ASSIGNMENT 6: SOLUTIONS

Question 1.

Solution. Assume that R(s) > 1. Then using the hint and the Euler product expansion of {(s), we get that
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Re-writing this using the geometric series exapansion of — ,M we get that
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where the last equality is due to the fact that A(n) = 0 for all n that are not prime powers. g
Question 2.

Solution. Again take s such that R(s) > 1. In order to “kill two birds with one stone”, let x : N — C* be any
multiplicative character (i.e. . x(nm) = x(n)x(m) and |x(n)] = 1 for all n € N). Then since |x(p)p~°| = [p~°| < 1,
and the series >~ x(p)"p~™° converges absolutely for all primes. This means that we can proceed as in the case
of proving the Euler product expansion for the zeta function:
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n is x-smooth

Taking the limit as « goes to infinity gives that
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Observing that the Legendre symbol is a multiplicative character completes the proof. O

Question 3.

Solution. Write Sy = (5ki1)s — (5ki2)5 — (5k41r3)5 + <5k41r4)5. By the mean value theorem applied to f(z) = 1/z°,

there is a ¢, € [5k + 1,5k + 2] such that
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and likewise, a di, € [5k + 3,5k + 4] such that
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Therefore, Sy = s (% - #) and since 1 < ¢ < di, and ¢, > 5k + 1 for all k& > 0,
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We now apply our results to L(s) when ¢ = 5 as in the previous question. Since L(s) is absolutely convergent for

s > 1, it follows that
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By what we have just shown about S, this means that for all 1 < s < 2,
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Therefore, the limit as s — 17 of L(s) converges to a non-zero number. g

Question 4.
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Solution. By our work in question 2, we only need to show that x and ¥ are multiplicative characters in order to
prove the Euler product expansions for L(x, s) and L(j,s). This is easy to check.

Now, for s € R, we want to show that lim,_,;+ L(x, s) converges and is non-vanishing (similarly for L(Y,s)). Since
the series L(x,s) = >.°° , X converges absolutely for s > 1, we can rearrange and find that
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Again, by the mean value theorem applied to the function 1/z°, we get that for every k, there exists c¢x €
[5k + 1,5k + 4] and di, € [5k + 2, 5k + 3] such that
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Therefore, for 1 < s < 2
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and similarly,
s
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and as s — 17, L(x, s) converges to a non-zero complex number. The argument for L(,s) is similar. d
Question 5.
Solution. Let p : N — C* denote any of (3),x,X or the trivial character and let L(p,s) = Y7 | p(n)n® (note that

if p is the trivial character, L(p,s) = {(s). Then it follows from the Euler product expansions of these L-functions
(which we proved in Questions 2 and 4) that
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since (17;73 < 2 for all primes and s > 1.
Consider the following for p prime:
1 p=0 (mod}5)
» 4 p=1 (mod5)
1+(5)+x(p)+>’<(p)= 0 p=2 (mod5)
0 p=3 (mod?5)
0 p=4 (mod5)

Thus,
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It follows that

log ((s) +log L(s) + log L(x, s) + log L(x, s) — 4 Z is

p=1 (mod 5) p

Z 1+(§)+X(p)+>_((p) _4 Z x +8¢(2s)
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p prime
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Therefore, as we take the limit as s — 1, we get that the absolute value of the sum is 1/5 + 8¢(2). From previous
work in this assignment, the limit as s € R approaches 1 from the right is finite for log L(p, s) where p is x, X, (g),
however, we know that the limit as s — 1 of {(s) goes to infinity and so does its logarithm. Since the absolute value
of the above sum converges, it must be that > L diverges and there infinitely many primes in this equivalence

p=1(5) p*

class. The proof is essentially the same for the other equivalence classes modulo 5. a
Question 6.
Solution. The main observation here should be that the second series converges to 7 faster than the first one does. [
Question 7.
Solution. The continued fraction expansion of v/7 is [2;T,1,1,4]. The first few convergents p,/qn are

5 8 37 45
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and in order to find a minimal (with respect to the size of x) solution to the Pell equation, we can successively test
(pn,gn) for n =1,2,3,... until we get a solution. The first such solution is (8, 3). O

Question 8.

Solution. Fix m € Z and write ord(a — m) = b. Then o = m (mod p®) and

f(m) = f(a) =0 (mod p")
so ord(a — m) < ord(f(m)).
Let a denote the coefficient of f that is largest in abolute value. Then for any m € Z,

log|f(m)| < loglakm| = log|a|k + klog|m]|.

Therefore,
ord(a— m) < oxd(f(m)) < "EUSD) _ log (alk) + Klog((m]) _ lo (Jalk)  , log(|m))
log(p) log(p) log(p) log(p)
and since a, k,p do not depend on m, we are done. (]
Question 9.

Solution. Let a = >0 p™ € Z, and let o, = > o p™, and suppose that « satisfies an irreducible polynomial
f(z) € Z[z] where k = deg(f) > 2. Observe that for all n € N we have that
ord(a — a) = ord( Z p™) > (n+ 1)
m=n-+1

By Question 8, there exists a constant C' such that

|
(n+ 1) < C 4 plslanl) o logn +nllog(p)
log(p) log(p)

n< &y Flogn 0
n!  nllog(p)

for all n. However, for n >> 0 the LHS is bigger than the RHS. Therefore, a cannot satisfy any such f(z) € Z[z]. O

In other words,



