
ASSIGNMENT 4: SOLUTIONS

Question 1. Note: The question incorrectly states that there is a unique log4 7 ∈ Z
/
φ(354)Z.

Solution. Observe that 2 is a primitive root modulo 354, so there exists a unique solution v ∈ Z
/
φ(354)Z to the

equation

2v ≡ 7 (mod 354).

If we can show that v is even, setting t = v/2 gives a desired solution. Now v is even since reducing mod 3 gives
2v ≡ 1 (mod 3), and hence v ≡ 0 (mod 2). Therefore a solution exists.

In order to find such a t, we can use truncated power series expansions of 3-adic logarithms. If we were looking for
a solution for t in Z3, then

t =
log 7

log 4
=

log 1 + 6

log 1 + 3
=

∑
n(−1)n+16n/n∑
n(−1)n+13n/n

=
−a
−b .

But for now we only care about a solution to the equation modulo 353, so we can truncate the power series expansions
of a and b for some n large enough, giving

a =

54∑
n=1

(−6)n/n = 286588286837112816262268090741609169298734926717620398084504/17282129495479569175

b =

54∑
n=1

(−3)n/n = 4890139817193305266204808812769935863999526161/6083309582408808349600.

It follows that

t ≡ ab−1 ≡ 11914814460539851947621494 (mod 353).

Since we are looking for solutions modulo φ(354) = 2 · 353, we use the fact that t ≡ 0, 1 (mod 2) (using solutions to
the equation reduced modulo 3: 4t ≡ 7 (mod 3)) to lift to the desired solution using CRT.

The solutions are then

t ≡ 11914814460539851947621494, 31298060128219871844418217 (mod 2 · 353).

�

Question 2.

Solution. Let m > n be positive integers.

am − an = ap
m

− ap
n

= ap
n
(
ap

n(pm−n−1) − 1)
)
.

But p− 1 | pm−n − 1 (we took m > n) so by Fermat’s little theorem, ap
m−n−1 ≡ 1 (mod p) and hence

ap
n(pm−n−1) ≡ 1 (mod pn+1).

It follows immediately that am − an ≡ 0 (mod pn+1), and setting n = 0, we get that am − a ≡ 0 (mod p) for all
m > 0.

Let ε > 0, and take N such that p−N < ε. Consider am − an for m > n > N .

|am − an|p < p−N < ε,

thus confirming that our sequence is Cauchy.
To show that (an) converges to a (p− 1)th root of unity µ in Zp, notice that ap−1

n = (ap−1)p
n

≡ 1 (mod pn) since
ap−1 ≡ 1 (mod p). Therefore,

|ap−1
n − 1| < p−n

and (an)p−1 converges to 1. Since am − a ≡ 0 (mod p) for all m > 0, µ ≡ a (mod p). �

Question 3.

Solution. This is clear from counting arguments. Question 2 gives us p− 1 distinct roots of the polynomial xp−1 − 1
in Zp, each one corresponding to a choice of an equivalence class modulo p. Since there are at most p − 1 roots of
xp−1−1, all the roots can be obtained in this way and the roots can be distinguished by their equivalence classes. �

Question 4.
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Solution. We show that such an x exists by showing there exists a sequence (a1, a2, . . .) where ai ∈
{

0, . . . , pi − 1
}

,
such that

ai ≡ aj (mod pi) ∀i ≤ j
and

ai 6≡ xi (mod pi) ∀i.
First, choose any a1 ∈ {0, . . . , p− 1} such that a1 6≡ x1 (mod p). Now, suppose that we have a sequence (a1, . . . , an)

satisfying the desired property. Then there are φ(pn+1)
pn

+ 1 = p choices for an an+1 ∈
{

0, . . . , pn+1 − 1
}

such that

an ≡ an+1 (mod pn). Since p ≥ 2 for all p prime, we can choose an+1 such that an ≡ an+1 (mod pn) but an+1 6≡ xn+1

(mod pn+1). Thus, setting x = (a1, a2, . . .) gives the desired x.
Now, suppose that Zp is countable. Then there exists a sequence of elements in Zp enumerating the elements of

Zp. However, by our above construction we can find an element of Zp not in our sequence. Therefore Zp and hence
Qp are uncountable. �

Question 5.

Solution. Consider the group homomorphism

φ : Z
/
pZ× → Z

/
pZ×

a 7→ at.

Since 0 always has a unique tth root (itself), we see that every element of Z
/
pZ has a unique tth root if and only if φ

is an isomorphism if and only if φ is injective (since Z
/
pZ× is finite).

But ker(φ) =
{
a
∣∣ at ≡ 1 (mod p)

}
and by Fermat’s little theorem (and the existence of primitive roots), if (t, p−

1) = 1, |ker(φ)| = 1. On the other hand, if (t, p − 1) = c 6= 1, then g
p−1
c is a non-trivial element of ker(φ) for any

choice of g a primitive root modulo p. Thus φ is an isomorphism if and only if (t, p− 1) = 1. �

Question 6.

Solution. Not much to say here. By construction, 1+(p−1)e
t

∈ N, and (p − 1)e ≡ 1 (mod φ(p) = p − 1), so bt ≡ a

(mod p). Thus we can find a tth root of a:

• Run the Euclidean algorithm to obtain v such that e(p− 1) + vt = 1.
• Return av (mod p).

To see the output of this algorithm is correct, note that vt = 1− (p− 1)e, so v = 1−(p−1)e
t

. �

Question 7.

Solution. We have that 503 is prime, 777 = 3 · 7 · 37 and 501 = 3 · 167. Immediately we see that
(
501
777

)
= 0 as

(501, 777) = 3 6= 1. In the other case we get (via quadratic reciprocity):(
503

777

)
=

(
777

503

)
=

(
274

503

)
=

(
2

503

)(
137

503

)
= (1)

(
503

137

)
=

(
92

137

)
=

(
22

137

)(
23

137

)
=

(
137

23

)
=

(
22

23

)
=

(
−1

23

)
= (−1)

23−1
2 = −1

�

Question 8. Note: This wasn’t marked.

Solution. The proof of Hensel’s lemma still works if we replace polynomials with power series. We now apply Hensel’s
lemma to the power series in quesion. To find a solution we observe that 1 is a root mod 3, as

f(x) = x log x− 3 =

∞∑
j=1

(−1)j+1 x(x− 1)j

j
− 3

and hence

f(1) = 0− 3 ≡ 0 (mod 3).

Furthermore,

f ′(x) = 2x− 1 +

∞∑
j=2

(−1)j+1 (x− 1)j−1((j + 1)x− 1)

j
= 1 + log x

so

f ′(1) = 1 6= 0 (mod 3).
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This means that we can obtain a root modulo 340 by finding a 3-adic root with precision O(340). We now apply
Hensel’s lemma (Newton iteration) using a0 = 1 and

an+1 = an −
f(an)

f ′(an)
= an −

an log an − 3

1 + log an
.

Since there are nice built in functions for the p-adic logarithm, all it takes is a little for loop to obtain a root for f(x)
of our desired precision:

1 + 3 + 2 · 33 + 34 + 2 · 36 + 2 · 37 + 2 · 38 + 2 · 39 + 2 · 310//

+ 2 · 311 + 2 · 312 + 2 · 314 + 2 · 316 + 317 + 2 · 319 + 320//

+ 321 + 322 + 324 + 2 · 326 + 2 · 327 + 328 + 2 · 329 + 2 · 330//

+ 332 + 333 + 334 + 335 + 336 + 337 + 338 + 2 · 339 +O(340)

(this result can be obtained after only the 5th iteration, so it is a very small for loop). Thus, the desired root is
10131053957499665308 (mod 340). �


