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1 Question One

Find the gcd of f(x) = x4 + 3x3 + 16x2 + 33x + 55 and g(x) =
x3 + x2 − x− 10.

Performing long division gives

f(x) = (x + 2)g(x) + 15(x2 + 3x + 5).

Also, long division shows that (x − 2)(x2 + 3x + 5) = x3 + x2 − x − 10 so the gcd is the
monic polynomial x2 + 3x + 5. By the first long division

1

15
f(x)− 1

15
(x + 2)g(x) = x2 + 3x + 5.

Here is how to do it in Sage:

R.<x> = PolynomialRing(QQ)

f = x^4 + 3*x^3 + 16*x^2 + 33*x + 55

g = x^3 + x^2 - x - 10

g.xgcd(f)

>>(x^2 + 3*x + 5, -1/15*x - 2/15, 1/15)

2 Question Two

Find the gcd of f(x) = x6 + x4 + x + 1 and g(x) = x6 + x5 + x4 +
x3 + x2 + x + 1 in Z/2[x] and express it as a linear combination of f
and g

.
Via long division, or possibly by inspection since Z/2 is so nice:

g(x) = f(x) + x5 + x3 + x2

f(x) = x(x5 + x3 + x2) + x3 + x + 1

x5 + x3 + x2 = x2(x3 + x + 1).

Hence the gcd is x3 + x + 1 = (1 + x)f + xg.
Here is how to do it in Sage:
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R.<x> = PolynomialRing(Integers(2))

f = x^6 + x^4 + x + 1

g = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

g.xgcd(f)

>>(x^3 + x + 1, x, x + 1)

3 Question Three

List all the irreducible degree four polynomials in Z/2[x].

Any irreducible quartic f ∈ Z/2[x] has to be of the form f(x) = x4 +ax3 +bx2 +cx+1
where a, b ∈ Z/2 since polynomials without a constant term have the irreducible factor x.
However, polynomials with an even number of terms in Z/2[x] all have x = 1 as a root,
so there are four remaining possibilities

• x4 + x + 1,

• x4 + x2 + 1,

• x4 + x3 + 1, and

• x4 + x3 + x2 + x + 1.

These are either irreducible or else they must be a product of quadratic factors, since a
linear factor would give a root, and these have no roots. There is only one irreducible
quadratic, which is x2 + x + 1. Squaring this gives

(x2 + x + 1)(x2 + x + 1) = x4 + x2 + 1.

Hence the irreducible quartics are

• x4 + x + 1,

• x4 + x3 + 1, and

• x4 + x3 + x2 + x + 1.

Note that if you want to try your hand at finding the irreducible quartics in Z/p[x]
for any prime p then there are 1

4p
2(p2 − 1) monic ones.

4 Question Four

If p = 4m+1 is a prime then (2m)! is a root in Z/p of x2+1 ∈ Z/p[x].

Since p is a prime, Wilson’s theorem gives (4m)! ≡ −1 (mod p). Hence modulo p,

−1 ≡ (4m)! ≡ 1 · 2 · · · (2m)(2m + 1)(2m + 2) · · · (2m + 2m)

≡ 1 · 2 · · · (2m)(−2m)(−2m + 1)(−2m + 2) · · · (−2)(−1).
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Since there are an even number of terms the last line reduces to [(2m)!]2, so in conclusion,

[(2m)!]2 ≡ −1 (mod p)

which is exactly what we were trying to prove.

5 Question Five

A polynomial f ∈ F [x] for a field F has at most d = deg(f) roots.
Find a counterexample to this statement without the assumption that
F is a field.

There are many possibilities here, such as the examples coming out of the next ques-
tion! Here is another: consider the ring Z×Z where addition and multiplication are given
pointwise:

(a, b) + (a′, b′) = (a + a′, b + b′)

(a, b) · (a′, b′) = (aa′, bb′).

Consider the polynomial f ∈ (Z×Z)[x] given by f(x) = (1, 0)x. It is a nonzero polynomial
of degree two. However, it has infinitely many roots. In fact, (0, z) is a root for any z ∈ Z.

The same trick can be used for any ring with zero divisors: recall that an element
a ∈ R is called a zero divisor if there exists a b ∈ R such that ab = 0 and b 6= 0. If R is
any ring with some a, b ∈ R, both nonzero such that ab = 0, then f(x) = ax will have at
least two solutions.

6 Question Six

Let n = pq where p and q are distinct primes. Find the best upper
bound for the number of roots of polynomial in Z/n[x] as a function
of the degree, and show that this upper bound can always be attained.

Let f be the polynomial of degree d in Z/n[x]. If r ∈ Z/n is a root then f(r) = 0
in Z/n and consequently also when we reduce modulo p and modulo q via the Chinese
remainder theorem. Moreover, if s ∈ Z/p is a root of f modulo p and t ∈ Z/q is a root
modulo q, then there exists a unique element r ∈ Z/n, necessarily a root, that reduces to
s mod p and t mod q.

Since there are at most min(d, p) in Z/p and min(d, p) roots in Z/q, f must have at
most R(d) = min(d, p) min(d, q) roots in Z/pq. We claim that this is the best possible
upper bound. In fact, following our above reasoning x(x− 1) · · · (x− d) shows this.

6.1 Example

Consider the ring Z/21. Let us try and find a quartic polynomial with twelve roots. The
above scheme actually allows us to find it easily: it is f(x) = x(x − 1)(x − 2)(x − 3) =
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x4−6x3 +11x2−6x. Modulo 3, it has the roots, 0, 1, 2 (one is repeated on this reduction)
and modulo 7 it has the roots 0, 1, 2, 3.

Of course now finding all the roots in Z/21 is just an exercise in reversing the reduction
modulo p in the Chinese remainder theorem. Since gcd(p, q) = 1 we can write 1 as a Z-
linear combination of p and q:

−2 · 3 + 7 = 1.

Recall now that if we want to find the unique element x ∈ Z/21 such that x ≡ a (mod 3)
and x ≡ b (mod 7) then we just take a(1 + 6) + b(1 − 7) = 7a − 6b. Doing this we find
the roots:

a b 7a - 6b
0 0 0
0 1 15
0 2 9
0 3 3
1 0 7
1 1 1
1 2 16
1 3 10
2 0 12
2 1 8
2 2 2
2 3 17

7 Question Seven

Write the nonzero powers of x in Z/2[x]/(x3+x+1) and every nonzero
element can be written as a power of x.

The powers are:

1. x

2. x2

3. x3 = 1 + x

4. x4 = x + x2

5. x5 = 1 + x + x2

6. x6 = x + x2 + 1 + x = 1 + x2

7. x7 = x + x3 = 1
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All of these powers have degree less than two and hence are distinct, and since all the
elements of Z/2[x]/(x3 + x + 1) are represented by a polynomial of degree at most two,
these are all the elements, since each such polynomial appears in this list. (Since x3+x+1
has no root in Z/2 and it is cubic, it is irreducible so Z/2[x]/(x3 + x + 1) is a field with
23 = 8 elements.).

8 Question Eight

For any g ∈ Z/p[x] the degree of f = gcd(xp − x, g(x)) is exactly the
number of distinct roots of g.

By Fermat’s little theorem, xp − x has p distinct roots in Z/p and so x− a|xp − x for
every a ∈ Z/p. Hence xp− x is just the polynomial x(x− 1) · · · (x− p+ 1), since they are
both monic and differ by multiplication of some invertible element

Thus f is some subproduct of x(x− 1) · · · (x− p + 1), and x− a|f if and only if a is a
root of g. Since f has no repeated roots, deg(f) is the number of roots of g.

9 Question Nine

The polynomial x2 + 1 has no roots in Z/p if p = 4m + 3.

We use the results of Question Eight and compute gcd(xp − x, x2 + 1). First,

(x2 + 1)(x− x3 + x5 − x7 + x9 − · · · − x4m−1 + x4m+1) = x4m+3 + x.

In other words, x4m+3 ≡ −2x (mod x2 + 1). By inspection, gcd(x2 + 1, x) = 1, so x2 + 1
has deg(1) = 0 roots.

10 Question Ten

Describe a realistic algorithm to find the number of roots of a poly-
nomial f ∈ Z/p[x].

If we use Question Eight, then the Euclidean algorithm can determine the greatest
common divisor of f(x) and xp − x, so that the number of roots can be read off from the
degree of this gcd. In order to make this computation efficient for very large p, then it is
necessary to use something more than naive division, since if p is very large then dividing
f(x) into xp−x will take an exceptionally large number of steps (think of dividing xp−x
by x − 1: since xp − x = x(xp−1 − 1) = x(x − 1)(xp−2 + xp−3 + · · · + 1). Using the
naive division algorithm would result on the order of p operations. For a 30-digit prime,
p operations at 10 billion operations per second would take about 32 billion millenia.)

Hence, the first step in the algorithm, xp − x = qf(x) + r(x) ought to be done a bit
more efficiently. To do this, we find the remainder of xp on division by f(x). To do this
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we use successive squaring: computing x2, x4, x8, . . . modulo f(x). Once x2n−1

is found
modulo f(x), we just square that to and then reduce.

Then writing xp = x
∑

2k where
∑

2k = p is the binary expansion of p, we just have
to multiply all the powers we found above, and then reduce modulo f again. Since the
total number of binary digits of p is on the order of log2(p), this is much more efficient.
For instance, a thirty digit prime has 30 log2(10) ≈ 43.4 so we should need at most 44
squarings.
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