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Part 1. Categories and Functors I

The good news is that categories are all around us. Without ever mentioning it, we have system-
atically used categories in previous courses. When restricting our attention to k-vector spaces
and k-linear maps, we have been working in the category kVSp of k-vector spaces. When con-
sidering groups and group homomorphisms, we were working in the category Gps of Groups.
Even more basic is the category Sets of sets with functions between sets. Topological spaces form
a category Top with maps being continuous maps; when we consider pairs (X, x) where X is a
topological space and x € X is a point we would like to consider only maps f: (X, x) — (Y,y),
meaning continuous maps f: X — Y such that f(x) = y. This defines the category *Top of
pointed topological spaces.

The use of functors, on the other hand, was rather restricted. Functors are a tool to pass
from one category to another and usually require more sophisticated mathematics, to go beyond
trivial constructions. Perhaps the prettiest example is associated to a topological pointed space
(X, x) its fundamental group 71(X, x). This provides a functor ¥Top — Gps. Another example
that is important is the duality functor kVSp — kVSp sending a vector space V to its dual
V* = Homy(V, k) and a linear map T: V — W to its dual T*: W* — V*, (T*f)(v) := f(Tv)..

1. FIRST DEFINITIONS

1.1. Categories. A category C consists of several pieces of data:

e A collection of objects Ob C.

e For any two objects A, B a set of morphisms Mor(A, B) (or Morc(A4, B), if we need to be
more precise).

e For any three objects A, B, C, a function Mor(A, B) x Mor(B,C) — Mor(A,C) that we

denote (f,g) — go f.
e For every object A, a morphism 14 € Mor(A, A) =: End(A).

These are required to satisfy:

ho(gof)=(hog)of,  fola=f  lgof=/f,
for f € Mor(A, B),g € Mor(B,C),h € Mor(C, D).

It is easy to check that 1, is unique. A morphism f € Mor(A, B) is called an isomorphism if
there is a morphism ¢ € Mor(B, A) such that go f =14 and fog = 15. If ¢ € Mor(B, A) is
another morphism satisfying f o ¢’ = 15 then g = ¢’

Examples of categories are a plenty. We have already seen: Sets, Gps, kVSp, Top, « Top. Here
are some additional examples.

(1) The category of rings Rings consists of rings (always associative with 1, but non-necessarily
commutative) and ring homomorphisms (always taking 1 to 1).

(2) The categories kgMod and Modg. Let R be a ring and denote gMod (respectively, Modg)
the category of left R-modules (resp., right R-modules). Morphisms are homomorphism
of modules. That is, morphisms are functions,

f: M1 — Mz,
that satisfy
far+y) = F) +£), frx) =rf(x), VxyeMyreR.
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(For right R-modules we require f(xr) = f(x)r,Vx € My, r € R.) To simplify notation
we define
Hompg (A, B) := Mor,mod(A, B).

Let AbGps be the category whose objects are abelian groups and whose morphisms
are group homomorphisms. Then AbGps = zMod = Modz. Similarly, for k a field,
kVSp = «Mod. To give an object in the category i yMod is to give a k-vector space M
and a k-linear map T: M — M recording the action of x. That is, xm = T(m) defines T
and, more generally, for any polynomial f(x) € k[x], f(x)m = f(T)(m).

(3) The category kMods. Let R and S be rings. An bimodule M is an abelian group M that
is at the same time a left R-module and a right S-module and such that for all m € M,
r € R,s € S, we have

(rm)s = r(ms).
Morphisms are homomorphisms of groups f: M; — Mo that satisfy

f(r-x-s)=r-f(x)-s.

For example, let k be a field and let a, b, be positive integers, R = M,(k), S = M, (k), the

rings of a x a and b x b matrices with entries in k. Then the a X b matrices M, (k) with
matrix addition are an object of kMods under matrix multiplication. Another simple
observation is that always R € RModgr and kMod = gModz, Modg = zModg. The
category iy Modyy is interesting. To give a bimodule in this category is equivalent to
giving a k-vector space V with two commuting linear maps S, T: V — V (indeed, one
lets T(v) = xv and S(v) = vx.
Notation. To simplify notation, instead of saying that A is a left R-module, we shall
sometimes say that g A is a module; similarly, we say that Ag is a module and mean that
A is a right R-module. Also, we will say that g As is a bimodule to mean that it is an
object of kRMods. Thus, we will often use the symbols

RA, Agr, RAs.

(4) It is important to note that although in many examples of a categories morphisms are
functions, this need not be the case in general. For example: let G be a group and define
a category g with a single object * and with Mor(%, *) = G, where the composition law
is just multiplication in the group:

Mor (x*, %) X Mor(*, x) — Mor(x, %), (f,g) — fg.

1.2. Functors. Functors are an intelligent way to pass from one category to another. Given
objects in a category C a functor F associates to them objects in a category D. For this to be
interesting we should allow relations between two objects in C to become relations between the
objects associated to them in D. To be a precise:

Let C, D be categories. A covariant (respectively, contravariant) functor

F:C—=D,

associates to every object A of C and object F(A) (or simply FA) of D and to any morphism
f € Morc(A, B) amorphism F(f) (or simply Ff) in Morp (FA, FB) (resp., in Mor(FB, FA)), such
that:

Flp = 1pa, F(gof) = FgoFf, (resp., F(go f) = Ff o Fg).

We say that
e F is faithful if for any objects A, B of C and morphisms f,g € Mor(A,B), Ff = Fg
implies f = g;

e Fis full if any & € Morp(FA, FB) is equal to Ff for some f € Morc(A, B) (and with
obvious modifications for contravariant functors).
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Also, if F is full and faithful we say it is fully faithful.

Here are some examples:

)

()

©)

(4)
(5)

Forgetful functors. Those can be defined for any category whose objects are sets (possi-
bly with additional structure) and whose morphisms are (possibly restricted) functions
of sets. To illustrate, define

®: Gps — Sets,
by
d(A) =4, @(f) =/
Namely, @ “forgets” that A is a group and f is a homomorphism of groups and only
“remembers” that A is a set and f is a function between sets. This is a covariant functor,

which is faithful but not full.
Abelianization. Consider the functor Gps — AbGps, given on objects by

G— G".=G/G,

where G’ is the commutator group. Given a group homomorphism f: G — H we get a
well defined homomorphism,

G — H, ¢G' — f(g)H,

that we denote f*. This is a covariant functor that is neither full nor faithful.
Sheaves. Let X be a topological space and consider the collection of open sets of X as the
objects of a category 7Tx, whose morphisms are

wy, UCV,
Mor(U, V) = {@ Ugv

A pre-sheaf of abelian groups is a contravariant functor:
O: Tx — AbGps,

such that O(@) = 0 (the abelian group with one element 0). Explicitly, for every open
set U we are given an abelian group O(U), and for every inclusion U C V, a group
homomorphism, that we denote resy ;; and call restriction, from O(V) — O(U). The
restriction homomorphisms respect compositions and resy,v = 1¢(y). We can obviously
replace in this definition AbGps by Sets, Gps, Rings, but the most common choices, be-
sides abelian groups, are either k-vector spaces (for some fixed field k, such as R or C)
and commutative rings. Sheaves are central to modern geometry and topology.

As a specific example, let X = R" and let O(U) denote the ring C(U) of continu-
ous functions f: U — R. We can also take O(U) = C®(U), the infinitely differentiable
functions f: U — R. Many variants exist.

A sheaf is a pre-sheaf that has the properties that its values are determined by local
data and that local data glues. To be precise, we require: (i) if U = Ul, is a a union
of open sets and f € O(U) is such that resyy, f = 0 for all « then f = 0; (ii) Given
fu € O(Uy) such that for all a, f we have resu, u,.,fu = resugu,..fp then there exists
f € O(U) such that resyy 1, = f, for all a.

Let G, H be groups. A covariant functor F : xg — *g amounts to a group homomorhism
G — H.

Let G be a group and let k be a field. Define the group ring k[G] to be the ring whose
elements are formal sums

Y aeg, ag €k, almostall a, =0,
g€G
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with addition
Y a8+ ) beg =) (ag+by)g
geG g€G g€G

and multiplication

(X 258) () beg) = Y () anby1)s-

geG geG 8€G heG

Occasionally, when it helps clarifying the argument, we also denote an element of k[G]

as
2 ag[g].

g€G

It is not hard (except on my fingers typing this text) to verify that this is a ring which
is non-commutative if G is not commutative. Moreover, there is a obvious covariant
functor Gps — Rings taking G to k[G] and f : G — H to f : k[G] — k[H] given by

f(zagg) = Z”gf(g)-
3 8

(6) Hom. Let R be a ring and fix an object A € gMod (the variant A € Mod is left to the
reader). We get then two functors:

Hompg(A, —) : kMod — AbGps, (covariant),

and
Hompg(—, A) : kMod — AbGps, (contravariant).

In each case the group law is that f + g is the homomorphism of modules given by
(f +g)(x) = f(x) 4+ g(x). An important observation is that if A is an object of kMods
then in fact

Hompg (A, —) : RMod — sMod, (covariant),
and
Hompg(—, A) : kMod — Mods, (contravariant).

In the first case we define (sf)(a) = f(as) (a key point is that (s(tf))(a) = (tf)(as) =
f((as)t) = f(a(st)) = ((st)f)(a) and therefore s(tf) = (st)f, which is needed to make
Homg (A, B) into a left S-module). In the second case define (fs)(b) = f(b) - s (and one
finds f(st) = (fs)t). Typically, these functors are neither full nor faithful.

Remark 1.2.1. When R is a commutative ring and R-module rA is automatically an R-
bimodule where we define right multiplicationby a -7 :=ra, a € A,r € R. Note that the
bimodule condition - (a-s) = (r-a) - s holds because R is commutative. Thus, when R
is commutative, the functors Homg (A, —), Homg(—, A) always take value in kMod and
justin AbGps.

2. MORPHISMS OF FUNCTORS

2.1. Natural equivalence. If this is not abstract enough, here comes another layer of abstraction.
Let F, G, be functors C — D of the same variance. A morphism of functors (also called a natural
transformation)

p: F =G,
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is a collection of morphisms ¢4: FA — GA for every object A of C ! that are compatible in the
following sense: for any f: A — B the following diagram commutes:

FA - GA

r| |os

FB "% GB.

(The diagram for contravariant functors is similar — the vertical arrows would go up, though.)
If for every A the morphism ¢4 is an isomorphism then we say that F and G are isomorphic (or
naturally equivalent).

Example 2.1.1. Let R be a ring and let g M be a module. We have an isomorphism
¢m: Homg(R, M) = M. om(a) = a(l).
The collection of maps { ¢y} provides an isomorphism of functors between the functor
Homg (R, —): kMod — gMod
and the identity functor
1: kMod — gMod, 1M)=M, 1(f) = f.

2.2. Adjoint functors. Let F: C — D and G: D — C be functors of the same variance. We say
that (F, G)is an adjoint pair of functors?, or that F is left-adjoint to G, or that G is right-adjoint
to F (and this is also denoted F - G) if for any objects A of C and B of D we have isomorphisms

Morp (FA, B) ~<% Morc(A, GB),

such that for every f € Mor(A, A’),g € Mor(B, B') the following diagrams commute. (We are
writing them for the covariant case; the contravariant case is very similar.)

PAB PA,B

Morp(FA, B) —— Morc(A, GB) Morp(FA, B) —— Morc(A, GB)
(—)OFfT T(_)Of gO(—)J/ iGgO(—)

PAlB Pap

Morp(FA’, B) —> Morc(A’, GB), Morp(FA, B') —= Morc(A, GB’).

Taking the case B = FA;, we find isomorphisms
Morp (FA, FA;) —— Morc(A, GFA;) ,

and, in particular, for A} = A we get a morphism
(p(lpA>Z A — GFA,

called the unit of the adjoint pair. So, in some weak sense, we think of G as a left-inverse to F.

A simple example is the following. Let Inc: AbGps — Gps be the inclusion functor, Inc(G) =
G, Inc(f) = f. Let ab: Gps — AbGps be the abelianization functor discussed before. Then the
pair (ab, Inc) is an adjoint pair. That is, we have natural isomorphisms,

Hom(G", A) = Hom(G, A),

IHere, and often later, we abuse notation and write ¢@a: FA — GA instead of 4 € Mor(FA, GA). It is an abuse of
notation, because ¢4 need not be a function as the arrow suggests — we don’t assume that Mor(FA, GA) consists of
functions.

2Rotman in “Advanced Modern Algebra” unfortunately denotes this by (G, F).
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for any group G and any abelian group A. The unit is the canonical map G — G“°.

It is usually a very fruitful question to ask whether a functor F has an adjoint; we shall see later
this always implies good properties for F. In general, a functor need not have an adjoint (left, or
right) and it is possible that it has both left and right adjoints, but they are different.

2.3. The adjoint to the forgetful functor. Consider the forgetful functor
®: Gps — Sets.

We wish to construct a functor
F: Sets — Gps

such that (F, ®) are an adjoint pair. That means that we want natural isomorphisms
Homgps(F(S), G) = Morses (S, P(G)),

where, recall, ®(G) is the just the underlying set of G. The group F(S) is called the free
group on the alphabet S and F the free construction functor. Before constructing F(S), we
remark that for many categories besides Gps such constructions are possible. For example
AbGps, kVSp, RkMod, Top, and so on.

We first consider words in the alphabet S. These are strings (the empty string is allowed, even
welcomed!) of the form

w‘il---w?, w; € 5,6, = =£1.
We put an equivalence relation on words by decreeing
€1 € €1 €ig€q4—€, €itl €
wl...wsswwl...witt wi+1...w55’

forany t € S,e = +1,0 < i < t. For example, if S = {x,y} the following are equivalent words:

xxy, yy~xxy”yy, exyxa ! xyy Tt lyy Ty,
etc. We will often be sensible and write xxy as x%y, etc., as shorthand. We denote the equivalence
class of w(' - - - ws* by [wy' - - - w§*] and the set of equivalence classes by F(S). The set F(S) has a
natural structure of a group under the composition rule
[wil e wg‘;] [Ztlsl . Zfl] — [w? e wgsztlsl . Zfl]
(well-defined!), identity being the empty word, and inverse given by
€

55]71

-t .

= [wy & - wy
Proposition 2.3.1. Let S be a set and G be a group. Let
f:S—=G
be a function. There is a unique homomorphism that we likewise denote f,
f:F(S) — G,
such that f([s]) = f(s),Vs € S.
Proof. The important point is to check that letting

f(lwf' - ws]) = flwi)? - fwa)? - f(ws),

is a well defined function F(S) — G. This amounts to checking that if we calculate f using
wit - w et Cws ] - - w§ we will get the same value. This is clear. The fact that f is a homo-
morphism follows immediately from the definition. 0

Corollary 2.3.2. If S has at least two elements F(S) is a non-commutative infinite group.
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Proof. For every n > 2, S, is generated by (12) and (123 - -n). Choose two distinct elements
s1,52 in S and define a homomorphism f: F(S) — S, by f(s1) = (12), f(s2) = (123---n) and
for any other s € S, f(s) = 1. As these are surjective homomorphisms for every n > 2 and
|S,| = n!it follows that F(S) is non-commutative and infinite. O

In fact, already F(S) for S = {x,y} is “enormous”. One can prove that for any finitely gener-
ated group G, and, in particular, for any finite group G, there is a subgroup H < F(S) of finite
index and a surjective homomorphism f: H — G.

Getting back to our business: showing now that (F, ®) is an adjoint pair, namely that we have
compatible isomorphisms

¢s,c: Homgps(F(S), G) — Morses(S, G),
is now an easy matter. To a homomorphism f: F(S) — G assign the function, still denoted f,
S— G, s— f([s]).
To a function f: S — G assign the group homomorphism, still denoted f,
f:F(S) =G
as in the proposition. Namely, f([w{' - - - w§]) = f(w1)e! - f(wp) - - - f(ws).

A question that we would like to ask is the following: Let R, S be rings and let A be a bimodule
in gModg. We have a covariant functor

Homg(A, —): sMod — gMod.

Does this functor have an adjoint?? We are going to build for it a left-adjoint by means of tensor
products.
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Part 2. Modules I

Let R be a ring and let Ag and gB be modules. An R-biadditive map A x B — H, where H is
an abelian group, written additively, is a function

f:AXxB—H

that satisfies:

(1) f(a1 +az,b) = f(a1,b) + f (a2, b);
(2) f(a, by +by) = f(a,b1) + f(a,by);
(3) f(ar,b) = f(a,rb) (r € R).
We will construct an abelian group A ®r B, called the tensor product of A and B over R, together
with an R-biadditive map
p: AxB— A®rB

that will have the following property.
For every abelian group H, and an R-biadditive map f: A x B — H, there is a unique group
homomorphism g: A ®r B — H such that the following diagram commutes:

AXB——=AQ®grB
N
H.
Moreover, we shall show that if ¢Ag then A ®z B is a module in gMod and, moreover,
A®g (—): RMod — sMod,
is a covariant functor. On the other hand,
Homg(A, —): sMod — gMod,
is another covariant functor, and we shall show that
(A ®g (—),Homs(A, —)),
is an adjoint pair. Namely, for g B, sC we have
Homg (A ®g B,C) = Hompg(B,Homg(A,C)).

A related result, less useful to us later, is that for Ag, rBs, Cs, we have Homg(A ®g B,C) =
Hompg (A, Homg(B, C)). Namely, that

((=) ®r B,Homs(B, —))

is an adjoint pair.

2.4. Construction of A @ B. We begin by constructing the free abelian group
G = S(4,p)eaxsZ(a,b),

and we construct A ®r B as a quotient group. An element of G can be written as a finite sum
Y.ini(a;, b)) with n; € Z, (a;,b;) € A x B. Let N be the subgroup generated by all elements of G
of the form

(a+a',b)—(a,b)—(d,b), (a,b+V")—(a,b)—(al), (ar,b) — (a,rb),

forany a,a’ € A,b,b' € B,r € R. (Note that, in particular, it contains elements such as 2(a,b) —
(2a,b) and, more generally arguing by induction, also n(a,b) — (na,b) for every n € Z.) We
define then the tensor product of A and B over R as

A®rB=G/N.



COURSE NOTES - MATH 570 9

The image of (a,b) in A ®g B is denoted 2 ® b. A general element of A ®g B is thus of the form

n
Z a; ® b,‘
i=1

(one uses the comment concerning n(a,b) — (na,b) to avoid writing coefficients in front of the
a; ® b;). However, it is important to remember that in general this representation is not unique;
forexample, (a+4a') @b = a® b+ a’ ® b. Therefore, care has to be taken when defining functions
A ®gr B — C into an abelian group C by specifying their values on elements of the form a ® b
and claiming that they “extend by linearity”. Such “functions” may not be well-defined. Before
getting to that, though, we note that in A ®r B the following relations hold:

(1) (a+d)@b=a®@b+ad ®b,fora,a’ € A,bc B;

R ax(b+bt)=axb+axl, forac ADbl € B;

B) ar®@b=a®rb,forac A,be B,r € R.
These identities are the content of the first claim in the following proposition.

Proposition 2.4.1. The map
AXB— A®rB, (a,b)—a®b,

is R-biadditive. A @r B has the universal property that for every abelian group H and an R-biadditive
map f: A x B — H there is a unique group homomorphism g: A @r B — H such that the following
diagram commutes:

AxB (biadd.)

A®rB

8 | (homomor.)

H.

Proof. We are given H and f and we wish to construct g: A ®gr B — H such that the diagram
will commute. Certainly, for commutation to hold we must have g(a ® b) = f(a,b). We would
like to define then g(Y/" ; 4; ® b;) = Y.I'; f(a;, b;) and that is the only possibility for g. However,
remembering that a representation of an element of A ®g B is not unique, this is problematic.
What we do, and (generally speaking) this is what one always does, is to construct a homomor-
phism ¢: G = @, p)caxpZ(a,b) — C and use the first isomorphism theorem to define g.

As G is a free group, we can define §(a, b) = f (a,b) and extend it by linearity. That is

Zn aw anf al/

(Note that we should have written f((a;, i))/ but it is better to drop a pair of paranthesis.) It
is easy to check that § is a homomorphism — this doesn’t even require that f is a R-biadditive.
To show that N C Ker(§) we only need to check on generators of N and here we use that f is
biadditive.

(1) &((a+a',b) —(a,b) — (a’,b)) = f(a+a’,b) - f(a,b) — f(a', D)
(2) &((a,b+1b") = (a,b) = (a,b')) = f(a,b+V') — f(a,b) — f(a,b)
(3) &((ar,b) = (a,rb)) = f(ar,b) — f(a,rb) =
Therefore, by the first isomorphism theorem for groups, there is a well defined group homo-
morphism

0.
0.

n

g: A®rB — H, Zal®b =Y f(ai, b))
= i=1

It is clear that the diagram commutes. O
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2.5. Functorial properties. The construction of A ®r B is functorial in the following sense.

Proposition 2.5.1. Given Ag, A%, rB, R B’ and homomorphisms of modules,
f:A= A, ¢:B—B,

there is a unique group homomorphism

f®g: A®rB— A'®r B,
such that

(fog)(Y aiob) =Y fla)®gb).
Proof. Consider the map
fxg:AxB— A'@rB, (a,b) — f(a) @ g(b).

It is an R-biadditive map. It therefore induces a group homomorphism

f®g: AQrB — A’ ®@r B’

that satisfies (f ® g)(a® b) = f(a) ® g(b). The general formula for f ® g follows since it is a
group homomorphism. t

The proposition gives rather quickly that if A, or B, have extra properties, so does A ®r B. For
example:

Corollary 2.5.2. (1) For AR, rB, A ®r B is a left S-module.
(2) For Ag,rBs, A @R B is a right S-module.

Proof. (1) For every s € S the map a +— sa is an R-module homomorphism of A that we denote
[s]. The proposition applied to [s] ® Id provides a group homomorphism A ®g B — A ®g B and

we define

s-(Qai@b) = ([s]®1d) (Y a;@b;) =) (sa;) @ b;.
The key is that this is a well-defined homomorphism of A ®z B. Now that we have the formula,
it is immediate to check that this makes A ®@r B into a left S-module. The proof of the second
claim is essentially identical. U

Let R be a ring. A ring A is called an R-algebra if there is a ring homomorphism 14: R — A
whose image contained in the centre of A. Namely, if forall ¥ € R,a € A we have i4(r) -a =
a-14(r). A morphism of R-algebras A, B, is a homomorphism of rings f: A — B such that

fa(r)) = 1g(r). We get a category rAlg.
Corollary 2.5.3. If Ar, rB are R-algebras then A @r B is an R-algebra.

Proof. We need to define multiplication on A ®g B. For s € A (t € B) the map [s](x) = sx (resp.
[t](x) = tx, sic!) are R-modules homomorphisms and so we get a well-defined homomorphism

of groups

(sl@ ()i ® bi) = Y (sa;) @ (tby).
Note that this provides an R-biadditive map A x B — End(A ®g B) sending (s, t) to the homo-
morphism [s] ® [t]. By the universal property, we get a homomorphism

A®rB—End(A®rB), ) si®ti—) [s]®[t]
We define now a product on A ®g B by
(ZSZ‘ ® t;) - (Za]- 02y b]') = (Z[SZ] X [ti])(Za]- 02y b]') = Zsiﬂ]‘ X tz‘b]'.
L]

The key is that this is a well-defined formula. Once we have it, it is straightforward to verify
that this makes A ®g B into a ring. Eventually, we have the formula

sSRt-a®b=saRQth,
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and multiplication of general elements proceeds by distributivity, but without the argument
above it is not clear that this is well-defined.

We define a homomorphism R — A®g Bbyr — 14(r) ® 1 = 1®1p(r). Itis easy to check that
this is a ring homomorphism and that the image of R is contained in the centre of A ®g B. [

2.6. Examples.

Proposition 2.6.1. Let R be a ring and g M a module. Then
R®r M = M.
Proof. Define a function M — R ®@gr M by m — 1 ® m. It is clearly a homomorphism of groups.

On the other hand, define a map R x M — M that takes (r,m) to rm. It is an R-biadditive map
and so defines a group homomorphism

R®@M — M, Zri®miv—>2nmi.
These maps are mutual inverses. i
Proposition 2.6.2. Let k be a commutative ring then
k[x1,..., Xm) Qcklyr, ..., yn) Zk[x1,. .0, X, Y1, Yn)-

Proof. Note that both sides are commutative k-algebras. As k[x1,..., X, Y1,...,Ys] is a free poly-
nomial ring, we can define a homomorphism of it into any commutative k-algebra, uniquely, by
specifying the images of the x; and y;. In particular, we get a homomorphism of k-algebras,

k[x1, .o, Xm Y1, - Yn) = k[x1, oo, Xm] Qick[y1, ..., yn),

by
Xi—xi®1, Yi >—>1®y]‘.
On the other hand, the map
klew o] Xicklyn o yn] = Klxy o xm oyl (F(2),8(0) = £(x) - 8(y),

is a k-biadditive map and so induces a homomorphism (in fact, of k-algebras),

k[x1, ..., %m] Qckly1, ..., yn) = k[x1,. ., Xm, Y1, - -, Y]
that takes f(x) ® g(y) to f(x)g(y). In particular, it takes x; ® 1 to x; and 1 ® y; to y;. Using
this map, we easily check that the homomorphisms we constructed between k[x1, ..., Xn]| @k

k[y1,...,yn] and k[x1, ..., Xm, Y1, ..., Yu] are mutual inverses as it is enough to check that on the
x; and y;. U
A similar argument proves that
(k[xlr .. /xm]/I) ®k (k[]/ll .. /yn]/]) = k[X1,. . -/xm/]/1/~ . /yn]/(<1> + <]>)/
where by (I) and (J) on the right hand side we mean the ideals generated by I and ], respec-
tively, in k[x1, ..., Xm, Y1, -, Yn] 380, for example,
Qlx]/ (x* =2) ® Qlyl/ (v* — 2) = Qlx,y)/ (x* = 2,* - 2).
The right hand side is a Q-algebra but is not a field anymore. Indeed, it has zero divisors:
(x+y)x—y)=x*—y*=2-2=0
in this ring.
31f k is a field, an affine k-variety V is defined in algebraic geometry as a closed subset of kK for some integer m. Per
definition, such an object is defined by an ideal I of k[xy, ..., x| — the equations defining V and the regular functions
on V are defined as k[x1, ..., x,]/I. The product of two varieties V C k™, W C k" , which is the same as their fibre

product over a point, is a closed variety in k™" defined by the equations (I) + (J) and its ring of regular functions
isk[xy, ..., Xm,y1, -, yn)/ (D) + ().



12 EYAL Z. GOREN, MCGILL UNIVERSITY

Proposition 2.6.3. Let R be a commutative ring and 1, ] ideals of R then*
R/I®rR/]J = R/(I+]).
Proof. The method of proof is similar. Both sides are R-algebras. The map
R+— R/I®grR/], r—=rel,
is a homomorphism of rings. If i € Itheni®1 =0® 1 =0andifj € Jthenj®1 =1®j =
1® 0 = 0. Thus, there is a well-defined homomorphism of rings
R/(I+]) = R/I®rR/], r—=rel
On the other hand, the map
R/IxR/]— R/(I+]), (r,s) — s,
is well-defined (because for i € I, (r,s) = (r+1i,s) — (r+1i)s = rs+1is = rs etc.) and is
R-biadditive. It induces a homomorphism
R/IQR/] = R/(I+]), Y. ri®si— ) rsi.
It is the inverse of the previous map because 7 — r ® 1 > 7 in one direction, and in the other
direction } . r; ® s; — Y risi—= Y. ris; 1 =Y r ®s;. [l
Thus, for example,
Z/mZ Rz Z/nZ =7/ ged(m,n)Z,
and, in particular, the tensor product of two non-zero modules can be zero. For example,
Z/2Z @7 Z/3Z =7/ gcd(2,3)Z=2/Z =0.

2.7. Hom and ® are adjoint. Here is the example that motivates us. Let k be a field. Let G be a
group and H a subgroup of G. Suppose that V is a left k[H]|-module. As we shall explain later,
this means exactly that V' is a linear representation of H. Since k[G] is a right k[H]|-module, we
can form

k[G] QkH) Vs

which is a left k[G]-module as k[G] itself is a left k|G]-module in the obvious way. Thus, we get
from a representation of H a representation of G, called the induced representation (and the
process is called induction) and denoted by

Ind$ V.

This is a very powerful method of creating representations of a “big” group G starting from a
representation of a “small” subgroup H. In fact, this is a functor

Indf{: k[H]MOd — k[G]MOd.

On the other hand, if W is a k[G]-module, since k[H] C k[G] we can forget about k[G] and view
it only as a k[H|-module. This way we get a restriction functor

Resg: k[G]MOd — k[H]MOd.

4In algebraic geometry the intersection of two varieties V,WW C k" is the same as their fibre product
over k" and this is defined algebraically as k[x,...,x,]/I klx1,.. 0] klx1,...,xu)/] = kixq,...,xa]/ (I +]).
So, for example, the intersection of the parabola y = x* with the line x = 0 is defined

by the ideal (y — x2,x) = (y, x) corresponding to the point 0. On the other hand, \ n /
the intersection of the parabola with the line y = 0 is defined by the ideal \\ /
{y — x?,y) = (y,x?) that corresponds, in some sense, to the point 0 with multiplicity 2. “ /
This reflects the fact that the line y = 0 is tangent to the parabola, while the line x = 0 /

is transversal.
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We shall prove that (Ind$, Res$) is an adjoint pair. That means that for every k[G]-module W
and every k[H]-module V we have

Homy g (Ind$V, W) = Homy ;) (V, Res$ W),

where the right hand side means homomorphisms of k[H]-modules from V to W, forgetting
that W has a richer structure of a k[G]-module. This is a form of Frobenius reciprocity, which
we will prove in more precise form later. This allows us to investigate the new representation

Ind%;V, using the representation theory of H that we might already understand well. Instead of
dealing with this example only, with the same effort we can prove a more general result.

Theorem 2.7.1. Let R, S be rings and s Ag be a bimodule. Then,
A ®g (—): RMod — sMod, Homg (A, —): sMod — grMod
are covariant functors. The pair
(A @g (=), Homs (4, —)),
is an adjoint pair. Namely, for rB, sC we have

Homg(A ®g B,C) = Hompg (B, Homg (A, C)).
Proof. Given f € Homg(A ®g B, C) define ¢ € Homg (B, Homg(A, C)) by sending b to
Pp: A= C, ¢pyp(a) = fla®@D).
On the other hand, given ¢ € Hompg (B, Homg(A,C)) say b — ¢, € Homg(A, C), define
f:A®rB—=C, f(a®b) = ¢p(a).

We need to check that everything is well-defined and the maps are maps of modules, as required.
We begin with f. The function ¢(a) = f(a ® ) is a function from A to C that is a map of S-
modules in the variable a, because f satisfies f(sa @ b) = sf(a ® b) and is linear in a. Further,
we have the formulas:
ot = Pp +Pu, Do = TP0,

because, recall, (r¢y)(a) = ¢p(ar) = flar®@b) = f(a®@rb) = ¢,p(a). So the ¢ associated
to f is in Homg (B, Homg (A, C)). Finally, denoting now ¢ = ¢(f) we need to still verify that
d(f+ f') = ¢(f) + ¢(f'), because the isomorphism in the theorem should be an isomorphism
of groups. This is easy to check (one needs to check that for every b the functions A — C given
by ¢(f + f')y and @(f)s + ¢(f'), are the same).

The converse goes rather similarly. The only point to be careful about is that starting from ¢
the definition of f: A®r B — C, f(a ® b) = ¢y(a) is a good definition. One starts, as usual, by
arguing that A x B — C, given by (a,b) — ¢} (a) is an R-biadditive function. Having proven
that, one gets that f is well-defined and proceeds to show it is S-linear and that associating f to
¢ is a homomorphism.

Of course, we are not done. One needs to check that these isomorphisms are natural relative
to maps B — B/,C — C’. We leave that as an exercise. O

Corollary 2.7.2. Let R = k[H|,S = k[G], V a left k[H|-module and W a left k|G]-module. Then
Homk[c] (k[G] ®k[H] Vv, W) = HOl’I’Ik[H](V, W)
Or, in slightly different notation,
Homg (Ind$V, W) = Homp(V, ResGW).

Proof. Indeed, taking in the Theorem the ring A = k[G] the result follows if we use the isomor-
phism Homy¢ (k[G], W) = W (see Example 2.1.1). O
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Part 3. Complex representations of finite groups
3. DEFINITIONS AND BASIC EXAMPLES

3.1. Basic definitions and conventions. In this part of the notes, a vector space V would always
denote a finite dimensional vector space over the complex numbers. If V, W, are vector spaces then
Hom(V, W) denotes the C-linear maps T: V — W; Hom(V, W) is a C-vector space whose di-
mension is dim (V) - dim(W). A particular case is End(V) := Hom(V, V), which is not just a
C-vector space of dimension dim(V)?, but in fact a C-algebra under addition of linear maps
and where multiplication is given by composition of maps. By Aut(V), or GL(V), we mean
the invertible elements of End(V), namely, all the invertible linear transformations T: V — V.
Throughout, G denotes a finite group.

The main definition of this part of the course is the following:

Definition 3.1.1. A finite dimensional linear representation of G is a homomorphism
p: G — Aut(V),
for some finite dimensional complex vector space V.
We will usually just say “representation” and not “finite-dimensional linear representation”,

which is a bit of a mouthful. Note that a representation of G is really two pieces of data:

(1) p (the homomorphism), and
(2) V (the vector space on which G acts through p).

And so, we will often say that (p, V) is a representation of G. Also note that when we are given
a representation, the group G acts on the set V in the sense of group actions on sets, albeit in a
very particular way — through linear invertible transformations.

Definition 3.1.2. A morphism of representations T: (p1, V1) — (p2, V2) is a linear map
T: Vi =V,
such that
p2(g) o T =Top1(g), Vg € G.

In diagram: for all g € G, the following diagram commutes:

Vl p1(8) Vl

N
v, (8) .
An isomorphism of representations is therefore such a bijective T.

There is therefore an important distinction. Even if Vi, V, are representations of G we use
Hom(V;, V) to denote the linear maps from V; to V,. We shall use

HOIIIG (Vl, Vz)

to denote the morphisms of representations (p1, V1) — (p2, V2). It is a subspace of Hom(V3, V3)
(and more on that below). A more accurate notation for Homg (V4, V2) is Homg ((p1, V1), (02, V2))
but we shall avoid it if we can, because it is harder to read.

We have, in fact, defined a category Rep(G) of finite-dimensional representations of G.

Lemma 3.1.3. The category Rep(G) is equivalent to the category cjg;/Mod.
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Before proving the lemma we need to explain some concepts from category theory. Two cate-
gories C, D are called equivalent if there are covariant functors

F:C—D, G:D—C(,

such that

GoF =1, FoG=1p,
where 1, 1p are the identity functors. The functors F, G are then called an equivalence. If
both functors are contravariant, we call this an anti-equivalence. Note that we do not require
that Go F = I¢c and F o G = 1p., but if actual equality holds then the categories are surely
equivalent. We will come back to these concepts and provide more examples when we discuss
Morita equivalence.

Sometimes the categories have more structure and then we want to demand that an equiva-
lence preserves them. A category is called pre-additive if all the morphism sets Mor (A, B) are
abelian groups and composition respects the group structure: go (f1 + fo) =go fi+go fr and
(fi+ f2) og = f10g+ f2 0 g. The main example is the category kMod of R-modules.

When we consider functors between pre-additive categories we usually require then to re-
spect the group structure. Naturally, they are called additive functors. Namely, if f1, f» €
Mor(A, B) then F(fi; + f2) = Ff1 + Ff, in Mor(FA, FB). The lemma claims that the two pre-
additive categories, Rep(G) and ¢|gMod, are equivalent.

Proof. Given a C[G]-module V, where we write a - v for & € C[G],v € V, to denote the module
structure. Define a map,

p: G — Aut(V), p(g)(v) :==g-v.
The map p(g) is C-linear because we have p(g)(v1 +v2) = g- (v1+ ) = g-v1+8- 12 =
p(8)(v1) + p(g)(v2). Also, if a € C, by definition a - v is the structure of V as a C-module.
Then p(g)(k-v) = gk-v = kg-v = k-p(g)(v), using that C is in the centre of C[G]. Thus,
p(g) € End¢e(V). Also,

P(8182)(0) = (8182) -0 = 81 (82-0) = (p(81) © p(82)) (©)-
This shows that p is a homomorphism of groups. In particular, each p(g) is invertible and so we
have a homomorphism
p: G — Aut(V).
Conversely, given p: G — Aut(V), define

(Y ag8) -0 =) ag0(g)(v)
8

It is straightforward to verify this makes V into a left C[G]-module.

At this point, we of course need to define what happens to morphisms. If T is a morphism
of G-representations, it follows from the formula above that T commutes with C[G]-module
structure. Indeed, T((Lagg) - 0) = T(X, ag01(8)(0)) = L aT(p1(8)(0)) = L agpa(g)(To) =
(g a58)(Tv). Itis equally easy to check that a map of C[G]-modules is a map of G-representations.

We have thus constructed functors in both directions. In fact, functors that do not change the
objects or the morphisms. And so it is clear the functors are inverses of one another, and the
categories are equivalent. 4

Let (p, V) be a representation of G. A subrepresentation is a subspace W C V such that for all
g € Gwehave
p&)(W) €

In fact, we then have necessarily p(g)(W) = W because also p(¢g71)(W) C W and therefore
p(g)p(g YW C p(g)W and we get W C p(g)W. In that case (p|w, W) is a representation and
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the inclusion map (p|w, W) — (p, V) is a morphism of representations. Note that V and {0} are
always sub-representations and we shall refer to them as trivial sub-representations.

If W C V is a sub-representation then the quotient space V /W is a representation p of G as
well, where we define

p(g)(v+W)=p(g)(v)+W, geGueV.

It is called a quotient representation. Note that a subrepresentation, or a quotient representa-
tion, is nothing else than a C[G]-submodule, or a quotient module, respectively.

The following definition is one of the key concepts.

Definition 3.1.4. A representation (p, V) is called irreducible if V' # {0} and its only sub-
representations are the trivial ones.

3.2. Direct sum and Hom. Let G be a group and (p, V), (7, W) be two representations of G.
Then

(p@T, VeWw)
is a representation of G where

(e 1)(8) = (p(g), T(8))-

This representation is called the direct sum representation. If we wish, we can also use the
notation p(g) @ t(g), which we have used before for the direct sum of two linear maps. We
will often be rather loose with our notation and write either V& W, or p @ T, for the direct sum.
Similarly, we shall write the direct sum of (p, V') with itself a-times as either (p, V)?, V* or p".

Another construction we have is Hom((p, V), (T, W)). Let us denote this representation by
c: G — Aut(Hom(V,W)),

where forevery g € G, T: V= W,

o(g)(T):=1(g)oTop(g™ ).

There is actually quite a bit to verify here. We only indicate what should be verified and leave
the verification as an exercise.

e As Hom(V, W) is a complex vector space, we need to verify that for every g € G, c(g)
is an endomorphism of that space. Namely, that indeed 7(g) o T o p(g~?!) is a linear map
from V to W, and that

T 1(g)oTop(g™"),

is linear in T. This just establishes that o(g) is a linear endomorphism of the vector space
Hom(V, W).

e Next, one needs to verify that 0 (gh) = o(g) o o(h). This shows that we have a multiplica-
tive map G — End(Hom(V, W)). But note that, since every element in G is invertible
and ¢ (1) is the identity map, automatically ¢(g) is invertible, because c(g) o (g~ !) =
o(1) = Id, etc. Thus, it follows that we get a homomorphism

oc: G — Aut(Hom(V, W)).
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3.3. The trivial subrepresentation. Let (p, V) be a representation of G and let
Ve :={veV:p(g)(v) =0,Vg € G}

This is the space of invariant vectors. Note that V° is a sub-representation of V on which G acts
trivially; it is called the trivial subrepresentation of V. The homomorphism

G — Aut(V©°),
induced from p is simply g — Id, Vg € G. Note that
Homg (V,W) = Hom(V, W)C.

Unfortunately, at this point we have two conflicting meanings for “trivial subrepresentation
of V”. One we have just discussed. It is V¢, and the choice of name is because G acts trivially on
VC. The other was previously used to refer to {0} and V as trivial subrepresentations, because
they always exist and there is nothing deep about their existence. We will make efforts to clarify
which way we are using “trivial subrepresentation” whenever confusion is possible.

Remark 3.3.1. The construction Hom(V, W), besides its theoretical usefulness that we shall see
repeatedly below, is a very good way to construct representations. For example, if W is a repre-
sentation and V is a one dimensional representation then Hom(V, W) is another representation
of the same dimension as W. In fact, if W is irreducible, it will be the case that Hom(V, W) is
irreducible too, but that requires a proof; it would be much easier to give once we have the main
theorems available. It may be the case that Hom(V, W) = W as representations, but often this
is not the case, and so, once we have constructed an irreducible representation W, we are often
able to construct more of them as Hom(V, W), for various 1-dimensional representations V.

Lemma 3.3.2. Let (p, V) be an irreducible representation then either VC = {0} or V.= V©, and is then
a one-dimensional space on which G acts trivially.

Proof. As V© is a sub-representation and V is irreducible, either V¢ = {0} or V© = V. In the lat-
ter case, let v € V be a non-zero vector. Then Span (v) is a subrepresentation and consequently
V = Spang (), hence a one-dimensional space. O

3.4. Examples of representations.

3.4.1. Passing to coordinates. Let
p: G— GL,(C)

be a homomorphism of groups. Then (p, C") is a representation as we have a canonical identifi-
cation

GL,(C) = Aut(C"),
by sending every linear map T to the matrix [T]g; representing it in the standard basis.

More generally, let V be an n-dimensional vector space and (p, V') a representation of G. Let B

be a basis for V. We get then

T: (0, V) = (1,7,
where T: V — C" is the map sending v to [v]p and

7(g) = [0(8)]5-

The identity T o p(g) = 7(g) o T, namely, forallv € V, Top(g)(v) = 7(g) o T(v) translates in
this case to the identity [p(g)(v)]s = [p(g)]s[v]s, which is precisely the property defining the
matrix [p(g)]5.

Thus, up to isomorphism, all linear representations can be viewed as group homomorphisms
G — GL,(C). However, this perspective is not canonical. If we choose another basis C we get a
different representation

v: G = GLy(C), 7'(g) = [0(8)]c-
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The two representations are isomorphic
(z,€") = (7, C")
via the change of basis matrix c Mp that may be viewed as an isomorphism
cMp: C" — C%
Indeed, we have
7(8) cMp = cMp T(g).
In particular, if we choose to view representations of G as homomorphisms
p: G — GL,(C),
then the isomorphism class of p are the homomorphisms
p": G = GLi(Q), pY(g) = Mp()M ",
for any M € GL,(C).

3.4.2. The standard representation of S,. We define the standard representation p* of S, by asso-
ciating to ¢ € S, the linear transformation given on the standard basis by

e; — eg(i) .

In matrices o — M,, where M, is the matrix whose (0 (j), ) entry is 1 (for any j), and all the
other entries are zero. Note, though, that

Mo' t(xl, e ,xn) = t(XUq(l), N ,XUA(H)).
To illustrate, for n = 3, we have the following matrices
100 010 001
M= (§18) Mo = (188) - Mo = (308)
The standard representation has two sub-representations
U, = SpanC{(l,l,. . .,1)}, Uy = {(xl,. . .,xn) X1+t X, = 0}

In fact, let p*! denote the standard representation, let p* |1, p* |14, denote the sub-representations,
then

o™ = 0"y @ 0wy,

Notation: We will denote o[y, by p°?. And for any group G we will denote by 15 the trivial
representation G — C* taking every element of G to 1. Thus,

pSt — HSH D PSt'O'
Proposition 3.4.1. Assume that n > 2. Uy is an irreducible n — 1 dimensional representation of S,.

Proof. We assume that n > 3. The case n = 2 is easy as U is 1-dimensional.

Let U’ C Up be a non-zero sub-representation. Let x = (x1,...,x,) be a non-zero vector in
U'. If x has precisely two non-zero elements, by multiplying x by a scalar we may assume that
x=(0,...,0,1,0...,0,—1,0,...,0). Then, by acting by S, we see that every vector of the form
e; — ej (where ¢; are the standard basis) is also in U'. But these vectors span Uy and it follows
that U’ = Uj.

Thus, it remains to prove that U’ always contains such a vector. Let x € U’ be a non-zero
vector; it has more than one non-zero coordinate. If x has more than 2 non-zero coordinates, we
show that there is vector y € U’ that is not zero and has fewer non-zero coordinates.

Assume therefore that x has at least 3 non-zero coordinates. First, by rescaling we may assume
that one of these coordinates is 1. Then, as }_x; = 0, there exists a non-zero coordinate that is
not equal to 1. By applying a permutation to x we may assume that

X = (11x21x3/' . 'Ixn)l
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where x; # 1 and is non-zero and also x3 # 0. The vector

1
x'=—(x2,1,x3,...,%),
X2

also belongs to U’. Therefore, also

1 1 1
y=x—x' = (O,xz—x—z,xg(l— x—z),...,xn(l— x—z)),

belongs to U’ and this vector has fewer non-zero coordinates, yet is not zero (consider its third
coordinate). O

3.4.3. The regular representation. This is one of the key examples, in fact. Using the language we
have, it is easy to describe. It is simply C[G] considered as a left C[G]-module! It is called the
regular representation of G. Its dimension is the cardinality of G.

3.4.4. One dimensional representations. The one dimensional representations of a group G are, up
to isomorphism, homomorphisms

G—C~.
They are of course all irreducible. Let
G = {plp: G — C* homomorphism}.
Then G is an abelian group, called the character group of G, where the group operation is

(0-7)(8) =p(g) T(8)-

The identity is the trivial homomorphism 1 giving us the trivial representation (1, C), namely,
1g: G — C*,15(g) = 1 forall g € G. The following are not too difficult to check:

e HxG=HOxG (canonically).

° Z//n\Z =7 /n”Z. A

e Therefore, combining the two facts provided above, if G is a finite abelian group G = G
(non-canonically).

e For a general group G, we have G = G//a, where G’ is the commutator subgroup.

e In particular, for a general group G, G may be very small compared to G. For example,
forn > 5wehave A, = {1},§n ~7/27.

Given elements ay, ..., a, of G (any elements, repetitions allowed), we get an n-dimensional
representation of G

g

We leave it as an exercise to show that if G is an abelian group, any n-dimensional representation
of G is isomorphic to such a representation. Thus, we know all the representations of finite
abelian groups: Any irreducible representation is 1-dimensional, given by an element of a € G.
Any representation is isomorphic to a sum of 1-dimensional representations.
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3.4.5. A representation of D), and As. Let n > 3 and consider the dihe-
dral group D,, generated by x,y. The symmetries of a regular n-gon
in the plane, provided by elements of D,, are naturally linear trans-
formations of R? and we can associate to x, v, the following matrices

cos(27t/n) sin(27t/n _
x = (fsir(l(;'(/;z) Cos((277tr/n))) Yy ( 01 (1)) :

We view these as complex matrices thereby obtaining a homomor-
phism
pPlme: D, — GLy(C).

Another geometric example is the representation of A4 coming from
its action on a regular tetrahedron. We view A4 as permuting the let-
ters a,b, c,d, thereby acting by symmetries on the tetrahedron. This
action comes from a linear representation

Ay — GL3(1R) - GLg(C)

Although this representation certainly looks irreducible, and it is, one
has to be careful. Also the action of Z/4Z on R?, where a — ( % (1))‘1
looks irreducible (and indeed, it cannot be decomposed as a real rep-
resentation). But, viewed as a representation b

Z./4Z — GL,(C),

it is reducible. Every representation of dimension greater than 1 of an abelian group is!

3.4.6. Restriction and induction. We have already seen in the language of modules, induction and
restriction. If H < G and V is a representation of G then C[G] ®¢(] V is a representation of G,
called the induced representation Ind; V. Similarly, if W is a representation of G then W is also
a representation of H denoted Res&W. Recall the adjoint property

Homg (Ind%V, W) = Homp (V, Res&W).

Suppose that W is an irreducible representation of G and V is the trivial one dimensional rep-
resentation of the trivial subgroup H. Then Ind$V = C[G] and Homp(V,Res$;W) # 0. Thus,
there is a nonzero map of representations

T: C[G] = W.

As W is an irreducible G representation and the image of a map of G-representation is a sub-
representation (if you prefer, the image of a module homomorphism is a submodule), T must
be surjective. We conclude that any irreducible representation of G is a quotient representation
of C[G] and, in particular, its dimension is at most |G|. (It will follow from Theorem 5.1.2 that
every irreducible representation of G is also a sub-representation of C[G].)

4. CHARACTERS

4.1. The character of a representation. Let (p, V) be a representation of G. Define the character
of 0, Xp, by

Xo: G =€ xp(g) = Tr(p(g))-
Here Tr denotes the trace of a square matrix, Tr(m;;) = Y m;;.
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Lemma 4.1.1. The function x, is well-defined and depends on p only up to isomorphism. Furthermore,
Xp is a class function on G. That is, for all ¢, h € G, we have

Xo (g) = Xp(hghil)-
In addition,

Xoat = Xp + Xt Xp(l) = dim(p), Xp(g_l) :Xp(g)'
(By dim(p) we mean the dimension of V where p: G — Aut(V).)
Proof. By “well-defined” we mean that we have defined the trace of a linear transformation T as
the trace of a matrix representing it in a given basis B. As the trace is independent of the choice

of basis, x, is well-defined.
If p = 7, then by choosing bases we may assume that

p: G— GL,(C), 7:G — GL,(C).
As invertible linear transformations C" — C" are represented by invertible matrices, the infor-

mation that p = 7 translates into the statement that there is an invertible matrix M € GL,(C)
such that forallg € G

Mp(g)M™' = 1(g).
But then,

Xo(8) = Tr(p(8)) = Tr(Mp()M ™) = Tr(7(g)) = xc(8)-
Actually, the same computation gives

Xp(hgh™") = Tr(p(hgh™)) = Tr(p(h)p(g)p(h) ") = Tr(p(g)) = Xp(8)-

Therefore, x, is a class function.

Given representations (p, V), (7, W), by choosing bases, we may assume that
0: G = GLu(C), 7:G — GL,(C),

and so
087 G = GLun(C), (0®7)(g) = <P<Og> T(Og)) .
Therefore,
xoorg) =T (P 0 ) = Tolole) + T(r(g)) = xg) + xc(0)

Now, x,(1) = Tr(I,), where I, is the n x n identity matrix and n = dim(V). Thus, x,(1) =
dim(p).

For the last property stated in the Lemma, fix the element g and let k be its order in the group
G. Then, p(g)* = p(g*) = p(1) = Id. That means that p(g) solves the polynomial x* — 1, which
has distinct roots, and so the minimal polynomial of g, which divides x* — 1, also has distinct
roots and therefore p(g) is diagonalizable. And so, we may find a basis B of V in which

[0(8)]p = diag(as, ..., an).

In addition, as p( g)k = [, the a; are roots of unity of order (dividing) n.
Note that the basis B is chosen specifically for g. There is no reason for [p(h)]p to be diagonal
if h # g. However, because of the homomorphism property, one exception is that

p(g’l) = diag(al’l,...,lx,;l) = diag(ay, ..., &),

where the second equality is a consequence of «; being roots of unity. Therefore,

Xo(87) = x0(8)-
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Characters are the heart of the whole story. Everything will be determined by characters.

For example, we will see that two representations are isomorphic if and only if they have the
same character. Given an irreducible representation W we will be able to calculate, using char-
acters, whether it appears as a subrepresentation of another representation V. And many other
results.

Here are some examples of characters:

(1) For the standard representation of the symmetric group S, we have
Xt (0) = Tr(p*(c)) = the number of fixed points of ¢.
(2) For the dihedral group D, we have

prlune (y) - 0, X‘oplane (X) — 2COS(27(/1’[).

(3) If (p, V) is a trivial representation, namely p(g) = Id for all g € G, then x, is the constant
function
Xo =1,
where n = dim(V).
(4) Consider the 1-dimension sign representation of S,, given by
sgn: S, — {+1} Cc C*.

Then xsgn(0) = +1if 0 is an even permutation, and xsgn(0) = —1, if 0 is odd.
(5) If & € G is a 1-dimensional representation then y, is simply a.

4.2. The character of an induced representation. This is an important calculation. Let H < G
be groups and (p, V) a representation of H with character . We want to the determine the

character of Ind$;V in terms of x. We will denote it Ind$ .
Choose a set of coset representations G = [[¢_; g;H. Then C[G] = @¢ ,4,C[H] as a right
C[H]-module and, as C[H] ®¢|y V = V, we have a decomposition

d
ClGl@cm V=EPsgi®V.
i=1

How does G act? Given g € G, we have

8gi = gih,

where j, and h € H, depend on g and i. In fact, if we write j = j(g,1),h = h(g, i), then for any
fixed g the map i — j(g,i) is a permutation of {1,...,d}. We then have forv € V

§-8i®v =288 ®v=_gh®v=_g®ph)(v).

Thus, the action of g can be imagined as a block matrix of size d x d, where the (i, j(g,7))-block
is the matrix p(h(g,1)).

Only the blocks on the diagonal contribute to the trace, and we get a diagonal block at the
place i precisely when

88i = 8ih(g1),

and then h(g,i) = g; 'gg;. The corresponding block is then p(g; 'gg;) that has trace x(g; 'gg:)-
(N.B., we cannot say x( gi’l 29i) = x(g) as g&i € H in general.) To sum up this discussion, we
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have proven the important formula:
Indix(e) = ¥ x(si'ssy)-
{i:g; 'gsicH}
Note, however that changing g; to g;i for h € H doesn’t change the condition g; 'gg; € H nor
the value x(g;'gg:). Thus,

Theorem 4.2.1. The induced character is given by the formula

1 _
D Indfx(g) = TH] Y, x('gh).
{beG:b-1gbcH}
A common notation is to write
X
for the extension by zero of the character x to G. Namely, x(x) = x(x) if x € H and 0 otherwise.
We can then write the character of the induced representation as

) Indfx(g) = THI X(b7'gb).
H] 5
Corollary 4.2.2. Suppose that H<G then b='¢b € H iff ¢ € H and so we find
0 s¢H

IndY, =
AX(8) {|1H|Zbec x(b7'gh) g€ H.

Example 4.2.3. From the formula we find that the character "¢ of the regular representation
Ind?l}C satisfies x"*¢(g) = 0if ¢ # 1 and x"*¢(1) = |G]|. It is of course easy to deduce that from
the definition of the representation itself.

Example 4.2.4. Let {; = 1, = €¥™/3,3 = ¢*™/3. The three 1-dimensional representations p; of
Ajz are determined by

0i((123)) = ¢;.
Let x; = Indf’;f3 pi.- The following table gives the values of these characters on the three conjugacy
classes of Ss.

1 (12) (123)
x1 2 0 2
x> 2 0 -1
x5 2 0 1

As we shall see later, representations with the same characters are isomorphic. Therefore, we
find here an example of two non-isomorphic representations of a subgroup, that is p», p3, whose
induced representations are isomorphic.

5. THE FUNDAMENTAL THEOREMS

5.1. Decomposition into irreducible representations. We show that every representation de-
composes as a sum of irreducible representations. This establishes the irreducible representa-
tions as the fundamental building blocks of representations. Many of the theorems we will
study are concerned with classifying the irreducible representations and with understanding
the precise way a representation is built from irreducible representations.

To proceed, we need a lemma:
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Lemma 5.1.1. Let (p, V) be a representation of G. There is an inner product (-,-) on V that is G-
invariant. That is, for all v,w € V and g € G one has

(0(8)v, p(g)w) = (v, w).

Proof. Let (v, w) be any inner product on V. Define
(0w} = 157 L(p(&)o,p(g)w).

First, this is a G-invariant function. If & € G then

(p(h)v, p(h)w) = |(1;‘ Y- (o(8)o(h)v,p(g)p(h)w)

o1 L (p(gh)o, p(gh)w)
|‘geG

= (v, w),

because when 1 is fixed and g varies over G the products g/ are all the elements of G, each oc-
curring once. We also have (xv, w) = a(v, w) and ((v+7'),w) = (v, w) + (v/,w). Furthermore,

geG

geG

= (v, w).
Finally, for v # 0

U U
!G!

and each of the summands on the right hand side is positive. Therefore,
(v,v) > 0.

gGG

Theorem 5.1.2. Any representation (p, V) of G is a direct sum of irreducible representations.

Proof. We prove that by induction on dim(V'). Whenever dim(V) = 1, V is irreducible. When-
ever V is irreducible (of any dimension) the statement is clear.

Let V be any representation and suppose that V is reducible. Let U be a non-zero sub-
representation and let (-, -) be a G-invariant inner product. Then,

L={veV:{(uv)=0YuclU}
is a sub vector space and
V=Uuou-
It remains to check that U+ is a sub representation as well. Let ¢ € G and w € U*. Then, for all

uel,
(u,p(8)(w)) = {p(8) ™" (), w) =0,
because p(g)'(u) € U as well. This proves that p(g)(w) € U*. Therefore, for all ¢ € G,
p(g)(U+) C U*. Thatis, U™ is a sub representation.
Using induction for U and Uut, we can decompose each of them into a sum of irreducible
representations. And so V itself is a sum of irreducible representations. U
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Corollary 5.1.3. Let (p, V'), (T, W) be representations of G and suppose that there is a surjective map of
representations

(o, V) = (T, W).
That, is W is a quotient representation of V. Then W is isomorphic to a sub representation of V and
vice-versa.

Proof. Indeed, let U be the kernel of (p,V) — (7, W) then U is a sub-representation and so
is UL. We get an induced isomorphism U+ — W, showing that W is isomorphic to a sub-
representation of V. The other direction is similar. 4

5.2. Schur’s lemma.
Lemma 5.2.1. Let (p, V), (T, W) be two irreducible representations of G. Then,

C, p=ET
{0}, else.

Proof. First note that whether V, W, are irreducible or not, if T € Homg (V, W) then both Ker(T)
and Im(T) are sub-representations of V and W, respectively.

In our situation, Ker(T) is either {0} or V, so if T is not the zero map then Ker(T) = {0},
and so T is injective. Then also Im(T) is not trivial. Thus, Im(T) = W and T is therefore an
isomorphism.

Fix one such T and use it to identify V with W. Then, we need to show that

EndG(V) =C.

LetS € Endg (V) and let A be an eigenvalue of S and V), the corresponding (non-zero) eigenspace.
Then, S is a subrepresentation: If ¢ € G and v € V) then S(p(g)v) = p(g)(Sv) = p(g)Av =
A-p(g)v; thatis, p(g)v € V). As V is irreducible, we must have V) = V. Thatis, S = A - Id.

On the other hand, clearly every scalar matrix A - Id belongs to Endg(p). t

Homg(V, W) = {

5.3. Uniqueness of decompositions. By Theorem 5.1.2, every representation (p,V) decom-
poses as a direct sum of irreducible representations. Buy collecting together isomorphic irre-
ducible representations, we may assume that

nglal@...@vsﬂs,

where (p;, V;) are irreducible representations that are not isomorphic to each other. Suppose we
have another such decomposition. By allowing also exponents a; = 0, we may assume that the
other decomposition is also written as

V%Vlbl@...@‘/sbs’
and our claim is that a; = b; for all i. To show that we calculate dim(Homg(V;, V)). First, note
the general fact that
Hom(W,U @& V) = Hom(W, U) @ Hom(W, V),
and likewise
Homg(W,U & V) = Homg (W, U) & Homg (W, V).
Therefore, by using Schur’s Lemma, we conclude that
Homg(V;, V) = ®j_1Homg(V;, Vj)* = Homg(V;, V;)" = C%,
and, in particular,
dim(Homg(V;,V)) = dim(C"%) = a;.



26 EYAL Z. GOREN, MCGILL UNIVERSITY

As the left hand side of this last equation “doesn’t know” about the decomposition, it follows
that a; = b;. We have proven:

Theorem 5.3.1. Every representation of V decomposes into a direct sum of irreducible representations.
The irreducible representations and the multiplicities to which they appear are determined uniquely, up
to isomorphism.

5.4. The character of Hom(V,W). Letnow (p, V), (t, W), be any two representations of G then
Hom(V, W) is a representation of G as well. We wish to calculate its character. Our calculation
method is going to be somewhat ad hoc. Later we shall discuss tensor product of representations
and make the calculation more conceptual.

Let {e1,...,e,} be a basis for V, {ef,...,e;} the dual basis of V¥ = Hom(V,C) and let
{fi,... fm} be a basis for W. It is a pleasant exercise to show that there is a canonical isomor-
phism

V* @ W = Hom(V, W).
This isomorphism has the property that for a vector ¢ € V* and w € W the tensor ¢ ® w is
mapped to the linear transformation that takes a vector v € V to ¢(v) - w. In particular, on the
basis of V it has the values
ei— ¢le) - w, i=1,...,n

Lemma 5.4.1. The elements {e; ® f;,i =1,...,n,j =1,...,m}, are a basis of Hom(V, W). Assume
that p(g~') = (gij) and T(g) = (h) then
® f] Z ﬂk/ e;{k X fg,

where
®3) axe(g) = gikhuj.

Proof. In the bases {ey,...,e,} and {f1,... fu}, the linear map ¢; ® f; from V to W is given by
the matrix M = (m;;) having a unique non-zero entry, which is equal to 1, appearing in the (¢, k)
place. Thus, from the identification Hom(V, W) = M,, ,(C) coming from the choice of bases,
the claim that {¢; ® f;} is a basis is clear.

To understand which map is 0(g) (e ® f;), we need to figure out where does ¢; goes under
the linear map o(g)(ej ® f;) for t = 1,...,n. By definition,

o(8)(ef @ fi)(er) = T()((ef @ fi) (p(8™") (er))
=7(8)((ef @ f) (1 8stes))

©(8)(8itfi)
Z zthsjfs-

S

On the other hand, for some scalars a;,(g) we have 0'(g)(ef ® f;) = Y s are(g)ef @ fr and so
o(g)(ef @ f)(et) Zakf g)ex @ fr)(er) Zﬂtefz

Comparing, we find,

Ats (g) - githsj-

Corollary 5.4.2. The character x of the representation Hom(V, W) is
x(8) = xx(8) - Xp(8)-
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Proof. The formula we found in Lemma 5.4.1, a;s(g) = githsj, should really be written so as to
indicate the dependence on i and j as the formula for a,(g) describe the action of ¢(g) on the
specific basis element ¢} ® f] Thus, we should write

all(g) = githsj,

to indicate this dependence. In this notation,

= ZaZ(g) = Zgiihjj = x(8)  xo(87") = xe(8) - Xp(8)-
ij ij

0

5.5. Class functions and an inner product structure. Let G be a group. Recall that a class
function on G is a function f: G — C that is constant on conjugacy classes. That is,

f(x) = f(gxg™"), Vx,g€G,

One calls the number of conjugacy classes of G the class number of G. Let us denote it by
h = h(G). The class functions form a vector space of dimension / that we shall denote Class(G).
As we have seen, for every representation p its character yx, is a class function.

We define now a structure of inner product on Class(G) by

o) = 5 B

8eG
For example, the constant function 1, that is also the character of the trivial one-dimensional
representation of G, is a class function and its norm ||1|| = 1 (which explains the choice of
normalization).

5.6. The projection 7. Let (p, V') be a representation of G.
Lemma 5.6.1. Let

Then 7 € Endg (V) and is a projection onto the subspace VC.
Proof. As 7t is a sum of linear maps, it is a linear map itself. If h € G then
P OT[_ |G| Zp |G| thgk ))P(h):nop(h)/
g€G geG

because as ¢ ranges over G and / is fixed, also hgh™! ranges over G.
The image of 77 is fixed by G: let v € V then

o (k) (7e( KHZP@ “HZP 7(v),

g€G geG
where we have used that as ¢ ranges over G so does hg.
Finally, if v € V© then 7t(v) = ‘1@ Yeecp(8)(v) = ‘1@ Yeec 0 =0 O

Corollary 5.6.2. Let (p, V) be a representation of G and let x1 be the character of the trivial one dimen-
sional representation (p1,C) of G. Consider the decomposition of p into irreducible representations

p=p oo
where the a; are positive, except a; which is allowed to be zero and (p;, V;) are non-isomorphic and

irreducible. Then
G
Ve =vyn
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and
Z = (Xpr X1)
E

where x1 = X, is the constant functzon 1.
Proof. We have V& = &;(V/")¢ = @(VC)%. But for i # 1, V; is irreducible and non-trivial and

so V& = {0}. It follows that V¢ = V.
Now, the projection operator 7 € Homg(V, V) and in the decomposition above

T =idy, @0 ---BO.

Therefore, a1 = Tr(m) = Tr(rh Teea p(8)) = b Tgea Tr(o(8) = & Tyec xp(8) = (pox1)-
O

5.7. Irreducible characters are orthonormal functions. Let (p, V), (T, W), be irreducible repre-
sentations. We apply the considerations of Corollary 5.6.2 to the representation Hom(V, W). Re-
call that its invariants are Hom(V, W)¢ = Homg(V, W). On the one hand, by Schur’s Lemma,
the dimension of Homg (V, W) is 0if p 2 T and 1if p = 7. On the other hand, by Corollary 5.4.2
and Corollary 5.6.2,

dim Hom(V, W)® Z Xo(8 = (Xt Xp)-
’G’ g€G

Therefore, we have obtained

Theorem 5.7.1. Let p, T be irreducible representations of G. Then

_ L fe=rT
<Xpr?(r> = {0’ if p 1.

We arrive the following remarkable result.

Corollary 5.7.2. The characters of the irreducible representations of G form an orthonormal set in
Class(G). In particular, there are finitely many irreducible representations up to isomorphism, in fact at
most dim Class(G) = h(G).

We shall shortly see that there are precisely that many isomorphism classes of irreducible
representations and so their characters are an orthonormal basis of Class(G).

Corollary 5.7.3. The character of a representation determines it up to isomorphism.

Proof. Indeed, if
p= @i,
where the p; are non-isomorphic irreducible representations then x, = ) a;x,, and by orthogo-
nality we find
a; = <Xpr Xpi>-
In addition, as the x,, are linearly independent, the expression x, = } 4;x; is unique. 0

Corollary 5.7.4. A representation p is irreducible if and only if || x| = 1.

Proof. Indeed, if x, = Y7, a;x,,, where the p; are irreducible and distinct then ||x,| = L% a2.

This sum is equal to 1 if and only if there is a unique 4; that is 1 and all the rest are zero. That is,
if and only if p is irreducible. U
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Corollary 5.7.5. Let p be a representation and consider its decomposition into irreducible representations
pPEM @ Dp.
Then
a; = <Xp/ XP1'>'

Proof. This was proven in the course of proving Corollary 5.7.3. 4

5.8. Further study of the regular representation. Recall the regular representation p’*¢ of G
from § 3.4.3.

Theorem 5.8.1. Any irreducible representation p appears in p"®3. In fact, it appears in multiplicity equal
to its dimension. In particular, if p1, ..., pt are the irreducible representations of G then

|G| = Zdlm 0;)?
Proof. We need to show that (p, p"$ > # 0. But

<P, reg ’G| Z Xp Xreg Xp(l) = dim p-
g€G

From this the statement "¢ = Y_/_; dimp; - x,, follows. The last statement is obtained by con-
sidering the dimensions of the representation spaces on both sides. O

Lemma 5.8.2. Let o € Class(G). For any representation (p, V),

Y a(g) - p(g) € Endg(V).
geG

Proof. Asasum of linear maps, certainly Y, a(g) - 0(g) € End(V). We only need to check that
it commutes with the group action. Now, using that p is a homomorphism, for h € G we have

o (Y a(g)-0(g) =) a(g)-p(hgh™")p(h)

g€G geG
= () a(hgh™) - p(hgh™))p(h)
geG
= (2 alg) - p(8)) op(h),
8€G
because a(g) = a(hgh~1!) for all ¢ and h. O

Theorem 5.8.3. The number of irreducible representations of G is its class number h(G) and the char-
acters of the irreducible representations form an orthonormal basis for Class(G).

Proof. We know that the characters of the irreducible representations are an orthonormal set in
Class(G). If they are not a basis, there is some function p € Class(G) that is orthogonal to all
these characters. Let a be the function a(g) = B(g); note that also « € Class(G). We will show
that « = 0 (namely, « is the zero function), thus § = 0, and so the characters of irreducible
representations are a basis for Class(G). Consequently, their number is the class number of G.
Let (p, V) be an irreducible representations of G of dimension d. We claim that the operator

Ap = Ygec a(g) - p(g) is the zero operator
Ay V V.
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Indeed, as Endg(V) = C, where the isomorphism s givenby T — 1Tr(T), since A, € Endg((p, V))
by Lemma 5.8.2, we can determine it by 2Tr(A,). Let us calculate:

%Tr(AP) = % Yo (@) - xe(8) = (Xp B) = 0.
geG

It follows that A, is zero.

Now, this holds for any irreducible representation V and, therefore, for any sum of irreducible
representations. In particular, it holds for the regular representation C[G] of G. (Note that for
p © T we have naturally, Ay = A, © Az, etc. ) The last step in the proof is to realize that the
linear operators p"*¢(g) € Aut(C[G]) are linearly independent and thus, Ay« = 0 implies that
a=0.

Suppose a linear dependence between the operators {p"(g) }; namely, suppose that we have
Yo 7(8)p"™8(g) = O for some scalars y(g) € C. Apply this operator to the vector [e] € C[G]
(where e is the identity element of G). Then

Y ()05 (3)([e]) = Y (8)[g] = 0.
8

8

As {[g] : ¢ € G} are a basis for C|[G], we conclude that all y(g) = 0. O

A very useful fact that we will not prove (as it requires techniques from number theory) is the
following.

Fact. Let p be an irreducible representation of a group G then

dim(p)|: G.

5.9. Frobenius reciprocity. As we shall see later, Frobenius reciprocity in its precise form is a
very useful tool to analyze induced representations. The importance of this rests on the fact that
induced representations are a very powerful method to arrive at the irreducible representations
of a group G starting from its subgroups. We have already seen a form of Frobenius reciprocity
in§2.7.

Given a group G we denote (&, B)¢ the inner product of its characters.

Theorem 5.9.1. Let H be a subgroup of a finite group G and let V be a representation of H with charac-
ter p and W a representation of G with character o. Then

(Ind%p, )¢ = (o, ResSo) .

We note an immediate conclusion: if p and ¢ are irreducible representations of H and G,

respectively, then the multiplicity to which o appears in the induced representation Indp is
equal to the multiplicity to which p appears in ¢ restricted to the subgroup H.



COURSE NOTES - MATH 570 31

Proof. We'll just calculate!

| ! | X indipls) (9
g€

<Ind%p, o)g =

D)

- 161 £ (i Do 'en) 7@
g€ €
1

~mra = X et okt
[HI -Gl (S (g heciignm

We used the factin {g,h € G,h~!¢h = t}, actually ¢ = hth~! and so is uniquely determined by h

that can be arbitrary, and that for 1, t € G we have o(hth™!) = o(t) because ¢ is a representation
of G. 0

Applying Frobenius reciprocity, one may deduce the following (details left as exercise).

Corollary 5.9.2. Let H<IG and let (o, W) be an irreducible representation of H. Then Ind%o is irre-
ducible if and only if for all g € G\ H the representation

o8 : H— GL(W), o8(h) = o(g 'hg),

is not isomorphic to o. In particular, we must have Centg(H) C H.

5.10. Blichfeldt’s theorem. Blichfeldt’s theorem is a rather striking result that asserts that for
supersolvable groups, in particular, for p-groups, every irreducible representation is induced
from a 1-dimensional representation of a subgroup.

5.10.1. Supersolvable group. Let G be a finite group. We say that G is supersolvable if there is a
sequenece of subgroups

) G=G2Gi 2 26y ={1},

of subgroups G;, such that each G; is a normal subgroup of G (not just of G;_1!) and such that
Gi—1/G;jiscyclicfori =1,..., N. We have proven that every p-group is supersolvable (without
using this terminology) in MATH 456.

It is a standard argument to show that subgroups and quotient groups of supersolvable
groups are supersolvable. However, it is not true that an extension of a supersolvable group
by a supersolvable group is supersolvable. For example, the group S, sits in an exact se-
quence 1 — V — S4 — S3 — 1, where V and S3 are supersolvable, but Sy is not supersolvable;
S4 doesn’t have any normal subgroup of order 2 or 3. We see that

supersolvable z solvable.

However, a direct product of supersolvable groups is supersolvable.

Theorem 5.10.1 (Blichfeldt). Let G be a supersolvable group and let p be an irreducible representation
of G then

p= Ind]G P,

where | is a subgroup of G and ¢ a 1-dimensional representation of it.
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Proof. The proof is a mix of induction on the order of G and another reduction to the faithful
case. The base of the induction is the case where G is cyclic of prime order in which case any
irreducible representation is one dimensional and so we may take | = G.

Now for the general case: we first assume that G acts faithfully. Namely, that
p:G— GL(V),
is an injective map.

First note that if G is abelian there is nothing to prove; p must be one dimensional and we
take | = G.

Lemma 5.10.2. Let G be a non-abelian supersolvable group. Then G has an abelian normal subgroup N
such that N ¢ Z(G).

Proof. (Lemma) Let G; be the minimal subgroup in (4) such that G; € Z(G). Then G;;1 C Z(G)
and G;/ G4 is cyclic. From an exercise of MATH 456 the group G; is then abelian. O

Fix this subgroup N and consider V as a representation of N. As N is abelian, V decomposes
as a direct sum over the character group of N:

V= @weNVlP'
where Vy = {v € V : p(n)v = ¢(n)v,Vn € N}. Pick a ¢ such that V, # {0}. For g € G let

PN C gf(n) = (g ng).
These are characters of G. Let S = {¢¢ : ¢ € G} C N. Let H = {g € G : % = ¢} Then,
1S =[G : H|.
Now, it is easy to check that
p(8)(Vy) = Vye.
Thus, in fact,
Note that for every x € S we have an isomorphism of vector spaces V), = V,, (but not as
representations) and that give
dim(V) = ¢S - dim(Vy).
Now consider the map of representations, given on pure tensors by g ® v — p(g)(v),
(5) Indf;Vy = C[G] @cjpy Vyp — V.

As this is not the zero map and V is irreducible, this map is surjective. The dimension of the
Lhisis [G: H] - dim(Vy) = §S - dim(V};) = dim(V) and therefore the map is an isomorphism.

In fact, we claim that S has more than one element (and consequently H is a proper subgroup
of G). Indeed, if S has only one element then ¢ = ¢ for all ¢ € G and V = V,,. That is, for all
n € Nand g € Gwehave

p(g  ngn™") = (g Tngn™") = 1.
As G is faithful, this implies that ¢ 'ngn~! = 1foralln € N, ¢ € G. But that implies N C Z(G).
Contradiction!

Thus, we have proven that V 2 Ind Vy for some proper subgroup H of G. Note that Vj, is
an irreducible representation of H, else the isomorphism in (5) would imply that V is reducible
too. As H is a supersolvable subgroup of smaller order, we may apply the induction hypothesis
to conclude that

Vy = Indj'U,
where U is a 1-dimensional representation of a subgroup | of H. Then

~ G ~ G
V 2 Indf Indj'U = Ind7 U,
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and the proof is complete for the case where G acts faithfully.

Suppose that G doesn’t act faithfully and let Gp = Ker(p). Using the first isomorphism the-
orem, there is an injective homomorphism pg: G/ Gy — GL(V) such that p is the composition

G—G/G GL(V). As G/ Gy is a supersolvable group of smaller order, we can apply induc-
tion and conclude that

0o = Ind]q/ Go U,

for some one dimensional representation U of a subgroup ]’ of G/ Gg (where we view both sides
also as representations of G). Let ] be the preimage of ]’ under the homomorphism G — G/ Gy.
Then, viewing U as a 1-dimensional representation of |, one finds, for example by calculating
characters,
p = IndfU.
O

* ok

Example 5.10.3. Let G be the subgroup of GL3([F,) consisting of the matrices <1 1 T) One
check that Z(G) = G’ and equal to the matrices (1 | §> As G/G' = F, ® F,, the group G

has p? 1-dimensional representations (and using this isomorphism it is easy to establish that G
is supersolvable). As p® = |G| is the sum of the squares of the dimensions of the irreducible
representations, G cannot have an irreducible representation of dimension p?. Note that ev-
ery irreducible representation of G that is not 1-dimensional is a faithful representation of G
(because, else, it will come from a non-trivial quotient of G but those are all abelian — being p
groups of order at most p? — and all their irreducible representations are 1-dimensional). We

deduce, therefore, from Blichfeldt’s theorem, or rather from its proof, that taking N = (1 1 213),

every irreducible representation of G that is not 1-dimensional is p-dimensional and isomorphic
to Ind$ ¢ where ¢ is a 1-dimensional character of N.

Now, the group N is isomorphic to IF3 and it has p? such characters. Also, examining the
proof of the Blichfeldt’s theorem, we see that every irreducible representation of G of the form
Indfﬂp is also of the form Indf,gb/ , for p different ¢/, arising as ¢’ = ¢ for some g € G. Thus,
the characters of N that induce irreducible representations are divided into sets S of p-elements
each, and every character in S gives the same induced representation. On the other hand, by
counting, we see that there must be p — 1 irreducible representations of G of dimension p (p* =
p?-12+ (p — 1) - p?). This explains what happens with p(p — 1) characters of N. The remaining
p characters induce reducible representations of G. I haven’t checked, but it seems these must
be the characters of the form

lab
(115) = x).
where x: IF, — Cis a 1-dimensional character.

Remark 5.10.4. There is an important theorem, in the same circle of ideas. To state it, we will
need some additional terminology. Consider the subring

ch(C[G])

of C[G] consisting of all Z-linear combinations of the irreducible characters {x; : i = 1,...,h(G)}.
An element f of Class(G) lies in ch(C[G]) if and only if (f, xi) € Z,i = 1,...h(G). The elements
of ch(C[G]) are called virtual characters. They are class functions f that are good candidates to
be characters of representations, especially if (1) > 0, but this condition doesn't suffice.

Let p be a prime. A group H is called p-elementary subgroup if H is a direct product of a
p-group with a cyclic subgroup of order prime to p. It is called elementary if it is p-elementary
for some prime p. Given a group G we can consider the family of all its elementary subgroups.
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Theorem 5.10.5. (Brauer’s Induction Theorem) Every virtual character of G is a Z-linear combination

of characters induced from 1-dimensional characters of elementary subgroups of G. That is, any element
f € ch(CJ[G]) is of the form

f= Zai -Indl(_;l[l,bi,
H;

for some integers a;, elementary subgroups H; of G and 1-dimensional characters ;: H; — C*.

Brauer’s motivation was to prove this way that L-functions constructed in number theory
have meromorphic continuation to the complex plane. This factorization formula expresses an
L function associated to a Galois extension of Q with Galois group G as a product of Dirichlet
L-functions to powers a;. For Dirichlet L-function one knows analytic continuation and so, if
one knows all the a; are positive, one would even get holomorphic continuation, which is still
an open problem known as Artin’s Conjecture.

6. EXAMPLES

6.1. Decomposing the standard representation of S,,.

Example 6.1.1. Consider the standard representation p%! of S, for n > 2. We saw that it decom-
poses as a direct sum 1 & 0. Let x5! be the character of p>* and x°'? of p°/0. Then

XSt = S0 1.
Claim:||x°||? = 2.

Proof. Let T ={1,...,n}. Let S, acton T x T diagonally,

o(a,b) = (o(a),o(b)).
It is easy to see that there are two orbits for this action: the orbit of (1,1) and the orbit of (1,2).
Thus, by Cauchy-Frobenius formula,
1
|Sn]

Y. I(0) =2.
oeSy,
Note that I(¢), the number of fixed points of ¢ in its action on T x T, is equal to the square of
the number of fixed points of ¢ in its action on T because the fixed points of ¢ in its action on
T x T are of the form (a,b) where both a and b are fixed points of ¢ in its action on T.
On the other hand, x**(¢) is the number of fixed points of ¢ in T. We find

1 _
Ix°H* = 5] Y. x(o)x(o)
ni ges,
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5t0 and 1 are real valued, we find

12 = 102 + 2063, 1) + 1012

Moreover, the quantity (x°*Y,1) is the dimension of the invariant subspace of p"? and so is
a non-negative integer. Thus, all the numbers in the formula are non-negative integers and
|1]]? = 1. It follows that | xo||*> = 1 (and {x1, xo) = 0). This is a another proof that p*? is an
irreducible representation.

Now, using that x

6.2. The case where G is abelian. If G is an abelian group of order n then n = h(G). As we
have precisely n irreducible representations, the formula

h
Gl = Y dim(p;)?
i=1
shows that each irreducible representation is one-dimensional. We knew that already.

6.3. Character tables. In the following we will give the character tables of certain groups of
small order. The columns will be named by representatives to the distinct conjugacy classes in
the group, and the rows will be named by the various characters. The number [x] appearing near
a representative for a conjugacy class indicates how many elements are in that conjugacy class
(which is handy when calculating inner products of characters). Note that if p is 1-dimensional,
p is equal to its character x,.

As the groups Z./27,7./3Z and (Z./2Z.)? are abelian, we have the following character tables.
For typographical reasons, we use X1 to denote the character of the trivial representation 1.

\ 0m 1m

Xl‘ 1 1
Xz‘ 1 -1

Table 1: Character table of Z /27

‘01]‘ 1 ‘ 2111

[
x| 1 1 1
X2 1 e2m’/3 64711' 3
X3 1 64711 3 E27'(1 3

Table 2: Character table of Z/3Z

\ 0 1 ‘ (1,0) ‘ 0,1) m ‘ (1,1) 13

xi| 1 1 1 1
x| 1 1 1 1
x| 1 1 1 1
xa| 1 1 1 1

Table 3: Character table of (Z/27Z)?
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Remark 6.3.1. Note that the rows of character tables should be orthonormal vectors (but be care-
ful when calculating the inner product - every entry x(x) must be weighted by the size of the
conjugacy class of x that appears as [y] in the heading of the column). It is also true that the
columns of the character table are orthogonal - see the Exercise 19.

Another check that could be performed is based on the following. Recall that

h
Xors = ) xile) - Xi-

i=1
(We are using here e to denote the identity element so as to avoid confusion when the group
is abelian.) That means that if we multiply each row y; in the character table by x;(e) (which
is listed in the second column — the column of the identity element) and then sum up all the
rescaled rows, we should get a row vector of the form (|G|,0,...,0). Sometimes we can turn
that around and find a missing character. This is our next example.

6.3.1. The character table of S3. Consider the group S3. We have S8’ = Z/2Z and so there are
precisely two 1-dimensional representations. These are the trivial representation 1 = x; and the
sign representation x®&". Since we have

6 =1%>+ 12+ sum of squares,

where each square is at least 22, we conclude that there is a unique additional irreducible rep-
resentation of Sz and it is 2-dimensional. From the remark above, we can even figure out its
character:

2x3 = X" = x1— xo-
We thus find the character table:

|1 m|(12)m | (123)

x| 1 1 1
x| 1 1 1
x| 2 0 1

Table 4: Character table of S3

Luckily, we have a model for this irreducible representation: S3 = D3 acts on the equilateral
triangle in the plane with the linear tranformations; this is the representation p”'*"¢ considered
previously.

o _ . cos(27t/3) sin(27m/3) \ __ —-1/2 /3/2
y= (23) = ( 01 O) X = (123) AN <7sin(27'(/3) cos(27'r/3)> - (—\@/2 71/2) ’

We easily check that the character of pP'*"¢ is x3.

We actually have yet another model for this representation arising from the standard rep-
resentation of S3: this model consists of the vectors in C3 whose coordinates sum to 0, where
S3 acts by permuting the coordinates. A basis for this 2-dimensional space is given by u =
e1 — 2,0 = ey — e3. In this basis we have

y=23) (%), x=02)«(17).

We called this representation p*"0.

These two representations, p**¥ and p?*", are isomorphic — we see they have the same char-
acter — but that is not immediately visible from the matrices. There “ought to be” an invertible
matrix M such that conjugation by it takes the first representation to the second.

There is yet a third model for this irreducible representation and it is Indif3 X where yx is any
of the two irreducible one-dimensional characters of Az. Cf. Example 4.2.4.
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6.3.2. The character table of D4. Consider the case of G = D4. The commutator subgroup is given
by {1,x?} and G/G’ = (Z/2Z)?. We can thus lift every one-dimensional representation p; of
(Z./2Z)? to D4 and get a one-dimensional representation
0i: Dy — (Z/2Z)* — C*.
This gives us the four 1-dimensional representations of D4. Once more, by using the formula
|G| = Y, dim(p;)?, we find that there is a unique additional irreducible representation and it
is 2-dimensional. A natural guess is the representation coming from the action on the plane:
y=(23) e (3'9), x=(1234) < (%}).

(This is the representation we have denoted pP'™* previously.) From this we find the following
values for its character:

1 x x> 23 y xy xy 2%y

xPene 2.0 2 0 0 0 0 O

We calculate that ||x”*|| = 1 and therefore this representation is irreducible (even over the
complex numbers!). Thus, the character table is:

1w |xe|x®m|y el xye

xl 1|1 1 1 1
x| 1 [ -1 1 11
x| 1 |1 1 1 [ 1
xal 1 |1 1 -1 1
xPlre 2 [ o | -2 0 0

Table 5: Character table of Dy

To illustrate how useful this information is, let us consider Dy as a subgroup of S4 and let
p: D4 — GL4(C),

be the restriction of the standard representation of S4 to Dy (where x = (1234),y = (24) and
xy = (12)(34)). Recall that x ,(c) is the number of fixed points of ¢. Thus, we find that

T xp 220 yRooxyel
Xo 4 0 0 2 0

Therefore, (Xp,x1) = (Xp.X3) = L (Xp:X2) = (Xp,xa) = 0 and (xp,x”"*) = 1. Thus, p
decomposes as

0 = p1®p3dpF.
Here p; is the trivial representation and p; is the representation where x? and y act trivially, but
x acts as multiplication by —1. Consequently, there is a coordinate system on C* in which Dy

acts as follows . .
-1 1
x»—>< 01)/ yH( 10)‘
-10 01

Also visible from these calculations is that there is a unique line that is fixed by the action of Dy.
Indeed, the dimension of the invariants is the multiplicity of the trivial representation which is
equal to 1.
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6.4. Representations of S;. To begin with, the number of conjugacy classes of S4 is p(4) = 5.
Thus, there are 5 irreducible representations. As the commutator of Sy is Ay, Sj’lb = Z/27Z and
thus has precisely two 1-dimensional representations that must be the trivial one x; and the sign
representation x*8". We also know the 3-dimensional irreducible sub representation p*? of the
standard representation.
As we have
24 =12 + 12+ 3% + %%+,

we conclude that S4 has a 2-dimensional irreducible representation p and an additional 3 dimen-
sional representation T and this list (x1, x*", pSt'O, p, T) is the full list of irreducible representa-
tions of Sy.

Recall the surjective homomorphism with kernel V = {1, (12)(34), (13)(24), (14)(23)} - the
Klein group,
Sq4 — S3,

by means of which we can pullback the irreducible 2-dimensional representation of S3. We get
a representation p whose character y is

1 (12) 16 (123) 151 (1234) 6 (12)(34) 3]
x 2 0 1 0 2

Being a pullback of an irreducible representation, it is of course irreducible, but one can also
check that || x||*> = 1.

Now consider the representation Hom (p%8", p
uct x*0 . x%8" = x50 . x o and thus is given by

st0). Its character, by Corollary 5.4.2, is the prod-

|1Tm (12) 6 (123) 81 (1234) 61 (12)(34) B3]
X3 1 0 -1 -1
X Xsgn | 3 -1 0 1 -1

st,0 st,0

One calculates that [|x*" - xsen[> = 1 and so x*'¥ - xegn is the character of the missing irre-
ducible representation 7. We conclude that the character table of S4 is the following:

|1Tm (12) 6 (123) 81 (1234) 61 (12)(34) 1)

xi| 1 1 1 1 1
81 -1 1 -1 1
x| 2 0 -1 0 2
"l 3 1 0 -1 -1
X<| 3 -1 0 1 -1

Table 6: The character table of Sy.

6.5. Representations of A;. The commutator of Ay is V, the Klein group. As A4/ V is a group
of order 3, A4 has three 1-dimensional representations. Denote them X1, x2, x3. On the other
hand, it has 4 conjugacy classes that are represented by 1, (12)(34), (123), (132). We conclude
from 12 = 12 4 1% + 12 + x? that A4 has precisely one more irreducible representation p and it is
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3-dimensional. A natural guess is that this representation is obtained from the action of A, on a
tetrahedron, but here we proceed differently. We have

A4 — 54 — GL3(C),
by means of p*'?. We can easily calculate the character x of this representation:

element | 1 (1) | (12)(34) 131 | (123) 141 | (132) [4)
x| 3| 1 | 0o | 0

As [|x||> = 1 this is an irreducible representation of A4 too. The character table is therefore
the following:

|1 (12)(34) 3 (123) @ (132)

x| 1 1 1 1
X2 1 1 eZm 3 e4m 3
X3 1 1 e47Ti 3 82711' 3
x| 3 1 0 0

Table 7: The character table of Ay.

6.6. Representations of D,. The commutator subgroup of D, is (x?) and so, if  is odd D% =
Z./2Z, and if n is even D% = (Z/2Z)?. Thus D, has two 1-dimensional representations if
is odd, and four if n is even. We also know ppl‘me, an irreducible 2 dimensional representation.
Note though that at best the sum of the squares of these irreducible representations is 8 which
is almost negligent compared to 2n if n is large. That is, (except for D3 and D;) we are missing
most of the irreducible representations.

We will now construct irreducible representations of D, as induced representations. Fix an
n-th root of unity ¢ # 1 and let

pé : (x) — CX
be the 1-dimensional character given by the homomorphism
pe(x") = ¢
As { # 1 varies over all n'" roots of unity, we get n distinct 1-dimensional characters of H = (x).
The representation
D,
Indj;" o7

has the following description. The elements {1, y} form a set of representatives for the cosets of
H and the formulasy -y =1-1,x-y = y - x~ ! allows us to calculate the action of Dj:

a O 0 a
o (§%) v 08, xye (LG)-
The character x; of Indg” p¢ is given by

xe(x) ="+ x(x"y) =0.
We see that x; = Xz and otherwise the characters are distinct. Therefore, for n odd, this gives
us (n — 1) /2 distinct two dimensional representations.
These induced representation are, in fact, all irreducible. This can be easily deduced from
Corollary 5.9.2 as the character of H given by t — p,(y~'ty) is the character p_, # p, (using,
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again, that n is odd). In addition, still for n odd, we have two 1-dimensional representations.
But, as

12+12+”T_1-22:2n,

we have found all the irreducible representations of D,, for n odd. Similar considerations apply
for the case n even.

7. FURTHER OPERATIONS ON REPRESENTATIONS

7.1. The dual representation. Let (p, V) be a representation of G. Considering C as a trivial
representation of G, V* = Hom(V, C) is also a representation p* of G, where, as per our defini-
tions,
(0" (8)9)(0) = p(p(g™")0).

It is called the dual representation.

Let us choose a basis for V, viewing thus p as a homomorphism p: G — GL,(C). As is well-
known, relative to the dual basis the dual operator is representation by the transpose matrix.
Thus,

In particular, the characters satisfy:
X‘D* — X o+
This is potentially confusing, as one often uses the notation M* for a matrix M to mean ‘M.

Then, p*(g) = 'p(g) ™! # 'p(g) in general, although Tr(*p(g) ") = Tr('p(g)).

7.2. Tensor products of representations. Let (p, V), (T, W) be two representations of G. Then
V @k W is also a representation of G,

g p(g) ®T(g).
Let {v1,...,v,} be abasis for V and wy, ..., w,, a basis of W. Then we have a basis
VM1 RQWY, ..., 03 QW1,01 RQW2,...,0, QW2 ..., 01 Q@ Wyyye..,0n & Wiy

for V@ W. A calculation shows that if p(g) = A = (a;;), T(g) = B = (b;;), then p(g) ® T(g) is
given by the Kronecker product A x B

Abyy  Abip -+ Abiy

Ab21 Abzz e Ame
AXB= . .

Abml Abmz e Abmm

We will not need it, but it’s worth knowing that if the characteristic polynomial of A is the poly-
nomial [T ; (x — &;) and the characteristic polynomial of Bis [T~ ; (x — ;) then the characteristic
polynomial of A x B is the polynomial of degree mn given by [T; ;(x — a;B;). A much easier fact
is that

Tr(A x B) = Tr(A) - Tr(B).

And so, letting x, denote the character of p, etc., we have
Xoot = Xp * Xt-
As consequence we find that the character of Hom(V, W) = V* @ W is
Xo* " Xt = Xo Xt
as we have previously calculated.
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7.3. Symmetric products and alternating products. The importance of symmetric products
and alternating products goes much beyond representations of groups and so it’s worth to spend
some time on these notions.

7.3.1. Graded rings. Let R be a ring. R is called a graded ring if R decomposes as a direct sum of
abelian groups
R = &3 oRn,

such that for all m, n,

RmRn g Rn+m-
Note that Ry is a subring of R. A two-sided ideal I<IR is called graded if

[=&%,l, I,CR,.
In this case, the quotient ring R/ I is also graded as
R/I= &% (R, /1,

It is not hard to prove that if 7; are elements R such that each 7; € R,,;) then the two sided ideal I
generated by them ({r;}) is a graded ideal. Sometimes we will use the notation R = &} ,R"
instead of R = @}’ (R,.

To be precise, what we described are IN-graded rings and ideals. We will also encounter
Z./27Z-graded rings in the assignment. These are ring R with a decomposition R = R @ Ry
such that R;R; C R;;j, where i + j is calculated modulo 2. There is a similar notion of a graded
ideal.

7.3.2. The tensor algebra and the symmetric algebra. Let R be a commutative ring and let V be an
R-module. We define
(V) = & T (V),

where

(V) =R, T'V)=V, T (V)=V@rV®g- @V (n— times).
T*(V) is a graded R-algebra: for every m and n there is a natural map °
T"(V) x T"(V) = T" V), (01 @ Q0w @ QW) =01 R Q@Upy QW X+ -+ @ Wy.
This extends to define a product law on T*(V), the tensor algebra of V.

5To be honest, to show that this map is well-defined requires an argument. For that we assume that T" (V') “solves”
the problem of R-multiadditive, or even R-multilinear, maps V x --- x V. — W for any W, much in the same way
that V ® V “solves” the problem of R-biadditive, or bilinear, maps. See also § 7.4. For fixed (wy, - - - , wy,), the map
VS T (0, ) R 0 R QU QW - @ Wy,
is an R-multilinear map. Thus, we get a well-defined homomorphism of R-modules
Pl T =T, 0@ QU5 01Q - QU QW ® - - ® W
This provides an R-multilinear map

V" — Hom(T™, T"™), (w1, ..., Wn) = Py, 00)

and one concludes a homomorphism

T"(V) — Homg(T™, T"™™),
given on pure tensors by

w1 Q- Qwy (P(w] ..... Wy )*
We finally get a well-defined map

given on pure tensors by

(Ul®"'®vmrwl®"'®wn)’_>(P(w] w,,)(vl®"'®vnz):Ul®"'®vm®wl®"'®wm

.....

and the fact that it is an R-bilinear map.
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Assume that V is a free R-module of rank d with a basis e, ..., ez, then T"(V) is a free R-
module of rank d" with the basis

{ei1®"'®ein:1§ij§d}~

We let I be the two-sided ideal generated by all the tensors {x ® y —y ® x : x,y € V} where
1 <i,j <d. Then I is a graded ideal

=& ol

where, in fact [y = I; = 0, I, is the R-span of the elements {x ® y —y®@x : x,y € V} and I, is
the R-span of the elements

M@0 @ Xy — Xp1) @ Xg2) @ @ Xp(y) : Xi € V,0 € Sy}
We define the symmetric algebra
Sym* (V) =T*(V)/I =&, T"/1,,
and denote its graded pieces by
Sym" (V) :=T"(V)/I,.

We shall denote the image of the tensor v1 ® - - - v, of V¥" in Sym" (V) by v - - - v, (remembering
that we are allowed now to switch the order of the v; as we please).
Suppose that R = C. If G acts on the finite dimensional vector space V linearly, then it acts
linearly on each T"(V'), and so on T*(V), by

g 011Q QU =801 R®ZV Q- &Q gUy.

The ideal I is a G-representation as well and so Sym*® (V) is a graded G-representation and each
graded piece is a finite dimensional representation of V. It is not hard to see that

{eil®...®ein:1§i1§"'Singd}

is a basis of Sym" (V) and therefore

dim(ym'(v) = ("),

n

Remark 7.3.1. Choose a basis x1,...,x; to V. It is not hard to see then that a basis for V" is
{xilxiz Cee X, Z] S {1,. . ,d}}

(It has cardinality d".) Thus, we may view T* (V) as the ring of polynomials in the non-commuting
variables x1,...,x;. To bring out this interpretation we have on purpose written x;, x;, - - - x;,
instead of x;, ® xj, ® - - - ® x;,. From this perspective, Sym*® (V) can be interpreted as the ring of
(usual) complex polynomials in the variables x1, ..., x,, and a basis for Sym” (V) is the given by
the monomials

{xlf---xzdd:ijzo,i1+---+id:n},

+d—1
n d )

and has cardinality (
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7.3.3. Example. Let us deviate now from our usual conventions and allow G to be the infinite
group GL,(C). Let us take V = C? the standard representation of GL,(C), but let us think about
it as linear forms ax + By, where a, p € C. A matrix (?}) acts by sending x (= /(1,0)) to ax + cy
(="(a,b)) and y to bx + dy. That is, the action amounts to linear change of variables.

In this interpretation, an element of Sym"(V) is a homogeneous polynomial f(x,y) of de-
gree n and the action is

f(x,y) — f(ax + cy, bx + dy).
We get therefore a series of representations of GL,(C), {Sym"(V) : n = 0,1,2,...}. There is

also the series of one dimensional representations {det” : n € Z}. Combined, we find that
representations

det” @ Sym’(V), a€”ZbeN.

It turns out that all these representations are irreducible and non-isomorphic. Furthermore, ev-
ery algebraic representation of GL,(C), i.e., every homomorphism of groups GL,(C) — GL,(C)
given by rational functions (2%) — (fij(a,b,c,d)), where the fj; are of the form of a polyno-
mial in 4, b, ¢, d divided by some power of the determinant, is one of these representations. This
gives a complete classification of the representations of GL,(C). A similar theory exists for any

algebraic group, or even Lie group, in place of GL,(C).

7.3.4. The character of Sym?. Suppose that G acts on V with character x. The character of the
representation T?(V) is therefore x2. To calculate the character of Sym?(V) take an element
¢ € G and a basis {ey,...,e;} for V on which it acts diagonally, say by diag(a,...,a,). It acts
then on ¢;e; by a;a; and so we find that the trace is Y.i<jinj. We arrive at the following formula

G Kegm ) (8) = 3 (v + xv(%).

Let us look at an example. Recall the character table of S4.

|1 (12) 161 (123) 181 (1234) 161 (12)(34) 13l

x| 1 1 1 1 1
51 -1 1 -1 1
x| 2 0 -1 0 2
X1 3 1 0 -1 -1
xc| 3 -1 0 1 -1

Sym?(x) is the character of a 3-dimensional representation and is calculated as follows:

\ 1T (12) 1 (123) 11 (1234) 61 (12)(34) 31
x| 2 0 1 0 2
X2 4 0 1 0 4
x| 2 2 -1 2 2
Sym?(x) | 3 1 0 1 3

Using characters we find that Sym?(x) is reducible and in fact

Sym*(x) = x1 + X
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7.3.5. The exterior algebra. The exterior algebra is likewise constructed as a quotient of the tensor
algebra by a graded ideal | = ®;_,J,. But now we want tensors to anti-commute. Thus, we
want that under the map

" — N\'V:=V"/],
that the image of v1 ® - - - v, is equal to the image of sgn(c)v,(1) ® - - - V(). It turns out that a
better condition is to require that if in v1 ® - - - v, we have v; = v; for some i < j then its image

in A*(V) is zero. This implies the previous relation, but is a strictly stronger condition if 1 = —1
in R. Thus, we define

Ju =Spang{v1 ® - -- ®v, :v; € V,3i < js.t v; = vj}.
Then | = @7 ] is a graded two-sided ideal and we define the exterior algebra
NV =T"(V)/];
It is an R-algebra. We denote the image of v; ® - - - ® v, in \* V by
(S ANERAN /S
If R =kisafield, eq,...e; is a basis for V, we can calculate that

{ei, Ao Nei, 1<y <o <y < d}

is a basis for A" V and so
d
dimg (/\" V) = <n>
To be honest, this is not obvious; see Exercise 8 for details. Some notable special cases are
Nv=k ANVv=v, NVv=k N V={0}vn>d
Example 7.3.2. Decomposition of V2. Assume that V is a vector space over C. The surjections
VeV —Sym*(V), VeV-— NV,

have sections. For the image of the first section, we can take the subspace spanned by the vectors
{5(ei®ej+ej®@e) : 1 <i<j<d}, of dimension d(d + 1)/2, and for the other the subspace
spanned by {}(e; ® e; —ej®¢;) : 1 <i < j < d} of dimension d(d — 1) /2. Abusing notation, we
denote them also

sym*(V)cv, NVcV.

Note that A V maps to zero on the projection V ® V — Sym?(V) and so we find that the two
spaces are complementary and, by dimension count,

VeV =_Sym*(V)s N\ V.
Passing to characters, and making use of Equation (6), we find the identity

xv(g)* = %(XV(g)Z +xv(g) + %(%v(g)2 — Xo(8%)),

where xv is the character of the representation V.

Example 7.3.3. Let p°'? be the irreducible representation of dimension n — 1 of S,, contained in
its standard representation pf. We claim that A? p'? is irreducible as well forall 1 < a < n — 1.
We follow Fulton-Harris.

Lemma 7.3.4. Let x be the character of \° p°* of Sy, for some 1 < a < n — 1. Then
Ix1I* = 2.
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Proof. Choose a basis ey, ...,e, for pSt. Note that there is a bijection between subsets B C

{1,2,...,n} of a elements and basis elements of \* pSt; to B = {i; < --- < i,} is associated
the basis element ¢;, A - - - Ae;,. Define for o € S, and such a subset B,
0 o(B)#B,

c{B} =11 o(B) =B, o|giseven,
—1 o¢(B) =B, olp is odd.
The point of this definition is that

=) o{B}.
B

As this is a sum of integers

Therefore,

() ofB})?

c€S, |Bl=a

- T ¥ ¥ ofBtofc)

0€Sy |B|=a |C|=a

Z Y. ), o{B}-of{C}
\B\—a\C|—a oESy

o(B)=B

o(C)=C

X =

Now, any permutation ¢ such that o(B) = B and ¢(C) = C can be written as product,
U = 01020304,
where,
01 € S(1,.my—{Buc}, 02 € Sp—¢c, 03 € Sc-p, 04 € Spnc.

Letalso ¢ = /g := §B N C. Below, we should note that the argument also works for ¢ = a under
the conventions Sp = {1} and sgn(1) = 1. Then, continuing our calculation, we find that

<x,x>= Y Y Y Y Y Y sgn(ou)?sgn(ca)sgn(os)

\B\_a\C|_a¢71€S —(2a—0) 02ES,_¢ 03€S,_y 04€Sy

= Z Y (n—@a—0))-00x (Y sgn(c))?
\B\ a|Cl=a 72E€Sa¢

In the calculation above we should note that ¢ is really /g, i.e. it depends on B and C, but we
omitted that from the notation which is quite cumbersome as it is. But, we should note now that
ifa—{¢>T1then), c5 ,sgn(c2) = 0as this sumis 1! - ()Xsgn, 1) = O for the sign representation
and the trivial representation 1 of S,_,. To continue the calculation we consider separately the
case ¢ = a where B = C and the case / = a — 1 where BN C has a — 1 elements. We find, using
that (},) is the number of choices of B,

<XIX>:% Y. (n—a)al+ ) Y, (nn—a-1)(a—1)
T e

:nl!<<2)(n—a)!tl!+ <Z>a(n—a) (n—a—1)! (a—1)>
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Corollary 7.3.5. The representations \* p°*° are irreducible forall 1 < a <n —1.

Proof. We may think of \? o0 as a sub-representation of \” p*!. If

N o5t = @;0%,

is the decomposition into irreducible representations then, by the Lemma,
2 2
2= |[x|I* = Yai-
1

There is only one possibility, that there are two irreducible representations in \? p°* and they are
non-isomorphic. But then, as A\? p'? is a proper sub-representation is must be equal to one of
them. U

This is quite useful. For example, for S5 we get this way 4 irreducible representations of
dimensions 4,6,4,1 (these integers are the values dim(/\“pSt'O) = (;L),a = 1,2,3,4). They are
all distinct, which is clear except for the two 4-dimensional representations where it follows
from calculating the characters. The 1-dimensional representation is the sign representation. We
also have the trivial representation 1. As S5 has 7 = p(5) irreducible representations and their
dimensions satisfy 120 = 5! = 12 + 12 + 42 + 62 + 42 + x? 4+ 2, we conclude that there are two
additional irreducible representations, both of dimension 5. It is not entirely clear how to realize
them. See Exercise 24.

7.4. Tensors, wedges and multi-linear forms. Let R be a commutative ring. Thus, every R-
module is naturally an R-bimodule and so tensor products retain the property of being R-
modules. Let V and W be R-modules. An R-d-multilinear map of V into W a function

frVXVx- - xV—=W, (v1,02,...,05) = f(v1,02,...,04),

which is R-linear in each variable separately. Thatis, foranyi =1,...,d, v;, vg eV,r,v € R, we
have
f(oy, -, roi+ 70, ...,00) =rf(o1,-,0i,...,00) + 7 f(v1,- - ,0},...,0q).
The property
floy, - ,rvi,...,09) =rf(v1,- -+ ,0i,...,04)

follows from that. A particular case is d = 2 giving us the notion of an R-bilinear pairing; note
that this a different notion than R-biadditive function, although every R-bilinear pairing is also
R-biadditive. Nonetheless, the d-fold tensor product V@4 over R serves the same function.

Lemma 7.4.1. To give an R-d-multilinear map V* — W is to give a homomorphism of R-modules
Vel W

Proof. Let f be a multilinear map then f is also R-multiadditive and by (a slight extension of)
the results we have proven, we get a well-defined homomorphism of abelian groups

V®d—>W, 01®02®---®vdHf(m,vz,...,vd).

Now, r - 11 @ ®---Qv; = (rv1) ® 12 ® - - - @ vy which is mapped to f(rvy,vy,...,0v5) =
rf(v1,02,...,04). That shows that the map ved  Wis automatically R-linear. The converse is
very similar. U
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Let us use the notation
V* := Homg(V,R).

Some care is needed because in general (V*)* # V; although there is a natural map V — (V*)*
taking v € V to the function ¢ — ¢(v), this map needs not be injective (or surjective). A good
case to keep in mind is R = Z, V = Z/2Z where V* = {0} and so V** = {0} and the map
V — V**is not injective. Nonetheless, in this notation, we find

{ R-d-multilinear maps } N { homomorphisms of R—modules}
from Vto W ved 5 w

We say that an R-d-multilinear map f from V to W is symmetric if for any ¢ € S; we have
f(Oe1)s -1 0o(a)) = f(01,- -+, 04)

Equivalently, if the map f: V®? — W vanishes on the R-submodule spanned by Vo) ® -+ ®
Ug(d) — 01 &+ @ 0g.
We say that f is antisymmetric if for any 1 <i < j < d we have

f(vl,...,vd) =0 ifUl' IU]'.

Equivalently, if the map f: V® — W vanishes on the R-submodule spanned by the tensors
01 ® - - - ® vy with v; = v}. This implies that for any ¢ € S; we have

f(Os1)s -+ Vo(a)) = sgn(o) f(v1,...,04).

Corollary 7.4.2. There are natural homomorphisms of R-modules

{ R-d-multilinear symmetric maps } PN { homomorphisms of R—moduleS}
from V to W Sym?V — W

and

{ R-d-multilinear antisymmetric maps } PN { homomorphisms of R—moduleS}
from V to W ANV W

Corollary 7.4.3. (Uniqueness of determinant) Let V be a free R module of rank d. Up to a scalar, there
is a unique d-multilinear anti-symmetric map V x - -- x V. — R (i.e., a determinant map).

Proof. Such maps correspond to homomorphisms of R modules

NV — R

But A?V = R and Homg(R,R) = R. O

Remark 7.4.4. 1f we choose a basis for V we can represent an element of V by a column vector in
R? and we can represent an element of V x - - - X V (d-times) by a d X d matrix with entries in R.
A d-multilinear antisymmetric map is then a function

Md(R) — R,

that is multilinear in the columns and changes sign when we switch the columns and (even
stronger when 2 is not invertible in R) vanishes when two columns are the same. That is, this
function has all the properties of the determinant and the Corollary asserts that it must be equal
to the determinant up to a sign.
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7.4.1. Existence of invariant forms. Suppose that G is a finite group acting on a finite dimensional
vector space (p, V). It is a natural question to ask if there is a non-zero G-invariant bilinear
form on V.® Using the methods we developed, this is the same as asking if (Sym?(V))* has a
G-invariant vector. Now, if x denotes the character of (p, V), the character of SymZ(V) is, by
Equation (6),

(xv(8)? + xv(8?))-

N[ —

Xsym?(v) (8) =
Thus, the character ¢ of (Sym?(V))* is

P() = 5 (v (8) + v (sD).

2
The dimension of the invariant subspace is ﬁ Yeec T(xv(8)” + xv(g?)). Since this is an integer,
we can take the complex conjugate and conclude:

Proposition 7.4.5. V has a non-zero G-invariant symmetric bilinear form if and only if
1 1 2
1G] Z E(XV((‘{) +xv(g?) #0.
g€G
More precisely, the dimension of the vector space of invariant symmetric bilinear forms is equal to
2
A Tee d0v(9)* + v ().
If V is an irreducible representation of G then using additional considerations — see Exercise 23
— one finds that there is at most one G-invariant bilinear form on V, up to scalar (symmetric or
not). Admitting this we conclude:
Corollary 7.4.6. Let V be an irreducible representation of G. Then there is a symmetric bilinear G-
invariant form on V if and only if ‘1@ Y ecG %(Xv(g)2 + xv(g?)) # 0, in which case this form is unique
up-to-scalar.

8. REPRESENTATIONS OF THE SYMMETRIC GROUP

The representations of the symmetric group are a rich area of research, with a very combina-
torial flavour, as to be expected. We will only provide a short introduction, very far from giving
a true understanding of this topic.

8.1. Young tableuax. Let n > 1 be an integer and A be a partition of n that we write as
A=(M>A > >A),
where the A; are positive integers whose sum is n. To this partition we associate a Young dia-

gram having A; boxes in the first row, A, boxes in the second row and so on. For example, to the
partitions (4,3,3,1) and (5,4,2,1,1) we associate the diagrams

®We have asked that before for hermitian forms, saw that the answer is yes, and put it to good use in proving that
every representation decomposes into a direct sum of irreducible representations in Theorem 5.1.2. Although one
could address this question using the same methods we are going to use below, it is a bit convoluted and so we will
not do it here.



COURSE NOTES - MATH 570 49

Conversely, a Young diagram defines a partition. If we transpose the Young diagram, making
the columns into rows, we get the conjugate partition A’. The conjugate diagrams to those
above are, respectively,

corresponding to the conjugate partitions (4,3,3,1) and (5, 3,2,2,1), respectively.

A Young tableau is obtained by numbering the boxes in the Young diagram using each of the
numbers {1,2,...,n} exactly once. And by doing that we also create a permutation — its cycles
are defined by the rows — with associated partition A.

Here are two Young tableaux associated to the same Young diagram. The first one is called
the canonical, or standard, one.

4|6
718
5

=|olW|IN

‘\o\lus._\

Given a tableau T there is an associated conjugate tableau T'. Even if T is standard, T is not
standard.

To a Young tableau we associate two subgroups of S,. They depend on the tableau, not just
on the underlying partition A, but since they depend on the tableau up to conjugation only, we
will usually be lax and write these subgroups as Py and Q,. If you will, they correspond exactly
to the standard Young tableau. At any rate:

P =Py = {o € S, : 0 preserves every row of the tableau}

and
Q = Q) = {0 € S, : 0 preserves every column of the tableau}.
For example, for the tableau

1

4

718

9
we have

P =503 X Sq56) X Sgy, Q= 51470 X S(258) X S(36)-
For the tableau

2|46
31718
915
1

we have
P=5046 %5378 X S50, Q = 51239} X 5457} X S{68}-
To a partition A we associate two elements of the group ring of S, as follows
ay= Y o, by= ) sgno-o.
oEP), ceQx

And we define the Young symmetrizer of A as
cy=ayb, € C[Sn].

If we keep the Young diagram but take another tableau associated to it, the elements a,, b, c) are
instead ta,t 1, by T}, e, T ! for some T € S, and any T will arise this way for some tableau.
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Now, the point is that for every element y of a group ring C[G], the right ideal C[G]y is a left
C[G]-module. Thus, it defines a representation of the group G. In fact, the natural map
C[G] — C[Gly, X — XY,

is a homomorphism of representations. Thus, by letting y take different values we get different
quotient representations of the regular representation C[G|.

8.2. The irreducible representations V).

Theorem 8.2.1. Let A be a partition of n. Then
V)\ = C[Sn] *C)h

is an irreducible representation of S,. Every irreducible representation of S, is isomorphic to a represen-
tation obtained this way, for a unique partition A.

Proof. We will need a few lemmas. We follow Fulton and Harris.

Lemma 8.2.2. Let T be a tableau and P = Pr,Q = Qr be the associated stabilizers, a = ar =
Lpep b= br = Ygeqsgn(q)q, ¢ = cr = L) sgn(4) p4.
(1) Forp € P,pa = ap = aand pc = c.
(2) Forq € Q, qb = bg = sgn(q)b and cq = sgn(q)c.
(3) For p € P,q € Q, pcq = sgn(q)c and, moreover, any element x of C[S,] such that pxq =
sgn(q)x, forall p € P,q € Q, is a scalar multiple of c.

Proof. The first two claims are rather clear given the explicit form of a and b. As ¢ = ab the
assertion pcq = sgn(q)c is clear too. The main issue is to prove that this property characterizes c
up to multiplication by a scalar. Let x € C[G] be an element such that

pxq = sgn(q)x, VpeP,geQ.
Write x = ), 114¢. The group G is a disjoint union of double cosets G = U, Pg;Q and it is clear
that the coefficient 1o, determines the coefficient 1, for any ¢ € Pg;Q. For example, if ¢ = pgiq
then, on the one hand, pxq = sgn(q)x = ¥, sgn(q)ngg and, on the other hand, pxq = ¥, ngpgq
and we find that

(7) ng = sgn(q)ng,, if g = pgiq.
For example, for ¢ = pq € PQ we have

ng = nq -sgn(q).
Note that PN Q = {1} as any permutation fixing every row and every column of a Young
tableau fixes all its entries. And so, defining, n, = n; - sgn(q), and ng = 0 for all g ¢ PQ, is
well-defined and gives us, in fact, n; - c.
What remains to prove is that if ¢ ¢ PQ then n, = 0. If ¢ ¢ PQ we will prove that n, = 0 by
finding a transposition T such that T € P,¢g"'t¢ € Q. Then, using Equation (7),

Mg =MNpggirg = sgn(g_lrg)ng = —ng,
and so
ng =0.
How can we find such a transposition? Let us be more precise and let T be the standard Young

tableau associated to A. The subgroups P, Q and the elements a4, b, ¢ are really Pr, Qr, ar, br, ct.
Let us consider the tableau gT obtained by applying g to every entry of T. We have

Per = gPrg™', Qqr =gQrg "
We claim that if g ¢ PQ then there is a pair of integers i # j such that 7, j appear in the same
row of T and in the same column of ¢T. Given that, choose T = (ij). Then, as i,j, are in the
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same row of T, definitely T € Pr. As 1, j, are in the same column of gT, definitely T € Q,r and
SO gilrg € Qr. Thus, we are done once we prove the following lemma:

Lemma 8.2.3. Suppose that there is no pair of distinct integers that appear in the same row of T and the
same column of gT then g € PQ.

Before proving the lemma, it may be a good illustration to look at a particular example. Con-
sider the following Young tableau

3
6

T =

‘OOU‘IN

@‘\I%H

We PT = 5{1’2’3} X 5{4,5,6} X 5{7,8}/ QT = 5{1/4’7’9} X 5{2,5,8} X 5{3,6}‘ Let us take g = <15) (37)
Then

217
1]6
8

§T =

O | W[ =G

Then 1,2 appear in the same row of T and same column of ¢T (4,5 are another example). On
the other hand, let us take an element g that is clearly in PrQr, say g = (123)(78)(1479) =
(14879231). Then,

3|1

gT =

N|\O| 00|

We can verify that there is no pair of integers that appears in the same row of T and the same
column of gT. The lemma states that this, in turn, implies that g € PQ.

Proof. (Lemma 8.2.3) We can find p € P and g € Qgr such that ¢T and g(gT) have the same
tirst row. Indeed, find q by “raising to the top” in each column of gT the elements appearing in
the first row of T and use p to rearrange the first row of T so that pT and g(gT) have the same
tirst row. This is possible to do because of the assumption that no two integers appear in the
same row of T and the same column of ¢T —in particular, the integers in the first row of T are in
different columns of ¢T and so in each column of gT there is precisely one integer from the first
row of T.
In the example above, we can take g = (9842) and p = (123). Then

311 21311

5(6 _l4]5]6

. q(8T) = 5
9

pT =

‘@\‘l»&l\)

Now consider the tableaux pT,q(gT), where we erase the first row. Their, P and Q, so to say,
satisfy P C Pr,Q C Q. And we can repeat the process getting a p’, 4’ (in our example, p’ =
Id,q" = Id) and pass to third row to find p”, 4”, and so on. In our example, we will then use
P’ = (78),q" = Id.
Thus, we can find p € P,q € Qgr such that pT = g(gT). This implies that p = gg, or
pg~lg7! =1and
§=p-g 'q '§€Pr-g ' Qurg=PrQr.
U

O
Corollary 8.2.4. For any z € C[S,] we have cyzc) € Ccy. In particular, ¢ = nyc, for some ny € C.

Proof. (Corollary) Let x = cjzc). For p € P,q € Q, we have pxq = (pcy)z(caq) = sgn(q)cazcy =
sgn(q)x. Thus, x is a scalar multiple of c,. O
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We can now prove that V) = C[S,]c, is an irreducible representation:
It follows from the Corollary that c, V) C Cc,. Let W be a subrepresentation of V) and con-
sider cyW. There are two possibilities.

e ¢(,/W = Cc). This means that ¢y = cyw for some w € W. Then V), = C[S,|cy =
C[Sy]caw C C[S,]w C C[S,|]W C W and so W = V.

e )W = {0}. In this case we want to show that W = {0}. We need a lemma.
Lemma 8.2.5. Let G be a finite group and let W be isomorphic to a subrepresentation of C[G]. For

example, any irreducible representation of G has this property. There exists an element ¢ € C[G|
such that W = C|[G|¢ as a C[G]-module. Moreover, p*> = ¢.

Proof. We know that W is isomorphic to a subrepresentation of C[G], and so we may
assume that W is already a subrepresentation of C[G]. We can therefore decompose
C[G], as a C[G]-module, as

C[G] =Wa W,
and let ¢ be the projection map C[G] — W, which is a map of C[G]-modules. Now,
consider the element 1 € C[G] and its decomposition

l=9¢p+o0.

Obviously, ew(1) = ew(¢) + ew(c) = ¢. Therefore, ¢ (7) = Tew (1) = Tp. That is,
the projection map ¢w is multiplication from the right by ¢. Since ¢w is a projection,
@3 = gw and so @2, (1) = @w(1); equivalently, p* = ¢. O
We return now to the case of the symmetric group and W C V), such that cyW = 0. Then
W-W C (C[G]cy) - W = C[G] - (cAW) = 0. On the other hand, for ¢ as in Lemma 8.2.5,
¢ = ¢* € W- W and we get a contradiction, unless ¢ = 0. Namely, unless W = {0}.

That concludes the proof that V), is irreducible.

We note several consequences of the considerations above:

e Taking the case W = V), we get that ¢,V # {0} and so c, V) = Cc,.
e 3 =mn,c, for some n, € C (already from Corollary 8.2.4).
e Consider the linear operator T, which is the multiplication from the right by c,:

C[S,] — C[Sy], X — XCj.
As

co= ), sgn(q)pq
(p2)€PxQ
for every o € S, we have

T(c)=ccy= ), sgn(q) opq.

(Pg)€PxQ
From this we find that if we calculate the trace of T using the standard basis for C[S,]
then
Te(T) = n!

Now, the kernel of T, Ker(T), is a C[S,,]-submodule of C[S,] and the image of T, V), is
irreducible. If V) NKer(T) # 0 then in fact V), C Ker(T) and that implies T?> = 0. But
then the characteristic polynomial of T is ™ and in particular Tr(T) = 0. Contradiction.
Thus, Ker(T) doesn’t intersect V). On the other hand, the dimension of V), = n! —
dim(Ker(T)). Therefore, there is a direct sum decomposition as C[S, ]| modules:

C[S,] = Ker(T) & V.
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It follows that Tr(T) = dim(V)) - n, because T acts on V), by multiplication by 1n,. We
conclude that 7, = n!/ dim(V,), a rational number.”
e Consequently, we find that
1, 1

(ECA) = aCA-

We conclude that in fact %c ) is the idempotent defining V), whose existence is guaran-
teed by Lemma 8.2.5.

To complete the proof of Theorem 8.2.1 we need to also prove that if A # p then V) 2 V.

Write A = (A1 > Ay > ...),u = (u1 > p2 > ...). We say that A > p is the first non-vanishing
difference A; — p; > 0. This provides a linear (lexicographic) order on S;; for every A # u either
A>poru> A

Lemma 8.2.6. If A < p then cyC[G|c, = 0 and in particular cyc, = 0.

Note that the lemma implies that V), 2 V), for A # u. Indeed, if they are isomorphic, we may
assume A < y and then, on the one hand ¢, V) # 0, and on the other hand, ¢, V) = ¢,C[G]c, = 0.
So it’s enough to prove the lemma.

To prove the lemma, it suffices to prove that for all ¢ € C[S,] we have b)ga, = 0 and, in fact,
it suffices to prove that for ¢ € S,. It is thus enough to prove b, - ga,g~' = 0. One way to think
about it is that we can change the tableau T’ used to construct a, from T" to gT". So, it is enough
to prove that

bTElT/ =0,

where T is the tableau used to define b, (that we can assume to be a standard tableau) and T’
the tableau used to define a,, without assuming it to be standard.

The assumption that A < u implies that there are two integers i # j that are in the same col-
umn of A and the same row of T’. To prove that we introduce some (non-standard) terminology.
We will denote by T|[i] the i-th row of a tableau T and by ctnt(T[i]) the numbers appearing in it.

The proof is by induction on 7n, where the case n = 2 is clear as there is only one possibility
for A < p then, corresponding to the tableaux

r= =[]

Consider the case n > 2, and denote A = (A1 > --- > A,), u = (u1 > - -+ > ys). If Ay < pq then
ctnt(T’[1]), that consists of j1q numbers, is distributed over the A1 columns of T and so there are
i # jin the first row of T’ that are in the same column of T.

Suppose that A; = p1, and suppose that ctnt(T’[1]) is distributed over all A; columns of T (if
this is not the case, then there are i # j in the first row of T’ that are in the same column of T
and we are done). There exist then g € Qr such that ¢tnt(T’[1]) = ctnt(gT[1]). Consider then the
tableaux

qT* = (qT[2],...,qT[r]), T =(T']2),...,T'[s]),
that are associated with the set S* = {1,...,n} \ ctnt(T’[1]), whose size n* is smaller that n, and
the partitions A* = (Ay > -+ > A,), u* = (u2 > -+ > ps). Note that A* < u*, which implies
n* > 2. Applying the induction hypothesis, there are i # j appearing in the same row of T"* and
the same column of 4T*. But that also means that i, j appear in the same column of T.

7In fact, an integer as the dimension of an irreducible representation divides the order of the group. We will not need
this.
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Thus, if these integers are i, j then T = (ij) € Qr N Py and
brap = (brt)(tarp) = —brap,
and we conclude arbr = 0. O
Example 8.2.7. Consider the trivial Young tableau
In this case P = 5,,Q = {1} and soa = } ,c5,0,b = 1 and ¢ = } 5, 0. Note that for every

o we have ¢ = ¢. Namely, C[S,]| - ¢ = ¥, Coc = Cc, with every ¢ active trivially. That is, the
associated representation is the trivial representation.

Example 8.2.8. Consider the Young tableau

In this case P = {1},Q = Sy, andsoa = 1,b = ¢ = } 5, sgn(c) - o. Note that for every o
we have oc = sgn(c)c. Therefore, C[S,] - ¢ = Y, Coc = Csgn(c)c = Cc. Thus, the associated
representation is just the 1-dimensional sign representation.

Example 8.2.9. A somewhat more complicated example is coming from the Young tableau
1]2]3]. |

n

We claim that the associated representation is p°*?. More generally, the representation associated
to the tableau

2 | 3 |...|H\

1

=
||J) -
+

S
|
—_

=]

is \° p>*0. Let us sketch the argument for the case s = 1. In this case

P=S,1, Q= {((1n)),
a= Y o, b=1-(n), c¢= ) o— ) o-(In).

0E€S, 1 €S, 1 0€S, 1
Now, quite generally, given a representation V of a group G, choose a vector v € V, v # 0, and
define

and

C[G] -V, x~— xv.
This is a morphism of C[G] modules. Given a left ideal I of C[G], I is a C[G] module and the
map C[G] — V induces a map of C[G]-modules
I—V, x— xv.

If V is irreducible, the morphism I — V is either surjective, or zero. If I is irreducible, the map
is either injective or zero.

Let us take the ideal I = C[S,]c and the vector v = (1,1,...,—n —1) € p*%. Apply b to it:
bv = (n,0,...,—n). Apply a to get abv = (t,t,...,t,—n - (n 1)!), wheret = n-(n—2)!. In
particular abv is not zero. Thus, we have a surjection

C[G]c — pSt’O.
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Since we know V), is irreducible, the map is an isomorphism.

To show this is an isomorphism without using that V) is irreducible, it is enough to show
that dim(C[G]c) < n — 1. Using that for every ¢ € S,_; we have ca = a and so oc = ¢, we
find that C[G]c = }'; C - (in)c , and then using that (/" (in))a = Y ,cs, o we also find that
(Y4 (in))c = 0. It follows that dim(C[G]|c) < n — 1, as desired.

Assuming the result for A\° p**? we can match the Young diagrams with representations, at
least for n < 4.

. sgn=pSt0
S LI H
t oS0 sgn=A2pSt0
S3 LT ] | @
tr S0 A2 pSt0 sgn=/3 pSt0 .

T is the representation ps t0of Ss, pulled-back to S4 through the homomorphism Sy — Ss.

8.3. Further results. As one suspects, there is a lot of combinatorics involved in understanding
what are the properties of the representations arising as C[G]c, (and some key words to google
are “tabloid” and “Specht module”). For example, the dimension of the representation V), =
C[G]c, is given by the hook length formula

n!
[ Tail hooks (hook length)”

Every box in a Young diagram has a hook associated to it that consists off all boxes to the right
of the box (and in the same row) and all boxes below the box (in the same column), including
the initial box itself.

dim(VA) =

A diagram thus has n hooks. The hook length is just the number of the boxes in the hook. In
the diagram above, 3 hooks are indicated and their lengths are 8, 5 and 4. The diagram

[1]2]3 ][]

has n hooks, of lengths n,n —1,...,1. The dimension of the associated representation should
therefore be 1 and we know that is correct. The diagram

T

has hooks of length 3,2,2,1, giving a representation of dimension 4!/ (3 x 2 x 2) = 2.
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A more general, and very natural, question is what is the character x, of the representation
V)? A formula for x, will provide a formula for the dimension as dim(V)) = x(1).

Let ¢ € S, be a permutation of cycle type (iy,...,i,) — meaning it has i; cycles of length 1, iy
cycles of length 2, ..., iy cycles of length n (and so 3" j - i; = n). Don’t confuse that with the

partition associated to g¢. Also use the notation A = (A; > Ay > -+ > A) for the partition A.
Define then

bh=M+k—1,=A+k—2,...,0, = A
And define polynomials P, ..., P, in the variables x, ..., xi, by

Pj(x):x]i+xé+‘--+x{;.

Let also,

Ax) = H (xl-—x]-).

1<i<j<k

Frobenius’ formula. The character x is given by

n .
x1(g) = coefficient of xfl . -xﬁ" in the polynomial A(x) - [ Pj(x)".
j=1

We will not prove this formula in this course. The proof can be found in Fulton & Harris.

9. REPRESENTATIONS OF GL;([F), IF A FINITE FIELD.
oToToZoToToloToToloToToToToToToloToToToToToToTo X

I This particular section was not proof-read
IOTOLOTOLOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT0 T I

To find all the complex representations of GL, (IF), where F is a finite field of ¢ = p" elements,
we begin by first determining the conjugacy classes. We will assume that char(IF) # 2.

9.1. Conjugacy classes in GLy(IF). Recall a consequence the structure theorem for modules
over PID. Matrices in GL, (IF) are classified up to conjugacy by their rational canonical form. For
GL;(FF) the rational canonical forms corresponds to pairs of polynomials of the form {(x —a, x —
a),a € F*} of which there are g — 1, to pairs of polynomials of the form (x —a,x —b),a # b € F*
of which there are (g — 1)(g — 2) /2, to polynomials of the form (x — a)?,a € F* of which there
are g — 1, and to quadratic irreducible polynomials x> +ax+b,a € F,b # 0 € F of which there
areq(g—1)—(q—1)—(g—1)(9—2)/2 = q(q — 1)/2. These correspond to FF[x]-modules of
the form

F[x]/(x —a)®F[x]/(x—a), F[x]/(x—a)®F[x]/(x—b), F[x]/((x—a)?), F[x]/(x*+ax+D).

Examples of such matrices are provided by

(a 0> (a 0> (a 1) (0 —b)

0 a)’ 0 b))’ 0 a)’ 1 —a)’

The centralizer of a matrix corresponds to the automorphism group of the module. Thus, in the
first case the centralizer is GL;([F), in the second case it is { (6‘ 8) : x,y € F*}, in the third case
itis {(*¥) : x € F¥,y € F} and in the fourth case it is the units of [F[x]/(x? + ax + b) which is

a group of order g2 — 1. This allows us, by the orbit-stabilizer formula, to determine how many
elements are in each conjugacy class and we find the following:
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rational form type representative  no. of classes  size of conj. class

(x—a,x—a) (29) g—1 1
(x—a,x—b) (6%) (9-1)(q-2)/2 q(q+1)
(x —a)? (21 g—1 g —1
X2 +ax+b (9% q(q—1)/2 9> —q
=q*-1

Thus, we must find g2 — 1 distinct irreducible representations of GLy(IF). The simplest are the
one dimensional characters. There are g — 1 distinct homomorphisms «: F* — C*. Composing
them with the determinant we find g — 1 distinct one dimensional characters

a(det): GL,(FF) — C*.

(In fact these are all the 1-dimensional characters. Equivalently, the commutator of GL,(IF) is
SL,(FF), in fact for any field F and also for GL, (IF). But we will not need this fact.) We call the
corresponding one dimensional representations U,.

9.2. Representations induced from a Borel. Let B be the Borel subgroup of GL;(IF) that consists
of the upper triangular matrices:

B=! (% Y):abecF* xecF}.
0 b

It is a subgroup of GL,(FF) of index g + 1. The 1-dimensional characters of B are all of the form

a X
(O b) ~ a(@)p(b),

where «, B are characters of IF*. We denote these characters
Xap: B — F".
Define
Wap = IndgLZ(IF) Xap-
It is a representation of GL;(IF) of dimension g + 1.
Lemma 9.2.1. Ifa # B, W, g is irreducible. If « = B then Wy o is reducible and Wy, g = U, & V,, where

Vi is an irreducible q dimensional representation. The representation W, g determines the unordered pair
of characters {«, B} and the representation V, determines the character «.

Proof. We use Theorem 4.2.1 to calculate the induced character. For example, for an element of

0
the form (g b> , there is a unique conjugate of it in B (i.e, itself) if 2 = b. And for a # b it

b
has 2q conjugates in B (the matrices <g ;) , for any x, and the matrices (O x) , for any x). In
a

the first case the size of the centralizer is (4> — 1)(g* — q) (the size of GL,(IF)) and in the second
case the size of the centralizer is (g — 1)? for each of the cases. Thus, the value of the induced
character is (§ 4+ 1)(«(a)B(a)) in the first case, and a(a)B(b) + a(b)B(a) in the second case. We
leave the calculation of the remaining cases as an exercise.

The character of W, 4 is given according to conjugacy classes as follows
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(x —a,x—a) (x —a,x—b) (x—a)? x>4ax+b

(g +1Da(a)p(a) «(a)p(b) + p(a)a(b) a(a)p(a) 0

Not that the character determines the pair {«, f}. Now, as &, § take their values in roots unity,
we have

Itndtagl? = o (F @412+ qlg+1) Y @+ ala/bp(b/a) + alo/a)pla/b) + (F 1) L 1)
(7> =1)(9* —q) 2€Fx {a#b} CF~ a€Fx
= - D+ DR alg + Vg - Vg -2+
q(q +1)

(w(a/b)B(b/a) + a(b/a)B(a/b)) + (¢ —1)(q — ).
{(a,b):a#b,ab#0}

Now, use that for any group G and a non-trivial one dimensional character x of G, Yocc X(8) =
0, to deduce that if « # B, then ),y a(a/b)B(b/a) = 0. We then get

indixe,pl|* = : )[(q—l)(q+1)2+q(q+1)(q—1)(q—2)—q(q%l) Y 2+ (@ -1 -1)]

(@ =1)(e*—q acF*
= m[(rl)(qﬂ)zw(qﬂ)(q* D(g-2)—q(q+1)(q-1) + (> = 1)(g - 1)]

=1.
Now, if &« =  then
1

(4> =1)(9> - q)
—2.

|[Indx,, pl|* = [(a=D(@+1)*+q(q+1)(g-1)(q-2)+29(q+1)(g—1)(g—2) + (7 = 1)(g = 1)]

It follows that W, , is a sum of two irreducible representations. We claim that the representation
« o det appears in W, 4. To show that we can use Frobenius reciprocity

Homg (Wyq, & o det) = Hompy (xaa, & © det|g).
But xu. = a o det|y, so the r.h.s. is non-zero. We conclude that
Wy = a(det) ®V,,

where V, is irreducible of dimension g with character Note that the character determines a. [J

(x—a,x—a) (x—ax—b) (x—a)*> x®>+ax+b

ga(a?) a(ab) 0 —a(b)

So far, we found the following distinct irreducible representations:

(1) g — 1 1-dimensional representations «a(det).

(2) (9 —1)(g9 —2)/2 g + 1-dimensional representations.

(3) g — 1 g-dimensional representations.
We are therefore missing g2 —1— (g —1+ (g9 —1)(g—2)/2+4q—1) = q(q — 1)/2 irreducible
representations. If they all the same dimension that dimension should be g — 1.

Let € € F* be a non-square. Then F[x]/ (x> — €) is a field with g* elements that we denote L.
Writing
L=Fa&Fe,



COURSE NOTES - MATH 570 59

multiplication becomes an F-linear transformation. a € F acts by the diagonal matrix diag(a, )
and b/ for b € F acts by the matrix () % ). We get a homomorphism

L* = GLy(F), C:=a+bye— (2b).

Following Fulton and Harris we will call the image K, but think of { also as an element of K. The
elements in K such that b # 0 are elements of L that are not in F. The characteristic polynomial
of such elements and its discriminant A are the following

t2 — 2at + (a* — b%e), A = 4b%.

As € is not a square, this is an irreducible polynomial. We observe that we get all the irreducible
quadratic monic polynomials in F[x] this way. Therefore, the (q> — g)/2 pairs of elements of
K, { = a £ by/e for which b # 0 are representatives to the conjugacy classes of matrices with
irreducible characteristic polynomial.

The group K is a cyclic group and we can take any of its 4> — 1 characters ¢: K — C*. When
we look at Ind§ ¢ we get a g2 — g-dimensional representation whose character is given as follows.

(x—a,x—a) (x—a,x—b) (x—a)®> {=atbye
9(q = o(x) 0 0 90+

The argument is easy: the only elements of K with reducible characteristic polynomial are
the diagonal matrices diag(a,a),a € F*. The only conjugates of { = a + by/e€ that lie in K are

a+bye.

At this point, we are going to pull a rabbit out of a hat. Suppose that ¢ # ¢7 and consider the
class function x¢ (a notation we choose so as to show the dependence on ¢, yet to distinguish it
from the character of ¢, which is ¢, and from the character of Ind§ ¢.

XV]@W,X,] - XW,X/] - Xlndlgq)'
It has the following values on conjugacy classes
(x—a,x—a) (x—ax—b) (x—a)> (=axbye
(g —1)¢(a) 0 —¢(a) =) — (g7

Also |[x?||*> = 1 and x?(1) = g — 1 > 0. If we write ¢ as an Z-linear combination of the
irreducible characters, possibly with negative coefficients, we can deduce that in fact ¢ is an
irreducible character, corresponding to an irreducible representation X,. Note that ¢ and ¢1
give the same character, but that is the extent of the identifications. There are 4 — 1 characters ¢
such that ¢ = ¢7 and (4> — 1) — (g — 1) such that ¢ # ¢7. Thus, we get (¢4*> — q) /2 irreducible
representations of dimension g — 1. By looking at the character tables we can recognize that all
the irreducible representations we have constructed are non-isomorphic. Therefore, we found
all the complex irreducible representations for GL, (F), where F is a finite field.
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Part 4. Categories and functors II

Category theory is not for everyone. However, some of its concepts are absolutely fundamental
to a growing list of areas in mathematics, among which algebraic, complex and differential
geometry, topology, algebra with all its branches are among the main customers. In this section
we will touch on several such concepts. The first is Yoneda’s lemma that says that an object in
a category is determined by its “points”. This concept is critical in the theory of moduli spaces,
classifying spaces and so on. We will then revisit the notion of equivalence of categories and
prove two results: the first is a criterion for a functor to be an equivalence of categories (and most
of the time, this is how one proves in “real life” that two categories are equivalent), the other is
an example called Morita equivalence that states that for a ring R the category of modules over
R and M, (R) are equivalent. And so, if R is a division ring we conclude that this is a unique
irreducible module over M,,(R) and it is simply R". After that, we are going to provide a precise
explanation of the meaning of the statement that certain objects have a universal property. We
will apply that for example to tensor products, but also on the basis of this we will discuss limits
in a category. Limits are very interesting processes: they will provide us with a good definition
of infinite Galois groups, of p-adic numbers, of fibre products and so on.

10. YONEDA’S LEMMA

Let C be a category. Given an object A in C we can define two functors associated with it. A
covariant functor
ha: C— Sets, hy(B) =Morc(A,B);
a contraviant functor
h4: C — Sets, h”(B) = Morc(B, A).

We will prove that the isomorphism class of each of the functors h14 or h* determines A up to
isomorphism. It turns out that proving this result for h4 implies it for #, and vice-versa. See
Exercise 30. Thus, we will only consider here the functor /4.

Lemma 10.0.1 (Yoneda). Let F: C — Sets be a covariant functor. Let Mor(h, F) denote the natural
transformations from ha to F.
(1) There is a natural bijection
Mor(hy, F) <+ F(A).
(2) ha = hp ifand only if A = B.
Proof. Let ¢: hy — F be a natural transformation. So for all g: B — C we have a commutative
diagram
ha(B) = F(B)
ihA () J/F (8)
ha(C) = F(C)
where, of course, h4(g)(f) = g o f. In particular, we have a function,
PA: hA<A) — F(A),
and we get a map Mor(h, F) — F(A) by the rule

¢ = @a(lda) =: up.
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Now, given any object B of C and f: A — B, we have the following commutative diagram:

PA

ha(A) F(A)
IdA — Uy
na(f) ) 1 F()
fr—=g¢5(f)
a(B) - F(B)

This implies that
¢5(f) = F(f)(uy)-

Therefore, ¢ is determined by u,, and so we got an injective map
Mor(ha, F) < F(A).

Conversely, given an element u € F(A), define for every B € Ob(C) and any f: A — B,

¢p(f) = F(f)(u).
Note that ¢p is a function h4(B) — F(B). Verifying it is a natural transformation amounts to
check the commutativity of the following diagram for ¢: B — C:

ha(B) =~ F(B)

ihA(g) J{F (8)

ha(C) == F(C)

Let f: A — B. Then, on the one hand
F(g)(9p(f)) = F(&)(F(f)(u)) = F(go f)(u),

while, on the other hand,

¢c(ha(8)(f)) = ¢c(go f) = F(go f)(u),

and so the diagram is commutative.

We now prove the second part of Yoneda’s lemma. Let us first see what the first part gives for
F = hp. We proved
Mor(ha,hg) = hg(A) = Mor(B, A).
And, in fact, the proof associated to f: B — A the natural transformation
ng :h A — ]’ZB,
given by
¢l - 14(C) = Mor(A,C) — Mor(B,C) = hs(C), g gof.

From this, it is clear that a composition B hoa ks B gives the relation

¢f20f1 — ¢f1 o §0f2;
where ¢2°fi € Mor(hg, hg), ¢> € Mor(hp,ha), ¢/t € Mor(ha,hp). Also clear is that if fo o f; =
Idp then ¢/t 0 pf2 = @2°fi = ¢!¥5 is the identity transformation hp — hp. And, the same way, if

fio fr = Id, then ¢/2 0 ¢/1 is the identity transformation h4 — h4. We conclude that if A = B
then hy = hp.
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Conversely, given ¢: h4 — hp we have
QA hA(A) — hB(A),

and we have let
f:=¢a(lds) € Mor(B, A).

If we have morphisms /4 2 hp A 4 then the composition ¢ o ¢: hy — hy produces the
map (o @)a(Ida) from A to A.

Claim. We have

(Yo @)(Ida) = @a(lda) o pp(Idp).
Proof. Let us denote f = ¢@4(Ida): B— A,g = ¢p(Idg): A — B. Consider the following com-
mutative diagram

($o9)a
ha(A) " hp(4) s ha(4)
hg(f) ThA(f)
hs(B) —= ha(B)
We have,
(Wo@)allda) = palpa(lda))
=pa(f)
= pa(hp(f)(Idg))
= ha(f)(¥5(ldg))
=ha(f)(g

This proves the claim. O

Now, if ¢ o ¢ is the identity transformation 14 — h4 then clearly (o ¢)(Ids) = Id4 and so
fog=1Idy. A similar argument gives that if ¢ o ¢ is the identity transformation hg — hp then
go f = Idg. We conclude that if h4 = hp then A = B. O

A covariant (resp. contravariant) functor G: C — Sets is called representable if there is X €
Ob(C) such that G 2 hy (resp. G = h¥X). Yoneda’s lemma shows that if G is representable, X
is determined up to isomorphism. This issue comes up when one considers moduli problems.
Unfortunately, I do not know any simple example of a moduli space, but consider the following.
Let G be a group. We usually consider complex reprenesentations of G, but now fix an inte-
ger n > 1 and given any commutative ring R consider homomorphisms p: G — GL,(R). Given
pi: G— GL,(R), i = 1,2, we consider them isomorphic if there is a matrix in GL,(R) conju-
gating one representation into the other. The covariant functor F sending a ring R into the set
of representations p: G — GL,(R) is representable by a Z-algebra. It is a quotient of the free
polynomial ring R¥" := Z[x;gj : g € G,1 <i,j < n] by the ideal expressing the conditions

T
(x5)(x) = (5.
To give p: G — GL,(R) is to give a homomorphism R*"® — R. And s0 hguio represents F.

However, what we are really interested in is studying representations up to isomorphism.
This turns out to be a subtle problem; in a sense, one would like to take the invariants of R*"**"
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under the action of PGL, (R*"?) acting by conjugation. This doesn’t quite work, but it turns out
that there is a variant that does. Suppose we only want to consider geometrically irreducible
representations of G. Namely, such p: G — GL,(R) with the property that for every prime
ideal p of R and an algebraically closed field k O R/p the composite representation

G — GL,(R) — GL,(R/p) — GL,(k)

is irreducible. Associating to R the set of isomorphism classes of geometrically irreducible n-
dimensional representations p: G — GL,(R) is a functor G, which turns out to be representable.
This is a non-trivial result proved only in 2000 by Nakamoto.

Here is why one might be interested. Consider a compact Riemann surface X of genus g. The
isomorphism classes of vector bundles with flat connection on X are in correspondence with
isomorphism classes of representations

T (X, X()) — GLn(C)
In particular, line bundles of degree 0 (that are automatically endowed with a flat connection)
are in bijection with homomorphisms
7T1(X, X()) — C*.
Equivalently, with homomorphisms
7% = H\(X,Z) — C*.

These are in bijection with (C*)% by associating to a homomorphism f: Z2¢ — C* the vector
(fler), .-, fleag)) € (C*)2%.

Given a family of line bundles with connection over X that is parameterized by P!, we get an
analytic map

P! — (C)%.

(The fact that we get an analytic map requires some work and rests on the fact that the functor

G is representable.) By the maximum principle, this map must be constant. Thus, a family of
line bundles on X that is parameterized by P! is in fact constant.

Returning to simpler, but somewhat less exciting, examples consider a forgetful functor
P : C — Sets.

Here is it assumed that the objects of C are in particular sets and so ®(B) is B considered as a set
only. For example, C could be the category of groups and ®(B) is “forgetting that B is a group
and considering it as a set only”. Often these functors have a right adjoint functor G which is a
“free construction functor”. That is, we have

Morc(G(A), B) 2 Morges (A, ®(B)).

Now, if we take A = {a} a singleton. Then Morges (A, ®(B)) is identified with ®(B). On the
other hand, we have Morc(G({a}), B) = Morgets(A, ®(B)). Thus, we get that the functor @ is
representable by hx, where X = G({a}). In the example of the category of groups G({a}) = Z
and we conclude that as sets we have natural bijections

Homgps(Z, B) <+ B.
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11. EQUIVALENCE OF CATEGORIES

In this section we will prove two theorems. The first is a general criterion for a functor to be
an equivalence of categories. The second, is a particular example of equivalence of categories,
called Morita equivalence, that is very useful in applications.

11.1. Criterion for a functor to be an equivalence of categories. Let C,D be categories and
F: C — D a covariant functor. Recall that F is called faithful if for any A, B € Ob(C) the map

Morc (A, B) — Morp(F(A),F(B)),

is injective; it is called full, if this map is surjective. We say F is essentially surjective, if any
object of D is isomorphic to some F(A), where A is an object of C.
Theorem 11.1.1. Let F: C — D be a covariant functor. There exists a functor G: D — C such that
(F, G) is an equivalence of categories if and only if:

(1) Fis full and faithful;

(2) F is essentially surjective.
Proof. It will be useful to recall the following. Suppose that L: C — C is a covariant functor and

v Ilc :> L

is a natural equivalence. Then, for all objects A, B, and morphisms f: A — B, we have a com-
mutative diagram:

|5
>
=
2

A—=

fJ/ iL(f)
B

~

|
s
=~
=

and so,
L(f)=r8ofory
and f — L(f) is therefore an isomorphism

Mor (A, B) — Mor(L(A),L(B)).

Back to the theorem, suppose that a covariant functor G: D — C exists with isomorphisms
v:1c — GF, 5: 1p — FG.
We have the diagram

A F(A) GF(A)
foo~> F(f)  ~> GF(f)
B F(B) GF(B)

As f — GF(f) is an isomorphism that factors through f — F(f), f — F(f) must be injective.
That is, F is faithful. By symmetry, G is faithful, too.
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Now, given h: F(A) — F(B), let f: A — B be defined by

f=7g"0G(l)oya.
Since G is faithful, to show that F(f) = h it is enough to prove that GF(f) = G(h) and this is

clear: GF(f) = yg o f oy ,' = G(h). We conclude that F is full.
Let D be an object of D and let C = G(D). Then, we have an isomorphism

dp: D — FG(D) = E(C),

and it follows that F is essentially surjective.

Conversely, let F be a fully-faithful essentially surjective covariant functor C — D. To define

G:D—=C
tirst choose, in an arbitrary fashion, for any object D of D an object Cp of C and an isomorphism
ID: D — F (CD)
Define G on objects by
G(D) = Cp.

Define G on morphisms by the following diagram:

D —"2 F(Cp) Ch

8 lg’ ~ Lf
E—"5 F(Cp) Ce

/

(where ¢’ is uniquely determined). Namely, there is a unique f: Cp — Cg such that F(f) = ¢’
We let G(g) = f. Otherwise said,

for g: D — E, G(g) is the unique morphism Cp — Cg such that
F(G(8)) =g :=neogonp'.

There is much to check. Firstly, that G is a functor:
(1) G(1p) = 1c,. This holds because F(1c,) = 1g(c,) = #p e lp o np'.
(2) G(g2041) = G(g2) © G(g1)- The situation is explained by the following diagram

D
Dy — F(CD1) CD]
& e ~ G(g1)
"D
D, —= F(Cp,) Cp,
2 % - G(g2)
D
D; —= F(Cp,) Cp,

The commutativity of the squares gives

82081 = (g2081)".
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Also,
F(G(g2) 0 G(g1)) = FG(g2) o FG(81) = 82081 = (820 81)",
which, by the property characterizing G(g2 o g1), implies
G(82) 0 G(g1) = G(g2081)-
Thus, G is a functor. We next need to define isomorphisms
’)/Z]l(j—>GF, 6:1p — FG.

We begin with 7. Let C be an object of C and D = F(C). We have chosen an isomorphism
#p: D = F(C) — F(Cp), which comes by full-faithfulness from a unique isomorphism

YC: C—Cp= G(D) = GF(C)

That is, we let y¢: C — GF(C) be the unique isomorphism such that F(yc) = yp. Having
defined the isomorphisms 7y, we need to check that the following diagram commutes for every
h: C; — Co:

C —2 GF(C)

lh icp(h)
Cr —2 GF(Cy)

Since F is faithful, it is enough to check commutativity after applying F to the diagram and that
yields:
D
D; := F(C;) — F(Cp,)
iP(h) lPGF(k)
D
Dz = F(Cz) 24> F(CDZ)

(recall that GF(C;) = Cp(c,) = Cp, and so FGF(C;) = F(Cp,).) If we lett = F(h) then G(t) is
the morphism Cp, — Cp, such that FG(t) = #p, oto 17511. So commutativity follows.

Next, 6. Given D an object of D we want to define an isomorphism
dp: D — FG(D) = F(Cp).

But, we have already chosen one: #p. So we let

(5D = 77D-
For f: D1 — D, we need to check commutativity of the diagram:
dp,
Dy — FG(Dy) G(D;) = Cp,
f EG(f) ~ G(f)
op,
D, —— FG(D») G(D;) = Cp,
But this is precisely the definition of G(f). O

A common application of this theorem is finding a small set of representatives for a very big
category. Suppose D is a category and C is a full subcategory of D. That is, the objects of C are
objects of D and Morc (A, B) = Morp (A, B) for objects of C. If every object of D is isomorphic
to some object of C then the categories C and D are equivalent.
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For example, if D is the category of finitely generated abelian groups, we can take C to be
the subcategory whose objects are abelian groups of the form Z" @ @ |(Z/d;Z) where 1 <
dildy| - - |dy (and ¥, n > 0).

11.2. Morita equivalence. Let R be a ring, not necessarily commutative. Then M, (R) is also a
ring under the usual matrix operation, only that one has to be very methodic keeping right right
and left left. Namely,

(aij) (bij) = (cij),

where
cij = Y _aicbyj,
l
which might be different than ), by;a;,. We view R as contained in M, (R) via
R — My(R), rwr-I,.

Denote by E;; the n X n matrix all whose entries are zero, except the ij entry which is 1. These
matrices have two important properties:

e forr € Rwe have rE;; = E;jr;
o ExkE;j = 6iEyj, where 6y is Kronecker’s delta function.

As an application of our criterion for equivalence of categories, we prove the following theorem,
which is part of what'’s called Morita equivalence.

Theorem 11.2.1 (Morita). Let R be a ring and n > 1 an integer. The categories kMod and v, (g)Mod
are equivalent.

Proof. Define
F: RMOd — Mn(R)MOd

by
F(M)=M"
on objects and

F(f)="(f.fr--. f)

for a morphism f: M — N. Here we think about M" as columns vectors with entries in M and
denote an element (1, ...,m,) of it by m. The action of M, (R) is given by the usual formula

my Yoo aremy
(aij)ijl e
my Yoo anemy

It is obvious that F is a faithful functor.
Now, any morphism ¢: M" — N" of M,,(R) modules is of the form

p(m) ="(pr(m),., gu(m)),
and the ¢; are maps of R-modules. We therefore have

¢('(m,0,...,0)) = ¢(E;1'(m,0,...,0)) = Enno('(m,0,...,0)) = (¢1(m,0,...,0),0,...,0).

This implies that ¢; vanishes on !(m,0,...,0) for all i # 1. Similarly, we conclude that ¢; van-
isheson /(0,...,0,m,0,...,0) for any i # j. Using additivity of ¢, it follows that
]

q)(t(mll i 'rmﬂ)) = (§01(m1), s (Pn(mn))
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Let o € S, and E(c) the matrix o5 (¢~ !) so that

my Mg(1)

nmy ma(n)

Then, on the one hand
P(E(0) (m1,...,my)) = (@1(mo)),- - -, @u(Men)),
On the other hand,
¢(E(U>t(m1f SRR mﬂ)) = E(U)(p(t(m1, SRR mn)) = <(P(7(l) (ma(l))f s Po(n) (ma(n))-
As this holds for all o and every m; € M, we conclude that
q)l — .. = (P”

That is,

¢ = F(¢1),

and F is a full functor.
It remains to prove that F is essentially surjective and this is the most subtle part. Let M be
an M, (R) module.

Claim 1. We have an isomorphism of left R-modules
M=ZE; - M&---®Ey M.
To prove that consider the functions
fM—E1-M&---®Ey-M, mw— (Eyym,..., Epym)

and
g Ey-M&---®Ey -M—M, (ai,...,an)—a1+---+au.
These maps are homomorphisms of R-modules and are mutual inverses. We have

m)) =Y Ei-m=()_Ej)-m=1-m=m.
i i
Writing a; = E;;a; we find that

f(g(ay, ..., an)) = (E11 - ZE]] il Epn - ZE]] j
ZEHE]] i ZEHH jj4 ]

= (Ellal, ceey Ennan)

= (a1,...,a,).

Claim 2. We have equalities Eyy M = Ey M.

Indeed, as E;; = EyE;, we have Eq4M = Ey(EnyM) C E; M. On the other hand, as Eyy =
E¢1E1¢, we have E/yM = Ej (EyyM) C Eq M.
We thus conclude that

EnM& - ®EaM =M, (ay,...,an) — Y a;.

Claim 3. We have isomorphisms E;1M = Ey M by the map a ER Epa.
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The map a — Ejya is restriction of the R-module homomorphism M — E; M given by the same
formula. Therefore, it is an R-module homomorphism. We claim that the map

EqM — EpM, b+ Eyb,

is a well-defined inverse map. Let us write a = Ey1a’ € Ej1M,b = Epb’ € E; M. We first note
that ¢(b) = EyyEpnb’ = E;1b’ € E;1M and so g is well-defined. Now,

g(f(a)) - g(f(Ellﬂ/)) = E1£E41E11ﬂ/ = Ena’ =a.
Also,
f(g(b)) = EnEyyEnb’ = Enb’ =b.

Collecting the three claims together, we conclude that we have an isomorphism
Q: P(EHM) =E1M& ---EpnM — M,
given by the map

n
(Ell, . ,Eln) —> (E11a1, ceey Eman) —> Z Eglag.
(=1
But this is so far an isomorphism of R-modules. We have to check that this isomorphism is an
isomorphism of M, (R) modules. As M, (R) is spanned over R by the matrices E;; and (E;;M)"

is spanned over R by vectors of the form t(O, ...,0,4,0,...,0), it is enough to check that

@(Egkt(o,. . .,O,EI,O,. . ,0)) = Egk(p(t(o,.. .,O,a,O,. . .,0)),

where a is at the i-th coordinate.
If i # k then E4/(0,...,0,4,0,...,0) = 0 and so ¢(Eg!(0,...,0,4,0,...,0)) = 0. Also,
¢(1(0,...,0,a,0,...,0)) = Eqaand so Exe(*(0,...,0,4,0,...,0)) = EgEqa = 0.
If i = k then ¢(E;*(0,...,0,a,0,...,0)) = qo(t(O,...,O,t;,O,...,O)) = Epa, and on the other
1 a

hand, E;9(*(0,...,0,a,0,...,0)) = E;;Eqa = Epa. d

11.2.1. Division algebras. A classical application of this equivalence is when one can completely
classify the R-modules. You can amuse yourself by considering finitely generated Z-modules.
We will discuss an extreme case when R is a division ring. Recall that a division ring, or a skew
field is a ring R in which 0 # 1 and every non-zero element is a unit of R. That is, if x # 0 is an
element of R then there exists y € R such that xy = yx = 1. The simplest example is a field, of
course.

If R is a division ring then the centre of R is a field and R is an algebra over it. It thus makes
sense to already discuss division algebras R over a field K, meaning that R is a division ring
containing K in its centre. The problem of classification of division algebras over a field K is
a complicated and difficult one. Assume that R is of finite dimension over K. Here are some
interesting results:

e If K is a finite field then R is a finite field as well. (A theorem of Wedderburn. See proof
below.).
e If R is the real numbers, R is either R, C or the Hamilton quaternions

H =R & Ri & Rj ® Rk

with 2 = j2 =k* = —1and ij = —ji = k. In particular, there are no division algebras
whose dimension over C is 9, say.

e Suppose that the characteristic of K is not 2. There is then a general construction of
4-dimensional K-algebras called quaternion algebra. Let a,b € K* and define an alge-

bra R, often denoted (%) , by
K ® Ki @ Kj & Kk,
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where i = a,j> = b,ij = —ji = k. Define the norm of an element u = x + yi + zj + wk,

x,¥,z,w € K, of R by
N(u) = N(x + yi + zj + wk) = x* — ay* — bz* + abw?.

We have the following properties of the norm function:

(1) N(u) = uii, where ii = x — yi — zj — wk;

(2) N(ujuz) = N(uq)N(uz).
Using this, it is not hard to prove that u is invertible if and only if N(u) # 0. Thus, Ris a
division algebra if and only if the quadratic form x> — ay* — bz? + abw? does not represent
0 (this means that the only solution to x? — ay? — bz? + abw? = 0isx = y = z = w = 0).
For example, if K = R and 4 = b = —1 we get the form x? + y? + z2 + w? and conclude
that the Hamilton quaternions are indeed a division algebra. For more on this topic, see
Exercise 34.

e Over Q there are “plenty” of non-isomorphic non-commutative division algebras. For
example, for every positive integer n there is a division algebra whose centre is precisely
Q and whose dimension over Q is n%2. A more general notion is that of a central simple
algebra over Q, or a field K. It turns out that there is a group whose elements are central
simple algebras R over K, up to an equivalence R ~ M, (R) for every n. It is called the
Brauer group. In this group every quaternion algebra over R has order equal to 2, unless
it is isomorphic to M>(K), in which case it has order 1. The group structure if given by
the tensor product over K.

If R is a division algebra the theory of R-modules is rather similar to the theory of vector spaces
initially. Things go wrong once we get to determinants, eigenvectors, eigenvalues, due to the
non-commutativity of R, but initially there is hardly a difference. The definition of linearly
independent sets, spanning sets and so on, are the same. There are the same characterizations
of a basis and Steinitz substitution lemma works and provides the invariance of dimension. It
requires nothing but patience to prove that every finitely generated R-module is isomorphic to
R for some integer d > 0 that is uniquely determined. Morita equivalence now gives that every
finitely generated M, (R)-module is of the form (R?)" for some d. Otherwise said, every M, (R)-
module is isomorphic to a direct sum of R", where R" is viewed as column vectors of length n
with entries in R.

11.2.2. Proof of Wedderburn'’s little theorem.
Theorem 11.2.2 (Wedderburn). Let R be a finite division ring then R is a field.

Proof. (E. Witt) Let R be a finite division ring. We prove the theorem by induction on the cardi-
nality of R; the case |R| = 2 is clear.

Let K be the centre of R. It is a field with g elements. Let n = dimg(R). Our goal is to prove
that n = 1. Suppose that n > 1. Let r € R\ K and let K, be its centralizer in R. It is easy to check
that K, is a division algebra as well and that we have inclusions

KC K GR.

Thus, using induction, K, is a field too. If we let n, = dimg(K,) we have n,|nand 1 < n, < n.
The multiplicative groups K*, K, R*, have orders ¢ — 1,4™ — 1,4" — 1, respectively.
Write the class equation for the multiplicative group R* acting on itself by conjugation:
g -1

=g 14 Y LD
q q %%W“ﬁ

where the summation is over representatives for the conjugacy classes of elements r ¢ K.
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The idea now is to find an integer dividing ;:,:11 for all » and therefore g — 1. We will show
that this integer is larger than g — 1, thereby arriving at a contradiction.
For a positive integer b, let ®,(x) = Iz prim. root of order (X — §) € Z[x] denote the (monic)

cyclotomic polynomial of degree ¢(b) (where ¢ is Euler’s function). Then

=1 =]]®a(x), X —1=]]®alx).

d|)’l d‘”r
As n,|n we have @, (x)| =% Substituting g for x, we find that
q"—1

By the class equation, the integer ®,(g) divides g4 — 1 as well. On the other hand

®,(q) = I;[(q -{),

where the product is taken over all ¢(n) roots of unity of order n. As the absolute value of each
such complex number g — ( is greater than g — 1 we find |®,(q)| > g — 1. Contradiction. O

12. UNIVERSAL PROPERTY

We begin with a few examples where one would use the terminology “universal property”
and then examine what is exactly meant by that.

Example 12.0.1. (Abelianization) Let G be a group and G* = G/G' its abelianization. One says
that G* has the following universal property: Any homomorphism f: G — A from G to an abelian
group A factors uniquely as

G4>Gab

EN

A

Example 12.0.2. (Direct product) Let Gi, G, be groups. The group G; x G, has the follow-
ing universal property. There are group homomorphisms, the projections on the i-th coordi-
nate, p;: G1 X Go — G, pi(g1,%2) = &i, such that given any group H and homomorphisms
gi: H — G;, there is a unique homomorphism f: H — G; X Gy such that the following diagram
commutes:

Indeed, f mustbe (g1,72).

Example 12.0.3. (Tensor product) Let R be a ring and Mg, gk N two R-modules. Then the abelian
group M ®r N has the following universal property: there is an R-biadditive map M x N — M ®g
N, (m,n) — m ® n, such that given any abelian group A and an R-biadditive map M x N — A,
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there is a unique group homomorphism M ®r N — A making the following diagram commu-
tative:

MXN-——MQ®rN

U

A

We will now explain in which sense each of these examples can be phrased as the existence
of an initial, or final, object in a category. For these notions, see Exercise 1.

In the first example (abelianization), define a category whose objects are homomorphisms f: G — A

from G to abelian groups A and morphisms 1 € Mor((f: G — A),(g: G — B)) are commuta-
tive diagrams

G—f>A

N

Then G — G is an initial object of this category.

In the second example (direct product), define a category whose objects are pairs of ho-
momorphisms {g;: H — G;}i—12, where H is a group. Define a morphism in this category
h € Mor({gq;: H— G;},{q}: H — G;}) to be a homomorphism & : H — H' such that the fol-
lowing diagram commutes:

Then {p; : G1 x G, — G;} is a final object of this category.

In the third example (tensor product), define a category whose objects are R-biadditive maps

f: M x N — Ainto abelian groups. A morphism / in the category, i € Mor((f: M x N — A), (g:

N — B)), is a group homomorphism &: A — B, such that the following diagram commutes

MXNL>A

RN

B

Then M x N — M ®g N is an initial object in this category.

This is as much as we are going to say about the subject. Whenever we refer to a universal prop-
erty implicit is that there is an associated category in which the situation we are talking about is
an initial or final object of that category. In particular, they are unique up to unique isomorphism.

M x
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13. LIMITS

13.1. Direct limits. Imagine a diagram of objects and morphisms of a category C.

fi2

X1 ——=Xp X3
fia o l
X4 X5 X6
X7 — X3

To be precise, we assume that we are given a partially order set I and for every i € I an object
X; of C, for every i < ja morphism f;;: X; — X; with f;; = 1x, and wheneveri < j < k we
have fix = fjx o fij. We call this is a direct system or injective system. A word of caution: often
one uses this terminology under the further assumption that I is a directed poset (or, directed
index set), meaning that for all i,j € I thereisa k € I withi < kand j < k. But we shall try and
avoid this assumption to the extent possible. We will denote such a diagram

{Xi, fij}-

If we think about I as a category I, whose objects are the elements of I and

ey X<
Mor(x,y) = {@y else !

then a direct system corresponds to a covariant functor

We say that an object D of C is below the diagram in the following situation (the dashed arrows
are morphisms too. We use dash lines to ease reading; also, there should be an arrow starting at
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every X;, but we omit some arrows to keep the diagram easier to read):

fia

and then the direct limit is an object of C, if such exists, that is closest to the diagram from below.
More formally, the direct limit, or injective limit (again, be cautious that many authors use this
terminology only if I is a directed index set and would use the terminology colimit instead) of
{Xi, fij} is an object C of C, together with morphisms

ei: X;—C, i€l
such that for every i <j
¢i = ¢j © fij,

and having the following universal property: For any object D of C and collection of morphisms
di : X; — D that satisfy d; = d; o f;; for all i < j, there is a unique morphism

q:C— D, suchthat goe; =4d;,Vi.

If such C exists, it is determined it up to a unique isomorphism by its universal property. We
will denote it

lim Xi
_>
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(or liLn {Xi, fij} if needed).

i€l

Proposition 13.1.1. Direct limits exists in Sets.

Proof. Let S = [I;c;{i} x X;. This is the precise way to talk about the disjoin union of the sets X;.
It is a set and we put on it an equivalence relation by saying that

(i, x) ~(j fij(x)), Vi<jeL

We call this situation an elementary equivalence. We force that to be a symmetric relation.
This generates an equivalence relation. Two elements (i, x), (j,y) are related if there is a finite
sequence of elements related by elementary equivalences

(i, x) = (i, x1) ~ (2, x2) ~ -+ ~ (in, %) = (j, y)-

Let C be the set of equivalence classes. We denote an element of C by [(i, x)]. Let us show that C
is a direct limit.
First, we have the morphisms ¢; given by the compositions

Xi—=S—=C, xw(i,x)—[(i,x)]

They satisfy ¢; o fij = e;.
Now, given a set D with morphisms d;: X; — D satisfying d; o f;; = d;, we define

q: C =D, q([(i,x)]) = di(x),
This is a well-defined function and to prove that we need only check elementary equivalence.
In this case, if (i, x) ~ (j,fij(x)) then q([(],ﬁ](x))]) = dj(fij(x)) =d;(x) = q([(i,x)]). Moreover,
the function g satisfies q(e;(x)) = q([(i,x)]) = d;(x), as required. Itis also clear that this property
determines g. O
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13.1.1. Direct sum. Let I be a set, considered as a partially order set where x < x forall x € I,
but otherwise no two elements of I are comparable. Given a collection of objects {X; : i € I} of
a category C we can consider it as a direct system indexed by I. In this case, the direct limit, if it
exists, is called the direct sum, or coproduct, and is denoted, respectively,

Die1Xi, X
iel
Per definition, it comes with morphismse; : X; — [[;c; X; such that given any object D of C and
morphisms d;: X; — D, there is a unique morphism

q:L[Xi—>D, qoei:di.
i€l
For example, if C is the category of sets the coproduct is the disjoint union.

Proposition 13.1.2. Direct sums exist in RMod.

Proof. In this case we assume all the X; are R-modules. We define
DierXi

as the set of functions f: I — [[;c; X, from I into the set theoretic disjoint union of the Xj, such
that f(i) € {i} x X; and for all but finitely many i, f (i) = (i,0). We will be more colloquial and
say that f(i) € X;. We will also just write

(ai)ier € SierXi,
to denote the function f (i) = a; (or, to be precise, f(i) = (i,a;)); in this notation
a; € X;, a; =0, for almost all i.
We make this into an R-module by
(ai)i + (bi)i = (@i + bi)i,  r(ai)i = (rap);.
We have natural module homomorphisms
Xi — @ier Xi, arei(a),

where
a, j=1I,

(e(a); = {O, o

Now, given an R-module M and homomorphisms d;: X; — M, define
q: ©ie Xi > M, (a;)i — Y _di(a;).
i

The sum is over a possibly infinite set, but only finitely many of the terms are non-zero and the

meaning of the sum is that one sums only the non-zero terms. This map is a well-defined homo-

morphism of R-modules and satisfies g o e¢; = d;. It is also the unique possible homomorphism

with this property: if q’ has the same property then ¢'((a;);) = q'(L;ei(ai)) = Y;q'(ei(a;)) =

Yidi(a;). O
Let us now strengthen this proposition and prove the following.

Theorem 13.1.3. Arbitrary direct limits exist in gMod.

Proof. Let {X;, fij} be a direct system. Let W C @;X; be the R-submodule generated by all
elements of the form e;(a;) — e;(fij(a;)), and let

C=(&:X;)/W.
Thus, in C we have e;(a;) = ¢;(fij(a;)).
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Denote by 7t: @; X; — C the natural map and define
6i:X;—>C, é:=moe;.
We claim that C with the maps {&;} is the direct limit li_rr} {Xi, fij}. First,

2(fij(ai)) = 7e(e;fij(ai)) = re(eiar)) = @i(ai).
Next, given a module M and maps d;: X; — M such that d; o f;j = d;, we find the following

situation:

X; T X;

€i

As q(ei(a;) —ej(fij(a;))) = di(a;) — dj(fi;(a;)) = 0, the map g factors through C and we get a
homomorphism
q9: C— M.
It satisfies
g oéi=qg omoe;=qgoe; =d,.

This the unique homomorphism with this property: if 47 : C — M has the same property, define
q1: @i Xi = M by q1 = g o . It satisfies g1 oe; = g} o Toe; = g 0 & = d;. As &;X; is the direct
limit of the system {X;}, we have q; = gand so g} = ¢’ O

Not every category has direct limits. For example, let C be the category of finite sets and consider
the direct system with the natural inclusion map

f3

That is, for every i < j the map
fl] X; — X]',
is simply the inclusion map.
Suppose that a direct limit {C, ¢;} exists in the category C. Letn > 1 and M = X,,. Consider
the maps d;: X; — M given by the natural inclusion X; C X, for i < n and for i > n we have

<
= {5

n, x> n.

We have for i < j the compatibility d; o f;; = d; and so there is a map q: C — M such that
g oe; = d;. As the function d, is injective, so must be the function e, and that shows |C| > n for
all n. Thus, C is not a finite set and we get a contradiction.

The construction of direct limits in the category of rings is an involved business. However,
one can prove easily that a direct system of rings over a directed index set does have a direct
limit. See Exercise 38. This case is very important in geometry. Given a manifold X (in some
category: algebraic varieties, complex manifolds, differential manifolds, topological spaces,...)
and a point x € X we look at the system of all open sets V containing x. For every V we have
the ring of functions O(V') on V; their description depends on the category. For real manifolds,
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for example, these will be the continuous maps V' — R. For complex manifolds these will be the
complex analytic maps V — C, and so on. The local ring Ox  at the point x is the direct limit of
rings liin O(V) under the natural restriction maps O(V) — O(U) if U C V. That is, the index

set I which is directed, has elements that are the open sets V' containing x and where V < U, if
ucpv.

13.1.2. Pushout. Pushout in a category C is a particular case of a direct limit, where the diagram
is simply

AL B

;

Thus, the pushout P, if it exists, will be an object P with morphisms as indicated in the following
diagram, which is required moreover to commute:

f

A——

;

=
g<~—W

—_—

It has the universal property

a-L.B
| i
We know it exists in the category Sets and it is easy to see that it has the more concise description

of
BI[C/ ~,
where ~ is the equivalence relation generated by Va € A, f(a) ~ g(a).
We know the pushout exists in the category kgMod, where it also affords the more compact
description
B®C/W,

where W is the submodule generated by {(f(a), —g(a)) :a € A}.

13.1.3. Amalgamated product. Another very useful case is the pushout in the category of groups.
We have a system of group homomorphisms

A#B
|
C

And the pushout is called the amalgamated product, denoted B * 4 C. It plays an important part
in topology: Let Z be a connected and locally path-connected topological spaceand Z = X UY
an open cover so that X,Y and X NY are likewise connected and locally path-connected. Let
t € XNY be a point.
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Theorem 13.1.4 (Seifert-Van Kampen).

7T1(XU Y, t) = 7T1(X, t) * 2, (XY 1) 7T1(Y, t).

We define the group B x4 C as the set of all finite length words
xl oo xn/

where x; € B]]C and subject to the equivalence relation generated by the following require-
ments:

(1) If for some i, x; and x;; are in the same group then
X1 X~ Xy X (X X)) Xig2 o X
(2) If for some i, x; = 1 then
X1 Xy~ XD Xj_1Xig1 - X

(3) foreveryianda € A, if x; € B, we have

XX e (%0 (0))(8(a) M) - X

(which implies x7 - - (x;f(a))xj11---xn ~ x1---x;(g(a)xiy1) - --xp) and if x; € C we
have

Xy X~ xy o (g(a)) (F(a) 7 i) .

It is easy to check that if we define multiplication by concatenation of words this gives a group
structure on the equivalnece classes, providing us with the definition of the group B x4 C. If
A = {1} is the trivial group, it plays no role and we just use the notation B * C and call it the
free product of B and C.

An alternative way to define B x4 C is as the group generated by the symbols B] | C modulo
the relations xyz~! whenever x,y are in the same group and z = xy and the further relations
f(a)g(a)~foralla € A.

The construction seems very similar to the construction of the free group and there is a good
reason for it. If X = {x1,...,x,} and we let G; = (x;) the free cyclic group generated by x;
(isomorphic to Z, but written multiplicatively) then

P(X):Gl*G2*~--*Gn,

the free product of the groups G;. We should note that the terminology “amalgamated prod-
uct” or “free product” is confusing because in the categorical sense these are more sums than
products: for example G; * Gy is the coproduct of G; and G, (and we often use the terminology
direct sum for a coproduct) and not the product.

There are natural group homomorphisms

A f B
8 EB\L

ec

C—SBx,C
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Let M be a group and suppose that we have a diagram

where we need to define the map g and show that it has the required properties. There is only
one possibility:

dp(xi), xi €B,

glxr---xn) = q(x1) -+ q(xn), 9(xi) = {dc(xi) xi € C.

We leave the verification that this provides B * 4 C with the required universal property as an
exercise.

The structure of the amalgamated product is in general very difficult to understand. For
example, Z /27 x Z./3Z is a much more complicated group than one may anticipate. The matrix
(% §) has order 2 in PSL;(Z) and the matrix ( ;' ;') has order 3 (even in SL,(Z)). We have an
induced homomorphism

Z7./2Z % Z./3Z — PSL,(Z).

One can prove that it is an isomorphism! Another example, is SLy(Z) = Z /47 %z 27 Z/6Z
using the matrix ( °; §) that has order 4 in SL,(Z) and the matrix (¢ 7!) that has order 6 (Serre:
Trees, §1.5.3).

Example 13.1.5. Let Z be the union of two circles touching at the point t = (1,0):
Z={(xy): @+ -D((x-12+y*—1) =0}.

Welet X =Zn{(x,y) : x <11}, Y=ZnN{(xy): x> 09}. Xand Y are homotopic to a circle
and so, by standard results in topology, they have the same fundamental group as the circle,
namely Z. X NY is contractible to a point and so has trivial fundamental group. Thus, by the
Seifert - van Kampen theorem,

m(Z,t) =2 ZxZ =F(x,y),
is the free group on the alphabet x, y.

13.2. Inverse limits. The discussion concerning inverse limits is very similar, only that every-
thing is “upside down”. Let I be a poset and C a category, and consider a system {X;, f;;} of
objects of C and morphisms

fl] : X] — X,
whenever i < jsuch that f;; = 1x; and for i < j < k we have fj = fjx o fjr. Such a system is
called a projective system, or inverse system.

The projective limit (or inverse limit, or simply “limit”) is “the object above the diagram that
is closest to it”. When it exists, it is characterized by its universal property — it’s unique up to
unique isomorphism and denoted

lim Xi.
—

Namely, it is an object C with morphisms p;: C — X; that satisfy f;; o p; = p; and that is uni-
versal relative to this property in the sense that given an object D with morphisms g;: D — X;
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satisfying fi; o q; = g; there is a unique morphism r: D — C satisfying p; or = g¢; for all i. In
diagram,

ce< Xi-TXj

13.2.1. Direct product. As for direct limits, we start with the simplest example of index set I that
is discrete. In this case, the projective limit is called a direct product (the use of verb “direct” is
unfortunate, but is commonplace) and denoted

[
i
Proposition 13.2.1. Products exist in the category Sets.

Proof. The elements of []; X; are functions f: I — U; X; with the property that f(i) = x; € X;
for all i. We will usually denote such a function by (x;);. Define the projection functions

pi: HXi — X, Pi((xj)jel) = Xi.
i
Given D, define r(d) = (qi(d));. Clearly p; or = gq; and that r is the unique function with this
property. U
Theorem 13.2.2. Arbitrary projective limits exist in Sets.

Proof. Consider the set C of vectors (x;); € []; X; that satisfy x; = f;;(x;) for every i < j. Denote

by
pi: C— X,‘

the restriction of the maps p; to C. We claim that {C, p;} is the projective limit. Firstly,
(fij o pi)((xe)e) = fij(xj) = xi = pi((xe)oe)-
Then, given D and morphisms g; as in the definition, define
r:D—C, r(d)=(q:(d));.

This element indeed lies in C because f;;(q;(d)) = q;(d). Clearly p; or = g; and we see that r is
the unique function with this property. U

13.2.2. General projective limits. We prove two very useful results.
Theorem 13.2.3. Arbitrary projective limits exist in gMod and Rings.

Proof. The construction and proofs are very similar to the case of Sets, so we’ll be brief. In the
category rRMod, for a projective system {M;, f;}, define

1<iin M; = {(mi)i € HM{ : fl](m]) =m;, i < ]}
i
It is an R-module under coordinate-wise addition and r(m;); := (rm;);. The projections p; sim-

ply take (m;); to m;.
In the category Rings , for a projective system {R;, f;; }, define

1&1 R, = {(T’j)l‘ S HR,‘ fl](?']) =711 < ]}
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It is a ring under coordinate-wise addition and multiplication and it has an identity element that
is the constant function 1. The projection p; simply takes (r;); to ;. U

A particular case of this construction is when I is a discrete set, in which case we get the direct
product of modules and of rings. Note that if I is a finite set we have in the category of modules,
[IM; = 11 M;, but for I infinite, these are different notions. Also note that the direct product of
rings [ R; always exists, while the direct sum of rings need not exist.

13.2.3. Pullback. This is a particular case of projective limits. Given a diagram

A
|s
B—S-C
the pullback, if it exists, is the projective limit. In particular, it is an object X with morphism

X — A, X — B making the following diagram commutative:

X—=A

e

We know already that pullbacks exist in Sets, Rings, kMod. In all these cases they afford the
more compact description

{(a,b):ac A,be B, f(a) =g(b)}.
In a geometrical setting, the pullback is called fibre product and it “always” exists; it is a very
important construction. For example, in Exercise 44, one proves thatif A, B and C are topological
spaces then the pushout, denoted in this case A X¢ B, is again the subset

{(a,b):ac A,be B, f(a) =g(b)}
of A x B, with the induced topology.

13.3. Completion of a ring. Let R be a commutative ring and I an ideal of R. Then for every n,
I" is an ideal. Recall that it is the ideal generated over R by all length n products x1 - - - x, with
all Xj € I. Thus,

IDPD2PD....
There are natural ring homomorphisms that give us an inverse system over a directed index set
. =+ R/P = R/I* - R/L
The projective limit, sometimes denoted R, or R/, is a ring with the following description:
{(..c,tns1, Ty oo r2,m1) i1 ER/I" 1pp1 =1y (mod ")}
It is called the completion of the ring R relative to the ideal I. Note that there is a natural map
R =R, re (...,r,17).

Recall that a commutative ring is called Noetherian if any increasing sequence of ideals sta-
bilizes. Namely, if 1 € I, C I3 is an increasing chain of ideals then for some n we have
Iy = 41 = Iy = .... Classical examples are the following: by a theorem of Hilbert, if
R is a commutative Noetherian ring so is R[x] and any quotient of it. As Z and any field k are
Noetherian rings, we find, for example, that k[x1, x2]/ (x‘i’ — X1 4+ 5x7) is Noetherian and also that
Zli][x,y] is Noetherian. Indeed, Z[t] is Noetherian and so Z[i] = Z[t]/(t* + 1) is Noetherian.
Therefore, Z[i][x] is Noetherian and hence (Z[i][x])[y] = Z[i][x,y] is Noetherian.
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A commutative ring R is called a domain if it has no zero divisors. A fundamental theorem is
the following.

Theorem 13.3.1 (Krull). Let R be a noetherian domain and I # R an ideal of R. The natural map
R — R,
is injective.

In the following we discuss two interesting examples.

13.3.1. Power series. Let A be a commutative ring, R = A[xy, ..., x,| the ring of polynomials in n
variables over A and let I = (x1,...,x;). Then

RM = Alxy,...,x1],
is the ring of power series in n variables over A. If we use the notation x! = xil .-l for
I = (iy,...,1,) a vector of non-negative integers, then

Allxy, ..., x,] = {Zalxl ta; € A}.
i

(The summation is over all vectors I with non-negative integer components.) We leave the proof
as an exercise. We have a natural inclusion A[xy,...,x,] € A[xy,...,x,]. The completion of a
ring is an algebraic way to arrive at analysis.

13.3.2. p-adic numbers. In this case we take our ring to be Z and our ideal to be pZ, where p is a
prime. The ring of p-adic numbers Z, can be defined in the following way:

Z, = 7ML — {(co,tnt, oo 12,11) it € Z/P"Z, 11 =1y (mod p")}.

We can endow Z, with additional structure. Give each Z/p"Z the discrete topology. Then
I1.Z/p"Z is a compact (by Tychonoff’s theorem) Hausdorff topological space which is totally
disconnected and so Z,, being a closed subset of [T=12Z/p"Z, is compact, Hausdorff and to-
tally disconnected as well. Moreover, the ring operations (addition, multiplication, subtraction)
are continuous. We can even make Z; into a metric space (see Exercise 45).

Every element x of Z;, can be described as

x= Y a0y,
n=0

where a;(x) € {0,1,...,p — 1}. Indeed, if an element of Z, is (rn)u>1, Yo—ganp" is just the
expression of 74,1 as an element of Z/p?+1Z using usual base-p development. Given that,
it is easy to see that the ideal p?Z, is the sums Y ;a,p", corresponding to the sequences
{(---,7441,0,...,0,0) }. Projection on the d-th coordinate thus gives an isomorphism

Z,/p'2,=27/p"Z.

A sequence x; converges in Z, if and only if for every positive integer d there is an N such that
for i > N the d initial terms of the x; agree. Namely, fori > Nand j =0,...,d we have

a]-(xz-) = a]-(xN).

The description of elements as infinite sums is convenient. However, we should be careful
about how operations are performed. For example, we have

“1=(p-D+@-p+(p-1)p*+...
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Whenweadd 1to (p—1)+ (p—1)p+ (p — 1)p* + ... we need to carry over:

I+(p-D+p-Dp+(p-Dp*+...=p+(p-Dp+(p-1)p°+...
=pp+ (PP +(p-1)p° +...
=pp*+(p-1)p> +...

= 0.
If p = 5 then
(2+2-54+2-52+...)x (34+3-5+3-524+...) =6+12-5+18-52+24-5. ..
=1+3-52+3.54+...

(the pattern does not continue). Incidentally, note that (1+1-5+1-52+...) = 2z = 1.

Consider the closely related limit over n > 1

li£1 Z/p"Z]x],

which is the completion of the ring of polynomials Z[x| relative to the ideal pZ|x].
This limit is denoted Z,(x) and is an example of a Tate algebra; those play an important role
in the development of analysis over the p-adic numbers.

Proposition 13.3.2. The ring Z,(x) admits the following concrete description:
e}
Zp<x> - {E anxn LAy S Zp,an — O}.
n=0

Proof. Suppose given a sum like that. Then, for every N there is n such that a; € pN for i > n.
Define the polynomials

n .
Py(x) =Y aix' € Z/pNZ[x].
i=0
Note that
Pyn(x) = Pyy1(x)  (mod pV).
Thus, the vector (..., P3(x), P»(x), P1(x)) is a well-defined element of Z,(x). The map

{Z apX" :ay € Zp,ay — 0} = Zp(x)
n=0
is a ring homomorphism (Py/(x) is essentially Y0° ;a,x" (mod pN)) and it is injective, because
Py = 0 for all N implies a; =0 (mod p") for all i and N and this implies a; = 0 for all i.
To show it’s surjective, we assume given a sequence of polynomials Py(x) € Z/pNZ[x] such
that Py (x) = Y52 a;(N)x’ where only finitely many coefficients are non-zero and

Pn(x) = Py.1(x)  (mod pN).

But that means that for every i, 4;(N) = a;(N +1) (mod p"). Therefore, the sequence (2;(N))%_;
is a p-adic number a; such that &; = 4;(N) (mod p") for all N. It follows that Y5, a,x" is a
preimage of the sequence (..., P3(x), P»(x), P(x)). O
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14. INFINITE GALOIS GROUPS

14.1. Review of finite Galois theory. The content of this section should be well-familiar from
MATH 457. Let FF be a field. A polynomial f(x) € FF[x] is called separable if it has distinct roots;
equivalently, ged(f(x), f'(x)) = 1. A field F is perfect if it either has characteristic 0, or it has
characteristic p and the map x — x? is surjective. This includes all finite fields. An irreducible
polynomial over a perfect field is separable.

Let f(x) € F[x|. A splitting field for f is a field L O F in which the polynomial f(x) factors,
f(x) =ally(x —a;),a,0; € L,and L = F(ay,...,a,). A basic result is that any two splitting
fields for f are isomorphic over F. In fact, if ¢ : IF — IF is an isomorphism of fields taking f(x) to
f(x), and if L (resp. L) is a splitting field for f (resp., for f) then there’s a commutative diagram

RJ/QI

H —
e s

s

The key is the following: if f is irreducible, « € L is a root, then F(a) = F[x]/(f(x)) =
F[x]/(f(x)) = F(&) for a root & of f in L. The proof of the general statement is done induc-
tively and is useful in calculating Galois groups.

A field extension K/ is called algebraic if every element of K solves some non-zero poly-
nomial f(x) € F[x]. Every finite extension is algebraic. An algebraic extension K/F is called
separable if every element of K is a root of a separable polynomial f(x) € F[x]. An exten-
sion K/F is called a normal extension if it’s the splitting field for a collection of polynomials
{f(x)} C F[x]|, meaning that they all split in K and K is generated over F by their roots. It is
a theorem that if K/JF is normal, f(x) € F[x] is irreducible and has a root in K then f(x) splits
in K.

Automorphisms. Let K/F be a field extension. Define
Aut(K/F) = {0: K — K a field automorhism, o|r = id.}.
Assume until further notice that K/ is a finite extension. We have the fundamental theorem:

Theorem 14.1.1. |Aut(K/F)| < [K : [F] with equality if and only if K is the splitting field of a separable
polynomial (equivalently, a collection of separable polynomials).

We call an extension for which an equality holds a Galois extension and use Gal(K/F) for
Aut(K/T) in this case.
Theorem 14.1.2. Let K/TF be a finite extension of fields. The following are equivalent:
(1) K/F is Galois, i.e., |Aut(K/F)| = [K : F].
(2) F = KAWK/F) .— [k € K: 0(k) = k,Vo € Aut(K/F)}.
(3) Kis the splitting field of a separable polynomial f(x) € F[x].
(4) K/ is a normal and separable extension.

A key example is the following theorem: Let K/IF be any extension of fields, not necessary
finite, and G C Aut(K/TF) a finite group. Then K/KC is a Galois extension with Galois group G.

In general, we have two maps for an extension K/IF:

subgroup G C Aut(K/F) +~ K°={kecK:o(k)=kVoecG}
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KDLDOF +— Gp={ce€Aut(K/F):o|, =id.}
We have
Gge 2 G, K° DL

For K/ a finite Galois extension these are inverses correspondences:

Theorem 14.1.3 (Main Theorem of Galois theory). Let K/IF be a finite Galois extension, G =
Gal(K/IF). There’s a bijection

{subfields K O L O F} <— {subgroups H C G}.
Under this bijection L — G = Aut(K/L), H — KH. The following holds:
(1) Hy C H, = KH D KH2,
(2) K; O Ky = Aut(K/K;) C Aut(K/Kp).
(3) K n Kt = g(Huth)  gHigH2 — gFinH
(4) [K:KH]=|H|, [KH:F]=[G:H].
(5) For every subgroup H, K/K" is Galois with Galois group H.
(6) For a subgroup H, K* /TF is Galois if and only if H is normal in G. In this case, Gal(K /F) =
G/H.

14.2. Infinite Galois extensions. Let K/IF be an algebraic extension of fields, possibly of infinite
degree. We that that K/IF is Galois if it also separable and normal. That is, every k € K solves
a separable non-zero polynomial f(x) € F[x]| and any irreducible polynomial f(x) € F[x] that
has a root in K splits into linear factors over K.

Lemma 14.2.1. Let K/ be an algebraic extension. Then K/ is Galois if and only if K = UrL, is a
union of finite Galois extensions L/TF contained in K.

Proof. Exercise! O

Suppose that K/ is Galois. The set {L : L is a finite Galois extension of F, contained in K}
is a direct poset I under inclusion. Given L1, L, Galois , L1L; is Galois over IF and L; C L;L,. If
L, C L, we have a surjection Gal(L,/F) — Gal(L1/F). Thus, {Gal(L/F) : L € I} is an inverse
system. Let

G= h;n Gal(L/F) (limit over all L/F finite Galois inside K).

Lemma 14.2.2. G = Aut(K/F).
Proof. Exercise! U

Let us give each finite group Gal(L/[F) the discrete topology. Then Aut(K/F), that we also
denote Gal(K/TF), has a natural topology, being a closed subgroup of the compact topological
group [;c; Gal(L/F). In this topology it is compact, Hausdorff and totally disconnected.

14.3. Profinite groups. More generally, let G be a profinite group. That is
G =1lim G,
H
acl

where G, are finite groups, I a directed poset and for « < B the homomorphisms f,5: Gg — Gy
are surjective.
Each G, is given the discrete topology. As

G = {(8a)a : &a € Gu, fup(8p) = g/ Va < B} C [ ] Ga

ael
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is a closed subgroup of a compact (Tychonoff’s theorem), Hausdorff topological group, it is
itself a compact Hausdorff topological group (meaning, the group operation and the inverse are
continuous maps).

Lemma 14.3.1. (1) Every open subgroup of G is closed and has finite index in G. It contains a
subgroup of the form

Gr:=Gn (FIGDé X H{l}) ,
] ae]
for some finite subset | C I. Gy is open. Every open set U C G is a union of cosets of Gj'’s.
(2) Every closed subgroup of finite index of G is open.
(3) The intersection of open subgroups is a closed subgroup. Every closed subgroup is the intersection
of open subgroups.

Proof. Exercise! (two observations are useful: for g € G multiplication by g is an automorphism
of G and so H is open implies xH is open. The other is that by the definition of the topology
every open set containing the identity contains some G;. For (2) show that H = NjHG;j, and
note that as the G are normal the HG;j are subgroups.)

14.4. The Galois group of an arbitrary Galois extension. Taking into account the topology of
the Galois group of a possibly infinite Galois extension we can extend the fundamental theorem.

Theorem 14.4.1 (Main Theorem of infinite Galois theory). Let K/IF be a Galois extension, G =
Gal(K/T). There is bijection

{KDOMDF} < {closed subgroups H C G}
under which M — Hy = {0 € G: 0|y =id.} and H— K" = {k € K: o(k) = k,Vo € G}. These
maps are mutual inverses. Furthermore:
(1) M is a finite extension of IF if and only if Hy is open.
(2) K/ M is a Galois extension with Galois group Hy.
(3) M/ is Galois if and only if Hyy<\G and in this case Gal(M/F) = G/Hpm.

Proof. This is not very hard, but is harder than the previous claims I left as exercises. If I have
time I will type the proof. U
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Part 5. Commutative algebra
15. LOCALIZATION OF RINGS AND MODULES

Let R be a commutative ring. The process of localization of R is a way to force certain subsets
of R to become invertible by suitably enlarging the ring.

15.1. Localizing a ring. Let R be a commutative ring and let S C R be a subset. S is called
multiplicativeif 1 € Sand x,y € S = xy € S.

Example 15.1.1. Here are some of the most important examples:
(1) S={1,f,f?...} for some element f € R.
(2) If p<aR is a prime ideal then S = R — p is a multiplicative set.
(3) If R is an integral domain then S = R — {0} is a multiplicative set (note that this is a
special case of the previous example).

Let S be a multiplicative set. The construction of the ring R[S~!] mimics the construction of
the rational numbers from the integers. Consider first the set of formal fractions

{K:TER,SGS}.
s
Define a relation on it by saying that

r r/ ” e /
-~ & 37€S,s"(s'r—sr') = 0.
s s
We leave as an exercise to check that this is an equivalence relation.

To make the notation simpler we will use ; also to denote the equivalence class of a formal
fraction L. The collection of these classes is denoted R[S™!] and is called the localization of R
at S. But, of course, any definition we make will have to be checked to be independent of choice

of representatives. We define two operations on R[S™1]:

o, T2 _ sntsin n.n_nn

ST S s1s S| S» 5152
We leave it as an exercise to check that these are well-defined and turn R[S~!] into a commuta-
tive ring (whose zero element 0 is the equivalence class of ¢ and whose identity element 1 is the

equivalence class of }). There is a ring homomorphism,

0:R— R[S, re

—] =

If s € S then ((s) is invertible. Indeed, ¢(s) - 1 = 5.1 = ¢ =1 = 1. In fact, the homomorphism

S S S
¢: R — R[S7!] has the universal property for maps f: R — B into commutative rings B such

that f(s) is invertible in B for all s € S. Every such map factors uniquely:

R—5 R[S

N

B

The ring homomorphism / is not necessarily injective.
Lemma 15.1.2. Ker(¢) = {r € R: 3s € S,sr = 0}.

Example 15.1.3. Let R be an integral domain; for example, Z or C[x|. Let S = R — {0}. Then
the ring R[S™!] is a field and in fact is the minimal field containing R. It is called the field
of fractions of R. Some common notations are Frac(R) or Quot(R). For example, for Z we
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obtain the field of rational numbers Q, and for C[x] we obtain the field of rational functions

Cx) = {5} f(x),8(x) € Clal, g(x) # 0}

15.2. Localizing a module. Let M be an R-module. There are two approaches to defining the
localization M[S~!] of M at a multiplicative set S of R. The first is to define

M[S71]:=R[S7'| @ M.
Using everything we know about tensor products, we see that localization becomes a functor:
rMod — R[Sfl]MOd.

We will return to this point of view in the next section.
The other approach, which is very useful for calculations, is to mimic the construction of
R[S7!]. Namely, we begin by considering the set of formal fractions

{%:mEM,sES}.

Define a relation on it by saying that

/
% ~ % & 387 €8, s"(s'm—sm') =0.
Note that in particular % = 0 if and only if there is an s’ € S such that s'm = 0.

Let us check that this is an equivalence relation. It is clear that this relation is reflexive and
symmetric. Suppose now that 'g—ll ~ ’2—22 and T—; ~ T—; Then, for some t1,t, € S we have
ty(samy — symp) = ta(samy — symz) = 0. From this we get that t1tps3(spm; — symp) = 0 and
t1tps1(samy — symz) = 0. Adding those two expressions, we find that t; 5535271 — t1t25152m3 = 0,
or that t1tpsp(s3my — symz) = 0. Since t1ts; € S that means that ’?—11 ~ ’;1—33 Note that even
if initially t; = t, = 1 we don’t end with the conclusion that s3m; — sym3 = 0 but only with
sa(szmy — sym3) = 0. This explains why the equivalence relation was defined that way.

As before, to keep the notation simpler we will use " also to denote the equivalence class of

a formal fraction 2. We define an R[S™']-module structure on M[S™!]:

m1+m2_szm1+slmz r m r-m

s1 2 5152 ! S1 S» 5152

One checks that these are well defined and turn M[S~!] into an R[S~!]-module. There is a map

0: M — M[S7], mr—>%,

which is a group homomorphism with the property
L(rm) = £(r)€(m).
These two descriptions of M[S~!] are really the same. There is a map

R[S ®r M — M[S71], g ® m %

The inverse is 22 — 1 @ m. To prove that, it is useful to note that every element of R[S~!]| @ M
can be written as 1 ® m by using a common denominator and the relation £ @ m = 1 ® (rm).

If p is a prime ideal and S = R — p, we will denote M, the localization M[S71]. If S =
{1,f,f?,...} we will denote R[S~1] by R[f~1].
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15.3. Localization is an exact functor. Let C be an additive full subcategory of a category kMod
such that the zero module 0 belongs to C and C is closed under taking kernels and quotients.®

A sequence of modules and module morphisms

0 AT B 5. Cc—0

is called a short exact sequence if the image of every map is the kernel of the following one.
Namely: (i) f is injective; (ii) g is surjective; (iii) Im(f) = Ker(g).

Suppose that D is another category with the properties C has. A covariant additive functor
F: C — D with the property’ F(0) = 0 is called exact if for any short exact sequence

0 AL p 8

C 0

in C, the sequence

0 A g P pc 0

in D is a short exact sequence as well. In general this need not be the case: for example, the
functors M ®r (—), Homg(M, —) are typically not exact, but only “1/2 exact”. The study of
this failure is the origin of homological algebra and understanding the modules for which the
functors are exact is an important part, leading to concepts such as projective, injective and flat
modules.

Lemma 15.3.1. Localizaton is an exact functor.

Proof. Let R be a commutative ring, S a multiplicative set and 0 A ! B—S

an exact sequence of R-modules. We need to prove that

0—— A[s~1] L~ B[s~1] -~ C[5~1] — >0

is an exact sequence of R[S™!]-modules.

If f(2) = 0 then @ = 0 and that means that for some s’ € S we have s'f(a) = 0. But,
s'f(a) = f(s'a) and since f is injective, s'a = 0. But that means that ¢ = 0.

We have g(f(%)) = M =9 =0. And, given ¢ € C thereisa b € B such that g(b) = .
Thus, g(2) = ¢ and we get that g is surjective.

It remains to show that Ker(g) C Im(f). Suppose that g(%) = @ = 0. Then, thereiss’ € S
such that 0 = s'g(b) = g(s'b) = 0. Thus, there is a € A such that f(a) = s'b. We now find that

fE ==t 0

s's s's S

15.4. Prime ideals and localization.

Proposition 15.4.1. Let R be a commutative ring and S C R a multiplicative set. There is a bijection
between the prime ideals of R[S~'] and the prime ideals of R that do not intersect S.

Proof. Let I be an ideal of R[S™!] then I° := ¢~1(I) (the “c” stands for “contracted”) is an ideal
of R. Furthermore, we have an inclusion

R/I° < R[S7!|/IL

8We are avoiding here introducing the highly technical definition of an abelian category. By the Freyd-Mitchell
theorem, every abelian category is equivalent, by means of an additive functor, to a full-subcategory of the category
of modules gMod for some (not necessarily commutative) ring R.

In fact, F (0) = 0 automatically holds
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If [ is prime then R[S~!]/I is an integral domain, hence so is R/ I°. Therefore, I is a prime ideal
of R. If 3s € SN I then ¢ € I and thus I contains a unit. It follows that I = R[S!]. But, by
definition, a prime ideal is a proper ideal. Contradiction. Thus, I is a prime ideal of R that does
not intersect S.

Conversely, given an ideal I of R, we have I C R an inclusion of R modules, giving us an
inclusion of R[S™!] modules I[S™!] C R[S™!]. Thatis, I := I[S™!] is an R[S~!] ideal (the “¢” is
for “extended”).

Suppose that I is a prime ideal that doesn’t intersect S. We want to show that I° is prime.
Suppose that ¢ - ¢ € I°. Then, for some a3 € I,53 € S we have {i2 = 2 and thus, for some
sy € S we have 5453a1a2 = 54815243 € I. As sy, 53 € S, I is prime and INS = &, we must have
a1a € I and, again, either a; € I or ap € I. Therefore, either ’;—; € I or % e I°.

It remains to check that I = [ for I a prime ideal of R[S™!], and I* = I for I a prime ideal of
R disjoint with S. The latter will also prove that I° # R[S~!] and so, combined with the above,
that I° is a prime ideal.

Begin with the first case. Leta € I°. Then l(a ) =%clandsoforanys€ S, 2=2.1 ¢l
Thatis, I C I. Let ¢ € I. Thenalso § = {-% € I an dthusa € I°. But then § € Ice and we get
¢ 21

Now let I be a prime ideal of R disjoint with S. Leta € I then § € I° and so a € I*.

Conversely, if 2 € I then § € I° and so for some b € I,s € S we have § = %. Then, for some
s1 € Swehave sjsa = s1b. Ass1b € I, [ is prime and s1,s ¢ I, we conclude thata € 1. O

If the set S = R — p, where p is a prime ideal, then one denotes the localization R[S~!] also
by R, and refer to as the localization by a prime ideal. One calls a ring R a local ring if it has
a unique maximal ideal. The Proposition implies that Ry, is a local ring whose unique maximal
ideal is p°. In fact, the prime ideals of R, correspond bijectively to prime ideals of R that are con-
tained in p. Put differently, if we are interested only in the prime ideals of R that are contained
in a given prime ideal p, we may pass to R, where the picture of ideals is simplified. The only
prime ideals remaining come from those that are contained in p. This explains the terminology
“localization”.

16. THE SPECTURM OF A RING

Let R be a commutative ring. Grothendieck associated to R a special kind of topological space
denoted Spec(R). It has much more structure than merely a topology. It is a so-called locally
ringed space. This definition was the basis for a revolution in algebraic geometry. In a blink
of an eye algebraic geometry was extended from varieties that were associated to very special
rings of the form k[xy,...,x,|/(f1,..., fa) for some polynomials fi, ..., f, with coefficients in a
tield k, to a vast universe where any commutative ring is allowed. Besides a mere generalization
this allowed the resolution of important foundational issues in algebraic geometry; for a long
time the development of algebraic geometry was spearheaded by the “great Italian geometers”,
but a crisis in its foundations was brewing. Grothendieck’s work allowed to re-write classical
algebraic geometry and put it on solid foundations. From a different perspective it allowed a
new kind of geometry that was essential to the development of arithmetic geometry. (See, for
example, Intuition and Rigor and Enriques’s Quest by David Mumford, Notices AMS 2011 and How
Grothendieck Simplified Algebraic Geometry by Colin McLarty, Notices AMS 2016.) Grothendieck
perhaps fully realized the beautiful saying of Sophie Germain (1776-1831): “L’algeébre n’est qu’une
géeométrie écrite; la géométrie n'est qu'une algebre figurée”.
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16.1. Spec(R) as a set. Let R be a commutative ring. We define the set
Spec(R) = {[p] : p a prime ideal of R}.

Namely, the points in Spec(R) are the prime ideals of R. We use the brackets so as to distinguish
between the point [p] in the set Spec(R) and the actual prime ideal p.

Example 16.1.1. Here are a few simple examples:

(1) If R is a field, Spec(R) = {[0]}. It is a singleton corresponding to the ideal {0} of R.

(2) Likewise, if R is a field and t is a variable Spec(R[t]/ (t?)) is a singleton corresponding to
the unique prime ideal of this ring, the ideal (¢). One often writes this ring as R[e] where
it is understood that €> = 0. It is called the ring of dual numbers.

(3) Spec(z) = {][0], [2Z],[3Z], [5Z], ... }.

(4) Spec(C[x]) = {[0]} U{[(x — a)] : « € C}. Let us explain that:

Suppose that I is a prime ideal that is not 0. Then I contains some polynomial f(x)
that is not constant. As I is prime, it contains also the prime factors of f and so we may
assume that f is irreducible. But such f must be a degree 1 polynomial. So I O (x — «)
for some a. As the ideal (x — a) is maximal (the quotient C[x]|/(x — a) = C), it follows
that [ = (x — a).

(5) Spec(R[x]) is a bit more complicated. Besides points of the form [(x — «)],« € R and
[0], it also contains points of the form [(x? + bx + c)] with b? — 4c < 0. These are all the
points of Spec(IR[x]).

The following lemma is clear.

Lemma 16.1.2. A homomorphism of rings f: R — S induces a function

f*: Spec(S) — Spec(R),  [p] = [f71(p)].
Example 16.1.3. (1) The homomorphism Z — F,, embeds the point Spec(IF,) as the point

[pZ] € Spec(Z).

(2) The homomorphism R[x] — C[x] induces a function Spec(C|x]) — Spec(IR[x]) that takes
the point [(x — a)] to the point [(x — a)] if « € R and to the point [(x —a)(x —&)] ifa & R.

(3) Leth € Rand S = {1,h, W2, ... } a multiplicative set. We will denote the localization
R[S7!] by R[k71]. 1t is in fact isomorphic to R[x]/(xh — 1). By Proposition 15.4.1, the
ring homomorphism

0: R — R[h™Y]

gives an injective map Spec(R[h!]) — Spec(R) whose image is the set of prime ideals
of R that do not contain h.

16.2. Spec(R) as a topological space. Before defining the topology, we consider the notion of a
radical of an ideal. Let a<iR be an ideal. Its radical y/a is

Va={reR:In>1,r" €a}.

It is indeed an ideal. If r € /a and 1" € a then for every s € R also (sr)" = s"r" € a and
so Ry/a C \/a. If r; € /a and say r?" € a then (rq + r,)" 1" is, by the binomial formula, a
sum of terms each of which is either a multiple of r;” or of rgz, thus in a. Thus, /a is an ideal
containing a. The ideal a is called a radical ideal if a = /a. For example, if a is a prime ideal
then it is a radical ideal. Also, for every ideal a, /a is a radical ideal.

Now let a be an ideal of R. Define a subset of Spec(R):
V(a) = {[s] € Spec(R) : p 2 al.
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We define a topology on Spec(R) whose closed sets are the V(a). Note that V({0}) = Spec(R)
and V(R) = @. To show this is a topology, we must prove the (1) & (3) of following lemma.

Proposition 16.2.1. The following holds:
(1) V(a)UV(b) = V(ab).
(2) V(a) = V(b) & /a=b.

(3) NV (a;) = V(¥ a;), where Y, a; is the minimal ideal of R containing all the ideals a;.

Proof. We begin with the first claim. Any ideal containing a (resp. b) contains ab, so the r.h.s
contains the Lh.s. Let p O ab be a prime ideal and suppose that p doesn’t contain b. There is
thus b € b such that b ¢ p. For every a € a the element ab € ab and so in p. As p is prime and
b & p it must be that a € p. It follows that [p] € V(a).

For the second claim, we first note that if p O a is a prime ideal then p O +/a. Thus, V(a) =
V(y/a). So, it is enough to prove that the set of prime ideals p that contain a given radical ideal
determines it. In fact, we have the following lemma.

Lemma 16.2.2. Let a be an ideal of R then
Va={7p,
p2a

the intersection being over prime ideals containing a.

Proof. One inclusion is clear. If w" € aand p O ais a prime ideal then w" € p and so w € p. That
gives /a C Npoap.

Now, take an element f € R such that f ¢ \/a. Thatis, foralln > 0, f* ¢ a. Let X be the
set of ideals b O a of R with the property that f* ¢ b for all n > 0. This is a non-empty set
as a € X; it is partially ordered under inclusion and every chain of ideals {b, } c; has an upper
bound U,c1b, that belongs to 2. By Zorn’s Lemma, X has a maximal element p. We claim that p
is a prime ideal and being in £, p O aand f ¢ p. Thus, we are done.

Suppose that p is not a prime ideal. Then, there are x,y € R such that

XYyeEP, XEPYEp.
Therefore, we have a strict inclusion of ideals (x) + p ; p, (y)+p 2 p. Thus, for some n, m
positive integers we have f" € (x) +p, f™ € (y) +p, But then, /™" € ((x) +p)((y) +p) C p.
Contradiction. O

The last claim is rather easy. If p contains each g; it contains the minimal ideal containing all
of them, and vice-versa. O

Note an interesting corollary of the lemma.

Corollary 16.2.3. The nilradical of R, that is, the ideal \/0, is the collection of all nilpotent elements
of R and is equal to the intersection of all prime ideals of R:

\fO: mp]ﬂrimep = {7’ €R:3dn> O,rn :O}

Returning to our main topic, we have established the existence of a topology on Spec(R) whose
closed sets are the sets V(a).

Example 16.2.4. It is not hard to show that if p is a prime ideal then V([p]) is the closure of the
one point set {[p]}. Let’s consider a few simple examples:

e If kis a field then Spec(k), Spec(k[e]), Spec(k[x, v, z] / (x?,y3,z'!) are just one point spaces.

[(0)]
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e Let p be a prime and consider Spec(Z ;). The prime ideals of Z, correspond to the
ideals of Z contained in (p) and there two of them (p) and (0). Thus,

Spec(Zy)) = {[0], [(p)]}-
The point [(p)] is closed. The point [0] is an open set whose closure is the whole of
Spec(Z,))-
* [ ]
[(0)] [(p)]

e Consider now Spec(Z). We know its points are {[0],[(2)],[(3)],[(5)], ... }. Every point
[(p)] for p a prime number, is a closed point. The point [(0)] is not an open set; it’s closure
is the whole of Spec(Z). Every non-empty open set contains all but finitely many closed
points (in particular, it contains [0]), and conversely.

*
[(0)] [(2)] [(3)] [(5)]

e The situations for rings of the form Z[i], Z[v/2],Z[¢*™/7], and so on is similar, but the
precise enumeration of the prime ideals becomes a number theoretic question. For ex-
ample, for Z]i] we have closed points of the form (p) for every p = 3 (mod 4) and
points of the form [(x + yi)] and (x — yi) for every prime p = 1 (mod 4), where x,y
satisfy x2 + y?> = p. An additional closed point is (1 + 7). There are all the closed points.
The only additional point of Spec(Z[i]) is [(0)] and it’s dense.

© [+ (3] 1420 ()] .
| (1 - 2i)]

%

(0)] ©) 3)] )] 7))

Proposition 16.2.5. Let f: R — S be a homomorphism of rings. Then the induced map
f*: Spec(S) — Spec(R)
is continuous.

Proof. We only need to calculate (f*)~1(V(a)) for an ideal a of R. We claim that

(f)7HV(a) = V({f(a)).
(Here (f(a)) is the ideal of S generated by the set f(a).) Indeed, if p is an ideal of S that contains
f(a) then f~1(p) 2 aand so f*[p] € V(a). Thatis, p € (f*) "1 (V(a)).
Conversely, if p € (f*)~1(V(a)) then f*[p] = [f~1(p)] € V(a)so f~1(p) D aand it follows
thatp O f(a)and sop € V({f(a))). O

We have defined a topology by specifying the closed sets. There is a particular kind of open
sets that is very convenient to work with. Let f € R and define

D(f) = {lp]: f & p} = Spec(R) — V((f))-
If we think about elements of R as functions on Spec(R) (and we shall soon see that this is
precisely the case) then we can think about f (mod p) as the value of f at the point [p]. Denote
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this value'® f([p]) then
f(p)=0&fep.

For example, if R = C[xy,...,x,] and f(x1,...,%,) is in R, then at the closed point [p] =
[(x1 —a1,...,x, — )] defined by an n-tuple of complex numbers «aj,...,a,, the value of f
is classically f(ay,...,«,), which is precisely f (mod p). Under this interpretation of elements
of R as functions, D(f) is precisely the set where f # 0.

The sets D(f) are a basis for the topology, i.e. they are open and any open set is a union of the
sets D(f). Indeed, if [p] & V(a) then there is an element f € a such that f ¢ p. Then we see that
D(f) is an open set that is disjoint from V(a) and contains [p].

Proposition 16.2.6. The function ¢* : Spec(R[f~1]) — Spec(R) is a homemorphism onto D(f).

Proof. We have seen in Example 16.1.3 that this map is a bijection from Spec(R[f~!]) to D(f),
and Proposition 16.2.5 gives that this function ¢* is continuous. It remains to show that it is a
closed map when D(f) is provides with the induced topology.

Let a be an ideal of R[f~!]. We claim that I 2 a < I° D a°. One direction is obvious. Suppose
that I° O a then I = I D a*. So it only remains to check that a® O a, and, indeed if ¢ € a then
{ € aand also § € a®. But then also § € a®.

Let a be an ideal of R[f~!] then £*(V(a)) is the set

{I°: 1D a,I prime} = {J<R prime, f € J,] D a°} = D(f) NV (a),
a closed set of D(f). O

Let R be a ring and n > 0 an integer. One denotes
® = Spec(R[x1,...,x4]),
and calls it the n-dimensional affine space over R. Let us look more closely at two examples:

(1) The complex affine line AL = Spec(C[x]). We have seen that the points of this space are
[0] and [(x — a)] for @ € C. The point [0] is dense — its closure is the whole space. Every
other point [p] is a closed point, namely, the closure of the set {[p]} is itself.

Every non-zero ideal a is of the form (f(x)) and the set V(a) consists of the points
[(x — a)] such that (x — a)|f(x), namely, of the points [(x — «)] such that f(x) = 0. So,
closed sets correspond to zeros of polynomials. One can also check that the complement
of V((f)) is D(f) — the points where f doesn’t vanish.

(2) The complex affine plane A2 = Spec(C|x,y]). The description requires two difficult
results that are a special case of Hilbert’s Nullstellensatz and Krull’s Hauptidealsatz.
They say, in this case, that

(a) every maximal ideal of C[x, y] is of the form (x —a,y — ), and
(b) besides (0) every other prime ideal of C[x, y] is of the form (f(x,y)) where f(x,y) €
C[x,y] is an irreducible polynomial, determined uniquely up to multiplication by a
scalar.
The closure of the point [(0)] is the whole AZ. If f(x,y) is irreducible, the closure of a
point [(f(x,y))] is the point itself together with all the points [(x — a,y — B)] such that
f(a,B) = 0. The points [(x — a,y — B)] are closed. It requires additional commutative
algebra to conclude that every closed set of AZ is a finite union of these basic closed
sets. For a polynomial f(x,y) # 0, the set D(f) is the open set containing all points
[(x —a,y — B)] such that f(«, ) # 0 and all points [(g(x,y))] such that g is irreducible
and g 1 f. Namely, its complement is the union of the sets V([(g(x,v))]) where g(x,y)
varies over all irreducible factors of f(x,y).

10We use f([p]) and not just f([p]) because soon we will use the notation f([p]) to denote something differnt.
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16.3. Spec(R) as a locally ringed space. The additional structure one puts on Spec(R) is that of
a sheaf. We therefore begin by introducing this notion.

16.3.1. Sheaves. Let X be a topological space. A sheaf O of abelian groups (resp., commutative
rings) on X is the following data:

(1) (values) For each open set U an abelian group (resp. commutative ring) O(U), with
O@) =0.

(2) (restriction maps) For each inclusion V. C U a homomorphism resyy: O(U) — O(V)
of groups (resp., rings) such that (i) resyy = Id and (ii) for V.C U C W we have
resyy o reswy = reswy.

(3) (locally zero is zero) If U = UU; and s € O(U) is such that resyy. (s) = 0 for all i, then
s = 0.

(4) (local data can be glued) If U = UU; and s; € O(U;) are elements such that for all i, j,
resu,u;nu; (si) = Vt’Suj,umuj(Sj) then there exists s € O(U) such that resyy,(s) = s; for
all i.

A ringed space X is a topological space with a sheaf of rings Ox. Given then a point x € X we
can form the ring of germs of functions (also called stalk) at x by
Ox,x = lim Ox(U),
—
xel

the limit taken over all open sets U containing x. As the index set here is directed, we can think
about an element of this ring as a pair
(U, f)

consisting of an open set U containing x and f € Ox(U), and where two pairs (U, f), (V, g) are
considered the same element in Ox , if resy unv(f) = resyunv(g). We will also write the last
equation more transparently as f|ynv = glunv. In this language, for example,

(Ui, f1) + (Ua, o) = (Us N, filuynu, + f2lusnu,)-

In general, the ring Ox x need not be a local ring; a local ring R, by definition, is a ring that
has a unique maximal ideal. This need not be the case for Ox . A ringed space (X, Ox) is called
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a locally ringed space if the sheaf of rings Ox has the property that all the rings Ox , are local
rings. We then refer to Ox . as the local ring of x.

Example 16.3.1. Let U C R" be an open set. Then, defining for an open set V C U,
O(V)={f:V =R, continuous},

makes U into a locally ringed space. The maximal ideal of the ring O, are all the pairs (V, f)
such that f(x) = 0. Similarly, if we choose to define

OWV)={f:V—-R,fisC™},
we would get a different locally ringed space (with the same underlying topological space).
Example 16.3.2. A Riemann surface with its sheaf of analytic functions is a locally ringed space.

Example 16.3.3. Let a be a symbol and consider {a} is a topological space with one point. Define
asheaf onitby O({a}) = R, where R is some ring. Then O, = R. If R is not a local ring this is a
ringed space that is not a locally ringed space.

16.3.2. The sheaf on Spec(R). We wish to make X = Spec(R) into a locally ringed space. We first
note that following: for [p] € Spec(R) the ring R, is a local ring; its unique maximal ideal is the
localization of p. Thus, we wish to define a sheaf of rings O on Spec(R) with the property that
O] = Rp. We do that as follows:

For an open set U let O(U) be functions f on U with the property that for all [p] € U we have
f(p) € Ry and such that f is locally a ratio of two elements of R. Namely, for each [p] € U exists
an open set V C U containing [p] and elements r, s of R such that s ¢ q for all points [q] € V and
such that f = Lin R forall [q] € V.

Given two functions f, g, in O(U) we define f + g by (f + ¢)([p]) = f(lp]) + g([p]), and
similarly for products. One needs to check that the sum and product, thus defined, are also
“locally fractions” and that is easy. This gives O(U) a ring structure. The natural restriction
maps for V. C U are indeed ring homomorhisms O(U) — O(V). Given an open cover U =
Uil;, and f € O(U) such that f|y, = 0, clearly f = 0. Given functions f; € O(U;) such that
filuinu; = fjlu,nu; we define a function f on U by f([q]) = fi([q]) if [q] € U;. This is well-defined.
The only further verification required is that f is locally a fraction. It is enough to show that f|,
is locally a fraction, but that is clear because f|y, = fi.

We therefore get a sheaf of rings on Spec(R) making it into a ringed space. To show it is a
locally ringed space we prove the following lemma.

Lemma 16.3.4. There is a natural isomorphism O, = Ry,.

Proof. Any element of O, has a representative (U, f), where U is an open set containing p, and
we associate it the value f([p]) € R,. This is independent of the representative and provides a
ring homomorphism O,) — Ry,

Suppose that (U, f) is mapped to zero. There is an open set V containing [p] such that on V
the function f is a fraction %. By definition, there is some s; € R — p such that s;7 = 0. The open
set D(s1) NV contains [p] and on it f is zero: for each point [q] in it, f = I is also zero in R,
because s17 = 0 and s1 £ q. So we have (U, f) = (D(s1) NV, f|p(s;)nv) = (D(s1) NV,0) = 0.

Finally, our map is surjective. Let [ € Ry, then (D(s), {) is a well-defined element of Oy,

mapping to ¢ under our ring homomorphism. O
Remark 16.3.5. One can show that
O(D(f)) = RIf ),

the localization of R in the multiplicative set {1, f, f2,...} (See Hartshorne, Algebraic Geometry,
Springer, Graduate Text in Mathematics). That requires some effort and we will not prove this
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result here. However, we will use it, and the next Proposition, it in the sequel. Note that, in
particular, taking f = 1 we find
O(Spec(R)) = R.

Remark 16.3.6. Let (X, Ox) be a locally ringed space and U C X an open subset. The induced
sheaf Ox|y; is defined as follows: for V' C U open let

It is immediate that this is a sheaf of rings making (U, Ox|y) into a locally ringed space (with
the same local rings!)

Proposition 16.3.7. Let f € Spec(R), then D(f) with the induced sheaf Ox|py) is isomorphic to
Spec(R[f~1]).

16.3.3. Functoriality. It is natural to expect at this point that a ring homomorphism f: R — S
would produce a morphism of locally ringed spaces
f*: Spec(S) — Spec(R).

This is correct, but we haven’t yet defined what it means.
To begin with we define a morphism of sheaves: Let X be a topological space and .%, ¥, two
sheaves of commutative rings on X. A morphism of sheaves

h: % — 9
is a collection of ring homomorphisms
hy: #(U) —9(U),
such that for all V' C U the following diagram commutes:

Z(U) e gu)

i resyv i resyv

FV) e g (V)

If we think of .%,%, as functors from the poset of open sets of X to commutative rings, & is just
a natural transformation of functors.

Let (X, Ox), (Y, Oy), be ringed spaces. Suppose that f: X — Y is a continuous map. Then, we
get a new sheaf of rings on Y, denoted f.Ox defined by

f20x(U) = Ox(f~1(U)).
We leave the verification that this is a sheaf of rings as an exercise. A priori there is no relation
between Oy (U) and Ox(f~1(U)) as the sheaves are not guaranteed to be sheaves of functions
on X or Y (although in almost any application they are...). Thus, we also specify a homomor-
phism of sheaves
0y — f.0x.

Heuristically, f* tells us how to pull back “functions” from Y to X. Indeed, in many situations
the map f* is so obvious that it doesn’t require mentioning at all. A morphism of ringed spaces
is thus such a pair:

(f. f5): (X, 0x) = (Y, Oy),
where f: X — Y is a continuous map and f*: Oy — f.Ox is a morphism of sheaves.
For example, suppose that X, Y, are topological spaces and Oy, Oy, are the sheaves of real-
valued continuous functions on X, Y, respectively. Then we can let f* be composition with f.
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For every open set U C Y and ¢: U — R a continuous map, let f*(g) := g o f; itis a continuous
function on f~1(U). That is, f*(g) € £.Ox(U).

Returning to the general case, let x € X and y = f(x). We claim that we have a natural map
Oy,y — OX,x-
Let I be the poset of open sets of Y that contain y and | the open sets of X that contain x. Then
OY,y = lim Oy(U), OX,x = lim Ox<u>
— —
Uel uej

The homomorphisms f* then provide maps

. oo _ .
Oyy =lim Oy(U) ——lim Ox(f(U)) —=1lim Ox(V) = Ox,.
Uel Uel Vej

(This is perhaps easiest to check if we think about elements of the local rings as equivalence
classes of pair (U, g).)
Suppose that (X, Ox), (Y, Oy), are locally ringed spaces and

(f. f) : (X, 0x) = (Y, Oy)
is a morphism of ringed spaces. To be a morphism of locally ringed spaces we make the addi-
tional requirement that for all x € X the induced ring homomorphism

fﬁ : OY,f(x) - OX,x

is a local homomorphism. Namely, that f*~1(m,) = mg(y), where my (resp. mg(y)) is the maxi-
mal ideal of Ox x (resp. Oy f(y))-

16.4. An equivalence of categories. By definition, an affine scheme is a locally ringed space
isomorphic as a locally ringed space to (Spec(R), O) for some ring R. Morphisms of affine
schemes are morphisms of locally ringed spaces. Thus, affine schemes are a full subcategory
Aff.Sch of the category of locally ringed spaces.

Theorem 16.4.1. The category of affine schemes is anti-equivalent to the category Com.Rings of com-
mutative rings.

Proof. We define a functor
Com.Rings — Aff.Sch
by sending a ring R to Spec(R). Let f: R — S be a homomorphism of rings. We associate to it a
morphism
(f*, f*): Spec(S) — Spec(R).
We have already defined f* as f*([p]) = [f~!(p)], and showed it is a continuous map of topo-
logical spaces. To ease notation, write

X = Spec(S), Y = Spec(R).
We need to define the map
0y = f.0x.
Let U be an open set of Y = Spec(R) and ¢ € Oy(U). Let q € (f*)~}(U), which means that
p = f~1(q) € U. Then, by definition, ¢([p]) € R,. But, there is a canonical ring homomorphism
Ry — Sq induced from the homomorphism R — S. It is simply given by r/s > f (r) /f (s) Via
this homomorphism we may view g([p]) as an element of S, that we shall call f*(g)([q]).

By definition f*(g) is a function on f~!(U) such that f*(g)([q]) € S for all points [q] € U.
We need to show that this function is locally a fraction. Let g, p be as before. Then, there is an
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open set V C U, containing p such that on V we have g = r/s, where s doesn’t belong to any
prime ideal p’ € V. Note then that if [q'] is such that f*([¢']) = [p’] then f(s) & q'. Under
our interpretation of f*(g)([q']), we have that f*(g)([q]) is the image of g([p]) under Ry — S,
namely, the image of r/s, which s f(r)/ f(s). Thus, f*(g) is represented on f =1 (V) by f(r)/f(s).
We note that f* is a morphism of locally ringed spaces. In fact, the induced map on local rings
is precisely
f: Ry — Sg,

and not only f~1(q) = p but also f~!(q¢) = p°, where “e” denotes the extended ideals in the
local rings.

It is now easy to check that we got a contravariant functor Com.Rings — Aff.Sch. By def-
inition it is essentially surjective. It remains to show it is fully-faithful. Taking the open set
U = Spec(R) and g € R viewed as an element of Ox(U), per definition the associated element
in Spec(S) = (f*)~1(U) is simply f(g). Thus, the functor is faithful. It remains to show it is full.

For that we use the following argument, left as an exercise: if two morphisms X — Y of locally
ringed spaces agree on a collection of open sets that form a basis for Y and their pre-images in X then they
are the same morphism.

We use this principle for the collection {D(f) : f € R} that covers Y. Let D(h) be a basic open
set of Y = Spec(R). Then (f*)~1(D(h)) = D(f(h)) is a basic open set of Spec(S). We have

Ox(D(h)) = R[]

In particular, every function g on D(h) has a global representation as r/h" on D(h). From our

definition, f*(g) = f(r)/ f(h)".
Now, let (F,F*): X — Y be any morphism of locally ringed spaces. Then, taking U = Y =
Spec(R) we have a ring homomorphism

FF: R=0y(Y) = S = Ox(X).
Denote this ring homomorphism f. We claim that

(f*, ff) = (F, F?).

If so, we proved that the functor is full.
Let p be a point of X. We have a commutative diagram:

f=F
Oy(Y) =R->FEOx(Y)=S$

| |

Ft
Oy F(p) Ox,p

Now, there is a unique way to extend F? to the localization and so, on the localized rings, we
must have F¥ = f, too. Since the homomorphism of local rings is a local homomorphism, we
conclude that in fact

F(p) = ()" (0) = f*(p)-
It follows that for the topological maps we have F = f*. It remains to check that on every open
set U of X the map f* agrees with F*. But it is enough to check that on the basis open sets
U = D(f). In this case the rings are again localizations and the argument goes as for the local
rings. U

Corollary 16.4.2. Pullback (fibre product) exists in the category of affine schemes.
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Proof. Given a diagram in Aff.Sch

Spec(R)

’

Spec(S) — Spec(A),

we have the dual diagram in Com.Rings:

We have pushouts in Com.Rings:''

It provides us with pullback in Aff.Sch

Spec(R ®4 S) — Spec(R)

J ’

Spec(S) — Spec(A).
U

Note an important point: the point set of Spec(R ® 4 S) is not the fibre product of the point sets
of Spec(R) and Spec(S) over Spec(A). For example take

A=C, R=C[x], S=C[y].
Then, as sets
Spec(C) = [0], Spec(C[x]) = {[0]} U{[(x —a)] : a € C}.

The fibre product as sets is therefore Spec(C[x]|) x Spec(C[y]). However, the point [(x —y)] €
Spec(C[x] ®¢ Cly]) = Spec(C[x,y]) is not in this product. For an even more outrageous situa-
tion, see Exercise 66.

As a matter of notation, given two affine schemes X, Y with morphisms X — Z < Y we will
denote the pullback of the diagram, the fibre product of X and Y over Z by

XXZY.

Uit's a hard typographical decision whether to use this diagram or the diagram

A——R

oo

S%R@AS.
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16.5. The functor of points. Let X = Spec(S) be an affine scheme. The functor
hX: Aff.Sch. — Sets, h*(Spec(R)) := Mor(Spec(R), Spec(S))
is called the functor of points defined by X.
We are a bit cavalier here. We should have really taken X to be any fixed affine scheme and
define
WX (%) = Moragsen (X, %)
for any affine scheme Z#. But we allow ourselves this abuse due to the equivalence of cate-

gories established in Theorem 16.4.1. To see why this is called the functor of points consider the
following case. Suppose that X = Spec(S) and

S=2Z[x1,..., %)/ {fr(x1,. ., Xn), o, fn(X1, ..., X0)).

Then
h* (Spec(R)) = Moragtseh (Spec(R), Spec(S))
= Morcom Rings (S, R)
= MorcomRings(Z[X1, ..., Xn]/{f1, -, fm), R)
={(ri,....7a) €R": fi(r1,...,1a) =0,j=1,...,m}
Namely, 1% (Spec(R)) are the points on the “variety” defined by the equations f = - - = f,, = 0
with coordinates in R. That is, the solutions to the equations f; = - - - = f,; = 0in the ring R. By

Yoneda’s lemma, X is characterized up to isomorphism by its functor of points.
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Part 6. Exercises

(1) Final and initial objects in a category. Let C be a category. An object A of Cis called final
(resp. initial) if for every object B the set Morc(B, A) (resp., Morc(A, B)) is a singleton.
For example, if C = Gps then the trivial group {1} is both an initial and a final object. If
there is an initial object that is also a final object then we call it a zero object

e Prove that if a final object exists it is unique up to a unique isomorphism. Do the
same for initial objects.

e Give an example of category where there is a final object and no initial object, initial
object and no final object, no initial object and no final object, initial object and a
final object but they are not isomorphic.

(2) Let ®: Top — Sets be the forgetful functor. Show that ® has both a right and a left
adjoint functor, but that they are not the same.

(3) Let F: AbGps — AbGps be the functor sending a group Ato A2 = {a € A:a+a =0}
and f: A — Bto flap: A[2] = B[2]. Does this functor has a left adjoint? right adjoint?

(4) Let Poset be the category of partially ordered sets. An object in this category is a set S
equipped with a relation < such that x < x forall x, x <y and y < z implies x < z, and
x <yandy < x implies x = y. A morphism f: (S,<) — (T,<)isa function f: S - T
such that for all x, y € S such that x < y, we have f(x) < f(y).
To a topological space X we can associate a poset Sx whose elements U, V, ... are the
open sets in X and we say that U < V if U C V. Prove that this defines a contravariant
functor

Top — Poset.
Is it full? Is it faithful?

(5) Let R be a commutative ring and A, B, C R-modules. Prove that
A®R(BRrC) = (A®rB)®gC.

(6) Let AR, Bg,r C be R-modules. Prove that (A® B) @R C = (A®rC)® (B®rC). If
R is commutative deduce that if Aq,..., A, are free R-modules of rank d,...,d,, then
AI® A ® - ® A, is a free R-module of rank dqds - - - d,,.

(7) Write a complete proof of Theorem 2.7.1.

(8) Clifford Algebras. Let F be a field of characteristic different than 2, let V be a vector
space of finite dimension n > 0 over F, and let

B:VxV —=F,
be an F-bilinear symmetric form. B defines a quadratic form
q: V. —F, q(v) = B(v,v),
and the formula
2B(x,y) = q(x+y) —q(x) —4(y)
shows that g determines B. We refer to (V, ) as a quadratic space.
The Clifford algebra C(V, q) is constructed as the quotient of the tensor algebra T*(V)

of V, by the two-sided ideal generated by all elements of the form v ® v — gq(v) forv € V.
Thus,

C(V,q) =T (V)/{v©v—q(v)).
Note that C(V, q) is Z/2Z-graded and the even part C°(V,q), which is a subalgebra, is
called the even Clifford algebra.
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The case where g is identically 0 is interesting too. In fact, we just get the exterior
algebra of V that way! In this exercise we will find a basis for C(V, g).

For Z/27Z graded F-algebras A, B,we define a variant of their tensor product A ®r B
that we will denote A ®% B. As an F-vector space A ®% B isjust A ®F B but the algebra
structure is defined as follows: we call an element of A homogenousifa € Agora € A;
and we put da = i to indicate that a € A;. The same definition applies for elements of B.
Multiplication is then induced by the formula valid for homogenous elements

(a@b)(d @b) = (—1)%%ad @ b,

which is the usual multiplication up to a sign. Note though that for calculation this
product for general elements 4,4’ € A,b,b’ € B, one has first to decompose them as a
sum of homogenous elements, then apply distributive laws, etc. As

A®r B = (Ay®F By ® A1 ®F B1) ® (A1 ®F By ® Ay ®f By),

these rules determine the new multiplication on A ®r B. We also see that A ®% B is a
Z./27Z-graded algebra whose elements of degree 0 are Ag ®r By & A1 & By.
Answer the following questions.
(@) When dim(V) = 1, let v be a non-zero vector. Prove that C(V, q) = F[x]/(x*> — q(v)).
(b) We write the product in C(V,q) simply as xy. Prove that

xy = —yx +2B(x,y).
In particular, if x, y, are orthogonal then xy = —yx, and conversely.
(c) Prove thatif Wis any F-algebraand f: V — W is a map of F-vector spaces satisfying
f(v)* = g(v) - 1w, there is a unique homomorphism of F-algebras C(V,q) — W
extending the map on V.

(d) Given two vector spaces (V1,41), (Vz2,42), their orthogonal sum (Vi L V5,41 L q2)
is the vector space V; @ V, with the quadratic form

q((v1,92)) = q1(v1) + q(v2).

Using the previous question, prove that there is a surjective homomorphism
C(Vi L Vo, q1 L q2) = C(V1) &F C(Va),

such that
(’01,’(’)2) —01®14+1®0;.
(e) Prove, by hand, thatif ey, ..., e, is an orthonormal basis for V then

{eiei,- e, :1<t<nl1<ii<ip<---<i<n}

is a spanning set for C(V,q). (The orthonormality assumption is not necessary, but
it simplifies the argument.) For example, if dim(V) = 1 and e; is a basis then {1,¢;}
is a spanning set for C(V,q). If dim(V) = 2, then {1,e1, 2, €162} is a spanning set
and so on.

(f) Now, combine induction on dim (V') and the statements you have already proven to
show that

dim(C(V,q)) =2",

and conclude that {e; e, - --¢;, : 1 <t <mn,1<i3 <ip <---<iy <n}isabasis.

(g) Let (V,q) be a two dimension quadratic space over F with orthogonal basis 7, j such
that (i) = a,q9(j) = b. Then C(V,q) is a quaternion algebra. That is, prove that
C(V,q) is isomorphic to the algebra

F®Fi®Fj®Fk,
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where i> = a,j> = b,ij = —ji = k. The case a = 1,b = 1 gives M,(F). Therefore,
Clifford algebras are higher dimensional generalizations of quaternion algebras, as
well as exterior algebras (the case g = 0).

(h) Consider the invertible elements x of C°(V, q) such that xvx~! € V,Vv € V, when
we think about V as a subspace of C(V, ). Show that the collection of these elements
is a group, called the general Spin group GSpin(V,q) of (V,g). Show that for x €
GSpin(V,q) the map v ~ xvx~! is an orthogonal transformation of V. Conclude
that there is a homomorphism

GSpin(V,q) — O(V).
The image actually lies in SO(V), but you are not asked to prove that. Also, it turns
that the kernel of this homomorphism is precisely F* and that the sequence
1— F* — GSpin(V,q) - SO(V) — 1,

is exact as a sequence of algebraic group. This means that it is exact in the usual
sense except that the homomorphism to SO(V) is not necessarily surjective, but it is
always surjective when F is algebraically closed.

The groups GSpin and their relatives Spin are important in physics and in many branches
of mathematics.

(9) Finite Fourier analysis.'”” Let G be a finite abelian group, |G| = n, and G = G* its
character group. We make the functions G — C into a Hilbert space, denoted L?(G) by

(f1, f2) = Zfl

geG

Note that as G is abelian, L?(G) is just the space of class functions on G, with the same
inner product already used. In additive notation for G the characters satisfy

x(a+b) = x(a) x(b).

Given a function f: G — C, define its Fourier transform
f:G =,
by
flx) = Z f(g

geG

This provides a linear map L?(G) — L2(G) that is not quite norm preserving.
(a) Prove the Fourier inversion formula

f=Y fo)-x

xeG

(b) Calculate % for x € G. Calculate 3g where d;: G — C, receives the value 1 at ¢ and
is otherwise 0. .

(c) Prove that f(x) = 1 £(—x) under the natural identification G = G (Pontryagin du-
ality) taking a € G to the character on G that takes x to x(a).

(d) Prove Plancherel’s formula: ||f]|> = 1|/ f|>.

12] have done my best to make sure all the constants appearing here are correct. There is no standard normalization
of the inner products in the literature and I had to adapt references I was relying on. If you find a mistake, please let
me know.
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(e) Fora € G (written additively) define the translation by 2 map T, as

(Taf)(x) = f(x +a).
Prove that - .
Tof(x) = x(a)f.

(f) Define convolution on L?(G) by

()@ =, T flx - a)gla).
Prove that f * ¢ = ¢ * f and that
fre=F-&

(10) Another model for induced representations. Let H < G and let (¢, V) be a representa-
tion of H. Consider the vector space

U={f:G—V:f(xh)=0c(h)"1f(x),Vh € Hx € G}.
For ¢ € G and f € U define a new function p(g)f: G — V by

(0(8)f)(x) = f(g7"x).
Show that this defines a linear representation p : G — GL(U). Show that there is an
isomorphism
U= IndV.

(11) By following the method for the case of odd 7, find all the irreducible representations of
the dihedral group D, when n is even.

(12) Prove Corollary 5.9.2.

(13) Let G, H be finite groups. Prove that the isomorphism classes of the irreducible repre-
sentations of G x H are precisely of the form (pg, Vi) ®c (pH, Vi), where (pg, Vi) (resp.
(pH, Vi)) is an irreducible representation of G (resp. H) and the action is given by

plg M) (v@w) = pc(g)v @ pu(h)w.
(14) Let FF be a finite field of g elements and B the Borel subgroup of GL, (),

B=d (" b)) . abdcFad ol
0 d

Find all the irreducible representations of B. As follows:
(a) Prove that B = F* x IF* and identify all the irreducible 1-dimensional represen-
tations of B.
(b) Calculate the conjugacy classes of B and conclude that B has ¢*> — g irreducible rep-
resentations.
(c) The subgroup N < B defined by a = d is a normal subgroup. Consider induced
representations Ind% V, where V is a 1-dimensional representation of N.

(15) (a) Find the four 1-dimensional representations of the quaternion group Q and calculate
for each its character.
(b) The quaternion group Q acts on C? via its embedding Q C GLy(C). Write the
character x for this action and calculate || x||2.
(c) Write the character table of Q.

(16) (a) Find the three 1-dimensional representations of A4 and calculate for each its charac-
ter.
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(b) The group Ay acts on IR® via its action on a regular tetrahedron. Write the character
X for this action and calculate ||x||>. (Hint: you don’t have to work with the usual
basis. There is a another basis for R? in which the computations are much easier!)

(c) Write the character table of A4.

(17) Find the decomposition of the representation Z/4Z — GL,(C), a — ( Pl (1) )a into a sum
of irreducible representations.

(18) Up to isomorphism there are 3 non-abelian groups of order 12: A4, D¢ and a
T=27/3Zxy2/4Z,

where 1 € Z/47Z acts on Z/3Z by multiplication by —1. (See MATH 456). Find the
character table of T.

(19) Let G be a finite group of order n and class number / and consider its character table.
Modify the rows of the character table suitably so as to obtain genuine orthogonal rows
and so a h x h orthogonal matrix. Use this modified matrix to prove that the columns
of the character table are orthogonal too and so for g, € G and {y;} the irreducible
characters of G:

Y (G0 {’Ce“tc(g)” it g, are conjugate;
Xi

0, otherwise.

(The summation extending over the irreducible characters.)
(20) Show that for n > 4, p*?, viewed as a representation of A,, is irreducible.

(21) Let z be a central element of a finite group G and V an irreducible representation of G.
Show that z acts on V' as a multiple of the identity endomorphism and that this defines a
1-dimensional character Z(G) — C*, called the central character of the representation.

(22) Consider Dy = ((1234), (24)) as a subgroup of Ss.

(a) Prove that Dy has exactly 3 non-trivial 1-dimensional characters x, and that they
correspond bijectively to its 3 subgroups of order 4 by sending x to Ker(x).

(b) If x is such a character and K its kernel, prove that Ind%‘4 X is an irreducible 3-
dimensional representation of Dy, unless K = V, the Klein group.

(c) In the case K = V, find the decomposition of the induced representation.

(d) Do we get every 3-dimensional irreducible representation of S4 this way?

(e) Is every irreducible representation of S; induced from a 1-dimensional character of
a subgroup?

(23) Let (p, V) be an irreducible representation of a group G. Show that to give a C-bilinear
form on V is equivalent to giving a homomorphism V — V*. Use Schur’s lemma to
conclude that if a G invariant form exists, it is unique. Use characters to deduce that a
G-invariant form exists if and only if x, takes real values only. (In the text we have dealt
with the finer question of whether a symmetric G-invariant form exists.)

(24) In this exercise we will study the irreducible representations of Ss.

e Prove that S5 has 7 irreducible represenations.

e By calculating the characters of /\“pSt'O fora =1,2,3,4, and including also 1, we find
5 irreducible representations.
Conclude that there are two additional irreducible representations and they are both
5-dimensional.
Decompose the representation p>° © p
Complete the character table of Ss

St0 into irreducible representations.
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(25) Let G C S5 be the subgroup of order 20 generated by the two permutations ¢ = (12345)
and f = (1243). Note that fcf~! = ¢? and therefore K = {c) is a normal subgroup of G
and H = (f) is a subgroup such that H N K = {1}. Find the irreducible representations
of G.

Remark 16.5.1. The group G is an example of a Frobenius group: it is a group acting transitively
on a set (in our case {1,2,3,4,5}) such that any non-trivial element of G has at most 1 fixed point
and there is a non-trivial element with exactly one fixed point (in our case, (1243)). Then, quite
generally,

G=HKXK,
where H is the stabilizer of a chosen element of the set (in our case, the element 5) and K consists
of the identity element and the elements of G that do not fix any element of the set S. In general,

it is not clear at all, and the only proof uses character theory, that K is a subgroup of G. Clearly K
is normal. In our case, a calculation gives that K = (c) which is clearly a subgroup.

(26) Use Frobenius’ formula for the character of V), to deduce the hook length formula. (This
exercise, taken from Fulton and Harris, looks reasonable, but it may be nasty. I haven’t
tried.)

(27) Use the hook length formula to prove that the only irreducible representations of S, of
dimension less that 7 are 1,sgn, p°"? and p°"? @ sgn. Find the Young diagrams corre-
sponding to these representations (see examples in the text). (Same comments as for
Exercise 26, although this one looks a bit simpler, at first sight.)

(28) What is the connection between V), and V) where A and A’ are conjugate tableaux?

(29) Prove the statement made in Example 8.2.9 concerning the Young diagram of the repre-
sentation A?p5"0. A proof just for the case a = 2 would also be acceptable.

(30) Opposite category. Let C be a category. Define the opposite category, also called the
dual category, C°P as follows. The objects of C°P are the same as the objects of C, but for
any two objects A, B we define

MOI’COP(A, B) = MorC(B,A).

(a) Prove that C°P is a category.

(b) Prove thatif F: C — D is a covariant/contravariant functor then it defines a functor
FOP: C°P — D that is contravariant/covariant, respectively.

(c) Prove that hx coo = h*C (see § 10).

(d) Prove that if X is an initial /final object of C, it is a final /initial object of C°P.

(e) Recall that to a group G we associate a category . Is the opposite category *, also
of the form xp for some H? Show that if G is abelian then xg = *Zp. Is this the only
case?

(31) Consider the following functors. Determine if they are representable.

(a) The forgetful functor kMod — Sets, where R is a ring.

(b) The forgetful functor Rings — Sets, where Rings is the category of rings (and a ring
homomorphism must take 1 to 1).

(c) The functor xTop’ — Sets associating to a locally-connected, locally path-connected
pointed topological space (X, xo) its fundamental group 71 (X, x9) thought of as a
set only. (So, it is really the composition *Top’ — Gps — Sets, where the forgetful
functor is composed with the functor 7t;.)

(d) The functor Gps — Sets taking a group A to the set A” = A x A x --- x A, where
n is some fixed positive integer.



(32)

(33)

(34)

(35)
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We defined the properties “full”, “faithful” and “essentially surjective”. A functor may
or may not have these properties, giving us 8 possibilities. Provide an example for each.

Let k be a field and define a category C, whose objects are {0},k,k?,k%,.... The mor-
phisms are

Mor (k% k*) = My ,.(k),
the b x a matrices with entries in k and composition is provided by product of matrices.
On the other hand, let D be the category of finite dimensional k-vector spaces. Prove that
C and D are equivalent categories.

Referring to § 11.2.1, let L = K[t]/(* — a). It is a commutative ring containing K with an
involution x + yt +— x — yt that we denote & +— &, « € L. Consider the matrices in M, (L)

given by
a bB\
() wpeil

Prove that this is a ring that is a model for the quaternion algebra (%) (If we denote

[a, B] such matrix, consider [1,0], [t,0], [0,1], [0, t]) and the norm map corresponds to the
determinant. Conclude the statements N (u) = wuii, N(ujup) = N(u1)N(uz) and that an
element is invertible if and only if its norm is non-zero (it is also easy to prove these
directly by calculation).

Consider the Hamilton quaternion IH and the subspace
% ={xi+yj+zk:xy,z€ Rx>+y>* +2> =1}

that we can identify it with the 2-dimensional sphere in R®.

(a) Prove that there is a group action of H* on S%, where h € H,h # O actson p € S?

by
p — hph™ ™.
(b) Prove that this in fact produces an injection
l[—I></]R>< — O3(1R),

where O3(IR) is the group of orthogonal 3 x 3 matrices.
(¢) Prove that in fact,
H*/R* — SO3(R).
(Use a topological argument, if convenient.)
(d) Prove that there is an isomorphism

H*/R* = SO3(R).

(I don’t know if there is an easy proof without using something from the theory
of algebraic groups, or Lie groups. One can give a more pedestrian proof by first
proving that H* contains all rotations fixing the point i € S? (and similarly for j and
k), and using this to show also that H* acts transitively on S2. At the same time, one
proves that SO3(IR) is generated by rotations around fixed vectors.)

This gives a very compact representation for rotations. Instead of exhibiting them as
3 x 3 matrices, which requires 9 parameters, we can represent them as quaternions
of the form 1 +- ai + bj + ck and that requires only 3 parameters. Instead of multiply-
ing 2 matrices which will require 27 multiplications, we can multiply quaternions
(and renormalize them) which will require 9 multiplication and 1 division. This is
used in video games and flight simulators to speed up performance.
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(36) Let m,n be positive integers. Let R be a division algebra. Prove that there is a ring
homomorphism

My (R) — M, (R)

if and only if m|n.

(37) Let I be a directed poset and {X;, f;;} a direct system of sets indexed by I. Define a set S
whose elements are equivalence classes [(i, x;)] where (i,x;) ~ (j, x;) if there exists a k
such that i < k,j < k and fi(x;) = fix(x;). Prove that this is indeed an equivalence
relation and that S with the natural maps X; — S, x; — [(i, x;)], is the direct limit.

(38) Let I be a directed poset and {R;, f;;} a direct system of rings indexed by I.
(a) Prove that the direct limit lii>n R; exists in the category of rings. (Try to define it

using a description of the direct limit as in Exercise 37, now endowed with suitable
addition and multiplication rules.)

(b) Let R; be the ring of complex analytic functions on the open disc |z| < 1/i around
0. For i < j the natural restriction may R; — R; is injective. Find a description in
terms of power series of the limit ring lin R;. (This requires some knowledge of

basic complex analysis.)

(39) Prove that the coproduct of two commutative rings R, S, exists in the category of com-
mutative rings and is given by R ®z S.

(40) Prove that pushouts exist in the category of commutative rings.

(41) Consider pushout in the category kMod

AL>B

‘|
C
Prove that the pushout affords the description

BoC/W,

where W is the R submodule generated by {(f(a), —g(a)) :a € A}.

(42) Prove that Z /27 x Z./27Z. is an infinite group by mapping it to a group with two “highly
non-commuting” elements of order 2. Let us denote this group by (g) * (h), where g*> =
1,h? = 1. In fact, if you made a good choice for the first part, you will find that the image
of the element gh is of infinite order. (Those that know topology well may enjoy finding
a topological space with Z /27 x Z./2Z as a fundamental group).

(43) Let C be a category where both pushouts and pullbacks exists. Suppose that

]l

C——D

P

is a pushout diagram. Is it the case that A is the pullback?
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(44) Let A, B, C be topological spaces and let f: A — C,g: B — C be continuous maps. Prove
that the diagram

A

|s
B—-C
has a pullback which is the set {(a,b) € Ax B : f(a) = g(b)}, endowed with the

topology induced from the product topology. It is denoted A x ¢ B.
Give an example where A and B are connected but A X ¢ B is not.

(45) Given a p-adic number x € Z, define its valuation
val(x) = max{n : x € p"Z,}.
Given two p-adic numbers a,b € Z, define
d(a,b) = p~vala—b),

(a) Prove that d(a, b) is a metric on Z, inducing the same topology on Z, coming from
its description as an inverse limit. It satisfies the non-archemedian triangle inequal-
ity

d(a,b) < max{d(a,c),d(b,c)}.

(b) Prove that Z, is complete relative to this metric and that Z is dense in Z,. Conse-
quently, Z,, is the metric completion of Z. (It may be convenient to express elements
of Z, as infinite sums Y ° a;p', where a; € {0,1,...,p — 1}.)

(c) Let Q, be the fraction field of Z, then Q, = Z,[1/p] and the same formula for
val(x) extends it to Q; d(a, b) extends to Q, as well and Q,, is the metric completion
of Q relative to this metric.

(46) Let R = Z[x] and p a prime number. Consider the ideals I, ], K, where I = (p), ] = (x)
and K = (p, x). Find the completion of R relative to these 3 ideals.

(47) Consider the ring R = C[x,y]/(y*> — x*>(x + 1)) and the ideal I = (x,y). Prove that the
completion of R relative to I is isomorphic to the ring C[s, t[| / (st).

(48) Let F: C — D be a covariant functor, and let G: D — C be a covariant functor such that
(F, G) are an adjoint pair.

(a) Prove that F takes direct limits to direct limits. Namely, if {X;, f;;} is a direct system

in C that has a direct limit 113} X; then {FX;, Ffj;} is a direct system in D with a

direct limit Flim X;.
H
(b) Prove that G takes inverse limits to inverse limits.

(c) Write down the consequence for the functors M®g, Homg (M, ), and the forgetful
functor @ : Gps — Sets.

(49) Find the injective and projective limit of the diagram of R-modules A . B—S-cC ,
given that Im(f) = Ker(g).

(50) Posets form a category Posets whose objects are posets and whose morphism are func-
tions that respect order (i < j = f(i) < f(j)). Similarly, linearly ordered sets, that is,
posets I in which for every i,j in I either i < jor j < i form a category losets (which
is a full subcategory of Posets). Prove that in the category of linearly ordered sets co-
products A]] B need not exist, but that co-products A ] [ B exist in the category of posets.

(61) Consider the following system of Z-modules:
@ .. oZ—-Z—->27Z— ...
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b)... > Z—>Z— Z.

QZ—~Z—-7Z— ...
In each case, all arrows are multiplication by a fixed prime p. Find in each case the direct
and projective limit of the system.

(52) Give an example of a category that doesn’t have projective limits.

(53) Let A, B be groups. Prove that (A * B)" = A% q B,

Let R be a commutative ring. The following exercises (54) - (57) examine the notion of
“local properties”. These are properties that hold true if and only if they are true for all
localizations at prime ideals of R.

(54) (Being zero is a local property). Let R be a commutative ring and let M be an R module.
Prove that M = 0 if and only if M, = 0 for all primes p of R. (If M # 0, choose a non-zero
m € M and consider a maximal ideal containing the ideal Ann(m) = {r € R: rm = 0}.)

(55) (Exactness is a local property). Let R be a commutative ring and let

0 My — M, -2

M;3 0,

be a complex of R-modules. That only means that Im(f) C Ker(g) and nothing more.
Prove that this sequence is a short exact sequence if and only if for all prime ideals p<iR
the sequence

f 8
0 M, My,

M3,p > 0
is short exact.

(56) (Free is not a local property). Let R be a commutative ring.
(a) Prove that the forgetful functor ®: RMod — Sets has a left adjoint. Namely, for a
set X there is an R-module M(X) with the property

HomRMod (M(X)/ N) = Morsgets (X/ N)

And, if fact, show that we may take M(X) = @,cxR. Namely, that it is the direct
sum of copies of R indexed by the discrete poset X. An R-module is called free if it
is isomorphic to M(X) for some set X.
(b) Let R = Z[\/—6]and I = (2,/—6).
(i) Prove that I is not a free R-module. It is not even of the form Rb for some
b eR.
(ii) Prove that I is a prime ideal; in fact, the only prime ideal of R that contains 2.
(iii) Prove that I, = R, for any prime ideal p # I of R.

(iv) Prove that I, is a free R,-module when I = p. (Make use of the element 2 =

V-6
,\éjé.)
(v) Conclude that I is a locally free ideal that is not free. Thus, being free is not a
local property.

(vi) Note that I is a locally cyclic R-module but is not globally cyclic. Thus, begin
cyclic is likewise not a local property.

(57) (Being a domain is not local property). Let k be a field. Prove that R = k x k is not an
integral domain but the localization R, is an integral domain for every prime ideal p of R.

(58) Let R be a commutative ring and p a prime ideal of R. Prove that V(p) C Spec(R) is the
closure of the point [p].
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(59) Let R be a commutative ring. Prove that Spec(R) is disconnected if and only if R =
R X Ry, a direct product of two commutative rings.

(60) Draw and describe the schemes Spec Q[x]/(x" — 1), Spec C[x]/(x" — 1) and the mor-
phism
Spec C[x]|/(x" —1) — Spec Q[x]/(x" — 1)
coming from the inclusion of rings Q[x]/(x" — 1) — C[x]/ (2" —1).
(61) Let R be a commutative ring and {f, : « € A} a set of elements of R. Then Spec(R) =
UaD(fy) if and only if ({fy : @ € A}), the ideal generated by all the f,, is equal to R.

(Note that we can rephrase Spec(R) = U,D(f,) by Spec(R) = U,Spec(R[f,!]), but that
is not needed for the solving the exercise.)

(62) Use Exercise 61 to prove that Spec(R) is compact — every open cover has a finite subcover.

(63) Let R be a commutative ring. Prove that R is a local ring if and only if it has an ideal
m # R such that every element of R — m is a unit.

(64) Let R be a commutative ring. Prove that Spec(R) consists of a single point if and only if
Ris a local ring and every element of its maximal ideal is nilpotent. Provide examples of
such rings.

(65) Let R be a commutative ring and f € R. Prove that D(f) is the empty set if and only if f
is nilpotent.

(66) Let k be a field and let s,t, be free variables. Then k, k(s) and k(t) are all fields and
therefore Spec(k), Spec(k(s)) and Spec(k(t)) are all one point spaces. Discuss the scheme

Spec(k(s) @ k(t)).

In particular, show that it has “many many” points.

additional exercises

(67) The affine schemes Spec(Q), Spec(Q(i)) are one point spaces and there is a natural mor-
phism Spec(Q(i)) — Spec(Q). Describe the fibre product Spec(Q(7)) X spec() SPec(Q(i)):
determine the underlying set, its topology, the value of the sheaf on each open set and
the local rings.

Generalize to Spec(K) Xgpec(1) Spec(K) for K O L a Galois extension of fields.

(68) Let
Y
X—Z

be a diagram of affine schemes. We may also view it as a diagram of topological spaces.
We can thus take the fibre product in each of these categories. We will denote the fibre

Sch
product as schemes (temporarily) X X z Y and the fibre product as topological spaces by
Top
X X z Y. Prove that there is a map of topological spaces

Sch Top
X X2Y—>X X2Y,

but that in general it is not an isomorphism.
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(69) Let A be a ring. An involution on Aisamap 0: A — A, a — o(a) =: a, which is an
antiautomorphism of order < 2. Meaning;:

(a+b)=a+b, ab=ba, 1=1,a=a, Vabc A.
Examples include ¢ = id 4 if A is commutative, complex conjugation on C, x + X on a
quaternion algebra, M —! M for M € M,(R) (any ring R).
(a) Define a ring A whose elements are {a°” : a € A} and where

W £ 6% = (a+b)P, aPboP = (ba)°P.

Prove that to give an involution is to give a ring homomorphism ¢ : A — AP such
that 02 = id 4 (where ¢ is defined on AP the obvious way).
(b) Let A be any ring. Prove that H(A) = A x A has a canonical involution given by

(a,bF) +— (b,a°P).

(c) Prove that A — H(A) is a functor Rings — Inv.Rings, for the category of rings to
the category of rings with involution (there is an obvious definition of the latter —
state it!), which is right adjoint to the forgetful functor Inv.Rings — Rings.

(d) Let (A, o) be a semisimple ring with involution. We can decompose A as a product
Ay X .-+ X Ay X By X -+ X By, where the A; are simple and ¢(A;;) = A; and each
B; is the products of two simple algebras C; x D; with ¢(C;) = D;. The rings B; are
isomorphic to hyperbolic rings, Bj = H(C;). A ring such as A; of B; are called a
simple ring with involution as it cannot be decomposed with the involution.



Aut(K/F), 85
Res$W, 12
Ox x, 96

IT X, 81
(F,G),5
(V,q),103

(f, f%),98

A xcB,82
Allxq,...,x4]], 83
A®RrB,8

Ag, 2

BxC,79
Bx,C,78,79
C(V,q),103
Class(G), 27
D(f), 94
FAG,5
G%,3

Gy, 85

I¢,90

I¢,91

KC, 85
M[S71], 89
My, 89

RAg, 2

R[S, 88
R[f1], 89,97
RM, 82

Ry, 91

T*(V), 41
V,38

V(a), 92
VoWw,16
V6,17

V*, 47

Vi L Vs, 104

X x7Y,101
X!, 83

A%, 95
Aut(V), 14
End(V), 14
GL(V), 14
GSpin(V, q), 105
Gal(K/F), 85, 86
H, 69

Hom, 4
Hom(V,W), 14
HOI’I’IG(Vl, Vz), 14
Hompg(—,A), 4
Hompg (A, —), 4
Ind$Vv, 12
Sym®(V), 42
Sym"(V), 42
Z,, 83

f([p]), 95
AV, 44
Ox|u, 98
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—

X 23

/, 88

G, 19

R, 82

lim X;, 80
—

A, 49

(% ) 69
1, 19

1,5
Bic1Xi, 76
p®T, 16
pSt,O’ 18
pplane’ 20
PSt; 18

J/a, 92
Frac(R), 88
Quot(R), 88
1,73

RA,2
a®b,8
f®g,10
h(G), 27
"4, 60

ha, 60
k[G], 3
p-adic number, 83
AffSch, 99
Com.Rings, 99
Gps, 1
MOdR, 1
Posets, 111
Rings, 1
Sets, 1
Top, 1

*G, 2
«Top, 1
RMOd, 1
RAlg, 10
RMOds, 2
kVSp, 1
losets, 111
ch(C[G]), 33

affine space, 95

algebra, 10
Clifford, 103
exerior, 44
symmetric, 42

Artin’s Conjecture, 34

biadditive map, 8
bilinear pairing, 46
bimodule, 2
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Blichfeldt’s theorem, 31 free construction, 6
Borel subgroup, 57 full, 2
Brauer group, 70 fully faithful, 3
Brauer’s Induction Theorem, 34 identity, 5
isomorphic, 5
category left-adjoint, 5
abelian, 90 morphism, 4
anti-equivalent, 15 natural equivalence, 5
definition, 1 natural transformation, 4
dual, 108 of points, 102
equivalent, 15 representable, 62
final object, 103 right adjoint, 5
full subcategory, 66
initial object, 103 Galois
isomorphism, 1 extension, 86
morphism, 1 germ of function, 96
opposite, 108 group
zero object, 103 elementary, 33
character, 20 free, 6
central, 107 Frobenius, 108
induced, 22 Klein, 38
table, 35 profinite, 86
virtual, 33 Spin, 105
class function, 21, 27 supersolvable, 31
class number, 27 group ring, 3
colimit, 74
completion Hamilton, 69
ring, 82 Hilbert
coproduct, 76 Nullstellensatz, 95
homomorphism
determinant, 47 local, 99
direct hook, 55
index set, 73 hook length formula, 55
limit, 74 ]ength, 55
poset, 73
product, 81 ideal
sum, 76 graded, 41
system, 73 initial object, 103
division ring, 69 injective
limit, 74
equivalence system, 73
elementary, 75 inverse
fibre product, 82, 101 lsm;:;nfoso
field of fractions, 88 | dystem,
isomorphism

final object, 103
category, 1

free product, 79
Freyd-Mitchell theorem, 90 Kronecker product, 40
Frobenius Krull
formula, 56 Hauptidealsatz, 95
reciprocity, 13, 30
functor localization
abelianization, 3 by a prime ideal, 91
additive, 15 module, 89
adjoint pair, 5 ring, 88
unit, 5
equivalence, 15 module
essentially surjective, 64 free, 112
exact, 90 tensor product, 8
faithful, 2 Morita equivalence, 67

forgetful, 3 morphism



category, 1
locally ringed space, 99
ringed space, 98
sheaf, 98
multilinear map, 46
antisymmetric, 47
symmetric, 47
multiplicative subset, 88

nilradical, 93

partition
conjugate, 49
product
amalgamated, 78
free, 79
projective
limit, 80
system, 80
pullback, 82
push out
amalgamated product, 78
pushout, 78

quadratic
form, 103
space, 103
orthogonal sum, 104
quaternion algebra, 69
Hamilton, 69
norm, 70

radical, 92
ideal, 92

representation
character, 20
dihedral group, 39
direct sum, 16
dual, 40
induced, 12, 20
irreducible, 16
isomorphism, 14
linear, 14
morphism, 14
quotient, 16
regular, 19, 29
restriction, 12
standard, 18
subrepresentation, 15
tensor product, 40
trivial, 19

trivial subrepresentation, 16, 17

ring
dual numbers, 92
graded, 41
local, 91
of a point, 97
Noetherian, 82

Schur’s Lemma, 25
Seifert-van Kampen, 79
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set
linearly ordered, 111
sheaf, 3, 96
induced, 98
morphism, 98
short exact sequence, 90
skew field, 69
space
locally ringed, 97
ringed, 96
stalk, 96

Tate algebra, 84
tensor
algebra, 41
product, 8

universal property, 71, 72
Wedderburn, 70

Yoneda’s lemma, 60
Young
diagram, 48
symmetrizer, 49
tableau, 49

zero object, 103
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