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Publisher’s Foreword

“Advanced Book Classics” is a reprint series which has come into being as a direct result
of public demand for the individual volumes in thisprogram. Thatwasour initial criterion
for launching the series. Additional criteria for selection of a book’sinclusion in the series
include:

« Its intrinsic value for the current scholarly buyer. It is not enough for the book to
have some historic significance, but rather it must have a timeless quality
attached to its content, as well. In a word, “uniqueness.”

» The book’s global appeal. A survey of our international markets revealed that
readers of these volumes comprise a boundaryless, worldwide audience.

» The copyright date and imprint status of the book. Titles in the program are
frequently fifteen to twenty years old. Many have gone out of print, some are
about to go out of print. Our aim is to sustain the lifespan of these very special
volumes.

We have devised an attractive design and trim-size for the “ABC” titles, giving the series
a striking appearance, while lending the individual titles unifying identity as part of the
“Advanced Book Classics” program. Since “classic” books demand a long-lasting
binding, we have made them available in hardcover at an affordable price. We envision
them being purchased by individuals for reference and research use,and for personal and
public libraries. We also foresee their use as primary and recommended course materials
for university level courses in the appropriate subject area.

The “Advanced Book Classics” program is not static. Titles will continue to be
added to the series in ensuing years as works meet the criteria for inclusion which we’ve
imposed. As the series grows, we naturally anticipate our book buying audience to grow
with it. We welcome your support and your suggestions concerning future volumes in the
program and invite you to communicate directly with us.

vii



Vita

Jean-Pierre Serre

Professor of Algebra and Geometry at the Colleége de France, Paris, was born in Bagcs,
France, on September 15, 1926. He graduated from Ecole Normale Supérieure, Paris, in
1948, and obtained his Ph.D. from the Sorbonne in 1951. In 1954 he was awarded a Fields
Medal for his work on topology (homotopy groups) and algebraic geometry (coherent
sheaves). Since then, his main topics of interest have been number theory, group theory,
and modular forms. Professor Serre has been a frequent visitor of the United States,
especially at the Institute for Advanced Study, Princeton, and Harvard University. He is
a foreign member of the National Academy of Sciences of the U.S.A.

viii



Special Preface

The present edition differs from the original one (published in 1968) by:

« the inclusion of short notes giving references to new results;
* asupplementary bibliography.

Otherwise, the text has been left unchanged, except for the correction of a few
misprints.

The added bibliography does not claim to be complete. Its aim is just to help the
reader get acquainted with some of the many developments of the past twenty years (for
those prior to 1977, see also the survey [78]). Among these developments, one may
especially mention the following:

l-adic representations associated to abelian varieties
over number fields

Deligne (cf. [52]) has proved that Hodge cohomology classes behave under the action of
the Galois group as if they were algebraic, thus providing a very useful substitute for the

still unproved Hodge conjecture.
Faltings ([54], see also Szpiro [82] and Faltings-Wiistholz [56])), has proved Tate’s

conjecture that the map

Hom, (A,B) ® Z, — Hom (T/(A), T,(B))

is an isomorphism (A and B being abelian varieties over a number field K), together with
the semi-simplicity of the Galois module Q, ® T,(A) and similar results for T,(A)/IT(A)
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This book reproduces, with a few complements, a set of lectures given at McGill
University, Montreal, from Sept.5 to Sept.18, 1967. It has been written in collaboration
with John LABuUTE (Chap. I, IV) and Willem Kuyk (Chap. II, III). To both of them, I want
to express my heartiest thanks.

Thanks also due to the secretarial staff of the Institute for Advanced Study for its
careful typing of the manuscript.

JEAN-PIERRE SERRE
Princeton, Fall 1967
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Special Preface

when /is large enough. These results may be used to study the structure of the Galois group
of the division points of A, cf. [80]. For instance, if dimA is odd and End, A =Z, one can
show that this Galois group has finite index in the group of symplectic similitudes; for
elliptic curves, i.e. dimA = 1, this was already proved in [76].

Modular forms and /-adic representations

The existence of [-adic representations attached to modular forms, conjectured in the first
edition of this book, has been proved by Deligne ([50], see also Langlands [65] and
Carayol [49]). This has many applications for instance to the Ramanujan conjecture
(Deligne) and to congruence properties (Ribet [(69], [71]; Swinnerton-Dyer [81]; [73],
[77]). Some generalizations are known (e.g. Carayol [49]; Ohta [68]; Wiles [84]), but one
can hope for much more, in the setting of “Langlands’ program™: there should exist a
diagram

motives N automorphic representations of

rational /-adic representations reductive groups

where the vertical line is (essentially) bijective and the horizontal arrow injective with a
precise description of its image (Deligne [51]; Langlands [66];[78]). Such a diagram
would incorporate, among other things, the conjectures of Artin (on the holomorphy of L-
functions) and Taniyama-Weil (on elliptic curves over Q). Chapters II and III of the
present book, supplemented by the results of Deligne ([53]) and Waldschmidt ([63], [83]),
may be viewed as a partial realization of this ambitious program in the abelian case.

Local theory of l-adic representations

Here the ground field K, instead of being a number field, is a local field of residue
characteristic p. The mostinteresting case is charK =0 and p = /,especially when a Hodge-
Tate decomposition exists: indeed this gives precious information on the image of the
inertia group (Sen [72]; [79]; Wintenberger [85]). When the /-adic representation comes
from a divisible group or an abelian variety, the existence of such adecomposition is well
known (Tate [39]; see also Fontaine [60]); for representations coming from higher
dimension cohomology, it has been proved recently by Fontaine-Messing (under some
restrictions, cf. [62]) and Faltings ([55]). The results of Fontaine-Messing are parts of a
vastprogram by Fontaine, relating Galois representations and modules of Dieudonné type
(over some “Barsotti-Tate rings,” cf. [58], [59], [61]).
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INTRODUCTION

The " f-adic representations " considered in this book
are the algebraic analogue of the locally constant sheaves
(or " local coefficients ") of Topology. A typical example
is given by the £"-th division points of abelian varieties
(cf. chap.l, 1.2); the corresponding f-adic spaces, first
introduced by Weil [40] are one of our main tools in the
study of these varieties. Even the case of dimension 1
presents non trivial problems; some of them will be
studied in chap.lIV.

The general notion of an f-adic representation was
first defined by Taniyama [35] (see also the review of
this paper given by Weil in Math.Rev., 20, 1959, rev.1667).
He showed how one can relate f-adic representations rela-
tive to different prime numbers £ via the properties of
the Frobenius elements (see below). In the same paper,
Taniyama also studied some abelian representations which
are closely related to complex multiplication (cf. Weil
[441], [42]) and Shimura-Taniyama [34]). These abelian repre=-
sentations, together with some applications to elliptic
curves, are the subject matter of this book.

There are four Chapters, whose contents are as follows:

xvii



xviii INTRODUCTION

Chapter I begins by giving the definition and some
examples of £-adic representations (§1). In §2, the ground
field is assumed to be .a number field. Hence, Frobenius
elements are defined, and one has the notion of a rational
L-adic representation : one for which their characteris-

tic polynomials have rational coefficients (instead of
merely f-adic ones). Two representations corresponding
to different primes are compatible if the characteristic
polynomials of their Frobenius elements are the same (at
least almost everywhere) ; not much is known about this
notion in the non abelian case (cf. the list of open
questions at the end of 2.3). A last section shows how
one attaches L-functions to rational f-adic representa-
tions; the well known connection between equidistribution
and analytic properties of L-functions is discussed in
the Appendix.

Chapter 1I gives the construction of some abelian
L-adic representations of a number field K. As indicated
above, this construction is essentially due to Shimura,
Taniyama and Weil. However, I have found it convenient
to present their results in a slightly different way, by
defining first some algebraic groups over Q (the groups
Sm ) whose representations - in the usual algebraic sense -
correspond to the sought for f-adic representations of K.
The same groups had been considered before by Grothendieck
in his still conjectural theory of " motives " (indeed,
motives are supposed to be " f-adic cohomology without £ "
so the connection is not surprising). The construction of
these groups Sm and of the £f-adic representations atta-
ched to them, is given in §2 ( §1 contains some preli-
minary constructions on algebraic groups, of a rather
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elementary kind). I have also briefly indicated what
relations these groups have with complex multiplication
(cf. 2.8). The last § contains some more properties of
the §; 's.

Chapter III is concerned with the following question @
let p be an abelian 2-adic representation of the number
field K; can p be obtained by the method of chap.ll ?
The answer is : this is so if and only if p is " locally
algebraic " in the sense defined in §41. In most applica-
tions, local algebraicity can be checked using a result
of Tate saying that it is equivalent to the existence of
a " Hodge-Tate " decomposition , at least when the repre-
sentation is semi-simple. The proof of this result of
Tate is rather long, and relies heavily on his theorems
on p-divisible groups [39]; it is given in the Appendix.
One may also ask whether any abelian rational semi-simple
L-adic representation of K 1is ipso facto locally alge-
braic; this may well be so, but 1 can prove it only when
K 1is a composite of quadratic fields; the proof relies
on a transcendency result of Siegel and Lang (cf. §3).

Chapter IV is concerned with the L-adic representation
Pe defined by an elliptic curve E. Its aim is to deter-
mine, as precisely as possible, the image of the Galois
group by pps OT at least its Lie algebra. Here again
the ground field is assumed to be a number field (the
case of a function field has been settled by Igusa [10]).
Most of the results have been stated in [25], [31] but with
at best some sketches of proofs. I have given here comple-
te proofs, granted some basic facts on elliptic curves,

which are collected in §1. The method followed is more
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" global " than the one indicated in [25]. One starts
from the fact, noticed by Cassels and others, that the
number of isomorphism classes of elliptic curves isoge-
nous to E 1is finite; this is an easy consequence of
Safarevid's theorem (cf.1.4) on the finiteness of the
number of elliptic curves having good reduction outside
a given finite set of places. From this, one gets an
irreducibility theorem (cf.2.1). The determination of
the Lie algebra of Im(p,) then follows, using the
properties of abelian representations given in chap.lI,
II1; one has to know that p, , if abelian, is locally
algebraic, but this is a consequence of the result of
Tate given in chap.lIll. The variation of Im(pz) with 2
is dealt with in §3. Similar results for the local case
are given in the Appendix.



NOTATIONS

General notations

Positive means > 0.

Z (resp. Q, R, C) is the ring (resp. the field) of integers
(resp. of rational numbers, of real numbers, of complex numbers).

If p is a prime number, Fp denotes the prime field Z/ pZ
and Zp (resp. Qp) the ring of p-adic integers (resp. the field of

p-adic rational numbers). One has:

n 1
Z = lim.2/p Z2 , Q =2 |—].
p < p P[P]
Prime numbers
They are denoted by £,4£', p, ... ; we mostly use the letter
£ for '""f-adic representations' and the letter p for the residue

characteristic of some valuation.

Fields

If K is a field, we denote by K an algebraic closure of K,
and by Ks the separable closure of K in K; most of the fields we
consider are perfect, in which case Ks =K.

If L/K is a (possibly infinite) Galois extension, we denote its

Galois group by Gal(L/ K); it is a projective limit of finite groups.

xxi



xxii NOTATIONS

Algebraic groups

If G is an algebraic group over a field K, andif K' is a
commutative K-algebra, we denote by G(K') the group of
K' -points of G (the "K' -rational" points of G). When K' is a

field, we denote by G the K'-algebraic group G X, K' ob-

'
tained from G by ext/erifding the ground field from K to Ei(' .

Let V be a finite dimensional K-vector space. We denote by
AutK(V), or Aut(V), the group of its K-linear automorphisms, and
by GLV the corresponding K-algebraic group (cf. chap. I, 2.4).
For any commutative K-algebra K', the group GLV(K') of
K' -points of GLV is AutK' (Vv ®K K'); for instance,

GLV(K) = Aut(V).
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CHAPTER 1

£-ADIC REPRESENTATIONS

§l. THE NOTION OF AN {-ADIC REPRESENTATION

1. 1. Definition

Let K be a field, and let Ks be a separable algebraic clo-
sure of K. Let G = Gal(Ks/ K) be the Galois group of the extension
Ks/ K. The group G, with the Krull topology, is compact and totally
disconnected. Let f be a prime number, and let V be a finite-
dimensional vector space over the field QI of f-adic numbers. The

full linear group Aut(V) is an f-adic Lie group, its topology being

induced by the natural topology of End(V); if n = dim(V), we have
Aut(V)~ GL(n, Ql)'

DEFINITION - _A_n f-adic representation of G (25_, by abuse of

language, of K) is a continuous homomorphism p : G — Aut(V).

Remarks
1) A lattice of V is a sub-ZI-moduIe T which is free of
finite rank, and generate V over QI' so that V can be identified

with T @Z QI' Notice that there exists a lattice of V which is

1
stable under G. This follows from the fact that G is compact.
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Indeed, let L be any lattice of V, and let H be the set of elements
g € G such that p(g)L = L. This is an open subgroup of G, and G/H
is finite. The lattice T generated by the lattices p(g)L, g € G/H,
is stable under G.

Notice that L. may be identified with the projective limit of
the free (Z/ImZ)-modules T/4TT, on which G acts; the vector
space V may be reconstructed from T by V=T @Z Ql'

2) If p is an f-adic representation of G, the group
Gp = Im(p) is a closed subgroup of Aut(V), and hence, by the f-adic
analogue of Cartan's theorem (cf. [28], LG, p. 5-42) Gp is itself an

f-adic Lie group. Its Lie algebra g_p = Lie(Gp) is a subalgebra of
End(V) = Lie(Aut(V)). The Lie algebra gp is easily seen to be in-
variant under extensions of finite type of the ground field K

(cf. [24], 1.2).

Exercises

1) Let V be a vector space of dimension 2 over a field k
and let H be a subgroup of Aut(V). Assume that det(l-h) = 0 for
all h € H. Show the existence of a basis of V with respect to which
H 1is contained either in the subgroup (t :) or in the subgroup
CY) of Auyv).

2) Let p: G—> Aut(VI) be an f-adic representation of G,

where V, k6 is a Ql-vector space of dimension 2. Assume

1
det(l-p(s))= 0 mod. £ for all s e€ G. Let T be a lattice of V! stable
by G. Show the existence of a lattice T' of V! with the following

two properties.
a) T' is stable by G
b) Either T' is a sublattice of index £ of T and G acts

trivially on T/T' or T is a sublattice of index £ of T' and G
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acts trivially on T'/T.

(Apply exercise 1) above to k = Fl and V = T/£T.)

3) Let p be a semi-simple f-adic representation of G and
let U be an invariant subgroup of G. Assume that, for all x € U,
p(x) is unipotent (all its eigenvalues are equal to 1). Show that
p(x) = 1 for all x € U. (Show that the restriction of p to U is
semi-simple and use Kolchin's theorem to bring it to triangular
form.)

4) Let p: G— Aut(VI) be an {f-adic representation of G,
and T a lattice of Vl stable under G. Show the equivalence of the
following properties:

a) The representation of G in the Fl-vector space T/{T is
irreducible.

b) The only lattices of V, stable under G are the lnT,

£
with ne Z.

1.2. Examples
1. Roots of unity. Let £ # char(K). The group

G-= Gal(Ks/ K) acts on the group um of lm-th roots of unity, and
hence also on Tl(p) = 1<£n um. The Ql-vector space

VI(“) = 'I‘l(y) ®Z Ql is of dimension 1, and the homomorphism
£

Xyt G — Aut(Vl) = Ql* defined by the action of G on Vl is a

l-dimensional f-adic representation of G. The character X, takes

its values in the group of units UI of Zl; by definition

X ,(g) M
g(z) = z if ge G, =z =1.

2. Elliptic curves. Let £ # char(K). Let E be an elliptic

curve defined over K with a given rational point 0. One knows that
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there is a unique structure of group variety on E with 0 as neutral
eiement. Let Em be the kernel of multiplication by £ in E(Ks),
and let
T!(E) = 21_r_n Em, VI(E) = TI(E) @Zl QI .

The Tate module TI(E) is a free Zz-module on which G= Gal(Ks/ K)
acts (cf. [12], chap. VII). The corresponding homomorphism
rl: G— Aut(Vl(E)) is an f-adic representation of G. The group
Gl = Im(7rl) is a closed subgroup of Aut(Tl(E)), a 4-dimensional
Lie group isomorphic to GL(Z2, ZI)' (In chapter IV, we will determine
the Lie algebra of Gl' under the assumption that K. is a number
Zield.)

Since we can identify E with its dual (in the sense of the
cuality of abelian varieties) the symbol (x,y) (cf. [12], lo_c. c_it.)

defines canonical isomorphisms
APT (E) = T W), APV,(E) = VW)
1 Y A 1 Y )

Hence det(7rl) is the character X, defined in example 1.

3. Abelian varieties. Let A be an abelian variety over K

of dimension d. If £ # char(K), we define TI(A)' V!(A) in the
same way as in example 2. The group TI(A) is a free Zl-module
of rank 2d (cf. [12], loc. cit.) on which G = Gal(Ks/K) acts.

4. Cohomology representations. Let X be an algebraic

variety defined over the field K, andlet Xs =X XK KS be the
corresponding variety over KS. Let £ # char(K), andlet i be an

integer. Using the &tale cohomology of Artin-Grothendieck [3] we let

H'(X_,Z,) = Ym. H(X ), , z/'2),
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H(X) = H(X_, z)®, Q.
2

The group H;(Xs) is a vector space over Q£ on which G= Gal(Ks/K)
acts (via the action of G on Xs). It is finite dimensional, at least if
char(K) = 0 or if X is proper. We thus get an f-adic representa-
tion of G associated to H;(Xs); by taking duals we also get homology
£-adic representations. Examples 1, 2, 3 are particular cases of
homology f-adic representations where i =1 and X is respectively
the multiplicative group Gm, the elliptic curve E, and the abelian

variety A.

Exercise

(a) Show that there is an elliptic curve E, defined over
Ko = Q(T), with j-invariant equal to T.

(b) Show that for such a curve, over K = C(T), one has
G, = SL(Tl(E)) (cf. Igusa [10] for an algebraic proof).

L
(c) Using (b), show that, over Ko, we have G2= GL(TI(_E)).
(d) Show that for any closed subgroup H of GL(Z, Zl) there

is an elliptic curve (defined over some field) for which G! = H.

§2. £-ADIC REPRESENTATIONS OF NUMBER FIELDS

2.1. Preliminaries

(For the basic notions concerning number fields, see for in-
stance Cassels-Frdhlich [6], Lang [13] or Weil [44].) Let K be a

number field (i. e. a finite extension of Q). Denote by ZK the set

of all finite places of K, i.e., the set of all normalized discrete
valuations of K (or, alternatively, the set of prime ideals in the

ring A__ of integers of K). The residue field kv of a place

K deg(v)
ve T is a finite field with Nv = P, g

K elements, where
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pV = char(k ) and deg(v) is the degree of kv over Fp . The rami-
A\
fication index e of v is v(p ). v
v \'4
Let L/K be a finite Galois extension with Galois group G,
and let we EL. The subgroup DW of G consisting of those ge G

for which gw = w is the decomposition group of w. The restriction

of w to K is an integral multiple of an element ve Z by abuse

K;
of language, we also say that v is the restriction of w to K, and
we write wlv ("w divides v''). Let LW (resp. Kv) be the com-
pletion of L (resp. K) with respect to w (resp. v). We have
DW = Gal(Lw/Kv). The group DW is mapped homomorphically onto
the Galois group Gal(lw/ kv) of the corresponding residue extension
£ /k . The kernel of G — Gal(f /k ) is the inertia group I of
w' v w v —_— W

w. The quotient group Dw/ Iw is a finite cyclic group generated by

the Frobenius element FW; we have F(A) = )\Nv for all N e lw.

The valuation w (resp. v) is called unramified if Iw = {1}. Almost
all places of K are unramified.

If L is an arbitrary algebraic extension of Q, one defines
ZL to be the projective limit of the sets ZL » Wwhere La ranges
over the finite sub-extensions of L/ Q. The:, if L/K is an arbi-
trary Galois extension of the number field K, and we EL, one de-
fines Dw’ IW, FW as before. If v is an unramified place of K,

and w is a place of L extending v, we denote by Fv the conjugacy

class of FW in G = Gal(L/K).

DEFINITION - Let p: Gal(K/K) — Aut(V) be an f£-adic representa-

tion of K, andlet v e ZK. We say that p is unramified at v if

p(Iw) = {1} for any valuation w of K extending v.

If the representation p 1is unramified at v, then the
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restriction of p to DW factors through DW/IW for any w]v; hence

p(F ) € Aut(V) is defined; we call p(F ) the Frobenius of w in the
w w it

representation p, and we denote it by F . The conjugacy class

W, p
of F in Aut(V) depends only on v; it is denoted by F . If
W, p Vv, P

L/K is the extension of K corresponding to H = Ker(p), then p

is unramified at v if and only if v is unramified in L/K.

2.2. Cebotarev's density theorem

Let P be a subset of EK. For each integer n, let an(P)
be the number of ve€ P such that Nv<n. If a is a real number,

one says that P has density a if

a_(P)
lim. ——— = a when n—> .
a (Z.)
n K
Note that an(EK) ~ n/log(n), by the prime number theorem
(cf. Appendix, or [13], chap. VII), so that the above relation may be

rewritten:
an(P) = a.n/log(n) + o(n/log(n)) .

Examples

A finite set has density 0. The set of v e ZK of degree 1
(i. e. such that Nv is prime) has density 1. The set of ordinary
prime numbers whose first digit (in the decimal system, say) is 1

has no density.

We can now state éebotarev's density theorem:

THEOREM - Let L be a finite Galois extension of the number field
K, with Galois group G. Let X be a subset of G, stable by
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conjugation. Let P_  be the set of places ve Z unramified in L,

X K’
such that the Frobenius class Fv is contained in X. Then PX has

density equal to Card(X)/Card(G).

For the proof, see [7], [1], or the Appendix.

COROLLARY 1 - For every ge G, there exist infinitely many un-

ramified places w € ZL such that F = g.
—_— W

For infinite extensions, we have:

COROLLARY 2 - Let L be a Galois extension of K, which is un-

ramified outside a finite set S.

a) The Frobenius elements of the unramified places of L are
dense in Gal(L/K).
b) Let X be a subset of Gal(L/ K), stable by conjugation.

Assume that the boundary of X has measure zero with respect to the

Haar measure p of X, and normalize u such that its total mass

is 1. Then the set of places v# S such that FVC X has a density

equal to u(X).

Assertion (b) follows from the theorem, by writing L as an
increasing union of finite Galois extensions and passing to the limit
(one may also use Prop. 1 of the Appendix). Assertion (a) follows
from (b) applied to a suitable neighborhood of a given class of

Gal(L/K).

Exercise
Let G be an f-adic Lie group and let X be an analytic sub-
set of G (i.e. a set defined by the vanishing of a family of analytic

functions on G). Show that the boundary of X has measure zero
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with respect to the Haar measure of G.

2.3. Rational f-adic representations

Let p be an f-adic representation of the number field K.

If ve EK, and if v is unramified with respect to p, we let

P (T) denote the polynomial det(l - F T).
vV, P vy p

DEFINITION - The {f-adic representation p is said to be rational

(resp. integral) if there exists a finite subset S of EK such that

- S is unramified with respect to p.

p(T) belong to Q

(a) Any element of ZK

(b) If v¢ S, the coefficients of P
- v

(resp. to Z).

Remark

Let K'/K be a finite extension. An f-adic representation p
of K defines (by restriction) an f-adic representation P/K! of K'.
If p is rational (resp. integral), then the same is true for p/K,;
this follows from the fact that the Frobenius elements relative to K!'

are powers of those relative to K.

Examples

The f-adic representations of K given in examples 1, 2, 3
of section 1. 2 are rational (even integral) representations. In example
1, one can take for S the set Sl of elements v of ZK with P, = £;
the corresponding Frobenius is Nv, viewed as an element of Ul'
In examples 2, 3, one can take for S the union of SI and the set SA
where A has ''bad reduction'; the fact that the corresponding
Frobenius has an integral characteristic polynomial (which is inde-

pendent of f£) is a consequence of Weil's results on endomorphisms

of abelian varieties (cf. [40] and [12], chap. VII). The rationality of
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the cohomology representations is a well-known open question.

DEFINITION - Let £' be a prime, p' an [f'-adic representation of

K, and assume that p, p' are rational. Then p, p' are said to be

compatible if there exists a finite subset S of EK such that p and

(T)=P_ (T) for
p vip —

p' are unramified outside of S and P
v

t]

ve.EK-S.

(In other words, the characteristic polynomials of the
Frobenius elements are the same for p and p', atleastfor almost
all v's.)

If p: Gal(E/ K) —> Aut(V) is a rational f-adic representation

of K, then V has a composition series
V=V DV.J...JV =0
o 1 q

of p-invariant subspaces with Vi/ Vi+1 (0 <i< qg-1) simple

(i.e. irreducible). The (-adic representation p' of K defined by
q-1

vVt T V./V,
. i i+
i=0

it is the '"'semi-simplification' of V.

1 is semi-simple, rational, and compatible with p;

THEOREM - Let p be a rational f-adic representation of K, and let

£' be a prime. Then there exists at most one (up to isomorphism)

£'-adic rational representation p' of K which is semi-simple and

compatible with p.

(Hence there exists a unique (up to isomorphism) rational,

semi-simple {f-adic representation compatible with p.)

Proof. Let Pys p'2 be semi-simple {'-adic representations of K
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which are rational and compatible with p.

We first prove that Tr(pl'(g)) = Tr(p:Z(g)) for all ge G. Let
H= G/(Ker(pi)nKer(p'Z)); the representations pi, p'Z may be re-
garded as representations of H, and it suffices to show that
Tr(pj(h)) = Tr(py(h)) forall he H Let MC K be the fixed field of
H. Then by the compatibility of pi, p'2 there is a finite subset S of
EK such that for all v € EK -S, we EM, wlv, we have
Tr(pi(FW)) = Tr(p'Z(Fw)). But, by cor. 2 to Cebotarev's theorem
(cf. 2.2) the Fw are dense in H. Hence Tr(pi(h)) = Tr(p'z(h)) for
all he H since Tre. pi, Tr « p'2 are continuous.

The theorem now follows from the following result applied to

the group ring A = QI[H]'

LEMMA - Let k be a field of characteristic zero, let /\ be a

k-algebra, and let Pp» P, be two finite -dimensional linear repre-

sentations of N\ . I p» P, are semi-simple and have the same

trace (Tr e P = Tr e pz), then they are isomorphic.
For the proof see Bourbaki, Alg., ch. 8, §12, no 1, prop. 3.

DEFINITION - For each prime f let Py be a rational f-adic repre-

sentation of K. The system (pl) is said to be compatible if pl, pl|

are compatible for any two primes [, £'. The system (pl) is said

to be strictly compatible if there exists a finite subset S of EK

such that:

(a) Let Sl = {v|pV = 2}. Then, for every vé So Sl, P, is

unramified at v and PV p (T) has rational coefficients.
iy
(b) P p!('r) =P pl.('r) if vg¢sus, us,,.
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When a system (pl) is strictly compatible, there is a small-
est finite set S having properties (a) and (b) above. We call it the

exceptional set of the system.

Examples

The systems of f-adic representations given in examples 1,
2, 3 of sectionl.2 are each strictly compatible. The exceptional set
of the first one is empty. The exceptional set of example 2 (resp. 3)
is the set of places where the elliptic curve (resp. the abelian

variety) has '"bad reduction", cf. [32].

Questions

l. Let p be a rational £-adic representation. Is it true that
Pv, o has rational coefficients for all v such that p is unramified
at v?

A somewhat similar question is:

Is any compatible system strictly compatible?

2. Can any rational f-adic representation be obtained (by
tensor products, direct sums, etc.) from ones coming from (£-adic
cohomology ?

3. Given a rational f-adic representation p of K, anda
prime {£', does there exist a rational £'-adic representation p' of
K compatible with p? —» [no: easy counter-examples] .

4. Let p, p' be rational {, £'-adic representations of K
which are compatible and semi-simple.

(i) If p is abelian (i.e., if Im(p) is abelian), is it true that
p' is abelian? (We shall see in chapter III that this is true at least
if p is "locally algebraic'.) — [yes: this follows from [63].]

(ii) Is it true that Im(p) and Im(p') are Lie groups of the



£-ADIC REPRESENTATIONS I-13

same dimension? More optimistically, is it true that there exists a

Lie algebra g over Q such that Lie(Im(p)) = g & Q,,

Q
Lie (Im(p')) = g ®Q Q!'

5. Let X be a non-singular projective variety defined over
K, andlet i be an integer. Is the i-th cohomology representation
H;(Xs) semi-simple? Does its Lie algebra contain the homotheties
if i>1? (When i =1, an affirmative answer to either one of these
questions would imply a positive solution for the '"congruence sub-

group problem'' on abelian varieties, cf. [24], §3.) — [yes for i=1:

see [48) and also [75].]

Remark
The concept of an f-adic representation can be generalized
by replacing the prime £ by a place A of a number field E. A

\N-adic representation is then a continuous homomorphism

Ga.l(Ks/ K) — Aut(V), where V is a finite-dimensional vector
space over the local field Ex. The concepts of rational \-adic
representation, compatible representations, etc., can be defined in

a way similar to the f-adic case.

Exercises

1) Let p and p' be two rational, semi-simple, compatible
representations. Show that, if Im(p) is finite, the same is true for
Im(p') and that Ker(p) = Ker(p'). (Apply exer. 3 of 1.1 to p' and
to U = Ker(p).)

Generalize this to A-adic representations (with respect to a
number field E).

2) Let p (resp. p') be a rational f-adic (resp. £'-adic)
representation of K, of degree n. Assume p and p' are com-

patible. If s e G = Gal(K/K), let o.(s) (resp. i(s)) be the
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i-th coefficient of the characteristic polynomial of p(s) (resp. of
p'(s)). Let P(Xo, e Xn) be a polynomial with rational coefficients,
and let XP (resp. Xi:,) be the set of s € G such that
P(oo(s), eee Gn(s)) = 0 (resp. P(O'(')(S), cees 0;1(5)) = 0).

a) Show that the boundaries of XP and XiD have measure
zero for the Haar measure u of G (use Exer. of 2.2).

b) Assume that 4 is normalized, i.e. u(G) = 1. Let Tp
be the set of ve Z at which p is unramified, and for which the

K
coefficients 0'0, e 'cn of the characteristic polynomial of F
satisfy the equation P(O'o, - ,on) = 0. Show that Tp has density
1 .
equal to u(XP)

- ]
c) Show that u(XP) = u(XP).

2.4. Representations with values in a linear algebraic group

Let H be a linear algebraic group defined over a field k. If
k' is a commutative k-algebra, let H(k') denote the group of points
of H with values in k'. Let A denote the coordinate ring (or
"affine ring') of H. An element f € A is said to be central if
f(xy) = f(yx) for any x,y € H(k') and any commutative k-algebra

k'. If x € H(k'), we say that the conjugacy class of x in H is

rational over k if f(x) € k for any central element f of A.

DEFINITION - Let H be a linear algebraic group over Q, and let

K be a field. A continuous homomorphism p : Gal(Ks/ K)— H(Ql)

is called an {-adic representation of K with values in H.

(Note that H(Ql) is, in a natural way, a topological group and even
an f-adic Lie group.)

If K is a number field, one defines in an obvious way what it
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means for p to be unramified at a place v € EK; if w|v, one de-
fines the Frobenius element Fw 0 € H(Ql) and its conjugacy class
F . We say, as before, that p 1is rational if

v, p
(a) there is a finite set S of ZK such that p is unramified

outside S,

(b) if v¢ S, the conjugacy class F is rational over Q.
v, P

Two rational representations p, p' (for primes {, ') are said to

be compatible if there exists a finite subset S of = such that p

K
and p' are unramified outside S and such that for any central ele-

ment f € A andany ve Z, -S we have {(F ) = {(F ,). One
V, v,

K
defines in the same way the notions of compatible and strictly

compatible systems of rational representations.

Remarks
1. If the algebraic group H is abelian, then condition (b)

above means that Fv (which is now an element of H(Q!)) is
L

rational over Q, 1i.e. belongs to H(Q).
2. Let Vo be a finite-dimensional vector space over Q, and

let GLv be the linear algebraic group over Q whose group of
points inoany commutative Q-algebra k is Aut(Vo GQ k); in parti-
cular, if Vl = Vo @Q QI’ then GLVO(Q!) = Aut(Vl). If

¢ : H— GLV is a homomorphism of linear algebraic groups over
Q, call ¢l thz induced homomorphism of H(QI) into

GLV (QI) = Aut(Vl). If p is an f-adic representation of Gal(K/K)
o
into H(QI)' one gets by composition a linear (f-adic representation

¢1 ep: Gal(Ks/K) — Aut(Vl). Using the fact that the coefficients of

the characteristic polynomial are central functions, one sees that
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¢£ © p is rational if p is rational (K a number field). Of course,

compatible representations in H give compatible linear representa-
tions. We will use this method of constructing compatible repre-

sentations in the case where H is abelian (see ch. II, 2.5).

2.5. L-functions attached to rational representations

Let K be a number field and let p = (pl) be a strictly com-
patible system of rational f-adic representations, with exceptional
set S. If v¢ S, denote by Pv p(T) the rational polynomial

det(l - Fv p T), for any £ # P, by assumption, this polynomial
' T
does not depend on the choice of £. Let s be a complex number.

One has:

’ H

P, p(Nv)'s) = det(l - F_ p/(Nv)s)

=TTa -x /(n)%),
) i, v
i
where the )\i

's are the eigenvalues of FV (note that the )‘i v's

? H] b

are algebraic numbers and hence may be identified with complex

numbers). Put:

1
L (s) = M —
V¢S PV p((Nv) )

fo}
This is a formal Dirichlet series X a /ns, with coefficients in Q.
—_— n
n=1 Kk
In all known cases, there exists a constant k such that |)\_ | <(Nv) ,
i, v —

and this implies that Lp is convergent in some half plane R(s) > C;

one conjectures it extends to a meromorphic function in the whole
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plane. When p comes from (f-adic cohomology, there are some
further conjectures on the zeros and poles of Lp, cf. Tate [36];
these, as indicated by Tate, may be applied to get equidistribution

properties of the Frobenius elements, cf. Appendix.

Remarks

1) One can also associate L-functions to E-rational systems
of X-adic representations (2.3, Remark), where E is a nurﬁber
field, once an embedding of E into C has been chosen.

2) We have given a definition of the local factors of ALp only
at the places v ¢ S. One can give a more sophisticéted definition in
which local factors are defined for all places, even (with suitable
hypotheses) for primes at infinity (gamma factors); this is necessary
" when one wants to study functional equations. We don't go into this
here. — [see [51], [74].]

3) Let ¢(s) =X an/ n® be a Dirichlet series. "Using the
theorem in 2.3, one sees that there is (up to isomorphism) at most
one semi-simple system p = (pl) over Q such that Lp = ¢.
Whether there does exist one (for a given ¢) is often a quite in-
teresting question. For instance, is it so for Ramanujan's
#(s) = 073 7(n)/ ns, where 7(n) is defined by the identity

n=1

7(n) X" 2

oo

2
X TT(l -xn) 4 =
n=1 1

T M8

There is considerable numerical evidence for this, based on the con-
gruence properties of 7 (Swinnerton-Dyer, unpublished); of course,
such a p would be of dimension 2, and its exceptional set S would
be empty. — [proved by Deligne: see [49], [50], [65], ...]

More generally, there seems to be a close connection between
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modular forms, such as Z7(n) xn, and rational (or algebraic)
£-adic representations; see for instance Shimura [33] and Weil [45].

—> [see also [49], [51], [65], [66], [68], [84].]

Examples

l. If G acts through a finite group, Lp is an Artin
(non abelian) L-series, at least up to a finite number of factors
(cf. [1]). All Artin L-series are gotten in this way, provided of
course one uses E-rational representations (cf. Remark 1) and not
merely rational ones.

2. If p is the system associated with an elliptic curve E
(cf. 1.2), the corresponding L-function gives the non-trivial part of
the zeta function of E. The symmetric powers of p give the zeta

functions of the products E X ... X E, cf. Tate [36].

APPENDIX

Equipartition and L-functions

A.l. Equipartition
Let X be a compact topological space and C(X) the Banach
space of continuous, complex-valued, functions on X, with its usual

norm |f|| = Sup |f(x)|. For each xe X let 6x be the Dirac
xe X

measure associated to x; if f € C(X), we have 5x(f) = f(x).

Let (xn)n>1 be a sequence of points of X. For n>1, let

k =(6 +...+8 )/n
1 xn
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and let © be a Radon measure on X (i.e. a continuous linear form

on C(X), cf. Bourbaki, Int., chap. III, §1). The sequence (xn) is

said to be u-equidistributed, or u-uniformly distributed, if unqp
weakly as n — o, i.e. if un(f) —> u(f) as n—> o for any
f € C(X). Note that this implies that u is positive and of total mass

1. Note also that un(f) —— u(f) means that

1 n
u(f) = lim = T f(x.).
n = i

LEMMA' 1 - Let (¢Q) be a family of continuous functions on X with

the property that their linear combinations are dense in C(X). Sup-

pose that, for all a, the sequence (“n(¢a))n>l has a limit. Then

the sequence (xn) is equidistributed with respect to some measure

p; it is the unique measure such that u(¢ )= lim u (¢ ) for all a.
a n a _—
n—>@

If f € C(X), an argument using equicontinuity shows that the
sequence (un(f)) has a limit u(f), which is continuous and linear in

f; hence the lemma.

PROPOSITION 1 - SuEEose that (xn) is p-equidistributed. Let U be

a subset of X whose boundary has p-measure zero, and, for all n,

Let nU be the number of m <n such that ~xme U. Then

lim (nU/n) = u(U).
n—>m
Let UO be the interior of U. We have u(Uo) = u(U). Let
e > 0. By the definition of u(Uo) there is a continuous function
$€ ClX), 0<¢<1, with =0 on X -U° and u(é)>p(U) -¢.

Since un(d)) < nU/n we have
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lim inf n;/n> lim p (8) = u() >u(U) - ¢,
n—>co n—> @
from which we obtain lim inf nU/n ?_u(U). The same argument

applied to X - U shows that
lim inf (n - nU)/n >uX -U).

Hence lim sup nU/n iu(U) < lim inf nU/ n, which implies the propo-

sition.

Examples

1. Let X =[0,1], andlet u be the Lebesgue measure. A
sequence (xn) of points of X is u-equidistributed if and only if for
each interval [a,b], of length d >0 in [0,1] the number of m<n
such that x e [a,b] is equivalent to dn as n —> oo.

2. Let G be a compact group and let X be the space of
conjugacy classes of G (i.e. the quotient space of G by the equi-
valence relation induced by inner automorphisms of G). Let u be
a measure on G; its image of G —> X is a measure on X, which

we also denote by u. We then have

PROPOSITION 2 - The sequence (xn) of elements of X is

p -equidistributed if and only if for any irreducible character x of G

we have

lim }-
n

x(xi) = p(x) -
n—>o i

1

Mz

The map C(X) — C(G) is an isomorphism of C(X) onto the

space of central functions on G; by the Peter-Weyl theorem, the
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irreducible characters X of G generate a dense subspace of C(X).

Hence the proposition follows from lemma 1.

COROLLARY 1l - Let u be the Haar measure of G with u(G) = 1.

Then a sequence (xn) of elements of X is p-equidistributed if and

only if for any irreducible character x of G, x # I, we have

o]

lim -:'T Z x(x.)=0
n—o "i=1 '

This follows from Prop. 2 and the following facts:

u(x) =0 if x is irreducible # 1

u(l) = 1.

COROLLARY 2 - (H. Weyl [46]) Let G= R/Z, and let u be the

normalized Haar measure on G. Then (xn) is p-equidistributed if

and only if for any integer m # 0 we have

21rmixn
e = o(N) (N— o) .
niN

For the proof, it suffices to remark that the irreducible

characters of R/Z are the mappings x+—> e21rrn1x (me 2).

A.2. The connection with L-functions

Let G and X be as in Example 2 above: G a compact group
and X the space of its conjugacy classes. Let X v € Z, bea
family of elements of X, indexed by a denumerable set Z, and let

v+—> Nv be a function on Z with values in the set of integers > 2.
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We make the following hypotheses:

1
(1) The infinite product ﬂ ——_ converges for every
ve X 1-(Nv)
se€ C with R(s)>1, and extends to a meromorphic function on

R(s) > 1 having neither zero nor pole except for a simple pole at

s = 1.

(2) Let p be an irreducible representation of G, with

character x, and put

L(s, p) = TT 1 - -
ve I det(l - p(x )(Nv) )

Then this product converges for R(s)>1, and extends to a mero-

morphic function on R(s) > 1 having neither zero nor pole except

possibly for s = 1.
The order of L(s,p) at s = 1 will be denoted by -cx. Hence,
if L(s,p) has a pole (resp. a zero) of order m at s = 1, one has
c =m (resp. ¢ = -m).
P X

X
Under these assumptions, we have:

THEOREM|1 - (a) The number of ve £ with Nv <n is eguivalent

to n/logn (as n — ).

(b) For any irreducible character ¥ gf_ G, we have

Z x(x )= c n/log n+ o(n/log n) (n — o).
v X
Nv_<_n

The theorem results, by a standard argument, from the
theorem of Wiener-lkehara, cf. A.3 below.
Suppose now that the function v > Nv has the following

property:
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(3) There exists a constant C such that, for every ne€ Z,

the number of veX with Nv = n is < C.

One may then arrange the elements of £ as a sequence
(vi)i>l so that i< j implies Nvi iij (in general, this is possible
in many ways). It then makes sense to speak about the equidistribu-
tion of the sequence of xv's; using (3), one shows easily that this

does not depend on the chosen ordering of Z. Applying theorem 1

and proposition 2, we obtain

THEOREM 2 - The elements x, (v € ) are equidistributed in X

with respect to a measure u such that for any irreducible character

x of G we have

Mix) = Cx

COROLLARY - The elements X, (v € Z) are equidistributed for the

normalized Haar measure of G if and only if CX = 0 for every

irreducible character x # 1 _(i G, i.e., if and only if the

L -functions relative to the non trivial irreducible characters of G

are holomorphic and non zero at s = 1.

Examples

1. Let G be the Galois group of a finite Galois extension
L/K of the number field K, let T be the set of unramified places
of K, let X, be the Frobenius conjugacy class defined by v € Z,
and let Nv be the norm of v, cf. 2.1.

Properties (1), (2), (3) are satisfied with ¢ = 0 for all
irreducible x # 1. This is trivial for (3). For (1),Xone remarks that
L(s,1) is the zeta function of K (up to a finite number of terms),

hence has a simple pole at s = 1 and is holomorphic on the rest of
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the line R(s) = 1, cf. for instance Lang [13], chap. VII; for a proof
of (2), cf. Artin [1], p. 121. Hence theorem 2 gives the equidistribu-
tion of the Frobenius elements, i.e. the éebotarev density theorem,
cf. 2.2.

2. Let C be the id2le class group of a number field K, and
let p be a continuous homomorphism of C into a compact abelian
Lie group G. An easy argument (cf. ch. III, 2.2) shows that p is
almost everywhere unramified (i.e., if UV denotes the group of
units at v, then p(Uv) =1 for almost all v). Choose T, € K with
v(7rv) = 1. If p is unramified at v, then p(7rv) depends only on v,

and we set x, = dwv). We make the following assumption:

(*) The homomorphism p maps the group c® of iddles of

volume 1 onto G.

(Recall that the volume of an idele a = (av) is defined as the

product of the normalized absolute values of its components a

cf. Lang [13] or Weil [44].)

Then, the elements xv are uniformly distributed in G with
respect to the normalized Haar measure. This follows from theorem
1 and the fact that the L-functions relative to the irreducible
characters x of G are Hecke L-functions with Grdssencharacters;
these L-functions are holomorphic and non-zero for R(s)> 1 if

X #1, see[l3], chap. VII.

Remark

This example (essentially due to Hecke) is given in Lang
(1._0_(_:-. cit., ch. VIII, §5) except that Lang has replaced the condition
(*) by the condition '"p is surjective', which is insufficient. This
led him to affirm that, for example, the sequence (log p) (and also

the sequence (log n)) is uniformly distributed modulo 1; however,
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one knows that this sequence is not uniformly distributed for any
measure on R/ Z (cf. Pblya-Szegd [22], p. 179-180).

3. (Conjectural example). Let E be an elliptic curve defined
over a number field K and let £ be the set of finite places v of K
such that E has good reduction at v, cf. 1.2 and chap. IV. Let
ve Z, let £ # P, and let Fv be the Frobenius conjugacy class of
v in Aut(T!(E)). The eigenvalues of Fv are algebraic numbers;
when embedded into C they give conjugate complex numbers

1/2
v,

7, 7 with |r | = N We may write then
v v v

-ig

V' with 0<¢ <.

1/2 i¢v

T, = (Nv) e 7.rv = (Nv)l/ze

On the other hand, let G = SU(2) be the Lie group of 2 X 2
unitary matrices with determinantl. Any element of the space X of
conjugacy classes of G contains a unique matrix of the form

i¢
e (.)i>' 0<¢<7. The image in X of the Haar measure of G
is (l)tnoe;vn to be %sin ¢d¢. The irreducible representations of G
are the m-th symmetric powers pm of the natural representation
P, of degree 2.
Take now for x, the element of X corresponding to the

angle ¢ = ¢v defined above. The corresponding L function, rela-

tive to p_, is:
m

If we put:
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1 a=m
L (s)=TT TT - -
m v a=0 |l - ”:’n aﬁi(Nv)

we have

L (s)= Lin(s -m/2).

Pm

The function L}_n has been considered by Tate [36]. He conjectures

that Lin, for m >1, is holomorphic and non zero for R(s) _>_1+m/ 2,

provided that E has no complex multiplication. Granting this con-

jecture, the corollary to theorem 2 would yield the uniform distribu-
tion of the xv's, or, equivalently, that the angles qSV of the
Frobenius elements are uniformly distributed in [0,7] with respect
to the measure %sin2¢ d$ (''conjecture of Sato-Tate'').

One can expect analogous results to be true for other f-adic

representations.

A.3. Proof of theoreml

The logarithmic derivative of L is

X (x:’n)log(Nv)
L'/L= -Z s R
v, le (Nv)

where x:,n is the conjugacy class consisting of the m-th powers of

elements in the class x, . One sees this by writing L as the product

1
1T (i)

. -s
i,v1- Rv (Nv)
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(i)
v
Now the series

where the \ are the eigenvalues of x in the given representation.
v

= log(Nv)
v, m>2 | (Nv)™?|

converges for R(s) > 1/2. Indeed, it suffices to show that

plostin)
v (Nv)

if o >1; but this series is majorized by

1

>
g+e (e >0).

(Constant) X X
v (Nv)

On the other hand, the convergence for o >1 of the product

S S
v 1-(Nv)?°

shows that

= 1 5
v (Nv)

< o

for 0 >1; hence our assertion. One can therefore write

X (x_)log(Nv)
L'/L=- ———— + ¢(s),
v (Nv)s

1

where ¢(s) is holomorphic for R(s) > > Moreover, by hypothesis,
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L'/ L can be extended to a meromorphic function on R(s) il which
is holomorphic except possibly for a simple pole at s = 1 with
residue -c . One may then apply the Wiener-lkehara theorem

X

(cf. [13], p. 123):

THEOREM - Let F(s) = Zan/ n° be a Dirichlet series with complex

L . - . + +, s
coefficients. Suppose there exists a Dirichlet series F (s) = Zan/n

with positive real coefficients such that

(a) |a |<a+ for all n;
n' — n ———

(b) The series F+ converges for R(s) > 1;

(c) The function F+ (resp. F) can be extended to a mero-

morphic function on R(s) >1 having no poles except (resp. except

possibly) for a simple pole at s=1 with residue c >0 (resp. c).

Then

an = cn + o(n) (n — ™),
m<n

(where c = 0 if F is holomorphic at s = 1).

One applies this theorem to

X (xv)log(Nv)
F(s) = -Z —mM8 ™,
v (Nv)s

+ .
and we take for F the series

iz log(Nv) )
(Nv)®

where d is the degree of the given representation p; this is possible
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since x(xv) is a sum of d complex numbers of absolute value 1,

hence |X(x )| < d; moreover, the series
vz

> log(Nv)
v (Nv)s

differs from the logarithmic derivative of

m—

1 - (Nv)~ 3

by a function which is holomorphic for R(s) >1/2 as we saw above.

Hence by the Wiener-lkehara theorem we have

Z x(x )Nog(Nv) = ¢ n+ o(n) (n — o).
Nvin v X

Consequently, by the Abel summation trick (cf. [13], p. 124, prop. 1),

= x(xv) = c_n/log n + o(n/log n) (n — o),
Nv<n X
and in particular,
= 1= n/log n + o(n/log n) (n — ).
Nvin
Hence,
(= X(xv))/( zZ1l)—c as n —> o,
Nvin Nv<n X

and we may apply proposition 2 to conclude the proof. q.e.d.






CHAPTER 1I

THE GROUPS §,

Throughout this chapter, K denotes an algebraic number field.

We associate to K a projective family (Sm) of commutative alge-

braic groups over Q , and we show that each Sm gives rise to a

strictly compatible system of rational £ -adic representations of K.
In the next chapter, we shall see that all '"locally algebraic"

abelian rational representations are of the form described here.

§l. PRELIMINARIES

1.1. The torus T

Let T =Ry oG /x

tained from the multiplicative group Grn by restriction of scalars

) be the algebraic group over Q, ob-

from K to Q, cf. Weil [43], §1.3. If A is a commutative Q-
algebra, the points of T with values in A form by definition the
E3
multiplicative group (K OQA) of invertible elements of K OQ A.
*
In particular, T(Q) =K . If d=[K: Q], the group T is a torus of
—=Tx_ Q obtai
18- TXq Q obtained

from T by extending the scalars from Q to Q , is isomorphic

dimension d; this means that the group T
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= - i . M isely, let I" be the
m/Qx . Gm/Q (d times) ore precisely, le

set of embeddings of K into Q; each oe¢ I' extends to a homomor-

to G . X

phism K®  Q —> Q, hence defines a morphism [g]: T/6—> Gm/ 3

Q

The collection of all [o]'s gives the isomorphism

- =X ... X =.
T/8™ Sm/a Sm/B
of the character group X(T) = Homa(T/ a,Gm/a) of T. Note that

the Galois group Gal(Q/ Q) acts in a natural way on X(T), viz. by

Moreover, the [0]'s form a basis

permuting the [0]'s. (For the dictionary between tori and Galois

modules, see for instance T. Ono [21].)

1.2. Cutting down T
* —_
Let E be a subgroup of K = T(Q) and let E be the Zariski

closure of E in T. Using the formula EXE=EXE , one sees

that E is an algebraic subgroup of T. Let T _, be the quotient

E

group T/ E; then TE is also a torus over Q . Its character group

XE = X(TE) is the subgroup of X = X(T) consisting of those charac-

n
ters which take the value 1 on E. If \ = TT [o] 9 denotes a
cel’

character of T, then XE is the subgroup of those \ ¢ X for which

n
Tro(x) c=1, for all xe E.

Exercise

a. Let K be quadratic over Q, sothat dim T =2. Let E
be the group of units of K. Show that TE is of dimension 2 (resp. 1)
if K is imaginary (resp. real).

b. Take for K a cubic field with one real place and one com-
plex one, and let again E be its group of units (of rank 1). Show

that dim T =3 and dim TE=1.
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(For more examples, see 3.3.)

1.3. Enlarging groups

Let k be a field and A a commutative algebraic group over k.

Let

(*) 0—>Y1—>Y2—>Y3—>0

an exact sequence of (abstract) commutative groups, with Y3 finite.

Let

€: Yl—> A (k)

be 2 homomorphism of Y.  into the group of k-rational points of A.

1
We intend to construct an algebraic group B, together with a mor-
phism of algebraic groups A —> B and a homomorphism of Y2 into
B(k) such that,

(a) the diagram
Y — Ak)

Lol

Y, — B (k)

is commutative,

(b) B is "universal' with respect to (a).

The universality of B means that, for any algebraic group B' over
k and morphisms A — B', Y2 —> B' (k) such that (a) is true (with
B replaced by B'), there exists a unique algebraic morphism

f: B—> B' such that the given maps A —> B' and YZ —> B (k) can
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be obtained by composing those of B with f. (In other words, B

is a push-out over Y1 of A and the '"constant' group scheme

2 )
The uniqueness of B 1is assured by its universality. Let us

defined by Y

prove its existence. For each ye Y_ let ; be a representative of

3
y in YZ. I vy, y' eY3, we have

y+y =y+ty' + cly,y')

with c(y,y') e Y the cochain c¢ is a 2-cocycle defining the exten-

1 B
sion (*). Let B be the disjoint union of copies Ay of A, indexed

by ye Y3 . Define a group law on B via the mappings

T tA XA, L — A (y,y' e YY),
y,y' 'y y' yty!' vy 3

given by addition in A followed by translation by e(c(y,y')). One
then checks easily that B has the required universal property, the
maps A —> B and Y2 —> B (k) being defined as follows:

A — B is the natural map A —> Ao followed by translation
by -c(0,0),

, z€ Y.  onto

Y2—>B(k) maps an element ;+ z, yeY 1

3
the image of z in A

Note that for any extension field k' of k we have an exact

seguence

0—> Ak')—> Bk')—> Y3—> 0,

and a commutative diagram
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00— Y —» Y. — Y_—0
1 2 3

1 ! )

0—> Ak') > Bk') —> Y3—> 0.
The algebraic group B 1is thus an extension of the ''constant!' alge-

braic group Y, by A.

3
Remarks

1) Let k' be an extension of k and A' = A Xk k! . We may
apply the above construction to the k' -algebraic group A' , with
respect to the exact sequence (¥) and to the map Y1 — Ak) —> A' k').
The group B' thus obtained is canonically isomorphic to B Xk k' ;
this follows, for instance, from the explicit construction of B and
B' .

2) We will only use the above construction when char (k) = 0
and A is a torus. The enlarged group B is then a '"group of multi-
plicative type''; this means that, after a suitable finite extension of
the ground field, B becomes isomorphic to the product of a torus
and a finite abelian group. Such a group is uniquely determined by its
character group X(B) = HomE(B/E , Gm/i)’ which is a Galois-
module of finite type over Z. Here X(B) can be described as the
set of pairs (¢,x), where ¢: Y2 - ;* is a homomorphism and
x € X(A) is such that ¢(yl) =X (yl) for all Y, € Yl . Note that this
gives an alternate definition of B.

Exercise
a) Let k' be a commutative k-algebra, with k' £ 0, and
Spec (k') connected (i.e. k' contains exactly two idempotents: 0

and 1). Show the existence of an exact sequence:
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00— Ak') > BKk') — Y3—> 0
b) What happens when Spec(k') is not connected?

§2. CONSTRUCTION OF Tm AND Sm

2.1. Ideles and ideles-classes

We defined in Chapter I, 2.1 the set ZK of finite places of the
number field K. Let now Z;: be the set of equivalence classes of
archimedian absolute values of K, and let EK be the union of ZK
and 2;0 . If ve EK then KV denotes the comEIetion of K with

respect to v. For ve EOO we have K =R or K =C, and K
K v v v

is ultrametric if v ¢ ZJK . For ve ZK )

is denoted by UV . The id2le group I of K is the subgroup of

the group of units of Kv

%*
TT K consisting of the families (a ) with a € U , for almost
v v v v

=
veZ o

all v; it is given a topology by decreeing that the subgroup (with the

product topology)

be open. We embed K* into I by sending a € K* onto the id2le
(av), where av = a for all v. The topology in:luced on K* is the
discrete topology. The quotient group C = I/ K is called the idele-
class group of K. (For all this, see Cassels-Frohlich [6], Lang [13],
or Weil [44].)



THE GROUPS sm 1I-7

Let S be a finite subset of ZK . Then by a modulus of support

S we mean a family m = (mv) where the m_ are integers > 1.
veS

If ve EK and m is a modulus of support S, we let Uv denote

’
oo

the connected component of Kv if ve E;o , the subgroup of Uv

consisting of those u e Uv for which v(l-u)>m if ve S, and U
=y v

if ve ZK - S. The group Um = U Uv,m is an open subgroup of I.

If E is the group of units of K, let Em =EN Um . The subgroup
E, 1is of finite index in E. (Conversely, by a theorem of Chevalley
((8], see also [24], n® 3.5) every subgroup of finite index in E con-
tains an Em for a suitable modulus m .)

Let I~ be the quotient I/ U and C, the quotient
*
I/ K Um = C/ (Image of Um in C). One then has the exact sequence

-3
1 K/E —1I —>C —1.
m m m

The group Cm is finite; in fact, the image of Um in C is open,
hence contains the connected component D of C, and the group
C/ D is known to be compact (see [13], [44]). Moreover, any open
subgroup of I contains one of the U 's , hence C/ D is the pro-
jective limit of the C_ 's. Class field theory (cf. for instance

Cassels-Frohlich [6]), gives an isomorphism of C/D =1lim C
<~ m

onto the Galois group Gab of the maximal abelian extension of K.

Remark

A more classical definition of Cm is as follows. Let Ids be

the group of fractional ideals of K prime to S, and PS the sub-
,m

group of principal ideals (y), where vy is totally positive and
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Yy = l mod.m (i.e. y belongs to Uv m for all ve S and

’

vV € 2?{0), Let Clm = Ids/ PS 0 We have the exact sequence:

’

l1—- P —> I1d.—> Cl —> 1.
S,n S m

a
For each a = Tr v Ve IdS , choose an id2le a = (av), with
v¢sS
oo

a e Uv,m if veS or ve ZK’ and v(av)=av if ve EK-S.

The image of a in In = 1/ Um depends only on a . We thengeta

homomorphism g: IdS —> Im . One checks readily that g extends to

a commutative diagram

l1—- P —> Id.—> Cl —>1
S,m S m

NP le Ut

l1-K/E—->I1 —>C —1 |,
m m m

and that f: Clm —> Cm is an isomorphism; hence Cm can be iden-

tified with the ideal class group mod m (and this shows again that it

is finite).

2.2. The groups T and S
m — m

We are now in a position to apply the group construction of 1. 3.

We take for exact sequence (¥) the sequence
1=K /B, -1 —>C —1

and for A the algebraic group Tm =T/ Em , where Em is as

before, T is the torus R K) defined in 1.1, and Em is the

K/Q(Gm/
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Zariski closure of Em in T, cf. 1.2,

The construction of 1. 3 now yields a Q-algebraic group Sm

with an algebraic morphism Tm —> Sm and a group homomorphism

e: I —>S (Q). The sequence
m m

l1— T

m —>Sm —>Cm -—> 1

is exact (C being identified with the corresponding constant alge-

m
braic group) and the diagram

1=K /Ey —> I, —> C, —>1

(%) d le lid.

l—>Tm (C))—)Sm (Q)—>cm —> 1

is commutative.

Remark

Let m' be another modulus; assume m' >m, i.e.
Supp( m') DSupp(m) and m! >m_ if ve Supp(m). From the in-
clusion Um'C U, onededucesmaps T ,—> T and

I -1 , whence a morphism S
m m

m —>Sm . Hence the Sm's

1
form a projective system; their limit is a proalgebraic group over Q,

extension of the profinite group C/ D = lim Cn by a torus.

Exercises
—_ *
1) Let Em (Q) be the Zariski-closure of Em in K =T(Q).
Show that the kernel of € : 1/ Um -8 (Q) is the image of
Em Q) —>1/ Um
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2) Let H

be the kernel of S
m'/m m

, —>S , where m'>nm .
m -

is a finite subgroup of (S _ (Q))

a) Show that H o

m'/m

and that it is contained in the image of em ,

b) Construct an exact sequence (cf. Exer. 1)

1= (B, N B, , @)/ Ey, = /Uy, = Hy, > 1L

2.3. The canonical £ -adic representation with values in Sm

Let m be a modulus, and let £ be a prime number. Let
e: I1— I, — S, (Q) be the homomorphism defined in 2.2. Let
m T — Sm be the algebraic morphism T —> Tm — Sm ; by taking
points with values in Q! , 7 defines a homomorphism

Tyt T(Q!)__)Sm Q,).

1

Since K ® Ql = Tr KV , the group T(Ql) can be identified with

v| £
x® *
Kl = TT K , and is therefore a direct factor of the idele group I.
v| YV
Let PT, denote the projection of I onto this factor. The map

@, = T, o pr,: I— T(QM)—>Sm (Ql)

is a continuous homomorphism.

LEMMA - a, and ¢ coincide on K .

This is trivial from the commutativity of the diagram (¥*%) of 2. 2.
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Now, let El: I—> Sm (QI) be defined by

frex)  fa) = cae, @)

) -1
i.e. €, €. a

1 1

(If ae I, write al the f-component of a. Then

¢, @ =c@r, @,h)

By the lemma, EI- is trivial on K* and, hence, defines a map
C— Sm (Ql) ; since Sm (Ql) is totally disconnected (it is an

2 -adic Lie group), the latter homomorphism is trivial on the con-
nected component D of C. We have already recalled that C/ D
may be identified with the Galois group Gab of the maximal abelian
extension of K. So we end up with a homomorphism

: Gab - Sm (QI ), i.e. with an [ -adic representation of K with

‘1
values in Sm (cf. Chap. I, 2.3).

This representation is rational in the sense of Chapter I, 2. 3.
More precisely, let v l Supp(m ), and let fv € I be an idele which is
a uniformizing parameter at v, and which is equal to 1 everywhere
else; let Fv =€ (fv) be the image of fv in Sm (Q). With these nota-

tions we have:

PROPOSITION

ab

a) The representation ¢ ,: G —> Sm (Q!) is a rational repre-

PE
sentation with values in Sm

b) €, is unramified outside Supp(m)U Sl , where

g ={vlp, =1}

0
"
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c) If v 4 Supp (m) U Sl , then the Frobenius element Fv, e,

(cf. Chap. I, 2.3) is equal to Fve S Q).

Proof. It is known that the class field isomorphism C/D = Gab

maps Kv* (resp. U ) onto a dense subgroup of the decomposition
group of v in Gab (resp. onto the inertia group of v in Gab),
and that a uniformizing element fv of Kv* is mapped onto the
Frobenius class of wv.

If v{ Supp(m) and ae UV , then €(a) =1; if moreover
P, F L, @, (a) =1, hence €, (@) =1 and el is unramified at v;
this proves b). For sucha v, we have e!(fv) =€ (fv) = Fv ; hence

c), and a) follows from c).

COROLLARY - The representations €, form a system of strictly

1
compatible £ -adic representations with values in Sm

We also see that the exceptional set of this system is contained
in Supp(m); for an example where it is different from Supp(m ),

see Exercise 2.

Remark

By construction, I —> Sm (Ql) is given by

€

Y}
-1

x —> T, (x ') on the open subgroup Ul m _:,rlrl Uv,m of K

l.m)CTm (QI)C Sm (Ql)' and is an

y ). This open subgroup maps onto C , as
m

remarked above. These properties imply, in particular, that

Hence, Im(el) contains T, (U
open subgroup of Sm Q

Im(el) is Zariski-dense in Sm
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Exercises
(1) Let K=Q, Supp(m) =0 .
a) Showthat E = {1}, C = {1}, hence
m * m *
Tm =Sm =Gm and Sm Q) =Q , Sm (Ql) =QI ;
b) Show that I is the direct product of its subgroups Im

and Q ; hence any a € I may be written as
%*
a=uy ue U, yeQ .
Show that, if a = (a.p), one has
v (a)
P

@)=y =sgnla_) TTp *
P

c) Show that

p,(a) = Y-aII ,
and
Fp =p.
d) Show that Py coincides with the character X 4 of
Chap. I, 1.2.
(2) Let K =Q, Supp(m) = {2} and m, = 1. Show that the

groups E_ , Cm , Tm , Sm coincide with those of Exercise 1, hence

that the exceptional set of the corresponding system is empty.

2.4. Linear representations of Sm

We recall first some well known facts on representations.

a) Let k be a field of characteristic 0 ; let H be an affine
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commutative algebraic group over k. Let X(H) = HomE(H/I(-, Gm/;)
be the group of characters of H (of degree l). Here we write the
characters of X (H) multiplicatively. The group G = Gal (k/ k) acts
on X(H).

Let A be the affine algebra of H, and let A = A Qk k be the

one of H/E . Every element y € X(H) can be identified with an

invertible element of A . Hence, by linearity, a homomorphism
a: K[XH)] = A

where k[X(H)] is the group algebra of X(H) over k . This is a
G-homomorphism if the action of G is defined by

s(Zaxx) = Es(ax)s(x) for aX ¢ k and x € X(H). Itis well-known
(linear independence of characters) that a is injective. It iSB;ljiE_—
tive if and only if H is a group of multiplicative type (cf. 1. 3, re-

mark 2). Hence we may identify K[X(H)] with a subalgebra of A .
b) Let V be a finite-dimensional k-vector space and let
¢: H—> GLV

be a linear representation of H into V. Assurme ¢ is semi-simple

(this is always the case if H 1is of multiplicative type). We associate

to ¢ its trace

9¢ = Enx (é)x

in Z[X(H)], where n (§) is the multiplicity of x in the decom-

position of x over k.
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We have 6 ,(h) = Tr(¢(h)) for any point h of H (with value in any

¢

commutative k-algebra). Let Repk (H) be the set of isomorphism

classes of linear semi-simple representations of H. If k1 is an ex-

tension of k, then scalar extension from k to k1 defines a map

Repk (H) — Repkl(H/ kl) which is easily seen to be injective. We say

that an element of Repk (H/k ) can be defined over k , if it is in the
1 1

image of this map.

defines a bijection between

PROPOSITION 1 - The map ¢ —> 9¢
Repk(H) and the set of elements 0 = anx o_f Z[X(H)] which
satisfz:

(a) 6 is invariantby G (i.e. n =n for all

X s(x)

se G, x € X(H)).
b) nX > 0 for every x € X(H).

Proof. The injectivity of the map ¢ > 6, is well-known (and does

¢
not depend on the commutativity of H). To prove surjectivity, con-
sider first the case where 6 has the form 6 =Z x(l) where x )

is a full set of different conjugates of a character x ¢ X(H). If G(x)

is the subgroup of G fixing x , then

(%) 6 = = slx) .
seG/ G(x)

The fixed field kX of G(x) in ® is the smallest subfield of k such
that x e A ® kX . Consider y as a representation of degree 1 of

H/k . One gets, by restriction of scalars to k, a representation
X
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¢ of H of degree [kx:k]. One sees easily that the trace 6, of ¢

¢

is equal to 6. The surjectivity of ¢ —> 6, now follows from the

¢

fact that any 6 satisfying (a) and (b) is 2 sum of elements of the

form (*) above.

COROLLARY - In order that ¢1 € Repk (H/ K ) can be defined over k,
1 1

it is necessary and sufficient that 9¢ e A @k k1 belongs to A .
1

(c) We return now to the groups Sm

PROPOSITION 2 - Let k., be an extension of k and let

1
d € Repk (Sm / ). The following properties are equivalent:
1 1

(i) ¢ can be defined over k,

(ii) For every v ¢ Supp(m), the coefficients of the character-

istic polynomial ¢(Fv) belong to k,
(iii) There exists a set = of places of k of density 1 (cf.

Chapter I, 2.2) such that Tr(¢(Fv)) € k for all ve .

Proof. The implications (i) = (ii) = (iii) are trivial. To prove

(iii) => (i) we need the following lemma.

LEMMA - The set of Frobeniuses Fv’ ve X, is dense in Sm for

the Zariski topology.

Proof. Let X be the set of all Fv' s, ve Z, andlet £ be a prime
number. Let ;{CSm (resp. }—(! Cs (Ql )) the closure of X in the
m

Zariski topology (resp. £ -adic topology). It is clear that
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— — v
Xl C X(Ql)' On the other hand, Cebotarev's theorem (cf. Chapter I,

2.2) implies that Xl = Im(cl) (cf. 2.3). The set Irn(el), how-
ever, is Zariski dense in Sm (cf. Remark in 2.3). Hence X = Sm )
which proves the lemma.

Let us now prove that (iii) = (i). Let 6, be the trace of ¢

¢

in A ®k kl , where A 1is the affine algebra of H = Sm /K" Let

{la} be a basis of the k-vector space kl , with za =1 for some
o

index « . Wehave 6, =Z\X ®@f (A € A); hence
o ¢ a a a
Tr(p (h)) = 9¢(h) = Zxa(h)la for all he H(kl) . Take h = Fv , with
ve Z . Since Fv belongs to H(k) we have )\Q(Fv) € k for all «a;
since Tr(¢(F )) e k, weget \ (F ) =0 forall a # ¢« . By the
v a Vv o

lemma, the Fv' s, ve€ Z, are Zariski-dense in H; hence )\a =0
for a # @ and 9¢ = xa belongs to A and (i) follows from the

. _ o
corollary to Proposition ~ 1.

Exercise

Show that the characters of Sm correspond in a one-one way
to the homorﬁorphisms x: I—> 6* having the following two proper-
ties:

(@) x(x) =1 if xe Um

(b) For each embedding o of K into Q , there exists an in-

tegral number n(o) such that

X (x) = 1T o(x)n(o)
oe

for all x e K .
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2.5. L -adic representations associated to a linear representation

of S,

1) The [ -adic case

Let VI be a finite-dimensional QI -vector space and

a linear representation of Sm in V_ . This defines a

homomorphism

$:8 (@,) = GL, @,)=Aut(v,)

£

which is continuous for the { -adic topologies of those groups.

By composition with the map I Gab - Sm (QI) defined

in 2.3, we get a map

¢1 =¢oce ZGab

’ —)Aut(Vl),

i.e. an abelian £ -adic representation of K in Vl .

PROPOSITION - a) The representation d)! is semi-simple.

b) Let veZ , with v { Supp(m) and p, L.

Then QSI is unramified at v; the corresponding Frobenius element

Fv,¢1 € Aut(VI) is equal to d)(Fv), where Fv denotes the element

of Sm (Q) defined in 2. 3.
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c) The representation ¢1 is rational (Chap. I, 2.3)

if and only if ¢ can be defined over Q (cf. 2.4).

Since Sm is a group of multiplicative type, all its represen-
tations can be brought to diagonal form on a suitable extension of the
ground field; hence a). Assertion b) follows from 2.3, and assertion

c) follows from Proposition 2 of 2. 4.

Remark

Let us identify ¢! with the corresponding homomorphism of

the id2le group I into Aut (Vl ). Then

d) Ker(¢1) contains U if V# Supp(m),pV £ L.

Vv,

e) Let d)T: T/ QI - GLVI be defined by composing
T/Q - Sm /Q with ¢ . If x belongs to the open subgroup
1 £
Ul - =J-||-! Uv,m of T(Ql)’ one has

_ -1
These properties follow readily from those of €

2) The rational case

Let now V be a finite dimensional vector space over
o

Q and ¢o: Sm —>GLV0 a linear representation of Sm . For

each prime number £ we may apply the preceding construction to

the representation ¢o/ Ik S n/Q - GLV ,» where V! = V0 ® QI;
2 2
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we then get an [ -adic representation d)!: Gab —> Aut (V! ).

THEOREM - 1) The ¢1 form a strictly compatible system of ration-

al abelian semi-simple representations. Its exceptional set is con-

tained in Supp(m ).

2) For each v 4 Supp(m) the Frobenius element of v

with respect to the system (d)l) is the element d)o(Fv) of Aut(Vo).

3) There exist infinitely many primes £ such that ¢1

is diagonalizable over Q! .

The first two assertions follow directly from the proposition
above. To prove the third one, note first that there exists a finite
extension E of Q over which ¢o becomes diagonalizable. If £ is
a prime number which splits completely in E, one can embed E
into Ql and this shows that ¢1 is diagonalizable. Assertion 3) now
follows from the well-known fact that there exist infinitely many such
£ (this is, for instance, a consequence of Cebotarev' s theorem, cf.

Chap. I, 2.2).
Remark

The Frobenius elements ¢O(FV) e Aut (VO) can also be defined
using the homomorphism

¢>Oo e: I —> Sm Q) — Aut(Vo).

Note that their eigenvalues generate a finite extension of Q ;

indeed they are contained in any field over which d)o can be brought

in diagonal form.
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Exercises

1) Let d)o: Srn - GLV be a linear representation of S
o

and let £ be a prime number.

a) Show that the Zariski closure of Im (¢1) is the alge-
braic group d)o(Sm ). (Use the fact that Irn(el) is Zariski dense in
Sm , cf. 2.3.)

b) Let Sm
its image by qbo, i.e. the.Lie algebra of d>0(Su,l ). Show that the Lie

be the Lie algebra of S; and ¢ (s, ) be

algebra of the {-adic Lie group I.m(qSl) is ¢o(im) ® QI . (Use the
fact that Im(sl) is open in Sm (Ql)' cf. 2.3.)

2) a) Show that there exists a unique one-dimensional rep-
resentation
N:S —>G
m m

such that N(Fv) = Nv € Q* for all v 1 Supp(m).

b) Show that the morphism T —> Sm —N—> Gm is the one
induced by the norm map from K to Q.

c) Show that the £ -adic representation defined by N is

isomorphic to the representation Vl (4) defined in Chap. I, 1.2.

2.6. Alternative construction

v be as in 2.5. If we compose d)o with
)

Let ¢_:S, —> GL

the map €: I —> Sm (Q) defined in 2.2, we obtain a homomorphism

¢oo e: I —> GLVO(Q) = Aut(Vo).



II-22 ABELIAN (£ -ADIC REPRESENTATIONS

Conversely:

PROPOSITION - Let f: I — Aut (Vo) be a homomorphism. There

exists a d)o: Sm —> GLV such that d)oo e =f if and only if the
o

following conditions are satisfied:

(@) The kernel of f contains Um

(b) There exists an algebraic homomorphism y: T — GLV
o

such that ¢ (x) = f(x) for every xce K* = T(Q).

Moreover, such a ¢ is unique.
o

_Izio_of. The necessity of the conditions (a) and (b) is trivial. Con-
versely, if f has properties (a), (b), it defines a homomorphism
1/ Um — Aut(Vo). On the other hand, sincci f and ¢y agree on K* ,
the morphism ¢ is equalto 1 on E; =K MU, , hence on its

Zariski-closure i:; . This means that y factors through

T — Tm —>GLV
[o]

By the universal property of Smw (cf. 1.3 and 2.2), the maps

vy, — GLVO(Q) and T —> GLV define an algebraic morphism
)

¢O: Sm - GLV , and one checks easily that d)o has the required
o

properties, and is unique.

Remark

Since Um is open, property (a) implies that f is continuous
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with respect to the discrete topology of Aut(V ). Conversely, any
o

continuous homomorphism f I — Aut(Vo) is trivial on some Um ;

moreover, there is a smallest such m; it is called the conductar

of f.

Exercise

Let m be a modulus and let Vo be a finite dimensional
Q-vector space. For each v ¢ Supp(m) let F be an element of
Aut(Vo). Assume v

(a) The Fv's commute pairwise.

(b) There exists an algebraic morphism y: T — GLV such
o

*
v @) for e K , a=1(mod m), and > 0 at

that ¢(a) = ]TFV

each real place.

Show that there exists an algebraic morphism ¢ : Sm - GLV
o
o

for which the Frobenius elements are equal to the Fv' s.

2.7. The real case
The preceding constructions are relative to a given prime
number £. However, they have an archimedean analogue, as follows:

Let m T—> S be the canonical map defined in 2.3, and let
7rOO: TR) —> Sm R)

be the corresponding homomorphism of real Lie groups. Since
* *
T(R) =(K®R) = TT 00Kv , we can identify T (R) with a direct
veEK

factor of the idele group I. Let PT be the projection on this
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factor; the map

a =7 _spr :I1— TR)—>S (R)
(e 0] [ee] 0 m

is continuous, and one checks as in 2. 3 that @ coincides with €

on K . One may then define a map

€ I1—> Sm R)

by

e (a) =e@)a (a-l).
1) @

One has coo(a) =1 if ae K"-, hence eoo may be viewed as a homo-
morphism of the idele class group C =1/ K into the real Lie group
Sm R).

The main difference with the ''finite'' case is that £ % is not

trivial on the connected component of C, hence has no Galois group

interpretation.

When one composes € C— Sm (R) with a complex charac-

o

ter S one gets a homomorphism C — c’ , i.e.

- G s
m/C m/ C
a Grbdssencharakter of K, in the sense of Hecke. It is easily seen

that the characters obtained in this way coincide with the
"Grdssencharakter of type (Ao)” of Weil (cf. [35], [41]), whose

conductor divide m
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Exercise

Let

e:1—>5S_ R) xT;Tsm Q,)

be the map defined by € 0 and the sl' s .

a) Show that the image of e is contained in the subgroup

Sm (A) of Sm R) XTTSm (Ql)’ where A denotes the ring of adeles
1

of Q, and that e: 1 — Sm (A) is continuous (for the natural topol-
ogy of the adelized group Sm (A)).
b) Let LI TA) —> Sm (A) be the map defined by m: T —> Sm .

Show that, if one identifies T(A) with I in the obvious way, one has

e(x) =€ (X)WA(x-l)

where e¢: I—>S  (Q) CSm (A) is the map defined in 2.3. [Note that
this gives an alternate definition of the EI' s.]

c) Show that e (I) is not openin § (A) if C, £ {1}.

2.8. An example: complex multiplication of abelian varieties

(We give here only a brief sketch of the theory, with a few in-
dications on the proofs. For more details, see Shimura-Taniyama
[34], Taniyama [35], Weil [41], [42] and Serre-Tate [32].)

Let A be an abelian variety of dimension d defined over K.
Let EndK (A) be its ring of endomorphisms and put
EndK (A)O = E:ndK (A) & Q.
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Let E be a number field of degree 2d, and
i: E —> EndK (A)0

be an injection of E into EndK(A)o . The variety A is then said to
have '"complex multiplication' by E; in the terminology of
Shimura-Taniyama, it is a variety of '"type (CM)'".

Let £ be a prime integer and define T! (A) and
vV, = Tl (A) @ Q! as in Chapter I, 1.2. These are free modules

L
over Z! and Q! , of rank 2d. The Q-algebra EndK(A)o acts on
Vl ; hence the same is true for E, and, by linearity, for
= (V"] . i N
E! E Q Ql One proves easily

LEMMA - VI is a free El -module of rank 1.

Let pI: Gal(I_(/ K) —> Aut(VI) be the L -adic representation
defined by A. If s e Gal(ﬁ/ K), it is clear that P! (s) commutes

with E, hence with E But the lemma above implies that the

P
commuting algebra of E!

may be identified with a homomorphism

in End(Vl) is El itself. Hence, pl

pl:Gal(K/K)—>E1 .

Let now TE be the 2d-dimensional torus attached to E (as

Rk

T is attached to K), so that TE(QI) =E; , and pl takes values
in TE(QI)'

THEOREM1 - (a) The system (pl) is a strictly compatible system

of rational £ -adic representations of K with values in TE (in the
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sense of Chap. I, 2.4).

(b) There is a modulus m and a morphism

¢: Sm —>TE

such that pl is the image by ¢ of the canonical system (el)

attached to Sm , cf. 2.3.
Moreover, the restriction of ¢ to Tm can be given ex-
plicitly:

Let t be the tangent space at the origin of A. Itis a K-vector
space on which E acts, i.e. an (E, K)-bimodule. If we view it as an
E-vector space, the action of K is given by a homomorphism

H*
j: K—> End_ (t). In particular, if xe K , det_j(x) is an element
* E * * E
of E ; the map detEj: K — E is clearly the restriction of an
algebraic morphism 6: T—> T

E "

THEOREM 2 - The map 6: T —> TE coincides with the composition

¢
map T—>Tm —>Sm - T

E"

ExamEIe

If A is an elliptic curve, E is an imaginary quadratic field,
and the action of E on the one-dimensional K-vector space t de-
fines an embedding E —> K. The map detEj: K — E is just the

norm relative to this embedding.

Indications on the proofs of Theorems 1 and 2

Part (a) of Theorem 1 is proved as follows: Let S denote the

finite set of v e ZK where A has '""bad reduction'". If v{ S, and
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£ # p , one shows easily that Py is unramified at v (the con-
v
verse is also true, see [32]); moreover the corresponding Frobenius

element Fv 0 may be identified with the Frobenius endomorphism
'y

Fv of the reduced variety Kv . But Fv commutes with E in
End(Av)o and the commuting algebra of Ewin End(Av)o is E itself
(cf. [34], p- 39). Hence Fv belongs to Ew = TE(Q) and this implies
(a).

Theorem 2 and part (b) of Theorem 1 are less easy; they are
proved, in a somewhat different form in Shimura-Taniyama [34] (see
also [32]). Note that one could express them (as in 2. 6) by saying

that there exists a homomorphism f: I — E (where I denotes, as

usual, the group of ideles of K) having the following properties:

(a) f 1is trivial on Um , for some modulus m with support

b) If v * S, the image by f of a uniformizing parameter at

v 1is the Frobenius element Fv € E .

*
(c) If xe K is a principal idele, one has f(x) = detEj (x).

This is essentially what is proved in [34], p. 148, formula (3),
except that the result is expressed in terms of ideals instead of

ideles, and detEj (x) is written in a different form, namely

" U-NK/ K* (x)wa "o

Remark

Another possible way of proving Theorems 1l and 2 is the fol-
lowing:

Let £ be a prime integer distinct from any of the P, Ve S.
One then sees that the Galois-module V is of Hodge-Tate type in

2
the sense of Chapter III, 1.2 (indeed, the corresponding local modules
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are associated with £ -divisible groups, and one may apply Tate's

theorem [39]). Hence Py is '"'locally algebraic' (Chapter II, loc.
cit.), and using the theorem of Chapter OI, 2.3 one sees it defines a

morphism ¢: § —> T One has ¢ o €y TP, by construction;

E"

the same is true for any prime number {', since ¢ o¢ and Py

l '
have the same Frobenius elements for almost all v. This proves
part (b) of Theorem 1. As for Theorem 2, one uses the explicit

form of the Hodge-Tate decomposition of Vl , as given by Tate

[39], combined with the results of the Appendix to Chapter III.

§3. STRUCTURE OF T~ AND APPLICATIONS

3.1. Structure of X(Tm )

If w is a complex place of Q , the completion of Q with
respect to w is isomorphic to C ; the decomposition group of w
is thus cyclic of order 2; its non-trivial element will be denoted by
cw (the " Frobenius at the infinite place w'"). The cw' s are con-
jugate in G = Gal(Q/ Q); let Coo denote their conjugacy class. (By
a theorem of Artin [l], p. 257, the elements of C00 are the only
non-trivial elements of finite order in G.)

Let X(T) be the character group of the torus T, cf. 1l.1; we
write X(T) additively and put Y(T) = X(T) @Z Q . We decompose
Y as adirectsum Y=Y’® Y & Y+ of G-invariant subspaces, as

follows (cf. Appendix, A.2)

Y =YG={ye Y|gy =y for all ge G},

=
n

{ye Y|cy =-y forall ce Coo}
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and Y+ is a G-invariant supplement to v°® Y in Y; one proves
easily that Y+ is unique, cf. Appendix, loc. cit.

More explicitly, if o0 e I’ is an embedding of K into 6 , let
[c] € X(T) be the corresponding character of T; the [o]'s, oe I,
form a basis of X(T) and g.[c] = [g.o] if ge G. The space v°

is generated by the norm element X [g], and its G-invariant
cel”

- +
supplement is Y @Y ={ Z b [o]lb eQ, T b =0}. Hence,
o o o
gel’ geI”

any character x € X(T) can be written in the form

() X = aZ [U]+ Z b [G] ,
cel” cel o

a,b ¢eQ, Zb =0, a+b € Z.
o o o

(In particular, we see that da € Z where d = [K: Q)].) The subspace

Y can now be described as follows

Y ={=Zb [¢]|lb ¢Q, Zb =0, b =-b_ for
g g g Cco g

all ce C and ceI}.
o)

On the other hand, the projection T— Tm defines an injec-
tion of X(Tm ) into X(T); we identify X(Tm ) with its image under

this injection.

PROPOSITION - X(T, ) ®, Q = Yo v .

This follows from Appendix, A. 2.
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COROLLARY 1 - The character group X(T ) is a sublattice of
m
finite index of X(T)N (Y° & Y ).

COROLLARY 2 -E X € X(Tm ) is written in the form (¥), then

2a € Z .

In fact, given c € C00 and oe¢ I', we have

22=2a+b +b =(atb )+ (a+tb )e Z .
c co c co

*
3.2. The morphism j : Gm - ’I;n
We have seen that any character y e X(Tm ) can be written in

the form

x =a Z [ol+ Z b [d]
oe " oe " o

with a,b € Q, Ebo =0, 2a€e¢ Z. Hence y +> 2a defines a homo-
o

morphism j: X(T ) —> X(Gm) = Z and we obtain by duality a mor-

.

phism of algebraic groups i Gm - Tm . If ¢o: Sm - GLVo

*
is a representation of Sm , we obtain by composition with j a

morphism of algebraic groups Gm — GL This representation

A

o

of G defines (and is defined by) a grading V = Z V(l) of V ;

m o . o o
ieZ

1)

recall that G acts on V
m o

ie Z=X(G ).
m

by means of the character

(n) .

i - f if Vv.=V
We say that Vo is homogeneous of degree n i o o
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Remark
For representations coming from the £ -adic homology
H-=6{) of a projective smooth variety X, the grading defined above

should coincide with the natural one: H_ 6() =z Hi (}_().
i

Exercise
1) Let N: Sm — Gm be the morphism defined in Exercise 2
of 2.5. Show that Nej: G —>S — G is X —> )\2 . Show that
m m m
any morphism Sm — Gm is equal to eN" , where ¢ is a charac-
ter of G with values in {+1} and ne Z .

2) Let ¢: Sm — GL be a linear representation of Sm

A%

o
Assume ¢ is homogeneous of degree d, and put h = dim Vo .
a) Show that dh is even (apply Exerc. 1 to
det(¢): S, — G ).
et(@): Sy )
b) Prove that there exists on Vo a positive definite

quadratic form Q such that
d
Qp(x)y) = N(x) Qfy)

for any ye Vc> and any x e Sn (Q). [Let H be the kernel of
N: Sm — Gm . Using the fact that H{R) is compact, prove the
existence of a positive definite quadratic form Q on Vo invariant

by H; then note that Sm is generated by H and j'r(G ). ]
m

3.3. Structure of Tm
We need first some notations:
Let HC be the closed subgroup of G = Gal Q/ Q) generated

by Cm (cf. 3.1). There is a unique continuous homomorphism
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€ HC —> {+1} such that ¢ (c) = -1 for all ce coo . Indeed the
unicity of e is clear, and one proves its existence by taking the re-
striction to Hc of the homomorphism G — {il} associated with an
imaginary quadratic extension of Q. We let H = Ker(e). The groups
H and Hc are closed invariant subgroups of G, and (H: HC) = 2.
Let now K be, as before, a finite extension of Q; we identify
it with a subfield of 6; let GK = Gal (6/ K) be the corresponding
subgroup of G. The field K is totally real if and only if all the
elements c of COo act trivially on K, i.e. if and only if G

K

contains Gc . Hence, there exists a maximal totally real subfield

KO of K, whose Galois group is GKo = GK . Hc . We let Kl be

the field corresponding to GK. H. We have

KOC KIC K and [KI: Ko] =1 or 2.

As shown by Weil (cf. [47], p. 4) the fields Ko and K, are closely

1
connected to the groups Tm relative to K. Indeed, if
X = Ebo[c] is an element of the group denoted by Y in 3.1, we

have b =-b forall ce C . If h=c ... c_, this gives
co (o] o 1 n

Bpo = (-1)"1)0 =e()b_

and by continuity the same holds for all h e HC . One deduces from

this:

PROPOSITION - The norm map defines an isomorphism of the space

K

Y relative to K1 onto the space Y;< relative to K.
1
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More precisely, if X, =Zb [cl] belongs to Y;< , where
o]

1 1
g, eI , the image of x. by the norm map is
1 K1 1
Ny /k (X1)=2bU/K[o], oe
1 "o 1
where o/ Kl is the restriction of ¢ to K1 . It is clear that this map

is injective. Conversely, if x = Zbclo] belongs to YI-( , we saw
above that b =eh)b forall he H , hence b =b for
ho o C ho g

h e H and of course also for h e H.GK . This shows that b0

depends only on the restriction of ¢ to K and hence that ¥

1 ’
belongs to the image of the norm map.

COROLLARY - The tori Tm attached to K and K1 are isogenous

to each other.

There remains to describe the tori Tm attached to Kl .

There are two cases:

@) K,

dimensional, and isomorphic to G
m

= Ko . In this case, we have Y =0 and T is one-
=2 —

Indeed, if x = Ebo[c] belongs to Y , and ce Coo , we

have b =-b (cf. 3.1) butalso b =b since
co ] co o]
ce G_.H =G_.H. This shows that b =0 for all g, hence
_ K c K (o]
Y =0.
(2) [KI: Ko] = 2. The field K is then a totally imaginary

quadratic extension of Ko (and it is the only one contained in K, as

one checks readily). In this case Y™ is of dimension d = [KO: Q]

and Tm is (d+l)-dimensional.
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More precisely, the space Y attached to Kl is 2d-dimension-

al and the involution ¢ of K, corresponding to KO decomposes Y

1

in two eigenspaces of dimension d each; the space Y~ is the one

corresponding to the eigenvalue -1 of ¢. This is proved by the

same argument as above, once one remarks that all c e Coo induce
K. .

o on K,

Remark

In this last case (which is the most interesting one), the torus

Tm is isogenous to the product of Gm by the d-dimensional torus
kernel of the norm map from K1 to Ko .

3.4. How to compute Frobeniuses

Let ¢ be a linear representation of Sm of degree n. By
extending the groundfield, the restriction of ¢ to Tm can be put
in diagonal form; let Xqreeo Xy be the n characters of ’I‘m so

obtained and write (in additive notation)

x;= = n_(io] (n_(i) e 2).
oel

W i iti if all t i)' >0 .
e say that x ; is positive if a he no_(l) s are > Let
v ¢ Supp(m), and let Fv € S (Q) be the corresponding Frobenius
element, cf. 2.3. Since Cm =S /T is finite, there exists an
N m m

integer N > 1 such that Fv € Tm Q). If B, is the prime ideal
of v, this means that there exists a ¢ K , with PN = (a),

v

a=1mod m, and o> 0 at all real places of K.
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N
PROPOSITION 1 - The eigenvalues of ¢(Fv) are the numbers
n (i)

x.@=TTo ® G=1,...,n).
1 (o]

N . .
This is trivial by construction, because Fv is the image of «

under T(Q) = T, (Q).

COROLLARY 1 - The eigenvalues of ¢(Fv) are {pv}-units (i.e.

they are units at all places of Q not dividing pv).

COROLLARY 2 - Let z z be the eigenvalues of ¢(Fv),

LR
indexed so that z? =x i(a). Let w be a place of Q dividing P,

normalized so that w(p ) =v(p ) =e . Then w(z.) = £ n (i).
v v v _—
ge’
WeO =V
N n (i)
We have w(z, ) =W(Tr cl@) ® )= = n (i)weola), and
i c
cel” cel’
wego() =0 if Wog F VvV

woo(@) =N if woeo =v,

. N
since (a) =Rv .

Hence the result.

COROLLARY 3 - Let £ be a prime number and let

¢1: Gal(I_{/ K) = Aut(Vl) be the £ -adic representation of K asso-

ciated to ¢. Then ¢! is integral (cf. Ch. I, 2.2) if and only if all

the characters x. occurring in ¢ are positive.
1

Proof of Corollary 3. Assume first the xi’ s are positive. Let

v ¢4 Supp(m) andlet z a2 be the corresponding eigenvalues of

1
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F as in Corollary 2. Corollaries 1 and 2 show that the w(zi) are
v
positive for all valuations w of Q; hence the z. are integral over
i

Z. Hence the ¢£' s are integral.

Conversely, assume ¢1 1s integral for some [£. There exists a
finite subset S' of ZK , containing Supp(m), such that if v ¢ S',
the eigenvalues of d)(Fv) are integral. Choose a prime number p
which splits completely in K and is such that P, = p implies

vk S'. Let w be a valuation of Q dividing p. The valuations
wed, g€ I', are pairwise inequivalent. Let o€ I'; and let v be
the normalized valuation of K equivalent to weo so that

\v = woog for some \A> 0., Let Zpseen 2 be the eigenvalues of
¢(Fv). By Corollary 2, w(zi) = ch(i). Since the z, are integral,

this shows that the no(i)’ s are all positive.

PROPOSITION 2 - Let v& Supp(m) and let x be a character of
Sn - Let X € X(T, ) be the restriction of x to T, _and let

i= j(xT) be the integer defined in 3.2. Then, for any archimedian

absolute value w of Q extending the usual absolute value of Q,

we have

ot ) = N/ 2

Proof. If Y =a Z [o]+ Z bo_[o] as in 3.1, we have
gel’ cel’

N N a bo
wix E ) =0k E ) =Tweoc@?®. TTweo 7,
ag ag
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i 2
and TTwo o = uN@)® = N2 = nv'V/
? b
remains to show that x = ﬂ-wo ola) 9 s equalto 1. Let c=c¢
o

, where i=2a. It

be the ""Frobenius'" attached to w (cf. 3.1). Since b +b =0,
b o co |
we have x.y =1 with y = TTwoo(a) €9 . But y =Trwoc oT(@) |,
] T

. 2
and, since we c =w, we have y =x, hence x =1, and x =1,

since x> 0.

Exercises
1) Check the product formula for the eigenvalues of the ¢(Fv).
(Use Cor. 1 and 2 to Prop. 1 and Prop. 2.)

2) Show that Prop. 2 and Cor. 1 and 2 to Prop. 1l determine
the eigenvalues of the ¢(Fv)' s up to multiplication by roots of unity.
3) (Generalization of Cor. 1 to Prop. 1). Let (pl) be a
strictly compatible system of rational £ -adic representations, with
exceptional set S (cf. Chap. I, 2.3). Show that, for any v e ZK-S,

the eigenvalues of Fv

p, » L# P, s are p_-units.

APPENDIX

Killing arithmetic groups in tori

A.l. Arithmetic groups in tori

Let A be a linear algebraic group over Q, andlet I' bea
subgroup of the group A(Q) of rational points of A. Then I'" is

said to be an arithmetic subgroup if for any algebraic embedding




THE GROUP Sm II-39

AC GLn (n arbitrary) the groups I' and A(Q)/N GL (Z) are com-
n o
mensurable (two subgroups 1"1, FZ are said to be commensurable if

Flfl I"2 is of finite index in I'. and FZ). It is well-known that it

1
suffices to check that I' and A(Q) N GL (Z) are commensurable for
n

one embedding A (C GLn .

Example
Let K be a number field and let E be the group of units of K.
Th E i ithmetic sub f T=R .
en is an arithmetic subgroup o K/me)

If T is atorus over Q, let T° be the intersection of the kernels
of the homomorph%sms of T into Gm . The torus T is said to be
anisotropic if T = To; in terms of the character group X = X(T)

this means that X has no non-zero elements which are left fixed by

G = Gal(Q/ Q).

THEOREM - L_et T be a torus over Q, and let I be an arithmetic

subgroup of T. Then T N T° is of finite index in I"', and the quo-

tient TO(R)/I"n T is compact.

This is due to T. Ono; for a proof of a more general statement

(" Godement's conjecture'') see Mostow-Tamagawa [18].

COROLLARY - Let T be a torus over Q, and let I' be an arith-

metic subgroup of T. I_f T is anisotropic, then TR)/I" is com-

pact.
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Exercise
Let T be a torus over Q, with character group X.
a) Show that
—_%
X,Q ).

T(Q) = HomGa1

o,

b) Let U be the subgroup of Q  whose elements are the al-

gebralc units Of Q . Let
- o X, U .

Show that I" is an arithmetic subgroup of T(Q) and that any arith-

metic subgroup of T(Q) is contained in I .

A.2. Killing arithmetic subgroups

Let T be a torus over Q, and let X(T) be its character
group; put Y (T) = X(T) ®z Q. Let A be the set of classes of
Q-irreducible representations of G = Gal(Q/ Q) through its finite
quotients. For each N e A, let Y)\ be the corresponding isotypic
sub-G-module of Y, i.e. the sum of all sub-G-modules of Y

isomorphic to A. One has the direct sum decomposition

Y=]] Y, .

NeA

Let Y° =Y1, where 1 is the unit representai’on of G; let Y™ be

the sum of those Y)\ where for all the infinite ‘robeniuses c € Coo

(cf. 3.1) we have \(c) = -1; let Y+ be the sum of the other Y)\.

We have
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Y°=YG={ye Y|gy =y forall ge G}
Y ={ye Y| cy = -y for all c ¢ COO},
Yy=YYev @y .

Note that Y = Y° if and only if T is anisotropic.

£
If ce coo, and H = {1,c}, then, since T(R) = HomH(X(T),C ),

we see that T(R) is compact if and only if Y =Y .

PROPOSITION - Let I' be an arithmetic subgroup of the torus T,

and T its Zariski closure (cf. 1.2). Then:

(*) Y(T/T)=Y°® Y.

[Since the torus T/T is a quotient of T, we identify Y(T/T) with
a submodule of Y (T).]

Proof. Suppose first that Y is irreducible, i.e. that T has no

proper subtori and is # O.

¥ Y = Yo, then T is isomorphic to Gm and hence TI' is finite.
This shows that Y(T/T) = Y(T), hence (¥). If Y =Y , then T(R)
is compact. Since I' is a discrete subgroup of T (R), it is finite.
Hence Y(T/T) = Y(T) and (%) follows.

If Y= Y+, then T(R) is not compact. Consequently, I' is
infinite since T(R)/I" is compact by Ono's theorem. Hence T is
an algebraic subgroup of T of dimension > 1. Its connected com-
ponent is a non-trivial subtorus of T. This shows that T= T,

hence Y(T/T) = 0. Hence again (¥).
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The general case follows easily from the irreducible one; for
instance, choose a torus T' to T which splits in direct product of
irreducible tori and note that I" is commensurable with the image

by T' — T of an arithmetic subgroup of T.

Exercise

Let ye Y. Define Ny as the mean value of the transforms of
y by G.

a Prove that N is a G-linear projection of Y onto v° )
hence Ker (N) = Y ® Y+.

b Prove that Y+ is generated by the elements cy + y, with
y € Ker(N), c e COO .



CHAPTER III

LOCALLY ALGEBRAIC ABELIAN REPRESENTATIONS

In this Chapter, we define what it means for an abelian [ -adic

representation to be locally algebraic and we prove (cf. 2.3) that such

a representation, when rational, comes from a linear representation
of one of the groups Sm of Chapter II.

When the ground field is a composite of quadratic extensions of
Q, any rational semi-simple [/ -adic representation is ipso facto
locally algebraic; this is proved in §3, as a consequence of a result
on transcendental numbers due to Siegel and Lang.

In the local case, an abelian semi-simple representation is
locally algebraic if and only if it has a '"Hodge-Tate decomposition'.
This fact, due to Tate (Collége de France, 1966), is proved in the

Appendix, together with some complements.

§l. THE LOCAL CASE

1.1. Definitions

Let p be a prime number and K a finite extension of Qp H

let T =R ) be the corresponding algebraic torus over

k/Q Cm/k
P
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Qp (cf. Weil [43], Chap. I).
Let V be a finite dimensional Qp-vector space and denote, as
usual, by GLV the corresponding linear group; it is an algebraic

roup over Q , and GL..(Q ) = Aut .
group p v p) V)

Let p: Gal(i_(/ K)a'b —> Aut(V) be an abelian p-adic represen-
tation of K in V, where GaI(I_</ K)abdenotes the Galois group of the
maximal abelian extension of K. If i: K* —> Gal (R/ K)ab is the
canonical homomorphism of local class field theory (cf. for instance
Cassels-Frdhlich [6], chap. VI, §2), we then get a continuous homo-
morphism po i of K* = T(Qp) into Aut (V).

DEFINITION - The representation p is said to be locally algebraic

if there is an algebraic morphism r: T —> GLV such that

- *
poi(x) =r(x 1) for all xe€ K close enough to 1.

Note that, if r: T — GLV satisfies the above condition, it

is unique; this follows from the fact that any non-empty open set of
*

K = T(Qp) is Zariski dense in T. We say that r is the algebraic

morphism associated with p.

Examples

1) Take K = Qp », and dim V =1, so that p is given by a
continuous homomorphism Gal(ap/ Qp)ab —> Up , where Up is
the group of p-adic units. It is easy to see that there exists an
element ve Zp such that poi(x) = xV if x is close enough to 1.
The representation p is locally algebraic if and only if v belongs
to Z. This happens for instance when V = Vp (t) » cf. Chap. I,

1. 2, in which case v = -1 and r is the canonical one-dimensional

representationof T =G

m/ Q
P
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2) The abelian representation associated to a Lubin-Tate
formal group (cf. [17] and [6], Chap. VI, §3) is locally algebraic

-1
(and also of the form ubrH>u on the inertia group).

PROPOSITION 1 - Let p: Gal(®/ K)*® — Aut(V) be a locally alge-

braic abelian representation of K. The restriction of p to the

inertia subgroup of Gal(K/ K)a'b is semi-simple.

Let us identify the inertia subgroup of Galﬂ—(/ K)ab with the

group U_, of units of K. By assumption, there is an open subgroup

K
U' of U_, and an algebraic morphism r of T into GL_ . such

that p(x)K= r(x-l) if xe€e U'. Let W be a sub-vector sche of V
stable by p(UK); it is then stable by p(U'), hence by r(T). But
every linear representation of a torus is semi-simple. Hence, there
exists a projector w: V —> W which commutes with the action of

T. Ifweput 7#'-= 1 _ z p(s)w p(s-l), we obtain a pro-

U
(Ug:U") se UK/ U

jector w': V—> W which commutes with all p(s), se UK' q.e.d.
Conversely, let us start from a representation p whose re-

striction to UK is semi-simple. If we make a suitable large finite

extension E of Qp, the restriction of p to UK may be brought

into diagonal form, i.e. is given by continuous characters

X i: UK - E*, i=l,...,n. We assume E large enough to contain

all conjugates of K, and we denote by 1"K the set of all Q-em-

beddings of K into E. Recall (cf. chap. I, l.1) that the

(0], o€ FK , make a basis of the character group X(T) of T.

PROPOSITION 2 - The representation p is locally algebraic if and

only if there exist integers nc(i) such that
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-n (i)

x.@ = [T o(u)
! o€ FK

for all i and all u close enough to 1.

The necessity is trivial. Conversely, if there exist sugh in-
tegers no(i)’ they define algebraic characters ri = ﬂ—[o]nc(l) of
T, hence a linear representation r of T/ E" It is cl-elar that there
is an open subgroup U' of UK , such that p(u) =r(u ) for all
u e U'. Hence it remains to see that r can be defined over Q
(cf. chap. II, 2.4). But the trace er =Eri of r (l_cﬁ. %) is
such that er(u) € Qp for all ue U'. Since U' is Zariski-dense in

T, this implies that Gr is '""defined over Qp", hence that r

can be defined over Qp (loc. cit.), q.e.d.

Extension of the ground field

Let K' be a finite extension of K, and let p' be the re-
striction of the given representation p to Gal(E—(/K' ). Then p'

is locally algebraic if and only p is; moreover, if this is so, the

associated algebraic morphisms

r:T—)GLV, r': T! —>GLV

are such that r' = Nor , where T' is the torus associated with
K'/ K
K' and NK' / K’ T' — T is the algebraic morphism defined by the

norm from K' to K.

All this follows easily from the commutativity of the diagram
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K —> Gal®/K)2P

™o

ste

K — Gal®/ K')?P

: T — T 1is connected

and from the fact that the kernel of N
K'/K

for the Zariski topology.
Exercise
Give an example of a locally algebraic abelian p-adic repre-

sentation of dimension 2 which is not semi-simple.

1. 2. Alternative definition of ''locally algebraic' via Hodge-Tate

modules

Let us recall first the notion of a Hodge-Tate module (cf [27],

§2); here K is only assumed to be complete with respect to a dis-
crete valuation, with perfect residue field k and char(K) = 0,

Pal
char (k) =p. Denote by C the completion K of the algebraic closure

of K.

The group G = Gal(i-(/ K) acts continuously on K. This action
extends continuously to C. Let W be a C-vector space of finite
dimension upon which G acts continuously and semi-linearly accord-

ing to the formula
s(cw) = s(c). s(w) (se G, ce C and we W).

Let x: G— Up be the homomorphism of G into the group

*
Up = Zp of p-adic units, defined by its action on the pv-th roots
of unity (cf. chap. I, 1.2):
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) v
s(z) = 2X 6 if seG and 2P =1.

Define for every ie Z the subspace
W' = {we W|sw =y (s)'w for all s e G}

of W. This is a K-vector subspace of W. Let W(i) =C ®K Wi .
This is a C-vectorspace upon which G acts in a natural way (i.e.
by the formula s(c ® y) =s(c) ® s(y)). The inclusion Wi — W
extends uniquely to a C-linear map ai: W(i) = W, which com-

mutes with the action of G.

PROPOSITION (Tate) - Let || W(i) be the direct sum of the
W(), ie Z. Let a: J_]_ W(i) = W be the sum of the ai’ s defined

above. Then a is injective.

For the proof see [27], §2, prop. 4.

COROLLARY - The K-spaces W'(ie Z) are of finite dimension.

They are linearly independent over C.

DEFINITION 1 - The module W is of Hodge-Tate type if the homo-

morphism a: _]_I_ W(i) = W is an isomorphism.
ie Z

Let now V be as in 1.1, a vector space over Qp , of finite dimen-
sion. Let p: G—> Aut(V) be a p-adic representation. Let

W =C ®Q V andlet G act on W by the formula
P
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s(c®v)=5s(c)®p(s)(v), se G, ce C, veV,

DEFINITION 2 - The representation p is of Hodge-Tate type if the

C-sEace W=C®& V is of Hodge-Tate type (cf. def. 1).

Q
P

Example
Let F be a p-divisible group of finite height (cf. [26], [39]);

let T be its Tate module (loc. cit.) and V = Qp ® T. The group G
acts on V, and Tate has proved ([39], Cor. 2 to Th. 3) that this
Galois module is of Hodge-Tate type; more precisely, one has

W =W(0) ® W(), where W =C® V as above.

THEOREM (Tate) - Assume K is a finite extension of QP (i.e. its

residue field is finite). Let p: G —> Aut(V) be an abelian p-adic

representatior of K. The following properties are equivalent:

() p is locally algebraic (cf. 1.1).

b) p is of Hodge-Tate type and its restriction to the inertia

group is semi-simple.

For the proof, see the Appendix.

§2 - THE GLOBAL CASE

2.1. Definitions
We now go back to the notations of chap. I, i.e. K denotes a

number field. Let f be a prime number and let
= ab
p: Gal(K/ K)" — Aut(Vl)

be an abelian £ -adic representation of K. Let ve Z__ be a place

K
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of K of residue characteristic £ and let DVCGal(R/ K)ab be the
corresponding decomposition group. This group is a quotient of the
local Galois group Gal(l?v/ Kv)ab (these two groups are, in fact, iso-
morphic, but we do not need this here). Hence, we get by composi-

tion an f -adic representation of Kv

. = ab <]
p: Gam(v/ K)"—> D 5 Aut(v ).

DEFINITION - The representation p is said to be locally algebraic

if all the local representations I with P, = £, are locally alge-

braic (in the sense defined in 1.1, with p = ().

It is convenient to reformulate this definition, using the torus

G ) of Chap. I, 1.1. Let T =T X Ql be the

T
/Ql Q

*Re/a%m/k

Q! -torus obtained from T by extending the ground field from Q to

Q! . We have

* *
T Q)=Ke&Q,) =K, ,

/Ql

where Kl =K®Ql .
Let I be the id2le group of K, cf. Chap. II, 2.1. The injec-
%
tion Kl —> I, followed by the class field homomorphism
i: I —> Gal(R/ K)ab , defines a homomorphism
*

i, K, = Gal®/K)*P .
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PROPOSITION - The representation p is locally algebraic if and

only if there exists an algebraic morphism

f: T —> GL
/Ql v,

e

-1 -~
such that p o il x) =f(x ) for all x e K! close enough to 1.

(Note that, as in the local case, the above condition determines

f uniquely; one says it is the algebraic morphism associated with

p.)

Since K®_ Q =Tr K , we have
Q! v| e v

T =17 T,
/Ql Vl! v

where Tv is the Ql -torus defined by Kv , cf. 1.1. The proposi-

tion follows from this decomposition.

Exercise

Give a criterion for local algebraicity analogous to the one of

Prop. 2 of 1.1.

2.2. Modulus of a locally algebraic abelian representation

Let p: Gal(R/ K)ab - Aut(Vl) be as above; by composition
with the class field homomorphism i: I —> Ga.l(l—{/ K)ab , p defines

a homomorphism poi: I —> Aut(Vl ).
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We assume that p is locally algebraic and we denote by f the

associated algebraic morphism T —> GL
/Q v,

DEFINITION - Let m be a modulus (chap. II, 1.1). One says that

p is defined mod m (or that m is a modulus of definition for p)
if

(i) pei is trivial on Uv m when P, 2.

(i) poi, () =f() for xe[] U

v| e v.m

i " =T .
(Note that J-|I—1 Uv,m is an open subgroup of K! /Ql (Ql) )

In order to prove the existence of a modulus of definition, we

need the following auxiliary result:

PROPOSITION - Let H be a Lie group over Ql (resg. R) and let

a be a continuous homomorphism of the idele group I into H.

*
(a) If p £ 1 (resE p £ o), the restriction of «a to K

is equal to 1 on an open subgroup of K

*
b) The restriction of a to the un1t group Uv i KV is egual

to 1 for almost all v's.

Part (a) follows from the fact that Ki is a pv-adic Lie group
and that a homomorphism of a p-adic Lie group into an £ -adic one
is locally equal to 1 if p # £.

To prove (b), let N be a neighborhood of 1 in H which con-
tains no finite subgroup except {l}; the existence of suchan N is
classical for real Lie groups, and quite easy to prove for [ -adic
ones. By definition of the id2le topology, a(Uv) is contained in N

for almost all v's. But (a) shows that, if pV # £, the group
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a(Uv) is finite; hence a(Uv) ={1} for almostall v's, q.e.d.

COROLLARY - Any abelian [ -adic representation of K is unrami-

fied outside a finite set of places.

This follows from (b) applied to the homomorphism a of I
induced by the given representation, since the cx(Uv) are known to be

the inertia subgroups.
Remark
This does not extend to non-abelian representations (even solv-

able ones), cf. Exercise.

PROPOSITION 2 - Every locally algebraic abelian £ -adic representa-

tion has a modulus of definition.

Let p: Gal(K/ K)ab—) Aut(V!) be the given representation and

f the associated morphism of T into GL . Let X be the
/Ql Vl

set of places v ZK , with pv # £, for which p is ramified; the

corollary to Prop. 1 shows that X is finite. By Prop. 1, (a), we can

choose a modulus m such that pei: I —> Aut(VI) is trivial on all

the U , ve X. Enlarging m if necessary, we can assume that
»m
po il (x) = f(x-l) for x e TT Uv . Hence, m is a modulus of
p =t '
v

definition for p .

Remark
It is easy to show that there is a smallest modulus of definition

for p; it is called the conductor of p .



III-12 ABELIAN (£ -ADIC REPRESENTATIONS

Exercise
Let zl, ... ,zn,.. . € K* . For each n, let En be the sub-
field of K generated by all the 2" -th roots of the element
¥4 Zl. .. Zln-l
172 n

a) Show that En is a Galois extension of K, containing the

n
£ -th roots of unity and that its Galois group is isomorphic to a sub-

sk %

S )in GL(2,2/ 1"2).

group of the affine group (0 1

/
b) Let E be the union of fhe En' s . Show that E 1is a Galois
extension of K, whose Galois group is a closed subgroup of the
affine group relative to Zl
c) Give an example where E (and hence the corresponding

2-dimensional £ -adic representation) is ramified at all places of K.

2.3. Backto S

Let m be a modulus of K and let

$: S — GL
m/QI VI

be a linear representation of S m . Let

/Ql

: Gal®/ K)*® — Aut(v )
1 yi
be the corresponding [ -adic representation (cf. chap. II, 2.5.).

THEOREM 1 - The representation ¢I is locally algebraic and de-

fined mod m . The associated al&abraic morphism
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/Q \'

is ¢ o 7, where 7 denotes the canonical morphism of T into S
— m

(cf. chap. II, 2.2).

This is trivial from the construction of ¢l as ¢ ¢ £,

(chap. II, 2.5) and the corresponding properties of ¢ (chap. II,

2.3).

2

The converse of Theorem 1 is true. We state it only for the

case of rational representations:

THEOREM 2 - Let p: Gal K/ K)ab — Aut(Vl) be an abelian

L -adic representation of the number field K. Assume p is rational

(chap. I, 2.3) and is locally algebraic with m as a modulus of de-

finition (cf. 2.2). Then, there exist a Q-vector subspace VO of

V,, with V, =V @
—_ 1 o

1 QI , and a morphism ¢o: S, — GL

v
o

Q

of Q-algebraic groups such that p is equal to the £-adic represen-

tation ¢1 associated to ¢o (cf. chap. II, 2.5).

(The condition V, =V ® Q, means that V isa '"Q-
1 o Q ¢ o

structure' on Vl , cf. Bourbaki Alg., chap. II, 3rd ed.)

Proof. Let r: T —> GL be the algebraic morphism asso-

/Q, v,

ciated with p . We have

poi(x)=r(x-l) for x eK;n Um =T|— U

vll v.m
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Define a map ¢: I —> Aut(VI) by
Yx) = poilx). r(xl)

th
where x, is the f— component of the idele x. One checks imme-
%

diately that ¢ is trivial on Um and coincides with r on K

Hence r is trivial on E. = K N Um and factors through an alge-
braic morphism Th T m/ QI el GLVI . By the universal property
of the Q,6 -algebraic group S (cf. chap. II, 1.3 and 2. 2),

1 m/Q,

there exists an algebraic morphism

¢: S — GL
m/Ql Vl

with the following properties:

(a) The morphism Tm/Q _)sm/Q i>GLV is r
£ £ £
(b) the map 1‘—>sm (QI)L) Aut(V,) is ¢ .
It is trivial to check that the £ -adic representation ¢! attached to
¢ as above coincides with p . Indeed, if a € I, we have (with the

notations of chap. II)
. _ _ -1
$,° i) =¢(,@) =¢(@), @, )
= y@blr, (@, )
= yY(a T, (@,

=po i(a)r(a! )ob(Tr‘2 (al-l))

=poifa)
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since ¢ o 7r1 =r by (a) above.

Hence ¢l = p; the fact that p is rational then implies that ¢

can be defined over Q (chap. II, 2.4, Prop.), and this gives Vo

and d)o » q.e.d.

Remark

The subspace Vo of V, constructed in the proof of the

1
theorem is not unique; however, any other choice gives us a space

of the form cVo , where o is an automorphism of V, commuting

£
with p . To a given V0 corresponds of course a unique .

COROLLARY 1 - For each prime number {£' there exists a unique

(up to isomorphism) {' -adic rational semi-simple representation

of K, compatible with p. It is abelian and locally algebraic.

p
n
These representations form a strictly compatible system (cf. chap. I,

2.3) with exceptional set contained in Supp(m). For an infinite num-

ber of 2£' , pl' can be brought in diagonal form.

Proof. The unicity of the pl, follows from the theorem of chap. I,
2.3. For the existence, take Py to be the d>£' associated to ¢ as

in chapter II, 2.5. The remaining assertion follows from the propo-

sition in chap. IO, 2.5.

COROLLARY 2 - The eigenvalues of the Frobenius elements Fv

’

(v § Supp(m), P, # 1) generate a finite extension of Q.

This follows from the corresponding property of ¢1 , cf.

chapter II, 2.5, Remark L.
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2.4. A mild generalization

Most results of this and the previous Chapter may be extended
to the case where we take for ground field of the linear representa-
tion a number field E (instead of Q). More precisely, let \ be a

finite place of E and let E_  be the \A-adic completion of E. The

X
notion of an E-rational \-adic representation of K has been de-

fined in chap. I, 2.3, Remark. Let
p: Gal(i_(/ K) —> Aut(V)\)

be such a representation, and assume p is abelian. Let f be the

residue characteristic of A\, so that E)\ contains Ql . As in 2.1,

we say that p is locally algebraic if there exists an algebraic

morphism

f: T —> GL
/E)\ vy

e

-1 &
such that poil(x)=f(x ) for x e Kl

K. = T(Ql) is a subgroup of T(E)\)) As in 2.3, one proves that

close enough to 1 (note that

£
such a p comes from an E-linear representation of some Sm

(and conversely).

2.5. The function field case

The above constructions have a (rather elementary) analogue

for function fields of one variable over a finite field:

Let K be such a field, and let p be its characteristic. If m
is a2 modulus for K (i.e. a positive divisor) we define the subgroup

Um of the idele group I as in chap. II, 2.1, and we put
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I"m =I/UmK .

The degree map deg: I —> Z is trivial on U, » hence defines an

exact sequence
l1—>J —=T —>Z—>1.
m m

One sees easily that the group Jm is finite; moreover, it may

be interpreted as the group of rational points of the ''generalized

Jacobian variety defined by m'. If f’\m denotes the completion of
108 with respect to the topology of subgroups of finite index, it is
known (class field theory) that Gal(l_(/K)ab = lim i"\

-~ ab "
Let now p: Gal(K/ K)° —> Aut(VI) be an abelian £ -adic

representation of K, with £ # p. One proves as in 2.2 that there
exists a modulus m such that p is trivial on Um , i.e. such

A
that p may be identified with a homomorphism of I"m into

Aut(Vl ). Moreover

PROPOSITION - A homomorphism ¢: I;n - Aut(Vl) can be ex-

N
tended to a continuous homomorphism of I') if and only if there

exists a lattice of V! which is stable by p(I‘m ).

The necessity follows from Remark 1l of chap I, 1.1. The
sufficiency is clear.

Note that, as in the number field case, we have Frobenius
elements and we can define the notion of rationality of an £ -adic

representation.

THEOREM - An abelian £ -adic representation
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A
¢: T, — Aut(Vl)

of K is rational if and only if Tr ¢(y) belongs to Q for every

e T .
A m

I v 4 Supp(m ), and if fv is a uniformizing parameter at
v, the image Fv of fv in I"m is the Frobenius element of the
Galois group I"m . Hence, if Tr¢ takes rational values on Fm ,
the characteristic polynomial of ¢(Fv) has rational coefficients for
all v{ Supp(m) and ¢ is rational.

To prove the converse, note first that éebotarev' s theorem
(Chap. I, 2.2) is valid for K, if one uses a somewhat weaker de-
finition of equipartition. Hence, the Frobenius elements Fv are

A
dense in I"m . In particular, they generate Fm , and, from this,
one sees that Tr p(y) belongs to some number field E. We can
then construct an E-linear representation ¢: I"m —> GL(n, E) with

the same trace as p, and the theorem follows from:

LEMMA - Let I' be a finitely generated abelian group, and

¢: " —=> GL(n,E) a linear representation of I" over a number field

E. Let X be a subset of I', which is dense in I' for the top-

ology of sulzgrogps of finite index. Assume that Tré¢(y) € Q 1'23-

all ye ZT. Then Tr¢(y)e Q forall yeI.

Proof of the lemma. Since ¢ (") is finitely generated, there is a

finite S of places of E such that all the elements of ¢(I') are
S-integral matrices. If ' is a prime number not divisible by any
element of S, the image of ¢(I') in GL{n, E® Ql') is contained
in a compact subgroup of GL(n, E® QI' ); hence ¢ extends by
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continuity to A
¢: " — GL(n; E® Ql')

o)
where I' is the completion of I" for the topology of subgroups of
finite index. Since Z is dense in f‘ , it follows that Tr a(;)
~
belongs to the adherence Ql' of Q in E® Q!' for every {(‘e r.

Hence, if y € I', we have
Tr¢(T) e EnQI, =Q, q.e.d.

Exercises
1) Let ¢: I"m —_ Aut(V!) be a semi-simple [ -adic repre-
sentation of I . Show the equivalence of:
(a) ¢ extends continuously to I’:m
(b) For every vy € I"m , the eigenvalues of ¢(y) are
units (in a suitable extension of Q! ).
(c) There exists vye Fm , with deg(y) # 0, such
that the eigenvalues of ¢(y) are units.
(d) F:r every vy e I"m , one has Tr ¢(y) e Zl .
2) Let ¢: 1"m - Aut(Vl) be a rational [{ -adic representa-
tion of K. Show that, for almost all prime number {', there is a
rational {' -adic representation of K compatible with ¢. Show that
this holds for all £' # p if and only if the following property is valid:

for all vy e ]."m , the coefficients of the characteristic polynomial

of ¢(y) are p-integers.
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§3. THE CASE OF A COMPOSITE OF
QUADRATIC FIELDS

3.1. Statement of the result

The aim of this § is to prove:

THEOREM - Let p be a rational, semi-simple, [ -adic abelian

representation of K. Assume

(*) K is a composite of quadratic extensions of Q.

Then p is locally algebraic (and hence stems from a linear

representation of some Sm , cf. 2.3).

This applies in particular when K = Q or when K is quadratic

over Q.

Remarks

1) An analogous result holds for E-rational semi-simple
abelian A-adic representations (cf. 2.4).

2) It is quite likely that condition (¥) is not necessary. But
proving this seems to require stronger results on transcendental

nurmbers than the ones now available.

3.2. A criterion for local algebraicity

PROPOSITION - Let p: Gal(l—(/ K)ab — Aut(Vl) be a rational semi-

simple £ -adic abelian representation of K. Assume that there

N
exists an integer N2> 1 such that p is locally algebraic. Then p

is locally algebraic.
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Proof. Since p 1is semi-simple, it can be brought in diagonal form

over a finite extension of QI » hence gives rige to a family

{¢,»...,¥ } of n continuous characters y - =* here
l. n’ wi-CK»Ql,we

CK is the 1dé1e-c1a§s group of K, and n = dim.Vl . Let

X, =¢/1 EEEES S wn be the corresponding characters occurring in

N . N . .
p- . Since p 1is locally algebraic, to each X corresponds an

al
algebraic character X € ¢ X(T) of the torus T (here we identify

X(T) with Hom(T/z . G_ =), since 6‘ is algebraically
1 2
alg n (i)
closed). Each X is of the form TT [d) o
geI”

set of embeddings of K into 61 , cf. Chap. II, 1.1. One has

where I' is the

-n (i)

x; 6 =x 86 = TToba

e

for all x e KI close enough to 1.

LEMMA - All the integers nc(i) ) lﬁ i <n, oe’ , are divisible
by N.

Proof of the lemma

Let U be an open subgroup of 6: containing no Nth-root of
unity except 1, and let m be a modulus of K such that wi(x) e U
for all x e Um and i =1,...,n; the existence of suchan m fol-
lows from the continuity of ¥ ,... 'wn . We take m large enough
so that:

a) It is a modulus of definition for p

b) p is unramified at all v € Supp(m), and the corresponding

Frobenius elements F 0 have a characteristic polynomial with
v

’
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rational coefficients.

Let Km be the abelian extension of K corresponding to the
open subgroup K*Um of the idele group I, and let L be a finite
Galois extension of Q containing Km . Choose a prime number
p which is distinct from £, is not divisible by any place of Supp(m),
and splits completely in L. Let v be a place of K dividing p,
and let fV be an id2le which is a uniformizing element at v and is
equal to 1 elsewhere. The fact that v splits completely in Km
(since it does in L) implies that fv is t}.1e norm of an idele of Km ,
hence (by class-field theory) belongs to K Um ; this means that the
prime ideal B, is a principal ideal (a), with @ =1 mod.m and
a positive at all real places of K.

Let x = l,//i(fv) and y = Xi(fv) , sothat y = xN ; these are
the Frobenius elements of wi and X relative to v. By definition

of x?lg , we have

alg no(i)
y=x.°@ =[] ol

1
oel

where a is as above.

Hence y belongs to the subfield L of QI corresponding to
L (this field is well defined since L is a Galois extension of Q).
Moreover, if wc is any place of L such that wc o0 induces v on

K, we have (as in chap. II, 3.4):
wo_(y) = nc(l).

Assume now that no(i) is not divisible by N. Then x, which is

an Nth-root of y, does not belong to L . Hence there is a
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th . .
non-trivial N -root of unity z such that x and 2zx are conjugate

~

over L, and a fortiori over Q. Since the characteristic polynomi-
alof F has rational coefficients, any conjugate over Q of an

’

eigenvalue of Fv is again an eigenvalue of Fv . Hence, there

exists an index j such that
lj/j(fv) =z.x = z.wi(fv).
But fve K*Um and all wj are trivial on K and map Um into
the open subgroup U we started with. Hence 2z =y _(f ).r,//,l(fv)-1
j v

belongs to U, and this contradicts the way U has been chosen.

Proof of the proposition

Since the no(i) are divisible by N, there exist ¢i e X(T)

with ¢?I=Xia1g . I xe K; , we have:

-1 N lg -1 N
66N =X BT =x k) = Y )

if x is close enough to 1. Hence d)i(x)wi(x) is an Nth-root of
unity when x is close enough to 1, and, by continuity, it is equal
to 1 in a neighbourhood of 1. Hence, the restriction of p

to Kl is locally equal to ¢-1 , where ¢ is the (algebraic) repre-
sentation of T defined by the family (QSI, . ,d)n). The representa-
tion ¢, a priori defined over Ql , can be defined over Ql (and

even over Q); this follows, for instance, from the fact that the

family (¢1, e ¢n) is stable under the action of Gal (6/ Q), since
1 1 )
the family (x?g...-.x:g) is.

Hence p is locally algebraic, q.e.d.
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3.3. An auxiliary result on tori

In [15], Lang proved that two exponential functions exp (blz),
exp (bzz), bl'bZ e C, which take algebraic values for at least 3
Q-linearly independent values of z, are multiplicatively dependent:
the ratio bl/ b2 is a rational number. This had also been noticed
by Siegel.

Lang proved the following { -adic analogue:

PROPOSITION 1 - Let E be a field containing Q! and complete

for a real valuation extending the valuation of Ql . Let bl’bZ ¢ E

and let T" be an additive subgroup of E. Assume:

(1) T is of rank at least 3 over Z .

(2) The exponential series exp(z) = Zzn/ n! converges

absolutely on blf‘ and bZI" .

(3) For all z € I the elements exp(blz) and exp(bzz) are

algebraic over Q.

Then bl and b.2 are linearly dependent over Q (i.e. b]_/b2
belongs to Q if b, £ 0).

For the proof, see [15], Appendix, or [30], §l.

We will apply this result to tori, taking for E the completion
of 61 . We need a few definitions first:
a/ Let T be an n-dimensional torus over Q , with character
group X(T). As before, we identify X(T) with the group of mor-

phisms of T into G We say that T is a sum of one-

/| E m/E "’
dimensional tori if there exist one-dimensional subtori Ti of T,

li i <n, such that the surn map T X... ><Tn —> T is surjective

1
(and hence has a finite kernel). An equivalent condition is:
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X(T) ® Q is a direct sum of one-dimensional subspaces stable

by Gal@Q/Q).

b/ Let f be a continuous homomorphism of T(Ql) into E . We

say that f is locally algebraic if there is a neighbourhood U of 1

in the [ -adic Lie group T(Ql)’ and an element ¢ € X(T) such
that f(x) = ¢(x) for all x € U. We say that f is almost locally al-

gebraic if there is an integer N > 1 such that fN is locally

algebraic.

c/ Let S be a finite set of prime numbers, and, for each peS,
let Wp be an open subgroup of T(Qp); denote by W the family

(Wp)pes .

Let T(Q)w be the set of elements x € T(Q) whose images in
T(Qp) belong to Wp for all peS ; this is a subgroup of T(Q).

With these notations, we have:

*
PROPOSITION 2 - Let f: T(Ql ) —> E be a continuous homomor-

phism. Assume:

(a) There exists a family W = (wp)pes such that f(x) is
algebraic over Q for all x e T(Q)w .

) T is a sum of one-dimensional tori.

Then f is almost locally algebraic.

Proof.

i) We suppose first that T is one-dimensional, and we denote

by x a generator of X(T). If x is invariantby Gal Q/Q), T
% -
is isomorphic to Gm and T(Q)==Q . If not, Gal(Q/Q) acts on

X(T) via a group of order 2, corresponding to some quadratic
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extension F of Q ; the character yx defines an isomorphism of

T (Q) onto the group Ff of elements of F of norm 1. In both cases,
one sees that T(Q) is an abelian group of infinite rank (for a more
precise result, see Exercise below). On the other hand, each quo-
tient T(Qp)/ Wp is a finitely generated abelian group of rank < 1.
Hence T(Q)/ T(Q)w is finitely generated, and this implies that

T((.'))W is also of infinite rank.

Since T(QI) is an [ -adic Lie group of dimension 1, it is

locally isomorphic to the additive group Ql . This means that there

exists a homomorphism

e: ZI — T(Ql)
which is an isomorphism of Zl onto an open subgroup of T(Q! ).

By composition we get two continuous homomorphisms

* *
f-e:Zl—)E ) xoe:Zl—>E.

. . *
But any continuous homomorphism of Z, into E is locally an

1
exponential. This implies that, after replacing Zl by zmzl if

necessary, there exist bl' b2 e E such that

foe(z) = exp(blz) R Xeo e(z) = exp(bzz) ,

with absolute convergence of the exponential series.
Let now I' be the set of elements =z e Zl such that
e(z) € T(Q)w . Since T(QI )/ e(Zl) is finitely generated, and

T(Q)w is of infinite rank, I' is of infinite rank. If zeI' , e(z)
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belongs to T(Q)w , hence f oe(z) is algebraic over Q ;_., the same
is true for ¥ o e(z) since x maps T(Q) either into Q or into
the group F; defined above. Proposition 1l then shows that b 1/ b2
is rational. This means that some integral power fN of f, with

N >1, is locally equal to an integral power of x , hence f is

almost locally algebraic.

ii) General case. Write T = Tl. .. Tn where Tl’ Cees Tn are
one-dimensional subtori of T. Since X(T) ® Q is the direct sum of
the X(Ti) ® Q, it is enough to show that, for all i, the restric-
tion fi of f to Ti(Ql) is almost locally algebraic. But we may

choose open subgroups Wi of Ti(Qp) such that

’

wl,p' . wn,pC Wp . If we put Wi = (wi,p)pes , we then see that

fi. takes algebraic values on Ti(Q)W , hence is almost locally al-
i

gebraic by i) above, q.e.d.

Remark

If one could suppress condition (b) from Prop. 2, all the re-
sults of this § would extend to arbitrary number fields. This would
be possible if one had a sufficiently strong n-dimensional version of
Prop. 1 above; the one given in [30], §2 does not seem strong enough
(it requires density properties which are unknown in the case con-
sidered here). — [This has been done by Waldschmidt: see [63],
(83].]

Exercise

Let T be a non-trivial torus over Q . Show that T(Q) is
the direct sum of a finite group and a free abelian group of infinite

rank.
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3.4. Proof of the theorem

We go back to the notations and hypotheses of 3.1. Let
= ab
p: Gal(K/ K) — Aut(Vl)

be a rational, semi-simple, abelian [ -adic representation of K.

If E is the completion of 61 , as in 3.3, we may bring p in

diagonal form over E. This gives rise to afamily (g[/l, e ,wn) of

continuous characters of Gal (R/ K)ab (hence also of the id2le group

I) into E*; here, n =dim. V! .
Let fi: Kj - Egﬁ= be the restriction of wi to the lth-compo-

nent K* of L Note that K* = T(Q!), where T 1is, as usual, the

Y] L
torus defined by K (chap. II, 1.1).

LEMMA - The torus T and the homomorphism fi satisfy the
assumptions (a) and (b) of ProR. 2, 3.3.

Verification of (a)

Let S be a finite set of primes, with £ { S, such that if
v e ZK , pV F L, pvq S, the representation p is unramified at
v, and the characteristic polynomial of Fv, has rational coeffi-
cients. If peS, Prop. 1l of 2.2 shows that there exists an open

*

subgroup Wp of Kp = T(Qp) such that wi(wp); 1. Let
W = (wp)pES and let x € T(Q)w . Since x € K , we have d/i(x) =1,
when x is identified with an idele of K. On the other hand, let us

split the idele x in its components
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according to the decomposition of I in

I=K XK XK. XTI
fee) Kl KS

(Here K = (K®R) , Ks =TT K and I' is the restricted product
peS P
of the Kv , for ve EK , and P, £ e, P, ¢ S.) The relation

wi(x) =1, together with d/i(xl) = fi(x), gives
-1
fi(x) = Wi(xoo)wi(xs)wi(x' ).

By construction, we have rj/i(xs) =1 and it is clear that wi(xoo) =+1

Hence:
f(x) =+ e
b =k )T

But, for each ve = with P, {s, P, # £ , we know that the

K ’
eigenvalues of Fv o are algebraic; hence, if fv is an id2le which

is a uniformizing element at v, and is equal to 1 elsewhere,

wi(fv) is algebraic. If a(v) is the valuation of x' at v, we have:
'y = a(v)
) =TT €)™
hence wi(x') and fi(x) are algebraic and we have checked (a).

Verification of (b).

Since K is a composite of quadratic fields, it is a Galois
extension of Q, and its Galois group G 1is a product of groups of

order 2. The character group X(T) of T is isomorphic to the



III-30 ABELIAN £ -ADIC REPRESENTATIONS

regular representation of G, and it is clear that X(T) ® Q splits
as a direct sum of one-dimensional G-stable subspaces (each
correspond to a character of G). Hence T is a sum of one-dimen-

sional tori.

End of the proof of the theorem

Using prop. 2 of 3.3, we see that each fi is almost locally

algebraic. Hence there is an integer N >1 such that the f?l are
locally algebraic. This implies, cf. 1.1, that pN is locally alge-
braic, hence (cf. 3.2) that p itself is locally algebraic, q.e.d.

Exercise
Assume that K is a composite of quadratic fields. Let x

be a Grdssencharakter of K and suppose that the values of y (on

the ideals prime to the conductor) are algebraic numbers. Show
that y is "of type (A)" in the sense of Weil [41]. (Use the same
method than atove, with E replaced by C.) If the values of x lie
in a finite extension of Q, show that x is '"of type (Ao)” . = [no

assumption on K is necessary, thanks to (83].]
APPENDIX

Hodge-Tate decompositions and locally algebraic representations

Let K be a field of characteristic zero, complete with respect
to a discrete valuation and with perfect residue field k of charac-
teristic p> 0. In this Appendix we deal with Hodge -Tate decomposi-

tion of p-adic abelian representations of K.
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Sections Al and A2 give invariance properties of these de-
compositions under ground field extensions. Special characters of
Gal(?/ K) are defined in A4; they are closely connected both with
Hodge-Tate modules (A4 and A5) and local algebraicity (A6). The

proof of Tate's theorem (cf. 1. 2) is given in the last section.

Al. Invariance of Hodge-Tate decompositions

Let C be the completion of K (cf. 1.2); the group Gal(k-/ K)
acts continuously on C. Let x be the character of Gal(l_(/ K)
into the group of p-adic units defined in chap. I, 1.2. Let K'/K
be a subextension of K/K on which the valuation v of K is
discrete; this means that K' is a finite extension of an unramified
one of K. Let 12’ denote the closure of K' in C.

Let now W be a finite dimensional C-vector space on which
Gal(R/ K) acts continuously and semi-linearly (see 1.2). As before,
we denote by w" (resp. W;') the K-(resp. 12' -) vector space

defined by

W = {we W|s(w) =x (s)"w for all s« Gal(K/ K)}

(resp. W;' = {we W|s(w) =x (s)"w for all s e Gal(K /K")}).

n
Kl
modules W(n) and W (n)' with their canonical images in W, we

Let W) =C® W' and W) =C®z W Identifying the’

prove

N
THEOREM1 - The canonical map K' @ w's Wo isa

~ K K!
K' -isomorphism.
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COROLLARY | - The Galois modules W(n) and W(n)' are equal.

Indeed, Theorem l shows that Wn and Wn

K generate the

same C-vector subspace of W.

COROLLARY 2 - The Galois module W is of Hodge-Tate type over

A
K if and only if it is so over K!'.

Proof of Theorem 1

Note first that replacing the action of Gal (K/K) on W by
(s,w) — x (s) 'sw, ie Z, just changes: w" to th . This
shifting process reduces the problem to the case n = 0; in that

;') is the set of elements of W which are
invariant under Gal(K/K) (resp. under Gal(K/ K')). Note also
o
Kl
that C ®K Wo —> W is injective (cf. l.2).

n
case, W (resp. W
is trivial, since we know

~
that the injectivity of K' ® W — W

On the other hand, an easy up-and-down argument shows that

one can assume K'/ K to be either finite Galois or unramified

Galois. In both cases, since Gal(ﬁ/ K') acts trivially on W;, ,
we have a semi-linear action of Gal(K'/ K) on W0 . When

1
K'/ K is finite, it is well known that this implies tlliat W;, is
generated by the elements invariant by Gal(K'/ K), i.e. by w°
(this is a non-commutative analogue of Hilbert's ' Theorem 90",
cf. for instance [29], p. 159).
Let now K'/K be unramified Galois and let G be its Galois

group. Let O' denote the ring of integers of K . Let A be an

A A

O!' -lattice of W;’ (i.e. a free O' -submodule of W;{' of the same
rank as W, ). Since G acts continuously on wo the stabilizer

K K' "’
in G of A 1is open, hence of finite index, and the lattice A has
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finitely many transforms. The sum A° of these transforms is

invariant by G. Let e e . be abasis of A°. Let se¢ G.

N
Then
N
A
sle.) = Z a..(s)e., a,..e O' ,
J =1 Y 1 ij

and the matrix af(s) = (aij (s)) belongs to GL(N,(S'). We have

a(st) = a(s)s(a(t)); this means that a is a continuous l-cocycle on

A
G with values in GL(N,O'). Recall that two such cocycles a and

a' are said to be cohomologous if there exists b € GL(N,6') such
that a'(s) = b-la(s)s (b) for all s € G. This is an equivalence
relation on the set of cocycles and the corresponding quotient space

is denoted by Hl G, GL(N,(S' )). In fact:
l )
LEMMA - H (G,GL(N,O')) = {1} .

Assuming the lemma, the proof of the theorem is concluded
as follows. Since a(s) is cohomologous to 1, there exists

be GL(N,O') such that b =a(s)s(b) forall se G. If b= RS
o

. . . .
define a new basis el s e e e eN of WK' by
e! =Z b..e. .
j=1 Y !
Using the identity b = a(s)s(b), one sees that ei oo ,ei\I are
invariant under G, hence belong to Wo ; this proves the surjec-

(o]

A lo)
1v1i 1 —_ .
tivity of K ®K w WK'
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Proof of the lemma

Let 7 be a uniformizing element of 6' . Filter the ring
A =GL(N,O') by means of A = {ac Ala=1 mod 7). We get
Al Al = GL(N,k'/ k), where k'/k is the residue field extension
of K'/ K. Moreover, for n > 1, there is an isomorphism
An/ An+k
matrices with coefficients in k'. The lemma follows now from the

triviality of HI(G,GL(N,k')) and HI(G,MN(k’)), where now k' is

== MN(k' ), where MN(k') is the additive group of N X N

endowed with the discrete topology (so this is ordinary Galois

cohomology, cf. [29], p. 158-159).

A2. Admissible characters

— x*
Let G = Gal(K/K) and let ¢: G—> K be a continuous homo-

morphism.

DEFINITION - The character ¢ is said to be admissible (notation:

¢ ~ 1) if there exists xe C, x # 0, such that s(x) =¢(s)x for all

s e G.

Remarks

1) The admissible characters form a subgroup of the group of
all characters of G with values in K* ; if ¢,¢' are two characters,
we write ¢ ~ ¢' if ¢'1¢' ~ 1.

2) Let H1 (G,C*) be the first cohomology group of G with
values in C* (cohomology being defined by continuous cochains, as
in Al). A continuous character ¢: G —> K* is a l-cocycle, hence

- * _ -
defines an element ¢ of H1 (G,C ). One has ¢ =¢' if and only if
¢~ e .
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3) Define a new action of G on C by means of
(s,c) /> ¢(s)s(c) se€ G, ce C.

Denote the C-G-module thus obtained by C(¢). Then ¢ is admiss-

ible if and only if C(¢) and C are isomorphic as C-G-modules.

PROPOSITION | - Suppose there exists c € C  such that

¢(s) =s(c)/c for s in some open subgroup N of the inertia group

of G. Then ¢ is admissible.

Proof. Let K'/K be the subextension of K/ K corresponding to
N; it is a finite extension of an unramified one. Let W = C(¢), as
in Remark 3, and let Wo (resp. W;') be the subspace of W con-
sisting of elements invariant by G (resp. by N). By hypothesis,

Wlo<' is # 0. Hence, by Al, Theoreml, we also have w° £ 0,

and this means that ¢ is admissible, q.e.d.

Let now UC be the group of units of C, UlC the subgroup of

units congruent to 1 modulo the maximal ideal, and identify k

with the group of multiplicative representatives, so that

Uu_. = U1 X T{Hﬁ , cf. [29], p. 44. Define the logarithm map

C C

log: U.—>C
by
—_R
log (x) =0 if xe k
x n-1 n 1
log (x) =X (-1) (x-1) /n if xe€ UC .
n=1

This is a continuous homomorphism and even a local isomorphism.
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Moreover:

LEMMA - (a) log is surjective.
-
(b) The kernel of log: UC-—>C is k Xp o '
P

where p o is the set of all pn-th roots of unity, for n=1,2,...
P

Assertion (a) follows from the fact that C is algebraically
closed, hence that Uc is divisible.

On the other hand, if ue U1 is such that log(u) = 0, one has

N c N
lim. up =1, hence, if N is large enough, up belongs to a sub-
group of UIC where log is injective (for instance the subgroup of
2 N
elements x with x =1 mod p ). Hence uP =1, and ue T . s

P
this implies (b).

We now apply the log map to the cohomology groups of G with

%*
values in U_.,C,C ,... (cohomology being, as usual, defined by

C’
continuous cochains). First, since the valuation groupof C is Q,

we have the exact sequence

*
1—>UC—>C > Q—>1.

* *
By Tate's theorem ((39], §3.3) one has HO(G,C ) =K , hence

an exact sequence

* 1 1 *
K —>Q—>H(G,UC)—>H(G,C )y—>0,
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or, equivalently:

0—a/z% v, U i, gte,cy—o.

Let N = Ker(log). We have the exact sequence
ue, N L v, U.) M dle, o),

where M is induced by the log. Since Hl(G,C) is a K-vector space,
the composite Ae¢6: Q/ Z —> HI(G, C) is 0, hence there is a unique

map
L: H@G,Cc) — H@G, Q)
such that Loei =\,
PROPOSITION 2 - The map L: HI (G,C*) - H1 (G,C) is injective.

Using the exact sequences above, one sees it is enough to
prove that io j: I-I1 (G,N) —> Hl(G, C*) is trivial. But N is a discrete
subgroup of I_<* , hence iej factors through Hl(G,R*), where now
R* is viewed as a discrete group; by Theorem 90, HI(G,I_(*) is
trivial, hence also iej, q.e.d.

Let now ¢: G —> K* be a continuous character. Since ¢(G)
K’ hence in UC , and
log ¢: G —> C is an additive l-cocycle. Its cohomology class in

is compact, it is contained in U

HI(G,C) is L-¢-, where 3 is the cohomology class of ¢ in
e
HI(G,C ).
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PROPOSITION 3 - The properties ¢ ~1 and Lé =0 are equivalent.

This follows from the injectivity of L.

COROLLARY - If there exists a non-zero integﬂ' n such that

¢" ~1, then ¢ ~ L.

n

Indeed, L¢ = IKLE = 0.
Remark

Springer has proved that HI(G, C) is of dimension 1l over K
(cf. Tate [39], §3.3). Hence, one can take for basis of HI(G,C) the
element L-x_ , where x is the fundamental character defined in
chap. I, 1. 2. In particular, for any ¢: G—> K* , there is an
element c(¢) of K such that L.a = c(¢)L; ; when K is locally

compact, this c(¢) may be computed explicitly, see A6, Exer. 2.

A3. A criterion for local triviality

From now on, E denotes a subfield of K having the following
properties:

(a) E contains Qp and [E: Qp]< o (sothat E is locally
compact).

(b) K contains all Qp-conjugates of E.

We denote by I'_, the set of all Qp-embeddings of E in K.

E
Consider a continuous character

¥: Gal (K/ K) —> E

with values in E. For each o e I"E this gives a character

* g * _— *
gop: G—> E —> K of G =Gal(K/K) into K .
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PROPOSITION 3 - The following two properties are equivalent :

(1) ¥ is equal to 1 on an open subgroup of the inertia group

of G,
(2) ooy ~1 for all o ¢ I‘E.

(1) => (2) is trivial from the result of Al (since we know
that admissibility can be seen on an open subgroup of the inertia
group).

(2) = (1). We use the log map defined in A2. Note that ¥
takes values in the group UE of units of E, hence logy:G— E
is well defined. Let I be the inertia group of G; the subgroup
log ¢ (I) of E 1is compact, and hence isomorphic to Z; for some
n. If W is the Qp-vector subspace of E generated by log y(I),
we see that log Y (I) is a lattice in W, and dim W =n. Note that
saying that ¢ is equal to 1 on an open neighbourhood of 1 in I is
equivalent to saying that log ¢ (I) = 0 (since log: UE —> E is a local
isomorphism). Suppose this is not the case, i.e. suppose that
n>1. Choose a Qp-linear map f: E—> K such that dim f(W) =1;
such a map obviously exists. By Galois theory (independence of

characters) the set FE is a basis of HomQ (E, K). Hence, there
P

exist kce K with

and we have feology = Ekoonlog Y = Eko log (gey).
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But by assumption (and Prop. 3 of A2), the additive l-cocycle
log(coy): G —> K 1is cohomologous to 0. Hence the same is true
for felog . But we may assume (replacing f by pr, with N
large, if necessary) that there exists a continuous homomorphism
F: UE - UK such that felog = logeF. We then have

log(Fey) = folog ¢ and hence (cf. Prop. 3 of A2), Fey ~1, i.e.
Foy is admissible. But Foy has now the property that

Foy() C UK is a p-adic Lie group of dimension 1 (product of Zp
with a finite group). This contradicts a theorem of Tate ([39], §3,

Th. 2), hence the result.

A4. The character Xg

We keep the same hypotheses on K and E as in the previous
section. By class field theory, the group Gal (E/ E)ab may be iden-
tified with the completion ﬁ* of E* with respect to the topology of
open subgroups of finite index. In particular, we have an exact

sequence

-— ab A
1—)UE-——>Ga1(E/E) - Z—1,
where Z = .[TZI denotes the completion of Z with réspect to the
topology of subgroups of finite index (cf. for instance Artin-Tate [2]

or Cassels-Frbohlich [6], Chap.VI, §2).
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Let now 7 be a uniformizing element of E. The image of =
in Gal(E/ E)a'b generates a subgroup whose closure is isomorphic

A
to Z , and this gives an isomorphism:

Gal(®/ E)?P =~ U x £,

- b
Let pr": Gal(E/ E)a — U be the projection associated with this

decomposition (the Galois echtension of E corresponding to Ker(pr‘”)
is the composite of all finite abelian extensions of E for which =
is a norm, cf. [6], p. 144-145).

On the other hand, the inclusion E — K defines a homomor-

phism Gal (I—(/ K) — Gal(-E-I/ E), hence also a homomorphism

rpi G —> Gal(E/ E)?P .

Define Xg (abbr. x E) to be the composite homomorphism

= ab i
G — Gal(E/E)" — UE—> UE R

where i(x) = x-1 for x e UE . Observe that the restriction of XE

to the inertia group of G is x > rE(x-l) , and hence is indepen-

dent of the choice of .

PROPOSITION 4 - Let F7r be the Lubin-Tate formal group ([17],
see also [6], chag. VI, §3) associated to E and #. Let T be its

Tate-module, which is free of rank 1 over the ring OE of integers

of E. The action of Gal(l_(/ K) on T is given by the character

X g G— UE , defined above.
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This follows from the main theorem of [17] (see also [6], Th. 3,

p.- 149).

COROLLARY -If E = Qp and 7 = p, then the character X g

coincides with the character x defined in chap. I, l.2.

Indeed, the Lubin-Tate group is now the multiplicative group

Gm and its Tate module is the module Tp () defined in chap. I, 1. 2.

Remark

b

AR
If K 1is locally compact, we may identify G*® to K and the

character X g is given by

Ak A% PT :
g Ny g —”>UE;UE,

where N =N is the norm map. [This follows from the func-

K/ E
torial properties of the '"reciprocity law' of local class field theory. ]

In particular, the restriction of X g to the inertia subgroup

ab . -1
UK of G is x'—)NK/E(x ).

A5. Characters associated with Hodge-Tate decompositions

Retaining the notation of the previous sections, let p: G—> UE

be a continuous homomorphism. Let V be a one-dimensional vecto:

space over E; we make G acton V by

(s,y) > pl(s)y, seG, yeV.

o)

Hence V is a G-module. Let W =CQQ V, where C =K as
P
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before. This is a d-dimensional vector space over C, where
d = [E: Qp]. Every element x of E defines a C-endomorphism

a of W by
® = v
a (Z c,1 yi) Eci 2] xyi , Ci e C, yi e V.

We get in this way a representation of E in the C-vector space
W; note that the action of a_ commutes with the action of G.

Let o e FE and put

wcr = {w|we W,ax(w) = olx)w for all xe E}.

LEMMA1 - (a) Each W0 is a one-dimensional C-vector space

stable by G.

(b) W is the direct sum of the Wc' S, O€ l"E.

(c) For each o I"E » the Galois module W0 is

isomorphic to C (oo p).

[For the definition of the "twisted'" module C(gep)

see A2, Remark 3.]

Proof. The assertions (a) and (b) are consequences of the well-

known fact that C QQ E is a product of d copies of C, the
P

projections C ® E— C being given by the elements of I"E .

Q
p

For (c) note that the same decomposition holds for

VK =K®Q V, since K contains all the Qp-conjugates of E;
p

hence for each oce I there exists a we W containedin V__.

E’ o K
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For such a w, say w=2ki®yi (kie K, v, € V) we have

stw) =Zk ® sy

= Ek.1 @ P(S)Y-1
=a w
p(s)
=gop(s)w since w belongs to Wcr ,

and this implies that Wo is isomorphic to C(ogep).

o

If P and p, are two characters of G into K , then we

shall write P = P, if p1 and N coincide on an open subgroup of

the inertia group of G.

THEOREM 2 - Let p,V,W be as above and, for each o e I"E , Le_t

b int . The followi ivalent:
n(7 e an integer ollowing are equivalen

(i) p= [T o—lox ’
gel’ oE
E
n
(ii) ocep~¥x % for all o € I"E

(irili) for every oe I‘E the Galois-module W(_J is isomorphic

to Clx °).
[Recall that x 1is the character defined in chap. I, 1.2, and

that X oE is the one attached to the subfield gE of K, as in A4.

Note that, since XcE restricted to the inertia group depends only

on oE, (i) is meaningful.]



LOCALLY ALGEBRAIC REPRESENTATIONS II1-45

COROLLARY - V is of Hodge-Tate type if and only if there exist

n

n € Z such that p‘.:.'l o-lc.x o

o] E— - cE
ceFE

This follows from (iii) and the fact that W = C @ V is the direct

sum of the Wo' s.

Proof of Theorem 2

We prove first:

LEMMA 2 - (a) XE~X

b) ¥ oce ' is not the inclusion map, xXp ™~ 1.

Proof. Let 7 be a uniformizing parameter of E, let F” be the
Lubin-Tate group associated to E and =, let T7r be its Tate
module, and V7r = T1r ® Qp . Since V"_ is a one-dimensional vector
space over E, and G acts on V” through XE: G— UE (cf. A4,
Prop. 4), the above constructions apply to V” and Xg - By a

theorem of Tate ([39], §4, Cor. 2 to Th. 3), W7r =C @Q V7r has
P

a Hodge-Tate decomposition of the type
= 0
v W”( ) & Wﬂ(l)

where dim W”(O) = d-1, dim W”(l) = 1. More precisely, Tate de-

fines canonical isomorphisms W"(O) =C QK HomE(t' ,K), where t'
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is the (d-1)-dimensional tangent space of the dual of F_,

T
W”(l) =(C@@. V () ®K t, where t is the one-dimensional
p

Q
P

tangent space to F7r , and Vp(p.)
is the Qp-vector space of dimension
1 defined in Chap. I, 1.2.

Note that C QQ Vp (+) is.isomorphic to C(x), hence one gets an
P

isomorphism
W ==
1) Clx) ®K t.

These isomorphisms commute with the action of E.
Since E acts on t by the inclusion map o E — K, this
shows that the component (W”) of W7r is W”(l). Hence, using

Lemma 1, we have C(x) = Cl(x E)’ and this implies Xg ~Xo

whence (a). On the other hand, the same argument shows that

W) ,0o o,
TO 1

hence C(coxE) = C(l), (where 1 stands, of course, for the unit

are contained in the other factor W”(O) of W7r ;

character), and this proves (b).

We now go back to the proof of Theorem 2. The equivalence
of (ii) and (iii) follows from Lemma l. To show (i) < (ii), note

* -
first that X JE takes values in gE , hence ¢ loon takes values

in E , and the same is true for the character
1 n

po= T o ox g

1 cel’ o
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Let Te€ FE. We have

1 n

= = (o2

ToPl . ToC OXO'E
E

From Lemma 2, applied to the field ocE, we see that
-1
Teo °X.g

. -1
T#o0; f T=0, wehave Toco °on=XoE~X‘ Hence

. -1 . . .
~1 if qTog is not the identity on oE, i.e. if

To p1 ~ X T , and (ii) is equivalent to
Top ~Teop forall'reI"E.
By Prop. 3 of A3, this is equivalent to PP=P. q.e. d.

Ab6. Locally compact case

We now add to all the previous assumnptions regarding K and
E, the assumption that K is finite over Qp (i.e. K is locally
compact). By local class field theory, we may then identify Gab
with ﬁ* , and the inertia subgroup of Gab with UK , the group
of units of K.

Let T (resp. TE’TGE) be the Qp-torus associated to K

(resp. to E, oE, where oe FE), cf. 1.1. The norm map from

K to oE defines an algebraic morphism

NK/oE: T — TcE .
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-1 . . .
By composition with o : TcE — TE , this gives a morphism

-1
= : T—> T .
T, =9 *Ng/oE E

-1 -1
PROPOSITION 5 - (a) ro(u ) =0 oxcE(u) for all ue UK ,
(b) the r(J (o e I"E) make a Z-basis of

Homalg (T, TE).

(Note that (a) makes sense, since U

K has been identified with
the inertia group of Gab. )

Assertion (a) follows from the remark at the end of A4. On

the other hand, let X(T) and X(TE) be the character groups of T

and TE respectively. The characters [s],s e I"K (resp.

(0),0 € FE) make a basis of X(T) (resp. of X(TE)). The mor-

phism rU: T — TE defines by transposition a homomorphism

X(rc): X(TE) —> X(T).

One checks easily that the effect of X(ra) on the basis

[7).7 € FE , is:

X ) (7 = = [s]

SO=T

Assertion (b) then follows from:
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LEMMA - The elements X(ro),o € I"E , form a basis of
HomGal(X(TE), X(T)).

Proof. The independence of the X(r ) is clear. On the other hand,
e o

let ¢ e HomGal(X(TE),X(T)) be such that
¢([7) = Zn(r,s)[s].

If a € Gal ((—)p/ Qp) is equal to the identity on TE, we have
a[7] = [7], hence ad ([7]) = ¢([7]), i.e. n(r,as) =n(r,s) for all
s e ' . This means that n(7,s) depends only on the element

o =s T,; if we put n0 =n(r,s), we then have

Z n z  [s]
gel’ o SO=T
E

¢ (7))

= Z n X( )(7).
gel” g o
E

This proves the lemma.

PROPOSITION 6 - Let p and (nc),o € FE , be as in Th. 2 o_fAS.

Let r: T —> TE be the morphism defined by
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The equivalent properties (i), (ii), (iii) of Th. 2 are equivalent to:

(iv) There exists an open subgroup U' of the inertia subgroup

U of G suchthat r(upfw =1 if ue U'.

Indeed, (iv) is just a reformulation of (i), since we know that

-1 .
o DXO_E(u) —ro(u ) if ue UK.

COROLLARY - The following are equivalent:

(a) p is locally algebraic.

) The Galois module V attached to p is of Hod&e-Tate

tzEe.

This follows from Theorem 2, combined with Prop. 5 and

Prop. 6.

Exercises

1) a) Let A = EndQ (K) be the space of Qp-linear endo-
P

morphisms of K; if a e A, denote by Tr(a) the trace of a. If
x ¢ K, denote by u_ the endomorphism y +>» xy of K. Show that,

for any a e A, there exists a unique element c_,.(a) of K such that

K

Tr(uxoa) = TrK/Q (x.cK(a)) for all x e K.

b) Show that the map ck! A — K so defined is K-linear

for both the natural structures of K-vector space on A.
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c) Let e be a Qp-basis of K and let e'i be the dual

basis, so that Tr (e.e.'i) = Gij . Show that

K/Q i
P

CK(a) =Zal(e.)e! if ae A.
R i'7i

d) If L DK and ae A, show that

(aeTr ) =c

‘L L/ K K @)

Show that cK(TrK ) =1.

/Q
P

e) If K is a Galois extension of Qp , show that
cK(c) = 0 for every o ¢ Gal(K/ Qp), o # id., and cK(xd.) =1.

b

#
2) Let ¢: G*°> — K be a continuous homomorphism, and

let a, be the Qp-linear endomorphism of K such that the diagram

¢
o b
Llog \Llog

a
K—L)K

is commutative. Let LZ; (resp. L;) be the image of ¢ (resp. x)
in the one-dimensional K-vector space Hl(G,C), cf. A2. Show

that
La = c. L;

where ¢ = -c_.(a,). (Check the formula first when K is a Galois

K™¢
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extension of Qp and ¢ = o-laXK , O€ Gal(K(Qp), in which case
= -g is given by Exer. 1, d.
a¢ c and cK(a¢) is given by Exer )
In particular, ¢ is admissible if and only if cK(a¢) = 0.

A7. Tate's Theorem

We recall the statement (cf. 1. 2); here again, K is locally

compact.

THEOREM 3 - Let V be a finite dimensional vector space over Qp

1
and let p: Gt - Aut(V) be an abelian p-adic representation of K.

The following are equivalent :

(1) p is locally algebraic

(2) p is of Hodge-Tate type and its restriction to the inertia

group is semi-simple.

Proof. We have already remarked (cf. 1.1) that (1) implies:

(*) - The restriction of p to the inertia group is semi-simple.

Hence we may assume that (¥) holds.

Let 7 be a uniformizing element of K, and let pr" denote
the projection map of Gab onto its inertia group UK associated to
7 (cf. A4 and Cassels-Frohlich [6], p. 144-145). Define a new repre-

sentation p' of Gab by
p' = popr .
T
Replacing p by p' does not affect the local algebraicity

(clear), nor the Hodge-Tate property (this follows from Al, Cor. 2

to Th. 1). Since (¥) implies that p' is semi-simple, this means
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that, after replacing p by p', we may assume that p is semi-
simple and even (by an easy reduction) that it is simple. Let then
EC End (V) be the commuting algebra of p. Since p is abelian
and simple, E is a commutative field, of finite degree over Q ,
and V is a one-dimensional vector space over E; the representa-
tion p is given by a continuous character p: G —> EJ‘ .

Let now K' be a finite extension of K which is large enough
to contain all the Q -conjugates of E. Call (1') and (2') the proper-
ties corresponding tl:) (1) and (2), when K' is taken as groundfield
instead of K. We know (cf. 1.1) that (1) <> (1'). By Cor. 2 to
Th. 1 of Al, we have (2) < (2'). Hence it is enough to prove that
(') < (2'), and this has been done in A6 (Cor. to Prop. 6), q.e.d.






CHAPTER IV

¢-ADIC REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES

Let K be a number field and let E be an elliptic curve over

K. If £ is a prime number, let
Py Gal(K/K) —> Aut(V (E))

be the corresponding {-adic representation of K, cf. chap. I, 1.2.
The main result of this Chapter is the determination of the Lie algebra
of the £-adic Lie group G! = Im(pl). This is based on a finiteness
theorem of Safarevid (1.4) combined with the properties of locally
algebraic abelian representations (chap. III) and Tate's local theory

of elliptic curves with non-integral modular invariant (Appendix, Al).
The variation of Gl with f is studied in §3.

The Appendix gives analogous results in the local case (i.e.

when K 1is a local field).
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§1. PRELIMINARIES

1.1. Elliptic curves (cf. Cassels [5], Deuring [9], Igusa [10])

By an elliptic curve, we mean an abelian variety of dimension
1, i. e. a complete, non singular, connected curve of genus 1 with a
given rational point Po’ taken as an origin for the composition law
(and often written 0).

Let E be such a curve. Itis well known that E may be
embedded, as a non-singular cubic, in the projective plane pZ/K’
in such a way that Po becomes a '"flex'' (one takes the projective
embedding defined by the complete linear series containing the
divisor 3.Po). In this embedding, three points Pl’ PZ’ P3 have
sum 0 if and only if the divisor Pl + PZ + P3 is the intersection of
E with a line. By choosing a suitable coordinate system, the

equation of E can be written in Weierstrass form

2,3
y = 4x7 - g,x - g,

where x, y are non-homogeneous coordinates and the origin Po is

the point at infinity on the y-axis. The discriminant

3 2
- 27g3

is non-zero.
The coefficients g8, 83 are determined up to the transfor-
4 *
mations g20—> ug, 83 +—>u gy» ue K . The modular invariant j

of E is
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g3 g3

. 6.3

J=23'_2 :Zé’33—E
3,2 a
82 g3

Two elliptic curves have the same j invariant if and only if
they become isomorphic over the algebraic closure of K.

(All this remains valid over an arbitrary field, except that,
when the characteristic is 2 or 3, the equation of E has to be

written in the more general form

2 3 2
y +a1xy+a3y+x ta,x +a4x+a.6= 0
Here again, 0 is the point at infinity on the y-axis and the corres-
ponding tangent is the line at infinity. There are corresponding
definitions for A and j, for which we refer to Deuring [9] or Ogg
[20]; note, however, that there is a misprint in Ogg's formula for A:

the coefficient of ﬁz should be -8 instead of -l.)

1.2. Good reduction

Let ve ZK be a place of the number field K. We denote by
O (resp. m . k ) the corresponding local ring in K (resp. its
v — v
maximal ideal, its residue field).

Let E be an elliptic curve over K. One says that E has

good reduction at v if one can find a coordinate system in PZ/K
such that the corresponding equation f for E has coefficient in Ov
and its reduction f mod m defines a non-singular cubic Ev (hence
an elliptic curve) over the residue field kV (in other words, the

discriminant &f) of f must be an invertible element of O ). The
v
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curve EV is called the reduction of E at v; it does not depend on
the choice of f, provided, of course, that A(f) e OV

One can prove that the above definition is equivalent to the
following one: there is an abelian scheme Ev over Spec(Ov), in
the sense of Mumford [19], chap. VI, whose generic fiber is E; this
scheme is then unique, and its special fiber is Ev' Note that Ev is
defined over the finite field kv; we denote its Frobenius endo-

morphism by Fv.

On either definition, one sees that E has good reduction for

almost all places of K.

If E has good reduction at a given place v, its j invariant
is integral at v (i.e. belongs to Ov) and its reduction ) mod m
is the j invariant of the reduced curve Ev'

The converse is almost true, but not quite: if j belongs to

K
reduction at all the places of L dividing v (this is the '""potential

Ov’ there is a finite extension L of K such that E X L has good

good reduction' of Serre-Tate [32], §2). For the proof of this, see

Deuring [29], §4, n° 3.

Remark
The definitions and results of this section have nothing to do
with number fields. They apply to every field with a discrete

valuation.

1. 3. Properties of VI related to good reduction

Let f be a prime number. We define, as in chap. I, 1.2,

the Galois modules T! and Vl by:
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where E n is the kernel of £ : E(I—{) —> E(R).

1
We denote by p! the corresponding homomorphism of

Gal(R/K) into Aut(Tl). Recall that E o Tl and Vl are of rank 2
2
over z/4"2, Z, and Q!. respectively.

yi
Let now v be a place of K, with pV # 2 and let v be some
extension of v to R; let D (resp. I) be the corresponding decom-
position group (resp. inertia group), cf. chap. I, 2.1. If E has

good reduction at v, one easily sees that reduction at v defines an

isomorphism of E n onto the corresponding module for the reduced

- yi
curve Ev' In particular, E o’ T!' V‘ are unramified at v (chap.
1
I, 2.1) and the Frobenius automorphism F of T! corresponds

Vip,

to the Frobenius endomorphism Fv of Ev. Hence:

det(F
v, p

, 1) = det(Fv) = Nv

and

det(1-F
v,p

) = det(l-F ) =1 - Tr(F ) + Nv
' Py v v

is equal to the number of kv-points of Ev'

Conversely:

CRITERION OF NERON-OGG-SAFAREVIE. If V , is unramified

h d reducti t v.
at v for some ({ # P, then E has good reduction at v

For the proof, see Serre-Tate [32], §l.

COROLLARY - Let E and E' be two elliptic curves which are

isogenous (over K). If one of them has good reduction at a place v,

the same is true for the other one.
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(Recall that E and E' are said to be isogenous if there
exists a non-trivial morphism E —> E'.)
This follows from the theorem, since the (f-adic representa-

tions associated with E and E' are isomorphic.

Remark

For a direct proof of this corollary, see Koizumi-Shimura

[11].

Exercise

Let S be the finite set of places where E does not have good
reduction. If v e ZK - S, we denote by tv the number of kv-points
of the reduced curve Ev.

(a) Let £ be a prime number and let m be a positive
integer. Show that the following properties are equivalent:

(i) t_ =0 mod £™ for all ve Zy -S.p # L.

(ii) The set of ve ZK - S such that tVEO mod £™ has
density one (cf. chap. I, 2.2).

(iii) For all s elIm(p,), one has det(l-s)= 0 mod 1.

(The equivalence of (ii) and (iii) follows from Cebotarev's
density theorem. The implications (i) => (ii) and (iii) => (i) are
easy.)

(b) We take now m = 1. Show that the properties (i), (ii), (iii)
are equivalent to:

(iv) There exists an elliptic curve E' over K such that:

(a) Either E' is isomorphic to E, or there exist an isogeny
E!' —> E of degree [(.

(B) The group E'(K) contains an element of order [.

(The implication (iv) => (iii) is easy. For the proof of the

converse, use Exer. 2 of chap. I, 1.1.) = [for m > 2, see Katz [64].]
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[ 4
l. 4. Safarevil's theorem

It is the following (cf. [23]):

THEOREM - Let S be a finite set of places of K. The set of iso-

morphism classes of elliptic curves over K, with good reduction at

all places not in S, 1is finite.

Since isogenous curves have the same bad reduction set (cf.

1.3), this implies:

COROLLARY - Let E be an elliptic curve over K. Then, up to

isomorphism, there are only a finite number of elliptic curves which

are K-isogenous to E.

To prove the theorem, we use the following criterion for good

reduction:

LEMMA - Let S be a finite set of places of K containing the

divisors of 2 and 3, and such that the ring OS of S-integers is

principal. Then, an elliptic curve E defined over K has good re-

duction outside S if and only if its equation can be put in the

Weierstrass form yZ = 4x3 -g,x-g, with g. € O, and
> 2 3 —/ 3 S —

%
A= gg - 27g3 eOS (the group of units of Os).

Proof. The sufficiency is trivial. To prove necessity, we write the

curve E in the form
2 3
y =4x -g)x-g; (*)

with g'i €K. Let v be a place of K notin S. Then, since there is

good reduction at v, and since the divisors of 2 and 3 do not belong
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to S, the curve E can be written in the form

2,3 .-
y =4aX ng g3

I ) \4

with gi’ v in the local ring at v and the discriminant Av a unit in
this ring. Using the properties of the Weierstrass form, there is an
element u, € K* such that gz, v - uig'z, g3’ vz usgé, Av = uIZA';
moreover, as we can take gi,v = gi for almost all v, we see that
we can assume that u = 1 for almost all v ¢ S. Since the ring OS
is principal, there is an element ue KJ‘ with v(u) = v(uv) for all

v¢ S. Then, if we replace x by u-zx and y by u-3y in (*), the

curve E takes the form

2 4x3
y = 8% - &3

. 4 6 , 12 | . .
with gz =u gz, g3 =u g3 and A=u A'. Since, by construction,

g € OS and A EO"S':, the lemma is established.

Proof of the theorem. After possibly adding a finite number of places

of K to S, we may assume that S contains all the divisors of 2 and
3, and that the ring Os is principal. If E 1is an elliptic curve de-
fined over K having good reduction outside S, the above lemma

tells us that we can write E in the form

2 3 .
y =4x -g)x-g, (*)

with g, € OS and A= gg - 27g32’ € O;. But, since we are free to

* *,0 & 12 . L
multiply & by any u e(OS) , and since OS/(O;) is a finite

group, we see that there is a finite set XC Oé such that any elliptic
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curve of the above type can be written in the form (*) with g € OS

and A € X. But, for a given 4, the equation

vl o2vioa

represents an affine elliptic curve. Using a theorem of Siegel (gen-
eralized by Mahler and Lang, cf. Lang [14], chap. VII), one sees that
this equation has only a finite number of solutions in OS. This

finishes the proof of the theorem.

Remark
. . b4 .V
There are many ways in which one can deduce Safarevic's

theorem from Siegel's. The one we followed has been shown to us by

Tate.

§2. THE GALOIS MODULES ATTACHED TO E

In this section, E denotes an elliptic curve over K. We are

\%

interested in the structure of the Galois modules E 0’ ’I‘!, y

defined in 1. 3. L

2.1. The irreducibility theorem

Recall first that the ring EndK(E) of K-endomorphisms of E
is either Z or of rank 2 over Z. In the first case, we say that E
has ''no complex multiplication over K.' If the same is true for any

finite extension of K, we say that E has ''no complex multiplica-

tion. "

THEOREM - Assume that E has no complex multiplication over K.
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Then:

(a) VI is irreducible for all primes £;

(b) EI is irreducible for almost all primes {.

We need the following elementary result:

LEMMA - Let E be an elliptic curve defined over K with

EndK(E) = Z. Then, if E' —> E, E"—> E are K-isogenies with

non-isomorphic cyclic kernels, the curves E' and E'" are non-

isomorphic over K.

Proof. Let n' and n'' be respectively the orders of the kernels of
E'—> E and E'" —> E. Suppose that E' and E'" are isomorphic
over K, and let E' —> E'" be an isomorphism. If E—> E' is the
transpose of the isogeny E' —> E, it has a cyclic kernel of order
n', and hence the isogeny E —> E, obtained by composition of
E—E', E' —E'", E'"—> E, has for kernel an extension of
Z/n"Z by Z/n'Z. But, since EndK(E) = Z, this isogeny must be
multiplication by an integer a, and its kernel must therefore be of
the form Z/aZ X Z/aZ. Hence n' and n" divide a. Since

2 . . .
a =n'n'", we obtain a = n' = n'", a contradiction.

Proof of the theorem.

(a) It suffices to show that, if EndK(E) = Z, there is no one-
dimensional Q!-subspace of VI stable under Gal(K/K). Suppose
there were one; its intersection X with T! would be a submodule
of T! with X and TI/X free Zl-modules of rank 1. For n>0,

consider the image X(n) of X in E n- T/4"T. Thisisa
Y4
submodule of E n which is cyclic of order !n and stable by

1
Gal(K/K). Hence it corresponds to a finite K-algebraic subgroup of
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E and one can define the quotient curve E(n) = E/X(n). The kernel
of the isogeny E —> E(n) is cyclic of order ln‘ The above lemma
then shows that the curves E(n), n> 0, are pairwise non-isomorphigc,
contradicting the corollary to Safarevid's theorem (l.4).

(b) If E, is notirreducible, there exists a Galois submodule
Xl of E which is one-dimensional over Fl' In the same way as
above, this defines an isogeny E —> E/ Xl whose kernel is cyclic of
order f. The above lemma shows that the curves which correspond

to different values of £ are non-isomorphic, and one again applies

v v
the corollary to Safarevic's theorem.

Remark

One can prove part (a) of the above theorem by a quite
different method (cf. [25], §3.4); instead of the Safarevil's theorem,
one uses the properties of the decomposition and inertia subgroups of

Im(pl ), cf. Appendix.

2.2. Determination of the Lie algebra of Gl

Let Gl = Im(p!) denote the image of Gal(K/K) in Aut(Tl),

and let g C End(V,) be the Lie algebra of G,.

THEOREM - If E has no complex multiplication (cf. 2.1), then

g_! = End(Vl), i. e. Gl is open in Aut(Tl).

Proof. The irreducibility theorem of 2.1 shows that, for any open
subgroup U of G!, V! is an irreducible U-module. Hence, Vl
is an irreducible g_l-module. By Schur's lemma, it follows that the
commuting algebra g_} of g, in End(Vl) is a field; since

dim VI = 2, this field is either QI or a quadratic extension of Ql'

If g_:e = Ql’ then g_! is equal to either End(Vl), or the subalgebra
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s!(Vl) of End(Vl) consisting of the endomorghisms with trace 0;
but, in the second case, the action of g_l on AVI would be trivial,
and this would contradict the fact that the Galois modules AV! and
Vl(u) are isomorphic (chap. I, 1.2). Hence - sI(VI) is
impossible.

Suppose now that g_'l is a quadratic extension of Ql. Then
Vl is a one-dimensional g_}-vector space and the commuting
algebra of g_'l in End(Vl) is g_} itself. Hence gl is contained in
g_}, and is abelian (g_} is a '""non-split Cartan algebra' of End(Vl)).
After replacing K by a finite extension (this does not affect g_l,
cf. chap. I, 1.1), we may then suppose that GI itself is abelian. The
{-adic representation V! is then semi-simple, abelian and rational.

It is, moreover, locally algebraic. To see this, we first remark that,

at a place v dividing {f, we have v(j) > 0 since otherwise the de-
composition group of v in GI would be non-abelian by Tate's
theory (cf. Appendix, A.l.3); hence, after a finite extension of K,
we can assume that E has good reduction at all places v dividing ¢
(cf. 1.2). Let E(£) be the (f-divisible group attached to E at v
(cf. Tate [39], 2.1, example (a)). We have VI = VI(E(I)) and this
module is known to be of Hodge-Tate type (loc. cit., §4). Using
another result of Tate (chap. III, 1.2), this implies that the repre-
sentation V! is locally algebraic, as claimed above. (This could
also be seen by using, instead of the theory of Hodge-Tate modules,
the local results of the Appendix, A2.)

We may now apply to VI the results of chap. III, 2.3.
Hence, there is, for each prime ', a rational, abelian, semi-
compatible with V . But V

1 1 1

n is semi-simple. Hence VI' is

isomorphic to WI' (cf. chap. I, 2.3). But we know (chap. III, 2.3)

simple {'-adic representation W

is compatible with VI’ and V
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that we may choose £' such that Wl’ is the direct sum of one-
dimensional subspaces stable under Gal(R/K). This contradicts the

irreducibility of V

Hence, we must have g_"e = QI and

AN
g_l = End(VI), q.e.d.

Remark

If E has complex multiplication, and L = Q ® End(E XK R)
is the corresponding imaginary quadratic field, one shows easily that
8, is the Cartan subalgebra of End(V!) defined by Ll = Ql ® L. It

splits if and only if ¢ decomposes in L.

Exercises

(In these exercises, we assume E has no complex multipli-
cation. Let S be the set of places v € ZK where E has bad
reduction. If v € EK - S, we denote by Fv the Frobenius endomor-
phism of the reduced curve Ev; if £ # P, we identify Fv to the
corresponding automorphism of TI')

1) Let E!X,Y) be a polynomial in two indeterminates X, Y
with coefficients in a field of characteristic zero. Let VH be the
set of those ve EK - S for which H(Tr(Fv),Nv) = 0. If H is not

the zero polynomial, show that V__ has density 0. (Show that the set

of ge€ GL(Z2, ZI) with H(Tr(g),deI;I(g)) = 0 has Haar measure zero.)
2) The eigenvalues of Fv may be identified with complex
numbers of the form
3 +ip
(Nv)2e Y, o< <7,

cf. chap. I, Appendix A.2. Show that the set of v for which P, is
a given angle @ has density zero. (Show that Tr(Fv)2 = 4(Nv)cosztp

and then use the preceding exercise.)
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3) Let L = Q(F ) be the field generated by Fv. By the
v v

preceding exercise, L is quadratic imaginary except for a set of v
\4

of density 0.

(a) Let £ be a fixed prime. Let C be a semi-simple commutative

Ql- algebra of rank 2. Let XC be the set of elements s € Aut (VI)

such that the subalgebra Ql[s] of End(VI) generated by s is isomor-

phic to C. Show that Xc is open in Aut(Vl), and show that it has a

non- empty intersection with every open subgroup of Aut(Vl), in par-
ticular, with Gl'

(b) Show that Fve X if and only if the field LV is quadratic

C
and LV ® Q! is isomorphic to C.

(c) Let 11, ceey In be distinct prime numbers, and choose for
each an algebra Ci of the type considered in (a). Show that the set

of v for which Fve XC for i=1,...,n has density > 0.
i
(Use the fact that the image of Gal(K/K) in any finite product
of the Aut(V!) is open; this is an easy consequence of the theorem

proved above.)

(d) Deduce that, for any finite set P of prime numbers, there
exist an infinity of v such that Lv is ramified atall £ € P. In

particular, there are an infinite number of distinct fields LV.

2.3. The isogeny theorem

THEOREM - Let E and E' be elliptic curves over K, let f be a

prime number and let V‘(E) and VI(E') be the corresponding

£-adic representations of K. Suppose that the Galois modules

VI(E) and VI(EI) are isomorphic and that the modular invariant j

of E (cf. 1.1) is not an integer of K. Then E and E' are K-

isogenous.
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We need the following result:

PROPOSITION - Let E and E' be elliptic curves over K. The

following conditions are equivalent:

(2) The Galois modules VI(E) and V!(E') are isomorphic

for all {.
(b) The Galois modules VI(E) and VI(E') are isomorphic

for one {.

(c) If Fv and F:, are the Frobeniuses of the reduced curves

~

E and E', we have Tr(F ) = Tr(F') for all v where there is
v — Ty —— v v

good reduction.

(d) For a set of places of K of density one we have

Tr(Fv) = Tr(F:/).

Clearly (a) implies (b), and (c) implies (d). The implication
(b) => (c) follows from the fact that Tr(Fv) is known when VI is
known. To prove (d) = (a) one remarks first that the representa-
tions of Gal(]:_(/K) in VI(E) and VI(E’) have the same trace, by
Cebotarev's density theorem (chap. I, 2.2). Moreover, VI(E) (and
also V!(E')) is semi-simple. This is clear if E has no complex
multiplication over K since V!(E) is then irreducible (2.1); if E
has complex multiplication, it follows from the Remark in 2.2. Since

VI(E) and VI(E') are semi-simple and have the same trace, they

are isomorphic.

Remarks

1) If E and E' have good reduction at v, let tv (resp. t:,)
be the number of kv-points of Ev (resp. E:,). We have the

formulas (cf. 1.3):
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ot
1]

1 -Tr(F )+ Nv
v

-t
I\

1 -Tr(F') + Nv
v

Hence condition (c) (resp. condition (d)) is equivalent to saying that
t, = t' for all v where there is good reduction (resp. for a set of
v's of density one).

2) If E and E' are K-isogenous, it is clear that conditions

(a), (b), (c), (d) are satisfied.

Proof of the theorem. In view of Remark 2) above, it suffices to show

that the equivalent conditions (a), (b), (c), (d) imply that the elliptic
curves E and E' are isogenous when the modular invariant j of E
is not an integer of K. Let v be a place of K such that v(j) <0,
and let p be the characteristic of the residue field kv.

If j' = j(E'), we first show that v(j') is also < 0. Suppose
that v(j') > 0. Then, after possibly replacing K by a finite
extension, we may assume that E' has good reduction at wv.

Then, if £ # p, the Galois-module VI(E') is unramified at
v (cf. 1.3); but VI(E) is ramified at v: this follows either from
the criterion of Néron—Ogg-gafareviE (1. 3) or from the determination
of the inertia group given in the Appendix, A.1l.3. This contradicts the
fact that Vl(E) and VI(E') are isomorphic,

Let now q and q' be the elements of Kv which correspond
to j and j' in Tate's theory (cf. Appendix A.l.1), and let Eq and
E , be the corresponding elliptic curves (loc. cit). Since E and
E have the same modular invariant j, there is a finite extension
K' of Kv where they become isomorphic, and we can do the same

for E' and E

Hence, the Tate modules T (E ) and T (E )
P 4q P q

become isomorphic over K'. But, in this case the isogeny
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theorem is true (cf. Appendix A.l.4), i.e. the curves Eq and qu,
hence also E and E', are K'-isogenous. However, if two elliptic
curves are isogenous over some extension of the ground field, they
are isogenous over a finite extension of the ground field. We may
thus choose a finite extension L of K and an L-isogeny

f: E XK L—E XK L. We will show that f is automatically defined
over K. For this, it suffices to show that f = sf for all

s € Gal(K/K), or, equivalently, that V(f) : V (E) —> V (E')
commutes with the action of Galois. Howevef, if GL =pGa1(R/L) is
the open subgroup of G = Gal(K/K) which corresponds to L, then
V(f) commutes with the action of GL' It is then enough to show that

HomG (V,Vv') = HomG(V, V'). But V and V' are isomorphic as
L

G-modules. Hence we have to show that EndG (V) = EndG(V). But
this is clearly true; in fact, G and GL are opf;n in Aut(V) by the
theorem in section 4, and hence their commuting algebra is reduced
to the homotheties in each case, i.e. EndG (V) = EndG(V) = Qp.
This completes the proof of the theorem. L
Remark

It is very likely that the theorem is true without the hypothesis
that j is not integral. This could be proved (by Tate's method [38))
if the following generalization of Safarevid's theorem were true:
given a finite subset S of EK’ the abelian varieties over K, of

dimension 2, with polarization of degree one, and good reduction

outside S, are in finite number (up to isomorphism). —» [this has

been proved by Faltings, see [54], [56], [82].]



Iv-18 ABELIAN ¢-ADIC REPRESENTATIONS

§3. VARIATION OF Gz AND G! WITH ¢

3.1. Preliminaries

We keep the notations of the preceding paragraphs. For each

prime number £, we denote by P, the homomorphism
Gal(K/K) —> Auy(T ) = GL(z2, z,)

defined by the action of Gal(K/K) on Tz. The pl's define a

homomorphism
p : Gal(K/K) —> [[ Aut(T ) ,
1

where the product is taken over the set of all prime numbers.
Let G = Im(p)CT Aut(T ) and G, Im(pI)CAut(TI), so
h ~
that G! is the image of G under the { projection map. Let Gl

be the image of G, in Aut(El) = Aut(TI/lTl) = GL(2, Fl)-

LEMMA - (1) The image of G by det : —TAut(T )—>T[z is open.
(2) For almost all ¢, det(G ) = Zl and det(G ) =

We know (cf. chap. I, 1.2) that det(p,) : Gal(K/K) —> z; is
the character x! giving the aftion of GaI(E—(/K) on £"-th roots
of unity. Hence det(G)Cﬂ-ZI is the Galois group Gal(KC/K),
where K = Q K is the extension of K generated by all roots of
unity. ance one knows that Gal(Q_ /Q) = —[Z (cf. for instance [13],
chap. IV) it follows that det(G) is the open subgroup of _[Z

corresponding to the field K nQC, hence (1). Assertion (2) follows
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from (1) and the definition of the product topology.

Assume now that E has no complex multiplication. We know

(cf. 2.2) that each Gt is open in Aut(Tl). This does not a priori

imply that G itself is open. However:

PROPOSITION - The following properties are equivalent:

(i) G is open in ﬂAut(T!).
JJ
Aut(Tl) for almost all 1f.

(i) G,
(iii) E‘: = Aut(E,) for almostall {.

(iv) E! contains SL(E,) for almostall £.

The implications (i) = (ii) => (iii) = (iv) are trivial. Im-
plication (iv) = (i) follows from the following group-theoretical

result, whose proof will be given in section 3.4 below:

MAIN LEMMA - Let G be a closed subgroup of T[GL(Z, Z!) and let

Gl and E! denote its images in GL(Z,ZI) and GL(Z,F!) as

above. Assume:

(a) Gl is open in GL(Z2, Zl) for all f. .
(b) The image of G by det: ||GL(2, z,) —)ﬂzz is open.

(c) Gl contains SL(Z,FI) for almost all £.
Then G is open in ||GL(2, z,).

Remark

For each integer n>1, let En be the group of points of E(R)
of order dividing n, and let Gn be the image of the canonical map
Gal(K/K) — Aut(En) =GL(2,2Z/nZ). One sees easily that property
(i) above is equivalent to

(i') The index of G_ in Aut(E ) is bounded.
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3.2. The case of a non-integral j

THEOREM - Assume that the modular invariant j of E is not an

integer of K. Then E enjoys the equivalent properties (i), (ii),

(iii), (iv) of 3.1.

Since j 1is not integral, we can choose a place v of K such
that v(j) <0. Let q be the element of the local field Kv which
corresponds to j by Tate's theory (cf. Appendix, A.l.1) and let Eq
be the corresponding elliptic curve over Kv. There is a finite
extension K' of KV over which E and Eq are isomorphic; one
can even take for K' either Kv or a quadratic extension of Kv'

Let v' be the valuation of K' which extends v; assume V' is

normalized so that v'(K'T) Z, and let

v'i(q) = = v'(j)

o]
0]

We have n > 1.

LEMMA 1l - Assume { does not divide n, and let IV 1 be the

inertia subgroup of G! corresponding to some extension of v to K.

Then IV ’ contains a transvection, i.e. an element whose matrix
’

form is (é i) for a suitable Fl-basis of E!.

This is true for the curve Eq over K', cf. Appendix, A.l.5.

~

The result for E follows from the isomorphism E/K‘ - Eq/K"

LEMMA 2 - Let H be a subgroup of GL(2, Fl) which acts irreducibly

on F! X Fl and which contains a transvection. Then H contains

SL(Z,FI).
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For any transvection s € H, let Ds be the unique one
dimensional subspace of Fl X Fl which is fixed by s. If all such
lines were the same, the line so defined would be stable by H, and
H would not be irreducible. Hence there are transvections s,s'e H
such that Ds # Ds . If we choose a suitable basis (e, e') of

1

F X Fl’ this means that the matrix forms of s, s' are

The lemma follows then from the well known fact that these two

matrices generate SL(Z2, F!).

Proof of the theorem. Lemma 1l shows that, for almost all (f, Iv

Wi
and a fortiori Gl’ contains a transvection. On the other hand, we
know (cf. 2.1) that E! is irreducible for almost all £. Applying

lermma 2 to E! we then see that Gl contains SL(EI) for almost

all £; hence we have (iv), g.e.d.

Remark
It seems likely that the condition '"j is not integral' can be

replaced by the weaker one ""E has no complex multiplication. "

—> [yes: see [76].]

3.3. Numerical example

When E is given explicitly and has a non-integral j, one
may sometimes determine the finite set of £'s with 51 # GL(Z,FI).

Take for instance K = Q, and E defined by the equation:

2 3 2
y +x +x +x=0

This is the curve 37 of Ogg's list [20]; its j invariantis 237,
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its discriminant is A= - 2 3, its ""conductor'" is 24 (itis 2-

isogenous to the modular curve J corresponding to the congruence

subgroup P0(24), cf. [20]). The Zeiistence of a non-trivial 2-isogeny
for E shows that Gl # GL(Z,F!) for £ =2 (G2 is cyclic of order 2
and corresponds to the quadratic field Q(\/-_3)). But, for { # 2, one
has El = GL(2, F!). }ndeed, EI has the following properties:

a) iet(G!) = Fl' cf. 3.1.

b) G! contains a transvection. This follows from Lemma 1

and the fact that n is here equal to 1.

c) E! is irreducible. If not, there would be an isogeny

E —> E' of degree { (defined over Q). The curve E' would have
the same conductor 24 as E, hence would be one of the curves
1, 2+, 3+, 47, 57, 6+ of Ogg's list. But Ogg has proved that, for
each such curve, there is an isogeny E' —> E of degreel, 2, 4 or
8. The map E —> E' —> E would then be an endomorphism of E of
degree (f, 24, 44 or 84, and this is impossible for ( # 2 since
End(E) = Z.

Now, using lemma 2, one sees that properties a), b), c) imply

that G, = GL(2,F ).

Exercise
Prove that 5! =GL(2,F,) forall £#2 when K=Q and E
is an elliptic curve of conductor 3.2)‘, where \ < 6. (Use Ogg's

Table 1. For X\ =5, note that the curves 7+ and 7 become
isomorphic over Q(i), but are not isogenous over Q. For X\ = 6,
use a similar argument, and observe that the curves 10 ana 18%
do not have the same number of points mod. 5, hence are not

isogenous over Q.)

What happens when \ = 7, 8?
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3.4. Proof of the main lemma of 3.1

We need first a few lemmas:

LEMMA'1 - Let SI = PSL(Z,FI) = SL(2, Fl)/{il}, £ > 3. Then SI

is a simple group if £ > 5. Every proper subgroup of Sl is solvable

or isomorphic to the alternating group A the last possibility

5
occurs only if £ = +1 mod.5.

This is well known, cf. for instance Burnside [4], chap. XX.

LEMMA 2 - No proper subgroup of SL(Z,FI) maps onto PSL(Z,F!).
This is clear for £ =2, since PSL(2, FZ) = SL(2, FZ)' For
2 # 2, suppose there is such a proper subgroup X. We would then

have
SL(Z,F!) = {il} XX ,

and this is absurd, since SL(Z2, Fl) is generated by the elements
1

(; 1) and (ll (1)) which are of order {, hence contained in X.

LEMMA 3 - Let X. be a closed subgroup of SL(2, Zl) whose image
in SL(Z,FI) is SL(Z2, F!). Assume { >5. Then X = SL(Z2, Z!).

We prove by induction on n that X maps onto SL(2, z/4"2).
This is true for n =1. Assume itis true for n, and let us prove it
for n+l. It is enough to show that, for any s = (i Z) € SL(2, Zl)
which is congruent to 1 mod. 1n, there is x € X with
+1

X=s mod,ln Write s =1+ lnu; since det(s) =1, one has

Tr(u) =0 mod.¢. But it is easy to see that any such u is congruent
2
mod.¢ to a sum of matrices u, with u, = 0. Hence, we may
2
assume that u = 0. By the induction hypothesis, there exists y € X

1

such that y =1+ "+ Inv, where v has coefficients in Z!. Put
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X = yl. We have:

-1 -1 2
x=1+ 202" u+znv)+(j§)(zn AT L
I PL

1

If n> 2, itis clear that x=1 + lnu mod.‘ln+ . This is also true

for n =1. Indeed, since uZ =0, and u+ fv=umod. £, we have
= yJ 2
XxX=1+Lu+ (u+Lv) mod./{
2 2
But (u + £v) = f£(uv + vu) mod.f , hence:
-2
(u + lv)! = f(uv + vu)ul =0 mod. 12 since £ > 4

+1
This shows that x=1 + lnu mod. ln in all cases, and

proves lemma 3.

We now consider a closed subgroup G of X = nGL(Z, ZI)

having the properties (a), (b), (c) of the main lemma of 3.1.

= [[GL(2, z
1es

LEMMA 4 - Let S be a finite set of primes, and X ).

S
The image Gs of G by the projection X——>Xs is
open in Xs.

Replacing G by an open subgroup if necessary, we can

1

assume that each Gl’ L1 €S, is contained in the group of elements
congruent to 1 mod.{, hence that each G! is a pro-f£-group. Since

Gs is a subgroup of HGI' it follows that GS is pro-nilpotent
1€es
(projective limit of finite nilpotent groups), hence is the product of

its Sylow subgroups. This shows that GS = ITEGI' and since Gl is
€
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open in GL(Z2, ZI) by property (a), we see that GS is open in XS.

Before we go further, we introduce some terminology. Let Y be a
profinite group, and X a finite simple group. We say that £ occurs

in Y if there exist closed subgroups Yl’ Y2 of Y such that Y1 is

normal in Y, and YZ/YI is isomorphic to £. We denote by

Occ(Y) the set of classes of finite simple non abelian groups
occurring in Y. If Y = ?;m.Yu, and each Y —>Yu is surjective,
we have
Occ(Y) = UOcc(Ya)

If Y is an extensionof Y' and Y!', we have:

Occ(Y) = Occ(Y')UOcc(Y")
Using these formulae and lemma 1, one gets:

Occ(GL(2, Zl)) = Occ(SL(2, Zl)) = Occ(Sl)

where S! = PSL(2, F!) as before, and:

Occ(S,) = § if £=2,3
Occ(Sl)= {S£}= {AS} if £=5
Occ(S,) = {S,} if £=42mod.5, £>5

Occ(Sl) = {Sz’ As} if £=+1mod.5, £>5

Let now S be a finite set of primes so that 2,3,5€& S and
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1¢ s = 51 JSL(2, Fl)' Property (c) shows that such a set exists.

LEMMA 5 - The group G contains WSL(Z, Zl).
145

(This partial product is understood as a subgroup of the full product

X = [[ GL(2, z,).)
2

It is enough to show that G contains each SL(2, Zl)’ 1 &5S.
Let H! = GNOGL(Z, Zl)' If 2£¢ S, the fact that 61 contains
SL(2, FI) shows that S! € Occ(Gl) hence Sl € Occ(G). On the other

hand, G/HI is isomorphic to a closed subgroup of | | GL(2, Z
2'#2
hence SI¢ Occ(G/H!) (we use the obvious fact that the simple groups

1')
Sp’ P > 5, are pairwise non isomorphic). Since
Occ(G) = Occ(H[) UOcc(G/H!) ,

y be the image of Hl in

SL(2, FI); the kernel of Hl -—>§l being a pro-f-group, we have

Occ(H!) = Occ(ﬁl), hence S! € Occ(;ll). Hence ﬁl maps onto

we then have S, € Occ(H,). Let H

S, = PSL(2,F,), and, by lemma 2, we have ?{l = SL(2,F,) and, by

lernma 3, H! = SL(Z,ZI). Hence G contains SL(Z,Zl).

LEMMA 6 - The group G contains an open subgroup of ﬂSL(Z, Zl)'

Let S be as in lemma 5; let GS be the projectiorf of G into

ﬂ GL(Z, Zl) and G's the projection into the complementary product

1€S

1T cL(2, Z,). Let Hg be G0 TT GL(z2, z,) and

L¢S 1€S

H! =Gn ﬂGL(Z, Z), sothat H CG_, H! C G.. One has canonical
S 1¢S 1 S S S S

isomorphisms:
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: 1 : 1 1
GS/HS G/(HSXHS) GS/HS

Lemma 5 shows that H! contains |—|- S1(2,Z ), so that G!'/H!
S yJ S 'S
2¢S
is abelian. Hence GS/HS is abelian and Hs contains the adherence

(GS, GS) of the commutator group of GS. By lemma 4, G_ 1is open

S
in || GL(2, ZI). It is easy to see that this implies that (GS, GS)
LeSs _
contains an open subgroup of || SL(2,Z ) (this follows for instance

1es
from the fact that the derived Lie algebra of gl is slz). Hence

Hs contains an open subgroup U of _[ SL(2,Z ) Using lemma 5,
II-N]
we then see that G contains U X —[ SL(2, 2 ) which is open in
£1¢S
1] sL(2, z ).
1
£
End of the proof

Consider the determinant map
x
t:[JGoLz,z,)—J]z" ,
£ ! J) L

whose kernel is W SL(2, Zl). Hypothesis (c) means that the image of
G by this map is open and lemma 6 shows that G NnKer(det) is open

in Ker(det). This is enough to imply that G itself is open, q.e.d.

Exercises

1) a) Generalize lemma 3 to SL(d, Zl) for d>2, £>5 (same
method).

b) Show that the only closed subgroup of SL(d, Z ) which
maps onto SL(d, Z/3 Z) is SL(d, Z ) itself.

c) Show that the only closed subgroup of SL(d, Z ) which
maps onto SL(d, Z/Z Z) is SL(d, ZZ) itself.

2) Let E be the unramified quadratic extension of Q,, and
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OE its ring of integers. Let x#+>x be the non trivial automor-

phism of E.

a) Show that OE contains a primitive third root of unity =z.

b) Show that OE contains an element u with u.u= -1
(take for instance u = (1 +J§)/Z).

c) Let a and P be the Zz-linear endomorphisms defined by
a(x) = zx, B(x) = ux, where z and u are as in a), b) above. Show
that a is of order 3, B of order 4, and (30.(3-1 = o.-l, so that a
and P generate a non-abelian group G of order 12.

d) Show that G is contained in SL(OE) =sL(2, ZZ) and that
reduction mod.2 defines a homomorphism of G onto SL(Z,FZ).
(Hence lemma 3 does not extend to the case f =2.)

3) Let S, = SL(2,2/92), s3 = SL(2,2/3Z) and

9
g = }:(er(S9 —>S3). The group g is isomorphic to a three-

2
dimensional vector space over F3. Let x€H (S3, g) be the coho-
mology class corresponding to the extension

1—>g—>s,—>s, —>1

9

a) Show that the restriction of x to a 3-Sylow subgroup of

S, is zero (note that SL(2, Z) contains an element of order 3,
1 1
5 )

b) Deduce from a) that x = 0, i.e. that there exists a sub-

viz. (

group X of S_ which is mapped isomorphically onto 53. (The

9

inverse image of X in SL(Z2, Z3) is a non-trivial subgroup which is

mapped onto S hence lemma 3 does not extend to the case £ = 3.)

35
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APPENDIX

Local Results

In what follows, K denotes a field which is complete with
respect to a discrete valuation v; we denote by OK (resp. by k)
the ring of integers (resp. the residue field) of K; we assume that
k is perfect and of characteristic p # 0.

Let E be an elliptic curve over K and let £ be a prime
number different from the characteristic of K. Let T! and Vl be
the corresponding Galois modules; we denote by Gl the image of
Gal(Ks/K) in Aut(T!), and by 1! the inertia subgroup of G!. The
Lie algebras g_l = Lie(GI), —il = Lie(Il) are subalgebras of End(Vl)
and we will determine them under suitable assumptions on K and v;
note that, since Il is an invariant subgroup of Ql’ its Lie algebra
il is an ideal of g,

If j=j(E) is the modular invariant of E (cf. 1l.1), we

consider the cases v(j) <0 and v(j) >0 separately.

A.l. The Case v(j) <O.

In this section we assume that the modular invariant j of the

elliptic curve E has a pole, i.e. that v(j) <O0.

A.l.1. The elliptic curves of Tate

Let q be an element of K with v(q) > 0, and let I"q be the
discrete subgroup of K generated by q. Then, by Tate's theory of

ultrametric theta functions (unpublished - but see Morikawa, Nagoya
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Math. Journ., 1962), there is an elliptic curve Eq defined over K
with the property that, for any finite extension K' of K, the

analytic group K'*/I"q is isomorphic to the group Eq(K') of points
of E with values in K'. The equation defining Eq can be written

in the form

2 3
y +xy-x-b2x-b3,
with

b,=5 % n’q"/(1-q") and b, = I (7a%+5n’)q"1201-a") |,
3
n>1 n>1
these series converging in K. The modular invariant j(q) of Eq is
given by the usual formula

3
(1 +48b,)

iq) = —/mmm + 744 +196884q + ... ,

1
n24
q[]a-¢H“* 4
n_>_1

a series with integral coefficients. The function field of Eq consists

of the fractions F/G, where F and G are Laurent series

+00 n +00 n
F=X az , G=X b z
n n

-0 -0

with coefficients in K, converging for all values of z # 0,0, and
such that F(qz)/G(qz) = F(z)/G(z).

Since the modular invariant j of the given elliptic curve E
is such that v(j) < 0, and since the series for j(q) has integral
coefficients, one can choose q so that j = j(q). The elliptic curves
E and E_become then isomorphic over a finite extension of K
(which can be taken to be of degree 2). Hence, after possibly re-

placing K by a finite extension, we may assume that E = Eq.
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A.l.2. An exact sequence

We conserve the notation of A.1.1. Let E be the kernel of
P n
multiplication by " in Ks/r‘q. If M is the group of £™-th roots

of unity in KS, we have an injection u —> E . On the other hand,
n
i ;
if ze En’ we have z~ € Fq’ and hence there exists an integer c¢

n

such that 2! = q°. If we associate to z the image of c in Z/£"Z,

we obtain a homomorphism of En into Z/an, and the resulting

sequence
0——>un—>En——>Z/£nZ——>0 (1)

is an exact sequence of Gal(KS/K)-modules, Gal(Ks/K) acting
trivially on z/2"z. Passing to the limit, we obtain an exact sequence

of Galois modules
—_— o e _—
0 TI(“) T!(Eq) Z! 0 (2)

where Gal(Ks/K) acts trivially on Zl' Tensoring with Ql' we

obtain the exact sequence
0—>V1(u)—>VI(Eq)_>Q!—>O . (3)

We now show that this sequence of Gal(Ks/K)-modules does

not split. To do this we introduce an invariant x which belongs to
. 1

the group lim H (G,un), where G = Gal(Ks/K). Let d be the co-

boundary homomorphism:

HO(G, 2/ 1"2) —> Hl(c,un)
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with respect to the exact sequence (1) and let x = d(l). The invariant

1
x is the element of Lim H (G,/.zn) defined by the family (xn), n>1.

n
1

B sk 1
PROPOSITION - (a) The isomorphism 6§ : K /K —> H (G, un) of
n
]

Kummer theory transforms the class of q mod K" into x .

(b) The element x 1is of infinite order.

(Recall that & 1is induced by the coboundary map relative to

the exact sequence

| —> un - K:.: > K:,: > 1. )

Assertion (a) is proved by an easy computation. To prove (b),

note that the valuation v defines a homomorphism

n
ES :':'l
f K /K —>z/1"Z
and hence a homomorphism
b3 :’:In
f:1lim K /K —_ Zl
ln

If we identify x with the corresponding element of lim K /K , as

in (a), we have f(x) = v(q), hence x is of infinite order.

COROLLARY - The sequence (3) does not split.

Assume it does, i.e. there is a G-subspace X of V!(Eq)
which is mapped isomorphically onto Q!' Let XT = Tl(Eq) nX.

The image of X_, in ZI is INZI, for some N > 0. It is then easy

T
N . . .
to see that £ x = 0, and this contradicts the fact that x is of
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infinite order.

A.l1.3. Determination of _g_l and i

We keep the notation of A.1.1 and A.1.2. If X 1is a one-
dimensional subspace of VI = VI(E)’ let £X denote the subalgebra
of End(Vﬂ) consisting of those endomorphisms u for which
u(Vl) (C X, and let n

X
with u(X) = 0.

be the subalgebra of Iy formed by those

ue r

X

THEOREM - (a) If k is algebraically closed and ¢ # p, then there

is a one-dimensional subspace X of Vl such that &y = Dy-

(b) If k is algebraically closed and £ = p, then there is a

one-dimensional subspace X of V! such that &y = Iy
(c) If k is finite, then gl = £X for some one-dimensional

subspace X of Vl' and _'1_1 =Dy (resp. _i_! =£X) if £ #p (resp.
£ =p).

Proof. Note first that, since B'l and —il are invariant under finite
extension of K, we may assume that E = Eq.

(2) In this case, K contains the ln-th roots of unity, hence
Gal(Ks/K) acts trivially on TI(“)' Consequently, there is a basis
e, e

1" 2
o(el) =e

of TI(E) such that, for all o € Gal(Ks/K), we have

1 2 with a(o) € ZI. Moreover, the

homomorphism o+ a(o) cannot be trivial since the sequence (3)

, o(ez) = a(o)e1 + e

does not split. It follows that Im(a) is an open subgroup of ZI' and

hence that g_l = BX

(b) Since f = p, we must have char(K) = 0 as £ # char(K).

with X =V (4).

In this case, the action of Gal(}:—(/K) on Vl(“) is by means of the

character X, (cf. chap. I, 1.2) which is of infinite order. It follows
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that gl = EX'
(3) does not split, and we cannot have El =

where X = V!(u); in fact, g, DEX since the sequence
Ex'

(c) Since k is finite, the action of Gal(Ks/K) on Tl(“) is
not trivial nor even of finite order. Hence, the argument used in (b)
shows that gl = E'X'
pletion of the maximal unramified extension of K, we see that

where X = Vl(/.l). Applying (a) to the com-

i, =ny if L #0p, andthat_11=£X if £=p.

Exercise
In case (a), shows that Im(a) = InZ!, where In is the

highest power of £ which divides v(q) = - v(j).

A.l.4. Application to isogenies

Here, we ass me that k is finite and K 1is of characteristic

0 (i.e. K 1is a finite extension of Qp).

THEOREM - Let q,q' € K with v(q) and v(q') >0. Let E = E,

and E' = E be the corresponding elliptic curves over K. Then

the following are equivalent:

(1) E is K-isogenousto E .
(2) There are integers A, B >1 such that q =q'

(3) Vp(E) and Vp(E') are isomorphic as Gal(i_(/K)-modules.

Proof. (2) => (1). It suffices to show that Eq and E A are

q
isogenous over K. But every meromorphic function F/G invariant

under multiplication by q 1is invariant under multiplication by q ;
hence the function field of Eq is contained in the function field of

i.e., E and E A are isogenous.

(1) = (3). Trivial.

A’
q
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(3) = (2). Choose an isomorphism ¢ of Vp(E) onto
Vp(E'). Since Vp(u) is the only oxle-dimensional subspace of Vp(E)
(resp. Vp(E')) stable by G = Gal(K/K), @ maps Vp(u) into itself.
Moreover, after multiplying ¢ by an homothety, we may suppose
that ¢ maps Tp(E) into Tp(E'). We then have a commutative

diagram:

0—T (u) —> T (E) —>2Z2 —>0
P P P

pl ¢l l o (4)

0— T (M) —> T (E')—>2Z —>0
P P P

where p (resp. o) is the multiplication by a p-adic integer r

1
(resp. s). If x,x' are the elements of I.J;'m H (G,un) associated to
E and E' (cf. A.l.2), the commutativity of (4) shows that

rx = sx'

But the valuation v yields a homomorphism of

n
P

. 1 . * % .
l_gm H (G,un) = Em K /K into Zp' and we have seen that the

image of x is wv(q), and the image of x' is v(q'). Hence
rv(q) = sv(q')
We will now show that the element

z

- qV(q')/q,V(q)
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n
p

is a root of unity. First of all, the image of z in lim K /K is

a
a p -th root of unity; in fact, this image is
v(q')x - v(q)x' ,

and multiplying by s, we find 0 in virtue of the above formulae

n
«P
% %
(note that lim K /K is a Zp-module, hence multiplication by s

makes sense). We then use the fact that the kernel of

n
P

* . * % * e
K — 1lim K /K is k (viewed, as usual as a subgroup of K ).
sk st 1
To see this, one decomposes K as a product ZX k X U, where

U1 is the group of units congruent to 1. The functor
n
* 1
A+—>lim A/Ap transforms Z into Zp’ kills k and leaves U

unchanged, since U is a finitely generated Zp-module. Hence, we

sk
have ze k, and z is a root of unity. This implies (1), q.e.d.

Remark

The equivalence (1) < (2) was remarked by Tate. It is true

without any hypothesis on K.

Exercise
Show that the hypothesis ''k is finite' may be replaced by

"k is algebraic over Fp. "

A.l.5. Existence of transvections in the inertia group

Let E be the elliptic curve Eq (cf. A.l1.1), let El be the
image of Gal(Ks/K) in Aut(Tl/lTl), and let YI be the inertia
subgroup of EI' We assume that v is normalized, i.e. that

*
viK ) = Z.
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PROPOSITION - If £ does not divide v(q), then YI contains a trans-

. . .. 11 .
vection, i.e. an element whose matrix is (0 1) for a suitable

Fl-basm of TI/IT

2
Proof. After possibly replacing K by a larger field, we can suppose
that the residue field k is algebraically closed, and that K contains
the £-th roots of unity. In fact, if £ # p, this last condition is
implied by the first; if £ = p, we must adjoin these roots; but the
degree of the extension thus obtained divides £-1, hence is prime to
£, and the valuation of q remains prime to £. This being said, the
hypothesis on v(q) shows that qlll is not in K. Thus there is an

automorphism s & Gal(Ks/K) such that s(qll!) = qu/!

, With
z#1. Then z is a primitive f£-th root of unity, and z,qll! form
a basis of T modulo ITI. Since s(z) = z, we see that the image

of s in G =I! is the required transvection.

1

A.2. The case v(j) >0

In this section we assume that the modular invariant j of the
elliptic curve E is integral, i.e. that v(j) > 0. Hence, after
possibly replacing K by a finite extension, we may assume that E

has good reduction (cf. 1.2). We also assume that K is of charac-

teristic zero.

A.2.1. The case L #p
Suppose that f # p. Since E has good reduction, the module
T! can be identified with the Tate module TI(E) of the reduced

curve E, cf. 1.3. Hence the inertia algebra i, is 0. If the
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residue field k is finite, the group G! is topologically generated by
the Frobenius F!' Hence, in this case, 51 = Lie(Gl) is a one-
dimensional subalgebra of End(Vl).

A.2.2. The case [ = p with good reduction of height 2

Here we assume that the reduced curve E is of height 2;
recall that, if A is an abelian variety defined over a field of charac-
teristic p, its height can be defined as the integer h for which ph
is the inseparable part of the degree of the homothety '"'multiplication
by p.'" An elliptic curve is of height 2 if and only if its Hasse
invariant (cf. Deuring [9]) is 0. Since E has good reduction, it
defines an abelian scheme Ev over O_, hence a p-divisible

K
group E(p) over OK (cf. Tate [39], 2.1 - see also [26], §l, Ex. 2).

The Tate module of E(p) can be identified with T . The connected
component E(p)o of E(p) coincides with the formz.l group (over OK)
attached to Ev; the height of E is precisely the height of this
formal group (in the usual sense). In our case, we have E(p) = E(p)o

since the height is assumed to be 2.

THEOREM - One has g_p =_ip. This Lie algebra is either End(Vp)
or a non-split Cartan subalgebra of End(Vp).

(Recall that a non-split Cartan subalgebra of End(Vp) is a
commutative subalgebra of rank 2 with respect to which Vp is

irreducible. It is given by a quadratic subfield of End(Vp).)

Proof. The Lie algebra g_P has the property that g_pz = Vp for any
non zero element z of Vp (cf. [27], p. 128, Prop. 8). In particular,
V_ is an irreducible g_p-module; its commuting algebra is either a

field of degree 2 (which is then necessarily equal to g_p) or the
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field Qp' in which case g_p is a priori s!z or g!z. But g_p;é s!z

since AZVp is canonically isomorphic to Vp(u), and the action of
Gal(l—(/K) on Vp(u) is by means of the character Xp' which is of
infinite order (indeed, no finite extension of K can contain all pn-th
roots of unity, n=1,2,...). Hence the Lie algebra g_p is either
End(Vp) or a non split Cartan subalgebra of End(Vp). Since the
above applies to the completion of the maximal unramified extension
of K, we have the same alternative for i . Moreover, i |is
P P

contained in g’p We have a priori three possibilities:

(a)_ip = g_p = End(Vp).
(b)_ip = g_p is a non split Cartan subalgebra of End(Vp).
(c)_ip is a Cartan subalgebra and g_p = End(Vp).

However, _1p is an ideal of gp Hence, (c) is impossible, and this

proves the theorem.

Remarks

1) By a theorem of Tate ([39], §4, cor. 1 to th. 4), the algebra
g_p is a Cartan subalgebra of End(Vp) if and only if E(p) has
"formal complex multiplication, ' i.e. if and only if the ring of endo-
morphisms of E(p), over a suitable extension of K, 1is of rank 2
over Zp. There exist elliptic curves without complex multiplication
(in the algebraic sense) whose p-completion E(p) have formal
complex multiplication.

2) Suppose that g_p is a Cartan subalgebra of End(Vp), and
let H = g_pn Aut(Vp) be the corresponding Cartan subgroup of
Aut(Vp). If N is the normalizer of H in Aut(Vp), then one knows
that N/H is cyclic of order 2. Since GpC N, it follows that Gp
is commutative if and only if GpC H. The case GPC H corresponds

to the case where the formal complex multiplication of E(p) is
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defined over K, and the case G ([ H corresponds to the case where
P
this formal multiplication is defined over a quadratic extension of K.
3) Suppose that Gp is commutative, and that the residue

field k 1is finite. Let F be the quadratic field of formal complex

multiplication (i.e. g_p itself, viewed as an associative subalgebra
of End(Vp)). If UF denotes the group of units of F, the action of

GaI(R/K) on Vp is given by a homomorphism

¢ : Gal(K/K) —> U

By local class field theory, we may identify the inertia group of
= b
Gal(K/K)a with the group U of units of K. Hence the restriction

K
(pI of (¢ to the inertia group is a homomorphism of UK into UF.

To determine cpl, we first remark that the action of End(E(p)) on
the tangent space to E(p) defines an embedding of F into K. For

that embedding, one has (compare with chap. III, A.4)

(pI(x) = NK/F(x_l), for all x e UK
Indeed, by a result of Lubin (Ann. of Math. 85, 1967), there is a
formal group E' whichis K-isogenous to E(p), and has for ring of
endomorphisms the ring of integers of F. But then, if E" is a
Lubin-Tate group over K (cf. Lubin-Tate [17]), the formal groups
E' and E'" are isomorphic over the completion of the maximal un-
ramified extension of K (cf. Lubin [16], th. 4.3.2). Hence to prove
the formula (*), we may assume that E(p) is a Lubin-Tate group, in

which case the formula (%) follows from the main result of [17].
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A.2.3. Auxiliary results on abelian varieties

Let A and B be two abelian varieties over K, with good
reduction, so that the associated p-divisible groups A(p) and B(p)
are defined (these are p-divisible groups over the ring OK’ cf.
Tate [39]). Let A and B (resp. X(p) and E(p)) be the reductions
of A and B (resp. of A(p) and B(p)).

THEOREM 1 - Let £ :A—>B be a morphism of abelian varieties,

and let f~(p) be the corresponding morphism of X(p) into E(p).

Assume there is a morphism f{(p) : A(p) —> B(p) whose reduction is

?(p). Then, there is a morphism f: A —> B whose reduction is £

A proof of this "lifting'' theorem has been given by Tate in a
Seminar (Woods Hole, 1964), but has not yet been published; a differ-
ent proof has been given by W. Messing (L. N. 264, 1972).

THEOREM 2 - Assume Tp(A) is a direct sum of Zp-modules of

rank 1l invariant under the action of Gal(R/K). Then every endomor -

phism of X lifts to an endomorphism of A, 1i.e., the reduction

homomorphism End(A) —> End(X) is surjective (and hence bijective,

since it is known to be injective).

Using theorem 1, one sees that it is enough to show that any
endomorphism of Z(p) can be lifted to an endomorphism of A(p).
But the assumption made on Tp irmplies (cf. Tate [39], 4.2) that
A(p) is a product of p-divisible groups of height 1. Hence we are

reduced to proving the following elementary result:

LEMMA - Let H ,H,  betwo p-divisible groups.over OK'

1’2
both of height one. Then the reduction map:

Hom(Hl, HZ) —> Hom(ﬁl, ﬁz) is bijective.
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Proof. This is clear if both Hl and HZ are étale. If both are not

étale, their duals are étale and we are reduced to the previous case.

If one of them is étale, and the other is not, one checks readily that

= 0.

Hom(Hl, HZ) = Hom(Hl, HZ)

COROLLARY - Assume:

(i) V (A) is a direct sum of one-dimensional subspaces stable
p

under Gal(K/K).
(ii) The residue field k of K 1is finite.

Then A is isogenous to a product of abelian varieties of (CM) type

(in the sense of Shimura-Taniyama [34], cf. also chap. II, 2.8).

Proof. Assumption (i) implies that TP(A) contains a lattice T'
which is a direct sum of free Zp-modules of rank 1 stable under

Gal(K/K). One can find an isogeny A, —> A such that Tp(Al) is

1
mapped onto T'. This means that, after replacing A by an
isogenous variety, we may apply Th. 2 to A, i.e.

End(A) %End(Z) is an isomorphism. But, since k is finite, it
follows from a result of Tate [38] that Q ® End(z) contains a semi-
simple commutative Q-subalgebra A of rank 2 dim(A) (this is not
explicitly stated in [38], but follows easily from its '"Main Theorem'').
Hence, the same is true for Q ® End(A). If we now write A asa
product of commutative fields Aa' one sees that A is isogenous to

a product ﬂAa, where A(1 has complex multiplication of type

Ao.' q.e.d.

A.2.4. The case f = p with good reduction of height 1

In this section, we assume that the reduced curve E 1is of
height 1 i.e. thatits Hasse invariantis # 0 (cf. Deuring [9]). The

connected component El = El(p)O of the p-divisible group E(p)
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attached to E (cf. Tate [39]) is then a formal group of height 1.
Since E(p) is an extension of El by an étale group, we obtain an

exact sequence of Gal(K/K)-modules
o—>x—>vp—>Y——>o , (*)

where X corresponds to the Tate module of El' and Y to the

points of order a power of p of E.

THEOREM - Suppose that the residue field k is finite. Then the

following statements are equivalent:

(a) The elliptic curve E has complex multiplication over K.

(a') The elliptic curve E has complex multiplication over an

extension of K.

(b) There exists a one-dimensional subspace D of Vp, which

is a supplementary subspace of X, and is stable under the action of

G .
p

(b') There exists a one-dimensional subspace D of Vp which

is a supplementary subspace of X, and is stable under the action of

5p = Lie(Gp).

Proof. If D is stable under the action of Gp, it is also stable under
the action of its Lie algebra gp, hence (b) => (b'). Conversely, if
D is stable under E‘p’ its transforms by Gp are in finite number;

a standard mean value argument then shows that the sequence (%)
splits, hence (b') =>(b). The implication (b) => (a) (the only non-
trivial one) follows from the corollary to theorem 2 of A.2.3. Con-
versely, if E has complex multiplication by an imaginary quadratic
field F, the group Gal(l-(/K) acts on Vp through F ® Qp (see

chap. II, 2.8) and this action is thus semi-simple. Consequently, the
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exact sequence (%) splits; this shows that (a) = (b), hence also that

(a') = (b'"). Since (a) = (a') is trivial, the theorem is proved.

COROLLARY 1 - If E has no complex multiplication, E‘p is the

Borel subalgebra EX of End(Vp) formed by those ue End(Vp)

such that u(X)C X; the inertia algebra _1p is the subalgebra Iy of
EX formed by those u € End(Vp) such that u(Vp) CXx.

Let Xy and Xy be the characters of Gal(R/K) defined by
the one-dimensional modules X and Y. Since k is finite, Xy is
of infinite order. If x is the character defined by the action of
Gal(K/K) on Vp(u), the isomorphisms

~2 ~
X®Y=AV =V
p p(u)

show that XxXy = X Hence_the restriction of Xx and xxx;l to
the inertia subgroup of Gal(K/K) are of infinite order. This shows
£i . . £ . si

irst that g_p is either EX or a Cartan subalgebra o EX since
the second case would imply (b'), it is impossible, hence g‘p = b,
Similarly, one sees first that ip is contained in EX’ then that its

action on X 1is non trivial; since it is an ideal in gp = these

EX ’

properties imply _1_p = Ig-

Remark
The above result is given in [25], p- 245, Th. 1, but mis-
stated: the algebra Ty has been wrongly defined as formed of

those u such that u(X) = 0 (instead of u(Vp)CX).

COROLLARY 2 - If E has complex multiplication, g‘p is a split

Cartan subalgebra of End(Vp). If D isa supplementary subspace
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to X stable under Gal(l—i/K), then X and D are the characteristic

subspaces of _g_p and the inertia algebra i is the subalgebra of

End(Vp) formed by those ue End(Vp) such that u(D) = 0, u(X)C X.

The proof is analogous to the one of Cor. 1l (and in fact

simpler).
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