We previously proved the following statements about modular forms and Hecke operators in the context of $\Gamma = SL_2(\mathbb{Z})$

1. $M(\Gamma) = \bigoplus_k M_k(\Gamma) = \mathbb{C}[E_4, E_6]$ which implies in particular that each M_k is finite dimensional and:

$$M(\Gamma, \mathbb{Q}) = \bigoplus_k M_k(\Gamma, \mathbb{Q}) = \mathbb{Q}[E_4, E_6]$$

where $M_k(\Gamma, \mathbb{Q})$ is the space of modular forms with rational Fourier coefficients.

2. $M_k(\Gamma)$ has extra structures:
 - Hermitian inner product
 - Hecke Operators $(T_n)_{n \geq 1}$

3.

$$M_k(\Gamma) = \bigoplus_{\phi \in \text{Hom}_{\text{Alg}}(T, \mathbb{C})} M_k(\Gamma)^\phi$$

where $T = \mathbb{C}[T_1, T_2, ...] \subset \text{End}_\mathbb{C}(M_k(\Gamma))$ and $\text{dim}_\mathbb{C}(M_k(\Gamma))^\phi = 1$

$$= \bigoplus_{\phi} \mathbb{C}f_\phi$$

where f_ϕ is the normalized eigenform attached to ϕ, completely characterized by:
- $T_n(f_\phi) = \phi(T_n)f_\phi$
- $a_1(f_\phi) = 1$

4. If $f \in S_k(\Gamma)$, $f = \sum_{n=1}^{\infty} a_n q^n$, $L(f, s) = \sum_{n=1}^{\infty} a_n n^{-s}$ then $L(f, s)$ has a functional equation relating s and $k - s$.
 Moreover, if f is a normalized eigenform then:

$$L(f, s) = \prod_p (1 - a_p p^{-s} + p^{k-1-2s})^{-1}$$

In particular, $L(f, s) \neq 0$ when $\Re(s) > 1 + k/2$
What about other congruence groups?
We will discuss the four statements above in the case of $\Gamma = \Gamma_0(N)$ or $\Gamma_1(N)$

1. We still have $M(\Gamma) = \bigoplus_k M_k(\Gamma)$ and the $M_k(\Gamma)$’s are still finite dimensional but they need not be generated by Eisenstein Series.

In particular, this is still the case that

$$M(\Gamma, \mathbb{Q}) = \bigoplus_k M_k(\Gamma, \mathbb{Q})$$

and

$$M_k(\Gamma) = M_k(\Gamma, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}$$

One can produce elements of $M_k(\Gamma)$ using the following tricks:

- Any $f \in M_k(SL_2(\mathbb{Z}))$ belongs to $M_k(\Gamma)$
- If $f \in M_k(SL_2(\mathbb{Z}))$ then $f(dz) \in M_k(\Gamma_0(d))$ (Exercise)
- $E_l(d_1, z)E_m(d_2, z) \in M_{l+m}(\Gamma_0(lcm(d_1, d_2)))$
- Hecke translates

In fact, one can prove that if $\Gamma = \Gamma_0(N)$ and k is large enough, then these basic tricks are enough to generate all of $M_k(\Gamma_0(N))$

2. $M_k(\Gamma)$ is still a Hilbert space with Hecke operators but we have to consider different cases:

- If n is prime to N,

$$T_nf(z) = n^{k-1} \sum_{\gamma \in \Gamma_1(N) \backslash \Gamma_0(N)} f|_{\gamma}(z)$$

where $M_n(N)$ are upper triangular unipotent matrices modulo N of determinant n and

$$T_nf(z) = n^{k-1} \sum_{\gamma \in \Gamma_0(N) \backslash \Gamma_0(N)} f|_{\gamma}(z)$$

where $M_n(N)$ are upper triangular matrices modulo N of determinant n

- If l is prime and $l \nmid N$,

$$T_lf(q) = \sum_{n=1}^{\infty} a_n lq^n + l^{k-1} \sum_{n=1}^{\infty} a_n < l > fql$$

where $f \in M_k(\Gamma_0(N))$ and $< l >$ is the Diamond Operator defined below. These are called **good Hecke Operators**.
If \(l | N \), we still define some kind of Hecke Operators:

\[T_l f(q) = \sum_{n=1}^{\infty} a_{nl} q^n \]

These are called **bad Hecke Operators**.

Diamond Operators < \(a \) > for \(a \in (\mathbb{Z}/N\mathbb{Z})^* \):

\[< a > f(z) := f|_k \gamma_a(z) \]

where \(\gamma_a \in \Gamma_0(N) \) and \(\gamma_a \equiv \begin{pmatrix} a & * \\ 0 & a^{-1} \end{pmatrix} \mod(N) \)

Remark 1. \(T_l \) is not self adjoint in general

\[T_l^* = < l > T_l \ (\text{if} \ l \nmid N) \]

Remark 2. The bad Hecke operators \(T_l \) do not commute with their adjoints.

Let \(\mathbb{T} = \mathbb{C}(T_l, < a >) \) where \(l \nmid N \) and \((a, N) = 1 \).

Then \(\mathbb{T} \subset \text{End}_{\mathbb{C}}(M_k(\Gamma)) \) and \(\mathbb{T} \) is an algebra of commuting operators. We have:

\[M_k(\Gamma) = \bigoplus_{\phi \in \text{Hom}_{\text{Alg}}(\mathbb{T}, \mathbb{C})} M_k(\Gamma)^{\phi} \]

but \(M_k(\Gamma)^{\phi} \) is not necessary 1-dimensional.

Note that if \(f_1, f_2 \in M_k(\Gamma)^{\phi} \) are both normalized then

\[\phi(T_n) = a_n(f_1) = a_n(f_2) \quad (\forall(n, N) = 1) \]

Example 1. Construction of 2 such functions:

Let \(f_1 \in S_k(\Gamma_1(M)) \) be normalized, with \(M|N, M \neq N \) and define:

\[f_2(z) = f_1(z) + \lambda f_1(dz) = \sum_{n=1}^{\infty} a_n q^n + \lambda \sum_{n=1}^{\infty} a_n q^{nd} \]

where \(d|\frac{M}{N} \)

This example motivates the following definition:
Definition 2. A modular form in $M_k(\Gamma_1(N))$ which is a linear combination of forms of type

$$g(dz)$$

where $g \in M_k(\Gamma_1(M))$ with $M|N$, $M \neq N$ and $d \frac{M}{N}$ is called an **old form**.

Considering the space generated by old forms, we have:

Definition 3. $S_k(\Gamma_1(N))^{old} = \text{Space of old forms}$

$S_k(\Gamma_1(N))^{new} = (S_k(\Gamma_1(N))^{old})^\perp = \text{Space of new forms}$

where the orthogonality is relative to the Petersson inner product.

Theorem 4. (Atkin-Lehner)

The space $S_k(\Gamma_1(N))^{new}$ decomposes as:

$$S_k(\Gamma_1(N))^{new} = \bigoplus_{\phi \in \text{Hom}_{\text{Alg}}(\mathbb{T}_{\text{new}}, \mathbb{C})} S_k(\Gamma_1(N))^\phi$$

where $\text{dim}_{\mathbb{C}} S_k(\Gamma_1(N))^\phi = 1$ and $\mathbb{T}_{\text{new}} = \mathbb{T}|_{S_k(\Gamma_1(N))^{new}}$

Definition 5. A normalized eigenform $f \in S_k(\Gamma_1(N))^{new}$ is also called a **new form** of weight k and level N

It remains to discuss $L(f, s) = \sum_{n=1}^{\infty} a_n n^{-s}$ in this context.

Can we find a functional equation?

We note that there is an extra symmetry on $S_k(\Gamma_1(N))$:

Fricke or Atkin–Lehner involution: $w_N \leftrightarrow \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$

Fact: w_N normalizes $\Gamma_0(N)$ and $\Gamma_1(N)$:

$$w_N \begin{pmatrix} a & b \\ Nc & d \end{pmatrix} w_N^{-1} = \begin{pmatrix} d & -c \\ -Nb & a \end{pmatrix}$$

Remark 3. w_N does not commute in general with the action of \mathbb{T}:

$$w_N T_l =< l > T_l w_N \quad (\forall l \nmid N)$$

But if $\Gamma = \Gamma_0(N)$ then w_N does commute.

In particular, $w_N f = w f$ for $w \in \{\pm 1\}$
Theorem 6. Let \(f \in S_k(\Gamma_0(N)) \) and \(w_N f = w f \) with \(w \in \{ \pm 1 \} \) then:

\[
A(f, s) := (2\pi)^{-1} N_s^{1/2} \Gamma(s) L(f, s) \\
= (-1)^{k/2} w A(f, k - s)
\]

\textit{proof: Assignment 2} \(\Box \)