G,
we obtain a 1-cocycle 2’(c) = (o) — p(0) in the same cohomology class with
/(1) =0 for all 7 € g. Then

(o —71)=2"(0)+ 02 (1) =2'(0) forallTeg,
and, on the other hand,
2(r-0)=12'(1) +72'(0c) = 72'(6) forallT € g.

If we now define y : G/g — Aby y(o-g) = 2'(c), we have y(o-g) € A9 because
y(o - g) = y(ro - g) for all 7 € g, and y defines a 1-cocycle with infy = 2.
This proves that kerres C iminf.

The analogue of Theorem (4.6) for higher dimensions holds only under certain
conditions:

(4.7) Theorem. Let A be a G-module and g a normal subgroup of G. If
Hi(g,A) =0 fori=1,...,¢— 1 and q > 1, then the sequence
0 — HY(G/g, A%) 25 H9(G, A) 2% HY(g, A)

is exact.

We prove this by induction on the dimension ¢, using dimension shifting (cf.
§3.) and Theorem (4.6) as the initial induction step. If we set B = Z[G] ® A
and C = Jg ® A, we have from (3.14) the exact sequence

0—A—B—C—0.

Because H!(g, A) = 0, it follows from Theorem (3.4) that the sequence
0—A% — B —C7—0
is also exact. Hence we have the following commutative diagram
0 —— HIY(G/g,C9) 22 HI-Y(@,C) =5 HI71(g,0)
I I I
0 —— HY(G/g,A%) —2— HI(G,A) —=— Hi(g, A).

Since B is G-induced and g-induced, and BY is G/g-induced (cf. (3.10) and
(3.11)), the connecting maps J are isomorphisms (cf. (3.3)). It follows that

H'(g,C) = H'(g,A) =0 fori=1,...,q—2.

Hence if we assume by induction that the upper sequence in the above diagram
is exact, then this also holds for the lower sequence.
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Of course, one will ask why we have introduced the maps inf and res only in
case of positive dimensions ¢ > 1 instead of defining such maps analogously
using cochains for all negative dimensions as well. However, this is not possible.
In fact, the crucial property of inflation and restriction is that by (4.4) and
(4.5) respectively they are transformed into one another through dimension
shifting by the operator §, and one would want this property to hold for a
general definition in all dimensions as well. Now for inflation it is necessary
to restrict to ¢ > 1; this follows essentially because if 0 -+ A - B — C — 0
is an exact sequence of G-modules, then 0 - A9 — B9 - C? — 0 (g C G)
is in general not exact, i.e., the first sequence induces a 6-homomorphism on
cohomology groups, but the second does not.

The situation is different for restriction, however. In fact, this map can be
extended to all dimensions ¢ < 0. For example, if ¢ = 0, one obtains from
a+ NgA—a+ N,A, ac A% C A9,
a homomorphism
resg : HY(G, A) = A°/NgA — H(g, A) = AY/N, A,

with the property that Proposition (4.5) remains valid for ¢ = 0. We pin this
down in the following lemma:

(4.8) Lemma. Let 0 — A % B C — 0 be an exact sequence of G-modules,
and let g be a subgroup of G. Then the following diagram commutes

HO(GaC) L) Hl(G7A)

lreso lresl

Ho(gac) L’ Hl(g,A)

Proof. Let ¢ € C% be a 0-cocycle of the G-module C and ¢ = ¢ + NgC' its
cohomology class. Then resoc = c + NyC, i.e., cis also a 0-cocycle for the
g-module C. If we choose b € B with jb = ¢, then jOb = dc = 0 implies that
there exists a 1-cocycle a1 : G — A such that ia; = 0b. By definition of § we
have 6¢ = @y, and therefore dresg ¢ = T€sja; = resya; = res0c.

Unfortunately, a similarly elementary definition of the restriction maps res,
in dimensions ¢ < 0 cannot be given. Nevertheless, we will see that if such
a restriction is specified for a single dimension, say ¢ = 0, the compatibility
condition in (4.5) uniquely determines all other restriction maps. This leads
us toward an axiomatic approach to restriction as follows.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

§4. Inflation, Restriction and Corestriction 37

(4.9) Definition. Let G be a finite group and g a subgroup of G. Then
restriction is the uniquely determined family of homomorphisms

res, : HY(G, A) — H%(g, A), qeZ,
with the properties:

(i) If ¢ =0, then
resg : HY(G, A) — H%(g,A), a+ NgAw— a+ N,A (a€ A%).

(ii) For every exact sequence 0 - A — B — C — 0 of G-modules and
G-homomorphisms, the following diagram is commutative

HY(G,C) —— HI(G, A)

lI‘CSq lresq +1

Hq(g70) L Hq+1(g7A)

The restrictions res, are obtained from resy by dimension shifting as follows:

By (3.15) we have the isomorphisms
§7: HY(G, A?) — H(G, A) and 67 : H"(g, A7) — H(g, A),

given by the g-fold compositions of the connecting homomorphism ¢§. Condi-
tion (ii) now means that we have to define res, by the commutative diagram

HY(G, A1) = HY(G, A)

lrcsa lresq
Ho(gqu) 6—(1) Hq(g7A)

This also shows uniqueness of the restriction maps. In particular, the restric-
tions res, for ¢ > 0 defined in this way coincide with those introduced earlier.

It remains to show that the homomorphisms res, satisfy condition (ii). To this
end we consider the following diagram

HO(G, C9) g HY(G, A7)
res (_1)q6q res
” H(g,C1) 2 l H'(g, A9)
Hq(GaC) . H‘H—l(G,A) (—1)259
res 6(1 res
H(g,C) 2 H(g, A),
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where we have used that from the sequence 0 -+ A — B — C' — 0 we obtain
by induction using Proposition (1.2) and Lemma (1.9), the exact sequence

0— A?— B! — C?7—0.

In the above diagram the upper square commutes by (4.8). The commutativity
of the two side diagrams follows immediately from the definition of the restric-
tion maps by dimension shifting. The back and front diagrams are obtained
by composing ¢ squares of the type (3.6); hence by (3.6) they also commute.
Therefore the commutativity of the upper square implies the commutativity
of the lower square, which completes the proof.

Concerning an explicit description of the homomorphisms res, for ¢ < 0, i.e.,
the question of how the individual cocycles behave under these mappings, we
remark that only by extensive calculations one can achieve some results, which
in turn are hardly useful because they are far too technical. Nevertheless, our
remarks on p. 21 about the general nature of cohomological methods also apply
here. It is essentially the functorial properties of the restriction that come up,
and only in small dimensions, where we have a concrete interpretation of the
cohomology groups, we occasionally have to use an explicit description.

Using the isomorphism from Theorem (3.19), we point out a special case of a
restriction which is important for class field theory:

(4.10) Definition. Let g C G be a subgroup. The homomorphism
Ver : G2 — ¢2P

induced by the restriction res_o : H 2(G,Z) — H~2(g,Z) is called the
Verlagerung or transfer from G to g.

This canonical homomorphism can also be defined using group theoretic in-
stead of cohomological methods, although this requires some effort and in-
volves quite a bit of formulas. Cf. [16], 14.2.

In addition to restriction, there is another map in the opposite direction
cory : Hi(g,A) — HY(G, A),

the corestriction. As with restriction, corestriction is completely determined
once it is given for a single dimension. Nevertheless, before giving the general
definition, we explain this map in the two dimensions ¢ = —1 and ¢ = 0:

In case ¢ = —1 we define a homomorphism
cor_y : H ' (g, A) — H (G, A)

b
Y a+IjA— a+IgA (ae n,AC NeA).
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In case ¢ = 0, we obtain a homomorphism
corg : H(g, A) — H°(G, A).

b
Y a+ NgAvr— Ngjga+ NgA (a € A9).

Here we let Ngjga = 3, cq/, 00 € A€ for a € A9, where o € G//g means
that o ranges over a system of left coset representatives of g in G.

The following lemma is the analogon of (4.8) for the corestriction:

(4.11) Lemma. Let 0 — A % B % C = 0 be an exact sequence of G-
modules. Then the following diagram is commutative

Hﬁl(gac) L HO(97A)

lCOT7 1 lCOI‘o

H YG,C) —— H°(G,A)

Proof. Let ¢ € n,C be a (—1)-cocycle for the class ¢ = c+1,C € H *(g,C),
thus ¢ € n,C is a (—1)-cocycle for the class cor_;¢ = c+ IgC € H~Y(G, ).
If we choose b € B with jb = ¢, we have j0b = Oc = Ngzc = 0 which implies
that there exists a 0-cocycle a € A9 with ia = 0b = Nyb. By definition
6¢ = a = a + NyA, therefore corgdc = Ng/ya + NgA € H(G, A). On the
other hand, dcor_1¢ = §(c + I¢C). If we choose the same b € B with jb = ¢
as above, then 9b = Ngb = Ng/gNyb = Ng/q(ia) = i(Ng/ga) and we have
d(c+1cC) = Ng ga+NgA. Therefore corgdc = Ng qa+NgA = §cor_;e.

Similar to restriction, we define corestriction using an axiomatic approach:

(4.12) Definition. Let G be a finite group, and let g be a subgroup of G.
Then corestriction is the uniquely determined family of homomorphisms

cory : Hi(g,A) — HY(G,A), qe€Z,
with the properties:

(i) If ¢ =0, then
corg : H%(g, A) — H°(G,A), a+ NgA+ Ngjga+ NgA (a € AY).

(ii) For every exact sequence 0 — A — B — C' — 0 of G-modules and
G-homomorphisms, the following diagram is commutative

Hq(g7C) —§> Hq+1(g7A)

lcor q lcorq +1

HY(G,C) —— H™Y(G,A).
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Exactly as for the restrictions, the homomorphisms cor, arise from the core-
striction corg in dimension 0 by dimension shifting:

From (3.15) we have the isomorphisms
§7: HY(G,A%) — HY(G, A) and 67 : H%(g, A?) — H(g, A),

and by (ii) the map cor, is uniquely determined by the commutative diagram

HO(g’Aq) 5—‘1) Hq(gvA)

lcoro lcorq

HO(G, A7) — HY(G, A).
In particular, because of uniqueness and (4.11) we recover the homomorphism

cor_; introduced on p. 38. The fact that (ii) holds is verified in the same way
as for restriction using the following diagram, together with (4.11) and (3.6),

H~Y(g, 09t d HO(g, A7)

cor
(_1)q+15q+1

sa+1 H_l(G, Cq+1) J l HO(G7 Aq-‘,—l)
H(g,C) 2 Ht (g, A) (—1)atigatt
cor 6q+1 cor
HY(G,C) 0 HITY(G, A).

We remark that one can define the corestrictions for negative dimensions very
easily by a canonical correspondence between cochains, analogously to the
restrictions for positive dimension. However, we will not pursue this further.
In view of (4.10) we now want to prove the following theorem:

(4.13) Theorem. Let g C G be a subgroup. The homomorphism
kg — G2

induced by the corestriction cor_o : H=2%(g,Z) — H~2(G, Z) coincides with
the canonical homomorphism induced by og' — oG'.

This follows, using the proof of (3.19), from the commutative diagram

H2(g,Z) —*— H (g, 1)) = I,/I? <%~ g

lcor,g lcor,l lm

H2(G,Z) —— H (G, Ig) = Ig/T% <2 G2,
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in which, strictly speaking, the map cor_y : H !(g,1,) — H (G, Ig) is
the composition of the natural map H '(g,1,) — H '(g,1z) and cor_; :
f{il(gij) - E{il((;aIG)‘

The following relation between restriction and corestriction is important:

(4.14) Theorem. Let ¢ C G be a subgroup. Then the composition
HY(G,A) = H(g, A) =5 HI(G, A)
is the endomorphism
corores = (G : g) -id.
Proof. Consider the case ¢ = 0. If @ = a + NgA € H°(G, A), a € A%, then
corgoresg(a) = corg(a+NyA) = Ng/ga+NgA = (G : g)-a+NgA = (G: g)-a.
The general case follows from this by dimension shifting. In fact, the diagram
HO(G, A7) 2270, [O(@G, A9)

aql JJQ

f{q((;,z4) corgoresg }{q((;714)

commutes, and since the upper horizontal map is (G : g) - id, it follows that
the same holds for the lower horizontal map, i.e., corgores, = (G : g) -id.

Because the restriction and corestriction maps res and cor commute with
the connecting homomorphism ¢, they also commute with maps induced by
G-homomorphisms:

(4.15) Proposition. If f : A — B is a G-homomorphism of the G-modules
A, B, and g is a subgroup of G, then the following diagram commutes

HY(G, A) —L HY(G, B)

resjjcor TESITCO[’

H(g,A) —— H(g, B).

This is clear in case of dimension ¢ = 0, and the general case follows easily
by dimension shifting. In fact, the homomorphism f : A — B induces a
homomorphism f : A2 — B?, and in the following diagram
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HO(G, A%) ! H°(G, BY)
res — 5q res
> H°(g, A7) ] H°(g, BY)
HY(G, A) ! H(G, B) 5
cor 9 cor
res f res
(g, 4) (g, B)

all vertical squares are commutative. Hence the commutativity of the lower
diagram follows from that of the upper one.

Since the cohomology groups H?(G, A) are abelian torsion groups, they are di-
rect sums of their p-Sylow groups, i.e., the groups H?(G, A), of all elements
in H1(G, A) of p-power order:

HY(G, A) = P HYG, A),.

The group HY(G, A), is often called the p-primary part of H?(G, A). For
the restriction and corestriction maps on these p-primary parts we have the
following:

(4.16) Theorem. Let A be a G-module, and G, a p-Sylow subgroup of G.
Then the restriction

res: H1(G,A), — HY(G,, A)
is injective, and the corestriction

cor: H1(G,,A) — HY(G,A),

is surjective.

Proof. Since corores = (G : G)) - id, and since (G : G,) and p are relatively
prime, the mapping H4(G, A), SR, HI(G, A), is an automorphism. Hence
if x € HY(G,A), and resx = 0, it follows immediately from cor oresz = 0

that = = 0, which shows the injectivity of res on H1(G, A),.

On the other hand, H?(G,, A) consists of elements whose order is a p-power
(cf. (3.16)), so that cor H4(Gp, A) C HY(G, A),. Since cor o res is a bijection
on HY(G, A),, this inclusion is an equality.

We often encounter the problem that we want to show that certain cohomology
groups vanish. In many of these cases we will use the following consequence
of Theorem (4.16), which reduces this problem to the case of p-groups:
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(4.17) Corollary. If for every prime p the group H4(G,, A) = 0 for a p-Sylow
subgroup G, of G, then we have H1(G, A) = 0.

Proof. Since res : HY(G, A), — H(G,, A) is injective, the assumption im-
plies that all p-Sylow groups H(G, A), are trivial; thus H9(G, A) = 0.

We end this section with a generalization of the notion of a G-induced module;
we will use this type of G-modules in global class field theory.

(4.18) Definition. Let G be a finite group, and let g be a subgroup of G. A
G-module A is called G /g-induced, if it has a representation

A= @ oD,

c€G/g

where D C A is a g-module and o ranges over a system of left coset represen-
tatives of g in G.

For g = {1} we obviously recover the G-induced modules from (3.9). As a
generalization of the cohomological triviality of G-induced modules, we have
the following result, which is often referred to as Shapiro’s Lemma:

(4.19) Theorem. Let A =P, ¢/, 0D be a G/g-induced G-module. Then
HY(G,A) = H(g, D);
this isomorphism is given by the composition
HY(G, A) == Hi(g, A) = H'(g, D),

where 7 is induced by the natural projection A — D.

We give a proof using dimension shifting. Let A = @", 0;D, where o; ranges
over a system of left coset representatives of G/g, in particular let o1 = 1. For
q = 0 we define a map in the opposite direction of the homomorphism

A% /NgA X2 A9/N,A =5 DI/N,D

by v: DI/NyD — AY/NGA, v(d+ NyD) = >1" 0;d + NgA. It is easy to
verify that (7T ores)or = id and vo (7 ores) = id. Therefore 7 ores is bijective.

In case of arbitrary dimension ¢ we now set

Aq:JG®...®JG®A Aq:]G®...®]G®A
Di=Jo® - ®Jag®D resp. Di=Ia® - ®Ic®D
Di=J,® --®J;@D Di=1,®---®@I,®D

depending on whether ¢ > 0 or ¢ < 0. Because A = EB:L o; D we have
Jo =Jy ® K, resp. Ie =1, K_,
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with the g-induced modules

K, = @ T(ZZ%?[I) and K_; = @ T(ZZ' (07! — 1))
TEY =2 TEY =2
With (1.5) and (3.10) we obtain for all ¢ the canonical g-module decomposition
DI=DigC?
for some g-induced g-module C?. Using (3.15), we then obtain the diagram

HO(G, A%) s HO(g, A%) " H(g,D!) —2— H(g, D7)

Zlé . Zléq Zléq

f{q((;7/1) — = ]fq(g7/4) }{q(gal))v

Ell

in which the map 7, ores in the upper row in dimension 0 is bijective, and the
following map p is bijective because of (3.7) and (3.13). Since the composite
A1 5 DI % D4 is induced by the projection A = D, we see that this
diagram commutes. Thus the bijectivity of the upper map p o 7, ores implies
the bijectivity of the lower map 7 o res.

8 5. The Cup Product

In the previous section we have seen that the restriction and corestriction maps
are given by canonical data in dimension ¢ = 0, and induce corresponding
maps on cohomology in all dimensions. The same principle applies to the cup
product, which in dimension 0 is just the tensor product.

Let A and B be G-modules. Then A® B is a G-module, and the map (a,b) —
a ® b induces a canonical bilinear mapping

A% x B — (A® B)°,
which maps NgA x NgB to Ng(A® B). Hence it induces a bilinear mapping
H°(G,A) x H°(G,B) — H°(G,A® B) by (@,b) —> a®b '?).

We call the element a ® b € H°(G, A® B) the cup product of a € H(G, A)
and b € H°(G, B), and denote it by

aub=a®b.
This cup product in dimension 0 extends to arbitrary dimensions:

12) As usual, we denote by @ the cohomology class @ = a + NgA of the element
a € A%; similar for b. Likewise, a ® b stands for the cohomology class a ® b =
a®b+Ng(A® B)ofa®b € (A® B)°.
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(5.1) Definition. There exists a uniquely determined family of bilinear map-
pings, the cup product

U: HP(G,A) x H1(G, B) — H"*1(G,A® B), p,q € Z,
with the following properties:

(i) For p = q = 0 the cup product is given by
(@,b) —auUb=a®b, ac H'(G,A),bec H(G,B).

(i) If the sequences of G-modules

0—A—A —A"—0
0 —AB—A®B—A"®B —0

are both exact, then the following diagram commutes
HP(G,A") x H(G, B) —2— HP*1(G, A" @ B)
5| 1| ls
HP (G, A) x H(G, B) —2— HPT1H(G, A® B)
so that §(a”’ Ub) = éa”’ Ub, @’ € HP(G,A"),bc HI(G,B).

(iii) If the sequences of G-modules
0—B—B — B"—0,
0—A®B—A®B — A®B" —0
are both exact, then the following diagram commutes
HP(G,A) x H1(G,B") —2— HPtI(G,A® B")
T s
HP(G,A) x HITY(G, B) —— HPT1*Y(G,A® B)
ie., we have §(@Ub ) = (—1)P(@uUdb’), aec H?(G,A),b € HIG,B").

The factor (—1)P in the last diagram is necessary and results from the an-
ticommutativity of the connecting homomorphism ¢, see below. One cannot
define a reasonable cup product omitting this factor.

As with the general restriction maps, we obtain the general cup product from
the case p = 0, ¢ = 0 by dimension shifting!3).

13) The readers who are mainly interested in applications of the cohomological cal-
culus won’t lose much by omitting the details of this shifting process. They will
be satisfied with the functorial behavior of the cup product and with its explicit
description in small dimensions (cf. (5.2), (5.6), (5.7) and (5.8)).
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We recall that we identify the G-modules A ® B and B® A, as well as the G-
modules (A® B)®C and A®(B®C) (cf. §1, p. 7). This automatically leads to
a corresponding identification of the cohomology groups of these G-modules.
In particular, we can write (cf. §3, p.29):

APR@B=Jg® - QJgRA®B=(A® B)? and
ARBI=ARJc® QJg®B=Jg® - ®JcR@ARB=(A® B)4

for p,q > 0, and analogously for p,q < 0 with Ig in place of Jg. We will use
this freely below.

Because of Proposition (3.15) we may start with the case ¢ = 0, p = 0 and
determine the cup product by the following commutative diagram:

H(G, AP) x H(G, BY) —%— HO(G,(A® BY)?) = H°(G, AP © BY)

5% ll lép

(x)  HP(G,A)x H(G,BY) —2— H?(G,(A® B)?) = H?(G, A ® BY)

| b e

HP(G, A) x HY(G, B) —— HP*1(G, A® B)

It follows immediately from the conditions (i), (ii) and (iii) that the cup
product is unique. We use this fact to give an explicit description of the
cup product in terms of cocycles in the special cases (p, q) = (0,¢) and (p,0):

(5.2) Proposition. If we denote by a, (resp. by) p-cocyles (resp. g-cocycles)
of A (resp. B), and by a, (resp. b,) their cohomology classes, then

Eougq:a()@bq and EPUE():(IP@I)O 14).

For the proof note that the products @ U b, and @, U by defined here satisfy
the conditions (i), (ii) and (iii) for (0,¢) and (p,0) respectively. This can
be seen directly from the behaviour of the cocycles under the corresponding
maps. Now if we consider the lower part of the diagram (x) for p = 0, resp. the
upper part for ¢ = 0, then we see that the product defined by the commutative
diagram (*) must coincide with the one defined by (5.2).

Thus everything boils down to showing that the product maps defined by (x)
HP(G,A) x HY(G, B) — H"*1(G, A® B)

14) Note that if by(o1,...,04) € B is a g-cocycle, then ag @ by(01,...,04) € AR B
(a0 € A) is also a g-cocycle.
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satisfy the conditions (ii) and (iii). To this end, consider the exact sequences
0—A—A — A" — 0,
0—A®B—A®B—A"®B—0

and
0—B—B — B"—0,

0—A®B—A®B — A B" — 0.

From these we get by (1.9) and (1.2) the exact sequences

0— A1 — AT — A" — 0,
0— (A® B)? — (A’ @ B)? — (A" @ B)? — 0
and
0— BP — B? — B"" 0,
00— (A®BP — (A®B )P — (A®B")?» —0,

and we have the diagrams

HP(G,A") x HY(G, BY) —— Y HP(G, (A" ® B)Y)

(6,1) (—1)P 952 S

(1,69 HP(G, A) x H'(G, BY) —4——

!

HP*H(G, (A® B)7)

HP(G’ AH) X I’Iq(CJ7 B) E— U—> Hp+q(G,AN & B) (_1)(p+1)4q5q
(1,6%)
(6,1) §
HPTY(G,A) x HY(G,B) ——2—— HPtITY(G,A® B)
and
HO(G, A?) x H'(G, B") ——Y—— HYG,(A® B"))
(1,6) 5P §
Gl (G, A7) x HITY(G, B) —] [ Arie ey
HP(G,A) x HY(G, B") ——|—2— HP9(G,A® B") 5°
(1,6) (67,1) (=1)*-5
H?(G, A) x H'"Y(G, B) —Y—— HPT11(G,A® B).

Here the left sides in both diagrams commute for trivial reasons. The right
sides are composed from ¢ (resp. p) squares as in (3.6), thus they commute as
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well. The front and back sides commute by definition (%) of the cup product,
and the upper squares commute because of (5.2) and the remarks following it.
Since the vertical maps are bijective, the commutativity of the upper squares
implies the commutativity of the lower squares. This completes the proof.

The axiomatic definition of the cup product in (5.1) does not give us an
explicit description of it; i.e., given two cohomology classes in terms of cocyles,
we are for now not in a position to decide which cocyle represents their cup
product in general. Only for the cases (p,q) = (0,¢q) and (p,0) we have such
a description by (5.2). The attempt to give an explicit description of the cup
product for general p, ¢ (in particular for p < 0 and ¢ < 0) leads, however, to
major computational problems. Thus we find ourselves in a situation which is
similar to that of the restriction map, which admits a very simple description
in dimensions ¢ > 0, but not for negative dimensions. Nevertheless in both
cases we will need explicit computations only in low dimensions; given these,
one can manage knowing the functorial properties of these maps.

Before giving explicit formulas for small dimensions, we want to convince
ourselves that the cup product is compatible with the usual cohomological
maps defined above.

(5.3) Proposition. Let f : A — A" and ¢ : B — B’ be two G-
homomorphisms, and let f @ g: A® B — A’ ® B’ be the G-homomorphism
induced by f and g. If a € HP(G, A) and b € H1(G, B), then

fl@ugh) =fog(@ub) € HPT1(G, A ® B').

This is completely trivial for p = ¢ = 0, and follows in general from a simple
dimension shifting argument. We have demonstrated this technique already
frequently enough to leave the details to the reader.

(5.4) Proposition. Let A, B be G-modules, and let g be a subgroup of G. If
a € HP(G,A) and b € HY(G, B), then
res(@Ub) =resaUresb € HP9(g, A® B),

and _ -
cor(resaUb) =aUcorb € HPT1(G,A® B).

This follows again from the case p = ¢ = 0 by dimension shifting. In case
p = ¢ = 0 the first formula is immediate. For the second, let a € A® and
b € BY be 0-cocycles representing @ and b respectively. By definition (4.12) of
the corestriction in dimension 0, we have
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cor(res@Ub) = cor(a ® b+ N, (A® B))

Z o(a®b) + Ng(A® B)
oceG/g

Z a®ob+ Ng(A® B)
oceG/g

=a®( Y ob)+Ng(A® B)
ceG/g

=@ Ucorb.

We show that the cup product is anticommutative and associative:

(5.5) Theorem. Let a € HP(G, A), b€ HY(G, B), and ¢ € H"(G,C). Then
aub=(—-1)"(bUa) € H**1(G,B® A),

and _ _
(@ub)uc=auU (bUc)e HPTIT"(G,A® (B® C))

under the canonical isomorphisms HPT9(G, A ® B) = HPT1(G,B ® A) and
HPH47 (G (A® B)® C) = HPH (G, A® (B® C)). %)

Again, this is trivial for p = ¢ = 0, and follows in general by dimension
shifting.

We now want to compute some explicit formulas for the cup product. For this
we denote by a, (resp. b;) p-cocycles of A (resp. g-cocycles of B), and write
a, (resp. by) for their cohomology classes in HP(G, A) (resp. H1(G, B)).

(5.6) Lemma. We have a; Ub_1 = 79 € H°(G, A ® B) with
To = Z a1 (1) @ Tb_1.

TEG

Proof. By (3.14) we have the G-induced G-module A’ = Z[G] ® A and the
exact sequences
0—A—A — A" —0,
0—A®B—A®B—A"®B—0.
We think of A embedded in A’ and A ® B embedded in A’ ® B; to simplify

notation we do not explicitly write out these homomorphisms. Because of the
vanishing H'(G, A’) = 0, there is a 0-cochain af, € A’ with a; = da), so that

15) More precisely, one should say that (—1)?"%(bU@) is the image of @Ub under the

canonical isomorphism H*19(G, A® B) = H**9(G, B ® A) induced by A ® B =
B ® A, and similarly for the second formula. Cf. §1, p. 7.
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(%) ai(t) = Tay —aj forall 7e€G.

Let aj € A” “ be the image of ag in A”. By definition of the connecting
homomorphism ¢, we have @, = d(af)), and we obtain

aUb_y = 8(@) Ub_y 2 8@ ut_) P s(@ @by) = d(a, @ b_y)
—Na(dh@b) =Y rap@rbs 2> (ai(r) +ah) @ b,
T€G T€G
= Z(al(r) ®7b_1)+ay ® Ngb_1 = Z(al(r) ®71h_1)
T€G T€G

because Ngb_1 = 0.

In the following we restrict to the case B = Z and identify A ® Z with A via
a®n — a-n. Recall that from (3.19) we have the canonical isomorphism

“2(@,z) =G,
If 0 € G, let & be the element in H~2(G, Z) corresponding to o - G’ € G*P.

(5.7) Lemma. @ Ug =ay(0) € H (G, A).

Proof. From the exact sequence
0 —A®Ic — ARZ|G] — A —0

we obtain the isomorphism H~1(G, A) LI H°(G, A®Ig). Thus it suffices to
show d(a; UT) = d(ay(0)). Using the definition of §, we now compute

§(a1(0)) =T with zg = Z Tai(o)@T

TeG
On the other hand, the proof of (3.19) shows that under the isomorphism
—2(G,Z) KN H~Y(G, Ig) the element & goes to & = o — 1, hence we have

8@ v7) = ~(@ @) = —am U E=1) = 7.

For the cocyle yo we obtain from (5.6)

==Y a@erc-1)=> ua@er-Y al) e

TEG TG TG

The 1-cocycle aq(7) satisfies a1(7) = a1(70) — 7a1 (o). Substituting this into
the last sum, we find
Yo = Z Ta1(0) ® To.
TEG

Therefore yo — 29 = > s Ta1(0) ® 7(0 — 1) = Ng(ai1(o) ® (o — 1)), which
shows that To = 7.
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The following formula (5.8) is of particular interest for us. Note that if we take
an element @, in the group H2(G, A), it provides us with the homomorphism
U H%(G,Z) — H°(G, A),

which maps each @ € H~2(G, Z) to the cup product @, Ua € H(G, A); we
thus get a canonical mapping from the abelianization G®P to the norm residue
group A% /NgA. In class field theory we will consider a special G-module A for
which this homomorphism will be shown to be bijective; in fact, the resulting
canonical isomorphism G®" = A%/NgA is the main theorem of class field
theory. For this the following proposition will be important:

(5.8) Proposition. We have @ U7 =Y. az(7,0) € H(G, A).

Proof. We consider again the G-module A" = Z[G]®A and the exact sequence
0—+A— A -5 A -0 (A =Jz®A). Since H?(G, A’) = 0 there is a 1-
cochain a} € A} with ay = 9a] i.e.,

(%) a(r,0) = ra1(0) — ay(7 - o) + ay (7).

The image af of a} is a 1-cocycle of A” such that @y = 6(a/). Therefore

@ U = 3(af) Uz = (@ u) L 6(7(0)) = Blal (o)) = Y rai(o)
TeG
© Z as(1,0) + Z ay(r-o) — Z ay (1) = Z as (T, 0).
TEG TeG TG T€G

§ 6. Cohomology of Cyclic Groups

So far we have introduced the basic cohomological maps and have studied
their functorial and compatibility properties. Now we will begin to prove the
central theorems of cohomology theory. We start with G-modules A, where G
is a cyclic group; the cohomology of these G-modules is particularly simple.

Let G be a cyclic group of order n with generator ¢. Then we have for the
group ring

n—1
Z[G) =P Zo', No=1+0++0",
=0

and because 0¥ —1 = (0 —1)(c* 1 +...+0+1) (k > 1), the augmentation ideal
I is the principal ideal of Z[G] generated by o — 1, i.e., I¢ = Z[G] - (o0 — 1).

(6.1) Theorem. Let G be a cyclic group and let A be a G-module. Then
HY(G,A) = HI"?(G,A) forallqc Z.
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Proof. Tt suffices to specify an isomorphism H (G, A) = H'(G, A). Given
this, the general case follows from this by dimension shifting (cf. (3.15)), since

HYG,A) = H YG, AT = FY(G, A1) = H172(G, A).

The group Z; of 1-cocycles consists of all the crossed homomorphisms of G
in A; thus if x € Z7, then

z(o®)

ox(o* 1) + z(0)=0%x(c*"2) + oz(0) + x(0)
k=1
= _:EOU%(U) (k>1), and

z(1) = 0 because z(1) = z(1) + =(1).

It follows that Ngx (o) = Z;:Ol olz(o) = z(o™) = 2(1) =0, i.e, x(0) € N, A.

Conversely, it is easy to see that if a € y,A = Z_; is a (—1)-cocyle, then
k—1
z(c)=a and z(c*) = ZU’CL
i=0

defines a 1-cocyle. Therefore the map
x +— x(0)

is an isomorphism from Z; to Z_; = n,A. Under this isomorphism the group
R; of 1-coboundaries is mapped to the group R_; of (—1)-coboundaries:

r € Ry <= x(c*) = 0*a — a with fixed a € A
< z(0)=0a—a
— z(0) € IcA=R_4.
Thus in the case of a cyclic group G we always have isomorphisms
H*(G,A) = H°(G,A) and H*(G,A) = H'(G,A).

If
0—A—B—C—0

is an exact sequence of G-modules, we write the corresponding long exact
cohomology sequence in the form of an exact hexagon:

H-Y(G,A) —— H (G, B)
HY(G,C) H7Y(G,0)

HY(G, B) «—— HO(G, A).

For exactness at the term H (G, A), note that the isomorphism H!(G, A) =
H~Y(G, A) from the proof of (6.1) fits into the commutative diagram
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HY(G,A) — H'(G,B)

! !
III(C;afi) - f{l((;,[3)
so that the kernel of the map H'(G, A) — H'(G, B) corresponds to the kernel
of the map H~1(G,A) - H (G, B).

For many index and order considerations the notion of a Herbrand quotient
is very useful; in particular, it can be used to simplify the computations of
indices in abelian groups. Although it is of particular interest for G-modules
when G is a cyclic group, we want to introduce it in its most general form.

(6.2) Definition. Let A be an abelian group, and let f, g endomorphisms of
A such that fog = go f =0, so that we have inclusions img C ker f and
im f C kerg. Then the Herbrand quotient is defined as

( )_(kerf:img)
.9 ~ (kerg :im f)
provided both indices are finite.

We are mainly interested in the following special case:

Let A be a G-module with G cyclic of order n. Consider the endomorphisms
f=D=0-1 and g=N=1+0+---+0""1,
where o is a generator of G. Obviously we have
DoN=NoD=0,

and o . )
ker D =A%, im N = NgA; ker N = y, A, im D = IgA.

Hence if both cohomology groups H°(G, A) and H~1(G, A) are finite, then
|HY(G,A)| _ |H*(G,A)]
W =G )] T G A
If this holds, we call A a Herbrand module. For these special Herbrand
quotients ¢p n(A) we want to use the following notation:

(6.3) Definition. Let G be a cyclic group and A a G-module. Then
_ HY%G,A)| _ |H?(G,A)|

MA) = 1@ 2] ~ 1B A

These special Herbrand quotients h(—) are multiplicative:
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(6.4) Theorem. Let G be a cyclic group and
0—A—B—C—0
an exact sequence of G-modules. Then
h(B) = h(A) - h(C)

in the sense that if two of these quotients are defined, then so is the third,
and equality holds.

Proof. Consider the long exact cohomology sequence, written as the hexagon

H-YG,A) - H-1(G, B)

HY(G,0) HY(G,0)

T —7

H°(G, B) — H°(G, A)
If we write F; for the order of the image of f;, then
|H-N(G,A)| = Fg - F1, [H"(G,B)| = F1 - Fz, [H'(G,C)| = F- F,
|H)(G,A)| = F3- Fy, |H°(G,B)|=Fy-F5, |H°(G,C)| = F;- F,
and therefore
|HH(G, A)|- |[H (G, C)| - |[H(G, B)]
- = [H=1(@, B [H(C, A)] - |H(C,0)]

Hence whenever two of the three quotients h(A), h(B), h(C) are defined, then
so is the third, and the identity () implies the formula h(B) = h(A)-h(C).

Another special case of a Herbrand quotients occurs when A is an abelian
group and f and g are the endomorphisms f = 0 and ¢ = n (n a positive
integer), i.e., g is the map ‘multiplication by n’ a + n -a € A. Then
(A:nA)
qon(A) = ——F—
n( ) |n14

In fact, this is just a special case of what we considered above:

(WA={a€A|n-a=0}).

(6.5) Proposition. If the cyclic group G of order n acts trivially on A, then
h(A) = go.n(A).

In particular, the Herbrand quotients g, are multiplicative!®):

16) We remark that under certain assumptions one can show multiplicativity for
general Herbrand quotients gy 4
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(6.6) Proposition. If 0 - A — B — C — 0 is an exact sequence of abelian

groups, then
q0,n(B) = qo.n(A) - qo,n(C);

this again in the sense that the existence of two of these quotients implies the
existence of the third.

(6.7) Proposition. If A is a finite group, then we always have
qrg(4) = 1.

Proof. Because of the isomorphisms im f = A/ker f and img = A/ ker g,
|A] = |ker f| - |im f| = | kerg]| - |im g|,

which implies the claim.

In particular, a finite G-module A has Herbrand quotient h(A) = 1. This re-
mark, together with the multiplicativity shown in (6.4), implies the following:

If A is a submodule of finite index in the G-module B, then
h(B) = h(A).

It is in fact this statement that is most useful in applications of the Herbrand
quotient. If the direct computation of the order of the cohomology groups of
a G-module B is not possible, the above fact allows us to consider without
loss an appropriate submodule A, provided it has finite index. This type of
consideration historically motivated the definition of the Herbrand quotient.

In the following we will show how to determine h in case of a cyclic group G
of prime order p from the Herbrand quotients g ,. For this we need:

(6.8) Lemma. Let g and f be two endomorphisms of an abelian group A.

Then
90,91 (A) = q0,4(A) - 90,7 (A),

where again all three quotients are defined whenever any two of them are.

Proof. Consider the commutative diagram with exact rows

0 — g(A)Nker f g(A) —L— fg(4) —— 0
| | |
0 ker f A—T ) ——o

We obtain the exact sequence
0 — ker f/g(A) Nker f — A/g(A) — f(A)/fg(A) — 0,
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o that (A: fg(4)) _ (A:g(A)) - [g(A) Nker f|
(A: f(A)) | ker f|

If we observe that
ker fg/kerg = g~ (g(A) Nker f)/g~"'(0) = g(A) Nker f,

we in fact get (A:gf(A))  (A:g(A) (A:f(A))'

[kergf| — |kerg] | ker f|
It is easy to verify that all three quotients are defined, if two of them are.

Now we prove the important

(6.9) Theorem. Let G be a cyclic group of prime order p and A a G-module.
If qo,(A) is defined, then qq ,(A%) and h(A) are also defined, and

WA~ = o5 (A9)? /a0, (A).

Proof. Let o be a generator of G and D = o —1. Consider the exact sequence

0 A% A 21,40,

From the fact that IgA is a subgroup as well as a factor group of A, we
conclude immediately that if o ,(A) is defined, then go ,(I¢A) is also defined.
Hence as a consequence of (6.6), go ,(A%) is also defined, and we have

(%) 40.5(A) = q0,p(A%) - g0 p (I A).
Since G acts trivially on A%, it follows from (6.5) that go,(A%) = h(AY).

To determine the quotient go ,(IgA) we use the following interesting trick.
Since the ideal Z-Ng = Z(3°?~, o) annihilates the module I A, we can con-
sider IgA as a Z[G]/Z-Ng-module. Now the ring Z[G]/Z-N¢ is isomorphic
to the ring Z[X]/(1+ X +...+XP~1) with an indeterminate X. But the latter
is isomorphic to the ring Z[(] of integral elements of the field Q(¢) of p-th
roots of unity (¢ a primitive p-th root of unity), and the map o — ¢ induces
an isomorphism Z[G]/Z-N¢ = Z[(]. In Z[(] we now have the well-known
decomposition p = (¢ — 1)P~1 . ¢, e a unit, so that we can write

p=(0c—1)P"'.g cunitin Z[G]/Z Ng.

Since the endomorphism induced by ¢ is an automorphism on I A, we find
go.e(IgA) = 1. If we now apply Lemma (6.8), we obtain

q0,p(IcA) = qo.pr-1(IcA) - qo.c(IcA) = qo,p(Ic AP = 1/qpo(IcA)P".

Since N = Ng is the 0-endomorphism on I A, we also have
Qo.p(IcA) =1/ap,o(Ic A" = 1/qp n(Ic AP~ = 1/h(IgA)P~".

In combination with (x), this implies
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Q0,p(A%) = h(AY), @ p(IcA) = 1/h(IcA)P ™", qop(A) = qop(A%) /h(Ic AP~

On the other hand, the sequence 0 — A9 — A — I A — 0 gives the formula
B4 = R(AS)PL - (TG A,

and the claim h(A)P~! = qo,(A9)P/qo »(A) follows by substitution.

In global class field theory we will apply this theorem to certain unit groups,
about which we only know that they are finitely generated of known rank. We
show that this alone suffices to compute the Herbrand quotient; namely, from
(6.9) we get the following theorem of C. CHEVALLEY:

(6.10) Theorem. Let A be a finitely generated G-module, where G is a cyclic
group of prime order p. If « (resp. 3) denotes the rank of the abelian group
A (resp. A®), then the Herbrand quotient h(A) is given by the formula

h(A) = p(p-b’*a)/(pfl)'

Proof. Since A is finitely generated, we can find a torsion free submod-
ule A; C A of finite index (e.g. A1 = nA for suitable chosen n). We have
rank A; = rank A = o and rank A§ = rank AY = 3. Thus

h(AP™E = h(A)P™! = qop(AS)P /q0,5( A1),
where g, (A7) = (AY : pAT) = p? and qo (A1) = (41 : pAr) = p°.

§ 7. Tate’s Theorem

Many theorems in cohomology show that the vanishing of the cohomology
groups in two consecutive dimensions implies the vanishing in all dimensions.
One of the most important results of this type is the following Theorem of
Cohomological Triviality.

(7.1) Theorem. Let A be a G-module. If there is a dimension gy such that
H%® (g, A) = Hq°+1(g7A) =0
for all subgroups g C G, then A has trivial cohomology ™).

We will reduce the general case to that of cyclic groups G, where the result
is an immediate consequence of Theorem (6.1). It is clear that it suffices to
prove the following claim:

17) This means that H? (g, A) =0 for all ¢ € Z and all subgroups g of G.
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If H% (g, A) = H%% (g, A) = 0 for all subgroups g C G, then H®~1(g, A) =0
and H%%2(g, A) = 0 for all subgroups g C G.

Moreover, by dimension shifting, it suffices to consider the case gy = 1. To see
this, note that if the claim holds for gy = 1, then the isomorphism from (3.15)

H*™(g, A™) = H%(g, A)

implies H'(g, A%~1) = H% (g, A) = 0 and H?(g, A%~1) =2 Ho+l(g A) = 0.
Hence H?~(0~1 (g, A%~1) = Hi(g A) = 0 for all q.

Assume H'(g, A) = H?(g, A) = 0 for all subgroups g C G. We need to show
(%) H%g,A) = H3(g,A) =0 for all subgroups g C G.
We prove this by induction on the order |G| of G; the case |G| =1 is trivial.

Thus we assume that we have proved (x) for all proper subgroups g of G; it
remains to show HY(G, A) = H3(G, A) = 0. This is clear if G is not a p-group;
in this case all Sylow subgroups are proper subgroups, and (4.17) shows that
H°(G,A) = H3(G,A) = 0.

We may therefore assume that G is a p-group. Then there exists a normal
subgroup H C G such that the quotient G/H is a cyclic group of prime order.
By the induction assumption we have

H°(H,A)= H*(H,A) =0 aswellas H'(H,A)=H?(H,A) =0,
and, using (4.6) and (4.7), we obtain the isomorphisms
inf : HY(G/H,A") — HY(G, A) forq=1,2,3.
Now HY(G,A) = 0 implies H'(G/H, A") = 0, hence H3(G/H, A") = 0 by
(6.1), and so H3(G, A) = 0.

Next H2(G, A) = 0 implies H%(G/H, A®) = 0, hence H°(G/H, A®) = 0 (by
(6.1)), which means A® = Ng, g A" = Ng/u(NgA) = NgA; here we have
used H°(H, A) = 0, i.e., AT = Ny A. Thus H°(G, A) = 0, which proves the
theorem.

If A and B are G-modules, consider the cup product, i.e., the bilinear map
HP(G,A) x H(G, B) — H"*(G, A® B).
For a fixed element a € H?(G, A), the map
aU: HY(G,B) — H"'(G,A® B), b~ aUb (bec HY (G, B))

provides us with a whole family of maps. In the theorems below, we will use
the cup product in this way.

From the Theorem of Cohomological Triviality we deduce the following result:
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(7.2) Theorem. Let A be a G-module with the following properties: For each
subgroup g C G we have

I. H'(g,A) =0,
II. H%g, A) is a cyclic group of order |g|.
If a generates the group H°(G, A), then the cup product map
alU : HI(G,Z) — HY(G,A)

is an isomorphism for all ¢ € Z.

Proof. The module A itself is not suitable for the proof, since we need to use
the injectivity of the map Z — A, n — nag (ag + NgA = a), which induces
the cup product above for the case ¢ = 0 (cf. (5.2)). Hence we replace A with

B=AaZ[G)

which we can do without changing the cohomology groups. In fact, ifi : A -+ B
is the canonical injection onto the first component of B, then the induced map

g: }{q(gaji)‘44$ f{q(g’lg)

is an isomorphism, because Z[G] is cohomologically trivial. Now we choose an
ag € A% such that a = ag + NgA is a generator of H°(G, A). Then the map

f:Z— B with n——ap-n+ Ng-n.

is injective, because of the second term N¢-n, and induces the homomorphism

f+HYg,Z) — H(g, B).
Using (5.2), we see that the diagram

HY(G,Z) += HI(G, A)

S
HY(G, B)
commutes, thus it suffices to show f is bijective. This follows easily from (7.1):
Since the map f : Z — B is injective, there is an exact sequence of G-modules
(%) 0—z-B—Cc—0.
Now H '(9,B) = H (g9,A) = 0 and H'(g,Z) = 0 for all ¢ C G, which
implies that the corresponding exact cohomology sequence has the form
0 — H '(g,C) — H(g,Z) -5 H (g, B) — H (g,C) — 0.

If ¢ = 0, then f is clearly an isomorphism, thus H~'(g,C) = H°(g,C) = 0. By
(7.1) the vanishing of two consecutive cohomology groups implies H9(g,C) =
0 for all ¢, and it follows from the exact cohomology sequence associated with
(¥) that f: HY(G,Z) — H%(G, B) is bijective for all ¢, as claimed.

From (7.2) we obtain the following, very important result:
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(7.3) Tate’s Theorem. Assume that A is a G-module with the following
properties: For each subgroup g C G we have I. H*(g, A) = 0 and II. H?(g, A)
is cyclic of order |g|. If a generates the group H?(G, A), then the map

aU : HI(G,Z) — HT2(G, A)

is an isomorphism.

Addendum: If a generates the group H*(G, A), then resa € H?(g, A) gen-
erates the group H?(g, A). Thus we also have the isomorphism

resaU : H(g,Z) — Hq+2(9aA)-

Proof. Consider the isomorphism &2 : H9(g, A%?) — H9%2(g, A) from (3.15).
The assumptions I. and II. imply that H~1(g, A?) = 0, and that H(g, A?) is
cyclic of order |g|. Furthermore, the generator a € H%(G, A) is the image of
the generator §—2a € H°(G, A?). Tt follows from (5.1) that the diagram

HY(G,Z) —222Y 5 Ha(G, A?)

idl LSZ
Hq(G, Z) _ay . Hq+2(G,A) ;

commutes. Since §~2a U is bijective by (7.2), the map a U is bijective as well.

As for the addendum: Since cor oresa = (G : g) - a, the order of the element
resa € H?(g, A) is divisible by |g|, hence resa generates H?(g, A) by I1.

Tate’s Theorem can be generalized considerably. For example, we may replace
the condition “for all subgroups ¢ C G” by “for all p-Sylow subgroups”. In
addition, the shifting from ¢ to ¢ + 2 by two dimensions may be extended
(under suitable assumptions) to general dimensions. Finally, the G-module Z
may be replaced by more general modules'®). We do not discuss this in detail,
since the form of Tate’s Theorem presented here suffices for most applications.

For class field theory, the case ¢ = —2 is particularly important. In this case,
Tate’s Theorem yields a canonical isomorphism between the abelianization
G = H=%(G,Z) of G and the norm residue group AY/NgA = H°(G, A):

G*® — A%/N¢A.

This canonical isomorphism is the abstract formulation of the main theorem
of class field theory, the so-called “reciprocity law”. For this reason, one can
consider Tate’s Theorem as the foundation for a purely group theoretically
formulated abstract version of class field theory. In the next part, we will
develop this idea in detail.

18) Cf. [42, IX, §8, Th. 13, p. 156].
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§ 1. Abstract Class Field Theory

Local and global class field theory, as well as a series of further theories for
which the name class field theory is similarly justified, have the following
principle in common. All of these theories involve a canonical bijective corre-
spondence between the abelian extensions of a field K and certain subgroups
of a corresponding module Ay associated with the field K. This correspon-
dence has the property that if the subgroup I C Ak corresponds to an abelian
field extension L|K (the “class field associated with I”), then there exists a
canonical isomorphism between the Galois group Gz |k and the factor group
Af /1. This so-called reciprocity law is the main theorem of class field theory.

This main theorem can be traced back to a common system of axioms for the
concrete theories mentioned above which essentially consists of the assump-
tions in Tate’s Theorem (cf. I, §7); in fact one can view Tate’s Theorem itself
as the abstract version of the main theorem of class field theory. The notion
of a class formation is based on this idea. It separates the purely group
theoretic machinery, which is characteristic of class field theory, from the spe-
cific considerations of field theory, and gives in an easily comprehensible and
elegant way information about the goal and function of the theory.

Let G be a profinite group, i.e., a compact group with the normal-subgroup
topology®). We may think of G as the Galois group (endowed with the Krull
topology) of an infinite Galois field extension, although the abstract notions
in this section do not use this interpretation. The open subgroups of G are
precisely the closed subgroups of finite index. In fact, the complement of
an open subgroup is the union of (open) cosets, thus open, and since G is
compact, finitely many of these cosets cover the group G, hence the index is
finite. Conversely, a closed subgroup of finite index is open, because it is the
union of finitely many cosets, hence its complement is closed.

Given a profinite group G, we consider the family {Gx | K € X} of all open
subgroups of G, i.e., the closed subgroups of finite index. We label each such
subgroup with the index K, and call these indices “fields”.

The “field” Ky with Gx, = G is called the base field. If G, C Gk, we write
formally K C L, and define the degree of such an extension L|K as

[L : K] == (GK : GL)
The extension L|K is called normal if G, C Gk is a normal subgroup of G.
If L|K is normal, then the Galois group of L|K is defined as the quotient
group
Gk =Gk/GL.

Y We refer to [9], [28], [41] for the theory of profinite groups.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

64 Part II. Local Class Field Theory

An extension L|K is called cyclic, abelian, solvable, etc., if its Galois group
Grx = Gk/Gyr is cyclic, abelian, solvable, etc. We define the intersection
and the compositum of such fields K; by setting

K= m K;, if Gk is (topologically) generated by the Gk, in G; and
i=1

n
K =] K if Gk =N, Gk,
i=1
IfGr = oGro~! for o € G, then we write L' = oL, and we call two extensions
L|K and L'|K conjugate in case L' = oL for some o € Gg. With these
notions, we obtain for each profinite group G a formal Galois theory.

In the following we consider modules A on which a profinite group G acts. In
this context it is important to keep the topological structure on G in mind.
The action of G on A should be in a certain sense continuous. More precisely,
it should satisfy one of the following, equivalent conditions:

(i) The map G x A — A with (0,a) — oa is continuous?,

(ii) For each a € A the stabilizer {o € G | 0a = a} is open in G,

iii) A= AV, where U runs through all the open subgroups of G.
U

(1.1) Definition. If G is a profinite group and A is a G-module satisfying the
equivalent conditions (i)-(iii) above, the pair (G, A) is called a formation.

If G is the Galois group of a (infinite) Galois extension N|K, then G acts
on the multiplicative group N* of the field N, and the pair (G,N*) is a
formation. It is precisely this example that comes into play in local class field
theory, and one may use it as an orientation for what follows.

Let (G, A) be a formation. In the following we think of the module A as
multiplicatively written. Let {Gk | K € X} be the family of open subgroups
of (G, indexed by the set of fields X. For each field K € X we consider the
fixed module associated with K, i.e.,

AK:AGK:{a6A|oa=af0raHU€GK.}

In the class field theory example mentioned above, we obviously have Ax =
KX If K g L7 then AK g AL.

If L|K is a normal extension, then Ay is a G g-module. When we call the
pair (G, A) a formation, we basically mean by this the formation of these
normal extensions L|K, together with the G'1|x-modules Ar.

2 Here A is interpreted as a discrete module.
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We consider now for each normal extension L|K the cohomology groups of
the G| x-module Ay. For simplicity of notation, we set

HY(LIK) = HY(Gp K, AL).
If ND L DO K is a tower of normal extensions of K, we have inclusions

Gy C G € G with Gy and G, normal in Gk, and cohomology theory
yields the homomorphism

G inf
HYGpik,AL) = Hq(GL\KvANNlL) — HY(Gn |k, AN),
in other words
HYL|K) 2% g9(N|K)  forqg>1.

In addition, we also have the restriction and corestriction maps
cor

HQ(GN‘K,AN) E} Hq(GN|L,AN) and Hq(GN|L,AN) — Hq(GN|K,AN),

that is, for every integer ¢ homomorphims

HY(N|K) =% HY(N|L) and HY(N|L) <5 HY(N|K).

Here we need only need to assume that N|K is normal. If both N and L are
normal, then the sequence

1 — HI(LIK) 22 H9(N|K) “L HI(N|L)
is exact for ¢ = 1, and exact for ¢ > 1 if H*(N|L) = 1fori=1,...,q—1
(cf. I, (4.7)).
If L|K is normal and ¢ € G, then
TG — oo Gy,
defines an isomorphism between G'r|x and G, sk, and
a+— oa

an isomorphism between A; and A,p. Since (070 'G,p)oa = o(7GL)a,
these isomorphisms are compatible, and we obtain an equivalence between
the G g-module Az and the G, 1|, x-module A,r. Thus every o € G yields
an isomorphism

HY(L|K) %> HY(sL|oK).

Using the equivalence of the modules Ay, and A,p, it is easy to see that the
isomorphism ¢* commutes with inflation, restriction and corestriction.

We call a formation (G, A) a field formation when for each normal extension
the first cohomology group vanishes:

HY (LK) = 1.
In a field formation the sequence

1 — HX(L|K) 2 H2(N|K) 2% H2(N|L) (N2 LD K)
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is always exact (cf. I, (4.7)). We will soon see that the example mentioned

above, where G is the Galois group of a Galois field extension and A the

multiplicative group of the extension field, represents such a field formation.

If N O L O K are normal extensions, then we can always think of the group

H?(L|K) as embedded in the group H?(N|K), since the inflation map
H2(L|K) 2 H%(N|K)

is injective. The presentation of class field theory will become formally espe-
cially simple, if we take this identification one step further. If L ranges over
the normal extensions of K, then the groups H?(L|K) form a direct system
of groups with respect to the inflation maps. Taking the direct limit

H*(|K) = lig H*(L|K)
L

we obtain a group H?( |K) in which all the groups H2(L|K) are embedded
via the injective inflation maps. If we identify these groups with their images
under this embedding, then H?(L|K) become subgroups of H?( |K), and

H*( |K) =] H*(L|K).
L

In particular, if N O L O K is a tower of normal extensions of K, we have so
H*(L|K) C H*(N|K) C H?*( |K).

We strongly emphasize that the inflation maps are to be interpreted as inclu-
sions here. An element of H2(N|K) is regarded as an element of H2(L|K) if
it is the inflation of an element of H?(L|K).

Remark. Let Gi be a profinite group and let A be a Gg-module. Exactly
as for finite groups, we can define cohomology groups H4(Gk, A), ¢ > 0 by
taking as cochains the continuous maps G X ... x Gxg — A. Then (cf. [41])

HY(Gkg,A) =2 HI |K)= liqu(L|K).
L
Given any extension K'|K of K, we obtain a canonical homomorphism
H*( |K) =% H2(|K).

In fact, if c € H?( |K), then there is an extension L O K’ D K, so that c is
contained in the group H2(L|K), hence the restriction map
H?(L|K) =% H*(L|K")
defines an element
resrc € H*(LIK') C H*( |K').
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The map ¢ — resk-c is independent of the choice of the field L D K'; this fol-

lows from the trivial fact that restriction commutes with inflation, which is in-

terpreted as inclusion. The restriction of the map H?( |K) —— resre — H?( |K")

to the group H2(L|K) (L 2 K' D K) gives back the usual restriction map
H?(L|K) =55 H*(L|K').

From this we immediately obtain

(1.2) Proposition. Let (G, A) be a field formation. If K'|K is normal, then
L B (K'|K) =% H(|K) =5 HA (O |K)

is exact.

The fundamental assertion in both local and global class field theory is the
existence of a canonical isomorphism, the so-called “reciprocity map”

Gk = Ak /Ny AL
for every normal extension L| K, where Ga LK is the abelianization of G| and
NpxAL = NGL‘KAL is the norm group of Ay,. Because of Tate’s Theorem, we

can force the existence of such an isomorphism in abstracto by imposing the
following conditions on our formation (G, A): If L|K is any extension, then

I. HY(L|K) =1 and II. H?(L|K) is cyclic of order [L : K].

If this holds, then the cup product with a generator of H?(L|K) gives an
isomorphism

Gk = Ak /Ny kAL

However, there is a certain arbitrariness to this isomorphism, since it depends
on the choice of the generator of H?(L|K). In order to get a “canonical”
reciprocity map, we replace II. by the condition that there is an isomorphism
between H2(L|K) and the cyclic group ﬁZ/Z, the so-called “invariant
map”, which uniquely determines the element upx € H 2(L|K) with image
ﬁ + Z. The crucial point here is that this element up,x remains “correct”
when passing to extension fields and subfields, which we ensure by imposing
certain compatibility conditions on the invariant map.

These considerations lead us to the following

(1.3) Definition. A formation (G, A) is be called a class formation if it
satisfies the following axioms:

Axiom I. H'(L|K) = 1 for every normal extension L|K (field formation).

Axiom II. For every normal extension L|K there exists an isomorphism
vy H (LK) — migZ/Z,

the invariant map, with the following properties:
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a) If N D L D K is a tower of normal extensions, then
iDVL‘K = inVN|K|H2(L|K)~

b) If N O L D K is a tower of extensions with N|K normal, then

invy|p oresy = [L: K] -invy k.

Remark. Formula IT b) becomes almost obvious if one replaces it by the
commutative diagram

invn|x 1

HY(N|K) N, 7/

l W‘K]

H?*(N|L) —= wnZ/Z.

The extension property II a) of the invariant map implies that if H?( |K) =
U, H?(L|K), then there is an injective homomorphism

invg : H*( |K) — Q/Z.

For this map we obtain from formula II b) the following relation: If L| K is an
arbitrary extension of K, then

invy oresy = [L: K| -invg,

where resy, is the homomorphism H?( |K) =% H?(  |L) defined on p. 66.
Conversely, we recover from this equality formula II b), since invyz (resp.
inv ) is the restriction of invy, (resp. invg) to H2(N|L) (resp. H*(N|K)).

Together with the formulas of Axiom II, we immediately obtain additional
formulas for the corestriction map cor and the conjugate map o* (cf. p.65).
(1.4) Proposition. Let N O L D K be extensions with N|K normal. Then
a) invy|ge = invy ke, if L|K is normal
and c € H*(L|K) C H*(N|K),
b) invyp(respe) = [L: K] - invy ke, for c € H*(N|K),
¢) invyg(corge) = invy e, for ¢ € H?*(N|L),

d) inv,yjsk(0*c) = invy ke, for ¢ € H?*(N|K) and o € G.

Proof. a) and b) are just restatements of the formulas in Axiom II.

¢) The commutative diagram on p.68 immediately implies that the map
H?(N|K) =% H?(N|L) is surjective. Hence for every ¢ € H?(N|L) we have
c=resé ¢ € H*(N|K), and so corgc = corg (resy,é) = &Kl (cf. 1, (4.14)).
Thus, by b), inv g (corgc) = [L : K]-invyx(€) = invyz(rest ¢) = invy e
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d) Let N be a normal extension of the base field K, corresponding to the
group G such that N contains N. Then o N = N, i.e., the map a — oa
defines a G Nk -automorphism of the G 5, -module A5 such that

0 | Ko N

o*: H*(N|Ky) — H?(N|Ko)

is the identity map on H2(N|Kj). Since o* commutes with inflation (inclusion)
and corestriction (cf. p. 65), we have by a) and c) for every ¢ € H*(N|K)

inv, yjox(0%c) = invaK(o'*c) = vy, (corg, (o*c)) =

: - * s _ . B .
v g g, (o*corg,c) = v gk, (corg,c) = v g ¢ = vy g

Now we can distinguish a “canonical” generator in each group H?(L|K).

(1.5) Definition. Let L|K be a normal extension. The uniquely determined
element up € H*(L|K) such that

vy (ur)x) = 7[L:1K] +Z
is called the fundamental class of L|K.
From the behavior of the invariant map described in Proposition (1.4), we see
how the fundamental classes of different field extensions are related.

(1.6) Proposition. Let N O L DO K be extensions with N|K normal. Then

a) ur|x = (uN|K)[N:L], if L|K is normal,
b) resp(unjx) = un|L;

¢) corg(un|r) = (un|x)
d) o*(un|k) = Uon|ox for o € G.

[L:K]

Proof. Since two cohomology classes are equal if they have the same invari-
ants, the proposition follows from

a) v (un) V) = [N 2 L] - invy e (uy ) = % +Z= i +Z

= iIIVL|K(’U,L‘K) = iHVN|K(uL\K)7

b) inVN‘L(resL(uN‘K)) = [L : K] . anN\K(uN\K) == [ﬁl;]] +Z = [NlL] + Z

= invyL(unL),

C) iIlVN|K(COI"K(’U,N‘L)) = iIlVN|L(UN|L) == ﬁ + Z = % + Z
= [L : K] . inVN‘K(’LL]\”K) = inVN‘K((’U,]\”K)[L:K]),

d) inVaN\aK(U*UN\K> = invN|K(uN|K) = [N%K] +7Z = m +Z

= il'IVUN|0'K (uo’N\o'K)'
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Now we apply Tate’s Theorem, I, (7.3) to obtain the main theorem of class
formations.

(1.7) Main Theorem. Let L|K be a normal extension. Then the map

up U : H(Gpx, Z) — HI?(L|K)

given by the cup product with the fundamental class uyx € H*(L|K) is an
isomorphism in all dimensions q.

For ¢ = 1,2 we immediately obtain
(1.8) Corollary. H*(L|K) =1 and H*(L|K) = x(Gp k).

Proof. We have H?(L|K) = HY(Gpk,Z) = Hom(Gpk,Z) = 0, and
HY(LIK) = H Gy, Z) = H'(Gpj Q/Z) = Hom(Gojre, Q/Z) = x(Gr )
here the second isomorphism H?(Gp x,Z) = H' (G x,Q/Z) follows from
the exact cohomology sequence associated with 0 - Z — Q — Q/Z — 0,
using that the G'z|x-module Q is cohomologically trivial (since Q is a uniquely
divisible group).

Since we do not have a concrete interpretation of the groups H?(L|K) in
case ¢ = 3,4, or generally for all cohomology groups of higher dimension %,
Corollary (1.8) has no immediate concrete application. However, if ¢ = —2,
then we have such an interpretation because of the canonical isomorphisms

Gtk = H *(Gpk,Z) and HO(L|K) = Ag /N AL.

Thus we obtain the following important general reciprocity law:

(1.9) Theorem. Let L|K be a normal extension. Then the cup product map
up g U: H Gk, Z) — H°(L|K)
yields a canonical isomorphism
GL\K : G?TK — AK/NL|KAL

between the abelianization of the Galois group and the norm residue group
of the module.

The isomorphism 6, in Theorem (1.9) is called the Nakayama map. Using
I, (5.8) we can give an explicit description of this map as follows:

3) Recently, however, the case ¢ = —3 has been found to have a beautiful application
in connection with the solution of the “class field tower problem” (cf. [14] and
[41], Ch. 1, 4.4).
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If u is a 2-cocycle representing the fundamental class up|k, then we have
Ok (oG k) = [ H u(r, U)} “NpxAr
T€GL|K

for all UG/L|K S Gille = GL|K/G/L|K'

Despite this description, it turns out that the inverse isomorphism of 0k,
AK/NL\KAL — Gézl‘)K,

which is also called the reciprocity isomorphism, is often more accessible,
and also more important, in particular for local and global class field theory.
It induces a homomorphism from Ag onto Gjl}l)K with kernel Ny g Ap. This

homomorphism is called the norm residue symbol ( ,L|K). Hence we
have the exact sequence

( LLIK)

1 — NpygAL — Ag Gk — 1,

and an element a € Ak is a norm if and only if (a, L|K) = 1.

The following lemma establishes a relation between the norm residue symbol
( ,L|K) and the invariant map invyg, which will be useful later.

(1.10) Lemma. Let L|K be a normal extension, a € Ag, and @ =
a-Np AL € HY(LIK). If x € X(G‘zl"K) = HY (G k,Q/Z) is a character,

then ) - 1
x((a, L|K)) = invp k (@U 6x) € g Z/Z-

In this formula, the symbol éy denotes the image of x under the isomorphism
5
HY(GLik,Q/Z) = H*(GLik, Z),
which is obtained from the exact sequence
0—Z—Q—Q/Z—0.

Note that the above formula provides us with a characterization of the norm
residue symbol (a, L|K) in terms of the invariant map, since an element of
G?I’K is uniquely determined by its values under all characters.

Proof. To simplify notation we set
0o = (a, L|K) € Gh o = H (G, Z)
and denote by &, the element in H2(G Lk Z) corresponding to o, under
the above isomorphism. By definition of the norm residue symbol, we have
a=uprUo, € H(Gpx, AL).
Since the cup product is associative and commutes with the J-map, we obtain

aUdx = (upjx Ud,) Udx = urjx U(Ga Udx) = urjx Ud(Fa UX).
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By I, (5.7) we further have
GaUx=x(0a) = +Z € Z/Z=H ' (GLk.Q/Z),
where n = [L : K]. Hence taking 6 : H (G x, Q/Z) — H°(G |k, Z) gives
§(x(00)) =n(t +Z)=r+nZ € H (G x,Z) = Z/nZ,

and therefore
audx =ugx U (r+nZ)=uy k.

From this we get

vy x(aUdx) =r-invy g(up ) = 5 +Z = x(0a).

The conditions on the behavior of the invariant map under the inflation (inclu-
sion) and restriction maps in Axiom II of the definition of a class formation
already determines how the norm residue symbol behaves when passing to
extension and subfields. We summarize this in the following theorem.

(1.11) Theorem. Let N O L D K be a tower of extensions of K with N|K
normal. Then the following diagrams are commutative:

a)
N|K o
Ak ( = G]\?|K

J |

LIK o

hence (a,L|IK) = 7(a,N|K) € G%}TK for a € Ak, if L|K is also normal (in
addition to N|K ). Here 7 is the canonical projection of G*}\}?lK onto Gi‘TK.

b)
N|K o
Ak ( - G]\?|K

incll lVbr

N|L o
AL ( | ) G]\l,)‘L

hence (a, N|L) = Ver(a,N|K) € G'}‘\HL for a € Ak . Recall that the Ver-

res

lagerung (transfer) is induced from H=*(Gyx,Z) — H (G N1, Z).
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c)
(__,NIL)

o lﬁ

,N|K)
hence (Npga,N|K) = k(a,N|L) € GN|K for a € Ap, where k is the

canonical homomorphism from G&b ML into G2> Nk

d)
,N|K
Ay ( LY G?\})H,’

( ,oN|oK) ab
-5
Aok GUN|UK

hence (ca,oN|ocK) = o(a, N|K)o~! for a € Ak, where for o € G, the

maps Ax > A,k and GN‘K s Gi?V‘UK are a — oa and T — oTo L.

All statements follow essentially from the formulas for the behavior of funda-
mental classes under extension given in Proposition (1.6). More precisely:

a) Let x € x(Grix) = H Gk, Q/Z), inf x € H' (G |k, Q/Z). Then

X(m(a, N|K)) = inf x((a, N|K)) :inVN‘K(E U d(inf x)) :invN|K(a Uinf(dx))
= invy g (inf(@ U (6x))) = invL|K(EU 0x) = x(a, L|K)

by (1.10). Since this identity holds for all characters x € x(G|x), we obtain

m(a, N|K) = (a, L|K).

For the proof of b) and ¢) we need to convince ourselves that the diagrams

Ay —— HON|K) <252 H2 Gk, Z) === G¥

incl J J'res lres lver

A, ——s HO(N|L) «2L°

UN\LU

A, —— HO(N|L) H2(GN, Z) —= Gy,

le lm Jeo Jx

A —— HON|K) <255 H22(Gyp, Z) —=> G-

commute. This follows for the left squares from I, (4.9) and from the def-
inition given in I, p.38. For the right squares we refer to I, (4.10) and I,
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(4.13). The middle squares commute since for z € H‘Q(GMK,Z), resp.
Z' € H (G|, Z), we have by (1.6) and I, (5.4) the following identities

res(un|g U z) = res(un|x) U (res z) = uy|p U (res z), resp.

cor(uy Uz') = cor(res(un|x) U 2') = unjx U (cor2’).
The proof of d) is analogous and left to the reader.

Note that we could not argue similarly in the proof of (a), since inflation is
only defined for positive dimensions; here Formula (1.10) has proved useful.

The essential statements of class field theory are the reciprocity law (1.9) and
the properties of the norm residue symbol. In a concrete case, for example, for
local or global class field theory®, the development of the theory will be made
considerably more concise by the abstract presentation given in this section,
that is, by anticipating the purely group-theoretic part. It leaves us the task
to verify Axioms I and II of class formations; however, we admit that there
are only very few cases where this is easy.

We want to extract some consequences of the theorems we have proved so far.

If L|K is normal, then the abelianization G%ﬁ’K is the Galois group of the

maximal abelian extension L*P|K contained in L, and the reciprocity law
gives an isomorphism between the Galois group of this extension and the norm
residue group Ag /NpxAr. We will now show that these abelian extensions
are uniquely determined by their norm groups, in fact, that the entire structure
of these abelian extensions of K is uniquely reflected in the group Ag of the
given base field K.

A subgroup I of Ak is called a norm group if there is a normal field extension
L|K such that I = NpxAr. The following theorem shows that every norm
group I = Np g Ay is indeed the norm group of an abelian extension of K,
namely, the norm group of the maximal abelian field L?P in L.

(1.12) Theorem. Let L|K be a normal extension and L*® the maximal
abelian extension of K contained in L. Then

NhKAL:AQMKAmbgAK-

4 In addition to these, there are other interesting examples of class formations.
For example, the theory of Kummer fields (cf. Part III, §1). One can even show
that for each profinite group G there is a G-module A such that (G, A) is a class
formation.
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Proof. The inclusion Ny g Ar, C Npav g Apas follows from the multiplicativ-
ity of the norm. The reciprocity law gives isomorphisms

Ak /NLik AL = Gy = Gravji 22 A /Npao g A,

and (Ag : NpgAr) = (A : NpawgApas) < oo implies that we have the
equality NpjgAr = Npav g Apen.

(1.13) Corollary. The index (Ag : NpxAr) divides the degree [L : K] with
equality if and only if L|K is abelian.

In fact, (Ax : NpkAL) = (Ag : NpawgApa) = [L?P : K] is a divisor of
[L: K], and is equal to [L : K| if and only if L = L?P i.e., if and only if L|K
is abelian.

(1.14) Theorem. The norm groups I of A form a lattice. The map
L— I = NL\KAL

gives an inclusion reversing isomorphism between the lattice of abelian exten-
sions L of K and the lattice of norm groups I of Ax. Hence we have

I, DI, <= L1 CLy; Ipyp,=1Ip,NIpy; Ipiar, =1Ip, - I,
if L1 and Ly are abelian extension fields.

Moreover, every group I C Ay containing a norm group is itself a norm group.

Proof. If L; and Ly are two abelian extensions of K, it follows from the
multiplicativity of the norm that Ir,.r, C I, NIy,. If a € I, N1Iy,, then the
element (a, L1-Lo|K) has trivial projections (a, L1|K) =1 and (a, L2|K) =1
in G,k and Gp, |k, i-e., (a,L1-L2|K) = 1, so that a € I,.r,. This proves
I, .1, = Ir, N1Ir,. Given this, we obtain further

ILl ;2]ia = IL1 F]IL2 ZZIL2 ZZqu.LZ ¢$[lq-L2 I}(]::[LQ I}(]éi‘Ll C Ls.

Since every norm group is already the norm group of an abelian extension
((1.12)), we conclude that the map L — Iy, is a inclusion reversing bijection
between the set of abelian extensions L|K and the set of norm groups. The
remaining statements are obvious consequences of this correspondence.

The above theorem shows that to understand the abelian extensions it is im-
portant to give a characterization of the norm groups using only intrinsic
properties of the group Ax of the underlying base field K. For the concrete
class formations we are interested in such a characterization is possible, be-
cause in these cases there is a canonical topology on the group Ax and the
norm groups turn out to be the closed subgroups of finite index. This result
is also called the Existence Theorem, since it shows the existence of an
abelian extension L which has a given closed subgroup I of finite index in
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Ak as its norm group. This (uniquely determined) field is called the class
field associated with the group I. One can derive such an existence theorem
in the theory of abstract class formations by adding certain existence axioms
to Axioms I and II. However, since we do not need this for our applications,
we only refer the interested reader to [42].

To complete this section we consider the norm residue symbol from a universal
viewpoint. If we start with a field K, then the groups G*ztl’K form a projective
system of groups, namely, the projective system of Galois groups of all abelian
extensions of K. We denote the projective limit of this system by

b _ 1 b
Gx = an LIk
In the case where we are dealing with actual field extensions L|K, G is the
Galois group of the maximal abelian extension over K. We can also write
G =lm Gy,

where L ranges over all abelian extensions of K. For every a € Ak the elements
(a,L|IK) € Gi'TK form by (1.11a) a compatible system of elements in the

projective system of GaL“k"K. Taking the limit, we obtain a unique element
(a, K) ==E{§(a714}{) € (;%?
which is called the universal norm residue symbol of K. If
7 G — G%‘TK
are the individual projections from G%> onto the Galois group G%‘TK, then the
element (a, K) € G%}) is uniquely determined by the identities
7 (a, K) = (a, L|K).

The universal norm residue symbol yields a homomorphism Ax — G% whose
kernel and image we describe in the following theorem:

(1.15) Theorem. The kernel of the homomorphism
A ( ,K) Gal?
is equal to the intersection of all norm groups

Dk = ﬂNL\KALa
L

and its image is dense in G?}D (with respect to the normal-subgroup topology).

Proof. We have (a, K) = Jim (a,L|K) = 1 if and only if (a,L|K) = 1 for
all normal extensions L|K, therefore if and only if a € Dx = (\NpxAL.
The density of the image follows equally easily: If ¢ € G3P, then the sets o-H
form a fundamental system of neighborhoods of ¢, where H runs through all
the open subgroups of G3P. But if H is an open subgroup, then Gi?/H =
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Gk is the Galois group of an abelian extension L|K, and since the norm
residue symbol ( ,L|K) : Ax — Gpkis surjective, we find an a € A with
(e, K) = (a,L|K) =7p0, ie., (a,K) € 0-H.

§ 2. Galois Cohomology

Let L|K be a finite Galois field extension and G = G i its Galois group.
Given such a field extension L, we immediately have two natural G-modules,
namely, the additive L™ and the multiplicative group L* of L. The additive
group is cohomologically uninteresting, because of the following result:

(2.1) Theorem. HY(G,L*) =0 for all q.

This follows from the existence of a normal basis of L|K. In fact, if ¢ € L
is chosen in such a way that {oc | ¢ € G} is a basis of L|K, then LT =
D e KT-0c =P, o(KT-c), which means that L™ is a G-induced module.
Therefore, by I, (3.13) all of its cohomology groups are trivial.

On the other hand, for the multiplicative group L* we have the following,
very important theorem:

(2.2) Theorem (Hilbert-Noether). H'(G,L*) = 1.

Proof. Let a, € L™ be a 1-cocycle of the G-module L*. If ¢ € L*, consider

b:Zac,~ac.

ceG

Since the automorphisms ¢ are linearly independent (cf. [7], Ch. V, §7, n° 5),
there is an element ¢ € L* such that b # 0. Therefore

T(b) = Z Tao(TUC) = Z a;l . am(Tac) = a;l - b,
ceCG ceG

ie., a; = 7(b71)/b~L. Hence a, is a 1-coboundary.
Theorem (2.2) is a generalization of the well-known “Hilbert’s Theorem 90”:

(2.3) Theorem (Hilbert). Let L|K be a cyclic extension, and let o be a
generator of G. If x € L* with Ny gz =1, then there is a c € L* such that
oc

r= —.
C
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This theorem is just a reformulation of y, . L* = ( L*)?~1 and therefore of
H-YG, L*) =2 HYG,L*) = 1.

Theorem (2.2) says that the finite Galois extensions L|K of K constitute a
field formation in the sense of §1. In such a formation we can think of the
cohomology groups H?(L|K) as the elements of the union

Br(K) = H*( |K) = | JH*(LIK)

by viewing the inflation maps (which are injective because H'(L|K) = 1)
as the inclusions. Br(K) is also called the Brauer group of the field K. Tt
is an abstract variant of the well-known Brauer group in the theory of alge-
bras, which arises as follows: Consider all central simple algebras over K. By
Wedderburn’s Theorem every such algebra A is isomorphic to a full matrix
algebra M,, (D) over a division ring D|K, which is up to isomorphism uniquely
determined by A. Two algebras are in the same class if the corresponding di-
vision rings are isomorphic. The tensor product of two central simple algebras
is again a central simple algebra, and induces a multiplication on the set of
algebra classes, which makes this set a group, namely the Brauer group. We
briefly describe how this group is obtained from Br(K) = H?( |K):

Let ¢ € Br(K) = H*( |K),say ¢ € H*(L|K), and let ¢ be a 2-cocycle of the
class ¢. With each o € G| we associate a basis element u, and form the
K-vector space A = GBoeGLm L - u,. In this vector space, the formulas
Ug A= (0N) - Uy (Ae L), Ug - Ur = (0, T) * Ugr,

define a multiplication that makes A into a central simple algebra over K.
Another 2-cocycle of ¢ yields an equivalent algebra, and this construction
gives an isomorphism between the group H?( |K) and the Brauer group of
algebras (cf. [1]).

Before the introduction of cohomology theory, algebras were used to describe
local class field theory (cf., e.g., [38]); we remark that the use of cohomology
has led to considerable simplifications.

For finite fields we can derive the following consequence from Theorem (2.2):

(2.4) Corollary. If L|K is an extension of a finite field, then
HY(Gp g, L") =1 forallq.

Proof. The group Gk is cyclic. Since L™ is a finite G| x-module, we have
for the Herbrand quotient h(L*) = |H*(Gpx,L*)|/|H (Gp ik, L) = 1.
Hence HY(Gpk,L*) =1 for ¢ = 0,1, and therefore for all g.
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§ 3. The Multiplicative Group of a p-adic
Number Field

Let K be a p-adic number field, that is, a complete discrete valuation field of
characteristic 0 with finite residue field®). We introduce the following notation.
Let v be a discrete valuation of K, which we always think of as normalized so
that its smallest positive value is 1,
o ={x € K| v(z) > 0} the valuation ring,
p={z € K |v(zx) >0} the maximal ideal,
K = o/p the residue field of K, p the characteristic of K,
U = o ~\ p the unit group,
U! =1+ p the group of principal units, and
U™ =1+ p™ the higher unit groups.

We denote by g the number of elements in the residue field K, thusq= (0 :p).
If f is the degree of K over the prime field of p elements, then ¢ = p.

Aside from v we also consider the normalized multiplicative absolute value
| |p, which arises as follows: If & € 0, consider the absolute norm of z,

m(x) = ((9 : xo) = (o . p)”(m) — pf-v(gc)7
and set »
|z]p = N(x) .

If v € K \ 0, then 27! € 0, and we define |z|, = [z7![, " = N(z71).

(3.1) Proposition. The group K* has the direct decomposition
K* =U x (m),

where 7 is a prime element of p and (1) = {7*}rez is the infinite cyclic
subgroup of K* generated by .

This is clear since with respect to a fixed prime element 7, every x € K™ has
a unique decomposition z = u - ¥, u € U. Thus the short exact sequence
1 —-U—K*-5Z—0

%) We do not use the completeness of the field K. We only need that the valuation
is absolutely indecomposable. The local class field theory developed here is there-
fore valid without restrictions and verbatim for fields of characteristic 0 with a
henselian valuation, i.e., an absolutely indecomposable discrete valuation v with
finite residue field. Only in §7 one needs some modifications.
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splits, and has the group (7) & Z as its group of representatives. We remark
that since the choice of the prime element m € p is arbitrary, there is no
distinguished group of representatives.

In the unit group U consider the decreasing chain of higher unit groups U™:
UDU'DU?*DU*D -

The following result shows that the factor groups of this chain are finite:
(3.2) Proposition. U/U' = K* and U /U™ = K+ forn > 1.

Proof. The map that takes each u € U to its residue class u mod p € K*
defines a homomorphism from U onto K* with the kernel U'. To show
urjuntt =~ K+, we choose a prime element 7. It is easy to see that the
map 1+a-7" +— a mod p defines a homomorphism from U™ onto the additive
group KT with kernel U"*1.

(3.3) Proposition. The unit group U is an open and closed compact sub-
group of K* with respect to the valuation topology®.

Proof. If u € U, then {x € K* | v(x —u) > 0} = u + p is evidently a
neighborhood of u, which is entirely contained in U. Hence U is open in K*.
The complement of U is the union of (open) cosets of U, therefore U is also
closed.

Let & be a system of open subgroups of K* which covers U. Assume that U
cannot be covered by finitely many sets from &. Then the same is true for a
coset uy-U' C U, since the index (U : U?') is finite. In u;-U?! there exists again
among the finitely many cosets us - U? C u1-U' one which cannot be covered
by finitely many sets from &. Continuing in this way, we obtain a chain

ur Ut DugU? DugU? D+,
and since U is complete as a closed subgroup of K*, there is a unit u € U
such that uv-U"™ = u,-U" for n = 1,2, ... The uv-U™ = u + p™ form an open
nested sequence of neighborhoods of u, and if S is a set in & containing u,

there is an n with «-U" = u,,-U™ C S, which is a contradiction. Hence U is
compact7).

(3.4) Corollary. The group K* is locally compact ).

% For a henselian field in the sense of ® we have to substitute for compact, resp. in
(3.4) locally compact, relative compact resp. relative locally compact.

™) One can also argue as follows: the groups U" = 1 4 p” form a fundamental
system of neighborhoods of the unit element 1 € U. Therefore U = yglU n/gntt
(U° = U), where the inverse limit lim U™ /U™ is compact as a profinite group.
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If x € K*, then x - U is an open and compact neighborhood of z by (3.3).

(8.5) Lemma. If m is a positive integer, then the map x +— x™ yields for
sufficiently large n an isomorphism

U" —s Un—i—v(m) )

Proof. If 7 is a prime element of p and x =14 a- 7" € U"”, then
2" =14+m-a-7m"+ (7;)@2 . 4. =1 mod p" (M),

and therefore 2™ € U™v(™) for sufficiently large n.

To prove this map is surjective we have to show that for every a € o there
exists an element x € o such that

1+a- ﬂ_n-l-v(m) _ (1 L. 71_n)m7

e, 14+a- 7"t =14 m. 7" 2+ x> . f(z), where f(x) is an integral
polynomial in z. Obviously m = u - 7™ 4 € U, and we obtain the equation

—a+u-z+7"M () = 0.
If n > v(m), then Hensel’s Lemma clearly gives a solution x € o.

If additionally n is chosen so large that U™ contains no m-th root of unity,
then our map is also injective.

(8.6) Corollary. If m is a positive integer, then the group of m-th powers
(K*)™ is an open subgroup of K*. Furthermore,

Proof. If 2™ € (K*)™, then for a sufficiently large positive integer n the set
™. Un+v(m) — (J? . Un)m C (KX)m

is an open neighborhood of z™. If a € (),-_;(K*)™, then trivially a € U,
and therefore a € (o_,(U)™, i.e., a = u?, u,, € U, for all m. Now if n is an
arbitrary positive integer and m = (U : U™), then a = u? € U", and hence

aeN_, U"={1}.
We denote by i, (K) the group of m-th roots of unity in K and prove the

(3.7) Proposition. The group (K*)™ has finite index in K *; more precisely,
(K (K)™) = mq* g (K = - |l (K,

where q is the number of elements in K and |p,,, (K )| is the number of elements
in pm(K).
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For the proof we make use of the Herbrand quotient with respect to the two
endomorphisms 0 and m (cf. I, p.54). Then we have

(K7 (K7)™) = qom (K7) - | ().
Since qo,m, is multiplicative, we can decompose the first factor on the right as
qo,m(KX) = qO,m(KX/U) : qU,m(U/Un) : CIo,m(Un)-
Here qo,m(K*/U) = qo,m(Z) = m because of (3.1), go,m(U/U™) = 1 since

U/U™ is finite by (3.2); and o, (U™) = (U™ : UPT°M) = ¢*(™) for suffi-
ciently large n by (3.5), using the fact that (U?: U'*!) = q.

Putting all this together proves the above formula. At the same time we get

(3.8) Corollary. (U : (U)™) = |m|," - |um(K)| ¥.

§ 4. The Class Formation of Unramified
Extensions

A relatively simple example of a class formation is given by the unramified
extensions of a p-adic number field K. Although this class formation is a
special case of the more general formations we consider in the next section,
we need to look at it separately first. This, because its reciprocity law is
remarkably simple, and because the results obtained for this special case will
be applied in the proof of the general local reciprocity law.

In what follows we consider finite extensions L|K of p-adic number fields and
append to the notation v, ©, p, etc. introduced in §3 the relevant field as
an index, thus writing vg, Ok, Px; vL, OL, Pr, etc. The valuation vi has a
unique extension to L, namely the valuation % -vr,, where e is the ramification
index of L|K.

The extension L|K is unramified when e = 1, i.e., if a prime element 7 € K
for pg is also a prime element for py,. This is equivalent to the statement that
the degree of the field extension [L : K] is the same as the degree [L : K] of
the residue field extension L|K.

An unramified extension L|K is normal, and there is a canonical isomorphism

Grx =GR

between the Galois group Gp i of the extension L|K and the Galois group
GEII? of the residue field extension L|K. In fact, if 0 € G|k, we obtain from

glx+pL)=ocx+pL, TE€OL,

a K-automorphism & of L.

8) We denote by (U)™ the group of m-th powers of U (in contrast to U™).
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The group G is cyclic as the Galois group of a finite field L. As one can
immediately verify, it has the distinguished generating automorphism

T+—zix, zelL,
where g is the number of elements contained in K. Because G Lk = Gk,
we also obtain a canonical K-automorphism of L which generates G|k

(4.1) Definition. The automorphism ¢,k € Gk which is induced by the

automorphism B B -
T— x5, T €L,

of the residue field L is called the Frobenius automorphism of L|K.

(4.2) Proposition. Let N O L D K be unramified extensions of K. Then
ok = ¢niklL = ¢enxGniL € Gox and @y = 90%:;((].
Proof. This follows easily from the fact that for all x € o;, we have
(¢r|xx) mod pr, = 2% mod pr, = 2% mod py = (@n|xT) mod py,
and for all z € oy,

[L:K]

(enjzx) mod py = x% mod py = 2% mod PN = (<pN|:K x) mod py.

Because of its canonical nature and its good properties with respect to re-
strictions and extensions given by (4.2), the Frobenius automorphism plays a
significant special role in class field theory.

The following theorem is particularly important in both local and global class
field theory.

(4.3) Theorem. Let L|K be an unramified extension. Then
Hq(GL‘K,UL) =1 for all q.

Proof?. If we identify the group G g with the group Gk, then
1 —Ul — U, — L —1

is an exact sequence of G x-modules. Since HY (G, L*) =1 (cf. (2.4)), it
follows that Hq(GL‘K7 UL) = Hq(GL|K, Ull/)

A prime element 7 € K for pg is also a prime element of p,. Thus the map

U£71—>l_/+,1+a~77"_1|—>a mod pr, a€ Oy,

9 For the proof of this theorem one uses usually the completeness of the field L
(cf. [42]). We avoid this, so that our entire exposition also holds verbatim for
henselian fields in the sense of *).
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defines a G’z g-homomorphism, and from the exact sequence of G’z -modules
1— U — Ut —LT—0

we obtain, using that H (G, L*) =0 for all ¢ by (2.1), the isomorphism
HYGrx, Up) = H(Grx, UL ).

Thus it follows that the injection U}’ — Uy, induces an isomorphism
HYGpik,UL) — HYGprk,UL).

If m is a positive integer, the map x — ™ defines a homomorphism Uy, = Uy,

and by (3.5) an isomorphism U} — UEH'U(m), provided n is sufficiently large.

Hence we have a homomorphism H(Gpx,UL) LIS HY(Gprx,UL), and an

isomorphism H (G x,U}) LN HY Gk, U;Hrv(m)). Consider the diagram

HY(Gpk,Uf) ———— HY(Grk,UL)

HY(G g, U ™) ——— HY(Gpx, UL)
This diagram obviously commutes, and all maps except for the right vertical
map are known to be bijections. Hence it follows that the homomorphism
Hq(GL\K7 UL) l> Hq(GL|Ka UL)7

that sends every cohomology class ¢ to its m-th power ¢ is also a bijection
for all m. But the elements of HY(G |k, Ur) have finite order (cf. I, (3.16)),
so that we must have H9(Gpx,Ur) = 1.

For ¢ = 0 we obtain the

(4.4) Corollary. If L|K is unramified, then
UK = NL\KUlw

Hence in the unramified case every unit is also a norm.

We now show that the unramified extensions L|K form a class formation
with respect to the multiplicative group L*. To do this, we have to specify an
invariant map satisfying Axiom II (cf. §1, (1.3)). We proceed as follows. From
the long exact cohomology sequence associated with the sequence

1—U, —L* 5 Z—0,
we obtain, using that H9(Gp x,UL) = 1, the isomorphism
HQ(GL\K7 LX) L HQ(GL|K7 Z)

Moreover, the exact sequence 0 — Z — Q — Q/Z — 0, together with the
fact that @ is cohomologically trivial, implies that the connecting map
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H*(Gpik,Z) LI H' Gk, Q/Z) = Hom(Gpk, Q/Z) = x(G LK)

is an isomorphism. If x € x(Gp|x), then x(vr k) € ﬁZ/Z C Q/Z, and
since the Frobenius automorphism ¢k generates the group G, the map

HY(Gpk,Q/Z) = x(Grik) — ﬁl/z

is also an isomorphism. Taking the composition of these three isomorphisms,

H (G, L) =5 HA(G i Z) *= H' Gk, Q/Z) % 2/Z,

we obtain the desired map

(4.5) Definition. If L|K is an unramified extension, define

invy g : H2(GL|K;LX) — [L:ilK]Z/Z

to be the isomorphism invyx = pod o .

For simplicity, we now set
HY(L|K) = HY(Gprx,L™).

Let Ky be a fixed p-adic number field, and let T" be the maximal unramified
field extension of Kj, thus the union of all unramified extensions L|Ky; the
field T' is also called the inertia field over K. We denote by G|, the Galois
group of T|Kj.

(4.6) Theorem. The formation (Gr|x,,T™) is a class formation with respect
to the invariant map defined in (4.5).

Proof. Axiom I is always satisfied by (2.2): H'(L|K) = 1. For the proof of
Axiom IT a) and b) we need to prove that the following two diagrams commute

Jvincl linf linf lincl

H2(N|K) —— H2(Gnix, Z) 2 HY Gy ik, Q/Z) 2 =2/Z,

[N:K]

HX(N|K) —— H*(Gwx, Z) 2= H' Gk, Q/Z) — {5Z/Z

lres lres lres l[L:K]

H*(N|L) —%— H?*(Gp, Z) *— H'(Gn1,Q/Z) — FpZ/Z.

where N D L O K are two unramified extensions of K. That the left squares
commute follows immediately from the behavior of 2-cocycles under the maps
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v, inf, and res. The middle squares commute because the inflation and restric-
tion maps are compatible with the connecting homomorphism § (cf. I, (4.4)
and I, (4.5)).

To prove the commutativity of the right squares, let y € H* (Grk,Q/Z) and
X € Hl(GN|K, Q/Z) respectively. From (4.2) we have the formulas

inf x(onix) = X(enxkGNiL) = X(prix), and
res x(pn1z) = X(ovin) = X)) = [L : K- x(pnix),

which complete the proof.

We could now apply the entire theory developed in §1 to this special class
formation. However, we will not pursue this here, since we will do this for
more general, not necessarily unramified, extensions in the next section.

If T is the maximal unramified field extension of K, and therefore the maxi-
mal unramified extension of every unramified extension K|Kj, then we set

H*(T|K) = | H*(LIK),

where L|K runs through all (finite) unramified extensions of K. Here we view
the inflation maps as inclusions (cf. §1, p.66), so that for two normal exten-
sions N D L 2 K we have H?(L|K) C H?(N|K). Because of the extension
property of the invariant map II a), we obtain an injective homomorphism
invg : HA(T|K) — Q/Z

(cf. §1, p. 68). This homomorphism is even bijective, since Q/Z = |7~ %Z/Z7
and since for every positive integer n there exists (exactly) one unramified
extension L|K of degree n = [L : K], for which we have the bijective homo-
morphism inv g : H*(L|K) — +Z/Z. Thus we have shown:

(4.7) Proposition. H?*(T|K) = Q/Z.

If L|K is an unramified extension, the Galois group G| is cyclic and thus co-
incides with its abelianization G‘zll)K. Hence the norm residue symbol (, L|K)
yields the exact sequence

1 — Nppl* — kxS

What is special about the reciprocity law in the unramified case is that the
norm residue symbol has a very simple, explicit description.

(4.8) Theorem. Let L|K be unramified, and a € K*. Then
(a, L|K) = @75,
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Proof. If x € x(Gr k), 6x € H*(GL ik, Z) and @ = a- Ny g L* € H°(L|K),
x(a, L|K) = invp g (@ U dx)
by (1.10). This formula, together with (4.5) implies that

x(a,LIK) = invy g (@Udx) = pod tot(@Udx) = pod ' (vk(a) - dx)
= p(vi(a) - x) = vi(a) - X(¢riK) = X))

Since this holds for all x € x(G k), it follows that (a, L|K) = ‘PZTI((Q)'

Theorem (4.8) raises the question whether one can obtain the reciprocity
law without the cohomological calculus and the notion of class formations.
It appears that one could get the reciprocity law in a much more natural
way by simply defining the norm residue symbol explicitly by the formula
(a,L|K) = <p1£’|<j((a), and then directly verifying its essential properties. In the
unramified case, this is in fact possible. After closer inspection, the use of
the invariant map for the present case seems to be unnecessarily complicated,
in fact might appear as an attempt to actually force this idea artificially
into a cohomological framework. The reason to follow this approach lies in
the problem of a class field theoretical treatment of ramified field extensions.
Historically, it was precisely at this point, where cohomology (in the theory of
algebras) entered class field theory. In fact, for ramified extensions one cannot
readily give an explicit definition of the norm residue symbol, whereas this can
be done for an invariant map, which extends canonically the one constructed
here to the domain of arbitrary normal extensions. We will see this in the next
section.

In the class formation of unramified extensions, the extension fields L of K
correspond by (1.14) precisely to the norm groups in K*. Because of (4.8),
these norm groups can be given explicitly.

(4.9) Theorem. Let K be a p-adic number field and 7 a prime element. Then
Uk % (71’f) 10)

is the norm group of the unramified extension L|K of degree f.

Proof. Since ¢r,x generates the group Gp x, the degree f = [L : K] is also
the order of o x in G k. Hence an element a € K* lies in Nz L* if and

only if (a,L|K) = gozll}({a) = 1, thus if and only if vg(a) = 0 mod f, ie.,

a=u- -1 ke Z, ueUg.

19 We denote by (nf) the infinite cyclic group {7*f}rcz generated by the ele-

ment 7.
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We end this section with some remarks about the universal norm residue sym-
bol of our class formation (cf. §1, p.76). Let T|K be the maximal unramified
extension of K. If L|K ranges over all finite unramified extensions, then the
projective limit )
Grix =lim Gk
L
is the Galois group of T'|K.

For a € K* we get the universal norm residue symbol (a, T|K) € G|k by
(a,T|K) =lim(a, L|K).

This gives a homomorphism

If 77, : Grix — Gk is the canonical projection of G|k onto G|k, then
70, TIK) = (a, LK) = 975 € Gy

Because of (4.2), the elements ¢ x € Gk form a compatible system of
elements in the projective system of Gz g, and we call the element
px =limer Kk € Grix
L
the “universal” Frobenius automorphism of K. It has infinite order, since from
©% =1 it would immediately follow that 7z (¢%) = @ = 1 for all ok,
which is obviously impossible.

For this symbol ( ,T|K), we now have the

(4.10) Theorem. If a € K*, then (a,T|K) = 0", The kernel of the
homomorphism

is the unit group Uk.

Proof. If L|K is an unramified extension, and 7 : Gpx — Gk is the
canonical projection from Gp|x onto G, then

mr(a,T|K) = (a,L|K) = SOIIJfrl(I((a) _ WL(‘PF(K(G))-

This shows that (a,T|K) = ¢"%“). Hence (a, T|K) = ¢% =1 if and only
if v (a) =0 (pk has infinite order), therefore if and only if a € Uk.

The class formation of unramified extensions provides an example that shows
that the universal norm residue symbol is not surjective in general. In fact, its
image is the infinite cyclic group generated by ¢k, which is a dense subgroup
of Gk isomorphic to Z. Since this is not a profinite group, it obviously
cannot coincide with Gk ; only its completion in G| coincides with G-
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§ 5. The Local Reciprocity Law

We fix a p-adic number field Ky and let {2 denote its algebraic closure. For
every normal extension L|K with L finite over Ky we again set (cf. §2, p.78)
HY(L|K) = H(G |k, L),
Br(K) = H*( |K):UL‘KH2(L|K) (Brauer group of K).

If G = Ggk, is the Galois group of 2|Kjy, the formation (G, 2*) is a field
formation, because H'(L|K) = 1 (cf. (2.2)). We will show in this section that
it is even a class formation. For this we have to extend the invariant map
introduced in §4 to ramified extensions L|K. The following lemma, which
is also called the “second fundamental inequality”, provides the key to this
generalization:

(5.1) Lemma. Let L|K be a normal extension. Then the order |H?(L|K)| of
H?(L|K) is a divisor of the degree [L : K]:

|H*(L|K)| | [L: K].

Proof. Assume first L|K is cyclic of prime degree p = [L : K]. We show the
Herbrand quotient h(L*) = |H?(L|K)|/|H'(L|K)| = |[H*(L|K)| = p. If qo,
is the Herbrand quotient with respect to the endomorphisms 0 and p, then
WL = qo.p(K™)" /g0,5 (L)
by I, (6.9). Using (3.7), we have for the Herbrand quotients on the right side
Qo (K) = (K2 (K9) /|| = p- P,
Q0. (LX) = (L (L)) /|Lyl = p- g,

If f = [L : K] is the inertia degree and e the ramification index, then p = e- f,
q;, = q{(, and v, (p) = e - vk (p). Substitution into the above formulae yields
WL~ =P g @ fp g P = =t e, W(LY) = p.

The general case follows from this by purely cohomologically methods. Since
the Galois group G|k is solvable, there exists a cyclic intermediate field K

over K of prime degree, K C K’ C L. Because H'(L|K') = 1, the sequence
1 — H*(K'|K) — H*(L|K) = H*(L|K)
is exact. This shows that
|H*(L|K)| | [H?(LIK")|-| H? (K| K)] .
We have already shown that |H?(K'|K)| = [K’ : K], and when we assume by
induction on the field degree that [H?(L|K’)| | [L : K'], then it follows that

|H*(LIK)| | [L: K- [K': K] =[L: K].
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The above proof makes use of the solvability of the Galois group G|, which
follows immediately from the fact that we have a cyclic inertia field between
K and L, and above it the cyclic ramification field over which L has prime
power degree. One can get around this by using I, (4.16) to reduce to the case
of an extension of prime power degree, and then proceeding as above.

That we can extend the invariant map to the case of ramified extensions is
obvious, once we have proved the following theorem:

(5.2) Theorem. If L|K is a normal extension and L'|K is the unramified
extension of the same degree [L' : K| = [L : K|, then

H*(L|K) = H*(L'|K) C H*( |K).

Proof. It suffices to show the inclusion H?(L'|K) C H?(L|K); if this holds,
the inclusion must have an equality because |H?(L'|K)| = [L : K] (cf. (4.5)),
and |H*(L|K)| | [L : K] by (5.1).

If N=L-L, and I/|K is unramified, then N|L is also unramified, ). Let
c € H*(L'|K) C H*(N|K). It follows from the exact sequence
1 — H*(L|K) — H*(N|K) =% H?(N|L),
that c lies in H?(L|K) if and only if respc = 1. Since resc = 1 if and only if
inv |z (respe) = 0 (cf. (4.6)), our theorem follows once we have shown that
invyp(respe) = [L: K] -invp/ ke,

since invy/ gc € ﬁl/l. The last equality is a special case of the following
lemma.

(5.3) Lemma. Let M|K be a normal extension containing the two extensions
L|K and L'|K with L'|K unramified. Then N = L-L'|L is also unramified '),
Ifce H*(L'|K) C H*(M|K), then respc € H?*(N|L) C H*(M|L), and

invyp(respe) = [L: K] -invy/ ke

Proof. The fact that the 2-cocycles of the class resyc have their values in N *
(cf. §1, p.66) implies that respc € H?(N|L).

Let f be the inertia degree and e the ramification index of the (not necessarily
normal) extension L|K. We think of the valuations vk and vy as extended
to M. Then we have v;, = e - vg. By definition, the invariant map is the
composite of the three isomorphisms o, 671, ¢ (cf. (4.5)); hence to prove the
above formula it suffices to check that the following diagram commutes

) Note: If T is the maximal unramified extension of K, then 7T - L is the maximal
unramified extension of L.
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H*(L'|K) —%— H*(Gp ik, Z) *— HY(Gpx,Q/Z) 2 T Z/Z
lincl linf linf lincl

H?*(M|K) H*(G vk, Z) HY(Gux,Q/Z) [MilzK]Z/Z

H*(N|L) —%— H*(Gni1, Z) *— H'(GN 1, Q/Z) — = F5Z/Z.

In this diagram it is understood that the lower vertical maps only map the
images of the upper vertical maps to the cohomology groups in the bottom
row. That the left square commutes follows from the behavior of the 2-cocyles
under the maps in question. The middle square commutes because the inflation
and restriction maps commute with the homomorphism § (cf. I, (4.4) and I,
(4.5)). To see that the right square commutes, we have to consider the equation

_
SON\L L SDL/IK

which is a generalization of (4.2). But this is easy to see that if a € L', then
¢n|L(a) = a’t mod py = a% mod PN = a%% mod pr = go{,‘K(a).

Now if x € H (G |k, Q/Z), then

[L: K] 'X(‘PL’|K) =e-f- X(@L/|K) =e€- X(%@qu) =e€- X(SON|L L,)
=e-infx(onr) = e (resoinf)x(on|L)-

hence the right diagram commutes, which completes the proof of the lemma.

From Theorem (5.2) we have the equality

Br(K) = H*( |K)=HXTIK)= |J HALIK),

L|K
unramified

and because of the invariant map we obtain using (4.7) the

(5.4) Theorem. The Brauer group Br(K) of a p-adic number field K is
canonically isomorphic to Q/Z:

Br(K)~=Q/Z.

(5.5) Definition. Let L| K be a normal extension and L'|K be the unramified
extension of the same degree [L' : K| = [L : K], so that H*(L|K) = H*(L'|K).
Define . 5 1

anL‘K - H (LlK) — WZ/Z

to be the isomorphism invy gc = invy/ ke (c € H*(L|K) = H*(L'|K)).
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With the definition of this invariant map we have reached our goal. If Ky is
a p-adic number field, {2 its algebraic closure and G, = G|k, is the Galois
group of 2| Ky, then

(5.6) Theorem. The formation (Gg,, {2*) is a class formation with respect
to the invariant map defined in (5.5).

Proof. Axiom I is satisfied by (2.2): H'(L|K) = 1.

If N D L O K are normal extensions over a fixed p-adic base field K, and
N'|K (resp. L'|K) is the unramified extensions of degree [N’ : K] = [N : K],
(resp. [L' : K] = [L : K]) (N’ 2 L' D K), then for every ¢ € H*(L|K) =
H?(L'|K) we have, using (4.6),

iIlVN‘KC = invN/|Kc = invL/‘Kc = inVL|KC.

This proves Axiom II a). For the proof of Axiom II b), let L|K be an arbitrary
extension with L finite over K. If resy, is the homomorphism

H*(|K) == H*( |L)
(cf. §1, p.66), then we have to show that
invyoresy = [L: K] invg

(cf. the remarks made at the end of (1.3)). If c € H?( |K), we can assume by
(5.2) that ¢ € H?(L'|K), where L'|K is unramified. Then N = L-L'|L is also
unramified, and res,c € H2(N|L) C H?( |L). From Lemma (5.3) we obtain

invy(respe) = [L: K] - invge,

which proves our claim.

Theorem (5.6.) allows us to apply the theory of abstract class formations
developed in §1; we consider the general results established there once more
in their special form for the case at hand.

For every normal extension L|K we have the fundamental class

ur|x € H?*(L|K) with the invariant vy g ur g = Tll<] +Z.
The Main Theorem of Local Class Field Theory is the statement

(5.7) Theorem. Let L|K be a normal extension. Then the homomorphism
UL|K U: Hq(GL|K, Z) — Hq+2(L|K)

is bijective for every integer q.
For ¢ = 1,2 it follows that (cf. (1.8))

(5.8) Corollary. H?*(L|K) =1 and H*(L|K) = x(G k).
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For ¢ = —2 we get the local reciprocity law:

(5.9) Theorem. For every normal extension L|K we have the isomorphism

Gy = H (G, Z) 225 HO(L|K) = K* /Ny i L*.

The inverse isomorphism induces an exact sequence
LK
1 — Ny L* — k< L0, g o,

where ( ,L|K) is the norm residue symbol. When passing to subfields,
extension fields and conjugate fields, the norm residue symbol behaves as
follows:

(5.10) Proposition. Let N O L O K be extensions of K with N|K normal.
Then the following diagrams are commutative (cf. (1.11)):

( LNIK)

a) K> —— > Ga]\ﬂK b) K~ G?\HK
idl lﬂ— incll lver
KX ( 7L‘K) G%k‘)K7 LX ( aN‘L) G?‘\II)‘L7
L)( ( aN‘L) Gab d K)( ( 7N‘K) Gab
c) N|L ) N|K

o Lo |

« (_oNIoK)
L oNles)
Nk oK GO_N‘UK.

Here in diagram a) the extension L|K is also assumed to be normal, and in
diagram d) o denotes an element in G, .

By (1.10) the norm residue symbol and the invariant map are related:

(5.11) Lemma. Let L|K be a normal extension, a € K*, and a =
a- NyxL* € H(LIK). If x € x(G}}y) = x(Gx) = H'(Grx, Q/Z),
then

X((L L|K) = inVL|K(d U (;X) € ﬁZ/Z,

where &y is the image of x under H (G x, Q/Z) LA H*(Gpk, Z).
For unramified extensions L|K we gave in (4.8)) an explicit description of the

the norm residue symbol ( ,L|K) in terms of the Frobenius automorphism:

(a, L|K) = @71
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It is very important to have such an explicit representation in case of ramified
extensions as well. Concerning this question, a fairly general result has been
obtained in recent years by J. LUBIN and J. TATE. We will consider this
representation in §7.

We extract the following consequence of (4.8):

(5.12) Theorem. If L|K is an abelian extension, then the norm residue
symbol (,L|K) maps the unit group Uy onto the inertia group of Gp i
and the principal unit group U} onto the ramification group.

Proof. Let L, be the inertia field between K and L, f = [L, : K] and G the

inertia group of G'z|x, thus the fixed group of L.. If u € Uk, then by (5.10a)
we have 7(u, L|K) = (u, L|K) - G; = (u, L;|K) = wif‘(;? = 1, and therefore
(u, L|K) € G,. Conversely, let 7 € G, and a € K* with (a, L|K) = 7. Then
w(a, L|K) = (a,L|K) - G; = 1, therefore (a, L;|K) = cpz:(;() =1,
i.e., vg(a) =0mod f. If we choose a b€ L* with v (b) = %UK(CL), then
vr(Npjgb) = e v (Npgb) = [L: K]-vp(b) = e - vk(a),
therefore v (a) = vi (Np|kb), @ = u- Npgb with u € Uk. From this we have
(a,L|K) = (u,L|K) = 7, i.e., Ux is mapped onto the entire inertia group.

Observing that (Uy, L|K) = 1 for sufficiently large n, we conclude that the
ramification group G,, which is the only p-Sylow subgroup of G, is the image
of the p-Sylow subgroup Uj /U of Uk /U (cf. (3.2)).

It is possible to strengthen Theorem (5.12) by showing that the higher prin-
cipal unit groups U, when suitably numbered, are mapped onto the higher
ramification groups of G| . For this we refer to [42], XV, §2, Cor. 3.

To end, we briefly discuss the universal norm residue symbol of our class
formation (cf. §1, p. 76). For each abelian extension L|K we have the map

KX ( 7L|K) GL‘K
By forming the projective limit
G = hm G i (L|K abelian)
we get, for every a € K*, the element

(a,K) = lim(a, L|K) € G}

in the Galois group G%? of the maximal abelian extension of K.
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(5.13) Theorem. The universal residue symbol defines an injective homo-
morphism
QR ET)

Proof. By (1.15) the intersection Dy = (), Np|xL* is the kernel of (, K).
By (3.7) the groups of m-th powers (K *)™ are of finite index, and therefore are
norm groups by Theorem (6.3), which is proved in the next section. Therefore
Dy C gy (K7™ = 1.

If a € K*, then the restriction of (a, K) € G3 to the inertia field T|K gives
the universal norm residue symbol of the class formation of the unramified
extensions of K discussed in §4 (cf. §4, p.87). By (4.10) we thus have

(a,K)|p = (@, TIK) = 3 € Gy,
where px = lgl LIK unram, PLIK € Gr i denotes the universal Frobenius au-

tomorphism.

In global class field theory we have to consider besides the p-adic number
fields also the field IR of real numbers. There is also a reciprocity law over
the reals, which is so simple, however, that we can explain it with only a few
words.

The field IR has only one algebraic extension, namely the field C of complex
numbers. The pair (Ggjr, C*) constitutes a class formation in a trivial way:
The group

H?*(Gew, €°) = H(Ger, C°) = R* /NgrC*
is cyclic of order 2, since an element a € IR™ is a norm from C if and only if
a > 0. The invariant map
iHV(D‘]R : H2(G@‘]R, (DX) — %Z/Z
is defined in the obvious way, and the norm residue symbol ( , C|IR) is char-
acterized by the equation

(a, CIR)(V=1) = (V=12

since (a, C|R) is either the identity or the conjugation map, depending on
whether a is a norm or not, i.e., whether a > 0 or a < 0.

§ 6. The Existence Theorem

From the abstract class field theory of §1 we see (cf. (1.14)) that the norm
groups in a p-adic number field K correspond bijectively to the abelian ex-
tensions of K:
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(6.1) Theorem. Let K be a p-adic number field. Then the correspondence
L+— Iy, :NL‘KLX - K*

gives an inclusion reversing isomorphism between the lattice of abelian exten-
sions L|K and the lattice of norm groups in K*. Every group containing a
norm group is again a norm group.

The last theorem shows that the structure of the abelian extensions of K is
reflected in the multiplicative group K>, and naturally leads to the question
of how the norm groups in K> can be characterized by intrinsic properties of
K. This is done by the following so-called Existence Theorem:

(6.2) Theorem. The norm groups of K* are precisely the open (and thus
closed) subgroups of finite index.

Proof. By the reciprocity law (5.9) every norm group I, € K* has finite
index in K. If m is this index, then clearly (K*)™ C I. By (3.6) (K*)™ is
open, hence I, is open as the union of (open) cosets of (K*)™ in I

Conversely, let I C K* be an open subgroup of finite index m in K*. Then
(K*)™ C I and by (6.1) I is a norm group if (K )™ is a norm group. We show
this first in case that K contains the m-th roots of unity. For each a € K*
we form the field L, = K( %/a), and set

Then L|K is a finite abelian extension, because K * /(K *)™ is finite (cf. (3.7)),
and therefore there are only finitely many distinct fields among the L,. We
now claim that

(K" =Ip= () L, .
ac KX
The degree [L, : K| = [K(%/a) : K] = d is obviously a divisor of m, hence the
inclusion (K *)? C I implies (K*)™ C Iy, for all a. Therefore (K*)™ C Ir.
On the other hand, the theory of Kummer extensions (cf. Part III, §1, p. 115,
(1.3)) gives an isomorphism between the factor group K*/(K*)™ and the
character group of the Galois group G, x, so that by (5.9)
(K™ (K*)™) = |Grk| = (K™ : Ip).
Thus (K*)™ = I, and therefore (K*)™ is a norm group. If K does not
contain the m-th roots of unity, let K3 be the extension obtained by adjoining

the m-th roots to K. From the above we know that (K;*)™ is the norm group

of an extension L|K; : (K{*)™ = Npx,L*. Let L be the smallest normal
extension of K containing L. Then

12) The right equation follows from (6.1) because L = Ueexx La-
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Ni L™ = Nicy g (N3 g, L) € Niey i (N, LX) = Nigy e ((K7)™)

= (N, i K7™ € (K™,

Hence (K*)™ is a group containing the norm group NZ‘KEX, thus by (6.1)
(K*)™ is a norm group itself, and our Existence Theorem is proved.

Theorem (6.2) is called the Existence Theorem because its crucial assertion is
that given an open subgroup I of finite index in K*, there exists an abelian
extension L|K whose norm group NpxL* = I. This field L is uniquely
determined and is called the class field associated with I.

It is clear that the open subgroups of finite index in K* are also closed of
finite index, and vice versa, since the complement of a subgroup of finite index
in K* consists of its finitely many cosets. More generally, we have

(6.3) Theorem. If I is a subgroup of K*, then the following conditions are
equivalent:

(i) I is a norm group,

(ii) I is open of finite index,
(iii) I is is closed of finite index,
(iv) I has finite index.

Proof. The conditions (i), (ii), (ili) are equivalent by (6.2) and our remark
above. Furthermore, (iv) is equivalent to (ii), since a subgroup I of finite index
m contains the open group (K*)™, and is therefore open.

Apart from the topological characterization of norm groups given by Theorem
(6.3), we also have the following description of these groups, which is of an
arithmetic nature (cf. also (4.9)).

(6.4) Theorem. The norm groups of K* are precisely the groups containing
Ui x (zf), n=0,1,2,..., f=1,2,...

Here UY. = Uk, 7 is a prime element of K, and (rf) is the subgroup of K *
generated by wf.

Proof. Every group Up x (7/) has finite index in K* = UY x (7), and is
therefore a norm group by (6.3), hence has only norm groups containing it.

Conversely, if I is a norm group, it is open. Since the U} form a fundamental
system of neighborhoods of 1 € K*, thereis a U} with Uy C I. If 7 is a prime
element and f the index (K> : I), then 7/ € I, and thus Ut x (7f) C I.

We will give a more detailed account of norm groups in the next section.
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§ 7. Explicit Determination of the Norm
Residue Symbol ¥

In Theorem (4.8) we have given an explicit description of the norm residue
symbol for unramified extensions via the Frobenius automorphism. In this
section we derive such an explicit formula for the norm residue symbol in
certain special totally ramified extensions. Since these extensions together
with the unramified extensions generate the maximal abelian field, this allows
us to explicitly determine the universal norm residue symbol.

Let K be a p-adic number field, o the ring of integers of K, m a prime element

and ¢ = (0 : 7o) the number of elements in the residue field K.

We consider the set &, of all power series f(Z) € 0[[Z]] such that
f(Z)=7n-Z mod degree 2 and f(Z)= Z? mod .

Two power series are called congruent mod degree n (resp. mod =) if their

terms of degree less than n coincide (resp. when their coefficients are congruent

mod 7). The simplest example of a power series in & is the polynomial f(Z) =
w - Z + Z1, which one may regard as a standard model. Let

f(Z) = f(f(--- f(2)---)) € o[[Z]
be the power series obtained by n-fold substitution in f(Z), where f°(Z) = Z.

Let Ay, be the set of those elements A of positive valuation in the algebraic
closure £2 of K with f™(\) = 0. We consider the fields
-Ljﬂn = }((/1f’n), n = 1,2,...
Because
1 (2)=f(f"7H2) = ["7H2) - ¢a(2),  ¢u(Z) € O[[Z]],
it is immediately clear that A¢,_1 C Ay, and therefore that
Lf,n—l gLﬁn, ’I’L=1,2,...
We set Af = Uzozl Af’n and Lf = K(Af) = UOO Lfn.

n=1 s

We will show that the extensions Ly, |K are abelian and totally ramified,
and that they are associated with the norm groups Uy x (m) (cf. (6.4)). The
essential idea here is to use certain power series to make the zero set Ay, an
o-module in such a way that multiplication of Ay, by a unit u € © produces
a permutation of Ay ,, which induces a K-automorphism of L¢ ,|K, namely
the automorphism (u=!, Ly ,|K).

13) In this section we follow [34]. For Part IIT only Theorem (7.16) is used.
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(7.1) Lemma. Let f(Z),9(Z) € & and L(X1,...,X,) = > a;X; be a

linear form with coefficients a; € ©. Then there is a uniquely determined

power series F(X1,...,X,) with coefficients in © with the properties
F(Xy,...,X,)=L(Xy,...,X,) mod degree 2,

Proof. We set X = (Xq,...,X,) and g(X) = (9(X1),...,9(Xy)). One im-
mediately verifies that if F'(X) is a power series and F,.(X) € o[X] are its
truncations consisting of all terms of F'(X) of degree at most 7, then F'(X) is
a solution of the above problem if and only if F(X) = L(X) mod degree 2,
thus F(X) = L(X), and for every r the following congruence holds

(+) J(Fu(X)) = Fy(g(X))  mod degree (5 + 1),

For r = 1, i.e., for F1(X) = L(X) this is true. If we have found a unique
F.(X) € o[X] satisfying condition (x), and we set F, 1(X) = F.(X) +
A,+1(X) with a homogeneous form A, of degree r + 1, it follows from

f(Frp (X)) = f(F(X)) +7- A (X) mod degree (r + 2),
Foi1(9(X)) = Fo(9(X)) + 7" Apy1(X)  mod degree (r + 2),

that for A,;; the congruence

f(Fr<X)) - Fr(g(X))
artl —

Ar1(X) = mod degree (r + 2)

must be satisfied. Hence we obtain A,; is a unique way as the first trunca-
tion, i.e., as the homogeneous form of (r + 1)-th degree of the power series
(f(Fr(X)) — FT(g(X)))/(WTJrl — 7r). Because

FEL(X)) = F(9(X)) = (Fu(X))7 = F(X9) =0 mod

the form A,;; has integral coefficients, and hence so has F.y1 = F. + Apyq.
This shows existence and uniqueness of the series F/(X) = lim, o F-(X).

Remark. The proof actually shows that F' is the only power series in every
field containing © which satisfies the equations of the lemma.

For us, the cases L(X,Y) = X +Y and L(Z) = aZ, a € o, are important. If
[ €&, let Fr(X,Y) be the uniquely determined solution of the equations

Fi(X,)Y)=X+Y mod degree 2,
X, Y)) = Fp(f(X), f(Y)).
Moreover, for every a € 0 and f, g € &, let the series ay 4(Z) € 0[[Z]] be the
uniquely determined solution of

arq¢(Z) =aZ mod degree 2,
flagg(2)) = ap4(9(2)).
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For simplicity, we write a¢ for as ¢. The following proposition shows that

F(X,Y) in a certain sense plays the role of “addition,” while ay corresponds
to “multiplication.”

(7.2) Proposition. Let f,g,h € &; and a,b € 0. Then

(1) Fr(X,Y) = Fp(Y, X),

(2)  Fp(Fp(X.,Y),Z) = F(X, Fy(Y, Z)),

(3)  apg(Fy(X,Y)) = Frlagg(X),ar,4(Y)),
(4) af,g(bg.n(Z)) = (a-b)sn(2),

(5) (a+b)5g(Z) = Fylayy(Z),bs4(2)),

(6) (7)) (Z) = f"(Z), n=0,1,2,...

To prove these formulas, one shows that the left and right side of each equation
are both solution of a problem as in (7.1), hence by uniqueness of the solution
they are equal. We leave the details to the reader.

For f = g = h we obtain from (1)—(6) the formal rules of an o-module.
Therefore we call Fy a formal Lie o-module. From such a formal Lie o-
module we obtain an ordinary o-module by letting the variables X, Y, Z attain
values from a domain in which the power series converge. If L is an arbitrary
algebraic extension of K, then the prime ideal pj, of the elements of positive
valuation in L represents such a domain. In fact, if xy,...,2, € pr and
G(X1,...,X,) € 0[[X1,...,X,]], then the series G(x1, ..., x,) converges and
gives an element in py, if the constant term of G is zero'¥). We have so

(7.3) Proposition. Let f € &, and let L be an algebraic extension of K.
Then the set py, is an o-module with addition and multiplication defined by

r+y=Fi(z,y) and a-x=ar(z), 2,y €Epr, a € 0;

we write p(Lf ) for this o-module.

Obviously, the additive inverse of x is (—1)¢(z). One needs to be careful not

confuse the operations p(Lf ) with the ordinary operations on the o-module.

(7.4) Proposition. The set of zeros Ay, of f"(x) is a submodule of p(ij)

Proof. The set of zeros Ay, is the annihilator of the element 7™ € o, since

Apn={Nepr,, | ") ="\ =0t ={repd) |77 A=0}

%) G(x1,...,x,) converges in the finite (and thus complete) extension of K generated
by z1,...,%n.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

§7. Explicit Determination of the Norm Residue Symbol 101

(7.5) Proposition. Let f,g € & and a € 0. Then the map
A— ag,f()\)

yields a homomorphism from A¢,, to Ag . This homomorphism is an isomor-
phism if a is a unit in o.

Proof. This follows immediately from the formulas in (7.2). By (3) and (4)
this map is a homomorphism. If @ is a unit, then (4) and (6) imply that

(@ ") fg(agr(N) =15(A) = A for X € Ajp,
and in reverse order
ag,f((ail)f,g(A)) =13(A) = Afor A€ Ay .

Hence the map a, s : Af,, — Ay, is a bijection with inverse map (a™1) 4.

(7.6) Corollary. Let f € &;. Then we have an isomorphism of 0-modules

A Z2o/m"0.

Proof. If f,g € &, then the map 14 ¢ : Ay, — Ay, is an isomorphism by
(7.5). Thus it suffices to consider the module Ay, with f(Z) =nZ+ 27 € ;.

The o-module Ay consists of the zeros of the equation f(Z) =7Z+ Z9 =0,
thus has ¢ elements, and is therefore a one-dimensional vector space over the
field o/m-0. For n =1 the result follows from the isomorphism Ay, = o/mo.

Assume that Ay, = o/7™-0. By (7.5) the element 7 defines the homomor-
phism 7y : Ay 41 — Ay, from which we obtain the exact sequence

00— Af,1 — Af,n+1 71’—f> Aﬁn — 0.

To see this, note first that 7(\) € A, for A € Ag 11, because f™(m¢(N)) =
fP(fN) = fmTHA) = 0. If X € Ay, and A (€ £2) is a root of the equa-
tion f(Z) — A= Z%4nZ — X\ = 0, then \* € Ay, 41 because f*"T1(\*) =
fP(f(A)) = fM(A) = 0, thus my(A*) = f(A*) = A, and 7y is surjective.
The kernel of ¢ consists of the elements A with 7y(A\) = f(\) =0, i.e., the
elements of the module Ay C Af pi1.

Since Af; 2 o/m-0and Ay, = 0/7"-0, the order of A¢ 41 is equal to ¢" 1. If
A€ Af i1 but A € Ay, then 77710 is clearly the annihilator of A. Hence the
map a + a- \ gives an isomorphism between o/7"*1.0 and the o-submodule
of Ay n+1 generated by A, which must coincide with Ay, 11, since o/7" 1.0
and A 41 both have order ¢"*1. Therefore Ay, 41 = o/7" 0.

(7.7) Corollary. Every automorphism of the o-module Ay, is of the form
ug @ Agp — Ag, with a unit u € Ug. The map uy is the identity on Ay, if
and only if u € Uj;. Thus the group Uk /U} represents the full automorphism
group of Ay .
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The proof follows easily from the isomorphism Ay, = o/7™-0 and is left to
the reader.

(7.8) Proposition. The field Ly ,, depends only on the prime element m, but
not on the choice of the power series f € ;.

Proof. If f,g € £ and A € Ay, then along with A we have 14 ()
Since 1y @ Ay — Agn is surjective, Ag, C Ly, ie., Lgy C Lyy,. By
symmetry, Ly, C Ly, and therefore Ly, = Ly .

Because of this result we write Ly ,, for the field Ly ,,, and set L, = Uzozl Ly p.
We can always think of L, , as generated by the roots of the polynomials
f™(2) with f(Z) = nZ + Z9 € &, hence L, ,|K is a normal extension.
We denote its Galois group by G ,. The projective limit G, = @Gmn is
the Galois group of the extension L,|K. Each element ¢ € G, yields an
automorphism of the o-module Ay ,, by the usual operation of G , on the set
Afyn C Ly . This is due to the fact that o acts continuously on L ,, and that
the operations of the o-module Ay, are defined by convergent power series
whose coefficients lie in the base field K, and therefore are fixed by . On the
other hand, by (7.7) every class u- U}k € Ux/U} yields the automorphism
ug: Ay — Ay . We show

(7.9) Theorem. For every ¢ € G, there is a uniquely determined class
wUp € Uk /Uy such that o(X) = uy(\), A € Ay . The map o — u-Up

yields an isomorphism n
G/;‘—’n g UK/UK'

Proof. Each o € G, induces an automorphism of the o-module Ay ,,. Since
by (7.7) Uk /U} represents the full automorphism group of Ay ,, there is a
(obviously unique) class u-Up € Uk /U with o(X) = uy(X) for all A € Ay ,,.

The map o — u - UE is injective, since the set Ay, generates the field Ly ,;
thus it follows immediately from o(\) = us(A) = A for all A € Ay, that 0 = 1.

To prove o — u - Uy is surjective, we show that the order of G, is not less
than the order ¢"'(q — 1) of Ug /UR (cf. (3.2)). We have

f1(Z) = f(f"=H2) = " HZ) ¢n(Z) with

$n(Z) = (f7H(2))1  + 7 e oZ].
Since all coefficients of the polynomial f*~(Z) = 79" 4. 4 71 Z have
positive valuation, ¢,(Z) is an Eisenstein polynomial and as such irreducible
over K. If A is a root of ¢,,(Z), and therefore a root of f*(Z), then K()\) is a

totally ramified extension of Ly ,. Its degree [K () : K] is equal to the degree
¢ — qv 1 = ¢""(q — 1) of the polynomial ¢,(Z2) = f*(Z)/f*1(Z), thus
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equal to the order of Gy ,, which is at least ¢" (¢ — 1) = |Ug /U%|. There-
fore G, = Uk /Uf and Ly, = K(X), where X is a root of the Eisenstein
polynomial ¢,,(Z) = (f"~1(Z))9~! + 7. This completes the proof.

The proof of (7.9) also shows

(7.10) Theorem. The extension L, ,|K is abelian and totally ramified of
degree ¢"~1(q — 1), and is generated by a root of the Eisenstein equation

On(Z) = (fH2) T 4 =0.

The last statement shows that the prime element 7 is a norm for every
extension L, ,|K. In fact, if X is a root of ¢,(Z), then L., = K(\) and
™= NLw,n|K(7)‘)‘

So far we have always fixed an arbitrarily chosen prime element 7 of K.
Now we have to investigate what happens when we pass from 7 to another
prime element 7/. For this we use a lemma about the completion T' of the
maximal unramified extension T over K. We again denote by ¢ the (universal)
Frobenius automorphism of T'|K, whose restriction to an unramified finite
extension L|K yields the Frobenius automorphism ¢y, 5 (cf. §4, p.88). If we

think of ¢ as continuously extended to the completion T', then we have the
Sublemma. U:Iffl = Uz and (p — 1)o7 = 04.

Proof. It follows immediately from the definition of the Frobenius automor-
phism ¢ that the automorphism ¢ of the algebraic closure of the residue field

T =T induced by ¢ satisfies the following equations

=X =X =+

(+) TP =T and (p-1)(T )=T ,
—=+

=X =
where T' and T are the multiplicative and additive group of T'. Furthermore

1t n ol o ~on ot T
(#x)  Up/Up=T ,UZ/UZT" =T and op/ps =pn/pi" =T .
=X =+
Now if x € Ug, resp. © € 05, thenz = @y /y1 € T ,resp.z =py1—h €T
so that

Y

x="—""a1, y1 €Uz, a1 € U%7 resp. * = 9y — Y1 + a1, Y1 € OF, a1 € P
1

Because of (x) and (xx) we obtain

PY2
ayp = y az, Y2 € Ujl% az € U%a resp. a; = pyz2 — Y2 + a2, Y2 € p’f7 az € F'g%
2
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and therefore

_ oy - y2)

“az, resp. ==y +y2)— (Y1 +y2) +az.
Y1 Y2
Continuing in this way, we have

_ oy yn)
Y1 Yn

=1+t yn) = 1+ Yn) Fan, Yu € PR, an € P,

“Qn y Yn € U;71 s an € Uz, resp.

and passing to the limit

vy
z= -5 y=vmecUs resp. x=vy—y, y=> yncos

n=1

Using this sublemma, we now prove a result similar to (7.1).

(7.11) Lemma. Let m and 7’ = u -7 (u € Ug) be two prime elements of
K, and let f € &, f' € &v. Then there is a power series

0(Z) =eZ mod degree 2, ¢ a unit,

with coefficients in the ring 04 of integers of T with the following properties:

(1) (Z) =0(us(2)), '
) = Fp(0(X),0(Y)),
)=uayp(0(Z)) forallaco.

Proof. By the sublemma we have u = e/e, € € Uz, and we set 01(Z) = 2.
We assume that we have constructed a polynomial 6,.(Z) of degree r such that
02(Z) =6,(up(Z)) mod degree (r+ 1),
and look for a polynomial 6,.1(Z) = 6,(Z) + bZ"+1, which satisfies the same
congruence with r + 1 instead of r. If we set b = a - "+, we obtain for a the
condition a — pa = ¢/(pe)" 1, where c is the coefficient of Z"*1 in the series
02(Z) — 0,(us(Z)). Because of the sublemma there always exists such an q;

thus we obtain 6,1 and therefore the series 0(Z) = lim,_,, 6,-(Z) satisfying
the condition §%(Z) = 0(uys(2)).

15 9¢ is the power series obtained from 6 by applying ¢ to the coefficients of 6.
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In order to obtain (2) and (3), we have to modify the 6 we just constructed.
Consider the series

h=0%0fof ' =fousofol ' =fomfobd,
where the symbol o stands for evaluation. Its coefficients lie in 04, and because
h® = 0"”077}“"00’*” =0¥o foupof~¥ = h, they even lie in 0, since an element
in T which is fixed by ¢ lies in K, as one can easily verify. From this we get

WZ)=e-n"-e'Z=n'"Z mod degree2 and

hZ)=09(f(05(2))) = 09(0~1(2)?) = 0°(0~¥(Z%)) = Z? mod 7/,
so that h € &... Now we replace 6 by 1 p o 6; then (1) still holds for this
modified 0, and we have f' = 0¥ o0 fof~!' =fon} o'
For the proof of (2), we show that the series
F(X,Y)=0(F (071 (X),071(Y)))

satisfies the conditions of (7.1), which characterize the series Fy/(X,Y). It
is clear that F(X,Y) = X +Y mod degree 2, a trivial calculation using the
formula f’ =60 on’ o 6~ shows that F(f'(X), f'(Y)) = f'(F(X,Y)), and by
the remark at the end of (7.1) the coefficients of F(X,Y) lie in o.

Now (3) follows similarly, one shows that the series 6 o ay o ~! satisfies the
conditions of (7.1), which characterize the series ay.

(7.12) Corollary. Let w and 7’ = u - 7 be two prime elements in K, and let
f €&, [/ €& Then X\ — 0(X\) yields an isomorphism of 0-modules

A = Agrne

Proof. Note first that if A € Ay, then 6(\) € Ay ,,, because

FOMN) = (@) (0(N) = 0((u™ - 7") £ (A)) = 0(0) = 0.
That the map A — 6()\) is a homomorphism follows immediately from the
formulas (2) and (3) of (7.11). If §(\) = 0, then we necessarily have A = 0,
since otherwise 0 = ¢ + a1 A + - - -, which is not possible because ¢ is a unit.
Therefore the map is injective. It is also surjective, since by (7.6) both Ay,
and Ay ,, are isomorphic to 0/7"-0 = 0/7'"-0, and therefore have the same
order.

For distinct prime elements 7 and 7’ of K, the fields L, ,, and Ly, may very
well be distinct. However, the previous corollary implies the following:

(7.13) Proposition. T L, =T-L .
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Proof. By (7.12) Ap , = 6(As,) C TL Lﬂn (completion of T-Lr ). Since
Apr oy generates the field L/ ,,, we have T LTr nC T-L Ly », and thus by symme-
try T-L Ly = —TL L . Therefore T Ly, = T-Ly ,, since both fields represent
the algebraic closure of K in TL Lnm.

Since T' is unramified and L, is totally ramified over K, T N L, = K.
Therefore the Galois group Gr.r,, |k of T-Ly »|K is the direct product

Gr.r, ..k =Grik X Grn.
We now define a homomorphism
Wi :}(X — (;T\LﬂnJlf
as follows: If a = u - 7™ € K*, u € Uk, then let
wr(a)|, =™ € Grk,
ww(a)’Lr =0y € Grons

where o, is the automorphism on L , that corresponds by (7.9) to the class
u UL € Uk /U%; in other words, the restriction w,(a) is determined

by wr(a)A = (u™1)r(N), X € Afp.

|L7r,n

We now come to the main goal of this section by showing that the homo-
morphism w, coincides with the one induced by the universal norm residue
symbol ( , K):

(7.14) Proposition. For every a € K*, we have
wr(a) = (a, K)|rL, -

Proof. Since the prime elements of K obviously generate K, it suffices to
prove the theorem for prime elements a. First let a = 7. Then

wr(m)|r = ¢ = (m,T|K) = (7, K)|lp (cf. (4.10))
and, since by (7.10) 7 is a norm from L ,,, we have
wr ()L, =01 =id, , = (7, Lapn|K) = (7, K)|L, .-

Therefore
wr(m) = (m, K)|7.L, .-

If 7" =u-m, u € Uk, is another prime element of K, then T- L, =T - Ly,
by (7.13) and, we have again (cf. (4.10))
wr(m')|r = ¢ = (7', T|K) = (7', K)|r.
Thus it remains to show that
wr ()L, = (@ KL,

7/ n’

Now (7', K)|r,,, = (7', Ly n|K) = idr_, , since by (7.10) 7’ is a norm of
L, . This means that we have to verify that
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we (e, =idg, ,

in other words, we have to show that w.(7" )\ = X for X € Ay ,, where
[l €& By (7.12) Apr , = 0(Ay,,), and our claim will follow if we can show

wr(m)O(X) = O(N) for A € Ag .
For this, we consider
wr (") = wr(u-m) = we(u) o we(m).
From the above we have the following identities

wr(MA=X AN€ Afr), wa(m)|r=¢, wx(u)|r=idr.

If we think of the last two automorphisms as continuously extended to f,
then we obtain from (7.11) the formula

()0 = (@n (1) 0.6 (M)O() = wr (W) (X) = 02 (s (w)A)
= 0°((u™) (V) = O,

which completes the proof.

We can describe the norm residue symbol ( ,Lr,|K) of the abelian and
totally ramified extension L, ,|K as follows:

(7.15) Theorem. Ifa =u -7 € K*, u € Uk, then
(ay Ly n| K)XN = (w™ 1) (\) forall A\ € Ay, C Ly p.
The norm group of the extension Ly ,|K is the group Ug x ().

Proof. 1t follows from (7.14) that (a, K)|r.1, , = wx(a). Therefore (a, K)\ =
(ay Le o[ KON = wr(a)X = (u™')¢()A). Thus an element a = u - 7™ € K*,
u € Uk, is a norm of the extension L, ,|K if and only if (a, L ,|K)\ =
(u™H)s(A) = X for all X € Ag,,. By (7.7) this is equivalent to u € U, i.e., to
a e U} x (m).

As an application of (7.15) we discuss an example which can be considered
the starting point of the material presented in this section; this example is
also important for global class field theory (cf. the proof of (5.5) in Part III).

Let K = Q,, be the field of p-adic numbers. Then p is a prime element in K,
and we choose for f € &, the polynomial

f(Z)Z(l-f—Z)p—l:pZ—i—<§>22+...+ZP7

so that n
M2)y=0+2)" -1.
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The zero set Ay, consists of the elements A = ( —1, where ¢ runs through the
p"-th roots of unity. Thus the field L, ,, is precisely the field of p"-th roots of
unity over Q,. Hence we have:

(7.16) Theorem. Let a = u - p™ € Q;, u a unit, and let { be a primitive
p™-th root of unity. Then

(a,Q,(0)|Q,)¢ =¢",
where r is a positive integer which is mod p" determined by the congruence

r =1 mod p".

Proof. Set A=¢—1¢€ Ay,. Then r -« =1 mod p”, and by (7.15) and (7.7)

(@, Qp(OIQA = (u™) () = 7£().

On the other hand,

since this polynomial obviously satisfies the conditions of the definition
ri(Z) =rZ mod degree2 and f(ry(2)) =r¢(f(2)).
Therefore

(@, Q,(O)lQ)¢ =rp(\) +1=rp(C 1) +1=(".

After this example we return to the general case. In (4.9) we have shown that
the norm groups of the unramified extensions L|K are the groups Ux x (7).
We now characterize the norm groups in the totally ramified case.

(7.17) Theorem. The norm groups of the totally ramified (abelian) exten-
sions L|K are precisely the groups which contain the groups

Up x (m) (m prime element).

Proof. By (7.15), a group containing U} x (7) belongs to a subfield of L ,,
and thus to a totally ramified extension L|K. On the other hand, a totally
ramified extension L|K will be generated by a root A of an Eisenstein equation

X4 o 4m=0,

where the prime element 7 is the norm of the element +\. Therefore we have
(m) € NpjxgL*. Since N L™ is open in K, we further have Ug C Np g L*
for an appropriate n, hence Ny L* contains the group Uz x (m).

(7.18) Corollary. Every totally ramified abelian field L|K is contained in
some Ly .

In view of Theorem (6.4) we also note the following fact:
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(7.19) Theorem. The group U x (/) is the norm group of the field K'+ L ,,,
where K'|K is the unramified extension of degree f.

Obviously Ug x (nf) = (Ug x (Wf))ﬂ(U}é x(m)) = Ngr g K™ NNp, . xLy, =
NK’-LW,n‘K(K/ . L7r7n)><.

(7.20) Definition. Let L| K be an abelian extension, and let n be the smallest
integer > 0 such that U C NL‘KLX. Then the ideal

f=rk
is called the conductor of L|K '0).

The conductor of the extension L. ,|K is the ideal f = p7. For the unramified
extensions L| K, we have the

(7.21) Theorem. An abelian extension L|K is unramified if and only if it
has conductor § = 1.

The follows immediately from (4.9), L|K is unramified if and only if the norm
group Ny g L* has the form U x (7f), thus if and only if § = p) = 1.

The notion of a conductor is closely related to the discriminant and plays a
role in global class field theory'”.

We end this section with a brief discussion of the universal norm residue
symbol (, K), which is characterized by the following theorem.

(7.22) Theorem. Let m be a prime element of K, f € &, Ay = Uy Afa,

Lr=Up_i Lrn = K(Ay), and G = G, k-

The field T-L, is (independent of 7) the maximal abelian field over K. Thus
G = Grix % Gi.

Ifa=u-mm € K*, u € Uk, then the norm residue symbol (a, K) is given by

(a, K)|r =™, (a, K)N = (u"1)s(\) for A € Ay.

Proof. By (6.4) the norm group of an abelian field L|K is a group containing
the group U x (nf). By (7.19) L is a subfield of a field K'-L, ,, K' C T,
hence a subfield of T-L,, the maximal abelian extension of K.

16) Here we set U?( =Ug.
17 Cf. [3], [20].

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

110 Part II. Local Class Field Theory

Because G2 = Gy X Gr, the norm residue symbol (a, K) is determined by

the equations
(a, K)|r = ™, (a, K)X = (u");(\) for X € Ay,

which hold by (4.10) and (7.15).
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8 1. Number Theoretic Preliminaries 113

§ 1. Number Theoretic Preliminaries

We assume the reader is familiar with the basic concepts and theorems of
algebraic number theory for which we refer to the standard text books, for
example, [6], [21], [30]. Nevertheless, in this section we briefly summarize the
for us most important facts.

If K is a finite algebraic number field, we mean by the primes p of K the classes
of equivalent valuations of K, where we distinguish between the finite and
infinite primes p. The finite primes p are associated with the nonarchimedian
valuations of K and correspond bijectively to the prime ideals of the field
K, for which we use the same symbol p. For the infinite primes we have
to distinguish further between the real and complex infinite primes. The real
primes correspond bijectively to the different embeddings of K into the field IR
of real numbers, while the complex primes correspond bijectively to the pairs
of complex conjugate embeddings of K into the field C of complex numbers;
we observe that two conjugate embeddings of K into C produce the same
valuation of K. We write p { oo (resp. p | 0o) if p is finite (resp. infinite).

If p is a finite prime, we denote by v, the exponential valuation of K associ-
ated with p, normalized with smallest positive value 1. We get an additional
normalized valuation if we associate with each prime p its p-absolute value
| |p. This is done in the following way:

1) If p is finite and p is the rational prime lying under p, then for a € K,
a#0,let |al, = N(p)~v»(@) = p=/rve(@) Here N(p) denotes the absolute
norm of the ideal p, thus the number p/* of elements in the residue field
of p; fp is the inertia degree, i.e., the degree of the residue field of p over
its prime field (cf. II, §3, p. 79).

2) If p is real infinite and ¢ is the embedding of K into the field IR associated
with p, then we set |a|, = |cal, a € K.

3) If p is complex infinite and ¢ is one of the pair of conjugate embeddings
of K into the field C of complex numbers associated with p, then we let
lalp = |wal?, a € K.

With this normalization of the (multiplicative) valuations of K we have
lalp, =1 (a € K~ {0}) for almost all primes p, and the fundamental product
formula

H|a|p:1, ac K*. D
p

D Cf. [21], III, §20, p.314. As always, K* denotes the multiplicative group of the
field K.
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If S is a finite set of primes of the field K containing all infinite primes, then
K% ={a€ K* |vy(a) =0 (ie., |a|, = 1) for all p & S}

is called the group of S-units of K. In particular, if S = S, is the set of all
infinite primes of K, then K= is the usual unit group of K. We have the
following generalization of Dirichlet’s

(1.1) Unit Theorem?. The group K* is finitely generated, and its rank is
equal to |S| — 1, where |S| denotes the number of primes in S.

We write Jg for the group of ideals of K, and Px C Jg for the group of
principal ideals. The factor group Jx/Pk is called the ideal class group
of K. It satisfies the

(1.2) Theorem?. The ideal class group Jx / Pk is finite; its order h is called
the class number of the field K.

For every prime p of K we have the completion K, of K with respect to the
valuation associated with p. If p is finite, then K, is a p-adic number field. The
prime p is real (resp. complex) infinite if and only if K, = IR, (resp. K, = C).
We set
U — unit group of the field K, if p is finite;
i { K, if p is infinite.

It is convenient to define the unit groups U, for infinite primes as well, since we
do not want to always have to distinguish between finite and infinite primes.

If L|K is a finite extension of a number field K, we denote the primes in the
extension field L by B. If B is a prime of L lying above the prime p of K, then
we write B | p for short. In this case the completion Ly of L by P contains
the field K, since the restriction of the valuation associated with 9 from L
to K yields the valuation of the field K associated with p.

Ly We have illustrated this situation in the
adjacent diagram. The transition from the

/ | “global” extension L|K to the “local” ex-
tensions Ly| K, at the individual primes is

L K,

the fundamental principle behind class field
theory.

K

If p is a prime ideal of K and p = P°-- -‘ﬁ’el is the prime decomposition of p
in the extension field L, then p = B¢, where p (resp. ), denotes the prime

2 Cf. [21], 111, §28, p. 528.
3 Cf. [21], TIL. §29, p. 542.
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ideal of the field K, (resp. of the extension field Lg). Moreover, 9 has the
same degree over p as P over p. If P runs through all the primes of L lying
over p, then we have the fundamental equation of number theory

> Ly : K] = [L: K].
Blp

Let L|K be a finite normal field extension with Galois group G = G k. If
o € G, then along with 3 | p we also have o3 | p, where o*B is the prime of
L conjugate to 3 with respect to o.

Ly Loy If we complete L with respect to 8 and
e ~ - o'B, then K, is contained in Ly as well
L K, . ; .
as in Ly, since p lies under P as well as
‘ / under 3.

There is a canonical Kjp-isomorphism

Ly~ Loy

between Lg and Lgq which we also denote by o. In fact, if @ € Lsg, thus
a = P-lim a; for some sequence «; € L, then the sequence oa; € L converges
in Ly with respect to 03, and the canonical isomorphism is obtained from

a="P-limo; € Ly — oo = P-limoo; € Losp.

Under this isomorphism the field K, is obviously fixed elementwise. In par-
ticular, in case B = B we obtain a Kp-automorphism
Ly —= Ly,

and therefore an element of the Galois group Gp, |k, of Ly |K,. This auto-
morphism is simply the continuous extension of the automorphism o of L to
the completion Lgz. If we observe that 8 = o3 if and only if o is an element
of the decomposition group Gip C G of °B over K, we see that for each o € G
there is a corresponding element in G, i, . Conversely, every automorphism
of Gry Kk, yields an automorphism in Gy by restriction to the field L. This
yields a canonical isomorphism between the Galois group Gp, |k, of the lo-
cal extension Ly|K, and the decomposition group Gy, and we can identify
GrLy K, and Gy; therefore we can consider G, |k, as a subgroup of G, i.e.,

Lylk, = Gy C G. In what follows we will identify these groups without
further mentioning.

The Theory of Kummer Extensions. Later we will apply the following
observations to algebraic number fields; however, since they hold for arbitrary
fields, we state them in full generality.
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Let K be a field containing the n-th roots of unity but whose characteristic
does not divide n. By a general Kummer extension of K we mean a (finite
or infinite) Galois extension L of K whose Galois group G,k is abelian and
has exponent n, i.e., has the property that o™ =1 for all o € G k. It is easy
to see that the compositum of two Kummer extensions L; and Ly of K is
again a Kummer extension. Therefore the union IV of all abelian extensions
of K with a Galois group of exponent n is the largest Kummer extension of
K. The following theorem shows that one can read off the structure of the
Kummer extensions of K from the multiplicative group K* of K.

(1.3) Theorem. There exists an inclusion preserving isomorphism between
the lattice of Kummer extensions L of K and the lattice of certain subgroups
A of K*. Under this isomorphism the group A = (L*)*NK* D (K*)™ cor-
responds to the Kummer extension L, and the field L = K({/A) corresponds
to the group A, (K*)" C AC K*:

L+— A= (L*)"NnKX,
A L =K(VA).

The factor group A/(K*)™ is isomorphic to the character group x(Gp k) of
the Galois group Gp k-

Proof. Let L be a Kummer extension of K and G = G| its Galois group.
Then G has exponent n and acts trivially on the group p, of n-th roots of
unity which lies in K. Hence x(G) = Hom(G, u,,) = H*(G, u,,). If we associate
with every € L* its n-th power 2" € (L*)", we obtain the exact sequence

1— py — L 2 (L) — 1
and from the resulting cohomology sequence the connecting homomorphism
L = K5 (L)) = (L))" N K* 5 HY(G, ) — HYG,L*) =19,
which yields the isomorphism
(L) N KX) /(K*)" = HY(G, pa) = X(G).
It is easy to check that this isomorphism takes a class a - (K*)™ € ((L*)™ N
K*)/(K*)™ to the character x, € H*(G, u,,) with x.(0) = o(/a)/ {/a.

In particular, if we consider the maximal Kummer extension N over K with
the Galois group G = Gy |, then (N*)" N K* = K*, since otherwise there
would exist an element a € K* whose n-th root {/a would not lie in N*,
and therefore would generate over N a still larger Kummer extension over K.

4 Note that H'(G,L*) =1 by II, (2.2)). Of course, the exactness of this sequence
can be shown without reference to cohomology, and one can develop the theory
of Kummer extensions without using cohomological methods.
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Consequently we have an isomorphism
KX /(KX)" = HY(G, pn) = x(G).

By Pontryagin Duality, there is an inclusion reversing lattice isomorphism
between the lattice of closed subgroups of G and the lattice of subgroups
of x(G). Since x(G) = K*/(K*)™, we have by Galois theory an inclusion
preserving isomorphism between the lattice of Kummer extensions and the
lattice of subgroups of K* which contain (K*)™. If the field L corresponds
to the group A in this sense, then

L A=(L)"NK*: Ifae K*, thena € A< xq(0) =1 (xa € X(GniK))
for 0 € Gy & o({/a) = {/afor 0 € Gy & Jfa€ L ac (LX)

2. L =KA):IfoecG= Gn|k, then 0 € Gy & Xa(o) = 1 for a €
Aso(Wa) = {L/EforaGA@0|K(,\L/Z):idK(W)@JGGMK(W).

§ 2. Ideles and Idele Classes

In the following we will consider ideles? which were first introduced by
C. CHEVALLEY. The notion of ideéles is a slight modification of the notion
of ideals, or, more precisely, of divisors. Its significance lies in the fact that it
permits a transition between global and local number theory, and therefore
represents a suitable mean for applying the local-global principle, which is a
method to obtain theorems and definitions in global class field theory from
local class field theory. The development of the global theory using ideles to-
gether with cohomological methods is particularly transparent, and has led
to a plethora of far-reaching results. As a result, the analytic methods, i.e.,
Dirichlet series and their generalizations, which were necessary in the classical
ideal theoretic treatment of class field theory, have disappeared®.

Let K be an algebraic number field. An idéle a of K is a family a = (a,) of
elements a, € K, such that p ranges over all primes of K, but a, is a unit in
K, for almost all primes p. We also obtain these ideles by the following

(2.1) Definition. Let S be a finite set of primes of K. The group

IR (O

peS pegs P

%) The idéles were first called ideal elements. Then this was abbreviated to id. el.
from which the name idel (in French idéle) evolved.

6 Yet even today these methods represent an essential counterpart to the approach
we follow here, and have not lost their importance.
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is called the group of S-idéles of K. The union
I =17 <[] &7
s p

where S runs through all finite sets of primes of K, is the idéle group of K.
If a = (ap) € Ik, ay € K, then the a, are the local components of the
ideéle a; an a, € K, is an essential component of a if a, is not a unit.

In particular, an idele has at most finitely many essential components. The
S-ideles are precisely those ideles which have essential components at most at
the primes in the set S.

The reason why we allow units as “nonessential” components at almost all
primes of an idele is that this allows us to canonically embed the multiplicative
group K> of the field K into the idele group Ix of K:

If x € K*, then we let (z) € Ix be the idele whose components are (z), =
x € K,°. Observe that  is a unit in K, for almost all primes p. In this way
we always consider K* as embedded in Ig, thus view K* as a subgroup of
Ix. The ideéles in K* are called the principal idéles of K.

If S is a finite set of primes of K, then we denote by

KS=K*nIg CIy

the group of S-principal ideles. The elements in K are also called the S-units
of K, since they are units for all primes p ¢ S (cf. §1, p. 114). In particular, if

S = S. is the set of all infinite primes of K, then K> is the ordinary unit
group of the field K.

(2.2) Definition. The factor group
Ck =Ig/K*
is called the idéle class group of the field K.

In our development of class field theory the group Ck is the main object of
interest. The connection between the ideles and the ideals of a field K is given
in the following proposition.

(2.3) Proposition. Let S, be the set of all infinite primes of the field K,
and let IIS(oo be the group of idéles which have units as components at all finite
primes. Then we have a canonical isomorphism

I JI5= = Ji, I/ I3 K> = Jg ) Pr

where Jix and P denote the group of ideals and principal ideals respectively.
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Proof. 1If p is a finite prime of K, we let v, be the valuation of K, normalized
with minimal positive value 1. If a € Ik is an idele of K, then we have a, € U,
for almost all finite primes, and therefore vya, = 0. We obtain from the map

a+— H purte
ptoo
where p ranges over all finite primes of K, a canonical homomorphism from
Ik onto Jg. Here a is mapped to the unit ideal if and only if vpa, = 0, i.e.,
a, € U, for all p { oo, thus if and only if a € IIS(‘X’. Hence the kernel of this
homomorphism is IS(‘”. On the other hand, we have the homomorphism

a— H pvpap - Py
ptoo
from I onto Jg / Pk, and a is in its kernel if and only if Hmw pUr® € Pk, i.e.,
[ P = (2) = [T oo p*" with € K, thus if and only if vya, = vy,
vp(ap-z~1) = 0 for all p { co. This again is the case if and only if a-z7! € I[S("",
thus a € z-I3>, i.e., if and only if a € I5=-K*.

The group Ik /If;* is none other than the well-known group of fractional
ideals of K. It is easy to see that when passing to ideals, the S-ideles become
precisely those ideals that are generated only by prime ideals in S.

Unlike the ideal class group Ji/Pk, the idele class group Cx = I /K> is
not finite. However, the finiteness of the ideal class group is reflected in the
fact that all idele classes in Cx can be represented by S-ideles a € I 15; for a
fixed finite set S of primes. This is the assertion of the following proposition.

(2.4) Proposition. Let S be a sufficiently large finite set of primes. Then
Ix = I3-K*, and therefore Cx = I5-K* /K.

Proof. The ideal class group Jx / Pk is finite (cf. (1.2)). Hence we can choose a
finite set of ideals 2, . . ., 2l,, which represent the classes in Jx / Pg. The ideals

Aq, ..., 2, are further made up of only finitely many prime ideals pq, ..., ps.
Now if S is any finite set of primes containing the primes p1,...,ps and all
the infinite primes of K, then in fact

Ig =15 -K*.

In order to see this, consider the isomorphism Ix /T3> = Jg (cf. (2.3)). If
a € Ik, then the corresponding ideal 2 = Hp,(oo pUrr lies in a class 2A; - Py,
ie, A =2 (x), where (x) € Pk denotes the principal ideal given by € K*.
The idele a’ = a-z~! is mapped under the homomorphism I — Jg onto the
ideal 2" = Hp{oo p“‘“c‘;ﬂ = 2l;. Since the prime ideal components of 2l; lie in the
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set S, we have vya, = 0, i.e., a, € U, for all p € S; thus o/ = a-27' € I,
acly- K.

We now investigate what happens when we pass to an extension field.

Let L|K be a finite extension of algebraic number fields. If p is a prime of K
and P a prime of L lying over p, we write simply B | p. The idele group Ik
of K is embedded in the idele group I, of L as follows: If we map an idele
a € Ix to the ideéle o’ € I}, with the components

ap = ap € Ky C Ly for P p,
then we obtain an injective homomorphism
Iy — Iy, .

This homomorphism allows us to think of I as being embedded in I}, and
to regard I as a subgroup of I. With this identification, an idele a € I, is
in the group Ik if and only if its components ay lie in K, (where B | p), and
moreover any two primes B and B’ lying over the same prime p of K have
equal components agp = aps € K.

If L|K is normal and G = G |x denotes its Galois group, 1, is canonically
a G-module: An element o € G defines a canonical isomorphism from L, -1y
onto Lg, which we also denote by o (cf. §1, p.115). Here we associate with
an idele a € Iy, with components ayp € L% the idele oa € I, with components
(O’Cl)f,p =00,-1p3 € ng .

Note that ay-1q3 € L,-1 is the o~ 1PB-component of a, which is mapped by o
into Les. If we take into account that the 3-component (ca)q of oa is essential
if and only if the o~ '-component a,-1p of a is essential, we immediately see
that when passing to ideals, the map induced by a — ca is just the ordinary
conjugation map on the ideal group Jy.

(2.5) Proposition. Let L|K be normal with Galois group G = G|k. Then

I¢ = Ig.

Proof. The inclusion Ix C I¥ is easy. If 0 € G, then the isomorphism
L,-1p % Ly is a Kp-isomorphism (B | p), and if a € Ik is considered as an
idele of I, then (ca)p = oa,-1y = oap = ap € Ky, ie, ca=a.

For the inclusion If C Ik, consider a € I, with ca = a for all 0 € G.
Then (ca)p = oa,-1p = ayp for all primes B of L. By §1, p.115 we can
consider the decomposition group Gsgz of P over K as the Galois group of
the extension Lg|K,. For every o € Gy we have o~ I8 = P, and because
ap = 0a,-13 = odg, we obtain ap € K, (B | p). Hence if o is an arbitrary
element of G, then (ca)p = ap = oa,-1py = a,-1p3 € K, ie., two primes
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B and o~ 1P lying above the same prime p of K have the same components
ap = ay-1p € Kp, so that a € Ik.

It is well known that an ideal of a field K can very well become a principal
ideal in an extension field L without being a principal ideal in the base field K.
The following proposition shows that the ideles behave differently.

(2.6) Proposition. If L|K is an arbitrary finite extension, then
L*NIx=K*.

In particular, if a € I is an idele of K that becomes a principal idele in the
extension L, i.e., a € L, then a is already principal in K.

Proof. The inclusion K* C L* N I is trivial. Let L be a finite normal
extension of K containing L, and let G = G Pk be its Galois group. Then Ik
and Iy, are subgroups of I;. If a € L* NIk, then (2.5) shows that a € Ig, ie.,

oa=aforall o € G, and because a € L*, we even have a € (L)% = K*.
Therefore L™ N Ix = K*, which implies L* NIx C L* NI = K*.

By (2.6) we can embed the ideéle class group Ck of a field K into the idele
class group C, of a finite extension field L using the canonical homomorphism
L:CK—>CL, a-K*w—a-L* (a€IK§IL).

To see that ¢ is injective note that if the class a - K* € Ck is mapped to the
unit class L* € Cp, hence a- L* = L™, a € L™, then we know by (2.6) that
ael*NIxg=K* ie., a- K* = K* is the unit class of Ck.

In the following we view Ck as embedded in Cp, via this canonical map,
hence as a subgroup of Cr. An element a-L* € C, (a € Ip) lies in Ck if and
only if the class a- L* contains a representative a’ from Ix (C Ip) such that
a - L*=a-L*.

2.7) Theorem. Let L|K be with Galois group G = G k. Then Cp is
\
canonically a G-module, and

CcY =Ck.

Proof. Ifa-L* € Cp (a € Ip), we set o(a-L*) = ga-L*. This definition is
clearly independent of the choice of a € I, and makes C}, a G-module.
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From the exact sequence of G-module 1 — L* — I;, — C;, — 1 we obtain
the exact cohomology sequence (cf. I, (3.4))

1— (L)Y — I¢ — C¢ — HY(G, L),
where (L*)¢ = K*| I¢ = I, and H'(G, L*) = 1; hence C¥ = Ck.

We briefly summarize the most important results from this section.

Let K be an algebraic number field. Then

Iy = [Tpes Ky % [1pgs Up  the group of S-ideles of K
(S a finite set of primes of K),

Ix =Ug I the idele group of K,

K* Clg the group of principal idéles,

Cx =Ig/K* the idele class group of K,

Ix =I5z KX for a sufficiently large finite set S
of primes.

If L|K is a finite extension of algebraic number fields, we have embeddings

Ix C Iy, idele groups,
K* CL* groups of principal ideles,
Ckg CCy, idele class groups.

If L|K is a finite normal extension with Galois group G = Gp g, then L*,
I;, and C'p, are G-modules whose G-invariants are given by

L =K%, I¢=1Ix, C%=Ck.

§ 3. Cohomology of the Idele Group

Let L|K be a finite normal extension with Galois group G = Gpjx. We
consider the cohomology groups H?(G,I;) of the G-module Ij,. These co-
homology groups reveal a particular advantage of working with ideles since
they can in a certain sense be completely “localized ” , i.e., decomposed into
a direct product of cohomology groups over the local fields K. The goal of
this section is to explain this natural localization process.

Let S be a finite set of primes of the base field K and S the finite set of primes
of the extension field L above the primes in S. To simplify things, we denote
the group of S-ideles I7 of L also by I7, and speak of the S-ideles of the field
L; we will use the same convention in later sections as well. Thus we have
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S _ X — X
ip= 11 25> II s =1111%% x I1 11"
Blpes Blpgs PES Plp pES Plp

We consider the products I? = pr L% and UP = H‘Blp Uy as subgroups

of I?, where we think of the elements in I} (resp. in U}), as those ideles
which have the component 1 at all the primes of L not lying above p (resp.
and in addition have only units as components at the primes of L lying above
p). Since the automorphisms o € G only permute the primes 8 above p, the
groups IE and UE are G-modules. Thus we have decomposed I f into a direct

product of G-modules:
=111 < [[v:.
pes pgS
About the G-modules I} and U} we have the following

(3.1) Proposition. Let B is a prime of L lying over p. Then
Hq(G7IE) = Hq(G‘n7Lf,>]<3)a
where Gy is the decomposition group of  over K, considered also as the
Galois group of Lyg| K. If p is a finite unramified prime in L, then for all ¢
HY(G,U})=1.
Addendum. The above isomorphism above is given by the composition
HYG,I}) = HY Gy, I]) = HY(Gyp, L),

where 7 is induced by the canonical projection Iz BN L% that takes each
idele in I} to its $B-component.

Proof. If o € G runs through a system of representatives of the cosets G /G,
we write for simplicity o € G/Gs, then ¢’B runs through all distinct primes
of L above p. Hence

=] Lip= [] oLy and U} = ] Uop= ] oUs,
UEG/GQ_; UEG/qu O'GG/qu UGG/Grp
which shows that I E and Uf are G//Gyp-induced G-modules. Applying Shapiro’s
Lemma I, (4.19) yields
HYG,I}) = HY Gy, Ly) and HYG,U}) = HY Gy, Usyp),
where the isomorphism HY(G,I}) — H?(Gy, Lg) is the composition of the
homomorphisms res and 7 described in the addendum. If p is unramified in L,

then the extension Leyz|K, is unramified, and we can refer to local class field
theory (cf. II, (4.3)) to obtain the result HY(G,U}) = HY(Gyq,Uyp) = 1.

Because of Proposition (3.1) and the decomposition 17 = [Tpes If x [oes ur

the cohomology groups of the idele groups I f and I;, are easy to compute. By
I, (3.8) we have
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HYG, I}) = [[ HU(G. I}) x [[ HY(G,U}).
pes peS
If the finite set S contains all (finite) primes of K which are ramified in L, then
by (3.1) HY(G,I}) = HY(Gg, Ly;) (B any prime above p), and HI(G, Uh)y=1
for each p ¢ S. Therefore
HY(G,IE) = [ H (G, L)),
pes
where B denotes any prime above p.

Because I, = Jg If, we also have
HY(G, 1) = lim H(G, I7) = lim [ [ HY(Go, L) = P H (G, L) 7,
S S pes p

where S runs through all finite sets of primes of K which contain all ramified
primes ®). Thus we have proved the following theorem:

(3.2) Theorem. Let S be a finite set of primes of K which contains all primes
ramified in L. Then

Hq(lef) = HHq(vaLﬁé)v
pes

HYG,I,) = @ H Gy, L). 7
P
Here B denotes any prime above p.
From the proof and the Addendum (3.1) we obtain further the

Addendum. The isomorphism HY(G, 1) = P, H(Gy, L%) is given by the
projections HY(G,Ir) — H(Gyp, L%), i.e., the composition of the maps

HYG, 1) “= HY Gy, I1) — H(Go, L) ,

where 7 is induced by the canonical projection I, — L% which takes each
ideéle a to its B-component asy.

") By the symbol @ we mean the direct sum, i.e., the (here multiplicative) group
of families (..., ¢p,...), in which only finitely components ¢, not equal to 1 ap-
pear. By contrast [| means the direct product, i.e., the group of all families
(cypye-n).

8 One can prove HY(G,I) = @, H(Gy, Ly) directly without forming the
somewhat mysterious limit: View an element of H?(G,Ir) as an element of
HY(G,I$) for an appropriate S, and map it by the isomorphism H?(G,I?) =
[1,es H(Ggp, Ly) into the group [, g H?(Gy, L), which also can be viewed

as a subgroup of B, H(Gsy, Lg). Tt is easy to verify that this is an isomorphism.
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The above projections map each element ¢ € HI(G, I1) to its p-components
cp € Hq(qu,L;;é) (as always, P is a fixed prime above p). The theorem
says that each c is uniquely determined by its local components c,, which
because of the direct sum P are almost all equal to 1. In dimensions g > 0 the
map c — ¢p can be described in the following simple way. Given a cohomology
class ¢ € HY(G,I1), choose a cocycle a(o,...,0,) representing c. This is
a function on the group G with values in the idele group Ir. Restrict this
function to the group Gy, and take the J3-components ap (o1, ..., 04) of the
idele a(o1,...,04). The resulting function from Gy to L% is a cocyle, and its

cohomology class ¢, € H1(Gy, L%) is the p-component of c.

The following proposition shows how changing the field affects taking local
components.

(3.3) Proposition. Let N O L O K be normal extensions of K, and let
B’ | B | p be primes of N, L, and K respectively. Then

(ianc)p - ian‘B/ (CP)? ce Hq(GL|K7IL)a q 2 17
(I'eSLC)qg :resLm(cp), CEHq(G[\”K,IN),
(corgc)y = D qp COTK, (C3), ce H Gy, IN).

For the last two formulas it suffices to assume that only N|K is normal.

For the third formula note that for each 3 | p we choose a prime P’ of N lying
above B, thus the corestrictions corg, (cy) lie in (a priori) distinct cohomology
groups H1(G Ny KWN%,). However, we can identify these as follows: Given
two primes of N lying over p, there is an automorphism o € G|k that

interchanges these primes; given this, the isomorphism N%, % N UX(B, induces

a canonical isomorphism Hq(GNm,mp,N%,) = HYGN, K, No_xm,) (cf. also
(3.1)). Hence we may view corg, (cg) for each B | p as an element of the
group Hq(GN‘n, 1Ky Ng,) for a fixed choice of P’ | p, and form the sum in this

group.

The proof of Proposition (3.3) uses the general and purely cohomological fact
that the restriction map which occurs when passing to the local components
commutes with the maps inf, res, and cor. This is easy to see at the cocycle
level for inf and res if ¢ > 1, and for cor if ¢ = —1,0. The general case follows
from this by dimension shifting. The details are left to the reader.

With Theorem (3.2) we have achieved a complete “localization” of the co-
homology of the idele groups, i.e., instead of the groups H?(G,I;) we may
consider the local cohomology groups H9(Gy, L%), a principle, which we will
frequently use below. We make the important remark that Theorem (3.2)
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is not a deep number-theoretic result. Apart from purely cohomological re-
sults, the only number-theoretical facts that are being used in its proof is
the finiteness of the number of ramified primes in the extension L|K and the
cohomological triviality of the unit group Uy in an unramified local extension
Lo | K. Nevertheless, Theorem (3.2) is fundamental for the idele-theoretic de-
velopment of global class field theory. In dimension ¢ = 0 it allows us to prove
the following corollary, which we refer to as the Norm Theorem for Idéles:

(3.4) Corollary. An idéle a € I is the norm of an idéle b of Iy, if and only
if each component a, € K* is the norm of an element by € Ly (B [p), ie.,
if and only if it is a local norm everywhere.

Proof. Note that H°(G,I) = IS /NgI;, = Ix/NgI and HO(ch,L%) =
K /NGq}Lng- Thus by Theorem (3.2) we have Ix /NgIp = @p Ky /NG\BL%.
If a € Ik, then this isomorphism takes the 0-cohomology class a - Nglp =@
to its components d,, which by the Addendum (3.2) can be computed as
a, = ap - NGQ‘3 L%. Now, since we have an isomorphism, @ = 1 if and only if
a, =1, i.e., a € Ngly, if and only if for every component a, € NGmL;IX}.

The Norm Theorem for Idéles is an analogue of the “Hasse Norm Theorem”,
which states that if L|K is a cyclic extension, an element x € K* is the norm
of an element y € L* if and only if it is everywhere a local norm, i.e., is a norm
for every extension Lo|K, (cf. §4, (4.8)). Contrary to the Norm Theorem for
ideles, the Hasse Norm Theorem is a very deep number-theoretic result, for
which up to date we do not have a direct proof. Corollary (3.4) only says
that the element x € K*, considered as a principal idele, is the norm of an
idele b of L; it leaves open the question whether this idele can be chosen as a
principal idele y € L*.

(3.5) Corollary. H'(G,I;) = H3(G,I) = 1.

This follows from (3.2), since H'(Gq, Lyy) = H' (G, Lgy) = 1 for all P (cf.
I1, (2.2) and II, (5.8)).

The fact that H'(Gpx,Ir) = 1 implies that the extensions L|K form with
respect to the idele groups I; a field formation in the sense of II, §1. This
allows us to think of the cohomology groups H?(G Lk 1r) as the elements of

H*(Goix, Io) =\ JH*(Grix, 1), ¥
L

9 Here £2 denotes the field of all algebraic numbers; however H> (G|, 1a) is used
only as notation for the union on the right. If we consider I; as the union of all
I, or more precisely I = lim I, then Ip; is a G x-module, and we can define

H2(GQ|K, Io) directly also for infinite Galois groups Go|x (cf. [41]).
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where the inclusions are given by the injective (because H'(Gpk,Ir) = 1)
inflation maps. We will use this interpretation in all further considerations
below. In particular, if N O L O K are two normal extensions of K, then

H*(Gpix. 1) € H*(Gnx. In) C H*(Gox: 1)

In local class field theory we have seen that the Brauer group Br(K) =
U, H*(Grjk,L*) of a p-adic number field K is the union of the cohomol-
ogy groups H?(Gpk,L*) of the unramified extensions L|K, for which it is
relatively easy to prove the reciprocity law. The role of the unramified exten-
sions in the local theory is played in the global case by the cyclic cyclotomic
field extensions, i.e., cyclic extensions which are contained in a field which
is formed by adjoining roots of unity. We show already at this point the

(3.6) Theorem. Let K be a finite algebraic number field. Then

Br(K)= |J H*(Grk.L*) and H*(Gox,10)= |J H*(Grix. 10,
L|K cyclic L|K cyclic

where L|K ranges over all cyclic cyclotomic extensions.
For the proof we use the following

(3.7) Lemma. Let K be a finite algebraic number field, S a finite set of
primes of K, and m a natural number. Then there exists a cyclic cyclotomic
field L|K with the property that

e m | [Ly: K, for all finite p € S,
o [Lyp: Ky =2 for all real-infinite p € S.

Proof. It suffices to prove the lemma for K = Q, the general case follows
from this by taking compositia. More precisely, if N|Q is a totally imaginary
cyclic cyclotomic field such that for every prime number p above which there
is a prime of K in S the degree [Ny : Q] is divisible by m - [K : Q], then
L = K - N has the desired property.

Let I"™ be a prime power and let { be a primitive {"-th root of unity. If [ # 2,
then the extension Q(¢)|Q is cyclic of degree "~ - (I — 1), and we denote the
cyclic subfield of degree ("% by L(I™).

If [ = 2, then the Galois group of Q(¢)|Q is the direct product of a cyclic
group of order 2 and a cyclic group of order 2"~ 2. In this case we consider the
field L(2") = Q(&) with £ = ¢ — (1. The automorphisms of Q(¢) are defined
by o, : ( = (¥, v odd, and we have ¢, () = (¥ — (". Because ¢ =,
0,(§) = o_,49n-1(£), and since either v or —v + 2”71 = 1 mod (4), the
automorphisms of L(2") = Q(&) are induced by those o, with v = 1 mod (4).
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Now an elementary calculation shows that the Galois group of L(2")|Q is
cyclic of order 2"~2. Moreover, because o_1& = —¢, the field L(I") is totally
imaginary for large n.

If p is a prime number, then as n increases the local degree [L(I")yp : Q)]
becomes an arbitrarily large [-th power, since in any case [Q,(¢) : @,] becomes
arbitrarily large, and we have [Q,(¢) : L(I")p] <1—1, resp. < 2 in case [ = 2.
Now if m = [7* ---1%*, then the field
L= L) L) - L)

has the desired properties, provided the n;, ¢t are chosen sufficiently large. In
fact, for the finitely many prime numbers p € S the local degrees Ly : Q] are
divisible by every power [;*, and therefore by m; L is totally complex because

of the factor L(2!), and L is cyclic over @, since the L(I") are cyclic over Q
with relatively prime degrees.

Proof of (3.6): We only give the proof for H2(GQ|K,IQ); the assertion on
the Brauer group follows from that on H2(GQ|K, 1) as soon as we know that
Br(K) — H*(Gqk, Ia) is injective. This will follow from H'(Ggx,Cq) =0
(Theorem III (4.7)).

Let ¢ € H2(GQ|K,IQ), say ¢ € HQ(GL/‘K,IL/), let m be the order of ¢ and
let S be the (finite) set of primes p of K, for which the local components ¢,
of ¢ are not equal to 1. By the previous lemma there is a cyclic cyclotomic
field L|K with m | [Ly : K,] for the finite p € S and [Ly : K| = 2 for the
real-infinite p € S. If we form the compositum N = L’ - L, then we have
H*(Gpxk, 1) and H*(Gpg,Ip) € H*(Gyik, In),
and we will show that c lies in the group H? (Grix,1L). Since the sequence
1 — H*(Gpr.I1) — H*(Gyik, In) —5 H* Gz, In)

is exact, it suffices to show that res;c = 1. But by local class field theory,
together with (3.2) and (3.3), we have respc = 1 < (respc)p = resp,cp = 1

for all primes P of L < invy,,|r,(respycp) = [Ly Kyl - inv, ik, ¢ =
vy, 0, c,[gL"":Kp] =0 for all primes p of K & c{,Lm:K"] =1forallpes.

Now the last equality holds, because cj* = 1 and m | [Ly : K] for the finite
primes, and [Lq : K,] = 2 for the real-infinite p € S.

§ 4. Cohomology of the Idele Class Group

The role of the multiplicative group of a field in the local theory is taken
by the idele class group in global class field theory. Thus our aim is to show
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that there is a canonical reciprocity isomorphism between the abelianization
of the Galois group G' = G| of a normal extension L|K of finite algebraic
number fields and the norm residue group Ck /NgClp; in other words: that
the finite normal extensions L|K of an algebraic number field K constitute a
class formation in the sense of II, §1 with respect to the idele class groups C7,.

In particular, we will have to prove that H'(G,Cy) = 1 and that H%(G,CyL)
is cyclic of order [L : K]. This will follow from the so-called first and second
fundamental inequalities, which we prove below. The ideal-theoretic versions
of these inequalities were already used in the proof of the main theorems of
class field theory by TAKAGI (cf. [17], Teil I). Their proofs required, however, a
considerable effort; in particular, the second inequality is proved using mainly
Dirichlet series, thus analytic methods, which are redundant when working
with ideles.

In what follows we fix a normal extension L|K with a cyclic Galois group G =
G|k of prime order p. The first fundamental inequality is the relation

((7352 ]Vk;(jL) > p.

It follows immediately from the following

(4.1) Theorem. The idéle class group Cp, is a Herbrand module with Her-
brand quotient
d CHYG,.CD)

MO = G, o) P

From this we obtain as a

(4.2) Corollary.
[H(G,Cp)| = (Ck : NoC1) = |H*(G,C1)| =p- [H'(G,CL)| > p.

Remark. If we knew that H(G, CL) = 1, then Corollary (4.2) would imme-
diately imply |H?(G,CL)| = p, thus that H?(G, Cy,) is cyclic of order [L : K].
However, contrary to the cases where instead of C';, one considers the idele
group Iy, (cf. (3.5)), or the multiplicative group L* (Hilbert-Noether Theo-
rem), this is not easy to show. That indeed H'(G,C1) = 1 will follow only
from second fundamental inequality (Cx : NoCpr) = |[H°(G,CL)| < p proved
in the next section. Because of the isomorphism H(G,Cp) = H~Y(G,Cy),
it is easy to see that the statement H'(G,Cr) = 1 is actually equivalent to
Hasse’s Norm Theorem (cf. (4.8)) mentioned in the previous section. This
is the reason why a direct proof of Hasse’s Norm Theorem would be very
desirable; however, to date we do not have such a proof.

10) See 1, 86 for more on Herbrand quotients.
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Proof of Theorem (4.1). Let S be a finite set of primes of K such that
1. S contains all infinite primes and all primes ramified in L,
2. Iy, = 17-L%,
3. I =I3-K*.
Note that by (2.4) such a set S certainly exists. Then we have
Cp=1I7-L*/L* =17 /L7,

where LS = L*NI f is the group of S-units, i.e., the group of all those elements
in L* which are units for all the primes 8 of L which do not lie above the
primes in S (cf. §2, p. 118 and §1, p.114). From I, (6.4) we obtain

h(Cr) = h(I7) - h(L%)~Y,
in the sense that when two of these Herbrand quotients are defined, then so
is the third, and we have equality.
The proof splits into two parts, i.e., the computations of h(I7) and h(L").

Because of Theorem (3.2), the computation of h(I7) is a local question. Let

n the number of primes in S,
N the number of primes of L, which lie above S, and
ny1 the number of primes in S, which are inert in L.

Since [L : K] has prime degree, a prime of K that is not inert splits completely,
i.e., decomposes into exactly p primes of L; thus N =ny 4+ p- (n — ny).

To compute the quotient h(I7) = |[HO(G, I7)| / |H (G, I7)|, we have to deter-
mine |[H(G, I?)| and |H'(G, I7)|. We do this making use of the isomorphism

HY(G,I?) =~ [pes H‘I(qu,L%) from Theorem (3.2).

If ¢ = 1, the above isomorphism immediately yields H(G,I5) = 1, because
HY(Gy,L¥) = 1. 1f ¢ = 0, then H(G,I3) = [[,cs H(Gy, L), and it
remains to determine the order of H O(qu,Lé), which is done using local
class field theory. In fact, we have H°(Gsy, Ly) = Gy (cf. 11, (5.9)), so that

|HO(G¢;, L§3)| _ { 1, if the prime p lying under 9 splits (because Gy = 1),

Hence |H?(G, I7)| = p™; since H'(G,I7) = 1, we have so h(I}) = p™.

p, if p is inert (because Gy = G).

For the computation of h(L®) we use the formula for the Herbrand quotient
from Theorem I, (6.10). By (1.1), the group L° = L* N I? of S-units of L is
finitely generated of rank N — 1, and its fixed group (L°)¢ = K = K*n L*
is the group of S-units of K and finitely generated of rank n — 1. Theorem I,

(6.10) yields )

= pn17 .
Since both Herbrand quotients h(I7) and h(L°) are defined, h(Cy) is also
defined, and the above formulas imply h(Cr) = h(I3) - (L)~ = p.

h(L%) = pP(r=1)=N+1)/(p=1)
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Theorem (4.1) has the following

(4.3) Corollary. Let L|K be a cyclic extension of prime power degree. Then
K has infinitely many primes which are inert in L.

Proof. First let the degree [L : K| = p be a prime number. We assume
that the set 4 of the primes of K remaining inert in L is finite. We show
that under this assumption Cx = NgCp, (G = G|k ), contradicting the first
fundamental inequality (4.2). Let @ € Cx and let a € Ik be a representative
idele of @ with local components a, € K. The group of p-th powers (K,)? is
open in K, with respect to the valuation topology by II, (3.6). Therefore for
each p € 4L, ap-(KpX)p is an open neighborhood of the element a,, and since
the field K is dense in its completion K, we can find an z, € K> which lies in
this neighborhood: x, € a,-(K, )?. The Approximation Theorem in valuation
theory implies further that there exists an x € K, which approximates x,
arbitrarily closely with respect to the prime p for all p € 4. In particular, we
may assume that along with z, we also have z € a,-(K,*)?, and therefore
ap-z~t € (K,)P for all p € Y. We now claim that the idele o’ = a-z~! is
the norm of an idele b in Iy. By (3.4) this is the case if and only if every
component aj, € K is the norm of an element by € Lyy (P | p). For p € U
this is true, because [Ly : Ky] = p and a}, = ap-z~" € (K, and for p & U
this is trivially the case, since p splits completely because of the prime degree,
and therefore Ly = K. Thus we have o’ = a-z~! = Ngb, b € I, from which
wegeta=a-K*=d -K*=Ngb-K* = Ng(b-L*). Hence Cx = NgCT.

Now let L|K be cyclic of degree p”. We assume that almost all primes of K
split in L. This means that the decomposition fields Zg are proper extensions
of K for almost all primes B of L, and therefore in each case contain a field Lg
between K and L of degree p. But in the cyclic extension L|K there is only one
field Lo of degree p, which is therefore contained in almost all decomposition
fields Zsz. This implies that almost all primes p of K decompose in the cyclic
extension Lg of degree p, which contradicts the first part of the proof.

We now prove the second fundamental inequality (Cx : NgCpL) < p
for cyclic extensions L|K of prime degree, making the additional assumption
that K contains the p-th roots of unity. In this case L is a Kummer extension:
L = K(/z0), xo € K*. We start with the following lemma:

(4.4) Lemma. Let N = K({/x), x € K*, be any Kummer extension over
K, and let p be a finite prime of K not lying over the prime number p. Then
p is unramified in N if and only if x € U, - (K)?, and p splits completely in
N if and only if x € (K )P.

Proof. Let B be a prime of N over p. Then Ny = K,(¥/z). If © = u - 37,
u e Uy, y € K, then Ny = K, ({/x) = Kp(/u). If the equation X? —u =0
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is irreducible over the residue field of K, then it is also irreducible over K,
and Ng|K, is an unramified extension of degree p. If X? —u = 0 is reducible
over the residue field of K, then it splits into p distinct linear factors there,
since p is distinct from the characteristic of the residue field, and by Hensel’s
Lemma X? —u = 0 also splits into linear factors over Ky, so that Ny = K.
In both cases Ngs|K, is unramified, i.e., p is unramified in V.

Conversely, if p is unramified in N, then Ny = K,({/z) is unramified over
K,, and we have {/z = u - 7%, where u € Uy and 7 € K|, is a prime element
(of smallest value 1). Thus we have x = u? - 7*P, and therefore u? € U,,
TR e (K )P, ie., x € Uy - (K,)P.

The prime p decomposes in N if and only if Ny = K,(¢/z) = K, hence if
and only if € (K,)P.

(4.5) Theorem. Let L|K be a cyclic extension of prime degree p. Assume
the field K contains the p-th roots of unity. Then

|H°(G,CL)| = (Ck : NaCL) < p.

The difficulty here is that that we cannot a priori decide which idele classes
in Ck are represented by a norm idele, and therefore lie in NgCp. This is
completely different from the case of idele groups, where by the Norm Theorem
for idele groups a € Ik is a norm if and only if it is a local norm everywhere
(cf. (3.4)). We work around this by considering instead of NgCp, an auxiliary
group F which is constructed such that its elements are represented by norm
ideles, hence ' C NgCp, and which has the property that its index (Cx : F)
can actually be shown to be equal to p. Using this F, we obtain the inequality

((j}( Z]V};(jL) f; ((7;( 125) =DP.

Let L = K(¢/7g), o € K*. Let S be a finite set of primes of K such that

1. S contains all the primes above p and all infinite primes of K,
2. I =I5 - K%,
3.m9 € K =12 NK* (ie., xg is an S-unit).

Here 2. can be satisfied by (2.4), and 3. because ¢ is a unit for almost all
primes.

Together with S we choose m additional primes qi,...,q,n € S that split
completely in L; set S* = SU{q1,...,qm}. To construct F', we have to specify
an idele group F' C Ix whose elements represent the idele classes of F'. It must
consist of nothing but norm ideles so that F C NgCy, it must be sufficiently
large to ensure that the index (Ck : F) is finite, and it must be simple enough
so that it is possible to compute this index. These properties are satisfied by

the idele group
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F=]Jar xHK < [[uve ™.
pes pES*

To see that F' C NgIp, it suffices by the Norm Theorem for ideéles to convince
ourselves that the components a, of each idele a € F' are norms from the
extension Ly | K, (B | p).

This is true for p € S, because a, € (K;)? C Np,x,Ly (regardless of
[Ly : Ky] = p or = 1); this is trivially true for p = q,, because q; splits
completely so that Ly = Kj; and it is true for p ¢ S*, because zg € U, by 3
and therefore by Lemma (4 4) each p ¢ S* is unramified in L = K(¢/z0), so
that a, € U, C NL‘MKFL by II, (4.4). If we now set ' = F-K*/K*, then
F C NgCp, since each 1dele class @ is represented by a norm idele a € F'. To
compute the index (Ck : F), we consider the following decomposition:

(Ck :F) = (I -K*/K* : F-K*/K*) = (I -K* : F-K*) =
IF F)/(IF NKX): (FNK*)) 2.

It allows us to split the computation of (Cf : F) into two parts, the compu-
tation of (I f;* : ), which is of a purely local nature, and the computation of
(IF NK*): (FNK*)), which uses global considerations.

I. We have (I3 : F) = [Tpes (B 1 (K)P); since S € S, the map

Iy — [ K7 /&P with avr— [ ap - (K
pes pesS
is trivially surjective, and its kernel consists precisely of those ideles a € IS(
for which a, € (K )? for p € S lie in the kernel; i.e., the idéles in F'. By the
local theory (cf. II, (3.7)) we have

(K (KPP =p° - Iply s

so that (I§ : F) = p*™ - [pes Iy ', where n is the number of primes in S.
Since the primes p ¢ S do not lie above the prime number p, [p|, =1 forp & S,
and by the product formula [, ¢ [plp = ]I, [plp = 1, hence (I : F) =p*".

1) That we consider precisely this idele group is motivated as follows: If we start
heuristically with the reciprocity law, which has not been proved yet, we see that
the Kummer extension T' = K ( YKS ) has as norm group the ideéle class group
E=E-K*/K* formed from E = [1,es (B ) xI1 g5 Up (cf. (7.7)). By inserting
additional factors K., i.e., choosing bultable primes q;, we try to enlarge F to a
group F such that F becomes the norm group of the field L = K(¢/z0) C T.

12) The last of these equations results from a general elementary group-theoretical
fact: If B C A, C are subgroups of an abelian group, then the canonical surjective
homomorphism A/B — A-C/B-C has kernel ANB-C/B~ ANC/BnC.
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II. An elementary calculation shows that
(I NK*): (FNK*X))= (K% : (FNK*))
= (K5 (K5 )) /(FNEX): (K9)P),
where K" is the group of S*-units. By (1.1) this group is finitely generated of

rank n+m—1 (n-+m is the number of primes in S*). Moreover, K% contains
the p-th roots of unity, and it easily follows that (KS™ : (K5 )P) = p»tm™,

Altogether we therefore have
(Ck : NaCp) < (Cr : F) =p" ™ - (FNK*): (K5 )),
and the second fundamental inequality is proved, provided that we can choose

the primes q1, ..., q,, splitting in L in such a way that m =n — 1, and

K*NF=K*n([] (K} x _l:IquXi x [T Uy) =

pes pgs*
=K*Nn N (K)PNNEsSN N Up=
pes =1 pegS*
=EK*N NN N Uy = (K5)7
pes pgsS*

using Lemma (4.4), we formulate this as follows:

Sublemma. There exist n — 1 primes of K, q1,...,qn—1 € S that split
completely in L and satisfy the following condition:

If N = K(¥/z) is a Kummer extension over K in which all p € S split
completely and all p # q1,...,q,_1 are unramified, then N = K(¥/z) = K.

In fact, the desired equality
K0 Y 1) Uy = (5
pes pgs*
follows immediately from this. The inclusion D is trivial. Let z € K* N
Npes (B )P N Nygs- Up and N = K(/x). By (4.4) every p € S splits com-
pletely in N, since « € (K, )P. For p ¢ S* we have z € U, C Uy - (K;')P, so
that every p ¢ S* is unramified in N by (4.4). Hence the sublemma yields
N = K(¥/x) = K, so that € (K*)?, and because « € U, for p & S*, x lies
in (K*)PNKS = (K5,

The statement about the prime decomposition in Kummer extensions given
by the sublemma represents the global part of the proof of the second funda-
mental inequality. To prove it, we consider the field T' = K ({’/ﬁ ) obtained
by adjoining the p-th roots of all the elements in the group K*°. By (1.3)

X(Grjr) = K-(KX)P /(KX)P = K° [(K%)P.
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Since K is finitely generated of rank n — 1 = |S| — 1 (cf. (1.1)) and contains
the p-th roots of unity, we have K 2 (()xZ x---xZ; also K° /(K®)P = ({) x
Z/pZ % ---x Z/pZ (¢ a primitive p-th root of unity). Thus the Galois group
G|k is the direct product of cyclic groups 3; of order p, Gy g = 31X+ X 3,
and we have for the field degree [T : K] = (K* : (K)P) = p™.

The field L = K(/Zo) lies in T because zo € K*, and it is easy to see that
we can assume Gr|;, = 31 X --+ X 3p—1. Let T; C T be the fixed field of
3i € Gr |k, thus G, = 3.

Because 3; C Gpp we have L C T; for

i=1,...,n—1, and the given fields form an

/ \\ arrangement as in the diagram on the left.
Now we choose for each i = 1,...,n a prime

Tn £; of the field T;, such that the ; are inert

\ / in T, and such that the primes q1,...,qy ly-

ing under the Q; are all distinct and are not
| in S. This is possible by (4.3). We claim that
K the q1,...,qn—1 & S satisfy the conditions
of the lemma.
To prove that qi,...,q,—1 split completely in L, we observe that 7T; is the
decomposition field of the unique extension Q) of Q; to T over K,i=1,...,n.
This decomposition field Z; is contained in T}, since £; is inert in 7". On the
other hand, by (4.4), q; is unramified in every field K (3/z), x € K, thus also
in T, so that the Galois group G|z, of T'|Z; is isomorphic to the Galois group
of the residue field extension of T'|Z;, and therefore is cyclic. But a generator
of G|z, has order p as an element of G|k, hence [T : Z;] = p and Z; = T;.
Since L is contained in the decomposition fields T; for i = 1,...,n — 1, it
follows that the primes q1, ..., q,—1 split completely in L.

Set Uy =U,,, 1 =1,...,n. We show next that the homomorphism
K5 /(K% — [[ U/, - (K%)= Hw (U (x e K9,
i=1 i

is bijective. For injectivity note that if x € (U) C (Kg)P, then it follows
from (4.4) that the primes qq,...,q, split completely in the field K(¥/x), so
that K(¢/z) is contained in the decomposition fields T;, i = 1,...,n. Hence
K(¥r)CNie, T; = K, and z € (K*)P N K% = (K9)P.

n

We show surjectivity by comparing orders. We know that (K : (K Py = pn;
on the other hand, using II, (3.8) we find (U; : (U;)?) =p- = p, ie,
(K% : (K9)P) and []}_, U;/(U;)P have the same order p".

Now let N = K(¢/x), z € K* be a Kummer extension in which the p € .S split
completely and the p # q1,...,qn—1 are unramified. To prove that N = K,
it suffices by (4.2) to show that Cx = NyxCn. Let @ € Cx = Ix/K* =
IZ-K*/K*, and let a € Iy be a representative of the class @. If we set
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a; = ag, - (Ul)p (Clqi € Ui), i =1,...,n, then the fact that KS/(KS)p —
[T, U;/(U;)P is surjective implies that there is a y € K with y - (U;)P = @,
so that ag, = y-u?, u; € U; for i =1,...,n. The idele o’ = a-y~! belongs to
the same idele class as a, and it follows easily from from the Norm Theorem
for ideles that moreover a’ € Ny|xIn: If p € S, then ay is a norm, since
p splits completely in N, and therefore Ny = K, (B | p). For the primes
i @ = 1,...,n — 1, aj, = uf as the p-th power of a norm, and for p ¢ S,
p # d1,---,qn—1, the norm property of ay follows by II, (4.4) from the fact
that a;, € Uy is a unit and by assumption p is in N, i.e., Np|K, (B | p) is
unramified. Therefore we obtain @ = a’ - K* € NyxCl, i.e., N = K. This
proves the sublemma and consequently completes the proof of Theorem (4.5).

Theorems (4.1) and (4.5) together imply

(4.6) Corollary. If L|K is a cyclic extension of prime degree p with Galois
group G = G|k, and K contains the p-th roots of unity, then

H(G,CL) =2 H*(G,CL) =G and H'(G,Cr) =1.

From what we have shown for Kummer extensions, it is easy to prove the
following, more general result.

(4.7) Theorem. If L|K is a normal extension with Galois group G = Gk,
then we have H*(G,Cp) = 1.

We prove this by induction on the order n of the group of G. The case n = 1 is
trivial. Let us assume that H(G,CL) = 1 for every extension L|K of degree
< n. If the order n = |G| is not a p-power, then each p-Sylow subgroup G, of G
has order smaller than n, so that by the induction hypothesis H'(G,, Cp) = 1,
and therefore H'(G,CL) =1 by I, (4.17).

Thus is suffices to prove this for a p-group G. In this case, let ¢ C G be a
normal subgroup of index p; g¢ is the Galois group of an intermediate field M,
K CMCL,g=Gprnm- Now if p <n, then by assumption HY(G/g,Cn) =
H'(g,CL) =1, and from the exact sequence (cf. I, (4.6))

1— H'Y(G/g,Cn) 25 HYG,Cr) ™5 H'(9,C1)

we see that H(G,Cp) = 1.

I/ Assume p = n. In order to be able to apply Corollary

/ (4.6), we replace K by the extension K’ obtained by
‘ adjoining a primitive p-th root of unity to K, and set

, L'=L-K' Obviously [K' : K]<p—-1<p=mnand

K [L' : K'] = p. Because [K' : K] < n, resp. (4.6), we
/ have Hl(GK/|K,CK/) = Hl(GL/|K/,CL/) = 1, and

K from the exact sequence
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inf res
1 — H1<GK’\K70K’) — Hl(GL/lK,CL/) — Hl(GL/|K/,CL/>
we obtain Hl(GL/|K, Cpr/) = 1. On the other hand, because the sequence
1— HY(G,Cp) 25 HY(Gp, Cr) = 1

is also exact, we see that H'(Gp/x,Cp/) = 1 implies H'(G,Cp) = 1.

For cyclic extensions Theorem (4.7) is just another form of the Hasse Norm
Theorem mentioned earlier:

(4.8) Corollary. If the extension L|K is cyclic, then an element x € K* is
a norm if and only if it is locally a norm everywhere.

Proof. The sequence of G-modules 1 — L* — I, — Cp — 1 yields the exact
cohomology sequence
H™N(G,CL) — H(G,L*) — H*(G, 1) = @ H*(Gy, L)
p
Since G is cyclic, H7(G,C) & H'(G,CL) = 1 by Theorem (4.7), which
implies that the canonical homomorphism

KX /Ny L — @ K /Npy ik, L
p
is injective; this is precisely the assertion of the Hasse Norm Theorem.

(4.9) Theorem. Let L|K be a normal extension with Galois group G = Gk
Then the order of H?(G,C}) is a divisor of the degree [L : K].

We prove this again by induction on the order n of the group G. For n =1
the theorem is trivial, and we assume it holds for all normal extensions of
degree less than n. If the order of |G| = n is not a prime power, every p-
Sylow subgroup G, of G has a smaller order that n, and by assumption the
order |H?(G)p,CL)| divides the order n, of G, i.e., the maximal p-power
dividing n. If H2(G,Cp) denotes the p-Sylow subgroup of H?*(G,Cp) 13),
then the restriction map

H2(G,Cp) = H*(G,,CL)

is injective by I, (4.16). Hence the order |H2(G,CL)| divides the maximal
p-power n,, which divides n, and since H?(G,Cp) is a direct product of its
p-Sylow groups, |H2(G,Cp)| is a divisor of n.

13) Hg(G, C'1) consists precisely of those elements of H?(G, Cr.) which have p-power
order; HZ (G, CL) is often referred to as the p-primary component of H*(G,CL) .
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Thus we can again assume G is a p-group. Choose a normal subgroup g C G
of index p. Because |g| = n/p < n, the order of H?(g,CyL) is a divisor of n/p,
and taking into account that H'(g,Cr) = 1, I, (4.7) shows that the sequence

L — H(G/g,Cf) ™ H(G,C1) *% H(9,C1)
is exact. But G/g is the Galois group of a cyclic extension of prime de-
gree I'|K, K C L' C L, ie., G/g = Gk, C} = Cr, and by (4.6)

we have |H%(G/g,C%)| = p. It follows from the above exact sequence that
|H?(G, CL)|/p divides n/p, and therefore |H?(G,CL)| divides n, as claimed.

With Theorem (4.9) we have not yet reached our goal to show that H2(G, Cr)
is cyclic of the same order as [L : K]. To show this, we will associate with the
group H?(G,Cy) an invariant homomorphism, as required by Axiom II for
class formations.

8 5. Idele Invariants

Recall that we want to show that the extensions L|K form a class formation
in the sense of II, §1 with respect to the idele class group Cf. With Theorem
(4.7) we have shown that Axiom I is satisfied. Hence it remains to show that
for every normal extension L|K there is an invariant isomorphism

H*(Grix.CL) — g Z/Z

which satisfies the compatibility properties required by Axiom II. It is, of
course, essential that we construct the invariant isomorphism in a canoni-
cal way to also obtain a canonical reciprocity law, the Artin reciprocity
law. In a certain sense we will retrieve this invariant map, and with it the
reciprocity law, from the local theory, by relating the group H?(G Lk, CL)
to the group H?(Gpk,I) formed with the idele group I, as the un-
derlying module. For the latter group we obtain from the decomposition
H*(Gpig. 1) = D, HQ(GL‘B‘KF,L%) immediately an invariant map from
local class field theory by taking the sum of the canonical invariant isomor-
phisms of the local extensions Loz |K,. We will show that the invariants of the
elements in H? (Gr)k,1L) yield invariants for the elements of HQ(GL|K, Cr).

Let L|K be a normal extension of finite algebraic number fields, and let G, x
be its Galois group. By (3.2) we have the decomposition

HQ(GL|KaIL) = @HQ(GL1|KP7LS§)7
p

where @ again denotes the direct sum. For every prime p of K we have from
local class field theory the isomorphism (cf. II, (5.5))
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vy, ik, t H(Gry ik, Ly) — mz/z - ﬁz/z (B p) Y

The local invariant isomorphism invy,, x, is the composition of three homo-
morphisms; however, for now it is not necessary for us to know this map
explicitly, at this point it is only important that we know that it satisfies the
compatibility conditions from Axiom II of class formations (cf. II, (5.6)).

(5.1) Definition. If ¢, € HQ(GLNKWLSS) (B an arbitrarily chosen prime
over p) are the local components of ¢ € H*(G |, 1), then we set

. . 1
invyge= vaLmIKPCP € WZ/Z'
p

Note that here almost all ¢, = 1, so that the sum contains only finitely many
non-zero summands. In particular, we obtain an invariant homomorphism

iHVL‘K : HQ(GL|K,IL) — ﬁZ/Z

(5.2) Proposition. If N D L D K are normal extensions of the field K, then
inv e = invy ke, ce H*(Grik,IL) € H*(Gn ik, In),
inv g (respe) = [L: K] -invyge, c€ H* Gk, In),

inv | g (corge) = invy e, cE HQ(GN‘LJN).

The last two formulas require only that N|K be normal.

Here we use the convention made after (3.5) to interpret the inflation map
H*(Gpig,I) — H*(Gnig,In)  (N2L2K)
as an inclusion, so that H?(Gpx,11) € H*(Gyk, In).

Proof. The proposition follows from the behavior of the local invariants with
respect to the maps incl, res and cor. If ¢ € HZ(GL|K,IL), then by (3.3)

IHVN|KC: E anNm’lKPCp: E anch\Kpcp:HlVL\Kc
p p

Here 3’ is an arbitrary prime of N over p and ‘B is the prime of L lying under
P.Ifce H2(GN‘K, Iy), and B runs through the primes of L, then

4) This invariant isomorphism is independent of the choice of B | p in the follow-
ing sense: If B’ | p is another prime of L, then the canonical Kp-isomorphism
Ly — Ly yields a canonical isomorphism between H? (Gry|r,, Ly) and
H?*(Gy, 1K L;/), which trivially preserves the invariant map.
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invy g (respe) = D invi,, | ny (respe)gp = D inv, 1y (respy cp)
B B

= %}:[ch : Ky 'inVNrB,leCp = Z%:[ng Ky ~inV]\]%,‘Kpcp7
p p

where R’ represents any prime of N over 8 and p the prime of K lying
under B. If we note that the invariants inv Noy |K, Cp are independent of the

choice of the primes ' of N lying above p (cf. the footnote ') on p. 138), and
that by the fundamental equation of number theory (cf. §1, p. 115) we have

> Ly : Ky =[L: K],
Blp
then (P’ a fixed prime of N over p):

inv | (resge) = Z (Z[Lsp : Kp]> IV, K, Cp

P Py

= [L : K] ‘ZinVNm/‘KPCp
p

= [L : K] 'iIlVN|KC.

Finally, for ¢ € H*(Gy|r,In) it follows from the formulas in (3.3) that

inv |k (corge) = Z vy, r, (corgc)y

p
:E E invy,, |k, (cork, cx)

PoPBlp

= E E inVNqJ/‘mem = inVN‘L(C).

P PBlp

Since H*(Gp k. 1) = 1, it follows that the extensions L|K satisfy with re-
spect to the idele group I, and the idéle homomorphism invy g the con-
ditions for a class formation, except for that the homomorphism invy g :
H*(Gpig. 1) — ﬁZ/Z is not an isomorphism. To makes this an isomor-
phism, we have to pass from the idele group I, to the idele class group C7.
Before explaining this in detail, we consider abelian extensions and introduce

an invariant homomorphism invy, g, as well as the following symbol.

(5.3) Definition. Let L|K be an abelian extension. If a € Ik with local
components a, € pr, then we set

(a0, L|K) = H(%»LMKP) €Grk -
p
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In this definition we have used the following facts: For each prime p, the symbol
(ap, Lep|Ky) defines an element of the local abelian Galois group Gp,k,,
which we always consider as a subgroup of G|k . Hence

(ap, Lp|Ky) € Gry ik, € Grik-

Since ap is a unit for almost all primes p and since Ly|K, is unramified for
almost all p, we have (ap, Lyz|K,) = 1 for almost all p by II, (4.4). Thus the
product [[,(ap, Ly|Kp) € G i is well defined, and it is also independent of
the order of the factors, since G|k is abelian. The symbol (, L|K) and the
invariant mapping invy g are related as follows.

(5.4) Lemma'®). Let L|K be an abelian extension, a € Ir and (a) =
a- NL\KIL c HO(GL|K,[L). IfX € X(GL|K) = HI(GL|K,Q/Z), then
x(a, LK) = invy g ((a) Udx) € ﬁl/z.

This is a consequence of the analogous formula which relates the local norm
residue symbol (, Ly|Kp) with the local invariant map invp, g, (cf. II,
(5.11)). If we denote by X, the restriction of x to Gpr,k,, and by (ap) =

Ay - Nng\KpL;y then

x(a, LK) = ZXp(ava‘B‘Kp) = ZinVLq;\K,, ((ap) U dxp).
p p
The remark after (3.2) shows that the classes

((ap) Udxp) € H*(Gryx, Ly)

are the local components of (a) Udx € H?*(Gp k,1L); we only need to note
that a, - dxp (0, 7) (resp. a-dx(o,7)) is a 2-cocycle of the class ((ap) U dxyp)
(resp. ((a)Udx)) (cf. II, (5.11)). Thus x(a, L|K) = invyx((a)Udx) as claimed.

When changing from the ideéle invariants to the idele class invariants, the fol-
lowing theorem is of central importance. From the exact cohomology sequence
associated with the exact sequence

1— L —1I, —C,—1
we see, using Hl(GL|K, Cr) =1, that the induced homomorphism
H*(Grx,L™) — H*(Gprik, 1)
is injective.
We use this injection to think of H?(Gx, L) as a subgroup of H*(Gp k., L),

i.e., we view the elements of H? (Grik,L™) as the idele cohomology classes
that are represented by cocycles with values in the principal idele group L*.

(5.5) Theorem. If ¢ € H*(Gp g, L), then invy ke = 0.

19) Cf. also 11, (1.10).
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We will see that apart from purely technical considerations the proof of this
theorem is based on the following two facts: the explicit description of the
local norm residue symbol and the product formula for algebraic numbers.

Proof. We start with the simple observation that it suffices to consider the
case when K = Q and L is a cyclic cyclotomic extension of Q. In fact, if
cE H2(GL|K, L*), and N is a normal extension of Q containing L, then

c € H*(Gp ik, L*) C H*(Gnjx, N*) € H*(Gn|, IN),
corge € HQ(GMQ,NX), and invy|gc = invy|gc = invy|g(corge) by (5.2).
Hence to show invygc = 0 it suffices to consider the case K = Q. Since by

(3.6) there exists a cyclic cyclotomic extension Lo|Q with ¢ € H*(Gr,q, Ly ),
we can even assume that L|Q itself is a cyclic cyclotomic extension.

Let x be a generator of the cyclic character group x(Gprq) = H'(Grjq, Q/Z).
Then &y is a generator of H?*(Gp q, Z), and Tate’s Theorem I, (7.3) implies

SxU : H'(Gpjq, L") — H*(Gpiq,L*) '
is bijective. Thus each element ¢ € H?*(Gpq,L*) has the form ¢ = (a) U 6
with (a) = a- NpjgL* € H°(Gpiq. L*), a € Q™. From (5.4) we obtain

invy|qe = invyg((a) Udx) = x(a, LIQ),
and we need to show that (a, L|Q) = ][ (a, Ly|Q,) = 1. Now L is a cyclo-
tomic extension, i.e., L C Q(¢) for some root of unity ¢. The automorphism
(a, L|Q) is precisely the restriction of (a,Q({)|Q) to L; this follows easily
from the behavior of the local norm residue symbol (a, Q,(¢)|Q,) when pass-
ing to the extension Ly |Q,, (cf. II, (5.10a)). It therefore suffices to show that
(a,Q(¢)|Q) =1 for a € Q™. Now Q(() is generated by roots of unity of prime
power order and it suffices to show the vanishing of (a, Q(¢)|Q) for these gen-
erators, hence we may assume that ¢ is a primitive ["-th root of unity (I a
prime number). With this reduction we come to the actual core of the proof.

Let ¢ be a primitive {™-th root of unity; if [ = 2, we assume n > 2. If p
ranges over the prime numbers and the infinite prime over p = po, of Q, then
the Q,(¢)|Q, are the local extensions associated with Q(¢)|Q. The extension
Q,(¢)|Q, is unramified for p # I and totally ramified for p = [ (cf. [21], §5,
3.); if p = poo, then Q,(¢)|Q, means the extension C|IR. We have to show:

For each a € @™, (a,Q(0)|Q) = H(Q7Qp(<)|Qp) =1

p

Here it obviously suffices to assume that a is integral. We consider the effect
of the local norm residue symbol (a,Q,(¢)|Q,) on the ["-th roots of unity (.

1. For p # I, p # poo, we have by II, (4.8)
(a,Q,(0)|Q,)¢ = )¢,

16) This can also be shown in an elementary way.
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where v, is the valuation on Q,, and ¢ is the Frobenius automorphism on
Q,(¢)|Q,- Since the residue field of Q, has p elements, clearly p¢ = (7, thus

(a,Q,()1Q,)¢ = ¢*™.

2. For p = I, we obtain from II, (7.16), writing a = u-p™ = u-p*»(*), u a unit:

(a,Q,(0)Q,)¢ =",

where r is a natural number which is determined mod p™ by the congruence

r=ut=a"1 p"»@ mod p".

3. For p = ps, the automorphism (a, C|IR) is either the identity or complex
conjugation, depending on whether a > 0 or a < 0 (cf. IL, §5, p.95). Thus

(a,Q,(0)|Q,)¢ = ¢

Combining all of the above, we obtain

(a,Q(0)Q) = Ha@ Q)¢ = ¢ Tlur

Up(a)

But by the product formula we have for the power appearing on the right side
sgna - Hpvp(a) -r=sgna- Hpvp(a)lvf(a)a_l = 1

p#l p#l Hp |a‘P

therefore (a, Q(¢)|Q)¢ = ¢, i.e., we have in fact (a, Q(¢)|Q) = 1.

=1 mod [",

Theorem (5.5) shows that the group H? (GL‘K, L*) lies in the kernel of the
homomorphism invyx : H*(Gp ik, 1) — K] K Z/Z. We have to ask further
whether or not it is precisely the kernel, and in addltlon whether or not invp, gk
is a surjective homomorphism. For the cyclic case we have:

(5.6) Proposition. If L|K is a cyclic extension, then the sequence

invp| g

1—>H2(GL‘K7LX)—)HQ(G“K,IL)—} Z/Z—)O

[LK

is exact.

Proof. a) To show invp x is surjective, we assume first [L : K] is a prime
power p”. Because TIK] +Z generates [L:—lK]Z /Z, it suffices to find an element
c€E HQ(GL|K,IL) with invy ge = ﬁ + Z. We use the decomposition

H*(Grix, 1) = @ H*(Gryx,, Ly)
p
and determine ¢ by its local components ¢, € H*(Gp |k, , Lg). Since L|K is
cyclic of prime power degree, it follows from (4.3) that K contains a prime pg

which is inert in L. Since pq is inert, we have [Lq, : Kp,] = [L : K], (PBo|po),
and local class field theory yields an element c,, € H*(G Lo, | KPO,L%O) with
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VLo Ky Cro = m +Z = ﬁ + Z. Now if ¢ is the element in

H?*(Gp k. 1) that is determined by the local components
L1 L e, L1

then . ) . L
invy ge= ZlnvaKpcp = VL 5, C0 = R T Z.
P

That invy g is also surjective in the general case [L : K| = n = pi*---p}*
follows easily from this. For every ¢ = 1,..., s there obviously exists a cyclic
intermediate field L; of degree [L; : K] = p;*. Consider the decomposition

1 n n

= Tll 4+t ri

n P Ds’

into partial fraction. By the previous case there is a ¢; € HQ(GL”K, I;,,) with
vy, gc =invy ge; = Tl, + Z.
p;

Thus if we set 5

c=c - cs € H(Grx, 1),
then s s 1

IIIVL‘KC = ZIHVMKQ' = Zpirt +Z= E + Z,
i=1 i=1 "1

which shows that invyk is surjective for any cyclic extension.
b) By (5.5) HQ(GL‘K,LX) is contained in the kernel of invyx. To show that
the group HQ(GL|K,LX) in fact equals the kernel of invy x we use a sim-
ple argument involving the orders of these groups. Since the map invy g is
surjective, we only need to show that the order of the factor group

H*(Grix, IL)/H*(Grix, L™)

is at most the order of ﬁZ/Z, i.e., the degree of [L : K]. Using the sequence

1—L* —I, —C, —1
we obtain, using that H'(G L1k, Cr) = 1, the exact cohomology sequence
1 — H*(Gpx,L*) — H*(Gp i, 1) — H*(Gpx, Cr).

Therefore the order of H*(Gpx,Ip)/H?(Grjk,L*) divides the order of
H?*(Gp k. CL). By (4.9) H*(G |k, CL) divides [L : K], and we are done.

For the following it would be very convenient if we could show that invy g is
a surjective homomorphism in general. Unfortunately this is false. In order for
every element of ﬁz /Z to be in the image of the invariant map, it is neces-
sary to enlarge the field L by forming the compositum with a cyclic extension.
For technical reasons it is best to let L range over all normal extensions of K
and to consider the union

H*(Gok,1o) = UHZ(GL\IOIL)
L
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(cf. remark after (3.5)). If N O L D K are two normal extensions of K, then
H*(Gpix,I1) € H*(Gnix, In),
and since by (5.2) the invariant map can be extended from H?(Gp k,IL) to
H? (Gnyk>IN), we obtain a homomorphism
invg : HQ(GQ\va.Q) — Q/Z7

whose restriction to HQ(GL|K, 1) C H2(GQ|K, 1) coincides with the initial
invariant map invy k. If we take into account that for each positive integer
m there is a cyclic extension L|K with m | [L : K] (for example, by (3.7)), we
see that Q/Z is already covered by the groups [L—lK]Z/ Z coming from cyclic

extension L|K. Now the map invy g is surjective in the cyclic case, thus we
obtain for the invariant map invg defined above the following

(5.7) Theorem. The homomorphism
invg : HQ(G_Q|K, I_Q) — Q/Z

is surjective.

The results obtained so far can be summarized to give a theorem about the
Brauer group of an algebraic number field K and its completion K. Recall
that we defined the Brauer group Br(K) of a field K in II, §2 as the union
(more precisely the direct limit)

BT(K) = UHz(GL|KaLX)7
L

where L runs through all finite Galois extensions of K. If K is an algebraic
number field, then we choose over each prime p of K a fixed valuation of the
algebraic closure (2; each such valuation in turn determines in every finite
extension L|K a prime 3 above p. Then we have

Br(K,) = UHz(GLwKﬂ,quj) .
L

From the homomorphisms

invp| g

H*(Gpk, L*) — H*(Grik, 1) = @HQ(GLMKML%) —_— LK]Z/Z
P
we obtain by passing to the direct limit (i.e., in this case, the union) the
canonical homomorphism

Br(K) — H*(Gox,Io) = @Br VK, Q)Z,

where invg is the sum of the local invariant maps invg, : Br(K,) — Q/Z
(cf. 11, §1, p. 68 and II, (5.4)).

We now have Hasse’s Main Theorem on the Theory of Algebras:

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

146 Part III. Global Class Field Theory

(5.8) Theorem. For every finite algebraic number field K one has the canon-
ical exact sequence

1 — Br(K) — @ Br(k,) ™5 Q/Z — 0.
p

Proof. The groups Br(K), @, Br(K,) (=2 H*(Ggk,1o)), and Q/Z are,
by (3.6) and the remark after (5.7), the union of the groups H?(Gp x,L*),
@p H2(Gch|Kp»LqX3) (= H2(GL|K, I1,), and ﬁZ/Z, respectively, provided
L|K runs through all the cyclic extensions. But for such a cyclic extension
L|K we have by (5.6) the exact sequence

invL‘K 1

1— HQ(GL‘K,LX) — HQ(GL\KajL) " K]

Z/Z — 0,

from which the theorem follows immediately.

§ 6. The Reciprocity Law

Having studied the idele invariants in the previous section, we now want to
construct invariants for the elements of the groups H?(G Lk, Cr). We start
with the following observations:

If L|K is a normal extension, then we obtain from the exact sequence
1— L — I —Cp —1,

using Hl(GL|K, Cr)=1= H3(GL‘K, I1,) = 1, the exact cohomology sequence
1 — H*(Gpk,L*) — H*(Grik, 1) 2 H*(Gpk,CL)

i) HS(GL‘K,LX) — 1.

If c € H*(Gpk,CL) and ¢ € H*(Gp i, 1) is such that ¢ = jc, then we set
iHVL|KE = invL|Kc S ﬁZ/Z

This definition is independent of the choice of the preimage ¢ € H?(G Lk, 1L),
because two such preimages differ only by an element in H?(G Lk, LX),
which by (5.5) has invariant 0. Of course, this only works if the element
ce HQ(GL‘K, C1) lies in the image of the homomorphism j. But the map j
is in general not surjective; in fact, j being surjective would be equivalent to
the group H3(GL|K, L*) being trivial, however, this group is not equal to 1
in general (cf. [2], Ch. 7, Th. 12). Nevertheless, we can show that at least in
the cyclic case the map j is surjective.
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(6.1) Proposition. If L|K is a cyclic extension, then the homomorphism

H*(Gpr,I1) -~ H*(Gpk.CL)

is surjective.

Proof. In L|K is cyclic, then H3(Gpx,L*) = H (G, L*) = 1 (cf. 1I,
(2.2)).

In order to define an invariant map for arbitrary normal extensions L|K, we
proceed in a similar way as for the groups HQ(GL‘K, I1,) with respect to the
invariant map for ideles at the end of the previous section.

First we note that the homomorphism
H*(Gpk, 1) = H*(Grik,CL)

commutes with the maps inf and res; i.e., if N O L O K are two normal
extensions of K, then we have

joinfy =infyoj and joresp =respoj,

where in the last formula we only need to assume that N|K is normal. For
simplicity we set

(6.2) Definition. H(L|K)= HY(Gpk,CL).

Because H(L|K) = 1 (cf. (4.7)), the extensions L|K form a field formation
in the sense of II, §1 with respect to the idele group Cp as the module. To
simplify things we will, as for the idele cohomology groups in §5 and generally
for every field formation, interpret the injective inflation maps

HX(L|K) 25 HX(N|K) (NDLDK)
as inclusions. More precisely, this means that we form the direct limit

H*(Q|K) = lim H*(L|K) 7
L

where L ranges over all finite normal extensions of K. We view the groups
H?(L|K) as being embedded in H?(£2|K) via the inflation maps. Thinking of
the H?(L|K) as subgroups of H2(2|K), we have

H*(Q|K) = JH*(L|K).
L

Hence if N O L O K are two normal extensions, then we have inclusions
H*(L|K) C H*(N|K) C H*(2|K),

17) Here {2 denotes again the field of all algebraic numbers, and the same convention
as in footnote ¥ for the group H2(GQ‘K7 I) applies to the group H?(2|K).
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where, according to this interpretation, an element ¢ € H?(N|K) comes from
an element of H2(L|K) if and only if it is the inflation of an element of
H?(L|K).

Now the crucial input is the following theorem which plays a role similar to
one of Theorem (II, 5.2) in the local theory.

(6.3) Theorem. If L|K is a normal extension and L'|K a cyclic extension
of equal degree [L' : K| = [L : K], then

H*(L'|K) = H*(L|K) C H*(?|K).

Since for every positive integer m there is a cyclic extension L|K of degree m
(see (3.7), for instance), this theorem has the following

(6.4) Corollary. H*(2|K)= | ] H*(LIK).
L|K cyclic

Proof of (6.3). We first show that H*(L'|K) C H?(L|K). If N = L-L' is the
compositum of L and L’, then a simple group theoretic argument shows that
if the extension L'|K is cyclic, then the extension N|L is also cyclic. Now let
¢ e H?(I'|K) C H?(N|K). Because of the exact sequence
1 — H*(L|IK) — H*(N|K) = H*(N|L),
an element ¢ € H2(N|K) is an element of H?(L|K) if and only if res;c = 1.
To show this, we use the idéle invariants. By (6.1) the homomorphism
HX(Gpx, 1) -2 H(U'|K)

is surjective, so that ¢ = je¢, ¢ € H2(GL/|K,IL/) C H2(GN|K,IN). From
the remarks made above, we know that the map j commutes with inflation
(interpreted here as inclusion) and with restriction, hence we have the formulas

resy, ¢ = resy(jc) = jrespc.

Thus resp¢ = 1 if and only if respc lies in the kernel of j, and therefore
in H?(Gyyz,N*). Since N|L is cyclic, this holds by (5.6) if and only if
inv |z (respc) = 0, and this last statement now follows from

inv g (respe) = [L: K] -invy e = [L': K] -invp e = 0.
Therefore H?(L'|K) C H?(L|K).
To show that the above inequality is in fact an equality we consider orders.
Because H'(L'|K) = 1 and H*(G g, L'™) = H (G k, L) = 1, we obtain
the exact cohomology sequence

1 — H*(Gp i, L) — H*(Gpx, I) — H*(L'|K) — 1,

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

6. The Reciprocity Law 149
§ procity

where |H?(L'|K)| = [L' : K] = [L : K] by (5.6). On the other hand, |H?(L|K)|
divides the degree [L : K] by (4.9), hence H*(L'|K) = H*(L|K).

Let N O L O K be two normal extensions. Because the map
H* Gk, 1) 2 H*(L|K)
is compatible with inflation, it can be extended to a canonical homomorphism
H(Gy ik, In) = HA(N|K).
Thus we obtain a homomorphism
H* Gk, Lo) = HX(Q|K)

whose restriction to the groups H?(Gp |k, I1) are the initial homomorphisms
H*(Gp k. 1) — H?(L|K). If these are not surjective, then we still have the

(6.5) Theorem. The homomorphism
H* (G, In) = H*(QIK)

is surjective.

Proof. If ¢ € H*(02|K), then it follows from (6.4) that there is a cyclic
extension L|K such that ¢ € H?(L|K). Since for a cyclic extension the map
H (G, Tr) = H*(LIK)

is surjective by (6.1), ¢ = jc for some ¢ € H*(Gp k., 1) € H*(Ggk, o).

Given this theorem, it is easy to obtain class invariants for the elements of
H?*(2|K) = J; H*(L|K) from the invariant map of the idele cohomology
classes. From the homomorphism

iIlVK : H2(GQ|K7[Q) - Q/Za

which is surjective by (5.7), we in fact come to the following

(6.6) Definition. Ifc € H*(2|K) and ¢ = jc, c € H*(Ggk, L), then define

invge =invgc € Q/Z.

Of course we have to convince ourselves that this definition is independent of
the choice of the preimage ¢ € H? (Gok,1e) of €. But if ¢’ is another element
in H2(G_Q‘K7IQ) with ¢ = jC/, then C, d S HQ(GL|K7IL> - H2(GQ‘K7 IQ)
for a sufficiently large normal extension L|K, where we may assume that this
extension is so large that ¢ € H?(L|K). Because ¢ = jc = jc, ¢ and ¢’ differ
only by an element in the kernel of the mapping j : H*(Gpk, IL)—H?*(L|K),
and thus by an element of H?(Gp x, L*), which has invariant 0 by (5.5).

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

150 Part III. Global Class Field Theory

We remark that in the above definition Theorem (5.5) plays an essential role,
in fact one may consider this result an important step in the direction of the
reciprocity law. From (6.6) we obtain a homomorphism

invg : H*(2|K) — Q/Z.
The restriction of invx to the group H?(L|K) coming from a finite normal
extension L|K yields a homomorphism

vy H(L|K) — migZ/Z,

because the orders of the elements in H?(L|K) divide the degree [L : K] (cf.
I, (3.16)), and consequently are mapped to the only subgroup [L}—K]Z/Z of
Q/Z of order [L : K].

We briefly recall the construction of the map invy,x : H*(L|K) — [L:—lK]Z/Z:
If ¢ € H?(L|K), then we obtain the invariant inv |k by choosing a cyclic
extension L'|K of equal degree [L' : K| = [L : K], so that by (6.3) H*(L'|K) =
H?(L|K) ((6.3)); in particular, ¢ € H?(L'|K). In this cyclic case we have by
(6.1) an idele cohomology class ¢ € H*(Gp/k,I1/) with € = je, and obtain so

1
Invy € =1nvy/ g€ = Invy, c:ZinV/ ey € —Z/7Z.
LIK L'|K L'|K e Ly | Ky Cp [L:K] /

The detour using cyclic extensions, which we have described by introducing
the groups H?(G gk, 1) and H?(£2|K) (and interpreting inflation as inclu-
sion) is necessary, because in general the map

H (G, 1) = H(L|K)

is not surjective. However, for the elements in the image of j we immediately
obtain from Definition (6.6) the simple

(6.7) Proposition. If ¢ = jc, c € H*(L|K), c € H*(Gpk,11), then

Invy g€ =invy gec.

(6.8) Theorem. The invariant maps
invg : H*(2|K) — Q/Z
and . 5 1
invy g H*(L|K) — WZ/Z

are isomorphisms.

Proof. It suffices to verify that invy g is bijective. Let L'|K be a cyclic
extension of degree [L': K] = [L : K], so that H?(L'|K) = H*(L|K). If a €

ﬁZ/Z7 then by (5.6) there is a ¢ € H2(GL,|K,IL/) with invz/ ke = a. Set
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¢ = jce H*L'|K) = H*(L|K). Then invy x¢ = invp/ g€ = invp ge = o,
Le., invy|x is surjective.

That invy x is bijective follows now easily from the fact that the order of
H?(L|K) is a divisor of the degree [L : K] (cf. (4.9)), and therefore a divisor

of the order of ﬁZ/Z.

We now come to the main theorem of class field theory. Let Ky be a fixed
algebraic number field, {2 the field of all algebraic numbers, and G = G|k,
the Galois group of 2|K,. We form the union Cp = |J Ck, where K runs
through all finite extensions of Ky '®). Then Cy, is canonically a G-module: If
¢ € Cp, say ¢ € O, for an appropriate finite normal extension L|Kj, we set

JE:a’LEECLQCQ (0 €G).

The pair (G,Cy,) is obviously a formation in the sense of II, §1, and the
fundamental result of all our constructions is the following

(6.9) Theorem. The formation (G,Cy,) is a class formation with respect to
the invariant map introduced in (6.6).

For the proof we have to verify the axioms in II, §1, (1.3).

Aziom I: H*(L|K) = 1 for every normal extension L|K of each finite extension
field of Ky (cf. (4.7)).

Aziom II: For every normal extension L|K of each finite extension field of K
we have by (6.8) the isomorphism

invy g« H (LK) — pigZ/Z.

a) If N D L O K are two normal extensions and ¢ € H?(L|K), then ¢ €

H?(N|K), and . .
mvy|gC = NV |gC,

since invy|x, and invy g are defined as the restrictions of invg to H?(N|K)

and H?(L|K) C H*(N|K) respectively (cf. p.150).

b) Let N D L O K be two extensions fields of K with N|K normal. If

¢ € H?(N|K), then res;¢ € H?(N|L). For the proof of the formula
invyp(respc) = [L : K] -invy g€

we use the analogous formula for the ideéle invariants (cf. (5.2)). By (6.5)
there is a ¢ € Hz(GmKJQ) with jc = ¢, where we can assume that there
is a normal extension M|K containing N, M O N D L D K, such that

8) More precisely, we should write C; = lim Cx. Nevertheless, we think of Cx as
embedded in this direct limit and interpret C; as the union of the Ck.
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c € HZ(GM|K,IM). From the formulas in (5.2), and using the convention
that the inflation maps are to be interpreted as inclusions, we have by (6.7)

inv | (res ) = invyy g (respjc) = invyy (jrespc) = invyy g (respc)
=I[L: K] -invygce=[L: K]-invygjc = [L: K] -invygC.

Because of this theorem we can now apply the entire abstract theory of class
formations to the case of algebraic number fields. If we again denote by

ur x € H*(L|K)

the fundamental class of the normal extension L|K, which is uniquely de-

termined by the formula invy gup x = ﬁ + Z, then we have the general

(6.10) Theorem. The homomorphism cup product with the fundamental

class 9
urL|g Y Hq(GL|K,Z) — HIT (L|K)

is bijective.

From this, together with II, (1.8) we immediately obtain the

(6.11) Corollary. H*(L|K) =1 and H*(L|K) = x(Gpk)-

For the case ¢ = —2 Theorem (6.10) yields Artin’s Reciprocity Law:

(6.12) Theorem. The map cup product with the fundamental class
Gy = H(Gry, Z) 225 HO(L|K) = O /N1 C

yields a canonical isomorphism, i.e., the reciprocity map between the
abelianization G"L&"K of the Galois group Grx and the norm residue group

Ck /N kCL of the idéle group Cx

9L|K : G?I)K — CK/NL|KCL

The inverse of the reciprocity map 6,k is induced from the homomorphism
( ,LIK):Ckg — Gi‘TK with kernel NpxCr, the norm residue symbol.

(6.13) Theorem. The following sequence is exact

1‘)NL|KCL —)CK %G?\)K — 1.

Because the invariant map is compatible with inflation (inclusion) and restric-
tion, we see that the norm residue symbol behaves with respect to varying
field extensions as follows (cf. II, (1.11)):
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Let N O L O K be two extensions with N|K is normal. Then the following
diagrams are commutative:

a)
N|K o
idl lﬂ'
CK ( 7L|K) G%tl)K

Hence (a, L|K) = n(a,N|K) € GaL”TK, for @ € Ck, if L|K is also normal (in

addition to N|K). Here 7 is the canonical projection of G‘}\}’lK onto Gi‘TK.

b)

,N|K

incll lVer
,N|L

CL ( ‘ ) G?\HL

Hence (a,N|L) = Ver(a, N|K) € G?\}D‘L for @ € Cgk. Recall that the Ver-
lagerung (transfer) Ver is induced by restriction

G?Vb\K ~ H*(GNx, Z) = H *(Gn1, Z) = G?\lﬂp

c)
,N|L
NLKl ln

Hence (Npxa, N|K) = x(a, N|L) € G?VblK for @ € Cr, where x is the canoni-
cal homomorphism from G'j‘\‘?‘ ,, into G%’l K-
d)

N|K o

( ,oN|oK) ab
- 5
Cox G0N|UK

Hence (0@,0N|ocK) = o(a, N|K)o~! for a € Ck, where for o € G the maps

o b o ab . — — 1
Ck — Cyx and G"}VlK — GleoK are induced by a+— ca and 7 +— g7

In case N|K is abelian, the homomorphisms between the Galois groups in
these diagrams are, with the exception of the Verlagerung, the obvious ones.
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If N|K is abelian, i.e., if the Galois groups coincide with their abelianiza-
tions, then we have in a) the quotient map, in ¢) the inclusion, and in d) the
isomorphism induced by conjugation.

A subgroup I of the idele class group Cx of a number field K is called a norm
group if there is a normal extension L|K with I = NpxCr. By I, (1.14) we
have

(6.14) Theorem. The map
L+—1I,=NpgCL CCk

yields an inclusion reversing isomorphism between the abelian extensions L|K
and the lattice of norm groups I, of C'x. Therefore

ILI-LZZIleILg and ILlﬂL2:IL1'IL2.

Every subgroup which contains a norm group is again a norm group. If L and
I correspond to each other, then L is called the class field associated with I.

This theorem says that the structure of the abelian extensions of K can al-
ready be read off of the idele class group of the base field K. Of course we have
to ask if the norm groups can be characterized only by intrinsic information
given by the group Cx and independent of the field extensions, similarly to
the norm groups in local class field theory which are determined as the closed
subgroups of finite index in the multiplicative group of the base field. Such a
characterization is presented in the next section.

The reciprocity map 6,k from (6.12) and its inverse, the norm residue symbol
( ,L|K), are defined canonically; however, their explicit description is still
too complicated and abstract. We are therefore interested in finding ways to
explicitly compute the norm residue symbol.

This is accomplished by the following beautiful theorem which is essentially
due to H. HASSE. It connects in a simple way global and local class field
theory.

(6.15) Theorem. Let L|K be an abelian extension anda € Cg,a=a- K*,
a € Ix. Then we have

(a7L|K) = H(aPaL‘XJ’|KP) € C7YL|K
p

Note here that (ay,, Lyp|Ky) € Gry ik, € Grjk, and that the components ay,
of the idele a representing @ are units for almost all p; in particular, since the
extensions Ly| K, are almost all unramified, the local norm residue symbols
are almost all equal to 1.
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Since (, L|K) is the norm residue symbol of a class formation, we can use
Lemma II, (1.10) to prove the theorem: If we denote by (a) =@ - Ny |xCp, €
H(L|K), then for every character x € x(Gpjx) = H (G x,Q/Z) we have

x(@, LIK) = invy k(@) U 6x).

On the other hand, we have already introduced in (5.3) the notation (a, L|K) =
[1, (ap, Ly | Ky) for the product ], (ap, Lyy| /), and have shown in (5.4) that
x(a, L|K) = invy k((a) U dx),

where (a) = a- Ny g1 € H°(Gpk,I1). The homomorphism

HYGpk,1I1) R HY(Gprk,CL)

maps (a) € H°(Gpk,IL) to (@) € H(Grk,CL), and therefore maps (a) U
ox € H*(Gpk,I1) to (@) Udx € H*(Gpi,Cr) = H*(L|K), hence

j((a) Udx) = (@) Udx .
With (6.7) we obtain

X(@, LK) = invy g ((@) Udx) = invy g ((a) Udx) = x(a, LIK),
and since this holds for all characters x € x(Gr|k), it follows that

(@ LK) = (a, LIK) = [ [(ap, L |Ky).
P

Hence the global norm residue symbol ( , L|K) is determined by the local
norm residue symbols (, Ly|K,). We will use this observation later when
we analyze the reciprocity law for the prime ideal decomposition in abelian
extensions.

We close this section with a remark about the universal norm residue
symbol ( ,K) (cf. II, §1, p.76). For every abelian extension we have the
homomorphism

LIK
O L G

The projective limit

(;ab:: EE}(;LNK

of the Galois groups Gz, i of all (finite) abelian extensions L of K is the Galois
group of the maximal abelian extension field Ag of K. For every a € Ci we
obtain the element _ o b
(@, K) = @a(a,LH{) € G¥
as the compatible system formed by the elements (a, L|K) € G*Z“)K. This yields
a homomorphism (K
Cx —— G¥

whose kernel is the intersection of all norm groups (cf. II, (1.15))
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Dg = () NpkCr,
L

and whose image is a dense subgroup of G&2.
Finally, we remark without giving details, that the product formula (6.15)
yields an analogous product formula for the universal norm residue symbol

(@ K)= H(%7KP)7

p

where ( , K,) denotes the universal norm residue symbol of local class field
theory, which can be embedded into the group G%? (cf. [2], Ch. 7, Cor. 2).

§ 7. The Existence Theorem

By Theorem (6.14) the abelian extensions of a number field K correspond
bijectively to the norm groups of C'k. In this section we will characterize these
norm groups, similarly to those in local class field theory, as the subgroups of
finite index in Ck that are closed with respect to a canonical topology.

The idele group Ik of an algebraic number field K is the union of the groups
Iy = [T,es K¢ x [1pgs Uy, where S ranges over all finite sets of primes
of K. The factors pr and U, are equipped with their respective valuation
topologies. These induce the Tychonoff topology on the direct product

Iy =[] &5 < [ Us.

peS pEZsS

so that I3 becomes a topological group'?). If § C S, then I C I3, and the

Tychonoff topology on I ]S(/ induces the Tychonoff topology on [ ;9( Thus we
have a canonical topology on the idele group Ix = (Jg I <, the so-called ideéle
topology. If we want to define the idele topology directly, we only need to
specify a fundamental system of neighborhoods of the identity of I, and it is
completely obvious that such a fundamental system of neighborhoods is given

by the subsets
T[T we x [ U € I,
pes pgs

where the W, C K, range over a fundamental system of neighborhoods of
the identity of K, and S over all finite sets of primes of K.

In the following we always consider [x equipped with this canonical topology.
Roughly speaking, two ideles are close to each other when they are close

19 For the theory of topological groups we refer to [9], Ch. III.
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componentwise for many primes. The idele topology is Hausdorff, since the
valuation topologies on K, and therefore the Tychonoff topology on I IS( are
Hausdorff.

(7.1) Proposition. The idéle group I is locally compact.

Proof. If W, is a compact neighborhood of the identity of K, for the finite
primes p, say W, = Uy, then the direct Tychonoff product Hp W, is a compact
neighborhood of the identity of I . This shows that Ik is locally compact.

(7.2) Proposition. K* is a discrete and therefore closed subgroup of I.

Proof. It obviously suffices to show that the identity 1 € Ix has an open
neighborhood which aside from 1 contains no other principal idele. Such a
neighborhood is given by the set

U={aeclg|lay—1], <1forpeS,|ayl, =1forpgS},

where S denotes a finite set of primes containing all the infinite primes. If
there were a principal idele = € 4, x # 1, then we would have

H|ﬂf—1‘p:H‘x_1|p'H|x—1|p< H|$—1‘p§ Hmax{|a:|p,1}:1,

p pes PES PES pES
which is a contradiction to the product formula.

Since K* is closed in I, the quotient Cx = I /K* is also a Hausdorff topo-
logical group; of course, since I is locally compact, so is Cx. The canonical
homomorphism I — Cg is continuous and takes open sets to open sets.

For each prime p, we consider the homomorphism

ny I}(g — IK s
that maps € K, to the idele ny(x) € Ix which at the prime p has the
component z € K, and at all other primes has component 1. If we further
map z € K, to the idele class i, (z) = ny(z)- K* € Ck represented by ny(x),
then we obtain a homomorphism

ﬁﬁ Z}(g — Ck

for which we have the following result:

(7.3) Proposition. The homomorphism
np :Z(g — Cgk

is a topological embedding of K, into C.
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In fact, from n,(z) = 1, ie., from n,(x) € K*, it follows immediately that
x =1, so that we are dealing with an injection which is trivially topological.

We associate with each idele a € I its absolute value

jof = T laply € R
p
and obtain a (clearly continuous) homomorphism of Ix to the group R} of
positive real numbers. Of course this homomorphism is surjective; indeed, the
group IR is already exhausted by the absolute value of the ideles of the form
np(ap) =(...,1,1,1,a,,1,1,1,...), a, € K5, where p is an infinite prime.

We denote by I% the (closed) kernel of this homomorphism, i.e., the group of
ideles of absolute value 1. By the product formula (cf. §1, p. 113) it contains
the principal idéle group K *. Thus the absolute value yields a (continuous)
homomorphism from the idele class group Cx onto IRY with (closed) kernel
C% = I%./K*. The group C% plays a very similar role in Ck as the unit
group U, = {z € K| |z|, = 1} in the multiplicative group of a local field
K,. The decomposition K, = U, x Z corresponds to the following

(7.4) Proposition. Cx = CY% x I'x with I'x = IRX.

Proof. We have to find a splitting for the group extension

1—>C?<—>CK£>IRJXF—>1,
i.e., we have to find an injection IRY — Ck which when composed with the
absolute value map | | : Cx — IR yields the identity on IRY. To do this, we
choose an infinite prime p and consider the embedding

ﬁﬁ :f(g — Ch(.

Now K, contains IRJXr as a subgroup. If p is real, then @, : R} — Ck is an
injection of the desired form, since |ny(z)| = |z|, = € RY . If p is complex,
then |ny(z)| = |z|, = 2%, and one has to choose the map z — T, (/).

Let us mention that there is no distinguished subgroup of representatives in
C for the factor group Cx /C% = R}.

We will now show that, similar to the the unit group in the local case, the
group CY- is compact. For this we need the following lemma.
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(7.5) Lemma. For every prime p of the field K let an oy € |K|, (the value
group of | |,) be given such that

1) ap =1 for almost all p,
2) [I, ap > V/|A[, where A is the discriminant of K.

Then there exists an v € K* with |z|, < a, for all p.

Proof. We set a, = |m,"|, for p { oo, where m, € K, is a prime element
for p. Because of 1) e, = 0 for almost all p, and we can consider the ideal
A = Hp)(oo pe, which, because oy, = 9(p® ) ™!, has absolute norm

—1
N(A) = ( I1 a,,) .
pfoo
Let ay,...,a, be an integral basis of 2, v, ...,7v, the embeddings of K into
the field C of complex numbers, and p; the infinite prime of K attached to ~;.
We consider the linear forms

Li(z1,...,2p) :Zlﬂk'%(ak), i=1,...,n.
k=1

If ~; is real, we set L} = L;, B; = ap,; in the other case when ~; and v;,
i < j, are complex conjugates, we set L; = Lj ++/—1- L}, thus L; = L; =

L; —+/—=1-L% and B; = 8; = \/ay, /2. If r is the number of complex primes,

it follows that
1 1

det(L,, ..., L/ ’ - —m@) /A

det(Ls - )] = (0= TRLCARRVAIN

1 -1 1 s
0| IR | O
pfoo ploo i=1

The well-known Minkowski Theorem about Linear Forms (cf. e.g. [22], §17)
now yields an integral vector 3 = (mq,...,my,) € Z", such that |L;(3)| < i,
i=1,...,n, hence |L;(3)| < ap, (resp. < ,/ap,) if p; is real (resp. complex).
Set x = mya; + -+ + mpa, € A Then |z|, < «p for the finite primes by
construction of 2, and for the infinite primes because |y;(z)| = |L;(3)].

)Tdet(Ll,...,Ln) —

(7.6) Theorem. The group CY% is compact.

Proof. To simplify notation we set I = I, I° = I?(, C=Ckg,and C° = C?{.
We consider the set
K=][kKe withKp:={aeKk}|1/V]A]<lal, < ]A[},
all p

which is compact as the direct Tychonoff product of compact spaces. We have
K, = U, for all non-archimedian p with N(p) > /|A|, and since these are
all but finitely many, K is a subset of I. Since I is closed in I, K9 := K N I°
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is thus a compact subset of I9. To prove C° is compact it now suffices to
show that K is mapped by the (continuous) transformation I° — C° onto
the entire group CY = I°/K*, i.e., that for each idele a € I° there exists an
r € K* with za=! € K°. For this we choose a fixed infinite prime q and set

ag = V|Al-|aglq and ap =|ap|, forall p #q.
Because a € 1% [[,op = /|A], and by (7.5) there is an z € K* with

|2}y < ap, s0 that |z -a; [, <1 (< V/[A]), p # g, vesp. |z a5t |q < V/]A[. By
the product formula we obtain further

1 :H\x-aglb = \x-aq_1|q . H |a:-a;1|p,
p p7q
therefore |2 - ag | = ([T,.q |2 - ap o)t > 1> 1/\/]A]; for p # q it follows
that |x-ap_1|p > [lpzglz a;,1|p/ =1/]z- a;1|q > 1//1A].
Altogether we therefore have

VIAl <Jz-a, M, < /A for all p,

ie., z-a~! e K Thus all is proved.®

If S is a finite set of primes of K, then we let U be the ideéle group
Ug ={a€Ikgla,=1forpec S;a, €U, forp ¢ S} C Iy
and —c g
Uy, =Up-K*/K* C Ck.

In each neighborhood of the identity of C there is a group U, 20). this can
be seen from the following observations:

TTwe < [ Us € Ixc

pes pES

e The groups

form a fundamental system of neighborhoods of the identity of Iy, where
W, is a fundamental system of neighborhoods of the identity of K,* and
S runs through all the finite primes (cf. p. 156),

e they always contain one of the groups U }3 ,

e passing from Ik to Ck, a fundamental system of neighborhoods is trans-
formed into a fundamental system of neighborhoods, and Ug- into U%..

*) Remark of the editor: The proof does not use the finiteness of the ideal class group.
But this finiteness follows from (7.6): The composition of the homomorphisms
C% «— Cx —» Ji /Py is surjective and continuous with respect to the discrete
topology on Jk/Pk. Consequently Jx/Pk is discrete as well as compact, and
thus finite.

20) Note that the U3 themselves are not open. But since the groups Uy are closed
in K, the Uj are closed.
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§

The following theorem on Kummer extensions is the key ingredient for the
proof of the fundamental Existence Theorem announced above.

(7.7) Theorem. Let K be a field which contains the n-th roots of unity. If S
is a finite set of primes of K such that

1) S contains all the infinite primes and all the primes lying above the prime
numbers dividing n,

9) I = IS - KX,
then C - U3 is the norm group of the Kummer extension T = K (V' K5)|K.

Addendum. If K does not contain the n-th roots of unity, Cy - U3 is still
a norm group.

Proof. By (1.4) x(Grx) = K5-(K*)"/(K*)" = K%/(K®)". Since K¥ is
finitely generated of rank N —1 = |S| — 1 (cf. (1.1)) and contains the n-th
roots of unity, K /(K*°)" is the direct product of N cyclic groups of order n.
Therefore G| is also the direct product of N cyclic groups of order n.

It follows from this that for each a" € C} we have (a",T|K) = (a,T|K)" =1,
ie., a" € NpgCr, so that C C Np|gCr. Furthermore, every idele a € U}";
is a norm idele of the extension T'|K. To see this we must convince ourselves
by (3.4) that a, is a norm of the local extension K,(VK?)|K, for every p.
For p € S this is trivial because a, = 1. If p € S, then a, € Uy, and a, is
by II, (4.4) a norm if the extension K,(VK?®)|K, is unramified. But this is
immediately clear, since every a € K*° is a unit for p ¢ S, and since n is
relatively prime to the characteristic char K of the residue field if p ¢ S, the
equation X" —a = 0 is separable over the residue field Ky, so that K, ({/a)|K)
is unramified. It follows that U}g{ C N xCr and therefore
Cp - U% € NpxCr.
We show this inclusion is an equality using an index argument. We have
(Cx : NpixCr) = |Grik| = (K® : (K°)") =n™, N =5
by the Reciprocity law. On the other hand,
(*) (Cx : Cp-U3) = (Ig-K* : (IZ)"Ug-K>)
= (If : U™ UR) /(I N EX) : (IR)™Ug N EKX)) Y.
Here the index in the numerator is

(Ig : (IR)"UR) = [T = (1™
peS

2 For this cf. the footnote 2 on p.133.
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since the map I — [],cq K /(Ky)" a = [],eqap-(Ky)" is obviously
surjective, and its kernel consists of those ideles a € I3, for which a, € (K"
for p € S; but these are precisely the ideles in (13)™-Us.
By II, (3.7) we obtain, using that |n|, = 1 for p ¢ S, the identity
(15 (1)mUg) = [T s ()™ = [ 2 Inly = 02V T Inly = n2™.
peSs peSs p
For the index in the denominator of the equation (*) we have I3 N K> = K*
and (Ig)"-Ug N K* = (K%)". The first statement is clear. For the second, it
is clear that we have in any case the inclusion (K°)" C (I)" - U N K*.
To show the opposite inclusion, let = € (IZ)"-Ug N K*, thus = a” - u,
a € I3, u e Ug. We form the field K ({/r) and show K ({/x) = K. If b € I3,
then b is always a norm-ideéle of K ({/z)|K. In fact, if p € S, then b, € K
is a norm because Ky ({/x) = Ky(1/ay) = K. If p ¢ S the same holds, since
b, € Uy and K,(/z) = K,y(g/up)|Kp because p { n is unramified (cf. II,
(4.4)). If we keep in mind that I = I5%-K*, we have thus shown that
N (o) kCr(yz) = Ok,
which implies by the Reciprocity Law that K = K({/x). Hence we have
Vr=ye KX, z=y"c (K*)"NK°= (K",
From the equation (%) we now obtain
(Ck : Cp - U%) =N /(K% : (K%)") = n*N /0N = nN = (Ck : Ny Cr),
and therefore Ny xCr = Cy - U%.
If we drop the assumption on the roots of unity, then C%-U#% nevertheless
turns out to be a norm group, as claimed in the addendum. In fact, if the
field K does not contain the n-th roots of unity, then we adjoin these and let
K'|K be the resulting extension. If S’ is a finite set of primes of K’ which
contain all the primes above the primes in S and in addition is sufficiently
large so that I = I, - K'*, then by what we just proved C%,-U#%:, is the
norm group of a normal extension L'|K’. If L is the smallest normal extension
of K containing L', then we have

NL‘KCL - NK"K(NL’lK’(NL‘L’CL)) g NK’lK(NL"K’CL’) =
N (Cp-US) = (N Cre )" Nigr e U5y © O U

Thus Cp-U%, as a group which contains the norm group Ny xCy, is itself a
norm group (cf. (6.14)).

(7.8) Existence Theorem. The norm groups of Ci are precisely the closed
subgroups of finite index.
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Proof. Let N = NpxkCr € Ck be the norm group of a normal extension
L|K. By the Reciprocity Law the index (Ck : N1) = \G‘Zﬁ’K| is finite. The
norm map Ny g : Cp — Ck is clearly continuous. We have Cx = C?( X Ik,
Cp=CY x I't, with ', I'y, & IR. The injection IR} — Ck from the proof
of (7.4) obviously also yields a group of representatives for Cy,/C?; therefore
we can assume that I'x = I'p, C Cp. It follows that

NpxCr = Ny jxC} x Ny jxI'x = NpC9 x I'it = NpjCl x I'k.

The image of the compact group C? in C is compact, therefore closed, and
since I'x C Ck is also closed, N Cy, is in fact closed.

Conversely, let N/ C Ck be a closed subgroup of finite index (Ck : N) = n.
Then in any case C7- C N.

Moreover, N is (as the complement of its finitely many closed cosets) also
open, and therefore contains one of the groups (7}5; (cf. the remark on p. 160).
But C%-U#; is by the addendum to (7.7) a norm group for sufficiently large S,
and by (6.14) the same holds for the group N as it contains a norm group.

We have proved using (7.7) that for every closed subgroup N C Ck of finite
index there exists a normal extension L|K with norm group NpxCr = N,
which is precisely the fundamental existence statement.

From the identification of the norm groups given by the Existence Theorem
we obtain without difficulty a further characterization of these groups which
is of a predominantly arithmetic nature. It is the idele theoretic version of the
formulation of the Existence Theorem in the classical theory using ideals. 22).

By a modulus m we mean a formal product

m= Hp""
p

of prime powers, such that n, > 0 and n, = 0 for almost all primes p; for the
infinite primes p we allow only the exponents n, = 0 and 1.

For a prime p of K let

the np-th unit group of K, US = U,, when p { oo,

R} C K, when pis real and n, =1,

U =
i R* = K, when p is real and n, = 0,

C* = K,', when p is complex.

22) Cf. [17), Teil 1, §4, Satz 1.
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If a, € K, then let

ap = 1 mod p™ <= aq, EU;L‘“ .
For a finite prime p and n, > 1 (resp. n, = 0) this means ordinary congruence
(resp. ay € Uy), for a real prime p with exponent n, = 1 this is the positivity

condition ap > 0, and for the remaining cases where p is real and n, = 0 or p
is complex, there is no restriction.

If m = ][, p"* is a modulus, then for an idele a € I we set
a=1mod m <= a, =1 mod p"* for all p,

and consider the group
If ={aclg|a=1modm}=[]U,"* C Ix.
p

If in particular m = 1, then obviously
I =1 =[] 57 < [ Uss
ploo ptoo
where S is the set of infinite primes of K.

We call the idele class group
CR=1Ip-K*/K* CCk

the congruence subgroup mod m of Cx. The factor group Cx /CR is also
called the ray class group mod m. If particular, if m = 1, then we have

Cie/Ch = I/ K [Tk - K* /K" = Iie /TS K™

Hence by (2.3) the ray class group mod 1 is isomorphic to the ideal class
group Jg /Pk, and its order is equal to the class number h of K.

(7.9) Theorem. The norm groups of C'i are precisely the groups containing
the congruence subgroups C%.

Proof. The index (Cx : C%) = (Cx : CL) - (Ck : CB) =h - (Ck : OB) =
h-(I} K*:I% - K*)<h-(I:I®) = h-11,(Up U,”) is finite. Since
Ig = Hp U;’" is open in If, the image C} is also open and therefore closed
in Ck. Thus by (7.8) the congruence subgroups, and all groups containing
them, are norm groups.

Assume conversely that A/ is a norm group of Ck, so that by (7.8) NV is a
closed subgroup of finite index. Then A is also open and has an open preimage
Z in Ix. This open preimage Z contains an open subgroup W of the form

W= W, x [] Vs,

pes pES
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where S is a finite set of primes S and each W, is an open neighborhood
of the identity of K, ; in fact, these groups form a fundamental system of
neighborhoods of the identity of Ix (cf. p.156). If p is finite, then we can
assume W, = U,?”’7 since the unit groups U;L" C K, form a basis. If p is
infinite, then the open sets W, generate the entire group K, or the group
IR} in the real case. The group generated by W is thus a group It C Z for an
appropriate modulus m, and N is a group containing Cp = Ij2-K* /K*.

The (abelian) class field L|K associated with the norm group C} is called the
ray class field mod m. By the Reciprocity Law its Galois group Gp |k is
isomorphic to the ray class group Cx/CP. In case K = Q, we have:

(7.10) Theorem. Let m be a positive integer, p, the infinite prime of @,
and m the modulus m = m - pso. The ray class field mod m is precisely the
field Q((,n) of m-th roots of unity.

We point out that this theorem implies that the Existence Theorem for the
field Q is precisely the famous Theorem of Kronecker:

(7.11) Theorem. Every abelian extension of the field Q of rational numbers
is a cyclotomic field, i.e., a subfield of a field of roots of unity Q(().

Proof of (7.10). Let ¢ be a primitive m-th root of unity and m = [],p"».
Then I§ = [1,.,. Up” x RX. The group U,” C @ consists of norms in
the extension Q,(¢)|Q,. In fact, the field Q,(¢) is the compositum of the field
of p™r-th roots of unity Qp(Cpnp) and the unramified extension over Q,, of
the m,-th roots of unity Q,(Cmy) (mj;, = m/p"»). The first field contains the

elements in U," as norms because of 11, (7.15), the second because of II, (4.4).

Since the norm group of the compositum Q,(¢) = Q,((mr)Q,(Cmy) is the

intersection of the two norm groups of Q,((p») and Q,,(Cm;), the group U,”
is contained in the norm group of Q,(¢)|Q,. It follows from (3.4) that Ig
consists of norm ideles of the extension Q(¢)|Q, i.e., C§ € No(¢)@Ca(¢)-

On the other hand,
(Cq:C8) = (Co: CY) - (Ch: CF) = (Ih-Q* : I3 - Q)
= (1§ : I /((IHN Q™) : (I NQX)).
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Since Iy = [1,4, Up x R* and I =], Up” x IRZ, we have I§;NQ* =
{1,-1} and I§§ N Q™ = {1}. We thus obtain for the above index the formula

1 n

(Co:Cg) =75 II @, :Upr) - (R*: RY)
PFPoo
=11W,:up) = TIp™ 7" - 0 = 1) = o(m).
plm plm

But this is the degree ¢(m) = [Q(¢) : Q] of the field extension Q(¢)|Q, and it
follows that (Cq : Cg) = (Cq : Ng(o)oCq(c)), i-e., the congruence subgroup
Cg is in fact the norm group of the cyclotomic field Q(¢).

Because of (7.10) we can think of the ray class fields over a number field K as
the fields corresponding to the fields of roots of unity in case K = Q. In this
context Kronecker’s Theorem (7.11) corresponds to the deep generalization
that every abelian extension of K is a subfield of a ray class field. In this
sense class field theory appears as a generalization of the theory of cyclotomic
fields; in fact, the historical development of class field theory has been guided
to a large extend by the example of cyclotomic fields.

With the introduction of ray class fields we obtain a good overview over the
lattice of all abelian extensions of a base field K. The ray class fields them-
selves correspond to the different moduli m of K, where the larger modulus
corresponds to the smaller congruence subgroup, thus the larger ray class field.
More precisely, if m and m’ are two moduli of K, then m | m’ implies that
the ray class field mod m is contained in the ray class field mod m’. Among
all ray class fields over K, there is one which plays a special role but only
appears when we get away from the base field K = Q. This is the ray class
field mod 1, i.e., the class field L|K associated with the congruence group C
with modulus m = 1. It is called the Hilbert or also the absolute class field
over K. Its Galois group is canonically isomorphic to Cx /C%, and therefore
to the ideal class group Jx /Px (cf. p. 164). Its degree [L : K] is equal to the
ideal class number h of K. We will discuss the Hilbert class field in the next
section.

We use the compactness of the group CY% and the fact that the groups C7-U f(
are norm groups (cf. (7.7) and Addendum) to prove the following theorem
about the universal norm residue symbol ( , K).
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(7.12) Theorem. The universal norm residue symbol
K
O L5, gap
from Cy to the topological Galois group G4 of the maximal abelian exten-
sion Ai|K is continuous, surjective homomorphism, and its kernel Dx =
Nz NixCy is the group of all infinitely divisible elements of Cx %), i.e.,

Dk = () Ck.

n=1

Proof. We first prove the last statement. If @ € (), C%, and if N, =
NL‘KCL is any norm group, then a = [R= N if (Ck : N) = n. Therefore
Moz1 C% € D = NpjxCr.

On the other hand, the groups C - U f( are norm groups for sufficiently large
S, ie., Dg € C} - U¥. For the inclusion D C (-, Cp it thus suffices to
show that (g C - U = C. Let a € (g Ci - U%; then for every S we have
the representation a = Eg -lg, bg € Ok, ug € 17}9(. Because ﬂs U;‘? =1 we
also have (g Uf( = 1, and this means that the sequence ug for increasing S
converges to 1, i.e., the sequence 6-1151 € Cf convergestoa: = limg ﬁ-ﬂgl.

Consider now Cg = C% X 'k (I'x = ]Ri) Since O — C} is continuous,
C?( is compact and Ik is closed, thus we see that the group

Cg = (OR)" x I't = (Cr)" x I'x
is closed, so that a = limga - ﬂ§1 € C%. Hence Dg C ﬂs Ck - Us = C% for
all n, which shows that Dg C (", C%, and proves Dg =\, C.

In particular, since Cx = C% x I'x and I'x = IR consists of infinitely
divisible elements, this group is contained in the kernel Dk of ( , K), i.e.,

(Cb(v]() ::(Cg%vjz) g;(;%?'

Now if the homomorphism Cg ﬂ> G4 is continuous, then the compact-
ness of C% implies that the image (C%, K) = (Ck, K) is closed in G52, and
because of denseness we have (Cr, K) = G2°, which will prove surjectivity.

But to show the map ( , K) is continuous is almost trivial. If H is an open
subgroup of G2, thus a closed subgroup of finite index, and L is the fixed
field of H, then the norm group Nz = NpkCr € Ck is open, and because
(N, L|K) = (N, K) - H=1 it is mapped by ( ,K) into H.

In addition to the above characterization, the group Dy has a purely topo-
logical description as the connected component of the identity of C'k. For the
proof of this non-trivial fact we refer the interested reader to [2], Ch. 9.

23) An element a € Ck is infinitely divisible, if for every natural number n there
existsa b€ Ok witha="0".
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§ 8. The Decomposition Law

Many of the deepest statements of number theory find their common expres-
sion in Artin’s Reciprocity Law. For example, and without giving details,
one can regard Gauss’s Reciprocity Law for quadratic residues as a special
case?¥), and more generally, the theory of higher power residues is dominated
by Artin’s Reciprocity Law. Another important application concerns the ques-
tion of which ideals of a base field K become principal in an extension field L,
which we will return to later. The most important consequence, however, is
the answer to the question of how the prime ideals p of a basis field K split in
an abelian extension. For this, we consider instead of the prime ideal p of K
an associated “prime idele” by choosing a prime element 7 € K, and forming
the idele ny(m) = (...,1,1,7,1,1,...). If we first disregard the finitely many
ramified primes, then the decomposition of the prime ideal p in the abelian
extension L|K can be immediately read off from a relation between the prime
idele ny(7) in the norm group N = NpxCr € Cgk which determines L,
namely, simply from the order of the idéle class 1, () modulo Ny, This is the
content of the following theorem:

(8.1) Theorem. Let L|K be an abelian extension of degree n and p an
unramified prime ideal of K.

If € K, is a prime element, ,(m) € Ck is the idéle class represented by
the idéle ny(m) = (...,1,1,1,7,1,1,1,...), and f is the smallest number such

that _ f
n,(m)’ € NpxCr,

then the prime ideal p factors in the extension L into r = n/f distinct prime
ideals P, ..., B, of degree f.

Hence if one knows the norm group NpxCpr, then one can simple read off
from the idele class group Ck of the base field K how p decomposes in L.

Proof. Since the prime ideal p is unramified, it factors in L into dis-
tinct prime ideals of equal degree: p = Pp---B,.. By the reciprocity law
Ck/NpkCrL = Gk, and 0y () mod N Cr, in Ck /N xCp has the same
order f as (cf. (6.15))

(np(m), LIK) = (7, Lp|Ky) € Gy 1k, € Grix (B |p).
But by II, (4.8) (m, Lyp|K,) = ¢y is the Frobenius automorphism of the un-
ramified extension Ly|K,. It generates the group G Ly|K,» thus the order f

24) The terminology “reciprocity law” also comes from this; this might appear a little
strange, since at first glance Artin’s Reciprocity Law seems to have nothing in
common with Gauss’s law.
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coincides with the degree [Lsy : K], and therefore with the degree of ‘B. There-
fore the number r of distinct prime ideals B, ..., B, over p can be computed
from this by the fundamental equation of number theory: n=1r- f.

Later, when we derive the classical, ideal-theoretic theorems of class field
theory from our idele-theoretic theorems, we will encounter Theorem (8.1)
again in another, purely ideal theoretic formulation.

Theorem (8.1) only applies to unramified prime ideals. To decide whether a
prime ideal p is unramified, the following observations are useful.

If L|K is an abelian extension of algebraic number fields, and if Ly|K, are
the associated local extensions, then L is uniquely determined by the norm
group Ny xCr C Ck and Ly by the norm group Ny, x, Ly C K. There
is a simple relation between these two norm groups. To see this, we use (7.3)
and consider the group K, as embedded in Ck via the homomorphism

ﬁb Zlfg — CH(7

where we identify x, € K,° with the idele class represented by the idele
np(wy) = (..., 1,1,1,25,1,1,1,...). Using the abbreviations N = Ny, x and
Ny = Nr, |k, We then obtain the

(8.2) Proposition. If L|K is an abelian extension, then
NCp, F]I(g = ]Vj}lhé.

Proof. If z, € Ny Ly, then the idele ny(xp) = (...,1,1,1,2,,1,1,1,...) has
only norm components, and is therefore a norm idele of L by (3.4). Thus
]thl@é C NCy, F]I(;.

Conversely, let @ € NC N K. Then @ is represented on one hand by the
norm idele @ = Nb, b € I, and on the other hand by an idele n,(z,) =
(...,1,1,1,2p,1,1,1,...), z, € K, so that

ny(zp) -a=Nb with a € K*.

Passing to the components, we see that a is a norm for all q # p. Therefore it
follows from the product formula (6.15) that a is also a norm at the prime p, so
that =, € ngL%, which proves the other inclusion NCr, N K* C N:,BL%.

The following theorem now shows how the ramification of a prime p of K in
an abelian extension L|K is reflected in the norm group NCp, C Cx. We call
an infinite prime p unramified if it splits completely, i.e., if Ly = K,,.
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(8.3) Theorem. Let L|K be an abelian extension, N' = NC, C Cf its norm
group and p a prime of K. Then we have the following equivalences:

p Is unramified in L — U, CWN,
p splits completely in L <= K, CN.

Proof. The prime p is unramified < Lg| K, is unramified (i.e., Ly = K, for
ploc) < (by 1L, (4.9) and (8.2)) Up € NgLs = NN Ky © Uy C N Similarly,
p splits completely < Ly = Ky < K = NpLy = NNK < K CN.

As in the local case, we have in global class field theory the notion of a
conductor. For a local abelian extension Ly |K, the conductor §, was defined
as the smallest p-power p™ such that Uy C Ny Ly In the global case we
have to replace the p-powers p™ by the moduli m (cf. §7, p.163) and the
groups Uy = {z, € K, | z, = 1 mod p"} by the congruence subgroups
CR ={aeCk|a=1modm}.

If we keep in mind that by (7.9) every norm group N C Ck contains a
congruence subgroup C}, and that m | m’ implies the inclusion Cj¢ C CR
(and not conversely!), then we come to the following definition.

(8.4) Definition. Let L|K be an abelian extension with norm group N =
NCyp. By the conductor § of N, or also of L|K, we mean the g.c.d. of all
moduli m such that C C N.

Thus C& is the largest congruence subgroup contained in A/, and Cp C N
if and only if f | m. Note that N = C}%, i.e. N is the norm group of the ray
class field mod m, does not imply in general that m is the conductor of N
(for example, Cg = Cg™ by (7.10)).

For the conductor f of an abelian extension L|K one has a localization theorem
analogous to that for the discriminant. If we define for an infinite prime the
conductor f, by p or 1, depending on whether Ly # K, or Ly = K, we have

(8.5) Theorem. If § is the conductor of an abelian extension L|K and f, is
the conductor of the local extension Lyz|K,, then

i=11%
p

Proof. We have to show: If V' = NCp, and m = [], p™» is a modulus of K,

CRCN < [[f|m < f |p™ forall p.
p
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§ p

Using the notation from §7, p. 163 and (8.2), this follows from the equivalences

CRCN<=(a=1lmodm=aeN)forac g
<= (ap = 1 mod p™ == ny(ay) € NN K, = NyLg)
= (ap € Upy" = ap € NpLyy)
< Uy® C NpLg
< fp [ pm.

We call an infinite prime p of K ramified in L if Ly # K. With this definition,
we obtain from II, (7.21) the following result.

(8.6) Theorem. A prime p of K is ramified in L if and only if it appears in
the conductor § of L|K.

If we further call L|K unramified if all finite as well as all infinite primes are
unramified, this implies

(8.7) Corollary. An abelian extension L|K is unramified if and only if its
conductor § = 1.

In §7, p. 166 we called the ray class field mod 1, i.e., the class field associated
with the norm group C}, the Hilbert class field over K. We can characterize
this field as follows:

(8.8) Theorem. The Hilbert class field over K is the maximal unramified
extension of K.

Because of the isomorphism Ck /C} = Jx / Pk, the degree of the Hilbert class
field over K is the ideal class number h = (Jx : Pk ) of K (cf. §7, p.166).
Therefore if h = 1, which occurs, for example, if K = Q, then every abelian
extension of K is ramified, and the Hilbert class field coincides with K.

The following famous theorem has been conjectured by Hilbert but remained
unproved for a long time.

(8.9) Principal Ideal Theorem. In the Hilbert class field over K every
ideal a of K becomes a principal ideal.

E. ARTIN used the reciprocity law to reduce the proof of this theorem to a
purely group theoretic problem whose solution was given shortly thereafter
by PH. FURTWANGLER. In the following we explain Artin’s reduction.

http://www.mathi.uni-heidelberg.de/ schmidt/Neukirch-en/



Electronic Edition. Free for private, non-commercial use.

172 Part III. Global Class Field Theory

If we start with K and take its Hilbert’s class field K7, then the Hilbert class
field K5 of K, and we continue in this way, we obtain a chain of class fields

K=KyCKiCKyC...,

the so-called class field tower. For this tower of fields we show first:

(8.10) Proposition. The i-th class field K; is normal over K, and K, is the
largest abelian subfield of Ky; in other words:

The Galois group G, |k, is the commutator subgroup of G,k -

Proof. We assume as induction hypothesis K;, i > 1, is normal. Let o be
an isomorphism of K;1|K. Then cK; = K;, and since K;1|K; abelian and
unramified, the same holds for cK;11|0K;, i.e., 0K;+1|K;. Then by (8.8)
0K;11 C K;yq, thus K;y1|K is normal.

Let K’ be the maximal abelian extension of K contained in K5. Then we have
K; C K, and K’ C K, since K'|K is unramified; thus in fact K/ = Kj.

For the proof of the Principal Ideal Theorem we now have to translate the
statement that every ideal of K becomes a principal ideal in the class field K;
into the language of ideles. This is obviously equivalent to the canonical map

JK/PK — JKI/PK17

that takes the ideal a € Jg to the ideal in the field K; generated by a being
trivial. On the other hand, by §7, p. 164 we have the canonical isomorphisms

CK/O}(EJK/PK and CKl/O}l(ngKl/PKN
and therefore the commutative diagram
CK/C}( _— JK/PK

{ l

CKI/C}(I - JK1/PK1>

where the homomorphism i is induced from the canonical embedding Cx —
Ck, . Thus the Principal Ideal Theorem says precisely that the map i is trivial,
which is equivalent to the statement that we have an inclusion Cx C C’}<1.

Since C’}(l is the norm group of the extension Ky|K7, this means that we
simply have to show, making use of the norm residue symbol, that

1 = (CK,K2|K1) = VeI'(CK,KglK).
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Now if we take into account that
(Ck, K2|K) = G, = Grey i /Gralic, = Gy ¢

and that G, |k, is the commutator subgroup of G, |k, then we see that the
Principal Ideal Theorem reduces to the following theorem:

(8.11) Theorem. If G is a metabelian finite group, I.e., a finite group with
abelian commutator subgroup G', then the transfer of G to G’ 2%

Ver: G* — "™ = @'

is the trivial map.

This theorem is purely group theoretic but by no means of a simple nature. It
was first proved (1930) by PH. FURTWANGLER, a simpler proof was given by
S. IYANAGA (1934). It would exceed the scope of these lectures to give this
proof, instead we refer to [23].

A problem posed by FURTWANGLER, which is closely related to the Principal
Ideal Theorem, is the famous class field tower problem. It is the question
of whether the class field tower

K=KyCK CK,C...

(K;y1 the Hilbert class field over K;) terminates after finitely many steps.
A positive answer to this question would have the following interesting con-
sequence: If K;11 = K; for sufficiently large 4, then K; has class number 1.
One would therefore obtain for every algebraic number field K a canonically
given solvable extension, in which not only the ideals of K but all the ideals
become principal ideals. This problem was open for a long time until in the
year 1964 is was decided in the negative by E.S. GoLOD and I.R. SAFAREVIC
who showed that there are in fact infinite class field towers. It is interesting to
note that similar to the proof of the Principal Ideal Theorem, this was done
using a reduction to a purely group theoretic conjecture which was solved
shortly afterwards. We refer the interested reader to [11], IX, and [14].

8§ 9. The Ideal Theoretic Formulation of Class
Field Theory

The results of global class field theory obtained so far are almost exclusively
formulated in terms of ideles. We have seen that the idele-theoretic language

25) We recall that the transfer or Verlagerung of a group G to a subgroup g is defined
as the restriction G** =~ H™%(G,Z) =5 H™%(g9,Z) = ¢°*.
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has remarkable technical advantages which justify its central role in our dis-
cussions. Now that we have reached some form of conclusion, we should also
derive from the results obtained so far the classical purely ideal-theoretic the-
orems of class field theory as stated, for example, in Hasse’s Zahlbericht [17].

In the idele-theoretic formulation of the reciprocity law, the abelian extensions
L|K correspond uniquely to the norm groups N Ll xCr C Ck. In the ideal-
theoretic form there is a similar correspondence, however, not quite as simple.
Here the abelian extensions also correspond to certain norm groups in the
ideal group Jg of K. The norm residue symbol ( ,L|K) : Cx — Gpx
is replaced by a symbol which maps the ideals a € Jg to elements of the
Galois group Gp k. It is a characteristic of the ideal-theoretic version that
such a symbol cannot be defined for all ideals, in contrast to the norm residue
symbol, which is defined for all ideles without any restriction. More precisely,
the ideals that have to be omitted are the ones which are divisible by ramified
primes. This is done by choosing a (sufficiently large) so-called “modulus of
definition m”, in which all the ramified prime ideals appear, and to which
the ideals being considered are to be relatively prime. Field theoretically this
choice corresponds to the embedding of the abelian extension L|K into the
ray class field mod m, in which by §8 only prime divisors of m are ramified.
This process, namely the choice of a sufficiently large modulus of definition m
for every given abelian extension L|K, the transition to the ideals relatively
prime to m, and the embedding of L|K into the ray class field mod m, are
the crucial inputs to the ideal-theoretic formulation of the reciprocity law. We
describe this more precisely below.

We take an algebraic number field K as our base field. By Jx (resp. Pk ), we
denote again the ideal (resp. principal ideal) group of K; however, since the
base field K is always fixed, we omit the index K, just as for the idele group
Ik and the idele class group Ck, and we write J, P, I, C etc.

If m=][,p" is a modulus of K, then we let

J™  be the group of all ideals relatively prime to m,
P™ the group of all principal ideals (a) € P with a = 1 mod m 26).

P™ is called the ray mod m, and every group between P™ and J™ is in the
classical terminology called an ideal group defined mod m. For the ideal
groups defined mod m we use the notation H™.

The factor group J™/P™ is called the ray class group mod m. Obviously,
ifm=1, then J™ = J and P™ = P, i.e., we obtain the full ideal class group
J/P as the ray class group mod 1.

In place of the idele class group C' we now have a whole family of ray class
groups J™/P™. Whereas the idele class group C was the source group for all

26) This congruence is again to be understood in the sense of §7, p. 164.
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abelian extensions of the base field K, the ray class groups J™/P™ are only
responsible for the extensions contained in the ray class field mod m.

If L|K is any extension, then we call a modulus m a modulus of definition
for L|K if L lies in the ray class field mod m (i.e., C™ C Ny xCp). If m | m/
and if m is a modulus of definition for L|K, then so is m’; by definition, the
conductor of L|K is the g.c.d. of all the moduli of definition (cf. (8.4)).

After choosing a modulus of definition m, we now associate with every abelian
extension L|K the following ideal group defined mod m:

(9.1) Definition. If L|K is an abelian extension and m is a modulus of
definition for L|K, then

H™ = Np\gJp' - P™
is called the ideal group defined mod wm associated with L|K. Here J}
denotes the group of all ideals of L relatively prime to m.

The map from the norm group H™/P™ into the ray class group J™/P™ is
the ideal-theoretic analogue of the map from the norm group N xCp into
the ideéle class group Ck.

In place of the norm residue symbol we now define a homomorphism

()

Jm ———————%'(;L|Kg

by mapping each ideal a of K relatively prime to m to an automorphism (L‘TK)
in Gk, which is called the Artin symbol. By multiplicativity, it suffices to
consider the prime ideals p of K which do not divide m. For these we set

LIK
<L> =¢p € Gk,

where ¢, is the Frobenius automorphism of L|K associated with p. We
briefly recall its definition: If 93 is a prime of L lying over p, then ¢, is an
element of the decomposition group Gy = Gy x, € Grx of P over K and
is as such (because there is no ramification) uniquely determined by

vpa = a? mod*P for all integers a € L.

Here g is the number of elements of the residue field of p; ¢, does not depend
on the choice of the prime ideals 3 but only on p, since G is abelian and
an ideal conjugate to ‘B yields a Frobenius automorphism conjugate to .

The Artin Reciprocity Law in its classical ideal-theoretic form now reads
as follows:
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(9.2) Theorem. If L|K is an abelian extension and m is a modulus of defi-
nition for L|K, then the Artin symbol yields the exact sequence

()

1— H"/P" — J"/P" —— Gpjx — 1,

where J™ is the group of all ideals of K relatively prime to m and H™ is the
ideal group defined mod m associated with L (cf. (9.1)).

Remark. Note that this implies in particular that the Artin symbol does
not depend on the ideals themselves but only on the ideal classes mod P™;
therefore it induces a homomorphism on the class group J™/P™ — G k.

We will prove the exactness of the sequence
(%)
1 — H"/P" — J"/P" ——= G g — 1
by comparing it with the analogous idele-theoretic sequence

1_>NL\KCL — Ck ﬂGHK —1

which is exact. More precisely, we will compare it with the exact sequence

m (LK

1 — NpxCp/C™ — C/C LGk — 1,

where we pass from ideles to ideals as in (2.3), using the homomorphism

k:I—J ar— Hp“”(“”).
pfoo

For this homomorphism x we now have the

(9.3) Proposition. The map « induces a canonical isomorphism of ray class

roups
sroup B : CJC™ —s J™/P™,

whose restriction to N g Cr/C™ yields an isomorphism

Rm : NL|KCL/Cm — Hm/Pm.

Proof. To prove Ry is an isomorphism, we start with the isomorphism
c/C™ = T/I™K*.

Thus we need to find for every idele class a - I™-K* a representative idele a,
which is mapped under & to the group J™ of ideals relatively prime to m. We
find these representatives in the group

I'™ ={aeT|a,=1forallp|m}.
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In fact, if a € I, then by the Approximation Theorem there is an element
a € K* such that ay -a = 1mod p"» for all p | m =[], p"». Therefore we
can write a-a = a’ - b, where a’, resp. b, is defined by the components

A
L=
b, =a,-a=1mod p™ forp|m, b, =1forpfm.

a, = Lforp|m, a, =a,-aforpfm, resp.

Since o’ € I™ and b € I™, we have a € I{™.J™. K> The isomorphism g
results now from the fact that the homomorphism

™ — Jm/P™  a+—— k(a)- P™
is surjective and has kernel I™ - K> N I(™) which is easy to verify. Hence
C/C™ = [t g e g e 1) o pim)

For the second claim we have to show further that
Fn (N C/C™) = Ny J5 - P™/P™.
If we set I£m> ={a eIy |ap =1for P | m} C I, then we have from the
above I, = I£m> I - L*, and therefore
NpgCp/C™ = NI K* JI™ K = N I™ - 1™ K% /™ K%
From the definition of &y, it follows that
B (N Cr/C™) = k(N II™)-P™ [ P™ = Np g (k(I™))-P™ ) P™,

and because n([ém) = J*, we obtain the desired result.

The isomorphism Ry, : C/C™ — J™/P™ yields a surjective homomorphism
Em: C — J™/P™

with kernel C™. Since J™ is generated by the prime ideals p 1 m, we can
describe the map ky, as follows.

Let p t m be a prime ideal of K, 7 € K, a prime element in K, and n,(7) =
(...,1,1,7,1,1,...) the “prime idele” associated with p in the idele class
(7)) = nyp(m) - K* € C. Then the map ky, takes the idele class 0, (7) to the
class p - P™, since k(ny(m)) = p.

Theorem (9.2) is now an immediate consequence of the following theorem
which establishes a relation between the idele-theoretic and the ideal-theoretic
reciprocity law.
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(9.4) Theorem. Let L|K be an abelian extension, and let m be a modulus
of definition for L|K. Then the diagram
LK)

1 — NL|KCL CK (

”ml “ml id
(B l

1 —— H™/P™ —— J"/P™ — . G x —— 1

Gpg —— 1

commutes, and the surjective homomorphisms k., both have kernel C}.

Addendum: If p { m is a prime ideal of K, m € K,, is a prime element, and
ny(m) =(...,1,1,7,1,1,...) is the prime idéle associated with p in the idéle
class m,(m) € Ck, then the Artin and the norm residue symbols satisfy

<LLK> = (My(m), LIK).

Proof. The equality follows easily from the product formula for the norm
residue symbol (6.15) and II, (4.8):
LIK

(p) = Pp = (7T,Ls43|Kp) = (ﬁp(’fr)vL|K)‘

Because km (0, (7)) = p, it follows that the diagram commutes.

In this section we always considered only unramified prime ideals and excluded
the ramified primes by choosing a modulus of definition m, thus embedding
the field in question into a suitable ray class field. It is easy to see that this
restriction is necessary. The Artin symbol (Ll—K), which for an unramified
prime ideal p is defined by the above Addendum as the norm residue symbol
(ny(m), L|K) = (m, Ly| Kp), does not permit such a definition in the ramified
case, because the norm residue symbol still depends on the choice of the prime
element w. The inclusion of the ramified primes into class field theoretical
required the step from ideals to ideles, which allows to reduce the global to the
local theory, where one can deal with ramified extensions using cohomological
methods.

To end, we want to formulate the decomposition law for the unramified prime
ideals in an abelian extension L|K in terms of the corresponding ideal group
defined mod m H™, which determines the field L as a class field. This gives
the ideal-theoretic formulation of Theorem (8.1).
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(9.5) Theorem. Let L|K be an abelian extension and p an unramified prime
ideal of K. Let further m be a modulus of definition for L|K not divisible by
p (say the conductor) and let H™ be the corresponding ideal group. If f is
the order of p mod H™ in the class group J™/H™, and therefore the smallest
number such that f m

pl e HY,
then p factors in the extension field L into exactly r = [L : K]/f distinct
prime ideals P, ..., B, of equal degree f over p.

Proof. Let p = By ---PB,. is the prime decomposition of p in L. Because p
is unramified, the By, ..., P, are distinct and of equal degree f over p. This
degree coincides with the order of the decomposition group of 3; over K, and
therefore with the order of the Frobenius automorphism ¢, € Gk, which
generates the decomposition group. Under the isomorphism

JU/H™ =Gk
induced by the Artin symbol the element ¢, = (L‘TK) corresponds to the
class p- H™ € J™/H™, hence this class has order f. q.e.d.
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