
Basic Algebra 1
Solutions of Assignment 6

Solution of the problem 1. Starting with prime number 3 and looking for
a root, we see that f(x) = x2 + 1 has no zero in Z3, hence it is irreducible in
Z3[x]. Next consider 5. This case is actually different. In fact in Z5[x] we have
the factorization f(x) = (x + 2)(x + 3). Continuing this way, we find that f(x)
is irreducible in Zp[x] for p = 3, 7, 11, 19, 23 and is reducible for p = 5, 13, 17.

Looking for a general pattern, first note that each of the primes 5, 13 and
17 is of the form 4k + 1, and on the contrary, none of the primes 3, 7, 11, 19
and 23 is in that form. Secondly, observe that

5 = 22 + 12, 13 = 32 + 22, 17 = 42 + 12,

while the primes 3, 7, 11, 19 and 23 don’t enjoy such property, namely they
cannot be represented as a sum of two squares. In fact one has the following
beautiful theorem of Fermat:

An odd prime number p is a sum of two square, i.e., p = a2 + b2, if and only
if it is of form 4k + 1.

Also look at the solution of the problem 5.

Solution of the problem 2. Here is one example: f(x) = 2x2 + 4. Note that
f(1) = f(2) = f(4) = f(5) = 0. This does not contradict the theorem proven in
class stating that a polynomial in F [x] of degree d has at most d roots and the
reason is simple: Z6 is not a field!

Solution of the problem 3. This can be done by a trial and error search and
here is the answer:

[x2 + x + 1]−1 = [x2].

To verify our answer, notice that since [x3 + x + 1] = [0], we have

[x2 + x + 1][x2] = [x4 + x3 + x2] = [x(−x− 1) + (−x− 1) + x2] = [1]

(N.B. 2 = 0 and −1 = 1, because we are working in Z2.) For another way of
looking at this problem, go to the solution of the next problem.

Solution of the problem 4. Here you are:

[x]1 = [x], [x]2 = [x2], [x]3 = [x + 1], [x]4 = [x2 + x],

[x]5 = [x2 + x + 1], [x]6 = [x2 + 1], [x]7 = [1].

So, the smallest j > 0 for which [x]j = [1] is 7, and therefore [x] is a generator for
the multiplicative group of nonzero elements of the finite field Z2[x]/(x3+x+1).

Back to the solution of the previous problem, note that

[x2 + x + 1][x2] = [x]5[x]2 = [x]7 = [1] !
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Solution of the problem 5. Proof by contradiction. Suppose that x2 + 1
factors in Zp[x]. So, it has a root, a say, in Zp, i.e., a2 + 1 = 0 in Zp. This in
turn implies that p | a2 + 1 or equivalently a2 ≡ −1 (mod p). Now since p is

odd, we can raise both sides of a2 ≡ −1 (mod p) to the power
p− 1

2
to get

ap−1 ≡ (−1)
p−1
2 (mod p).

Comparing with little Fermat, we infer that

1 ≡ (−1)
p−1
2 (mod p).

Since p > 2, this is impossible unless the last congruence relation becomes equal-
ity and that amounts to p−1

2 = 2k, hence p = 4k + 1, which is a contradiction!

Solution of the problem 6a. Let R = F [X] where F is a field and let I = F
be the set of constant polynomials. Then I isn’t an ideal because i ∈ I ⇔
deg(i) = 0 or i = 0. So for any f ∈ R s.t. deg(f) ≥ 1 and 0 6= i ∈ I we have
deg(f ∗ i) = deg(i) + deg(f) ≥ 1 ⇒ f ∗ i /∈ I.

Solution of the problem 6b. Let R = Z × Z and let I = {(m, 0)|m ∈ Z}.
Then I is an ideal. Let (a, 0), (b, 0) ∈ I. Then (a, 0) + (b, 0) = (a + b, 0) ∈ I, so
I is closed under addition and if (m,n) ∈ R is some arbitrary element we have
that (m,n)∗(a, 0) = (ma, 0) ∈ I so I is closed under multiplication by arbitrary
elements in R. It follows that I is an ideal.

Solution of the problem 6c. Let I be the set of nilpotent elements of a
(commutative) ring R i.e.

I = {a ∈ R|∃ m ∈ N s.t. am = 0}.

Then I is an ideal. Let a, b ∈ I, then ∃m,n ∈ N s.t. am = bn = 0. If
r ∈ R is some arbitrary element then (ra)m = rmam = rm0 = 0 (the second
equality holds because R is commutative), so ra is also nilpotent, hence I is
closed under multiplication by arbitrary elements. Now let N = max(n, m) and
consider (a + b)2N . First note that if i ≤ N then 2N − i ≥ N . So by the
binomial theorem we have:

(a + b)2N =
2N∑
i=0

(
2N

i

)
aib2N−i

=
N∑

i=0

(
2N

i

)
ai b2N−i︸ ︷︷ ︸

=0

+
2N∑

i=N+1

(
2N

i

)
ai︸︷︷︸
=0

b2N−i

= 0

It follows that a + b is also nilpotent, so I is closed under addition, it follows
that I is an ideal.
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Remark It is important to notice that the statement of this problem is false if
we remove the commutativity of R. Here is one example. Let R = M2[Z] be the
ring of all 2 × 2 integer matrices (with the usual addition and multiplication),
and let

A =
(

0 1
0 0

)
, B =

(
0 0
1 0

)
.

One easily sees that

A2 = B2 = O2 (the zero matrix of size 2, )

however, no positive power of A + B =
(

0 1
1 0

)
is zero! (check this). The reason

behind this is that M2[Z] is not a commutative ring.

For the next two parts, let R be the ring of functions from Z to R with
addition +R and multiplication ∗R. For f, g ∈ R, the addition f +R g ∈ R is
defined as the mapping:

(f +R g)(x) = f(x) + g(x)

and the product of two functions f and g is defined as the mapping:

(f ∗R g)(x) = f(x)g(x).

From now on, subscripts for the operation signs will be omitted.

Solution of the problem 6d. Let I be the set of functions f s.t. f(0) = f(1).
I is not an ideal. Indeed, let f ∈ I be the constant 1 function i.e. for each
n ∈ Z, f(n) = 1 and let g be the function g(n) = n. Then we have that
(f ∗ g)(0) = f(0)g(0) = 1 × 0 = 0 but (f ∗ g)(1) = f(1)g(1) = 1. So f ∗ g /∈ I
so I is not closed under multiplication by arbitrary elements of R so it’s not an
ideal.

Solution of the problem 6e. Let I = {f ∈ R|f(0) = f(1) = 0}. Let f, g ∈ I
then (f+g)(1) = f(1)+g(1) = 0+0 = 0 and similarly (f+g)(0) = 0 so I is closed
under addition. Now let h ∈ R be some arbitrary element. Then we find that
(h∗f)(1) = h(1)f(1) = h(1)×0 = 0 and (h∗f)(0) = h(0)f(0) = h(0)×0 = 0, so
h ∗ f ∈ I. It follows that I is closed under multiplication by arbitrary elements
of R. It follows that I is an ideal.

Solution of the problem 7. Let R be the polynomial ring F [X] with coeffi-
cients in a field. Then all of its ideals are principal.

Remark. In class the strategy was to show that an ideal in Z is generated by
its smallest positive element. Recall that in polynomial rings over fields, the
notion of size corresponds to the degree of a polynomial.
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Proof: Let I ⊂ F [X] = R be an ideal. Then the set S = {n ∈ N : n =
deg(f), fo some f ∈ I} ⊂ N is nonempty (why?), so it must have a smallest
element. If 0 ∈ S then I contains a constant ⇒ I = R. Otherwise let s > 0 be
the smallest element in S. Then there is some f ∈ I s.t. deg(f) = s, i.e. f is
the element of minimal degree in I.

Now we claim that I = (f). On one hand f ∈ I ⇒ (f) ⊆ I. On the other
hand, suppose I * (f), then there is some g ∈ I such that f - g. So we can
apply the division algorithm to get

g = fq + r

where r 6= 0 and deg(r) < deg(f) = s. But then we get r = g − fq ∈ I
because of closure of ideals under addition and multiplication. And we get that
m = deg(r) ∈ S and m < s contradiction minimality of s. It follows that
I = (f).
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