
ASSIGNMENT 6: SOLUTIONS

Question 1.

Solution. Assume that <(s) > 1. Then using the hint and the Euler product expansion of ζ(s), we get that

−ζ
′(s)

ζ(s)
= − d

ds
log

( ∏
p prime

(1− p−s)−1

)
=

∑
p prime

d

ds
log(1− p−s) =

∑
p prime

log(p)p−s

1− p−s .

Re-writing this using the geometric series exapansion of 1
1−p−s , we get that

−ζ
′(s)

ζ(s)
=

∑
p prime

log(p)p−s
∞∑
m=0

(p−s)m =
∑

p prime

∞∑
m=1

Λ(pm)

(pm)s
=

∞∑
n=1

Λ(n)

ns

where the last equality is due to the fact that Λ(n) = 0 for all n that are not prime powers. �

Question 2.

Solution. Again take s such that <(s) > 1. In order to “kill two birds with one stone”, let χ : N → C× be any
multiplicative character (i.e. . χ(nm) = χ(n)χ(m) and |χ(n)| = 1 for all n ∈ N). Then since |χ(p)p−s| = |p−s| < 1,
and the series

∑∞
m=0 χ(p)mp−ms converges absolutely for all primes. This means that we can proceed as in the case

of proving the Euler product expansion for the zeta function:∏
p prime<x

(
1− χ(p)p−s

)−1
=

∏
p prime<x

∞∑
m=0

(χ(p)p−s)m =
∏

p prime<x

∞∑
m=0

χ(pm)(pm)−s

=
∑

n is x-smooth

χ(n)n−s.

Taking the limit as x goes to infinity gives that∏
p prime

(
1− χ(p)p−s

)−1
=

∞∑
n=1

χ(n)n−s.

Observing that the Legendre symbol is a multiplicative character completes the proof. �

Question 3.

Solution. Write Sk = 1
(5k+1)s

− 1
(5k+2)s

− 1
(5k+3)s

+ 1
(5k+4)s

. By the mean value theorem applied to f(x) = 1/xs,

there is a ck ∈ [5k + 1, 5k + 2] such that

1

(5k + 1)s
− 1

(5k + 2)s
= −f ′(ck) =

s

cs+1
k

and likewise, a dk ∈ [5k + 3, 5k + 4] such that

1

(5k + 3)s
− 1

(5k + 4)s
=

s

dk
s+1 .

Therefore, Sk = s

(
1

cs+1
k

− 1

ds+1
k

)
and since 1 < ck < dk and ck ≥ 5k + 1 for all k ≥ 0,

0 < Sk ≤
s

cs+1
k

≤ s

(5k + 1)s+1
.

We now apply our results to L(s) when q = 5 as in the previous question. Since L(s) is absolutely convergent for
s > 1, it follows that

L(s) =
∞∑
k=0

Sk.

By what we have just shown about Sk, this means that for all 1 < s < 2,

0 < S0 = 1− 1

2s
− 1

3s
+

1

4s
≤ L(s) ≤

∞∑
k=0

s

(5k + 1)s+1
≤ s

∞∑
n=0

1

n2
= sζ(2).

Therefore, the limit as s→ 1+ of L(s) converges to a non-zero number. �

Question 4.

1
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Solution. By our work in question 2, we only need to show that χ and χ̄ are multiplicative characters in order to
prove the Euler product expansions for L(χ, s) and L(χ̄, s). This is easy to check.

Now, for s ∈ R, we want to show that lims→1+ L(χ, s) converges and is non-vanishing (similarly for L(χ̄, s)). Since

the series L(χ, s) =
∑∞
n=1

χ(n)
ns converges absolutely for s > 1, we can rearrange and find that

<(L(χ, s)) =

∞∑
k=0

1

(5k + 1)s
− 1

(5k + 4)s

and

=(L(χ, s)) =

∞∑
k=0

1

(5k + 2)s
− 1

(5k + 3)s
.

Again, by the mean value theorem applied to the function 1/xs, we get that for every k, there exists ck ∈
[5k + 1, 5k + 4] and dk ∈ [5k + 2, 5k + 3] such that

1

(5k + 1)s
− 1

(5k + 4)s
=

s

cs+1
k

,
1

(5k + 2)s
− 1

(5k + 3)s
=

s

ds+1
k

.

Therefore, for 1 < s < 2

0 6= s

4s+1
≤
∞∑
k=0

s

(5k + 4)s+1
≤ <(L(χ, s)) =

∞∑
k=0

s

cs+1
k

≤
∞∑
k=0

s

(5k + 1)s+1
≤ s

∞∑
n=0

1

n2
= sζ(2)

and similarly,

0 6= s

3s+1
≤ =(L(χ, s)) ≤ sζ(2)

and as s→ 1+, L(χ, s) converges to a non-zero complex number. The argument for L(χ̄, s) is similar. �

Question 5.

Solution. Let ρ : N → C× denote any of
( ·
5

)
, χ, χ̄ or the trivial character and let L(ρ, s) =

∑∞
n=1 ρ(n)ns (note that

if ρ is the trivial character, L(ρ, s) = ζ(s). Then it follows from the Euler product expansions of these L-functions
(which we proved in Questions 2 and 4) that

logL(ρ, s) =
∑

p prime

∞∑
n=1

ρ(n)

npns
=

∑
p prime

1

ps
+

∑
p prime

∞∑
n=2

ρ(n)

npns
.

Now, ∣∣∣∣∣ ∑
p prime

∞∑
n=2

ρ(n)

npns

∣∣∣∣∣ ≤ ∑
p prime

∞∑
n=2

|ρ(n)|
npns

≤
∑

p prime

∞∑
n=2

1

pns

≤
∑

p prime

1

p2s

(
∞∑
n=0

1

pns

)
≤

∑
p prime

1

p2s

(
1

1− p−s

)
≤ 2

∑
p prime

1

p2s
≤ 2ζ(2s)

since
(

1
1−p−s

)
≤ 2 for all primes and s ≥ 1.

Consider the following for p prime:

1 +
(p

5

)
+ χ(p) + χ̄(p) =


1 p ≡ 0 (mod 5)
4 p ≡ 1 (mod 5)
0 p ≡ 2 (mod 5)
0 p ≡ 3 (mod 5)
0 p ≡ 4 (mod 5).

Thus, ∑
p prime

1 +
(
p
5

)
+ χ(p) + χ̄(p)

ps
=

1

5s
+ 4

∑
p≡1(5)

1

ps
.
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It follows that ∣∣∣∣∣∣log ζ(s) + logL(s) + logL(χ, s) + logL(χ̄, s)− 4
∑

p≡1 (mod 5)

1

ps

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

p prime

1 +
(
p
5

)
+ χ(p) + χ̄(p)

ps
− 4

∑
p≡1(5)

1

ps

∣∣∣∣∣∣+ 8ζ(2s)

=
1

5s
+ 8ζ(2s).

Therefore, as we take the limit as s → 1, we get that the absolute value of the sum is 1/5 + 8ζ(2). From previous
work in this assignment, the limit as s ∈ R approaches 1 from the right is finite for logL(ρ, s) where ρ is χ, χ̄,

( ·
5

)
;

however, we know that the limit as s→ 1 of ζ(s) goes to infinity and so does its logarithm. Since the absolute value
of the above sum converges, it must be that

∑
p≡1(5)

1
ps

diverges and there infinitely many primes in this equivalence

class. The proof is essentially the same for the other equivalence classes modulo 5. �

Question 6.

Solution. The main observation here should be that the second series converges to π faster than the first one does. �

Question 7.

Solution. The continued fraction expansion of
√

7 is [2; 1, 1, 1, 4]. The first few convergents pn/qn are

2, 3,
5

2
,

8

3
,

37

14
,

45

17

and in order to find a minimal (with respect to the size of x) solution to the Pell equation, we can successively test
(pn, qn) for n = 1, 2, 3, . . . until we get a solution. The first such solution is (8, 3). �

Question 8.

Solution. Fix m ∈ Z and write ord(α−m) = b. Then α ≡ m (mod pb) and

f(m) ≡ f(α) ≡ 0 (mod pb)

so ord(α−m) ≤ ord(f(m)).
Let a denote the coefficient of f that is largest in abolute value. Then for any m ∈ Z,

log|f(m)| ≤ log|akmk| = log |a|k + k log|m|.
Therefore,

ord(α−m) ≤ ord(f(m)) ≤ log(|f(m)|)
log(p)

<
log (|a|k) + k log(|m|)

log(p)
=

log (|a|k)

log(p)
+ k

log(|m|)
log(p)

and since a, k, p do not depend on m, we are done. �

Question 9.

Solution. Let α =
∑∞
m=0 p

m! ∈ Zp and let αn =
∑n
m=0 p

m!, and suppose that α satisfies an irreducible polynomial
f(x) ∈ Z[x] where k = deg(f) ≥ 2. Observe that for all n ∈ N we have that

ord(α− αn) = ord(

∞∑
m=n+1

pm!) ≥ (n+ 1)!.

By Question 8, there exists a constant C such that

(n+ 1)! < C + k
log(|αn|)

log(p)
≤ C + k

logn+ n! log(p)

log(p)
.

In other words,

n ≤ C

n!
+

k logn

n! log(p)
+ k − 1

for all n. However, for n >> 0 the LHS is bigger than the RHS. Therefore, α cannot satisfy any such f(x) ∈ Z[x]. �


