
MATH 235: Assignment 4 solutions

1. Observe that the identity matrix ( 1 0
0 1 ) belongs to the set R by setting a =

c = 1 and b = 0. Furthermore we have

−( a b
0 c ) = (−a −b

0 −c )

( a b
0 c ) + ( a′ b′

0 c′ ) = ( a+a′ b+b′

0 c+c′ )

( a b
0 c ) · ( a′ b′

0 c′ ) = ( aa′ ab′+bc′

0 cc′ ).

Thus R is closed under addition, multiplication and additive inverses. It follows
that R is a subring of M2(F ). An example of a non-trivial ideal in R is the set

I := {( 0 b
0 c ) | b, c ∈ F}.

The ring R/I is isomorphic to the field F . Indeed the element ( a b
0 c ) ∈ R/I is

uniquely determined by a since it is equal to ( a 0
0 0 ) and is not equal to 0 unless a = 0.

This gives a bijective map from R/I to F and it is clear from the multiplication
and addition formulas above (recall multiplication and addition in a quotient ring
is inherited from the original ring) that this map is a ring homomorphism, hence
an isomorphism.

2. Let R ⊂ Z be a subring of Z. Suppose R 6= Z. Then there exists an element
x ∈ Z\R. We can assume x > 0 because R contains 0 and R is closed under additive
inverses (hence either R contains both −x and x or it contains neither). Then the
set S := {n ∈ N | n /∈ R} is a non-empty subset of N as it contains x. Thus
S contains a minimal element x′. The element x′ − 1 lies in N (note x′ 6= 0) and
since it doesn’t lie in S (by minimality) it must lie in R. But R is also a subring
so it contains 1. But then x′ = (x′ − 1) + 1 must lie in R, which is a contradiction.
Therefore R = Z.

3a) A ring homomorphism ϕ : R→ R′ must send the additive and multiplicative
identities of R to the respective identities of R′. Thus ϕ : Z → Z/nZ must have
ϕ(1) = 1 for any such homomorphism. But then for k ∈ N we have

ϕ(k) = ϕ(1 + . . .+ 1) = ϕ(1) + . . .+ ϕ(1) = 1 + . . .+ 1 = k

(where the second equality comes from the fact that ϕ is a ring homomorphism).
Furthermore, we have

0 = ϕ(0) = ϕ(k − k) = ϕ(k) + ϕ(−k) = k + ϕ(−k)

so that ϕ(−k) = −k. Since the value of ϕ is already determined for every value of
Z, it is unique. Since ϕ is the quotient map, it is necessarily a homomorphism.

b) Suppose ψ is a ring homomorphism from Z/nZ to Z. Then ψ(1) = 1 and
ψ(0) = 0. But if we add together n ones, we get 1 + . . .+ 1 = n = 0 and therefore

0 = ψ(0) = ψ(1 + . . .+ 1) = ψ(1) + . . .+ ψ(1) = 1 + . . . 1 = n

which is clearly a contradiction (unless of course n = 0 in which case Z/nZ ∼= Z
and we have the identity map). Hence no such ψ exists (when n 6= 0).
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c) From (a) we know that there is a unique morphism ϕ from Z to Z/nZ and
also a unique morphism ψ from Z to Z/mZ. If τ : Z/nZ → Z/mZ is a group
homomorphism, then it follows from uniqueness that ψ = τ ◦ ϕ. From this we can
conclude that the kernel of ϕ must be contained in the kernel of ψ if such a τ exists.
But the kernels of these maps are the ideals (n) and (m) respectively. The ideal
(m) contains the ideal (n) iff m divides n. We conclude that if τ exists, m must
divide n. On the other hand, if m divides n, then the element m ∈ Z/nZ generates
a non-trivial I of Z/nZ, and the quotient by this ideal is isomorphic to Z/mZ as
can be seen from the first isomorphism theorem applied to the composition of maps

Z→ Z/nZ→ (Z/nZ)/I.

Therefore if m|n we have a map between the two rings. Hence a ring homomorphism
exists iff m|n.

4. Suppose the ideal (3, 1 +
√
−5) was principle, so it could be generated by a

single element a+ b
√
−5. Then we can write

3 = (a+ b
√
−5)(c+ d

√
−5)

1 +
√
−5 = (a+ b

√
−5)(c′ + d′

√
−5)

Recall the norm mapN : Z[
√
−5]→ Z sending c+d

√
−5 to c2+5d2 is multiplicative.

Hence from the two equalities above, we get that a2 + 5b2 = N(a+ b
√
−5) divides

9 and 6 (the norm of 3 and 1 +
√
−5 respectively). Hence it divides GCD(9, 6) = 3.

The only way a2 + 5b2 could divide 3 is if b = 0 and a = ±1, which would mean
the ideal (3, 1 +

√
−5) = (a+ b

√
−5) = (1). This means 1 lies in the ideal, so that

1 = 3(c+ d
√
−5) + (1 +

√
−5)(c′ + d′

√
−5) = (3c− 5d′ + c′) + (3d+ d′ + c′)

√
−5

for some choice of c, c′, d, d′ ∈ Z. But that means c′ = −(3d+ d′) and so

1 = 3c− 6d′ − 3d

which obviously has no solutions in the integers since the RHS is divisible by 3.
Therefore no such a+ b

√
−5 exists.

5. Observe that the norm map gives N(5) = 25 and N(1 − 8i) = 65, so if
(5, 1 − 8i) is principally generated by (a + bi), we must have N(a + bi) dividing
GCD(25, 65) = 5. Up to units, there are only 2 elements of norm 5, namely 1 + 2i
and 1− 2i, so the ideals generated by these two elements are the only possibilities
(if the generator had norm 1 it would be a unit and so the ideal would be the whole
ring which is not the case by an argument similar to the one given in problem 4).
Since (1 + 2i)(1 − 2i) = 5, both ideals contain 5. However 1−8i

1+2i = −3 − 2i lies in
the Gaussian integers while 1−8i

1−2i = 17−6i
5 does not. Therefore the ideal (1 + 2i)

contains the ideal (5, 1− 8i). Since we can write

1 + 2i = 5(2i) + 1− 8i,

the ideal (5, 1− 8i) also contains (1 + 2i) and hence these two ideals are equal.

6. By theorem 22.1.2 of the notes, the given ring is a field so long as the polyno-
mial x4 +x+ 1 is irreducible in Z/2Z[x]. This was proved in an earlier assignment,
however to briefly recall note that x4 + x + 1 has no roots in Z/2Z and hence if
it were not irreducible, it must be the product of two irreducible quadratics over
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Z/2Z. However there is only 1 such quadratic, namely x2 + x+ 1 and its square is
x4 + x2 + 1. Thus x4 + x+ 1 is irreducible.

7. We want to find a polynomial p(x) such that p(x)·(x2+1) ≡ 1 mod x4+x+1.
This can be done by Euclid’s algorithm on Z/2Z[x]:

x4 + x+ 1 = (x2 + 1)(x2 + 1) + x

x2 + 1 = (x)(x) + 1.

Now working backwards:

1 = x2 + 1− x(x)
= x2 + 1− x(x4 + x+ 1− (x2 + 1)(x2 + 1))
= (x2 + 1)(1 + x+ x3)− x(x4 + x+ 1).

Therefore [x2 + 1]−1 = [1 + x+ x3].

8. ϕ certainly sends the identity element of R1 (the constant polynomial 1) to
the identity element of R2 (the function which sends every element of F to 1).
Suppose f and g are 2 polynomials in F [x]. Then for a ∈ F ,

ϕ(f + g)(a) = (f + g)(a) = f(a) + g(a) = ϕ(f)(a) + ϕ(g)(a)

so ϕ(f + g) = ϕ(f) + ϕ(g). Likewise

ϕ(f · g)(a) = (f · g)(a) = f(a) · g(a) = ϕ(f)(a) · ϕ(g)(a).

Hence ϕ is a ring homomorphism.

9. Suppose p(x) ∈ F [x] is in the kernel of ϕ. Then for all a ∈ F , p(a) = 0. If
p(x) is non-zero then the number of distinct roots of p is bounded by the degree of
p and in particular is finite. Hence p(a) = 0 for only finitely many a if p 6= 0. If
F = Q,R or in fact any field with infinitely many elements, it follows that p(x) lies
in the kernel of ϕ iff p(x) = 0. Thus in such a case, ϕ is injective. These remarks
also show why ϕ fails to be surjective. Consider the map from F → F that takes
the value 1 at 0, but takes the value 0 everywhere else. If F has infinitely many
elements, then this map takes the value 0 infinitely many times. But it is not the
zero map because it takes the value 1. Hence it could not lie in the image of ϕ.

10. Assume F = Z/pZ. The polynomial xp − x factors as
∏

a∈F (x − a) and
hence takes the value 0 at every point of F . Thus it lies in the kernel of ϕ and
hence in this case ϕ is not injective. In fact the kernel of the map is equal to the
ideal generated by xp − x in F [x]. This is because if f ∈ F [x] satisfies f(a) = 0,
then f = (x − a)f ′ for unique f ′ ∈ F [x]. Since the polynomial (x − a) does not
take the value 0 anywhere other than a, it follows that if f(a) = 0 for all a ∈ F , we
must have f =

(∏
a∈F (x− a)

)
f̃ for some unique f̃ ∈ F [x].

To show surjectivity, observe that for every a ∈ F , it suffices to construct a poly-
nomial that takes the value 1 at a and 0 everywhere else. Indeed suppose we have
such polynomials pa(x), and suppose g : F → F is an arbitrary function that takes
the value ba at a. Then g = ϕ(

∑
a∈F ba · pa(x)). Given a ∈ F , we construct pa as
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follows. First note that the polynomial∏
c∈F
c6=a

(x− c)

takes the value 0 at every element of F except a, and is non-zero at a (in fact by
Wilson’s theorem it takes the value -1 at a). Hence multiplying the polynomial by
−1 gives the desired pa (note pa is of course non-unique).


