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Publisher's Foreword 

"Advanced Book Classics" is a reprint series which has come into being as a direct result 
of public demand for the individual volumes in this program. That was our initial criterion 
for launching the series. Additional criteria for selection of a book's inclusion in the series 
include: 

• Its intrinsic value for the current scholarly buyer. It is not enough for the book to 
have some historic significance, but rather it must have a timeless quality 
attached to its content, as well. In a word, "uniqueness." 

• The book's global appeal. A survey of our international markets revealed that 
readers of these volumes comprise a boundary less, worldwide audience. 

• The copyright date and imprint status of the book. Titles in the program are 
frequently fifteen to twenty years old. Many have gone out of print, some are 
about to go out of print. Our aim is to sustain the lifespan of these very special 
volumes. 

We have devised an attractive design and trim-size for the "ABC" titles, giving the series 

a striking appearance, while lending the individual titles unifying identity as part of the 
"Advanced Book Classics" program. S ince "classic" books demand a long-lasting 
binding, we have made them available in hardcover at an affordable price. We envision 
them being purchased by individuals for reference and research use, and for personal and 
public libraries. We also foresee their use as primary and recommended course materials 
for university level courses in the appropriate subject area. 

The "Advanced Book Classics" program is not static. Titles will continue to be 
added to the series in ensuing years as works meet the criteria for inclusion which we've 
imposed. As the series grows, we naturally anticipate our book buying audience to grow 
with it. We welcome your support and your suggestions concerning future volumes in the 
program and invite you to communicate directly with us. 
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Special Preface 

The present edition differs from the original one (published in 1968) by: 

• the inclusion of short notes giving references to new results; 
• a supplementary bibliography. 

Otherwise, the text has been left unchanged, except for the correction of a few 
misprints. 

The added bibliography does not claim to be complete. Its aim is just to help the 
reader get acquainted with some of the many developments of the past twenty years (for 
those prior to 1977, see also the survey [78]). Among these developments, one may 
especially mention the following: 

l-adic representations associated to abelian varieties 
over number fields 

Deligne (cf. [52]) has proved that Hodge cohomology classes behave under the action of 
the Galois group as if they were algebraic, thus providing a very useful substitute for the 
still unproved Hodge conjecture. 

Faltings ([54], see also Szpiro [82] and Faltings-Wiistholz [56]), has proved Tate's 
conjecture that the map 

HomK(A,B) � Z, � Homa.J(T,(A),  T,(B» 

is an isomorphism (A and B being abelian varieties over a number field K), together with 
the semi-simplicity of the Galois module Q, � T/(A) and similar results for T/(A)/rr/(A) 
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This book reproduces, with a few complements, a set of lectures given at McGill 
University, Montreal, from Sept.5 to Sepl18, 1967. It has been written in collaboration 
with John LABurn (Chap. I, IV) and Willem KUYK (Chap. II, III). To both of them, I want 
to express my heartiest thanks. 

Thanks also due to the secretarial staff of the Institute for Advanced Study for its 
careful typing of the manuscript. 

JEAN-PIERRE SERRE 
Princeton, Fall 1967 
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x Special Preface 

when I is large enough. These results may be used to study the structure of the Galois group 

of the division points of A, cf. [80]. For instance, if dimA is odd and En<lxA = Z, one can 
show that this Galois group has finite index in the group of symplectic similitudes; for 

elliptic curves, i.e. dimA = I, this was already proved in [76]. 

Modular forms and l-adic representations 

The existence of I-adic representations attached to modular forms, conjectured in the ftrst 

edition of this book, has been proved by Deligne ([50], see also Langlands [65] and 
Carayol [49]). This has many applications for instance to the Ramanujan conjecture 

(Deligne) and to congruence properties (Ribet [69], [71]; Swinnerton-Dyer [8 1 ]; [73], 

[77]). Some generalizations are known (e.g. Carayol [49]; Ohta [68]; Wiles [84 D, but one 
can hope for much more, in the setting of "Langlands' program": there should exist a 
diagram 

motives 

. II . I . raUona -adlC representaUons 

automorphic representations of 
reductive groups 

where the vertical line is (essentially) bijective and the horizontal arrow injective with a 
precise description of its image (Deligne [51]; Langlands [66];[78]). Such a diagram 

would incorporate, among other things, the conjectures of Anin (on the holomorphy ofL­
functions) and Taniyama-Weil (on elliptic curves over Q). Chapters II and III of the 
present book, supplemented by the results ofDeligne ([53]) and Waldschmidt ([63] , [83 D, 

may be viewed as a partial realization of this ambitious program in the abelian case. 

Local theory of l-adic representations 

Here the ground field K, instead of being a number field, is a local field of residue 

characteristic p. The most interesting case is charK = a and p = I, especially when a Hodge­

Tate decomposition exists: indeed this gives precious information on the image of the 

inertia group (Sen [72]; [79]; Wintenberger [85]). When the /-adic representat ion comes 
from a divisible group or an abelian variety, the existence of such a decomposition is well 
known (Tate [39]; see also Fontaine [60]); for representations coming from higher 
dimension cohomology, it has been proved recently by Fontaine-Messing (under some 
restrictions, cf. [62]) and Faltings ([55]). The results of Fontaine-Messing are pans of a 
vast program by Fontaine, relating Galois representations and modules ofDieudonnc type 
(over some "Barsotti-Tate rings," cf. [58], [59], [61]). 
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INTRODUCTION 

The " L-ad ic representat ions " considered in this book 

are the algebra ic ana logue o f  the locally constant sheaves 
(or " loca l c o e f fic ients II ) o f  Topology . A typical example 
is given by the Ln_th d ivision points of abelian varieties 
( c f . chap . I , 1 . 2 ); the corresponding L-adic spaces , first 
introduced by Weil [40] are one o f  our main too ls in the 

s tudy o f  these variet i es . Even the case o f  d imension 1 
presents non t rivia l problems; some o f  them w i ll be 

stud ied in cha p . IV . 

The general not ion o f  an L-adic representat ion was 
first def ined by Taniyama [35] ( see also the review o f  

this paper given by Wei l i n  Math . Rev . , 20, 1 959 , rev . 1 6 67) . 
He showed how one can rela te L-adic representations re la­
t ive to di f ferent prime numbers L � the propert ies o f  
the Frobenius e l ements ( see below ) . I n  the same paper , 

Taniyama a lso studied some abe l ian representa tions which 
are c lo s ely rela ted to comp lex multi plica t ion ( c f . We i l  
[ 41]  , [42]  and Shimura-Taniyama [34) .  These abelian repre­
sentations , to gether with s ome a pplicat ions to elliptic 
curves, are the subject matter of this book . 

There a re four Cha pters, whos e  cont ents are as fo l lows : 

xvii 



xviii I NTRODUCTI ON 

Chapter I begins by giving the definition and s ome 

examples of l-adic representations ( §1 ) . In §2, the ground 
fie ld is a s sumed to be ,a number field . Hence , Frobenius 

e l ements a re defined, and one ha s the no tion of a rationa l 
l-adic re pres enta tion : one for which their characteris ­
tic polynomia ls have ra t iona l co efficients ( ins t ead of 
mere ly l-adic ones ) .  Two repres entat ions co rresponding 

to different primes a re compa t ib le if the characteris tic 
po lynomia ls of their Frobenius e l ement s  are the s ame ( a t  
lea s t  a lmo s t  everywhere ) ; no t much is known a bout this 
not ion in the non abelian cas e ( c f .  the list o f  o pen 
ques tions at the end of 2 . 3 ) .  A la s t  s ec t ion shows how 
one a t taches L- funct ions to rat iona l l-ad ic repres enta­
tions ; the wel l known connection between equid i s tribution 
and ana lyt ic pro pert ies of L-funct ions is dis cus s ed in 
the Appendix . 

Cha pter I I  gives the cons truct ion of some abelian 
l-adic repres enta t ions of a number fie ld K. As indica t ed 
above , this cons truc t ion is es s entia l ly due to Shimura , 

Taniyama and Weil . However, I have found it convenient 
to pres ent their results in a s lightly d i fferent way , by 
de fining firs t s ome algebra ic groups over Q ( the groups 
Sm ) whos e  repres entations - in the usual algebra ic s ens e -
co rres pond to the s ought for l-ad ic repres entat ions o f  K. 
The same groups had been cons id ered be fore by Grothend ieck 
in his s t i l l  conjec tura l theo ry of " mo t ives " ( ind eed , 
mo t ives a re suppo s ed to be " l-adic cohomology without l " 
s o  the connection is not surpris ing ) .  The construct ion o f  
thes e groups Sm and o f the l-adic repres entat ions a t ta­
ched to them, is given in §2 ( §1 conta ins some pre li­
minary cons truct ions on a lgebraic groups , o f  a ra ther 



I NTRODUCTI ON xix 

elementary kind ) .  I have a lso bri efly ind icated what 
relations thes e groups have with complex mult iplica t ion 
( c f . 2.8).  The la s t  § contains some more pro perti es o f  

the � 's. 
Chapter I I I  i s  concerned with the following question : 

let p be an abelian l-ad ic representat ion o f  the number 
fi e ld K; can p be obta ined by the method o f  chap . I I  ? 
The answer is : this is  so i f  and only i f  p is " locally 
a lgebra ic " in the sens e d e f ined in §1 . In mos t  applica­
tions, local algebraic ity can be checked using a result 
o f  Ta te saying that it i s  equivalent to the existence of 
a " Hodge-Ta t e  " d ecompo s i t ion , at least when the repre­
s entat ion is s emi-s imple . The proof o f  this result of 

Ta t e  is ra ther long , a�d reli es heavily on his theorems 
on p-divis ible groups [39]; it is given in the Appendix . 
One may also ask whether any abelian rat ional semi-simp le 

l-ad ic repres entation o f  K is ipso facto locally alge­

bra ic; this may well be so, but I can prove it only when 
K is a compo s i t e  o f  quadra t ic f ields; the proo f relies 
on a trans cendency result o f  Siegel and Lang ( cf . §3). 

Chapter IV i s  conc erned with the l-adic representation 

Pl defined by an ellipt ic curve E.  Its a im is to deter­

mine, as prec i s ely as possible, the image of the Galo is 
group by Pl' or at leas t its Lie algebra . Here again 

the ground field is a s sumed to b e  a number field ( the 
case of a func tion f i eld has been sett led by Igusa [10]). 

Most o f  the results have been stated in [25] , [311 but with 
at bes t some sketches o f  proo fs . I have given here comple­
te proo fs , granted s ome basic facts on elliptic curves , 

which are collec ted in §1 . The method fol lowed is more 
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" global " than the one indica t ed in [25] . One starts 

from the fact, noticed by Cassels and others, that the 

numb�r of isomorphism classes of elliptic curves isoge­

nous to E is finite; this is an easy consequence of 

Safarevic 's theorem ( cf.1.4 ) on the finiteness of the 

number of elliptic curves having good reduction outside 

a given finite set of places. From this, one gets an 

irreducibility theorem ( cf.2.1) . The determination of 

the Lie algebra of Im( pz. ) then follows, using the 

properties of abelian representations given in chap. II, 

Ill; one has to know that Pz. ' if abelian, is locally 

algebraic, but this is a consequence of the result of 

Tate given in chap. III. The variation of 1 m( P L) with L 

is dealt with in § 3. Similar results for the local case 

are given in the Appendix. 



NOTATIONS 

General notations 

Pos itive means > O. 

Z (re s p . Q , R, C) i s  the r ing (r e s p .  the field) of integer s  

(r e sp .  o f  rational number s ,  o f  r eal numbe r s ,  o f  complex number s ) . 

If p is  a pr ime number , F denote s the pr ime field Z / pZ  P 
and Z (re s p .  Q )  the r ing of p - adic integ e r s  (re sp .  the field of p p 
p - adic rational number s ) .  One has : 

Pr ime numbe r s  

Q = Z [!..] p p p 

They are denoted by 1, 1', p ,  . . .  ; we mostly us e the letter 

1 for "1 - adic r epr e s entat ions" and the le tter  p for the r e s idue 

characte r i stic of s ome valuation . 

Fields 

If  K is  a fie ld ,  we denote by K an algebraic closur e  of  K,  

and by K the s eparable c losur e  of K in K ;  most of  the f ields we s 
c ons ider  are perfe c t ,  in which case  K = K . s 

If I,./ K i s  a (po s  s ibl y infinite ) Galo is  extens ion , we denote its 

Galo is g roup by Gal (L/ K} ; it is a pr oject ive l imit of finite gr oups . 

xxi 



xxii NOTATIONS 

Algebraic groups 

If G i s  an algebraic  g roup ove r a fie ld K, and if K '  i s  a 

c ommutative K -algeb r a ,  we denote by  G (K') the gr oup of 

K' -points of G (the "K ' -rational" points of G) . When K' is a 

field ,  we denote by G I K' the K ' - algebraic g r oup G XK K ' ob ­

taine d from G by extending the gr ound fie ld from K to K ' . 

Le t Y be  a finite dimens ional K -vector spac e .  W e  denote by 

AutK (V ) , or Aut (V ) , the group of its K - l inear automorphisms , and 

by GLy the corresponding K - algebraic gr oup (ef .  chap. I , 2.4). 

For any commutative K - algebr a  K ' ,  the gr oup GLy (K ' ) of 

K' -points of GLy is AutK, (V SK K') ; for ins tanc e ,  

GLy (K) = Aut (V )  . 

• 
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CHAPTER I 

£-ADIC REPRESENTATIONS 

§l. THE NOTION OF AN 1 -ADIC REPRESENTATION 

1. 1. Definition 

Let K be a field ,  and let K be a s eparable alg ebraic c lo ­s 
sur e  of K . Let G = Gal(K / K) be the Galoi s  g roup of the extens ion s 
K / K .  The group G, with the Krull topology, is  compact and totally s 
dis connec ted . Let 1 be a pr ime number, and let V be a finite -

dimens ional vec tor  spac e ove r the field 01 of  1-adic number s. The 

full linear group Aut(V) is an 1 -adic Lie g r oup , its  topology being 

induced by the natural topology of End(V ) ;  if n = dim(V), we have 

Aut(V )::: GL(n, °1), 

DEFINITION - An 1 -adic r epr e sentation of G ( o r , by abus e of 

language , of K )  i s  a continuous homomorphism p: G --?> Aut(V). 

Remarks 

1) A lattic e of V i s  a sub - Z.t -module T which i s  free  of 

finite rank, and generate V ove r  01, s o  that V can be identified 

with T �Z 01' Notice that the r e  exis t s  a lattic e of V which is 
1. 

s table under G . T hi s  follows from the fac t  that G i s  c ompact . 



1-2 ABELIAN l-ADIC REPRESENTATIONS 

Indeed ,  l e t  L be any lattic e of V ,  and le t  H be the s e t  of elements 

g e: G such that  p(g)L = L .  This  is an open subgroup of G ,  and G/ H 

is  f inite . The lattic e T gene rated by the latti c e s  p ( g )L , g E: G/ H,  

i s  s table under G .  

Notic e that L may b e  identified with the p roj e ctive l imit of 

the fr e e  ( Z/ lmZ ) -modul e s  T / lmT ,  on which G ac t s ;  the vector 

space V may be r ec ons tructed from T by V = T � Z 01' 

2 ) If p i s  an l-adic r ep r e s entation of G,  the1g roup 

G = p Im( p) i s  a c lo sed  subgroup of Aut(V ) ,  and henc e ,  by the l-adic 

analogue of Cartan1s theor em ( cf .  [28], LG, p. 5 -42 )  G i s  it s elf an p 
l-adic Lie g roup . Its Lie  alg ebra .[ = Lie (G  ) i s  a subalgebra of p p 
End(V ) = Lie (Aut (V».  The Lie alg ebra g i s  eas ily seen  to be  in ­

-p 
var iant unde r extens ions of finite type of the ground field K 

( c f .  [2 4], 1 .  2 ) .  

Exerc i s e s  

1 )  Le t  V be a vector space  of dimension 2 over  a field k 

and le t  H be a subgroup of Aut(V ) . A s sume that det(l -h) = 0 for 

all he H .  Show the exi stenc e  of a ba s is of V with re spect  to which 

H is c ontained eithe r in the subgroup (� : ) or in the subgroup 

(� �) of Aut(V ) . 

2 ) Let p :  G � Aut(V1) be an l-adic r epre s entation of G, 

where  V1 is a 0l-vector  space  of dimens ion 2. As sume 

det( l - p ( s»:: 0 mod . 1 for all s E: G .  Let T be a lattic e of V1 s table 

by G. Show the exi s tence of a lattice  T' of V 1 with the following 

two proper tie s .  

a )  T ' i s  s table by G 

b) Either T '  i s  a sublattic e of index 1 of T and G acts  

trivially on T /  T '  or T i s  a sublattice of index 1 of  T '  and G 
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acts tr ivially on T'/T. 
(Apply exerc ise 1 )  above to k = F and V = TILT.) 1. 

1-3 

3 ) Let p be a semi-s imple 1 - adi c r ep r e s entation of G and 

let U be an invar iant subg roup of G .  As sume that , for all  x€" U ,  

pix )  i s  unipotent ( all its e ig envalue s a r e  equal to 1 ). Show that  

pix )  = 1 for aH x e: U.  (Show that the r e s triction of p to U i s  

semi - s imple and use  Kolchin' s theorem to br ing i t  to  triangular 

form.  ) 

4 ) Let  p: G � Aut (V1) be an 1 - adic rep re s entation of G, 

and T a lattic e of V 1 s table under G .  Show the equivalence  of the 

fol lowing propertie s :  

a ) The rep re s entation of G in the F i-vec tor space TILT i s  

i r r educibl e .  
n b )  The only lattic e s  of V L s table under G are the L T , 

with n e. Z. 

1 .  2 .  Example s 

1 .  Roots of unity . Let  1 # char (K) .  The group 
m G = Gal(K I K) ac ts  on the group IJ. of L -th roots  of unity , and s m 

hence al s o  on T V-t) = l im. IJ. • The Q. -ve ctor spac e i ?-- m .r; 
V 1(IJ. )  = T LV-t) � Z Q

1. 
is of dimens ion I ,  and the homomorphi sm 

1 
XL: G � Aut(V 1) = Q/ defined by the action of G on Viis a 

I - dimensional 1. -adic repr e  sentation of G .  The character Xi take s 

its value s in the group of unit s Ui of Zi by definition 

g ( z ) x l( g }  
= z i f  g e. G, 

m 1 z = 1 . 

2 .  Elliptic curve s .  Let 1 # char(K} . Let E be an elliptic 

curve defined ove r K with a g iven rational point O. One knows that 
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:=:'cre is a unique str ucture of gr oup vari e ty on E with 0 as n eutral 

m 
c:ement. Let E b e  the kernel of multiplication by I. in E(K ), 

a:ld let 

m s 

The T ate module T
I
(E) is a fre e  2 -module on which G = Gal(K / K) 

I. s 
a.:ts (d. [12], c hap. VII). The corre s pond i ng homomor p hi s m  

.l: G ---;. Aut(VI
(E)) is an l-adic representation of G. The group 

Gl = Im(1T
I) is a closed subgroup of Aut(T

I.
(E)), a 4-dimensional 

Lie group isomorphic to GL(2, 21.). (In chapter IV, we will determine 

:he L i e  a lge bra of GI, und e r the a s s umption t hat K. i s  a number 

::eld. ) 

Since we can identify E with its dual (in the sense of the 

duality of abelian varieties) the symbol (x, y) (d. [1 2], loco cit. ) 

defines canonical isomorphisms 

Hence det{1TI) is the character X 
I 

defined in example 1 .  

3 .  Abelian varieties. Let A be a n  abelian variety over K 

of dimension d. If I I- char(K), we define T ,t<A), V I{A) in the 

same way as in example 2 .  The group T ,t<A) is a free 2
1
-module 

of rank 2d (d. [12] ,  loco cit. ) on which G = Gal(K /K) acts. 
s 

4. Cohomology representations. Let X be an algebraic 

variety defined over the field K, 

corresponding variety over K . 
s 

and let X = X XK K be the 
s s 

Let I I- char{K), and let i be an 

integer. Using the etale cohomology of Artin-Grothendieck [ 3 ]  we let 
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The g roup H� (X s ) i s  a vec tor spac e over Q1 on which G = Gal(K s/ K) 

a c t s  (via the ac tion of G on X ) . It i s  finite dimens ional, at lea st  if s 
cha r{K ) = 0 or if X i s  pr ope r .  W e  thus ge t  a n  1-adic r ep re s enta -

i tion of G a s soc iated to H1(X s ) ;  by taking dual s we al so get homology 
l -adic rep re senta tions .  Example s 1 ,  2 ,  3 a r e  particular case s of 
homology 1-adic r ep r e s entations where  i = 1 and X i s  r e spec tively 
the multiplicative group G , the ellip tic curve  E ,  and the abel ian m 
variety A. 

Exe rc i s e  

( a )  Show that the re  is  an  e lliptic c urve E ,  defined ove r  
K = Q(T ) ,  with j - invariant equal to T .  

a 

( b )  Show that for such a curve , over  K = C (T ) ,  one ha s 

GL = SL(TL(E» (d. 19usa  [10] fo r an algebraic proof) . 

( c )  U sing (b ) , s how that, ove r  Ko' we have  GL = GL(T/E». 

(d )  Show that fo r any c lo s ed subgroup H of GL( 2 ,  Z L) the re 

i s  an elliptic curve ( defined ove r  some field)  for which GL = H. 

§2 . L -AD1C REPRESENTATIONS OF NUMBER FIELDS 

2 . 1 . Prel iminar ie s 

(For the bas ic  notions concerning numbe r field s ,  s ee  for in ­

s tance  Ca s s el s-Frtlhlich [ 6] ,  Lang [13] or We il [44] . )  Let  K be  a 

numbe r f ield ( i .  e .  a f inite extens ion of Q ) . Denote by LK the s e t  

o f  a l l  finite plac e s  of K ,  i .  e . , the s e t  o f  all normalized dis c r ete 

valuations of K ( or, alternatively,  the s et of p r ime ideals  in tbe 

r ing AK of integ e r s  of K) .  The r e s idue fie ld  kv of a pla c e  
deg (v )  

v Eo LK is a finite field with Nv = pv elements, wher e  
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p = char (k ) and deg{v) I S  the degree of k 
v v v 

fication index e of v is v{p ).  
v v 

over F 
pv 

The ralTIi-

Let L/ K be a finite Galois extension with Galois group G, 

and let w e: �
L

. The subgroup D of G consisting of those g e: G 
w 

for which gw = w is the decolTIposition group of w. The restriction 

of w to K is an integral lTIultiple of an elelTIent v � �K
i by abuse 

of language, we also say that v is the restriction of w to K, and 

we write wi v ("w divides v"). Let L (resp . K )  be the COITI-w v 
pletion of L (resp. K) with respect to w (resp. v). We have 

D :: Gal(L /K ). The group D is lTIapped hOlTIolTIorphically onto w w v w 
the Galois group Gal(l /k ) of the corresponding residue extension w v 
.l /k . The kernel of G ---> Gal(.t /k ) is the inertia group I of w v w v w 
w. The quotient group D / I is a finite cyclic group generated by w w 

Nv 
the Frobenius elelTIent F ; we have F(x') = X, for all X, � 1 . 

w w 
The valuation w (resp. v) is called unralTIified if I = {l}. AllTIost 

w 
all places of K are unralTIified. 

If L is an arbitrary algebraic extension of Q ,  one defines 

�
L 

to be the projective lilTIit of the sets �
L 

' 

a 

over the finite sub-extensions of L/ Q.  Then, 

trary Galois extension of the nUlTIber field K, 

where L ranges 
a 

if L/ K is an arbi-

and w E �
L

' one de-

fines D , I , F 
w w w as before. If v is an unralTIified place of K, 

and w is a place of L extending v, 

clas s of F in G = Gal(L/ K). 
w 

we denote by F the conjugacy 
v 

DEFINITION - Let p: Gal(K/ K) � Aut(V) be an .l-adic representa­

tion of K, and let v e �K. We say that p is unralTIified at v if 

p(Iw) = {l} for any valuation w of K extending v. 

If the representation p is unralTIified at v, then the 
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r e s tric ti on of p to  D factor s  thr ou g h  D /1 for any w j v; h e nc e  
w w w 

p (F  ) E; Au t ( V) i s  defin e d; we call  p( F ) the Frob e niu s of w in th e 
w w 

r epre s entation p, an d we denot e  it by F The c onju gacy c la s s  
w ,  p 

of F w,p in Au t( V )  dep end s only on v; it is deno t e d  by F If 
v , p 

L/ K is the extens ion of K c orr e sp on d in g  to  H = Ker(p) , th en p 

is unraITlifi e d  at  v if a n d  only if v i s  unraITlified in L/ K. 

2.2. Ce botare v ' s d e n s i ty the oreITl 

L e t  P be a subset of L:
K

. For each integer n, let a (P )  n 
b e  the nUITlber of v E P such that N v  < n. If a is a real nUITlber, 

o ne s ay s  that P has density a if 

a ( P) 
n 

liITl. 
a

n(L:
K

) = a when n-->oo . 

Note that a
n 

(L:
K

) -- n/log(n), by the priITle nUITlber theoreITl 

(d. Appendix , or [ 1 3 ] ,  chap. Vm), so that the above relation ITlay be 

rewritten: 

ExaITlples 

a ( P) = a. n/ log(n) + o(n/log(n» . 
n 

A finite set has density O. The set of ve: L:
K 

of degree 1 
( i .  e. such that Nv is priITle) has density 1. The set of ordinary 

priITle nUITlbers whose first digit (in the deciITlal systeITl, say) is 1 

has no density. 

We can now state Cebotarev's density theorem: 

THEOREM - Let L be a finite Galois extension of the number field 

K, with Galois group G .  Let  X be a s ub s e t  of G. stable  by 
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conjugation .  Let P X be the s et of place s v Eo �K' unr amifie d in L, 

s uch that the Fr obenius cla s s  F 
v is  containe d  in X. T hen P

x 
ha s 

density equal to Card(X)/ Card(G). 

Fo r the proof, see (7], [1 ], or the Appendix. 

COROLLARY 1 - For every g €. G, there exist infinitely many un­

ramified places w e: �
L 

such that F w 
= g. 

For infinite extensions, we have: 

COROLLARY 2 - Let L be a Galois extension of K, which is un­

ramified outside a finite set S . 

a) The Frobenius elements of the unramified places of L are 

dense in Gal(L/ K). 

b) Let X be a subset of Gal(L/ K), stable by conjugation. 

Assume that the boundary of X has measure zero with respect to the 

Haar measure J.l of X, and normalize J.l such that its total mass 

is 1. Then the set of places v ¢ S such that F eX has a density 
v 

equal to J.l(X). 

Assertion (b) follows from the theorem, by writing L as an 

increasing union of finite Galois extensions and passing to the limit 

(one may also use Prop. 1 of the Appendix). Assertion (a) follows 

from (b) applied to a suitable neighborhood of a given class of 

Gal(L/K). 

Exercise 

Let G be an .l-adic Lie group and let X be an analytic sub­

set of G (i. e. a set defined by the vanishing of a family of analytic 

functions on G). Show that the boundary of X has measure zero 
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with r e spect to the Haar  lTI e a su r e  of G.  

2. 3.  Rational /.-a dic r ep r e s e ntation s  

L e t  p b e  a n  l-a dic r ep r e s entation of t h e  nUlTIbe r  field K. 

If v E: 2:
K

, and if v i s  unralTIified with r e sp ect  to p ,  we l e t  

P (T) de not e th e polynolTIial det ( l - F T). v,p v, p 

DEFINITION - The /.-adic r e pre s entation p is said to ·be rational 

(resp. integral) if there exists a finite subset S of 2: such that - K 
(a) Any elelTIent of 2:

K - S is unralTIified with respect to p.  

(b) If v ¢ S,  the coefficients of P (T) belong to Q 
v , p 

(resp. to Z ) . 

RelTIark 

Let K '  / K be a finite extension. An l-adic representation p 

of K defines (by restriction) an 1-adic representation p / K' of K ' . 

If p is rational (resp. integral) , then the salTIe is true for p / K'; 

this follows frolTI the fact that the Frobenius elelTIents relative to K '  

are powers of those relative to K . 

ExalTIples 

The 1-adic representations of K given in exalTIples 1, 2, 3 

of section 1. 2 are rational (even integral) representations. In exalTIple 

1, one can take for S the set Sl 
of elelTIents v of 2:K with p = 1; 

v 
the corre sponding Frobenius is Nv, viewed as an elelTIent of UJ." 
In exalTIple s  2 , 3 , one can take for S the union of S

1 
and the 

where A has "bad reduction"; the fact that the corresponding 

Frobenius has an integral characteristic polynolTIial (which is inde­

pendent of 1) is a consequence of Weil's results on endolTIorphisms 

set S
A 

of abelian varieties (d. [4 0 ] and [12 ], chap. VII) . The rationality of 
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the cohomology representations is a well-known open question. 

DEFINITION - Let l' be a prime. p' � l' -adic representation of 

K, and assume that p, p' ar e rational. Then p, p' are said to be 

compatible if the re  exists a finite subset S of �K such that p and 

p' are un ramified outs ide of S and P (T ) = P , ( T) for  -- v,p v,p --

(In othe r words ,  the c haracteri s tic polynomial s of the 

Frobenius elements are the same for p and p ' ,  at least for almost 

all v ' s . ) 

If p :  Gal (K/ K) � Aut(V ) i s  a rational 1-adic representation 

of K, then V ha s a compos ition s e r ie s 

V = V :JVl :J . . .  :JV = 0  o q 

of p - invariant subspac e s  with V./V. 1 (0 < i < q -l )  s iznple  1 1+ - -
(i . e .  i rreducible ) . The 1 -adic r epre s entation p ' of K defined by 

q -l 
V' = � V./V. 1 is semi - s iznple ,  rational, and coznpatible with p ;  . 0 1 1+ 1 =  
it i s  the " s ezni - siznplification" of V. 

THEOREM - Let  p be a rational 1 -adic r epre s entation of K, and let  

l '  be a prizne . Then the re  exis t s  at znost  one (up to i s omorphi szn) 

l' -adic rational repre s enta tion p' of K which i s  s ezni - s iznple and 

c ompatible with p. 

(Henc e there  exis t s  a unique (up to is oznorphism) rational , 

s emi - siznple 1 -adic repre s entation coznpatible with p . ) 

Proof .  Let p� , Pz be s emi - s iznple l' -adic repre s entations of K 
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which are rational and compatible with p .  

We first prove that Tr(pi(g)) = Tr(pz,(g)) for all g E G. Let 

H = G/ (Ker(pp n Ker(pz)); the representations pi, Pz may be re ­

garded a s  representations of H, and it suffices to show that 

Tr(pi(h)) = Tr(pZ(h)) for all h e: H. Let Me K be the fixed field of 

H. Then by the compatibility of pi , Pz the r e  i s  a finite subset S of 

:EK such that for all v € :EK - S, WE: :EM' w I v, we have 

Tr(pi(F w)) = Tr(pZ(F 
w

))· But, by cor. 2 to Cebotarev's theorem 

(d. 2 . 2 )  the F w are dense in H. Hence Tr(pi(h)) = Tr(pZ (h)) for 

all h £ H s inc e Tr.  pi, Tr .. Pz a re continuous. 

The theorem now follows from the following result applied to 

the group r ing /\ = QiH]. 

LEMMA - Let k be a field of characte ri s tic ze ro, let  1\ be a 

k -algebra, and let PI' P2 be two finite -dirnens ional linear rep re ­

s entations of 1\. g PI' P2 are  semi - s impl e  and have the same 

trace  (T r .. PI = Tr c P2 ) ,  the n  they are i s omorphic . 

o . 
For  the proof s e e  Bourbaki, Alg . , ch . 8, §12 ,  n I, prop. 3. 

DEFINITION - For each prime  1 le t  P 1 be a rational l -adic repre ­

s entation of K. The sys tem ( Pl ) i s  said to  be compatible if Pl, Pl ' 

are compatible for any two prime s 1, 1 ' . The sys tem (p  
1
) i s  said 

to be strictly compatible if the re  exists a f inite subset  S of LK 
such that: 

(a) Let S
1 = {vi P

v 
= d. Then , for every viaS u Sl' Pl is 

unramified at v and P (T) ha s rational coeffic ients . 
v, Pl 

(b)  P (T )  = P (T ) g v , S u Sl u 51 ' . v, P1 v, Pl' 
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When  a sy s teITl ( PI) IS s tr i c tly cOITlpatible , the re  i s  a s mall­

e st finite s et S having p rope rti e s ( a )  and (b )  above . We call i t  the 

exc eptional s et of the systeITl. 

ExaITlple s 

The sys teITls of i -adic repr e sentations  g iven in exaITlple s  1, 
2, 3 of s ection 1. 2 are each s t ric tly cOITlpatible . The exc eptional s e t  

o f  the fir s t  one is eITlpty . The exc eptional s e t  of exaITlple 2 ( r e sp .  3 )  

i s  the se t  of plac e s  whe r e  the ell iptic curve ( re sp .  the abelian 

variety )  ha s "bad r educ tion ", cf . [32]. 

Que stions 

1. Let P be a rational i-adic rep r e s entation. Is i t  true that 

P has rational coefficients for  all v such that P i s  unraITlified v , p 
at v? 

A sOITlewhat s iITlilar que stion i s :  

I s  any c OITlpatible systeITl strictly cOITlpatible?  

2. Can any rational i-adic r epre s entation be  obtained (by 

tensor products ,  dir ect  SUITlS, etc . ) froITl one s c OITling froITl i-adic 

c ohoITlology?  

3 .  Given a rational  i-adic r epre sentation p o f  K, and a 

priITle i' , doe s there  exist a rational i' -adic repre sentation p ' of 

K cOITlpatible with p? .... [no:  easy co u nter-exam ples]. 

4 . Let p, p ' be rational  i, i' -adic rep re sentations of K 

which are  cOITlpatible and s eITli - s iITlpl e .  

( i )  If p is  abelian ( i .  e . , if IITl(p ) i s  abelian) , i s  it true th_at 

p ' is abel ian? (We  shall s ee in chapte r III that thi s  is true at lea st 

if p is "locally algebraic " . ) .... [yes: th is follows fro m [63].] 

( ii )  I s  it true that IITl(p )  and IITl(p ' ) are  Lie group s of the 
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same dimension? More optimistically, is it true that there exists a 

Lie algebra � over Q such that Lie (Im( p » = .& �Q 
Q

J.' 

Lie (Im (p l » = � 8
Q 

Q
J.

' ? 

5.  Let X be a non - s ingular pro jec tive variety defined over 

K, and let  i be an intege r .  Is the i -th c ohomology repre sentation 

H�(Xs) semi-simple? Does its Lie algebra contain the homotheties 

if i > l? (When i = 1, an affi rmative answe r to eithe r one of the s e  

que stions would  imply a pos itive solution f o r  the "c ongruenc e sub ­

g roup problem" on abelian varietie s ,  d. [24], §3 . ) -. [yes fo r i=l: 

see [48] an d also [75].] 

Remark 

The concept of an l-adic representation can be generalized 

by replacing the prime 1 by a place }.. of a number field E. A 

}..-adic representation is then a continuous homomorphism 

Gal(K /K} � Aut(V}, where V is a finite-dimensional vector s 
spa ce over the local field E}... The concepts of rational k-adic 

representation, comp atible representations, etc., can be defined in 
a way similar to the 1-adic case. 

Exe rc i se s 

1) Let  p and p I  be two rational , s emi - s imple ,  c ompatible 

r ep re s entations .  Show that,  if Im( p ) is finite , the same is true for 

Im( p l )  and that Ker ( p) = Ker( p ' ) .  (Apply exe r . 3 of 1 . 1 to p '  and 

to U = Ker (p) . )  

Gene ralize this to },,-adic rep r e s entations (with re spect  to a 

number field E). 

2) Let p ( re sp .  pI) be  a rational J. -adic ( r e sp .  l' -adic ) 

representation of K, of degree n. Assume p and pI are c om -

patible. If s E. G = Gal(K/K), let a.(s) (resp. a !(s» be the 
1 1 
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i-th coefficient of the characteristic polynomial of p(s) (resp. of 

p'(s». Let P(X , ... , X ) be a polynomial with rational coefficients, o n 
and let Xp (resp. Xp) be the set of s e: G such that 

P(a (s ) ,  . . . , a (s» = 0 (resp. P(a' (s), . .. ,a' (5» = 0). o n o n 
a) Show that the boundaries of Xp and Xp have measure 

zero for the Haar measure J.l of G (use Exer. of 2. 2). 
b) Assume that J.l is normalized, i. e. J.l(G) = 1. Let T P 

be the set of v e 1:K at which p is un ramified, and for which the 

coefficients a , .. . , a of the characteristic polynomial of F o n v, p 
satisfy the equation P(a , • . • , a ) = O. Show that Tp has density o n 
equal to J.l(Xp), 

c) Show that J.l(Xp) = J.l(Xp). 

2. 4. Representations with values in a linear algebraic group 

Let H be a linear algebraic group defined over a field k. If 

k '  is a commutative k-algebra, let H(k') denote the group of points 

of H with values in k'. Let A denote the coordinate ring (or 

"affine ring") of H. An element f 4i:. A is said to be central if 

f(xy) = f (yx) for any x, y E: H(k') and any commutative k-algebra 

k ' .  If x e: H(k'), we say that the conjugacy class of x in H is 

rational over k if f(x) e: k for any central element f of A. 

DEFINITION - Let H be a linear algebraic group over Q, and let 

K be a field. A continuous homomorphism p: Gal(K sl K) --:;:. H(Ql) 

is called an J.-adic representation of K with values in H. 

(Note that H(QJ.) is, in a natural way, a topological group and even 

an J.-adic Lie group. ) 

If K is a number field, one defines in an obvious way what it 
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means for p to  be unramifie d  at  a place V E  � ; if wlv ,  one de­K 
fines the Frobe nius e l em ent F E: H(Q) and it s conjugacy c la s s  w, p I. 
F We say, as b efor e, that  p is rational if v , p  

(a ) there i s  a finite s e t  S of �K such that p i s  unramified 

outside S, 

(b ) if  v ¢ S, the c onjugacy cla s s  F i s  rational over  Q .  
v,p 

Two ra tional rep r esentations p, p' (for pr ime s 1, 1 ' ) are  said to 

be compatible if there exists a finite subset S of � such that p K 
and p' are unramified out s ide S and such that fo r any c entral ele -

ment f E A and any v E �K - S we have f(F ) = f(F ,) . One v ,p v , p  
def ine s in the same way the notions of c ompatibl e  and stric tly  

c ompatible sys tems of  rational representations .  

Rema rks 

1 .  If the algebraic g roup H is  abelian, then condition (b)  

above means that F (which  i s  now an element of  H(Ol» is 
v,p 

rational ove r 0, i. e .  belong s to H (O). 

2. 
let  GLV o 

Let V b e  a finite -dimens ional vec tor space over  0,  o 
be the linear algebraic group ove r  Q whos e  group of 

and 

point s in any c ommutative Q -alg ebra k is Aut( V 0 3Q k); in parti ­

cular ,  if V1 = V 0 �O 01' then GL V ( 01) = Aut( V
1
)· If 

1/>: H�GLV o 

o 
i s  a homomorphi sm of linear algebraic group s over 

0, call 1/>1. the induc ed homomorphi sm o f  H(Ol) into 

GLV (01) = Aut(V1)· If p is an 1-adic representation of Gal(K/K) 
o 

into H(QL)' one get s  by composition a linear 1 -adic repre s entation 

q, c p : Gal(K / K) � Aut(V1) . U sing the fa ct that the coefficient s of I. s 
the characte ristic polynomial are  c entral functions ,  one s ee s that 
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4>L 0 P is rational if p 1S rational (K a number field). Of course, 

compatible representations in H give compatible linear representa­

tions. We will use this method of constructing compatible repre­

sentations in the case where H is abelian (see ch. II, 2. 5 ) . 

2 . 5 .  L-functions attached to rational representations 

Let K be a number field and let P = (PL
) be a strictly com­

patible system of rational l-adic representations, with exceptional 

set S. If v ¢ S, 

det(l - F T ) ,  v, P1 
denote by P (T )  the rational polynomial v, P . 

for any L � P ; by assumption, this polynomial v 

doe s not depend on the choice of L. Let s be a complex number. 

One has: 

P (Nv) -s) = det(l v, p 

= IT (1 
i 

s >--. I (Nv) ), 
1 ,  v 

where the >--. I S are the eigenvalues of F (note that the >-- I S 
1, V v, P i, v 

are algebraic numbers and hence may be identified with complex 

numbers). Put: 

L (s) = n 
P v,. s 

co 

1 
P ((Nv) -s) v, p 

This is a formal Dirichlet series s � a In , with coefficients in Q .  
n=l n 

k In all known cases, there exists a constant k such that I >--. I < (Nv) , 
1, v -

and this implies that L is convergent in some half plane R(s) > C ;  
P 

one conjectures it extends to a meromorphic function in the whole 
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plan e .  W h e n  P C OITl e s  f rom l -adic c ohoITlol og y ,  the r e  a r e  s o me 

fu r the r c onj e c tu r e s o n  th e z e r o s  and p o l e s of  L , d. T ate [36 ] ;  
P 

the s e , a s  indic a t e d  by Tat e ,  ITlay be appl ied  t o  ge t  equidi st r ibut ion 

p r ope r tie s of the F r obeniu s  e l e ITl ent s ,  d. Appendix . 

R e ITla rks 

1 ) One can al so  a s soc iate L -func tions to E -rational sy s teITls  
o f  A -adic r ep re s entations ( 2. 3 ,  Remark) ,  whe re  E i s  a numbe r  

field, onc e a n  eITlbedding o f  E into C ha s been chosen . 

2) W e  have g iven a definition of the local factors  of L only 
P 

at the place s v ¢ S .  One can give  a ITlore  s ophi sticated definition in 

which local factor s are  defined fo r all plac e s ,  even (with suitable 

hypoth e s e s )  for p r ime s at infinity (gaITlma fac tor s ) ;  thi s  i s  nec e s sary 

when one wants to study func tional equations . W e  don ' t  go  into thi s 

he r e .  � [ see  [ 5 1 ] . [ 7 4 ] . ] 
s 

3 )  Let cP ( s )  = � a / n be  a Dirichlet s e rie s . .  U s ing the n 
theo rem in 2. 3 ,  one s e e s  that the re i s  (up to is omorphism) at mo s t 

one s emi - s imple  sy stem P = (PI) ove r Q such that Lp = cP o  
Whethe r the r e  doe s exi s t  one ( fo r  a given t/l)  i s  often a quite in -

tere sting que stion . F or in stance ,  i s  it so for RaITlanujan ' s  
00 s cP ( s )  = � T (n)/  n , whe re  T (n) i s  defined by the identity 

n= 1 
00 00 

x n ( 1  - xn/4 = � T (n) xn ? 
n= l n= l 

The re is  cons ide rable  nume rical evidence for thi s ,  ba sed  on the c on ­

g ruenc e p roper tie s of T (Swinne rton - Dye r ,  unpublished) ; of c our se ,  

such a P would be  o f  dimens ion 2, and i t s  exc eptional se t  S would 

be empty . � [ p roved  b y  D elign e :  see  [ 4 9 ] . [ 5 0 ] .  [ 6 5 ]  • . . .  J 

More g ene rally, the re s e ems  to be  a clo s e  connec tion between 



1 -18 AB ELIAN £ -ADI C  R EPRESENT A TIONS 

n 
mo dula r fo r m s , . s  u c h a s L: 7 ( n} x ,  and rat ional ( o r  algebraic )  

£ -adic r ep r e s e ntat ion s ;  s e e  for  in s tanc e  Shimura [ 3 3 ]  and W eil [4 5 ] .  

� [ s e e  a lso  [ 4 9 ) , [ 5 1 ) , [ 6 5 ) , [ 6 6 ) , [ 6 8 ) ,  [ 8 4 ) . )  

Example s 

1 .  Ii G acts through a finite g roup , L is an Artin p 
( non abelian) L - s e rie s ,  at lea st up to a finite number of fac to r s  

(d .  [1] ) . Al l  Artin L - series  are gotten in  this way, provided of 

c our s e  one use s E - rational repre s entations ( d .  Remark 1 ) and not 

m erely rat io n al o n es . 

2 .  If p is the system assoc iated with an elliptic curve E 

(d .  1 .  2 ) .  the corr e sponding L -func tion give s the non -trivial part of 

the zeta function of E .  The symmetric powers  of p give the zeta 

functions of the products E X  • . .  X E,  d. Tate [36] . 

APPENDIX 

Equipartition and L -func tions 

A. 1 .  Equipartition 

L e t  X be a c ompa c t  topo l o g i c a l  sp ac e  a nd C ( X )  th e B ana c h  

space  of c ontinuou s ,  complex -valued, functions on X, with its u sual 

norm I I f l l  = Sup I f (x) l . 
X E:  X 

For each x e: X let 0 be the Dirac x 

mea sure as s oc iated to x ;  if f € C(X) , we have 15 ( f )  = f (x) . x 
L e t  (xn)n>l b e  a s eque nc e of p o int s of X . F o r  n >  I ,  l e t  

J-l n = ( 15 + • • •  + 0  l / n  
Xl xn 
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and l e t iJ. be a R a d o n  m ea s ur e on X ( i .  e . a c o ntinuou s  l inear  f o r m  

o n C ( X ) ,  d. Bourbaki, Int. , chap. III , § l ) .  T h e  s eque nce ( x ) i s  
n 

said to be iJ. -e quidistributed, or iJ. -uniforml y distributed, if iJ. � iJ. n 
weakly a s  n -..;> co ,  i .  e .  if iJ. ( f )  --..;;. iJ. ( f )  a s  n � co for any n 
f E: C ( X ) . Note that this implies that iJ. is positive and of total mas s 

1 .  Note al s o  that iJ. (f)  -..;> iJ. (f )  means that n 

iJ. ( f )  = 1 n 
l im - 1:: f(x . ) 

n-»co n i=  1 1 

LEMMA 1 - Let (c/J  ) be a family of continuous functions on X with -- a 
the property that the ir  linear c ombinations a re  dense in C(X) . Sup -

pas e that , for all a ,  the s equenc e (p (c/J » has a limit . Then n a n>l 
the sequenc e (xn) is equidi stributed with re spect to some measure 

iJ. ;  it is  the unique measure such that iJ. (c/J ) = 
a 

l im iJ. (c/J ) for all a .  n a n-»co 

If f e C (X ) ,  an  argument us ing equic ontinuity shows that the 

sequence (iJ.  (f» has a limit iJ. (f )  , n which i s  continuous and linear in 

f ;  hence the lemma . 

PROPOSITION 1 - Suppo se that (x ) is  iJ. -equidis tributed. Let U be n 
a subs et of X who se boundary ha s iJ. -mea sure ze ro, and, for all n, 

let  nU be the number of 

lim (nUl n) = iJ. ( U ) .  
n-»co 

m < n such that ·x e U .  
m 

Then 

Let UO be the inter ior  of U .  o We  have iJ. (U ) = iJ. (U) . Let 
o 

E > O .  By the definition o f  iJ. (U ) the r e  i s  a continuous function 

IjJ E C(X) ,  0 � 1jJ  � l , with c/J = 0 on X - UO and iJ. (c/J ) � y (U) - E .  
Sinc e iJ. ( cf»  < n I n we have n - U 
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lim inf nU/ n :::' I b n  J.l. n( cP ) = J.I. ( cP ) :::' J.I. (U ) - £ , 
n�co n�co 

f r om which we obtain lim inf nUl n :::' J.l (U) . The same argument 

applied to X - U shows that 

lim inf ( n - nU ) I n :::, J.I. (X - U) . 

Henc e lim sup nUl n < J.I. (U ) < lim inf n I n,  which implies the propo -- - U 
s ition . 

Example s 

1 .  Let X = [ 0 . 1 ] .  and le t  J.l be the Lebe sgue measur e . A 

s equenc e  (x ) of point s of X i s  J.I. -equidi stributed if and only if for n 
each inte rval [a ,  b ] ,  of  length d >  ° in [ 0 , 1 ]  the number  of m < n 

such that x £ [a , b]  i s  equivalent to dn as n ----> co .  m 
2 .  Let G be a c ompact g roup and le t X b e  the spac e of 

c onjugacy c las s e s  of G ( i .  e .  the quotient spac e of G by the equi ­

valenc e  relation induc ed by inner automorphi sms of G ) .  Let J.I. be  

a mea sur e on  G; it s image of  G ----> X i s  a measur e  on X ,  which 

we al so  denote by J.I. .  W e  then have 

PROPOSITION 2 - The s equenc e (x ) of elements of X is n -
J.I. -equidi s tributed  if and only if for any irr educ ible characte r X of G 

we have 

1 n 
lim r; X (x . )  = J.I. (X ) . 

n�co n i= l 1 

The map C(X) � C(G ) i s  an i somorphi sm of C(X) onto the 

space  of c entral func tions on G; by the Pete r -Weyl theorem, the 
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i r r e ducible cha ra c te r s X of G generate a den s e  sub spac e of C (X) . 

Hence the p ropo sition follows f rozn leznzna 1. 

COROLLAR Y 1 - Let  I-' be the Haar znea sur e of G � I-' (G) = l .  

Then a s e quenc e (x ) o f  eleznent s  o f  X is I-' - e quidi s tributed if and n -
only if for any i r r educ ible cha rac te r  X of G ,  X f:. 1, we have 

1 n 
lizn - !: X (x . ) = 0 

n�CX) n i= l 1 

This follows frozn Prop . 2 and the following fact s :  

I-' (X ) = 0 if X is  i r reduc ible f:. 1 

I-' ( 1 ) = 1 . 

COROLLARY 2 - (H .  Weyl [46 ]) Let G = R/ Z ,  and let I-' be the 

norznalized  Haar znea sure on G. Then (x ) i s  I-' -equidistributed if -- n 
and only if for any integ e r  zn f:. 0 we have 

27Tznix n 
!: e 

n<N 
= o (N) (N ---> (0) • 

For the proof ,  it suffic e s  to reznark that the irreduc ibl e 
. 27Tznix characte r s  of R/ Z are the znappmg s x ..........-> e (zn e; Z ) .  

A. 2 . The c onnec tion with L -functions 
Let G and X be as in Exaznple 2 abov e :  G a coznpac t group 

and X the space  of its c onjugacy clas s e s .  b e  a Let x ,  v Ei !: ,  v 
family of elements of X ,  indexed by a denume rable s et !: ,  and let 

v .,........:;> Nv be a function on !: with values  in the set of intege r s  � 2 .  
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1 
W e  make the following hypo the s e s :  

(1) The infinite p roduc t n - s  v E.  � 1 - (Nv )  
c onverge s for every 

S EO C with R( s )  > I ,  and extend s  to a meromorphic func tion on 

R ( s ) :::' l having ne ithe r z e ro  nor pole exc ept for a s imple pole at 

s = 1. 
( 2 ) Let p be an irreduc ible repr e sentation of G, with 

charac te r X , and put 

L( s ,  p) = 1 n - s  v € � de t ( l  - p (x  ) (Nv) ) v 

Then thi s product conve rge s fo r R( s )  > I ,  and extends  to a me ro ­

morphic func tion on R( s ) :::' l having ne ither zero  nor pole exc ept 

pos  s ibly for s = 1 .  

The o rder of L( s ,  p )  a t  s = 1 will b e  denoted by -c • Hence, 
X 

if L( s ,  p )  has a pole ( r e sp .  a z ero )  of order  m at s = I , one ha s 

c = rn. ( re sp .  c = -m) . 
X X 

Unde r the s e  a s surn.ptions , we have : 

THEOREM 1 - (a )  The number of v e: � with Nv < n i s  equivalent 

to n/log n (� n � (0 ) .  
( b )  Fo r  any i r reduc ible  character X of G,  we  have 

� X (x ) = c n/log n + o (n/log n) 
Nv<n v X (n  � (0). 

The the orem re sult s ,  by a standard  argument, f rom the 

theorem of Wiene r -Ikehara ,  d. A. 3 below . 

Suppose  now that the func tion v � Nv ha s the following 

prope rty :  
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( 3 )  The re exi s t s  a c onstant C such that ,  for eve ry n £ Z ,  
the numbe r  o f  v e  L with Nv = n i s  < C .  

One may then ar range the e lement s  o f  1: a s  a sequence 

(vi ) i>l so that i :: j implie s Nvi :: NVj ( in gene ral ,  thi s is po s s ibl e 

in many ways ) . It then make s sens e  to speak about the equidis tribu ­

tion of the sequenc e of x ' s ; u sing ( 3 ) ,  one shows eas ily that this v 
doe s not depend on the cho s en ordering of 1: .  Applying theorem 1 

and propos ition 2 ,  we obtain 

THEOREM 2 - The element s x (v &: L) are equidistributed in X v 
with r e spect  to a mea sure I-' such that for any irreduc ible charac te r 

X of G we have 

I-' (X ) = c 
X 

COROLLARY - The elements x (v &: L) are  equidis tributed for the v 
normalized  Haar  mea sur e of G if and only if c = 0 fo r every 

X 
i rreducible characte r X -F. 1 of G,  i .  e . , if and only if the 

L -functions relative  to the non trivial irreduc ible character s of G 

are holomorphic and non zero  at s = 1 .  

Example s 

1 .  Let G be the Galoi s g r oup of a finite Galoi s extens ion 

L/ K of the numbe r  field K, let  L be the s et of unramified plac e s  

of K, let  x be the Frobenius c onjugacy clas s defined by v � L ,  v 
and let  Nv be the no rm of v ,  cf . 2 . 1 .  

Propertie s (I ) ,  ( 2 ) ,  ( 3 )  ar e sati sfied  with c = 0 for all 
X 

irreducible X -F. 1 .  This i s  trivial for ( 3 ) .  For  ( 1 ) ,  one remarks that 

L ( s , l )  i s  the zeta function of K (up to a finite number  of te rm s ) , 

henc e ha s a s impl e pole at s = 1 and i s holomo rphic on the re st of 
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the line R( s )  = 1, cf . fo r ins tanc e Lang [1 3 ] , chap . VII ;  fo r a pr oof 

of ( 2 ) ,  cf . Artin [1 ] , p .  1 2 1 .  Henc e theorem 2 g ive s the equidistribu -
. '" . tion of the Frobenius element s ,  1 .  e .  the C ebotarev dens 1ty theor em, 

cf .  2 . 2 . 

2 .  Let C be the idMe c las s g roup of a number  field K ,  and 

let p be a c ontinuous homomorphi sm of C into a compact  abelian 

Lie group G.  An easy a rgument ( c f .  ch.  III , 2 . 2 )  shows that p is 

almos t everywhere unramified ( i .  e . , if U denot e s  the group of v 
units at v ,  then p(U ) = 1 fo r almost  all v ) .  Choo s e  1f € K with v v 

v(1f ) = 1 .  If p is unramified at v ,  then p ( 1f ) depends only on v ,  v v 
and we se t  x = A1f ) .  We  make the following a s sumption: v v 

( * ) The homomorphism p map s the g roup CO of id� les  of 

volume 1 onto G. 

(Recall that the volume of an id�le a = (a  ) is defined as the v 
produc t  of the normaliz ed  absolute values  of its component s  

cf. Lang [13J o r  Wei! [44 J. ) 
a , v 

Then, the elements x are  uniformly di stributed in G with v 
r e spec t  to the normaliz ed  Haar mea sure .  This follows  from theorem 

1 and the fac t  that the L -func tion s r elative to the i rreduc ible 

characte r s  X of G are  Hecke L -func tions with Grtfs sencharacte r s ;  

the se  L -functions are holomorphic and non -zero for R( s ) :: 1 if 

X #. 1 ,  s e e  [13 J ,  chap . VII. 

Remark 

This example ( e s s entially due to Hecke ) i s  g iven in Lang 

( loc . c it . , ch. VIII , §5 )  exc ept that Lang has replaced  the c ondition 

( * ) by the c ondition "p is surj e c tive " ,  which i s  insuffic ient .  This 

led him to affirm that, for example , the s equence  (log p )  (and also 
the s eque nc e (log n» i s  unif o r m.1y distr ibute d modulo 1 ;  how ev e r ,  
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one knows that thi s sequenc e i s  not uniformly di stributed for any 

measure on R/ Z (d. Polya -Szegtl [2 2 ] , p .  1 7 9 -18 0 ) .  
3 .  ( Conjec tural example ) .  Let E b e  an elliptic curve defined 

ove r a number  field K and le t  L be the s e t  of finite plac e s  v of  K 

suc h  that E ha s g ood reduction at v, d. 1 .  2 and chap . IV . Let 

v € L ,  let 1 F. p and let F be  the Frobenius conjugacy cla s s  of v v 
v in Aut(T1(E» . The eigenvalue s of F v are  algebraic numbe r s ;  

when embedded into C they g ive conjugate c omplex number s  

7r , ; with 1 7r  I = Nvl/ 2 . We may write  then v v v 

/ - i4J 7r = (Nv )l 2 e v with 0 < 4J < 7r 
V - v -

On the othe r hand, let  G = SU( 2 )  be the Lie group of 2 X 2 
unitary matric e s  with dete rminant 1 . Any element of the spac e X of 

conjugacy clas s e s  of G contains a unique matrix of the form 

(e 
i4J 0 " IP," 0 � 4J � 7r .  The image  in X of the Haar measure of G 

� 0 e -l� 2 2 i s  known to be - s in 4J d4J . The i rreduc ible r epre sentations of G 
7r 

are  the m -th symmetric power s  P of the natural repre sentation m 
PI of degree 2 .  

Take now for x the element of X corre sponding to the v 
angle 4J = q, defined above . The corre sponding L function, rela ­v 
tive to P , i s :  m 

If we put: 

a= m 
L ( s )  = n n Pm v a= 0 

1 
i (m - 2a)q, v - s  1 - e (Nv) 
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we  have  

ABELIAN l -ADIC REPRESENTATIONS 

a= m 1 
= n n 

v a= O 

= L 1 ( s  - m/ 2 )  m 

The func tion L 1 ha s b e en conside r ed by Tate (36 1 . He c onjec ture s  m 1 that L • m for m >  1 .  i s  ho1omorphic and non zero  for R( s )  '::' 1 +  m/ 2. 

provided that E has no complex multiplication. Granting this con-

jectur e .  the corollary to theor em 2 would yield the uniform dis tr ibu ­

tion of the x I s ,  or ,  equivalently, that the angle s  q, of the v v 
Frobenius el ements are  uniformly distributed in [ 0 . 11' 1 with re spect 

to the measure � s in2q, dq, ( l lc onjectur e of Sato -Tate " ) . 
11' 

One can expect  analogous re sults to be true for othe r l -adic 

rep re sentations .  

A. 3 .  Proof of theorem 1 

The logarithmic derivative of L i s  

L ' / L = - 2:: 
v , m>l 

m X (x )log(Nv) v 

m wher e  x i s  the c onjugacy c la s s  consisting of the m -th powers  of v 
elements in the cla s s  x • One see s this by wr iting L a s  the product v 

n 
i ,  v 1 _ A( i) (Nv) - s  

v 

1 
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( i )  
wh e r e  the :\ a r e  th e e ig e nv alue s o f  x in the g iven r e p r e s e ntation.  

v v 
Now th e s e r i e s 

L: lo g ( Nv)  

v ,  m> 2 I (Nv)
m s  I 

c onve r g e s fo r  R ( s )  > 1/ 2 .  Ind e e d, i t  suffi c e s  t o  show that 

� lo g ( Nv )  
..., --'o:...:....--=- < 00 a 
v ( Nv) 

if a > 1 ;  but thi s  s e r i e s  i s  majo r ized  by 

1 
(Constant) X 1; --­

v (Nv)a+£ 
( £ > 0 ) • 

On the other hand, the c onvergenc e for a > 1 of the product 

shows that  

n __ 
l 
__ 

-a 
v 1 - (Nv ) 

1 L: --- < 00 a 
v (Nv )  

for  a > 1 ;  henc e our  a s s ert ion .  One can therefore write 

L ' / L = - L: 
x (x ) log (Nv )  v 
----- + 9>( s )  , 

(Nv) s v 

1 whe re  9> ( s )  i s  ho1omorphic fo r R ( s )  > 2 .  Mor e over ,  by hypothe si s ,  
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L '  / L can be extended to  a me r OITlO rphic func tion on R(  s) :::. 1 which 

is holomorphic exc ept po s s ibly for a s imple  pole at  s = 1 with 

r e s idue - c . X One may then apply the Wiene r -Ikehara the orem 

(d. [ 1 3 ] ,  p .  1 2 3 ) : 

T HEOREM - Le t  F ( s )  = � a / nS be  a Di richl et s e rie s with c omplex -- n 
c oeffic ie nts . Suppo s e  the r e  exi s t s  a Dirichle t  s er ie s F + ( s )  = � a + / n s n 
with p o s itive  r eal coeff ic ients such that 

+ ( a )  I a I < a for all n; n - n 
(b )  The s e rie s F+ c onverg e s  for R ( s )  > 1 ;  

( c )  The function F+ ( r e sp .  F )  can be extende d  t o  a me r o ­

morphic func tion o n  R( s ) :::' l having no pole s exc ept ( r e sp .  exc ept 

pos s ibly) fo r a s imple pole at  5= 1 with residue c+ > 0 ( r esp . c) .  

T hen 

a = cn + o(n) n 

(wher e  c = 0 if F i s  holomorphic at s = 1 ) .  

One applie s this theorem to 

F( s )  
X (x ) log (Nv) 

= 
_ � __ v ___ _ 

v (Nv) s 

+ and we take for F the s e r ie s  

d � log (Nv) , 
(Nv) s 

(n  � (0 ) , 

whe re  d i s  the degree  of the given rep r e s entation p ;  this i s  pos sible 
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s inc e X (x ) i s a s um of d c o mp l e x  numb e r s  of a b s ol ute value  1 ,  
v 

henc e I X (x ) I < d ;  mo r e ov e r , the  s e r i e s  
v -

� log (Nv)  
s v (Nv) 

diff e r s f r om the loga r ithmic der ivative of 

n __ 

l 
__ 

1 _ (Nv ) - s  

by a function which i s  holomorphic for R( s )  > 1/ 2 a s  we saw above .  

Hence by the Wiene r -Ikehara theo rem we have 

� X (x )log (Nv) = c n + o ( n ) 
Nv<n v X (n --...;. co) . 

Consequently, by the Abel summation trick (d .  [13 ] , p .  124 , p rop . I ) ,  

� X (x  ) = c n/ log n + o (n/log n) 
Nv<n v X 

and in particular , 

Henc e , 

� 1 = n/log n + o (nllog n) 
Nv<n 

( � X (x » /( � 1 ) --...;. c 
Nv<n v Nv<n X 

a s 

a nd we may apply p r op o s it ion 2 to conc lude the p roof .  

(n  --...;. co ) ,  

(n --...;. co) . 

n --...;. co, 

q .  e .  d .  





CHAPTER II 

THE GROUPS � 

Throughout this chapter , K denote s an algebraic number field. 

We as s oc iate to K a pr oj e c t ive family (S ) of c ommutative alge ­m 
braic groups over  Q ,  and we show that each S g ive s rise  to a m 
s tr ic tly compatible system of rational 1 -adic repre sentations of K .  

In the next chapter , we shall s e e  that all " locally algebraic " 

abelian rational repre s entations are of the form de s cribed here .  

1 .  1 . The torus T 

§ 1 .  PRELIMINARIES 

Le t  T = RK/ Q 
(Gm/ K) be the algebraic group over 0 , ob -

tained from the multiplicative group G by re s tr iction of s calar s m 
from K to Q ,  d. Wei! [43 ] ,  § 1 .  3 .  If A is a commutative Q -
algebra , the points of T with value s  in A form by definition the 

* 
multiplicative group (K QiOQA) of invertible elements of K �Q A. * 
In particular , T (a) = K If d = [K: oJ , the group T i s  a torus of 

dimens ion d j this means that the group T / Q = T Xo Q obtained 

from T by extending the s calars from 0 to Q ,  is is omorphic 
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to Gml Q X • . .  X Grn l Q (d time s ) .  Mor e  pre c is e ly ,  let  r b e  the 

s e t of  embe dding s of K into Q ;  each a E r extends to a homomor ­

phism K � 0 0 � 0 ,  hence  defines  a morphism [a] :  T I Q � G ml Q . 
The c ol lection of all [a] 1 s g ive s the is omorphism 

T I Q � Gm l Q X • • • X Gm l Q . Moreover , the [a] 1  s form a bas i s  

o f  the character  g roup X (T )  = HomQ(T I Q ' Gml Q ) of T. Note that 

the Galo i s  g roup Gal (QI 0) acts in a natural way on X (T) , viz .  by 

permuting the [a] 1  s .  (For the dic tionary between tor i  and Galois 

module s ,  s ee for instance  T. Ono [21] . ) 

1 .  2 .  Cutting down T 
* 

Let E be  a subgroup of K = T (0) and let E be the Zar iski 

c lo sure  o f  E in  T . Us ing the formula E X E = E X E ,  one s e e s  

that E i s  an  algebraic subgroup of T .  Let T E be the quotient 

g roup T I E ; then T E is als o  a torus over  O .  Its character group 

XE = X (T E) is the subgroup of X = X (T )  c ons isting of those  charac -
n 

ter s  which take the value 1 on E .  If h. = IT [a] a denote s a 
a E r  

character of T ,  then XE i s  the s ubgroup of those  h. E X for which 
n 

IT a (x) a = 1 ,  for all x E E .  

Exerc i s e  

a . Le t  K be  quadratic over  0 ,  s o  that dim T = 2 .  Let E 

be  the g roup of units of K.  Show that T E is  of diInens ion 2 (re sp .  1 )  
if K i s  iInag inary (re sp .  real ) . 

b .  T ake for K a cub ic field with one real place and one c om ­

plex one , and l e t  again E be  its g roup of units (of rank 1 ) . Show 

that dim T = 3 and diIn T E = 1 .  
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(For more example s ,  s e e  3 . 3 .  ) 

1 .  3 .  Enlarg ing g roups  

II- 3 

Let k be a fie ld and A a c ommutative alg ebraic group over k . 

Let 

(* ) o �  Yl � Y � Y � 0 2 3 

an exact sequenc e of (abs tract) c ommutative groups , with Y 3 finite . 

Let 

be  a homomorph ism of Y 1 into the group of k-rational points of A. 

We intend to construct an alg ebraic gr oup B ,  together with a mor ­

ph ism of algebraic group s  A � B and a homomorphism of Y 2 into 

B (k) such that , 

(a ) the diagram 

is commutative , 

(b )  B is " univer s al "  with r e spect to (a) . 

The univer sal ity of B means that , for any alg eb raic gr oup B ' over  

k and morph ism s A � B ' , Y 2 � B '  (k) s uch that (a) is  true (with 

B re plac e d by B ' ) ,  the r e  exi s t s  a unique algebr aic morphis m 
f :  B � B '  s uch that the g iv e n  maps A � B '  and Y 2 � B (k) can 
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be  obtained  by  c ompo s ing tho s e  of B with f .  (In other words , B 

i s  a push -out over  Y 1 of A and the " c ons tant" gr oup s cheme 

defined  by  Y 2 . ) 

The uniquene s s  of B i s  a s s ur ed  by its univer s ality. Let us 

pr ove its exis tenc e .  For  each y E Y 3 let y be  a r epr e s entative of 

y in Y 2 . If y, y '  E Y 3 '  we have 

y + y' = y+y ' + c (y , y' ) 

with c (y , y '  ) E Y 1 ;  the c ochain c is a 2 - c ocycle defining the exten­

s ion (* ) . Le t  B be  the disj oint union o f  c opie s A o f  A,  indexed y 
by y E Y 3 .  Define a g r oup law on B via the mapping s 

7r , : A X A , --+ A  y ,  y y Y y+y '  

g iven by  addition in A followed by trans lation b y  E (c (y , y '  ) ) . One 

then checks eas ily that B has the required  univer s al property ,  the 

maps  A --+ B and Y 2 --+ B (k) be ing defined as  follows : 

A --+ B i s  the natural map A --+ A followed by trans lation o 
by -c (0 , 0 ) ,  

Y 2 --+ B (k) map s  an element y + z ,  y E Y 3 ' Z E Y 1 onto 

the image of Z in A y 
Note that for any extens ion field k '  o f  k we have an  exact 

s equence  

0 --+ A(k'  ) --+ B (k '  ) --+ Y 3 --+ 0 ,  

and a c ommutative diagram 
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o � y � 
1 

j, 
o � A (k' ) � B (k ' ) � y 3 � o .  

II - 5  

The algebraic gr oup B i s  thus an extens ion of  the I I constant l '  alge -

braic gr oup Y 3 by A. 

Remarks 

1 )  Let k '  be an extens ion of k and A'  = A Xk k '  We may 

apply the above construction to the k '  - algebraic group A'  , with 

re spe ct to the exact sequence (* ) and to the map Y 1 � A (k) � A' (k '  ) . 
The group B I thus obtained is  canonically is omorphic to B Xk k ' 

this follows , for ins tance ,  fr om the explic it c ons truction of B and 

B '  . 

2 )  We will only us e the above c onstruction when char (k) = 0 

and A is  a torus . The enlarged g roup B is  then a " group of multi ­

plicative type " ; thi s  means that , after a suitable finite extens ion of 

the ground field ,  B become s is omorphic to the product of a torus 

and a finite abel ian group .  Such  a gr oup is uniquely determined by its 

character group X (B )  = Homk"(B / k" Gm/ k' ) ,  which is a Galois ­

module of finite type over Z . Here X (B )  c an be  de s c r ibed as the 
- *  

set  of  pair s (tP , X ) ,  where  tP :  y 2 � k is  a homomorphism and 

X E X (A) is such that tP (Yl ) = X (Yl ) for all Yl E Y 1 . Note that this 

g ive s an alternate definition of B .  

Exerc is e 

a ) Let k '  be  a commutative k -algebra ,  with k '  f. 0 , and 

Spec (k l ) connec ted (i . e .  k '  c ontains  exactly two idempotents : 0 

and 1 ) . Show the existenc e of an exac t s equenc e :  
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0 ---7 A (k '  ) ---7 B (k ' ) ---7 Y 3 ---7 0 

b )  What happens when Spe c (k ' ) i s  not c onne c te d ?  

§ 2 . CONSTRUC T ION OF T m AND S m 

2 . 1 .  IdMe s and idMe s - c las s e s 

We defined in Chapter  I ,  2 . 1 the s et � K of finite plac e s  of the 

numbe r  fie ld K .  co Let now � K  be  the set  of equivalence clas s e s  of  

ar chimedian ab s olute value s of  K ,  and let �K be the union of  � K 
co and � K . If v E � K then  Kv denote s the c ompletion of K with 

co r e spect  to v .  For v E � K we have Kv = R or Kv = C ,  and Kv 
is  ultrametr ic  if v E � K . For v E �K ' the gr oup of units of Kv 
i s  denoted b y  U . The idMe group I of K is the subgr oup of v 

* IT K v c ons i s ting of the familie s (a ) with a E U v V v for almost  

VE � K  

al l  v ; it i s  g iven a topology by de cree ing that the subgroup (with the 

pr oduct topology )  

U v 

* * 
be  open .  We embed  K into I by  s ending a E K onto the id� le 

(a ) , whe r e  a v v 
* = a for all v .  The topology induc ed  on K i s  the 

* 
dis c r e te topology. The quotient group C = II K is c alled the id�le -

c las s group of K .  (For al l  this , see  Cas s e l s -Fr�hlich [6 ] ,  Lang [1 3 ] , 

or Weil [44] .  ) 
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Let  S be a finite s ub s et of LK . Then by a modulus of s uppor t  

S we me an a family m = (m ) wher e  the m are integer s  � 1 .  v 
YE S 

V 

If v E L K and m is a modulus of s upport S ,  we let  U denote V , m 
J. 

the c onnected  c omponent of K: if v E L� , the subg r oup of Uv 
c ons isting of thos e u E U for which v (l -u )  > m if v E S ,  and U v - v v 
if v E L

K - S .  The group Um = IT U is an open subgroup of I .  v ,m v 

If E is  the group of units of K ,  let Em = E n Um The subgroup 

Em i s  of finite index in E .  (Convers e ly , by a theorem of Chevalley  

( [8] , s e e  als o [24] , nO 3 . 5 )  eve ry subgroup of  finite index in  E c on-

tairis an E for a suitable modulus m . } m 

* 
Let I be  the quotient II U m m and C m the quotient 

II K U = CI (Image of U in C ) .  m m One then has the exact sequence 

* 
l � K / E � I  � C  � l .  m m m 

The gr oup Cm is  finite ; in fac t ,  the image of Um in C i s  open , 

hence c ontains the c onnected c omponent D of C ,  and the group 

C I  D is known to be  compact (s e e  [13 ] ,  [44] ) .  More over , any open 

subgroup of I c ontains one of the U m I S , hence CI D is  the pro ­

j ec tive l imit of the C m I s .  Cla s s  field the ory (d. for ins tance 

Cas s els -FrOhlich [6 ] ) , g ive s an is omorphism of CI D = l im C - � m 
onto the Galois group Gab of the maximal abe l ian extens ion of K .  

Remark 

A more clas s ical definition of Cm i s  a s  follows . Let IdS be  

the group of  fractional ideals of  K pr ime to S ,  and Ps ,m the sub -

gr oup o f  pr iric ipal ideals (y ) ,  where  y i s  totally pos itive and 
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'{ '=- 1 rrlOd. m (i . e .  '( b e l ong s to U 
V , m 

for all  v E S and 

CD 
V E � K ) ·  Le t Clm 

= Id
S

I P
S , m 

We have  the exact s e quenc e :  

1 ---»- P � IdS � C l
m 

� 1 .  S ,ilt 

a 
For  each � = IT v V 

E IdS ' 
v 1 S 

choos e  an idHe a = (a ) , v with 

a E U v V ,m 
if v E S and v ia ) = a v v if V E � K - s .  

T h e  itnage of a in 1m = II Um depends only on � .  W e  then g e t  a 

hotnotnorphistn g :  IdS � 1 m One che cks r eadily that g extends to 

a c Otntnutative diagratn 

l �  P
s 

� IdS � ,m 
-I, J,g 
::!: 

l � K / E � I m m � 

Cl  � l  m 
Ji 

C � l  m 

and that f :  Clm � Cm i s  an i s otnorphistn ; hence Cm c an be iden ­

tified  with the ideal cla s s  gr oup tnod m (and this  shows  again that it 

i s  finite ) .  

2 . 2 . The groups Tm and S m 
We ar e now in a pos ition to apply the group c onstruction of 1 .  3 .  

We take for exact s equenc e (�, ) the sequenc e 

� I � C  � l  m m 

and for A the algebraic  group T = T I E where  E 

before , 
m m 

T is  the torus RKI Q (G m I K ) defined in 1 . 1 , 

m 
and E m 

i s  as 

i s  the 
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Zar i ski c losure  of E 
m 

in T , d. 1 . 2 .  

The c ons truct ion of 1 .  3 now yields a O - algebraic group Sm 

II- 9 

with an alg ebraic morphism Tm 
£ : I � S  (0) .  The s equenc e 

� S  m and a gr oup homomorphism 

m m 

is exact (Cm be ing identified with the c or r e sponding c ons tant alge ­

br aic group)  and the diagram 

(** ) 

i s  c ommutative . 

Remark 

1 � T (0 ) � S (0 ) � C � 1 m m m 

Let m ' be  another modulus ; a s s ume m ' :: m , i . e .  

Supp ( m ' )  :JSupp ( m ) and m '  > m v - v if v E Supp ( m ) .  From the in-

clus ion U , e U m m one deduc e s  maps T , � T  m m 
I � I whence a morphism Sm ' m '  m � S  m 

and 

Hence the Sm ' s 

form a projective s ystem ; the ir limit is  a proalgebraic gr oup over 0,  

extens ion of the profinite group CI D = � Cm by a torus . 

Exerc is e s  
* 

1) Let E (0 ) be the Zar iski - c1osure of E in K = T (0) .  m m 
Show that the kerne l of £ II U � S (Q) i s  the image of m m m 
E (0) � I I  U m m 
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2 )  Le t H I m ' m be the kernel of S , � S m m where 

a) Show that Hm , 1 m is a fin ite s ubgroup of (S m ' (Q ) )  

and that it is contained in the image of Em ' 
b )  Construct an exact sequence (cf . Exer . 1 )  

2 . 3 .  The canonical 1. -adic representation with values in S m 
Let m be a modulus , and let L be a prime number . Let 

E :  I � 1m � Sm (Q) be the homomorphism defined in 2 . 2 . Let 

1T :  T � Sm be the algebraic morphism T � T � S by taking m m 
points with values in Q L ' 1T defines a homomorphism 

Since K � QL = IT K , 
v l L v the group T (Q L ) can be identified with 

* * 
K L = IT K , and is therefore a direct factor of the idHe group I .  

v l l v 

Let pr L denote the projection of I onto this factor. The map 

a 1 = 1T 1 0 pr 1 : I � T (Q L ) � S m (Q 1 ) 

is a continuous homomorphism. 

:::.; 
LEMMA - a L and E coincide on K 

This is tr ivial from the commutat ivity of the diagram ("� ':' ) of 2 . 2 .  
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Now, let E 1 : I � Sm (Q 1 ) be defined by 

(*** ) 

i .  e .  

- 1  E ia) = E (a)a 1 (a ) 

- 1  
E 1 = E . a 1  

(If a E I ,  wr ite a 1 the 1 -c omponent o f  a .  Then 

- 1  
£ 1 (a)  = £ (a) 1r 1 (a 1 ) . ) 

* 
By the lemma, £ 1 is trivial on K and, hence , defines a map 

C � Sm (Q 1 ) ; s ince Sm (Q 1 ) is  totally disc onnected (it is an 

.u. - u  

1 - adic Lie gr oup ) , the latter homomorphism i s  trivial on the c on ­
nected  c omponent D o f  C .  W e  have alr eady recalled that C /  D 

may be identified with the Galois group Gab of the maximal abelian 
extens ion of K .  So we end up with a homomorphism 

ab 
£ 1 : 

G � Sm (Q 1 ) ' i. e .  with an 1 -adic r epre s entation of K with 

values in Sm (d. Chap . I, 2 . 3 ) . 

This repr e s entation is rational in the s ense  of Chapter I, 2 . 3 .  

More pre c is ely ,  let v I Supp ( m ) ,  
a uniformizing parameter at v ,  

and le't f E I be  an idHe which is v 
and which is  equal to 1 everywhere  

els e ;  let F v = £ (fv ) be the image o f  fv in Sm (Q) .  With the se  nota ­

tions we have : 

PROPOSITION 
a) The repr e s entation E • GQ.b � S - 1 " m 

s entation with value s in S m 

(Q 1 )  is a rational repr e -

b )  E 1 is  unramified outs ide Supp ( m ) U S 1 ' where 

S.1 = {v i Pv = .1 } .  
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c ) !! v � Supp (m ) U S 1 ' th en the F r ob e n ius e l e ment F v ' £ l 

(d. Chap . I ,  2 . 3 )  i s  e qual to Fv E Sm (Q ) . 

P r o of.  It i s  known that th e clas s field i s om orph i s m  C /  D =::.,.. Gab 

map s K (r e s p .  U ) onto a den s e  s ub g r oup of the dec omp o s ition v . ab v 
. .  . Gab ) g r oup of v ln G (r e s p .  onto the lne rha g r oup of v ln . ,'. 

-,' 

and that a uniformizing e l em ent f of K i s  mapp e d  onto the v v 
F r obenius clas s of v .  

p 1= 1 , v 

If v 1 Supp ( m ) and 

cr 
1 (a) = 1 ,  henc e 

a E U v then E (a) = 1 ;  if mor e ov e r  

£ 1 (a ) = 1 and £ 1 i s  unr amified a t  v ;  

this  p r ov e s b ) . F or s uc h  a v ,  we have £ l(f ) = E (f ) = F ; hence  v v v 
�) , and �) follows fr om �) . 

CORO LLARY - The repr e s entations E 1 form a system of strictly 

compatible 1 - adic repr e s entations  with value s in  Sm 

We  als o s e e  that the exc eptional s e t  of th i s  s y stem i s  c ontaine d  

in  Supp ( m ) ; for  an example where  i t  is diffe r ent fr om Supp ( m ) , 

s e e  Exerc i s e  2 . 

Remark 

B y  c ons truction , E 1 : I � Sm (Q 1 ) i s  g iven by 
- 1  x � 7Tl (x ) on the open s ubgroup U 

1 , m 
= IT U 

v l l v ,m 
* 

of K l 

Henc e ,  Im (E 1 )  c onta in s  7Tl ( U ) C  T (Ql ) C S (Q
l

) '  and i s  an 
1 , m  m m 

open subgroup of Sm (Q 1 ) '  Th i s  open s ub g r oup map s onto C 
m 

r emarked above . The s e  prope rtie s imply , in par ticular , that 

1m (£ 1 ) is Zar iski - dens e in Sm 

as  
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Exe r c is e s  

(1 ) Le t K = Q ,  Supp ( m ) = fJ • 

T m = S m 

a) Show that E = { l } , C = { l } , henc e m * m * = G m and S m (Q) = Q , S m (Q 1 ) = Q 1 . 

1 1 - 1 -'  

b )  Show that I i s  the dir e c t  p r o duct of its subgroup s 1m 
* 

and Q he nc e  any a E I may b e wr itten as 

* 
a = u. 'Y u E lIn ' 

'Y E Q . 

Show that , if a = (a ) ,  one has p 

and 

v (a ) 
£ (a) = 'Y = sgn (a ) IT p P P 

00 

c )  Show that 

-1 
P 1 (a) = 'Y ' a 1 

F = p . 
P 

P 

d ) Show that p 1 c oinc ide s with the char acter X 1 of 

Chap . I ,  1 .  2 .  

(2 ) Let K = Q ,  Supp ( m ) = { 2 } and t:n
2 

= 1 . Show that the 

groups F. , C , T  , S  co inc ide with tho s e  of Exerc ise  I ,  hence In m m m 
that the exceptional se t  of the c orre sponding sys tem is empty. 

2 . 4 . Linear repres entations of Sm 
We r e c all fir s t  s ome well known facts on r e pr e s entations . 

a ) Let k be a field of char acte r i s tic 0 ;  let H be an affine 
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c ommutat ive alg ebr aic group ov e r  k .  Let X {H) = Homk{H/ k , Gm / k ) 

b e  th e g r oup of charac te r s  of H (of d e g r e e  1 ) . He r e  we write the 

charac te r s  of X (H) multipl ic ative ly . The g r oup G = Gal (k/ k) ac ts  

on X {H) . 

L e t  A b e  the affine alg eb r a  of H ,  and l e t  A = A �k k be the 

one of H / k . Ev e r y  e lement X E X {H) can be identified with an 

inv e r tib l e  e le m e nt of A .  Henc e ,  by l inear ity , a homomorphism 

a:  k[X {H) ] � A 

whe r e  k[X {H) ] i s  the gr oup algebra of X {H) over  k .  This i s  a 

G -homom o r ph i s m  if the action of G i s  defined by 

s (�a X ) = �s (a ) s (X ) for a E k and X E X (H) . It is  well -known X X X 
(l inear independence of characte r s ) that a is inj ective . It i s  b ij e c -

tive if and only if H is a g r oup of multiplicative type (cf. 1. 3 , re ­

mark 2 ) .  Hence we may identify k[X {H) ] with a sub algebra of A .  

b ) Let V be a finite -d imens ional k-vector spac e and let 

be a l inear repre s entation of H into V .  As sume q, i s  s emi - s imple 

(this is always the ca s e  if H is of multiplic ative type ) .  We a s s ociate 

to q, its  trace 

in Z [X (H) ] ,  

pos ition of X 

where n (q, ) i s  the multiplic ity of X 
_X 

ove r  k . 

in the de com -
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We have e q, (h ) = Tr (q,  (h » for any point h of H (with value in any 

commutative k -alg ebra) . Let RePk 
(H) be the s e t  of i s omorphism 

clas s e s  of linear s emi - s imple r epres entations of H .  If kl is an ex­

tens ion of  k ,  then s calar extens ion from k to k define s a map 
1 

RePk (H) ---+ RePk 
(H / k ) which i s eas ily s e en  to be  inj ective . We s ay 

1 1 

that an element of RePk 
(H / k ) c an b e  defined over  k , if it is  in the 

1 1 

image of this map . 

PROPOSIT ION 1 - The map q, � 

RePk 
(H) and the s et of elements 

s atisfy :  

e cP define s a bijection between 

e = � n X of Z [X (H) ] which 
X ----

(a) e is invar iant by G (i . e .  n = n for all 
X s (X ) 

S E G, X E X (H» . 

(b )  n > 0 for every X E X (H) . 
X -

-

Pr oof. The injectivity of the map cP � e cP i s  well -known (and doe s 

not depend on the c ommutativity of H) .  T o  prove surjectivity , c on -

e ) (i ) 
s ider fir s t  the case  wher e  e has the form e = � X 1 where X 

is  a full se t  of differ ent c onjugates  of a character X E X (H) . If G (X ) 

is the s ubgr oup of G fixing X , then 

(* ) e = � s (X )  
s E G/ G (X ) 

The fixed field k of G (X )  in k is the smalles t  subfield of k s uch 
X 

that X E A � k Cons ider X as  a r epre s entation of degree  1 of 
X 

H / k One gets , by re s tr iction of s calar s to k , a repr e s entation 
X 
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¢ of H of de g r e e  [kX : kJ . One s e e s  e a s ily that the tr ace e ¢ o f  ¢ 

i s  equal to e .  The s ur j e c t ivity of ¢ � e ¢ now follows from th e 

fac t that any e s at i s fy ing (a ) and (b )  i s  a s um of e l e m ents of the 

form (':' ) above . 

CORO L LAR Y - In o r de r th at ¢ l  E Re Pk (H / k ) c an b e  de f ine d ove r k ,  
1 1 

it is ne c e s s ar y  and s uffic i e nt that e ¢ E A i»k kl b e long s to A .  
1 

(c ) We return now to the gr oups S m 

PROPOSITION 2 - Let kl be  an extens ion of k and le t 

¢ E RePk (S I k ) .  
1 m 1 

The following propertie s are equivalent : 

(i ) ¢ c an be define d ove r  k , 

(ii )  For eve ry v .  Supp ( m ) ,  the c oeffic ients of  the character ­

i s tic polynomial ¢ (F ) be long to k ,  v 
(i i i )  There  exis ts a s et l: of place s  o f  k o f  dens ity 1 (d. 

Chapter I ,  2 . 2 )  such that Tr  (¢ (F » )  E k for all V E l: • v 

Proof . The implications (i ) ==:> (i i )  ==:> (iii) ar e trivial . T o  prove 

(i i i )  ===> (i ) we ne ed  the following lemma. 

LEMMA - The s e t  of Frobenius e s  F , V E l: ,  is dens e in S for v m 
the Z ar iski  topology . 

Proof .  Let X be  the  s e t  of  a l l  F I s ,  V E l: ,  and let  1 be a pr ime v 
numb e r . L e t  x CS m 
Z a r i s k i  t o p o l o g y  (r e s p .  

(r e s p .  x1 C Sm (Q1 » the c l o s u r e  of X i n  the 

1 - adic topology) . It i s  c l e ar th at 
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On th e oth e r  han d ,  C eb ota r ev ' s the orem (d. Chapte r I ,  

2 . 2 ) imp l ie s that X J. = Im (£ J. ) (d o 2 0 3 ) .  The s e t Im (£ J. ) , how-

ev e r , is  Z ar i s k i  den s e  in Sm (d o Remark in 2 . 3 ) .  Henc e X = Sm 
which pr ove s the lemma. 

Let  u s  now p r ove that (i i i )  =:> (i ) .  L e t  e <I> b e  the trace of <I> 

in A {i)k k1 , whe r e  A is the aff ine alg eb r a  of H = S
m 

/ k Let 

{ J. a } b e  a b a s i s  of the k - v e c to r s pac e kl , with J. a = 1 fo r  s ome 
o 

index a W e  h ave e ;.. = L:�  � 1. (� e A ) o 'I' a a a hence 

Tr (<I> (h) ) = e ;.. (h) = L: � (h) 1. for all h E H (k ) . Take h = F 
'I' a a 1 v 

with 

V E L: S inc e F belong s to H (k )  we have � (F ) E k for all a v a v 
s in c e  Tr (<I> (F ) )  E k ,  we get  � (F ) = 0 for all a 1= v a v a o By the 

l e mma , the F ' s , V E L: , are Zariski- dens e in H; henc e � = a v a 

for a 1= a and e = � o <I> a belong s to A and (i ) follows from the 

c or ollary to Propos ition 0 1 .  

Exer cis e 

Show that the character s of S cor r e spond in a one -one way 
_ * m 

to the homomorphisms X : I � Q hav ing the following two proper -

tie s : 

(a) X (x) = 1 if x E U m 
(b )  F o r  each embedding a of K into Q 

tegral number n (a) such that 

* 
for all x e K 

X (x) = IT a (x)n (a) 

ae r 

ther e  exists  an in-
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2 . 5 .  1 - adic repr e s entations as s o c iated to a l ine ar repr e s entat ion 

of Sm 

1 )  The 1 - adic  c as e 

Let Y 1. b e  a finite -dirrlens ional 01 -ve ctor spac e and 

q, : S m / 0 1 � G Ly 1 

a l inear repre s entat ion of S m / 01 
in Y L • This  define s a 

homomorphism 

q, : S m (0 L ) � G Ly (0 L ) = Aut (V L ) 1 

which is  c ontinuous for the L -adic topolog ies  of thos e  groups .  

B y  c ompos ition with the map £1 : G
ab 

� Sm (0 1 ) define d  

in 2 . 3 , w e  get a map 

ab 
q, 1 = q, 0 £ L : G � Aut (V L ) , 

i .  e .  an abel ian 1 - adic repr e s entation of K in Y 1 . 

PROPOSITION - a) The r epr e s entation q, 1 i s  s emi - s imple . 

b )  Let V E  �k ' with v , Supp ( m ) and pv fo 1 .  

Then q, 1 i s  unramifie d at V i  the corr e s ponding Frobenius e lement 

F A. E Aut (V
l

) i s equal to q, (Fv ) ,  V ' 'I' 1. 

of Sm (Q ) defined in 2 . 3 . 

where  F denote s the element v 
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c ) The r epr e s entation <P l i s  rational (Chap . I , 2 . 3 )  

i f  and only if <P can be defined  ove r  Q (d. 2 . 4 ) . 

S ince S m i s  a g roup of multiplicative type , all its repres en -

tations can be  b rought to diagonal form on a suitable extens ion of the 

gr ound field ;  hence a) . As s e r tion b ) foll ows from 2 . 3 ,  and as s ertion 

c )  follows from Propos ition 2 of 2 . 4 . 

Remark 

Let us identify rp 1 with the c o r r e s ponding homomorphism of 

the idMe gr oup I into Aut (V 1 ) .  Then 

U 1 ,m = TT 
v l 1 

U 

d)  K e r (rp 1 ) c ontains U if v t Supp ( m ) , p 1= 1 . v ,m - v 
e )  Let rp T : T / Q � GLy b e  defined by c ompo s ing 

1 1 

If x b e long s to the open s ubgr oup 

v , m  
of T (Q 1 ) ' one has 

The s e  pr ope r tie s follow r e adily fr om tho s e  of 
E 1 . 

2 )  The r ational cas e 

Let now Y b e  a finite dimens ional ve ctor space over o 
Q and rp : S � G Ly a l inear repr e sentation of S For o m m o 

e ach p r ime numb e r  1 we may apply the p r e c e ding c ons truction to 

the r epr e s entation <po / 1 : S m I Q 1 
� GLy 

1 
' whe r e Y 1 = Y o QI) Q 1 ; 
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ab we then ge t  an 1. -adic repr e s entation q, 1. :  G � Aut (V 1. ) . 

THEOREM - 1) The q, 1. fOrIn a s tr i c tly c ompatible sys tem o f  ration ­

al abe lian semi - s imple r epr e s entat ion� . It s exceptional s e t  is c on ­

taine d in Supp ( m ) . 

2 )  For e ach v 1 Supp ( m )  the Frobenius element of v 

with r e s pec t  to the sys tem (q, 1. ) is  the e lement q, (F ) of Aut (V ) . - - 0 v - 0 

3 )  Ther e  exis t infinitely many pr ime s 1. such that q, 1. 
i s  diagonalizable ove r  Q 1. • 

The fir s t  two as s e r tions follow dir e c tly fr om the pr opo s ition 

above . T o  pr ove the third one , note fir s t  that the re  exists a finite 

extens ion E of Q over  which q, become s diagonalizable . If 1. is o 
a p r ime number  which spl its c ompletely in E ,  one c an embed  E 

into Q
1 

and this shows that q, 1. is  diagonalizable . As s e r tion 3 )  now 

follows from the well -known fac t that there  exis t infinitely many such 
v 1 (thi s  is , for instance ,  a c on s equenc e of Cebotarev ' s  theorem,  cf .  

Chap . I ,  2 . 2 ) .  

Remark 

The Frobenius e lements q, (F ) E Aut (V ) can al s o  be  define d o v 0 
us ing the homomorphism 

q, 0 £ :  I � S (Q) � Aut (V ) . o m 0 

Note that the ir  e ig envalue s generate a finite extens ion of Q ; 

inde ed  they are c ontained in any field over  which q, can be  br ought o 
in diagonal form. 
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1 )  Let <I> : S o m be  a l inear repr e s entat ion of Ebt ' 

and let  1 be  a pr ime nurn.ber .  

a ) Show that the Z ar iski c losur e  o f  1m (<I> 1 ) i s  the alge ­

braic group <I> (S ) . (Us e  the fact that 1m (E 1 ) is Zariski dens e in o m 
Sm d. 2 . 3 . ) 

b )  Let  �m be  the Lie algebra of Sm and <1>0 (!m ) be  

its image by <I> , i .  e .  the · Lie algebra  of  <I> (S ) .  Show that the Lie o 0 m 
algebra of the 1 - adic Lie gr oup 1m (<I> 1 ) i s  <1>0 (! m ) � Q 1 (Us e  the 

fact that 1m (E1 ) is open in Sm (Q 1 ) , cf .  2 . 3 . ) 

2 )  a) Show that the r e  exis ts a unique one -dimens ional rep-

r e s entation 

N' S • m � G 
m 

* 
such that N (F) = Nv E Q for all v � Supp ( m  ) .  

b ) Show that the morphism T � Sm � G
m 

i s  the one 

induced by the norm map from K to Q 

c )  Show that the 
1 

-adic repr e s entation define d by N is 

i s omorphic to the repres entation Y 1 (fL) define d in Chap .  I ,  1 .  2 .  

2 . 6 .  Alternative construction 

Let <1>0 : Sm � G� be as in 2 . 5 . 
o 

If we c ompose  <I> with 
o 

the map E :  I � S (Q) defined in 2 . 2 , we obtain a homomorphism m 

4>0 0 E :  I �  GLy (Q) = Aut (Vo
) ' 

o 
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C onve r s e ly :  

PROPOSITION - Let f :  I � Aut (V ) be  a hom omorph i s m .  There  -- 0 

exists a rP o : Sm � GLy 
o 

such that rP 0 E = f if and only if the 
o 

following c onditions ar e s at isfied :  

(a) The ke rnel of f contain s  Um 
(b )  There  exis ts an algebraic homomorphism 

* 
such that I/I (x) = f (x )  for eve ry x c:  K = T (Q ) . 

Moreover ,  such a rP
o 

i s  unique . 

Proof. The ne c e s s ity of the c onditions (a) and (b )  i s  tr ivial . Con­

ve r s ely ,  if f has pr opertie s (a) , (b) , it define s a homomorphism 

II Um � Aut (V 0) . On the other  hand , s ince f and 1/1 agree  on K* 

the morphism 1/1 is equal to 1 on Em = K::' n Um ' hence on its 

Z ar iski - c 1osure  Em This means that 1/1 factor s thr ough 

By the univer s al pr oper ty of S (cf .  1 . 3 and 2 . 2 ) , the maps  - m 
0 -

I I  tIn � GLy define an algebr aic morphism 
o 

and one checks eas ily that rP has the requir ed  o 

pr oper tie s ,  and is unique . 

Remark 
S inc e U m i s  open , prope r ty (a) implie s that f is  c ontinuous 
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with r e s pect  to the dis c r ete topology of Aut (V ) .  Conver s ely , any 
o 

c ontinuous hoznoznorphi s zn  f: I � Aut (V ) is tr ivial on s ozne o 
U . 
m ' 

znoreove r ,  the r e  is a s znalle s t  s uch m ; it is called the c onductor 

of f .  

Exe r c i s e  

Le t m b e  a znodulus and l e t  Y be a finite dizne ns i onal o 
Q -vector s pac e . F o r  e ach v .  Supp ( m ) let  F be an eleznent of v 
Aut (V ) .  AS SUIlle o 

(a ) The F I S c oznznute pairwis e .  v 
(b )  The r e  exi s ts an algebr aic znorphiszn 

* 

s uch 

that 1/; (0: )  = TTF v (o: ) 
v for 0: E K , 0:  = 1 (znod m ) , and 0: > 0 at 

e ach r e al plac e . 

Show that the r e  exists  an alg eb r aic znorphiszn If> : S � GLy o m 

for which the F r ob enius e leznents are equal to the F I S . V 

2 . 7 .  The r e al cas e 

o 

The pr e c e d ing c ons tructions ar e r elative to a g iven prizne 

nUInb e r  1 . Howev e r , the y  have an archizne de an analogue , as follows : 

Let 11': T � S
m 

b e  the c anonic al znap define d in 2 .  3 ,  and let 

11' 
co 

T (R) � Sm (R) 

b e  the c or r e s ponding hoznoznorphiszn of r e al Lie g r oups . Sinc e 
* * 

T (R) = (K Cil R) = IT K we c an identify T (R) with a dir ect  
co v V E �K 

factor of the idele g r oup 1 .  L e t  pr b e  th e proj e c tion o n  this 
co 
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factor ; the map 

i s  c ontinuous , and one checks as in 2 . 3 that 
* 

on K 

by 

One may then define a map 

E I � S (R )  
00 m 

- 1  E (a) = E (a )a (a ) . 00 00 

a 
00 

co inc ide s with E 

One has E (a) = 1 if 
00 

a E Kt.c , hence E may be viewed as a homo -00 * 
morphism of the id"ele clas s g roup 

S m  (R) . 

C :: II K into the real Lie group 

The main differenc e with the " finite " case  is that E is  not 00 
tr ivial on the connected c omponent of C ,  henc e has no Galois group 

interpretation. 

When one c ompose s  E : C � S (R) with a complex charac -
00 m • 

te r S m I C � Gml C '  one gets  a homomorphism C � C�' , i .  e .  

a GrOs s encharakte r of K ,  in the s ense  of Heeke . It is eas ily s een  

that the character s  obtained  in  thi s  way co inc ide with the 

" GrOs s encharakte r 

c onductor divide m 

of type (A ) " o of Weil (d. [ 3 5 ] ,  [41] ) ,  whose  
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Exerc i s e  

Le t 

e :  1 �  S m (R) X ITs (0 1 ) 
L m 

be  the map defined by E and the 
co 

a) Show that the image of e is c onta ined in the subgr oup 

II - 25 

S (A) of S (R) X ITs (0 1 ) ,  wher e  A denote s the r ing of ad'ele s m m m 
L 

of 0 , and that e :  I � Sm (A ) i s  continuous (for the natural topol ­

ogy of the ade l ized  group Sm (A) ) .  

b ) Let 7[ A: T (A) � Sm (A) b e  the map defined b y  7[ :  T � Sm . 

Show that , if one identifie s T (A) with I in the obvious way ,  one has 

- 1  e (x) = E ( x)  7[ A (x ) 

whe r e  E :  1 � S (0) C S (A) i s  the map defined in 2 . 3 .  [Note that m m 
this  g ive s an alternate definition of the E / s . ] 

c )  Show that e (I) i s  not open in 9n (A ) if em F { l } .  

2 . 8 .  An example :  complex multiplication of abel ian varietie s 

(We g ive here  only a b r ief  sketch of the the ory ,  with a few in ­

dications on the proofs . For more detail s , s e e  Shimura -Taniyama 

[ 34 ] , Taniyama [3 5 ] ,  Weil [41] , [42 ]  and Serre -Tate [ 3 2 ] . ) 

Let A be  an abel ian var iety of dimens ion d defined over  K . 

Let EndK (A) be  its r ing of endomorphisms and put 

EndK (A) 0 = EndK (A) @ O .  



II- 2 6  AB E LIAN 1 - AD IC R E PR ES E NTATIO NS 

Let E be  a number  field of deg r e e  2d ,  and 

be  an inj e c tion of E into EndK (A)o . The var ie ty A is then s aid to 

have " c omplex multiplic ation " by E ;  in the terminology of 

Shimura - Taniyama ,  it is a variety of " type (C M) " . 

Let 1 be  a pr ime integ e r  and define T 1 (A) and 

V 1 = T 1. (A) (i Q 1 as in Chapter I , 1 . 2 .  The s e  ar e fr ee  module s 

ove r  Z 1 and Q1 ' of ' rank 2d .  The Q -algebra EndK (A) o acts on 

V 1 henc e the s ame is true for E ,  and , by linearity, for 

E 1 = E �Q Q 1. . One prove s eas ily: 

LEMMA - V 1. i s  a fr e e  E 1. -module of rank 1 .  

Le t  P 1. : Gal (K/  K )  � Aut (V 1 ) be  the 1 -adic repre s entation 

defined  b y  A. If s E Gal (K/ K) , it is  c lear that P 1. (s ) commute s 

with E ,  henc e  with E 1. . But the lemma above implie s that the 

c ommuting algebra  of E 1. in End (V 1. ) is  E 1. its e lf .  Henc e ,  P 1. 
may b e  identified with a homomorphism 

P 1. : Gal (K/  K) � E � 
Let  now T E b e  the 2d - dimens ional torus attached to E (as 

T i s  attached  to K) , s o  that T E (Q1. ) = E� , and P i  take s value s 

in TE (Q i ) . 

T HEOREM 1 - (a) The sy stem (p 
1

) is a s tr ictly compatible sys tem 
of rational 1. - adic r e pr e s entations of K with value s in T E (in the 
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s e n s e  of Chap . I ,  2 . 4 ) . 

(b ) The r e is  a rrlOdulus m and a rrlOrphism 

</J :  S � T 
m E 

s uch tha t  p 1 i s  th e imag e by .p of th e c anonic al s ys te m  (E 1 ) 

attached to S c f .  2 .  3 .  m 

Moreover ,  the r e s tric tion of </J to T m 
plic itly: 

c an be g iven ex-

Il - 2 7  

Let t be  the tangent s pace at the origin of A. It i s  a K-vector 

space on which E acts , i .  e .  an (E ,  K ) -b imodule . If we view it as an 

E -ve ctor space , the action of K i s  g iven by  a homomorphism 

j : K � En dE (t ) .  In particular , if x E K
*

, detEj (x) i s  an element 
* * * 

of E ; the map detEj : K � E is  clearly the r e s tr iction of an 

algebraic morphism 6 :  T � T E . 

THEOREM 2 - The map 6 : T � T E co inc ide s with the compos ition 

map T � Tm � Sm � T E • 

Example 

If A is  an ell iptic curve , E is an imag inary quadratic field , 

and the action of E on the one - dimens ional K -vector space t de -
* * 

fine s an embedding E � K . The map detEj :  K � E is just  the 

norm re lative to this embedding . 

Indications on the proofs of Theorems 1 and 2 

Part (a) of Theorem 1 is  p roved as follows : Let S denote the 

fin ite s et of v E EK wher e  A has " bad reduction" . If v 4 S ,  and 
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1 1= Pv ' one shows e a s ily that p 1 is unramifie d at v (the c on ­

ve r s e  i s  als o true , s e e  [ 3 2 ] ) ; moreove r  the c o r r e sponding Fr obenius 
e lement F may be  identifie d with the Fr obenius endomorphism v , P 1 

F v 
"-

of the r e duc ed  var iety A But F c ommute s with E in v v 
"-

End (A ) and the c ommuting algebr a  of E in End (A ) is  E its e lf v 0 

(d. [34] , p .  3 9) .  

(a ) • 

Hence F v 
* 

be long s to E 
v 0 

= T 
E 

(Q) and this  implie s 

Theorem 2 and part (b )  of Theorem I are le s s  easy ;  they ar e  

pr ove d ,  in a s omewhat differ ent form in Shimura - T aniyama [ 3 4 ]  (s e e  

al s o  [ 3 2 ] ) . Note that one c ould expre s s  them (as in 2 . 6 )  by s ayin� 

that the r e  exists a homomorphism f :  I � E
;� 

(where  I denote s , a s  

usual , the gr oup of  id�le s of  K) having the following propertie s :  

s . 

(a ) f is tr ivial on U m for s ome modulus m with support  

(b ) .!!. v + s , the image  by  f o f  a uniformizing parameter at 
� 
",. 

v is  the Fr obenius element F E E 
* v 

(c ) g X E K is a pr inc ipal id�le , one has f (x) = detEj (x) . 

This is  e s s entially what is pr oved in [ 34 ] , p .  148 , formula (3 ) , 

exc ept that the r e sult  is expr e s s e d  in te rms of ideals ins tead of 

id� le s ,  and detEj (x) is wr itten in a diffe r ent form , namely 

IT (x)
!/; 

ex " I I  NK/ K* 
ex 

Remark 

Another po s s ible way of prov ing Theorems 1 and 2 is  the fol ­

lowing : 

Let 1 be  a prime integer  dis tinct fr om any of the p , v  E S . . v 
One then s e e s  that the Galois -module V 1 i s  of Hodg e - T ate type in 

the s ens e of Chapte r III , 1 .  2 (inde e d , the c or r e s ponding local  module s 
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are a s soc iated with 1 - divis ible g r oups , and one may apply Tate ' s 

theorem [ 3 9] ) .  Hence p 1 is  " locally algebraic " (Chapter  III ,  loc o 

c it . ) , and us ing the the orem of Chapter III , 2 . 3 one s e e s  it define s a 

morphism q, : � � T E · One has q, 0 £ 1 = P 1 by construction; 

the s ame is  true for any p r ime number  1 ' ,  s inc e q, 0 £ l '  and P l '  
have the s ame F r obenius e lements for almost  all v .  This proves  

part (b)  of  The orem 1 .  As for  The orem 2 ,  one us e s  the explic it 

form of the Hodg e -Tate dec ompos ition of V 1 ' as g iven by Tate 

[ 3 9] ,  c omb ined  with the r e s ults of the Appendix to Chapter III . 

§ 3 . S TRUCT URE OF T 
m 

3 .  1 . Structure of X r:r: ) 
m 

AND APPLICATIONS 

If w i s  a c omplex place of Q , the completion of Q with 

r e spect  to w is i s omorphic to C ;  the dec ompos ition group of w 
i s  thus cyclic of order  2 ;  its non-tr iv ial e lement will be denoted by 

c (the " Frobenius at the infinite place w" ) . The c ' s  are con-
w w 

j ugate in G = Gal eQ/ Q) ; let C denote the ir conjugacy c las s .  (By 
00 

a theorem of Artin [1] , p .  25 7 ,  the elements of C are the only 
00 

non -trivial e lements of finite or de r  in G . ) 

Let X (T )  be  the character group of the torus T ,  cf .  1 . 1 ;  we 

wr ite X (T )  additively and put Y eT )  = X (T )  S z  Q . We dec ompose  

Y as a dir ect  sum Y = yO @ Y - @ y
+ of G - invar iant subspace s ,  as 

follows (cf .  Appendix ,  A. 2 )  

o G Y = Y = { y E Y I gy = y for all g E G } , 

Y - = {Y E Y l cy  = -y for all c E C } 
00 
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+ 0 -
and Y is  a G - invar iant s upplement  to Y E& Y m Y ; one p r ove s  

eas ily that y + i s unique , d .  Appendix , loc o c it .  

Mor e expl ic itly ,  i f  a E r i s  an embe dding of  K into Q , let  

[a ]  E X (T )  be  the c or r e s ponding charac te r  of T ; the [al ' s ,  a E r , 
o form a bas is  of X (T )  and g .  [a] = [g . a] if g E G . The spac e Y 

is  gene r ated by the norm element L: [aJ , and its G- invar iant 
a E  r 

- + supplem ent i s  Y $' Y  = { L: b [a] l b  E Q , L: b = o } 
a E r a a a E  r a 

any characte r X E X (T ) c an b e  wr itten in the fo rm 

X = aL: a E r 
[a] + L: 

a E  r 
b (a] , a 

a ,  b E Q , L: b = 0 ,  a + b E Z . a a a 

Henc e , 

(In particular , we s e e  that da E Z whe r e  d = [K: QJ . ) The sub space 

Y can now be  de s c r ibed  a s  follows 

Y = { L: b  [aJ l b E Q ,  L: b  = 0 , b = -b for a a a ca a 

all C E C and a E r } .  
00 

On the othe r hand , the p roj e ct ion T � T define s  an inj e c -m 
tion of X (T ) into X (T ) ; we identify X (T ) with its image unde r m m 
thi s  inj ec tion .  

PROPOSITION - X (Tm ) �Z Q = yO  ED Y - . 

Thi s  follows from Appe ndix , A. 2 .  
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CORO LLARY 1 - The charac ter  group X (T 
m o -finite index of  X (T ) n (Y 1& Y ) .  

i s  a sublatti ce  of 

CORO LLAR Y  2 - If X E X (Tm ) i s wr itten in the form (* ) .  then 

2a  E Z . 

In fact ,  g iven C E C 
00 

and a E r , we have 

2a = 2a + b + b = (a+b ) + (a+b ) E Z . 
a c a  a ca 

* 
3 . 2 . The morphism j : Gm � 'Iln 

We have s een that any characte r X E X (T ) c an be wr itten in 
m 

the form 

X :: a :E 
a e  r 

[a] + :E 
a E  r 

b [a] a 

with a , b E Q , :Eb = 0 , 2a E Z .  Henc e  X � 2a define s a homo -
a a 

morphism j :  X (Tm ) � X (G ) = Z and we obtain by duality a mor -m J. 

phism of algebraic g roups ( : G � T If q, : S � GLy m m o m 

is a repr e s entation of S m 
* 

, we obtain by cOIllpos ition with j a 

o 

morphism of alg ebraic groups  Gm � GLy 
o 

This repr e sentation 

of G III 
define s (and i s  defined by) a grading Y 

o 
= :E Y (i ) of y 

i E Z o o  

r e c all that G acts on Y (i ) by means of the char ac te r III 0 

i E Z = X (G ) . III 
We s �y that Y o is homogeneous of degre e  n if Y = Y (n) . o 0 
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Remark 

For repr e s entat ions c orning from the 1. - adic homology 

H�, (X) of a pr oj e ctive  smooth var iety X , the g rading defined above 

should c oincide with the natural one : H .. _ (X) = � H. (X) . 
..... . 1 

1 

Exerc i s e  

1 )  Let  N :  S � G m m be the morphism defined in Exer c i s e  2 

of 2 . 5 . Show that N o j :  G � Sm � G i s  m m 
2 � � � . Show that 

n any morphism Sm � Gm is  equal to £ N , whe re  £ is  a charac -

ter of em with value s in {±.l } and n E Z . 

2 )  Let <b :  Sm � GLy be  a linear repr e s entation of Sm 
o 

As s ume <b i s  homogeneous of degree  d ,  and put h = dim Y o 
a) Show that dh i s  even (apply Exer c .  1 to 

de t (<b ) : Sm � G ) .  m 
b )  Prov e  that the r e  ex is ts on Y a pos itive definite o 

quadratic form Q such that 

d Q (p (x)y )  = N (x) Q (y ) 

for any y E Yo and any x E Sm (Q ) . [ Let H be  the kerne l  of 

N: S � G m m Us ing the fact that H (R) i s  c ompac t ,  prove the 

exis tence of a pos itive definite quadratic form Q on Y invar iant 
�_ 0 

by H ; then note that Sm 

3 . 3 . Structure of T m 

i s  gene r ated by H and j .... (G ) . ]  m 

We need  fir s t  s ome notations : 

Let H be  the clos ed  s ubgr oup of G = Gal (Q/ Q)  gene r ated  c 
by C (cf. 3 . 1 ) . Ther e  i s  a unique c ontinuous homomorphism 

ro 
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m 

£ :  H � { + l } s uch that e: ( c ) = - 1  for all c E C . Inde e d  the c - 00 
unic ity of e: i s  c le ar , and one prove s its exis tenc e by taking the re -

s tr ict ion to Hc of the homomorphism G --:. {2:. 1 } as s oc iate d with an 

imag inary quadratic extens ion of Q . We let H = Ker (£ ) . The gr oups 

H and H are  c l o s ed  invar iant subgroups of G ,  and (H : H ) = 2 .  c c 
Le t now K be , as  before , a finite extens ion of Q ;  we identify 

it with a subfie ld  of Q ;  l e t  GK 
= Gal (0. 1 K) be the cor r e sponding 

subgroup of G . The field K i s  totally real if and only if all the 

e l ements c of C act tr iv ially on K, l' e 00 • •  if and only if GK 
c ontains G c Henc e ,  the r e  exis t s  a maximal totally real s ubfield 

K of K ,  o who s e  Galo is g r oup i s  

the field c or r e sponding to GK . H .  

= G K 

We have 

and 

H c We let  Kl be  

As shown by We il (ef . [47 ] , p .  4 )  the fie lds Ko and Kl are c lose ly  

c onnected to the gr oups Tm relative  to K .  Indeed ,  if 

X = � b [a] is an e lement of the gr oup denoted by Y in 3 . 1 ,  we 
a 

have b ca - b 
a 

for all c E C 00 If h = c l . . .  c , n this g ive s 

= ( - l )� = E (h)b 
a a 

and by continuity the s ame holds for all h E H c 
this : 

One deduce s  fr om 

PROPOSITION - The norm map define s an is omorphism of the space 

y O  re lative to  K onto the space Y
K
- relative to K. Kl 1 
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More  pr ec i s e ly ,  if X = � b [al] belong s to Y� , wher e  
1 al 1 

the imag e of X 1 by the norm map is 

where  a/ Kl is  the r e s tr ic tion of a to Kl . It is c lear that this  map 

is  injec t ive . Convers ely ,  if X = � b ala ] belong s to y� , we s aw 

ab ove that bh = £ (h)b for all h E H , hence bh = b for a a c a a 
h E H and of cour s e  al s o  for h E H.  GK . Thi s  shows that b a 

depends only on the r e s tr ic tion of ' a to Kl , and henc e that X 

belong s to the image of the norm map . 

CORO LLAR Y - The tor i Tm attached to K and K l are is ogenous 

to each other .  

There  remains  to de s c r ibe  the tor i Tm 
There are two case s :  

attached to Kl . 

(1 )  Kl = Ko · In this  cas e ,  we have Y 

dimensional , and is omorphic to G m 

= 0 and T 
m 

i s  one -

Inde ed ,  if X = � b [a ] belongs to Y , and c E C , we a 00 
have b = -b (cf .  3 . 1 )  but al s o  b = b s ince ca a ca  a 
c E GK . He = GK . H.  This shows that ba = 0 for all a , hence 

Y = o .  
( 2 )  [Kl : K 0] = 2 .  The  fie ld Kl i s  then a totally imag inary 

quadratic extens ion of K (and it is  the only one containe d in K , as o 
one checks readily) . In this  case  Y is of dimens ion d = [K : Q] o 

i s  (d+l ) - dimens ional . 
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Mor e pr e c i s e ly ,  the s pace  Y attache d to Kl is 2d -diITlens ion ­

a l  and the involution a o f  K
l c or r e sponding t o  Ko de c oITlpos e s  Y 

in two e ig enspac e s of diITlens ion d each ;  the s pac e  Y is the one 

c or r e sponding to the e ig envalue -1 of a .  Thi s  is proved  by the 

s aITle arguITlent as above , onc e one r eITlarks that all c E C induc e 
co 

ReITlark 

In thi s  last  ca s e  (which i s  the ITlost inter e sting one ) , the torus 

T i s is ogenous to the product of G by the d- diITlens ional torus m ITl 
kernel of the norITl ITlap fr oITl K

l to Ko 

3 . 4 . How to cOITlpute Frobenius e s 

Let <p be a l inear repres entation of S of degree  n .  By  m 
extending the gr oundfield , the r e s tr iction of <p to T can be  put m 
in diagonal forITl ;  let X l " " , X n be  the n characte r s  of Tm s o  

obtained and write (in additive notation) 

n (i ) (a] 
a (n (i ) E Z ) . a 

We s ay that X . i s  pos itive if all the n (i ) 1  s are > O . Let 
1 a -

v + Supp ( m  ) ,  and let F v E Sm (Q) be  the c or r e sponding Frobenius 

e leITlent, d. 2 . 3 . S ince Sn = Sm / Tm i s  finite , there  exists an 
. N mteger  N >  I such that F E T (Q) .  - v m If ... Ev 
of v ,  this ITleans that there  exi s t s  {)( E K .... 

is  the pr iITle ideal 
N with .Pv = ({)( ) ,  

{)( == 1 ITlod m , and {)( > 0 at all r eal plac e s  of K . 
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PROPOSITION 1 - The e i genvalue s of 
n (i ) 

ar e the number s  

X . (a ) = IT cr (a ) cr (i = 1 , • • .  , n) .  
1 cr 

This is  tr ivial by c ons truc tion , becaus e FN is the image of a v 
unde r  T (Q) � Tm (Q ) .  

COROLLARY 1 - The e igenvalue s of 41 (F ) are  { p  } - units (i . e .  - v - v 
they are units at all plac e s  of Q not div iding pv ) .  

COROLLARY 2 - Let z
l

' . . .  ' Z 

N n b e  the e ig envalue s of 41 (F ) , v 
indexed s o  that z . = X . (a ) . Let 

1 1 -- w be  a place of  Q dividing p , v 
normalized s o  that w (p ) = v (p ) v v = e v Then w (z . )  = I: n (i ) . 

--
1 

cr E  r cr 
w.cr=v 

N n (i ) 
We have w (z .  ) = w (IT cr (a) 

cr ) = I: n (i )w o cr (a) , and 1 
cr E r cr E r cr 

s ince N 
(a ) = Ev . 

Hence the r e s ult .  

w .  cr (a ) = 0 if w o cr F v 

w o cr (a )  = N if W o  cr = v ,  

COROLLARY 3 - Let 1 b e  a pr ime number  and let 

41 1 : Gal cKl K) � Aut (Vl ) be  the 1 - adic repr e s entation of K as s o ­

ciated to 41. Then 41 1 i s  integral (d. Ch.  I ,  2 . 2 )  if and only if all 

the charac ter s  X . oc cur r ing in 41 are  pos itive . 1 

Proof of Corollary 3 .  As s ume fir s t  the X . ' s ar e pos itive . Let 
1 

v • Supp ( m ) and le t  zl ' . . .  ' zn b e  the c orresponding e igenvalue s of 
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F a s  in Corollary  2 .  Corollar ie s l and 2 show that the w (z . ) ar e v 1 

pos itive for all valuations w of Q ;  henc e  the z . are  integral ove r 
1 

Z . Hence the 4> l ' s are  integral .  

Conver s ely ,  as sume 4> 1 IS integral for s ome 1 . There  exi s ts a 

finite sub s e t  S '  of 1:K , c ontaining Supp ( m ) ) such that if v t s '  , 
the e igenvalue s of 4> (F ) are integral .  Choo s e  a pr ime number p v 
which splits completely in K and is such that p == p impl ie s  

v 
v � S ' .  Let w be a valuation of Q dividing p .  The valuations 

w . a , a E r ,  are pairwise  inequivalent. Let a E r ; and let v be 

the normalized valuation of K equivalent to w o a so that 

x'v == w o  a for s ome X, > O .  Let z
l
" ' " z

n 
be  the e igenvalue s of 

4> (F ) . By Corollary 2 , w (z . )  = x'n (i) . Since the z .  are integral ,  
v 1 a 1 

this  shows that the n (i ) '  s ar e all po s itive . 
a 

PROPOSITION 2 - Let v i Supp ( m ) and le t X be a characte r of 

� Let X T E X (� ) be  the r e s tr iction of X to 1ln and let 

i = j (X T ) be the integer define d in 3 . 2 .  Then , for any archime dian 

ab s olute value w of Q extending the usual ab s olute value of Q ,  

we have 

Pr oof. If x = a 1:  
a e r  

[a] + 1: b [0] 
a e r 

a 
as in 3 . 1 ,  we have 

b N N IT a IT a w (X (F ) )  = w (X (F ) ) = w .. a (a ) . w o a (a) , v v 
a a 
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IT a a aN iN/ 2 
and W O O" (a ) = W (N (a » = Nv = Nv , 

0" 

whe r e  = 2 a .  It 

b 
remains to show that x = IT W 0 cr(a) 0" is equal to 1 .  Le t c = c W 

0" 

b e  th e I I F r obenius I I attache d to w (d. 3 . 1 ) . 
b 

we have x. y = 1 with y = IT w oO" (a )  cO" B ut 
0" 

Since  b + b = 0 ,  
0" cO" b 

y = IT w oc oT (a ) T 
T 

and ,  s inc e w 0 c = w ,  we have y = x, 
2 

hence x = I , and x = I , 

s ince x > O .  

Exerc is e s  

1 )  Check the pr oduc t formula for the e igenvalue s of the cP (F ) .  
v 

(Us e  Cor . 1 and 2 to Prop .  1 and Prop .  2 . ) 

2 )  Show that Prop .  2 and Cor . 1 and 2 to Prop .  1 determine 

the e igenvalue s of the cp (F  ) '  s up to multiplic ation by roots of unity . 
v 

3 )  (Generalization of C or .  1 to Pr op .  1) . Let (p 1 ) be a 

str ictly c ompatible system of rational 1 -adic repres entations , with 

exceptional s et S 

the e igenvalue s of 

(d. Chap . I ,  2 . 3 ) .  

F , 1 f:. p
v 

' 
v ,  P 1 

Show that , for any v E �
K 

- S ,  

are p -units . 
v 

APPENDIX 

Killing ar ithmetic gr oups in tori 

A. 1 .  Arithmetic gr oups in tor i 

Let A be  a l ine ar algebraic gr oup ove r  Q ,  and let r be a 

subgr oup of the gr oup A (Q)  of rational points of A. Then r is 

s aid to be  an ar ithmetic s'ubgr oup if for any algebraic embedding 
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A C GL (n arb itrary)  the g r oups r and A (Q) n GL (Z ) ar e c om -n n ----

mensur able  (two subg roup s  r l ' r 2 are  s aid to be  c ommensurable  if 

r l n r 2 is of finite index in r1 and r 2 ) .  It i s  we ll -known that it 

s uffic e s  to che ck that r and A (Q)  n GL (Z ) ar e  c ommensurable for 
one embedding A C  GL . n 

Example 

n 

Let K be a numb er field and let E b e  the group of units of K .  

Then E i s  an  ar ithmetic subgr oup o f  T = R / � ) . K Q m 

If T i s  a torus ove r Q ,  let  T O 
be  the inter s ection of the kernels  

of  the homomorphisms of T into G The torus T is s aid to be  m 
"anis otropic if T = T

O ; in te rms of the charac ter  gr oup X = X (T ) 

this means that X has no non - z e r o  elements which are left fixed by 

G = Gal (Q/ Q) . 

THEOREM - Let T be  a torus ove r  Q,  and let r be  an ar ithmetic 
o 

subgroup of T .  Then r (\ T is of finite index in r ,  and the quo -

tient T O (R)/r () T O is  compact . 

This is due to T .  Ono ; for a pr oof of a more  g ene ral s tatement 

(" Godement '  s conj e cture " ) s e e  Mos tow-Tamagawa [18] . 

COROLLARY - Let T b e  a torus ove r Q,  and let r be  an ar ith ­

metic subgroup of T .  If T is anis otr opic , then T (R) / r  i s  com­

pact .  
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Exerc is e 

Let T b e  a torus ove r  Q ,  with charac ter group X .  

a) Show that 

- * 
T (Q ) = HomGal (X , Q ) . 

_ �c 
b )  Let  U be  the s ubg roup of Q whose  e lement s  are the al -

gebraic units of Q .  Let 

r = HomGal (X, U ) .  

Show that r is an  ar ithmet ic subgroup o f  T (Q) and that any ar ith ­

metic subgroup of T (Q) i s  c ontained in r 

A. 2 .  Killing ar ithmetic s ubgr oups 

Le t  T be  a torus ove r  Q ,  and let X (T )  be  its character 

g roup; put Y (T )  = X (T )  � Z Q Let A be the s e t  of c las s e s  of 

Q - irreduc ible repr e sentations of G = Gal {Ol Q) thr ough its finite 

quotient s .  For each h. E A ,  let  Y Xo be the corre sponding is otypic 

sub -G -module of Y ,  i .  e .  the s um  of all sub -G-module s of Y 

is omorphic to Xo .  One has the dir ect  sum decompos ition 

o Let Y = Y l ' wher e  1 is  the uni t  repre senta1 : on of G ;  let  Y be  

the sum of  tho s e  Y wher e  for all the infinite 'robenius e s  c E C Xo + 00 
(d. 3 . 1 ) we have Xo (c ) = - 1 ;  le t  Y be  the sum of the other Y Xo ' 

We have 
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Note that 

y O = yG = { y e y ! gy = y for all 

y- = {y  e Y ! cy = -y for all 

g E G } 

C E C } ,  
00 

o 
y = Y if and only if T is ani s otropic . 

I I - 4 1  

If c E C and H = { l , c } ,  
�� 

then , s inc e T (R )  = HomH (X (T) . C ) , 
00 

we see  that T (R )  i s  c ompac t if and only if Y = Y 

PROPOSITION - Let r be an ar ithmetic subgroup of the torus T ,  

and r its Zariski c lo sur e  (d. 1 .  2 ) . Then: 

(* ) 

[Since the torus T /r is  a quotient of T ,  we identify Y (T /r ) with 

a submodule of Y (T) .  ] 

Proof. Suppos e  fir st  that Y is ir reduc ible , i .  e .  that T has no 

proper subtori  and is 1= o.  

If Y = y O ,  then T is i s omorphic to G and hence r is  finite . m 
This shows that Y (T if ) = Y (T ) , hence (* ) .  If Y = Y

-
, then T (R) 

i s  compact. Since r is a dis crete subgroup of T (R) , it  is finite . 

Hence Y (T if ) = Y (T )  and (* ) follows . 

If Y = Y + ,  then T (R) i s  not c ompact .  Cons equently , r is 

infinite s ince T (R ) / r  is c ompact by Ono ' s theorem.  Hence r is 

an algebraic subgroup of T of dimens ion > 1 .  Its c onnected com­

ponent is  a non - tr ivial subtorus o f  T .  This shows that r = T ,  

henc e Y (T /r)  = O. Hence again (* ) .  
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The g eneral c a s e  follows ea s ily fr om the ir reduc ible one ; for 

ins tanc e ,  choos e  a torus T '  to T which s plits in direc t  product  of 

irreduc ible  tor i  and note that r is c ommensurable with the image 

b y  T '  � T of an ar ithmetic s ubgroup of T . 

Exer c i s e 

Let y E Y .  Define Ny as the mean value of the transforms of 

Y by G .  

a Pr ove that N is  a G-linear pr oj e ction of Y onto y O , 
- + hence Ker (N) = Y <B Y . 

b Prove that y+ i s  g enerated by the e lements cy  + y ,  with 
y E Ker (N) , c E C 

ex> 



CHAPTER III 

LOCALLY ALGEBRAIC ABE LIAN REPRESENTATIONS 

In this  Chapter , we define what it means for an abelian 1 -adic 

repr e s entation to be locally alg ebraic and we prove (c!. 2 . 3 )  that s uch 

a repr e s entation , when rational , c omes  fr om a linear repre s entation 

of one ()f the groups S of Chapt e r  II .  m 
When the gr ound field is a c ompos ite of  quadratic extens ions of 

Q ,  any rational s emi- s imple 1 -adic repr e sentation is ips o  facto 

locally algebraic ; this is proved in § 3 ,  as a c onsequence of a result 

on transcendental numb e r s  due to Siegel  and Lang . 

In the local cas e ,  an abelian semi - s imple repres entation is 

locally algebraic if and only if it has a " Hodg e -Tate decompos ition" . 

This fact ,  due to T ate (College  de Franc e ,  1 96 6 ) , is proved in the 

Appendix , together  with s ome c omplements . 

§ l .  THE LOCAL CASE 

1 .  1 .  Definitions 

Let p be a pr ime number and K a finite extens ion of Q 
p 

let T = RK I Q (G
ml K) be  the corresponding algebraic torus over 

p 
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Q (d . Weil [43 ] ,  Chap . I ) . p 
Le t  Y be  a finite dimens ional Q -ve ctor space and denote , as  

p 
us ual , by  GLy the corre sponding linear gr oup ; it is an algebraic 

g roup over  Q , and GLy (Q ) = Aut (V ) . p p 
- ab Let p :  Gal (KI K) � Aut (V)  be  an abel ian p -adic repr e s en -

tation of K in y , where  Gal {KI K)abdenote s the Galois  g r oup of  the * - ab maximal abel ian extens ion of K .  If i :  K � Gal (KI  K) i s  the 

c anonical homomorphism of local clas s field the ory (d. for ins tanc e 

Cas s e ls -Fr�hlich [6 ] ,  chap . VI , § 2 ) ,  we then get  a c ontinuous homo -
* 

morphism p o i of K = T (Q ) into Aut (V) . 
P 

DEFINITION - The repre s entation p is said to be  locally algebraic 

if the r e  is an algebraic morphism r :  T � GLy such that 
- 1 * 

P 0 i (x) = r (x ) for all x E K clo se enough to 1 .  

Note that , if r :  T � G Ly s atis fie s the above condition , it 

is unique ; this follows from the fact that any non -empty open s e t  of 
* 

K = T (Q ) i s  Zariski dens e in T . 
P 

We say that r is the algebraic 

morphism as s oc iated  with p .  

Examples  

1 )  Take K = Q and dim Y = 1 ,  s o  that p is g iven by a p 
c ontinuous homomorphism Gal (Q I Q )ab � U whe re U i s  p P P P 
the g roup of p -adic units . It is  easy  to s e e  that there  exis ts an 

element li E  Z such that p o  i (x) = xII if x is  clos e enough to 1 .  p 
The repr e s entation p is locally algebraic if and only if II belong s 

to Z .  This happens for ins tance when y = y (f.L) , cf . Chap . I ,  p 
1 .  2 ,  in which case  II = - 1 and r is the canonical one -dimens ional 

repres entation of T = Gml Q p 
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2 ) The abe l ian r e pr e s entation as s oc iate d to a Lub in - Tate 

forrnal gr oup (ef .  [ 1 7 ]  and [ 6 ] , Chap . VI ,  § 3 ) is locally algebraic 
-1  (and al s o  of the form u � u on the iner tia g roup ) . 

III - 3 

- ab PROPOSITION 1 - Let p :  Gal (K /  K) � Aut (V) be a loc ally alge -

braic abe l ian repre s entation of K. The r e s tr iction of p to the 

ine rtia subgroup of Gal (K/ K )ab i s  s emi - s imple . 

Let us identify the iner tia subgroup of Gal (K/ K)ab with the 

group UK of units of K. By as sumption , the re  is an open subgroup 

U '  of UK and an algebraic morphism r of T into GLy such 
- 1  that p (x) = r (x ) i f  x E U ' . Le t  W be a sub -vector space o f  Y 

stable by p (UK ) ;  it i s  then s table by p (U ' ) ,  hence by r (T ) . But 

every linear repre s entation of a torus is semi - s imple . Henc e ,  there  

exists  a pr oj ec to r  1T :  Y � W which commute s with the action of 

T .  1 - 1  I f  we  put 1T '  = (UK : U ' )  1: p (S ) 1T  p (s ) ,  we obtain a pro-
S E  UK/ U '  

j ector 1T' : Y � W which commute s with all p (s ) ,  S E  UK' q .  e .  d. 

Conver s ely ,  let  us s tart from a repr e sentation p whose  re ­

s tr ic tion to UK is  s emi - s imple . If we make a suitable large finite 

extens ion E of Qp ' the r e s tr ic tion of p to UK may be brought 

into diagonal form ,  i. e .  is g iven by c ontinuous character s  
* X i : UK � E , i=l , . . .  , n .  We as sume E large enough to c ontain 

all c onjugate s of K , and we denote by r K the s et of all Q- ern­

b edding s of K into E . Recall (ef .  chap . II ,  1 . 1 )  that the 

[a) , a E r K ' make a bas i s  of the character group X (T )  of T .  

PROPOSITION 2 - The repr e s entation p is  locally algebraic if and 

only if there  exis t integer s n (i ) such that 
a 
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x . (u ) 
1 

= TT 
aE r  K 

-n (i ) a a (u) 

for all i and all u c l o s e  enough to 1 .  

The nece s s ity i s  tr ivial . Conve r s ely ,  if there  exis t such in ­
n (i ) 

teg e r s  n (i ) , they  define alg ebra ic charac te r s  r . = TT (a] a of a 1 
T ,  hence a l ine ar repr e s entation r of T / E . It i s  c lear that there  

- 1  i s  an open  subgr oup U '  o f  U
K

' such that p (u) = r (u ) for all 

u E U ' . Henc e it r emains to s e e  that r can be  defined over  Q 
(c f. chap . II , 2 . 4 ) .  B ut th e  trace  a = � r . o f  r r 1 

p 
(loc . � )  i s  

such that a (u) E Q for all u E U ' . S ince U ' is Zariski - dens e in r p 
T ,  this implie s that e is " defined ove r Q " r p 
can be  defined  over  Q (loc . c it . ) ,  q . e .  d .  p -

Extens ion of the gr ound field 

hence that r 

Let K ' be  a finite extens ion of K ,  and let p ' be the r e ­

s tr ic tion of the g iven repre s entation p to Gal (K I K ' ) . Then p '  

i s  locally algebra ic if and only p is ; mor e over ,  if this  is  s o ,  the 

as s oc iated algebraic morphisms 

r :  T -+ G Ly , r ' :  T '  -+ G� 

ar e such that r ' = N Q r ,  whe r e  T '  i s  the torus as s ociated  with 
K ' / K 

K '  and N
K

, / K
: T '  � T i s  the algebraic morphism defined by  the 

norm from K '  to  K .  

All this follows eas ily from the commutativity of the diagram 
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i 
K '  ':c --+ Gal {K/ K '  l ab 
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and from the fac t  that the kernel of NK , / K : T '  --+ T i s  connec ted 
for the Zariski  topology . 

Exerc i s e  

Give an example o f  a locally algebraic abel ian p - adic repre ­

s entation of dimens ion 2 which is not semi - s imple . 

1 .  2 . Alternative definition of " locally algebra ic "  via Hodge - Tate 

module s 

Let us r ecall fir s t  the notion of a Hodge - Tate module (d [ 2 7] . 

§ 2 ) ;  here  K i s  only as sumed to be  complete with respect  to a dis ­

cr ete valuation , with perfec t  r e s idue fie ld k and char (K ) = 0 , 
� 

char (k) = p .  Denote by  C the completion K of the algebraic closure 

of K .  

The  group G = Gal (K/ K) acts c ontinuous ly on  K .  This action 

extends continuously to C .  Let W be a C -vector spac e of finite 

dimens ion upon which G acts  c ontinuously and s emi - linearly accord ­

ing to  the formula 

s (cw) = s (c ) . s (w) (s E G ,  c E C and w E W) . 

Let X : G � U be  the homomorphism of G into the gr oup 
* p 

U = Z of p - adic units , defined by its action on the p v_ th roots p p 
of unity (d. chap .  I ,  1 .  2 ) :  
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v 
X (s ) s (z ) = z if s E G and zP = 1 . 

Define for every i E Z the sub s pace  

Wi 
= { w  E w i  sw = X (s ) i w for  all s E G }  

o f  W .  This  i s  a K -vector  sub s pac e of W .  Let W (i )  = C (8)K Wi 

This  i s  a C -ve ctor s pace  upon which G acts in a natural way (i . e .  
i by  the formula s (c � y) = s (c ) � s (y) ) .  The inclusion W � W 

extends uniquely to a C -l inear map 

mute s with the action of G .  

a . :  W (i )  --:> W, which c om -1 

PROPOSITION (Tate ) - Let .u W (i )  be  the direct  swn of the 

W (i ) , i E Z .  Let a : .u W (i ) --:> W b e  the sum of the a .  I s defined 
1 

above . Then a is  inj e ctive . 

For the proof s e e  [ 2 7] , § 2 ,  p rop .  4 .  

COROLLARY - The  K - spac e s  Wi (i E Z )  are o f  finite dimens ion . 

They ar e  linearly independent ove r  C .  

DEFINITION 1 - The module W i s  of Hodge -Tate type if the homo­

morphism a :  11 W (i ) --:> W i s  an  i s omorphism. 
i E Z 

Let now V be as  in 1 .  1 ,  a vector space ove r Q , of finite dimen ­p 
s ion . Let p :  G � Aut (V)  be  a p -adic repr e s entation . Let 

W = C Q!) Q V and let G act on W by the formula 
p 
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5 (c � V ) = 5 (C ) � P (s ) (v ) , 5 E G ,  c E C ,  V E V .  
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DEFINITION 2 - The r epr e s entat ion p i s  of Hodge - Tate type if the 

C - space  W = C Q9Q V i s  o f  Hodge - Tate type (d . def. 1 ) . 
p 

ExaInple 

Let F be  a p - divis ible gr oup of finite he ight (d. [ 2 6 ] , [3 9] ) ;  

let  T b e  its Tate Inodule (lo c .  c it . ) and V = Q Qg T .  The group G - - p 
acts on V ,  and Tate has pr oved  ( [ 3 9] ,  Cor . 2 to Th . 3 )  that thi s 

Galois Inodule is of Hodge -Tate type ; Inore prec i se ly ,  one has 

W = W ( O) ED W (l ) , where  W = C � V as above .  

THEOREM (Tate ) - As sUIne K i s  a finite extens ion of Q (i . e .  i ts p -
r e s idue field is finite ) . Let p :  G � Aut (V )  be  an abe lian p-adic 

repr e s entatior: of K .  The following propertie s are equivalent: 

(a ) p is locally algebraic (d. 1 . 1 ) . 

(b ) P is  of Hodge - Tate type and its r e s tr ic tion to the inertia 

gr oup is seIni - s iInple . 

For the proof ,  s e e  the Appendix . 

§ 2 - THE GLOBAL CASE 

2 . 1 .  Definitions 

We now go back to the notations of chap .  II, i .  e .  K denote s a 

nUInber field. Let 1 be  a pr iIne nUInbe r and let  

- ab 
p :  Gal (K / K ) -? Aut (V 1 ) 

be an abelian 1 - adic repr e s entation of K . Let v E �
K 

be a place 



III- 8  ABE LIAN 1 -ADIC REPRESENTATIONS 

- ab 
of K of r e s idue character i s tic 1 and let  D C Gal (KI K )  be  the v 
c orre sponding decOlnpos ition gr oup . This gr oup is  a quot ient of the 

local Galois group Gal (K 1 K lab (the s e  two g roups  are , in fac t ,  is o ­v v 
morphic , but we do not need  this  here ) .  Henc e ,  we get  by c ompos i -

tion an 1 -adic repre s entation of K v 

p : Gal (K 1 K ) ab � D -4 Aut (V ) . v v v v 1 

DEFINITION - The repre s entation p is s aid to be locally algebraic 

if all the local repr e s entations p , with P = 1 , are locally alge -v -- v 
braic (in the s ense  defined in 1 . 1 ,  with p = 1 ) . 

It is c onvenient to reformulate this definition , us ing the torus 

01 -torus obtained fr om T by extending the ground fie ld from 0 to 

01 . We have 

where  K 1 
= K &? 01 . 

Let I b e  the id� le  group of K ,  cf. Chap . II , 2 . 1 . The inj e c -
* 

tion K 1 � I ,  followed by the c las s fie ld homomorphism 
- ab i :  I � Gal (KI  K ) , define s a homomorphism 

* - ab i1 : Kl � Gal (K/ K ) . 
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PROPOSITION  - The repr e s entation p i s  locally algebra ic if and 

only if the re  exi s ts an algebra ic morphism 

f :  T / Q � GLV 1 1 

* - 1  such that p o i  1 (x ) = f (x ) for all X E K 1 c lo s e  enough to 1 .  

(Note that , as  in the local cas e ,  the above condition determine s 

f uniquely; one s ays  it is  the algebraic morphism as soc iated with 

p . ) 
Since K I1OQ Q 1 = TT K , we have 

v l 1 v 

T/ Q = TT T 
v l 1 v 1 

where  Tv is  the Q1 -torus defined by Kv 
tion follows fr om this  decompos ition. 

Exerc i s e  

c f .  1 . 1 .  The propos i-

Give a cr ite r ion for local algebraic ity analogous to the one of 

Prop .  2 of 1 .  1 .  

2 .  2 .  Modulus of a locally algebraic abe lian repr e s entation 
- ab Let p : Gal (KI K )  � Aut (V 1 ) be as above ; by compos ition 

- ab with the clas s field homomorphism i :  I � Gal (KI K) , p define s 

a homomorphism p o i : I � Aut (V 1 ) .  
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We as s wne that p i s  loc ally algebraic and we denote by  f the 

as s oc iate d algebraic  morphism T I Q � GLV • 

1 1 

DEFINITION - Let m be  a modulus (chap . II , 1 .  1 ) . One s ays that 

P is de fined mod m (or that m is  a modulus of definition for p ) 

if 

(i ) p .. i i s  tr ivial on U when p 1= 1 . 
V , m --- v 

(i i ) P I) il (x) = f (x - l ) for x E IT U 
v l l V , m 

(Note that IT U 
v l l v ,  m 

is an open subgroup of K� = T/ Q (Ql ) . ) 
1 

In order to prove the exis tence of a modulus of definition , we 

ne ed  the following auxiliary re sult :  

PROPOSITION - Let H be  a Lie group over  Q 1 (re sp .  R )  and let 

a be a c ontinuous homomorphism of  the id�le group I � H. * 
(a ) If p 1= 1 (re sp .  p 1= (0) , the re s tr iction o f  a t o  K - v v * v 

i s  equal to 1 on an open subgroup of K . v * 
(b) The r e s tr iction of a to the unit group Uv of Kv is equal 

to I for almost  all v ' s . 

* 
Part  (a) follows from the fact  that K is a p -adic Lie gr oup v v 

and that a homomorphism of a p - adic Lie group into an 1 -adic one 

is  locally equal to 1 if p 1= 1 . 

T o  prove (b ) , let N be  a ne ighborhood of 1 in H which con ­

tains no finite subgroup exc ept { l } ; the existence of s uch an N is  

c las s ical for  real Lie  groups , and quite easy to pr ove for  l - adic 

one s . By definition of the idMe topology , a (U ) is contained in N v 
for almos t  all v ' s .  But (a) shows that , if p 1= 1 . the group v 
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a (U ) i s  finite ; hence a (U ) = { l } for almos t  all v ' s ,  q . e . d .  v v 

COROLLARY - Any abe l ian 1 - adic r epr e s entation of K is unrami­

fied  outs ide a finite s e t  of plac e s . 

This follows fr om (b ) applied to the homomorphism a of I 

induced by the g iven r epr e s entation , s ince  the a (U ) are known to be  v 
the iner tia subgroups . 

Remark 

This doe s not extend to non -abel ian r epr e s entations (even s olv ­

able one s ) , cf .  Exerc i s e . 

PROPOSITION 2 - Every locally algebraic abelian 1 -adic repre senta ­

tion has a modulus of definition . 

- ab Let p : Gal (KI K) � Aut (V 1 ) 

f the as soc iated morphism of T I Q 1 

be  the g iven repr e s entation and 

into GLV 1 
Let X be  the 

s e t  of place s  v E l;K ' with pv '1= 1 , for which p is ramified ;  the 

corollary to Prop.  1 shows that X is finite . By Prop .  1 ,  (a) ,  we can 

choo s e  a modulus m such that p o i : I � Aut (V 1 ) i s  tr ivial on all 

the U , v  E X.  v ,m - 1 p o i  1 (x) = f (x ) for 

definition for p . 

Remark 

Enlarg ing m 

X E IT 
P =1 
v 

U v , m 

if nec e s s ary ,  we can as sume that 

Hence ,  m is a modulus of 

It is easy to show that ther e  is  a small e s t  modulus of definition 

for p ; it is called the conductor of p .  



IIl - l 2  AB E LIAN 1 - ADIC REPRES ENTATIONS 

Exerc i s e 
... 

Let zl ' . . .  ' zn ' . . . E K
'o, For  each n ,  let E be  the s ub ­n 

field of K generated by  all the 1 n - th roots of the element 
1 1 n - l  

z lz 2 · · · zn 
a ) Show that E is a Galois extens ion of K ,  containing the n n 1 - th roots of unity and that its Galois  group is  is omorphic to a sub -

g roup of the affine group ( �  � )  in GL (2 ,  Z /  1 nZ ) . 

b ) Let E be the union of the E I S . Show that E is a Galois  n 
extens ion of K ,  whos e  Galois  gr oup is a clos ed  subgr oup o f  the 

affine gr oup re lative to Z 1 . 

c ) Give an example wher e  E (and hence the corre sponding 

2 - dimens ional 1 - adic repr e s entation) is ramifie d at all plac e s  of K .  

2 . 3 .  Back to S 
m 

Let m be  a modulus of K and let 

be a l inear representation of S 
m / Q Let 

1 

- ab <P 1 : Gal (K/ K) � Aut (V 1 ) 

be  the corr e sponding l -adic repr e s entation (d. chap . II , 2 . 5 . ) . 

THEOREM 1 - The repr e s entation <p 1 is locally algebraic and de ­

fine d  mod m • The as s oc iated algebraic morphism 
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f :  T / Q � GLV 1. 1. 
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i s  4> 0 1( ,  whe r e  1( denote s the c anonical morphism of  T into S 
m 

(ef .  chap . II , 2 . 2 ) .  

This  i s  tr ivial from the c ons truction of 4> 1 a s  4> '" £ 1 
(chap . II , 2 . 5 )  and the c or r e s ponding pr oper tie s of £ 1 (chap . II , 

2 . 3 )  . 

The conver s e  of Theorem I is true . We s tate it only for the 

case  of rational r epre s entations : 

- ab THEOREM 2 - Let  p : Gal (K I K) � Aut (V 1 ) be an abel ian 

1 -adic repre s entation of the numbe r  field K .  As s ume p i s  rational 

(chap . I, 2 . 3 )  and is locally algebraic with m as a modulus of de ­

finition (cf .  2 . 2 ) . Then,  there  exi s t  a a-vector subspace V of - 0 -

V 1 ' with V 1 = V 0 Q!)a Q 1 ' and a morphism rPo : Sm � GLV o 

of a - algebraic group s  such that p is equal to the 1 -adic r epr e s en ­

tation rP l as s oc iated to rPo (ef .  chap . II , 2 . 5 ) .  

(The condition V 1 = V 0 @a 
Q 1 means that V 0

r
�s a " Q -

structur e "  on V 1 ' ef. B o u rb a k i  Alg . , chap . II ,  3 ed .  ) 

Proof. Let r :  T /a � GLV be  the algebraic morphism as s o -
1 1 

c iated  with p . We have 

- 1  • 

p (> i (x) = r (x ) for x E K � n Um = IT U v i i V ,m 
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Define a map rj;: I � Aut (V L ) by 

rj; (x) = p o i (x) . r (x L 
) 

wher e  x L 
th 

is  the L- component of  the id� le x. One che cks imme -
�'< 

diate ly that rj; i s  tr ivial on Um J• and c o inc ide s with r on K 

Henc e r is tr iv ial on Em = K'" n Um and factor s through an alge ­

b r aic morphism r : T / Q � GLy . By the unive r sal property m m L L 

of the Q 1 -algebraic gr oup S m / Q 1 (ef .  chap . II , 1 .  3 and 2 . 2 ) , 

the re  exists  an algebraic morphism 

41 :  S � GLy m / Q L L 

with the following propertie s : 

(a ) The morphi sm T m / Q 1 
� S m / Q 1 

L G Ly L 

(b ) the map I � Sm (Q L ) .l...,. Aut (V L ) is  rj; . 

is  r 
m 

It is  tr ivial to check that the L -adic repre s enta tion 41 1 attached to 

41 as above coinc ide s with p .  Indeed ,  if a E I , we have (with the 

notations of chap . II) 

- 1  
= rj; (a) 4J (tr L (aL ) )  

= p o i  (a ) 
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s inc e q, 0 7r 1 = r by  (a ) above . 

Henc e q, 1 = p ;  the fac t  that p is rational then impl ie s that q, 

c an be  defined over  Q (chap . II , 2 . 4 , Prop . ) ' and th is g ive s  V o 
and q, , q . e . d . o 

Remark 

The sub space  V 0 of V 1 c onstructed in the pr oof of the 

theorem is � unique ; however , any other  choic e g ives  us a s pac e 

of the form crV 0 whe re  cr i s  an automorphism of V 1 commuting 

with p .  To a g iven V corre sponds of c our s e  a unique q, .  o 

COROLLARY 1 - For each prime  numbe r  l '  there  exis ts a unique 

(up to is omorphism) l ' - adic rational semi - s imple repr e s entation 

p l '  of K, c ompatible with p .  It is abel ian and locally algebraic . 

The s e  r epre s entations form a s tr ictly c ompatible  system (d. chap . I , 

2 . 3 )  with exceptional s e t  contained in Supp ( m ) .  For an infinite num -

ber  of l '  P l '  can b e  brought in diagonal form . 

Proof. The unic ity of the P l ' follows fr om the the orem of chap . I ,  

2 . 3 .  For  the exi s tence , take P l ' to b e  the q, l '  as s oc iated t o  q, a s  

i n  chapter II , 2 . 5 . The r emaining as s er tion follows from the pr opo ­

s ition in chap . II ,  2 . 5 . 

COROLLAR Y 2 - The e igenvalue s of the Fr ob enius e lements F v , P 
(v � Supp ( m ) ,  p f:. 1 ) generate a finite extens ion of Q .  v 

This follows from the c or r e sponding proper ty of q, 1 ' d. 
chapter II ,  2 .  S , Remark 1 :  
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2 .  4 .  A mild general i zat ion 

Mos t  r e s ul ts  of th is and the prev ious Chapte r may be extende d 

to the c a s e  whe re  we take fo r gr ound fie ld of the l inear repre s enta ­

tion a numbe r  field E (in s tead of Q) . More  pr ec i s e ly ,  le t  X, be a 

finite plac e of E and l e t  E x, b e  the x' -adic c omple tion of E .  The 

notion of an E - rational x' - adic r epr e s entat ion of K has been  de ­

fine d in chap . I ,  2 .  3 ,  Remark .  Let 

p :  Gal (K/ K) � Aut (V x,) 

be  such a r epr e s entation , and a s s ume p is abel ian . Let 1 be  the 

r e s idue charac t er i s tic of x' ,  s o  that E x. c ontains Q 1 . As in 2 . 1 ,  

w e  say that p i s  locally algebraic if the re  exists an alg ebraic 

morphism 

f :  T / E � GLV X, X, 

- 1  * 
such that p o i  1 (x) = f (x ) for x E K 1 c lose  enough to 1 (note that 

K� = T (Q l ) is a subgroup of T (E
x,
» As in 2 . 3 , one prove s that 

such a p c omes  fr om an E - linear repr e sentation of s ome Sm 
(and c onve r s e ly) . 

2 .  5 .  The function field c a s e  

The ab ove c on s truc tions have a (rather e lementary) analogue 

for function fie lds of one var iable  ove r  a finite fie ld :  

Let K b e  such a fie ld ,  and let  p be  i ts  character is tic . If  m 

is a modulus for K (i . e .  a pos itive divis or )  we define the subgroup 

Um of the id� le  g r oup I as in chap . II , 2 . 1 ,  and we put 
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r = I/ U m m 
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The degree  map deg :  I � Z is  tr ivial on U , 
m 

hence defines  an 

exac t s equence 

l � J � r  � Z � l. m m 

One s e e s  eas ily that the g roup Jm i s  finit e ;  moreover , i t  may 
be  interpreted a s  the group of rational points of the " generalized  

" 
Jacob ian var iety defined by  m " . If r denote s the c ompletion of m 
rm with r e spec t  to the topology of s ubgroups of finite index, it is  

- ab "'-known (c las s field theory) that Gal (K / K) � lim r . 
_ ab � m 

Let now p : Gal (K/ K) � Aut (V 1 ) be  an abe lian 1 -adic 

r epre sentation of K, with 1 1= p. One pr ove s as in 2 . 2 that there  

exists a modulus m such that p i s  tr iv ial on  U m 
that p may be  identified with a homomorph ism of 

Aut (V ) .  Moreover  1 

i .  e .  such 

PROPOSITION - A homomorphism � :  rm � Aut (V 1 ) can be ex-
" 

tended to a continuous homomorphism of r m if and only if there 

exists  a lattic e of V 1 which is s table by p (f'm ) .  

The nece s s ity follows from Remark 1 of chap I , L L  The 

s uffic iency is c lear . 

Note that , as  in the number  field cas e ,  we have Frobenius 

elements and we can define the notion of rationality of an 1 -adic 

repr e sentation . 

THEOREM - An abelian 1 -adic repr e s entation 
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of K is rational if and only if 

'( E r .  m 

T r  q, ('( ) be long s to a for every 

v , 

If v � Supp ( m ) ,  and if f v 
the image F of f in r v v m 

" 

i s  a uniformiz ing paramete r at 

is the Frobenius e lement of the 

Galois gr oup r Henc e , if m Tr q, take s rational value s on r 
m 

the charac ter i s tic polynomial of q, (F ) v 
all v � Supp ( m ) and  q, i s  r ational . 

has rational c oeffic ients for 

� 
To  prove the conve r s e ,  note fir s t  that Cebotarev ' s theorem 

(Chap . I ,  2 . 2 )  i s  valid for  K ,  i f  one us e s  a s omewhat weaker de ­

finition of equipartition . Henc e ,  the Frobenius elements F are 
1\ v 

dens e in r In particular ,  the y  generate f' and , from this , m m 
one s e e s  that Tr  p (y ) belongs to s ome numbe r  field E .  We can 

then construct an E- l inear r epr e s entation q, :  r � GL (n ,  E) with m 
the s ame trac e a s  p , and the theorem follows from: 

LEMMA - Let r be  a fin ite ly generated abel ian group , and 

q, :  r � GL (n , E) a l inear r epr e s entation of r over a number  field 

E. Let � be a sub s e t  of r ,  which is dens e in r for the top­

ology of subgroups of finite index .  As sume that Tr q, (y ) E a for 

all '( E I: .  Then Tr q, (y ) E a for all y E r . 

Proof of the lemma . S inc e q, (r )  is f initely generated ,  there  is a 

finite S of plac e s  of E s uch that all the elements of q, (r ) are 

S - integral matr ic e s .  If l ' is  a pr ime number not divis ible by any 

element of S ,  the image of q, (r )  in GL (n , E � 01 , )  is c ontained 

in  a c ompact s ubgroup of G L ( n ,  E � a1 , ) j hence q, extend s  by 
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c ontinuity to 

" 

.'" /\ 
q, :  r � GL (n ; E Q!) 0 ) l ' 
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whe r e  r is the c omple tion of r for the topology of subgroups of 
,.. ,... ,. finite index. S ince  � i s  dens e in r ,  it follows that Tr  q, (y ) 

be long s to the adher ence  01 , 

Henc e , if y E r ,  we have 

of 0 in E 0 01 , 
,. ,.. 

for every y E r . 

T r  q, (r )  E E n O  = 0 ,  l ' q . e .  d .  

Exerc is e s  

1 )  Let q, :  rm � Aut (V 1 ) be  a s emi - s imple l -adic repre -

s entation of rm Show the equivalence of: 
,.. 

units 

(a) q, extends c ontinuous ly  to r m 
(b) For every y E r 

m 
the e igenvalue s of 

(in a s uitable extens ion of 01 ) ,  

(c ) There  exis ts y E r , 
m 

with deg (y ) I: 0 ,  

q, (y )  are 

such 

that the e igenvalue s of q, (y )  are units . 

(d) For every y E r
m 

one has Tr q, (y ) E Z 1 . 
,.. 

2 )  Let q, :  r
m 

� Aut (V 1 ) be a rational 1 -adic representa-

tion of K .  Show that, for almost  all pr ime nwnber 1 ' , there  i s  a 

rational l ' -adic repr e s entation of K c ompatible with q, .  Show that 

this holds for all l ' I: p if and only if the following property is valid: 

for all y E r , the c oeffic ients of the character is tic polynomial 
m 

of q, (y ) are p - integer s .  
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§ 3 .  THE CASE O F  A COMPOSITE OF 

Q UADRATIC FIE LDS 

3 . 1 . Statement of the r e s ult 

The aim of th is  § i s  to pr ove : 

THEORE M - Let p be  a r at ional , s emi- s imple , 1 -adic abe l ian 

repr e s entation of K. As sume 

(':' ) K i s  a compos ite of quadratic extens ions of Q .  

Then p is  locally algebraic (and hence s terns fr om a linear 

repr e s entation of s ome S 
m 

d. 2 . 3 ) .  

This  appl ie s in particular when K = Q o r  when K i s quadratic 

over Q .  

Remarks 

1 )  An analogous r e sult holds for E - rational s emi - s imple 

abel ian "- -adic repre s entations (d. 2 . 4 ) . 

2 ) It is quite l ikely that c ondition (* ) is not nece s s ary .  But 

proving thi s  s e ems to r equire s tr onger  r e sults on trans cendental 

number s than the one s now available . 

3 . 2 . A c r ite r ion for local algebraic ity 

- ab PROPOSITIO N  - Let  p :  Gal {Kj K) � Aut (V 1 ) be a rational s emi -

s imple 1 - adic abelian repre s entation of K. As sume that there  
N exists an integer  N � 1 such that p is locally algebraic . Then p 

i s  locally alge br aic . 
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Proof .  Sinc e  p is  s emi - s imple , it can be br ought in d i ag o nal  f o r m  
over  a finite extens ion of Q 1 ' henc e g ive s r i s e  to a fam i l y 
{I/Il ' . . • , I/I

n
} of n c ont inuous character s 1/1 . C --. Q* wher e 

i " K 1 ' 
CK i s  the id� le - c las s  g r oup of K , and n = d im . V Le t 

N N I 
X l = 1/1 1 , . . • , X  

n 
= 1/1 n b e  the co r re s ponding c ha r a c t e r s  o c c u r r in g  in 

pN Sinc e pN i s  locally algebra ic ,  to eac h X c o r r e s pond s an 
algebraic charac ter  X �lg 

E X (T )  of the torus ; (he r e  we ident ify 

X (T )  with Hom (T/ O I 
' Gm/ O

l
) ' s in ce 01 i .  algeb r a ic ally 

clos ed ) . Each X �lg is  of the form 
1 

n (i ) 
IT (0) a , whe r e r i s  the 

O'E r 

s e t  of embedding s  of K into Q 1 ' d. Chap.  I I ,  1 .  1 . One has 

1 1 - n  (i ) 
X . (x) = X � g (x - ) = ITaex) a 1 1 

for all x E K� c lo se  enough to 1 .  

LEMMA - All the integer s n (i ) , I � i � n ,  O"C r ,  ar e divis ible 0' 
!?r N. 

Proof of the lemma 

f -O* . .  Nth f Let U be an open s ubgroup 0 I c onta m mg no - root 0 

unity except 1 ,  and let m be a m odulus of K such that 1/1 . (x) E U 
1 

for all x E Um and i = 1 ,  • . .  , n ; the e x i s tenc e of such an m fol -

lows from the c ontinuity of 1/11 ' . · · ' 1/1 n . 
W e  take m large enough 

s o  that : 

a )  It is a modulus of definition fo r p N 

b ) p is unramified at all v E SUpp e D! ) ' and the corre sponding 

Frobenius elements F have a c ha r a c t e r i s t ic polynomial with v , p  
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rational coeffic ient s . 

Le t � be  the abe l ian extens ion of K c o r r e s ponding to the 

open subgr oup K
*

Um of the id� le  gr oup I .  and let  L be  a finite 

Galo is  extens ion of Q c ontaining K m Choo s e  a pr ime numbe r  

p which i s  dis  t inct  from L .  i s  not d iv i s ib l e  by any place of Supp (m ) .  

and s plits c ompletely in L.  Let v be  a plac e of K dividing p .  

and let  f be  an idHe which i s  a uniformiz ing eleme nt at v and i s  v 
equal to 1 e l s ewher e .  K m The fac t that v spl its  c ompletely in 

(s inc e  it doe s  in L) impl ie s that f is the norm of an idHe of K v :,� m 
henc e (by c la s s -field the ory? b e long s to K U

rn 
; this m eans that the 

pr ime ideal Ev i s  a p r inc ipal ideal (a ) .  with a == 1 mod . m and 

a po s itive at all real plac e s  of K .  

Let x = 1/1 .  (f ) and y = X . (f ) 
1 v 1 v 

the Frobenius e lements of 1/1 .  and X .  
1 1 

of alg we have X i • 

where  a i s  as  above . 

alg y = X .  (a ) = 
1 IT 

N s o  that y = x 

r elative to v .  

(1 (a ) 

-

n (i ) 
(1 

the s e  ar e 

By definition 

Hence y belong s to the s ubfield L of Q1 c orre sponding to 

L (this field is we ll defined s ince L is a Galois extens ion of Q) . 
Moreover .  if w is  any plac e of L such that w 0 (1 induc e s  v on 

(1 (1 
K . we have (as in chap . II . 3 . 4 ) : 

w (y) = n (i ) . 
(1 (1 

As sume now that n (i ) i s  not div i s ible  by N .  Then x .  which i s  
ili (1 

_ 

an N - root of y .  doe s  not  be long to  L .  Henc e the r e  i s  a 



LOCALLY ALGEBRAIC REPRESENTATIONS III - 2 3  

non - tr ivial Nth f '  - root  0 unity z s uch that x and zx are c onjugate 
-

ove r  L ,  and a for t ior i ove r Q . Sinc e the char ac te r i s tic po lynomi -

a l  of F has r ational coe ffic ients , any conjugate over  Q of an v , p 
e igenvalue of F i s  again an e igenvalue of F Henc e , ther e  v , p v , p 
exi s t s  an index j such that 

t/J . (f ) = z .  x = z . t/J .  (f ) .  J v 1 V 

But f E K
':'

U and all t/J . are  tr ivial on K
* 

v m J 
and map U

m 
into 

the open subg roup U we s tarted with . Hence z = t/J . (f ) . t/J .  (f ) J v 1 V 

- 1  

b elong s t o  U ,  and this  c ontradic ts the way U has b e e n  chos en . 

Pr oof of the pr opos ition 

Since the n (i ) are divis ible by N, the r e  exi s t  q, .  E X (T )  
a 1 

with q,� = X �lg * 
If x E K.t ' we have : 

q, . (x - l ) N 
= x �lg (x- l ) = X . (x ) = 

1 1 1  

N t/J .  (x) 
1 

if x is clo se  enough to 1 .  Hence q, . (x)t/J . (x) is  an Nth - r oot of 
1 1 

unity when x is c lose  enough to 1 ,  and , by c ontinuity , it is equal 

to 1 in a ne ighbourhood of 1 .  Henc e ,  the r e s tr iction of p 
.', - 1 

to K� is locally equal to q, , where  q, is  the (a lgebraic )  repre -

s entation of T defined by the family (q, l " ' " q,n)
' 

The repr e s enta ­

tion q" a pr ior i defined ove r Q.t ' can be defined over Q.t (and 

even over  Q) ; this follows , for ins tance , from the fact that the 

family (q,l ' . . .  ' q,n) is s table under  the action of Gad a/ Q) , s ince 
alg alg . the family (X 1 , . . . , X n ) i s . 

Hence p is  locally algebraic , q . e .  d .  
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3 . 3 . An auxiliary r e s ult on tor i 

In [ 15 ] ,  Lang p roved  that two exponential functions exp (bl Z ) , 
exp (b Zz ) ,  b l , b Z E C ,  wh ich take algebraic value s for at leas t 3 

O - l inear ly independent value s of z ,  are multipl ic ative ly dependent : 

the r at io b l / b Z is  a rational numb e r . Thi s had al s o  been noticed 

by S ieg e l .  

Lang proved the following 1 - adic analogue : 

PROPOSIT ION 1 - Le t E be a fie ld c ontaining 0 1 and c omple te 

fo r a r eal valuat ion extend ing the valuat ion of 01 . Le t bl , b Z E E 

and let r be  an additive subgroup of E .  As sume :  

(1 )  r i s  of rank a t  leas t  3 ove r  Z 

(Z ) The exponential s e r ie s  

ab s olute ly on blr and b Zr . 

n exp (z ) = �z / n !  conve rge s 

(3 ) For all z E r the elements exp (bl z ) and exp (bZz )  are 

algebraic  ove r 0 

Then bl and bZ are  l inear ly dependent over  0 (i . e .  b/ b Z 
be long s to 0 if b Z f. 0) . 

For  the pr oof ,  s e e  [ 15 ] , Append ix , or [3 0] ,  § l .  

We  will apply thi s  r e s ult t o  tor i ,  taking for E the completion 

of 01 . We need  a few definitions fir s t :  

a/ Let T be  an n -dimens ional torus over 0 , with character 

g r oup X (T ) .  As before ,  we identify X (T )  with the g roup of mor ­

phisms of T / E into Gm/ E ·  We s ay that T i s  a sum of one ­

dimens ional tor i  if the r e  exi s t  one - dimens ional s ubtor i T . of T , 1 
1 � i � n ,  s uch that the sum map TlX . . .  X Tn � T is  s ur jective 

(and hence has a finite kerne l ) . An equivalent c ondition is : 
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X (T ) @ a i s  a d ir e c t  sum of one - d imens ional sub s pac e s  s tab le  

� Gal (al  Q) . 
* 

b l  Let f be a c ontinuous homomorphism of T (Q 1 ) into E We 

s ay that f i s  loc ally algebr aic if the r e  is a ne ighb ourhood U of 

in the 1 - adic Lie gr oup T (Q l ) ' and an elem ent 4> E X (T )  such 
that f (x) = 4> (x) for all x E U. We s ay that f is almost  loc ally al ­

gebr aic if there  i s  an integer  N >  I such that fN is  locally 
algebraic . 

c l Let S be a finite s e t  of pr ime numb e r s , and , for each pE S ,  

let  W b e  an open  subgroup of T (Q ) ;  denote b y  W the family p p 
(W ) S '  P pE 

Let T (Q) W be the s e t of elements x E T (O )  who s e  images  in 

T (0 ) be long to W for all pE S p P 
With the s e  notations , we have : 

th is i s  a s ubgroup of T (Q ) .  

* 
PROPOSITION 2 - Let f :  T (Ql ) � E be  a c ontinuous homomor -
phism.  As sume :  

(a ) There  exis t s  a family W = (W ) S such that f (x) is 
P pE 

algebraic over  a for all x E T (0) W . 

(b) T is a s um of one - dimens ional tor i .  

Then f is  almost  locally algeb raic . 

Proof. 

i )  We suppos e fir s t  that T is  one - dimens ional , and we denote 

by X a generator of X (T ) .  If X is invar iant by Gal (0/ 0) , T 
* 

i s  i s omorphic to G and T (Q) � Q If not , Gal {Ol 0 )  acts on m 
X (T ) via a gr oup of order 2 , corre sponding to s ome quadratic 
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extens ion F of Q ;  the characte r X define s an is omorphism of 

T (Q) onto the group F � of elements of F of norm 1 .  In both cas  e s , 

one s e e s  that T (Q)  i s  an abe l ian gr oup of infinite r ank (for a more 

precise  r e s ult ,  see  Exe r c is e  be low) .  On the othe r hand ,  each quo ­

tient T (Q ) / W is a finite ly generated abe l ian gr oup of rank ::. 1 . p p 
Hence T (Q ) /  T (Q ) W is  finite ly generated ,  and th is  implie s that 

T (Q) w is als o of infinite rank. 

S ince T (Q l ) is  an l -adic Lie gr oup of dimens ion I ,  it is 

locally is omorphic to the additive group Q 1 . This means that there  
exists a homomorphism 

e :  Z 1 � T (Q l ) 

which is an is omorphism of  Z 1 onto an open subgroup of  T (Q 1 ) .  
By compos ition we get  two c ontinuous homomorphisms 

* 
X 0 e : Z l � E 

* 
B u t  a n y  c o n tin u o u s  h o m o m o r p h ism o f  Z 1 into E is  locally an 

exponential . This implie s that , after replac ing Z l by 1 mZ 1 if 

nec e s sary , there  exis t bl , b2 E E such that 

f 0 e (z )  = exp (blz )  , X 0 e (z )  = exp (b 2z )  , 

with ab s olute c onvergence of the exponential s e r ie s .  

Let  now r b e  the s et of ele ments z E Z 1 such that 

e (z ) E T (Q ) W . Since T (Q 1 ) / e (Z 1 ) i s  finitely generated ,  and 

T (Q) w is of infinite rank , r is of infinite rank . If ZE r .  e (z ) 
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be longs to T (Q ) W ' henc e f o e (z ) i s  algebra ic ove r Q ; the s ame 
* 

is  true for X "  e (z ) s ince X maps T (Q) e ithe r  into Q or into 

the gr oup F� defined above . Propos ition 1 then shows that b 1 / b2 N is  r ational . This means that s ome integral powe r f of f ,  with 

N � 1 ,  i s  locally equal to an integral power of X ,  hence f is 
almos t  locally algebraic . 

ii )  General cas e .  Wr ite T = Tl . . .  T
n 

where  Tl , . . .  , Tn ar e 

one - dimens ional subtor i  of T .  S ince X (T )  S Q is the direct  sum of 

the X (T . )  � Q ,  it is enough to show that , for all i ,  the r e s tr ic -
1 

t ion fi of f to T i (Q 1 ) i s  almos t  locally algebraic . But we may 

choo s e  open subgroups W . of T . (Q ) such that 
1 ,  p 1 P 

W
I 

. . .  W C W . If we put W. = (W . ) , we then s e e  that , p  n , p  p 1 1 , p pE S 
£ .  take s algebraic value s on T .  (Q) W • henc e  is  almost locally al -
l 1 . 1 

gebraic by i) above . q .  e .  d .  

Remark 

If one could suppre s s  condition (b) from Prop. 2. all the r e ­

sults of this § would extend to arb itrary number  fields . This would 

be pos s ible if one had a suffic iently s tr ong n- dimens ional ve rs ion of 

Prop .  1 above ; the one given in [3 0] .  § 2 doe s not seem strong enough 

(it requires  dens ity propertie s which ar e unknown in the case c on­

s ide red  her e ) .  � [ Th is h as b een  done  b y  W al d s c h m id t :  see  [ 6 3 1 . 

[ 8 3 1 . 1 

Exerc i s e  

Let T be a non- tr ivial torus ove r  Q . Show that T (Q) i s  

the direct  sum of  a finite group an d  a f r e e  abel ian gr oup o f  infinite 

rank. 
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3 . 4 .  Proof o f  the the orem 

We go  back to the notations and hypothe s e s  o f  3 . 1 .  Let 

- ab 
p :  Gal (K/ K) -+ Aut (V 1 ) 

be  a rational , s emi - s imple , abel ian 1 - adic repr e s entation of K .  
If E is  the c omple tion of  Q1 ' as in  3 . 3 ,  we may br ing p in 

diagonal form over  E .  This g ive s r is e  to a family (ttIl " " , r/Jn ) of 
- ab continuous character s  of Gal (K / K )  (hence als o of the idHe group 

* 
I) into E here , n = dim. V 1 . 

* * th Let f
l'
: K 1 -+ E be  the r e s tr iction of r/J . to the 1 - c ompo -

* * 1 
nent K 1 of 1. Note that K 1 = T (Q 1 ) ,  where  T is , as usual , the 

torus defined by K (chap . II ,  1 . 1 ) . 

LEMMA - The torus T and the homomorphism fi s atisfy the 

as s umptions (a) and (b) of Prop .  2 ,  3 . 3 .  

Ver ification of (a) 

Let S be  a finite s e t  of pr imes , with 1 4 S ,  such that if 
v E I:K , P /: 1 , P � S ,  the r epr e s entation p is unramified  at 

v v 
v ,  and the character i s tic polynomial of F has rational coeffi-

v ,  p 
c ients . If PE S ,  Prop .  1 of 2 . 2 shows that there  exists an open 

* 
subgroup W of K = T (Q ) such that r/J .  (W ) = 1 .  Let p p p 1 p * 
W = (W ) S and let  x E T (Q) W ' S ince x E K , we have r/J . (x) = 1 ,  P pE 1 

when x is ident ifie d with an id� le of K.  On the other hand,  let  us 

spl it the idHe x in its c omponents 
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ac cording to the decompos it ion of I in 

�::: 
I = K 

00 

�I.. �I ... 

X K� X K; X I ' . 
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* 
(Her e  K = ,� 

(K @ R )  K
':' = IT K�' 

and l '  i s  the r e s tr ic ted  pr oduct S pE S P 
,:� 

of the K , v for v E :E
K

, and p 1= I. , p # S . ) The re lation v v 
1/1 .  (x) = 1 , together with 1/1 .  (xI. ) = f . (x) , g ive s 1 1 1 

- 1  f . (x) = 1/1 . (x )1/1 .  (xS )I/I .  (x ' ) .  1 1 00 1 1 

By c onstruction , we have 1/1 .  (xS ) = 1 and it is c lear that 1/1 .  (x ) = + 1 . 
1 1 00 

Henc e :  

- 1 f . (x) = + 1/1 .  (x ' )  1 - 1 

But ,  for each v E :E
K

, with P � S ,  p 1= I. , we know that the v v 
e igenvalue s of F are algeb raic ; henc e , if f is an id� le which v ,  P v 
is a uniformiz ing e lement at v ,  and is equal to 1 e ls ewhere , 

1/1 . (f ) i s  algebra ic . If a (v )  is  the valuation of x , at v ,  we have : 1 v 

1/1 .  (x ' ) = IT 1/1 .  (f )a (v )  
1 1 V 

hence 1/1 .  (x ' ) and f . (x ) are  algebraic and we have checked (a) .  1 1 

Ver ification of (b ) .  

Since K is a c ompos ite of quadratic fie lds , it is a Galois 

extens ion of Q, and its Galois gr oup G is  a product of groups of 

order  2 .  The character g roup X (T ) of T is  is omorphic to the 
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regular repr e s entation of G ,  and it i s  c lear that X (T)  @ Q splits 

as a direc t  s wn  of one - dimens ional G - s table sub spac e s  (each 

c or r e spond to a character of G ) .  Hence T i s  a swn of one - dimen -

s ional tori . 

End of the proof of the theorem 

Us ing prop . 2 of 3 . 3 , we see  that each f . is almost  locally 
1 N algebraic . Hence the re  is an integer  N > 1 s uch that the f . are - 1 

locally algebraic . This implie s ,  c f .  1 . 1 ,  that pN i s  locally alge -

b raic , hence (ef .  3 . 2 )  that p its e lf i s  locally algebraic , q . e . d . 

Exerc i s e  

As sume that K i s  a c ompos ite o f  quadratic fie lds . Let X 
be a GrO s s enchar akter of K and s uppo se  that the value s of X (on 

the ideals pr ime to the c onductor ) are algebraic numbe r s .  Show 

that X is " of type (A) " in the s ense  of We il [41] . (Us e the same 

method than a!:; ove , with E replac ed  by C . ) If the value s of X l ie 

in a finite extens ion of Q ,  show that X is " of type 

assu m p tio n o n  K is n e cessary , th a n k s  to [ 8 3 ] . J  

APPENDIX 

(A ) "  . -+ [ n o o 

Hodge - Tate dec ompos it ions and locally algebraic repre s entations 

Let K be a field of characte r is tic z e ro ,  c omplete with re spect  

to  a dis cre te valuation and with perfec t  r e s idue field k of  charac ­

ter is tic p > O .  In thi s  Appendix we  deal with Hodge -Tate decompos i ­

tion of p -adic abe lian repr e s entations of K .  
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Sec t ions Al  and A2 g ive invar ianc e pr ope rtie s of  the s e  de ­

compos itions unde r  g round fie ld extens ions . Spe c ial character s  of 

Gal (K / K) ar e  defined in A4 ; they ar e clos ely c onnected both with 

Hodge -Tate module s (A4 and AS ) and local algebraic ity (A6 ) . The 

pr oof of Tate ' s theorem (c f . 1 . 2) is g iven in the las t s e c tion. 

AI . Invar ianc e of Hodge -Tate dec ompos itions 

Le t C be the c ompletion of K (cf .  1 .  2 ) ; the gr oup Gal (K/ K) 
ac ts continuous ly on C .  Let X be  the characte r  of Gal (K/ K )  
into the gr oup o f  p - adic units defined in chap . I ,  1 .  2 .  Let K '  / K 
be a subextens ion of K/ K on which the valuation -; of K is 

dis cre te ;  this means that K' is  a finite extens ion of an unrarnified 
A 

one of K .  Let K '  denote the closur e of K '  in C .  

Let now W be  a finite dimens ional C -vector  space on which 

Gal (K/ K) acts continuous ly and semi - linearly (s e e  1 .  2 ) . As before , 
n n � 

we denote by W (r e sp .  W K ' ) the K - (re sp .  K '  - ) vector space 

defined by 

n I n W = {w E W S (w) = X (s ) w for all s '  Gal (K/ K) } 

(r e sp .  w�, = {W E w i  s (w) = X (s )nw for all s E Gal (K / K" ) } ) .  

n n Let W (n)  = C <»K W and W (n ) '  = C �K' W K ' Identifying the ' 

module s W (n) and W (n) ' with the ir canonical image s  in W, we 

prove 

THEOREM I - The canonical map 
" K '  - i s omorphism. 

" n n K'  �K W � W K'  i s  a 
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COROLLARY 1 - The Galois  module s  W (n ) and W (n ) '  ar e equal . 

Inde ed ,  The orem 1 shows that Wn and w� , generate the 

s ame C -vector sub spac e of W . 

CORO LLARY 2 - The Galo i s  module W is  of  Hodge -Tate type ove r 
" 

K if and only if it is s o  over  K ' . 

Proof of Theorem 1 

Note fir s t  that replac ing the action of Gal (K/ K) on W by 

(s , w) � X (s ) - i sw , i E Z ,  jus t  change s  Wn to Wn+i This 

sh ifting pr oc e s s  reduc e s  the problem to the case n = 0 ; in that 
n n cas e ,  W (r e sp .  W K ' ) i s  the s e t  of elements of W which are 

invar iant under Gal (K/ K)  (re sp .  under Gal (K/ K ' ) ) .  Note als o 

that the inj ectiv ity of 1< ,  � Wo � w�, is triv ial , s ince  we know 

that C Q!)K WO � W is inj e c tive (cf. 1. 2 ) . 
On the othe r hand , an easy  up -and - down argum ent shows that 

one c an as sume K ' / K to be e ither  finite Galois or unramified 

Galo is .  In both cas e s , s inc e Gal (K/ K ' ) acts tr ivially on w�, 
we have a s emi- l inear action of Gal (K ' / K) on W� , . When 

o K ' / K i s  finite , it is  well known that this implie s that W K ' is 

generated by the e lements invar iant by Gal (K ' / K ) , i .  e .  by WO 

(this  i s  a non - commutative analogue of Hilbert ' s "  Theorem 90 " • 

cf .  for instance [2 9] ,  p . 15 9) . 

Let now K ' / K be unr amifie d  Galois and let G be its Galois 
A ,.. 

group . Let 0 '  denote the r ing of intege r s  of K ' . Let A be an 
... 0 A 0 0 '  - lattic e of W K ' (i . e .  a fr ee  0 ' - s ubmodule of W K ' of the s ame 

rank as W� , ) .  Since G acts continuously on W� , ' the s tab iliz e r  

in G o f  A i s  open ,  henc e o f  finite index,  and the latt ic e  A has 
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finite ly many transforms . The s um  A 0 of the s e  tr ansforms is 

invar iant by G. 

Then 

. 0 
Let e

l
, . . . , e

N 
b e  a b a s I s of A . 

N 
s (e . )  = � a . .  (s ) e .  

J i =l 
IJ 1 

A 
a . .  E 0 '  

IJ 

Le t s E G . 

A 
and the matr ix a (s )  = (a . .  (s » b e long s to GL (N ,  0 ' ) .  W e  have 

IJ 
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a (st )  = a (s ) s  (a (t » ;  this  means that a i s  a continuous l - cocyc le on 
'" 

G with value s in GL (N, 0 ' ) . Rec all that two s uch c oc yc le s  a and 

a '  are  said to b e  c ohomologous if the re  exists b E  GL (N , 6 , ) s uch 
- 1  

that a '  (s ) = b a (s ) s  (b )  for all s E G .  This i s  a n  equivalenc e 

r e lation on the s e t  of cocyc le s and the c o r r e sponding quotient space 
1 " 

i s  denote d by  H (G , GL (N ,  0 ' » .  In fact :  

LEMMA - If (G , GL (N ,  0 ' »  = { I }  . 

As s uming the lemma , the pr oof of the theorem is c oncluded 

as  follows . Sinc e a (s )  i s  c ohomolog ous to 1 ,  there exis ts  
A 

b E GL (N, 0 ' ) s uch that b = a (s ) s  (b )  for all s E G.  
o 

define a new bas is  e i , · · · ,  eN of W 
K ' by 

e !  = � b . .  e . . 
J 

i =l 
IJ 1 

If b = (b . .  ) ,  
IJ 

U s ing the identity b = a (s ) s (b ) ,  one s e e s  that e i , . . .  , eN are 

invar iant unde r G ,  henc e be long to WO ; this prove s the surj e c ­

tiv ity of K'  GO WO � WO 
K K' 
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Proof of the 1enuna 
'" 

Let 7r be  a uniformiz ing e lement of 0 ' . Filte r the r ing 
� I n A = GL (N , O ' ) by means  of A = { a  E A a == 1 mod 7r } . We g e t  

n 
AI Al � G L (N ,  k '  I k) , wher e  k '  I k is the r e s idue field extens ion 

of K' I K. Moreove r ,  for n ::: 1 ,  the r e  is an is omorphism 

AnI A
n+k -.. MN (k'  ) ,  wher e  MN (k ' ) is the additive gr oup o f  N X N 

matr ice s with c oefficient s  in k ' . The lemma follows now from the 

tr iviality of H1 (G , GL (N , k ' ) )  and H1 (G , � (k' ) ) ,  wher e  now k '  i s  

endowe d with the  dis cre te topology (s o  this is  ordinary Galois 

c ohomology ,  C £ .  [ 2 9] ,  p .  15 8 - 15 9) . 

A2 .  Admis s ible characte r s  
* 

Let G = Gal (K1 K)  and let  q, :  G � K be a c ontinuous homo -

morphism .  

DEFINITION - The character q, i s  s aid to be  admis s ible (notat ion : 

q, -.. 1 )  if the r e  exis ts x E C ,  x F 0 , such that s (x) = q, (s )x for all 

s E G.  

Remarks 

1 )  The admis s ible characte r s  form a s ubgroup of the gr oup of 
* 

all char acter s  of G with value s in K ; if q" q, '  are two characte r s ,  
- 1  

we wr ite q, -.. q, '  if q, q, '  -.. 1 .  
1 * 

2 )  Let H (G , C ) b e  the fir s t  c ohomology group of G with 
* 

value s in C (c ohomology b e ing defined by continuous c ochains , as  
* 

in AI ) . A c ontinuous character q, :  G � K i s  a l - c ocycle , henc e 
- 1 * 

define s an element q, of H (G, C ) .  One has q, = q, '  if and only if 

q, -.. q, '  . 
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3 )  Define a n e w  act ion o f  G o n  C b y  m eans of 

(s , c) � </I (s ) s (c ) S E G ,  C E C . 

Denote the C - G -module thus  obtained  by C (</I ) . Then </I i s  admis s ­

ible  if and only if C (</I ) and C are i s omorphic as C - G -module s .  

� 

PROPOSITIO N I - Suppo s e  the r e  exis ts  C E C 
.... 

such that 

</I (s ) = s (c ) 1 C for s in s ome open s ubgr oup N of the ine rtia group 

of G .  T h e n  q, i s  admis s ible . 

Pr oof. Let K ' I K be  the s ubexte ns ion of KI K c or r e s ponding to 

N; it is a finite extens ion of an unram ified one . Le t W = C (q, ) ,  as 

in Remark 3,  and let W
O 

(re s p .  W� , ) be  the s ub s pac e of W c on ­

s i s ting of e lements  invar iant b y  G (r e s p .  by  N) . By hypothe s is ,  

W� , is  1= O . Henc e ,  by  AI , Theorem 1 ,  we als o  have W
O 1= 0 ,  

and this means that q, is  admis s ible , q . e . d .  

Let now Uc be the gr oup of units of C ,  U� the subgr oup of  
-* 

units c ongruent to I modulo the maximal ideal , and identify k 

with the gr oup of multiplicative repr e s entative s ,  s o  that 
I - �< 

Uc = Uc X k , d. [ 2 9] ,  p .  44 . Define the l ogar ithm map 

by 

log : Uc - �  C 

log (x) = 0 
00 

n - l  n 
log (x) = � ( - 1 )  (x- I ) / n 

n=l 
if x E Ul 

C 

This i s  a c ontinuous homoITlorphisITl and even a local is oITlorphism . 
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Mor e ov e r : 

LEMMA - (a) log is  surjec tive . 

(b ) The kernel of log : X fJ. • 
00 

p 

whe r e  fJ. CD i s  the s e t  of all 
p 

n p - th r oots of unity . for n = 1 . 2 • . . .  

As s e rtion (a) follows from the fact that C is  algebraic ally 

c lo sed ,  hence that U C is  divis ible . 

On the othe r hand , if u E U� is such that log (u) = 0 ,  one has 
N N 

l im .  uP = I ,  henc e ,  if N is  large  enough , uP belong s to a sub -

gr oup of 

elements 

U� whe re  log is inj e ctive (for instanc e the subgr oup of 
. 2 

Hence upN 
= I ,  x wIth x ::  1 mod p ) .  and u E fJ. 

00 
P 

this  implie s (b ) .  

W e  now apply the log map to the c ohomology groups of G with 
* 

value s in UC , C , C  , . . . (c ohomology be ing . as  usual , defined by 

c ontinuous c ochains ) . Fir s t ,  s ince the valuation group of C is Q , 
we have the exact s e quence 

* 1 � Uc � C -+ Q -+ 1 .  

0 * *  
By Tate ' s theor em ([ 3 9] ,  § 3 . 3 )  one has H (G, C ) = K , hence 

an exact s e quence 

* 1 1 * 
K � Q � H (G , U C ) � H (G , C ) -+ 0 , 
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or , equivalently : 

Let N = Ker  (l og ) .  We have  the exact  s e quenc e 

I i I X. I H (G , N) � H (G , U C ) � H (G , C ) ,  
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where  X. i s  induce d  b y  the log . S inc e HI (G , C )  i s  a K -vector spac e , 

the compos ite X. 0 0 : Qf Z � HI (G , C)  is 0 ,  henc e the re  is  a unique 

map 

s uch that 

1 * I 
L:  H (G , C ) � H (G , C ) 

L o i  = x. .  

I * I 
PROPOSI T ION 2 - The map L: H (G , C ) � H (G , C) i s  injective .  

Us ing the exact s equenc e s  above , one s e e s  it is enough to 

pr ove that io j :  HI (G , N) � HI (G , C*) i s  tr ivial.  But N i s  a dis cre te 
- * I -* 

s ubgroup of K henc e i o  j factor s thr ough H (G , K ) , wher e  now 
-* I - *  K is  viewe d as a dis cre te group ; by The orem 90 , H (G , K ) is  

tr ivial , henc e als o  i o j ,  q .  e .  d .  
* 

Le t now </1 :  G � K b e  a continuous characte r .  S ince </1 (G) 

i s  compact ,  it is c ontaine d in UK ' henc e in U C ' and 

log </1 :  G � C i s  an additive  l - c oc ycle . Its c ohomology clas s in 

HI (G ,  C)  i s  L</1 , whe r e  </1 i s  the cohomology clas s of </1 in 

I * 
H (G , C ) .  
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PROPOSIT ION 3 - The pr opertie s I/> - l and LI/> = 0 are equivalent . 

Th i s  follows fr oITl the inj e c tivity of L. 

CORO LLARY - If ther e  exis ts a non - z e ro  integer  n such that 

I/>n 
- 1 , then 1/> - 1 . 

Indeed ,  LI/> = !. L'in = O .  n 

ReITlark 

Spr inger  has proved that HI (G , C) is of diITlens ion l over  K 

(cf .  Tate  [ 3 9] , § 3 . 3 ) . Henc e , one can take for basis  of Hl (G , C )  the 

e leITlent LX , wher e  X is  the fundaITlental character defined in 
* 

chap . I ,  1 .  2 .  In particular , for any 1/> :  G � K , ther e  i s  an 

eleITlent c (q, ) of K such that Lq, = c (q, )LX ;  when K is locally 

cOITlpact ,  this c (q, )  ITlay be cOITlputed explic itly ,  s e e  A6 , Exer .  2 .  

A3 . A c r iter ion for local tr iviality 
FroITl now on , E denote s a subfie ld of K having the following 

propertie s :  

(a) E contains Q and [E : Q J < 00 (s o that E i s  locally p p 
c OITlpact) . 

. (b )  K c ontains all Q - conjugate s of E .  p 
We denote by r E the s et of all Qp - eITlbeddings of E in K .  

Cons ider a c ontinuous character 

- * 1/1 :  Gal (K/ K )  � E 

with value s in E .  For each cr E rE this give s a character * cr * - * cr o r/; :  G � E � K of G = Gal (K/ K )  into K . 
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PROPOSITIO N 3 - The following two pr ope r tie s are  equivalent : 

(1 )  r./J i s  equal to 1 on an open subg r oup of the ine rtia group 

of G ,  

(2 ) a o  r./J -- 1 for all a E rE ' 

Pr oof 

(1 ) => (2 ) i s  tr ivial fr om the r e s ult  of Al (s inc e  we know 

that admis s ib il ity c an be  s e e n  on an open  s ubgr oup of the inertia 

group ) . 

(2 ) => (1 ) .  We us e the log map defined in A2 . Note that r./J 

take s value s in the group UE of unit s of E , henc e log r./J : G � E 

i s  well define d .  Let I b e  the ine rtia group of G ;  the s ubgroup 

log r./J (1 )  of E i s  c ompact ,  and hence is omorphic to Z
n 

for s ome 
p 

n .  If W is  the Q -vector s ub s pace of E gene r ate d by  log r./J (I ) , 
p 

we s e e  that log r./J (1 ) i s  a lattice  in W ,  and d im  W = n.  Note that 

s aying that r./J is equal to 1 on an open ne ighb ourhood of I in 1 is  

e quivalent to s aying that log r./J (1) = 0 (s ince log : U 
E 

� E is a local 

i s omorphism ) . Suppo s e  this  i s  not the c as e , i .  e .  s uppose  that 

n > 1 .  Choose  a Q - l inear map f :  E � K s uch that d im f (W)  = 1 ;  
p 

s uch a map obviously exis ts . By  Galois the o ry (independence of 

char acter s )  the s e t  r E i s  a bas i s  of Hom
Q 

(E ,  K) . Henc e ,  ther e  
p 

exi s t  k E K with 
a 

and we have f o l og r./J = � k  a o log r./J = � k  l og (a o r./J ) . 
a a 
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But by  as s umption (and Prop .  3 of A2 ) ,  the additive l - c ocyc le 

log (a D rJ; ) :  G � K is c ohomologous to O .  Hence the same is true 

fo r f .. log rJ;. B ut we may as sume (replac ing f by  p
N

f ,  with N 

larg e , if nece s s ary )  that the re  exists  a c ontinuous homomorphism 

F : UE � UK such that f o log = log o F . We then have 

log (Fo rJ; ) = f o log r/J and henc e (d. P r op . 3 0f A2 ) ,  F" r/J - l , L e . 

F o rJ; is admis s ible . But Fo rJ; has now the property that 

F o rJ; (I) C UK is a p - adic Lie gr oup of dimens ion 1 (product of Zp 
with a finite group ) .  This c ontradicts a the orem of Tate ( [3 9] , § 3 ,  

Th .  2 ) ,  hence the r e sult . 

A4.  The charac ter X E 
We keep the s ame hypothe s e s  on K and E as in the p r ev ious 

- ab s ection .  By c las s field theory ,  the group Gal (E /  E )  may be iden -"*  * 
tified with the c ompletion E of E with re spect  to the topology of 

open s ubgroups of finite index.  In particular , we have an exact 

s equence 

wher e  Z - IT Z 1 denote s the completion of Z with re spect  to the 

topology of s ubgroups of finite index (d. for ins tance Artin -Tate [2 ]  

or Cas se l s -Fr�hlich [6] , Chap. VI , § 2 ) .  
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Let now 7r be a uniformiz ing e lement of  E .  The imag e of  7r 
- ab in Gal (E / E )  generate s a subgroup whose  c losure  is is oITlOrphic ,.. 

to Z ,  and this g ive s an is omorphism:  

- ab Let pr 7r: Gal (E / E )  � UE b e  the projec tion as soc iated with this 

decompos ition (the Galois extens ion of E c or r e sponding to Ker (pr ) 
7r 

i s  the c ompos ite of all finite abe lian extens ions of E for which 7r 

is a norm, cf. [6 ] .  p. 144 - 145 ) .  

O n  the other  hand , the inc lus ion E � K define s a homomor ­

phism Gal (K./ K) � Gal (E/ E ) , hence als o  a homomorphism 

- ab rE : G � Gal (E/ E )  

Define X E , 7r (abbr .  X E) to be the compos ite homomorphism 

- ab i G � Gal (E /  E )  � UE � UE ' 

- 1 where i (x) = x for x E UE . Obs e rve that the r e str iction of X E 
to the inertia gr oup of G is  x � r E (x - 1 ) , and hence is indepen ­

dent of the choice of 7r. 

PROPOSITION 4 - Let F be the Lubin - Tate formal group ([17] , 
7r 

s e e  als o [6 ] . chap . VI, § 3 ) as s oc iated to E and 7r. Let T be its 

Tate -module , which is fr e e  of rank 1 over  the r ing 0E of integer s 

of E . The action of Gal {K./ K) on T is  g ive n by the character 

X E : G � UE , defined above . 



III- 4 2  AB E LIAN l - ADIC REPR ESE NTATIO NS 

This follows fr om the main theorem of [ 1 7 ]  (s e e  al s o  [6 ] ,  Th . 3 ,  

p . 14 9) . 

CORO LLARY - If E = Q
p 

and 7r = p , then the characte r X 
E 

c o inc ide s with the characte r X defined  in chap . I ,  1 .  2 .  

Inde e d ,  the Lubin - Tate g r oup i s  now the multiplic ative group 

G and its Tate module i s  the module T (f.I.) defined in chap . I ,  1 .  2 .  
m P 

R emark 

If K . 1 11 t ' d ' f  G
ab K .... 

* 
d th 1S oca y c ompac , we may 1 enh y to an e 

char acter X E i s  g iven by  

" * N ,, * pr 
7r 

• 

K � E � U � U E E ' 

wher e  N = NK/ E i s  the norm map . [This follows fr om the func ­

tor ial propertie s of the " re c iprocity law "  of local c las s field theory .  J 
In particular , the r e s tr ic tion of X E to the ine rtia s ubgr oup 

ab - 1  UK of G i s  x � NK / E (x ) .  

AS . Character s  as s oc iated with Hodge - Tate dec ompos itions 

Retaining the notation of the previous s e c tions , let  p :  G � UE 
be  a continuous homomorphism.  Let  V be  a one - dimens ional vectoI 

spac e over E ; we make G act on V by 

(s , y) � p (s ) y ,  S E G ,  y E V .  

� 
Henc e V is  a G-module . Let W = C 60Q V ,  whe r e  C = K as 

p 
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befor e .  This i s  a d - dimens ional vector spac e over  C, whe re  

d = [E :  Q J .  Eve ry element x o f  E define s a C - endomorphism 
p 

a of W by x 

a (!: c .  � y . ) = !: c .  � xy .  , 
X l I I I 

C .  E C ,  y . E V . 1 1 

We get in this way a repr e s entation of E in the C -vector space 

W ;  note that the action of a commute s with the action of G. x 
Let a E r

E 
and put 

W = {w l w E W, a (w) = a(x)w a x for all x E E } . 

LEMMA I - (a ) 
s table by G .  

(b ) 

Each W is  a one - dimens ional C -vector space -- a -

W is  the dire c t  sum of the Wa' s ,  a E r
E

. 

(c ) For each a E r E ' 

i s omorphic to C (a o p ) .  
th e  Galois module W i s  

a -

[For the definition of the " twisted"  module C (a o p ) 

s e e  A2 , Remark 3 .  J 

Proof. The as s er tions (a ) and (b) are c ons equenc e s  of the we ll-

known fact that C �Q E is  a pr oduct of d c opie s of C , 
p 

the 

proj e ctions  C �Q E �  C be ing given by the elements of r E . 
P 

For (c ) note that the same decompos ition holds for 

VK = K �Q V , 
P 

s ince K c ontains all the Q - c onjugate s of E ;  p 

henc e for each a E r
E

' the re  exists a W E Wa c ontained in V K . 



III - 44 AB E LIAN 1. - ADIC REPRE SENTATIONS 

For such a w ,  s ay w = � k . � y .  (k .  E K ,  y .  E V)  we have 1 1 1 1 

s (w) = � k .  09 s (y . ) 1 1 
= � k . � p (s )y .  1 1 
= ap (s )w 

= a 0 P (s )w s ince w belong s to W a 

and this im.plie s that W i s  i s om.orphic to C (a o p ) . a 
t" 

If PI and P2 ar e two characte r s  of G into K then we 

shall wr ite Pl == P2 if PI and P 2 co inc ide on an open subgr oup of 

the iner tia gr oup of G . 

THEOREM 2 - Let P ,  V ,  W be  as above and , for each a E rE ' let  

n be an integer . The following ar e equivalent : a 

(i ) 

(i i )  a o p "'" X 
n a 

- 1 na P =- IT a o X aE 
a E rE 

for all a E rE 
(i i i )  for every a E rE the Galois -m.odule Wa is  is om.orphic 
n 

to C (X a) . 

[Recall that X is  the character defined in chap.  I ,  1 .  2 ,  and 

that X aE is the one attached to the s ubfield aE of K, as in A4 . 

Note that ,  s ince X aE r e s tr icted to the inertia group depends only 

on aE , (i ) is m.eaningfu1 . ] 
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CORO LLARY - V is of Hodge - Tate type if and only if the re  exi s t  

n E a Z such that -1 na p -_-IT a ' X  aE a E rE 

This follows fr om (i ii ) and the fac t that W = C � V is the direc t  

sum of the W ' s . a 

Pr oof of Theorem 2 

We prove fir s t :  

LEMMA 2 - (a ) X E - X 

(b) If a E rE is not the inc lus ion map , aX E - 1 .  

Proof . Let 7r be  a uniformizing parameter of E ,  

Lub in - Tate group as s oc iated  to E and 7r ,  let T 7r 

let F be  the 
7r 

be  its Tate 

module , and V = T � Q S ince V is  a one - dimens ional vector 

spac e over E ,  

7r 
7r P 

7r 

and G acts on V 7r through X E : G � UE (d. A4 , 

Prop .  4 ) ,  the above cons tructions apply to V 7r and X E . By a 

the orem of Tate ([ 3 9] .  § 4 , Cor .  2 to Th.  3 ) ,  W 
7r 

= C �Q V 
7r 

has 
p 

a Hodge - Tate dec ompos ition of the type 

W = W (0) ED W (1 )  
7r 7r 7r 

wher e  d im W (0)  = d - l ,  dim W ( 1 ) = 1 .  Mor e  pr ec is ely, Tate de -
7r 7r 

fine s canonical is omorphisms W 7r (0 )  = C Ci>
K 

HomE (t ' , K ) ,  whe re t '  
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i s  the (d - l) - dimens ional tangent spac e of the dual of F 
7r 

W (l ) = 
7r 

(C �Q V (f.L ) )  riJK t ,  
P P 

wher e  t i s  the one - dimens ional 

tangent space to  F , and V (f.L ) 
7r P 

i s  the Q -vec tor spac e of dimens ion p 
1 define d in Chap . I, 1 .  2 .  

Note that C �Q V (f.L) i s  . i s omorphic t o  C (X ) , hence one gets  an 
p p 

i s omorphism 

The s e  i s omorphisms c ommute with the  action of  E . 

S ince E acts on t 

shows that the c omponent 

by the inc lus ion map al : 
E � K ,  this 

(W ) of W is W (I ) .  Henc e ,  us ing 
7r Clj, 7r 7r 

Lemma I ,  we have C (X ) � C (X E ) ' and this  implie s X E -- X , 

whence (a) . On the o ther hand ,  the s ame argument shows that 

(W ) • a 1= al ' ar e contained in the oth er fac tor W {O J of W 7r a  7r 7r 

hence  C {a o x E) -- C {l) , {whe r e  1 s tands , of c our s e ,  for the unit 

character } , and this prove s (b ) .  

W e  now go  back t o  the proof of The orem 2 .  The equivalenc e 

of (i i )  and (iii )  follows from Lemma 1 .  To show (i ) � (i i ) ,  note 
* 

fir s t  that X E take s value s in aE 
* a 

- 1  hence a o X  aE take s value s 

in E and the same is true for the characte r  

p = 
1 
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Let  T E L 
E 

. We have 

- 1  n
a = IT Tca o X

aE 
a E I E 

F r om Lemma 2 , 
- 1 

T o a <I X - 1  

appl ie d to the field aE ,  we s e e  that 

l' f - 1  T o a  is  not the identity on  aE , 
T 1= a 

aE 

if 
n T 

- 1 T = a ,  we have T o a 0 X = X - X aE aE 
and (i i )  i s  equivalent to 

for all T E L E . 

By Prop .  3 of A3 , this is  equivalent to PI ·� p , q .  e .  d .  

A6 . Locally c ompac t case  

III - 4 7 

L e . if 

Hence 

We now add to all the previous as sumptions regarding K and 

E ,  the as s umption that K is  finite over  Q (L e .  K is  locally p 
c ompact ) .  B y  local  clas s fie ld the ory ,  we may then identify Gab 

I" t..c 
with K and the iner tia subgroup of Gab with UK ' the group 

of units of K . 

Let T (re sp .  T E ' T aE) be  the Qp - torus as s oc iated to K 

(re sp .  to E ,  aE , where  a E IE ) , cf. 1 . 1 .  The norm map from 

K to aE define s an algebraic morphism 
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- 1  By  c OInpos ition with 0' : T aE � 
T E ' this g ive s a InorphisIn 

- 1  r = 0' �N : T � TE . 
0' K/ aE 

- 1  - 1  PROPOSITION 5 - (a ) ra (u ) = 0' 0 X
aE (u) for all u E UK ' 

HOInalg (T , TE ) · 

(b )  the r 0' (0' E r
E

) Inake a Z -bas i s  of 

(Note that (a) Inakes  s ens e ,  s ince UK has b e en identified with 

the inert ia gr oup of Gab . )  

As s e r ti on (a ) follows fr oIn th e r e Inar k at th e end of A4 . On 

the other hand , let X (T )  and X (T 
E

) be  the character groups of T 

and T 
E 

re spectively .  The charac ter s  [ s ] , s E r K (r e sp .  

(0') , 0' E r
E

) Inake a bas is o f  X (T )  (r e s p .  of X (T 
E

) ) '  The Inor ­

phisIn r 0': T � T 
E 

define s by  transpos ition a hOInoInorphisIn 

One checks eas ily that the effec t  of X (r ) on the bas is  0' 
[,.] . T E rE ' i s : 

X (r ) ( [T] ) = l; [s ] 
0' sa= T 

As s e r tion (b )  then follows fr oIn : 
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LEMMA - The e lements X (r 
a

) '  O' E r E ' fo rm a bas is of 

HomGal (X (T E ) ,  X (T ) ) .  

III - 4 9 

Pr oof .  The independenc e of the X (r ) is c lear . On the other hand , 
a 

le t  </l E HomGal (X (TE ) ,  X (T ) )  b e  s uch that 

If a E Gal (O / Q ) is equal to the identity on TE ,  we have p p 
a [T] = [T ] ,  henc e a</l ([T ] ) = </l ([T] ) , i .  e .  n (T , a s ) = n (T , s ) for all 

S E r K ' This m eans that n (T, s ) depends only on the e lement 

- 1 
a = s T ; if we put n = n (T , s ) . we then  have 

a 

</l ([T ] ) = !: 
O' E r 

E 

= !: 
a e r

E 

This prove s the lemma . 

n !: [ s ] 
a sa=T 

n X (r ) ([T ] ) . 
a a 

PROPOSITION 6 - Let p and (n
a

) , a e r
E

' be  as in Th . 2 of AS . 
Let r: T � T 

E 
be the morphism defined by 

n 
r = 1T r a 

a 
a e r

E 
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The equivalent propertie s (i ) ,  (i i ) , (ii i )  of Th.  2 are  equivalent to :  

(iv) There exists  an  open subgr oup u r  o f  the inert ia subgroup 

UK of Gab such that r (u) p (u) = 1 if  u E U r • 

Inde ed ,  (iv) i s  just  a r eformulation of (i ) , s ince we know that 
- 1  - 1  cr " X crE (u) = rcr (u ) i f  u E UK . 

COROLLARY - The following ar e equivalent : 

(a ) p is locally algebraic . 

(b )  The Galois module V attached to p is of Hodge - Tate  

�. 

This follows fr om The orem 2 , combined with Prop. 5 and 

Prop .  6 .  

Exerc i s e s  

1 ) a)  Let A = EndQ (K) be  the spac e of Q - linear endo -
p p 

morphisms of K ;  if a E A,  denote by T r  (a) the trace of a .  If 

x E K ,  denote by u the endomorphism y � xy of K .  Show that ,  x 
for any a E A, there  exists  a unique element cK (a) of K s uch that 

Tr  (u 0 a) = Tr ( c  (a ) )  x K /  Q x .  K for all x E K. 
P 

b ) Show that the map cK : A ---+- K s o  defined is K- l inear 

for both the natural structure s  of K-vector space on A. 
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c )  Let e .  b e  a Q -bas is of K and l e t  e ' b e  the dual 
1 p i 

bas i s , s o  that TrK/ Q (e
i
e

J
� )  = 6 . .  Show that 

p lJ 

cK (a) = L: a (e . ) e � 
i l l 

if a E A. 

d )  If L :) K and a E A,  show that 

C L (a .. Tr L/ K) = cK (a) .  

Show that cK (TrK/ Q ) = 1 .  
p 

e )  If K i s  a Galois  extens ion of Q show that p 
cK (0') = 0 for every 0' E Gal (K/ Qp ) ' 0' f: id. , and cK (id . ) = 1 .  

b * 
2 )  Let r/J :  Ga � K be  a c ontinuous homomorphism, and 

let  ar/J be  the Qp - l inear endomorphism of K such that the diagram 

u
K 4 UK 

� log j,l og 
a 

K .L K 

i s  commutative . Let Lr/J (re s p .  LX ) be  the image of r/J (re sp .  X )  

in the one -dimens ional K -vec tor  s pace  If (G , C ) , cf. A2 . Show 

that 

Lr/J = c .  LX 

where  c (Check the formula fir s t  when K is a Galois 



III - 5 2  AB E LIAN 1. -AD IC REPRESENTATIONS 

extens ion of Q and - 1  q, = a o x  K ' a E Gal (K (Qp ) ' in which cas e  
- 1  p 

a q, 
= - a and c K (a q, ) 

In particular , q, 

A7 . Tate ' s The orem 

is g iven b y  Exer .  1 ,  d . ) 

is admis s ible if and only if cK (aq,
) = o .  

W e  recall the s tatement (c f . 1 .  2 ) ; her e  again , K is locally 

c ompac t .  

THEOREM 3 - Let  V be a finite dimens ional ve ctor spac e over Q 
al p 

and let p :  G � Aut ( ¥)  be  an abelian p - adic repr e s entation of K .  

The following ar e equivalent : 

(1 ) p is locally algebra ic 

(2 ) p is of Hodge - Tate  type and it s r e s tr ic tion to the inert ia 

gr oup is s emi - s imple . 

Proof. We have already r emarked (d. 1 . 1 ) that (1 ) implie s :  

(* ) - The r e s tr ict ion of p to the inert ia group is semi - s imple . 

Henc e we may as sume that (* ) holds . 

Let 7r be  a uniformiz ing element of K ,  and let pr denote 
7r 

the proj e c tion map of Gab onto its inertia gr oup UK as s oc iate d to 

7r (d. A4 and Cas s els -FrOhlich [6] , p. 144 - 145 ) .  Define a new r epr e -
. ' of Gab by s entahon p 

p ' = p o  pr . 
7r 

Replac ing p by p ' doe s  not affec t  the local algebraic ity 

(c lear ) ,  nor the Hodge - Tate pr ope r ty (this follows from AI , Cor . 2 

to Th . 1 ) . S ince (* ) implie s that p ' is  s emi - s imple , this means 
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tha t ,  afte r re plac ing p by  p ' , w e  may as s ume that p i s  s emi ­

s imple and even (by an eas y r e duc tion ) that it is s imple . Let then 

E C End (V) be the c ommuting algebra  of p .  Sinc e p i s  abe l ian 

and s imple , E i s  a c ommutat ive fie ld ,  of finite degree  ove r Q , p 
and V i s  a one - dimens ional vec tor space ove r E ;  the repre senta -

.... 

tion p i s  g iven by a continuous characte r p :  G � E'" 

Let now K ' b e  a finite extens ion of K which is large  enough 

to c ontain all the Q - c onjugate s of E .  Call (I ' ) and (2 ' ) the proper -p 
tie s c or re sponding to (1 )  and ( 2 ) , when K ' is taken as gr oundfield 

instead of K . We know (d. 1 . 1 )  that (1 ) � (1 ' ) .  By Cor . 2 to 

Th .  1 of AI , we have (2 ) � (2 ' ) .  Hence it  is enough to pr ove that 

(1 ' ) � (2 ' ) ,  and this has b e en done in A6 (Cor .  to Prop .  6 ) , q .  e .  d .  





CHAPTER IV 

t -ADIC REPRESENTATIONS ATTACHED TO E LLIPTIC CURVES 

Let  K be a number field and let E be an elliptic curve ove r 

K. If 1. i s  a prime number , le t  

be the cor re sponding l -adic  repre sentation of  K ,  cf .  chap .  I ,  1 .  2 .  

The main r e sult of thi s Chapter i s  the dete rmination of the Lie algebra 

of the 1. -adic Lie  group G1 = Im( p l ) . T hi s  i s  ba sed on a finitene s s  

theorem o f  ·Safar evic ( 1 .  4 ) combined with the propertie s o f  locally 

algebraic abelian repre sentations ( chap . III) and Tate ' s  lo cal theory 

of  elliptic curve s with non-integral modular invar iant (Appendix, AI) . 

The var iation of G 1 with 1 i s  studied  in § 3 .  

The Appendix give s analogous re sul t s  i n  the local case  ( i .  e .  

when K i s  a local field) . 
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§ 1 . PR ELIMINARIES 

1 . 1 .  Elliptic curve s {d. Ca s s el s  [ 5 ] ,  Deuring [ 9] ,  Igusa ( 1 0 ] )  

By an elliptic curve , we  mean an  abelian var iety o f  dimension 

1 ,  i .  e .  a comple te ,  non s ingular ,  conne cted  curve of  genus 1 with a 

given rational po int P , taken a s  an or igin fo r the compo sition law 
o 

( and often wr itten 0 ) . 

Let E be such a cur ve . I t  i s  we ll known that E may be 

embedded ,  as a non - singular c ubi c ,  in the projec tive plane P
Z / K

' 

in such a way that P be come s a " flex" (one take s the proj e c tive 
o 

embedding define d by the complete linear s e rie s containing the 

divi sor  3 . P
o

) ' In thi s embe dding , thre e  point s PI ' P
Z

' P
3 

have 

sum 0 if and only if the divi sor  P
l 

+ Pz + P
3 

i s  the inter section o f  

E with a line . By cho o s ing a suitable coordinate sy stem,  the 

equation of E can be written in W eie r stra s s  form 

Z 3 Y = 4x g x g -
Z 

-
3 

whe r e  x, y are  non-homoge neous  coordinate s and the origin P i s  
o 

the point at infinity on the y - axi s .  T he di s c riminant 

i s  non- zero . 

3 Z � = g - Z 7 g  
Z 3 

The coefficient s  gz ' g
3 

a r e  dete rmine d up to the transfor -

. 4 6 K
* 

h d l ·  . matlOns g
z

� u g
z

' g
3 

t---+ u g
3

' U ti>  • T e mo u ar lnvarlant j 

of E i s  



ELLIP TIC CUR YES I V - 3 

Two el liptic curve s have the same j invariant if and only if  

they be come i somorphic ove r  the algebraic clo sur e of K. 

(All thi s  r emains valid ove r  an arbitrary field ,  exc ept that ,  

when the characteri stic is  2 or  3 ,  the equation of E ha s to be 

written in the mo re general form 

2 y 

Here  again, 0 i s  the point at infinity on the y-axi s and the cor re s ­

ponding tangent i s  the line a t  infinity . The r e  are  corre sponding 

definitions fo r A and j ,  for which w e  r efe r t o  Deuring [ 9] o r  Ogg 

[ 2 0] ; not e ,  however ,  that the r e  is a mispr int in  Ogg ' s formula for A : 

the coeffic ient of 13 3 should be - 8 instead of - 1 . ) 4 

1 .  2 .  Good reduc tion 

Let  v e l;K be a place  of the number  field K. We denote by 

o ( r e sp .  m , k ) the cor r e sponding local r ing in K ( r e sp . i t s  v - v  v 
maximal ideal , i t s  r e sidue field) . 

Let E be an elliptic curve over K .  One says that E has  

good reduction at v if one can find a coordinate system in P 2 / K 
such that the cor r e sponding equation f for E ha s  coefficient in 0 v 

- -

and i t s  r eduction f mod m de fine s a non- singular cubic E (hence -v  - v 
an elliptic curve ) over the r e sidue fie ld k ( in o the r words , the v 
di s c r iminant �f) of f must  be an invertible element of 0 ) . The v 
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curve E v i s  called the r eduction  of  E at v ; it doe s  not depend on 

the choice  of f ,  provided ,  o f  c our se ,  that A ( f) = 0':' . v 
One can prove that the above definition i s  equivalent to the 

following one : ther e i s  an abelian scheme E over Spec (O ) ,  in v v 
the s en s e  of  Mumford [ 19 ] , chap . VI, who s e  generic  fiber i s  E ;  thi s 

--
s cheme i s  then unique , and i t s  spe cial fiber i s  E . Note that E i s  v v 
defined over the finite field k ; we denote it s Frobenius endo -v 
morphi sm by F . v 

On either definition, one s e e s  that E ha s  good reduction for 

almo st all place s of K . 

If  E has good reduction at a given place  v, i ts  j invariant 

i s  integral at v ( i .  e .  be long s to 0 ) and its reduction J mod m - v - v  --
i s  the j invariant of the r educ e d  curve E . 

0 ,  
v 

v 
The conver s e  i s  almo st  true ,  but not quite : if j belong s to 

the re is a finite extens ion L of K such that E XK L ha s  good 

r eduction at all the place s of L dividing v ( thi s i s  the "potential 

good reduction" of S er r e - Tate [ 3 2 ] ,  § 2 ) .  For the proof of thi s ,  s e e  

Deuring [ 2 9 ] ,  § 4 ,  nO 3 . 

Remark 

The definitions and r e sults  of thi s s e ction have nothing to do 

with numbe r  fields .  They apply to every field with a di s cr ete 

valuation. 

1 .  3 . Prope rtie s of VI r elated to good  reduction 

Let I be a prime number . We define , a s  in chap .  I, 1 . 2 ,  

the Galois  mo dul e s T 1 and VI by : 
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wher e  E i s  the kernel of i n 

i n E(K ) � E(K ) . 

We  deno te by Pi the co r r e sponding homomo rphism of 

Gal(K/ K) into Aut( Ti ) ·  Re call that E , Ti and V1 are of rank 2 
1 n 

n over Z I 1 Z ,  Z1 and Ql ' r e spe c tively . 

Let now v be a place of K ,  with p I: i and let  v be some v 
extension of  v to K ;  let  D ( r e sp .  I) be the cor re sponding de com-

po sition group ( r e sp .  iner tia group) ,  d. chap .  I ,  2 . 1 .  I f  E ha s  
good r eduction a t  v ,  one ea sily s e e s  that reduction at v define s an 
i somorphi sm of E onto the cor r e sponding module for  the r educed  

1 n 

curve E . In parti cular ,  v are  unramified at v ( chap . 

I ,  2 . 1 )  and the Frobenius automorphi sm F of T corre spond s  v,P1 1 
to the Frobenius endomorphism F v of E . Hence : v 

and 

det( F ) = de t(F ) = Nv v' P 1 v 

de t( l -F  ) = det( l - F ) = 1 - T r ( F  ) + Nv v, P 1 v v 

..... 
i s  equal to the nwnber of k -points of  E . v v 

Conyer sely : 

, " " 
CRITERION OF NERON-OGG-SAFAREVIC . If V1 i s  unramifi ed  

at v for some 1 I: p ,  then E has good  r eduction at v. v -- -

Fo r  the proof, see  Se rre -Tate [ 3 2 ] ,  § l .  

COROLLARY - Let E and E I  b e  two e lliptic curve s which are 

i sogenous ( over K) . If one of  them has  good  reduction at a place v, 

the same i s  true fo r  the othe r one . 
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(Re call that E and E '  ar e  said to be i sogenous if  ther e  

exi s t s  a non- trivial morphi sm E � E ' . ) 

Thi s follows from the theorem,  since the 1 - adi c repre senta ­

tions a s soc iated with E and E '  are  i somorphi c .  

Remark 

For  a direc t  proof of thi s corollary , s e e  Koizumi-Shimura 

[ 1 1 ] . 

Exer ci s e  

Let  S b e  the finite s et o f  plac e s  wher e  E doe s not have good 

reduction. If v e EK - S ,  
-

of the r educed curve E . v 

we denote by t the number of k -point s  v v 

(a) Let  1 be a prime number and le t  m be a po sitive 

integer . Show that the following proper  tie s ar e  equivalent :  

( i ) t !! 0 mod 1m for all v e EK - S ,  p I:. 1 . v v 
( ii ) The set  of v e  EK - S such that tv ;: 0 mod 1m ha s 

density one ( d. chap. I, 2 . 2 ) .  

( iii) For doll s e Irn(Pl ) '  one ha s m det ( l - s ) a 0 mod 1 • 

( The equivalence of ( i i) and ( i i i) follows from Cebotar e v' s 

density theorem.  The implications ( i ) � ( ii ) and ( iii) � ( i ) are 

easy .  ) 

( b) We  take now m = 1 .  Show that the proper tie s ( i ) ,  ( i i ) , ( i ii ) 

ar e equivalent to : 

( iv) The re  exi st s an e lliptic curve E ' over  K such that :  

( a. )  Either E '  is  i somorphic to E,  or there  exi st  an i sogeny 

E ' � E of degree  1 . 

( 13 )  The group E '  (K) contains an element of order 1 . 

( The implication ( iv) � ( iii) i s  easy .  For  the  proof of the 

conve r s e ,  us e Exer . 2 of chap . I , L L )  ....,.. [ fo r  m > 2 ,  s e e  K atz [ 6 4 J . J 
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1 .  4 .  
., ., Safarevi c ' s theor eIT1 

It  i s  the following ( d .  [ 2 3 J ) :  

I V- 7 

THEOREM - Let S be a finite set  of pla ce s of  K . The se t  of i so ­

IT1orphi sIT1 cla s s e s  o f  elliptic curve s over  K , with good reduction at 
all place s  not in S ,  i s  finite . 

Since i sogenous curve s have the saIT1e bad reduction set ( d. 

1 .  3 ) ,  thi s iIT1plie s :  

COROLLARY - Let E b e  an elliptic curve over  K. Then, up to 

i s oIT1orphi sIT1,  there  are  only a finite nUIT1ber o f  e lliptic curve s which 

are K- i sogenous to E .  

T o  prove the theoreIT1,  w e  use  the following criter ion for good 

reduction: 

LEMMA - Let S be a finite set of place s of  K containing the 

divi sor s of 2 and 3 ,  and such that the ring Os of S - integer s  i s  

pr incipal .  Then, an e lliptic curve E defined over K has  good re -

duction out side S if and only if it s equation can be put in the 

Weier stra s s  forIT1 
3 2 * 

� = g2 - 2 7 g3 e Os 

Z 3 y = 4x - gzx - g3 with gi 6 Os and 

( the group o f  unit s of OS) .  

Proof.  The suffic iency i s  trivial .  To prove nece s sity, we  write the 

curve E in the forIT1 

2 3 Y = 4x - g' x - g ' 
2 3 ( * )  

with g', e K.  Le t v be a place of K not in S.  Then, since there  i s  
1 

good reduction at v ,  and since the divi sor s of  2 and 3 do not be long 
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to S ,  the curve E can be written in the fo rm 

with g .  1 ,  v 
thi s r ing . 

in the lo cal ring at v and the di s c r iminant � a unit in v 
Us ing the proper tie s of the Weie r stra s s  form,  the r e  i s  an 

.. " 4 6 12. e lement u e K"O such that g = u g ' , g = u g ' , � = u �' ; v 2. , v v 2.  3 , v v 3  v 
moreove r ,  a s  we can take g .  = g � fo r almo s t  all v ,  w e  s e e  that 

1 ,  v 1 
we can a s sume that uv = 1 for almo s t  all v � S .  Sinc e the r ing O

s 
t,: 

i s  pr inc ipal ,  the r e  i s  an e lement u Ei K with v(u) = v( u ) fo r all 
-2. - 3 v 

v f: S .  Then, if we replace  x by u x and y by u y in ( �, ) , the 

curve E take s the for m 

4 6 12. with g2. = u gz ' g3 = u g3 and � = u �I . Since ,  by cons truction, 

gi e aS and � e O� , the lemma i s  e stabli shed .  

Proof  of  the theorem . After  po s sibly adding a finite numbe r of  pla c e s  

o f  K t o  S ,  we may a s sume that S contains all the divisor s of  2. and 

3 ,  and that the ring aS i s  pr incipal . 1£ E i s  an elliptic curve de ­

fined over  K having good r e duction out s ide S ,  the above lemma 

tell s us that we  can write E in the form 

3 2. * . 
with gi e aS and � = g2. - 2. 7 g3 e aS · But ,  s inc e we are  fre e  to 

to< 12. * to< 12. multiply � by any u E (aS) and since 0s l ( aS ) i s  a finite 

g roup ,  we s e e  that the re i s  a finite s e t  X C O� such that any elliptic 
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curve o f  the a bove type c an b e  w r i tt en  i n  the fo rm ( ':' ) with gi e Os 
and � e X . B ut , fo r a given �, the equation 

r ep r e s e nt s  an affine e ll iptic  cur ve . U sing a theorem of Siege l  ( gen­

e rali z e d  by Mahl er  and Lang , d .  Lang [14] , chap . VII) , one  s ee s that 

thi s equation ha s only a finite number of solutions in OS ' Thi s  

fini she s the proof of  the theorem.  

Remark 

The r e  ar e many way s in which one can deduc e Safarevic ' s 

theor em fr om Siegel ' s .  The one we followed  ha s be en shown to us by 

Tate . 

§ 2 .  THE GALOIS MODULES ATTACHED T O  E 

In thi s se ction, E denote s an e lliptic curve ove r K. We a r e  

inte re s ted i n  the structur e of the Galois  module s E
1 n, T l '  V1 

de fine d in 1 .  3 .  

2 . 1 . The i r reducibility theor em 

Re call fi r st that the r ing EndK( E )  of K- endomorphi sms  of E 

i s  eithe r Z or  of r ank 2 over Z .  In the fir st ca s e ,  we say that E 

ha s "no complex multipli cation ove r K . " If the same i s  true for any 

finite exten sion of K, we say that E ha s "no complex multiplica-

tion. " 

THEOREM - A s sume that E ha s  no complex multiplication over K .  
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T hen : 

( a ) V1 i s  i r r educ i bl e  fo r all p r im e s 1 ;  

( b ) E1 i s  i r r e ducibl e  fo r almo st  all prime s 1 . 

We  ne ed  the fo l lowing e lementary  r e  suI t :  

LEMMA - Let E be an e lliptic curve defined ov.e r  K with 

EndK(E )  = Z .  Then , i f  E I  � E ,  E "  � E � K- i sogenie s with 

non- i somorphic cycl ic  ke rne l s ,  the curve s E I  and E"  are  non­

i somorphic over K .  

Proof .  Let n l  and n" be r e spec tive ly the o rder s of the ke rne l s  of 

E I  � E and E"  � E. Suppo se that E I  and E"  are  i s omorphic  

over  K,  and let E I  -->- E"  be an i s omorphi sm .  If E � E I  i s  the 

transpo se  of the i sogeny  EI � E ,  it ha s a cyclic kernel o f  order  

n l , and hence the i sogeny E � E,  obtained by compo si tion of  

E � E I ,  E I  � E " ,  E"  � E,  ha s fo r ke rnel an  extens ion of  

Z / n" Z by Z / nl Z .  But ,  sinc e EndK( E ) = Z ,  thi s i s ogeny mus t be 

multiplication by an integer a , and its ke rnel must the refore  be of 

the form Z/ a Z  X Z / aZ . Hence n l and n" divide a . Since 
2 a = n l n " ,  we obtain a = nl = n " ,  a contradic tion. 

Proof of  the theorem. 

( a) I t  suffice s to show that ,  if EndK( E )  = Z,  there  i s  no one ­

dimensional Q - sub space of  V stable under  Gal(K / K) . Suppo se  
1 1. 

there  were  one ; i t s  inter s ection X with T 1 would be a submodule 

of  T 1 with X and T/ X fr ee  Zl -module s of rank 1 .  For n � 0 ,  

consider the image X(n) o f  X in E = T / l nT .  Thi s i s  a 
ln 

submodule  of E n 1 

n whi ch i s  cyclic of  order  1 and stable by 

Gal(K /K ) . Hence it co rr e spond s to a finite K -algebraic  subgroup of 
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E and one can d e fine the quo ti e nt c ur ve E ( n) = E / X( n) . T he ke rnel  

of  the  i so g e ny E � E(n)  i s  cycl ic  o f  o r de r  I
n

. The above lemma 

then shows  that the curve s E(n ) , n � 0 ,  a r e pairwi s e  non- i s omo rphic,  
v ., contr adi ct ing the co rolla r y  to Safa r e vi c ' s theo r e m  ( 1 .  4 ) . 

( b ) If E
l 

i s  no t i r reduc i bl e , the r e  exi s t s  a Galo i s  submodule 

X
l 

of E whi ch is one - dime n s ional o ve r  F l . In  the same way a s  

above , thi s define s. a n  i s o geny E � E/ X who se  ke r nel i s  cycli c  of 1 
o r de r  1 . The above lemma shows that the curve s which cor r e spond 

to diffe r ent value s o f  1 are no n - i s o mo r phi c ,  and one again applie s 
" ., 

the coro llary to Safa r evic 1 s theorem.  

Remark 

One can prove par t  ( a ) o f the above theo r em by a quite 

diffe rent method ( d. [ 2 5 ] ,  § 3 . 4 ) ; instead  of the Safarevic ' s  theorem, 

one u s e  s the proper tie s of the decomposi tion and ine rtia subgroups of  

Im(p 1 ) '  d .  Appendix. 

2 . 2 .  Determination o f  the Lie algebra of G 1 
Let G = Im(p ) denote the image  of  Gal(K/K) in Aut( T1 ) , 1. 1 

and l e t  " C End( V ) be the Li e a l g e  b r a  of G " .f:L1 1 1 

THEOREM - If E has no complex multiplication (d. 2 . 1 ) , then 

&1 = End( V1 ) ,  i .  e .  G1 is open in Aut( T 1 ) · 

Proof .  The irreducibility the or em of 2 . 1 shows that, fo r any open 

subgroup U of G1 , V1 is an i. rreducible U -module . Henc e ,  V1 
i s  an i r r educ ible .& -module . By Schur ' s lemma , it follows that the 1 
commuting algebra &1 of  &1 in End(V1 ) i s  a field ;  s ince 

dim V1 = 2 ,  

If " I  = Q 
.f:L1 l '  

thi s field i s  either Q 1 o r  a quadratic extension of Q 1 " 

then &1 i s  equal to e ithe r End( V1 ) , o r  the subalg ebra 



I V - 12 A B E LIAN 1 -ADIC R E PR ES ENTA TIONS 

S l ( V
1.

) of End( V ) cons i sting of the endomorphi sms with tra c e  0 ;  
1. 2 

but, in the s e c ond c a s e , the a c tion of .& o n  A V would be trivial ,  1. 1. 2 
and thi s would  contradi ct  the fa ct  that  the Galo i s  modu.l e s  AV 

1 
and 

V
1.

( /-I )  a r e  i s omorphic ( chap . I ,  1 .  2 ) .  Henc e '&
1 

= s l ( V  
1

) i s  

impo s s i ble . 

Suppo s e  now that '&1 i s  a quadratic  exten sion of  Q1 ' Then 

V 
1. 

is a one -dimens ional '&l - ve cto r space  and the commuting 

algebra of '&1 in End( V1 ) i s  '&1 it s elf .  Hence '&1 i s  contained in 

'&1 ' and is abelian ('&1 i s  a "non- split Cartan algebra"  of End(V 1 » '  

Afte r r e placing K by a finite  extension ( thi s doe s not affe ct '&1 ' 

d .  chap . I , L l) ,  we may then suppo s e  that G i tself i s  abelian . The 
1. 

1. - adic r epre  s entation V 1 i s  then semi - simple , abelian and rational .  

It i s , mo r eove r ,  lo cally algebraic . To see  thi s ,  we fir st r emark that ,  

at  a place  v dividing 1 , we have v(j ) � 0 since  otherwi s e  the de ­

composition group o f  v in G 1 would be non-abelian by Tate ' s  

the o r y  ( d. Appendix, A . 1 .  3 ) ; henc e ,  after  a finite extension of  K,  

we can a s sume that E ha s good  r e du ction at all plac e s  v dividing 1 

( d. 1 .  2 ) . Let E ( l ) be the 1 -divi sible group attached to E at v 

( d. Tate [ 3 9 ] , 2 . 1 , example (a » . We  have V1
:::: V1 (E ( 1 » and thi s 

module i s  known to be of Hodge - Tate type  ( loc . cit . , §4 ) .  U sing 

another re sult of Tate ( chap . Ill, 1. 2 ) , thi s implie s that the r epre ­

sentation V1 i s  lo cally algebraic , a s  c laimed above . ( This could 

al so be seen  by using, instead of the theory  of Ho dge - Tate module s ,  

the local  r e sults of the Appendix, A2 . ) 

We  may now apply to V1 the r e s ults  of chap . III, 2 . 3 .  

Henc e ,  the re i s ,  for each prime 1 ' ,  a rational ,  abelian, s emi -

s imple l ' - adic r epr e s entation W l ' compatible with V l ' But V l '  

i s  compatible with V1. ' and V1 , i s  s emi- s imple . Hence V1 , i s  

i s omorphi c  t o  W l '  ( d . chap . I ,  2 . 3 ) .  But we know ( chap . Ill , 2 . 3 )  
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that we may c hoo s e  l '  s uch that W i s the dir ec t  s um of o ne -
l '  

dimens ional s ub s pa c e s stabl e unde r Gal (K / K ) .  T hi s  c o ntradi c t s  the 

ir r e duc i bil ity of V
1 , 

.& = End ( V ) , q .  e .  d .  
1 1 

Remark 

Henc e ,  we mu st have .&'  = Q and 
1 1 

If E ha s complex multiplication, and L = Q � End(E XK K) 
i s  the corre sponding imaginary quadratic field ,  one shows ea sily that 

"&1 i s  the Cartan subalgebra of End( V1 ) defined by Ll = Q1 QP L . It 

split s if and only if 1 de compo se s in L .  

Exerci s e s  

( In the se exe rci s e s ,  we a s sume E ha s no complex multipli ­

cation.  Let S be  the set  of place s v e .E
K 

whe r e  E ha s  bad 

reduction. If v e .EK - S , we denote by F v the Frobenius endomor ­

phism o f  the r educed  curve E ; if 1 f. p , w e  identify F to the v v v 
corre sponding automorphi sm of T 

1
. ) 

1 )  Let H { X ,  Y)  be a polynomial in two inde terminate s X, Y 

with coeffic ient s  in a field of characte r i s tic  zero . Let V H be the 

se t  of tho s e  V € .E
K 

- S for which H( Tr (F) , N v) = O .  If H i s  not 

the zero  polynomial ,  s how that V H has density O .  (Show that the se t  

of  g e. GL( 2 ,  Z 
1

) with H( Tr (g ) , det (g ) )  = 0 ha s Haar mea sur e zero . ) 

2 ) The eigenvalue s of F may be identified with complex v 
number s of  the form 

1 . - +1 1'" 2 - T V (Nv) e 

cf .  chap . I ,  Appendix A .  2 .  Show that the s et of v for which cp i s  
2 v 2 a given angle cp ha s dens ity zero . ( Show that T r (F ) = 4(Nv) co s  cp v 

and then use  the preceding exer ci s e .  ) 
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3 ) Let L = Q( F ) be  the fie ld gene rated by F .  By the 
v v v 

prec eding exe r c i se , L i s  quadrati c imaginary except for a set of  v 
v 

of dens ity O . 

p hi c  

(a )  Let 1 be a fixed pr ime . Let  C be  a semi-simple commutative 

alge bra of rank 2 . Let Xc be the set of elements  5 e Aut (V 1 ) 

that the subalgebra Q [ 5 1  of End( V ) generated by s i s  i somor -
1. 1. 

to C . Show that Xc i s  open in Aut( V J. ) '  and show that it has a 

non- empty inter se ction with every open subgroup o f  Aut( V1 ) ,  in par ­

ticular , with G J. . 
( b) Show that F v e Xc if and only if the field Lv i s  quadratic 

and L � Q is i somorphic to C . v 1. 
( c ) Let J. l , . . .  , 1 n be di stinct prime number s ,  and choo s e  for 

each an algebra C .  o f  the type considered  in ( a) .  Show that the set  
1 

of v fo r whi ch F e Xc for i = 1 ,  . . .  , n  ha s dens ity > O . v . 
1 

( Us e  the fact  that the image of Gal(K/ K) in any finite product 

of  the Aut( V 1 ) is open ;  thi s is an ea sy con sequence of the theorem 

proved above . ) 

( d) Deduce that , fo r  any finite se t  P of prime numbe r s ,  there  

exist  an infinity of v suc h  that L i s  ramifi ed  at a l l  1. e P .  In v 
particular , ther e  ar e an infinite number of di s tinct fie lds 

2 . 3 .  The i sogeny theo rem 

L . v 

THEOREM - Let E and E '  be elliptic curve s over K, let J. be a 

pr ime number and let V1 (E )  and VJ. ( E I ) be the corre sponding 

J. -adic r epr e s entations of  K .  Suppo s e that the Galoi s modul e s  

V1 (E ) and VJ. (E I )  a r e  i s omorphic  and that the modular invariant j 

of E ( d. 1 . 1 ) is not an integer of K. Then E and E '  are K-

i sogenous . 
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We  ne ed the following r e sul t :  

PROPOSITION - Le t E and E '  be e lliptic curve s over K. The 

following conditions ar e e quival ent :  

(a )  ThE' Galo i s  module s V1 (E )  and V1 ( E ' )  are i somorphi c 

for all 1 . 
( b) The Galo i s  module s V1 (E )  and V1 (E ' ) are  i s omorphic 

fo r one 1 . 
( c ) If F and F '  a re  the Frobeniuse s  of the reduced curve s v v 

E and E ' , we have Tr (F  ) = Tr (F ' ) for all v wher e  ther e  i s  v -- v v v 
good reduction. 

( d) For a set of  place s of  K of density one we have 

Tr (F  ) = T r (F '  ) . v v 

Clearly ( a ) implie s (b) , and ( c )  implie s ( d) .  The implication 

(b ) ==:I> ( c )  follow s from the fa ct that T r ( F  v) i s  known when V1 i s  

known. To prove ( d) � ( a) one remarks fir st that the repr e s enta ­

tions o f  Gal(K/K )  in V/ E) and V1 ( E ' )  have the s ame trace ,  by 
., 
Cebotar ev ' s den s ity theorem ( chap . I ,  2 . 2 ) .  Moreover , V1 ( E) (and 

al so V1 ( E ' ) )  i s  semi - simple . Thi s i s  c lear if  E has no complex 

multiplication over K since ViE )  is then irreducible  ( 2 . 1 ) ; if E 
has complex multiplication, it follows from the Remark in 2 . 2 .  Since 

ViE) and V/E ' )  are s emi- s imple and have the same trac e ,  they 

ar e i s omorphic . 

Remark s 

1 )  If E and E '  have good reduction at v ,  let  t ( r e sp .  t ' ) v v -
be the number o f  k -points of E ( r e sp .  v v 
fo rmula s  ( cf. 1 .  3 ) :  

E '  ) .  v We have the 
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t == 1 - T r ( F  } + Nv v v 

t ' = - T r ( F ' } + Nv v v 

Henc e condition ( c ) ( r e sp .  condition ( d ) )  i s  equivalent to saying that 

t = t '  fo r all v whe r e  the re  i s  good reduction ( r e sp .  for a se t  of v v 
v ' s of  den s ity o ne ) . 

2 }  If E and E '  are  K - i sogenou s ,  it i s  c lear that conditions 

(a ) , ( b ) , ( c ) , ( d) are sati sfied .  

Proof  o f  the theorem.  In view o f  R emark 2 )  above , i t  suffi ce s to show 

tha t  th e e q u ivale n t  c o n d it io ns  ( a ) ,  ( b ) ,  ( c ) ,  ( d )  im p ly t h a t  th e e l l ip t ic  

curve s E and E '  are i s ogenous when the modular invar iant j of E 
i s  no t an inte g e r  of K .  Le t  v be a place  of  K such that v( j ) < 0 ,  
and let  p be the characte r i s tic o f  the r e sidue fie ld k . v 

If j '  = j ( E ' ) , we fir s t  s how that v( j ' ) i s  al s o  < O . Suppo s e  

that v(j ' ) � 0 .  Then, afte r  po s s ibly r eplac ing K by  a finite 

extension, we may a s sume that E ' ha s good reduction at v. 

Then,  if L f. p ,  the Galoi s -module V L ( E ' ) i s  unramified at 

v (d. 1 . 3 ) ;  but V/ E) i s  ramified at v :  thi s follows e ither from 

the c rite rion of Ner on - Ogg -Safarevi c ( 1 .  3 ) or fr om the dete rmination 

of the ine r tia group given in the Appendix, A. 1. 3 . Thi s contradi c t s  the 

fact that VL (E )  and VL ( E ' )  are  i somorphic . 
Let  now q and q ' be the e lements of K whi ch corr e spond v 

to j and j '  in Tate ' s  theory  ( d. Appendix A . l . I ) ,  and le t  E and q 
E , be the cor r e sponding e l l iptic cur ve s ( lo c .  cit ) . Since E and q 
E have the same modular inva riant j ,  ther e  i s  a finite extens ion q 
K '  of K wher e they be c ome  i somorphi c ,  and we can do the same v 
fo r  E' and E " Henc e ,  the T at e  module s T ( E  ) and T ( E  , ) q p q p q 
be come i s omo rphic ove r K ' . But,  i n  thi s  ca s e  the i so g e ny 
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theorem i s  true ( d .  Appe ndix A . l .  4 ) , i .  e . the curve s E and E , q q l 
hence a lso  E and E I ,  a r e  K I - i s ogenous . Howeve r ,  if two elliptic 

curve s are i s ogenous  ove r  some extension of the ground fie ld ,  they 

a r e  i sogenous ove r a finite extension of the g round fie ld .  We may 

thus choose  a finite extens ion L o f  K and an L- i sogeny 

f : E � L � E I  XK L . We will s how that f i s  automatically defined 

over  K .  For thi s ,  i t  suffi ce s to show that f = s f fo r all 

s e Gal(K/ K) , or , equivalently , that V( f) : V (E )  � V ( E I )  
P p _ 

commute s with the action of Galoi s . However , if GL = Gal(K/ L)  i s  
the open subgroup o f  G = Gal(K /K ) which corre sponds to L ,  then 
V( f) commute s with the action of  GL . It is  then enough to show that 
HomG ( V, VI ) = HomG{ V, VI ) .  But V and VI are  i somorphi c as  

L 
G-module s .  Hence we have to show that EndG ( V) = EndG{ V) .  But 

L 
thi s i s  clearly true ; in fact ,  G and GL ar e  open in Aut{ V) by the 

theorem in se ction 4 ,  and hence their  commuting algebra i s  reduced 

to  the homothetie s in each ca se , i . e .  EndG ( V) = EndG{V)  = Q . 
L P 

This complete s the proof of the theorem.  

Remark 

It i s  very likely that the theorem is true without the hypothe sis  

that j i s  not integral .  Thi s  could be proved (by Tate ' s  method [3 8] )  

if the following gene ralization of  Safarevic!' s theorem were true : 

given a finite subset  S of  EK, the abelian varietie s over  K ,  of 

dimension 2, with polarization of degr ee one , and good reduction 

outside S , are in finite number ( up to i somorphi sm) .  � [ th is h as 

been  proved  b y  F a ltings ,  see  [ 5 4 ] , [ 5 6 ] , [ 8 2 ] . ] 
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§ 3 .  VARIATION OF G£ AND G£ WIT H £ 

3 .  1 .  P r  eliminar i e  s 

W e  ke ep the no tations of  the p r e c eding paragraphs . For  each 

p r ime numbe r  1 , we denote by p £ the homomorphi sm 

defined by the action of Gal (K/ K) on T £ ' The p l ' s define a 

homomorphi sm 

p : Gal(K /K )  � n Aut (T  1 ) , 
1 

whe r e  the product i s  taken o ve r  the s e t  of all prime numbe r s .  

Let G = Im(p )  en Aut( T ) and G = Im( p ) C Aut( T ) , so 
1 1 1 1 1 

that G 1 i s  the image of  G under  the 1 th proj ec tion map . Let G 1. 

be the imag e  of G in Aut( E ) = Aut (T 1 i T ) :::- GL( 2 ,  F ) .  1 1 1 1 1 

LEMMA - ( 1 ) The image of  G E.Y det : n Aut( T ) ---+ n z; i s  open.  
* __ 

1 �: ( 2 ) For almo st all 1 , det(G ) = Z and de t(G ) = F . . 1 1 - 1 1. 

- ,� 
W e  know ( d. chap . I ,  1 . 2 ) that det( P 1 ) : Gal(K/K )  ---+ Zl i s  

- n the character  X giving the action  o f  Gal(K/ K)  on 1 -th roots  1 
� 

of unity . Hence  det(G) C n Z; i s  the Galo i s  group Gal(Kc
/ K) , 

wher e  K = 0 K i s  the extension of K generated by all r oo t s o f  c c 
unity . Since one know s that Gal(O 1 0)  = n Z* ( d. for instance [ 1 3 ] ,  c 1 � 

chap . IV) it follows that det (G) i s  the open subgroup of n Z; 
cor r e sponding to the field K n Q , henc e ( 1 ) . A s ser tion ( 2 ) follow s c 
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from ( 1 )  and the definition of the p r oduct topology .  

As sume now that E ha s n o  complex multiplication .  We know 

( d. 2 . 2 )  that each G l i s  open in Aut( T1 ) .  Thi s doe s  not a priori  

imply that G i t s elf  i s  open .  Howeve r :  

PROPOSITION - The following prope r ti e  s a r e  equivalent : 

( i )  G i s  open in nAut(T ) .  
1 1 

( i i) �1 == Aut( T 1 ) 

( iii )  �1 == Aut (E 1 ) 

fo r almo s t  all  1 .  

fo r almo s t  all  1 .  

( iv) G 1 contains SL( E  1 ) fo r almo st all 1 .  

The implications ( i ) ==:» ( ii ) ==:» ( iii )  ==:» ( iv) are  trivial .  Im­

plication ( iv) ==:» ( i )  fo llows from the following group - theo retical 

r e sul t ,  who se  proof will be g iven in s e c tion 3 . 4 below : 

MAIN LEMMA - Let  G be a c lo s ed  subgroup of n GL( 2 ,  Z 1 ) and let  
..... 

G and G denote it s image s in GL( 2 ,  Zl ) and GL( 2 ,  F1 ) a s  1 - 1 
above . As sume : 

(a )  G1 i s  open in GL(2 , Zl ) for  all 1 . 

( b) The image of G � det : n GL( 2 ,  Z 1 ) � n z; i s  open . 

( c ) G1 contains SL( 2 , F1 ) fo r almo st all 1 . 

Then G i s  open in n GL(2 ,  Zl ) ' 

R emark 

For  each intege r  n � 1 ,  l e t  E b e  the gr oup o f  point s of E(K) n ..... 
of orde r  dividing n ,  and let  G be the image o f  the canonical map n 
Gal(K /K ) � Aut(E ) :::: GL(2 , Z/ nZ ) . One s e e s ea sily that prope r ty n 
( i )  above i s  equivalent to 

( i ' ) The index of G in Aut(E ) i s  bounded. n n 
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3 . 2 .  The ca s e  o f  a non- inte gral j 

T HEOREM - A s sume that the modular invariant j o f  E i s  not an 

intege r  of K .  Then E enjoys  the equivalent propertie s ( i ) ,  ( ii ) ,  

( i i i ) , ( iv )  o f  3 . 1 . 

Sinc e j i s  not inte g r a l ,  w e  c a n  cho o s e  a p la c e  v of K such 

that v(j ) < O .  Let  q be the e lement o f  the lo cal fie ld  K whi ch v 
co rr e spond s to j by Tate ' s  theory  ( d. Appendix, A . 1 . 1 )  and le t  E q 
be the c o r r e sponding e lliptic curve over  K . There i s  a finite v 
e xte n si o n  K '  of K o ve r  which  E and E are  i s omorphic ; one v q 
can e ven  take for K '  e ither K o r  a quadratic extension of K . v v 
Let v '  be the valuation of  K '  which extend s v; a s sume v' i s  

no rmali ze d s o  that V' ( K I * ) = Z ,  and let  

n = v' ( q) = - v' ( j )  

W e  have n > 1 .  

LEMMA 1 - A s sume 1 do e s  no t divide n ,  and let  I 1 be the v, 
iner tia subgroup of G1 c or r e sponding to SOme extension of v to K . 

Then Iv, l contains a transvection, i .  e .  an e lement whos e  matr ix 

fo rm i s  ( � � ) for a suitable F1 -bas i s  of  E1 . 

Thi s i s  true for the curve E over K ' , d. Appendix, A . l .  5 .  q 
The r e sult  fo r E follow s from the i somorphism El K'

::: Eq/ K , .  

LEMMA 2 - Let H be a subgroup of GL( 2 ,  F 1 ) which ac t s  i rreducibly 

on  F 1 X F 1 and which contains  a transvection.  Then H contains  

SL( 2 , F
1

) ·  
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For any transve ction s £ H,  let D be  the unique one s 

IV- 2 l  

dimensional  s ubspace  of  F 1 X F 1 which i s  fixed by  s .  If a l l  such 

line s were  the same , the line so defined would be stable  by H, and 

H would not be i r r educibl e .  Henc e the r e  a r e  transvections s ,  s ' e H 

such that D " D  " If we  choo se  a suitabl e  ba s i s  ( e ,  e ' ) of s s 
Fl X Fl , thi s means that  the matr ix forms  of s , s '  a r e  

, = ( 1  0 )  s 1 1 

The lemma follows then from the well known fact that the se  two 

matrice s generate SL(Z , F1 ) .  

Proof of the theorem.  Lemma 1 show s that .  fo r almo st all 1 ,  I l '  
v, --

and a fo rtiori G
1

, contains a transvection. 
--

On the other hand. we 

know ( cf . Z . l) that G
1 

is ir reduc�le for almo st all 1 .  Applying 

le mma 2 to G 1 we then see that G 1 contains SL( E 
1

) for almo st 

all 1 ;  hence we have ( iv) , q . e . d. 

Remark 

I t  s eems likely that the condition "j i s  not integral" can be 

r eplaced by the weaker one "E has no complex multiplication. " 

� [ y es :  see  [ 7 6 ]  . ] 

3 . 3 . Numerical example 

When E is given explicitly and ha s a non - integral j ,  one 

may sometimes  dete rmine the finite  s e t  of l ' s with G1 " GL(2 , Fl ) . 

Take for instanc e K = Q ,  and E de fined by the equation :  

2 3 2 
y + x  + x  + x = O .  

Thi s i s  the curve 3 + of  Ogg ' s l i s t  [ 2 0 ] ;  its j invar iant i s  Z
11

3 
- 1

, 
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i t s  di s c r iminant i s  A = - 243 ,  i ts  " c onductor " i s  2 4  ( it i s  2 -

i s ogenous  to the modular curve J 2 4  corre  sponding to the congruence 

subgroup r ( 2 4 ) , d. [ 2 0 J ) . The exi stence of a non -tri vial 2 - i sogeny o 
fo r E shows that G 1 1:. GL( 2 , F 1 ) for 1 = 2 ( G2 i s  cyclic of order  2 

and cor r e sponds to the quadratic fie ld  Q( .[:3 ) ) . But , for 1 1:. 2 ,  one 

ha s 
..... 
G = GL( 2 , F ) .  Inde ed ,  G1 ha s the following prope r tie s :  1 1 ... 

a )  �et(G1 ) = F; , d. 3 . 1 .  

b )  G 1 contains a transve ction .  Thi s follows from Lemma 1 

and the fac t  that n i s  her e  e qual to 1 .  
..... 

c )  G1 i s  irr educible . If no t,  there  would be an isogeny 

E � E '  of  degree 1 ( defined over  Q) . The curve E '  would have 

the same conductor 24 as E ,  hence would b e  one o f  the curve s 

1 , 2 +, 3 + , 4 - , 5
-
, 6+ of Ogg ' s  li s t .  But Ogg ha s proved that, for 

each such cur ve , there  i s  an i sogeny E '  � E of degree  1 ,  2 ,  4 o r  

8 .  The map E � E ' � E would then b e  a n  endomorphi sm o f  E o f  

degr ee  1 , 2 1 , 41 or 81 , and thi s i s  impo s sible for 1 1:. 2 since 

End(E )  = Z . 

Now, using l emma 2 ,  one s ee s  that propertie s a ) ,  b ) , c )  imply 

Exerc i s e  

Prove that G 1 = GL( 2 ,  F 1 ) fo r all 1 1:. 2 when K = Q and E 

i s  an elliptic curve of conductor 3 . 2  x., wher e  X. � 6 . (U se  Ogg ' s 
+ Table 1 .  For X. = 5 ,  note that the curve s 7 and 7 become 

i somorphic over Q( i ) , but are  not i s ogenous ove r Q.  For X. = 6 , 
+ + u se  a s imilar argument, and ob serve that the curve s 10  and 1 8  

do  not have the s ame number o f  point s  mod .  5 ,  hence are not 

i s ogenous  ove r  Q . ) 
What happen s whe n X. = 7 , 8 ?  
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3 . 4 . Proof  of the main l e mma of  3 . 1 
W e  ne e d  fir s t  a few l e mma s :  

I V- 2 3  

LEMMA 1 - L e t  Sl = PSL ( 2 , Fl ) = S L( 2 , F
l

) / {±l } ,  1 > 3 .  Then 5
1 

i s  a s imple g r oup if  1 > S .  Eve r y  prop e r  s ubgroup of 51 i s  solvable 

or i s omorphic  to the  al te r nating gr oup AS : the la s t  po s sibility 

o c cur s only if 1 = + 1 mod . S .  

Thi s i s  w el l  known,  d. fo r in stance Burnside [4 ] , chap .  XX . 

LEMMA 2 - No prope r  subgr oup of 5L( Z , Fl ) maps onto P5L( Z , F1 ) . 

Thi s i s  clear fo r  1 = Z , s inc e  P5L(Z ,  FZ ) :: SL(Z , F
Z

) .  For 

1 � 2 ,  s uppo s e  the r e  i s  s uc h  a prope r subg roup X. W e  would the n 

have 

SL( Z , F1 ) = {±1} X X , 

and thi s i s  ab s ur d , since SL(2 , F.l ) i s  g e n e r a t e d  by the e lement s 
1 1 1 0 

( 0 1) and ( l  1 )  which are of order 1 , henc e  contained in X. 

LEMMA 3 - Let X be a clo sed subgroup of 

in 5L( Z , F.l ) i s  SL( Z , F1 ) . As swne l ? S .  

W e  prove by induction on n that X 

SL( 2 , Z ) who se  image 1 
Then X ::  SL( 2 ,  Zl ) .  

n 
map s onto SL( Z , ZI 1 Z) .  

Thi s  i s  true fo r n = 1 .  A s sume it i s  true for n ,  and let us prove it 
a b 

fo r n+1 . It i s  enough to show that ,  for any s = ( c d) € SL(2 , Z 1 ) 
which i s  congruent to 1 mod. l n, the r e  i s  x e X with 

n+l x == s mod. 1 W rite s ::  1 + 1nu ;  since d e t( s ) :: 1 , one has 

T r (u) == 0 mod . 1 . But it i s  ea sy  to s e e  that any such u i s  congruent 
Z 

mod. 1 to a swn of matrice s u . with u . :: O .  Hence ,  we may 
1 1 

a s sume that uZ 
:: O .  By the induction hypothe s i s , there  exi s t s  y e  X 

n- l n s u c h  tha t y = 1 + 1 u + L v, whe r e  v ha s c o e fficie nt s  in Z .  Put 1 
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1 x = y .  W e  ha ve : 

n- l n 1 n- l n 2 x = I + 1 ( 1  u + 1 v) + ( 2 ) ( 1 u + 1 v) + . . .  

n - l  n 1 + ( 1 u + 1 v) • 

If n � 2 ,  

fo r n = 1 .  

n n+l i t  i s  c lea r  that x == I + 1 u mod . l  . Thi s i s  al s o  true 

Indee d, since 2 u = 0 ,  and u + L v  == u mod. 1 , 

1 
x == I + lu  + (u  + l v) 

2 2 But (u + l v) :: l (uv + vu) mod. 1 , henc e : 

2 mod . l . 

we have 

1 1 -2 2 
( u  + 1 v) :: l (uv + vu)u == 0 mod . 1 since 1 > 4 • 

n n+l Thi s shows that x � I + 1 u mod . 1 in all ca s e s , and 

prove s l emma 3 . 

We now consider a clo s e d  subgroup G of X = n GL( 2 ,  Z 1 ) 

having the proper ti e s  ( a ) , (b ) ,  ( c )  of the main lemma of 3 . 1 . 

LEMMA 4 - Let S be a finite s et of prime s , and Xs = n GL(2 , Zl ) . 

The image GS of G by the proj ec tion X � Xs i s  leS 

open in XS . 

Replac ing G by an open subgroup if ne ce s sary, we can 

a s  surne that each G l ' 1 e S ,  i s  containe d  in the group of elements  

congrue nt to  I moq . 1 , henc e that each G1 i s  a pro - 1 -group . Since 

GS i s  a subgroup of n G ,  it follows that GS i s pro -nilpotent 
1eS 1 

( p roj e c tive limit of finite nilpotent group s ) , hence i s  the product o f  
i t s  S ylow s ubg roup s . Thi s s ho w s  that GS = lUG l ' and since G 1 i s 
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open in GL(2 ,  Z l ) by p rope r ty (a ) , we see  tha t GS i s  open in XS . 

B efo r e  we go fur the r ,  we introduc e  some te rminology.  Let Y be a 

profinite group , and E a finite simple group . W e  say that E occur s 

in Y if  the re  exi s t  clo sed  subg roups Y ,  Y o f  Y such that Y
I 

i s  
1 2 

no rmal in Y 2 and Y 2 / Y 
1 

i s  i somorphi c  to E .  We denote by 

Occ ( Y )  the s e t  of c las s e s of finite simple  non abelian groups  

occur r ing in  Y . If Y = lim . Y , � a 
and each Y � Y i s  surj ective , 

a 
we have 

Occ (Y )  = U Oc c ( Y ) . 
a 

If Y i s  an exten sion of  Y ' and y l I , we have : 

Occ ( Y )  = Occ (  Y ' )  U OCC ( y l I ) . 

U sing the s e  formulae and lemma 1 ,  one gets : 

wher e S 1 = PSL(2 ,  F 1 ) a s  befo r e ,  and:  

Occ (S  1 ) = tJ if 1 = 2 , 3 

Occ (S1 ) = {SI } = {AS } if 1 = 5 

Occ (S  1 ) = {S 1 } if 1 � ± 2  mod . 5 ,  1 > 5 

Occ (S  1 ) = {SI ' AS } if  1 !! ± 1 mod .  5 ,  1 > 5 

Let now S be a finite se t  o f  prime s so that 2 , 3 , 5 EO S and 
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1 f: S � Gl � SL ( 2 , Fl ) .  Pr o p e r ty ( c )  show s that such a s e t  exi s t s . 

LEMMA 5 - The group G contain s n SL( 2 ,  ZI ) ·  
If.S 

( Thi s partial product  i s  unde r s tood a s  a subgroup of  the full p roduct 

X = n GL( 2 , ZI ) · ) 
1 

It i s  enough to show tha t  G contains each SL( 2 , ZI ) ' 1 f: S .  

L e t  HI = G n GL( 2 ,  Z 1 ) .  If 1 . S ,  the fac t  that G 1 contains 

S L( 2 ,  F ) shows that S e Occ (G ) hence S E:: Occ( G) . On the other 
1 1 1 1 

hand ,  G/ Hl i s  i somo rphic to a clo s ed  subgroup of n GL(2 , ZI ' ) 1 ' 1: 1 
hence SI � Occ (G/ Hl ) (we use  the obvious fac t  that the s imple groups  

S , p � 5 , ar e pairwi se  non i somo rphic ) .  Since p 

-
we then have S 1 e Occ (Hl ) .  Le t HI be the image of HI in 

-
S L( 2 , F 1 ) ; the kernel of  HI � HI being a pro- 1 -g roup,  we have 

- - -
Occ (Hl ) = Occ (H1 ) ,  henc e SI e Occ (Hl ) .  Hence H1 map s onto 

-
S 1 = PSL(2 ,  F 1 ) ' and, by lemma 2 ,  we have HI = S L( 2 ,  F 1 ) and , by 

le mma 3 ,  H1 = SL( 2 ,  Z1 ) . Hence G contains SL(2 ,  Z1 ) . 

LEMMA 6 - The group G contains  an open subgroup of n SL( 2 ,  Z 1 ) . 

Let S be a s  in lemma 5 ;  le t  GS be the proj ec tioJ of G into 

n GL( 2 ,  Z 1 ) and GS the p roj e ction into the complementary product 
1eS 
n GL(2 , Z1 ) ·  Let HS be  G n n GL( 2 ,  Z ) and 

1.S U:S 1 

HS = G n n GL(2 , Z1 ) ' s o  that HS C GS ' HS C GS • One ha s canonical 
1.S 

i s omorphi sms : 
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G / H � G/ (H X H ' ) � G' / H ' 
S S S S S S 

Lemma 5 shows that  HS contains n SL( 2 ,  Z ) , so  that GS / HS 
1 $ S  1 

i s  abelian. Henc e GS
/ HS i s  abelian and HS contains the adhe rence 

(GS ' GS ) of  the commutator group of GS . By lemma 4 ,  GS i s  open 

in n GL(Z , Z1 ) .  It is ea sy to see that thi s impli e s  that (GS ' G ) 
1eS 

S 

contains an open subgroup of n SL(2 , Z ) ( thi s follows fo r instanc e 
1eS 1 

fr om the fact that the der ived  Lie algebr a  of  glZ i s  s lZ ) . Hence 

HS contains an open subgroup U of n SL( Z ,  Z ) . U sing lemma 5 , 
1 e S  1 

we then s ee  that G contains U X n SL( Z ,  Z ) which  i s  open in 
1f S  1 

n SL( Z ,  Z ) . 
1 

1 
End of the proof 

Consider the dete rminant map 

det : n GL(Z , Z1 ) � n Z; , 
1 1 

who s e  kernel i s  n SL( Z , Z 1 ) . Hypothe s i s  ( c ) means that the image of 

G by thi s map is open and lemma 6 shows that G n Ker (det) is open 

in Ker (det ) . This i s  enough to imply that G it s e lf i s open, q .  e .  d .  

Exe r ci s e s  

1 ) a )  Generalize le mma 3 t o  S L( d ,  Z } for d >  Z , 1 > 5 ( same 1 - -
method) . 

b )  Show that the only clo s e d  subgroup o f  SL(d ,  Z3 ) which 

map s onto SL(d,  Z/ 3Z Z }  i s  SL (d, Z3 } i t se lf .  

c )  Show that the only clo s ed  subg roup of  SL(d ,  ZZ } which 

map s  onto SL(d ,  Z/ Z 3 Z) is SL(d ,  ZZ } it s elf .  
Z } Let E be the unramifi ed  quadratic extens ion of QZ ' and 
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0E its  ring of  inte ger s .  

phi sm o f  E . 

Le t  x � x be  the non tr ivial automor -

a) Show that 0E contains a pr imitive thi r d  root o f  unity z . 

b) Show that 0E contains  an e lement u with u .  u = - 1 

( take fo r instanc e u = ( 1  + 15) / 2 ) .  

c )  Let  a and j3 be the Z
z 

- linear endomorphi sms defined by 

u ( x) = zx,  j3 (x )  = ux ,  whe r e  z and u are  a s  in a ) ,  b) above . Show 
- 1  -1  that u i s  of o rde r 3 ,  j3 o f  order 4 , and j3uj3 = u , so  that a 

and j3 generate a non - a b e lian g r o up G of o r d e r  1 2 .  
d)  Show that G i s  contained  in SL(OE ) :::: SL( 2 ,  ZZ ) and that 

r eduction mod . 2 define s a h o m o m o rp h ism of G onto 5L( Z , FZ ) '  

(Hence lemma 3 doe s not extend to the ca s e  1 = Z . ) 

3 )  Le t S9 = SL( Z , Z/ 9 Z ) , S3 = SL( Z , Z/ 3 Z) and 

g = Ker ( S9 � S3 ) ' The group g i s  i somo rphic to a thr e e ­
Z dimensional v e c t o r  space  ove r F3 . Let  x e; H ( 53 ' g) be the c o ho -

mology cla s s  cor r e spo nding to the extension 

a )  Show that the re str i ction of  x to a 3 -Sylow s ubgroup of 

S
3 

is z er o ( no t e  that S L( 2 ,  Z )  c o nta i n s  a n  eleme nt of o rde r 3 ,  
1 1 vi z . ( - 3  - 2 ) ) ' 

b )  Deduc e from a) that x = 0 ,  i .  e .  that there  exi st s  a sub-

group X of  S 9 which is  mapped  i somorphically onto S3 ' ( The 

inver se  imag e of  X in SL( Z ,  Z 3 ) is a non- tr ivial subgroup which i s  

mapped onto S3 ; henc e lemma 3 doe s not extend to the ca se 1 = 3 . ) 
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APPENDIX 

La cal  R e  s ul t  s 

In what follow s ,  K deno te s a fi e ld whi ch i s  complete with 

re spe c t  to a di s c r e te valuation v; we denote by 0 ( r e sp .  by k) 
K 

the r ing of integer s  ( r e sp .  the r e s idue field)  of K ;  we a s sume that 

k i s  p e rfe c t  and of charac te r i s t ic p 1= o .  

Let  E be a n  ellip tic cur ve over K and let  I. be a pr ime 

number diffe r ent from the charac ter i sti c  of K. Let T J. and V I. be 

the cor re sponding Galois  module s ;  we denote by G1 the image of 

Gal (K/ K) in Aut( T 1 ) ,  and by Ii. the ine r tia subgr oup o f GJ. . The 

Lie algebra s '&1 = Lie ( G1 ) ,  1,1 = Lie (I1 ) ar e suba lge bra s of  End( V1 ) 

and we will determine them under suitable a s sumptions on K and v; 

note that ,  since Ii. i s an invar iant subgroup of  G , it s Lie algebra - J.  
i i s  an  ideal of  (1 • -1 -- i:l.1 

If j = j (E ) i s  the modular i nvariant of E ( d. 1 . 1 ) , we 

consider the case s v( j ) < 0 and v(j ) � 0 s eparately . 

A. 1 . The C a s e v(j ) < O .  

In thi s se ction we a s sume that the modular invariant j of the 

elliptic cur ve E ha s a pole . i .  e .  tha t v(j ) < 0 .  

A . I . I . The e lliptic curve s o f Tate 

Le t q be an e lement of K with v( q) > 0 ,  and let r be the 
q 

... 

di scr ete subgroup o f  K .... generated by q .  Then, b y  Tate ' s  theory of 

ultrame tri c  theta function s ( unpubli shed - but s e e  Morikawa , Nagoya 



I V- 3 0 A B E LIAN l -A DIC R E PRESENT A T rONS 

Math . Journ. , 1 9 62 ) ,  the r e  is an e l lipti c  curve E define d o ve r  K 
q 

with the pr ope r ty that ,  fo r  a ny finite e xtension K '  of K,  the 

analytic group K ' * 
I r  

q 
i s  i s omo r p hi c  to the gr oup E (K ' ) o f  po int s 

q 

of E with value s in K ' . T he equation defining E c an be wr itte n 
q q 

in the fo rm 

with 

3 n n 5 3 nl n 
b

2 
= 5 � n q I ( l - q ) and b

3 
= � ( 7 n + 5 n ) q 12 ( 1 - q ) , 

n>l n>l 

the s e  s e rie s c onver ging in K .  

given by the u sual fo rmula 

The modula r invariant j ( q) of  E i s  
q 

3 
( 1  + 4 8b

2
) 

1 
j ( q) = 

2 4  
= - + 7 44 + 1 9 6 8 84q + . . .  

q n ( l _ q
n

) 
q 

n>l 

a s e r ie s with inte gr al c o e ffi cients . The function fie ld of E cons i sts  
q 

of  the fractions  FI G,  whe r e  F and G a r e  Laur e nt s e rie s 

+00 
F = � 

-00 

n 
a z 

n 
-00 

with coefficient s  in K, c onver ging fo r all value s of z I: 0 ,00 ,  and 

such that F( qz) 1 G( qz)  = F( z ) 1 G( z) . 

Since  the modular invar iant j of the given elliptic curve E 

i s  such that v(j ) < 0 ,  and s inc e the s e rie s for j ( q) ha s inte gral 

c o efficient s ,  one can c hoo s e  q so  that j = j ( q) . The e lliptic c urve s 

E and E be come the n  i so mo r phic o ve r  a finite extension o f  K 
q 

(which can be taken to be of deg r ee 2 ) .  Henc e ,  after  po s sibly r e -

placing K by a fini te ext e n s ion,  w e  may a s sume that E = E • 

q 
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A . l .  2 .  An exact s e quenc e  

W e  c o n s e rve  the notation o f  A . l . l .  
n ':' 

Le t E be the ke rnel  o f  
n 

rn. ultiplica tion by 1. in K / r . If Jl. s q n 
n i s  t he gr oup of 1. - t h  r o o t s  

of unity in  K , we have an inj e ction Jl. --7 E . On the o the r hand , 
s n n 

if z e E , n 
1.

n 

we have z E r , q and hence the r e  exi s ts an integer  c 

i n  
su ch tha t z qC . If we a s so ciate to z the irn.age of c in Z /  i nZ , 
we obtain a horn.orn.o rphi srn. o f  E into Z / 1. nZ , and the r e s ulting 

n 
s e quenc e  

i s  a n  exact  sequenc e of  Gal{K / K) -module s ,  Gal{K /K) acting 
s s 

( 1  ) 

n trivially on Z / 1. Z .  Pas s ing to the limit ,  we obtain an exact s equence 

of Galoi s rn.odule s 

o --+ T (Jl.)  --7 T (E ) --7 Z --+ 0 1. 1 q 1 

where  Gal{K/K) ac ts  trivially on  Zl ' Tensor ing with Ql ' we 

obtain the exa ct s eque nce 

o --+ V (Jl.)  -7 V (E ) -7 Q -7 0 • 1 1 q 1 

W e  now show that thi s s equenc e of Gal {K / K) -module s doe s s 
not spli t .  To do thi s we intr odu ce an invar iant x which belong s to 

the gr oup em H
1
{G ,  ).In) ' wher e  G = Gal (K/K ) .  Let d be the co ­

boundary homomorphism: 

( 2 )  

( 3 ) 
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w i th r e s p e c t  to the e xa c t  s e que n c e  ( 1 )  and l e t  x = d( l ) . T he inva r iant 
n 

x i s  the eleITlent of ljITl Hl( G 'l-ln) defined by the faITlily ( xn) ,  n � l .  
':' ::, I

n 
1 

PR OPOSITION - ( a )  The i soITlorphi sm 5 K / K  � H (G,  I-l ) of  n 
.. . 1 n 

KUITlITler  theo ry transforITl s the cla s s  of q mod K
'" 

into x .  n 
(b )  The e leITlent x i s  of infinite o r de r . 

(Re call that 5 i s  induc ed  by the coboundary map r elative to 

the exact  sequenc e 

As ser tion ( a ) i s p roved by an easy  cOITlputation. To prove (b ) , 

note that the valuation v define s a hOITloITlorphi sITl 

and hence a hOITloITlo rphi s m 

� Z  1 
... . .. 1

n 

If we identify x with the corre sponding eleITlent of  � K "'/ K'" as  

in  ( a ) , we have f(x) = v(q) , hence x i s  of infinite o rde r .  

COROLLARY - The s equence ( 3 ) doe s  not split . 

A s sUITle it doe s ,  i .  e .  ther e  i s  a G- subspace X of V ( E  ) 1 q 
which i s  ITlapped i s oITlorphically onto Q l '  

. N f 

Let X
T 

= T 1 { Eq} n X . 

in  Zl 1 S  /. Z /. ' or  S OITle N >  0 .  It i s  then ea sy The iITlage of XT 
N 

to s e e  that 1 x = 0 , and thi s c ontradict s  the fa c t that x i s  o f  
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infinite o r de r . 

A . l .  3 .  D e t e r mination of  po and i �1 -- -1 
W e  ke e p  the no tation of A . l . l and A . l . Z . 

I V - j j  

I f  X i s  a one -

dim e n s i onal s ub s pa c e  o f  V1 = V1 ( E) ,  l e t  E.X 
d e no t e  the subalg e br a 

of  E nd{ V 1 ) c o n s i s ting of tho s e  e ndomo r phi s m s  u for whi ch 
u{  V 1 ) C X,  and let  !:.

X 
b e  the  s uba l g e  bra o f  E.X 

fo r me d  by tho s e  

u e E.X 
with u{ X)  = O .  

THEOREM - ( a )  If k i s  alg e br ai c a lly  c lo s e d  and 1 1= p,  then ther e  

i s  a one - dime n s ional s ub spa c e  X of V 
1 

s uc h  that '&1 = !:.X· 
( b) If k i s  alge br aically c lo s e d  and 1 = p ,  then the r e  i s  a 

o n e - dim e n s ional sub spa c e  X o f  V 
1 

such that .&£ = E.
X

' 

( c ) If k i s  finite , the n po = r fo r some one -dimens ional -- �l. -X 
s ubspac e X of VI. ' a nd i = n

X 
( r e sn •  i = r ) if 1 -/:. P ( re sp. - -- -I. - � -£ -X -

£ = pl · 

Proof .  Note fi r s t that , sinc e  .&£ and 2:.£ are invar iant under finite 

exte n sion of K, we may a s sume that E = E • 

n q 
(a )  In thi s ca s e ,  K contains the £ - th root s  of unity , hence 

Gal(Ks / K) acts  trivially on T£ (�) . Consequently ,  there  i s  a ba s i s  

e 1 , eZ of T l ( E) such that, fo r all a E Gal(K/K) , we  have 

a( e
l ) = el , a( eZ ) = a (a) e l + eZ with a (a) E 2 1 , Moreover , the 

homomo rphi sm a � a(a )  cannot be tr ivial since the s equence ( 3 ) 

doe s not s plit . I t  follows that Im(a )  i s  an open subgroup of Zl ' and 

hence  that E.1 = !:.X 
with X = V /�) . 

( b) Since 1 = p , we must  have char (K) = 0 a s  1 1= char (K) .  

In thi s ca s e ,  the action o f  Gal(K/ K )  o n  V
1

(�) i s  by means o f  the 

char a c te r x£ ( d.  cha p .  I, 1 .  2 ) which i s  of infinite order . It follows 
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that '&'1 = !.X' whe r e  X = V /J-I ) ;  in  fac t ,  '&'1 .J.::X s ince  the s equence 

( 3 ) doe s  no t spl i t ,  and we canno t  have '&'1 = '::X · 
( c )  Since k i s  finite , the a ction of Gal (K /K)  on T 1 (J-I )  i s  

not tr ivial no r even o f  finite o rder . Henc e ,  the argument u s e d  i n  ( b )  

shows that '&'1 = .!.X , whe re X = V/J-I ) . Applying (a )  to the c om ­

pletion of the maximal unramified  exten sion of K ,  we s ee  that 

iL = _nX if L I: p, and that i = r if 1. = p .  -1. -x 

Exe r ci s e  

I n  c a s e  ( a ) ,  shows that Im(a )  = 1 nZ l '  where  1 n i s  the 

highe st power of 1 which divide s v( q) = - v(j ) . 

A . I .  4 . Appli cation to i soge nie s 

Her e ,  we a s sume that k i s  finite and K i s  of character i stic 

o ( i .  e .  K i s  a finite extens ion of  Q ) . 
p 

T HEOREM - L e t  q ,  q' e K* 
wi th v( q)  a nd v(q ' ) > O. Let E = E 

q 

and E' = Eq, be the corr e sponding elliptic curve s over  K .  

the following are equivalent :  

( 1 ) E i s  K- i sogenous  to E q -
- q ' 

( 2 )  The r e  a r e  inte g e r s A,  B � 1 such that q
A 

= q , B 

Then 

( 3 ) V ( E ) and V ( E ' ) a r e  i somorphic a s Gal(K/K) -module s .  
p - p -

Proof. ( 2 )  =:::3> ( 1 ) . It suffi c e s to show that E and E 
A 

are 
q q 

i sogenous ove r K .  B ut e very  meromorphic function FI G invariant 

unde r m ul tipli catio n  by q is inva r iant unde r multiplication by q
A

; 

hence the function field of E i s  contained in the function field of q E 
A

' i .  e .  , 
q 

E and E A are  i s ogenous .  q q 

( 1 )  ==='I> ( 3 ) .  T r i via l .  



ELLIPTIC CUR YES I V- 3 5  

( 3 ) ==3> ( 2 ) . Choo se  an i s omorphi sm <p o f  V ( E ) onto 
p 

V ( E ' ) .  Since V (JJ )  i s  the only o ne - dimensional s ubspace  of V ( E ) 
p p p 

( r e sp . V ( E ' » stable by G = Gal (K/ K) , <p map s V (JJ )  into i tself .  
p p 

Mor e ove r ,  after  multiplying tp by an homothety ,  we may suppo se 

that cp map s T ( E )  into T ( E ' ) .  W e  then have a commutative 
p p 

diagram :  

o � T (JJ ) � T ( E) 
p p 

pI �1 
o � T (JJ ) � T ( E ' ) � Z � 0 

p p p 

(4 )  

whe r e  p ( r e sp . 0') i s  the multipl ication by a p -adic inte ger  r 

( r e sp . s ) . If X, x' ar e  the element s  of Vm H
l
( G,JJ

n
) as sociated to 

E and E '  ( d. A . I .  2 ) ,  the c ommutativity of (4 )  shows tha t 

rx = sx' . 

But the valuation v yields a homomo rphism of  
n 

1 * *p 
lJm H (G, JJ

n
) = l;im K / K  into Z , 

p 
and we have seen that the 

image of x i s  v(q) ,  and the imag e  of x ' i s  V( q l ) . Henc e 

rv( q) = s v( q ' ) . 

W e  will now show that the element 
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n 
�� *p 

i s  a root of unity . Fir st of all , the iInage  o f  z in {fm K / K i s  
a 

a p - th roo t  of unity ; in fact ,  thi s image i s  

v( q ' ) x - v(q)x '  , 

and multiplying by s ,  we find 0 in vir tue of the above fo rmulae 
n 

* *p 
( note that �m K / K i s  a Z - modul e ,  hence multiplication by s p 
make s  sense ) .  W e  the n u s e  the fact  that  the ke rnel of 

n 

* 

* *p * . 
K � VIn K IK i s  k (vi ewed,  a s  usual a s  a subg roup of K"" ) .  

* * 1 To see  thi s ,  one de compo se s K a s  a produc t Z X k X U , wher e  

Ul i s  the group o f  units  cong ruent to 1 .  The functo r  
n 

A � lim AI AP transfo r m s  Z into � Z ,  kil ls  k 
* 

and leave s Ul 
p 

unchanged , since Ul 
* 

ha ve z E k , and z 

Remark 

is a finite ly gene rated Z -module . Henc e ,  we p 
i s  a root of  unity . Thi s implie s ( 1 ) ,  q. e .  d .  

The equivale nc e  ( 1 )  � ( 2 )  wa s r emarked by Tate . It i s  true 

without any hypothe s i s  on K .  

Exerci s e  

Show that  the hypothe si s " k  i s  fini t e"  may b e  r eplac ed by 

"k i s  alge braic  ove r F . "  
p 

A . 1 .  5 . Exi stenc e  o f  transve ctions in the iner tia group 
-

Let  E be the e llipti c  curve E
q 

( d .  A . 1 . I) ,  let  G 1 be the 

image of Gal(K /K) in Aut( T / 1 T 1 ) '  and let 11 be the iner tia 
-

subg roup of G 1 . W e  a S SUIne that v i s  no rmali z ed ,  i .  e .  that 
* 

v(K ) = Z . 
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PROPOSITION - If 1 do e s  not divide v( q) ,  then 11 contains  a trans­

ve ction ,  i .  e .  an e lement who se  matr ix i s  ( 1 1 ) fo r  a suitabl e o 1 

Proof .  After  po s s ibly r eplac ing K by a lar ge r  fie ld ,  we can suppo se  

that the re sidue fie ld  k i s  a lgebraically clo sed ,  and that K contains 

the 1 - th root s of unity . In fac t ,  if 1 I:. p , thi s la st condi tion i s 

impli ed  by the fir s t ;  if 1 = p , we must adjoin the se  roots ; but the 

degr ee  of  the extens ion  thus obtained divide s 1 - 1 ,  henc e i s p rime to 

1. , and the valuation of q r emains pr im e to 1 . Thi s being said, the 

h h ·  ( )  h h I l l .  
. h h . ypot e S1 S  on v q s ows t at q 1 S  not ln K .  T us t e r e  1 S  an 

automo rphi sm s 6 Gal (K IK) such that s (ql/ 1 ) = zq
I/ 1 , with s II I 

z 1= 1 .  Then z i s  a pr imitive I - th r oot of unity, and z ,  q fo rm 

a ba s i s  of  T 1 modulo IT 1 . Since s ( z ) = z , we see that the image 
..... 

of s in G 1 = 1
1 i s  the r equir e d t r a n s v e ctio n .  

A. 2 .  The ca s e v(j ) � 0 

In thi s se ction we a s sume that the modular invariant j of the 

elliptic curve E i s  integral ,  i .  e .  that v(j ) � O .  Henc e ,  after  

po s sibly  r eplacing K by a finite extension, we may as sume that E 

ha s good r eduction ( d. 1 .  2 ) . W e  al so a s sume that K i s  of  charac -

te ri s tic zero .  

A . 2 . 1 . The case  1 1= p 

Suppo se  that 1 1= p . Since E ha s goo d  r eduction, the module 
--

T 1 can be identified  with the T ate mo dul e T 1 ( E) of the reduced 

curve E ,  cf. 1 .  3 .  He nc e t h e  iner tia a l g e b r a  II i s  O .  If the 
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re s idue field k i s  finite , the g r oup G1 i s  topologically gene rated by 

the Frobenius FL . Henc e ,  in thi s ca se , .8.1 = Lie (G1 ) i s  a one ­

dimens iona l  s ubalg e bra  of  End( V1 ) . 

A .  2 . 2 . The case  1 = P with good r e duction of height 2 
"" 

He r e  we a s s ume  that the r e duced curve E i s  of he ight 2 ;  

r e call that ,  if A i s  an abelian variety defined over a field of chara c ­

t er i s tic p , it s height can  be defined a s  the integer  h for which ph 

i s  the inseparable part of the degree  of the homothety "multiplication 

by p . " An elliptic cur ve is of height 2 if and only if its Ha s se 

inva r iant ( c f. Deur ing [ 9] ) is O .  S ince E ha s good r eduction, it 

define s an abelian s cheme Ev ove r  OK ' hence a p - divi sible 

� E(p ) ove r  O
K 

( cf .  T ate [ 3 9 ] ,  2 . 1 - see also [2 6 ] , §l ,  Ex. 2 ) .  

The Tate modul e  o f  E (p) can b e  i dentified with T • The connected p 
component E( p) 

0 
of E (p )  cO i�ide s with the formal gr oup (over  OK) 

attached  to E ; the he ight of  E i s  prec i se ly the he ight of thi s 
v 

fo rmal group ( in the usual s ens e ) . o In our ca s e ,  we have E(p ) = E(p) 

since the height i s  a s sume d  to be 2 .  

THEOREM - One has  � = �. Thi s  Lie algebra is either End( V p) 
o r  a non- split Cartan subalgebra  o f  End( V ) . p 

(Recall that a non- split Car tan  subalgebra of End( V ) i s  a p 
commutative subalgebra of  r ank 2 with re spect  to which V i s  p 
i r reduci ble . It i s  g iven by a quadratic subfield of End( V ) . ) p 

Proof. The Lie  algebra � ha s the p roper ty that �z = V p for any 

non zero  element z of V ( d. [ 2 7 ] ,  p .  12 8 , Prop.  8) . In particular, p 
Vp i s  an i r r educible � - mo dul e ;  i t s  commuting algebra  i s  e i ther a 

field of degree  2 (which i s  then ne ce s sarily e qual to �) or  the 
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fi eld Qp , in whi ch ca s e  � i s  a pr ior i  s L Z or  gL Z . But sp �  s L Z 
Z s ince  A V i s  canoni cally i s omorphic to V (J.l ) ,  and the action of  

- p p 
Gal(K/K )  on V (J.l )  i s  by mean s of  the charac ter X , which i s  of  p p n infinite order ( inde ed ,  no finite exten s ion of K can contain all p - th 
roots  o f  unity , n = 1 ,  Z ,  • . •  ) . Hence the Lie a lgebra sp i s  e ithe r 
End( V ) or  a non split Cartan s ubalgebra o f  End( V ) . Since the p p 
above appli e s  to the completion of the maximal unramified exten sion 

of  K, we have the same alte rnative for i • Moreove r , i is 
t> t> 

contained in sp. W e  have a priori  thre e  po s sibil itie s :  

( a) i = g_ = End( V ) . 
t> t> p 

( b) i = g .  i s  a non split Cartan subalgebra o f  End(V ) . 
t> t> p 

( c ) � i s  a Cartan subalgebra and sp = End( Vp) . 

However , � i s  an ideal of � .  Hence , ( c ) i s  impo s s ibl e ,  and thi s 

prove s the theorem . 

Remarks 

1 )  By a theorem of Tate ( [3 9 ] ,  § 4 ,  cor . 1 to th o 4 ) , the algebra 

sp i s  a Cartan subalge bra  of  E nd( V p ) if and only if E(p )  ha s 

" formal complex multiplication ,  " i .  e .  if  and only if the ring of endo ­

morphi sms of  E(p) , over  a suitable extens ion o f  K ,  i s  of  rank 2 

over Z .  Ther e  exi s t  elliptic curve s  without complex multiplication p 
( in  the algebraic sense ) who s e  p - c ompletion  E (p ) have formal 

complex multipli cation.  

Z ) Suppo s e  that sp is  a Cartan subalge bra of  End( V p ) ,  and 

le t  H = � n Aut( V p ) be the carre  sponding Car tan subgroup of 

Aut( V ) . If N is the normalize r of  H in Aut( V ) ,  then one knows p p 
that N/ H i s  cyclic of order 2 .  Sinc e  G e N ,  i t  follows that G p p 
i s  commutative if and only if  G C H. The ca s e  G C H corre sponds  p p 
to the ca s e  whe r e  the formal complex multiplication of E (p) i s  
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defined  ove r K, and the ca s e  G rr H c o r r e sponds  to the ca s e  whe r e  
p I- -

thi s fo r mal multipl i cation i s  def in e d  o ve r  a quadr atic  exte n s ion  of K .  
3 ) Suppo s e  that G i s  c om muta t i ve , a nd tha t  the  r e s idue 

p 
fi e ld k i s  finite . L et F be t h e  qua d r a t i c fie l d  of  fo rmal complex 

m ul t i p l i cation ( i .  e .  � i t s e l f ,  vi e we d  a s  an a s so ciative  s u ba lg e b r a  

o f  E nd ( V ) ) . I f  U
F 

deno te s t h e  g roup o f  uni t s  o f  F , t h e  a c tion  o f  
- p 

Gal ( K / K )  on V i s  g ive n by a homo m o r phi sm 
p 

q> Ga l ( K I  K)  --7 U 
F 

By loca l  c la s s fie l d  the o r y ,  w e  ma y identify the ine r tia g r oup of  
- ab Ga l ( K / K )  with the  g r oup UK o f  uni t s  of K.  Henc e the  r e s t r i ction 

CPI of <P to the ine r tia g r oup is a ho momo rphi sm of  U
K 

into  UF
o 

To dete r mine <P
I

' we fi r s t r ema r k  that the a c ti o n  of  End ( E ( p ) ) o n  

the  ta ng ent s p a c e  t o  E ( p )  d e fine s an e m be dding of  F i nto K.  For 

that  embedding , one ha s ( co m p a r e  with c ha p .  Ill , A . 4 ) 

qJ I 
( x) fo r al l  x EO U

K 

Inde e d ,  by a r e s ult  of Lubin (Ann.  of Math. 85 , 1 9 67 ) ,  the r e  i s  a 

fo rmal g r oup E '  whi c h  i s  K - i s og enous to E ( p ) , and ha s fo r r i ng of 

e n domo rphi sm s the ring of  inte g e r s of F .  But the n ,  i f  E "  i s  a 

Lubin- T at e  g r oup o ve r  K ( d. Lubin - Tate  [ 17 ] ) , the fo rmal g r o up s  

E '  and E "  a r e  i so mo rphic ove r the completi o n  o f  the maximal un ­

r ami fie d  e xten s i o n  o f  K ( d. Lubin [ 1 6 ] ,  th o 4 . 3 . 2 ) . Hence  t o  p r o ve 

the fo rmula ( ':' ) , we may a s s um e  that E ( p )  i s  a Lubin- Tate g r oup , ln 

whi ch c a s e  the fo rmula ( ,:' ) foll o w s  fr om the main r e sult  of  [ 1 7 ] .  
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A. 2 . 3 .  Auxi l ia r y  r e s ul t s  o n  a b e l ian  va r i e t i e s  

I V - 4 1 

L e t  A and B be two a be lian va r i e tie s o v e r  K ,  with good 

r e duct ion ,  so that  the a s s o c iate d p - divi s i ble  g r o up s A(p )  and B( p )  

a r e  define d ( the s e  a r e p - divi s ib le  g r oup s o ve r  t h e  r ing O
K ' d. 

..... -- ..... 
Tate  [ 3 9 ] ) . L e t  A and B ( r e s p . A { p )  and B{ p » be the r e du c tions  

of  A a nd B ( r e sp .  o f  A ( p )  a nd B ( p » . 

-- --
T HEOR EM 1 - L e t  f : A � B be a m o r p h i s m  of  a be lian va r i e tie s ,  

-- --
and l e t  f( p )  be t h e  co r r e spo nding mo rphi s m  o f  A(p ) i nto B( p ) . 

A s sume the r e  i s  a mo rphi sm f( p )  : A ( p )  � B ( p ) who s e  r eduction i s  

f(p ) . Then ,  the r e  i s  a mo rphi s m  f :  A --7 B who s e  r e du c tion i s  f. 

A p roof  o f  t h i s  "l ifting " the o r e m  ha s b e e n  given by Tate in  a 

S e minar ( W o o d s  Hol e ,  1 9 64 ) , but ha s no t y e t  be e n  publi s he d ;  a d iffe r­

ent  p ro o f  h as b e e n  g iven b y  W .  M ess i n g  ( L .  N .  2 6 4 ,  1 9 7 2 ) . 

T HEOR E M  2 - A s s um e  T ( A )  i s  a d i r e c t  s um of  Z - modul e s of 
p - p 

rank 1 invariant unde r the a c ti o n  of Ga l (K / K ) . T h e n  e ve ry endomo r -
--

phi s m  o f  A lift s to an e n domo r phi sm o f  A,  i .  e . , the re duction 
--

homomo rphi s m  End(A) � End(A)  i s  s urj e c ti ve (and hence bij e ctive , 

s ince  i t  i s  known to be inj e c tive ) .  

U s ing the o r e m  1 ,  one s e e s  tha t  it i s  enough to show that  any 

e ndomo rphi sm of  A ( p )  can be l ift e d  to  an e ndomorphi s m  of A( p ) . 

But the a s s umption made on T iMplie s ( c f.  Tate  [ 3 9] ,  4 . 2 )  that 
p 

A( p)  i s  a p r o du c t  o f  p - divi s ibl e g r oup s of he ight 1 .  Hence w e  a r e  

r e du c e d  t o  pr oving t h e  following e l e m e ntar y  r e  sult :  

LEMMA - L et  H
I

' H
Z 

b e  two p - di vi s ible group s ,  o ve r  OK ' 

b o th of height one . Then the r e duct ion map : 

Hom ( H1 , HZ ) � Hom( H1 ,  HZ ) i s  bij e c ti ve . 
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Proof .  Thi s i s  c lear  if both H and H
Z 

a r e  e tal e .  I f  both a r e  no t 
---- 1 
e tal e , the i r  dual s a r e  e ta le  and we a r e  r e duc e d  to the p r e vio u s  c a s e .  

If one o f  them i s  etale , and  the othe r i s  not , one c he ck s  r e adily that  
-

Hom ( H
l
, H

Z
) = Hom( H

l
, H

Z
) = O .  

C OR O L LAR Y - A s s um e :  

( i ) V ( A )  i s  a dir e c t  s um o f  o ne - dime n s io nal subspac e s  s table  
p 

unde r Gal (KI K ) . 

( U) T he r e s idue fi e ld k of K i s  finite . 

T h e n  A. i s  i s ogeno u s  to  a pr oduct  of abe lian va r i e ti e s of  ( CM) .!y.p!:. 
( i n the  s e n s e  o f  Shimur a - Ta niyama [ 3 4 ] , d .  al so  chap . II , Z . 8 ) .  

P r oo f .  A s sumption ( i )  impli e s  tha t T ( A ) conta ins  a latti c e  T '  
p 

whi c h  i s  a di r e c t  sum o f  fr e e  Z - module s of rank 1 stable unde r 
- p 

Gal ( K/ K ) . One can find an  i s og e ny A
l 

---,;.. A such  that T 
p

(A
l
) i s  

mapped onto T ' . T hi s m e a n s  tha t ,  a fte r r e plac ing A b y  a n  

i s ogenous  var ie ty ,  w e  ma y a pply T h .  Z to  A ,  i .  e .  
-

E nd( A)  ---,;.. End(A) i s  an i somo r phi s m .  But ,  s ince  k i s  finite , i t  
-

fo l low s from a r e s ul t  of  T ate [ 3 8] that Q � End( A )  contains a s emi -

s imple  commutative Q - s ubalge br a  A of  rank Z dim(A)  ( thi s i s  not 

expl i c i tly  s ta ted  in  [ 3 8] . but fol low s e a s ily  from its "Main The o r em" ) .  

Henc e , the same i s  t rue  fo r Q � End(A) . If  we now write  A a s  a 

produc t  of commutative fi e lds  A , one s e e s that A i s  i soge nous  to 
a 

a pr oduct n A , whe r e  A ha s c omplex multipl ication  of  type 
a a 

A , q .  e . d . 
a 

A .  Z .  4 .  The c a s e  1. = P with good r e du c tion of he ight 1 

In thi s s e ction,  we a s sume that the r educ e d  cur ve E i s  of  

he ight  1 i .  e .  that i t s  Ha s se inva riant i s  f 0 ( d. Deuring [ 9 ] ) . The 

conne c ted  c omponent -£1 = E ( p)
o 

o f  the p - divi sible  g r o up E ( p) 
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atta ched to E ( d. Tate [ 3 9 ] ) i s  then a forrnal g r oup of he i ght 1 .  
Sinc e E ( p )  i s  an exten sion o f  E

l 
by an etale group , w e  obtain an 

exact  s equenc e of  Gal (K/ K) -modul e s  

whe r e  X cor re sponds t o  the Tat: module o f  El , and Y to the 

points of orde r  a power of p of E .  

THEOREM - Suppo se  that the r e sidue fie ld k i s  finite . Then the 

following s tatement s  a r e  e quivalent :  

( a) The elliptic curve E ha s complex multiplication ove r  K .  

( a l ) The e lliptic curve E ha s complex multiplication ove r  an 

extension of  K. 

( b) There  exi s t s  a one -dimens ional subspace D of V , which - - P --

i s  a supplementary sub space of X,  and i s  stable unde r the action of 

G . p 
( b ' ) Ther e  exi s t s  a one -dimens ional sub space  D of V which - - p --

i s  a supplementary subspace of X ,  and is stable unde r the action of 

.£ = Lie (G ) . p p 

Proof.  If D i s  s table under the a ction o f  G ,  it i s  al so  stable under -- p 
the action of i ts  Lie algebra � '  hence ( b) =='l> ( b ' ) . Conver sely , if 

D is s table unde r �' 
a standard mean value 

i t s  transfo rm s  by G are  in finite number ;  p 
argument then shows that the sequence ( * ) 

split s ,  hence (b ' ) ='l>(b) . The impli cation (b ) =='l> ( a) ( the only non­

trivial one ) follows from the corollary to theor em 2 of A.  2 .  3 .  Con­

ve r sely , if E ha s  complex multiplication by an imaginary quadratic 

field F , the group Gal(K /K ) ac t s  on V thr ough F � Q ( s e e  p p 
chap . II , 2 . 8 ) and thi s action i s  thus s emi- s imple . Consequently, the 
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exact s equenc e ( 1,, )  split s ;  thi s shows that ( a )  =:l> ( b) , hence al so  that 

( a ' ) =:l> ( b ' ) .  Since (a ) =:l> ( a l )  i s  tr ivia l ,  the theorem is prove d . 

C OROLLAR y 1 - If E ha s no c omplex mul tiplication ,  � i s  the 

Bore l  subalgebra b of End( V ) fo rmed  by  tho se  u e End( V ) - -X - P - P 
s uch that u(X) C X ;  the ine r tia algebra � i s  the subalgebra !.X of  

b formed by tho s e  u e End( V ) such that u (  V ) C x. -X p P 

Le t  Xx and X y be the characte r s  of Gal(K/ K)  defined by 

the one - dimensional module s X and y . Since k i s  finite , Xy i s  

o f  infinite o rder . I f  X i s  the character  defined by the ac tion of 

Gal(K/K) on V (IJ ) , the i somorphi sms  p 

__ 2 __ X � y - A V - V (IJ )  P P 

- 1  show that XXX y = X ·  Hence the r e str iction of Xx and XXXy to 

the iner tia subgroup of Gal(K/ K)  a r e  of infinite order . Thi s show s 

fir st that � i s  e ither �X or  a Cartan subalgebra of �X ; s inc e 

the s e cond ca s e  would imply ( b ' ) ,  i t  i s  impo s s ibl e ,  hence � = �X. 

Similarly,  one s e e s  fi r st that i i s  c ontained in rX ' then that its 
-p -

action on X i s  non trivial ; since it i s  an ideal in � = �X' the s e  

properti e s  imply i = rX ' 
-p -

Remark 

The above r e sult is  g iven in [ 2 5 ] .  p .  245 ,  Th .  1 ,  but mi s ­

stated:  the algebra !.X has be en wrongly defined a s  formed of 

tho se  u such that u(X) = 0 ( in stead of u( V ) C X) . p 

COROLLAR Y 2 - If E ha s c omplex multiplication, � is a split 

Cartan subalgebra of End(V p l .  If D is a supplementary sub space 
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t o  X s table unde r Gal (K / K) , the n X and D a r e  the characte r i s ti c  

sub spa c e s  o f  � and the inertia a lgebra � i s  the  subalgebra of  

End( V ) fo rmed  by  tho se  u e End( V ) s uch that u( D) = 0 ,  u (X )  C X .  p p 

The proof i s  analogous  to the one of Co r .  1 ( and in fac t  

s imple r ) . 
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C oo , c l1l  : 1 1 . 3 . 1 .  
D : l l . 2 . 1 . 
Decompo s i t ion group : 1 . 2 . 1 . 
De fined over k ( repres enta tion • • •  ) : 1 1 . 2 . 4 . 
Dens ity ( o f  a s et o f  places ) : 1 . 2 . 2 . 

E : 1 1 . 2 . 2 . 
et : I I .  2 . 3 . 
El l i pt i c  curve 
E : IV . 1 . 3 .  

IP 

IV . 1 . 1 . 
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Em : I I .  2 . 1 • 

E
q 

: IV . A . 1 . 1 .  

Equid is tribut ion : I . A . 1 . 
'" 
Ev : IV . 1 .  2 .  
Exceptiona l  s et ( o f  a s trict ly compa t ib l e  system )  

� "...J � '  : I 1 1 . A . 2 .  
�t : 1 1 . 2 . 5 .  
F v ' fv : I ! .  2 .  3 • 

Fro benius e lement : 1 . 2 . 1 . 
Frobenius endomorphism : 1 1 . 2 . 8 , IV . 1 . 2 . 

rE IV .A . 3 .  
Gt IV . 2 . 2 .  
... Gt IV . 3 . 1 . 

�t . IV . 2 . 2 , IV . App • . 

GLy : Notations . 
, Om : II. 1. 1. 

Good reduct ion ( o f  an e l liptic curve ) : IV . 1 . 2 . 
Gro s s encharakter o f  type ( Ao ) : 1 1 . 2 . 7 .  
Height : 1V . A . 2 . 2 . 
Hod ge- Tate decompos ition : 1 1 1 . 1 . 2 .  
Hodge- Tate modu le : 1 1 1 . 1 . 2 . 
1 ,  1 : 1 1 . 2 . 1 .  m 
Id e le : I I . 2 . 1 . 
Id e le c las s es 

1t : 1V . App .  
1 1 . 2 . 1 . 

Inert ia group : 1 . 2 . 1 . 
Integra l ( repres entat ion ) : 1 . 2 . 3 .  
Is o geny ,  isogenous curves 1V . 1 . 3 .  
j : I V .  1 . 1 • 

K, Ks : Notat ions . 
t-ad ic repres enta t ion ( of a field ) 1 . 1 . 1 . 

1 . 2 . 3 .  
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A -ad ic repres enta t ion ( o f  a fie ld ) 

La t t i c e  : 1 . 1 . 1 -

L- func t ion : 1 . 2 . 5 .  

1 . 2 . 3 .  

Loca l ly a lgebra ic ( repres entat ion ) : 1 1 1 . 1 . 1 ,  1 1 1 . 2 . 1 ,  

1 1 1 . 2 . 4 , 1 1 1 . 3 . 3 .  
Modu lar invariant ( o f an e l l i pt ic curve ) : IV . 1 . 1 . 
Modu lus ( o f  a loca l ly a lgebra ic repres enta tion ) : 1 1 1 . 2 . 2 .  
Multip lica t ive type ( group o f  • • •  ) : 11 . 1 . 3 .  
Neron-Ogg-Sa farevic ( criterion o f  • • •  ) : 1V.1 .3. 

Rationa l ( repres entat ion ) : 1 . 2 . 3 ,  1 . 2 . 4 . 

Reduct ion ( o f  an e l liptic curve ) : 1V . 1 . 2 . 

Re� ( H )  : 1 1 . 2 . 4 . 

Sa farevic ( theo rem o f  • • •  ) : 1V.1 . 4 . 

Sm : 1 1 . 2 . 2 . 
Stric t ly compatib l e  ( system o f  repres entations ) 

1 . 2 . 4 . 

Supp( m ) : 11 . 2 . 1 .  
Tate ' s  e l l i pt ic curv es : 1V . A.1 1 1 .  

Tate ' s theorem : 111 . 1 . 2 ,  1 1 1 .A . 7 .  
g : 11.2 . 4. 

ql 
T.r,( \.l) : 1 . 1 . 2 . 
Tm : 11.2 . 2 .  

Torus : 1 1 . 1 . 1 .  

Transvection : 1V . 3 . 2 .  
T = �/ Q( Gm/K ) : 1 1 . 1 . 1 . 

U , U  : 1 1.2.1 . m v ,m  
Uni formly dis tributed ( s equence ) : I . A . 1 . 
Unrami fied ( repres entation ) : 1 . 2 . 1 .  

V.r, ( 1-1) : I • 1 • 2 .  

Weiers trass  form ( o f  an e l liptic curve ) : 1V . 1 . 1 .  

1 . 2 . 3 ,  
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'XE : 1 I I . A . 4 .  

'XL : 1 .  1 • 2 . 

X( T ) , X( T
m

) 1 1 . 3 . 1 . 

Y ,  yO ,  Y- , y+ : 1 1 . 3 . 1 , I I . A . 2 .  

I: K  1 . 2 . 1 . 


