
ASSIGNMENT 3: SOLUTIONS

Question 1.

Solution. • Since 493 = 17 · 29, we find solutions mod 17 and mod 29 respectively and then build back up to
solutions mod 493 using CRT giving x ⌘ 157, 191, 302, 336 (mod 493).

• Reduce mod 13, find solutions and apply Hensel’s Lemma. We get x ⌘ 1, 3, 9 (mod 13). Check to see if we
can apply Hensel’s Lemma:

– f

0(1) = 3(1)2 ⌘ 3 (mod 13)
– f

0(3) = 3(3)2 ⌘ 1 (mod 13)
– f

0(9) = 3(9)2 ⌘ 9 (mod 13)
Repeatedly applying Hensel’s Lemma then gives x ⌘ 1, 150432, 220860 (mod 135).

⇤

Question 2.

Solution. This can be done by (clever or not so clever) process of elimination. For example, in the first case one
obtains a primitive root r, say 3, by trial and error, and then uses it to find the rest of the primitive roots as�
r

t
��
t - �(17) = 16

. A similar process works for n = 27.

• modulo 17:
3, 5, 6, 7, 10, 11, 12, 14

giving �(�(17)) = 8 primitive roots.
• modulo 27:

2, 5, 11, 14, 20, 23

giving �(�(27)) = 6 primitive roots.

⇤

Question 3.

Solution. From the previous question, g = 3 and the discrete log of 12 to the base 3 is 13 (mod 16). ⇤

Question 4. This question was not for marks as it wasn’t really a question.

Solution. Just plug it in and see what happens. ⇤

Question 5.

Solution. The problem is that a

Fn for n � 5 gets too big and we get an error. There are a couple reasonable ways
to fix this: use binary exponentiation, or simply replace a in the Fermat test with Mod(a, N).

To show that Fn is composite for 5 n 12, choose some base a for which ft(a, Fn) is non-zero. For example,
a = 3 will work and gives

F5 :497143883

F6 :7810004532687335890

F7 :142534992508324304154873225278075561694

F8 :107 . . . 102

F9 :133 . . . 639

F10 :808 . . . 986

F11 :259 . . . 161

F12 :847 . . . 043.

⇤

Question 6.

Solution. Say, using your code from Exercise 5, you decided to check the result of the the Fermat test for 0 n 50
with base 2. You notice that you get 0 every time. Based on this evidence you should conjecture that Fn is a Fermat
(pseudo)prime to the base 2 for all n. Then try and prove (or disprove) it. It turns out that it is a straightforward
exercise to show that Fn is a Fermat (pseudo)prime to the base 2 for all n.

One way to do this is to show that 22
m

⌘ 1 (mod Fn) for n < m. Then setting m = 2n and multiplying by 2 gives
the desired result. ⇤

1

2 ASSIGNMENT 3: SOLUTIONS

Question 7.

Solution. ()): Let p

k || n, (a, n) = 1. Then by assumption a

n�1 ⌘ 1 (mod n), and so a

n�1 ⌘ 1 (mod p)k. By
choosing a to be a primitive root mod p

k, it follows that ordp(a) = p

k�1(p� 1) | n� 1. Since p

k | n, pk�1 | n� 1 only
if k = 1. This proves that n has the desired factorization.

((): Let (a, n) = 1. For each i such that pi | n, (a, pi) = 1 so ordpi(a) | pi � 1 | n � 1 and a

n�1 ⌘ 1 mod pi.
Applying the CRT gives an�1 ⌘ 1 (mod n). ⇤

Question 8.

Solution. For m > n > 0, we have the that p-adic distance betwen am and an is

|am � an|p = |pn+1(1 + . . .+ p

m�n�1)| = p

�(n+1)
.

Thus, for any " > 0, we can choose N large enough such that for m > n > N , p�(n+1)
< ". This shows that (an) is a

Cauchy sequence and hence converges in Qp.
Let a = limn!1 an. Then

a(1� p) = (1 + p+ . . .)� (p+ p

2 + . . .) = 1

and a = 1
1�p 2 Qp.

Similarly, one shows that

|bm � bn|p p

�(n+1)

and so (bn) is a Cauchy sequence. Write b = limn!1 bn. Then show that

b� 1 = (a� 1)(1 + p+ p

2 + . . .) = a(a� 1)

and b = 1�p+p2

(1�p)2
. ⇤

Question 9. There were surprisingly few attempts to answer this question. Don’t be intimidated by large

numbers! This should have been pretty easy to do, given that it sounds like you covered it in class...

Solution. The first observation to make is that since we have �(n), we can break RSA without having to factor n.
(You should think about why this is).

Additionally, if we wanted to factor n, the knowledge of �(n) will help us. The idea is as follows. We can use our
knowledge of �(n) to try and find a square root, call it t, of 1 (mod n). Then we have that (t+1)(t� 1) ⌘ t

2 � 1 ⌘ 0
(mod n), so both t + 1 and t � 1 divide n, and we can recover them via gcd calculations (as these gcd calculations
are essentially an application of the Euclidean algorithm which is polynomial time in n, your computer will have no
problem handling these large numbers).

Note that if we recover a trivial square root of 1, (i.e. t ⌘ ±1 (mod n)), then we unfortunately recover the trivial
factorization of n by this method.

As alluded to at the beginning, this method is based on the fact that we can use our knowledge of �(n) to find
square roots of 1. How do we do this? First, observe that �(n) is necessarily even—say 2m || �(n) for some m � 1.
Pick a base, a such that (a, n) = 1. Then consider

✓
a

�(n)
2m

◆2

,

✓
a

�(n)
2m

◆22

, . . . ,

✓
a

�(n)
2m

◆2m

= a

�(n)

(of course, all (mod n)). Note that you can compute this by repeatedly squaring the first term. Do this until
⇣
a

�(n)
2m

⌘2i

⌘ 1 (mod n) (this process will terminate since a

�(n) ⌘ 1 (mod n)). Necessarily t = a

�(n)

2m�i+1 is a square

root of 1 (mod n). Taking gcd (t+ 1, n) and gcd (t� 1, n) will now return a factorization of n.
Assembled correctly, this method will give us a probabilistic factoring algorithm. The probabilistic part depends

on the choice of base that we used, as some bases will recover a trivial factorization of n.
Let’s finally apply this to our problem. In this case, note that 232 || �(n). Pick a base, say a = 2 (easy choice since

n is odd). We find that t = a

�(n)

232 and the above process returns a non-trivial factorization of n:

p = gcd (t+ 1, n) =378348910233465647859184421334615532543749747185321634086219

qr = gcd (t� 1, n) =699260791827643107665663621555062856613151179006249767805718/

633304686855722539189983120543414537911988576189942060298485/

0896721574517082063008260327.

Here we’re just guessing for the time being that p is one of desired primes since it’s the smaller one. We have two
obvious choices now. We can simply try to factor n again using a di↵erent base and hope that we get a di↵erent

ASSIGNMENT 3: SOLUTIONS 3

factorization, or apply the above procedure to n = qr. Choosing the former, we repeat the above process with a = 5.

Here, we get t = a

�(n)

230 and

q = gcd (t+ 1, n) =18532395500947174450709383384936679868383424444311405679463280782405796233163977

pr = gcd (t� 1, n) =142757884993042259059608161461508419947368566792001810015130749079026773/

8267155305365249142744071239550355384937569299105540329669.

Since we know that n = pqr it follows that

p =378348910233465647859184421334615532543749747185321634086219

q =18532395500947174450709383384936679868383424444311405679463280782405796233163977

r =3773180816219384606784189538899553110499442295782576702222280384917551.

⇤

Question 10. Note: This question wasn’t marked. For those that did do it, I observed that many of you

implicitly used unproven (and often wrong) claims about the |an|5 (aka. divisibility properties of an by 5).

Solution. Important observation: if an is in lowest terms and 5 divides its numerator, then a

2
n+1 ⌘ 1 (mod 5). This

is used in the proof that 5n divides the numerator of a2
n + 1 when it is in lowest terms, and once we establish that

5n | a2
n + 1, it provides a lower bound on the 5-adic size of an, namely |an|5 � 1. (As far as I observed no one did

this!)
A straightforward induction proof (using the preceeding observation) shows that 5n | bn = a

2
n+1. It is now easy to

show that the sequence (bn) and converges to 0. It follows that if we can show that (an) is Cauchy, then an converges
to the square-root of -1 and we are done.

Now show that

|an+1 � an| =
����
1 + a

2
n

an

���� =
|bn|
|an|

 |bn|

using |an| � 1. For m > n,

am � an = am � am�1 + am�1 � . . .� an+1 + an+1 � an

and |am � an| max {|ai+1 � ai| | i = n, . . . ,m� 1} max {|bi| | i = n . . . ,m� 1} |bn|. Since we have shown
(hypothetically) that |bn| converges to 0, (an) is Cauchy. ⇤

