MATH 235: Assignment 4 solutions

1. Observe that the identity matrix (§9) belongs to the set R by setting a =
c=1 and b = 0. Furthermore we have

—(§2) = (3'20)
(8b) (a'b;) — (a-&-a/b-&-b:)
c 0 c 0 c+c
’ ’ /
(B0 () = (5 ).

Thus R is closed under addition, multiplication and additive inverses. It follows
that R is a subring of Ms(F'). An example of a non-trivial ideal in R is the set

I:={(3% | bceF}

The ring R/I is isomorphic to the field F. Indeed the element (&%) € R/I is
uniquely determined by a since it is equal to (& J) and is not equal to 0 unless a = 0.
This gives a bijective map from R/I to F and it is clear from the multiplication
and addition formulas above (recall multiplication and addition in a quotient ring
is inherited from the original ring) that this map is a ring homomorphism, hence
an isomorphism.

2. Let R C Z be a subring of Z. Suppose R # Z. Then there exists an element
x € Z\R. We can assume z > 0 because R contains 0 and R is closed under additive
inverses (hence either R contains both —z and z or it contains neither). Then the
set S:={neN | n ¢ R} is a non-empty subset of N as it contains z. Thus
S contains a minimal element z’. The element 2’ — 1 lies in N (note z’ # 0) and
since it doesn’t lie in S (by minimality) it must lie in R. But R is also a subring
so it contains 1. But then ' = (2’ — 1) + 1 must lie in R, which is a contradiction.
Therefore R = Z.

3a) A ring homomorphism ¢ : R — R’ must send the additive and multiplicative
identities of R to the respective identities of R’. Thus ¢ : Z — Z/nZ must have
(1) =1 for any such homomorphism. But then for k¥ € N we have

k)=l +...+ D)= +...4 1) =T+...+1=k

(where the second equality comes from the fact that ¢ is a ring homomorphism).
Furthermore, we have

0=0(0) = p(k — k) = p(k) + o(=k) = k + (k)
so that ¢(—k) = —k. Since the value of ¢ is already determined for every value of
Z, it is unique. Since @ is the quotient map, it is necessarily a homomorphism.

b) Suppose ¥ is a ring homomorphism from Z/nZ to Z. Then (1) = 1 and
1(0) = 0. But if we add together n ones, we get 1+ ... +1=n = 0 and therefore
0=90)=yvI+...41)=¢D)+...+9(1)=1+...1=n
which is clearly a contradiction (unless of course n = 0 in which case Z/nZ = 7Z

and we have the identity map). Hence no such 1 exists (when n # 0).
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¢) From (a) we know that there is a unique morphism ¢ from Z to Z/nZ and
also a unique morphism v from Z to Z/mZ. It 7 : Z/nZ — Z/mZ is a group
homomorphism, then it follows from uniqueness that ¢ = 7 o ¢. From this we can
conclude that the kernel of ¢ must be contained in the kernel of 1) if such a 7 exists.
But the kernels of these maps are the ideals (n) and (m) respectively. The ideal
(m) contains the ideal (n) iff m divides n. We conclude that if 7 exists, m must
divide n. On the other hand, if m divides n, then the element ™ € Z/nZ generates
a non-trivial I of Z/nZ, and the quotient by this ideal is isomorphic to Z/mZ as
can be seen from the first isomorphism theorem applied to the composition of maps

Z— 7/nZ — (Z/nZ)/1.

Therefore if m|n we have a map between the two rings. Hence a ring homomorphism
exists iff m|n.

4. Suppose the ideal (3,1 4+ +/—5) was principle, so it could be generated by a
single element a + by/—5. Then we can write

3 = (a+bV=5)(c+dV-5)
1+V-5 = (a+b/=5)(c +dV-5)

Recall the norm map N : Z[v/—5] — Z sending c+d/=5 to ¢®+5d? is multiplicative.
Hence from the two equalities above, we get that a® + 56> = N(a + by/—5) divides
9 and 6 (the norm of 3 and 1+ /=5 respectively). Hence it divides GCD(9, 6) = 3.
The only way a? + 5b% could divide 3 is if b = 0 and a = %1, which would mean
the ideal (3,1 + v/=5) = (a + by/=5) = (1). This means 1 lies in the ideal, so that

1=3(c+dv-5)+ (1++vV-5)(+dvV-5)=Bc—5d +c)+ Bd+d +)vV->
for some choice of ¢, ¢, d,d’ € Z. But that means ¢’ = —(3d + d’) and so
1=3c—6d —3d

which obviously has no solutions in the integers since the RHS is divisible by 3.
Therefore no such a + by/—5 exists.

5. Observe that the norm map gives N(5) = 25 and N(1 — 8i) = 65, so if
(5,1 — &i) is principally generated by (a + bi), we must have N(a + bi) dividing
GCD(25,65) = 5. Up to units, there are only 2 elements of norm 5, namely 1 + 2i
and 1 — 2¢, so the ideals generated by these two elements are the only possibilities
(if the generator had norm 1 it would be a unit and so the ideal would be the whole
ring which is not the case by an argument similar to the one given in problem 4).
Since (1 + 2¢)(1 — 2¢) = 5, both ideals contain 5. However L‘_gz = —3 — 2¢ lies in
the Gaussian integers while {=5¢ = % does not. Therefore the ideal (1 4 27)
contains the ideal (5,1 — 8i). Since we can write

1+ 2i =5(2)+1—8i,

the ideal (5,1 — 8i) also contains (1 4 2¢) and hence these two ideals are equal.

6. By theorem 22.1.2 of the notes, the given ring is a field so long as the polyno-
mial 2% + 2 + 1 is irreducible in Z/2Z[z]. This was proved in an earlier assignment,
however to briefly recall note that z* + 2 + 1 has no roots in Z/27Z and hence if
it were not irreducible, it must be the product of two irreducible quadratics over
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7./27.. However there is only 1 such quadratic, namely 22 + x + 1 and its square is
z* + 22 + 1. Thus 2* + z + 1 is irreducible.

7. We want to find a polynomial p(x) such that p(z)-(z2+1) =1 mod z*+xz+1.
This can be done by Euclid’s algorithm on Z/2Z[x]:

e+l = @@+ DEP+H1) 42
22 +1 = (2)(z)+1.

Now working backwards:

1 = 2241 —x(z)
= 22 +1-z@' +r+1- (@2 +1D)(22+1))
(P + D)1 +2+2%) 2@ +24+1).

Therefore [22 +1]7! = [1 + x + 23]

8. ¢ certainly sends the identity element of R; (the constant polynomial 1) to
the identity element of Ry (the function which sends every element of F' to 1).
Suppose f and g are 2 polynomials in F[z]. Then for a € F,

o(f +9)(a) = (f +9)(a) = f(a) + g(a) = ¢(f)(a) + ¢(g)(a)
so o(f +g) = ¢o(f) + ¢(g). Likewise
o(f-g)(a) = (f-g)(a) = f(a) - gla) = ¢(f)(a) - p(g)(a).

Hence ¢ is a ring homomorphism.

9. Suppose p(z) € F[z] is in the kernel of ¢. Then for all a € F, p(a) = 0. If
p(x) is non-zero then the number of distinct roots of p is bounded by the degree of
p and in particular is finite. Hence p(a) = 0 for only finitely many a if p # 0. If
F = Q,R or in fact any field with infinitely many elements, it follows that p(x) lies
in the kernel of ¢ iff p(z) = 0. Thus in such a case, ¢ is injective. These remarks
also show why ¢ fails to be surjective. Consider the map from F — F that takes
the value 1 at 0, but takes the value 0 everywhere else. If F' has infinitely many
elements, then this map takes the value 0 infinitely many times. But it is not the
zero map because it takes the value 1. Hence it could not lie in the image of ¢.

10. Assume F' = Z/pZ. The polynomial z? — x factors as [[,.p(z — a) and
hence takes the value 0 at every point of F. Thus it lies in the kernel of ¢ and
hence in this case ¢ is not injective. In fact the kernel of the map is equal to the
ideal generated by 2P — x in F[z]. This is because if f € F[z] satisfies f(a) = 0,
then f = (z — a)f’ for unique f’ € Flx]. Since the polynomial (z — a) does not
take the value 0 anywhere other than a, it follows that if f(a) = 0 for all a € F, we
must have f = ([],cp(z — a)) f for some unique f € Flz].

To show surjectivity, observe that for every a € F, it suffices to construct a poly-
nomial that takes the value 1 at a and 0 everywhere else. Indeed suppose we have
such polynomials p,(x), and suppose g : F' — F' is an arbitrary function that takes
the value b, at a. Then g = (3, ba - Pa(z)). Given a € F, we construct p, as



follows. First note that the polynomial

H(x—c)

ceF
c#a

takes the value 0 at every element of F' except a, and is non-zero at a (in fact by
Wilson’s theorem it takes the value -1 at a). Hence multiplying the polynomial by
—1 gives the desired p, (note p, is of course non-unique).



