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Abstract

In this paper, I will show Shor’s [2] analysis to find the period of
a periodic function using quantum computers. Finding the period of
the function:
f(x) =a"Mod(N)

where a is any integer relativly prime to the composed integer N, can
lead us to factorize N. The use of Quantum Fourier Transform (QFT)
is essential to extract the period. The algorithm does the factorization
in a very elegant way.

1 Introduction

The factorization of an integer is a big challenge that kept busy many math-
ematicians and computer scientists. There exists an algebraic algorithm that
reduces the task of factorizing an integer to a period-finding. We have also a
quantum algorithm developed by Shor that finds the period of any periodinc
function fastly. This paper will explain both the algebraic and the quantum
algorithms. The algebraic part uses some basic number theory topics that
will be introduced briefly and the quantum part uses the Quantum Fourier
Transform (QFT) and its power to extract the period of any periodic function



2 Number Theory

2.1 Environnement
2.1.1 Modular Arithmetic and Groups

The ring Z/pZ that I will denote by Z,, where p is a prime number, is the
set of numbers {0,1,2,...,p — 1} that satisfies some properties undersome
operation x [1]. Now, let me impose one more condition which is the fact
that each element of the set has its inverse in the set: {Vz € Z,,32" € Z,
such that # * 2" = 1 (mod p)}. The ring Z, becomes the group Zj which is
the set {1,2,...,p — 1}. The cardinality of this group is p — 1.

For the general case, the ring Z, where n is a composed integer contains n
elements, but the group Z; doesn’t contain n — 1 elements.

For exemple, the group Z§ contains only two elements: {1,5} because the
elements {2, 3,4} of the ring Zs don’t have an inverse under multiplication.
Something interesting about the group Zj is the following equality:

a’ =, a & a’' = 1(mod p)

where a € Z and p fa This last equation is knows as Fermat Little Theorem
proved in most Abstract Algebra texts [1].

2.1.2 Euler phi (¢) function

Fermat Little Theorem works for the groups Z; where p is a prime number.
How about the group Z7 for a composed integer n? The answer was given
by Euler when he defined the ¢ function. The Euler ¢ function is a function
when applied on any integer n it returns the number of elements relativly
prime to n. In other words the Euler ¢ function gives us the cardinality of
the group Zr.

Given this Euler ¢ function, there exists an equivalent theorem to Fermat Lit-
tle Theorem known as Euler-Fermat Theorem that uses the Euler ¢ function
and gives us the following equation:

a®™ =1 (mod N),
where a € Z and ged(a,n) =1
Here are some properties of the Euler ¢ funtion[1]:
¢(p) =p—1
o(p*) = p* —p*7"
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d(pxq)=¢(p) X d(q) = (p—1)(g—1)

where p and ¢ are primes for a general n = p* x p3* x ... X p% we have:

¢(n) = d(py" X p3* X ... x pg*) = o(pi) X d(pa*) x ... x ¢(pg*)

2.1.3 The Greatest Commun Divisor (GCD)

There exists a fast algorithm that calculates the Greatest Commun Divisor
of the two integers a and b known as the Euclidean algorithm[1].
This is an example of how to comupute ged(356,100):

356 =[100] x 3 + (56)
[100]=(56) x 1 + 44

56 =44 x 1+ 12
44 =12x 3438
12=8x1+14

8:><2+O

The ged (356, 100) is 4

2.2 Application for factoring an integer

It is finally the time to stick togather all these amazing topics in mathematics
to get something useful.

Let n be the integer we want to factorize. Assume n = p x g where p and ¢
are two very large primes and assume we have a magic box that gives us the
¢ function of that integer n.

n — | MAGIC BOX || — ¢(n)

Let a be a random integer relatively prime to n, according to Euler-Fermat
Theorem we have:
a®™ =1 mod(n)

a®™ — 1 =0 mod(n)
(a¢(n)/2 +1)(a®™/? = 1) = 0 mod(n)

Now we have to assume that:

(a®™/2 1) £0mod(n) and (a®™/% 4 1) # 0 mod(n)
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Otherwise, we must choose another random integer a relativly prime to n.
Because none of (a®™/2 — 1) and (a®™/2 + 1) is 0 mod(n) therefore:

ged(a?™? — 1,n) = p

ged(a”™? +1),n) = ¢

where p and ¢ are the factors of n. In RSA cryptography system, we use
integers that are product of two large primes because they are harder to
factorize than integers composed of three or more big primes. Thus, this
algorithm factorizes easily any integer n which is the product of two primes.
The big advantage of this algebraic algorithm is the reduction of the factoring
problem to the problem of order-finding.

Actually, to factorize an integer n, we don’t necessairly need ¢(n); the only
thing we need is the smallest even r such that " = 1 mod (n). Then, we
factorize the equation a” — 1 = 0 mod (n).

The factors of n will be given by calculating the greatest common divisorof
each factor of the following expression (a’/?2 — 1) x (a™/? 4+ 1) = 0 mod (n)
with n.

3 Quantum information

In this part, [ will explain the mechanism of the magic box used above to find
the period of the function. This magic box is actually a quantum computer.
Quantum computers are much more powerful than classical computers be-
cause they use quantum laws of physics instead of classical laws. Quantum
computers exploit two features of quantum mechanics: superposition and
parallelism. The following sections will shine some light on the mathemati-
cal aspect of quantum computers.

3.1 Formalism and linear algebra

3.1.1 Definitions

3.1.1.1 Bits and Qubits

Classically, computers use what we call bits to store data. A classical bit is
a state of a classical system that might be represented by ‘1° and ‘0‘. For

integers, we convert them from base 10 into base 2, the string of bits that
represents the decimal 9 is: 1001.



In the otherhand, a Qubit is a quantum system whose state lies in a two
dimensional Hilbert Space JH. In other words, a qubit is a vector in a two
dimentional Hilbert space.

3.1.1.2 Hilbert Space

A two dimensional Hilbert space is a two dimensional vector space over

C spanned by the orthonormal basis |0) = ( (1) ) and |1) = ( (1] ) with a

complex valued inner product.
3.1.1.3 Bra ’c’ ket notation (Dirac notation)

The elements of the Hilbert space are presented by either bras or kets. Bras
define elements that are expressed as a column vector and kets define the row

vectors. The ket |¢)) = ( Z > and the bra (¢| = (a*, b*) where a* is the com-

plex conjugate of a. The inner product is defined (|1)) = (a*, b*) ( Z ) =

2 2 a * 1k CZQ ab
la|* + |b|* and the outer product |1} ()| = (a*,b*) = .
b ba b?

A quantum state [¢) is a linear combination of the kets |0) and |1):
[¥) = al0) + b[1)

In other words, the general quantum state |1) is the superposition of the pure
states |0) and |1). The coefficients a and b are complex numbers such that
la|?> +|b|*> = 1. This last condition is a the normalisation condition because
we need the thing that might be a particle for example to be somewhere in
space, thus the inner product:

* >k a
(wl) = @) () =l 4102 =1
When we take a measurement on the quantum state of the particle |¢)) we
can observe the state |0) with probability |a|* and the pure state |1) with
probability |02, but only one of the states shows up at the time
3.1.1.4 Operators

One can define a linear operator on a ket space H as a homomorphism
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of H into H. For our purpose, we assume all operators O in H,, to be n x n
invertible matrices. One nice property that links the ket space to bra space
is:

(Ol)" = (y[O!
An interesting operator used a lot in computer science is known as Hadamard
operator (Hadamard Quantum Gate). Hadamard gate in H®" is the 2" x 2"

Rn
1 1
matrix H= —L . Notice that H? = I.

Applying a Hadamard operator on a pure qubit expands this pure qubit which
might be a system of n particles into a superposition with equal probability
of all the 2" pure qubits formed by these n particles. Here is an example that

0
shows the task of the Hadamrd gate. Let the pure qubit |01) = (1)
0
0 0
1 1 (11 1 (11 1
HyJ01) = (H @ H — %
o= e @(1-1) 22<1-1 0
0 0
1 1 1 1 0 1
[ TS T T O I W
4 1 1 -1 -1 0] 4 1
1 -1 -1 1 0 -1
1 0 0 0
I B 01 110
4|0 410 1 410
0 0 0 1

1 1
= —|00) — —|01) —10——11
1100) = £/01) + 2[10) — Z]11)



3.1.2 Tensor product

a; Qs bl b2
Given two 2 X 2 matrices A = and B = , their tensor
as ay by by

alB GQB
product written A ® B is the following 4 x 4 matrix
ClgB CL4B
by by by by a1by aijby asby asby
aq a2
bs b4 by by a1bs ajby asbs asby
bi by bi by azby asby  asby  asby
as ay
bs by bs by azbs asby asbs asby

As an example, given the vector a = ( (1] ) and the vector b = ( (1) ), one

can calculate the tensor product a®b = and find the following vector

o= O O

3.1.3 n-Qubit system

In the Dirac notation, the pure state |0) is the state of one particle or "thing”.
It can represent, for example, the spin up of an electron or the vertical
polarization of light...etc. How about two particles? Given two particles
that can both of them be in the state |0) or the state [1), I will have 4
degrees of freedom, [0)|0), |0)|1), [1)]0), |1)|1). This implies that my vector
space is a 4-dimensional Hilbert space: Hy; = H @ H = H®?. We have the
two systems of one particle that become one system of two particles, i.e.:

|1>!0>:|1>®|0):<(1))®<(1)):

The 4-dimensional Hilbert space is spanned by the pure states (vectors):

= [10)

o= O O

|00) = ,|01) = ,|10) = and |11) =

o O O =
o O = O
o= O O
_— o O O



For the 2"-dimensional Hilbert space H®", its span would be the unit vectors:

1 0 0 0
0 1 0 0
of, tof{,f1¢4,...10
0 0 0 1

3.2 Quantum computer vs. classical computer

Classical computers use bits to strore data. A string of n bits can store at
most n informations; but n qubits can store up to 2" informations. The
n-qubits system is a system in the superposition of the 2" different pure
quantum states made of these n-qubits. For examples the system of 3-qubits
|¢) is a vector with 8 complex valued entries:

|6) = a0|000)+a;1]001)+a2]010)+az|011)+as|100)+as|101)+ag|110)+-aq|111)

|#) = aol0) + a1|1) + a2|2) + a3|3) + as|4) + as|5) + a|6) + a7|7)

So the 3-qubits system can give us up to 8 informations. The most interesting
thing about qubits is the fact that it is impossible according to quantum
mechanics to know the 8 informations. The only thing we can do with these
qubits is to manipulate them and extract some kinds of informations such as
the period.

3.3 Fourier Transforms

In the Shor’s algorithm, the use of QFT (Quantum Fourier Transform) is
essential. What is a QFT? Quantum Fourier Transform is a Discrete Fourier
Transform applied on qubits. For a n-qubits system we can apply the QFT
on any pure qubit |x):

2m—1

) &1 1 ri
v DI

Let N =27,



Discrete Fourier transform maps uniform periodic states with period r, to
a periodic states with period % I will give an example to make clear the
previous affirmation. Consider

f(x) =Z¢ — Zg

Where Zg is the ring with elements {0, 1,2,3,4,5} and R is the set of real
numbers. Applying the Discrete Fourier Transform on f(z) will give us these
equations:

F(0) — €2 F(0)+€2™5 f(1)+€>™ 5 (2)+€2™5 f(3)+e™F f(4)+e*™F f(5)
F(1) — € F(0)+e25 f(1)+€2™ 5 (2) 4™ f(3) 425 f(4) 42 f(5)
F(2) — €25 F(0)+€25 f(1)+€¥ 5 (2) 42T [(3)+e™F f(4)+e*™F £(5)
F(3) — €26 F(0)+€¥™6 f(1)+€¥ 5 T (2)+€2™5 f(3)+e2™F f(4) 4> £(5)
F(4) — €2 F(0)+€2™5 f(1)+€¥ 5 (2) 42 [(3)+e2™F f(4)+e*™E £(5)
F(5) — €26 F(0)+€>6 f(1)4€¥ 5T (2) 42 f(3)+e2™F f(4) 4+ £(5)

If we assume the function f(x) to be periodic with period 2, i.e., f(0) =
f(2) = f(4) and f(1) = f(3) = f(5), the previous equations become:

For a periodic function with period 3, i.e., f(0) = f(3), f(1) = f(4) and
f(2) = f(5) the final output becomes:

(0) F0) +2- F(1) +2- £(2)
F) — 0 f(0)+0- f(1)+0- f(2)
(2) JO)+eF - f1) + e f(2)
(3) f0)+0- F(1)+0- £(2)
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F4) —2- f0) +e - fF(1) +eF - f(2)
F(5) — 0 f(0) +0- f(1)+0- f(2)

As we can see in the previous sets of equations, for a periodic function of
period 2, we have non-zero factors of probablity at f(0) = f(0- &) = f(0- &)
and f(3 ) f(1-2) = f(1-%). Therefore the QFT extracts in some sens the
period of a perlodlc function.

Discrete Fourier Transform transformation is a matrix:

1 -ab
Stab — 627r7, N

VN
3.4 Shor’s Analysis

Given an integer N = pq we want to factorize, we let n = [LogaN'| be the
number of qubits needed to store the integer N. We take two strings of n-
qubits, the first string holds the value z € S = {0,1,2,...,2" — 1} in binary;
the second string holds the value of f(z) = @ mod(/N) in binary also. The
two strings |z) and |f(x)) have n-qubits each.

The quantum parallelism is the property of distribution on matrices. Let
A, By, By, B, ..., B, be m x m matrices:

L L
A Z By, = Z AB,
k=0 k=0

For our purpose, A can be any operator or function f:.S — S and B, are
|z) such that z € S.
I apply the Hadamed gate on |N) to obtain:

21
H®

V) 225 Jy) = \/_Zlk

i.e. a an equal probability superposition of all the pure states.

After that, I use the quantum parallelism to calculate |f(z)) for each |z). I
will introduce this notation |z, f(x)) instead of |x)|f(x)). Thus my quantum
system |¢1) will be:

2" -1

Us(x
) = i) = ﬁZka

I take a measurement on the second qubit |f(x)), I will get some value yj.
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Quantum mechanics says that the first quantum system has to collapse into
a superposition of all values of « such that f(z) = yo. Let K = [¥] where
N is my integer I want to factorize and r the order of the periodic function
f(x) = a® mod(N), ged(a, N) = 1. After taking a measurement of the second
string the last sum |¢)9) becomes:

[2) " Jay) = \/IF Z %o + k7, yo)

where 0 < xg < r. Let me keep the first string only, so that my superposition
|43) becomes:

|1h3) — [1ha) = \/_E |zo + kr)

i
o

At this moment, the QFT comes into play. Remember that the QFT does
the following transformation |x) ot \/127 Zz .25 y). When we apply it

to [1y) we get:
zot
[ha) = [ofs) = § ;emw

We are almost done, all we have to do now is to take a measurement on the
quantum system |[15); assume we get ¢ as a value:

N c 14

c=l—&& —=-

for some 0 < ¢ < r. All we need is having ged (¢, r) = 1 so that we simpify the

fraction  and read the value of the period r in the denominator. Otherwise,

we repeat the process again, take another measurement and get a new value
of ¢ that gives us ¢ relatively prime to r.

4 Example

Here is an example of how to factorize an integer. I would like to factorize
the integer N = 57. I choose a = 11 randomly and I use the magic box to
have the value of » = 6. I apply the algebraic algorithm

A" —1=011°-1=0
(@ =)@ +1)=0s (11 - 1)(11*+1) =0
(@ =1)#0,(a"?+1) #0mod N & (11° — 1) #0, (11° 4+ 1) # 0 mod 57
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ged((a”? =1) mod N, N) = p < ged((11* —1)  mod 57,57) = 19
ged((a”? +1) mod N,N) = ¢ < ged((11° + 1)  mod 57,57) = 3
Finanlly we have our factors of N = 57 that are 3 and 19

Conclusion

In this report, I present Shor’s Quantum Factorization Algorithm. This very
powerful algorithm, uses the laws of quantum mechanics and some topics
of algebraic number theory. This quantum algorithm factorizes integers in a
polynomial time [2]. The use of Quantum Fourier Transforms is crutial to get
the period of the function f(x) = a® mod(N).Shor’s algorithm destroys nicely
the RSA cryptosystem. Unfortunately, we must build quantum computers
to be able to use this algorithm, but many scientists work hardly on the
question.
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