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Abstract

This paper presents a reformulation of Dirichlet’s theorem on Primes
in Arithmetic Progressions, which states that for a and b relatively prime,
the sequence {a+bx}∞x=1 contains infinitely many primes. It is possible to
reduce this well-known problem to a simply stated conjecture. Once as-
sumed, this conjecture allows for completion of the theorem while avoiding
most complex analysis. This much more elementary method would then
only involve dual groups and the complex character function, simple series
analysis and some linear algebra. I will state the conjecture and show how
the proof follows elegantly from it.

1 Introduction

Let Gb = (Z/bZ)∗ so that Gb refers to the invertible elements mod(b). Only
integers of the form a + bx where (a, b) = 1 have a representative congruency in
Gb. Therefore, it is clear that the cardinality of Gb is φ(b) (where φ(n) is the
Euler phi function).

A character on Gb is an element in the dual group of Gb. The dual group of
Gb is defined as

G∨b = { all homomorphisms χ : Gb → C− {0}}

This yields multiplicative functions s.t. χ(n ·m) = χ(n) · χ(m). Also notice
that this group includes the trivial character χ0 where χ(n) = 1 ∀n ∈ Gb

A Dirichlet character modulo b is a modified character function from the
positive integers to C such that, for all elements a ∈ Z s.t. (a, b) > 1, χ(a) = 0.
Other properties of dual groups will be discussed further on.

The next tool used is the powerful Euler Product. It is easy to prove the
following equality:

∏

primes p<x

1
1− 1

p

=
∑

n x-smooth

1
n

for some x ≥ 3 , x ∈ R
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Due to this equality and the multiplicativity of the Dirichlet character func-
tion, we get:

(∗)
∏
p<x

1

1− χ(p)
p

=
∑

n x-smooth

χ(n)
n

for all χ ∈ G∨b

This sum is true for all finite values of x, but since we desire to show that the
left-hand side converges for all p (with any non-trivial χ), it becomes necessary
to take some sort of limit. Since we don’t yet know if the right-hand side
converges for x → ∞ or even if a limit exists, we can consider the following
modification: ∑

n≤x

χ(n)
n

This sum can be shown to have a limit and converge conditionally. Note
that we cannot take any rearrangement of this sum and presume a preservation
of convergence.

In an attempt to compare this modified summation with the product in
equation (∗), we proceed to split the summation as so:

∏
p<x

1

1− χ(p)
p

−
∑

n≤x

χ(n)
n

=
∑

n x-smooth, n>x

χ(n)
n

As long as the series and product are bounded using x < +∞, this equality
is ensured. A method of achieving the desired result requires the following
conjecture on the summation of the Dirichlet L-function for s = 1 over the
x-smooth numbers greater than x (for all characters other than the trivial):

∑

n x-smooth, n>x

χ(n)
n

→ 0 as x → ∞

It is now plain to see that if the conjecture is true, and this difference gets
very small as x gets large, then we will obtain:

∏
p

1

1− χ(p)
p

=
∞∑

n=1

χ(n)
n

This result will be shown to complete the proof.

2 The Dual of Gb

Here we will show that the character functions form an orthonormal basis for
the space of functions from Gb to C.

Definition 2.1: G∨b is the set of all homomorphisms from the group Gb to
the complex plane under multiplication.
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These functions are intuitively easy to construct but difficult to generate
while working with non-cyclic groups.
Definition 2.2: Let χ be a homomorphism from Gb → C∗. The corresponding
Dirichlet character mod(b) is defined as the function χ′ : Z → C with the
properties that: for all elements a in Z such that (a, b) > 1, χ′(a) = 0 and for
all elements c in Z such that (c, b) = 1, χ′(c) = χ(c mod(b)).

These functions behave the same as the characters in the dual of Gb. Specif-
ically, it is easy to show that a Dirichlet character is also multiplicative.

Example 2.1: The two Mod(4) Dirichlet characters are the trivial χ0 and:

χ(n) =





0 n ≡ 0, 2 mod(4)
1 n ≡ 1
−1 n ≡ 3

Example 2.2: The six Mod(7) Dirichlet characters are:

χ1(n) =





0 n ≡ 0 mod(7)
1 n ≡ 1
e

2iπ
3 n ≡ 2

e
iπ
3 n ≡ 3

e
4iπ
3 n ≡ 4

e
5iπ
3 n ≡ 5

−1 n ≡ 6

χ2(n) =





0 n ≡ 0 mod(7)
1 n ≡ 1
e

4iπ
3 n ≡ 2

e
2iπ
3 n ≡ 3

e
2iπ
3 n ≡ 4

e
4iπ
3 n ≡ 5

−1 n ≡ 6

χ3(n) =





0 n ≡ 0 mod(7)
1 n ≡ 1
1 n ≡ 2
−1 n ≡ 3
1 n ≡ 4
−1 n ≡ 5
−1 n ≡ 6

χ4(n) =





0 n ≡ 0 mod(7)
1 n ≡ 1
e

2iπ
3 n ≡ 2

e
4iπ
3 n ≡ 3

e
4iπ
3 n ≡ 4

e
2iπ
3 n ≡ 5

−1 n ≡ 6

χ5(n) =





0 n ≡ 0 mod(7)
1 n ≡ 1
e

4iπ
3 n ≡ 2

e
5iπ
3 n ≡ 3

e
2iπ
3 n ≡ 4

e
iπ
3 n ≡ 5

−1 n ≡ 6

χ0(n) =





0 n ≡ 0 mod(7)
1 n ≡ 1
1 n ≡ 2
1 n ≡ 3
1 n ≡ 4
1 n ≡ 5
1 n ≡ 6

Note that there are as many character functions as there are elements in
the group Gb = (Z/bZ)∗ (I will prove that this is true in general). Also note
that G∨7 is cyclic, as is G7 itself. (As an explanation, please refer to Ireland and
Rosen [3] for details on the isomorphism between a group and its dual.) Thirdly,
what is referred to in this last example as χ3 is more commonly known as the
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Legendre symbol modulo 7.

Proposition 2.1: G∨b is a group under multiplication.
Proof:
Multiplication of characters is associative, and χ0 is the identity. To show clo-
sure and the existence of inverses, if χ1, χ2 ∈ G∨b , define χ1χ2 as the function
that takes a ∈ Gb to χ1(a) · χ2(a). Then, we can define the inverse ∀ χ ∈ G∨b
as χ−1(a) := [χ(a)]−1 ∈ C∗. This χ−1 is a homomorphism from the group to
C∗ and is therefore also in G∨b . Closure is also clear from the fact that the
characters are all homomorphisms.

Lemma 2.1: For χ(n) 6= χ0(n),
∑

n∈Gb
χ(n) = 0. And

∑
n∈Gb

χ0(n) = φ(b).
Proof: Choose a ε Gb s.t. χ(a) 6= 1
χ(a)

∑
nεGb

χ(n) =
∑

nεGb
χ(an) =

∑
nεGb

χ(n)

⇒ χ(a)
∑

nεGb
χ(n) =

∑
nεGb

χ(n)

⇒ 0 =
∑

nεGb
χ(n)(1− χ(a))

⇒ 0 =
∑

nεGb
χ(n)

The second part is obvious as card(Gb) = φ(b).

Lemma 2.2: The function from Func(Gb,C)2 → C defined by

< χ, ψ > =
1

φ(b)

∑

n∈Gb

χ(n)ψ(n) where φ(n) is the Euler phi function

is a Hermitian inner product on this vector space.
Proof:
Clearly, <χ, φ>=<φ,χ> and for λ ∈ C, λ<χ,ψ>=<λχ,ψ>=<χ, λψ>.
All that remains to show is positivity, which follows from:

< χ, χ >=
∑

n∈Gb

χ(n)χ(n)
φ(b)

=
∑

n∈Gb

<[χ(n)]2 + =[χ(n)]2

φ(b)
> 0

and is zero ⇔ <[χ(n)] = 0 and =[χ(n)] = 0.

Lemma 2.3: The χi are orthonormal in Func(Gb,C) relative to this inner
product.
Proof: Let χi and χj be elements of G∨b . Then

< χi, χj >=
∑

n∈Gb

χi(n)χj(n)
φ(b)

=
∑

n∈Gb

χi(n) χ−1
j (n)

φ(b)
.

If χi 6= χj then χi(n) · χj(n)−1 6= 1 for some n, since inverses are unique in a
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group. And since χi, χj ε G∨b ⇒ χi · χ−1
j ∈ G∨b and, by Lemma 2.1

∑

n∈Gb

χi(n)χj(n)−1

φ(b)
= 0

If χi = χj then

∑

n∈Gb

χi(n)χj(n)−1

φ(b)
=

∑

n∈Gb

χ0(n)
φ(b)

=
∑

n∈Gb

1
φ(b)

=
φ(b)
φ(b)

= 1

Lemma 2.4: There exists a natural injection between Gb and its bidual G∨∨b .
Proof: G∨∨b is defined as the dual of the dual group, or as G∨∨b = Hom(G∨b ,C).
We can see this bijection by defining the characters (ψ) of the bidual with re-
spect to the elements of Gb:

∀ a ∈ Gb a → ψa(χ) := χ(a)

φ is a homomorphism the sends members of the dual group to C∗. Supposing
φ is not injective would imply that, for some a and a′ in Gb,

χ(a) = χ(a′) for all χ

χ(a · (a′)−1) = 1 for all χ

which implies that a · a′−1 = 1 and therefore a = a′.

Theorem 2.1: The elements of the dual group G∨b form an orthonormal basis
for the functions from Gb → C.
Proof: From Lemma 2.3 we get that the χi are lineraly independent and hence,
]G∨b ≤ ]Gb. Additionally, this gives us that ]G∨∨b ≤ ]G∨b (since G∨∨b is similarly
the dual of G∨b and so the same inequality applies). From Lemma 2.4, we have
that ]Gb ≤ ]G∨∨b . Therefore, ]Gb = ]G∨b .

Since ]Gb =dim(Func(Gb,C)), the elements of the dual group form an orthonor-
mal set with the same cardinality as the dimension of the space. Therefore, the
χi’s form an orthonormal basis over the space of functions.

Corollary 2.1: There exists a bijection between Gb and G∨∨b .

3 Euler’s Equation and the L-Function at s=1

The desirable simplicity of this method comes from side-stepping the use of the
complex s-variable in the L-function. After proving that L(1, χ) converges con-
ditionally for all characters χ 6= χ0, our conjecture will allow for completion of
the theorem.
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Proposition 3.1: The Euler Equality

∏
p<x

(
1

1− 1
p

) =
∑

n x-smooth

1
n

where p are prime

Proof: The expression in the product represents the sum of a convergent geo-
metric series, which gives us

∏
p<x

(1 +
1
p

+
1
p2

+ ...)

And where px is the largest prime less than x,

= (1 +
1
2

+
1
4

+ ...) · (1 +
1
3

+
1
9

+ ...) · · · (1 +
1
px

+ (
1
px

)2 + ...)

Finally, by the usual rules for multiplying sums, each resulting term will be a
unique product of one ’choice’ per bracket. By N being a UFD, each product
will therefore yield a unique term.

=
∑

n x-smooth

1
n

Proposition 3.2: For any multiplicative function f(x), the following equality
holds: ∏

p<x

(
1

1− f(p)
p

) =
∑

n x-smooth

f(n)
n

Proof: This follows directly from the fact that f(pk) = f(p)k as well as
f(p · q) = f(p) · f(q). Then it becomes clear that ∀n, f(n) = f(pi1

1 pi2
2 ...pix

x ) =
f(p1)i1f(p2)i2 ...f(px)ix

Theorem 3.1: The harmonic series of prime numbers,
∑

p prime
1
p , diverges.

Proof: First, note that 1
p is asymptotic to − log(1− 1

p ) for all p, meaning that

lim
p→∞

1
p

log( 1
1− 1

p

)
= 1.

This can be written as follows:

log(
1

1− 1
p

) ∼ 1
p

A stronger property is that the difference between the sums

|
∑
p<x

log(
1

1− 1
p

)−
∑
p<x

1
p
|
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is controllable. We get that

|
∑
p<x

log(
1

1− 1
p

)−
∑
p<x

1
p
| ≤ |

∑
p<x

∑

n≥2

1
npn

|

≤
∑
p<x

∑

n≥2

| 1
pn
|

=
∑
p<x

1
p2

1
1− 1

p

≤
∑

p≤x

2
p2

≤
∑

n

2
n2

which converges by p-series.

And with Prop 3.1,

log
x∑

n=1

1
n

< log
∑

n x-smooth

1
n

= log(
∏
p<x

(
1

1− 1
p

)) =
∑
p<x

log(
1

1− 1
p

) ∼
∑
p<x

1
p

(The sums and product are clearly not equal or converging to zero, so we can take
consider their logarithm.) If

∑
1
p converged, so would the log(

∏
p<x( 1

1− 1
p

)) (by

the limit comparison test from basic calculus). If this is so, then the log(
∑

1
n )

over the x-smooth numbers would be bounded. However, this is a contradiction,
as this series diverges as x →∞.

Theorem 3.2: (Dirichlet’s Test for convergence)
Let

∑∞
n=1 an and

∑∞
n=1 bn be two infinite series. If {bn} converges monoton-

ically to zero, and the partial sums of
∑∞

n=1 an are bounded, then the series∑∞
n=1 anbn converges.

Proof: Please refer to Gordon [2], p.232.

Lemma 3.2: The partial sums of
∑∞

n=1 χ(n) (with the Dirichlet character
χ) are bounded for χ 6= χ0.
Proof: Let SN =

∑N
n=1 χ(n) = χ(1) + χ(2) + ... + χ(N) = 0

Some of these χ(a) are zero and the rest are ≤ 1 in absolute value. There are
precisely φ(b) non-zero χ’s, and so a very rough upper bound on the infinite
series is:

|
∞∑

n=1

χ(n)| ≤ φ(b)

Proposition 3.3: L(1,χ)=
∑ χ(n)

n is conditionally convergent.
Proof: We’ve already seen that the partial sums of

∑
χ(n) are bounded for
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non-trivial characters. Additionally, { 1
n} → 0 monotonically. By Theorem 3.2,

the series converges. However,
∑

n

|χ(n)
n

|+
∑

p|n

1
p

>
∑ 1

p
= +∞

Since
∑

p|n
1
p is finite, L(1,χ) diverges in absolute value and is therefore only

conditionally convergent.

Conjecture: The sum
∑ χ(n)

n over the x-smooth numbers greater than x con-
verges to zero as x gets large.

Proposition 3.4: Assume the conjecture. Then
∏
p<x

1

1− χ(p)
p

→ lim
x→∞

∑
n<x

χ(n)
n

.

Proof: From Prop 3.2,
∏
p<x

1

1− χ(p)
p

=
∑

n x-smooth

χ(n)
n

∏
p<x

1

1− χ(p)
p

=
∑

n≤x

χ(n)
n

+
∑

n x-smooth, n>x

χ(n)
n

∏
p<x

1

1− χ(p)
p

−
∑

n≤x

χ(n)
n

=
∑

n x-smooth, n>x

χ(n)
n

Then, by the conjecture,
∏
p<x

1

1− χ(p)
p

−
∑

n≤x

χ(n)
n

→ 0 as x →∞

∏

p prime

1

1− χ(p)
p

=
∞∑

n=1

χ(n)
n

Proposition 3.5:
∑ χ(p)

p is conditionally convergent ∀χ 6= χ0.

Proof: Now we have all we need, since
∏

p(1 − χ(p)
p )−1 6= 0 and converges. It

is still true that

|
∑
p<x

log(
1

1− χ(p)
p

)−
∑
p<x

χ(p)
p
| ≤

∑
p<x

∑

n≥2

| 1
npn

| ≤ +∞

as shown in the proof of Theorem 3.1. Therefore, using an extended logarithm
(functioning over complex values), we get that

log(
∏
p

(
1

1− χ(p)
p

)) =
∑

p

log(
1

1− χ(p)
p

) ∼
∑

p

χ(p)
p

converges by LCT
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Theorem 3.3: (Dirichlet’s Theorem on Primes in Arithmetic Progressions)
For any natural numbers a and b such that (a, b) = 1, the sequence {a + bx}∞x=1

contains infinitely many primes.
Proof: Construct a function ψ such that, for some a ∈ (Z/bZ)∗:

ψ(n) =
{

1 n ≡ a
0 otherwise

ψ(n) is a function in the space Func(Gb,C), so it is spanned by the χi’s. So,
for some ci’s (using t := φ(b)), ψ(n) = c1χ1(n) + ... + ct−1χt−1(n) + c0χ0(n).
Since the characters form an orthonormal basis, we can determine the values of
the coefficients using the inner product described in Lemma 2.2. We only care
to observe that

c0 =< ψ(n), χ0(n) >=
1

φ(b)
=

1
t
6= 0

Now, divide the linear combination by a prime p, and sum for every p. The
expression becomes:

∑
p

ψ(p)
p

= c1

∑
p

χ1(p)
p

+ ... + ct−1

∑
p

χt−1(p)
p

+
1
t

∑
p

1
p

Each of the first t − 1 sums converge (by Proposition 3.5) and the last sum
diverges (by Theorem 3.1). And since

∑
p

ψ(p)
p

=
∑
p≡a

1
p

we have that
∑

p≡a
1
p diverges. Therefore, there are infinitely many primes

congruent to a mod(b).

4 Numerical Analysis

Before advancing the conjecture, I did extensive numerical analysis (with PARI)
on the sum, and modified the statement based on the results. For example, at
first the statement involved two variables x1 and x2 with x2 ≤ x1 as follows:

d(x1, x2) =
∏

p<x1

1

1− χ(p)
p

−
∑

n≥x2

χ(n)
n

=
∑

n<x2, n x1 smooth

χ(n)
n

But when holding x1 constant and modifying the smaller x2, d(x1, x2) is smallest
when x1 = x2. (Please see figure 1.)

The fact that d(x1, x2) only makes sense with x2 ≤ x1 removed the possibility
of a simple conclusion (if x1 and x2 were free or if x1 ≤ x2, then we could
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easily have said that, since
∑

n x1-smooth
χ(n)

n converges, then the tail becomes
arbitrarily small).

I also experimented with modifying the χ function (even within a mod group)
but this choice has little importance as x gets large. In the appendix, I give an
example summation using the mod 7 generator χ. It is clear that the sum tends
drastically to zero amid diminishing tremors. (Please see figure 2.)
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Figure 1: A rough idea (with a smoothed curve) of how abs(d(x1, x2)) varies as
x2 is increased, holding other variables constant. Here, the mod7 generator is
used and the x-axis is a log scale.
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Figure 2: A much more refined picture of the sum abs(d(x)) with the mod 7
generator. Note that the x-axis is no longer a log scale and that the y-axis is
much smaller than in the previous graph. Also, unlike Graph 1, here there are
1000 sample points plotted without a smooth curve to give the best possible
idea of the behaviour of the sum.
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