
Math 726: L-functions and modular forms Fall 2011

Week 3, lecture 8: More on Modular Forms

Instructor: Henri Darmon Notes written by: Luiz Kazuo Takei

Recall

We are studying modular forms with respect to a congruence group Γ, i.e., a subgroup

Γ ≤ SL2(Z) such that Γ ⊇ Γ(N) for some integer N .

Recall our notations:
modular forms Mk(Γ)

∪

cusp forms Sk(Γ).

More on Modular Forms

Claim 1. (to be justified) Cusp forms (of an appropriate type) play the same role for 2-

dimensional representations of GQ as do Dirichlet characters for 1-dimensional representa-

tions of GQ.

From now on, we assume
(

1 1

0 1

)

∈ Γ.

This implies that, for any f ∈ Sk(Γ),

f(z) =

∞
∑

n=1

ane2πinz.

We can then define the L-function attached to f by

L(f, s) =
∞
∑

n=1

ann−s.

Question 1. Where does this sum converge?

In order to answer this question, we will introduce some basic results about Möbius

transformations and modular forms. In what follows, we assume f ∈ Sk(Γ).

Lemma 1. y
(

az+b
cz+d

)

= y(z)
(cz+d)(cz+d)

for all ( a b
c d ) ∈ SL2(R).
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Proof.

y

(

az + b

cz + d

)

=
1

2i

[

az + b

cz + d
−

(

az + b

cz + d

)

]

=
1

2i

[

(ad − bc)(z − z)

(cz + d)(cz + d)

]

=
y(z)

(cz + d)(cz + d)
.

Corollary 1. ykf(z)f(z) is invariant under Γ. Hence, so is yk/2|f(z)|.

Lemma 2. There exists a constant Cf (depending on f) such that

|f(x + iy)| < Cfy
−k/2

for all z = x + iy ∈ H.

Proof. Since f is a cusp form, the values of yk/2|f(z)| are uniformly bounded in a neighbor-

hood of all the cusps. Hence, there exists Cf such that

yk/2|f(z)| < Cf .

Proposition 1. There exists a constant C ′

f such that

|an| < C ′

fn
k/2.

Proof. Let z = x + iy ∈ H. Then

f(z) =
∞
∑

n=1

ane2πin(x+iy) =
∞
∑

n=1

ane−2πnye2πinx.

By Fourier inversion,

ane−2πny =

∫ 1

0

f(x + iy)e−2πinxdx.

So

|an|e
−2πny ≤

∫ 1

0

|f(x + iy)|dx ≤ Cfy
−k/2.

And this implies that

|an| ≤ Cfy
−k/2e2πny.

Notice that for each y > 0 we have a bound for |an|. Choosing y = k
4πn

will minimize the

function on the right hand side and we obtain

|an| ≤ C ′

fn
k/2,

where C ′

f = Cfk
−k/2(4π)k/2ek/2.
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Corollary 2. L(f, s) converges absolutely for Re(s) > 1 + k/2.

Definition 1. The Mellin transform of f is

M(f)(s) =

∫

∞

0

f(it)ts
dt

t
.

Proposition 2. M(f)(s) = (2π)−sΓ(s)L(f, s).

Proof. Just like in the proof of proposition 1 in lectures 5 and 6, we have that

M(f)(s) =

∫

∞

0

f(it)ts
dt

t
=

∫

∞

0

∞
∑

n=1

ane−2πntts
dt

t
=

∞
∑

n=1

∫

∞

0

ane−2πntts
dt

t
.

Applying the change of variables u = 2πnt yields

M(f)(s) =

∞
∑

n=1

∫

∞

0

ane−uus(2πn)−s du

u
.

Finally, we can rearrange terms and obtain

M(f)(s) = (2π)−s

(

∞
∑

n=1

ann−s

)

∫

∞

0

e−uusdu

u
.

Remark 1. If
(

−1 0
0 −1

)

∈ Γ, then Mk(Γ) = {0} when k is odd.

Theorem 2. Assume f ∈ Sk(SL2(Z)). Then L(f, s) extends to an analytic function on C

and, if

Λ(f, s) := (2π)−sΓ(s)L(f, s),

then

Λ(f, s) = (−1)k/2Λ(f, k − s).

Proof.

Λ(f, s) = M(f)(s) =

∫

∞

0

f(it)ts
dt

t
=

∫ 1

0

f(it)ts
dt

t
+

∫

∞

1

f(it)ts
dt

t
.

Applying the change of variables t ↔ 1/t for the first integral gives us
∫

∞

1

f(i/t)t−sdt

t
.

Now, since

f(i/t) = f(−1/it) = (it)kf(it),
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the first integral becomes

ik
∫

∞

1

f(it)tk−sdt

t
= (−1)k/2

∫

∞

1

f(it)tk−s dt

t
.

Hence

Λ(f, s) = (−1)k/2

∫

∞

1

f(it)tk−sdt

t
+

∫

∞

1

f(it)ts
dt

t
,

which implies that Λ(f, s) has an analytic continuation to C. Moreover, we can also readily

see that

Λ(f, s) = (−1)k/2Λ(f, k − s).

Remark 2. If f ∈ Sk(SL2(Z)) then the sign in the functional equation for L(f, s) is

{

1, if k ≡ 0 (mod 4)

−1, if k ≡ 2 (mod 4).

In particular, if k ≡ 2 (mod 4), then L(f, k/2) = 0.

Question 2. Where are the zeros of L(f, s) on Re(s) > 1 + k/2?

Questions 3. (i) The proof of analytic continuation works well when ( 0 −1
1 0 ) ∈ Γ. What

about other Γ (e.g. Γ0(N), Γ1(N))?

(ii) When does L(f, s) admit an Euler product factorization? And if so, what does it look

like?

The key tool for these questions is

Hecke operators .
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