Math 726: L-functions and modular forms

Instructor: Henri Darmon

Fall 2011

Week 3. lecture 8: More on Modular Forms

Notes written by: Luiz Kazuo Takei

Recall

We are studying modular forms with respect to a congruence group I', i.e., a subgroup

[' < SLy(Z) such that I' D I'(N) for some integer N.
Recall our notations:

modular forms M;(I)

U

cusp forms  Si(I).

More on Modular Forms

CLAIM 1. (to be justified) Cusp forms (of an appropriate type) play the same role for 2-

dimensional representations of Gg as do Dirichlet characters for 1-dimensional representa-

tions of Gg.

From now on, we assume
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This implies that, for any f € Si(T),

f(Z) — iane%rmz'

n=1

We can then define the L-function attached to f by

L(f,s) = i apn=°.
n=1

QUESTION 1. Where does this sum converge?

In order to answer this question, we will introduce some basic results about Mobius

transformations and modular forms. In what follows, we assume f € Si(I).

LEMMA 1. y (2£) = w2 for all (25) € SLy(R).
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COROLLARY 1. y*f(2)f(2) is invariant under T'. Hence, so is y*/?| f(2)|.

LEMMA 2. There ezists a constant Cy (depending on f) such that
|f(z +iy)| < Cry™?

forall z =241y € H.

Proof. Since f is a cusp form, the values of y*/2|f(2)| are uniformly bounded in a neighbor-

hood of all the cusps. Hence, there exists C'y such that
Y2l ()] < C.

PROPOSITION 1. There exists a constant C’} such that

a,| < C'.n*2.
|an| < C%
Proof. Let z = x + iy € H. Then
f( Z) _ Z a, p2min(ztiy) _ Z a, o~ 2mny 2mina
n=1 n=1

By Fourier inversion,

1
a,e” T = / fz +iy)e ™ dy,
0
So .
(e < / @+ iy)ldw < Cpy2.
0

And this implies that
|an| < ny_k/2€27my.

Notice that for each y > 0 we have a bound for |a,|. Choosing y =
function on the right hand side and we obtain

la,| < C’}nk/2,

where C = CypkF/2(4m)k/2eM/2.

4L will minimize the
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COROLLARY 2. L(f,s) converges absolutely for Re(s) > 1+ k/2.

DEFINITION 1. The Mellin transform of f is

— [ roe

PROPOSITION 2. M(f)(s) = (2m)~*T'(s)L(f,s).

Proof. Just like in the proof of proposition 1 in lectures 5 and 6, we have that

/ f Zt / Z n€—27rntts Z/ —27rntts
Applying the change of variables u = 27nt yields
d
Z / ane”"u’(2mn)” 20
u

Finally, we can rearrange terms and obtain

M(f)(s) = (2m)~* (Z ann_8> /0 N e—uus%“.

REMARK 1. If (' %) €T, then M(T") = {0} when k is odd.

THEOREM 2. Assume f € Si(SLa(Z)). Then L(f,s) extends to an analytic function on C
and, if

A(f,s) = 2m)"°T(s)L(f, s),
then
A(f,s) = (=D)2A(f, k= s).

Mgos) = b)) = [ ftine /f e [ e

Applying the change of variables t < 1 / t for the first integral gives us

©
/1 Fl/me

F/t) = f(=1/it) = (it)" f(it),
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Proof.

Now, since



the first integral becomes

/fzttks = ’f/Q/ fzttks
A(f,s) = W/ (it t’” /fzt

which implies that A(f, s) has an analytic continuation to C. Moreover, we can also readily
see that

Hence

A(f? S) - (_1)k/2A(f7 k — S)‘

REMARK 2. If f € Sp(SL2(Z)) then the sign in the functional equation for L(f,s) is

1, if k=0 (mod 4)
-1, ifk=2 (mod 4).

In particular, if £k =2 (mod 4), then L(f,k/2) = 0.
QUESTION 2. Where are the zeros of L(f,s) on Re(s) >1+k/2?

QUESTIONS 3. (i) The proof of analytic continuation works well when (9 ') € T'. What
about other T' (e.g. T'o(N), T'1(N))?

(1) When does L(f,s) admit an Euler product factorization? And if so, what does it look
like?

The key tool for these questions is

Hecke operators |




