Basic Algebra 1
Solutions of Assignment 6

Solution of the problem 1. Starting with prime number 3 and looking for
a root, we see that f(z) = 22 + 1 has no zero in Zs, hence it is irreducible in
Zs|z]. Next consider 5. This case is actually different. In fact in Zs[z] we have
the factorization f(x) = (z + 2)(« + 3). Continuing this way, we find that f(x)
is irreducible in Z,[z] for p = 3,7,11,19, 23 and is reducible for p = 5,13,17.

Looking for a general pattern, first note that each of the primes 5, 13 and
17 is of the form 4k + 1, and on the contrary, none of the primes 3, 7, 11, 19
and 23 is in that form. Secondly, observe that

5=2%4+1% 13=324+22 17=4%2+12,

while the primes 3, 7, 11, 19 and 23 don’t enjoy such property, namely they
cannot be represented as a sum of two squares. In fact one has the following
beautiful theorem of Fermat:

An odd prime number p is a sum of two square, i.e., p = a’ +b2, if and only
if it is of form 4k + 1.

Also look at the solution of the problem 5.

Solution of the problem 2. Here is one example: f(z) = 22? + 4. Note that
f(1) = f(2) = f(4) = f(5) = 0. This does not contradict the theorem proven in
class stating that a polynomial in F[z] of degree d has at most d roots and the
reason is simple: Zg is not a field!

Solution of the problem 3. This can be done by a trial and error search and
here is the answer:
22 + 2+ 1] = [27].

To verify our answer, notice that since [#3 + z + 1] = [0], we have
o2 + 2+ 1]2?) = [o* + 2 + 27 = (-2 — 1) + (~2 = 1) + 2% = [1]

(N.B. 2 =0 and —1 = 1, because we are working in Zs.) For another way of
looking at this problem, go to the solution of the next problem.

Solution of the problem 4. Here you are:
[2]' = [z], [2]* = [27], [a]® = [z +1], [o]* = [2* + 2],

[2)° = [22 + 2 + 1], [2]® = [z® + 1], [2]7 = [1].

So, the smallest j > 0 for which [z]/ = [1] is 7, and therefore [z] is a generator for
the multiplicative group of nonzero elements of the finite field Zs[z]/(z®+z+1).

Back to the solution of the previous problem, note that

[2* + @+ 1)[2%) = [][2]* = []" = [1] !



Solution of the problem 5. Proof by contradiction. Suppose that z2 + 1
factors in Zy[x]. So, it has a root, a say, in Z,, i.e., a®> + 1 =0 in Z,. This in
turn implies that p | a® 4+ 1 or equivalently a® = —1 (mod p). Now since p is

odd, we can raise both sides of a> = —1 (mod p) to the power b

to get

a?™l = (—l)pr1 (mod p).
Comparing with little Fermat, we infer that
1= (—1)1%1 (mod p).

Since p > 2, this is impossible unless the last congruence relation becomes equal-

ity and that amounts to % = 2k, hence p = 4k + 1, which is a contradiction!

Solution of the problem 6a. Let R = F[X]| where F' is a field and let I = F
be the set of constant polynomials. Then [ isn’t an ideal because i € I &
deg(i) =0ori=0. So for any f € R s.t. deg(f) > 1 and 0 # ¢ € I we have
deg(f 1) = deg(i) +deg(f) > 1= fxi¢lI.

Solution of the problem 6b. Let R = Z x Z and let I = {(m,0)|m € Z}.
Then I is an ideal. Let (a,0),(b,0) € I. Then (a,0) + (b,0) = (a +b,0) € I, so
I is closed under addition and if (m,n) € R is some arbitrary element we have
that (m,n)#*(a,0) = (ma,0) € I so I is closed under multiplication by arbitrary
elements in R. It follows that I is an ideal.

Solution of the problem 6c¢c. Let I be the set of nilpotent elements of a
(commutative) ring R i.e.

I={a€ R3meNst.a™ =0}

Then I is an ideal. Let a,b € I, then Im,n € N st. o™ = b" = 0. If
r € R is some arbitrary element then (ra)™ = r™a™ = r™0 = 0 (the second
equality holds because R is commutative), so ra is also nilpotent, hence I is
closed under multiplication by arbitrary elements. Now let N = max(n, m) and
consider (a + b)2Y. First note that if i < N then 2N —i > N. So by the

binomial theorem we have:
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It follows that a + b is also nilpotent, so I is closed under addition, it follows
that I is an ideal.



Remark It is important to notice that the statement of this problem is false if
we remove the commutativity of R. Here is one example. Let R = M>s[Z] be the
ring of all 2 X 2 integer matrices (with the usual addition and multiplication),

and let
A 01 . B= OO.
00 10

A? = B? = O, (the zero matrix of size 2, )

One easily sees that

01
however, no positive power of A + B = (1 0) is zero! (check this). The reason

behind this is that Ms[Z] is not a commutative ring.

For the next two parts, let R be the ring of functions from Z to R with
addition +pg and multiplication *xg. For f,g € R, the addition f +rp g € R is
defined as the mapping:

(f+tr9)(z) = f(z) + g(=)

and the product of two functions f and g is defined as the mapping:

(f *r 9)(x) = f(2)g9(x).

From now on, subscripts for the operation signs will be omitted.

Solution of the problem 6d. Let I be the set of functions f s.t. f(0) = f(1).
I is not an ideal. Indeed, let f € I be the constant 1 function i.e. for each
n € Z,f(n) = 1 and let g be the function g(n) = n. Then we have that
(f*9)(0) = f(0)g(0) =1 x0=0but (f+g)(1) = f(1)g(1) =1. So fxg¢I
so I is not closed under multiplication by arbitrary elements of R so it’s not an
ideal.

Solution of the problem 6e. Let I = {f € R|f(0) = f(1) =0}. Let f,ge I
then (f+¢)(1) = f(1)+g(1) = 0+0 = 0 and similarly (f+g¢)(0) = 0so [ is closed
under addition. Now let h € R be some arbitrary element. Then we find that
(hxf)(1) =h(1)f(1) = h(1)x0=0and (hxf)(0) = h(0)f(0) = h(0)x0 =0, so
hx f € I. Tt follows that I is closed under multiplication by arbitrary elements
of R. It follows that I is an ideal.

Solution of the problem 7. Let R be the polynomial ring F[X] with coeffi-
cients in a field. Then all of its ideals are principal.

Remark. In class the strategy was to show that an ideal in Z is generated by
its smallest positive element. Recall that in polynomial rings over fields, the
notion of size corresponds to the degree of a polynomial.



Proof: Let I C F[X] = R be an ideal. Then the set S = {n e N : n =
deg(f), fosome f € I} C N is nonempty (why?), so it must have a smallest
element. If 0 € S then I contains a constant = I = R. Otherwise let s > 0 be
the smallest element in S. Then there is some f € I s.t. deg(f) = s, i.e. fis
the element of minimal degree in I.

Now we claim that I = (f). On one hand f € I = (f) C I. On the other
hand, suppose I ¢ (f), then there is some g € I such that f { g. So we can
apply the division algorithm to get

g="fq+r

where r # 0 and deg(r) < deg(f) = s. But then we get r = g — fq € I
because of closure of ideals under addition and multiplication. And we get that
m = deg(r) € S and m < s contradiction minimality of s. It follows that

I'=(f)



