
Algebra 1 Assignment 7 Solutions

Problem 1 Let R = F [X] where F is a field and let I = F be the set of constant
polynomials. Then I isn’t an ideal because i ∈ I ⇔ deg(i) = 0 or i = 0. So for
any f ∈ R s.t. deg(f) > 1 and 0 6= i ∈ I we have deg(f ∗ i) = deg(i) + deg(f) >
1 ⇒ f ∗ i /∈ I.

Problem 2 Let R = Z×Z and let I = {(m, 0)|m ∈ Z}. Then I is an ideal. Let
(a, 0), (b, 0) ∈ I. Then (a, 0)+(b, 0) = (a+b, 0) ∈ I, so I is closed under addition
and if (m,n) ∈ R is some arbitrary element we have that (m,n) ∗ (a, 0) =
(m ∗ a, 0) ∈ I so I is closed under multiplication by arbitrary elements in R. It
follows that I is an ideal.

Problem 3 Let I be the set of nilpotent elements of a ring R i.e. I = {a ∈
R|∃m ∈ N s.t. am = 0}. Then I is an ideal. Let a, b ∈ I, then ∃m,n ∈ N s.t.
am = bn = 0. If r ∈ R is some arbitrary element then (r ∗ a)m = rm ∗ am =
rm ∗ 0 = 0 (the second equality holds because R is commutative) so r ∗ a is
also nilpotent so I is closed under multiplication by arbitrary elements. Now
let N = max(n, m) and consider (a + b)2N . First note that if i ≤ N then
2N − i ≥ N . So by the binomial theorem we have:
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It follows that a + b is also nilpotent, so I is closed under addition, it follows
that I is an ideal.

For the next two problems, let R be the ring of functions from Z to R with
addition +R and multiplication ∗R. For f, g ∈ R, addition the sum f +R g ∈ R
is defined as the mapping:

(f +R g)(x) = f(x) + g(x)

and the product of two functions f and g is defined as the mapping:

(f ∗R g)(x) = f(x)g(x)

From now on, subscripts for the operation signs will be omitted.

Problem 4 Let I be the set of functions f s.t. f(0) = f(1). I is not an ideal.
Indeed, let f ∈ I be the constant 1 function i.e. for each n ∈ Z, f(n) = 1 and let
g be the function g(n) = n. Then we have that (f ∗g)(0) = f(0)g(0) = 1∗0 = 0
but (f ∗g)(1) = f(1)g(1) = 1. So f ∗g /∈ I so I is not closed under multiplication
by arbitrary elements of R so it’s not an ideal.

Problem 5 Let I = {f ∈ R|f(0) = f(1) = 0}. Let f, g ∈ I then (f +
g)(1) = f(1) + g(1) = 0 + 0 = 0 and similarly (f + g)(0) = 0 so I is closed
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under addition. Now let h ∈ R be some arbitrary element. Then we find that
(h∗ f)(1) = h(1)f(1) = h(1)∗0 = 0 and (h∗ f)(0) = h(0)f(0) = h(0)∗0 = 0, so
h ∗ f ∈ I. It follows that I is closed under multiplication by arbitrary elements
of R. It follows that I is an ideal.

Problem 6 Let R be the polynomial ring F [X] with coefficients in a field. Then
all of its ideals are principal.

Remark: In class the strategy was to show that an ideal in Z is generated
by its smallest positive element. Recall that in polynomial rings over fields, the
notion of size corresponds to the degree of a polynomial.
Proof: Let I ⊂ F [X] = R be an ideal. Then the set S = {n ∈ N|f ∈ I, n =
deg(f)} ⊂ N is nonempty so it must have a smallest element. If 0 ∈ S then I
contains a constant ⇒ I = R. Otherwise let s > 0 be the smallest element in
S. Then there is some f ∈ I s.t. deg(f) = s, i.e. f is the element of minimal
degree in I.

Now, I = (f). On one hand f ∈ I ⇒ (f) ⊆ I. On the other hand, suppose
I * (f), then there is some g ∈ I such that f - g. So we can apply the division
algorithm to get

g = fq + r

where r 6= 0 and deg(r) < deg(f) = s. But then we get r = g − fq ∈ I
because of closure of ideals under addition and multiplication. And we get that
m = deg(r) ∈ S and m < s contradiction minimality of s. It follows that
I = (f). 2
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