189-235A: Algebra 1 Midterm Exam

Wednesday, October 25

Each of the four questions below is worth 25 points. No calculators or outside materials are allowed during the exam.

1. Let i be the complex number satisfying $i^{2}=-1$. Compute $(1+i)^{100}$.
2. Let a and b be non-zero integers, and let L be the set of all strictly positive linear combinations of a and b :

$$
L=\{r a+s b, \text { with } r, s \in \mathbf{Z} \text { and } r a+s b>0\} .
$$

(a) Show that the smallest element of L divides a and b.
(b) Show that this smallest element is the gcd of a and b.
3. Compute the reduced residue modulo N (i.e., the unique integer $0 \leq x \leq$ $N-1$ with $x \equiv a(\bmod N))$ of the integer

$$
a=7^{13198459348751983475867345892342398209234983465234531}
$$

for the following values of N.
(a) $N=11$;
(b) $N=5$;
(c) $N=55$.
4. Solve the following congruence equations (making sure you list all the distinct solutions in $\mathbf{Z} / N \mathbf{Z}$).
(a) $5 x=2 \quad(\bmod 11)$.
(b) $10 x=4 \quad(\bmod 22)$.
(c) $10 x=3 \quad(\bmod 22)$.

